
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Global Image Filtering

Permalink
https://escholarship.org/uc/item/2hs75579

Author
Talebi, Hossein

Publication Date
2015

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2hs75579
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

SANTA CRUZ

GLOBAL IMAGE FILTERING

A dissertation submitted in partial satisfaction of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

in

ELECTRICAL ENGINEERING

by

Hossein Talebi

September 2015

The Dissertation of Hossein Talebi
is approved:

Professor Peyman Milanfar, Chair

Professor James Davis

Professor Alex Pang

Dean Tyrus Miller
Vice Provost and Dean of Graduate Studies

Copyright © by

Hossein Talebi

2015

Table of Contents

List of Figures vi

List of Tables xii

Abstract xiv

Dedication xvi

Acknowledgments xvii

1 Data-dependent Filtering 1
1.1 Introduction . 1
1.2 Contributions . 4
1.3 Existing Image Denoising Methods . 5
1.4 Non-parametric Restoration Framework 7

1.4.1 Kernel Functions and Weighted Averaging 8
1.4.2 Filter Matrix . 10

2 Spatially Adaptive Iterative Filtering 12
2.1 Introduction . 13
2.2 Shrinkage Strategies . 14

2.2.1 Diffusion Iteration . 15
2.2.2 Twicing Iteration . 17

2.3 Practical MSE Estimation . 18
2.3.1 Plug-in Estimator . 21
2.3.2 SURE . 22

2.4 Selection of the Best Iteration Method and Iteration Number 24
2.5 Aggregating Overlapping Patches . 27

2.5.1 Variance-basd Aggregation . 28
2.5.2 MSE-basd Aggregation . 29

2.6 Results and Comparisons . 29

iii

2.A Approximation of the Data-dependent Filter 37
2.B Mean-Squared Error of The Plug-in and SURE Estimators 38
2.C Sensitivity of The Plug-in and SURE Estimators 40

3 Global Filter 42
3.1 Introduction . 42

3.1.1 Local vs. Global . 44
3.2 Filter Approximation . 45

3.2.1 Nyström Approximation . 45
3.2.2 Sinkhorn . 50
3.2.3 Orthogonalization . 51
3.2.4 Spatially Uniform vs. Random Sampling 53

3.A Eigenvector orthonormalization . 54

4 Global Image Denoising 55
4.1 Global Denoising Scheme . 56
4.2 Statistical Analysis of the Global Filter 57

4.2.1 Truncated Filter . 58
4.2.2 Iterative Filter . 59
4.2.3 Practical Filtering . 61

4.3 Results and Comparisons . 64
4.4 Oracle Results and Existing Room for Improvement 67
4.A MSE analysis of the truncated filter . 71

5 Asymptotic Analysis of the Global Filter 73
5.1 Introduction . 73
5.2 Computing and Bounding the Oracle Global MSE 75

5.2.1 Bounding the Oracle MSE of Stationary Images 77
5.2.2 Filter Eigenvectors . 80
5.2.3 Bounding the Oracle MSE of Generic Images 81

5.3 Results and Comparisons . 83
5.A The Truncated Filter and Its MSE analysis 87

6 Global Image Editing 91
6.1 Introduction . 92

6.1.1 Non-local Affinities . 96
6.2 Eigenvalue Mapping Function . 97

6.2.1 Multiscale Detail Manipulation 99
6.3 Globalizing Mask . 102
6.4 Practical Applications . 109

6.4.1 Recoloring . 109
6.4.2 Colorization . 111
6.4.3 Fake Depth of Field . 112

iv

6.4.4 Abstraction . 113
6.A Parameter Tuning of the Filter . 116
6.B Approximation of Eq. 6.8 . 117

7 Conclusions and Future Work 119
7.1 Conclusions . 119
7.2 Future Work and Extensions . 120

7.2.1 Adaptive Sampling . 121
7.2.2 Basis Ordering . 122
7.2.3 Learning Filter Knobs . 124

Bibliography 129

v

List of Figures

1.1 Camera imaging pipeline. 2

2.1 Diagram of SAIF method. 18
2.2 Filters based on the NLM kernel with different iteration number k. (a)

Smooth patch and the j-th pixel, (b) j-th row of the patch filter W, (c)
and (d) j-th row of the iterated patch filter Wk for different iteration
numbers, (e) texture patch and the j-th pixel, (f) j-th row of the patch
filter W, (g) and (h) j-th row of the iterated patch filter Wk for different
iteration numbers. 20

2.3 Clean patches from Barbara: (a) Edge, (b) Corner, (c) Texture. 23
2.4 MSE of the three patches usingBilateral kernel [1] with diffusion/boosting

iterations and plug-in/SURE estimators. 25
2.5 MSE of the three patches using NLM kernel [2] with diffusion/boosting

iterations and plug-in/SURE estimators. 26
2.6 MSE of the three patches using LARK kernel [3] with diffusion/boosting

iterations and plug-in/SURE estimators. 26
2.7 Overlapping patches give multiple estimates for each pixel. Example of

three overlapping patches ẑ1, ẑ2 and ẑ3 give three estimates ẑi1, ẑi2 and
ẑi3 for computing the final denoised pixel ẑl. 28

2.8 Some benchmark images used to evaluate performance of denoising meth-
ods. 30

2.9 Denoising example for the plug-in and SURE estimators with different
kernels. AWGN with σ = 25 is added to Man image: (a) Bilateral kernel,
(b) Iteration map for the Bilateral kernel (the colorbar depicts positive
iteration numbers for diffusion and negative ones for boosting), (c) The
plug-in estimator for Bilateral kernel, (d) NLM kernel, (e) Iteration map
for the NLM kernel, (f) The plug-in estimator for NLM kernel, (g) LARK
kernel, (h) Iteration map for the NLM kernel, (i) The SURE estimator
for LARK kernel. 33

vi

2.10 Comparison of denoising performance on noisy parrot image corrupted
by AWGN of σ = 25. (a) Original image, (b) Noisy input, (c) NLM [2],
(d) LPG-PCA [4], (e) BM3D [5], (f) Proposed SAIF (NLM). 35

2.11 Comparison of denoising performance on noisy stream image corrupted
by AWGN of σ = 25. (a) Original image, (b) Noisy input, (c) LARK [3],
(d) LPG-PCA [4], (e) BM3D [5], (f) Proposed SAIF (LARK). 36

2.12 Spectrum of filters computed from the patches in Fig. 2.3. Among the
three kernels, LARK eigenvalues are larger than NLM and Bilateral. . . 41

3.1 Comparison of the local and global filter weights for the NLM kernel [2].
The filter weights are computed for the two labeled pixels. 44

3.2 Filter approximation using Nyström extension. Set A represents m sam-
ples from input image and set B contains the rest of pixels (n − m).
Matrix KA represents the kernel weights of the sample set A and KAB

shows the kernel weights between set A and set B. Sinkhorn algorithm
approximates the filter sub-matrices WA and WAB through an iterative
normalization procedure. These sub-matrices can be used to approximate
m leading orthonormal eigenvectors and eigenvalues of the filter matrix.
In this example m is set as 50. 46

3.3 Accuracy of the kernel approximation for different sampling rates (sam-
pling rate percentage is defined as m

n ×100% wherem denotes the number
of samples and n represents number of pixels in the image). For the ease
of computation of the exact filter, 150×150 subimages of Mandrill, Bar-
bara and House are selected. 51

3.4 Comparison of the denoising performance (AWG with σ = 20) of the
exact and approximated filter for the subimages in Fig. 3.3. 52

3.5 Left: Input image, Right: Approximation error of global filter computed

for the input image as relative RMSE = ‖y−VmIVT
my‖

‖y‖ × 100% for spa-
tially uniform, and uniform distribution sampling. For each sampling
rate (mn × 100%), associated error of 10 different realizations of the sam-
pling methods are averaged. The error bars correspond to the standard
deviation of the relative RMSE. 53

4.1 GLIDE’s pipeline. From left to right, for a noisy image we first apply
a pre-filter to reduce the noise level. Then using a spatially uniform
sampling, the global kernel is approximated by employing the Nyström
extension (A and B represent the samples and the rest of the pixels in
the image, respectively). As discussed in Chapter. 3, using the obtained
kernel, the leading eigenvalues and eigenvectors of the filter are approxi-
mated (The eigenvector v1 is not shown because it is constant). Finally,
the optimal filter is constructed by shrinking (iteration and truncation)
the eigenvalues. The filter optimization step is detailed in Section 4.2. . 57

vii

4.2 Filter weights with different shrinkage (k) and truncation (m) parameters
are computed for the labeled pixel in the House image. 61

4.3 Optimal filter weights for the labeled pixels in the images. The optimal
iteration and truncation numbers for each image are estimated as, House:
k̂ = 0.16 and m̂ = 40, Barbara: k̂ = 0.14 and m̂ = 65, Mandrill: k̂ = 0.33,
m̂ = 165. 63

4.4 Corresponding MSE of the images in Fig. 4.3. The ideal and estimated
iteration and truncation numbers are respectively: House (ideal: 0.19,
45, estimated: 0.16, 40), Barbara (ideal: 0.14, 65, estimated: 0.14, 65),
Mandrill (ideal: 0.34, 160, estimated: 0.33, 165). 64

4.5 Comparison of denoising performance on noisy images corrupted by AWGN
of σ = 40. (a),(d) Noisy input, (b),(e) NLM [2], (c),(f) G-NLM. 66

4.6 Comparison of denoising performance on noisy images corrupted by AWGN
of σ = 50. (a),(d) Original image, (b) BM3D [5] (PSNR=22.32, SSIM=0.545),
(c) G-BM3D (PSNR=22.57, SSIM=0.587), (e) BM3D [5] (PSNR=25.72,
SSIM=0.820), (f) G-BM3D (PSNR=25.98, SSIM=0.827). 68

4.7 Comparison of denoising performance on the real noise. (a) and (d) Noisy
image, (b) and (e) CBM3D [5], (c) and (f) G-NLM. 69

4.8 Comparison of denoising performance on the real noise. (a) Noisy im-
age, (b) Neat Image™, (c) G-NLM. (Neat Image™denoising software is
available at http://www.neatimage.com.) 70

5.1 Comparison of patch matching for local and non-local patches. Likelihood
of finding closely similar patches drops as the size of the search window
increases. 76

5.2 Comparison of patch matching for different patch sizes. As the patch size
grows, fewer similar patches are available. 76

5.3 Wiener shrinkage eigenvalues (λ∗
j) computed for some test images shown

in Fig. 5.7. Images with repetitive patterns such as Wall represent fast
decaying Wiener coefficients. On the contrary, the optimal shrinkage
factors of non-stationary images (e.g. Grass) drop off in a slow fashion. 78

5.4 Sample eigenvectors computed from image windows of different sizes.
Top: Boat image, Bottom: Goldhill image. The 10-th eigenvectors (v10)
of the three subimages are illustrated. 80

5.5 Wiener shrinkage factors (λ∗
j) of the global filter computed for image

windows of different sizes shown in Fig. 5.4. 81
5.6 Left: clustering map, Right: Wiener shrinkage factors (λ∗

j) of the global
and clustered filters. The shrinkage coefficients of the clustered pixels
show faster decay rate compared to the global filter. 83

5.7 Some benchmark images used to evaluate performance of our denoising
method. 83

viii

http://www.neatimage.com

5.8 Oracle performance of the global denoising scheme for different window
sizes. MSE values are averaged over 20 independent WGN realizations
and k-means initialization points. 84

5.9 Averaged MSE of denoising images given in Fig. 5.7 for different noise
levels. The estimated bound given in (5.13) is averaged across all the
images. 86

5.10 Fitted curves of MSE and the estimated bound for some test images
corrupted by WGN of σ = 30. The decay rate of the fitted curves are
given in Table 5.1. 87

6.1 Some leading eigenvectors computed from the luminance channel of the
house image using 0.01% of the pixels. 95

6.2 Some leading eigenvectors computed from the luminance channel of the
house image using less than 0.04% of the pixels. (hx = 20, hy = 5) . . . 98

6.3 (a) Mutiscale decomposition: The low-pass filter Wm is used to extract
detail layers ydi . Multiscale reconstruction: Weighting each layer with
αi and adding them together. 100

6.4 The process given in Fig. 6.3 can be interpreted as the band-pass f(Wm)
in which the eigenvalues are a polynomial function of the low-pass filter’s
eigenvalues given by (6.9). 101

6.5 (a)-(d) The 3th order function f(λj) is evaluated for different αi weights. 102
6.6 Contrast and detail manipulation of the house corner image. (a) Input

image, (b) α1 = 1, α2 = 1, α3 = 1, α4 = 1.4, (c) α1 = 4, α2 = 1, α3 =
1, α4 = 1, (d) α1 = 1, α2 = 12, α3 = 1, α4 = 1, (e) α1 = 1, α2 = 1, α3 =
20, α4 = 1, (f) α1 = 4, α2 = 3, α3 = 3, α4 = 1.05. 103

6.7 Contrast and detail manipulation of the flower image. (a) Input image,
(b) α1 = 1, α2 = 1, α3 = 1, α4 = 1.5, (c) α1 = 5, α2 = 1, α3 = 1, α4 = 1,
(d) α1 = 1, α2 = 10, α3 = 1, α4 = 1, (e) α1 = 1, α2 = 1, α3 = 15, α4 = 1,
(f) α1 = 3, α2 = 5, α3 = 10, α4 = 1.1. 104

6.8 Contrast and detail manipulation of the old man image. (a) Input image,
(b) α1 = 1, α2 = 1, α3 = 1, α4 = 1.4, (c) α1 = 3, α2 = 1, α3 = 1, α4 = 1,
(d) α1 = 1, α2 = 8, α3 = 1, α4 = 1, (e) α1 = 1, α2 = 1, α3 = 16, α4 = 1,
(f) α1 = 2, α2 = 3, α3 = 5, α4 = 1.1. 105

6.9 Contrast and detail manipulation of the door image. (a) Input image,
(b) α1 = 1, α2 = 1, α3 = 1, α4 = 1.5, (c) α1 = 5, α2 = 1, α3 = 1, α4 = 1,
(d) α1 = 1, α2 = 10, α3 = 1, α4 = 1, (e) α1 = 1, α2 = 1, α3 = 20, α4 = 1,
(f) α1 = 3, α2 = 6, α3 = 10, α4 = 1.1. 106

