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In addition to storing and managing the data and providing capabilities to query them, a

Database Management System (DBMS) tries to achieve performance goals. High resource

utilization, high throughput, and low query execution time are a few of the performance goals

that are considered for various DBMSs. The system’s success in achieving its performance

goals highly depends on the performance of queries and their operators. Many factors can

impact a query’s performance, including how much of its resource requirements are satisfied,

when it is scheduled for execution, and which other queries will execute concurrently with

it. This thesis is an experimental study focusing on resource management and scheduling

techniques to assist a database management system in reaching its performance goals.

We begin this thesis by exploring the design space for a robust dynamic Hybrid Hash Join

operator, one of the main and most common types of memory-intensive database operators.

Our variant of this operator is specifically designed to perform well even when the required

statistics and information for a Hybrid Hash Join operator are unavailable or inaccurate.

Next, we explore various memory management and execution strategies for efficiently exe-

cuting queries containing multiple join operators. We specifically study variations of Left

Deep Trees, Right Deep Trees, and Bushy Trees containing one to eight join operators. We

evaluate their performance under different memory availabilities, join and scan selectivities,

xv



degrees of parallelism, storage types, and query complexities.

Lastly, we study and evaluate the performance of various schedulers designed to schedule

queries with highly different memory requirements and execution times in a concurrent

environment. Our performance goal is to design a fair scheduler that keeps different classes

of queries in admission and resource control queues in proportion to their execution times.
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Chapter 1

Introduction

Efficiency in processing queries and managing data is one of the key criteria for choosing a

DBMS. Several factors, including the efficiency of query operators in execution, having access

to statistics and information about datasets and their attributes, quality of the query opti-

mizer in choosing the best operators, access methods, and operator orderings, significantly

impacts the performance of a DBMS.

Memory-intensive operators are database operators whose performance is highly dependent

on the amount of memory made available to them. For such operators, careful consideration

should be given in their implementation and design to use the available memory properly

and therefore execute efficiently. Hybrid Hash Join and hash-based or sort-based Group By

operators are examples of memory-intensive operators.

As one of the most common and expensive database operators, the join operator plays an

important role in the query response time and/or throughput of a DBMS. Although the

study of various join algorithms and their designs has a long history, changes in the variety

of data, queries, and workloads, as well as the improvements in the hardware technology

and the arrival of new storage types, leave the way open for further improvements in the
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implementation and design of join operators. Hybrid Hash Join (HHJ) has proven to be

one of the most efficient and widely-used join algorithms. While HHJ’s performance largely

depends on accurate statistics and information about the input relations, it may not always

be practical or possible for a system to have such information available. Chapter 3 empirically

and analytically studies the trade-offs in designing a robust and dynamic HHJ. We revisit the

design and optimization techniques suggested by previous studies by extensive experiments

and comparing them with other algorithms designed by us or used in related studies.

Chapter 4 explores the trade-offs involved in executing a multi-join query using various query

shapes, memory management schemes, and execution strategies. Through experiments with

various memory availabilities, join and scan selectivities, storage types, degrees of parallelism,

and query complexities, we compare the performance of query plans, including variations of

Right Deep Trees, Left Deep Trees, and Bushy Trees.

Chapter 5 turns to the topic of multi-query workload management. The chapter focuses on

designing a fair scheduler to schedule queries with widely varying memory requirements and

execution times in a concurrent environment. The main responsibility of each scheduler is

to decide on the execution order of incoming queries so that each query waits in the system

in proportion to its execution time.
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Chapter 2

Preliminaries

2.1 Apache AsterixDB

Apache AsterixDB is a parallel big data management system (BDMS) for managing and

processing large amounts of semi-structured data with a declarative query language [2, 9, 44].

AsterixDB manages a flexible cluster of shared-nothing commodity nodes which may be sized

to adjust to the storage and computation needs of an application. Figure 2.1 illustrates the

physical architecture of AsterixDB. One of the nodes in the cluster serves as the Cluster

Controller (CC), while the rest serve as Node Controllers (NCs). In a nutshell, the Cluster

Controller node is the entry point for the user requests and compiles and transforms the

requests into executable jobs. The Node Controllers are the worker nodes that execute jobs

sent to them by the Cluster Controller. One Node Controller also serves as the Metadata

Controller Node, providing access to AsterixDB’s metadata. Each Node Controller manages

one or more data partitions, and an instance of each query is executed in parallel on each

data partition that the query needs to access. We will cover more details of the internal

modules of AsterixDB in the next section.
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Figure 2.1: AsterixDB Architecture

2.1.1 Software Modules

AsterixDB uses SQL++, a declarative language for JSON data [60]. Additionally, other

projects and query languages, including Apache VXQuery and JSONiq, have used the lower

layers of AsterixDB to execute their parallel queries.

The AsterixDB Data Model (ADM) is a highly flexible data model based on a superset

of JSON that supports primitive data types (boolean, integer, string, date, etc.), special

types (missing and null), and derived types (arrays, multi-sets, and objects). Data enters

AsterixDB in various ways, including loading, insertion, and feeds.

Figure 2.2 shows the internal software layers of AsterixDB. The component at the top level of

this figure receives queries using an HTTP-based API and returns the results synchronously

or asynchronously. It then creates a logical plan for the received query to be used by

Algebricks [16], AsterixDB’s rule-based optimizer, to be further optimized before execution.

Algebricks applies the optimization rules to generate an optimized logical plan and then

generates a physical plan by selecting a physical operator for each logical operator in the

optimized logical plan. Next, Algebricks uses the physical plan to generate a Hyracks [17] job

which is a directed acyclic graph (DAG) containing physical operators as the nodes and data
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Figure 2.2: Software Layers in AsterixDB

connectors as edges. Data is transfered between physical operators through connectors using

a fixed-size and configurable set of contiguous bytes called frame. Hyracks [17], the lowest

layer in the AsterixDB software hierarchy, is the scalable execution engine for AsterixDB.

Each NC node uses Hyracks to execute the DAG of a query on each one of its data partitions.

We chose Apache AsterixDB as the platform for implementing and evaluating our proposed

techniques for several reasons. First, it is an open-source platform that allows us to share

our techniques and their evaluations with the community. Second, AsterixDB is a parallel

big data management system for managing and processing large amounts of semi-structured

data with a declarative language. Finally, its similarity in structure and design to other

NoSQL and NewSQL database systems and query engines makes our results and techniques

applicable to other systems as well.

5



2.1.2 Resource Parameters in AsterixDB

Physical operators in AsterixDB are divided into two groups of operators: minimal-memory

and memory-intensive operators. The minimal-memory operators only use a few frames as

their inputs and outputs. The exact number of these frames depends on the cardinality (1-

to-1, 1-to-m, m-to-n, etc.) of their input and output connectors. AsterixDB automatically

allocates the required number of frames to the minimal-memory operators. Memory-intensive

operators, on the other hand, need much more memory than what is required for input and

output buffers. The memory-intensive operators, including Hybrid Hash Join, Group By, and

Sort operators, need memory to keep data in memory for further processing. For example,

Hybrid Hash Join requires memory to hold a complete hash table with its data in memory.

AsterixDB provides several parameters so that a user may specify how much memory a

specific memory-intensive operator can use at maximum. This amount of memory is not

pre-allocated; however, it will be reserved as a budget for that operator and cannot be

used by other operators or queries. For example, a user can specify a memory budget per

data partition for each Group By operator in a query by setting the compiler.groupmemory

parameter to the desired value. Similarly, the user can set the memory budget per data

partition for each join operator in the query by setting the compiler.joinmemory parameter.

Additionally, AsterixDB provides a core-multiplier parameter to specify how many queries

a CPU core can be asked to execute concurrently. For example, a core-multiplier of three

indicates that each CPU core in an NC node can be asked to execute three queries con-

currently. By default, the core-multiplier is set to three. Also, each query alone uses as

many CPU cores as the number of data partitions that it is accessing. For example, consider

an AsterixDB cluster consisting of one CC and one NC node where the NC node has four

data partitions. In this case, a query that executes on all four data partitions will use four

CPU cores, one for each data partition. Thus, if the core-multiplier is set to three, at most

6



three such 4-way parallel queries can run concurrently. We use this parameter extensively

in Chapter 5.

2.1.3 Joins in Apache AsterixDB

Since in this thesis our focus is on the join queries, we cover the join operators and their

execution details in more depth in this section.

AsterixDB supports a number of different join algorithms including Block Nested Loop Join,

Dynamic HHJ, Broadcast Join, and Indexed Nested Loop Join. However, due to its superior

and robust performance, Dynamic HHJ is the default and primary join type in AsterixDB

for processing equi-joins.

Since AsterixDB is not currently benefiting from the availability of statistics, hints can be

provided by users to guide AsterixDB at execution time. For example, a user can use a hint

for an Indexed Nested Loop Join to request this join algorithm instead of a Hybrid Hash

Join. Such a request is respected when possible; otherwise, AsterixDB utilizes Hybrid Hash

Join (by default). In addition, a hint to use a Broadcast Join might be advantageous when

the build dataset is small enough to be sent to all nodes instead of hash partitioning it.

The current release of AsterixDB follows the specific join order in a query’s FROM clause

for indicating the query’s join order and the build and probe inputs to the joins. The first

input in the FROM clause will serve as the query’s probe relation, and the rest will be build

inputs to the query’s joins. This makes the default query plan a Right Deep Tree [66], and

all build datasets are scanned in parallel. Users may obtain other kinds of query plan shapes

(if desired) by introducing nesting using subqueries in the FROM clause of their query.
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2.2 Wisconsin Benchmark JSON Data Generator

In this section, we describe a flexible, easy-to-use, and scalable JSON Data Generator [41,

42] that we implemented in Java based on the Wisconsin Benchmark data generator [23]

description. This data generator includes more advanced features to provide relations and

attributes closer to real-world data. We use this data generator for all of our experiments in

this thesis.

2.2.1 Wisconsin Benchmark

The Wisconsin Benchmark [23] was one of the first and main benchmarking tools designed

and implemented by Dewitt et al. at the University of Wisconsin four decades ago. One

of the most powerful features of this benchmark is that its relations are designed so their

structure and distribution of attributes is easy to understand and control. While the Wis-

consin Benchmark was a very powerful and widely-used benchmark years ago, it is given

less attention in current studies. We believe that the Wisconsin Benchmark and its carefully

designed relations can still be utilized and provides unique and useful capabilities.

2.2.2 JSON Data Generator

One of the challenges of benchmarks that use synthetic data is that they are essentially

incapable of generating realistic data. On the other hand, benchmarks that use real data

often contain data values that are not flexible and controllable which makes them harder to

scale and understand and less capable of providing a range of specific scenarios. To overcome

these problems, we created a Wisconsin-inspired JSON Data Generator in Java [42], creating

records based on the same logic and attributes as the Wisconsin Data Generator. In addition,

we added other features such as attribute distributions to provide attribute skewness, which
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is a missing but very important and valuable feature. Several other features were added to

support semi-structured in addition to structured databases; those are explained below.

JSON Records

Our data generator provides records in JSON format. JSON is supported as the input

format, or even as the data model, in many modern database systems, especially those that

manage semi-structured data.

Nullable and Missing Attributes

One of the features missing from the original Wisconsin Data Generator was the capability

to have nullable attributes and a knob to control the distribution of null values in those

attributes. Also, in a semi-structured world, a field may appear in some of the records but

not in all. Some database management systems that manage semi-structured data, such

as AsterixDB, have the option to define a field as optional which may exist in some of the

records and be missing in others. In our generator, for each attribute there are options

for setting a field as nullable and/or missing. In addition to that, users can specify what

percentages of the data they wish to be null and/or missing.

Variable Record Lengths

In the original Wisconsin Data Generator, strings are generated in a random or cyclic format.

In the case of random strings, the string representation of the benchmark’s unique1 attribute

is used as the prefix (which is unique as well) and enough ‘x’ characters are appended to the

string as padding to reach a desired length. In the case of cyclic strings, string values are

generated from four prefix values in a cyclic format. While adding padding to the strings
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is a simple and useful way of reaching the required length of a string, it does not create

any variation in strings’ lengths. In order to generate variable-length strings, we added five

more properties to the definition of an attribute. The first property is a percentage which,

based on the binomial distribution, decides if the string should be long or short. The other

four fields are used for specifying the minimum and maximum length of the long and short

strings. The length of the long and short strings will be chosen uniformly from these ranges.

These knobs provide control of the distribution of short and long strings as well as their

length ranges. We also support selecting the length of a string from a defined range using a

Zipf distribution.

Real-Word and HEX Strings

In addition to supporting the aforementioned algorithms, we support strings that are gen-

erated by concatenating words from a list made of 10,000 real words. This approach helps

with reducing the impact of data compression due to then having less repetitive characters.

For this data, an average number of words to be included in the string is provided as an

input, and the generator algorithm concatenates as many as asked from the word list based

on a specific distribution. (Uniform, Normal, Gamma, and Zipf distributions are supported.)

Generating random HEX strings is another way of generating variable length strings with

lower impact due to compression.

Attribute Skewness

One of the missing but important features in a number of current benchmark data generators

is the ability to vary attribute skewness, yet data skew is unavoidable in real world. For our

purpose, to benchmark the performance of AsterixDB’s join algorithms under join attribute

skewness, we applied a normal distribution on integer attributes. Users are allowed to specify
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the standard deviation and the mean of their distribution to get the desired dataset. More

information about the generator can be found in [42], and its is freely available at [41].
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Chapter 3

Robust Design of Dynamic Hybrid

Hash Join

Hybrid Hash Join (HHJ) has proven to be one of the most efficient and widely-used join

algorithms in DMBSs. While HHJ’s performance depends largely on accurate statistics and

information about the input relations, it may not always be practical or possible for a DBMS

to have such information available.

HHJ’s design depends on accurate statistics to perform well. This chapter is an experimental

and analytical study of the trade-offs in designing a robust and dynamic HHJ operator.

We revisit the design and optimization techniques suggested by previous studies through

extensive experiments and compare them with other algorithms designed by us or used in

related studies.

We explore the impact of the number of partitions on HHJ’s performance and propose a

new lower bound for the number of partitions. We design and evaluate different partition

insertion techniques to maximize memory utilization with the least CPU cost. Additionally,

we consider a comprehensive set of algorithms for dynamically selecting a partition to spill
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and compare the results against previously published studies. We then present and evaluate

two alternative growth policies for spilled partitions.

These algorithms have been implemented in the context of Apache AsterixDB and evalu-

ated under different scenarios such as variable record sizes, different distributions of join

attributes, and different storage types, including HDD, SSD, and AWS Elastic Block Store

(AWS EBS).

3.1 Introduction

As one of the most popular and expensive DBMS operators, the join operator can signifi-

cantly impact the performance of a DBMS. HHJ [68, 27] has shown superior performance in

computing the equijoin of two datasets among other kinds of join operators. In a nutshell,

HHJ groups the records of each dataset into disjoint partitions. A hash table is created

to hold one of the partitions in memory (memory-resident partition), while the rest will be

written (spilled) to disk to be processed in the next rounds of HHJ at a later time. The

number of partitions and the selection of the memory-resident partition are static decisions

made at compile time for an HHJ operator. While previous studies [68, 37] suggested vari-

ous cost models and optimization techniques for enhancing such decisions, these studies have

two shortcomings: 1. They assume a uniform distribution for join attribute values. 2. Their

cost models rely on having accurate statistical information such as input sizes prior to query

execution.

Unfortunately, collecting and accessing or predicting such information may not always be

feasible. For example:

• Many data management systems process external data that resides outside their storage

for which they have little or no information. (Examples include: Apache AsterixDB
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[2], Apache Spark [3], and Oracle external tables [7].)

• The accurate sizes of join inputs may not be known if they result from other operators

instead of being base relations.

• Newly developed DBMSs may not have statistics available until they become more

mature in other dimensions.

Not having sufficient statistics can be detrimental to the performance of operators whose

designs depend on such information. In the [59], the authors have proposed Dynamic HHJ

to address the unbalanced distribution of join attribute values by dynamically destaging the

partitions at the runtime of a join query.

Investigating the Dynamic HHJ algorithm reveals several design questions that must be

explored carefully, as they may impact the system’s overall performance:

• Number of partitions: How many partitions should the records be hashed into if the

sizes of inputs are unknown or inaccurate?

• Partition Insertion: How can we find a “good” page (memory frame) within a partition

for inserting a new record?

• Victim Selection Policy: How can we select a “good” partition to spill in the case of

insufficient memory?

• Growth Policy: How many memory frames should a spilled partition be allowed to

occupy?

With this motivation, this chapter is an experimental survey of the trade-offs in designing

a robust Dynamic HHJ algorithm. We answer the questions above through a comprehen-

sive evaluation of different design aspects of the Dynamic HHJ algorithm and evaluate the

alternative options through extensive experimental and model-based analyses.
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First, we propose a new lower bound for the number of partitions for Dynamic HHJ. We

show that our proposed lower bound, while simple, can reduce the total amount of I/O by

up to a factor of three in some investigated scenarios. Second, we study different partition

insertion algorithms to efficiently find a frame with enough space in the target partition. We

evaluate the effectiveness of these algorithms on partition compactness (fullness) and total

I/O reduction. Additionally, we propose and evaluate two policies for allocating memory

frames to spilled partitions. Finally, we propose and implement various dynamic destaging

(victim selection) strategies and evaluate them under different scenarios such as different

record size distributions, join attribute value distributions, and combinations thereof. The

suggested optimization techniques and algorithm variants have been implemented in the

Apache AsterixDB system and evaluated on different storage types, including HDD, SSD,

and AWS EBS.

The remainder of the chapter is organized as follows: Section 3.2 provides background infor-

mation on Apache AsterixDB and the workflow of the HHJ and Dynamic HHJ operators.

Section 3.3 discusses previous work related to this study. In Section 3.4, we discuss the lower

bound on the number of partitions to use in practice. Section 3.5 introduces and evaluates

different partition insertion algorithms. In Section 3.6, two policies for the growth of spilled

partitions are discussed and evaluated. Section 3.7 discusses and evaluates various destag-

ing partition selection policies. In Section 3.8, we study the performance tradeoffs between

single-core and multi-core execution of Dynamic HHJ. Section 4.9 summarizes the chapter.
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3.2 Background

3.2.1 Hybrid Hash Join

Like other hash-based join algorithms, HHJ uses hashing to stage large inputs to reduce

record comparisons during the join. HHJ has been shown to outperform other join types in

computing equijoins of two datasets. It was designed as a hybrid version of the Grace Hash

Join and Simple Hash Join algorithms [68, 27]. All three mentioned hash join algorithms

consist of two phases, namely “build” and “probe”. During the build phase, they partition

the smaller input, which we refer to as “build input”, into disjoint subsets. Similarly, the

probe phase divides the larger input, which we refer to as “probe input”, into the same

number of partitions as the build input. While all three algorithms share a similar high-level

design, they differ in their details, making each of them suitable for a specific scenario.

Grace Hash Join partitions the build and probe inputs consecutively, writing each partition

back to disk into a separate file. This partitioning process continues for each partition until it

fits into memory. A hash table is created to process the join once a partition is small enough

to fit in memory. Grace Hash Join performs best when the smaller dataset is significantly

larger than the main memory.

In Simple Hash Join, records are hashed into two partitions: a memory-resident and a disk

(spilled) partition. A portion of memory is used for a hash table to hold the memory-resident

partition’s records. Simple Hash Join performs well when memory is large enough to hold

most of the smaller dataset. In Grace Hash Join, the idea is to use memory to divide a large

amount of data into smaller partitions that fit into memory, while Simple Hash Join focuses

on the idea of keeping some portion of data in memory to reduce the total amount of I/O,

considering that a large amount of memory is available. In the following, we discuss the

details of the HHJ operator and compare its design with its parent algorithms.
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Like Grace Hash Join, HHJ uses hash partitioning to group each input’s records into “join-

able” partitions to avoid unnecessary record comparisons. Like Simple Hash Join, HHJ uses

a portion of memory to keep one of the partitions and its hash table in memory, while the

rest write to disk. Keeping data in memory reduces the total amount of I/O, and utilizing

a hash table lowers the number of record comparisons. During the build phase of HHJ, the
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Figure 3.1: Workflow of (a)- Hybrid Hash Join (left) and (b)- Dynamic HHJ (right)

records of the smaller input are scanned and hash-partitioned based on the values of the

join attributes (Figure 3.1-(a)-1). The hash function used for partitioning is called a “split

function”. The records mapped to the memory-resident partition remain in memory (Figure

3.1-(a)-2), while the rest of the partitions are written (frame by frame) to disk (Figure 3.1-

(a)-3). Pointers to the memory-resident partition’s records are inserted into a hash table at

the end of the build phase (Figure 3.1-(a)-4).

After finishing the build phase, the probe phase starts by scanning and hash-partitioning

the records of the larger input. The same split function used during the build phase is used
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for this step. The records that map to the memory-resident partition are hashed using the

same hash function used in the build phase to probe the hash table. All other records are

written (frame by frame) to their partition’s probe file on disk (Figure 3.1-(a)-5).

After all records of the probe input have been processed, the pairs of spilled partitions from

the build phase and probe phase are processed as inputs to the next rounds of HHJ (Figure

3.1-(a)-6). The initial execution of build and probe inputs is considered round 1, and round

n consists of joining a set of spilled partitions pairs from round(n-1) using HHJ recursively.

3.2.2 Dynamic Hybrid Hash Join

Dynamic HHJ was first introduced in [59], where the authors used dynamic destaging instead

of the static predefined memory-resident partition method. As Figure 3.1-(b)-1 shows, the

build phase starts by reading the records of the build input frame by frame into memory. In

Dynamic HHJ, as opposed to HHJ, all partitions in the build phase have an equal chance

to grow as long as enough memory frames are available. This flexibility in acquiring frames

may cause some partitions to receive more frames than others if join attribute values are

skewed. Every time that all of the memory frames are allocated, one of the partitions will

be dynamically selected to be written to disk (Figure 3.1-(b)-2). This dynamic destaging is

especially useful when the build input size or the distributions of join attribute values are

unknown or inaccurate.

