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Abstract

Electronic Structure Theory for Radicaloid Systems and Intermolecular Interactions

by

Westin Kurlancheek

Doctor of Philosophy in Chemistry

University of California, Berkeley

Professor Head-Gordon, Chair

A radical molecule contains one or more electrons that are unpaired. A radicaloid may
be defined as a molecule in which there are that are partially unpaired. As a result, the
electronic structure of the radicaloid can be quite complicated for a variety of reasons. For
a singlet biradicaloid, the singlet and triplet wavefunction can be quite close energetically
which can lead to problems when trying to describe the system with a single determinant.
The simplest solution to this problem is to allow the wavefunction to break spin-symmetry
in order to get a lower energy. Unfortunately this action can lead to wavefunctions that are
no longer eigenfunctions of the 〈S2〉 operator.

In the second chapter we investigate a distannyne which has a biradicaloid resonance
structure. By examining the orbital Hessian, it is discovered that the spin-symmetric solution
is a saddle-point in wavefunction space and is structurally different than the spin-polarized
solution. We then increase the complexity of the model system and see that the spin-
symmetric solution is only a minimum for the exact experimental system and not for a
simplified model system in which bulky organic substituents are replaced by simpler phenyl
groups. Therefore, the breaking of spin-symmetry is absolutely critical in the small model
systems and the full substituents play a non-trivial role.

However, the breaking of the spin-symmetry can have consequences for physical quantities
when correlated methods are used. At the point of spin polarization or unrestriction the
orbital Hessian will have one eigenvalue which is zero. Since the relaxed density matrix in
correlated methods like Second-Order Møller-Plesset theory (MP2) depend on the inverse
of the Hessian, at the unrestriction point this quantity will be undefined. Some unphysical
artifacts are identified as a direct consequence of this fact. First, discontinuities in first order
molecular properties such as the dipole moment are seen at the geometries associated with
unrestriction. Second, the relaxed density matrix itself fails to be N-representable, with
natural orbital occupation numbers less than zero and greater than one. Therefore, it is
desirable to use a method that is not dependent on the inverse of the Hessian like orbital
optimized MP2 (O2).

Another system which requires the use of orbital optimization is a neutral soliton on
a polyacetylene chain. In this system, the Hartree-Fock reference suffers from severe spin-
polarization making the wavefunction physically unreasonable unless a very sophisticated
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treatment of electron correlation is used to correct this problem. Originally, it was found that
computationally expensive methods like CCSD(T) and CASSCF could adequately describe
small model chain but not the full system. The O2 method is found to be an dramatic
improvement over traditional MP2 which can be feasibly applied to polyenyl chains long
enough to characterize the soliton. It is also discovered that density functionals are generally
inadequate in describing the half-width of the soliton.

Finally, the last chapter takes a slightly different perspective and focuses on the addi-
tion of correlation energy to a successful energy decomposition analysis based on absolutely
localized molecular orbitals. It is discovered that the resulting new method can adequately
describe systems with dispersive intermolecular interactions and large amounts of charge
transfer. This scheme is then applied to the water dimer systems and it is found that all
of the intermolecular interactions similar in size with the electrostatic interaction being the
largest and the dispersive interaction being the smallest. This method is also contrasted
with other EDA schemes.
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Chapter 1

Introduction

1.1 Quantum Mechanics

Toward the turn of the 20th century, several physics experiments started to yield unex-
pected results. [1, 2, 3, 4] Based on the theories of classical physics, these empirical results
could not be explained or reasoned but could be repeated. It became abundantly clear that
a new theory was necessary to describe the inherent physics of matter at the atomic level.
From the dual realization that particles are also waves and that quantities are quantized,
came the new theory of Quantum Mechanics.[5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] These
two disparate concepts provide a mathematical framework in which to study small systems.
The resulting equation for the quantum mechanical energy in a time-independent system
is the time-independent Schrödinger equation, where the energy is the eigenvalue of the
Hamiltonian total energy operator

Ĥ|Ψ〉 = E|Ψ〉 (1.1)

Ĥ = T̂ + V̂ (1.2)

The Hamiltonian includes operator expressions for the potential energy, V̂ , and the kinetic
energy, T̂ . If the focus is shifted to systems that include a nucleus and electrons, which
would be classified as systems that chemists would care about, the kinetic energy operator
would include terms accounting for the motion of electrons and the nucleus. The potential
energy would include interactions between electrons and the nucleus, electrons and electrons,
and multiple nuclei. The following equation is the molecular Hamiltonian for the time-
independent Schrödinger equation in atomic units.

Ĥ = −
N∑
i=1

1

2
∇2
i −

M∑
A=1

1

2MA

∇2
A −

N∑
i=1

M∑
A=1

ZA
riA

+
N∑
j>i

1

rij
+

M∑
B>A

ZAZB
RAB

(1.3)

In this previous equation the letters A,B, . . . refer to nuclear quantities and i, j, . . . refer to
electronic quantities. The first two terms refer to the kinetic energy of the electrons and the
nucleus respectively. The third term refers to the Coulomb attraction between the nucleus
and the electrons. The final two terms describe the same particle charge repulsion from
electrons and nuclei respectively.
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The Born-Oppenheimer approximation simplifies the time-independent Schrödinger equa-
tion so that the electronic variables and the nuclear variables are fully separated.[16] A
qualitative justification for neglecting the direct influence of the nucleus on the surrounding
electrons is dependent on the difference in mass between the electron and the particles in
the nucleus. The mass of a proton or a neutron is about 2000 times more massive than
an electron. To a good approximation, the electrons move much faster than the nucleons.
Therefore, the electrons are moving in the field of the nuclei. Furthermore, the nuclei can be
thought of as fixed with respect to the motion of the electrons. This approximation greatly
simplifies equation 1.3 to only the electronic hamiltonian which includes the electron kinetic
energy, nuclear-electron attraction, and electron-electron repulsion.

Ĥel = −
∑
i

1

2
∇2
i −

∑
i

∑
A

ZA
riA

+
∑
i

∑
j>i

1

rij
(1.4)

ĤelΨel = EelΨel (1.5)

The eigenvalue equation 1.5 gives the electronic energy and the electronic wavefunction for
a given system of clamped nuclei and electrons. Solving this equation is the purpose of
quantum chemistry, specifically the field of electronic structure theory. In order to solve this
equation generally, the wavefunction must accommodate an arbitrary number of electrons,
N . However, it is extremely difficult to solve for the large number of degrees of freedom
inherent in systems with a large N . It would therefore be ideal to represent the total N
electron wavefunction as a product of 1-electron wavefunctions. These 1-electron wavefunc-
tions contain both a spatial component and a spin angular momentum component and are
commonly referred to as spin orbitals.

χi(r1) = ψi(r1)α(ω1)
χi(r1) = ψi(r1)β(ω1) (1.6)

Furthermore, the spin angular momentum functions of the spin orbital are characterized
by the variable ω1 and are also orthonormal. Therefore the inner product of an alpha spin
orbital and a beta spin orbital is zero.

〈α|α〉 = 1
〈β|β〉 = 1
〈α|β〉 = 0. (1.7)

The spatial wavefunctions depend on the position variable r1, and are further approximated
as the linear combinations of atomic orbitals. These atomic orbitals, φµ(r1), are optimized
to capture specific properties or to have other convenient properties.

ψi(r1) =
∑
µ

cµiφµ(r1). (1.8)

It should be noted that the Roman letters, i, will be used to refer to the molecular orbital
(MO) indices and the Greek letters, µ, will be used to refer to the atomic orbital indices.

Since these orbitals may contain electrons, the total wavefunction made up of orbitals
must reflect the physical properties of electrons. Specifically, since electrons are fermions, the
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total wavefunction must be anti-symmetric under exchange of parameters. This constraint
is known as the Pauli Exclusion Principle and has the following property,[17]

|χ1(r1)χ2(r2)...〉 = −|χ1(r2)χ2(r1)...〉. (1.9)

When trying to encapsulate the Pauli Exclusion Principle within a mathematical construct,
it becomes clear that a simple direct product will not create the appropriate anti-symmetry
relation. In order to ensure this relation, a determinant of the spin orbitals is formed.
Thanks to the properties of determinants, the Pauli Exclusion Principle will be satisfied by
definition. This specific determinant is called a Slater Determinant, and the multi-electron
wavefunction follows.[18, 19]

|ΨHF (r1, r2, . . . , rN)〉 = |χ1(r1), χ2(r2), . . . , χN(rN)〉

=
1√
N !

∣∣∣∣∣∣∣∣∣
χ1(r1) χ2(r1) · · · χN((r1)
χ1(r2) χ2(r2) · · · χN(r2)

...
...

. . .
...

χ1(rN) χ2(rN) · · · χN(rN)

∣∣∣∣∣∣∣∣∣ (1.10)

Since our wavefunction only includes products of one-electron orbitals, there are no electron-
electron correlations as will be evident in the following section. Correlations can be included
in the wavefunction through the inclusion of some additional Slater Determinants for instance
through the use of perturbation theory. Some of these techniques will be examined in the
following sections.

1.2 Ab Initio Quantum Mechanics

1.2.1 Hartree-Fock Theory

One of the simplest approximations is the mean-field approximation which assumes that
an electron only interacts with the mean-field created from the charge density of the other
electrons.[20, 21, 22, 23, 24] This approximation is also called the Hartree-Fock approxi-
mation and is the backbone of Hartree-Fock theory (HF). Within this approximation the
energy can be solved as the expectation value of the electronic Hamiltonian in the basis of
the N -electron Slater Determinant.

EHF = 〈ΨHF |Ĥ|ΨHF 〉

EHF =
occ∑
i

〈χi|ĥ|χi〉+
1

2

occ∑
i

occ∑
j

[
〈χiχj|

1

rij
|χiχj〉 − 〈χiχj|

1

rij
|χjχi〉

]
(1.11)

The MO coefficients from equation 1.8 will be optimized using the variational theorem [25]
in order to obtain the lowest possible energy and HF wavefunction. The major constraint
on the HF wavefunction is that the individual orbitals are orthonormal, 〈χi|χj〉 = δij. In
electronic structure theory, the inner product of two functions is known as an overlap. The
overlap matrix in the AO basis is defined thusly,

Sµν = 〈φµ(r)|φν(r)〉. (1.12)
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Due to the constraint on the molecular orbitals in HF theory, the overlap matrix in the MO
basis will simply be the identity matrix.

The Hartree Fock wavefunction in the MO basis contains spin orbitals that are either
occupied or unoccupied (virtual). For example, in a finite AO basis of size K with N
electrons, the HF wavefunction will contain N occupied orbitals (denoted i, j, k...) and 2K−
N virtual orbitals (denoted a, b, c, ...). The number of basis functions K needs to be greater
than N/2 so that there are enough orbitals to accommodate for each orbital to containing
two electrons. The lowest energy orbitals will be the orbitals that the electrons will fill first
and by definition the occupied orbitals. As the number of basis functions becomes larger
than N/2, the Hartree-Fock energy becomes lower and the quality of the MOs increases. If
the number of basis functions approaches infinity, then the Hartree-Fock energy will be the
lowest possible energy for a single Slater Determinant for the given electronic Hamiltonian.
This energy is referred to as the Hartree-Fock limit and the basis set is known as the complete
basis set (CBS). For other methods like perturbation theory, the corresponding energy in
the CBS is referred to as the CBS limit.

The main advantage of HF theory is that the multi-electron Schrödinger equation reduces
to a coupled set of one electron eigenvalue equations for each spin orbital:

f̂(r1)χ1(r1) = εiχi(r1)

f̂(r1) = ĥ(r1) +
∑
j 6=i

Ĵj(r1)−
∑
j 6=i

K̂j(r1)

ĥ(r1) = −
∑
i

1

2
∇2
i −

∑
i

∑
A

ZA
riA

Ĵj(r1)χi(r1) =

[∫
dr2|χj(r2)|2 1

rij

]
χi(r1)

K̂j(r1)χi(r1) =

[∫
dr2χj(r2)

1

rij
χi(r2)

]
χj(r1) (1.13)

In order to get the lowest possible HF energy, the eigenvalue equations are solved for each
orbital, the orbitals are updated, and then the eigenvalue equations are solved again. This
process continues until the energy is the lowest and the orbitals are no longer changing. This
procedure is known as a self-consistent field approach for optimizing orbitals and obtaining
the lowest possible HF energy. The resulting orbitals are used to form a Slater Determinant,
which become the HF wavefunction. The HF wavefunction is used as a starting point or a
reference for many higher-order methods.

In these higher-order methods, including perturbative methods, the Fock operator, f̂ , is
used as the zeroth-order Hamiltonian. The expectation value of the Fock operator in the
canonical HF MO basis will be a diagonal matrix because of the orthonormal MO orbitals
with the diagonal values being,

εpq = 〈χp(r1)|f̂(r1)|χq(r1)〉

εp = εpqδpq. (1.14)

It should be noted that the HF energy is not simply the addition of all of the occupied orbital



5

energies, EHF 6=
occ∑
i=1

εi. This formulation would be double counting the the coulomb, Ĵj(r1),

and exchange, K̂j(r1), quantities since each orbital energy contains the full value. Therefore
a factor of 1

2
needs to be placed in front of these quantities to ensure the correct HF energy.

In the AO basis the Fock matrix is no longer a diagonal matrix and each element can be
written as follows,

Fµν = 〈φµ(r1)|f̂(r1)|φν(r1)〉. (1.15)

The Fock matrix in a finite AO basis forms a generalized eigenvalue equation referred to
as the Roothaan equations.[26] These equations are necessary for solving for the HF energy
and wavefunction.

FC = SCε∑
ν

Fµνcνi = εi
∑
ν

Sµνcνi (1.16)

The generalized eigenvector equation is to solve for the MO coefficients, however the de-
pendence of the Fock matrix on the MO coefficients requires the HF energy to be solved
self-consistently. This generalized eigenvalue expression is ideal for a computer to solve and
is why they are used in this field. When the spatial portion of the spin orbitals are allowed to
be different for both the allowed spin eigenfunctions, then a different set of equations known
as the Pople-Nesbet equations are solved.[27] This slightly different method is referred to as
unrestricted Hartree-Fock (UHF). If the spatial portions are different for an α and β spin,
then this is known as spin-polarization and the need for doing this type of procedure will be
discussed further in the following sections.

1.2.2 Orbital Rotations

The procedure to optimize the orbitals for Hartree-Fock involves the repeated diagonal-
ization of a matrix or through making an initial guess and updating by a series of unitary
orbital rotations. These orbital rotations are the unitary mixing of the existing orbitals
amongst each other. An orbital rotations can be represented by a unitary matrix, U, with
the special property that the adjoint is the inverse.

UU† = 1 (1.17)

Since the orbital rotation unitary matrix is real-valued, it is classified as an orthogonal
matrix. Orthogonal matrices have the convenient property of maintaining the inner product
such that,

M†M = (UM)†(UM) = M†U†UM = M†M. (1.18)

One way to form an unitary matrix is to take the exponential of an anti-Hermitian matrix:

U = eθ

θ† = −θ. (1.19)

If the matrix U is an orthogonal matrix, then the anti-Hermitian matrix becomes anti-
symmetric and the adjoint becomes the transpose.
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Another property of orthogonal matrices is that the full set of eigenvalues must have
a modulus of 1, meaning that the eigenvalues lie on the unit circle. One possible way to
view this property is to think of an orthogonal matrix as a rotation through any given angle
between element p into element q, θpq. In fact all rotation matrices that are norm-preserving
are orthogonal matrices. The two-dimension representation of this anti-symmetric matrix is
as follows,

θ =

[
0 θpq
−θpq 0

]
.

Exponentiating this matrix yields a rotation matrix, a specific type of orthogonal matrix.

G(θpq) = eθ =

[
cos(θpq) sin(θpq)
−sin(θpq) cos(θpq)

]
For the general N -dimensional Givens rotation, the two-by-two rotation matrix is projected
into a N -dimensional identity matrix.[28] Therefore the non-zero elements of the Givens ro-
tation matrix will be the diagonal elements, and the elements containing elements consisting
of entirely i and j.

gnn = 1 for n 6= i, j
gii = cos θpq
gjj = cos θpq
gij = sin θpq
gji = − sin θpq for i > j (1.20)

Any N×N rotation matrix can be represented as a product of a maximal n(n−1)/2 number
of Givens rotation matrices. The resulting rotation matrix will also be an orthogonal matrix.

U =
N∏
p

N∏
q

G(θpq). (1.21)

The main advantage to these rotation matrices is that they can simplify orbital optimization
problems in quantum chemical methods. The MO coefficients can always be decomposed as
the product of the guess MO coefficients and an orthogonal matrix.

C = C0

Niter∏
i

Ui (1.22)

The MO coefficients can be optimized through a series of orbital rotations from the ini-
tial guess MO coefficients. After a series of rotation iterations the MO coefficients will be
optimized within a certain threshold with respect to the energy. Procedurally, orbital opti-
mizations are performed until the gradient of the energy with respect to the MO coefficients
reaches zero or some near zero threshold.

∂E

∂θpq
=
∑
µ

[
∂E

∂Cµp
Cµq −

∂E

∂Cµq
Cµp

]
= 0 (1.23)
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There are three types of orbital rotations that can be applied to the MO coefficients. The
first type is a rotation between virtual orbitals. Since the Hartree-Fock energy is a modified
sum of the occupied orbital energies and not dependent on the virtual orbital energies,
the Hartree-Fock energy must be invariant to virtual-virtual rotations. The second type
of orbital rotation is between occupied orbitals. However, if any two occupied orbitals are
mixed, the individual orbital energies might change, but the overall sum of the two orbital
energies would remain unchanged. Expanding this concept to the entire occupied space, any
rotations between occupied orbitals will leave the Hartree-Fock energy unchanged, meaning
that the Hartree-Fock energy is invariant to occupied-occupied rotations. Therefore the only
type of orbital rotations that need to be considered are the occupied-virtual orbital rotations.

∂E

∂θij
= 0

∂E

∂θab
= 0

∂E

∂θia
= 0 only when the energy is converged (1.24)

There are a variety of mathematical techniques used to solve this optimization problem in a
computationally feasible manner[29, 30]. However, the discussion of these techniques is not
within the scope of this thesis.

1.2.3 The Need for Spin-Unrestriction

The need to allow for different spatial orbitals corresponding to the α and β spins becomes
apparent when examining the dissociation of H2 in a minimal basis. At equilibrium, the
system can be described accurately while maintaining that the two spin orbitals need to
only differ by the spin eigenfunction and not the spatial component.

χ1(r1) = ψ1(r1)α(ω)
χ2(r1) = ψ1(r1)β(ω)
χ3(r2) = ψ2(r2)α(ω)
χ4(r2) = ψ2(r2)β(ω) (1.25)

In this system, ψ1 describes the bonding σg orbital while ψ2 represents the σ∗u anti-bonding
orbital at equilibrium. As the distance between the two hydrogen atoms increases, the spa-
tial orbitals will eventually become degenerate, each representing a doubly occupied orbital
on each of the hydrogen atoms. However, this is not the lowest energy dissociation behavior
nor does it represent the symmetry of the system. Physically, this would accurately describe
the heterolytic cleavage of the hydrogen molecule into a proton and a hydride. The lowest
possible energy would be to have an electron on each of the the two hydrogens with the
freedom to smoothly transition from the singlet of the equilibrium ground state to the in-
finitely separated singlet. For this to occur, the spin-symmetry must be broken so that the
α electron and the β electron can reside in separate spatial orbitals.

χ1(r1) = ψ1α(r1)α(ω)
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χ2(r1) = ψ1β(r1)β(ω) (1.26)

The splitting of a spatial orbital into two separate spatial orbitals for each spin will allow for
the correct asymptotic behavior in that there in an electron on each hydrogen atom. However,
this splitting has the consequence that the wavefunction will no longer be a pure singlet. In
fact, at dissociation the physical picture that emerges is that there is a superposition of the
singlet and the triplet, since these two spin states are degenerate at 1/RHH →∞, with the
expectation value of the spin squared operator being equal to one.

〈ΨUHF |Ŝ2|ΨUHF 〉 =
1

2
· 0(0 + 1) +

1

2
· 1(1 + 1) = 1 (1.27)

Therefore obtaining the lowest variational energy creates a wavefunction that incorporates
the unphysical triplet.

It should be noted that the if the initial guess for any system is a restricted wavefunction,
the converged wavefunction will not become spin-polarized unless something perturbs the
wavefunction away from this symmetry.[24] This symmetry becomes a problem because the
restricted Hartree-Fock wavefunction is typically a saddle point when bonds are broken as in
the H2 example, being a minimum with respect to all coordinates except for the distortion
or spin-polarization coordinate. If researchers are using a quantum chemical programs like
a ’black box’ method, then they would not suspect that a restricted calculation might be a
saddle point. The resolution is that a converged restricted HF solution should be subject
to stability analysis. If the derivative of the Hartree-Fock energy with respect to the orbital
rotations (θai) is zero and the second derivative has positive semidefinite character, then the
solution is a local minimum and not a saddle point. [31]

∂EHF
∂θai

= 0

∂2EHF
∂θai∂θbj

= H

H = V εV †

εij = hiδij
hi > 0 (1.28)

When one of the eigenvalues of the Hessian matrix is negative, signifying a saddle point, then
a step should be taken in the direction of the corresponding eigenvector. This step usually
breaks spin-symmetry and perturbs the system away from the restricted solution. Since this
procedure is typically at least doubles the cost relative to the SCF optimization procedure,
it should only be used in situations where it would be necessary. These situations include
multi-reference systems, biradicaloid species, and stretched bonds.[32, 33, 34] An example
of a multi-reference system would be polyacetylene or the distannyne containing complexes
to be studied in depth in later chapters. In fact every except the last chapter contains a
complex that requires the use of the procedure outlined above.
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1.3 Density Functional Theory

It is also possible to form an energy from an electron density instead of trying to directly
solve for the wavefunction. This strategy became known as Density Functional Theory
(DFT) and allows the inclusion of electron correlation without a significant increase in com-
putational cost versus HF theory.