6.10 Propagation masks with different diffusion parameters for Persepolis and
Castle images. 106

ix

6.11 Detail propagation of the Persepolis image compared to the results from
adaptive unsharp masking [6] and constrained unsharp masking [7]. Edit
propagation (shown in (e)) reduces the halo artifacts compared to the
global edit (shown in (d)) and adaptive unsharp masking [6]. 107

6.12 Detail propagation of the castle image compared to the results from adap-
tive unsharp masking [6] and constrained unsharp masking [7]. Edit prop-
agation (shown in (e)) reduces noise and halo artifacts compared to the
global edit (shown in (d)) and adaptive unsharp masking [6]. 108

6.13 Recoloring example based on the propagation mask. Results from the
proposed method (d) and color replacement tool of Photoshop CC (e)
are compared. 110

6.14 Recoloring example based on the propagation mask. The mask (c) is
built based on the two input color brushes (b). 111

6.15 Colorization example based on the propagation mask. The gray scale
image is given in (a) and our input brush colors are shown in (b). Using
the mask in (c) the color brushes are propagated throughput the gray
image (shown in (d)). For a better comparison, our output is shown next
to the results from [8]. 112

6.16 Fake depth of field example. Based on the depth map, pixels with lower
map values are more blurred. Our results shown in (c) and (g) are com-
petitive to the manually edited outputs from Photoshop software in (d)
and (h). 114

6.17 Image abstraction application. (a) Input image and zoomed regions, (b)
Our abstraction result as ŷ = Wk

my with iteration number k = 0.1, (c)
The abstracted image given in (b) is stylized using the edge-exaggeration
and luminance quantization of [9], (d) Result from [9]. 115

6.18 Test images with the following mean gradient magnitudes: (a) 3.66, (b)
7.51, (c) 12.78. 117

6.19 Approximation error of (6.8) computed as relative RMSE = ‖y−VmIVT
my‖

‖y‖ ×
100% for different numbers of retained eigenvectors m. 118

7.1 Effect of the projection coefficient sorting on the filter approximation for
some test images from Chapter 5. The approximation error is computed

as relative RMSE =
‖y−VpIVT

p y‖
‖y‖ × 100% for fixed number of samples

m = 50 and various retained eigenvectors p. 123
7.2 Input image is sharpened by smart sharpening tool in Photoshop CC to

produce the reference image ỹ. Then, the cost function given in (7.3) is
solved to produce the global filter output. The estimated parameters are
α̂ = [2.86, 0.01, 0.24, 1]T . 126

x

7.3 Input image is sharpened by unsharp masking tool in Photoshop CC to
produce the reference image ỹ. Then, the cost function given in (7.3) is
solved to produce the global filter output. The estimated parameters are
α̂ = [3.82,−9.48, 9.50, 1]T . 127

xi

List of Tables

2.1 PSNR values for the application of Bilateral kernel [1] with fixed parameters for each noise

realization (1st column); SAIF with SURE estimator (2nd column), and SAIF with the plug-in

risk estimator (3rd column) . 30
2.2 PSNR values for the application of NLM kernel [2] with fixed parameters for each noise

realization (1st column); SAIF with SURE estimator (2nd column), and SAIF with the plug-

in risk estimator (3rd column) . 30
2.3 PSNR values for the application of the LARK kernel [3] with fixed parameters for each

noise realization (1st column); SAIF with SURE estimator (2nd column), and SAIF with the

plug-in risk estimator (3rd column) . 31
2.4 Performance of the plug-in estimator for the NLM kernel with different smoothing parame-

ters under WGN corruption with σ = 15. 34
2.5 Denoising performance of some popular methods (LPG-PCA [4], BM3D [5]) under WGN

corruption, compared to SAIF for the LARK [3] and NLM [2] kernels. Results noted are

average PSNR (top) and SSIM [10] (bottom) over 10 independent noise realizations for each σ. 34

4.1 PSNR values of NLM [2] (1st column), and the proposed method (2nd column). Results noted

are average PSNR (top) and SSIM [10] (bottom) over 5 independent noise realizations for each σ. 65
4.2 PSNR values of BM3D [5] (1st column), and the proposed method (2nd column). Results

noted are average PSNR (top) and SSIM [10] (bottom) over 5 independent noise realizations

for each σ. 67
4.3 PSNR values of oracle NLM [2] (1st column), oracle BM3D [5] (2nd column), and the oracle

GLIDE (3rd column). Results noted are average PSNR over 5 independent noise realizations

for each σ. 70

5.1 Estimated decay rate of the oracle MSE and estimated bound obtained
from test images corrupted by WGN with σ = 30. By using a least square
approach, γ

nα is fitted on the data points of the MSE and estimated Bound. 85
5.2 Oracle MSE values of NLM [2] (1st column), oracle BM3D [5] (2nd col-

umn), and Ours (3rd column). The MSE values are averaged over 20
independent noise realizations for each σ. 88

xii

6.1 β percentage values for images given in Figure 6.18 118

xiii

Abstract

Global Image Filtering

by

Hossein Talebi

The state-of-the-art digital photography has made great progress over the past decades;

however, imaging still suffers from distortions such as noise and blur. The result is

an increased demand for more efficient and effective computational photography algo-

rithms. In this dissertation a new data-dependent image filtering scheme is proposed.

More specifically, various image enhancement applications from denoising to image edit-

ing are thoroughly explained. The proposed filters exploit the existing self-similarity of

images to introduce a new set of basis functions capable of efficiently describing image

components.

First, by focusing on the local similarities of images, measured by pixel affini-

ties, a spatially adapted filtering strategy capable of improving performance of the

existing local filters is introduced. The filter’s strength is tuned by estimating the lo-

cal signal-to-noise ratio (SNR), such that high SNR image patches are filtered more

aggressively and low SNR patches are treated conservatively.

Second, we explore the global similarity of images and introduce a new image

filtering scheme based on the spectrum of global affinities. The global filter is derived

from a fully connected graph representing the image, and can be approximated using the

Nyström extension. Using this, we drive an approximation to the spectral (principal)

components of the global filter, which can be implemented efficiently by sampling a

fairly small percentage of the pixels in the image. These orthonormal eigenfunctions

xiv

are highly expressive of the coarse and fine details in the underlying image, where

each eigenvector can be interpreted as one scale of a data-dependent multiscale image

decomposition. In this filtering scheme, each eigenvalue can boost or suppress the

corresponding signal component in each scale. Experiments illustrate that the mapping

of the eigenvalues by an appropriate polynomial function endows the filter with a number

of important capabilities, such as edge-aware sharpening, denoising, tone manipulation

and abstraction.

Lastly, asymptotic performance of the global denoising filter is analyzed to

show that its performance always improves as a function of image size, regardless of

image content. The rate of this improvement is estimated as an upper bound on the

mean-squared-error (MSE).

xv

This dissertation is dedicated to my family.

xvi

Acknowledgments

I wish to express my sincere appreciation to those who have contributed to this Ph.D

dissertation and supported me throughout this journey.

First of all, I am extremely grateful to my advisor, Professor Peyman Milanfar,

for his continuous support, patience, motivation, and immense knowledge. Peyman’s

guidance and deep insight helped me at various stages of my five years of research. I

could not have imagined having a better advisor and mentor for my Ph.D study. Besides

my advisor, I would like to thank the rest of my dissertation committee, Professor James

Davis and Professor Alex Pang, for their insightful comments and encouragement.

I thank my former and current fellow labmates in MDSP lab, Hiroyuki Takeda,

Hae-Jong Seo, Priyam Chatterjee, Xiang Zhu, Sujoy Biswas, Amin Kheradmand, M.

Hossein Daraei, and Robert Sumner. It has been fun working with you all and thanks

for offering your help whenever needed. They are excellent researchers and great friends.

Lastly, I would like to thank my family for all their love and encouragement.

I am thankful to my parents, who taught me the value of hard work, self-respect,

persistence and about how to be independent. My parents are great role models of

resilience, strength and character, and I am grateful for them. I am thankful to my

sisters, Elahe and Elham, and my brother, Behrooz who always believed in me and

encouraged me to follow my dreams. Most of all, I am grateful to my loving, supportive

and patient wife Jesica, whose faithful support throughout and during the final stages

of this Ph.D is appreciated.

Santa Cruz, California

July 26, 2015

Hossein Talebi

xvii

Chapter 1

Data-dependent Filtering

Abstract – The problem of image filtering is introduced and discussed in this

chapter. We also discuss the various sources of image perturbations and the existing

image filtering approaches. The chapter concludes with our proposed non-parametric

restoration framework.

1.1 Introduction

Digital cameras and camera phones have made photography an integral part

of our lives. Millions of photos are taken and shared on the internet on a daily basis.

This has led to increasing demand for computational photography algorithms. Images

taken by existing commercial cameras are corrupted by distortions, such as noise, blur,

etc. For a better understanding of the sources of these distortions, basic characteristics

of the camera pipeline are described in the following.

A typical camera imaging pipeline [11] is shown in Fig. 1.1. The scene radiance

is transmitted through the camera lens and converted to electrons in CCD or CMOS

1

Lens Sensor
(Bayer pattern)

Scene
Radiance

(

Lens/Geometric
Distortions

Fixed Pattern
Noise

Dark Current
Noise

+ Thermal
Noise

A/D Converter C

+

Shot Noise

Quantization Noise

White Balance &
Color Correction Debayering &

n g

Figure 1.1: Camera imaging pipeline.

sensor. Typical sensors use a color filter array to produce a Bayer pattern image of

green, red and blue colors. The analog Bayer image is converted to digital pixel values,

which are then fed to the debayering interpolator to create three separate red, green

and blue images. White balancing, gamma correction and color correction are other

adjustments applied on the image before producing the final output.

There are two main distortion sources in the transformation of photons to

digital pixels: blur and noise. In general, there are various types of blur; including:

motion blur, lens blur and post processing blur. Motion blur is due to the movement

between camera and object. It is common when using commercial cameras that are

hard to keep steady during the exposure time. Lens blur is usually caused by shallow

depth of field and incorrect lens setting. The post processing blur is a natural side effect

of enhancement operators such as denoising, super-resolution, etc.

Noise has different sources related and independent from the camera pipeline.

As shown in Fig. 1.1, characteristics of the camera sensor may cause the off-set dark

current noise which is caused by thermal energy of the sensor elements in the absence

of light. There is also fixed pattern noise that is due to the uneven voltage values of the

2

sensor units under the same light. The thermal noise produced by electronic devices

of the pipeline is another source of perturbation that is negligible in short exposure

time scenarios. The analog-to-digital converter is also considered to generate uniform

quantization noise, especially when the image bit-rate is small.

Unlike the above mentioned noise sources, shot noise is independent of the

camera pipeline. Shot noise is associated with the particle nature of the light photons.

The number of photons hitting the camera sensor is signal dependent and is described

by the Poisson distribution [12]. However, for well-exposed images with enough pho-

tons accumulated in each sensor unit, the probability distribution function of the noise

is modeled by a white Gaussian noise [13] (zero-mean independent and identically dis-

tributed Gaussian). On the other hand, in low light imaging scenarios where the Poisson

noise is signal dependent, the Anscombe transform [14] could be used to stabilize the

noise variance and approximate it with a Gaussian distributed signal.

Beside denoising and deblurring, other post-processing operations, such as

local tone-mapping and high dynamic range imaging are among high interest filtering

topics. A scene with a variation in radiance much larger than the range which can

be recorded by a conventional camera or displayed on a monitor may result in low

quality photos. The problem of strong contrast reduction from the scene radiance to

the displayable range while preserving the image details is addressed by tone-mapping.

Due to these inevitable distortions, image filtering is a very basic image process-

ing and computer vision problem. This dissertation provides a comprehensive analysis

of the data-dependent filters with a focus on image denoising, and editing. Furthermore,

applications of the filter for the purpose of local tone-mapping, contrast enhancement

and sharpening are introduced and discussed.

3

1.2 Contributions

The contributions and implications of this dissertation are organized and dis-

cussed in the following chapter summaries. Each chapter makes its own significant

argument and builds toward an integrative approach that expands the field of image

enhancement.

• Chapter. 2 Spatially Adaptive Iterative Filtering

We propose a spatially-adapted iterative filtering (SAIF) strategy capable of con-

trolling the denoising strength locally for any given spatial domain method. The

proposed method iteratively filters local image patches, and the iteration method

and iteration number are automatically optimized with respect to local MSE,

which is estimated from the given image.

• Chapter. 3 Global Filter

Although SAIF does not set any theoretical limitation over the local window size,

computational burden of building a matrix filter for a window as large as the whole

image is prohibitively high. The Nyström method [15] gives a practical solution

when working with huge affinity (similarity) matrices by operating on only a small

portion of the complete matrix to produce a low-rank approximation.

• Chapter. 4 Global Image Denoising

We introduce an innovative global image denoising (GLIDE) filter, which takes

into account all informative parts of an image. Distinctly, with this global filter

in hand, the concept of patch-based processing is no longer restrictive, and we are

able to show that the existing patch-based filters are improved upon.

• Chapter. 5 Asymptotic Analysis of the Global Filter

4

We take the analysis of the GLIDE filter a step deeper to show that the perfor-

mance of the global denoiser always improves as a function of image size, regardless

of image content. Moreover, we prove that the improvement rate is a function of

the sparsity of the image in a naturally constructed basis adapted to the content

of the image.

• Chapter. 6 Global Image Editing

We propose ways to extend our global filtering method to other image processing

tasks such as detail manipulation and edit propagation. Having eigenfunctions

of the global filters, smoothing or sharpening operators are easily implemented

by means of mapping the corresponding eigenvalues. The global nature of the

eigenvectors let us propagate these edits throughout the image.

The data-dependent filters and existing image denoising methods are reviewed

in the remainder of this chapter.

1.3 Existing Image Denoising Methods

There have been numerous denoising algorithms, and in general they can be

divided into two main categories: transform domain methods, and spatial domain meth-

ods.

Transform domain methods are developed under the assumption that the clean

image can be well represented as a combination of few transform basis vectors, so the

signal-to-noise-ratio (SNR) can be estimated and used to appropriately shrink the corre-

sponding transform coefficients. Specifically, if a basis element is detected as belonging

to the true signal, its coefficient should be mostly preserved. On the other hand, if

5

an element is detected as a noise component, its coefficient should be shrunk more, or

removed. By doing this, noise can be effectively suppressed while most structures and

finer details of the latent image are preserved.