After partitioning the build dataset’s records, pointers to the records of the memory-resident

partitions are hashed and inserted into the hash table to be probed (Figure 3.1-(b)-3 and

Figure 3.1-(b)-4). Once the build phase is over and the hash table is created, the probe

phase starts by reading the probe dataset into memory one frame after another. All of the

incoming records will be hashed using the same split function used during the build phase

to find out if their corresponding partition from the build phase is a disk or an in-memory
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partition with the assistance of a bit vector (Figure 3.1-(b)-5). The records mapping to

a disk-resident partition will be written to disk using an output frame. The records that

belong to an in-memory partition will be hashed using the same hash function used during

the build phase in order to find their potential matches by probing the hash table. As the

last step (Figure 3.1-(b)-6), once the probe phase is over, the spilled partitions from the build

phase along with their corresponding partitions from the probe phase will be processed in a

similar way in the next round of the HHJ operator (Steps 1 through 6 in Figure 3.1-(b)).

3.3 Related Work

HHJ was first proposed in [27]. The authors showed its superior performance compared

to other types of joins using simple cost models, especially if a large amount of memory

is available[68]. In [37], the authors provided a more detailed cost model to determine the

optimal buffer allocation for various join types.

One of the key problems in configuring HHJ for execution is to choose the number of parti-

tions into which to hash the records. In [68], the author provided an equation for calculating

the number of partitions based on the memory and build input size. In [47], the authors

derived an upper bound on the number of partitions and then merged smaller partitions to

reduce the fragmentation in each partition, which is helpful when the join attribute values

are skewed. We introduce a lower bound for the number of partitions and show how it can

significantly reduce the total amount of I/O in some cases.

Another challenge for executing HHJ is to efficiently find a frame with sufficient space in

the target partition for each incoming record. This problem is similar to the Bin-Packing

problem [50, 28]. The problem has also been widely studied in the operating system and the

DBMS literature [55, 69] for managing free disk space. In this chapter we will examine those
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algorithms and a few more for inserting records in partitions during HHJ. The difference

between our work and disk-related studies is that in our work records will not reside in the

partitions long term, and no deletion apart from partition spilling happens in this case.

The authors of [59] proposed a dynamic destaging scheme where the partition written to disk

is selected dynamically during execution. In [33], Graefe et al. detailed the optimization

techniques and the design of Dynamic HHJ variant in Microsoft SQL Server. Those two

studies are closely related to our work; both choose the largest partition to be written to

disk. Despite some reasoning, the authors discuss no other options, nor do they evaluate

them. Our study defines 13 different possibilities and evaluates them under various record

sizes and join attribute value distributions.

In a concurrent study, the authors in [13] have investigated how and when to use radix join

instead of the non-partitioned hash join in a main memory DBMS. Regarding AsterixDB

[2, 9, 44], the details of its default Dynamic HHJ can be found in [44].

3.4 Number Of Partitions

The first step in configuring the HHJ operator is to determine the number of the partitions

for partitioning the input datasets.

There are two main constraints to be considered when choosing the number of partitions:

1. An HHJ operator needs at least two partitions to divide the input dataset into smaller

subsets. 2. Each partition needs at least one output frame in order not to spill less than

half-full frames to disk.

As such, the number of partitions for an HHJ should be chosen from the range of:

Number of Partitions = [2, # of memory frames] (3.1)
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In [68], the author offers the following equation to calculate the number of partitions for an

HHJ operator.

B =

⌈
|R| ∗ F − |M |

|M | − 1

⌉
(3.2)

|R| represents the size of the build input in frames, F is a fudge factor, |M | represents the size

of the memory in frames available to this join operator, and B is the number of disk-resident

partitions. Based on this equation, the HHJ operator will use B+1 partitions (including a

memory-resident partition) and finish in B+1 rounds.

While this equation calculates the number of partitions in a way that minimizes the total

amount of I/O and rounds in HHJ, any inaccuracy in estimating its input parameter, |R|,

can introduce fluctuations in the performance of HHJ as the amount of available memory

varies. This is especially true when only a few partitions are created (large memory). In

this case, data is distributed among just a few partitions, causing a high penalty for spilling

a partition as a large amount of data will be written to disk. The purpose of this section

is to provide a lower bound on the number of partitions to prevent excessive spilling due to

inaccuracy of the provided information.

Figure 3.2 shows the result of a simulation study that explores the impact of the number of

partitions on the total amount of I/O during the execution of an HHJ operator. Final result

writing is excluded from this measurement. For simplicity, both the build and probe inputs

contain the same size of data and the amount of memory is set to 10GB in all cases. In

Figure 3.2-(a), a fixed number of partitions have been used for all rounds of HHJ. The black

diamonds on each line show the number of partitions suggested by Eq. 3.2 given accurate

parameter values. As Figure 3.2-(a) shows, if accurate input values such as input dataset

sizes were provided, Eq. 3.2 can accurately calculate the minimum number of partitions

that minimizes the total amount of I/O for HHJ. However, if there is no a priori information
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or if the provided information is inaccurate and the build input is larger than anticipated,

Eq. 3.2 will suggest a smaller number of partitions than needed and cause extra I/O. As

Figure 3.2-(a) shows, choosing a small number of partitions can lead to a large amount of

unnecessary I/O and degrade the system’s performance. We can, however, use Eq. 3.2 to

calculate the number of partitions for the subsequent rounds of HHJ as the sizes of spilled

partitions are known. Figure 3.2-(b) shows how using the spilled partition sizes to calculate

the number of partitions for the next rounds of an HHJ can reduce the total amount of

spilling of the HHJ operator.

We recommend using 20 as the minimum number of partitions instead of 2 when accurate

a priori information is not available for the HHJ operator. As Figures 3.2-(a) and 3.2-(b)

show, the amount of I/O drops dramatically before 20 partitions. By having a lower bound

of 20, each spilled partition spills no more than 5% of the data, so the potential for significant

“spilling error” is low.

As we saw so far, choosing too few partitions leads to a handful of large-sized partitions

causing extra rounds of HHJ and a large amount of spilling to disk. On the other hand,

while using a larger number of partitions can reduce the total amount of spilling, it can make

the join’s I/O pattern more random due to frequent writings of partitions containing just a

few frames. Fragmentation within frames is another downside of having a very large number

of partitions. In [47], the authors defined an upper bound for the number of partitions in

order to reduce fragmentation and random writes due to too many single-frame partitions.

However, to the best of our knowledge, no lower bound on the number of partitions has been

suggested to improve the performance of the HHJ algorithm.

Additionally, we study the impact of frame size on the amount and pattern of I/Os happening

during the execution of the HHJ operator. Figure 3.2-(c) shows the impact of the number of

partitions on the amount of I/O when the frame size is set to 128KB. By comparing Figures

of 3.2-(b) and 3.2-(c), we can see that changing the size of memory frames from 32KB to
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128KB does not change the total amount of I/O occurred during the join execution. Figures

3.3-(a) and 3.3-(b) show the percentage of writes (excluding final result writing) that are

conducted randomly when the memory frame size is 32KB and 128KB, respectively. As

these figures show, using either 32KB or 128KB leads to a similar I/O pattern since for each

spilling the first write is random and the rest of the data is written sequentially regardless of

being a large frame or several small frames. Lastly, a lower bound of 20 partitions does not

cause too many random I/Os since data will be written to only a few (at most 20) files on

the disk. A modest filesystem cache can turn many of these random writes into sequential

ones (Elevator Algorithm). As Figure 3.3 shows, choosing a very large number of partitions

can cause the majority of the writes to disk to be random.

3.5 Partition Insertion

After choosing the number of partitions (P), the build phase starts by reading its input into

memory one frame after another. The split function is applied to each incoming record’s

join attribute(s) to find their destination partition. Once the partition is known, we need to

search for a frame with sufficient space within the destination partition to hold the record. If

all of the records have the same or similar sizes, all of the previously allocated frames apart

from the last frame will be similarly full. In this case, we only need to check if the last frame

can hold the record or a new frame should be allocated. However, if records are variable

in size, then each allocated frame may have a different amount of leftover space. Thus, for

each incoming record, we need to search for a frame with enough space to hold it. Note that

leftover space in frames can also happen when records are fixed-size (i.e. when the frame

size is not divisible by the record size), but then all of the frames will have the same amount

of free space. The search starts from the newest allocated frame and proceeds towards the

oldest one. If this search is unsuccessful, a new frame will be allocated and appended to
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this partition’s in-memory frames array if enough memory is available. However, if the

available memory is not sufficient for a new frame allocation, one of the memory-resident

partitions will be selected for spilling to release some memory space. This choice is called

victim selection and will be discussed in Section 3.7.

Problem Definition. Our goal for partition insertion is to make each partition as non-

fragmented as possible by choosing the destination frame for each incoming record in such a

way that minimizes the free space in each frame to avoid unnecessary I/O. On the other hand,

searching for a proper frame for each record could be CPU-time-consuming. Our goal is to

find a destination frame efficiently while making the partition as compact as possible. Two

influential factors should be considered for designing partition insertion algorithms. First,

there will be no record deletions to cause fragmentation in this scenario; only a complete

partition will be written to disk in case of insufficient memory. Second, records can come

in many different sizes. This variation in record sizes adds to the complexity of partition

insertion for two reasons. First, the space required for each record is different from other

records. Second, the insertion of variable-sized records in fixed-size frames leaves a different

amount of free space in each frame. Placing variable-sized objects in a fixed-size space is

known as an “online object placement” or “online organization” problem. It is an example of

the online bin-packing problem [11], a well-known NP-hard problem. Some object placement

strategies have been studied and optimized for free space management on disk for permanent

placement of objects [55]; however, they may not exhibit similar performance characteristics

when used for memory space management.

In the following, we present and evaluate different algorithms for partition insertion. he

algorithms considered here are:

Append(n). Append(n) performs a search on the last n frames of the target partition in

the order of the newest frame to the oldest. The incoming record will be placed in the first

frame with enough space. If no such frame is found, a new frame with enough space will be

25



appended to this partition.

First-Fit. In the First-Fit algorithm, the search starts from the last (newest) frame towards

the first (oldest) frame of the partition and stops as soon as a frame with enough space for

the record is found. In First-Fit’s worst-case scenario, all frames are searched and a new

frame is appended upon an unsuccessful search.

First-Fit(%p). This is a parameterized and more general version of the First-Fit algorithm

in which at most %p of the partition’s frames are searched for the record insertion. Similar

to the previous algorithms, the search proceeds from the newest frame towards the oldest.

It appends a new frame to the array and inserts the record if no frame with enough space

is found. In comparison to First-Fit, this algorithm provides a better balance between

extensive search and the compactness of the frames in the partition. This algorithm is

similar to Append(n) as they both start searching from the end of the frames array and stop

if the stopping criteria are met. The stopping criteria in Append(n) is n frames, while in

First-Fit(%p) it is %p of frames.

Best-Fit. Best-Fit, a well-known space management algorithm, searches through all of the

partition’s frames to find the frame with the smallest free space that can accommodate the

record. This algorithm tries to maximize frame compactness based on the current state of

the frames and the size of the record being inserted.

Next-Fit. Next-Fit starts searching from a different location for each record to avoid

checking some frames over and over again. In this algorithm, the search is guided based on

the size and insertion location of the previous record.

As a modified version of the First-Fit algorithm, Next-Fit initially starts searching from

the end of the partition’s array. However, after the first record, the search starts from the

location where the previous record was inserted. If the size of the current record is larger

than the previous record, the search continues toward the newer frames. However, if the

current frame is smaller than the previous record, the older frames are searched first. In the

latter case, if no frame with enough space is found, then the search continues toward the
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newer frames. A new frame is appended to the end of the partition’s frame array if no frame

with enough space is found.

Random(%p) In this algorithm, for each record, up to %p of the partition’s frames are

randomly searched. The search stops as soon as a frame with enough space is found. This

algorithm avoids searching the same frames extensively and unnecessarily by its random

selection of frames. We tried different random number generators such as Java’s default

random number generator, Mersenne Twister Fast [6], C++ 11 MinSTD, and XorShift 64

bits and compared their performance to choose the least expensive random number generator

for our case. Our experiments showed that these random number generators performed very

similar to each other. As such, we decided to use Java’s default random number generator.

3.5.1 Choosing the best parameter values

As we discussed, some of the partition insertion algorithms such as Random(%p), Append(n),

and First-Fit(%p) have a parameter that needs to be properly set. We compared the per-

formance of these algorithms under different value settings for their parameters using the 1

Large Record Coexist setting whose specification can be found in Table 3.1.

Figures 3.4-a, 3.4-b, and 3.4-c show, on average, how much of the frames are filled with

records when 90%, 50%, and 10% of the records are large. As we can see, all of the different

parameters lead to a similar frame fullness in the 90% and 50% cases as the majority of the

records are large, only one large record can fit in a frame, and there are few small records to

fill the holes in frames. However, when 10% of the records are large, these parameters’ fullness

results slightly differ from one another. Append(8) appears to have a frame fullness close

to the frame fullness of Append(9) and Append(10); however, as Figures 3.4-d, 3.4-e, and

3.4-f show, Append(8) checks fewer frames than Append(9) and Append(10). Figure 3.5 and

Figure 3.6 show the average frame fullness and the number of searched frames for different
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Figure 3.4: Choosing The Best Parameter Value for Append(K) (1 Large Record Coexist).
(a) - Average frame fullness when 90% of records are large. (b) - Average frame fullness
when 50% of records are large. (c) -Average frame fullness when 10% of records are large.
(d) - Total number of searched frames when 90% of records are large. (e) - Total number of
searched frames when 50% of records are large. (f) - Total number of searched frames when
10% of records are large.

parameter values for First-Fit(P) and Random(P). In this experiment, enough memory is

available to keep all of the joins in memory. As Figure 3.5-a and Figure 3.6-a show, all

parameters of First-Fit(P) and Random(P) have a similar average frame fullness; however,

they differ in the number of frames that they search. Hence, based on these experiments,

Random(%10), Append(8), and First-Fit(%10) were found to achieve the highest degree of

frame fullness with the least number of frames being checked. We will therefore study just

these settings as we move forward with these policies.
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Figure 3.5: Choosing The Best Parameter Value for First-Fit(P) (1 Large Record Coexist).
(a) - Average frame fullness by different parameters of First-Fit(P). (b) - Number of searched
frames by different parameters of First-Fit(P).
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Figure 3.6: Choosing The Best Parameter Value for Random(P) (1 Large Record Coexist).
(a) - Average frame fullness by different parameters of Random(P). (b) - Number of searched
frames by different parameters of Random(P).

29



3.5.2 Dataset and Experiment Design

We use an updated and modified version of the Wisconsin Benchmark [23] data to evaluate

the partition insertion algorithms. Its attributes and datasets’ high tunability and selectivity

make the Wisconsin Benchmark’s dataset a good synthetic benchmark dataset for evaluating

and benchmarking join queries.

We use variable-length records, one of the modifications added to the Wisconsin Benchmark

Data Generator in [42], to introduce two groups of small-sized and large-sized records with

a specific ratio between these two groups. We use what we call the 1-Large Record Coexist,

3-Large Record Coexist, and All Small Records datasets in this study, each of which is 1

GB in size. Each memory frame is 32KB in size. The names of 1-Large Record Coexist and

3-Large Record Coexist come from the number of large records that can fit in one frame.

Variable-length records are used for small and large records to represent a more realistic

scenario. We consider two specific ranges for large records (1-Large and 3-Large record

coexist) to study the impact of semi-large and extra-large record sizes fitting in one frame

to cover the two ends of the spectrum of large record sizes. Table 3.1 contains the details of

the datasets used.

Table 3.1: Dataset Specifications

Dataset Small Records Large Records

1-Large Record Coexist 700 B - 1500 B 18 KB - 20 KB
3-Large Records Coexist 700 B - 1500 B 8 KB - 10 KB
All Small Records 700 B - 1500 B None

Each experiment is conducted using an AsterixDB cluster consisting of a Cluster Controller

and a Node Controller with one data partition executing on two different nodes of the same

AWS type. Each query runs in isolation and utilizes one CPU core. All instances are chosen

from US-West-2 availability zone of AWS and have 4 vCPUs and 30.5GB of RAM. The

d2.xlarge instance type was used for the HDD experiments, while i3.xlarge and r4.xlarge
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were used for the SSD and EBS experiments, respectively.

3.5.3 Partition Insertion Algorithms’ Evaluation

This section evaluates the performance of the described partition insertion algorithms for

fixed- and variable-sized records.

Small Records Experiment

In our first experiment, both the build and probe datasets are 1GB in size and follow the All

Small Records dataset configuration. In this experiment, we are interested in comparing the

partition insertion algorithms with respect to the average frame fullness (compactness) and

the query execution time to evaluate the efficiency of each algorithm in reaching this degree

of frame fullness. The query execution time is the time that it took for a query to execute,

excluding the time for query compilation and result returning. Since queries were running in

an isolated setting with no other queries running concurrently, the execution time includes

zero wait time. In these experiments, we consider different ratios of record sizes over the

memory frame size. Since memory frames and records can come in many different sizes, the

ratio of their sizes is the important factor here. Similarly, we consider various ratios between

the data and memory sizes to study the performance trends of the various algorithms.

Figure 3.7(a) shows the average frame fullness as a function of the ratio of the build dataset

size to the amount of available memory. The Y-axis starts from 80% for a better visualization.

As this figure shows, all algorithms deliver a high and similar average frame fullness when

the records are small. This is because small records can easily fit in most frames and increase

the average frame fullness by minimizing the leftover space in each frame.

Next, we analyze the performance of the different partition insertion algorithms in reaching
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Figure 3.7: Partition Insertion - Small Record Sizes (a) Average frame fullness (b) Execution
time on different storage types

their reported frame compactness. Figure 3.7(b) exhibits the execution time of the partition

insertion algorithms for three storage types of HDD, SSD, and AWS EBS. We use different

storage types to study the impact of the difference in frame compactness of different parti-

tion insertion algorithms (which can lead to differences in the amount of disk I/O) on the

execution time for each storage type.

The similarity in the size of the records makes the frames, especially the older ones, similarly

full. Additionally, suppose a previous record could not find a frame by checking all of the

partition’s frames due to similarity in record sizes. In that case, it is likely that the next

record will not fit in those frames either.

As Figure 3.7(b) shows, the CPU cost due to extensive searching in Best-Fit significantly
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degrades its performance in all three storage types. Random(10%) is the second-worst algo-

rithm with a slightly higher execution time than the others. Although Random(10%) benefits

from the additional stopping criteria, the high time-overhead of the Random function and the

high frequency of calling it degrades its performance. First-Fit is the third-worst algorithm

in our experiments. First-Fit has a higher execution time than the algorithms with a guided

search method (Next-Fit) or additional stopping criteria. This is due to the extensive search

of First-Fit. However, the performance of First-Fit is much better than Best-Fit, another

extensive search algorithm, as First-Fit stops if it finds a suitable frame. This “first find”

strategy has a high impact, especially in this experiment, as all of the records are small and

have a good chance to fit in even a relatively full frame.

Next-Fit and First-Fit(10%) perform similarly here with relatively low execution times.

Next-Fit’s different starting point and its guided search improve its performance. The early

termination due to stopping criteria in First-Fit(10%) makes it one of the best-performing

algorithms here. Append(8), however, seems to be the best algorithm in this experiment.

As Figures 3.7(a) and 3.7(b) show, Append(8) reaches a similar average frame fullness as

the other alternatives with the least amount of search effort. (For each record, at most 8

frames are checked.)

Variable Size Records

This section evaluates the performance of different partition insertion algorithms with input

datasets containing records of various sizes.

3-Large Coexist. We use the 3-Large Record Coexist dataset for this experiment. The

large records versus small records ratio varies between 10%, 50%, and 90%. As Figure 3.8-

(a) shows, increasing the percentage of large records lowers the average frame fullness in all

algorithms and minimizes their differences in frame compactness. Inserting large records in
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a frame may leave a large leftover space that can only be filled with small records. If the

small records are limited in number (higher percentage of large records), these leftover spaces

remain unfilled and decrease the average fullness. Additionally, the difference between the

average frame fullness of the various algorithms diminishes if most of the records are large

since only a few frames may have enough space for large records.

As Figure 3.8-(b) shows, Best-Fit again has the highest execution time since for each record

insertion it searches all of the in-memory frames of the partition. Furthermore, a higher

number of records leads to more searching and thus to a higher execution time for Best-Fit.

This rationale is true for the Random algorithm, too, since the random function will be

called for 10% of the frames per record insertion. In all of these experiments, Append(8)

has the lowest execution time; doing the least amount of work, it still achieves a similar

frame fullness to the more intelligent and search-intensive algorithms. While the algorithms

other than Append(8) and Best-Fit perform similarly, the algorithms with a stopping criteria

perform slightly better. Storage-wise, the overall execution time is higher for HDD than for

SSD and AWS EBS due to its longer time for I/O operations. The impact of the difference

in the amount of I/O on the execution times of the different algorithms is greater in HDD

due to the efficiency of SSD in handling I/O and the high network latency in AWS EBS.

1-Large Coexist. In the second variation of our experiments for partition insertion with

variable-sized records, we use the 1-Large Record Coexist dataset. As above, both inputs

are 1GB. Although all of the datasets are 1GB in this and the previous experiment, the

datasets for this experiment have a lower cardinality. This is because the large records in

this experiment are approximately 3 times larger than the large records in the previous

experiment. We can observe from Figure 3.9(a) that the frame fullness is higher in cases

where most of the records are small, especially in the 10% Large case. This is due to several

factors:
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• The lower percentage of large records means that most of the 1 GB relation is made

up of smaller records. Smaller records have a better chance of fitting in partially full

frames and thus increasing the frames’ compactness.

• The higher number of remaining records, especially when they are small, increases the

possibility of making the allocated frames more full.

We see frame fullness drop from 90% to 62% and 60% as we increase the ratio of large records

from 10% to 50% and 90%, respectively. This is because each large record requires its own

frame, and the small records in the minority can fill the leftover space.

The overall frame fullness in this experiment is lower than in the previous experiment since

in this case only one large record can fit in a frame, while in the previous experiment, 3 large

records could coexist in one frame and further reduce the leftover space.