The general concept of density functional theory is to replace the complicated wavefunc-
tion with a simpler quantity like the electron density. Essentially we replace an N-electron
wavefunction with 3N spatial coordinates with a quantity that only has only has 3 spatial
components. The electron density can be derived from a wavefunction as follows,

n(r1) = N

∫
· · ·
∫
|Ψ(r1, r2, . . . , rN)|2ds1dr2 . . . drN (1.29)

where ds refers to the spin coordinate with dr referring to the spatial coordinates. In order
to accomplish this task, we take advantage of the Hohenberg-Kohn (HK) theorem which
states that there is a 1-to-1 correspondence between the electron density and the ground
state Hamiltonian, Ψ↔ n, along with the fact that the electron density can be used to solve
for the ground state energy. [35]

E [n] ≡ ε [Ψ [n]] = FHK [n] +

∫
drvextn

FHK [n] ≡ 〈Ψ [n] |T̂ + V̂ee|Ψ [n]〉

T̂ = −
N∑
i=1

1

2
∇2
i ,

V̂ee =
1

2

N∑
i 6=j=1

1

|ri − rj|
(1.30)

It is noted that atomic units are used which implies that me = e2 = ~ = 1. The HK theorem
also states that the ground state density can be obtained variationally, i.e. the variational
principle can be applied to the ground state density. [35]

E0 ≤ E[ñ]

E0 = min
n→N

(
F [n] +

∫
n(r)VNedr

)
F [n(r)] = T [n(r)] + J [n(r)] + Encl[n(r)] (1.31)

In the above equation the ñ is used to represent a trial density. For the universal functional,
F , the electron-electron interaction term is split into two parts: the classical Coulomb in-
teraction, J , and the non-classical portion, Encl.[36] The non-classical term includes a self-
interaction correction, exchange (from the anti-symmetry of fermions), and electron corre-
lation effects. Unfortunately, the explicit form for both the kinetic energy functional and
the electron-electron interaction functional are unknown, and will arguably never be known.
Therefore, there is a need for approximations to take this theory from an intellectual curiosity
to a usable computational approach.
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Taking inspiration from HF theory, the first approximation will be to create a density
based on a system of N non-interacting electrons.[37] For this type of system it is known
that the exact wavefunction corresponding to this fictitious potential (uncharged fermions)
is a Slater determinant.

ΘS =
1√
N !

∣∣∣∣∣∣∣∣∣
φ1(r1) φ2(r1) · · · φN((r1)
φ1(r2) φ2(r2) · · · φN(r2)

...
...

. . .
...

φ1(rN) φ2(rN) · · · φN(rN)

∣∣∣∣∣∣∣∣∣ (1.32)

By making this approximation the exact kinetic energy is the same as the Hartree-Fock
kinetic energy.

TS = −1

2

N∑
i

〈φi|∇2|φi〉 (1.33)

From this wavefunction a density can be constructed via equation 1.29. However the non-
interacting kinetic energy and the interacting kinetic energy are in principle slightly different
so a correction is needed. The non-classical electron interactions need to be accounted for as
well. The functional designed by Kohn and Sham accomplishes this goal by grouping these
two terms into a exchange-correlation in term in the following functional, F .[37]

F [n(r)] = TS[n(r)] + J [n(r)] + EXC [n(r)]
EXC [n] ≡ (T [n]− TS[n]) + (Eee[n]− J [n]) = TC [n] + Encl[n] (1.34)

It is noted that the above equation does not contain any approximations merely a splitting
of the kinetic energy into a (presumably dominant) non-interacting part and an interacting
correction. If the exact form of the EXC functional was known, then DFT would be an exact
theory with no more development necessary. However, the exact form of this functional is
not known and like the full Hohenberg-Kohn functional, FHK , is unlikely ever to be known.
Therefore it is necessary to formulate an approximate exchange-correlation functional to
closely model the true exchange-correlation function.

One popular approximation is to model the exchange and correlation via the uniform
electron gas. In order to solve for the local exchange exactly, it is necessary to split the
EXC into an exchange term and a correlation term. This approximation leads to a local
potential for the exchange portion of EXC and when combined with the analogous treatment
of correlation for the uniform electron gas is termed the local density approximation (LDA).
Functionals based solely on this approximation tend to yield acceptably accurate results for
systems like metal solids and some other regular periodic systems.[38] Essentially, any time
the total electron density resembles a uniform electron gas these functionals perform well.
However, on most molecular systems, which do not resemble the uniform electron gas, these
functionals perform quite poorly with very large errors.[39]

The next level of complexity for functionals includes information about the gradient
of the local density. This scheme is referred to as the generalized gradient approximation
(GGA).[40] Since the gradient contains information about more than just the local density,
the method tends to perform better for realistic molecular systems.[41]
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However, the exact exchange for any given molecular system is known, and it is simply the
Hartree-Fock exchange. Therefore it could be prudent to mix in an amount of exact exchange
with the exchange functionals developed using the GGA approach.[42] Functionals containing
this mixture of exact and approximate exchange are called hybrid functionals. Currently, the
most popular density functional, B3LYP, is a hybrid functional.[42] All hybrid functionals
contain semi-empirical parameters used to determine the amount of exact exchange and the
amount of approximate exchange to include. These methods thrive because of a convenient
cancellation of errors present in various terms used to form the EXC functional. The B3LYP
functional has proven to have generally very satisfying chemical accuracy when used to
optimize a molecular geometry.[43] The performance of B3LYP for relative energies is also
quite good with errors typically reduced by a factor of about two versus GGA’s. When this
is still inadequate, B3LYP is frequently used to find a suitable geometry and other ab initio
methods are used to calculate relative energetics.

However, there are still problems with these hybrid functionals when there is a long-
range interaction, specifically when an odd electron bond is dissociated. When the H+

2

molecule is cleaved, the correct limit would be a degenerate ground state with an electron
on either H atom having the exact same energy. Yet, when this limit is calculated with
the B3LYP functional, the result is an unphysical half-electron on each H atom associated
with a spurious energy lowering of ∼50 kcal/mol. The unphysicality is a result of using
an approximate exchange functional which leads to incomplete cancellation of the classical
self-interaction and thus electrons partially interacting with themselves.[44, 45] One strategy
to deal with this unfortunate consequence is to further decompose the exchange into long-
range exchange and short-range exchange.[46, 47] Short-range exchange would be of the local
variety whereas the long-range exchange would be the exact Hartree-Fock exchange. The
range-separated functionals come much closer to capturing the correct dissociation limit for
H+

2 since at dissociation there would be only exact exchange.
Once the choice of EXC functional has been made, the vaunted Kohn-Sham equations

can be solved for the orbitals akin to the Roothaan equations for HF:[37]

ĥS (r)φi (r) = εiφi (r) ,

ĥS (r) ≡ −1

2
∇2 +

∫
ρ(r2)

r12

dr2 +
∂EXC
∂ρ

−
M∑
A

Z1A

r1A

(1.35)

These equations are solved self-consistently in order to minimize the energy functional in
equation 1.34.

One problem with density functional theory is that there is not a way to systematically
improve the exchange-correlation functional. Therefore for difficult electronic structure prob-
lems, there would be no way to improve potentially poor results. Also since the exchange-
correlation functional is approximate, the ground state energy can be lower than the exact
ground state energy. In order to mitigate both of these issues, we will return our focus to
wavefunction-based methods and the ability to add in correlation in a systematic fashion.
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1.4 Correlated Methods

1.4.1 Møller-Plesset Perturbation Theory

Hartree-Fock theory is often qualitatively correct but it does not have quantitative ac-
curacy. This inaccuracy stems from the fact that HF is a mean-field theory and does not
incorporate instant electron-electron interactions. The difference between the exact and the
restricted Hartree-Fock energy is referred to as the correlation energy in a given basis.

Eexact − ERHF = Ecorr (1.36)

The exact wave function can be solved for by creating a wavefunction out of all of the possible
determinants in a given basis. [48, 49, 50, 51] This method is known as full configuration
interaction (FCI) and scales factorially. Yet, when compared to the mean-field energy, the
correlation energy is quite small with the mean-field energy being about 95-99% of the exact
energy.[24] Without including correlation energy it is impossible to capture some fundamental
interactions like dispersion interactions. And in chemical transformations, such as bond-
breaking, the correlation contribution does not cancel. For even H2 → 2H, there is an error
of ∼25 kcal/mol.

One less computationally expensive way to capture the correlation is through the use of
low order perturbation theory. This theory is based on the partitioning of the Hamiltonian
and the Taylor expansion of the eigenvectors and eigenvalues. The Hamiltonian is split into
a known part Ĥ0 and a small correction Ĥ1 which together make the total Hamiltonian
difficult to solve. The known portion of the Hamiltonian is referred to as such because the
eigenvalues and eigenvectors are required to be known.

Ĥ|Φi〉 = (Ĥ0 + Ĥ1)|Φi〉 = εi|Φi〉
Ĥ0|i〉 = E

(0)
i |i〉 (1.37)

In order to keep track of order, a parameter λ will be introduced to the power series of the
eigenfunctions and eigenvalues along with the small correction Ĥ1.

(Ĥ0 + λĤ1)|Φ〉 = ε|Φ〉
εi = E

(0)
i + λE

(1)
i + λ2E

(2)
i + . . .

|Φi〉 = |i(0)〉+ λ|i(1)〉+ λ2|i(2)〉+ . . . (1.38)

Expanding the entire Schrödinger equation in terms of the order parameter yields,

(Ĥ0 + λĤ1)(|i(0)〉+ λ|i(1)〉+ λ2|i(2)〉+ . . .)

= (E
(0)
i + λE

(1)
i + λ2E

(2)
i + . . .) (|i(0)〉+ λ|i(1)〉+ λ2|i(2)〉+ . . .). (1.39)

Since the eigenvectors are orthonormal, the first-order energy can be solved for by left pro-
jecting equation 1.39 by the zeroth order wavefunction.

E
(1)
i = 〈i(0)|Ĥ1|i(0)〉 (1.40)
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If instead all of terms with a first order order parameter are gathered for equation 1.39, then
the resulting equation is,

Ĥ0|i(1)〉+ Ĥ1|i(0)〉 = E
(0)
i |i(1)〉+ E

(1)
i |i(0)〉. (1.41)

By gathering terms and inserting the resolution of the identity for the zeroth-order wave-
function, |k(0)〉, the first-order wavefunction can be defined as,

|i(1)〉 =
∑
k 6=i

〈k(0)|V |i(0)〉
E

(0)
i − E

(0)
k

|i(0)〉. (1.42)

In continuing this procedure the second-order energy is defined as:

E
(2)
i =

∑
k 6=i

|〈k(0)|V |i(0)〉|2

E
(0)
i − E

(0)
k

(1.43)

Although the above equations are simply formalism, one can see that this method would be
perfectly suited to the electronic correlation problem. The correlation energy is difficult to
obtain and important, yet it is small in magnitude compared to the non-interacting energy.
Therefore, we will set the Fock operator as the zeroth-order Hamiltonian in this case and the
difference between the full Hamiltonian and the Fock operator as the perturbing Hamiltonian.

Ĥ0 = F̂
Ĥ1 = Ĥ − F̂ (1.44)

By choosing the Fock operator as the zeroth-order Hamiltonian, the wavefunction becomes
the eigenvalues and eigenfunctions of this operator. From equation 1.14, it is known that
these quantities are the molecular orbitals and their corresponding energies. It should be
noted that for our purposes, we only care about the corrections to the energy and not the
corrections to the wavefunction. The zeroth-order energy would then be the sum of all of
the orbital energies. The first order energy correction is the correction from the sum of all
orbital energies to the Hartree-Fock energy.

E
(0)
i + E

(1)
i = 〈ΨHF |F̂ |ΨHF 〉+ 〈ΨHF |Ĥ − F̂ |ΨHF 〉 = 〈ΨHF |Ĥ|ΨHF 〉 = EHF (1.45)

To obtain an energy correction to the Hartree-Fock energy, the power series must be taken to
second order. Therefore plugging in the specific elements into equation 1.43 along with using
the Slater-Condon rules yields the Møller-Plesset Second-Order energy expression:[52, 24]

EMP2 =
1

4

occ∑
i,j

virt∑
a,b

|〈Ψref |Ĥ|Ψab
ij 〉|2

εi + εj − εa − εb
=

1

4

occ∑
i,j

virt∑
a,b

|〈ij||ab〉|2

εi + εj − εa − εb
. (1.46)

The double bar integrals are the anti-symmetric two-electron integrals:

〈ij||ab〉 = 〈χi(r1)χj(r2)| 1

r12

|χa(r1)χb(r2)〉 − 〈χi(r1)χj(r2)| 1

r12

|χb(r1)χa(r2)〉. (1.47)
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The MP2 energy expression scales with the fifth-order of system size, meaning that MP2
is more computationally demanding than both HF and DFT. There are several ways to
reduce the scaling of this method. One of the more successful methods is to split the MP2
energy into same spin and opposite spin portions and then individually rescaling them.[53]

EMP2 = cSSESS + cOSEOS

ESS =
occ∑
i,j

virt∑
a,b

〈ij|ab〉〈ab|ij〉 − 〈ij|ab〉〈ab|ji〉
εi + εj − εa − εb

EOS =
occ∑
i,j

virt∑
a,b

〈ij|ab〉〈ab|ij〉
εi + εj − εa − εb

(1.48)

Since the opposite-spin term is generally larger than the same-spin term, we can further
approximate the MP2 energy by omitting the same-spin-term and scaling the opposite spin
term.[54] Furthermore, the opposite-spin term can be approximated by a Laplace transform
along with decomposing the four-center integrals into three-center integrals via the insertion
of the resolution of the identity. These approximations reduce the formal scaling to only
fourth order.[54]

However it must be noted that this perturbation method (like all such methods) is not
variational, meaning that this energy could be lower than the exact energy. This can occur
when there is a small HOMO-LUMO gap, because the denominator approaches zero yielding
a very large energy. Also the MP2 energy only includes double excitations from the reference
Slater determinant, |Ψab

ij 〉, whereas the exact energy would include all possible excitations in
a given basis.

A further variant of MP2 theory is used in conjunction with DFT by using the KS orbitals
instead of the HF orbitals.[55] The MP2-like correlation energy is added to the functional
energy after the energy has converged and is commonly referred to as ’double-hybrids.’
[56] Double-hybrid functionals can be formally justified using Gorling-Levy perturbation
theory.[55] These functionals are promising because the results are generally improved from
hybrid functionals and these functionals correctly describe dispersion complexes because of
the MP2-like correction.[57] As will be demonstrated later, this theory has the same problems
that are inherent in MP2 theory.

1.4.2 Coupled Cluster Theory

In order to approximate higher-level excitations a slightly different approach will be taken
by exponentiating an excitation operator. This theory is known as Coupled Cluster theory
(CC).[58, 59, 60, 61, 62, 63, 64, 65, 66, 67]

Coupled-Cluster theory is based on an exponential ansatz for the excitation operator.
When the excitation operator acts on the reference Slater determinant (usually the Hartree-
Fock reference), it produces a linear combination of excited Slater determinants.

|ΨCCSD〉 = eT̂ |ΨHF 〉 (1.49)

The excitation operator, which will be further referred to as the cluster operator, can be
conveniently expressed as a sum of creation and annihilation operators with a corresponding



15

amplitude. The cluster operator is split into levels of excitation, i.e. T̂2 will contain all
possible doubles excitations. When the T̂1 operates on the HF reference it produces all of
the singly excited Slater determinants.

T̂ = T̂1 + T̂2 + T̂3 + · · ·
T̂1 =

∑
i

∑
a

tai âiâ
†
a (1.50)

The most popular cluster operator usually contains the singles and doubles excitations
(CCSD) because the inclusion of higher excitations is computationally demanding. All other
possible excitations are then taken as products of the doubles and singles operator.[66] This
fact can be seen by taking the Taylor series of the exponential.

T̂ = T̂1 + T̂2

eT = 1 + T̂1 + T̂2 +
T̂ 2

1

2
+ T̂1T̂2 +

T̂ 3
1

3!
+ · · · (1.51)

In order to solve for the amplitudes in the cluster operator the following set of equations
must be solved.

〈ΨHF |e−T̂ ĤeT̂ |ΨHF 〉 = ECCSD
〈ΨS|e−T̂ ĤeT̂ |ΨHF 〉 = 0

〈ΨD|e−T̂ ĤeT̂ |ΨHF 〉 = 0 (1.52)

In the above equation ΨS is all singly excited determinants and ΨD is all doubly excited
determinants. Once these equations are solved self-consistently the CCSD energy is obtained.
By approximating all of the higher excitations as products of the lower excitations, this
method does a very good job of capturing large amounts of the correlation energy.[68]

The CCSD method also does not suffer from the degeneracy problems inherent in the
MP2 denominator. However, the major drawback of this theory is the computational cost
that scales as sixth-order with system size coupled with the fact that this method is iterative
(in order to solve the non-linear eq. 1.52), unlike MP2 theory. CC theory can be used as a
benchmark, but it is too computationally demanding to use on large molecules or systems
where large basis sets are crucial. Indeed, to achieve so-called ’chemical accuracy’ CCSD
itself is still generally inadequate and at least a perturbative estimate of the additional
energy lowering due to triple substitutions is needed.[69] This is most commonly done via
the CCSD(T) method. [70, 71]

Brueckner orbitals

These orbitals are defined to be the orbitals for which a single determinant has the
largest overlap with the FCI wavefunction.[72, 73] Since the FCI wavefunction is impossible
to solve except for small molecules, the Brueckner orbitals are also defined as the orbitals
that yield a zero singles coefficient. These orbitals can be obtained by rotating the orbitals
self-consistently until the singles coefficient is zero or by simply removing all of the singles
determinants before the calculation and then minimizing the energy without them. In the
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context of CC theory, Brueckner orbitals are optimized so that the singles excitation operator
is zero.[74]

T̂1|ΨBO〉 = 0 (1.53)

While this optimization could be done with any level of CC theory, the simplest would be
CC doubles where the cluster operator is simply the doubles excitation operator.[74] This
theory is referred to as Bruecker Doubles (BD) theory and has been shown to yield properties
like an aversion to breaking spin-symmetry which can be useful for multi-reference systems,
biradicaloid species, and stretched bonds mentioned earlier.[75, 76] Essentially, the main
advantage of these orbitals are that they are not HF orbitals and therefore do not have the
same problems as HF orbitals. This issue will be crystallized in the later chapters when
orbital-optimized MP2 will be used to fix some of the inherent problems of the Hartree-Fock
reference.

1.5 Intermolecular Interactions

All of the ab initio theories can accurately describe the ground state of a group of
molecules. However, it is significantly more difficult to decompose the intermolecular in-
teractions between these molecules, which would be of interest to organic chemists looking
to optimize certain interactions. This section will focus on the decomposition of the binding
interactions between molecules.

Intermolecular interactions occur between two separated molecular species. There are
several different types of interactions that can occur between these two species. Ion-ion,
dipole-ion, and dipole-dipole are several types of electrostatic interactions that can occur
between two molecules. These interactions involve a localized charge which will only de-
pend on the set distance and orientation between the two molecules. Generally these are
the strongest type of intermolecular interactions. These interactions range in strength from
250 kJ/mol for ion-ion interactions all the way down to 2 kJ/mol for weak dipole-dipole
interactions.[77] Another way of presenting this point is that these forces do not depend on
the field of the other molecule changing and therefore these interactions can be classified as
permanent electrostatic interactions. Each of these interactions is dependent on the distance
separating the two charges. Ion-ion interactions are the longest range interaction with the
potential being proportional to inverse distance, and the ion-dipole potential being propor-
tional to 1

r2
. The dipole-dipole potential is proportional to 1

r3
if the dipoles are stationary,

but averages to 1
r6

as the dipoles start rotating in the field of each other.[77]
Another interaction between molecules is the repulsive (Pauli) interaction between filled

orbitals. This effect aries from the Pauli exclusion principle which mandates that there are
only two electrons per spatial orbital.[17] However, as two atoms or molecules get close to-
gether, more than two electrons would be occupying similar orbitals which cannot happen
because of the Pauli exclusion principle. The energetic consequence of this effect will be
known as Pauli repulsion and it is a significant intermolecular effect. This effect is indistin-
guishable from the permanent electrostatic interaction and will therefore be grouped with
it.

The next type of interaction is the dipole-induced dipole interaction. This interaction is
based on the fact that a charge will cause the electrons in a different molecule to rearrange so
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as to minimize the binding energy. When there is a small energy penalty for rearranging the
electrons in a molecule, the molecule is referred to as polarizable. Therefore, this induced
electrostatic energy will be referred to as the polarization energy and will generally be smaller
in magnitude than the permanent electrostatic energy.[77]

Another type of binding energy is the induced dipole-induced dipole. This type of interac-
tion is purely quantum mechanical and originates from quantum fluctuations in one molecule
creating a field, inducing an interaction in the other molecule. London dispersion is another
name for this type of dispersive interaction. Both of these potentials are proportional to 1

r6
.

The amount of interaction energy stemming from these interactions are dependent on the
size of the two molecules involved. As the two molecules get bigger, the magnitude of these
interactions increase significantly and can be larger than electrostatic interactions.

The final type of intermolecular interaction is charge transfer between an electron donor
and an electron acceptor. This type of interaction is governed by the Hamiltonian between
the donor and the acceptor and the rate can be explicitly calculated through the Generalized
Mulliken-Hush theory pioneered by Cave and Newton.[78] This interaction is proportional
to e−r and will be the most sensitive to orientation and orbital shape. It should be noted
that when the charge transfer interaction is over relatively long distance that DFT methods
tend to perform quite poorly.[79]

In order to calculate each of these components a clever partitioning scheme will be
used taking advantage of the unique form of the absolutely localized molecular orbitals
(ALMO).[80] These orbitals are unique because there is no charge transfers between molecu-
lar fragments that are inherent in systems that contain multiple molecules. This partitioning
is accomplished by restricting the MOs to be formed solely from the AOs on that particular
fragment.

Cµ
• i =


CµA
• iA

0 0 · · · 0

0 CµB
• iB

0 · · · ...

0 0 CµC
• iC

· · · ...
...

...
...

. . .
...