Different algorithms in this category vary in either the transform selection or

the shrinkage strategy. Fixed transforms (e.g. wavelet, DCT) are often employed as

in [5,16], and are easy to calculate. However, they may not be effective in representing

natural image content with sparse coefficient distributions, and that would inevitably

increase the requirement on the shrinkage performance. Non-fixed transforms are also

applied. For example, Muresan [17] and Zhang [4] use principle component analysis

(PCA). Compared with fixed transformations, PCA is more adaptive to local image

content. However, such decompositions can be quite sensitive to noise. K-SVD [18] and

K-LLD [19] use over-complete dictionaries generated from training, which is more robust

to noise but computationally expensive. The shrinkage strategy is another important

factor that needs to be fully considered. Though there are many competing strategies,

it has been shown that the Wiener criterion, which determines the shrinking strength

according to (estimated) SNR in each basis element, is the best strategy that gets close

to the optimal performance with respect to mean-squared-error (MSE) [20]. In fact, in

practice it has achieved state-of-the-art denoising performance with even simple fixed

transforms (such as DCT in BM3D) [5].

Spatial domain methods concentrate on a different noise suppression approach,

which estimates each pixel value as a weighted average of other pixels, where higher

weights are assigned to more “similar” pixels [1–3, 21, 22]. Pixel similarities can be

calculated in various ways. For the bilateral filter, similarity is determined by both

geometric and photometric distances between pixels [1]. Takeda et al. proposed a locally

6

adaptive regression kernel (LARK) denoising method, robustly measuring the pixel

similarity based on geodesic distance [3]. Another successful method called non-local

means (NLM) extends the bilateral filter by replacing point-wise photometric distance

with patch distances, which is more robust to noise [2].1

1.4 Non-parametric Restoration Framework

In this section we provide a brief introduction to the non-parametric image

restoration framework. In particular, we study the problem of denoising and present

some of the spatial domain methods that have been quite successful in the recent past.

A spatial domain denoising process has a transform domain filtering interpretation,

where the orthogonal basis elements and the shrinkage coefficients are respectively the

eigenvectors and eigenvalues of a symmetric, positive definite (data-dependent) filter

matrix. For filters such as NLM and LARK the eigenvectors corresponding to the

dominant eigenvalues could well represent latent image contents.

Let us consider the measurement model for the denoising problem:

yi = zi + ei, for i = 1, ..., n, (1.1)

where zi = z(xi) is the underlying image at position xi = [xi,1, xi,2]
T , yi is the noisy

pixel value, and ei denotes zero-mean white noise2 with variance σ2. The problem of

denoising is to recover the set of underlying samples z = [z1, ..., zn]
T . The complete

1Spatial domain methods include any method that is based upon the computation of a kernel that is
applied locally to the pixel data directly. It is possible to approximately implement many regularization
based methods in this framework, but we do not believe there is a one to one correspondence between
kernel spatial domain methods and regularization based Bayesian methods [23].

2We make no other distributional assumptions on the noise.

7

measurement model for the denoising problem in vector notation is:

y = z+ e. (1.2)

As explained in [3, 23] most spatial domain filters can be represented through

the following non-parametric restoration framework:

ẑi = argmin
zi

n∑
j=1

[zi − yj]
2K(xi,xj, yi, yj), (1.3)

where ẑi denotes the estimated pixel at position xi, and the weight (or kernel) function

K(·) measures the similarity between the samples yi and yj at positions xi and xj ,

respectively.

1.4.1 Kernel Functions and Weighted Averaging

Perhaps the most well-known kernel function is the Bilateral (BL) filter [1],

which smooths images by means of a nonlinear combination of nearby image values.

The method combines pixel values based on both their geometric closeness and their

photometric similarity. This kernel can be expressed in a separable fashion as follows:

Kij = exp

{−‖xi − xj‖2
h2x

+
−(yi − yj)

2

h2y

}
, (1.4)

in which hx and hy are smoothing (control) parameters.

The NLM [2] is another very popular data-dependent filter which closely resem-

bles the bilateral filter except that the photometric similarity is captured in a patch-wise

manner:

Kij = exp

{
−‖xi − xj‖2

h2x
+

−‖yi − yj‖2
h2y

}
, (1.5)

where yi and yj are patches centered at yi and yj, respectively. In theory (though

not in actual practice,) the NLM kernel has just the patch-wise photometric distance

(hx → ∞).

8

More recently, the LARK (also called Steering Kernel in some publications) [3]

was introduced which exploits the geodesic distance based on estimated gradients:

Kij = exp{−(xi − xj)
TCij(xi − xj)}, (1.6)

in which Cij is a local covariance matrix of the pixel gradients computed from the given

data [3]. The gradient is computed from the noisy measurements yj in a patch around

xi. Robustness to noise and perturbations of the data is an important advantage of

LARK.

In general, all of these restoration algorithms are based on the same framework

(1.3) in which some data-adaptive kernels are assigned to each pixel contributing to the

filtering. Minimizing equation (1.3) gives a normalized weighted averaging process:

ẑi = wT
i y, (1.7)

where the weight vector wi is

wi =
1∑n

j=1Kij
[Ki1,Ki2, . . . ,Kin]

T . (1.8)

By stacking the weight vectors together, the filtering process for all the sample

pixels can be represented simultaneously through a matrix-vector multiplication form

ẑ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

wT
1

wT
2

...

wT
n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
y = Wy, (1.9)

where ẑ and W denote the estimated signal and the filter matrix, respectively. While

the filter W(y) is data-dependent, in Chapter 2 we show that our employed filter W(z̃),

which is computed based on the pre-filtered image z̃, can be closely treated as a filter

that is not stochastically dependent on the input data.

9

1.4.2 Filter Matrix

W is a positive row-stochastic matrix (every row sums up to one). This matrix

is not generally symmetric, though it has real, positive eigenvalues [23]. The Perron-

Frobenius theory describes the spectral characteristics of this matrix [24], [25]. In par-

ticular, the eigenvalues of W satisfy 0 ≤ λi ≤ 1; the largest one is uniquely equal to one

(λ1 = 1) while the corresponding eigenvector is v1 =
1√
n
[1, 1, ..., 1]T . The last property

implies that a flat image stays unchanged after filtering by W.

Although W is not a symmetric matrix in general, it can be closely approxi-

mated with a symmetric positive definite matrix3 [26]. The symmetrized W must also

stay row-stochastic, which means we get a symmetric positive definite matrix which is

doubly (i.e., row- and column-) stochastic. The symmetric W enables us to compute

its eigen-decomposition as follows:

W = VSVT , (1.10)

where S = diag[λ1, ..., λn] contains the eigenvalues in decreasing order 0 ≤ λn ≤ ... <

λ1 = 1, and V is an orthonormal matrix V = [v1, ...,vn] containing the respective

eigenvectors of W in its columns. Since V is orthogonal, its columns specify a set of

basis functions. So the filtering process can be explained as:

ẑ = Wy = VSVTy (1.11)

where the input data y is first transformed into the domain spanned by the eigenvectors

of W; then, each coefficient is scaled by the factor λi; and finally an inverse transform is

applied, yielding the output. From the above analysis we see that the filtering strength

3Indeed, it can be shown that 1
n
‖W − Wsym‖F = O(n− 1

2). That is, the RMS error gets smaller
with increasing dimension.

10

for each basis of a given filter is thus controlled by {λi}. Later we will show that mapping

λi with specific polynomial functions leads to shrinking or boosting the respective signal

components and therefore, enabling the filter with various editing applications.

Summary – The importance of image filtering in digital photography was dis-

cussed in this chapter. A review of the main sources of image distortions was explained,

followed by discussion of the basics of our proposed framework which is founded on the

eigen-decomposition of image affinities. In the following chapters we will exploit this

paradigm to develop practical filtering applications.

11

Chapter 2

Spatially Adaptive Iterative Filtering

Abstract – Spatial domain image filters (e.g. bilateral filter, NLM, LARK)

have achieved great success in denoising. However, their overall performance has not

generally surpassed the leading transform domain based filters (such as BM3D). One

important reason is that spatial domain filters lack an efficient way to adaptively fine

tune their denoising strength; something that is relatively easy to do in transform do-

main method with shrinkage operators. In the pixel domain, the smoothing strength is

usually controlled globally by, for example, tuning a regularization parameter. In this

chapter, we propose SAIF1 (Spatially Adaptive Iterative Filtering), a new strategy to

control the denoising strength locally for any spatial domain method. This approach is

capable of filtering local image content iteratively using the given base filter, while the

type of iteration and the iteration number are automatically optimized with respect to

estimated risk (i.e. mean-squared error). In exploiting the estimated local SNR, we also

present a new risk estimator which is different than the often-employed SURE method

and exceeds its performance in many cases. Experiments illustrate that our strategy

1SAIF is the middle eastern/arabic name for sword. This acronym somehow seems appropriate for
what the algorithm does by precisely tuning the value of the iteration number.

12

can significantly relax the base algorithm’s sensitivity to its tuning (smoothing) pa-

rameters, and effectively boost the performance of several existing denoising filters to

generate state-of-the-art results under both simulated and practical conditions.

2.1 Introduction

In practice, determining the denoising strength for spatial domain methods is a

general difficulty. For example, these methods always contain some tuning (smoothing)

parameters that may strongly affect the denoising performance. A larger smoothing

parameter would suppress more noise and meanwhile erase more useful image informa-

tion, ending up with an over-smoothed (biased) output. Less smoothing would preserve

high-frequency signal but also do little denoising (estimation variance). An interest-

ing alternative to tedious parameter tuning is iterative filtering. With this approach,

which we promote here, even with a filter estimated from a badly misplaced smoothing

parameter, we can still get a well estimated output by applying the same denoising

filter several times. But it would seem that the iteration number then becomes another

tuning parameter that needs to be carefully treated. Some approaches were developed

to handle such parameters. Ramani’s Monte-Carlo SURE is capable of optimizing any

denoising algorithm with respect to MSE [27], but it requires Gaussian assumption on

noise. In [28] we developed a no-reference image content measure named Metric Q to

select optimal parameters. However, both Monte-Carlo SURE and Metric Q can only

adjust the filtering degree globally. Much more efficient estimates could be obtained by

smartly changing the denoising strength locally as we propose in this chapter. More

specifically, we present an approach capable of automatically adjusting the denoising

strength of spatial domain methods according to local SNR. A second contribution is a

13

novel method for estimating the local SNR.

As discussed previously, a spatial domain denoising process can always be

approximated as a transform domain filter, where the orthogonal basis elements are the

eigenvectors of a symmetric and positive definite matrix determined by the filter; and

the shrinkage coefficients are the corresponding eigenvalues ranging in [0, 1]. For filters

such as NLM and LARK the eigenvectors corresponding to the dominant eigenvalues

could well represent latent image contents. Based on this idea, we propose a spatially

adapted iterative filtering (SAIF) strategy capable of controlling the denoising strength

locally for any given spatial domain method [29]. The proposed method iteratively filters

local image patches, and the iteration method and iteration number are automatically

optimized with respect to local MSE, which is estimated from the given image. To

estimate the MSE for each patch, we propose a new method called plug-in risk estimator.

This method is biased and works based on a “pilot” estimate of the latent image. For

the sake of comparison, we also derive the often used Stein’s unbiased risk estimator

(SURE) [30] for the data dependent filtering scheme. While [31] also uses SURE to

optimize the NLM kernel parameters, we illustrate that (1) the plug-in estimator can

be superior for the same task, and (2) the adaptation approach can be extended to be

spatially varying.

2.2 Shrinkage Strategies

Optimal shrinkage strategies based on various spatial domain filters have been

discussed in [23], where statistical analysis shows that the optimal filter with respect

to MSE is the local Wiener filter with λi =
1

1+snr−1
i

, where snri denotes signal-to-noise

ratio of the i-th channel. However, the local Wiener filter requires exact knowledge of

14

the local signal-to-noise (SNR) in each basis channel, which is not directly accessible in

practice. In denoising schemes such as [5] and [4] the Wiener shrinkage criterion works

based on a pilot estimate of the latent image. Still, the Wiener filter’s performance

strictly relies on accuracy of this estimate. Iterative filtering can be a reliable alternative

for reducing sensitivity of the basis shrinkage to the estimated local SNR. Then, the

iteration number will be the only parameter to be locally optimized.

To approach the locally optimal filter performance in a stable way, we propose

the use of two iterative local operators; namely diffusion and boosting. In [32] we

have shown that performance of any type of kernel could be enhanced by iterative

diffusion which gradually removes the noise in each iteration. Yet, diffusion filtering

also takes away latent details from the underlying signal. On the other hand, iterative

boosting is a mechanism to preserve these lost details of the signal. By using the two

iterative filtering methods, we can avoid either over-smoothing or under-smoothing due

to incorrect parameter settings. In other words, these two methods provide a way to

start with any filter, and properly control the values of shrinkage factors {λi} to achieve

a good and stable approximation of the Wiener filter. In the following we discuss the

two approaches, separately.

2.2.1 Diffusion Iteration

The idea of diffusion in image filtering was originally motivated by the physical

principles of heat propagation and described using a partial differential equation. In

our context, we consider the discrete version of it, which is conveniently represented by

repeated applications of the same filter as described in [23]:

ẑk = Wẑk−1 = Wky, (2.1)

15

Each application of W can be interpreted as one step of anisotropic diffusion with the

filter W. Choosing a small iteration number k preserves the underlying structure, but

also does little denoising. Conversely, a large k tends to over-smooth and remove noise

and high frequency details at the same time. Minimization of MSE (or more accurately

an estimate of it) determines when is the best time to stop filtering, which will help

avoid under- or over- smoothing.

As long as W is symmetric, the filter in the iterative model (2.1) can be

decomposed as:

Wk = VSkVT , (2.2)

in which Sk = diag[λk
1 , ..., λ

k
n]. It is worth noting that despite the common interpretation

of k as a discrete step, the spectral decomposition of Wk makes it possible to replace k

with any positive real number.

The latent image z can be written in the column space of V as b = VT z, where

b = [b1, b2, ..., bn]
T , and {b2i } denote the projected signal energy over all the eigenvectors.