As Figure 3.9-(b) shows, similar to the previous experiment, the Best-Fit algorithm has the

highest response time and the Append(8) algorithm has the lowest response time in the

majority of the cases. However, the difference between Best-Fit and the other algorithms is

not as high as in the 3 Large Record Coexist experiment due to the lower cardinality of the

inputs reducing the total search costs.

Append(8) had the lowest execution time for both small and variable sized records, so we

will use Append(8) as the partition insertion algorithm for the rest of this study.

3.6 Spilled Partitions’ Growth Policies

In the case of insufficient memory, some of the partitions must be written to disk to open

up space for additional incoming records. We will consider several victim selection policies –
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policies which select a memory-resident partition to spill – under two variations of how the

memory allocation to spilled partitions is managed:

1. No Grow-No Steal (NG-NS): There are two main rules for this policy:

• No Grow: A spilled partition can only have one frame to be used as its output

buffer once it has spilled.

• No Steal: Only unspilled partitions are selected as victims in case of insufficient

memory. A spilled partition writes its output buffer to disk only if the next record

hashed to that partition requires more space.

2. Grow-Steal (G-S): This growth policy consists of two main rules as well:

• Grow: Spilled partitions may grow as large as the available memory lets them.

• Steal: Spilled partitions have a higher priority to be chosen as a victim partition

in cases of insufficient memory.

While more growth policies could be considered for future work (e.g., spill only the full

frames of a victim partition), we chose to study these two growth policies as the two ends

of the spectrum.

3.6.1 Analytical I/O Study for NG-NS and G-S

In this section, we look at the I/O differences between the two growth policies for spilled

partitions from an analytical point of view. It is important to realize that both policies

perform almost the same amount of I/O; however, they differ from one another in their use

of random versus sequential I/O. All of the notations used in this section can be found in

Table 3.2.
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Table 3.2: Notation used in cost formulas

Notation Definition Example

R Size of build relation in frames 100
M Size of memory in frames 50
P Number of partitions 20
x Number of spilled partitions 5

I/O Analysis for NG-NS. Let us assume that records are similar in size and that there is

no skew in join attribute values. Using this assumption, all partitions are similar in size, in

the number of frames, and in the number of records. The following equation calculates the

total number of partitions remaining in memory at the end of the build phase:

P − x = MAX

(
P,

⌊
M
R
P

⌋)
(3.3)

In NG-NS, a memory-resident partition is selected for spilling to disk only when 1. the

partitions spilled so far each have a maximum of one frame and, 2. the in-memory partitions

(P −x partitions) have used the rest of the frames (M −x) and, 3. the next incoming record

is hashed into a memory-resident partition.

For our calculation, we can choose any of the partitions to spill as they are all in a similar

situation due to the uniformity of data. By spilling the selected partition, M−x
P−x

of this

partition’s data is written to disk sequentially, while the rest of its data (R
P
− M−x

P−x
) will later

be written to disk randomly (i.e., one frame at a time).

The following equation calculates the amount of temporary results (build phase only) written

to disk in a random and sequential fashion under the NG-NS growth policy:

x∑
i=1

(
R

P
− M − i+ 1

P − i+ 1
Random I/O

)
+

(
M − i+ 1

P − i+ 1
Seq. I/O

)
(3.4)

I/O Analysis for G-S. Similar to NG-NS, the next memory-resident partition will spill to
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disk only if 1. the incoming record is hashed into a memory-resident partition, and 2. each

spilled partition has at most 1 frame, and 3. the rest of the memory frames have already

been assigned to memory-resident partitions.

Like NG-NS, each spilling partition writes M−x
P−x

of its data frames to disk sequentially when it

spills for the first time; however, in contrast to NG-NS, G-S writes the rest of the partition’s

frames in chunks consisting of more than one frame.

The second part of Equation 3.4 holds for G-S as well, as the next victim partition has M−x
P−x

frames in memory. The following equation calculates the sizes of the data chunks written to

disk by spilled partitions between the xth and (x+1)st time that a memory-resident partition

was selected as a victim.

1

P
∗ M − x+ 1

P − x+ 1
+

(
1

P

)2

∗ M − x+ 1

P − x+ 1
+

(
1

P

)3

∗ M − x+ 1

P − x+ 1
+ ...+ 1 (3.5)

which reduces to:

lim
P→∞

1

1− 1
P

(
M − x+ 1

P − x+ 1

)
(3.6)

Therefore the cost formula in number of I/Os for G-S is:

x∑
i=1

(
lim

P→∞

1

1− 1
P

(
M − i+ 1

P − i+ 1

)
Seq. I/O

)
+

(
M − i+ 1

P − i+ 1
Seq. I/O

)
(3.7)

The first term in Equation 3.7 shows that in G-S, each spilled partition writes the rest of

its data to disk sequentially. This I/O behavior is different from NG-NS (Equation 3.4), in

which the rest of a partition’s data is written to disk frame by frame once it first spills.
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3.6.2 Experimental Analysis of Growth Policies

Based on the cost functions we developed in the previous subsection, we showed that the

NG-NS policy leads to more random writes due to using one output buffer allocation per

spilled partition. On the other hand, G-S allows the spilled partitions to acquire more

than one frame, so its I/O pattern becomes more sequential. Turning random writes into

sequential ones can improve performance, especially in systems utilizing HDD. This section

compares these two algorithms empirically to verify our expectations from the cost analysis.

We used a single join query for which the build and probe datasets contain identical data

generated based on the All Small Record dataset configuration. In this experiment, the

available memory for the join is a fixed value of 1024MB, while the size of the build and

probe inputs varies from 1.2GB, 2GB, 10GB, 20GB, to 100GB. A hard disk is used as the

storage device in this experiment. This experiment compares the two growth policies for
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Figure 3.10: Spilled Partition Growth Policies. (a,b,c,d) - Statistics of GS and NG-NS
policies with filesystem cache in use. (e,f,g,h) - Statistics of GS and NG-NS policies with
filesystem cache disabled.
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spilled partitions under two variations of writing to disk: direct or through the filesystem

cache. Some database management systems disable the filesystem cache and manage the

buffer cache memory themselves. We use the IO DIRECT library [5] for directly writing

data to disk and bypassing the filesystem cache in Linux systems. Figures 3.10-d and 3.10-h

show that G-S and NG-NS do the same amount of writing regardless of using or bypassing

the filesystem cache. However, as Figures 3.10-c and 3.10-g show, G-S does up to 120x more

sequential writes than NG-NS, while NG-NS does up to 120x more random writes than G-S

(Figures 3.10-e and 3.10-f). This difference in the I/O patterns of the G-S and NG-NS while

writing the same amount of data to disk aligns with our results from the previous subsection.

Increasing the input sizes causes more spilling to disk, making the difference between these

two policies even more significant.

Next, we study the performance of these growth policies with and without filesystem cache

being present. Figure 3.10-e shows the execution time of G-S and NG-NS policies when data

is written directly to disk (disabled filesystem cache). In this case, NG-NS takes a longer

time than G-S to finish due to performing more random writes. The impact of random writes

of NG-NS on its performance becomes more significant as the size of the data relative to

memory increases; this is because more data is written randomly and the storage device is an

HDD. However, Figure 3.10-a shows that using a filesystem cache minimizes the difference

in execution times of these two policies. This is because the filesystem cache collects write

requests and orders them based on their target file location on disk (Elevator Algorithm)

before sending them to disk; as a result, many of the random writes turn into sequential

ones in NG-NS.

Based on our results, choosing the preferred growth policy depends on whether the DBMS

performs its own caching or uses the filesystem cache. In AsterixDB, we decided to use

NG-NS for two reasons: 1. The filesystem cache is used. 2. NG-NS does not fully utilize its

given memory. In future work, we intend to use this leftover memory for other operators of
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the same query or other queries under a more global memory management policy.

3.7 Victim Selection Policies

One or more memory-resident partitions must be written to disk to regain enough space

for the incoming records if the available memory is insufficient. In-memory partitions may

have different sizes if records have variable sizes or if their distribution between partitions

is unbalanced due to skew in join attribute values. In the case of variable-sized partitions,

we must decide which partition(s) should spill to disk, considering that we do not know

how much data is left to be processed. The partition selected for spilling is called a victim

partition, and the policy based on which victim partitions are selected is called the victim

selection policy.

In the original HHJ algorithm [68, 27], one partition is selected upfront (before query exe-

cution) as the in-memory partition, while the rest of the partitions are disk partitions. To

ensure that the chosen partition can indeed remain in memory, we must know the sizes of

the inputs and the distribution of join attribute values.

As mentioned earlier, the authors of [59] and [33] instead use dynamic destaging to choose

victim partitions at runtime. They always select the largest memory-resident partition as

the victim partition and limit the spilled partitions to acquiring a maximum of one frame,

following the NG-NS growth policy. Neither of these studies considers other victim selection

policies or spilled-partition growth policies. Additionally, they do not provide any experi-

ments to show the superiority of their approach.

In the following, we consider 13 possible policies for selecting the next victim partition among

non-spilled partitions. These victim selection policies are designed for the NG-NS growth

policy.
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The design space for these policies is based on data size and frame fragmentation considera-

tions. Largest Size, Largest Records, Median Size, Median Records, Smallest Size, Smallest

Records, Record Size Ratio, Half Empty, and Low High are designed with respect to the

data size. The Largest Records and Largest Size are expected to perform well when a large

portion of the build dataset is left to be processed. In contrast, the Smallest Records and

Smallest Size are expected to perform well when a small portion of the build input remains

to be processed. Record Size Ratio considers the number of records in choosing a large

partition as victim and is expected to perform well when a large portion of the build in-

put remains to be processed. Half Empty, Low High, Median Size, Random, and Median

Records are designed to take a middle ground and are expected to have an average but stable

performance for various cases. Least Fragmentation considers the frames’ fragmentation to

choose a victim and is expected to have an average amount of spilling since it may choose

a partition of any size to spill. Smallest Size Self Victim and Largest Size Self Victim are

policies which take both the frame fragmentation and data size into consideration and are

expected to have an average amount of spilling since the victim partition can be of any size

when it is the inserting partition itself.

The overall input dataset sizes are unknown to the DBMS during these experiments. The

following list describes the considered victim selection policies:

Largest Size: Choose the partition with the largest size in memory as a victim to maximize

sequential writes and to defer the next spill(s) as long as possible.

Largest Records: Choose the partition with the maximum number of records to spill.

Largest Size Self Victim: Choose the partition into which the record is hashed if it has

at least one frame. Otherwise, choose the largest partition to spill.

Median Size: Choose the partition with the median size among all of the memory-resident

partitions as the victim partition.

Median Records: Choose the partition with the median number of records to spill.

Smallest Size: Choose the smallest partition with at least one memory frame as the victim
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partition to avoid overspilling.

Smallest Records: Choose the memory-resident partition with the minimum number of

records (≥ 1) for spilling.

Smallest Size Self Victim: Choose the partition into which the record is hashed to spill

if it has any frames. Otherwise, the smallest-size partition will be selected as the victim.

Random: Choose randomly any of the memory-resident partitions as the victim partition.

Half Empty: This victim selection policy starts optimistically by guessing that the remain-

der of the build input is small and spills the smallest partition. However, it acts pessimisti-

cally and spills the largest partition if more than half of the partitions have spilled.

Least Fragmentation: Choose those partitions that have the least amount of fragmenta-

tion in their frames, thus trying to reduce I/O.

Low High: Alternate between spilling the smallest and the largest partition.

Record Size Ratio: Choose a partition that holds the smallest number of records among

partitions whose size is equal to or exceeds 80% of the largest partition size (low ratio of the

number of records to the partition size); this expedites record processing by storing more

records in the memory.

3.7.1 Victim Selection Policy Experiments

This section studies the impacts of join attribute value skew and record size variation on the

victim selection policies.

Impact of Join skew

In our first experiment, we study the impact of join attribute value skew on the 13 different

victim selection algorithms. In Figure 3.11-a, both the build and probe datasets use the All

Small Record configuration, and the join attribute values are unique integers (Non Skewed
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join attribute value case).

In Figure 3.11-b, the join attribute values of the build dataset are integers drawn from a

Normal Distribution to make them skewed, while the probe dataset uses unique integers as its

join attribute (Skewed join attribute value case). Both relations are 1GB in size and contain
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Figure 3.11: Impact of Join Attribute Value Skew in Victim Selection Policies. (a) - No
skew. (b) - Skewed.

985, 000 records. The authors of [65, 15] used a Normal Distribution in which 99% of the

join attribute values are coming from 5% of the possible values, justifying this as similar to

the skew found in real-world data. To achieve this data skew, we use a Normal Distribution

on an integer attribute with the mean of 492500 (equal to half of the cardinality), a standard

deviation of 8208, and a range of possible values varying from 1 to the dataset cardinality.

The metric used in Figure 3.11 is the ratio of the amount of spilled data over the ideal amount

of spilling. The ideal amount of spilling is the minimum amount of data that must be spilled

to disk during the build phase. We determine this ideal amount by using a simple simulation

program. This simulator minimizes the data spilling by maximizing the memory used in each

round of HHJ by the in-memory partition. Eq. 3.2 with accurate a priori information and

with a fudge factor of 1.4 is used in this simulator to ensure that the amount of spilling is
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minimal.

As Figure 3.11-a shows, all of the algorithms have a similar performance if records are

similar in size and the join attribute values are uniformly distributed. Figure 3.11-b shows

that skew in the join attribute values can cause different spilling behavior for some victim

selection policies. In Figure 3.11-b, the Largest-Size and Largest-Record policies overspill

when data is slightly larger than the available memory. However, as the data size increases,

spilling the larger partitions releases more frames, saving other partitions from spilling.

The Smallest-Size and Smallest-Record policies, which spill less data initially, will spill more

when the ratio of data to memory is higher. All other policies show a spilling behavior that

lies between these two categories of policies. However, the overall difference between most

of the policies is almost insignificant.

Impact of Variable-Sized Records

Next, we study the impact of variable-sized records on the performance of the victim selection

policies. We used a set of 1GB relations based on the 1-Large Record Coexist and 3-Large

Record Coexist dataset configurations.

As Figures 3.12 and 3.13 show, most of the policies perform similarly as the ratio of data

over memory is increased in both experiments. The Largest-Size and Largest-Record policies

spill less data and fewer partitions to disk than the other victim selection policies in most

of the data points. This is because the number of frames that larger partitions free can save

more partitions from spilling.

In both Figures 3.12 and 3.13, increasing the population of large records leads to a larger

differences between victim selection policies. The variations in the size of the records and

the high impact of large records on the partitions’ sizes, compared to fixed sized records in
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Figure 3.12: Impact of Variable Record Size (1-Large Record Coexist) in Victim Selection
Policies. (a,b,c) - Spilled Data Ratio when 10%, 50%, and 90% of the records are large,
respectively.
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Figure 3.11-a, make it possible to see differences between these victim selection policies. In

both 1-Large Record Coexist and 3-Large Record Coexist cases (Figures 3.12 and 3.13), the

Largest-Size, Largest-Records, and in some cases Largest-Size-Smallest-Record policies spill

the least amount of data and the fewest number of partitions in most of the data points by

spilling the largest partitions first. This difference between policies in the 3-Large Record
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Coexist experiment is less obvious since the large records are 1/3 of the size of the large

records in 1-Large Record Coexist dataset. In Figure 3.12-a most policies perform similarly

as there are fewer large records thus, less opportunity for these policies to perform differently.

Impact of Join Skew & Variable-Sized Records

In this experiment, we study the impact of the combination of join attribute value skew and

variable-sized records on the proposed victim selection policies. The Normal distribution

discussed in Section 3.7.1 is used for making the build dataset skewed. The record sizes

are chosen from the same distribution used for 1-Large Record Coexist (Figure 3.14) and

3-Large Record Coexist (Figure 3.15) cases. The probe inputs have the same cardinality and

record size distribution as the build input, while their join attributes are unique integers.
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Figure 3.14: Impact of Skew & Variable Record Sizes (1-Large Record Coexist) in Victim
Selection Policies.

Similar to the previous experiment, Largest-Size and Largest-Record are two well-performing

policies when larger records have a lower population. The Median Size and Median Records

policies perform well by taking a middle route if data is skewed and most of the records

are large. The skew in data makes some partitions get more records; partitions with more
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Figure 3.15: Impact of Skew & Variable Record Sizes (3-Large Records Coexist) in Victim
Selection Policies.

records will have larger sizes if records are mostly large-sized, and thus the Largest-Size and

Largest-Record algorithms can overspill. In the case of very limited memory for the 1-Large

Record Coexist case (the first data point in Figure 3.14-a, 3.14-b, and 3.14-c), Smallest-

Records and Smallest-Size are two of the best performing policies. Since most of the data is

located in a few partitions, there are many small partitions with only a few frames. As such,

Smallest-Records and Smallest-Size can avoid overspilling by spilling these small partitions

when data is just slightly larger than memory.

In the 3-Large Records Coexist case, the victim selection policies’ performance is similar

to the 1-Large Record Coexist case with the difference that algorithms such as Median

Records also perform well in this case due to the smaller sizes of large records. Largest-Size

and Largest-Records tend to write larger numbers of frames sequentially, while others such

as Smallest-Size and Smallest-Records write a smaller number of frames in a more random

manner. As our experiments for G-S and NG-NS showed, this difference in their I/O patterns

may not impact performance as much as otherwise expected if filesystem caching is enabled.
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3.7.2 Results for Victim Selection Policy

Based on our experiments in the previous subsection, the Largest-Size and Largest-Record

policies result in less I/O in most cases than the other alternative policies. Our results confirm

the conjecture of [59, 33] that the Largest-Size policy (as well as the Largest-Record policy,

based on our results) is a good selection policy for the following two reasons: 1. Larger par-

titions release many frames; thus, they save other partitions from spilling to disk. 2. Writing

larger partitions leads to more sequential and less random writes.

However, our results also show that the difference in the amount of spilled data makes only

a slight difference in performance. The gained benefits for having a more sequential pattern

by spilling larger partitions are diminished if filesystem caching is enabled.

3.8 Single Core vs. Multi-Core

So far all of our experiments have used one thread for executing join queries in one data

partition. In this section, we study the impact of the number of partitions and threads (and

hence the cores) on the performance of Dynamic HHJ for various storage types.

For these experiments, both the build and probe datasets contain 1GB of data following

the All Small Records dataset design. We used one Node Controller with 1,2, and 4 data

partitions to utilize 1,2, and 4 CPU cores respectively. All joins use Append(8) as the

partition insertion algorithm and NG-NS and Largest Size as their Growth and Victim

Selection policies, respectively. Figure 3.16 shows the execution time of a single join executed

on HDD, SSD, and AWS EBS. As this figure shows, increasing the number of cores (threads)

causes disk contention and degrades the performance for HDD. On the other hand, SSD and

AWS EBS benefit from more worker threads due to the efficiency of SSD storage device in

handling random I/Os. The overall execution time of AWS EBS is higher than that of SSD
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Figure 3.16: Impact of number of cores on the performance of Dynamic Hybrid Hash Join
(a)- HDD, (b) - SSD, (c) - EBS

due to the network latency associated with over-the-network storage.

3.9 Conclusion and Future Directions

Our experimental study has investigated different policies to design a robust Dynamic HHJ

operator when no accurate a priori information about the input datasets is available.

Although previous studies have suggested an upper bound for the number of partitions,

no lower bound for this parameter has been proposed to the best of our knowledge. Not

having a reasonable lower bound can lead to having too few partitions, causing detrimental

overspilling. Based on a simulation study, we recommend using 20 as a minimum number of

partitions so that each spilled partition writes only 5% or less of the build input to disk.

Furthermore, we have explored different partition insertion algorithms for incoming records

to find a frame with enough space among a partition’s in-memory frames. Append(8) showed

the best performance among the partition insertion algorithms.
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Next, we considered two potential post-spilling growth policies for spilled partitions, Grow-

Steal and No Grow-No Steal. Our cost model showed that Grow-Steal should perform better

than No Grow-No Steal due to doing more sequential I/O. However, our experiments showed

that a modest file system cache can mitigate this difference by turning most random I/Os

into sequential ones.

Additionally, we designed and evaluated 13 different victim selection policies. Our results

confirmed the conjecture in previous work that the Largest Size policy is one of the best

policies in most cases. However, this difference was not large enough to significantly impact

overall system performance.

As a future direction, we would like to compare the performance of Dynamic HHJ with the

radix join algorithm suggested in [13].
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Chapter 4

Memory Management for Multi-Join

Queries

After studying the performance of a single Dynamic Hybrid Hash Join in Chapter 3, we now

investigate various memory management and scheduling techniques for executing multi-join

queries under different memory availability for efficient execution. Specifically, we study

the impact of different memory distributions for join operators, intra-query parallelism, and

execution parallelism on different classes of multi-join query plans under the different assump-

tions of memory availability and storage devices such as HDD, SSD, EBS, and EBS-Hybrid

(an architecture made of EBS and SSD storage types). We consider the Left Deep Tree,

Bushy Tree, and variations of the Right Deep Tree, including Parallel Right Deep Tree, Se-

quential Right Deep Tree, Static Right Deep Tree, and Sequential Static Right Deep Tree in

this study. We believe this provides the foundation for understanding basic “join physics”.
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4.1 Introduction

Processing and executing multi-join queries, one of the most important and common queries

in a database management system, can be done in many ways, each with different resource

requirements. Although the processing and performance evaluation of multi-join queries has

been the topic of research for the past decades, the problem’s complexity and multidimen-

sional nature make it a poorly understood problem for the database community.

For a scientific approach, it is essential to reproduce the results of prior studies before

proceeding with more complex cases. Accordingly, we decided first to re-evaluate the results

of a key study done by Schneider & Dewitt [66] in 1990 in which they studied the performance

of multi-join queries in shared-nothing clusters. They used the Hybrid Hash Join operator

as their join operator and used a simulator made for the Gamma database system on HDD.