0 0 0 · · · CµF
• iF

 (1.54)

Because of this restriction, the resulting MOs are now non-orthogonal and necessitates the
use of the covariant and contravariant Einstein notation. This notation creates a dual-space
between the covariant space and contravariant space through making the metric the overlap
matrix.[81]

|φi〉 =
∑
j

|φj〉(S−1)ji (1.55)

Therefore the following scheme can be used to calculate these intermolecular contributions.
If there are two fragments, A and B, then the first step would be to calculate the energy of
each fragment separately. Next calculate the one SCF cycle or KS cycle to calculate the HF
or DFT energy but do not allow the orbitals to change from the separate calculations. This
allows for all of the electrostatic interactions mentioned earlier.

The next step is to allow the orbitals to relax in response to the field created by the
fragments. However the restriction of Eq. 1.54 must be maintained in order to restrict any
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charge transfer. Therefore, only orbital rotations within each fragment are allowed so as
to eliminate any charge transfer interaction. This will allow for the electrons to polarize
with the difference between this relaxed ALMO energy and the one step energy being the
polarization energy.

Finally the restriction on the orbitals is dropped and the orbitals are allowed to relax to
the final SCF/KS orbitals. The difference between the SCF/DFT energy and the relaxed
ALMO energy will be the charge transfer energy, the final contribution. In this scheme it is
not possible to partition out the dispersive energy or the charge transfer contribution from
adding a correlation functional which will be further investigated in chapter 5. All of the
energy contributions add together to be equivalent to the binding energy between the two
molecules and this will need to be maintained when the correlation energy is incorporated.

1.6 Outline of this Work

1.6.1 Effects of ligands and spin-polarization on the preferred con-
formation of distannynes

The importance of spin-polarization can be seen when experimental and theoretical evi-
dence has shown that distannynes, RSnSnR, can adopt either a singly bonded or a multiply
bonded structure. Within calculations on small models, such as MeSnSnMe, apparently dra-
matic differences in conformational preference have been reported. We show that these dif-
ferences arise due to the treatment of spin-polarization in density functional theory (DFT),
and review stability analysis; a diagnostic for the need to include spin-polarization. The
low-energy singly bonded structure can only be reached when spin polarization is allowed.
Additional DFT calculations on PhSnSnPh show that the singly bonded structure is the
global minimum, leading to a flat torsional potential. The role of electronic effects is further
probed by changing the donor-acceptor properties of R. Implications for the structural pref-
erence of experimentally synthesized species are discussed. This chapter has been published
in Dalton Transactions.[82]

1.6.2 Violations of N-representability from Spin-Unrestricted Or-
bitals in Møller-Plesset Perturbation Theory and Related
Double-Hybrid Density Functional Theory

At the unrestriction point problems can arise in MP2 theory. By examining the natural
orbital occupation numbers, it was discovered that unrestricted Møller-Plesset perturbation
theory (MP2) can violate N-representability by having natural occupation numbers greater
than 2 or less than 0, even though the energy appears well-behaved. Analytically, this
problem stems from the fact that the MP2 effective one-particle density matrix is dependent
on the inverse of the orbital hessian matrix (A′). When a molecular system goes through the
point where spin-restricted orbitals become unstable to unrestriction, one of the eigenvalues
of the A′ matrix will become 0, making it a singular matrix, thereby causing problems in the
relaxed one-particle density matrix and discontinuities in the first order properties such as
nuclear forces and dipole moments. Since the new ‘double-hybrid’ density functionals also
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involve a second-order perturbation expression for correlation using Kohn-Sham orbitals,
these functionals also exhibit similar issues near the unrestriction point. The unphysical
orbital occupations can be eliminated and the first derivative discontinuities removed by
optimizing orbitals with inclusion of the second order correlation energy. Connections to the
second derivative discontinuities in Hartree-Fock and Kohn-Sham density functional theory
are also discussed. This chapter has been published in Molecular Physics.[83]

1.6.3 Exploring the competition between localization and delocal-
ization of the neutral soliton defect in polyenyl chains with
the orbital optimized second order opposite spin method

In a manner similar to Brueckner Orbitals, orbital optimized MP2 is greatly improved
over traditional MP2 with the HF reference. Theory and implementation of the analytic
nuclear gradient is presented for orbital optimized scaled opposite-spin perturbation theory
(O2). Evaluation of the O2 analytical gradient scales with the 4th power of molecular size,
like the O2 energy. Since the O2 method permits optimization of the orbitals in the presence
of wave-function-based electron correlation, it is suitable for problems where correlation
effects determine the competition between localization and delocalization of an odd electron,
or hole. One such problem is the description of a neutral soliton defect on an all-trans
polyacetylene chain with an odd number of carbon atoms. For this problem, standard density
functional theory methods are known to not describe the length of the soliton wave correctly.
By contrast, we find that O2 approximately reproduces accurate coupled cluster results for
small chains, and can also be applied to larger chains where such calculations are not feasible.
Applied to C41H43, O2 calculations yield a soliton length of about 9 carbon atoms, which
is in reasonable agreement with experimental estimates. These results are compared with a
variety of density functional methods, including the ωB97x-D range-separated hybrid. This
chapter has been submitted to the Journal of Chemical Physics.

1.6.4 Second order Møller-Plesset energy decomposition analy-
sis for intermolecular interactions with applications to the
ethylene dimer, He-BeO complex, and the water dimer

Finally, the principles of MP2 theory are applied to intermolecular interactions so as
to capture dispersive interactions and correlated charge transfer. An existing absolutely
localized molecular orbital energy decomposition analysis (ALMO EDA) that was defined at
the self-consistent field (Hartree-Fock or Kohn-Sham density functional theory) is extended
to include non-local correlation at the second order Møller-Plesset (MP2) level. Correlation
contributions to frozen density interactions, polarization and charge transfer are individually
obtained. This new correlated MP2 EDA is illustrated on the ethylene dimer, He-BeO
complex, and water dimer, and shown to be adequately stable with respect to basis set
extensions. This chapter will be published in the Journal of Chemical Physics.
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Chapter 2

Effects of ligands and
spin-polarization on the preferred
conformation of distannynes

2.1 Introduction

Over the past 9 years, heavier group 14 homologs of alkynes have been experimentally
synthesized and characterized, as fully summarized in recent reviews. [1, 2, 3] The first
such compound was a lead analog [4], Ar∗PbPbAr∗, where Ar∗ = C6H3-2,6(C6H2-2,4,6-
(Pri)3)2, and Pri is an isopropyl group. Its Pb-Pb bondlength, 3.19 Å is actually slightly
longer than the 2.9 Å or so usually associated with R3PbPbR3 compounds. Ar∗PbPbAr∗is
strongly trans-bent, with a C-Pb-Pb bond angle of 94.3◦. Subsequently, a corresponding
distannyne, Ar’SnSnAr’, (Ar’ = C6H3-2,6(C6H2-2,6-(Pri)2)2 was synthesized and isolated [5]
with an SnSn bondlength of 2.67 Å (shorter than the typical 2.8 Å SnSn single bond), and
a substantially larger bending angle of 125◦. A corresponding digermyne, Ar’GeGeAr’, has
been structurally characterized [6], which has a GeGe bondlength of 2.29 Å (cf. 2.44 Å for
a single bond) with a trans-bending angle of 129◦. An analogous disilyne [7] shows a very
short SiSi bondlength of 2.06 Å (vs 2.34 Å for a single bond) and a yet larger trans-bending
angle of 137◦. All isolated compounds have been found to be diamagnetic.

The structural trends going up and down group 14 can be qualitatively rationalized on
the basis of a changing balance between the contributing resonance structures shown in
Scheme I, which vary between single and triple bonds. For RPbPbR, it appears that res-
onance form V dominates, while the doubly bonded forms appear to predominate for Si,
Ge, and possibly for Sn as well. However, other distannynes have been synthesized which
suggest behavior closer to the singly-bonded lead case. The crystal structure of Me3Me3Si-
4-Ar’SnSnAr’-4-SiMe3 has been solved [8], and shows a significantly longer SnSn bondlength
(3.07 Å), and stronger trans-bending effect (angle of 99◦). Spectroscopic (119Sn NMR and
Mössbauer) studies of Ar∗SnSnAr∗suggest that it also adopts the longer bondlength and
smaller trans-bending angle [9], although the crystal structure could not be obtained due
to poor diffraction. Additionally the solution reactivity of the distannynes (and the corre-
sponding lead species) appears to be lower than the digermynes, based on a comparative
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study using the Ar’ substituent.[10] This could be consistent with lower contributions from
the diradical resonance structure (IV in Scheme 1) for Sn and Pb.

Scheme 2.1: The possible resonance structures for multiply bonded group 14 compounds

The fact that the structural properties of the tin species are sensitive to substituents sug-
gests that electronic and steric effects can play a crucial role in determining such properties.
Electronic structure calculations that predate the experiments support this possibility.[11,
12, 13] Bulky substituents can protect a reactive core, and provide electronic stabilization as
well, but may impose steric requirements. They can also probe what happens in the absence
of such substituents. For example, calculations (e.g. [14])have shown that unsubstituted
HEEH compounds display strikingly different structures to the experimentally isolated com-
pounds, including structures with bridged hydrogens. However, for experimentally isolated
molecules, it is only for the tin case that two distinct isomeric forms have been isolated to
date.

Recent calculations on the tin system support the possibility that Ar’SnSnAr’ may
in fact exhibit two local minima corresponding to singly (S) and multiply ( M) bonded
structures.[15] The lower energy of the two isomers is the M form, suggesting it should be
favored. This would then suggest that crystal packing forces must account for the Sgeometry
adopted by Me3Me3Si-4-Ar’SnSnAr’-4-SiMe3 and implied for Ar∗SnSnAr∗. Intriguingly, re-
cent calcualtions on Ar∗PbPbAr∗have found that two distinct local minima (both an Sand
a twisted M isomer) likewise exist for this compound [16]. In contradiction to the crystal
structure [4], the M-type isomer is found to be slightly (∼ 1 kcal/mol) more stable[16].
It is clear the potential surfaces of these systems are both rich and delicate, and are fertile
ground for further study.

Calculations on model systems for the heavier alkyne congeners [17], principally MeEEMe,
indicate that the potential surface for MeSnSnMe is very flat with respect to bond-length
and angle distortions away from the local minimum corresponding to an S-type structure to-
wards an M-type geometry. However, the M structure does not exist as a local minimum,
and indeed the global minimum is a gauche-type structure with a dihedral angle of about
90◦ (though this will be sterically destabilized with larger substituents). Interestingly, the
S-type structure is found to have little diradicaloid character, consistent with low reactivity,
while calculations at geometries optimized with the bond-length and trans-bending angle
constrained to the experimental M values, yield significantly higher diradicaloid character,
suggesting higher reactivity. This suggests that the reactivity differences seen experimen-
tally between Ar’SnSnAr’ and Ar’GeGeAr’ could be explained if the tin-compound adopted
a S-type solution geometry and an M geometry for germanium in solution. However, a
contradictory set of calculations on MeSnSnMe were reported using apparently similar com-
putational methods [15], where the M structure was found to be lower in energy, than the



26

Sstructure, which was a saddle point. Further effort to clarify the nature of the potential
energy surface for both model and synthesized RSnSnR compounds thus appears desirable.

Accordingly, in this paper we discuss several aspects of electronic structure calculations
on the distannynes, and report a variety of new calculations on the model system, PhSnSnPh,
which should capture the principal through-bond electronic effects of the more complex and
bulky Ar∗and Ar’ substituents. First, we clarify the origin of differences between the two sets
of calculations on the MeSnSnMe model [15, 17]. This requires consideration of the role of
spin polarization in density functional theory calculations, as in fact one set of calculations
allowed for spin-polarization and the other did not. Spin polarization is briefly reviewed in
the following section to summarize the key considerations. Second, taking careful account
of spin polarization, we then explore the PhSnSnPh model in detail to fully characterize
its potential surface, and therefore the main through-bond interactions that are operative
in the experimentally synthesized distannynes. Finally we consider the effect of additional
changes to the electron-withdrawing and electron donating character of the terminal groups,
and compare the results obtained with our models against experimentally characterized
molecules.

2.2 Orbital stability and spin polarization in density

functional theory calculations

Density functional theory (DFT) in the Kohn-Sham (KS) formalism is the most popular
electronic structure method today as it generally yields very good accuracy while requiring
little or no more computational effort than mean-field theory [18, 19]. [18, 19]. It represents
the density of the real system, ρ({φi}), using a single determinant wavefunction Φ0({φi})
corresponding to a reference system of non-interacting electrons described by the orbitals
φi with the same density. This may be problematical when molecules undergo reactions,
breaking bonds and forming new ones, or when they may possess some singlet diradicaloid
character. In such electronically near-degenerate cases, present-day exchange correlation
functionals are not powerful enough to correctly describe multiconfigurational correlation
effects in terms of the orbitals of only a single closed shell KS determinant. For example in
the simple case of single bond dissociation, the bonding (HOMO) and antibonding (LUMO)
orbitals approach degeneracy and so do the two corresponding configurations which have
one or the other doubly occupied.

The only way in which standard KS-DFT can reasonably describe bond-breaking is to
allow spin-polarization of the orbitals. The resulting unrestricted KS wavefunction has dif-
ferent spatial orbitals for α and β spin electrons, which correctly describes most separated
products (3O2 is an interesting example). For instance a separated single bond has an α
electron on one fragment and a β electron on the other. This avoids the difficult problem
of multiple degenerate electronic configurations that arises with restricted orbitals. It intro-
duces spin-contamination in the reference system, but unlike wavefunction theory, this does
not necessarily correspond to real spin-contamination. While the benefits of unrestricted
orbitals are obvious at the dissociation limit, it is less obvious for partly broken chemical
bonds, such as for diradicaloid molecules. Should they be described by orbitals which are
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spin-restricted or spin-unrestricted? We advocate always allowing the orbitals to unrestrict
(spin-polarize) when this yields a lower energy solution, consistent with the variational prin-
ciple for Kohn-Sham theory [20].

The testing of whether or not energy lowering is possible through spin-polarization is
called stability analysis [21, 22, 23]. In practice, the KS orbitals φi are obtained by solving
the self-consistent field (SCF) equations iteratively until the first variation of the energy
with respect to orbital mixings is numerically zero. There is no guarantee, however, that the
calculated SCF energy is a true local minimum in the orbital space. The converged energy
can be a saddle point, and the KS wave function is then said to be unstable. We will focus
on the possible instability of the spin-restricted KS orbitals with respect to release of this
constraint (unrestriction) since this is directly relevant for singlet diradicaloid molecules such
as models of the distannynes. It is denoted as an R → U instability and is also called a
triplet instability.

Orbital instabilities can be studied by considering response of the energy up to second
order, starting from a stationary point, so linear terms vanish:

∆E =
1

2
(D∗ D)

(
A B
B∗ A∗

)(
D
D∗

)
(2.1)

Here D is a column vector that describes small mixings of each occupied orbital (i) with
each virtual orbital (a), so that:

Φ ∼= Φ0 +
∑
ia

DiaΦ
a
i + . . . (2.2)

Φa
i denotes the replacement of orbital φi by φa. The precise form of the matrices A and B is

already available in the literature [21, 22, 23] and is not important for our present purposes.
A necessary and sufficient condition for stability (i.e. for ∆E in Eq. 2.1 to be positive

for all infinitesimal variations, D ) is for the square matrix in eq. 2.1 denoted as Λ, to be
positive definite. For real orbitals (and thus real A and B), the eigenvalues of Λ consist of
the union of eigenvalues of the two matrices A + B and A - B. Hence if either of those two
matrices is not positive definite, the solution found will be unstable. In particular, the SCF
orbitals are unstable to unrestricted spin-polarization if A + B has a negative eigenvalue
(an R → U instability). A negative eigenvalue of A - B indicates the (real) SCF orbitals
are unstable to variations that introduce a complex component.

In practice, after an SCF calculation is converged, a test for stability is performed by
iteratively finding the smallest (least positive) eigenvalue of the matrices A + B and A -
B. Each iteration consists of operations basically similar to a step of the SCF cycle itself
(forming a Fock-like matrix), and thus the cost of a stability test typically involves a cost
that is not greater than the SCF calculation itself. We think it is advisable to routinely
perform such a test. If the result indicates an instability, most computational chemistry
programs have the ability to distort the SCF solution along the direction of the instability,
and then restart the SCF procedure leading to a lower energy solution. This will then give
the lowest DFT energy attainable with the given functional, and for this reason should be
preferred. While clearly needed for dissociation, there are also some cases where it is known
that significantly different stable structures can be obtained in DFT when spin-polarization
is allowed [24].
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2.3 Computational Methods

All calculations were performed with a development version of the Q-Chem program
[25]. In this study, all structures were optimized using DFT with the B3LYP functional
[26, 27]. Qualitative differences between DFT and highly correlated wavefunctions have not
been observed in previous studies [15], so the decision was made to mostly use DFT for this
study. Some additional calculations were performed with the B3PW91 functional [26] to
compare with previous work [15]. As discussed in detail above, all DFT calculations at the
restricted level were tested for orbital instabilities, and, if detected were re-optimized using
unrestricted DFT. Numerical integration was performed with the standard grid 1 (SG1) [28],
and test calculations were also performed with larger grids to establish that no significant
differences occur for delicate energy differences such as the torsional potential energy scans
discussed later.

The 6-31G* basis set was used for all atoms that are not tin in this investigation, which is
of medium size. For the tin atoms the CRENBL effective core potential with the CRENBL*
basis was used [29]. This removes a krypton core from explicit consideration, while leaving the
3d, 4s, 4p electrons described by (3s3p4d) basis. Some test calculations were also performed
using the Huzinaga [433111/433111/43] (spd) all-electron basis set [30] for comparison. An
all-electron calculation neglects relativistic effects on the core electrons, which can have a
noticeable effect on calculated properties of systems containing heavier elements. On the
other hand ECPs themselves contain some intrinsic errors.

The diradicaloid character of several structures is determined by using the perfect pairing
method [31, 32]. In this method, we look at the occupation number of the lowest unoccupied
molecular orbital in order to determine the percentage of diradical character [33, 34, 35]. If
the species is fully diradical, then the LUMO will have an occupation number of 1. Therefore
the percentage diradical character is simply the LUMO occupation number multiplied by
100; this procedure has proven useful in comparative studies of diradical character [36]. All
perfect pairing calculations were performed taking all valence electrons to define the active
space (e.g. 43 pairs for PhSnSnPh).

Localized orbitals are also determined for several structures. The Kohn-Sham energy is
invariant to mixing of the occupied amongst themselves, and such mixings may be determined
to extremize a measure of orbital locality. We employ the Edmiston-Ruedenberg criterion
[37], which maximizes the Coulomb repulsion of all orbitals with themselves (and thereby
minimizes the non-classical exchange). Efficient algorithms for this problem are now available
[38, 39]. We shall use these orbitals to discuss the chemical bonding that is implied by the
KS-DFT calculations.

2.4 Results and Discussion

2.4.1 MeSnSnMe model system

As discussed in the Introduction, we want to investigate the quite surprising difference
in DFT results between two theoretical studies on MeSnSnMe [15, 17], which in turn has
some implications for the behavior of distannynes with more complex substituents. In the
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work of Jung et al [17], the singly bonded isomer, S, with an SnSn bond-length of 3.06 Å,
and CSnSn angle of 100◦ is the only minimum that has a planar geometry. No shorter
bond-length multiply bonded isomer ( M) was located as a stationary point. By contrast,
in Takagi and Nagase [15], an S-like structure is a first-order saddle point while M is the
planar minimum (with bondlength 2.61 Å, CSnSn angle 126◦), where S is 6 kcal/mol less
stable than M.

It turns out that in one case [17], a stable unrestricted DFT solution was used, while in
the other case [15], an unstable restricted DFT solution was used. We find that the structure
M used by Takagi and Nagase [15] shows a triplet (R→ U) instability using the same method
used in their study. However, the two studies also used different density functionals, and
different basis sets (one is all-electron and the other also uses an effective core potential
(ECP) basis). The effect of each of these differences needs to be established. Therefore, we
performed the systematic calculations summarized in Table 2.1.

n(core) basis R/U 〈Ŝ2〉 stable ∆E (kcal/mol) d(Å) ∠(◦) φ(◦) Imag. Freq
36 CRENBLa U 0.94

√
-7.7 3.06 100 180 0

Re 0.00 × 0 2.65e 125 180 2e,f

28 Def2-SVPb U 0.96
√

-4.9 2.93 102 170 0
R 0.00 × 0 2.65 124 180 1g

0 Huzinagac U 1.01
√

-1.9 2.85 107 180 0
R 0.00 × 0 2.63 126 180 0

0 TZVPPd R 0.00 × 2.64 126 180 0

Table 2.1: Summary of B3LYP stability analyses for MeSnSnMe with relevant energetic and
geometric parameters. See text for references to basis sets.
a. Sn = [3s3p4d] with 36 core electrons. Augmented by a d polarization function for carbon.
b. Sn = [4s4p2d] with 28 core electrons, and 6-31G(d) for carbon.
c. Sn = [7s6p4d], all electron.
d. Sn = [6s5p3d2f], all electron. Only the restricted result is reported.
e. Geometry for the planar M structure at RB3LYP/CRENBL was obtained by impos-
ing a geometric constraint d(Sn-Sn) = 2.65 Å and optimizing it, since the fully optimized
RB3LYP/CRENBL structure is gauche with d = 2.88 Å, ∠ = 68◦, and φ = 92◦.
f. (51i, 52i)
g. (33i)

The B3PW91 functional used by Takagi and Nagase and B3LYP used in Jung et al
yield almost the same results for the Huzinaga all-electron basis used by Takagi and Na-
gase. RB3PW91 and RB3LYP yield d = 2.61 and 2.63 Å, respectively, and UB3PW91 and
UB3LYP yield d = 2.82 and 2.85 Å, respectively. Therefore, the remaining results are ob-
tained using just B3LYP, as shown in Table 2.1. Differences between the density functionals
are not significant, and can be ruled out as a cause of the difference in results.