As shown in [23] the iterative estimator ẑk = Wky has the following squared bias:

‖biask‖2 = ‖(I−Wk)z‖2 =
n∑

i=1

(1− λk
i)

2b2i , (2.3)

Correspondingly, the estimator’s variance is:

var(ẑk) = tr(cov(ẑk)) = σ2
n∑

i=1

λ2k
i , (2.4)

Overall, the MSE is given by

MSEk = ‖biask‖2 + var(ẑk) =

n∑
i=1

(1− λk
i)

2b2i + σ2λ2k
i . (2.5)

As the iteration number k grows, the bias term increases, but the variance decays to the

constant value of σ2. Of course, this expression for the MSE is not practically useful

16

yet, since the coefficients {b2i } are not known. Later we describe a way to estimate the

MSE in practice. But first, let us introduce the second iterative mechanism which we

will employ. Boosting is discussed in the following and as we will see, its behavior is

quite different from the diffusion filtering.

2.2.2 Twicing Iteration

Although the classic diffusion filtering has been used widely, this method often

fails in denoising image regions with low SNR. This is due to the fact that each diffusion

iteration is essentially one step of low-pass filtering. In other words, diffusion always

removes some components of the noise and signal, concurrently. This shortcoming is

tackled effectively by means of boosting which recycles the removed components of signal

from the residuals, in each iteration. Defining the residuals as the difference between

the estimated signal and the noisy signal: rk = y − ẑk−1, the iterated estimate can be

expressed as

ẑk = ẑk−1 +Wrk =

k∑
j=0

W(I−W)jy =
(
I− (I−W)k+1

)
y (2.6)

where ẑ0 = Wy. As can be seen, as k increases, the estimate returns to the noisy

signal y. In other words, the boosting filter has fundamentally different behavior than

the diffusion iteration where the estimated signal gets closer to a constant after each

iteration. The squared magnitude of the bias after k iterations is

‖biask‖2 = ‖(I−W)k+1z‖2 =
n∑

i=1

(1− λi)
2k+2b2i , (2.7)

And the variance of the estimator also is

var(ẑk) = tr(cov(ẑk)) = σ2
n∑

i=1

(
1− (1− λi)

k+1
)2

. (2.8)

17

Pre-filtering
by Kernel Base

Patch Filter
Computation

Noisy Image

Patch
Filtering

Optimal
Iteration Est.

Optim

Aggregation
Denoised Image

Patch

C

Figure 2.1: Diagram of SAIF method.

Then the overall MSE is

MSEk = ‖biask‖2 + var(ẑk) =

n∑
i=1

(1− λi)
2k+2b2i + σ2

(
1− (1− λi)

k+1
)2

. (2.9)

As k grows, the bias term decreases and the variance increases. Contrasting the behavior

of the diffusion iteration, we observe that when diffusion fails to improve the filtering

performance, it can be replaced by boosting. This is the fundamental observation that

motivates our approach. More specifically, the contribution of this work is that we

simultaneously and automatically optimize the type and number of iterations locally to

boost the performance of a given base filtering procedure.

2.3 Practical MSE Estimation

Based on the analysis from Section 2.2 we propose an image denoising strategy

which, given any filter using the framework (1.3), can boost its performance by utiliz-

ing its spatially adapted transform and by employing an optimized iteration method.

18

This iterative filtering is implemented patch-wise, so that it is capable of automatically

adjusting the local smoothing strength according to local SNR. Fig. 2.1 depicts a block

diagram of the proposed approach. Starting from the noisy image Y and splitting it

into N overlapping patches {yl}Nl=1, we aim to denoise each noisy patch yl, separately.

To calculate the local filter Wl, we use an estimated image Z̃ which is filtered by the

standard kernel baseline. Next, MSEs for the two iteration approaches (diffusion and

boosting) are estimated for each patch and by comparing their values, the optimal it-

eration method and consequently the iteration number k̂l is selected, generating the

filtered patch ẑl. Since these filtered patches are overlapped, an aggregation method is

finally carried out to compute the denoised image Ẑ. The key steps of this approach

are the optimal iteration estimation and the aggregation, which will be described in the

rest of this section.

Given a patch y and its filter matrix W, the task of this step is to select

the best iteration method (either diffusion or boosting) and its iteration number that

minimizes the MSE. More explicitly, the optimal stopping time k̂ for each iteration

method can be expressed as:

k̂ = argmin
k

MSEk (2.10)

One way to compute an unbiased estimate of MSE is the often-used SURE [30]. An

alternative we propose here is the plug-in risk estimator, which is biased and works

based on an estimate of the local SNR. First, note that in practice, eigenvalues and

eigenvectors of the filter are always estimated from a pre-filtered patch z̃, obtained

using the base filter with some arbitrary parameter settings. More explicitly we have:

W(z̃) = VSVT (2.11)

It is worth repeating that despite the earlier interpretation of k as a discrete step, the

19

0.01

0.02

0.03

2

4

6

8

10
x 10-3

2

4

6

x 10-3

0

0.005

0.01

0.015

0

0.05

0.1

0

0.01

0.02

0.03

Figure 2.2: Filters based on the NLM kernel with different iteration number k. (a)
Smooth patch and the j-th pixel, (b) j-th row of the patch filter W, (c) and (d) j-th
row of the iterated patch filter Wk for different iteration numbers, (e) texture patch and
the j-th pixel, (f) j-th row of the patch filter W, (g) and (h) j-th row of the iterated
patch filter Wk for different iteration numbers.

spectral decomposition of Wk makes it clear that in practice, k can be any positive

real number. To be more specific, Wk = VSkVT , with Sk = diag[λk
1 , ..., λ

k
n] where k is

any non-negative real number. In actual implementation, the filter can be applied with

modified eigenvalues for any k > 0. This may seem like a minor point, but in practice

can significantly improve the performance as compared to when k is restricted to only

positive integers. In effect, a real-valued k automatically and smoothly adjusts the local

bandwidth of the filter. Fig. 2.2 illustrates the iterated filters for two different patches.

As can be seen, while decreasing the iteration number k can be interpreted as smaller

tuning parameter hy for NLM kernel, larger k is equivalent to a wider kernel.

Next, we discuss the two risk estimators and show that the plug-in can ex-

ploit the estimated local SNR to have better performance as compared to the SURE

estimator.

20

2.3.1 Plug-in Estimator

The plug-in estimator is described in Algorithm 1. In this method, risk es-

timators for diffusion and boosting are computed based on the pre-filtered patch z̃,

computed using the base filter with arbitrary parameters. More explicitly, the signal

coefficients can be estimated as:

b̃ = VT z̃ (2.12)

This estimate’s contribution can be interpreted as equipping the risk estimator with

some prior knowledge of the local SNR of the image. The estimated signal coefficients

allow us to use (2.5) and (2.9) to estimate MSEk in each patch:

Algorithm 1: Plug-in Risk Estimator

Input: Noisy Patch: y, Pre-filtered Patch: z̃, Patch Filter: W

Output: Denoised Patch: ẑ

1- Eigen-decomposition of the filter W(z̃) = VSVT

2- b̃ = VT z̃ ⇐ Compute the signal coefficients

3- Plug-indfk , Plug-inbsk ⇐ Compute the estimated risks

4- if min{Plug-indfk } < min{Plug-inbsk }
k̂ = argmin

k
Plug-indfk ⇐ Diffusion optimal iteration number

ẑ = VS
̂kVTy ⇐ Diffusion patch denoising

5- else

k̂ = argmin
k

Plug-inbsk ⇐ Boosting optimal iteration number

ẑ = V
(
I− (I− S)

̂k+1
)
VTy ⇐ Boosting patch denoising

end

21

Diffusion Plug-in Risk Estimator : Plug-indfk =
n∑

i=1

(1− λk
i)

2b̃2i + σ2λ2k
i (2.13)

Boosting Plug-in Risk Estimator : Plug-inbsk =

n∑
i=1

(1− λi)
2k+2b̃2i + σ2

(
1− (1− λi)

k+1
)2

(2.14)

In each patch, minimum values of Plug-indfk and Plug-inbsk as a function of k are com-

puted and compared, and the iteration type with the least risk is chosen. It is worth

mentioning that since the optimal iteration number k̂ can be any real positive value,

in the implementation of the diffusion filter, W
̂k is replaced by VS

̂kVTy in which

S
̂k = diag[λ

̂k
1 , ..., λ

̂k
n]. This has been similarly shown for the boosting filter in Algorithm

1. Next, for the sake of comparison, the SURE estimator is discussed.

2.3.2 SURE

Denoting F (y) as an estimate of the latent signal z, the SURE estimator for

MSE is defined as:

SURE(y) = ‖y− F (y)‖2 + 2σ2div(F (y))− nσ2, (2.15)

where div(F (y)) ≡ ∑
i
∂Fi(y)
∂yi

. Under the additive Gaussian noise assumption, this

random variable is an unbiased estimate of the MSE. In our context, F (y) is replaced by

Wky which can be approximately treated as a linear filtering framework (see Appendix

5.A). With this linear approximation we have: div(F (y)) ≈ tr(Wk), and then the

SURE estimator for the diffusion process can be expressed as:

SUREdf
k = ‖(I −Wk)y‖2 + 2σ2tr(Wk)− nσ2 (2.16)

Considering the eigen-decomposition of the filter, replacing y with Vb̌ (where b̌ is the

energy distribution of the noisy signal over the eigenvectors; b̌ = VTy) after some

22

(a) (b) (c)

Figure 2.3: Clean patches from Barbara: (a) Edge, (b) Corner, (c) Texture.

simplifications, we have

SUREdf
k = (Vb̌)TV(I− Sk)2VT (Vb̌) + 2σ2tr(Wk)− nσ2

=

n∑
i=1

(1− λk
i)

2b̌2i + 2σ2λk
i − σ2 (2.17)

It is easy to show that the expected value of SUREdf
k will replace b̌2i with b2i +σ2, which

after simplification indeed yields (2.5). Replacing F (y) with ẑk =
(
I− (I−W)k+1

)
y

for boosting filtering, we can get the corresponding SURE as:

SUREbs
k = ‖(I−W)k+1y‖2 + 2σ2tr(I− (I−W)k+1)− nσ2 (2.18)

Doing the same simplifications as before and replacing y with Vb̌, we get

SUREbs
k = (Vb̌)TV(I− S)2k+2VT (Vb̌) + 2σ2tr(I − (I −W)k+1)− nσ2

=
n∑

i=1

(1− λi)
2k+2b̌2i + 2σ2(1− (1− λi)

2k+2)− σ2 (2.19)

Again, we can show that the expected value of SUREbs
k yields (2.9). This SURE esti-

mator also has a similar algorithmic description to the plug-in represented in Algorithm

1.

23

2.4 Selection of the Best Iteration Method and Iteration

Number

While SURE estimator is widely used for the task of risk estimation, our

introduced plug-in estimator is superior in many cases. Figs. 2.4, 2.5 and 2.6 illustrate

MSE denoising curves of the three patches shown in Fig. 2.3, perturbed2 by AWGN

with σ = 25. Three denoiser kernels (Bilateral [1], NLM [2] and LARK [3]) are used in

our experiments, true MSE values of diffusion and twicing methods and corresponding

estimated risks are compared for each patch. As can be seen, the plug-in outperforms

the SURE estimator in most instances, certainly insofar as the shape of the curves are

concerned. 3

While this experiment anecdotally shows that the plug-in is superior to the

SURE estimator, a theoretical analysis is much more convincing. We detailed this anal-

ysis in Appendix 6.A, and summarize it below. Our study shows that two important

factors affect performance of the plug-in estimator; namely the pre-filter, and the base-

line kernel type. Intuitively, the major advantage of the plug-in is use of the local SNR,

which is estimated by the pre-filter. However, the SURE estimator is only a function of

the kernel type (eigenvalues of the kernel {λi}).
The accuracy of these two risk estimators is analyzed in Appendix 6.A. With

Gaussian assumption for the noise in the pre-filtered patch z̃ = z + η where η =

N(0, ν2I), and defining β = ν2

σ2 as relative variance of the noise in the pre-filtered

2Averaging over 50 noise realizations in a Monte-Carlo simulation.
3We also compared the SURE estimator with the Monte-Carlo SURE in [27], but this did not

yield better results. As Ramani et al discuss [27], their Monte-Carlo SURE has a sufficiently low
variance estimate when F (y) mostly performs “local” operations (or equivalently, W(y) is quite sparse
in F (y) = W(y)y). Yet, when y is an image patch, F (y) is not a local operator (or equivalently, W(y)
is not “nearly” diagonal). As a result, variance of the Monte-Carlo SURE estimator will be large for
the purpose of patch-based risk estimation.

24

Edge (diffusion) Corner (diffusion) Texture (diffusion)

0 0.5 1 1.5 2 2.5 3 3.5 4
−200

−100

0

100

200

300

400

500

600

700

k

Plug−in
SURE
Actual

0 0.5 1 1.5 2 2.5 3 3.5 4
−100

0

100

200

300

400

500

600

700

k

Plug−in
SURE
Actual

0 0.5 1 1.5 2 2.5 3 3.5 4
−200

−100

0

100

200

300

400

500

600

700

k

Plug−in
SURE
Actual

Edge (boosting) Corner (boosting) Texture (boosting)

0 0.5 1 1.5 2 2.5 3 3.5 4
−100

0

100

200

300

400

500

600

700

k

Plug−in
SURE
Actual

0 0.5 1 1.5 2 2.5 3 3.5 4
−200

0

200

400

600

800

1000

1200

k

Plug−in
SURE
Actual

0 0.5 1 1.5 2 2.5 3 3.5 4
−200

0

200

400

600

800

1000

1200

k

Plug−in
SURE
Actual

Figure 2.4: MSE of the three patches using Bilateral kernel [1] with diffusion/boosting
iterations and plug-in/SURE estimators.

and noisy signal, we prove that the plug-in estimator outperforms SURE when in each

channel i:

snri ≥ β2(n+ 2)− 2

4(1− β)
, (2.20)

where snri =
b2i
σ2 is the signal-to-noise ratio of channel i. For the plug-in estimator

to be superior to SURE, regardless of snri, the relative variance must be β ≤
√

2
n+2 .

This implies that for a typical patch size (say n = 11 × 11) and a moderately effective

pre-filter (β ≤ 0.13), the plug-in estimator is consistently better than SURE.