In this chapter, we study the performance of various query plan shapes for a multi-join query,

as well as the impact of different memory allocation and intra-query parallelism techniques

on their performance. In addition to Left Deep Tree (LDT), Right Deep Tree (RDT), and

Static Right Deep Tree (Static-RDT), we considered Sequential Right Deep Tree (Sequential-

RDT), Sequential Static Right Deep Tree (Sequential-Static-RDT), and an example of Bushy

Tree in this study. Several decades of advancement in hardware requires the re-examination

and verification of previous work results, which were largely based on simulators. Thus, we

re-evaluated the results of [66] using Apache AsterixDB utilizing HDD, SSD, AWS EBS,

and EBS-Hybrid. We believe this provides an important foundation for understanding basic

“join physics”.
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4.2 Introduction to Activity Clusters and Stages

Each query tree consists of a set of operators and data flow connectors. Thus, a query can be

represented by an Activity Dependency Graph where operators are the graph nodes and data

flow edges are graph edges [17]. Figure 4.1 shows two activity cluster graphs. Each operator

constitutes one or more phases or activities. As mentioned earlier in Chapter 3, HHJ and

DHHJ are two-phase join operators with a blocking dependency between their build and

probe activities. This blocking dependency provides an ordering between the execution of

a join’s build and probe activities by preventing the probe activity from starting before the

build activity has been finished.

Each group of activities is connected using data flow edges with no blocking dependency

constructs a pipeline or an activity cluster. Thus, activities of an activity cluster can be

co-scheduled together, and data can flow between them page by page through the data flow

connectors. In Figure 4.1 each dashed area represents an activity cluster, arrows represent

the blocking dependency between two activities, and solid black lines represent data flow

connectors. As this figure shows, each operator with a blocking dependency between its

operators introduces a new activity cluster since its activities cannot be co-scheduled.

As Figure 4.1 indicates, the blocking dependencies between operators’ activities may lead

to a partial or total ordering for the execution of activity clusters of a query. Figure 4.1-

a represents an example of a query tree with total ordering in execution, as each activity

cluster apart from activity cluster A is blocked by another activity cluster. Activity cluster

X is blocked by activity cluster Y if at least one of X ’s activities is blocked by an activity

from Y. In Figure 4.1-a, activity cluster A can start its execution immediately since it is

not dependent on any other activity clusters. Activity cluster B may start its execution as

soon as the execution of activity cluster A is finished. Activity cluster C starts after activity

cluster B is finished. Similarly, activity cluster D can start its execution as soon as activity
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cluster C is finished.
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Figure 4.1: Activity Graph Dependency (a) Total Ordering (b) Partial Ordering

Figure 4.1-b shows an example of a partial ordering in executing a Bushy query tree. In

this figure, activity clusters A and D can start their execution simultaneously since they

are not dependent on any other activity cluster. Once activity cluster A has been finished,

activity cluster B can start its execution. Activity cluster E can start its execution as soon

as activity cluster D is over. After the execution of activity cluster B, activity cluster C can

start its execution. Finally, activity cluster F can start its execution after activity clusters

of E and C are done. In this example, some execution ordering exists; however, it does not

define a total ordering for executing the activity clusters independent of one another. For

example, in Figure 4.1-b, the execution of activity clusters B and E may or may not overlap

at runtime.

A DBMS may introduce a control dependency between activities to enforce a total ordering

for a query tree with more than one independent activity cluster. Control dependencies

can be introduced to make the execution order of different activity clusters deterministic.

Having a deterministic execution order makes the task of resource usage estimation and its
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management as a function of time more straightforward. A query will be executed stage by

stage, where a stage is a set of activity clusters with no direct or indirect blocking dependency

between them; thus, they can be co-scheduled. The execution order for a query’s stages is

defined based on the blocking dependencies between their activity clusters. A stage can only

start execution after all the activity clusters in the previous stage are entirely over.

In Figure 4.1-a, each activity cluster is also a stage, as each of them is dependent on another

activity. However, in 4.1-b, activity clusters A and D make one single stage. This stage

can start its execution since it is not dependent on any other stage. By introducing control

dependencies, the next stage, which consists of activity clusters B and E, can start its

execution as soon as all the activity clusters of the previous stage are finished. The next

stage only contains the C activity cluster, and the final stage would contain the activity

cluster F.

Since only one stage from each query will be active at a time, the memory given to a query

should be divided between the operators involved in its active stage only.

4.3 Design Space

In this work, we study the performance of multi-join queries in a four-dimensional design

space. The first design dimension that we consider is the query plan shape which includes

variations of Left Deep Trees, Right Deep Trees, and Bushy Trees. As the next design

dimension, we consider various memory management techniques for distributing memory

between the join operators of a query including equal and bottom-up memory management

techniques. We consider the execution strategy as the third dimension of our design space.

We investigate various execution strategies to achieve different degrees of parallelism in

execution of the Right Deep Trees. As the last design dimension, we consider four different
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storage alternatives including HDD, SSD, AWS EBS, and AWS EBS-Hybrid and evaluate the

performance of multi-join queries executing with different values for the first three dimensions

on these storage choices.

In the next few sections we explain the details of these design dimensions and their possible

variations in depth.

4.4 Query Shapes

As discussed earlier, a multi-join query can be processed and executed in different shapes

and formats. There are three main classes of query shapes, including Left-Deep Trees, Right-

Deep Trees, and Bushy Trees. This section reviews these three query shape classes and their

general features and characteristics.

4.4.1 Left-Deep Trees

A Left-Deep Tree (LDT) has a left-oriented shape shown in Figure 4.2. Each enclosed

dashed area represents an activity cluster and stage in this figure. As this figure shows, in

LDT, the output of the probe phase from the ith join is the input to the build phase of the

(i+1)st join. Since each probe phase is blocked by its corresponding build phase, at most

two joins are active at each time during the execution of an LDT. Thus, LDT is a sequential

query plan with the available memory being shared between, at most, two consecutive joins

simultaneously. The order in which these activity clusters execute is defined based on the

intra-operator control dependencies shown in Figure 4.2.

59



build probe

build probe

build probe

build probe

R1 R2

R3

R4

R5

Figure 4.2: An Example of Left Deep Tree

4.4.2 Right-Deep Tree

Right Deep Tree (RDT) has the highest parallelism compared to other query plan types. As

Figure 4.3 shows, the output of the ith join will be input to the probe phase of the (i+1)st

join. In this type of query plan shape, the build phases of all joins can execute concurrently;
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Figure 4.3: An Example of Right Deep Tree
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as a result, the given memory will be divided and shared between all of the joins. If the

query includes n joins, then n hash tables will be created in the memory, one hash table

per join. Once all the build activities have finished processing their input data, their probe

phase starts simultaneously, and the matched records will flow frame by frame through a

pipeline from one join to another. In Figure 4.3 R2’s contents will drive the probe pipeline.

4.4.3 Bushy Tree

Bushy Trees have always attracted researchers’ attention due to their vast spectrum of shapes

and their unique properties. Bushy Trees are a hybrid version of the two strict query shapes

build probe build probe

build probe

R1 R2 R3 R4

Figure 4.4: An Example of Bushy Tree

of LDT and RDT; thus, they inherit some of the benefits and drawbacks of their parent tree

shapes. For example, some of the joins in a Bushy Tree may run in parallel while others

execute sequentially depending on how the query plan is shaped. Bushy Trees, as opposed

to strict query shapes such as LDT and RDT, may have one or more joins in which both of

the inputs are non-base datasets. Bushy Trees have their specific benefits and drawbacks as

well. For example, Bushy Trees can benefit from Independent Parallelism, as some subtrees

can execute concurrently due to no blocking dependencies. While Independent Parallelism

provides more freedom in execution for Bushy Trees compared to the stricter query plan
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shapes, it causes Bushy Tree not to have a total order in the execution of its subtrees. Thus,

scheduling and estimating the maximum resource requirement of a Bushy Trees can become

a challenge due to its independent subtrees. Figure 4.4 shows an example of a Bushy Tree.

Since the variations of Bushy Trees can be numerous, we use the techniques suggested in

[51] for generating sample Bushy Trees in our experiments.

4.5 Memory Management

Memory is one of the most influential factors in choosing the type of query plan for executing

a multi-join query. One of the main questions that a DBMS needs to answer is: considering

the available memory, what query plan should be used for a specific multi-join query, and

how should the memory should be distributed between its operators to reduce its execution

time?

In a Left Deep Tree, memory is always distributed between two adjacent joins in the query

plan. Memory distribution between the join operators of Bushy Trees needs to consider the

joins whose executions may overlap. For an accurate and proper memory distribution for

a Bushy Tree, one solution is to control and order the execution of independent activity

clusters. A more conservative but simpler approach is to divide the memory equally between

all the join operators. We chose the latter solution for its simplicity. Next, we introduce

equal and bottom-up memory distribution strategies for Right Deep Tree query shapes.

4.5.1 Equal Memory Distribution

In the Equal Memory Distribution strategy for an RDT, each join in the query will get an

equal share of memory as the other joins in the query. If some joins require less memory

than their equal share, other joins in the query can use this leftover memory in case of
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need. A DBMS with proper knowledge of the build input sizes and join selectivities can

statically assign the memory to each join operator to enable this memory sharing between

join operators. As mentioned earlier, the current version of AsterixDB does not collect and

use any information or statistics about the datasets and their attributes. However, a user can

add hints to their query to provide AsterixDB with information to be used during the query’s

execution time. For example, a user can use a skip-secondary-index hint to ask AsterixDB

not to use a given secondary index in that query. In this chapter, we use Dynamic HHJ as the

join operator, and as we saw in Chapter 3, HHJ’s performance is highly dependent on having

the accurate statistics for its inputs. Thus, we augmented AsterixDB with a new size hint to

use to estimate the build input size. AsterixDB will soon replace this size hint mechanism

with a new statistics component and cost-based optimizer currently under implementation.

4.5.2 Bottom-Up Memory Distribution

In the bottom-up Memory Distribution strategy, the DBMS distributes the join memory

starting from the operators at the bottom of the query plan and assigns each join operator its

required memory (the memory needed to avoid spilling). The authors of [23] refer to a RDT

with bottom-up memory distribution as “Static-RDT”, we will use the same terminology

here as well.

By assigning each join its required memory, the bottom-up strategy assures that no data

will spill within each join at execution time, assuming that sufficient memory is available to

hold the largest join in memory. At any time where the remaining available memory is not

enough to hold the next join operator in memory, we “break” the query plan by materializing

the output of the last fitting join and using the materialized intermediate results later as the

probe input to the next join. Figure 4.5 shows an example of a Static-RDT. In this query

plan, the first two builds at the bottom will start their execution simultaneously. The probe
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phase using R2 dataset will start its execution as soon as these first two build phases are

over. The results of this probe phase will be materialized to be used as the probe input to

the next section of the tree. The build phases of the joins with inputs R4 and R5 starts after

the probe phase from the previous section of the tree is over. After finishing the build phases

of the second section of the tree, their probing phase will start by reading the materialized

results from the previous section of the tree as input.

4.6 Execution Scheduling

In addition to the shape of the query plan and the amount of available memory, the execution

pattern and schedule of a query’s activity clusters can significantly impact the system’s and

the query’s performance. The execution pattern becomes especially important for cases

where the underlying storage system is HDD. In HDDs, having many parallel disk I/Os can
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challenge the mechanical disk arm and dramatically impact the overall system’s performance

[45, 53, 64]. This section introduces some possible execution scheduling strategies for Left

Deep, Right Deep, and Bushy Trees.

4.6.1 Execution Scheduling for LDT

In Left Deep Tree, there is a total order of execution between the phases of various joins in a

query. LDT therefore follows the following pattern to execute a multi-join query sequentially:

1)Build(j1)

2) Probe(j1), Build(j2)

3)Probe(j2), Build(j3)

4) Probe(j3), Build(j4)

.....

n− 1)Probe(jn-1), Build(jn)

n) Probe(jn)

Due to the total ordering between various join activities and their sequential pattern of

execution, there is only one scheduling strategy for LDT as shown above.

4.6.2 Execution Scheduling for RDT

In RDT, all build phases may execute concurrently as they are not blocked by other activities.

Once all the build phases are over, the records of the probe dataset probe all the build inputs

using a long pipeline. RDT has been attractive to many researchers and developers due to

its unique features, including being the highest-parallel type of query plan, not materializing

intermediate results, and allowing a more accurate estimate of the sizes of hash tables since
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all of the build inputs come from base datasets (as opposed to previous join results). As

mentioned earlier, the build phases of all joins can execute fully in parallel. However, we

can choose to define other execution schedules with different parallelism degrees since there

is no partial or total ordering between these build activities. The degree of parallelism in

the execution of query plans can significantly impact the execution time depending up on

the storage device used and its capability to handle concurrent random vs. sequential I/Os.

Next, we introduce various scheduling strategies for RDT query plans, each with a different

degree of parallelism, and evaluate them in Section 4.8.2.

Parallel Execution. In the Parallel scheduling strategy, the build phases of an RDT

query’s joins start at the same time. Once all the build phases are finished, their probe

phases execute using a long pipeline. This is the most-parallel way to execute a multi-join

query.

Semi-Sequential. In the Semi-Sequential scheduling strategy, the build activities of an

RDT query are grouped in a bottom-up fashion. Groups run sequentially, one after another,

while the build activities within a group run in parallel. Note that this impact the query’s

I/O parallelism but not its memory requirements.

We introduced a new dependency named an “inter-operator dependency” to create blocking

dependencies between build phases of different joins. Additionally, we developed a hint to

specify the size of each group. Figure 4.6 shows an example of RDT query executing in

Semi-Sequential manner. In this example, the build phases of R1 and R3 are part of the

same group, which no other group blocks. Hence, they will be the first activities to execute

in parallel. Next, the build phases of R4 and R5 can start their execution in parallel as soon

as the previous group of build phases is finished. The long pipeline of probe activities can

start its execution when both R4 and R5 have finished building their hash table.

Sequential Execution The Sequential scheduling strategy uses the inter-operator depen-
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Figure 4.6: An Example of Semi-Sequential Execution in RDT

dency to put each build activity in its own separate group. Since each group has only one

join and each group is blocked by the next join in the query, the build activities run sequen-

tially from the bottom of the query tree to the top. Figure 4.7 shows an example of RDT

executing its build phases sequentially. In this example, the build phases of the R1, R3, R4,

and R5 datasets execute sequentially. The pipeline of the probe phase starts as soon as the

last build phase is finished. We call this query plan shape a Sequential-RDT query plan.

The memory usage of Sequential-RDT is again the same as the ones for the other RDT forms

of the same query using the same join order. Sequential-RDT is considered the most disk

arm-friendly version of RDT.

Sequential execution scheduling can also be used together with Static-RDT. We call this

query plan shape the Sequential-Static-RDT query plan. In this query plan, the build phases

within each segment of the Static-RDT are themselves executed sequentially. We use the
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inter-operator dependencies to enforce the sequential execution between the build phases of

each segment.

4.6.3 Execution Scheduling for Bushy Trees

As mentioned earlier, Bushy Tree is a hybrid version of RDT and LDT; so in general, its

scheduling order can be sequential in some parts and parallel in others. In Bushy Tree, some

independent activity clusters may be co-scheduled as part of one stage, which increases the

possibility for parallel execution for this query plan. Since Bushy Trees have many different

shapes, they have no specific order of execution. Instead, blocking dependencies can be used

to guide the scheduling order of their different activity clusters.

4.6.4 Storage Devices

In this chapter, in addition to exploring the memory and scheduling options, we explore

various storage devices to study the performance of various query plans for a multi-join

query under different yet most modern storage settings. In this subsection, we introduce

these storage devices and node architectures. Figure 4.9 shows a simple design of these

storage alternatives.

HDD. The Hard Disk Drive (HDD) is one of the oldest storage device types; it uses a

mechanical disk arm to read/write data from/on the disk platters. Due to this mechanical

arm, HDD is not very efficient in handling random I/Os. In this architecture, HDD storage

is on the same system node as the CPU and memory, and all base relations and spilling data

are stored on this storage device.

SSD. The Solid State Drive (SSD) is a newer storage device compared to HDD; it is made of

non-volatile flash memory and is more efficient in managing random I/Os. The base relations
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Figure 4.9: Storage Devices

and spilling data reside on the same SSD device in this architecture.

EBS. AWS Elastic Block Storage (AWS EBS) is used with the AWS EC2 cloud service to

store persistent data over the network. The base datasets and spilling data reside on the

same storage device on the EBS node. In our experiments, we used SSD as the storage

device on the EBS node.

EBS-Hybrid. In this storage architecture, the base datasets are stored on SSD storage

on an EBS node. However, the node (EC2 instance) that contains the CPU and memory

also utilizes limited-volume local SSD storage for reading and writing the spilling data. (If

a query does not spill any data to disk, EBS-Hybrid will act similarly to the basic EBS

architecture.)
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4.7 Related Work

Resource management and multi-join query scheduling have been one of the database com-

munity’s research topics for over three decades. Schneider and Dewitt authored one of the

key studies on tradeoffs between various query shapes for processing multi-join queries in

1990 [66]. They used a simulator of the Gamma parallel database system [24] to study

the performance of Left Deep Tree (LDT) and Right Deep Tree (RDT) query plans in pro-

cessing join queries made of four to ten joins. Additionally, they proposed various memory

distribution and scheduling strategies for executing the RDT query plan, which led to new

variations of RDT. One of those RDT variations was Static-RDT, a variation in which an

RDT is divided up into one or more segments (sub-trees) in case of insufficient memory. They

proposed both static and dynamic bottom-up memory assignment strategies for Static-RDT

and compared their performance against equal-share memory assignment between all joins.

This study showed that RDT is one of the best-performing query plan shapes due to its high

parallelism if most of the build inputs remain in memory.

In another study [19], Philip Yu, et al. proposed a new variation of RDT called Segmented-

RDT. A Segmented-RDT is a bushy tree made of smaller RDT subtrees. Only one subtree

will be active at any time, and it can become the input to the build or probe phase to one of

the joins of the next subtree in the plan. They proposed a heuristic to generate the subtrees

flexibly and show the gained performance benefits through simulation studies. Through

several simulation studies, this paper showed that Segmented-RDT can outperform other

query plan shapes, including RDT.

ZigZag Tree, a right-oriented tree, was proposed in [72] as a competitor plan for Static-RDT.

The execution of a ZigZag tree possibly leads to less I/O than the execution of a Static-RDT.

Instead of dividing the query tree into segments and materializing the intermediate results

to be used as the probe input to the next subtree, a ZigZag tree makes a “left-turn”. It
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always uses an intermediate result as the build phase of the next join. Hence, it keeps the

intermediate results in memory (if it fits) and avoids the materialization of intermediate

result. The authors of [72] compare the performance of Static-RDT and ZigZag Tree in an

experimental study on DBS3, showing the superiority of ZigZag Tree due to its needing less

disk I/O.

In another study, the authors of [70] used PRISMA/DB, an in-memory database, to study

different strategies for processor assignment and execution scheduling of multi-join queries on

an 80-processor system. They considered LDT, left-oriented Bushy Trees, wide Bushy Trees,

right-oriented Bushy Trees, and RDT as their candidate query plan shapes. They found that

query plans with sequential executions are better choices for a system with limited number

of processors and query plans with parallel executions are more suitable choices for systems

with large number of processors.

4.8 Experimental Analysis

In this section, we compare the performance of the different query plan shapes under various

memory availability, query complexities, and join and scan selectivities using HDD, SSD

storage devices, AWS EBS, and AWS EBS-Hybrid.

4.8.1 Datasets and Benchmark

Similar to Chapter 3, we use the Wisconsin Benchmark’s schema and the updated JSON data

generator for this chapter as well. Since in this chapter our goal is to re-evaluate the results

of experiments from [66], we have used the provided descriptions for the chosen experiments

from their paper to make the structure of our experiments as close and comparable to theirs as

we could. We used the same cardinalities and join and scan selectivities as in [66]. However,
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we used larger records to increase the dataset sizes since several decades have passed. We

introduced this change in the dataset sizes to take into account the possible advancements

in storage devices’ capacity and efficiency since [66] was published.

For our experiments, each record is 1073B, and each memory frame is 32KB. The dataset

sizes and join and scan selectivities are varied between different experiments; thus, we have

included their details in each experiment’s description.

Each query is running in isolation in this chapter and utilizes one CPU core per NC node.

All node instances are chosen from the US-West-2 availability zone of AWS and have four

vCPUs and 30.5GB of RAM. We use the d2.xlarge instance type for the HDD experiments

and i3.xlarge and r4.xlarge for the SSD and EBS experiments, respectively. For EBS-Hybrid

experiments, we use an i3.xlarge instance and attach EBS storage of type SSD to it for

holding the base datasets.

4.8.2 Evaluating Semi-Sequential RDT Query Plans

We first evaluate and compare the performance of different Semi-Sequential RDT query plans

along with fully parallel and sequential versions of RDT. For this experiment, we used an

eight-join query and modified the amount of available memory that it was given.

Figure 4.10 shows the results of this experiment when executed on HDD, SSD, EBS, and

EBS-Hybrid using Apache AsterixDB. The x-axis shows the ratio of available memory to the

total memory needed for all eight joins to remain entirely in memory. The y-axis shows the

execution time of the query. Sequential-RDT has the lowest execution time in the HDD case

since its sequential execution favors the mechanical disk arm’s nature. Conversely, increasing

the parallelism in execution increases the execution times of query plans in HDD due to higher

contention in disk arm movement, which causes the RDT, which executes fully in parallel, to
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Figure 4.10: Evaluation of Sequential, Semi-Sequential, and Parallel Execution Variations of
RDT Query Plan

have the highest execution time. On the other hand, when using SSD, EBS, or EBS-Hybrid

architecture as the storage device, the fully parallel execution and fully sequential execution

of RDT leads to the lowest and highest execution times, respectively. The efficiency of the
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SSD storage used in these alternative architectures in managing random I/O is the reason for

the better performance of parallel query plans. As Figure 4.10 shows, the performance of the

various semi-sequential query plans is always between the fully-parallel and fully-sequential

execution strategies of RDT; thus, we will use only these two execution strategies for RDT

throughout the remainder of this chapter.