The next effect we find is that using an all-electron basis, which does not have relativistic
effects for Sn, can tend to shorten the SnSn bond length, relative to an effective core po-
tential, which implicitly includes relativistic effects. The RB3LYP tin-tin distance (2.6 Å),
is independent of the basis set used, all-electron or ECP. However, the UB3LYP distance
changes from 2.85 Å to 3.06 Å on going from the Huzinaga (all-electron) [30] to CRENBL
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(36 effective core electrons) basis [29]. Although 2.85 Å is midway between typical M and
S values in terms of distance, the calculated bending angle suggests that it is closer to
the structure S. This effect, therefore, while noticeable, does not account for the striking
difference in results. We note that in Table 2.1 we also test the effect of making the ef-
fective core potential describe fewer core electrons through use of the Def2-SVP ECP and
basis [40]. We find this ECP gives qualitatively the same results, although it shows slightly
shorter bondlengths. Finally we also examined the effect of using a larger all-electron basis,
by using the TZVPP basis [41]. This does not alter the results obtained with the Huzinaga
basis significantly.

The most important point is that the short bond isomer M, which is located as a
minimum in RB3LYP, shows a triplet (R → U) instability in all cases, and upon lifting
the spin restriction, optimizes to a long bond structure S. The structure S is more stable
than M by 2-5 kcal/mol. This is the principal reason that Takagi and Nagase, who used
the (unstable) RDFT solutions obtained M as more stable than S by 6 kcal/mol (their
S structure was also unstable). It must be emphasized that while this explains the main
source of the seemingly dramatic difference reported in refs. [15, 17] it does not establish
which (if either) is actually quantitatively correct for this system. Takagi and Nagase tried to
address this issue using high-level wavefunction calculations (CASPT2(6,6)), and reported
that S was 17 kcal/mol less stable than M, which appears to support their RDFT results.
However such calculations are more difficult to converge with respect to basis set than DFT,
which is one possible source of error, and additionally neglected relativistic effects. For the
remainder of the paper we shall always permit the DFT calculations to unrestrict whenever
this lowers the energy, unless otherwise specified.

2.4.2 PhSnSnPh model system

The global minimum of the MeSnSnMe model is a gauche-like structure rather than either
trans-bent species. To probe further, we attempt to separate steric from electronic effects due
to the substituents. While the bulky Ar’ ligands may be needed to crystallize this compound,
and may play a key role in steric interactions, it is likely that the groups immediately next
to the tin atoms should provide the most important electronic effects. Other bulky ligands
used in previous experimental studies (e.g. Ar∗, Ar’-4-SiMe3) have also contained aromatic
carbon rings directly attached to the tin core. Therefore, PhSnSnPh may be the simplest
appropriate model system to capture the role of through-bond electronic effects.

An optimization was then performed on the PhSnSnPh system in order to find the lowest
energy structure. It was discovered that there are several distinct minima corresponding to
four different structures. Three of these structures are on the spin-restricted orbital surface
while the global minimum is on the spin-unrestricted surface. Only the gauche-like structure,
structure II in Figure 2.1, is stable to spin-polarization, all of the other structures decrease in
energy if the orbitals are allowed to unrestrict. If these calculations had been done without
lifting spin symmetry, then the global minimum would have never been uncovered. The
global minimum is a planar singly bonded structure shown in Figure 2.1 (structure I). This
structure has a relatively long Sn-Sn bond distance of 3.134 Å and is quite planar around the
central Sn-Sn bond with a dihedral angle of ω = 180.0◦. Furthermore, this structure is very
trans-bent with a Sn-Sn-C bond angle of θ = 98.1◦. These results agree reasonably well with
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the results found by Jung et al. for MeSnSnMe, except that the phenyl rings have made a
planar structure the global minimum instead of a gauche structure. This is a clear indication
of the importance of electronic effects on the preferred conformations of distannynes.

By using a localized orbital procedure, it is possible to explore the character of the
bonding and non-bonding orbitals of the central tin atoms. The Edmiston-Ruedenberg
localized orbitals (Figure 2.2) show one Sn-Sn σ bonding orbital and two lone pair orbitals,
one on each tin atom. These orbitals, therefore, confirm the singly bonded nature of this
molecule. Based on this global minimum structure, it appears that these distannynes should
act more like diplumbynes, which adopt a singly bonded structure, rather than digermynes,
which adopt a multiply bonded structure. However, given the sensitivity to electronic effects,
one should also bear in mind that this character can be quite readily altered by chemical
substitution.

If spin-symmetry is maintained (rather than broken as above) than the optimization
yields a gauche like structure seen in Figure 2.1 (structure II). This structure is very twisted
and breaks the symmetry about the central Sn bond seen in the singly bonded structure.
With an Sn-Sn bond length of 3.127 Å, the gauche structure would still be classified as a
singly bonded structure, since a multiply bonded structure at this geometry would necessarily
break the π-like bonds. This gauche structure has a dihedral angle ω = 73.6◦ and a Sn-Sn-C
angle of both 103.1◦ and 91.6◦. With a drastically different geometry, it is surprising that
the gauche structure is only 0.3 kcal/mol less stable than the planar structure. This result
implies that the potential energy surface for this compound is very flat, as was indeed already
reported for the MeSnSnMe model.

A cross-section of the PhSnSnPh potential energy surface scanned with respect to dihedral
angle is mapped out in Figure 2.3. Several features of this surface are of particular interest.
First, as already discussed is that the global minimum occurs at the planar geometry when
spin symmetry is lifted. The next lowest point on the surface is the gauche structure which
is only 0.3 kcal/mol higher in energy. Since there is only a very small energetic barrier,
interconversion between these two structures should be facile. Finally, it should be noted
that this surface is very shallow and bumpy, creating several local minima and a delicate
global minimum, which could readily be perturbed by changes in substituents.

The model system can also adopt a geometry classified as a multiply bonded distannyne
if we force the orbitals to be spin-restricted (in other words this is an unstable solution).
The multiply bonded structure is not located on the surface pictured in Figure 2.3 and is, in
fact, 7.6 kcal/mol less stable than the planar singly bonded structure. This multiply bonded
structure is planar with a Sn-Sn bond distance of 2.770 Å and a θ = 122.3◦. These results
along with the other structures are summarized in Table 2.2. The most interesting aspect
of this structure is that the plane of the phenyl rings is perpendicular to the plane of the
Sn-Sn bond (Figure 2.1 structure III). This result is somewhat surprising since this is not the
same multiply bonded structure that is seen in the Ar’SnSnAr’ calculations or experimental
structure. By looking at the Edmiston-Ruedenberg localized orbitals (figure 2.4), there are
three orbitals that have bonding character, thereby confirming the Sn-Sn multiple bond of
this species (though only one is a true bonding orbital).

If the starting geometry of an optimization resembles a planar multiply bonded structure
and the symmetry of the molecule is constrained to C2h, and if the orbitals are constrained
to be spin-restricted, then (finally) it is possible to obtain an optimized planar structure
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Figure 2.1: Optimized PhSnSnPh Structures. Structure I is the planar singly bonded struc-
ture. Structure II is the gauche structure. Structure III is the multiply bonded structure,
obtained with restricted orbitals (unstable to spin polarization, but a local minimum on
the spin-restricted PES). Structure IV is a multiply bonded structure with the Ph rings
in the CSnSnC plane (unstable to spin polarization, and also not a local minimum on the
spin-restricted PES).

Structures Sn-Sn (Å) θ (◦) ω (◦) ∆E(kcal/mol)
I 3.134 98.1 180 –
II 3.127 103.1/91.6 73.6 0.3
III 2.77 122.3 179.9 7.6
IV 2.758 125.0 180 12.5

Table 2.2: Structural details and energetics for each of the four structures shown in Figure
2.1
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Figure 2.2: Localized Edminston-Ruedenberg orbitals for the planar singly bonded structure
(structure I of Fig. 2.1).

Figure 2.3: Potential energy surface for PhSnSnPh with respect to dihedral angle changes
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Figure 2.4: The three Edmiston-Ruedenberg bonding orbitals between the two tin atoms in
structure III of Fig. 2.1

that is multiply bonded with the phenyl rings in the plane of the Sn-Sn bond instead of
perpendicular. This structure is planar with a Sn-Sn bond distance of 2.758 Å and θ =
125.0◦(Figure 2.1 structure IV). The Edmiston-Ruedenberg localized orbitals of this species
are almost identical to those belonging to structure III (Figure 2.5). This confirms that
both structure III and IV are similarly bonded and can be classified as multiply bonded.
It should be noted that this structure is the highest energy PhSnSnPh structure being 12.5
kcal/mol less stable than the global minimum. This result is surprising since the full crystal
Ar’SnSnAr’ structure adopts a ground state geometry very similar to this one. The notably
large energetic differences between the full crystal structure and this model suggests that
further inquiry into the stability and energetics of the full molecule is necessary (see final
section).

Figure 2.5: The three Edmiston-Ruedenberg bonding orbitals between the two tin atoms in
structure IV of Fig. 2.1.

It must be emphasized that these last two structures are only obtained if spin symmetry
is enforced. If spin symmetry is lifted and these structures are re-optimized, they will
collapse down to the planar global minimum (structure I). In other words, both structures
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are obtained with KS orbitals that are saddle-points in the space of wavefunctions, rather
than minima. Stability analysis on this structure confirms that these solutions display a
triplet instabilities and a lower energy solution available when spin symmetry is lifted. Of
course this does not mean that the multiply bonded solution is always a saddle-point – this
can be influenced by further changes in substituents as we explore later.

Perfect pairing calculations were run on the four structures shown in Figure 2.1 in order
to determine the LUMO occupation numbers and therefore the amount of diradical character
for each structure. Structures I & II both have similar diradical character with total LUMO
occupations being about 0.05 for both structures. These numbers are in line with previous
results that stated that a singly bonded structure should have a LUMO occupation of 0.04.
Having a low LUMO occupation number is also consistent with the fact that these structures
have the singly bonded characteristics of the diplumbynes. The multiply bonded structures
III and IV have LUMO occupation numbers that are quite a bit larger at 0.16 and 0.12,
respectively, signifying between 2 and 3 times more diradical character. The higher diradical
character for the multiply bonded structure (III) is also consistent with the earlier results
for multiply bonded digermynes that showed a LUMO occupation number of about 0.13
electrons.

2.5 Effect of electron-withdrawal and electron-donation

Other structures were investigated for the purpose of further exploring electronic effects
on distannynes. In order to investigate different charges, the model system was oxidized
or reduced, and the structure fully reoptimized. In this series, the cation has the longest
Sn-Sn bond distance at 3.29 Å, followed by the neutral species with 3.13 Å, and the anion
has the smallest Sn-Sn bond distance at 3.02 Å. Both the anionic and neutral species have
planar structures where the cation has a slightly puckered structure with the dihedral ω =
160◦. As the model system becomes more reduced, the system becomes more trans-bent
with the angle of the cation being θ = 103◦ and the anion being θ = 97◦. All of these
results are summarized in Table 2.3. By comparing the neutral species to the anion and the
cation, it is fairly clear from a structural point of view that the neutral species resembles the
anionic species more than the cationic species. It has been previously reported that reduced
distannyne crystal salts take a singly bonded structure. Therefore, it should be no surprise
that the planar singly bonded neutral species resembles the anionic species known to take
a singly bonded geometry. The contraction in Sn-Sn distance is also consistent with the
behavior of triplet MeSnSnMe relative to singlet which as reported previously also showed a
bond-length contraction. These results indicate that the LUMO of the neutral singlet species
has partial bonding character. All of these species have fairly similar geometry, and would
be classified as singly bonded species. The multiply bonded structure of this model system
cannot be found as a global energy minimum by altering the oxidation state of the model
system.

We performed additional calculations that further probe electronic effects using rea-
sonably strong electron withdrawing (nitro) and electron donating (amino) groups as sub-
stituents instead of fully reducing or oxidizing the species. Both substituents create tin
nitrogen bonds, and therefore differences in these two structures cannot be ascribed to dif-
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Species Sn-Sn (Å) θ (◦) ω (◦)
PhSnSnPh− 3.022 96.7 180
PhSnSnPh 3.134 98.1 180

PhSnSnPh+ 3.293 103.2 160.1

Table 2.3: Structural details concerning the anion, neutral, and cation of PhSnSnPh

ferences in their bonding to the central tin atoms. The amine structure is planar with a
central angle of θ = 92◦, and an Sn-Sn bond distance of 3.20 Å, which would classify this
species as a singly bonded structure, similar to the global minimum of PhSnSnPh discussed
earlier. The nitro structure adopts a gauche geometry with the dihedral ω = -112◦ and a Sn-
Sn bond distance of 3.12 Å. Similar to the PhSnSnPh gauche structure, the nitro structure
breaks symmetry with the central bond angles measuring θ = 104◦ and 71◦. These results
are summarized in Table 2.4. Evidently electron withdrawing groups preferentially stabilize
a gauche structure, whereas electron donating groups tend to stabilize a planar singly bonded
structure. Similarly the contrasting global minima for MeSnSnMe (gauche) and PhSnSnPh
(trans singly bonded) suggest that the phenyl rings are more electron-donating towards the
SnSn moity than methyl groups. We note in passing that the effects of phenyl substitution
to the lead system (PhPbPbPh) have been studied previously [13]. There, both the steric
and electronic effects of 2,6-Ph2C6H3 substituents were seen to play a role in stabilizing and
making the singly bonded lead isomer a true energy minimum as in experiments.

R Sn-Sn (Å) θ (◦) ω (◦)
Ph 3.134 98.1 180

NH3 3.197 92.3 180
NO2 3.12 104/71 -112.3

Table 2.4: Structural details concerning RSnSnR with R = Ph, NH3, NO2

2.6 Comparison with experimentally synthesized molecules

and discussion

Preliminary calculations were done on the large Ar’SnSnAr’ (Ar’ = C6H3-2,6(C6H2-2,6-
(Pri)2)2) system in order to compare with experimental structural data and earlier calcu-
lations. These calculations using spin-restricted DFT confirmed the earlier findings [15]
that this structure does indeed take a multiply bonded structure, consistent with experi-
ment. In particular, the optimized bond-length is 2.832 Å and the C-Sn-Sn bond angles are
128.2◦ and 130.7◦. Even though the bond length is long enough to classify it as a single
bond, the C-Sn-Sn angle is highly suggestive of a multiple bond. The key question raised
by our model studies is whether or not this spin-restricted solution is stable or unstable to
spin-polarization. Therefore we performed stability analysis at the optimized geometry, and,
in striking contrast to the PhSnSnPh model, it was found that the spin-restricted orbitals
are stable and no triplet instabilities occur.

Earlier computational results [11] suggest that even bulky ligands can take the pla-
nar singly bonded structure as a global minimum. Both TbtSnSnTbt (Tbt = C6H2-2,4,6-
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[CH-(SiMe3)2]3) and Ar∗SnSnAr∗(Ar∗= C6H3-2,6(C6H2-2,4,6-(Pri)3)2) were found to adopt
a slightly puckered (ω ≈ 170◦) singly bonded structure with Sn-Sn bond lengths over 3.00
Å (albeit at a relatively low level of theory). Experimental evidence also suggests that the
Ar∗SnSnAr∗and Me3Si-4-Ar’SnSnAr’-4-SiMe3 structures both adopt a singly bonded struc-
ture in the solid state. All of these structures contain a central core that have the central tin
atoms bonded to aromatic carbon rings, so it is perhaps quite reasonable that PhSnSnPh also
takes a singly bonded structure. On this basis, we suggest it is a reasonable model compound
for understanding electronic effects in Ar∗SnSnAr∗and Me3Si-4-Ar’SnSnAr’-4-SiMe3.

However, Ar’SnSnAr’ does display the multiply bonded structure to be a local minimum
within DFT, which is stable both with respect to spin-polarization, and with respect to
nuclear displacements. This is in contrast to the PhSnSnPh model treated earlier at the
same level of theory, where the M structure was unstable both with respect to nuclear
displacements (the phenyl rings twisted perpendicular) and with respect to spin-polarization.
The question of why the M structure arises with Ar’ substituents is therefore of considerable
interest. We had previously speculated that a preferred S structure was distorted to the
M form due to crystal packing effects, but since isolated molecule optimizations yield an
optimized M-type geometry that is in good agreement with the crystal structure, this cannot
be the case. We must therefore conclude that there are additional intramolecular interactions
associated with the Ar’ ligands used in the experimentally synthesized molecule that are not
present in the PhSnSnPh model. It is an intriguing issue for the future to better characterize
what these interactions are, and how they exert such a substantial differential effect on the
relative stability of the singly and multiply bonded motifs. Separately, there remain some
possible uncertainties and errors associated with the approximate DFT electronic structure
methods used by all workers in this field, but they may not yet be limiting us in terms of
understanding these systems.

2.7 Conclusions

In this report we have briefly reviewed a sometimes-neglected aspect of density functional
theory (DFT) electronic structure calculations that are relevant to characterizing potentially
reactive heavy element congeners of the alkynes specifically the role of spin-polarization and
its detection by stability analysis. This proved to be the basis for a resolution of the striking
discrepancy seen between two apparently similar sets of DFT calculations [15, 17] on the
MeSnSnMe model of distannynes.

Seeking a better, yet still simple model for electronic interactions of experimental ter-
phenyl substituents with the SnSn system, we then reported a detailed characterization of
PhSnSnPh. From this investigation we conclude that the singly bonded (S) structure is
the global minimum of PhSnSnPh. This global minimum can only be reached when spin-
polarization is lifted. Other structures for distannynes exist as local minima on both the
spin-polarized and the (sometimes unstable) spin-symmetric potential energy surface. These
structures are all very close in energy so that any one of these structures can become the
global minimum based on the electron donating and steric effects of the ligands attached
directly to the tin atoms. Some of these possibilities were illustrated with different substi-
tutions and oxidation states.
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Finally, a comparison of the PhSnSnPh results with various experimentally isolated sys-
tems indicates that there are significant additional electronic effects associated with the
terphenyl ligands. Some experimentally isolated species, such as Ar∗SnSnAr∗and Me3Si-
4-Ar’SnSnAr’-4-SiMe3, exhibit S-type structures that are reasonably consistent with Ph-
SnSnPh (and indeed with MeSnSnMe as well). However, we find that, in contrast to Ph-
SnSnPh, no spin-polarization occurs for the multiply-bonded ( M) structure of Ar’SnSnAr’
(Ar’ = C6H3-2,6(C6H2-2,6-(Pri)2)2) which becomes a stable local minimum, consistent with
the experimental geometry. Since loss of spin-polarization should be considered a conse-
quence of electronic stabilization, and as through-bond interactions associated with Ar’
should not be substantially different to Ph itself, it appears that, intriguingly, we still have
more to learn about the specific intramolecular interactions in this species.
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Chapter 3

Violations of N-representability from
Spin-Unrestricted Orbitals in
Møller-Plesset Perturbation Theory
and Related Double-Hybrid Density
Functional Theory

3.1 Introduction

Orbitals generated from an electronic wavefunction have allowed the quantum chemist
to obtain a simple qualitative picture from a very complicated quantitative expression. In
the infancy of quantum chemistry, these orbitals were the canonical orbitals, generated by
diagonalizing the Fock matrix. However, these orbitals only reflect the results of a Hartree-
Fock calculation and therefore do not include any static or dynamic correlation effects. In
1954, P-O. Löwdin discovered a different set of orbitals that he called the natural orbitals,
defined as the set of vectors that diagonalize the one particle density matrix or the relaxed
one density matrix.[1, 2] For a calculation done only at the Hartree-Fock level, the canonical
orbitals and the natural orbitals can be taken as equivalent. In the natural scheme the focus is
on the density matrix instead of the Fock matrix, which is needed if any correlation effects are
to be included in the orbital picture.[1] Since the density matrix is used to calculate physical
properties,[3] it seems instinctive to use orbitals generated from this matrix to reflect trends
seen in these properties. The natural orbitals are not only used for qualitative purposes,
[4, 5] but they are also currently being used as a starting guess for multiconfigurational
methods.[6]

Recently, there has a been renewed interest in using solely the density matrix to ob-
tain energies and physical properties and completely bypassing the wavefunction-based HF
theory.[7, 8, 9, 10] In order to ensure that the resulting energy is variational, several restric-
tions have to be imposed upon the n-particle density matrices. One of the major constraints
is that all of the n-particle density matrices have to be positive semidefinite, a feature
commonly abbreviated as p-positivity.[11, 12, 13] Also, the one-particle density matrix can-
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not have eigenvalues greater than two.[2] These eigenvalues are frequently referred to as
the natural orbital occupation numbers (NOON),[2] since they correspond to the eigenvec-
tors that form the natural orbitals. Therefore, this restriction on the one-particle density
matrix can be thought of as a reformulation of the Pauli exclusion principle. Satisfying
these restrictions along with several other constraints is commonly referred to as ensuring
N-representability.[11, 12]

Ensuring N-representability is very desirable, and is the explicit focus in development of
reduced density matrix methods. By contrast, little research has focused on when this tenet
is broken in conventional quantum chemistry, perhaps because it is generally assumed to
be satisfied. On the other hand, Gordon et al.[14] demonstrated the appearance of negative
NOONs for non-variational methods using spin-restricted orbitals and on this basis suggested
to use their appearence as a diagnostic in order to determine when to use multi-reference
methods. Of course the alternative is to allow the orbitals to unrestrict. Therefore, in this
paper, we will focus on unrestricted second-order Møller-Plesset perturbation theory (MP2)
because it is one of the simplest ways of incorporating electron correlation in a wavefunction-
based method and still dissociates correctly. By contrast, the restricted MP2 energy becomes
strongly non-variational towards dissociation as the gap between filled and empty orbitals
becomes small.