Another key factor in the comparison of the two estimators is their relative

sensitivity to the type of kernel. In Appendix 6.B we study the effect of kernel type,

specifically the filter eigenvalues. This analysis shows that when λi → 0, as long as

(2.20) holds, the plug-in is less sensitive than SURE. NLM and Bilateral are examples

of these “aggressive” kernels with many eigenvalues close to 0. On the other hand, our

25

Edge (diffusion) Corner (diffusion) Texture (diffusion)

0 0.5 1 1.5 2 2.5 3 3.5 4
−100

0

100

200

300

400

500

600

700

k

Plug−in
SURE
Actual

0 0.5 1 1.5 2 2.5 3 3.5 4
0

100

200

300

400

500

600

700

k

Plug−in
SURE
Actual

0 0.5 1 1.5 2 2.5 3 3.5 4
−100

0

100

200

300

400

500

600

700

k

Plug−in
SURE
Actual

Edge (boosting) Corner (boosting) Texture (boosting)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

100

200

300

400

500

600

700

k

Plug−in
SURE
Actual

0 0.5 1 1.5 2 2.5 3 3.5 4
0

200

400

600

800

1000

1200

1400

k

Plug−in
SURE
Actual

0 0.5 1 1.5 2 2.5 3 3.5 4
−200

0

200

400

600

800

1000

1200

1400

k

Plug−in
SURE
Actual

Figure 2.5: MSE of the three patches using NLM kernel [2] with diffusion/boosting
iterations and plug-in/SURE estimators.

Edge (diffusion) Corner (diffusion) Texture (diffusion)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

100

200

300

400

500

600

700

k

Plug−in
SURE
Actual

0 0.5 1 1.5 2 2.5 3 3.5 4
0

100

200

300

400

500

600

700

k

Plug−in
SURE
Actual

0 0.5 1 1.5 2 2.5 3 3.5 4
0

100

200

300

400

500

600

700

k

Plug−in
SURE
Actual

Edge (boosting) Corner (boosting) Texture (boosting)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

100

200

300

400

500

600

700

k

Plug−in
SURE
Actual

0 0.5 1 1.5 2 2.5 3 3.5 4
0

200

400

600

800

1000

1200

k

Plug−in
SURE
Actual

0 0.5 1 1.5 2 2.5 3 3.5 4
0

200

400

600

800

1000

1200

k

Plug−in
SURE
Actual

Figure 2.6: MSE of the three patches using LARK kernel [3] with diffusion/boosting
iterations and plug-in/SURE estimators.

26

sensitivity analysis also implies that for filters with typically larger eigenvalues {λi},

the plug-in estimator is more sensitive.

These results motivate replacing SURE with the plug-in risk estimator for

many estimation instances. In our experiments (Section 2.6) on the whole image we

compare performance of the two estimators for each base kernel and confirm our claims.

But before moving on to the experiments, we explain our aggregation strategy in the

next section.

2.5 Aggregating Overlapping Patches

So far, we have found the best estimate for the iteration number in each patch.

Our optimized per-patch filtering can be expressed as choosing between one of these

two iterations:

Diffusion : ẑj = W
̂kjyj, (2.21)

Boosting : ẑj =
(
I− (I−W)

̂kj+1
)
yj , (2.22)

in which yj and ẑj are the j-th noisy and denoised patch, respectively, and k̂j denotes

the estimated ideal stopping time for this patch. To simplify the notation, let us denote

the two filters in W
̂kj and

(
I− (I−W)

̂kj+1
)

as Ŵj. In other words, each patch is

estimated as ẑj = Ŵjyj, where Ŵj can be computed from either diffusion or boosting

process. As a result of the overlapped patches, multiple estimates are obtained for

each pixel. We need to aggregate all of these estimates to compute the final estimate

for each pixel. What we have is a vector of estimates of the pixel zl which need to

be aggregated to form the final denoised pixel ẑl. Fig. 2.7 illustrates an example of

three overlapping patches and the computed estimates in each of them. The weighted

27

Figure 2.7: Overlapping patches give multiple estimates for each pixel. Example of three
overlapping patches ẑ1, ẑ2 and ẑ3 give three estimates ẑi1, ẑi2 and ẑi3 for computing the
final denoised pixel ẑl.

averaging can improve the aggregation especially when the weights are estimated based

on the risk associated with each estimate. Considering that the plug-in and SURE

assign, respectively, biased and unbiased risk estimates to each pixel, we discuss two

aggregation strategies which best fit each estimator. In our framework, a variance-based

aggregation is employed for SURE and an exponentially weighted averaging is used for

the plug-in estimator.

2.5.1 Variance-basd Aggregation

A possible weighted average is the LMMSE (linear minimum mean-squared-

error) scheme that takes into account the relative confidence in each estimate as mea-

sured by the inverse of the estimator error variance. More explicitly, the error covariance

of our proposed estimator is approximated as:

Ce = cov(ẑj − zj) = cov(Ŵjej) = σ2Ŵ
2

j (2.23)

We denote ẑij as the denoised estimate for the i-th pixel in the j-th patch zj . Then,

the variance of the error associated with the i-th pixel estimate in the j-th patch, vij ,

28

is given by the i-th diagonal element of Ce. Inverse of the estimator error variances vij ,

are the weights we use for the aggregation:

ẑl =

M∑
j=1

ẑij
vij

M∑
j=1

1
vij

, (2.24)

where M is the number of computed estimates for the l-th pixel. This approach is

adequate for the case when the estimated risk is unbiased (as in SURE). When using the

plug-in estimator of risk, we must take bias into account with an exponential aggregator,

described next.

2.5.2 MSE-basd Aggregation

A way to take the bias into account is to consider the overall MSE rather than

the variance. This has been studied in [33] and [34] where the exponentially weighted

aggregation is introduced. The estimated risk associated with the i-th estimate in the

j-th patch, rij, is computed by the plug-in estimator in (2.14) and (26). Thus, the l-th

pixel has the following estimate:

ẑl =
M∑
j=1

ẑij exp(−rij)
M∑
j=1

exp(−rij)

, (2.25)

where the confidence coefficients {exp(−rij)}, are the weights we use for the aggregation.

2.6 Results and Comparisons

In this section we evaluate performance of the proposed method for denoising

various images. Since our method is motivated to improve performance of any kernel-

based denoising, we first compare our results with ones from the three standard kernels:

29

Table 2.1: PSNR values for the application of Bilateral kernel [1] with fixed parameters for each noise

realization (1st column); SAIF with SURE estimator (2nd column), and SAIF with the plug-in risk estimator

(3rd column)

σ
Peppers (512 × 512) Lena (512 × 512) Cameraman (256 × 256) Man (512 × 512)

Standard SURE Plug-in Standard SURE Plug-in Standard SURE Plug-in Standard SURE Plug-in

5 37.12 37.19 37.24 37.31 37.48 37.63 37.30 37.35 37.63 36.01 36.33 36.36

15 31.64 31.18 32.57 31.34 31.10 32.48 30.18 30.35 30.87 29.61 29.82 30.29

25 28.69 27.87 30.44 28.48 27.78 30.29 27.03 26.66 28.14 26.97 26.81 27.94

σ
Boat (512 × 512) Stream (512 × 512) Parrot (256 × 256) Mandrill (512 × 512)

Standard SURE Plug-in Standard SURE Plug-in Standard SURE Plug-in Standard SURE Plug-in

5 35.95 36.24 36.22 34.83 35.05 35.06 36.83 36.93 37.1 34.48 34.50 34.57

15 29.88 29.81 30.60 27.79 28.16 28.21 29.85 29.64 30.52 26.99 27.34 27.33

25 27.16 26.62 28.31 25.32 25.26 25.83 26.86 26.30 27.84 24.20 24.30 25.57

Table 2.2: PSNR values for the application of NLM kernel [2] with fixed parameters for each noise realization

(1st column); SAIF with SURE estimator (2nd column), and SAIF with the plug-in risk estimator (3rd column)

σ
Peppers (512 × 512) Lena (512 × 512) Cameraman (256 × 256) Man (512 × 512)

Standard SURE Plug-in Standard SURE Plug-in Standard SURE Plug-in Standard SURE Plug-in

5 37.34 37.62 37.48 38.02 38.42 38.45 37.75 37.98 38.06 36.73 37.01 37.07

15 31.94 33.14 33.34 31.93 33.12 33.39 30.86 31.62 31.73 29.96 30.66 30.82

25 29.10 30.96 31.29 28.91 30.55 30.94 27.84 28.94 28.98 27.05 28.02 28.19

σ
Boat (512 × 512) Stream (512 × 512) Parrot (256 × 256) Mandrill (512 × 512)

Standard SURE Plug-in Standard SURE Plug-in Standard SURE Plug-in Standard SURE Plug-in

5 36.62 36.90 36.89 35.36 35.42 35.55 37.18 37.58 37.66 34.92 34.95 35.05

15 30.38 30.83 31.17 28.06 28.53 28.58 30.51 31.24 31.32 27.64 27.96 28.03

25 27.43 28.10 28.58 25.24 25.83 25.88 27.71 28.67 28.87 24.55 24.96 25.13

LARK, NLM and Bilateral. We also test stability of SAIF when an arbitrary tuning

parameter is used. In all cases the proposed estimators show a promising improvement

over the standard kernels. We will show that the resulting SAIF-ly improved filters

are comparable, in terms of MSE (PSNR) and SSIM [10], to state-of-the-art denoising

methods, and in many cases visually superior.

In our first simulations the patch size is set as 11×11 and in a Monte-Carlo

simulation, 10 independent noise realizations were used. We varied k from 0 to 6 with

Peppers Lena Cameraman Man Boat Mandrill

Figure 2.8: Some benchmark images used to evaluate performance of denoising methods.

30

Table 2.3: PSNR values for the application of the LARK kernel [3] with fixed parameters for each noise

realization (1st column); SAIF with SURE estimator (2nd column), and SAIF with the plug-in risk estimator

(3rd column)

σ
Peppers (512 × 512) Lena (512 × 512) Cameraman (256 × 256) Man (512 × 512)

Standard SURE Plug-in Standard SURE Plug-in Standard SURE Plug-in Standard SURE Plug-in

5 36.18 37.20 36.89 36.49 38.39 37.75 36.31 37.92 37.37 35.66 37.16 36.78

15 32.08 33.33 33.13 32.41 33.75 33.52 30.34 31.41 30.98 30.60 31.17 30.95

25 30.04 31.38 31.32 30.12 31.40 31.34 27.95 28.69 28.19 27.95 28.54 28.28

σ
Boat (512 × 512) Stream (512 × 512) Parrot (256 × 256) Mandrill (512 × 512)

Standard SURE Plug-in Standard SURE Plug-in Standard SURE Plug-in Standard SURE Plug-in

5 35.72 36.57 36.34 34.90 35.66 35.51 36.02 37.73 37.22 34.69 35.16 35.10

15 31.03 31.63 31.54 28.29 28.76 28.20 30.35 31.23 30.92 27.20 28.05 27.38

25 28.43 29.12 28.98 25.69 26.18 25.59 27.58 28.62 28.26 24.01 25.12 24.02

0.05 as the step size. As an initial guess for the smoothing parameters in the kernels,

we set hx = 2
√
2 and hy = 20

√
2σ in the Bilateral kernel, hy = 0.43σ in the NLM filter

and the smoothing parameter in LARK [3] is fixed as 0.25σ.

Fig. 2.8 shows some benchmark images we used. Tables 2.1, 2.2 and 2.3

show PSNR results of the standard kernel (fixed parameters in Bilateral, NLM, or

LARK), SURE and the plug-in estimators. It can be seen that for Bilateral and Non-

local means kernels, the plug-in estimator shows consistent improvement over both the

standard estimate using the kernel, and the optimally iterated kernel from SURE. For

the LARK kernel, the SURE method outperforms the plug-in estimator. Apparently,

this performance difference occurs most noticeably for highly textured images such as

Mandrill.

In Fig. 2.9 the two types of iterations, diffusion and boosting, are compared

for the three kernels. The iteration map identifies the type and number of applied iter-

ations on the patches of the image. The map colorbar represents positive and negative

values for diffusion and boosting iterations, respectively. As can be seen, while diffu-

sion recovers most of the flat and smooth patches, boosting takes care of the texture

and more complex ones. It is worth noting that applying overlapped patches also has

the advantage of computing multiple estimates for each pixel from the both iteration

31

types. In other words, in the aggregation process, some pixels may be from diffusion in

one patch, whereas others may be from boosting in another overlapping patch. This is

especially useful for pixels at the border of smooth and texture regions.

The effect of the parameter tuning is studied in Table 2.4 . In this set of

simulations, NLM kernel weights with different control parameter, hy, were computed

for each image and then fed to the plug-in estimator. As can be seen, across a large

range of hy, performance of the proposed estimators is quite stable and shows consistent

improvement over the baseline kernel. From these results, we can see that it is possible

to improve the performance of the standard kernel with an arbitrary starting parameter

by employing the proper number and type of iteration with the proposed MSE estimator.

Performances of the proposed SAIF algorithm and other methods are quanti-

fied across different noise levels in Table 2.5, which shows that the proposed method is

quantitatively quite comparable to LPG-PCA [4] and BM3D [5].

Fig. 2.10 demonstrates the denoising results of Parrot image obtained by

different methods compared to the proposed method using the plug-in estimator. In

addition to about 1 dB improvement over the baseline NLM in terms of PSNR, visual

quality of the proposed method also is comparable and even superior to the state of

the art denoising. In this case SAIF appears to recover some texture regions which

were over-smoothed by BM3D and LPG-PCA. Fig. 2.11 shows performance of the

SURE estimator for the Stream image. As can be seen, result by SAIF is visually close

to BM3D and LPG-PCA. We note that our Matlab code and additional results are

available at the project website4.

In terms of computational complexity, denoising a 256 × 256 grayscale image

4http://www.soe.ucsc.edu/~htalebi/SAIF.php.

32

http://www.soe.ucsc.edu/~htalebi/SAIF.php

(a) Bilateral, PSNR=26.97 dB

−6

−4

−2

0

2

4

6

(b) Bilateral iteration map (c) SAIF (Bilateral), PSNR=27.92 dB

(d) NLM, PSNR=27.05 dB

−6

−4

−2

0

2

4

6

(e) NLM iteration map (f) SAIF (NLM), PSNR=28.19 dB

(g) LARK, PSNR=27.95 dB

−6

−4

−2

0

2

4

6

(h) LARK iteration map (i) SAIF (LARK), PSNR=28.54 dB

Figure 2.9: Denoising example for the plug-in and SURE estimators with different ker-
nels. AWGN with σ = 25 is added to Man image: (a) Bilateral kernel, (b) Iteration
map for the Bilateral kernel (the colorbar depicts positive iteration numbers for diffusion
and negative ones for boosting), (c) The plug-in estimator for Bilateral kernel, (d) NLM
kernel, (e) Iteration map for the NLM kernel, (f) The plug-in estimator for NLM kernel,
(g) LARK kernel, (h) Iteration map for the NLM kernel, (i) The SURE estimator for
LARK kernel.