4.8.3 Experiment 1 - Unlimited Memory

In this subsection, we study the impact of query complexity on the execution time of a join

query in the case where none of the joins spills to disk. We designed this study similar to the

“Unlimited Memory” experiment of [66] and used their provided descriptions to reconstruct

the queries.

In this experiment, we used 1 GB of data containing 1, 000, 000 records for each build and

probe dataset. Similar to [66], we designed the queries in a way that the output size of

each join is also 1GB and contains 1,000,000 records. While making the size of intermediate

results fixed is unrealistic, it simplifies the comparison between different query shapes and

helps understand their main differences. For future work, we plan to consider more realistic

and complex queries using more advanced benchmarks, including TPC-H and TPC-DS.

Figure 4.11-a shows the results of the Unlimited Memory experiment from the original

Gamma simulator [66], and Figures 4.11-b, 4.11-c, and 4.11-d show the results of Aster-

ixDB for the same experiment utilizing HDD, SSD, and AWS EBS storages, respectively. In

addition to LDT and RDT plans which were considered in Gamma simulator experiment,

we consider Sequential-RDT and Bushy Trees for AsterixDB.

The Gamma simulator’s results were based on simulating HDD storage devices from the

1990s. As Figure 4.11-a shows, in the Gamma simulator, RDT generally had a lower exe-
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Figure 4.11: Experiment 1 - Unlimited Memory

cution time than LDT. In this figure, disk utilization in RDT was only slightly increasing,

while its CPU became almost fully utilized as the number of joins in the query increases.

However, we would have expected high disk utilization to be the bottleneck instead of the

CPU since concurrently reading all the build datasets can cause high disk arm contention

in HDD. From the device utilization and comparing the reported execution times of RDT

with LDT and Sequential-RDT, we believe that the Gamma simulator was not properly

simulating the disk arm movement and its impact on disk.

In AsterixDB, as Figure 4.11-b shows, increasing the query complexity leads to increasing
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RDT’s execution time when the storage device is HDD. Reading all the build datasets con-

currently from HDD leads to high disk arm movement and contention in RDT. On the other

hand, LDT and Sequential-RDT have lower execution times as their sequential execution

patterns are less disruptive to HDD’s disk arm movement. Bushy Tree is another parallel

query plan with shorter pipelines than RDT. These shorter pipelines and the independent

parallelism make some build and probe phases of different joins overlap. Bushy Trees take

the middle path between RDT and LDT. The jump in the execution time of the Bushy Tree

is due to the change of the query shape due to adding more join to the query. We are using

the algorithm suggested in [51] for generating Bushy Trees, which keeps the pipelines’ length

to less than four joins.

This experiment’s performance results become very different when SSD is the underlying

storage device instead of HDD. As Figure 4.11-c shows, RDT now has a lower execution

time than LDT and Sequential-RDT since it takes advantage of SSD’s efficiency in handling

parallel and random disk I/O due to the lack of a mechanical disk arm.

In the EBS storage device case, as Figure 4.11-d shows, RDT is slightly better than LDT

and Sequential-RDT since the storage type is SSD and it can handle parallel and random

I/O efficiently. However, the network latency between the disk and the computation node

has masked some of the difference in the execution times of different query shapes.

In the case of utilizing SSD, AWS EBS, or AWS EBS-Hybrid as the underlying storage device,

Bushy Tree takes advantage of its parallel execution pattern on arm-less storage devices. The

independent parallelism and short pipelines improve the performance of Bushy Trees due to

better CPU utilization and make it a better plan than RDT under these settings.

Stepping back, as Figure 4.11 shows, the results of the Gamma simulator for HDD are more

similar to the results of AsterixDB for SSD. This clearly shows that the Gamma simulator did

not properly model the disk arm movement; hence, its impact on the system’s performance
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was not captured. Additionally, we can conclude that RDT’s parallel I/O access pattern

makes it a better choice for SSD under this setting. At the same time, we see that the more

sequential query plans, including Sequential-RDT and LDT, perform better on HDD due to

their sequential I/O access patterns.
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Figure 4.12: Resource Cost - Unlimited Memory Experiment

Since many users use cloud service providers for storing and querying their data, it is very

interesting to compare different query plans based on how much they would cost in terms

of money based on their resource usage and duration of execution. For this purpose, we

introduce another metric to take the amount of resource usage, mainly memory, and the

duration of its usage into account. Figure 4.12 shows the resource cost (or footprint) of each

query plan in terms of its memory usage times its execution time. For all storage choices,

the low memory usage of the LDT plan makes it the cheapest query plan -by far- among

others. For the other query plans with similar memory usage, their execution times define

which query plan is more expensive in this experiment.

4.8.4 Experiment 2 - Limited Memory

For the second experiment, we study the impact of the amount of available memory on the

execution times of various query shapes and memory distribution strategies for an eight-join
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query. This experiment was designed similarly to the “Limited Memory - High Resource

Contention” Experiment of [66]. Similar to [66], we evaluate the performance of each query

plan as a function of memory availability; thus, the x-axis represents the ratio of available

memory over the required amount of memory to keep all eight joins in memory.

All input datasets contain 1 GB of data, and the size of the intermediate results remains

constant and equal to 1 GB throughout the query plan’s joins. Each record is 1073B.
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Figure 4.13: Spilling to Disk - Limited Memory Experiment

As Figure 4.13 shows, RDT and Sequential-RDT perform the highest amount of I/O for

most data points since memory is divided between all the joins in the query leading to the

spilling of the joins. Static-RDT and Sequential-Static-RDT perform a lower amount of I/O

than RDT (except for the first three data points) since only intermediate results spill to disk

at each breaking point. The high spilling amount in the first three data points of Static-

RDT and Sequential-Static-RDT is because all joins spill results to disk (see Figure 4.8) in

addition to all the required intermediate results being materialized. On the other hand, LDT

performs the lowest amount of I/O since memory is divided between two consecutive joins at

each time. Regarding parallelism, RDT and Bushy Trees are two of the most parallel query

plans. Static-RDT parallelism is highly dependent on the amount of memory since the joins

in each segment run concurrently.
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Figure 4.14: Experiment 2 - Limited Memory - Gamma Simulator

Figure 4.14 shows the results of the Gamma simulator as reported in [66], and Figures

4.15-a, 4.15-b, 4.15-c, and 4.15-d show the results of similar queries executed using Apache

AsterixDB on HDD, SSD, AWS EBS, and AWS EBS-Hybrid, respectively. As Figure 4.15-

a shows, LDT has the fastest execution time since it performs the least amount of I/O

and its sequential execution pattern is disk arm-friendly. After LDT, the Static-RDT and

Sequential-Static-RDT have the lowest execution times due to their smaller amount of I/O

and sequential execution patterns. Sequential-Static-RDT is fully sequential, and Static-

RDT becomes more parallel as more memory becomes available. RDT has the worst per-

formance on HDD when limited memory is available due to its large amount of spilling and

frequent random access to the disk. Although Sequential-RDT performs the same amount

of I/O as RDT, it has a lower execution time due to its sequential I/O execution pattern.

Bushy Tree is the second-worst-performing query plan after RDT due to its high amount

of I/O and parallel execution pattern, which causes random disk access patterns. However,

Bushy Tree benefits from the independent parallelism that causes disk and CPU operations

to overlap, leading to better CPU utilization than RDT.

As Figure 4.15-b shows, parallel query plans such as RDT and Bushy Tree perform better
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Figure 4.15: Experiment 2 - Limited Memory - AsterixDB

in SSD than HDD due to the lack of the disk arm issue in SSD and its capability to handle

random disk I/Os and large volumes of I/Os efficiently. RDT, Bushy Tree, and Static-RDT

outperform LDT when the available memory is very large. LDT is still one of the best-

performing query plans due to its small spilling to disk, especially when memory is very

scarce. Static-RDT performs well, especially with more memory, due to its semi-parallel

execution pattern and relatively little spilling to disk. The sequential versions of RDT

and Static-RDT have worse performance than their parallel versions since they do not take

advantage of the SSD’s capability to handle random and concurrent disk I/Os.
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In AWS EBS, the execution times of the various query plans are higher than with SSD in

general due to the network latency for accessing the over-the-network SSD storage as Figure

4.15-c shows. In this setting, the query plans with lower I/O and less disk access have

better performance due to less network overhead. RDT and Static-RDT performed better

than their sequential versions since the underlying storage system is SSD and can handle

random disk access efficiently. The limited authorization provided by AWS prevented us

from measuring the network performance between the processing node and its storage, but

we suspect some optimization techniques are used to improve the over-the-network disk

accesses and that they are more effective for the more parallel query plans. As for the AWS

EBS-Hybrid, the performance trend for various query plans looks similar to the ones from

AWS EBS and SSD; however, compared to SSD, these query plans take a slightly longer time

due to reading the base relations from the disk. Compared to AWS EBS, the same query

plans perform about four times faster in AWS EBS-Hybrid, especially when memory is very

limited. This is because the intermediate join results are spilled to the locally attached SSD

storage; therefore, the network overhead does not exist for reading and writing the spilling

data.

As our results for AsterixDB show, for this simplified setting in which all the base relations

and the intermediate results have the same size, LDT is one of the best-performing query plan

shapes, especially when memory is very limited. LDT outperforms the other query plans in

HDD due to its fewer data spilling and disk-friendly sequential execution pattern. For other

node settings where SSD is utilized as the storage type, LDT is still one of the best-performing

query plans mainly due to its small amount of I/O and higher CPU utilization. LDT has

a consistently high CPU usage (between 42% and 48%) due to the possible overlapping of

disk and CPU operations. Variations of parallel query plans including RDT, Static-RDT,

and Bushy Tree perform better as the memory increases since the amount of their spilling

to disk drops significantly.
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Figure 4.16: Resource Cost - Limited Memory Experiment

By comparing the results from AsterixDB with the results of the Gamma simulator, we can

see that even without an accurate simulation model for disk contention, the excessive data

spilling of RDT made it the worst-performing query plan when memory is less than 80% of

the required memory. The trend of these results matches the observed results of AsterixDB

for HDD.

Figure 4.16 shows the resource cost of each query plan in terms of its memory usage times

its execution time as a function of the available memory. Similar to Experiment 1, the low

memory usage of the LDT plan makes it the cheapest query plan among the others.
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4.8.5 Experiment 3 - Non-Restrictive Select Conditions

In this experiment, we re-evaluate the results of the “Large Building Relations - Full Declus-

tering” experiment from [66] and study the performance of various multi-join query plan

shapes with low-restrictive select conditions which reduces the size of build and probe inputs

that use base datasets as their inputs.

Similar to [66], we used a four-join query that uses the following relation cardinalities and

selectivity factors: 1,000,000 records with 50% selectivity, 1,000,000 records with 50% se-

lectivity, 1,000,000 records with 20% selectivity, 500,000 records with 10% selectivity, and

200,000 records with 25% selectivity. To have a fair comparison with the results of [66], we

also used join selectivities such that the size of the four intermediate join results were 50,000,

50,000, 100,000, and 100,000 tuples.

Additionally, we also explored a smaller amount of memory here, called the “Very Limited

Memory” case, to model “Big Data” cases where the ratio of available memory over the

input sizes is less than 0.1. Having large input datasets without highly-restrictive selection

predicates and small outputs from each join makes the settings favor LDT rather than

variations of RDT. Under these settings, variations of the RDT plan require more memory,

and thus the lack of memory makes RDT spill more data to disk than LDT. Figure 4.17

shows this experiment’s amount of spilling for various query plan shapes.

The Gamma simulator results in Figure 4.18 show that RDT had the worst performance

with very limited memory due to spilling a large amount of data to disk, while LDT was the

best-performing query plan shape due to its minimal spilling to disk. Static-RDT performed

similarly to LDT when the available memory is significant.

As Figure 4.19-a shows, RDT is the worst-performing query plan on HDD under this ex-

periment’s settings. RDT spills the most data to disk while four build activities run and
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Figure 4.17: Spilling to Disk in AsterixDB - Non-Restrictive Select Conditions Experiment

access the hard disk concurrently. The high spilling and random accesses to the disk, which

worsens the disk arm contention, make RDT perform poorly on HDD. Sequential-RDT per-

forms slightly better than RDT due to its sequential pattern of executing build phases of

different joins. Bushy Tree performs better than RDT and Sequential-RDT since it uses the

intermediate results (smaller than any of the base datasets) as the build input for one of the

joins, and its parallelism is less than RDT. LDT, Static-RDT, and Sequential-Static-RDT

are the best-performing query plans for this setting where the storage device is HDD. LDT

outperforms Sequential-Static-RDT and Static-RDT when less memory is available since its

inputs are smaller and memory is shared only between two consecutive joins. Its sequential

execution pattern also helps with not causing extra disk contention on HDD. Static-RDT

and Sequential-Static-RDT perform better than other variations of RDT since they will spill

less. Static-RDT’s parallelism is also less when memory is limited, which helps with not

causing excessive disk contention.

As Figure 4.19-b shows, RDT performs better on SSD since the random access to disk and

the general I/O cost is less in SSD. Additionally, the highly parallel nature of RDT makes it

utilize the CPU better than its sequential variant, Sequential-RDT. Note that LDT is still
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Figure 4.18: Experiment 3 - Non-Restrictive Select Conditions - Gamma Simulator

one of the best-performing query plans , though, since even with a small amount of memory,

a large portion of each build input remains in memory. This is because the join selectivities

are low, and the output of each join becomes the build input of the next join. Additionally,

LDT utilizes the CPU better than other query plans due to its execution schedule, which

results in more overlapping of disk and CPU operations. Bushy Tree and Static RDT’s

good performance are due to their semi-parallel execution. Sequential-Static-RDT performs

slightly worse than Static RDT due to executing sequentially and not exploiting the SSD’s

capability in handling random I/O efficiently.

The performance trend for various query plans in AWS EBS and AWS EBS-Hybrid is very

similar to SSD since the underlying storage device in all three cases is SSD. However, the

query plans that perform less spilling to disk, such as LDT, perform better than the others

on AWS EBS since they avoid network latency for accessing the remote spilling disk.

One interesting observation in Figure 4.19 which is more pronounced for AWS EBS than for

the other storage choices is the two jumps on the lines for the performance of Static RDT

and Sequential-Static RDT at the memory points for 250K and 750K records. The reason

that Static-RDT and Sequential-Static RDT take a longer time to finish at these memory
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Figure 4.19: Experiment 3 - Non-Restrictive Select Conditions - AsterixDB (Limited Mem-
ory)

settings is that with the given memory, the tree will break after the third join, which causes

100,000 tuples to spill to disk. However, if the breaking point was set after the first or second

join, only 50,000 records would spill to disk. This shows the importance of considering the
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Figure 4.20: Experiment 3 - Non-Restrictive Select Conditions - AsterixDB (Very Limited
Memory)

size of intermediate results in choosing the breaking points in Static-RDT and Sequential-

Static-RDT. We would have expected similar observations in Gamma simulator results, but

those results do not reflect such observations.

88



0 0.25 0.5 0.75 1

0

5

10

15

20
RDT
Static RDT
Seq. RDT
LDT
Static RDT Seq.
Bushy

0 0.25 0.5 0.75 1
Avail Mem / Mem For All 8 Joins

0

20

40

60

M
em

or
y 

* T
im

e 
(G

B
S)

0 0.25 0.5 0.75 1
Avail Mem / Mem For All 8 Joins

0

20

40

60
RDT
Static RDT
Seq. RDT
LDT
Static RDT Seq.
Bushy

AsterixDB (HDD) AsterixDB (SSD)

AsterixDB (EBS) AsterixDB (EBS-H)

0 0.25 0.5 0.75 1

0

20

40

60

M
em

or
y 

* T
im

e 
(G

B
S)

(a) (b)

(c) (d)

Figure 4.21: Resource Cost - Non-Restrictive Select Conditions Experiment

Figure 4.21 shows the resource cost of each query plan in terms of memory usage times its

execution time. Similar to previous experiments, LDT is one of the low-cost query plans

in HDD, SSD, and EBS due to its low execution time and memory usage. The cost of the

various query plans becomes close to one another in AWS EBS-Hybrid due to the similarity

in their execution times.
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4.8.6 Experiment 4 - Non-Restrictive Join Conditions

Next, we study the performance of different query plan shapes when the query’s joins do not

have a highly restrictive condition; thus, each join may produce numerous output records per

input record. This setup is in favor of plan shapes that use base datasets as the input to their

build phase of the joins, including variations of RDT. Similar to the “High Join Selectivity”

experiment of [66], the base datasets have sizes of 1000000, 1000000, 1000000, 500000, and

200000 records with scan selectivities of 50%, 50%, 20%, 10%, and 25%, respectively. The

join selectivities cause the joins to produce 50000, 200000, 400000, and 500000 records as

their outputs.

Figure 4.22 shows the total amount of data spilled to disk here for each query plan under

different memory availability. RDT and Sequential-RDT spill the same amount of data to

disk, where this amount reduces as the size of the available memory increases. Although

RDT and Sequential-RDT have smaller build input sizes than LDT, their overall memory

requirements are higher since they divide the memory among all the join operators in the

query. In contrast, LDT uses the intermediate results, which are large in this experiment,

as the input to the build phase of all joins except for one. LDT thus spills less data and

requires less memory for a join to fit entirely in memory since the given memory is divided

only between two joins at a time. The amount of spilling in Static-RDT and Sequential-

Static-RDT is equal and dependent on the location of the breaking points in the query tree.

Sometimes using a larger amount of memory in Static-RDT and Sequential-Static-RDT

causes the breaking points in their query trees to move up higher in the tree and thus be

placed after a join with a large amount of output. Thus, a queryy optimizer should carefully

decide where to put the breaking points on the Static-RDT and Sequential-Static-RDT based

on memory availability.
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Figure 4.22: Spilling to Disk - Non-restrictive Join Conditions Experiment
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Figure 4.23: Experiment 4 - Non-restrictive Join Conditions - Gamma Simulator

As Figure 4.23 shows, RDT had the highest execution time due to extensive spilling to disk

when memory is limited in the Gamma simulator. However, due to its parallel execution

nature, RDT outperformed LDT and Static-RDT when a large amount of memory is avail-

able. Unfortunately, the figure for the Gamma simulator does not show data points on the

far left-hand side to present the performance of these query plan shapes when memory is

highly scarce. In the AsterixDB experiments, we also consider both cases where the available
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Figure 4.24: Experiment 4 - Non-restrictive Join Conditions - AsterixDB (Limited Memory)

memory is less than 0.125 of the data sizes, called the Very Limited Memory case, and where

the available memory is somewhat larger, called the Limited Memory case.
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Figure 4.25: Experiment 4 - Non-restrictive Join Conditions - AsterixDB (Very Limited
Memory)

As discussed earlier and as Figure 4.24-a shows, the high disk arm contention caused by

parallel access to disk makes RDT one of the worst-performing query plan shapes when the
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underlying storage system is HDD. The performance of RDT improves as memory becomes

more available, and Sequential-RDT outperforms RDT for HDD due to its sequential access

pattern. Despite using non-base relations with large sizes as the build inputs, LDT is one of

the best-performing query plan shapes in this experiment since it divides memory between

only two consecutive joins and follows a sequential access pattern to disk. Static-RDT and

Sequential-Static-RDT performed similarly in limited memory as the query tree has been

divided into multiple subtrees. By increasing the available memory, Sequential-Static-RDT

slightly outperforms Static-RDT due to its sequential access pattern and since the query

tree has been divided into fewer segments with longer lengths. As Figure 4.24 exhibits,

there are two spikes in the performance of Static-RDT and Sequential-Static-RDT since the

increment of memory has shifted the breaking point to a higher point in the tree with a

larger intermediate result size.

Query plans that run in parallel tend to perform better than sequential ones when SSD is

utilized for this experiment. As Figure 4.24-b shows, RDT is the best-performing query

plan in this case since its memory requirement is low due to using small-sized base datasets

as the build inputs. Additionally, its parallel execution pattern benefits from the efficient

random-access capability of SSD. Although Sequential-RDT performs the same amount of

I/O as RDT, it performs worse than RDT due to its sequential execution pattern. The

difference between Static-RDT and Sequential-Static-RDT is small in this experiment due

to the short query pipeline. LDT performs relatively well in this experiment despite its

sequential pattern and large sizes of inputs. Each join spills less data in LDT since memory

is shared between just two joins at a time, and the pipeline between the probe phase of the

previous join and the build phase of the next join allows for a higher CPU utilization.

The trends in performance for the various query plan shapes in AWS EBS (Figure 4.24-c) is

very similar to the ones in SSD (Figure 4.24-b) for the majority of the data points. However,

the execution times of different query plans are higher in AWS EBS than those from SSD due
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to the network overhead for accessing the disk. Query plans that execute sequentially and

transfer fewer data to and from over-the-network disk at a time,including LDT, tend to have

lower execution times due to low disk overhead. On the other hand, parallel query plans,

including RDT, benefit from the efficiency of SSD storage in handling random disk access;

however, they may face a high latency due to network overhead and bandwidth saturation.

Despite their higher amount of I/O, the more parallel query plans have comparable perfor-

mance to the sequential query plans when the underlying storage system is AWS EBS-Hybrid.

The data spills to a fast SSD storage attached to the node, making writing the data to disk

faster. In this experiment, when using AWS EBS-Hybrid, the different query plan execution

strategies perform similarly. Although LDT’s sequential execution plan does not benefit from

the efficiency of SSD in managing random I/O, it spills less to disk due to how it manages

its memory; also, it maintains a constantly high CPU utilization and its sequential reading

from the base relations does not hit the network bandwidth limitation of storage over the

network. With regard to the RDT and Bushy Trees, although they spill more data to disk

and their parallel reads from base relations may hit the network’s bandwidth limitation and

degrade performance, the spilling data under AWS EBS-Hybrid is written to the local fast

SSD storage, and all of the I/Os are done in parallel which makes up for the mentioned per-

formance degradation. The network overhead masks the differences between the sequential

and non-sequential variations of RDT and Static-RDT. Static-RDT and Sequential-Static-

RDT still face degradation in their performance when the breaking points are positioned

after a join with numerous output results.