There has been a resurgence in usage and interest in MP2-like methods due to two fac-
tors: very large reductions in computational cost,[15, 16, 17, 18, 19] and improvements in
accuracy.[20, 21] These developments began with decomposing the four-center integrals into
three-center integrals via the Resolution-of-the-Identity (RI) approximation[15] or more re-
cently with a Cholesky decomposition.[16] The RI approximation is now very widely used,
and often reduces the cost of large basis set MP2 calculations by more than a factor of 10.
It is possible to obtain improvements in accuracy based on the fact that the MP2 energy
expression can be split into same-spin and opposite-spin portions and rescaled separately.[20]
By using the opposite-spin portion along with an empirically determined parameter to com-
pensate for the missing same-spin portion[18, 19], the scaling of MP2 is reduced to N4,
while maintaining the advantages of the RI approach, and the accuracy improvements of
spin-component scaling. Further reductions in computational cost can be obtained by lo-
cal correlation methods.[22, 23, 24] These methods employ localized occupied and virtual
orbitals, and a truncated definition (using either a distance metric[22] or an atom-based
metric[24]) of which correlations to include, so as to cut down the total number of integrals
that need to be calculated. As a result, often MP2 calculations are dominated by the cost of
the pre-requisite Hartree-Fock calculation, which can be reduced using dual basis methods
which only attain full self-consistency in a small basis[25, 26]

With the computational cost reductions described above, it has become more feasible
to combine MP2-like correlation expressions with density functional theory,[27, 28, 29, 30]
to create a new class of non-local functionals often referred to as ‘double hybrids.’ These
methods work by using the orbitals from a DFT calculation for a second-order perturbation
theory correction for correlation. This correction involves is MP2-like, where the Kohn-
Sham orbitals and eigenvalues replace the Hartree-Fock reference.[28, 30] These methods
have tremendous promise because they appear to yield significant improvements in accuracy
relative to generalized gradient approximation and hybrid functionals, while fixing one of
their major deficiencies,[31] which is the inability to accurately describe dispersion-bound
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complexes.[32, 33] Since the defining equations work similarly to conventional MP2 theory
using the HF reference, all of the conclusions and equations shown in this paper will also
apply to these ’double-hybrid’ functionals.

With regard to the MP2 one-particle density matrix, we observe that because the MP2
energy is non-variational, the Hellmann-Feynman theorem does not hold.[34] This makes the
definition of the density matrix ambiguous, since it can be formulated as either to be consis-
tent with an energy derivative or as the second order expansion of an expectation value.[34]
The energy derivative approach is consistent with MP2 responses to applied fields, and is
therefore generally preferred.[34, 35, 36] In the energy derivative formalism, the one-particle
density matrix is defined by contractions of pair correlation amplitudes with integrals, and
the solving of the coupled-perturbed self consistent field (CPSCF) equations to account
for the response of the energy to changes in orbitals.[34, 35, 37, 38, 39, 36, 40] As will be
made explicit later, the solving of the CPSCF equations can lead to a singularity (or near-
singularity) which results in non-physical NOONs, thereby violating N-representability, even
when the MP2 energy is not behaving non-variationally. This work will first look at how
violating N-representability is theoretically possible followed by several examples including
bond breaking, effects on first order physical properties, and occurrence at both neutral and
ionic equilibrium.

3.2 Theory

Consider first a brief review of the definition of the one-particle density matrix (1-PDM)
based on the derivative of the MP2 energy.[35, 34, 36]. The 1-PDM can be partitioned into
two matrices; one resulting from the reference wave function and one resulting from the
perturbative correction to that reference:

Ptot = PHF + P [2] (3.1)

In (1), what is labeled Ptot is commonly referred to as the relaxed one-particle density matrix
or simply the one-matrix. Since HF theory is completely variational, there cannot be any
N-representability problems emanating from PHF . Logically, all of the problems must come
from the MP2 correction to the HF density matrix. In the molecular orbital basis, the P [2]

matrix can be divided into 4 blocks: the occupied-occupied block (OO), the occupied-virtual
block (OV), the virtual-occupied block (VO), and the virtual-virtual block (VV). Taking into
account the fact that the density matrix is Hermitian, the off-diagonal OV and VO blocks
are necessarily equivalent. In order to get the explicit forms for each of these blocks the MP2
gradient is needed.

The MP2 gradient can be written in a form where it is split between the contributions
from the molecular orbitals and atomic orbitals. Contributions from the atomic orbitals will
yield skeleton derivatives which will not affect the density, so they will be omitted in order
to avoid confusion. In this form the MP2 gradient can be written in terms of the OO and
VV blocks of P [2] and the MP2 Lagrangian.[35, 34, 36]
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Bx
ij = F

(x)
ij − S

(x)
ij εj −

∑
kl

S
(x)
kl [2(ij|kl)− (ik|jl)] (3.3)

Throughout this work i, j, k... refer to occupied molecular orbitals while a, b, c... refer to the
virtual molecular orbitals. In equations (2) and (3) the superscript x refers to a derivative
with respect to x while a superscript x with parenthesis refers to a skeleton derivative.
Although equation (2) could be recast in terms of the density matrix with a perturbation on
each block, this form is preferred because it emphasizes the fact that the density matrix is not
derived from a corresponding wavefunction but rather from the MP2 energy expression. The
explicit expressions for the OO and VV blocks of P [2] are calculated by taking the derivative
of the MP2 energy expression with respect to the nuclear coordinate x and matching the
form of equation (2). The explicit form of these blocks are formed by contracting pair
correlation amplitudes that have already been calculated in order to get the MP2 energy
correction.[35, 34, 36]
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tabik =
(ia||jb)

εi + εk − εa − εb
(3.6)

Since these amplitudes only incur problems when the denominator of a t-amplitude ap-
proaches zero, these blocks rarely contribute to N-representability problems. Also, if there
are no problems with the MP2 energy, then it will be a safe assumption to make that the OO
and VV blocks are not contributing to the violation of N-representability in contrast to the
study by Gordon et al.[14] which solely focuses on problems in these blocks. The OV block is
calculated through the third term in equation (2), which includes the MP2 Lagrangian (Lia)
and the orbital response matrix (Ux

ia), by using the coupled-perturbed Hartree-Fock (CPHF)
equations. Solving the Z-vector equations based on CPHF will give the explicit forms of the
OV and the VO blocks for the P [2] matrix.[36, 35, 34, 37]
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When solving the Z-vector equations, problems can arise when the A′ matrix becomes non-
invertible. In this equation, the A′ matrix is the part of the orbital Hessian that deter-
mines whether a restricted solution is a minimum or a saddle point.[41] If allowing for
spin-polarization does not lower the SCF energy, then the eigenvalues of the A′ matrix are
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positive definite. When including spin-polarization lowers the SCF energy, then at least
one eigenvalue of the A′ matrix is negative when restricted orbitals are employed. At the
point of unrestriction, one eigenvalue will be zero, making the inverse of A′ ill-defined.[41]
It is at this point, and slightly after it (when the A′ matrix is still near-singular), where
the P [2] matrix can potentially cause a violation of N-representability in the 1-PDM. Since
the 1-PDM is used to calculate physical properties, if this matrix is non-N-representable,
unphysical expectation values may result.

In the proceeding section, it was analytically shown how problems in the MP2 density
matrix can arise from a singularity in the z-vector equations. It should be noted that these
problems may appear in a large variety of theories, and therefore there is a need to generalize
the above result. This will be accomplished through the use of derivatives with respect to
orbital rotations (θ) and the generalized coordinate(x). [42] These derivatives will then be
connected back to the z-vector equations seen in the MP2 derivation. The condition for
convergence of an SCF calculation is that the SCF energy with respect to occupied-virtual
orbital rotations is zero. This quantity is also the occupied-virtual block of the Fock matrix.

∂ESCF
∂θai

= 0 = Fai (3.12)

Since this derivative is zero, then any subsequent derivatives must also be zero.

∂
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[
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[
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∂θai

]
=
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∂θai∂x
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Based on eq. 3.14, a general equation can be written for the derivative of an orbital rotation
with respect to x.

∂θbj
∂x

= −
(
∂2ESCF
∂θai∂θbj

)−1
∂2ESCF
∂θai∂x

(3.15)

For any given correlation energy not satisfying the Hellman-Feynman theorem, εc, the first
derivative includes contributions from orbital derivatives:

∂εc
∂x

=
∂εc
∂θai

∂θai
∂x

(3.16)

Based on eq. 3.15, the correlation energy derivative can be expanded further by substituting
in for the derivative of the orbital rotation.

∂εc
∂x

= −

[
∂εc
∂θai

(
∂2ESCF
∂θai∂θbj

)−1
]
∂2ESCF
∂θai∂x

(3.17)

Based on this equation, one can see that the gradient of any correlation energy will be
dependent on the orbital hessian of the SCF energy. The two terms in the square brackets
in eq. 3.17 are the z-vector equation seen in eq.10.

Zbj = Lia(A
′
ia,jb)

−1 =
∂εc
∂θai

(
∂2ESCF
∂θai∂θbj

)−1

(3.18)
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When the orbital hessian is zero, the inverse will be undefined and the correlation energy
gradient will also be undefined causing potential problems in the density matrix. This
problem can affect all methods unless the derivative of the correlation energy with respect
to occupied-virtual orbital rotations is zero. Therefore, this problem is averted in orbital
optimized methods because the first term is necessarily zero. The implication of this equation
is that this problem can occur in coupled-cluster singles and doubles theory (CCSD) when
applied to a system that requires more than doubles excitations. However, there has been no
evidence of CCSD giving erroneous results near the unrestriction. This can be attributed to
the notion that CCSD is fairly orbital invariant and therefore yield a nearly zero Lagrangian.

The rest of this study will outline several examples of this N-representability problem.
All calculations were performed with the Q-Chem electronic structure program package.[43]

3.3 Results

3.3.1 LiH Bond Breaking

The most typical example of a transition from a determinant with restricted orbitals
to one that is unrestricted is by stretching a bond from equilibrium to dissociation. This
example is ideal since the distance between the two atoms can be tuned exactly to the point
of unrestriction. LiH was chosen because it is a simple diatomic with less symmetry than
H2 (necessary for a non-zero dipole moment). In order to approach the complete basis set
limit, a fairly large cc-pVQZ basis set was chosen. Also a basis set of this size would not
show artifacts that are occasionally seen in a minimal basis set.

For the LiH test system, the unrestriction point occurs at about 2.27943 Å(Fig. 3.1). At
this point, with orbitals very slightly spin-polarized, 2 out of the total 85 eigenvalues of the
1-PDM violate N-representability rules with the largest being 2.845664 and the lowest being -
0.788560. Another interesting aspect of Fig. 3.1 is that the deviation from N-representability
occurs over a small neighborhood and not just at the restriction point. Since the inverse
of the very small eigenvalues of A′ will give large numbers that result in the unphysical
eigenvalues then the fact that the violation of N-representability occurs over a neighborhood
is justified. The fact that at the unrestriction point the eigenvalues stay finite and do not
approach negative and positive infinity is another interesting aspect seen in Fig. 3.1.

Another way to measure the degree of unrestriction is to calculate the overlap between
the occupied alpha and beta orbitals. When the molecule is restricted, then by definition,
the overlap between alpha and beta orbitals has to be one. At complete dissociation there
should be no overlap between the valence alpha and beta orbital in this LiH example because
the orbitals are located on separate atomic centers. Conventional thinking will lead us to
think that this transition from 1 to 0 should happen smoothly as the molecule is dissociated.
Furthermore, the angle of unrestriction, θ, can be defined as 1/2 multiplied by the arc-cosine
of the minimum alpha-beta overlap which will be the valence alpha-beta overlap. This
equation can be worked out by examining a simple system in 2-d space. Two orbitals α
and β will be defined by the amount of bonding and antibonding character denoted by the
symbols A and B.

|φα〉 = cos θ|B〉+ sin θ|A〉
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Figure 3.1: Maximum and minimum eigenvalues of the 1-PDM for LiH dissociation

|φβ〉 = cos θ|B〉 − sin θ|A〉 (3.19)

From the scalar product of α and β an expression defining θ can be written.

〈φα|φβ〉 = cos2 θ − sin2 θ
= cos 2θ

∴ θ =
1

2
arccos(〈φα|φβ〉) (3.20)

Looking carefully at eq. 3.15, it suggests that the derivative of orbital rotations with respect
to nuclear position should be undefined at the unrestriction point. When LiH is dissociated
the derivative of orbital rotations with respect to the nuclear coordinate x becomes undefined
at the unrestriction point (Fig. 3.3).

Figure 3.2: Minimum singular value of Sαβ encounters a discontinuity at the unrestriction
point

The most pressing issue is what are the physical implications of violating N-representability
in MP2 theory. In computing physical properties, the relaxed density matrix is needed to
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Figure 3.3: The unrestriction angle θ is not smooth clearly exhibiting a discontinuity at the
unrestriction point making ∂θ

∂x
undefined at this point

calculate expectation values. Since LiH has a dipole moment, this will be an instructive
physical property to track through bond dissociation (Fig. 3.4). When the bond length is
near equilibrium (∼1.6 Å) and the reference orbitals are restricted, the dipole moment is
5.92 Debyes. This value is very close to the experimental value of 5.828 Debyes, as would
be expected from an accurate basis set. As the bond is lengthened away from equilibrium
toward the unrestriction, the dipole moment increases from 5.920 D to 7.542 D. The increase
can be attributed to the fact that separating restricted orbitals is essentially separating two
point charges, resulting in a significant shift in the dipole moment. It should be noted that
Fig. 3.4 also displays the correct behavior at dissociation. Two infinitely separated neu-
tral atoms should have no dipole moment and that fact is seen when the unrestricted MP2
method is used to calculate the dipole moment. The most striking facet of this figure is the
large spike at the unrestriction point. At 2.27943 Å the dipole moment jumps from 7.542
Debyes to 15.342 Debyes, a jump of almost 8 Debyes.
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Figure 3.4: MP2 Dipole moment as a function of bond length
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Physically, there is no reason for such a sudden and sharp increase in dipole moment.
When the region of unphysicality is plotted along with the region that violates N-representability,
it becomes clear that these two regions completely overlap (see figure 3.5). The only con-
clusion to make is that violating N-representablility can lead to unphysical results. Since
these results are not limited to the test system, anytime there is an elongated bond near the
unrestriction point there is a danger of obtaining unphysical results. Other examples, which
will follow, include radical species and species with some singlet diradicaloid character. It
should be noted that just because violating N-representability can lead to unphysical results,
does not necessarily mean that the converse is true.
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Figure 3.5: Overlay of the minimum eigenvalue from the 1-PDM and the dipole moment
in order to show that the unphysical dipole region perfectly coincides with the region of
non-N-representability for the MP2 method

The dipole moment represents the first derivative of the energy with respect to electric
field. What is evident in Figs. 3.4 and 3.5 is that the MP2 dipole moment is discontinuous
as the orbitals change from restricted to unrestricted. Thus while the MP2 energy changes
continuously as orbitals unrestrict, there is a discontinuity in the first derivative. Other
properties such as the nuclear force also exhibit a discontinuity at the unrestriction point.

This process was repeated for the B2PLYP double hybrid functional[44, 28] where per-
turbation theory is using Kohn-Sham orbitals is performed as a correlation correction after
self-consistent evaluation of the Kohn-Sham orbitals. Since Kohn-Sham density functional
theory also has an unrestriction point, there will be a point where the A′ matrix will have
a zero eigenvalue. This singularity will cause problems in the Z-vector equations in a com-
pletely analogous fashion to traditional MP2 theory. Therefore, when LiH is dissociated,
similar behavior to MP2 theory is expected and is indeed what happens (Fig. 3.6). The
violation of N-representability is less severe in this case and the discontinuity in the dipole
moment is lessened, as a result of scaling the perturbation correction by a factor of 0.27,
thereby lessening the contribution of P [2] on the 1-PDM. But fundamentally, doing pertur-
bation theory on the Kohn-Sham reference yields the same N-representability problems as
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doing perturbation theory on the Hartree-Fock reference.
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Figure 3.6: Overlay of the minimum eigenvalue from the 1-PDM and the dipole moment
in order to show that the unphysical dipole region perfectly coincides with the region of
non-N-representability for the B2PLYP functional

3.3.2 Hydrogen Molecule

In some situations, N-representability can be violated without any negative bearing on
physical properties. One such example is tracking the dipole moment during the dissociation
of the H2 molecule. Since this bond breaking is done in a minimal STO-3G basis, the
1-PDM only has two eigenvalues. As the H-H bond length becomes larger, the NOONs
should smoothly transition from having one bonding and one antibonding orbital to two
singly occupied orbitals. Instead, there is an abrupt rise in the NOONs at the point of
unrestriction, at 1.154 Å, which is elongated from the equilibrium bond length of 0.76 Å.
At the point of unrestriction, the maximum eigenvalue of the 1-PDM is 2.254592 while the
minimum eigenvalue is -0.254592. Since there are only 2 orbitals in this case, at complete
dissociation, both orbitals should be singly occupied, which is indeed seen in Fig. 3.7.

Based on the previous results, one should expect to get poor physical properties at, and
just past, the point of unrestriction. However, because the total charge density does not
break symmetry, the dipole moment is always zero, even though the 1-PDM is not always
N-representable. On the other hand, a property like the gradient with respect to the nuclear
coordinates still exhibits a discontinuity at the point of unrestriction. It is clearly advisable
to avoid calculating physical properties when the relaxed 1-PDM violates N-representability,
even if there are some situations where the physical property matrix (such as dipole integrals)
does not couple to the unphysically large values in the OV block of the 1-PDM.
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Figure 3.7: Eigenvalues of the 1-PDM for the unrestricted dissociation of H2

3.3.3 Radical Frequencies

When employing relatively low-level quantum chemical techniques such as MP2 theory,
there are several molecules that are difficult for single determinant methods to get correct.
One class of especially difficult molecules are small radical species. These molecules generally
have several low-lying excited states, which makes it easy for the wavefunction to become
spin-contaminated. Some years ago, a paper by Byrd et al.[45] did a survey of frequencies for
these small molecules and ions using a variety of methods and basis sets of differing quality.

One of the most peculiar findings of this paper was that MP2 theory could fail dramati-
cally in the prediction of vibrational frequencies for several radical species including NO, O+

2 ,
and CO+

2 . When MP2 frequencies were calculated for these species, the vibrational levels
were in error by over 400 cm−1. However, MP2’s performance for the other radical species
was comparatively satisfactory. In light of the discussion in this paper, it seems possible
that the effective density matrix in the species yielding unphysical frequencies may not be
N-representable. A closer look at the eigenvalues of the 1-PDM therefore seems warranted
as a possible explanation for these unphysical frequencies. These results are summarized in
Table 3.1, where it is evident that two of the three most problematic molecules do indeed
have N-representability issues when the geometry is optimized using MP2.

One interesting feature about these three molecules is that O+
2 does not have any unphys-

ical NOONs. Upon closer inspection, the NO and CO+
2 molecules have frequencies that are

in error by over 1000 cm−1 whereas O+
2 is only in error by about 400 cm−1. In this example,

it is clear that having a non-N-representable wavefunction can result in catastrophic errors in
predicted vibrational frequencies. However, not all large failures in frequencies result from
a violation of N-representability; errors can also result from having a spin-contaminated
reference, or spatial symmetry breaking. Finally, it may not always be the case that MP2
frequencies will be unacceptably poor when an MP2 1-PDM results in unphysical eigenvalues
in the 1-PDM.
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Moleculea Basis NOON > 2 NOON < 0 calc. freq. (cm−1) exp. freq. (cm−1)
CO+

2 cc-pVDZ 2.061308 -0.061872 2759.78 1423
-0.000612

CO+
2 cc-pVTZ 2.048468 -0.053591 2793.15 1423

-0.000460
O+

2 cc-pVDZ N/A N/A 1443.73 1905
O+

2 cc-pVTZ N/A N/A 1522.40 1905
NO cc-pVDZ 2.043760 -0.051375 3643.76 1904
NO cc-pVTZ 2.006234 -0.019550 3229.35 1904
a Geometries optimized using MP2 within the given basis

Table 3.1: Unphysical NOONs and calculated frequencies for several radical species

3.3.4 1,3-Butadiene and Longer Polyenes

Previously, it was discussed how N-representability problems could occur at non-equilibrium
geometries (i.e. bond breaking). This does not mean that this problem only occurs away
from equilibrium as is seen for the radical species of the previous section. All that is needed
is a molecule with a large amount of radical character in the ground state. As opposed to the
radicals seen in the previous section, an example of a closed-shell molecule with potentially
large radicaloid character is 1,3-butadiene and the larger polyenes.[46, 47] For instance, bu-
tadiene is a superposition of the traditional bonding motif and one with a central double
bond and a radical on each terminal carbon (Scheme 3.1). Since this molecule will have di-

Scheme 3.1: Resonance structures of 1,3-butadiene

radicaloid character even in the ground state, it is possible to be at or near the unrestriction
point for this molecule even at the equilibrium geometry.

Using the experimental geometry,[48] the ground state of 1,3-butadiene was calculated
using MP2 theory with a cc-pVDZ basis set. The diradical structure in Scheme 1 will lead
to a mixing in of the triplet state even in the ground state which will necessarily lead to a
non-zero 〈S2〉 value. The resulting wavefunction is fairly spin-contaminated with an 〈S2〉
value of 0.4115. Even though the restricted MP2 wavefunction results in a lower energy,
the restricted reference wavefunction does not reflect the biradicaloid character shown in
Scheme 3.1. Therefore the unrestricted MP2 wavefunction is used even though it is not
the lowest energy MP2 solution available. When the resulting relaxed density matrix from
the unrestricted MP2 wavefunction is diagonalized, there are 4 eigenvalues which violate
the N-representability rules. Two values are greater than 2 and two values are less than 0
(2.281511, 2.062887, -0.082335, and -0.299645, respectively).

It should be noted that the unphysical NOONs are not limited to 1,3-butadiene, but will
most likely occur for the whole polyene series. In Table 3.2, the unphysical NOONs associated
with several of the longer polyenes are shown. Also, this problem does not go away when the
basis set is improved. For instance in the butadiene case, larger basis set results are poorer
because the double-ζ basis set is not that close to the unrestriction point. As the basis
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set is enlarged, the spin-polarization decreases slightly, bringing the wavefunction closer to
the unrestriction point, which increases the deviation in the NOONs. In the polyene series,
as the number of double bonds grow, so does the number of unphysical NOONs, except
for decapentaene (where the geometry is not taken from experiment but from CASSCF
calculations). As the number of unphysical NOONs increases, the largest deviation from 0
and 2 decreases.