33

Table 2.4: Performance of the plug-in estimator for the NLM kernel with different smoothing parameters

under WGN corruption with σ = 15.

hy
Peppers (512 × 512) Lena (512 × 512) Cameraman (256 × 256) Man (512 × 512)

Standard SURE Plug-in Standard SURE Plug-in Standard SURE Plug-in Standard SURE Plug-in

3 29.56 31.84 33.16 29.64 31.99 33.34 28.88 30.71 31.52 28.44 30.29 30.85

6 31.89 32.77 33.30 31.73 32.80 33.40 30.53 31.42 31.63 29.31 30.49 30.79

9 30.63 32.93 33.22 30.20 32.84 33.21 28.57 31.45 31.52 27.38 30.30 30.57

hy
Boat (512 × 512) Stream (512 × 512) Parrot (256 × 256) Mandrill (512 × 512)

Standard SURE Plug-in Standard SURE Plug-in Standard SURE Plug-in Standard SURE Plug-in

3 28.80 30.60 31.31 27.12 28.41 28.61 28.49 30.37 31.09 26.66 27.69 27.90

6 29.80 30.84 31.20 27.23 28.46 28.58 30.25 31.03 31.32 26.72 27.95 28.04

9 27.87 30.68 30.97 25.15 28.25 28.42 28.72 31.06 31.26 24.35 27.79 27.93

Table 2.5: Denoising performance of some popular methods (LPG-PCA [4], BM3D [5]) under WGN corruption,

compared to SAIF for the LARK [3] and NLM [2] kernels. Results noted are average PSNR (top) and SSIM [10]

(bottom) over 10 independent noise realizations for each σ.

σ
Man (512 × 512) Parrot (256 × 256)

LPG-PCA BM3D SAIF (LARK) SAIF (NLM) LPG-PCA BM3D SAIF (LARK) SAIF (NLM)

5
37.13 37.33 37.16 37.07 37.76 37.92 37.73 37.66
0.951 0.956 0.953 0.952 0.966 0.967 0.967 0.964

15
30.84 31.24 31.17 30.82 31.14 31.43 31.23 31.32
0.850 0.863 0.860 0.847 0.892 0.896 0.890 0.890

25
28.25 28.81 28.54 28.19 28.59 28.94 28.62 28.87
0.772 0.794 0.782 0.759 0.843 0.850 0.839 0.847

σ
Stream (512 × 512) Mandrill (512 × 512)

LPG-PCA BM3D SAIF (LARK) SAIF (NLM) LPG-PCA BM3D SAIF (LARK) SAIF (NLM)

5
35.62 35.75 35.66 35.55 35.31 35.25 35.16 35.05
0.963 0.965 0.965 0.963 0.957 0.958 0.959 0.956

15
28.53 28.74 28.76 28.58 28.09 28.17 28.05 28.03
0.835 0.846 0.849 0.834 0.832 0.843 0.844 0.837

25
25.86 26.21 26.18 25.88 25.16 25.45 25.12 25.13
0.720 0.739 0.743 0.710 0.726 0.746 0.737 0.724

with an unoptimized implementation of our method in Matlab take, on average, about

180 seconds. For such images, LPG-PCA (implemented by its authors for Matlab)

take, on average, 280 seconds. BM3D, with its optimized implementation (implemented

by the authors mostly in C and compiled as Mex for Matlab), takes significantly less

time (about 1 second on average) for these images. However, our method is sped up

significantly by reducing the amount of overlap between patches. For example, when

estimating every fifth patch, our method requires only 120 seconds on average (including

pre-filtering) with a minor drop in performance (about 0.1 dB).

Summary – We have presented a framework for improved denoising by data-

34

(a) Parrot (b) Noisy (c) NLM (PSNR=27.71 dB)

(d) LPG-PCA (PSNR=28.59 dB) (e) BM3D (PSNR=28.94 dB) (f) SAIF (NLM) (PSNR=28.87 dB)

Figure 2.10: Comparison of denoising performance on noisy parrot image corrupted by
AWGN of σ = 25. (a) Original image, (b) Noisy input, (c) NLM [2], (d) LPG-PCA [4],
(e) BM3D [5], (f) Proposed SAIF (NLM).

dependent kernels. Given any spatial domain filter, we can boost its performance to

near state-of-the-art by employing optimized iteration methods. This iterative filtering

is implemented patch-wise. Armed with diffusion and boosting as two complementary

iteration techniques, each patch is filtered by the optimum local filter. More specifically,

by exploiting the best iteration number and method which minimizes MSE in each patch,

SAIF is capable of automatically adjusting the local smoothing strength according to

local SNR. The experimental results demonstrate that the proposed approach improves

35

(a) Stream (b) Noisy (c) LARK (PSNR=25.69 dB)

(d) LPG-PCA (PSNR=25.86 dB) (e) BM3D (PSNR=26.21 dB) (f) SAIF (LARK) (PSNR=26.18 dB)

Figure 2.11: Comparison of denoising performance on noisy stream image corrupted by
AWGN of σ = 25. (a) Original image, (b) Noisy input, (c) LARK [3], (d) LPG-PCA [4],
(e) BM3D [5], (f) Proposed SAIF (LARK).

the performance of kernel based filtering methods in terms of both PSNR (MSE) and

subjective visual quality. Using the estimated local SNR as empirical prior knowledge

of the latent signal, we proposed the plug-in estimator which can outperform SURE

estimator in many cases.

36

2.A Approximation of the Data-dependent Filter

By applying an effective pre-filtering, the filter weight matrix W is largely

dependent on the latent image rather than the noisy input image [26]. To be more

specific, consider the practical implementation of the filter as follows:

ẑ = W(z̃)y (2.26)

Denote the estimate of the j-th pixel as:

ẑj = wT
j (z̃)y (2.27)

where wT
j denotes the j-th row the filter W(z̃). Assuming that the pre-filtered image

is now only corrupted by a small additive noise: z̃ = z + η, we can make the following

first order Taylor approximation:

ẑj = wT
j (z̃)y ≈ wT

j (z)y+ ηTGjy (2.28)

where the n×n diagonal matrix Gj contains the vector ∇wj along its diagonal entries,

in which ∇wj(z) denotes the gradient of the vector wj with respect to its argument.

The first term in the above (wT
j (z)y) is the oracle filter. The second term is the error

between the oracle and the practical filter:

�j = wT
j (z̃)y−wT

j (z)y ≈ ηTGjy (2.29)

As can be seen, this error is dependent on the quality of the pre-filter (how small is

η) and also smoothness of the kernel (∇wj). We note that this gradient refers to the

shape of the baseline kernel, and the way it depends on its argument (Gaussian being

typical) and not on the actual underlying image. While a good choice of pre-filter can

sufficiently suppress the noise, tuning the smoothness parameter of the baseline kernel

37

guarantees the gradient of the filter to be small. As a result, we can be assured that

our approximation is reliable for the performance analysis in this chapter.

2.B Mean-Squared Error of The Plug-in and SURE Esti-

mators

Here we derive an expression for expected error of each risk estimator and then

use this to compare the plug-in and SURE estimators. We start from the expression for

diffusion plug-in risk estimator:

Plug-indfk =

n∑
i=1

(1− λk
i)

2b̃2i + σ2λ2k
i (2.30)

We assume that b̃i = bi + ηi, where ηi is the projected noise of the pre-filtered image on

the eigenvectors of the filter, where ηi are AWGN with mean zero and covariance ν2I.

The expected value of eq. 2.30 can be expressed as:

E[Plug-indfk] =
n∑

i=1

(1− λk
i)

2(b2i + ν2) + σ2λ2k
i (2.31)

Consequently the bias of the plug-in estimator can be written as:

bias(Plug-indfk) = ν2
n∑

i=1

(1− λk
i)

2 (2.32)

The variance term also is:

var(Plug-indfk) = 2ν2
n∑

i=1

(1− λk
i)

4(ν2 + 2b2i) (2.33)

Then the MSE of the Plug-indfk estimator is as follows:

MSE
Plug-indf

k

= ν4(

n∑
i=1

(1− λk
i)

2)2 + 2ν2
n∑

i=1

(1− λk
i)

4(ν2 + 2b2i) (2.34)

38

Unsurprisingly, as ν decreases, MSE of the estimator tends to zero. We can also derive

MSE of the SURE estimator in (2.17) by replacing b̌i with bi + ei where e = N(0, σ2I).

Then the variance term and the MSE are:

MSESUREdf
k

= var(SUREdf
k) = 2σ2

n∑
i=1

(1− λk
i)

4(σ2 + 2b2i) (2.35)

Comparison of (2.34) and (2.35) can determine the better risk estimator. To accomplish

this comparison, we aim to define an upper bound for the error incurred by the plug-in

estimator risk. Applying the Cauchy-Schwartz inequality to the squared bias term in

(2.34):

ν4(
n∑

i=1

(1− λk
i)

2)2 ≤ nν4
n∑

i=1

(1− λk
i)

4 (2.36)

Then we have:

MSE
Plug-indf

k

≤
n∑

i=1

(1− λk
i)

4
(
(n+ 2)ν4 + 4ν2b2i

)
(2.37)

Defining β = ν2

σ2 as relative variance of the noise in the pre-filtered and noisy signal,

comparison of (2.35) and (2.37) shows that the plug-in estimator outperforms SURE

when in each channel i:

snri ≥ β2(n+ 2)− 2

4(1− β)
, (2.38)

where snri =
b2i
σ2 is the signal-to-noise ratio of channel i. Similarly for the boosting

iteration the MSE of the plug-in estimator is:

MSE
Plug-inbs

k

= ν4(
n∑

i=1

(1− λi)
2k+2)2 + 2ν2

n∑
i=1

(1− λi)
4k+4(ν2 + 2b2i) (2.39)

and also for the boosting SURE estimator in (2.9) we have:

MSESUREbs
k
= var(SUREbs

k) = 2σ2
n∑

i=1

(1− λi)
4k+4(σ2 + 2b2i) (2.40)

Doing the same analysis as we did for the diffusion iteration, the given constraint in

(2.38) is obtained again for the boosting iteration.

39

2.C Sensitivity of The Plug-in and SURE Estimators

What we study here is the sensitivity of each estimator to the baseline kernel

type. Assuming the MSE expressions as functions of the filter eigenvalues {λi}, their
derivatives can explain the sensitivity of the risk to the filter (kernel) type. Defining

εi = (1− λk
i)

2, we have

∂MSE
Plug-indf

k

∂εj
= 2ν4

n∑
i=1

εi + (4ν4 + 8ν2b2j)εj (2.41)

and also for the SURE risk estimator given by (2.35) the derivative is

∂MSESUREdf
k

∂εj
= (4σ4 + 8σ2b2j)εj (2.42)

As εj → 1, we can see that the plug-in sensitivity is bounded as:

lim
εj→1

∂MSE
Plug-indf

k

∂εj
≤ 2(n + 2)ν4 + 8ν2b2j (2.43)

and also for the SURE estimator we have:

lim
εj→1

∂MSESUREdf
k

∂εj
= (4σ4 + 8σ2b2j) (2.44)

Comparison of (2.43) and (2.44) shows that when λi → 0, as long as (2.38) holds, the

plug-in estimator is less sensitive than SURE.

On the other hand as εj → 0 the SURE estimator’s derivative tends to 0 and

yet the sensitivity of the plug-in method remains dependent on the other eigenvalues of

the filter:

lim
εj→0

∂MSE
Plug-indf

k

∂εj
= 2ν4

n∑
i=1

εi (2.45)

This, in particular shows that the SURE estimator is more reliable when the base kernel

has eigenvalues {λi} closer to one. The LARK filter [3] is an example of this type of

40

Edge Corner Texture

50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1

LARK
NLM
Bilateral

50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1

LARK
NLM
Bilateral

50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1

LARK
NLM
Bilateral

Eigenvalue index (i) Eigenvalue index (i) Eigenvalue index (i)

Figure 2.12: Spectrum of filters computed from the patches in Fig. 2.3. Among the
three kernels, LARK eigenvalues are larger than NLM and Bilateral.

kernels with less aggressive spectrum than NLM [2] and Bilateral [1]. Fig. 2.12 compares

spectrum of the three kernels for the selected patches in Fig. 2.3. As can be seen, the

LARK spectrum has eigenvalues that are larger than the ones from NLM and Bilateral

kernels for all the tested patches. Overall, we can conclude that the plug-in estimator

better fits aggressive kernel bases like NLM and Bilateral.

Sensitivity analysis and results of the boosting iteration are similar to the

presented diffusion process. The only difference is that the derivation variable εi should

be defined as (1− λi)
2k+2.

41

Chapter 3

Global Filter

Abstract – This chapter introduces an innovative global filter, which takes

into account all informative parts of an image. The complexity of computing the global

filter is effectively reduced by approximating the leading eigen functions of the low-

rank affinity matrix. This approximation is efficiently implemented using the Nyström

extension that works based on sampling image pixels.

3.1 Introduction

Patch-based filtering is founded on the assumption that the latent image has

a locally sparse representation in some transform domain. Wavelet and DCT in [5],

principal component analysis (PCA) in [4], and over-complete dictionaries in [18] are

the frequently used transforms. The filtering process is defined as applying a shrinkage

function to the transform coefficients and recovering the estimated patches by inverse

transform. However, performance of these patch-based methods is strictly dependent

on how well the similar patches are matched [20]. Specifically, for images that are well

42

represented by locally sparse transform (i.e. images with locally repetitive structure

such as House in Fig. 3.3), the shrinkage operator keeps most of the basis elements

belonging to the latent signal and effectively removes the noise components. Yet, when

the similar patches are not easily representable in a sparse way (i.e. images with locally

non-repetitive, or semistochastic structures such as Mandrill in Fig. 3.3), the signal

components and the noise elements can be mistakenly shrunk together. Consequently,

performance of the patch-based filtering will be affected by the lack of locally (in the

nearest neighbor sense) similar patches [35].

As shown in Chapter 1, a spatial domain denoising process has a transform

domain filtering interpretation, where the orthogonal basis elements and the shrinkage

coefficients are respectively the eigenvectors and eigenvalues of a symmetric, positive def-

inite (data-dependent) filter matrix. For filters such as NLM and LARK the eigenvectors

corresponding to the dominant eigenvalues could well represent latent image contents.