Figure 4.26 shows the resource cost of each query plan in terms of their memory usage times

their execution time. Like in the previous experiments, LDT is one of the lowest-cost query

plans for HDD due to its low execution time and memory usage. In SSD, RDT has the lowest

execution time, which makes it one of the lowest-cost query plans. In AWS EBS, LDT has

the lowest cost among other query plans since its execution time and memory usage is less
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Figure 4.26: Resource Cost - Non-Restrictive Join Conditions Experiment

than others. In AWS EBS-Hybrid the similarity in the execution times of the various query

plans at most data points makes their costs very similar.

In conclusion, even when the join conditions are not restrictive, the LDT query plan is one of

the best-performing query plans due to its memory distribution. Additionally, its sequential

I/O positively impacts its performance when the underlying system is HHD or when the

storage device is over the network (AWS EBS and AWS EBS-Hybrid). When a local SSD is

used as the storage device, in this case, RDT performs the best due to its parallel execution
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pattern and small build input sizes. Additionally, although it may spill more data to disk

than LDT, the cost of the spilling is not prohitive since SSD is used as the storage device.

4.9 Conclusion and Recommendations

In this chapter, we re-evaluated the results of a key study done by Schneider & Dewitt [66]

in which they studied the performance of multi-join queries in shared-nothing clusters. They

used a simulator made for the Gamma database system on HDD. We re-evaluated their

results using Apache AsterixDB utilizing HDD, SSD, AWS EBS, and AWS EBS-Hyrbid as

storage alternatives. In addition to their mentioned plan shapes, we studied the performance

of an example of Bushy Tree, Sequential-RDT, and Sequential-Static-RDT.

RDT has been thought for a long time, largely due to [66], to be the most efficient plan shape

due to its parallel execution pattern. However, our studies show that RDT is only a good

query plan for SSD-based storage systems (including AWS EBS and AWS EBS-Hybrid) if

the number of joins in the query result in a few build datasets that are not too large, eg. if

the available memory is enough to hold more than 80% of the sum of the sizes of all build

datasets in memory. Static-RDT may spill less data to disk than RDT if there is enough

memory available to at least hold each build dataset in memory. In cases where multiple

consecutive build phases can fit in memory, precautions must be applied in Static-RDT and

Sequqntial-Static-RDT when selecting the breaking points on the tree not to put it after a

join that produces large output.

Our experiments showed that LDT is actually one of the best-performing query plan shapes

in most cases. LDT tends to spill less data to disk since the memory is always divided

between two consecutive joins at a time. Moreover, its sequential execution pattern makes it

less-disruptive for disk arm contention in HDD. Also, the LDT’s short pipelines between the
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build phase of the previous join and the probe phase of the next join lead to a consistently

high CPU utilization due to the overlap of these activities.

Bushy Trees benefit from independent parallelism, which leads to its high CPU utilization

due to overlapping subtrees of the query. The Bushy Trees we considered in this study are

wide and have short pipelines. Bushy Trees may use either a base dataset or the intermediate

results of a previous operator as the input to their phases. Thus, caution should be taken in

choosing the inputs to the build phases, as that determines the amount of spilling to disk.

The Sequential-RDT and Sequential-Static-RDT plans perform better than their parallel

versions when the underlying storage device is HDD and the query contains multiple joins

with large build inputs.

Our results from this chapter show the importance of considering the underlying storage

architecture in choosing the query plan. They also show that re-evaluation of previous studies

is necessary every so often due to changes and improvements in the underlying hardware.

We also saw that simulators, while helpful and essential tools for understanding systems’

behavior, can produce incorrect results if not verified against real systems carefully.

As bottom line recommendations for AsterixDB and other systems, we suggest using LDT

query plans as the default query plan shape for all queries and all storage types. We have

seen that LDT maintains high performance under different join and scan selectivities as well

as for different storage types and memory availability. RDT can outperform LDT in a few

cases where the underlying storage device is a locally attached SSD and the available memory

for a query is more than 80% of data. However, the difference in its execution time is not

all that high compared to that of the LDT. Thus, using LDT as the default query plan is

recommended.
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Chapter 5

Fair Scheduling for Concurrent

Queries

After studying the best practices for implementing a robust HHJ in Chapter 3 and memory

management and efficient execution of individual multi-join queries in Chapter 4, we study

and evaluate various scheduling techniques for queries executing in a concurrent environment

in this chapter.

Since the responsibility of the schedulers may vary from one system to another, we first

explain what a scheduler does in AsterixDB and what modules are involved in the execution

process of a query. In AsterixDB, each incoming query must pass through several modules

before starting its execution as Figure 5.1 shows. After compilation and optimization, a

query enters the admission controller module. As mentioned earlier, the current version of

AsterixDB does not dynamically allocate memory to the queries and operators; instead, it

uses memory budgets for each operator. Since only one stage of the query is active at any

point in time, the admission controller calculates the memory and CPU requirements for

the most resource-intensive stage and considers this value as the total CPU and memory
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requirements for the query. The memory budget assigned to each operator is used for the

memory requirement calculation. Queries with resource requirements less than the system’s

total resources will be admitted and passed to the scheduler module to be considered for

execution, all other queries are rejected. The scheduler in our design is only responsible for

choosing the next query for execution. The next chosen query is sent to the query execution

module as soon as the resource manager has enough resources to meet the needs of that

query.

Admission Controller Scheduler

Resource Manager

Next Query Query ExecutionIncoming 
Query

Figure 5.1: Query Scheduling and Resource Management Components in AsterixDB

The goal of this chapter is to design a fair scheduler for a DBMS that is effective at scheduling

the execution order of queries with widely different execution times and resource require-

ments. We call a scheduler fair if, under its management, each query waits in the queue for

a time proportional to its execution time. We classify the queries into multiple classes based

on their memory requirements and the number of records accessed during their execution.

We define a few measurable metrics to evaluate and to compare the fairness of various

scheduling algorithms. In our work, stretch factor or slowdown measures how much, on

average, a query of a specific class has waited in the scheduler’s queue compared to its

execution time in a concurrent environment. We calculate the stretch factor for a query

class as the ratio of its average response time to the execution time for its successfully

executed queries. Next, we define fairness as a measure of the evenness of the slowdown of

all query classes. We will calculate the fairness metric by using the standard deviation of
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the stretch factors across the query classes.

Furthermore, we present the design of seven schedulers and evaluate them using different

metrics, including fairness, when the system handles concurrent queries from different query

classes.

5.1 Related Work

In this section, we review two main areas of related work:

1. Resource allocation techniques for concurrent online query workloads.

2. Scheduling and order of execution for queries with widely varying resource requirements

and execution times.

Query scheduling and resource allocation have been a research topic for many different

workload settings and database system types. As one of the early works from the 1980’s,

[18] used a fairness metric in studying the problem of dynamically assigning queries with

different resource requirements to sites in a distributed database system. They defined

fairness as the similarity in the response time ratio to the wait time for various queries.

They use a simulator of a fully replicated distributed database system to evaluate their

suggested heuristics for the dynamic allocation of queries to sites.

Several key studies in resource allocation and query scheduling appeared in the 1990’s. Phillip

S. Yu, et al. introduced the concept of Return on Consumption (ROC) in [71] and used it as

a basis to allocate memory to various operators in a multi-query environment. They defined

ROC as the ratio of benefit to cost of giving additional memory to an operator compared

to the operator’s minimum memory allocation. The authors used single-join queries with

Hybrid Hash Join as the join operator. The minimum memory requirement for a Hybrid
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Hash Join was calculated as
√
F ×R where R is the size of the build input in pages and F is

the fudge factor for considering the hash table’s overhead in size. Their experiments showed

that the highest reduction in average response time is achieved by allocating the maximum

required memory to the smallest queries and allocating the minimum required memory to

the large queries. The results of this study were subsequently used in several other works on

resource allocation [22, 56, 62].

In 1993, Mehta and DeWitt studied the problem of memory allocation and query scheduling

for queries with widely varying resource requirements [56]. Their goal was to maximize fair-

ness among various classes of queries. Based on a detailed simulation study, they evaluated

the performance of several memory allocations and scheduling schemes. They used single-

join queries that were classified based on their build input sizes into three classes – small,

medium, and large queries. In one of their schedulers named adaptive, each query class has

its own independently serviced FIFO queue and the scheduler is responsible for dynamically

adjusting each query class’s multi-programming level (MPL). The authors of [56] used the

results from [71] assigning the maximum required memory to the small queries and mini-

mum required memory to the large queries. The remaining memory was then equally divided

between the medium queries such that each query receives at least its minimum required

memory.

For metrics, Mehta and DeWitt defined slowdown as the ratio of the observed average

response time to the average standalone response time for each class. Furthermore, they

defined fairness as the standard deviation of the slowdowns for all three classes. We will

refer to this scheduler later as Wisconsin scheduler. We have implemented and evaluated

three schedulers inspired by the Wisconsin scheduler in our work.

One year later, Davison and Graefe from the University of Colorado suggested a framework

for fair resource allocation and query scheduling based on concepts from microeconomics

[22]. They used a resource broker to sell the resources to the operators based on which
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allocation policy maximizes the profit. This framework defines a currency derived from the

system’s performance objective that is then used by operators to bid on the resources such

as CPU, memory, and disk. Since the bid price has a direct relationship to the value of an

allocation, a higher price indicates a more favorable allocation to the performance objective.

The ROC concept from [71] was used to estimate the amount of profit for each allocation.

In case of a new possible allocation that can increase the profitability, the broker may also

“buy back” resources from the operators that are actively running and sell them to the new

operators with higher performance benefits. An adaptive memory version of Hybrid Hash

Join [21] was used to adjust memory usage possible during the execution of operators. In

[21], the authors showed that using only three queues for various queries, as was done in [56],

may degrade the performance and fairness since queries with very different execution times

can be placed in the same queue. Thus, they used more than ten queues in order to put

only queries with similar execution times into the same queue. They assigned more queues

to smaller queries since they tend to have shorter execution times.

The performance objective for the prototype broker in [21] was to minimize the slowdown

among various queries with the consideration given to fairness. For the calculation of fairness

and slowdown, the authors considered each query individually instead of categorizing them

into classes. In [21], slowdown measures the expansion of the response time of a query when

executed concurrently with other queries as compared to its standalone response time. To

calculate the slowdown metric, they first calculated the ratio of the observed response time

to the standalone response time for each query separately. The mean of the ratios for all

the queries is then the slowdown. Fairness, which measures the evenness in the degradation

of the response time of all queries as the system load increases, was defined as the standard

deviation of all of the individual queries’ slowdown values. Several experiments using a

simulator showed that their suggested scheduler is fairer and outperforms other schedulers,

including [56]. We will refer to this scheduler as the Colorado scheduler. In our work, we

implemented and evaluated two schedulers inspired by the Colorado scheduler.
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Other recent research papers studied resource allocation and scheduling problems on various

workloads and use case scenarios. The authors of [49] proposed adaptive query scheduling

techniques for workloads containing different queries, each with a different performance ob-

jective. That paper aimed to demonstrate the complexity of searching for solutions when

scheduling dynamic mixed workloads. The authors of [48] studied the workload manage-

ment for business intelligence (BI) workloads specifically by considering actual workloads

and objectives from industrial users’ interviews.

5.2 Query Types and Classes

In this section, we will consider five different query classes for queries that users submit.

This classification is based on the amount of memory that a query would require to execute

fully in memory. In the following, we explain each query class.

• ZeroMemory-Short. ZeroMemory-Short queries use a secondary index to scan se-

lected records returning their count. They have a selection condition chosen so that

very few records in our case satisfy it. The ZeroMemory-Short queries do not contain

any memory-intensive operators. Queries in this class have short execution times due

to the number of records they access.

• ZeroMemory-Long. The queries belonging to the ZeroMemory-Long query class are

scan queries that scan most of a dataset’s records without using any index and re-

turn their count. The ZeroMemory-Long queries do not contain any memory-intensive

operator but they have long execution times due to the number of records they access.

• Small. The Small queries are single-join queries where the sizes of build and probe

inputs are between 5 and 25 percent of total memory. The dataset scan selectivities

and ranges vary between different queries within this class. We use Hybrid Hash Join
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(HHJ) as the join operator for the queries of this query class. Our initial study in this

chapter will focus on join memory budget allocations that allow for non-spilling query

execution.

• Medium. Similar to the Small query class, the Medium query class contains single-

join queries; however, the size of their build and probe inputs is between 26 an 75

percent of the total memory. In these queries, HHJ is used with a join memory budget

allocations that allow for the join to execute entirely in memory with no spilling to

disk.

• Large. The Large query class follows the same structure as the Small and Medium

query classes, but the sizes of build and probe inputs is between 76 and 95 percent of

the total memory.

5.3 Scheduling Algorithms

This section introduces the different scheduling algorithms that we consider in this chapter

to schedule concurrent queries.

5.3.1 FIFO-Ordered Scheduler

All queries are placed in a single queue under the FIFO-Ordered scheduling algorithm.

Queries will then be executed based on their arrival order enforced by the FIFO policy. As a

result, under this simple baseline approach, queries with smaller resource requirements may

be blocked by queries with much larger resource requirements.
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5.3.2 FIFO-Semi-Ordered Scheduler

The FIFO-Semi-Ordered scheduker, used in Apache AsterixDB, seeks to overcome the issue

of small queries being blocked by the large queries in the FIFO-Ordered scheduler.

This scheduler also uses a single queue following FIFO order. However, in this scheduler,

queries may be picked to start their execution earlier than their turn. Under this scheduler,

any newly admitted query that can execute immediately using the available resources will

directly start its execution without entering the FIFO queue. An incoming query will be

added to the end of the queue only if the currently available resources do not meet its

resource requirements. Additionally, upon completion of a running query, queries from the

head to the end of the queue are checked and allowed to proceed if enough resources for their

execution are currently available.

In short, FIFO-Semi-Ordered scheduler tries to avoid the blocking of smaller queries by

larger queries by letting them bypass the queue totally or else bypassing larger queries that

are ahead of them in the queue and would otherwise cause them to wait.

5.3.3 Wisconsin-V1 Scheduler

The Wisconsin-V1 scheduler’s design is inspired by the adaptive scheduler introduced in

[56]. Figure 5.2 shows the structure of the Wisconsin-V1 scheduler. This scheduler consists

of three queues, each assigned to one of the Small, Medium, and Large query classes. These

queues manage the multi-programming level (MPL) of each query class; hence, they are

called MPL queues. Each MPL queue is serviced independently in FIFO order. Since in [56]

there was no distinction between Small and ZeroMemory query classes, the ZeroMemory-

Short and ZeroMemory-Long queries in our workload will be grouped with the small queries

and enter their MPL queue. The Wisconsin-V1 scheduler dynamically adjusts the MPL of
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each query class to increase the fairness among different query classes to the maximum extent

possible. Each MPL queue also has a minimum MPL value of one to prevent starvation. The

incoming queries of each query class wait in their corresponding MPL queue if the current

MPL of the class has reached a dynamically determined level. Whenever a query from each

query class finishes, the next query waiting in the MPL queue of the same query class will

be moved to a different queue named the resources queue. Queries may still have to wait

in the resources queue if their required resources are not currently available. The resources

queue is serviced in FIFO order as well.

Small Queries MPL Queue 

Resources QueueMedium  Queries MPL Queue

Large Queries MPL Queue

Queries
0.25*M < Mem-Req <= 0.75*M

0.75*M < Mem-Req <= M

Mem-Req <= 0.25* M 

Figure 5.2: Wisconsin-V1 Scheduler Structure

Similar to [56], the calculation of fairness and the adjustments of the MPL values are done

after the completion of each medium query. We call this the activation condition.

Similar to [56], in Wisconsin-V1 scheduler, slowdown is defined as the ratio of the observed

average response time to the average standalone response time for each class and fairness

is defined as the standard deviation of the slowdowns for all query classes. The fairness

metric for the Wisconsin-V1 scheduler is determined by the standard deviation in the average

response time ratio to each query class’s execution time. If the standard deviation is beyond

a predefined threshold, this means that some classes are doing better than others, and hence
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If (Activate) {
Calculate the average response time and average execution time for each class
Calculate the Stretch Factor for each class
Calculate the Fairness Metric (StdDev) and Distance from the Average Stretch Factor

SP = Distance from the Average Stretch Factor for the Small query class
MP = Distance from the Average Stretch Factor for the Medium query class
LP = Distance from the Average Stretch Factor for the Large query class

if (StdDev> StdDevThreshold) {
sort SP,MP, and LP (a higher value means that class has been treated unfairly) 
switch {

SP > MP > LP à increase Small MPL, OR, decrease Large MPL , OR, decrease Medium MPL
MP > SP > LP à increase Medium MPL , OR, decrease Large MPL , OR, decrease Small MPL
LP > SP > MP à decrease Medium MPL , OR, increase Large MPL , OR, decrease Small MPL
LP > MP > SP à decrease Small MPL , OR, increase Large MPL , OR, decrease Medium MPL
SP > LP > MP à increase Small MPL , OR, decrease Medium MPL , OR, decrease Large MPL
MP > LP > SP à decrease Small MPL , OR, increase Medium MPL , OR, decrease Large MPL

}
}

}

Figure 5.3: Pseudo-code for Wisconsin-V1 Scheduler

the scheduler has not been fair. Upon detecting such unfairness conditions, the scheduler

takes action by either increasing the MPL of classes that scheduler has been unfair to or by

decreasing the MPL of classes that the scheduler has favored more than others. Figure 5.3

shows the pseudo-code for the Wisconsin-V1 scheduler algorithm.

5.3.4 Wisconsin-V2 Scheduler

The Wisconsin-V2 is another scheduler inspired by [56]. This scheduler separates the

ZeroMemory-Short and ZeroMemory-Long queries from the Small queries by directly adding

them to the resources Queue instead of first placing them in an MPL queue.

The reason for separating ZeroMemory queries from the Small queries is that the memory

requirement for ZeroMemory queries is likely be much less than the memory requirements

of Small queries. Additionally, they may have very different execution times than the Small

queries, which makes them unsuitable for being treated the same as Small queries. Figure

5.4 shows the structure of the Wisconsin-V2 scheduler. The idea of this scheduler is similar
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Small Queries MPL Queue 

Resources QueueMedium  Queries MPL Queue

Large Queries MPL Queue

Queries
0.25*M < Mem-Req <= 0.75*M

0.75*M < Mem-Req <= M

0.05* M < Mem-Req <= 0.25*M

Mem-Req <= 0.05* M ZeroMemory-Short & ZeroMemory-Long Queries

Figure 5.4: Wisconsin-V2 Scheduler Structure

to the responsible scheduler in [56] in which the Small queries would skip any MPL queues

and would be directly added to the resources queue. We use the same approach used in

Wisconsin-V1 scheduler for adjusting the MPL values in the Wisconsin-V2 scheduler.

5.3.5 Wisconsin-V3 Scheduler

The Wisconsin-V3 scheduler is another scheduler implemented and evaluated in this chapter

that is inspired by [56] as well.

As Figure 5.5 shows, the Wisconsin-V3 scheduler consists of one MPL queue for each of the

five query classes. The main motivation for the Wisconsin-V3 scheduler is to separate the

ZeroMemory-Short class from other query classes, as its execution times are significantly

lower than those of other classes.

We use the same fairness metric as used for the Wisconsin-V1 and Wisconsin-V2 schedulers;

However, we adjust the MPL queues more frequently by evaluating fairness upon comple-
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Small Queries MPL Queue 

Resources QueueMedium  Queries MPL Queue

Large Queries MPL Queue

Queries
0.25*M < Mem-Req <= 0.75*M

0.75*M < Mem-Req <= M

ZeroMemory-Short Queries MPL Queue 

ZeroMemory-Long Queries MPL Queue 

0.05* M < Mem-Req <= 0.25*M

Mem-Req <= 0.05* M 
Query_Tag = ZeroMemory-Long

Mem-Req <= 0.05* M 
Query_Tag = ZeroMemory-Short

Figure 5.5: Wisconsin-V3 Scheduler Structure

tion of each Small query. During the evaluation of fairness, we increase the MPL value of

ZeroMemory-Short and ZeroMemory-Long query class if they have the maximum positive

distance from the average stretch factor. However, increasing the MPL of the ZeroMemory-

Short or ZeroMemory-Long could allow them to occupy all of the CPU cores and block

other queries from running even if enough memory is available. To avoid this blocking and

starvation problem, we decrease the MPL of the ZeroMemory-Long class, and if needed the

MPL of the ZeroMemory-Short class, if all the CPU cores are occupied. The rest of the

fairness enforcement algorithm of the Wisconsin-V3 scheduler is similar to the previous two

variations. Figure 5.6 shows the pseudo-code of the algorithm used for the Wisconsin-V3

scheduler.
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If (Activate) {
Calculate the average response time and average execution time and Stretch Factor for each class
Calculate the Fairness Metric (StdDev) and Distance from the Average Stretch Factor

ZMSP = Distance from the Average Stretch Factor for the ZeroMemory-Short query class
ZMLP = Distance from the Average Stretch Factor for the ZeroMemory-Long query class
SP = Distance from the Average Stretch Factor for the Small query class
MP = Distance from the Average Stretch Factor for the Medium query class
LP = Distance from the Average Stretch Factor for the Large query class

if (StdDev> StdDevThreshold) {
if (#available cores == 0) à decrease ZeroMemory-Long  || decrease ZeroMemory-Short
else if (ZMSP == MAX(ZMSP, ZMLP, SP, MP, LP) à increase ZMSP MPL
else if (ZMLP == MAX(ZMSP, ZMLP, SP, MP, LP) à increase ZMLP MPL

else{
sort SP,MP, and LP (a higher value means that class has been treated unfairly) 
switch {

SP > MP > LP à increase Small MPL, OR, decrease Large MPL , OR, decrease Medium MPL
MP > SP > LP à increase Medium MPL , OR, decrease Large MPL , OR, decrease Small MPL
LP > SP > MP à decrease Medium MPL , OR, increase Large MPL , OR, decrease Small MPL
LP > MP > SP à decrease Small MPL , OR, increase Large MPL , OR, decrease Medium MPL
SP > LP > MP à increase Small MPL , OR, decrease Medium MPL , OR, decrease Large MPL
MP > LP > SP à decrease Small MPL , OR, increase Medium MPL , OR, decrease Large MPL

}
}

}
}

Figure 5.6: Pseudo-code for Wisconsin-V3 Scheduler

5.3.6 Colorado-V1 Scheduler

This scheduler is designed with inspiration from [22]. In this scheduler, a larger number

of queues are used to separate further the queries from each other with different memory

requirements. We use ten queues, out of which one queue is allocated to the ZeroMemory-

Short and ZeroMemory-Long queries, four queues to the Small queries, three queues to the

Medium queries, and two queues to the Large queries. Each of these queues is serviced in

FIFO order independently from the other queues. Figure 5.7 shows the general structure of

the Colorado-V1 scheduler.