Moleculea Basis NOON > 2 NOON < 0
1,3-butadiene cc-pVDZ 2.062884 -0.082332

2.281495 -0.299628
1,3-butadiene cc-pVTZ 2.066291 -0.091037

2.310525 -0.333645
1,3-butadiene cc-pVQZ 2.068523 -0.094721

2.324101 -0.348511
1,3,5-hexatriene cc-pVDZ 2.015680 -0.036444

2.064412 -0.082945
2.130776 -0.148059

1,3,5,7-octatetraene cc-pVDZ 2.010327 -0.030853
2.031388 -0.051848
2.101808 -0.119498
2.143870 -0.161121

1,3,5,7,9-decapentaene cc-pVDZ 2.000688 -0.021180
2.011111 -0.031426
2.051396 -0.068697
2.082166 -0.099492

Table 3.2: Unphysical NOONs for the first polyenes. a Geometries from Ref. [48]

We note that we cannot in fact compute UMP2 frequencies for the polyenes. In order to
obtain UMP2 vibrational frequencies, an unrestricted MP2 minimum is necessary. However,
since the restricted MP2 energy is lower, the molecule does not have a local minimum on
the unrestricted MP2 surface.

3.4 Discussion

The main focus of this study is to show how MP2 can fail in certain situations by yielding
1-PDMs that violate the rules of N-representability. However we have not yet addressed the
question of which method to use in these situations when UMP2 becomes an unusable option.
If one wishes to continue to use a simple MP2-like method, which thus continues to require
unrestricted orbitals, then we need to remove the large orbital response terms. Since they
are the response of the orbitals to changes in the reference wavefunction, the natural solution
would be to use a method which employs orbital optimization. Orbital-Optimized opposite
spin MP2 (O2)[19] is therefore one suitable choice since this method is simply opposite
spin MP2 with orbital optimization so as to keep computational cost scaling manageable,
while orbital optimization means that the orbital response is always zero, mitigating the
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N-representability problem. Applying the O2 method to the LiH problem discussed above
confirms that the results are greatly improved (see Fig. 3.8). Some limitations of low-order
perturbation theory linger, however, in the form of an unphysical kink in the dipole moment
at the point of unrestriction, suggesting a jump from the restricted to the unrestricted
surface. Evidently we have pushed the discontinuity in the energy function from the first
derivative to the second derivative. In this respect O2 behaves similarly to SCF methods
themselves, which also will have discontinuities in the second derivative properties, because
they depend on orbital first derivatives, which are discontinuous (via eq. 3.14).
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Figure 3.1: Unphysical jumps in the dipole moment of LiH at the unrestriction point as
calculated by MP2 and O2-MP2. The dipole moment as calculated by the UCCSD method
is also included in order to emphasize the unphysical jump seen in the O2 method.

If MP2 fails to maintain N-representability and the system of interest is relatively small,
then it would be advisable to use a more computationally sophisticated and expensive
coupled-cluster method. The system size has to be relatively small because the scaling
of even singles and doubles coupled cluster theory (CCSD) is N6 instead of the fourth order
scaling of O2 or opposite spin MP2. Yet, if a perturbative triples correction is added to
the CCSD energy, as in e.g. CCSD(T), then one can still have N-representability problems
when orbitals unrestrict. This occurs because the only term that changes in eq. 3.11 is the
Lagrangian, which will be non-zero for methods with perturbative corrections.

Another way to maintain N-representability is to employ several configurations using
multi-configurational SCF. However, this method requires the user to pick the configurations
and is therefore not a black box method. For the LiH problem, this method is relatively
simple to employ, but for some of the more complex problems shown in this study, like the
polyene series, the number of configurations required becomes very large making this method
an undesirable choice.



55

3.5 Conclusions

From this study, it should evident that researchers should be wary of MP2 results em-
anating from near the unrestriction point. This is because the orbital response (Z-vector)
equations which form the off-diagonal blocks of the one particle density matrix have a po-
tential singularity at the unrestriction point. This singularity leads to abnormally large and
small eigenvalues of the 1-PDM, which is a violation of N-representability. These large val-
ues can lead to physical properties that are unphysical, like vibrational frequencies or dipole
moments. Orbital optimized MP2 will solve the N-representability problem by eliminating
orbital response, yet this method still has issues at the unrestriction point. Even though
we have shown that unrestricted MP2 is unreliable near the unrestriction point, in the large
majority of cases, MP2 is a perfectly fine method to use in order to capture the leading part
of the correlation energy, and the use of unrestricted orbitals to allow correct bond-breaking
is preferable to enforcing spin-restricted orbitals.
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Chapter 4

Exploring the competition between
localization and delocalization of the
neutral soliton defect in polyenyl
chains with the orbital optimized
second order opposite spin method

4.1 Introduction

One of the major accomplishments of quantum chemistry is the ability to accurately
predict the geometries of complicated molecular systems using analytical gradient methods
[1, 2, 3]. Relatively inexpensive methods such as Kohn-Sham density functional theory
(DFT) with functionals such as BLYP [4, 5] or B3LYP [6] are generally very successful
for the prediction of molecular geometries, not only for closed shell molecules, but also
for many radicals since DFT is generally less susceptible to the symmetry-breaking and
spin contamination issues [7] that plague Hartree-Fock theory, the simplest wave function
treatment. However, even Hartree-Fock theory, which ignores electron correlation effects,
yields generally reliable results for molecular geometries of closed shell organic molecules
[8, 9].

Particularly significant challenges in the prediction of molecular geometries using DFT
still arise in some classes of systems where there is an odd electron, or hole whose extent of
localization (or delocalization) depends on a delicate balance of competing factors. A first
class of examples involve effect of ionization in either simple molecules, such as homonuclear
diatomic cations [10], or complex systems, such as radiation damage in DNA [11], as illus-
trated by strong geometric changes in model base pairs upon ionization. Another class of
examples involve the effect of electron attachment, where an analogous question arises about
the extent of localization of the excess electron, and the associated structural relaxations rel-
ative to the neutral. A third class of examples are neutral radicals. These challenges arise
because DFT suffers from the well-known self-interaction error [12, 13], which causes common
functionals to prefer electronic structure where the odd electron or hole is overly delocalized.
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Conversely, the HF model will tend to make the odd electron or hole too localized as a result
of neglecting electron correlation effects. Recent functionals such as range-separated hybrids
[14, 15] reduce but do not eliminate this problem.

For purposes of this paper, we shall consider a polyenyl chain (i.e. a polyacetylene (PA)
chain with an odd number of C atoms, C2n−1H2n+1), as illustrative of a system of this type.
The question is how localized is the charge distribution associated with the odd electron?
Resonance structures can be drawn with the electron localized at any carbon site, but the
energy advantage associated with multiple resonance structures must be weighed against
the energy penalty associated with at least partial loss of the bond alternation that exists
in closed shell PA chains. In other words, we can anticipate that there is a potentially
delicate balance between competing effects that will determine the extent of delocalization
and therefore the geometric deformation associated with the ”defect” represented by the
radical electron. These considerations are schematically illustrated in Fig. 4.1 below. From
the viewpoint of orbital energies, the polymeric all-trans PA is a semiconductor with a band
gap of 1.5 eV [16, 17]. The energy level associated with the radical electron will reside in
this gap.

Figure 4.1: Possible resonance structures for a neutral soliton on a polyacetylene chain

The region associated with the radical electron in a C2n−1H2n+1 polyenyl chain is a model
of a neutral soliton in PA [18]. A soliton may be defined as a solitary wave capable of prop-
agating without either dissipation or changes in shape. In a very long PA chain, the defect
associated with a radical electron may move in this way. Solitons occur as electromagnetic
waves in a dielectric medium, such as in fiber optic cables, where it has been hoped that
they might be used to transmit large amounts of data [19, 20, 21, 22, 23, 24]. In the con-
text of PA, the soliton defect can play a role in the conduction properties of doped PA
[25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36]. The discovery that doped PA chains are good
conductors has played an important role in the development of conductive polymers, an area
that was recognized with the Nobel Prize in Chemistry in 2000. It is possible that PA chains
might be used in organic electronics as molecular wires.[37, 38, 39, 40] These wires could
possibly be used in organic light-harvesting devices in order to facilitate electron transfer
from the organic chromophore to the traditional electronics.

In light of this interest, there have been numerous previous calculations on the neutral
soliton defect [41, 42, 43, 44, 45, 46]. If a single reference method like unrestricted Hartree-
Fock is used to solve this problem, the result is a highly spin contaminated wavefunction,
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which makes both HF itself and perturbation corrections unreliable [47, 48, 49, 50, 51, 52],
even for optimized geometries [53, 54]. This same problem also plagues hybrid DFT methods
that rely on Hartree-Fock theory to supply a portion of the exact exchange. In order to
reliably determine the electronic structure and geometry of even non-defective chains of
double bonds, very expensive quantum chemical methods are believed to be needed [55].
The implications for neutral soliton modeling are well-illustrated by the work of Bally et al
[41]. When the CASSCF and CCSD methods are used, the electronic structure and geometry
of these PA chains were incorrect, and a perturbative correction, CASPT2 and CCSD(T)
respectively, appeared to be required. With such computationally expensive methods (N7

for CCSD(T) and exponential for CASSCF) treating large systems becomes computationally
intractable [56, 57]. Standard DFT methods also perform quite poorly [58], with standard
functionals underestimating the degree of bond alternation in small polyenyl chains.

In this paper we introduce the analytical gradient for an economical wave function method
for treating electron correlation, which may have the ability to address the challenge of
treating the neutral soliton defect in long chains. The approach is the optimized orbital scaled
opposite spin 2nd order Møller Plesset perturbation theory, which we abbreviate as O2. O2
is a simplification of MP2 with orbital optimization, which has also been recently explored
[59]. Since O2 allows the orbitals to be determined in the presence of electron correlation,
the competition between localization and delocalization of a radical electron may be much
better described than when MP2 is applied from an unrestricted (or restricted) HF reference.
Furthermore, O2 can be evaluated with only N4 scaling computational effort, unlike MP2 (or
OO-MP2) which is N5. Scaling the spin components of MP2 theory originated with Grimme
[60], was later adapted to scale only the opposite spin terms, yielding the N4 scaling SOS-
MP2 method [61]. The O2 method also has the important formal advantage of providing
1-particle density matrices that avoid n-representability problems of MP2 theory [62], and
has already been demonstrated to greatly reduce artificial symmetry breaking in radicals
[59], and, therefore significantly improve on MP2 predictions for optimized geometries and
vibrational frequencies for such radicals. O2 (and indeed also OO-MP2) are essentially
very tractable approximations to Brueckner coupled cluster methods that include orbital
optimization [59, 63].

The outline of the remainder of the paper is as follows. In the theory section we in-
troduce the analytical gradient theory for the O2 method. This presentation is relatively
brief, because both the theory and the implementation can be conveniently developed as
extensions of the SOS-MP2 analytical gradient theory, which has already been reported [64],
and separately extended to excited states [65]. With this new computational tool in hand,
we then turn to its application to the problem of the width of the neutral soliton defect in
finite polyenyl chains. The O2 method will be compared against accurate coupled cluster
calculations for small chains, and then applied to long chains, and compared against a variety
of density functionals, including range-separated hybrids[66] which significantly reduces the
self-interaction problem that plagues standard functionals.
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4.2 Theory

We begin by summarizing the O2 correlation energy expression, which was introduced
previously [59]. We start from the opposite spin MP2 correlation energy, and introduce two
approximations that each yield chemically negligible errors when properly employed [61].
First, we employ an auxiliary basis for use in a resolution-of-the-identity approximation
[67, 68] to replace 4 center two electron integrals by linear combinations of 2 and 3 center
integrals. Second, we use a numerical quadrature evaluation of the Laplace transform of
the standard MP2 energy denominators [69]. With these approximations, the opposite spin
energy (EOS) can be written as shown in Eqs. (4.1)-(4.3).

EOS = −
Nτ∑
τ

ωτ
∑
PQ

Xα
PQ(τ)Xβ

PQ(τ) (4.1)

Xα
PQ =

α∑
ia

BP
ia(τ)BQ

ia(τ) (4.2)

BP
ia =

∑
R

(ia|R)(R|P )−1/2exp[(εi − εa)tτ ] (4.3)

In the aforementioned equations we adopt the conventions of i,j,... referring to occupied
orbitals and a,b,... referring to virtual orbitals. P,Q,... indicate auxiliary basis functions
and τ,Nτ , ωτ , tτ refer to the quadrature point, total number of quadrature points, and weight
and root corresponding to each quadrature point, respectively. The O2 total energy will then
simply be the scaled-opposite spin correlation energy added to a reference energy.

EO2 = Eref + ωOSEOS (4.4)

Eref =
∑
i

Fii −
1

2

∑
ij

〈ij||ij〉 (4.5)

Here we define the scaling parameter ωOS to be 1.2, this value was empirically determined
previously [59]. Orbitals are optimized using the following condition.

dEO2

dθ
= LO2

dU

dθ
= 0 (4.6)

The O2 Lagrangian is the same as the standard SOS-MP2 occupied-virtual Lagrangian
except for an extra term to account for the fact that when the orbitals are optimized, they
will not satisfy Brilloun’s condition (Fov 6= 0). Therefore the ov Lagrangian has four terms
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instead of the usual three.

Lck = (L1)ck + (L2)ck + (L3)ck + (L4)ck (4.7)
τΓM,β

ia =
∑
KL

(M |K)−1/2 τXβ
KLB

L
ia (4.8)

(L1)ck =
Nτ∑
τ

ωτ

α∑
a

exp(tτ (εc − εa))
∑
M

τΓM,β
ka (ca|M) (4.9)

(L2)ck =
Nτ∑
τ

ωτ

α∑
i

exp(tτ (εi − εc))
∑
M

τΓM,β
ic (ik|M) (4.10)

(L3)ck =
∑
ij

AijckP ij +
∑
ab

AabckP ab (4.11)

Apqrs = (pq||rs)− (ps||qr) (4.12)

(L4)ck =
∑
i

FciP
(2)

ik +
∑
a

FkaP
(2)

ac (4.13)

In the above equations, the overbar refers to quantities that are independent of Laplace
quadrature.

Much like the energy formulation of O2, the corresponding analytic gradient is extremely
similar to the SOS-MP2 analytic gradient for obvious reasons. [64] Essentially the form of the
SOS-MP2 gradient will be seen here as well with a slight modification to the energy-weighted
density (W). The general form of the closed-shell gradient using the RI approximation is
shown below

Ex
RI =

∑
µν

PµνH
x
µν +

∑
µν

WµνS
x
µν +

∑
µνλσ

ΓSµνλσ(µν|λσ)x+
∑
µν

∑
K

ΓKµν(µν|K)x+
∑
KL

γKL(K|L)x

(4.14)
where ΓSµνλσ, ΓKµν , and γKL are the separable 2-PDM and the RI-specific 2-PDM contracted
with three- and two-centered electron integral derivatives, respectively.[65] Explicit defini-
tions for all these terms can be found elsewhere, but we will focus on the terms unique to the
O2 gradient. The energy-weighted density (W) can be expressed in the mixed Lagrangian
formalism where parts density are formed from the Lagrangian. Since the occupied-occupied
(oo) and virtual-virtual (vv) blocks of the W matrix are the same formally as the SOS-MP2
gradient, only the ov block will be examined.

W
(2)

ai = −(L2)ai − P
(2)

ai εi − (L4)ai (4.15)

In the update to the energy-weighted density the first two terms are from the normal formu-
lation of the SOS-MP2 gradient, whereas the third term is another consequence of having
orbitals that do not satisfy the Brillouin condition. Another result of orbital optimization is
that the ov block of the relaxed one particle density matrix (1-PDM) is zero. This occurs
because the ov block of the 1-PDM is equivalent to the Z-vector equation, which is based on
the ov Lagrangian, which since the orbitals are optimized to be formally zero. Therefore the
update to the ov block of the W matrix, in practice, only has two terms that are based on
parts of the ov Lagrangian. So the only update needed to the nuclear gradient from the result
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of orbital optimization is the extra term seen in the update of the energy-weighted-matrix
and the ov terms of the one particle density matrix are now zero. This simple addition makes
the scaling of the gradient the same as the scaling for calculating the energy.

4.3 Results

All calculations were done with the Q-Chem electronic structure software package using
the Pople style 6-31G(d) basis set unless otherwise stated [70]. Although this basis set
is only double zeta quality, more computationally demanding methods like CASSCF and
UCCSD(T) limit the size of the basis set significantly and fair comparison will necessitate
the use of the same basis set for all methods. Unless otherwise stated, all calculations are
performed with spin-polarized (unrestricted) orbitals.

One of the best ways to objectively validate a method is to compare results directly to
experiment. However, experimental geometries are only available for the small allyl radical,
yet a valid comparison will still warrant insight. In a paper published in 2000, Bally et al.
investigated smaller polyenyl radicals using a range of methods.[41] For the allyl radical, the
computationally expensive CASSCF and UCCSD(T) methods both compare favorably to
experiment with UCCSD(T) slightly outperforming CASSCF.[41] It is therefore reasonable
to use both of these methods as a benchmark for testing the O2 method with bigger polyenyl
radical systems. Starting with the small system so as to compare O2 to experiment is a
worthwhile endeavor in order to contrast with the other accurate methods. For the smallest
allyl radical there are four geometrical parameters: two carbon-hydrogen bond distances,
one carbon-carbon bond distance, and one bond angle. Comparing the bond distances in
table 4.1, UCCSD(T) has a maximal error of 0.005 Å from experiment and this would be
considered chemical accuracy. The O2 method has similar accuracy with a maximum error
of 0.006 Å, outperforming CASSCF which has a maximal error of 0.013 Å. All three methods
faithfully reproduce the central bond angle. It is of note that the magnitude of the maximum
error become larger as the basis set increases for the O2 method. Evidently, there is some
fortuitous cancellation of errors with the smaller basis set. The geometrical results of O2
for the allyl radical are comparable to CASSCF and UCCSD(T), albeit slight larger in error
than UCCSD(T). Henceforth, the CCSD(T) results will be considered the benchmark and
the basis of comparison for slightly larger polyenyl radicals.

Exp.a CASSCFa UCCSD(T)a O2 O2b

rC−C 1.387 1.390 1.392 1.388 1.380
rC−H1 1.091 1.078 1.093 1.086 1.077
rC−H2 1.084 1.074 1.089 1.090 1.078
α 124.7 124.7 124.3 124.4 124.4

aGeometries from Bally[41]
bCalculation done at the triple-ζ level to show results closer to the
complete basis set limit

Table 4.1: Comparison of geometries for the allyl radical

Another geometrical measure of accuracy in polyenyl radicals is the bond alternation at
the end of the molecule.[41] If the soliton is localized toward the center of the molecule (as



64

will be seen later), the first and last carbon-carbon bonds will have double bond character
with the next carbon-carbon bond toward the center of the molecule having significant single
bond character. As the polyenyl chain becomes longer, this bond length difference should
eventually level off to the value matching the experimental polyacetylene terminal bond
length alternation value of 0.09 Å± 0.01 Å. [71]

Figure 4.2 shows the bond length difference between the first and second carbon-carbon
bonds for a variety of methods in several small and large PA chains. Highly accurate
CCSD(T) and CASSCF methods are not computationally feasible for C41H43 chain because
of the large size of the molecule coupled with the steep size scaling of the computational cost
of these methods. Therefore the only methods that are practical to run on a molecule of this
size are DFT, Hartree-Fock (HF), and MP2-based methods. The two features in figure 4.2
that have physical importance is that the bond-length difference for the two largest chains
should be similar and that the largest polyenyl chain should have a terminal bond length
difference of 0.09 Å. The justification for the first feature is that the soliton is experimentally
known to be less than 20 carbons long while the second feature is based on the experimental
long-chain limit. [71, 72]
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Figure 4.2: Comparison of the difference of first two carbon-carbon bond lengths in polyenyl
chains for various methods

The MP2 and SOS-MP2 bond difference keeps increasing as the polyenyl chain becomes
longer, suggesting that the soliton is affecting the end carbons even in the largest chain.
Both of these methods culminate in a terminal bond difference that is significantly larger
than the experimental value. The results for the UHF method imply that there is a soliton
always influencing the terminal bond difference causing the terminal bond difference to be
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too small. Comparing at the final two columns, it appears that the O2 method, ωB97x-D,
and B3LYP produce the most satisfactory results and capture the correct physicality for the
terminal bond length difference.

Another way to measure the accuracy of a given method on PA solitons is to look at
the expectation value of the spin squared operator (〈S2〉). For these polyenyl radical chains
containing an odd-numbered of carbon atoms, there should be one unpaired electron resulting
in a 〈S2〉 = 0.75, i.e. a doublet. However, UHF-based methods applied to the underlying PA
chain are known to have problems with spin-contamination because of the various resonance
structures that can be formed by homolytically cleaving double bonds into a single bond and
two radicals as seen in figure 4.3.[58, 42] Since the number of double bonds grows with chain
length, it follows that UHF spin-contamination problems get worse as the number of possible
biradical resonance structures increases. In turn, this issue can lead to N-representablility
problems for UMP2 methods, especially in larger chain lengths, which can lead to unphysical
results and is in general undesirable.[62] We might expect the methods that incorrectly
describe the PA chain would also be physically incorrect for the polyenyl radical. This fact
can be seen by looking at the 〈S2〉 value for a variety of polyenyl chains with a variety of
methods in table 4.2.