Based on this idea, the SAIF filter capable of controlling the denoising strength locally

for any given spatial domain method was discussed in Chapter 2. SAIF iteratively filters

local image patches, and the iteration method and iteration number are automatically

optimized with respect to locally estimated MSE. Although this algorithm does not set

any theoretical limitation over this local window size, computational burden of building

a matrix filter for a window as large as the whole image is prohibitively high.

As shown by Williams and Seeger [36], the Nyström method [15] gives a prac-

tical solution when working with huge affinity (similarity) matrices by operating on

only a small portion of the complete matrix to produce a low-rank approximation. The

Nyström method was initially introduced as a technique for finding numerical solutions

to eigen-decomposition problems in [15] and [37]. The Nyström extension has been

43

Local Global

Global Filter Weights (pixel 1) Global Filter Weights (pixel 2)

2
Local Filter Weights (pixel 1)

Local Filter Weights (pixel 2)

1

Figure 3.1: Comparison of the local and global filter weights for the NLM kernel [2].
The filter weights are computed for the two labeled pixels.

useful for different applications such as manifold learning [38], image segmentation [39],

and image editing [40]. Fortunately, in our global filtering framework, the filter matrix

can be closely approximated with a low-rank matrix using the Nyström method [41].

3.1.1 Local vs. Global

Fig. 3.1 illustrates local and global filter weights computed for two example

pixels. As can be seen, similarity weights are not limited to the local windows and may

be found across the image. Until now, our assumption was that we can compute the

filter W for the whole image. For an image containing n pixels, this filter matrix is of

size n×n, which obviously demands a high computational and storage cost. In general,

the computational complexity of computing and storing the filter W for an image of

size n is O(n2). The proposed low-rank approximation of the filter matrix is explained

next.

44

3.2 Filter Approximation

Since we only need the eigen-decomposition of this matrix, we can approximate

the first p eigenvectors and eigenvalues of it without direct computation of all elements

of W. Although this idea has not been studied for the purpose of filtering before, [39]

used it in the context of spectral grouping, where at first the matrix K is approximated

by means of the Nyström method [15], and then a symmetric normalized version of this

matrix is used for a data clustering scheme. Our objective is different because in the

end we need to approximate the filtering matrix W, hence we first review what is done

in [39] and then adapt it to the approximation we need to effect here.

Fig. 3.2 shows our filter approximation pipeline. First, the Nyström approach

for approximating the similarity (affinity) matrix K is used and then, the Sinkhorn

method (sec. 3.2.2) is applied to estimate the eigen-decomposition of the symmetric,

doubly-stochastic filter W. Since the approximated eigenvectors are not exactly or-

thogonal, finally an orthogonalization procedure is employed to obtain an orthonormal

approximation for eigen-decomposition of W. These steps are shown in Algorithm 2

and we will discuss them in more details below.

3.2.1 Nyström Approximation

This method is a numerical approximation for estimating the eigenvectors of

the symmetric kernel matrix K:

K = ΦΠΦT (3.1)

where Φ = [φ1, ...,φn] represents the orthonormal eigenvectors and Π = [π1, π2, ..., πn]

contains the eigenvalues of K. Nyström [15] suggests that instead of computing all the

entries of K, we can sample our data points and estimate the leading eigenvectors of the

45

Eigendec.

 Eigenvalues:

 Eigenvectors:

Eigenvalue Index (j)

v2 v3 v50

[v1,v2,…, vm]

Orthogonalization

g

Sub-sampled Kernel Weights

Sinkhorn (Iterative row and column normalization)

h li i

Si kh

Figure 3.2: Filter approximation using Nyström extension. Set A represents m samples
from input image and set B contains the rest of pixels (n−m). Matrix KA represents
the kernel weights of the sample set A and KAB shows the kernel weights between
set A and set B. Sinkhorn algorithm approximates the filter sub-matrices WA and
WAB through an iterative normalization procedure. These sub-matrices can be used to
approximate m leading orthonormal eigenvectors and eigenvalues of the filter matrix.
In this example m is set as 50.

matrix K and, as a result, an approximation K̃ can then be built from those estimated

eigenvectors.

Having m pixels in a sampled subimage A, we can compute the m×m kernel

matrix KA which represents the similarity weights of pixels in A. We also define the

subimage B containing the remaining (n−m) pixels, followed by the m×(n−m) matrix

KAB, which contains the kernel weights between pixels in A and B. The similarity

matrix K in block form is therefore:

K =

⎡⎢⎣ KA KAB

KT
AB KB

⎤⎥⎦ (3.2)

where KB denotes the (n − m) × (n − m) similarity weights between pixels in the

subimage1 B. As can be seen, (3.2) can be thought of as a permutation of the old K.

1When n � m, KB can be huge.

46

Algorithm 2: Spectral Approximation of the Filter W

Input: Sub-blocks of the similarity matrix K: {KA,KAB}, let
(m,m) = size(KA) and (m,n−m) = size(KAB)

Output: m leading orthogonal eigenvectors and eigenvalues of the

approximated filter Wm: {Vm,Sm}
Nyström Approximation :

1- KA = ΦAΠAΦ
T
A; ⇐ Eigen-decomposition of the sub-block KA

2- Φ̃ =

⎡⎢⎣ ΦA

KT
ABΦAΠ

−1
A

⎤⎥⎦ ; ⇐ Approximate the m leading eigenvectors of K

Sinkhorn :

3- r = ones(n, 1); πA = diag(ΠA);

4- for i = 1 : iter

c = 1./
(
Φ̃(πA.(Φ̃

T
r))

)
; ⇐ Column normalization weights

r = 1./
(
Φ̃(πA.(Φ̃

T
c))

)
; ⇐ Row normalization weights

end

5- for i = 1 : m

WA,AB = r(i)(πT
A.Φ̃(i, :))(repmat(c, [1,m]).Φ̃)T ;

end

6- WA = WA,AB(:, 1 : m); ⇐ Sub-block of the symmetrized Wsym

7- WAB = WA,AB(:,m+ 1 : n); ⇐ Sub-block of the symmetrized Wsym

Orthogonalization :

8- W
1/2
A = sqrtm(WA);

9- Q = WA +W
−1/2
A WABW

T
ABW

−1/2
A ;

10- Q = VQSQV
T
Q; ⇐ Eigen-decomposition of the symmetric matrix Q

11- Vm =

⎡⎢⎣ WA

WT
AB

⎤⎥⎦W
−1/2
A VQS

−1/2
Q ; ⇐ Approximated orthogonal

eigenvectors

12- Sm = SQ; ⇐ Approximated eigenvalues

47

Nyström suggests the following approximation for the first m eigenvectors of K:

Φ̃ =

⎡⎢⎣ ΦA

KT
ABΦAΠ

−1
A

⎤⎥⎦ (3.3)

where KA = ΦAΠAΦ
T
A. Intuitively, we can say that the first m entries of Φ̃ are

computed exactly, and the (n − m) remaining ones are approximated by a weighted

projection of KAB over the eigenvectors of KA. Then the approximated similarity

matrix will be:

K̃ = Φ̃ΠAΦ̃
T

=

⎡⎢⎣ ΦA

KT
ABΦAΠ

−1
A

⎤⎥⎦ΠA

[
ΦT

A Π−1
A ΦT

AKAB

]

=

⎡⎢⎣ KA KAB

KT
AB KT

ABK
−1
A KAB

⎤⎥⎦ (3.4)

Comparing (3.2) and (3.4) it can be seen that the huge matrix KB is approximated by

KT
ABK

−1
A KAB.

A key aspect of the Nyström approximation is the sampling procedure in which

the columns (or rows) of the original K are selected. The Nyström method was first

introduced by a uniform distribution sampling over data [36]. Efficiency of the uniform

sampling has been explored in many practical applications [38, 39]. More recently,

theoretical aspects of nonuniform sampling techniques on real-world data sets have been

studied [42, 43]. In general, these nonuniform sampling procedures are biased toward

selection of the most informative points of the data-set. However, due to the imposed

complexity of the nonuniform distribution updating procedure, practical application of

these adaptive methods is limited.

48

In the current framework, our data are images which contain a high degree

of spatial correlation between pixels. This leads us to use spatially uniform sampling

instead of the random sampling procedure (comparisons given in Sec. 3.2.4). Spatially

uniform sampling is a simple but effective approach in which samples are always equally

spaced.

To study the performance of the Nyström approximation, we evaluate the

relative accuracy defined in [43]:

Relative Accuracy =
‖K−K(r)‖F
‖K− K̃(r)‖F

× 100

where K and K(r) are the actual kernel and its exact rank-r approximation. The

approximated kernel K̃(r) is reconstructed by using r leading eigenvectors from the

Nyström method. The relative accuracy is lower bounded by zero and will ideally

approach 100%.

The relative accuracy of approximating the globalized NLM kernel [2] as a

function of the sampling rate is shown for some benchmark images in Fig. 3.3. We fixed

r = 50 to capture about 90% of the spectral energy of the global kernel for each image.

The samples are uniformly selected over the image lattice, and the relative accuracy

is averaged for 20 sampling realizations. It can be seen that while higher sampling

percentage leads to smaller error in the approximated kernel matrix, a saturation point

is reached beyond 20% sampling density. Furthermore, for a fixed sampling rate the

error depends on the contents of the underlying image. Surprisingly, textured images

with high frequency components such as Mandrill produce less error compared to smooth

images like House. This observation is consistent with results of [44] where it is shown

that the error of the Nyström approximation is proportional to coherence of the kernel

eigenvectors.

49

One could assume that at this point we can easily compute our approximated

W and we are done! But as discussed earlier, statistical analysis of this filter needs

access to its eigen-decomposition. Constructing a huge W matrix and then computing

its eigenvectors is too expensive. Instead, in the following we explore an efficient way

to find the eigenvectors of W directly.

3.2.2 Sinkhorn

The filter W is the row-normalized kernel matrix K:

W = D−1K (3.5)

where D = diag[
∑n

j=1K1j ,
∑n

j=1K2j , ..,
∑n

j=1Knj]. We approximate the matrix W

with a doubly-stochastic (symmetric) positive definite matrix, using Sinkhorn’s algo-

rithm [26]. Based on this method, given a positive valued matrix K, there exist diagonal

matrix R = diag(r) such that Wsym = RKR.

Since we have estimated the leading eigenvectors of K, there is no need to

compute RKC. Instead, as can be seen in Algorithm 2, Wsym is approximated by its

two sub-blocks WA and WAB where:

Wsym =

⎡⎢⎣ WA WAB

WT
AB WB

⎤⎥⎦ (3.6)

Again, the Nyström method could give the approximated eigenvectors, but the only

minor problem is that these eigenvectors are not quite orthogonal. In the following we

discuss an approximation of the orthogonal eigenvectors.

1In the iterative row and column normalization process of Algorithm 2, construction of the matrix
K̃ is avoided by using element-wise multiplication.

50

0 2 4 6 8 10 12 14 16 18 20
40

50

60

70

80

90

100

Sampling Rate

R
el

at
iv

e
A

cc
ur

ac
y

80

90

100

cc
ur

ac
y

4 6 8 10

Figure 3.3: Accuracy of the kernel approximation for different sampling rates (sampling
rate percentage is defined as m

n × 100% where m denotes the number of samples and
n represents number of pixels in the image). For the ease of computation of the exact
filter, 150×150 subimages of Mandrill, Barbara and House are selected.

3.2.3 Orthogonalization

With the two sub-blocks WA and WAB in hand, here we derive an expression

for approximating the orthogonalized eigenvectors Vm. As discussed in [39], for any

positive definite matrix, the orthogonalized approximated eigenvectors can be solved in

one step. Let W
1/2
A denote the symmetric positive definite square root of WA. We de-

fine Q = WA +W
−1/2
A WABW

T
ABW

−1/2
A and we also consider the eigen-decomposition

of this symmetric matrix as Q = VQSQV
T
Q. Then, it can been shown that the approx-

imated symmetric Wm is diagonalized by Sm = SQ and Vm where:

Vm =

⎡⎢⎣ WA

WT
AB

⎤⎥⎦W
−1/2
A VQS

−1/2
Q (3.7)

Then the approximated filter can be expressed as:

Wm = VmSmVT
m (3.8)

51

0.5 1 1.5 2 2.5 3
24

25

26

27

28

29

30

31

32

33

Sampling Rate

P
S

N
R

(d
B

)

_ _ _ _ _ Exact Filter
_______ Approx. Filter

(House)

(Barbara)

(Mandrill)

Figure 3.4: Comparison of the denoising performance (AWG with σ = 20) of the exact
and approximated filter for the subimages in Fig. 3.3.

Proof of this approximation is given in Appendix 5.A.

The described three-step procedure provides us with an approximation of the

leading eigenvectors and eigenvalues of the filter. Denoising performance of the ap-

proximated filter is compared to the exact filter in Fig. 3.4. These results suggest

that the proposed approximation with a very small sampling rate can nearly match the

performance of the exact filter.

As discussed previously, the spatially uniform sampling seems to fit our algo-

rithm the best. To further understand the difference between uniform distribution and

spatially uniform sampling, an experiment is carried out next.

52

Sampling Rate
0.004 0.008 0.012 0.016 0.020 0.024 0.028 0.032 0.036 0.040 0.044

R
el

at
iv

e
R

M
S

E

0

1

2

3

4

5

6

7

 Uniform Distribution Sampling
 Spatially Uniform Sampling

Figure 3.5: Left: Input image, Right: Approximation error of global filter computed

for the input image as relative RMSE = ‖y−VmIVT
my‖

‖y‖ × 100% for spatially uniform,

and uniform distribution sampling. For each sampling rate (mn × 100%), associated
error of 10 different realizations of the sampling methods are averaged. The error bars
correspond to the standard deviation of the relative RMSE.

3.2.4 Spatially Uniform vs. Random Sampling

The approximated filter spans the input image onto its eigenvectors. This as-

sumption means that the underlying image y should be “well represented” (or spanned)

by these eigenvector bases. For a better validation of our sampling scheme, Fig. 3.5

shows relative root-mean-square-error (relative RMSE = ‖y−VmIVT
my‖

‖y‖ × 100%) for the

input test image. The relative RMSE values are computed for the image in range

[0,255] and various values of m. Unsurprisingly, the approximation error of both sam-

pling schemes (spatially uniform and uniform distribution) shrink as the number of

retained eigenvectors grows. As can be seen, error associated with the spatial sampling,

at worst, equals error from the random sampling. Another advantage of the spatially

uniform sampling is the smaller variance of error, which leads to a more stable filter

approximation.