In this scheduler, upon arrival of a new query or completion of an existing query, all the

queries at the head of each queue are evaluated to be considered as its next query for

execution. In this evaluation, we measure the slowdown of the queries at the head of the

queues, the query with the highest slowdown value is selected as the next query to execute.
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Queries

Mem-Req <= 0.05* M 

0.05* M < Mem-Req <= 0.10 * M

0.10* M < Mem-Req <= 0.15 * M

0.15* M < Mem-Req <= 0.20 * M

0.20* M < Mem-Req <= 0.25 * M

0.25* M < Mem-Req <= 0.40 * M

0.40* M < Mem-Req <= 0.55 * M

0.55* M < Mem-Req <= 0.75 * M

0.75* M < Mem-Req <= 0.85 * M

0.85* M < Mem-Req <=  M

ZeroMemory-Short &
ZeroMemory-Long Queries

Small Queries

Medium Queries

Large Queries

Figure 5.7: Colorado-V1 Scheduler Structure

The authors of [22] defined slowdown as:

slowdown = (waitT ime+ execT imeest)/execT imeest (5.1)

The execT imeest is estimated using cost formulas. In our Colorado-V1 scheduler, we define

the slowdown as follows:

slowdown = (waitT ime+ averageExecT imeclass)/averageExecT imeclass) (5.2)

The reason for choosing the query class’s average execution time as opposed to estimated

execution time is that the current version of AsterixDB does not have a cost-based optimizer

or cost functions to estimate the execution time for us.
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5.3.7 Colorado-V2 Scheduler

The Colorado-V2 Scheduler is another scheduler inspired by [22]. In the Colorado-V1 sched-

Queries

Mem-Req <= 0.05* M
& Query-Tag= ZeroMemory-Long

0.05* M < Mem-Req <= 0.10 * M

0.10* M < Mem-Req <= 0.15 * M

0.15* M < Mem-Req <= 0.20 * M

0.20* M < Mem-Req <= 0.25 * M

0.25* M < Mem-Req <= 0.40 * M

0.40* M < Mem-Req <= 0.55 * M

0.55* M < Mem-Req <= 0.75 * M

0.75* M < Mem-Req <= 0.85 * M

0.85* M < Mem-Req <=  M

ZeroMemory-Long Queries

Small Queries

Medium Queries

Large Queries

Mem-Req <= 0.05* M
& Query-Tag= ZeroMemory-Short ZeroMemory-Short Queries

Figure 5.8: Colorado-V2 Scheduler Structure

uler, all queries of types ZeroMemory-Short and ZeroMemory-Large are directed to the same

queue since they have similar memory requirements; however, they may have very different

execution times. Thus, by putting ZeroMemory-Short and ZeroMemory-Long queries in

the same queue, ZeroMemory-Short queries may have to wait for a long duration behind

ZeroMemory-Long queries. To avoid this problem, the Colorado-V2 scheduler separates

the ZeroMemory-Short and ZeroMemory-Long queries by directing them to two different

queues. To enable this, each query carries a query tag that indicates which query class

it belongs to. In the future, we will remove the query tag concept and use the currently

under-implementation statistics and cost functions in AsterixDB to estimate the number of

records a query accesses to determine whether it is a short or long query. Figure 5.8 shows
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the overall structure of the Colorado-V2 scheduler.

5.4 Experiments

In this section, we empirically evaluate the aforementioned scheduling algorithms using work-

loads containing queries with widely varying memory requirements and execution times.

5.4.1 Experiment Settings

For this set of experiments, we use an AsterixDB cluster containing a Cluster Controller (CC)

and a Node Controller(NC). Both instances are chosen from the US-West-2 availability zone

of AWS and have 4 vCPUs and 30.5GB of RAM. We used the i3.xlarge instance type for the

NC which has an attached SSD storage device. The NC has four data partitions, meaning

that four sub-instances of each query will execute in parallel, each on one data partition.

The core-multiplier is by default set to three, thus at most three such parallel queries may

run concurrently if enough memory is available.

Workload Descriptions

In this set of experiments, multiple users issue queries to the DBMS concurrently. For

simplicity, each user sends queries for one query class only. Each user issues their next query

only after receiving the results of their previous query. For simplicity, the thinking time of

the users between two consecutive queries is set to zero. We plan to consider variant thinking

times relative to the query size in future work.

CSection 5.2 discussed the nature of the queries used in this chapter. The workload for these

experiments contains twelve, three, ten, eight, and four users sending ZeroMemory-Short,
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ZeroMemory-Long, Small, Medium, and Large queries, respectively. Each user is modeled

by a thread that creates a query based on the query template for its class and the range of

predicate values associated with that query class. All of the user threads start at the same

time. Each experiment runs for precisely four hours. Only queries that have finished their

execution during these four hours will show up in the results. Queries for each class are sent

to AsterixDB in a random order every time an experiment starts its execution.

Datasets and Benchmark

We created five datasets containing identical data for this set of experiments. We used

the schema from Wisconsin Benchmark [23] and the Wisconsin Benchmark JSON Data

Generator [42] for data generation. Each dataset consists of 40 GB of data with records

of length 1073 Bytes. Each ZeroMemory query chooses one dataset to query, and each

Small, Medium, and Large query chooses two datasets randomly from these five datasets.

As mentioned earlier, each query accesses a specific number of records; however, ranges are

chosen randomly for each query.

Metrics

For this set of experiments, we have used six metrics to evaluate and compare the performance

of the different scheduling algorithms from various angles. The description of these metrics

is as follows:

• Throughput. We report two types of throughput values for each experiment. The

first throughput metric is the “Total” throughput, which reports the number of queries

that the system executed per minute (across all classes). We calculate the ”Total”

throughput by dividing the total number of executed queries by 240 minutes, the
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duration of the experiment. The Throughputs per query class is the other throughput

metric that we consider, which reports the total number of queries of each query class

that was executed per minute on average. We calculate the throughput value for each

query class by dividing the total number of queries belonging to each class by 240

minutes.

• Average Execution Time. This metric reports the average execution time of queries

of each query class in a concurrent environment. As mentioned earlier, each query’s

execution time is the duration when the query was actively executing. We used the

average execution time of queries in a concurrent setting rather than their standalone

execution times since finding the standalone execution times would require either run-

ning queries of each query class individually or having a cost function to predict the

standalone execution time accurately. Running candidate queries of each query class

individually would not be possible in practice and would add a pre-step for a scheduler

even if it were possible. Thus, considering the average execution time of queries from

each query class that have completed so far is a more realistic and practical approach

since it includes all queries from a query class in the calculation, and they may have

different execution times. Additionally, the impact of other concurrent queries on the

execution time of each query is captured using this approach.

• Average Response Time This metric shows the average response time of queries

belonging to each query class. As mentioned earlier, the response time of a query is the

duration measured from when a user first sends a query until the results are returned.

Thus, the response time includes both the execution time of a query and its waiting

time in the queues.

• Stretch Factor. As mentioned earlier, this metric indicates how long the queries of

each query class have waited in the queue compared to their class average execution

times. We use the ratio of the average response time of a query class to its average
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execution time to calculate the stretch factor for each query class. The stretch factor

is a positive number with a minimum value of 1. A scheduler will be considered to be

fair if all the query classes have a similar stretch factor. A low stretch factor for each

query class is desired.

• Distance From Average Stretch Factor. This metric indicates the distance of

each query class’s stretch factor from the average stretch factor of all query classes.

A scheduler has favored query classes with a lower distance from the average stretch

factor, as a smaller stretch factor means that they have waited less in the queue in

portion to their execution time. On the contrary, a scheduler has discriminated against

query classes that have a large distance from the average stretch factor since their wait

time in the queue is larger relative to their execution time, meaning they have waited in

line for a longer duration than they should have. Ideally, the actions of a fair scheduler

will lead to all classes having similar or close values for this metric for all query classes.

• Fairness. As mentioned earlier, the fairness metric shows how fair a scheduler has

been in terms of scheduling the queries from different classes so they all wait in the

queues for a duration proportional to their execution times. We calculate the fairness

value for each scheduler by computing the standard deviation of the stretch factor

across all query classes. The lower this fairness value is, the more fair a scheduler is

being.

Given these metrics, we can now proceed to explore the seven alternative scheduling algo-

rithms of section 5.3.

5.4.2 Evaluation of the FIFO-Ordered Scheduler

For the first experiment, we use the basic FIFO-Ordered scheduler as the scheduling policy

in AsterixDB. Figures 5.9, 5.10, and 5.11 show timeline plots for the duration of four hours
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where users were issuing queries to AsterixDB. We show the users sending ZeroMemory-Short

Figure 5.9: FIFO-Ordered Scheduler - Timeline Plot for core-multiplier = 3

queries with the red color, users sending ZeroMemory-Long queries with the blue color, users

sending small queries with the pink color, users sending Medium queries with the orange

color, and users sending Large queries with the turquoise color. The diagonal lines in each

user’s query line represent the duration for which its query was waiting in the queue. The

green sections for each user show the periods where each query was executing. For the queries

with very short execution times their execution duration is shown by a straight black line.

Since in the FIFO-Ordered scheduler all of the queries are added to a single queue and

executed in FIFO order, queries with shorter execution times may wait behind queries with

longer execution times. This phenomenon is visible in Figures 5.10, and 5.11 where all

queries have a similar waiting times regardless of their execution times.

Increasing the core-multiplier from three to twelve decreases the query admission limitations

imposed by the CPU on the number of queries that can run concurrently and allows for up
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Figure 5.10: FIFO-Ordered Scheduler - Timeline Plot for core-multiplier = 12

Figure 5.11: FIFO-Ordered Scheduler - Timeline Plot for core-multiplier = 48

119



to twelve concurrent queries if memory is not a bottleneck. Increasing the core-multiplier to

forty-eight lifts any restrictions at all caused by the CPU resource since it allows up to 48

queries to run concurrently, while in this experiment there are only thirty-seven users each

with one query present in the system at a time, either executing or waiting in the queue.
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Figure 5.12: FIFO-Ordered Scheduler - Throughput

Figure 5.12 shows the total and per-class throughputs of the system for different core-

multipliers. The ZeroMemory-Short and Small query classes have slightly higher throughputs

than the other query classes due to having shorter execution times and having more users

associated with those query classes issuing queries to the system. Reducing the CPU re-

strictions improves the total and the per-class throughput values since more queries run

concurrently. The throughput improvement is higher for the query classes with shorter ex-

ecution times and the query classes with lower memory requirements since more of them

can be admitted concurrently before the CPU or memory resources reach their limitations

with core-multipliers of twelve and forty-eight, respectively. Having more concurrent queries

executing in the system leads the average execution times of the query classes with lower
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memory requirements to increase since they execute concurrently with larger queries. Figure

5.13 shows the impact of increasing the concurrency on the average execution times of the

different query classes.
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Figure 5.13: FIFO-Ordered Scheduler - Average Execution Time

The average response times for queries of each query class running in a concurrent environ-

ment with other queries are shown in Figure 5.14. The similarity in the average response

times of the different query classes is because all of the queries, regardless of their sizes, wait

in the same queue prior to their execution. The average response times of the ZeroMemory-

Short and Small query classes are slightly lower than the average response times of the other

query classes due to their shorter execution times once they are allowed to begin running.

We now begin our analysis of the fairness of the FIFO-Ordered scheduler. Figure 5.15

illustrates that the ZeroMemory-Short query class has the highest stretch factor –by far–

in all three core-multiplier values. This is because the ZeroMemory-Short queries have a

very short execution time, but they must first stay behind the larger queries. Queries from
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Figure 5.14: FIFO-Ordered Scheduler - Average Response Time
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Figure 5.15: FIFO-Ordered Scheduler - Stretch Factor

the Small query class have the second-highest stretch factor under this scheduling policy.

Figure 5.16 displays that the FIFO-Ordered schedule is very unfair to the queries from the
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Figure 5.16: FIFO-Ordered Scheduler - Distance From Average Stretch Factor

ZeroMemory-Short query class. In this figure, the query classes with a higher value for the

distance from the average stretch factor have been unfairly treated by the scheduler as their

wait times in the queue has been disproportional to their execution times. Conversely, the

scheduler has favored the query classes that have a lower value for distance from average

stretch factor since they have been kept in the queue for shorter durations that they should

have based on the average execution time of their query class.

5.4.3 Evaluation of the FIFO-Semi-Ordered Scheduler

In this experiment, we use the same query and workload settings as the previous experiment

to evaluate the performance of the FIFO-Semi-Ordered scheduler using the different metrics.

The execution profile of the users’ queries throughout the experiment withe core-multiplier

of three is displayed in Figure 5.17. Comparison of this figure with Figure 5.9 indicates

that the queries with shorter execution times wait in the queue for a shorter duration here

since they can start their execution by skipping the line totally or partially. (Generating the

Timeline plots for core-multipliers of 12 and 48 was not possible in a timely manner due to
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the large number of executed queries and, thus the numerous data points to be drawn.)

Figure 5.17: FIFO-Semi-Ordered Scheduler - Timeline Plot for core-multiplier = 3
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Figure 5.18: FIFO-Semi-Ordered Scheduler - Throughput

Figure 5.18 represents the total and per-class throughputs of the system when the FIFO-

Semi-Ordered scheduler is employed. With the core-multiplier set to three, the results for
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Figure 5.19: FIFO-Semi-Ordered Scheduler - Average Response Time

the total and per-class throughputs of the FIFO-Semi-Ordered scheduler are very similar to

the results of the FIFO-Ordered scheduler.
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Figure 5.20: FIFO-Semi-Ordered Scheduler - Average Execution Time

Under the FIFO-Semi-Ordered scheduler, the ZeroMemory-Short and Small query classes

with their shorter execution times and higher numbers of users associated with them have

higher throughput than the other query classes. Since the FIFO-Semi-Ordered sched-
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uler allows the queries with lower resource requirements, including ZeroMemory-Short and

ZeroMemory-Long to skip the line and start their executions earlier, their query classes have

slightly higher throughputs under the FIFO-Semi-Ordered scheduler than with the FIFO-

Ordered scheduler.

Increasing the core-multiplier reduces the restrictions on CPU and leads to executing more

queries of the ZeroMemory-Short type. Although the ZeroMemory-Long queries also have a

very low resource requirement, there are only three users of this query class in this experi-

ment; thus, the throughput of ZeroMemory-Long query class is not as high as the throughput

for ZeroMemory-Short or Small query classes.

In the case of setting the core-multiplier to twelve, the majority of the CPU capacity is used

by ZeroMemory-Short queries which leads to the starvation of queries from the Medium and

Large query classes. Lifting the CPU limitations entirely by setting the core-multiplier to

forty-eight provides a better chance for Medium queries to execute; however, in this case,

memory becomes the bottleneck due to executing many queries concurrently. The Large

query class thus starves even when the CPU is not a limiting factor. Note also that, the

”Total” throughput is very high when core-multiplier is set to twelve or forty-eight in Figure

5.18, even though some of the query classes have executed zero queries. This indicates that

the ”Total” throughput is not a good metric to use for comparing and evaluating schedulers

with multi-class workloads.

A comparison of Figures 5.19 and 5.20 outlines that the wait times of the query classes are

definitely not proportional to the their execution times.

As Figure 5.21 represents, the ZeroMemory-Short has the highest stretch factor when the

core-multiplier is set to three. This is because the ZeroMemory-Short queries have a very

small execution time, making them very sensitive to even the slightest wait time. With a

higher core-multiplier value, the starved query classes have the highest stretch factors.
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Figure 5.21: FIFO-Semi-Ordered Scheduler - Stretch Factor
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Figure 5.22: FIFO-Semi-Ordered Scheduler - Distance From Average Stretch Factor

The FIFO-Semi-Ordered scheduler cannot be considered a fair scheduler since the improve-

ment in the throughputs of the smaller query classes leads to the starvation of the larger

query classes. Figure 5.22 displays the distance from the average stretch factor for the various

query classes.
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5.4.4 Evaluation of the Wisconsin-V1 Scheduler

We use the Wisconsin-V1 scheduler as the scheduling algorithm in this section.

Figure 5.23: Wisconsin-V1 Scheduler - Timeline Plot for core-multiplier = 3

Figuers 5.23, 5.24, and 5.25 illustrate the timeline plots for this experiment using core-

multiplier values of three, twelve, and forty-eight respectively. In these plots, the sections

with brighter colors and circle-shaped backgrounds represent the time when a query was

waiting in the memory queue in Wisconsin-V1 scheduler. In all of these timeline plots, the

query classes with shorter execution times wait in the memory queue for some time due to

the scheduler’s adjustment of MPL values.

By increasing the core-multiplier from three to twelve, we can see that ZeroMemory-Short

queries are executed more frequently with less waiting in any MPL or memory queues. How-

ever, increasing the MPL further to forty-eight creates more competition for the ZeroMemory-

Short queries as more queries of the other types can now execute concurrently until memory
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Figure 5.24: Wisconsin-V1 Scheduler - Timeline Plot for core-multiplier = 12

Figure 5.25: Wisconsin-V1 Scheduler - Timeline Plot for core-multiplier = 48
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becomes the bottleneck. This competition adds to the waiting time of queries with shorter

execution times, including the ZeroMemory-Short and Small queries.
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Figure 5.26: Wisconsin-V1 Scheduler - Throughput

As Figure 5.26 outlines, modifying the core-multiplier impacts and changes the trends in the

throughput values. In general, the throughputs of the Small and ZeroMemory-Short query

classes are slightly higher than those of the other query classes, primarily due to their short

execution times and their larger numbers of associated users. Increasing the core-multiplier

from three to twelve improves the throughputs of the various query classes and the ”Total”

throughput since more queries can be admitted with the increased CPU capacities. However,

by increasing the core-multiplier from twelve to forty-eight, more queries of larger classes

can start their execution which may block other query classes due to memory limitations.

Additionally, with a core-multiplier of forty-eight, more Medium queries have been executed,

which means the MPL values have been adjusted more often to improve on the fairness.

By comparing the average execution times (Figure 5.27) and average response times (Figure

5.28) of the various query classes, we can see that the wait times of the various query
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Figure 5.27: Wisconsin-V1 Scheduler - Average Execution Time
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Figure 5.28: Wisconsin-V1 Scheduler - Average Response Time

classes are not proportional to their average execution times. One of the main reasons

for this phenomenon is that in the Wisconsin-V1 scheduler, the ZeroMemory-Short, Zero-

Memory-Long, and Small queries are all directed to the Small MPL queue. This makes

the ZeroMemory-Long queries benefit the most, by having two short query types in its
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group to reduce their wait time, while, the Small and ZeroMemory-Short queries have to

wait longer in the queue due to having the ZeroMemory-Long queries in their group. The

second reason for not having a similar slowdown for each query class can be due to how

often the MPL adjustment logic is called and what action it takes to adjust the MPLs. The

high variance in the slowdown of the query classes seen when modifying the core-multiplier

makes the Wisconsin-V1 a potentially non-robust scheduling algorithm with hard-to-predict

performance.
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Figure 5.29: Wisconsin-V1 Scheduler - Stretch Factor

Figure 5.29 displays the stretch factors of the query classes for all three core-multiplier

values. Based on this figure, the Wisconsin-V1 scheduler is biased towards the ZeroMemory-

Long queries since they are inserted into the same MPL queue as Small and ZeroMemory-

Short queries whose execution times are much lower than the ZeroMemory-Long queries.

The ZeroMemory-Short queries have been treated the most unfairly compared to the other

query classes. The stretch factor values of different query classes fluctuate significantly

across different core-multipliers, making this scheduler’s behavior hard to predict. Similar

fluctuations can be seen in the values for the distance from the average stretch factor metric

across different core-multiplier values (Figure 5.30).

132



-523.98 -515.33 -519.24 -531.80

2090.36

-700

-200

300

800

1300

1800

Large Medium Small Zero_L Zero_S

-147.06 -141.56 -149.13 -154.80

592.54

-700

-200

300

800

1300

1800

Large Medium Small Zero_L Zero_S

-286.43 -294.51 -285.96 -299.35

1166.25

-700

-200

300

800

1300

1800

Large Medium Small Zero_L Zero_S

Core Multiplier = 3 Core Multiplier = 12

Core Multiplier = 48

Figure 5.30: Wisconsin-V1 Scheduler - Distance From Average Stretch Factor

5.4.5 Evaluation of the Wisconsin-V2 Scheduler

Next, we evaluate the Wisconsin-V2 scheduler using the same experimental settings. The

timeline plots for this scheduler have been included in the Appendix. As Figure 5.31 displays,

the Small and ZeroMemory-Short query classes have the highest throughputs under all three

core-multiplier values, and all throughput values seem to increase as the core-multiplier in-

creases similarly. The better consistency in throughput values in the Wisconsin-V2 scheduler

compared to the Wisconsin-V1 scheduler is due to the separation of the ZeroMemory-Short

and ZeroMemory-Long queries from the Small queries’ MPL queue and the direct addition

of them into the resource queue.