Figure 4.3: Possible biradical resonance structures for a small polyacetylene chain

Method C5H7 C7H9 C9H11 C11H13 C13H15 C41H43

RCCSD(T)a 0.747 0.746 0.746 — — —
UHF 1.218 1.513 1.838 2.177 2.521 7.384
MP2 1.164 1.392 1.643 1.913 2.200 6.752
SOS-MP2 1.167 1.393 1.641 1.906 2.188 6.760
B3LYP 0.798 0.814 0.830 0.846 0.864 1.234
ωB97x-D 0.822 0.857 0.898 0.943 0.993 2.049
O2 0.777 0.781 0.784 0.786 0.787 0.788

aExpectation values from Bally et al.[41]
Table 4.2: Values for 〈S2〉. Deviations from 0.75 can be thought of as a measure of spin-
contamination

With UHF and UMP2, spin-contamination is an issue even at the smaller polyenyl chain
lengths. For UHF, UMP2, and USOS-MP2, applied to C13H15 the spin expectation value
is around the value for a triplet (〈S2〉 = 2.0) instead of the expectation value for a doublet.
This large expectation value is the result of the UHF reference over-localizing radicals on
each carbon. Instead of having just one radical, there are now effecively additional radicals
leading to a high amount of spin-contamination. This problem only becomes worse as the
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polyenyl chain lengthens to C41H43, with the spin expectation value closer to an absurd sextet
(〈S2〉 = 7.5). Quite obviously, these methods cannot give an accurate electronic description
of these molecules.

At first glance, ωB97X-D[66] appears to be a decent method to describe these polyenyl
chains, because 〈S2〉 is just slightly above 0.75 and does not seem to grow all that much from
C5H7 to C13H15. However, for C41H43, the value becomes closer to value of a triplet which
suggests that this method may not be satisfactory for larger chains because the amount of
spin-polarization increases as the chain length increases. In this way it is similar to the HF
method, but the error is much less severe. However, it is a great deal better than MP2
method which is more computationally demanding.

The O2 method does quite well, particularly given the poor performance of the other
methods. It is known that the O2 method does well for spin-contaminated cases,[59] but its
success for this difficult system is perhaps surprising. The correct physicality seems to stem
from the fact that there is orbital optimization in the presence of electron correlation in the
O2 method, thereby bypassing the need to correct for a severely spin-polarized reference as is
the case for UMP2 and USOS-MP2. The surprising aspect is that the correlation treatment
in O2 is only at the SOS-MP2 level, while the soliton defect might be considered a static
correlation problem. These results also suggest that the O2 method could be used for even
larger systems, while still maintaining a physical amount of spin-polarization since the 〈S2〉
value is barely larger than the doublet value even in the C41H43 chain.

Another measure to compare against is the Mulliken spin population for the small
polyenyl chain, C9H11, for the direct comparison to RCCSD(T) and CASSCF. As seen in
table 4.3, several patterns emerge even in this small example. Looking at the UHF results,
the physical picture is that there is essentially an unpaired electron on every carbon. This
description explains why the bond alternation is so low, essentially all the bonds are quite
similar. When comparing the two DFT methods to the RCCSD(T) method, the striking
feature is that the soliton is not as localized to the central carbons. Basically the soliton
delocalizes to the outer carbons and the soliton wave is much larger. Taking this trend to the
limit, the soliton essentially will delocalize over the entire molecule at larger chain lengths,
instead of the experimental value of a half-width of 18 carbons. CASSCF also tends to
delocalize the soliton, but not to the same extent that is seen in the DFT functionals. From
the CASSCF results it can be inferred that either some of the σ-space needs to be included,
or that dynamic correlation is crucial. By contrast, the fairly good agreement between O2
and RCCSD(T) is fairly striking in this comparison. It seems that O2 slightly overlocalizes
the soliton to the central carbons, which will lead to the soliton wave being too short.

In the previous paragraphs we have justified the use of O2 to describe the properities of
solitons. For the smaller polyenyl chains, the O2 method does a very good job of reproducing
the results of RCCSD(T) and also seemed promising for the longer chain based on the
stability of the 〈S2〉 value. Ideally, the method would be able to reproduce the experimental
half-width of 18 carbon atoms as seen using ENDOR spectroscopy.[72] Since this technique
is based on electron spin, the Mulliken spin population of the longer C41H43 polyenyl chain
will serve as a good theoretical equivalent to the experimental results. Another way to
estimate the width of the soliton is by looking at the bond length differences along the entire
polyenyl chain. The bond length difference between neighboring carbon-carbon bonds should
be close to zero where the soliton resides and should be similar to polyacetylene elsewhere.
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Carbon # UHF B3LYP ωB97x-D O2 CASSCF a RCCSD(T) a

1 0.904 0.334 0.340 0.228 0.201 0.280
2 -0.782 -0.166 -0.199 -0.132 -0.097 -0.161
3 0.910 0.391 0.452 0.419 0.346 0.437
4 -0.866 -0.223 -0.301 -0.241 -0.163 -0.255
5 0.921 0.459 0.502 0.551 0.426 0.505

aValues from Bally et al.[41]
Table 4.3: Mulliken spin population in a.u. of C9H11 for various methods. Carbons are
numbered from outside to the center and the rest are omitted because of symmetry.

The positive to negative spin peak ratio is another experimental value that can be used for
comparison to theory. The experimental value for this ratio is 0.44. [72]

In order to compare to experiment, we will use the Mulliken spin partitioning scheme
instead of other schemes like Løwdin scheme. Also since these values oscillate between
positive and negative values, with the negative values being much less in magnitude than
the positive values, we will also implement a stabilization scheme as well. First, the total
spin density for each position is calculated by adding the spin values of the carbon and the
connected hydrogens together. Next, all of the oscillating negative values are converted to
positive values in order to properly calculate full width at half maximum (FWHM) values.
Finally, each value is averaged by the neighboring values through the following formula,

st(n) =
1

2
s(n) +

1

4
[s(n+ 1) + s(n− 1)] (4.16)

where s(n) is the total spin in a given position and st(n) is then the stabilized spin. For
the terminal carbon positions, the stabilized spin value is exactly the same as the total
spin value. This stabilization procedure results in a very distinct soliton wave for the three
methods that have been studied: O2 method, B3LYP functional, and UHF method.

In looking at the stabilized spin for the longer C41H43 polyenyl chain, one will notice
features for each of the methods studied. For the B3LYP method, the soliton is delocalized
over the entire molecule leading to a half-width of 36 carbon atoms as can be seen in figure
4.4. While this might seem to be close to the experimental half-width of 18 carbon atoms, it
also essentially occupies the entire model chain, and may therefore reflect confinement effects
rather than being the limiting B3LYP value. This assertion is can be tested by examining
the larger C61H63 chain with the B3LYP method. The stabilized spin picture for this larger
chain is qualitatively the same as the shorter chain. This point can be visualized by inserting
the stabilized spin picture for the C41H43 inside the stabilized spin picture for C61H63 seen
in figure 4.4. Therefore it is clear that the intrinsic B3LYP width of the soliton is still larger
than 61 carbons - perhaps significantly larger. Therefore this functional is inappropriate for
soliton modeling.

The stabilized spin picture could also be examined for the density functional ωB97X-D.
When examining the terminal carbon diagnostic, it seemed as though this method would
adequately describe the soliton although the 〈S2〉 value is a little high for C41H43. Unfortu-
nately the stabilized spin numbers are qualitatively the same as B3LYP with the peaks being
slightly higher due to the larger 〈S2〉 value. The ωB97X-D functional can be grouped with
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Figure 4.4: Visualization of the soliton wave solved by the B3LYP method using stabilized
total atomistic Mulliken spin populations for C41H43 together with the stabilized spin for the
C61H63

the other range-separated functionals derivied from the B97 functional,[73] namely ωB97
and ωB97X. These three functionals are interesting because each of them has a different
value of ω, the parameter that determines the cutoff for short-range and Hartree-Fock (long-
range) exchange. The ωB97, ωB97X, and ωB97 have ω values of 0.4, 0.3, and 0.2 bohr−1,
respectively.[66] However, each of these functionals performs qualitatively the same as the
B3LYP functional with the only notable difference being the peak heights as seen in figure
4.5. As the value of ω decreases the overall peak height also decreases, meaning that the
featured ωB97X-D functional will have the smallest amount of spin-polarization. In a similar
analysis to the B3LYP functional, we plotted the C41H43 stabilized spin results together with
the C61H63 to examine the amount of delocalization with chain length. As is seen in the
B3LYP functional, the ωB97X-D functional delocalizes the soliton over the entire molecule
as seen in figure 4.6. Therefore the ωB97X-D soliton width is larger than the largest chain
studied here, making the prediction with this functional qualitatively incorrect.

The UHF method also performs quite poorly when one examines the stabilized spin in
figure 4.7. This fact was already known given the poor 〈S2〉 value for the long chain. The
figure does confirm the physical picture that we suggested earlier for the UHF method. In
figure 4.7, one can see that the largest stabilized spin value would be 0.83 and the smallest
would be 0.77, meaning that the soliton is over the entire molecule. Since the stabilized
values are so large, it is equally correct to say that there are radicals on each carbon as to
say that the soliton is spread out over the entire molecule. Figure 4.7 also solidifies the view
that UHF creates radicals on most carbon leading to a spin-contaminated 〈S2〉 value.

The soliton wave seen in figure 4.8 for the O2 method is the only scalable method that
properly localizes the soliton. The half-width of the soliton in this figure is 9 carbon atoms,
smaller than the experimental value but still a valuable result. We note that the half-width
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Figure 4.5: Visualization of the soliton wave solved by the ωB97 series using stabilized total
atomistic Mulliken spin populations for C41H43
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Figure 4.7: Visualization of the soliton wave solved by the UHF method using stabilized
total atomistic Mulliken spin populations for C41H43

of the soliton wave for the smaller C29H31 polyenyl chain is 7 carbons. Therefore it is possible
that the O2 value for the soliton width would increase a little beyond 9 if a longer chain
calculation was performed. One can see that the O2 soliton wave has a much sharper peak
than the B3LYP peak which leads to a smaller area under the curve and therefore a lower
〈S2〉 value. The SOMO orbital of the O2 method is included in figure 4.9. It is evident that
the orbital is centered on the molecule with large values in the center that lessen towards
the ends. From the stabilized spin figures, it becomes clear that only the O2 method gives
the correct physical picture of the soliton.
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Figure 4.8: Visualization of the soliton wave solved by the O2 method using stabilized total
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Figure 4.9: The SOMO orbital containing the soliton in the O2 method for C41H43. Contour
value is set to 0.02 Å−

3
2 .

The other comparisons to experiment are the geometrical measure of the soliton and the
ratio of positive and negative spin peaks. The geometrical measure of the soliton is virtually
the same as the stabilized spin picture. As shown in figure 4.10 where the deviation of every
neighboring pair of C-C bonds from maximum bond alternation is plotted, both B3LYP and
UHF predict a large soliton half-width for the same reasons given in the previous paragraph.
The O2 method performs quite well with the soliton length being a little small though of
course comparison to the experimental width is not an absolutely direct one. The main point
that should be taken away from the geometrical description is that the localization of the
soliton has geometric consequences. Therefore calculating the electronic structure with one
theory and the geometry with another theory is an invalid procedure for this problem. The
molecular geometry of the polyenyl chain will bias the electronic wavefunction. If we take
the O2 optimized geometry for C41H43 and then compute the electronic wavefunction with
the B3LYP functional, we obtain a localized soliton with a half-width of 18 carbon atoms
and 〈S2〉 = 0.945 as seen in figure 4.11 . However, this convenient cancellation of errors does
not imply that the B3LYP method correctly describes the physicality of the system. Since
the localization of the soliton is intrinsically related to the geometry of the polyenyl chain,
any study that does not include geometric degrees of freedom should be questioned.
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length difference.
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Figure 4.11: Visualization of the soliton wave by the O2 geometry and B3LYP electronic
wavefunction using stabilized total atomistic Mulliken spin populations for C41H43

The final comparison to experiment will be the ratio of peak heights of negative and
positive peaks with the experimental value being 0.44. In order to compare to this experi-
mental value, we took the most positive and most negative Mulliken spin population on the
carbon atoms to create this ratio and can be seen in the final column of table 4.4. If the
ratio is greater than the experimental value, then it would imply that the given theory is not
a sharp enough peak. A ratio that is too low implies that the given theory creates a peak
that is too steep. From looking at the spin and geometry pictures of the soliton, one can
guess that both UHF and B3LYP will be too high because of the delocalized nature of the
soliton in both methods. This assumption holds true with both ratios being around twice
the experimental value, which should be expected as the widths of these solitons are about
twice the experimental values as well. The result for O2 closely matches experiment only
being 0.04 too high, which suggests that the shape of the soliton is correct just the width
needs to increase. Finally, the cancellation of errors method of O2/B3LYP corrects the er-
ror of B3LYP but this method would still have a fundamentally incorrect shape and that
fact manifests with ratio that is too large. In fact the ratio for this method is just slightly
less than the average of the two methods used in this procedure. Although this point was
made quite forcefully in the previous paragraph it is worth repeating; the quality of results
are greatly influenced by the geometry of the molecule. A decent but fundamentally wrong
method can produce good results when given a clever geometry as is seen with B3LYP when
given an O2 geometry.

As a side note there should be a significant amount of self-interaction error in this system
because of the delocalized charge present in the soliton. The delocalized nature of the soliton
will result in the need for non-local exchange, a situation in which DFT hybrid methods
are known to yield an amount of self-interaction error. Self-interaction error is caused by
the fact that in these hybrid functionals, the exchange functional does not cancel with
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Method width (spin) width (geom) ρ−/ρ+

O2 9 7 0.48
B3LYP 33 31 0.83
UHF 41 41 0.98
ωB97x-D 31 24 0.91
O2/B3LYP 18 N/A 0.61
Experimenta 18 ??? 0.44

a Ref [72]
Table 4.4: Comparison of the soliton FWHM widths and the spin ratio for C41H43 for a
variety of methods and experiment

the Coulomb term with the difference defined as the self-interaction error. The canonical
example of the self-interaction error is the dissociation of H+

2 . In this case the popular
B3LYP functional dissociates to the incorrect limit, resulting in a self-interaction error of 55
kcal/mol. Physically, in this system B3LYP dissociates the radical with an artificial splitting
of the electron into a final system of H0.5++ H0.5+. The single electron will interact with itself,
henceforth the name self-interaction error (SIE). However, in the context of this research,
if the problem was as simple as H+

2 dissociation, then there would have been a significant
improvement in the ωB97X-D versus the B3LYP results due to the range-separation. Yet,
both of these functionals perform equally poorly for this problem, which we can attribute
to the fact that there is a fractional electron on multiple carbons. This situation leads
to a many-electron self-interaction error which has been shown to occur when there are
fractional numbers of electrons on carbon atoms.[74, 75] When this type of self-interaction
error is present, both hybrid functionals and range-separated hybrids tend to yield errors in
overall energy and in the amount of spin-polarization.[74, 75] Therefore, unless the functional
is specifically created to reduce this type of error, it will not successfully describe the locality
of the neutral soliton.

4.4 Conclusions

An analytic nuclear gradient for the O2 method has been presented with almost no
additional cost to the original method. This method could then be used for geometry opti-
mizations of difficult molecules like polyenyl chains, where long chain lengths are necessary
to capture physical effects seen in the infinite chain length limit. The O2 method estimates
that the half-width of the soliton to be 9 carbon atoms for C41H43, slightly shorter than the
experimental value of 18 carbon atoms. Therefore, O2 is one of the few methods that can
be used to calculate the geometry of long polyenyl chains, and give a correct electronic and
physical description of the molecular system.

For the problem of localizing an electron on a polyene backbone, large amounts of static
correlations do not seem to be necessary. O2 is a method that does not have large amounts
of static correlation like CCSD(T) or CASSCF, but it still correctly captures the physicality
of the soliton. Also the recently developed UAP method has been shown to localize orbitals
as well without a significant amount of static correlation.[76] Therefore based on the results
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of this study and the results of the UAP method, we conclude that the soliton problem
does not inherently contain large amounts of static correlation, rather the problem is a
competition between localization and delocalization. While methods with a large amount of
static correlation do perform well for this problem, the underlying reason is not simply that
these methods include static correlation.

In general, O2 should be used when correlation and electron localization/delocalization
effects are important and lead to geometric relaxation effects. Other uses would be when
spin contamination leads to unphysical results.
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Chapter 5

Second order Møller-Plesset energy
decomposition analysis for
intermolecular interactions with
applications to the ethylene dimer,
He-BeO complex, and the water
dimer

5.1 Introduction

Reliable calculations of intermolecular interactions are now more or less standard using
wave function methods. The most accurate methods are based on high level coupled clus-
ter theory, such as CCSD(T), but computational cost restricts their applicability to small
molecule complexes.[1] Second order Møller-Plesset (MP2) theory is applicable to much
larger molecules, and is known to yield excellent results for systems such as hydrogen-
bonding in water clusters[2, 3] and DNA bases[4, 5], although it tends to overestimate
stacking interactions.[6, 7] Spin-component scaling of the MP2 correlation energy offers some
advantages.[8] However, regardless of how good or bad the numbers are, ab initio calculations
of intermolecular binding energies are essentially numerical experiments. To obtain insight
beyond the overall binding energy, it is therefore desirable to divide the interaction energy
into physically meaningful components, via an energy decomposition analysis (EDA).

5.2 Theory

We confine discussion of existing EDAs (in this section) to the ones relevant to the present
work (though many others also exist, all with their own advantages). The Kitaura-Morokuma
approach was early and influential, and spawned a variety of follow-on improvements.[9] It
divides an interaction energy into a frozen component (permanent electrostatics and Pauli
repulsion), and an induced component (polarization, if present, and charge transfer). The
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Ziegler-Rauk approach is essentially the same.[10] Going further, it is possible to separate
the induced component into polarization effects that are treated by an absolutely localized
MO (ALMO) self-consistent field (SCF) calculation in which the MO coefficient matrix is
block diagonal in the fragments.[11] Charge transfer effects are the remaining contributions,
which can be pair-wise decomposed to a very good approximation. Thus we can summarize
the SCF-level ALMO-EDA as:

∆ESCF (AB) = ESCF (AB)− ESCF (A)− ESCF (B)
= ∆Efrzn

SCF (AB) + ∆Epol
SCF (AB) + ∆ECT

SCF (AB) (5.1)

The primary limitation of these KM-derived approaches is their restriction to SCF models
either Hartree-Fock or density functional theory unless the correlation contribution to bind-
ing is added on at the end as a fourth contribution. The purpose of this letter is to describe
an extension of the SCF-level ALMO-EDA to MP2 theory in which correlation contributions
to the frozen interactions, polarization effects, and charge transfer are evaluated separately.
In other words, since E = ESCF + Ecorr, we aim to define, in direct analogy to Eq. 5.1:

∆Ecorr(AB) = Ecorr(AB)− Ecorr(A)− Ecorr(B)
= ∆Efrzn

corr (AB) + ∆Epol
corr(AB) + ∆ECT

corr(AB) (5.2)

In a qualitative sense, one expects that the frozen interactions (where the fragment orbitals
are not allowed to relax) will include correlation contributions that become dispersion-like as
the overlap becomes small, in addition to intramolecular correlations. However, correlation
effects that involve moving an electron from one fragment to another should clearly be
grouped as part of the CT contribution. Thus a partition of correlation effects is necessary
if we wish to evaluate correlation contributions to frozen, polarization and charge transfer
interactions.

The partition can be made more explicit by recalling that the correlation energy in
MP2 theory can be written as the contraction of two-electron integrals with pair correlation
amplitudes, tabij ,which describe the promotion of a pair of occupied levels i and j to a pair of
empty levels a and b, such that

Ecorr =
1

2

∑
ijab

(ia|jb)tabij (5.3)

For an intermolecular interaction, the orbitals can be localized onto the fragments indeed
this is the constraint that is imposed in the ALMO-SCF. We can therefore categorize the pair
correlation amplitudes for a system of two fragments according to whether they belong to
one fragment, or are split between two fragments without charge transfer, or involve overall
charge transfer between the fragments. These categories are illustrated in Figure 5.1 below.

In the MP2 ALMO-EDA we evaluate 2 subsets of the MP2 energy in addition to the
total MP2 energy. The first subset is based on the intra-fragment correlations only, which is
to be added to the SCF energy for the isolated fragment. This contribution can be evaluated
with only minor modifications of a standard MP2 code. The second subset contains both
the intra-fragment correlations, and the non-CT inter-fragment correlations from category
(b) above. We will denote this contribution as Efrzn

corr when it is evaluated with the frozen
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Figure 5.1: Classes of correlation amplitudes involving 2 fragments (each corresponding to a
pair of levels in the diagram), which are separated to accomplish the EDA. (a) Intra-fragment
correlations both occupied and virtual levels belong to a single fragment (the left one in the
diagram). These contributions are included in isolated fragment energies (b) Inter-fragment
correlations that do not involve charge transfer one correlated electron is associated with
each fragment. These effects are included in addition to (a) in frozen and polarized energies
(c) Inter-fragment correlations that are accompanied by charge transfer they included in
the charge transfer energy in addition to (a) and (b).

orbitals, and combined with the corresponding Efrzn
SCF . The same terms will be denoted as

Epol
corr when evaluated with the polarized ALMOs, and combined with the ALMO SCF energy,

Epol
SCF .

The second subset is non-trivial to evaluate. In detail the occupied orbitals are the
occupied ALMOs (frozen or relaxed) of the fragments. The ALMOs on one fragment are
non-orthogonal to those of the next. The virtual orbitals are the corresponding ALMO virtu-
als, projected against the full occupied space. These functions, while localized to fragments,
are also non-orthogonal. The problem of solving the MP2 problem with the subset of substi-
tutions (a) and (b) in this representation is isomorphic to the local correlation model called
diatomics-in-molecules (DIM),[12] with the atom of the DIM model being re-defined as an
individual fragment for our present purposes. Therefore our pilot program, implemented as
an extension to the Q-Chem program,[13] simply modified an existing DIM code to define
fragments as superatoms. It should be noted that this scheme, while convenient for initial
testing as we report here, scales very poorly with size of the fragment (sixth power scaling).
We intend to report a fully optimized implementation in due course.