A comparison of Figures 5.32 and 5.33 indicates that the waiting times of the query classes is

still not proportional to their execution times. This is due to two reasons. First, as mentioned

earlier, other queries can get stuck behind ZeroMemory-Long queries in the resource queue

as there is no condition to limit its MPL value. Second, the waiting times of queries in the

queue depends on how often a Medium query is executed to adjust the MPL values and on
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Figure 5.31: Wisconsin-V2 Scheduler - Throughput
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Figure 5.32: Wisconsin-V2 Scheduler - Average Execution Time

the chosen action to adjust the MPL values. Configuring all of the MPL adjustment knobs

of the Wisconsin-V2 scheduler to reach a fair scheduler is not a trivial task. Similar to the

Wisconsin-V21 scheduler, the Wisconsin-V2 scheduler is also biased towards ZeroMemory-

Long queries since they skip the MPL queue and then occupy CPU cores for the (long)

duration of their execution, which may make other queries wait in the resource queue for a
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long time.

Although the average response times of the Small and ZeroMemory-Short classes in Wisconsin-

V2 scheduler (Figure 5.33) are lower than those of Wisconsin-V1 (Figure 5.28), not having

an MPL limit on the ZeroMemory-Long queries leads to having a high number of them in

the resource queue which then makes the shorter queries wait for a long time.
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Figure 5.33: Wisconsin-V2 Scheduler - Average Response Time
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Figure 5.34: Wisconsin-V2 Scheduler - Stretch Factor
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Figure 5.35: Wisconsin-V2 Scheduler - Distance From Average Stretch Factor

Figures 5.34 and 5.35 verify that, despite skipping the MPL queues, the Wisconsin-V2

scheduler is still highly unfair to the ZeroMemory-Short queries and is biased towards the

ZeroMemory-Long queries more than any other query class.

5.4.6 Evaluation of the Wisconsin-V3 Scheduler

We evaluate the Wisconsin-V3 scheduler as the next scheduling algorithm using the same

experimental settings. We have included the timeline plots of this scheduler in the Appendix.

In Figure 5.36, the Wisconsin-V3 scheduler reaches one of the highest throughput values for

the ZeroMemory-Short query class and ”Total” throughput. By adding its two new MPL

queues for the ZeroMemory-Short and ZeroMemory-Long queries, not only are ZeroMemory-

Short queries not blocked behind larger queries in an MPL queue, but also they cannot

take over all of the CPU cores because their MPL value will prevent them from doing so.

Additionally, by adding the ZeroMemoy-Long queries to their own MPL queue, they cannot
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block or take advantage of smaller queries in their MPL queue. Additionally, they cannot

block other queries in the resources queue for long as since its MPL queue prevents them

from over-populating the resource queue.
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Figure 5.36: Wisconsin-V3 Scheduler - Throughput
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Figure 5.37: Wisconsin-V3 Scheduler - Average Execution Time

By comparing Figures 5.37 and 5.38, we can see that the query classes of ZeroMemory-Short,

ZeroMemory-Long, and Small wait in the system for duration proportional to their execution

times. However, the Medium and Large query classes wait in the queue for longer than what

they should have too. This goes back to how often, and how, the scheduler adjusts the MPLs
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for the different query classes. Sometimes the action taken to adjust the MPL values are

ineffective since the MPL values may grow larger than the available resources can afford.

Thus, reducing those MPL values by one may not be effective.
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Figure 5.38: Wisconsin-V3 Scheduler - Average Response Time
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Figure 5.39: Wisconsin-V3 Scheduler - Stretch Factor

As Figures 5.39 and 5.40 display, the Wisconsin-V3 scheduler is one of the fairest schedulers

that we have seen so far, as the stretch factors are smaller for all query classes and the

values for the distances from the average stretch factor are closer in this scheduler compared
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Figure 5.40: Wisconsin-V3 Scheduler - Distance From Average Stretch Factor

to previous schedulers. However, one downside that this scheduler shares with the other

variations of the Wisconsin scheduler is that the logic based on which the MPL values get

adjusted can cause fluctuations in the different metrics’ values and needs to be studied

carefully to maintain robustness under different core-multiplier values.

5.4.7 Evaluation of the Colorado-V1 Scheduler

As mentioned earlier, in the Colorado-V1 scheduler, queries of different query classes will be

inserted in ten queues based on the ratios of their memory usage over the total memory. We

have included the timeline plots for this scheduler in the Appendix.

Figure 5.41 outlines the total and per-class throughputs of the system using core-multipliers

of three, twelve, and forty-eight when the Colorado-V1 scheduler is used to schedule the

queries. The total and per-class throughput values remain fairly consistent when the core-

multiplier increases. This throughput consistency is due to the number of queues that are

assigned to each query class and how evenly queries of each class have been distributed be-

tween its queues. When making its admission decisions, the scheduler checks the ratio of the
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Figure 5.41: Colorado-V1 Scheduler - Throughput
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Figure 5.42: Colorado-V1 Scheduler - Average Execution Time

wait time of each query at the head of a queue to the average execution time of it query class

to choose the next query to execute. In the Colorado-V1 scheduler, all queries with similar

memory requirements will be directed to the same queue meaning that the ZeroMemory-

Short and ZeroMemory-Long queries are directed to one queue despite their large difference
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Figure 5.43: Colorado-V1 Scheduler - Average Response Time

in execution times. Thus, ZeroMemory-Short queries can wait behind ZeroMemory-Long

queries, which reduces their throughput.
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Figure 5.44: Colorado-V1 Scheduler - Stretch Factor

By comparing the average execution times of each query class in Figure5.42 to their average

responses time in Figure 5.43, we can see that the ZeroMemory-Short queries have the highest

wait times compared to their short execution times. The fact that ZeroMemory-Short queries
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Figure 5.45: Colorado-V1 Scheduler - Distance From Average Stretch Factor

can stay in the queue behind the ZeroMemory-Long queries makes the Colorado-V1 scheduler

act unfairly towards the ZeroMemory-Short queries. This phenomenon is seen in Figures 5.44

and 5.45 with large values for the stretch factor and distance from the average stretch factor

for the ZeroMemory-Short query class.

5.4.8 Evaluation of the Colorado-V2 Scheduler

In the next experiment, we use the same workload settings and datasets used in previous

sections to evaluate the Colorado-V2 scheduler under different core-multiplier values and

using our different metrics. We have included the timeline plots for this scheduler in the

Appendix.

As Figure 5.46 demonstrates, the Colorado-V2 scheduler delivers a higher throughput for

the ZeroMemory-Short query class as compared to the Colorado-V1 scheduler since the

Colorado-V2 scheduler puts ZeroMemory-Short and ZeroMemory-Long queries into different

queues, while as mentioned earlier, in the Colorado-V1 scheduler these two query classes

are directed to the same queue. This separation of queues for the ZeroMemory-Short and

ZeroMemory-Long query classes helps with the earlier release of ZeroMemory-Short queries

from their queue, as they are not waiting behind the ZeroMemory-Long queries. Note that

this high throughput for the ZeroMemory-Short query class causes the total throughput of

the system to be higher as well. Figure 5.46 outlines that the total throughput and the
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per-class throughput values remain fairly consistent under different core-multiplier settings.
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Figure 5.46: Colorado-V2 Scheduler - Throughput

Figure 5.47 represents the average execution times for queries of each query class executing

concurrently. By comparing the Figures 5.46 and 5.47 for each core-multiplier value, we can

see that the query classes with lower average execution times have the highest throughput

and vice versa. This indicates that the Colorado-V2 scheduler has fairly scheduled the queries

from different query classes.

By comparing the average response times and the average execution times of each query class

across the different core-multiplier settings (Figures 5.47 and 5.48), we can see that the query

classes whose queries have a large execution time also have a high response time on average

and vice versa. This again verifies that the Colorado-V2 scheduler has successfully kept the

wait times of the queries in the queues proportional to their average execution times.

Figure 5.49 demonstrates the stretch factors of the various query classes for the Colorado-

V2 scheduler with different core-multiplier settings. Based on this figure, the stretch factor

values of all query classes apart from ZeroMemory-Short are very close to each other and are
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Figure 5.47: Colorado-V2 Scheduler - Average Execution Time

Core Multiplier = 3 Core Multiplier = 12 Core Multiplier = 48

14.43

0

20

40

60

80

100

Large Medium Small Zero_L Zero_S

557.31
443.14

200.36

1050.30

110

310

510

710

910

1110

20.38

0

20

40

60

80

100

Large Medium Small Zero_L Zero_S

523.55
438.41

288.67

1125.43

110

310

510

710

910

1110

18.13

0

20

40

60

80

100

Large Medium Small Zero_L Zero_S

483.36
413.86

241.46

1156.19

110

310

510

710

910

1110

Av
g 

Re
sp

on
se

 T
im

e 
(S

ec
)

Figure 5.48: Colorado-V2 Scheduler - Average Response Time

consistent for the different core-multiplier settings. This closeness in stretch factor values

is what we would expect to see if a scheduler is fairly scheduling the queries. The only

exception in this figure is the ZeroMemory-Short class, which has a consistently high stretch

factor in all three core-multiplier settings. This high stretch factor value for ZeroMemory-
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Figure 5.49: Colorado-V2 Scheduler - Stretch Factor
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Figure 5.50: Colorado-V2 Scheduler - Distance From Average Stretch Factor

Short is due to the very low average execution time of this query class, which leads to a high

penalty in its stretch factor even with the slightest wait time. Regardless, the Colorado-V2

scheduler has the lowest stretch factor and average response time for the ZeroMemory-Short

query classes among all other schedulers.
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Figure 5.50 displays the distance of the stretch factor of each query class from the average

stretch factor value. By comparing the results of the Colorado-V2 scheduler in the distances

from the average stretch factor of other schedulers, we can see that the Colorado-V2 scheduler

has the smallest difference in the distance from the average stretch factor between the query

classes. Thus, the Colorado-V2 scheduler is the fairest scheduler among all the evaluated

schedulers in this chapter and provides robust performance across different core-multiplier

settings.

5.4.9 Fairness

In this section, we compare the schedulers based on our fairness metric. As mentioned earlier,

our fairness metric is the standard deviation between the stretch factor values of the different

query classes. A lower value for fairness is preferred.
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Figure 5.51: Fairness of Various Schedulers
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Figure 5.51 represents the fairness values for the different schedulers across the three core-

multiplier values. FIFO-Semi-Ordered is the most unfair scheduler, as the larger query

classes can be starved under this scheduler. FIFO-Ordered is unfair towards shorter queries,

as all queries have to wait in one queue which can cause the short queries to wait for a long

time behind longer queries. Colorado-V1 is also unfair towards the ZeroMemory-Short query

class as it directs the ZeroMemory-Short queries to the same queue as the ZeroMemory-Long

queries which leads to their long waits in the queue.

Among the variations of the Wisconsin schedulers, the Wisconsin-V1 and Wisconsin-V2

schedulers were not fair towards the ZeroMemory-Short queries as they get blocked be-

hind the ZeroMemory-Long queries under both schedulers. The Wisconsin-V3 scheduler

performed better than the other two variations of the Wisconsin scheduler, especially with

higher core-multiplier values, but its fairness and thus its performance may not remain sta-

ble under different scenarios including variant core-multiplier values. The actions taken to

adjust the MPL values can have different impacts on the overall fairness of the scheduler.

The Colorado-V2 scheduler is the fairest and most robust scheduler among all the evaluated

schedulers. It has relatively simple logic and can be easily managed since it does not need

to follow complex logic to adjust the multi-programming levels of different query classes.

Instead, a query with the highest stretch factor value will be selected as the next query

to be executed. Additionally, allocating separate queues to the ZeroMemory-Short and

ZeroMemory-Long improved its fairness metric by preventing long waits of ZeroMemory-

Short queries behind ZeroMemory-Long queries.

5.4.10 Overall Comparison of Schedulers

In this section, we evaluate each scheduler by comparing its throughput, stretch factor, and

the average distance from the stretch factor under different core-multipliers of three, twelve,
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Figure 5.52: Overall Comparison of Various Schedulers
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and forty-eight. Figure 5.52 demonstrates the changes in the values for the mentioned metrics

for all the schedulers when the core-multiplier increases. We have used the core-multiplier of

three as the base case. As Figure 5.52 shows, for the core-multiplier of three, the Colorado-

V2 scheduler has the highest throughput values for each query class among other schedulers

except for the ZeroMemory-Long class. This is since in the Colorado-V2 scheduler, query

classes with a longer execution time wait in the queue for a longer duration as well, which

reduces their overall throughput. In our experiments, ZeroMemory-Long has the longest

average execution time compared to other query classes. Other schedulers that allow the

ZeroMemory-Long queries to start their execution early have a higher throughput for this

query class with the cost of lower throughput for query classes with shorter average execution

times. The next column in the core-multiplier of three shows the stretch factor values for

each query class ranked between different query schedulers. The Colorado-V2 scheduler has

the lowest stretch factor for most query classes among other schedulers, which shows its

fairness in scheduling queries belonging to different classes. The next column demonstrates

the query classes that each scheduler has favored with green and the discriminated query

classes with red. All schedulers have discriminated against the ZeroMemory-Short query

class because of the short average execution time of this query class and its sensitivity to

even the shortest wait time in the queue. The Colorado-V2 and Wisconsin-V3 have two

of the lowest absolute distance from the average stretch factor for all query classes when

core-multiplier is set to three.

So far, the Colorado-V2 scheduler is the best-performing scheduler under different metrics

when the core-multiplier is set to three. By further evaluating the performance of each

query class under different core-multiplier values, we can see that the Colorado-V2 is the

most stable and robust scheduler among the evaluated schedulers when the core-multiplier

varies.
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5.5 Conclusion and Recommendations for Schedulers

In this chapter, we evaluated seven alternative scheduling algorithms for scheduling queries

drawn from five query classes – ZeroMemory-Short, ZeroMemory-Long, Small, Medium, and

Large – to design a fair scheduler. We define fairness as the provision of similar ratios of wait

times to execution times for all query classes. The schedulers do not decide on the per-query

memory allocation; they only decide on which query should be executed next given their

resource needs.

We evaluated the seven schedulers using different metrics, including throughput (total and

per-class), average execution time, average response time, stretch factor, distance from av-

erage stretch factor, and fairness. The Colorado-V2 scheduler was seen to be the fairest

and most robust scheduling algorithm among all the evaluated schedulers. It uses a number

of queues to separate the workload’s queries based on their memory requirements. Addi-

tionally, this scheduler assigns queries that do not have a large memory requirement, but

do have widely variant execution times, including the ZeroMemory-Short and ZeroMemory-

Long query classes, to separate queues to prevent the shorter queries from getting stuck

behind the longer queries.

Based on our empirical results, we recommend using the Colorado-V2 scheduler as the

scheduling algorithm for AsterixDB. (AsterixDB is currently using FIFO-Semi-Ordered as

its scheduling algorithm for multi-user workloads.)
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we have investigated different ways to manage complex join queries in a big

data management system.

In Chapter 3, we considered single join queries and studied best practices in having a robust

Dynamic Hybrid Hash Join when accurate a priori information is unavailable. Specifically,

we empirically investigated the design space of DHHJ to answer the following four questions:

1. Number of partitions: How many partitions should the records be hashed into if the

sizes of inputs are unknown or inaccurate?

2. Partition Insertion: How can we find a “good” page (memory frame) within a partition

for inserting a new record?

3. Victim Selection Policy: How can we select a “good” partition to spill in the case of

insufficient memory?
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4. Growth Policy: How many memory frames should a spilled partition be allowed to

occupy after having spilled?

Based on our simulation study, we suggest using at least 20 partitions to partition the data

to avoid the large spilling penalty for too few partitions.

Our study on partition insertion algorithm showed that Append(8) delivers a similar average

frame fullness as other partition insertion algorithms but more efficiently due to its early

search termination policy.

For victim selection policy, our experiments showed that policies that spill the largest size

partitions or partitions that have the largest number of records are better policies for the

majority of the cases due to two reasons: 1. Larger partitions release many frames; thus,

they save other partitions from spilling to disk. 2. Writing larger partitions leads to more

sequential and less random writes.

Next, we evaluated the performance of DHHJ under two growth policies of Grow-Steal and

No Grow-No Steal for spilled partitions. Although our analytical and empirical evaluations

showed that No Grow-No Steal performs more random I/Os than Grow-Steal, our experi-

ments showed that having the filesystem cache enabled can diminish the differences between

these growth policies by turning most of the random writes into sequential writes (Elevator

Algorithm). Thus, choosing the right growth policy highly depends on whether the filesystem

cache is enabled.

In Chapter 4, we explore various memory management and execution strategies for efficiently

executing multi-join queries. We study the variations of Left Deep Trees, Right Deep Trees,

and Bushy Trees. We consider two memory distribution methods for Right Deep Trees. RDT

uses the equal memory distribution method while Static-RDT uses the bottom-up memory

distribution method.
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Additionally, we considered fully parallel, semi-parallel, and fully sequential execution strate-

gies for executing RDT plans. Sequential-RDT and Sequential-Static-RDT are two new

variations of RDT where the build phases of the joins execute sequentially.

Our experiments showed that LDT is one of the best-performing query plan shapes in most

cases. LDT tends to spill less data to disk since the memory is always divided between two

consecutive joins simultaneously. Moreover, its sequential execution pattern makes it less

disruptive for disk arm contention in HDD. Also, the LDT’s short pipelines between the

build phase of the previous join and the probe phase of the next join lead to a consistently

high CPU utilization due to the overlap of these activities. Parallel query plans such as RDT

and Bushy Trees have a comparable performance on SSD when large amount of memory is

available.

As bottom-line recommendations for AsterixDB and other systems, we suggest using LDT

query plans as the default query plan shape for all queries and all storage types. We have

seen that LDT maintains high performance under different join and scan selectivities and for

different storage types and memory availability. RDT can outperform LDT in a few cases

where the underlying storage device is a locally attached SSD and the available memory

for a query is more than 80% of data. However, the difference in its execution time is not

all that high compared to that of the LDT. Thus, using LDT as the default query plan is

recommended.

In Chapter 5, we evaluated seven alternative scheduling algorithms for scheduling queries

drawn from five query classes – ZeroMemory-Short, ZeroMemory-Long, Small, Medium, and

Large – to design a fair scheduler. We define fairness as the provision of similar ratios of

wait times to the execution times for all query classes. We evaluated the seven schedulers

using different metrics, including throughput (total and per-class), average execution time,

average response time, stretch factor, distance from aver- age stretch factor, and fairness. The

Colorado-V2 was seen to be the fairest and most robust scheduling algorithm among all the

153



evaluated schedulers. Based on our empirical results, we recommend using the Colorado-V2

scheduler as the scheduling algorithm for AsterixDB. (AsterixDB is currently using FIFO-

Semi-Ordered as its scheduling algorithm.)

6.2 Future Work

Resource management and query scheduling are essential parts of a big data management

system and can significantly impact its performance.

In addition to the join operator, careful considerations should be taken in the design and re-

source management of other memory-intensive operators. One future work direction would

be to carefully study the design of other memory-intensive operators, including sort and

group by, and ensure their robustness under different scenarios, including memory and

statistics availability. Next, studying resource management for a complex query contain-

ing multiple memory-intensive operators is essential.

As another direction for future work, it would be interesting to design and implement

memory-adaptive operators that can borrow from and lend memory to the other memory-

intensive operators of a query. It could be worth studying the performance changes for

various query plans for multi-join queries when memory can dynamically be shared and

move between operator.

For concurrent schedulers, it would be worth evaluating the schedulers under much wider

variety of different workloads, including cases where there are infrequent queries from a

specific query class. Additionally, it will be essential to evaluate the schedulers on other

storage alternatives, particularly EBS and EBS-Hybrid.

Furthermore, in most previous studies and this thesis, only single-join queries are considered.
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It is essential for a DBMS to be able correctly classify more complex query plans based on

their execution times to be able to handle all sorts of queries efficiently and fairly.

Last but not least, in Chapter 5 the scheduler was only responsible for deciding the order

of execution for queries. The amount of memory for each operator was decided by the user

and by using hints. It is essential for AsterixDB and or other data management system to

manage and assign the memory to the operators and queries themselves. Having one module

or collaborating modules for memory assignment and query scheduling can be the next step

for AsterixDB.
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Appendix A

Datasets’ Schema

Figure A.1: Schema for All Small Records Dataset
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Figure A.2: Schema for 1-Large Record Coexist - 10% Large Dataset

Figure A.3: Schema for 3-Large Record Coexist - 50% Large Dataset
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Figure A.4: Schema for 1-Large Record Coexist - 90% Large - Skewed Dataset
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Appendix B

Query Examples and Templates

Figure B.1: Partition Insertion - Query Example

Figure B.2: Victim Selection Policy - Query Example
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Figure B.3: Growth Policy - Query Example
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Figure B.4: Left Deep Tree - Query Example
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Figure B.5: Right Deep Tree - Query Example

169



Figure B.6: Sequential Right Deep Tree - Query Example
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Figure B.7: Static Right Deep Tree - Query Example
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Figure B.8: Sequential Static Right Deep Tree - Query Example
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Figure B.9: Bushy - Query Example

Figure B.10: ZeroMemory-Short - Query Example
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Figure B.11: ZeroMemory-Long - Query Example

Figure B.12: Small, Medium, and Large Query Class - Query Example
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Appendix C

Fair Scheduling for Concurrent

Queries - Timeline Plots

Figure C.1: Wisconsin-V2 Scheduler - Timeline Plot for core-multiplier = 3
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Figure C.2: Wisconsin-V2 Scheduler - Timeline Plot for core-multiplier = 12

Figure C.3: Wisconsin-V2 Scheduler - Timeline Plot for core-multiplier = 48
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Figure C.4: Wisconsin-V3 Scheduler - Timeline Plot for core-multiplier = 3

Figure C.5: Wisconsin-V3 Scheduler - Timeline Plot for core-multiplier = 12
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Figure C.6: Wisconsin-V3 Scheduler - Timeline Plot for core-multiplier = 48

Figure C.7: Colorado-V1 Scheduler - Timeline Plot for core-multiplier = 3
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Figure C.8: Colorado-V1 Scheduler - Timeline Plot for core-multiplier = 12

Figure C.9: Colorado-V1 Scheduler - Timeline Plot for core-multiplier = 48
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Figure C.10: Colorado-V2 Scheduler - Timeline Plot for core-multiplier = 3

Figure C.11: Colorado-V2 Scheduler - Timeline Plot for core-multiplier = 12
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Figure C.12: Colorado-V2 Scheduler - Timeline Plot for core-multiplier = 48
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