Given the components above, we can now fully specify the following three individual
correlation contributions to the total defined in Eq. 5.2. The first contribution, ∆Efrzn

corr

contains the correlations that are clearly dispersion as the fragments become non-overlapping
which we can rename as frozen dispersive interactions (FDI):

∆Efrzn
corr = Efrzn

corr (AB)− Ecorr(A)− Ecorr(B) (5.4)

It may be combined with the SCF-level frozen energy. These effects are modified (the change
can be either positive or negative) due to the effects of polarization, so that we define a similar
quantity for the polarized level which we can label as dispersive interactions at the ALMO
level (ADI):

∆Epol
corr = Epol

corr(AB)− Epol
corr(A)− Epol

corr(B) (5.5)

An orbital distortion is present in the change from the frozen monomers to the polarized
monomers that will be part of an overall change to be defined later:

∆Eodist1
corr = Epol

corr(A) + Epol
corr(B)− Efrzn

corr (A)− Efrzn
corr (B) (5.6)
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The overall dispersive correlations are then given as ∆Epol
corr + ∆Eodist

corr , but these will always
be split to include the orbital distortion term in an orbital change term. The dispersive
interaction can be classified at either the frozen level by Eq. 5.4 (FDI) or at the polarized
ALMO level (ADI) by Eq. 5.5. Finally, the correlation contribution to CT is defined by one
further subtraction as:

∆ECT
corr = Epol

corrw/CT
(AB)− Epol

corrw/oCT
(AB) (5.7)

In the above equation, correlation without charge transfer is defined as including excitation
of type a and b in Figure 5.1 and correlations with charge transfer includes all types of
excitations. As with the dispersive interactions, there is an orbital distortion term associated
with charge transfer. This term includes the orbital distortion in going from the polarized
orbitals to the full canonical orbitals:

∆Eodist2
corr = ECT

corr(AB)− Epol
corrw/CT

(AB) (5.8)

This orbital distortion term is combined with the other orbital distortion term to form an
overall orbital change term.

∆Eorb∆
corr = ∆Eodist1

corr + ∆Eodist2
corr (5.9)

Each of these terms can be corrected individually for basis set superposition error (BSSE).
These terms can also be combined to form the binding energy.

∆Ebind = ∆Eorb∆
corr + ∆ECT

corr + ∆Epol
corr + ∆Efrzn

SCF + ∆Epol
SCF + ∆ECT

SCF (5.10)

As our test systems, we chose the ethylene dimer to examine dispersion interactions, the He-
BeO complex to examine charge transfer interactions, and finally the water dimer to examine
a system where both types of interactions are significant. While there is no doubt about
the magnitude of the binding energy in this scheme, there has been significant controversy
associated with the EDA results. While the individual terms should be well-defined in any
EDA, there is no unique definition for any contribution: neither the frozen, polarization
nor charge transfer terms, in our present context. Therefore one should be very cautious
when comparing values obtained from the definitions used in one EDA with those used in
another. In general it is much better to use a given EDA for comparative purposes. One
exception will be that we can compare the MP2 level ALMO-EDA against the HF-level
ALMO-EDA to see the role of electron correlation, and another exception will be that we
can compare both of these against the corresponding DFT-level ALMO-EDA with a given
approximate functional. Our goal is to make these comparisons, after first assessing the
internal stability of the MP2 ALMO-EDA and the ability of MP2 ALMO-EDA to capture
the correct physicality.

5.3 Test Cases

In order to examine the validity of this approach, two test cases were chosen to specifically
examine the correlated contributions. The first test case is the ethylene dimer, which is
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a classic dispersion-bound complex. For the ethylene dimer, the dispersion term should
dominate all other intermolecular interactions. The second case is the small charge-transfer
complex He · · · BeO where both the correlated and uncorrelated charge transfer terms should
be dominate terms.[14] These cases will illustrate the ability of this scheme to capture these
intermolecular interactions in a physical manner and convince the reader that this scheme
is appropriate to apply to the water dimer, which has both significant charge transfer and
dispersive interactions.

The ethylene dimer is one of the smallest examples of a π orbital stacking complex,
which is inherently bound by dispersive forces. In this system there are only 4 heavy atoms,
which means that this system can be studied with computationally demanding levels of
theory like CCSD(T) and used in benchmark calculations like the S22 test set used to train
density functionals.[15] However, in this current implementation of the energy decomposition
scheme, the overall binding energy is limited by the MP2 binding energy. It should be
noted that this theory does not change the overall binding energy of MP2, but partitions
the binding energy into various intermolecular components. The geometry of the ethylene
dimer structure was taken from a 2002 study on interactions in the benzene and ethylene
dimer.[16] In this geometry, there is a separation of 3.8 Å between the planes of the carbon
atoms in the ethene dimer T-like structure. All calculations were run using the Q-Chem
software package.[13] with the frozen core approximation. In this example, the dispersive
interaction term is responsible for the vast majority of the binding energy, which can be seen
in table 5.1. At the SCF level, this complex is unbound because of the repulsive electrostatic
interactions. There are also small amounts of charge transfer captured at the SCF level and
at the correlated MP2 level (total of -0.28 kcal/mol), but these contributions are an order of
magnitude smaller than the dispersive interactions. In fact, the system is unbound if only
the dispersive terms are dropped, i.e. including just electrostatics, polarization and charge
transfer (both SCF and correlation CT). These findings verify that this method does capture
dispersive interactions in a physically reasonable manner.

Basis Set FE FDI ADI Pol SCF CT CCT Orb Dist
aug-cc-pVDZ 0.685 -1.617 -1.637 -0.045 -0.295 -0.206 -0.065
aug-cc-pVTZ 0.742 -1.880 -1.961 -0.050 -0.167 -0.111 -0.080
aug-cc-pVQZ 0.743 -1.964 -2.011 -0.057 -0.136 -0.123 -0.067

Table 5.1: Convergence as the basis set approaches completeness for each of the intermolec-
ular terms for ethylene dimer reported in kcal/mol

The complex of Helium and Beryllium Oxide is an interesting charge transfer complex.
In this system, the BeO molecule will take away electron density from the He atom resulting
in an electron transfer. The He· · · BeO complex is bound with a total binding energy of
about 4.8 kcal/mol, about the same binding energy as the water dimer.[17] Based on the
results of Natural Bond Orbital analysis, the charge transfer from the He atom to the BeO
molecule is a staggering -24 kcal/mol, nearly 5 times the binding energy.[17] While this is
certainly an overestimate, this result is not completely an artifact of this method. When a
energy decomposition is performed on this molecule, one would expect charge transfer and
polarization to be the largest contributors to the binding energy.

The He· · ·BeO geometry is optimized with MP2 at the cc-pVTZ level yielding R(HeBe)
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= 1.521 Å and R(BeO) = 1.346 Å. This geometry is then used to perform the energy decom-
position analysis using the ALMO orbitals as can be seen in table 5.2. In this analysis it is
clear that charge transfer and polarization are the two terms that are greatly stabilizing the
interaction between the He atom and the BeO molecule. At the SCF level, interestingly, the
separation between polarization and charge transfer is not stable to basis set improvements,
though the sum is. The dispersive interactions in this system is almost trivial, contributing
a positive interaction of about 0.05 kcal/mol. The electrostatic interaction in this system is
large, which is expected as noble gases like He rarely bond with other elements or molecules.
Although charge transfer contributes more than 3 kcal/mol for binding, the large polarization
contribution is somewhat surprising. In the larger basis sets, the attractive charge transfer
interaction is not larger enough to overcome the repulsive electrostatic interaction. How-
ever, this example proves that this method can effectively capture charge transfer, especially
correlated charge transfer, in a system where charge transfer is a significant interaction.

Basis Set FE FDI ADI Pol SCF CT CCT Orb Dist
cc-pVDZ 4.066 0.265 0.019 -2.332 -5.071 -0.449 0.334
cc-pVTZ 4.261 0.106 -0.045 -4.454 -4.416 -1.417 0.331
cc-pVQZ 4.317 0.190 0.041 -5.993 -2.973 -1.392 0.325
cc-pV5Z 4.281 0.187 0.063 -6.910 -2.000 -1.255 0.345

Table 5.2: Convergence as the basis set approaches completeness for each of the intermolec-
ular terms for He-BeO reported in kcal/mol

5.4 Water Dimer

The water dimer geometry used for these calculations is one that is optimized with MP2 in
the aug-cc-pVTZ basis. We will focus on the stability of the energetic contributions and then
will consider these results within the context of the current energy decomposition schemes.
In terms of stability we will examine the stability with respect to increasing the size of the
basis set, with and without the frozen core approximation, and the stability of the energetic
terms as the distance between the two water molecules increases. As the distance between
the two water molecules increases, the binding energy must asymptote to zero. Therefore,
each of the component terms should approach zero as the distance increases, furthermore,
each of these terms need to trend to zero smoothly in the physically relevant regions. In fig.
5.2 each of the physical energetic terms is charted as the oxygen-oxygen distance increases.
The basis set in this example is the aug-cc-pCVDZ basis which explicitly includes basis
functions for the core. Results are qualitatively the same if the frozen core approximation
is employed for the aug-cc-pVDZ basis set. One can see that each of the terms smoothly
converges to zero at an oxygen-oxygen distance of about 15 Å. Also there are no spurious
rises or falls in any of the energetic terms as the distance approaches infinity. From this
graph we can conclude that there are no artifacts that manifest from the implementation of
correlation contributions.

Another measure of stability is that the individual energy terms should converge to a
limiting value as the basis set increases. In tables 5.3 and 5.4 the water dimer is examined
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Figure 5.2: The individual energy terms for water dimer separation in the aug-cc-pCVDZ
basis as a function of oxygen-oxygen distance. This graph shows that each term converges
smoothly to zero.

at a set O-O distance of 3.0 Åwith the basis sets increasing from a double-ζ level to the
quadruple-ζ level. In both of these tables there is a relatively big difference (about 40%
for both frozen and ALMO dispersive) in the dispersive interaction from the DZ level to
the TZ level. However from the TZ to QZ level, all of the correlated components are very
stable with the largest change being about 0.1 kcal/mol. There is no reason to suspect that
increasing the basis set to the 5Z level will dramatically change the correlated energy terms
in this decomposition scheme. From tables 5.3 and 5.4 along with the tables for the He-
BeO complex and the ethylene dimer, it should be clear that the correlated quantities reach
stable values as the basis set increases for these fundamentally different interactions. Since
we have demonstrated that this scheme is stable with respect to decreasing interactions and
with respect to basis set size, we will move on to analyzing the results of this scheme and
comparing it to the existing literature.

Basis Set FE FDI ADI Pol SCF CT CCT Orb Dist
aug-cc-pVDZ -2.238 -0.352 -0.422 -0.846 -0.957 -0.359 0.131
aug-cc-pVTZ -2.151 -0.629 -0.675 -1.030 -0.688 -0.419 0.162
aug-cc-pVQZ -2.099 -0.761 -0.771 -1.062 -0.700 -0.414 0.144

Table 5.3: Convergence as the basis set approaches completeness for each of the intermolec-
ular terms reported in kcal/mol in the water dimer

The hydrogen bond interaction in the water dimer complex is one of the most fundamental
intermolecular interactions in chemistry. The water dimer is physically relevant to a wide
variety of topics ranging from atmospheric absorption of infrared radiation to the structure of
water droplet formation.[18, 19, 20, 21] Since this system is quite small and for the previously
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Basis Set FE FDI ADI Pol SCF CT CCT Orb Dist
aug-cc-pCVDZ -2.249 -0.367 -0.436 -0.846 -0.959 -0.361 0.137
aug-cc-pCVTZ -2.150 -0.647 -0.694 -1.031 -0.684 -0.435 0.165
aug-cc-pCVQZ -2.100 -0.786 -0.796 -1.063 -0.697 -0.427 0.149

Table 5.4: Convergence as the basis set with the explicit inclusion of core orbitals approaches
completeness for each of the intermolecular terms reported in kcal/mol in the water dimer

stated reasons, the water dimer has been studied extensively by both the theoretical and the
experimental communities.[2, 22, 23, 24, 25, 3, 26, 27, 28, 29, 30, 31, 32, 33]

Despite the large amount of both theoretical and experimental evidence, there still exists
controversy about which types of intermolecular interactions contribute significantly to the
hydrogen bond in the water dimer. There are four main types of intermolecular interactions:
electrostatic, polarization, charge transfer and dispersion. Since water has a large dipole
moment at 1.85 Debyes, it is expected that the dipole-dipole interaction would be the largest
type of intermolecular interaction.[34] Instead of the dipoles being maximally aligned so
that the oxygen is in between the two hydrogens, the equilibrium geometry is not in this
arrangement, causing the electrostatic interaction to be less than what would be expected
from the 1.85 D dipole moment. While the polarization of water is large, it cannot be larger
than the energetic contribution from a polarizing bond like Xe-F-, which has a binding energy
of -2.43 kcal/mol at the optimized distance of 3.281 Å. The lone pair-lone pair interaction
of the water dimer will contribute to some dispersion but much less than the π-stacking
interaction seen in the benzene dimer which is -2.78 kcal/mol.[35] The expectation of water
is that there should be some charge transfer but not a great amount since the donor and
acceptor are both water molecules. Furthermore, in dense bulk water where each water
molecule has four hydrogen bonds, every water molecule would be both an electron donor
and electron acceptor as opposed to the water dimer where one water molecule is the electron
donor and one is the electron acceptor. Therefore, the water dimer is an upper-limit to the
amount of charge transfer in each hydrogen bond and would legitimize the use of force-fields
for bulk water. Dispersive interactions scale with the size of the molecular system or become
large when there are overlapping π-orbitals. However, neither of these situations are present
in the water dimer so one would expect the dispersive interaction to be quite small (certainly
much less than the ethylene dimer). Therefore, the electrostatic interactions should be the
largest and the dispersive interactions the smallest with the other interactions providing
significant contributions as well based on these physical justifications.

Attempts have been made to fundamentally understand these interactions. Two recently
developed methods give qualitatively different results for the water dimer even though this
interaction has been studied since the 1970’s. In the Natural Bonding Orbital method, devel-
oped by Reed et. al, the main type of stabilization in the water dimer is charge transfer.[36]
Using natural energy decomposition analysis (NEDA), which is based on NBOs, also gives a
similar result.[37, 38] The NBO method overbinds the dimer by about 2 kcal/mol and both
methods calculate the charge transfer contribution to be about -9 kcal/mol, almost double
the -5 kcal/mol binding energy of the water dimer. The NEDA method sums to approxi-
mately the correct binding energy but includes a fairly large core repulsion term to correct
for the large charge term. The NEDA theory was recently extended to density functionals
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and applied to the water dimer system in late 2005.[37]
Another recently developed scheme comes from Wu et al. and is a theory that is density-

based instead of being based on orbitals.[39] In order to separate the intermolecular terms,
this scheme uses the Wu-Yang constrained search algorithm to calculate individual terms
via energy subtraction.[40] The advantage of this strategy is that there is less variation in
the partitioning based on the type of functional used. Using the PBE functional with a
aug-cc-pVQZ basis, the binding energy energy is quite accurate, -4.9 kcal/mol. However, the
majority of the binding energy comes from electrostatics at -3.5 kcal/mol with charge transfer
being -0.79 kcal/mol and polarization being -0.72 kcal/mol. This method was developed in
2009 and is in direct contradiction to the NEDA method developed in 2005. Even though
intermolecular calculations on the water dimer have been occurring for several decades, two
recently developed methods arrive at completely different conclusions, showing that this
area is still poorly understood. Furthermore, the superposition of fragment densities gives a
density that is generally not non-interacting V-representable. Therefore the validity of this
approach is not yet fully clear.

One of the older schemes, Symmetry Adapted Perturbation Theory (SAPT), is based
on treating intermolecular interactions explicitly as a perturbation to the non-interacting
Hamiltonian.[41, 42, 43, 44, 45, 46, 47, 48, 49] This theory originally did not separate charge
transfer, but recent advances by Stone have alleviated this entanglement.[50, 51, 52] This
scheme yields the result that the largest contribution to intermolecular binding is dispersion
at -1.91 kcal/mol with all the other intermolecular interactions being around -1 kcal/mol,
bringing the total binding energy to -5.23 kcal/mol. Unlike the previous methods discussed,
this method comes to the conclusion that all the intermolecular interactions are important
and roughly equal with dispersion being the most important.

Another prominent energy decomposition scheme is the Kitaura-Morokuma energy de-
composition analysis (EDA) developed in 1971.[53, 9] This EDA scheme has the advantage
of being able to separate the four fundamental types of intermolecular interactions whereas
the two previously mentioned schemes cannot. In this procedure, the major contribution
arises from electrostatic interactions with smaller contributions from dispersion and charge
transfer interactions.[54] The contribution from polarization is almost negligible giving an
overall physical picture that is somewhat similar to results of SAPT. However, like the NBO-
style methods, this scheme has a binding energy of -7 kcal/mol, overbinding the dimer by
about 40% similar to the NBO schemes reflecting a small basis RHF calculation.

In the ALMO EDA scheme outlined above, the water dimer is bound mostly by electro-
static forces but all the other interactions are significant as well and can be seen in tables
5.3 and 5.4. The dispersive interactions are the smallest interactions but are only about 0.25
kcal/mol less than the polarization interaction. Therefore we can conclude that all of the
interactions that are not the electrostatic interaction are essentially equivalent in strength.
These conclusions are similar to those made when the ALMO EDA without correlation was
initially applied to the water dimer using the B3LYP density functional.[55] It should be
noted that the orbital distortion term for this system is small, essentially meaning that the
orbital change from the frozen orbitals to ALMO orbitals coupled with the orbital change
from the ALMO orbitals to the canonical orbitals is small. Finally, the dispersive inter-
actions at the frozen level and at the ALMO level are essentially the same in the largest
basis set, further emphasizing the point that the correlation energy is fairly invariant to the
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different orbitals as is seen in the small orbital distortion term. In terms of comparison
to the existing methods, the ALMO EDA method is most similar to the KM EDA, which
is expected. However, the ALMO EDA method has the advantage of capturing the MP2
binding energy by definition, as well as variationally separating polarization contribution.

5.5 Conclusions

A new ALMO EDA method at the MP2 level has been proven to match physical intuition
quantitatively for the test cases of the ethylene dimer and the He· · ·BeO complex. For the
water dimer, the ALMO EDA method predicts that the most significant interaction is the
electrostatic interaction. All other interactions were found to be about half of this interaction,
being about 1 kcal/mol energetically. The ALMO EDA scheme is also shown to be stable
with respect to basis set size and with respect to the dissociation of a bound complex. The
use of this partitioning is therefore recommended for characterizing other novel bonding
motifs.
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Chapter 6

Conclusion

6.1 Observations on the MP2 energy decomposition

Normally a recap of the enclosed chapter would be in this space but I would like to
make some observations based on some unpublished work for the ALMO EDA method
discussed in the previous chapter. One way used to describe the DIM method involves using
excitation diagrams such as figure 5.1. Therefore, one might assume that one viable strategy
in order to decompose the energy is to partition the MP2 energy into the different types
of excitations instead of taking the computationally more difficult step of diagonalizing the
pair energy matrix. However, we tried to implement this type of scheme with poor results.
Specifically, we used a orthogonal occupied space together with a non-orthogonal virtual
space. The types of interactions were split into the number of centers and the number of
electrons transferred from one fragment to another fragment. For the water dimer there
are only four types of excitations: one center zero electron (MP2 per fragment), two center
zero electron (dispersive), one electron two center (ionic/charge transfer), and two center
two electron (BSSE and dispersive exchange). The expectation would be that the one center
zero electron excitation should be the largest in magnitude followed by two center zero
electron, then the one electron two center, and finally the two center two electron. However
when we did this type of decomposition we found that the ionic interaction was orders of
magnitude larger than the dispersive interactions and in terms of actual contribution the
ionic interaction was -12 kcal/mol. This interaction is almost the three times the binding
energy of the water dimer. Clearly this approach is deeply flawed and it is necessary to
conclude that this partitioning is invalid probably because of the non-orthogonal virtual
space. One must be careful when applying principles used in canonical theories to schemes
which involve non-orthogonal spaces.

6.2 Future Work

For the distannyne system, there is still an issue of why the experimental system adopts
the M-type geometry (defined as the multiply-bonded motif) when the smaller model systems
adopt the S-type geometry (defined as the singly-bonded motif). Based on some preliminary
unpublished calculations, it was discovered that there might be some kind of intramolecu-
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lar interaction between one of the periphery phenyl rings and the central π-system in the
distannyne. However, there currently is not a satisfactory method to quantify this type of
through-space interaction, likely dispersive. This system could be a large challenging case
for an intramolecular energy decomposition scheme.

In chapter 3 the implications of breaking N-representability were discussed and the effects
of this on physical properties were quantified. However, this problem should equally affect
not just first-order properties but also second-order properties like IR frequencies. In fact
some preliminary calculations found that many large errors for MP2 frequencies were due
to the fact the N-representability was not maintained. It would then be logical to create
a diagnostic for the MP2 method in order to warn the user when MP2 properties may be
unreliable. However, there was not a large enough database of difficult problems to create
reasonable cutoffs for what one would consider to be reliable, questionable, and incorrect.
It is likely that if one were to do an extensive literature search and have over 150 examples,
then the appropriate demarkations can be made.

Future work in the field of solitons could be quite varied. One possible project would be
to investigate the electronic structure differences between the neutral soliton, which is very
difficult to localize, and the positive soliton which is localized even in HF theory. Also an
investigation into the effects of including a counter-ion like Li+ and how the local charge
would affect the localization in the neighboring chain would be interesting. Furthermore,
one does not need to be limited to the polyacetylene chain and one should investigate smaller
polyacenes or polythiols.

Immediate future work regarding the ALMO EDA scheme would be to first implement
a fast algorithm for diagonalizing the pair energy matrix. Currently, the occupied space is
orthogonal but the test code does not take advantage of this fact. Therefore the current
code scales to the sixth order with the size of the largest fragment. Theoretically one should
be able to reduce this scaling all the way down to possibly third order overall. Besides a
fast implementation, this scheme can be extended to methods that include more accurate
wave-function based approximations to the correlation energy, namely the coupled cluster
methods. Cluster operators would need to be constructed that only included dispersive
excitations, only on fragment excitations, and then all excitations. The extension of this
theory to coupled cluster is promising because the inclusion of T1 operator will provide
approximate orbital invariance which is not present in MP2 theory. Therefore the orbital
distortion term will become very small, which is desirable as they do not have a physical
origin.
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