53

Summary – Our proposed filter approximation procedure was explained in

this chapter. Our contribution to the existing line of research is to lower the complexity

of computing the global filter from quadratic to linear. This approximation relies on

the low-rank property of the global matrix affinities, which is due to the self-similarities

in natural images. The next chapters will discuss applications of the proposed filtering

framework.

3.A Eigenvector orthonormalization

Having the two sub-blocks WA and WAB of the filter W and defining Q =

WA +W
−1/2
A WABW

T
ABW

−1/2
A with the eigen-decomposition Q = VQSQV

T
Q, we aim

to show that the orthonormal eigenvector bases for the estimated filter Wm are:

Vm =

⎡⎢⎣ WA

WT
AB

⎤⎥⎦W
−1/2
A VQS

−1/2
Q (3.9)

We first need to check Wm = VmSQV
T
m:

Wm = {

⎡⎢⎣ WA

WT
AB

⎤⎥⎦W
−1/2
A VQS

−1/2
Q }SQ{S−1/2

Q VT
QW

−1/2
A

[
WA WAB

]
}

= VmSQV
T
m (3.10)

In addition, we check the orthogonality of Vm as follows:

VT
mVm = S

−1/2
Q VT

QW
−1/2
A

[
WA WAB

]⎡⎢⎣ WA

WT
AB

⎤⎥⎦W
−1/2
A VQS

−1/2
Q

= S
−1/2
Q VT

QQVQS
−1/2
Q

= I (3.11)

As a result, the approximated eigen-decomposition is orthogonal.

54

Chapter 4

Global Image Denoising

Abstract – Most existing state-of-the-art image denoising algorithms are based

on exploiting similarity between a relatively modest number of patches. These patch-

based methods are strictly dependent on patch matching, and their performance is

hamstrung by the ability to reliably find sufficiently similar patches. As the number

of patches grows, a point of diminishing returns is reached where the performance im-

provement due to more patches is offset by the lower likelihood of finding sufficiently

close matches. The net effect is that while patch-based methods such as BM3D are

excellent overall, they are ultimately limited in how well they can do on (larger) images

with increasing complexity. In this work, we address these shortcomings by developing

a paradigm for truly global filtering where each pixel is estimated from all pixels in the

image. Our objective in this chapter is to give a statistical analysis of our proposed

global filter, based on a spectral decomposition of its corresponding operator. This

framework relies on the filter approximation discussed in Chapter 3, where the spectral

(principal) components of the global affinities are approximated using the Nyström ex-

tension. Experiments illustrate that our strategy can effectively globalize any existing

55

denoising filters to estimate each pixel using all pixels in the image, hence improving

upon the best patch-based methods.

4.1 Global Denoising Scheme

The block diagram of the proposed global image denoising (GLIDE) framework

is illustrated in Fig. 4.1. As can be seen, after applying a pre-filter on the noisy image,

a small fraction of the pixels are sampled to be fed to the Nyström method. Then,

the global filter is approximated through its eigenvalues and eigenvectors. The final

estimate of the image is constructed by means of shrinkage of the filter eigenvalues.

Denoting n as the total number of the pixels in the image, our one-shot, global,

full-space filter for the whole image can be expressed as:

ẑ = Wy = VSVTy, (4.1)

in which the eigenvectors V = [v1, ...,vn] specify a complete orthonormal basis for Rn

and S = diag[λ1, ..., λn] contains the eigenvalues indexed in decreasing order 0 ≤ λn ≤
... < λ1 = 1. This implies that the input image y is first projected onto the full-space

eigenvectors of W, then each mode of the projected signal is shrunk by its corresponding

eigenvalue, and finally after mapping back to the signal domain, the recovered signal ẑ

is produced.

Not surprisingly, the computational burden of constructing and decomposing

such a large matrix as W is prohibitively high. However, the Nyström approximation,

combined with our statistical analysis allows an efficient solution [41]. The low-rank

approximation procedure described in Chapter 3 shows that:

W ≈ Wm = VmSmVT
m, (4.2)

56

Input

Nystrӧm Extension
Filter Eigen-decomposition

Approximation

Output

Eigenvectors Eigenvalues

Filter Optimization

Iteration & Truncation

Optimal Filter

Pre-filter & sampling

Approx. Kernel

v2

v3

v4

vp

A B

λ2

λ3

λ4

λp

Figure 4.1: GLIDE’s pipeline. From left to right, for a noisy image we first apply
a pre-filter to reduce the noise level. Then using a spatially uniform sampling, the
global kernel is approximated by employing the Nyström extension (A and B represent
the samples and the rest of the pixels in the image, respectively). As discussed in
Chapter. 3, using the obtained kernel, the leading eigenvalues and eigenvectors of the
filter are approximated (The eigenvector v1 is not shown because it is constant). Finally,
the optimal filter is constructed by shrinking (iteration and truncation) the eigenvalues.
The filter optimization step is detailed in Section 4.2.

where Vm = [v1, ...,vm] denote an orthonormal basis for Rm and Sm = diag[λ1, ..., λm]

in which m << n. The behavior of the full-space and approximated filter in terms of

MSE is analyzed next.

4.2 Statistical Analysis of the Global Filter

Let’s assume that all of the eigenmodes of the filter W are used without any

change and the filter W is stochastically independent from the input image y. Then,

starting from the MSE of each pixel, in Chapter 2 we showed that the overall ideal MSE

for the whole image is:

MSE =
1

n

n∑
j=1

(1− λj)
2b2j + σ2λ2

j (4.3)

where in the above, ‖bias(ẑ)‖2 = 1
n

∑n
j=1(1 − λj)

2b2j and var(ẑ) = σ2

n

∑n
j=1 λ

2
j and

b = VT z = [b1, ..., bn]
T contains the projected signal in all modes. Apparently, MSE

57

is a function of the latent signal, noise, filter eigenvalues and eigenvectors. The filter

eigenvalues are the shrinkage factors which directly tune the filtering performance.

As discussed in [23], minimization of the MSE as a function of the filter eigen-

values leads to the Wiener filter:

λ∗
j =

1

1 + snr−1
j

(4.4)

where snrj =
b2j
σ2 . This optimum shrinkage requires exact knowledge of the signal-to-

noise ratio in each channel.

Estimation accuracy can sometimes be improved by shrinking or setting some

coefficients to zero. By doing so we may sacrifice some bias to reduce the variance of

the estimated values, and hence may improve the overall estimation accuracy.

4.2.1 Truncated Filter

The filtering framework in (4.1) can be performed for the leading (say m < n)

eigenvalues of the filter W. As we show in Appendix 5.A, such a filter has the following

MSE:

MSE(m) =
1

n

n∑
i=1

z2i +
1

n

m∑
j=1

(
(λ2

j − 2λj)b
2
j + σ2λ2

j

)
(4.5)

where in the above, ‖bias(ẑ)‖2 =
∑n

i=1 z
2
i +

∑m
j=1(λ

2
j −2λj)b

2
j and var(ẑ) = σ2

∑m
j=1 λ

2
j .

For the sake of comparison, we can assume that all the signal modes are available and

then
∑n

i=1 z
2
i can be replaced with

∑n
i=j b

2
j . After some simplifications we can rewrite

our MSE expression as:

MSE(m) =
1

n

n∑
j=1

(1− λj)
2b2j + σ2λ2

j︸ ︷︷ ︸
MSE(n)

+
1

n

n∑
j=m+1

(2λj − λ2
j)b

2
j − σ2λ2

j︸ ︷︷ ︸
ΔMSE

(4.6)

58

As can be seen, MSE(m) of the truncated filter differs from (4.3) by the amount given

in the second term of (4.6); i.e. ΔMSE = 1
n

∑n
j=m+1(2λj−λ2

j)b
2
j −σ2λ2

j . This difference

is also composed of bias and variance parts as ΔMSE = Δ‖bias‖2 +Δvar where

Δ‖bias‖2 =
1

n

n∑
j=m+1

(2λj − λ2
j)b

2
j (4.7)

Δvar = − 1

n

n∑
j=m+1

σ2λ2
j (4.8)

This shows, consistent with intuition, that the truncation lowers the variance and in-

creases the bias. Given this analysis, we can determine when truncation improves the

MSE. That is, when ΔMSE < 0. A simple sufficient condition is that for all j,

snrj <
λj

2− λj
(4.9)

Intuitively we can conclude that all the channels in the range of m + 1 ≤ j ≤ n with

sufficiently small signal-to-noise ratio should be set to zero. This inequality can also be

expressed as:

λj >
2

1 + snr−1
j

(4.10)

Comparing this inequality with the Wiener shrinkage criterion in (4.4), it can be seen

that λj > 2λ∗
j . That is, the condition implied by (4.10) is a stronger form of shrinkage

than what the Wiener condition would dictate.

4.2.2 Iterative Filter

Although the estimated MSE can be reduced by truncating some of the eigen-

modes, hard thresholding prevents the accuracy of the estimation to be close to optimal.

To ameliorate this shortcoming, iteration can gradually tune the (truncated) filter to

softly vary its filtering strength. As such, the iteration and truncation numbers are the

59

only parameters to be globally optimized. Our iterative diffusion model [23] is:

ẑ = Ŵy = VmSk
mVT

my, (4.11)

where Vm = [v1,v2, ...,vm], Sk
m = diag[λk

1 , λ
k
2 , ..., λ

k
m] and k denotes the iteration num-

ber.1 Fig. 4.2 illustrates corresponding filter weights of the marked pixel in the House

image. As can be seen, different iteration and truncation numbers can effectively vary

the behavior of the filter to find similar pixels all over the image.

With this model, we can rewrite (4.5) for the truncated iterative filter:

MSE(k,m) =
1

n

n∑
i=1

z2i +
1

n

m∑
j=1

(
(λ2k

j − 2λk
j)b

2
j + σ2λ2k

j

)
(4.12)

Overall, our minimization problem will be extended to estimating the shrinkage (k̂) and

truncation (m̂) factors from an estimate of MSE:

k̂, m̂ = argmin
k,m

M̂SE(k,m) (4.13)

where M̂SE(k,m) denotes an estimate of MSE(k,m). The shrinkage and truncation

parameters are simultaneously optimized such that (k̂, m̂) is the global minimum of

M̂SE(k,m). Minimization of M̂SE(k,m) determines the best parameters to help avoid

under- or over-smoothing.

Although the diffusion iteration is chosen in our framework, our analysis makes

it possible to use other iterations too. In general, any iterative approach can be defined

as substituting the eigenvalues λj with a shrinkage function fk(λj) where in the case

of diffusion fk(λj) = λk
j . Another alternative can be the boosting iteration which is a

complementary mechanism to recycle lost details of the filtered signal (See Chapter. 2 for

more details). In this case, the eigenvalues will be modified as fk(λj) = 1− (1−λj)
k+1.

1It is noteworthy that the spectral decomposition of Wk makes it possible to replace k with any
real number. It is important to note that because of this, k can really be thought of as a shrinkage

60

0

0.2

0.4

0.6

0.8

1
x 10-4

0

1

2

3

4

5

6

7
x 10-4

0

0.5

1

1.5

2

2.5

x 10-4

2

4

6

8

10

12

x 10-5

0.5

1

1.5

2

x 10-4

0

1

2

3
x 10-4

(k = 0.1, m = 400) (k = 0.3, m = 400) (k = 0.5, m = 400)

(k = 0.2, m = 100) (k = 0.2, m = 200) (k = 0.2, m = 300)

Figure 4.2: Filter weights with different shrinkage (k) and truncation (m) parameters
are computed for the labeled pixel in the House image.

4.2.3 Practical Filtering

In the estimation of the MSE in (4.12), we assumed that the filterW is stochas-

tically independent from the input image y. It has been shown that in the case of a

smooth filter (kernel with small gradient), a pre-filter can effectively decouple W from

y [26]. The smoothness of the filter is approximately true when the filter is computed

for locally homogenous patches. By approximating the local signal-to-noise ratio, this

type of MSE estimator has been shown to work quite well in Chapter 2. However, in

the case of the global filter, pixels with different local structures are connected to each

other; which means drastic changes in the filter values. In other words, W and y are not

stochastically decoupled. This nonlinearity specifically affects the estimated variance in

parameter that controls the rate of decay of the modified eigenvalues λk
j . Going forward, we will use

the terms “shrinkage factor” and “iteration number” interchangeably.

61

the ideal MSE presented in (4.12). Inspired by the SURE estimator [30], we can show

that the estimated variance can be modified as:

var(ẑ) ≈ σ2

n

m∑
j=1

λ2k
j +

2σ2

n

⎛⎝div(ẑ(y))−
m∑
j=1

λk
j

⎞⎠ (4.14)

where div(ẑ(y)) ≡ ∑
i
∂ẑi(y)
∂yi

. In the case of a strictly linear filter, div(ẑ(y)) =
∑m

j=1 λ
k
j ,

which leads to the ideal variance in (4.12). Intuitively, the second term in (4.14) takes

care of the variance due to the nonlinearity.

It is quite straightforward to show that the bias term in (4.12) can be better

estimated as:

‖bias(ẑ)‖2 ≈ 1

n

n∑
i=1

y2i − σ2 +
1

n

m∑
j=1

(λ2k
j − 2λk

j)(b̌
2
j − σ2) (4.15)

where b̌ = VTy. The expected value of this estimator is exactly the ideal squared bias

in (4.12). Overall, the estimated MSE of the general nonlinear filter has the following

form:

M̂SE(k,m) = SURE(k,m) =
1

n

n∑
i=1

y2i −σ2+
1

n

m∑
j=1

(λ2k
j − 2λk

j)b̌
2
j +2σ2div(ẑ(y)) (4.16)

which is the SURE estimator [30]. For large data sets (such as our global framework),

closeness of the SURE risk estimator to the actual MSE is assured by the law of large

numbers.

Approximation of div(ẑ(y)) has been studied in [45] and [27]. Ramani’s Monte-

Carlo algorithm [27] uses a first-order difference approximation to obtain an estimate

of the divergence term. Based on this method, the divergence term can be computed

from div(ẑ(y)) = 1
εa

T (ẑ(y) − ẑ(y′)) where y′ = y + εa in which a is a zero-mean i.i.d

random vector of unit variance and in practice ε gets small positive values (in theory

ε −→ 0).

62

 0

0.5

1

1.5

0

2

4

6

x 10-4

0

2

4

6

8
x 10-4

0

0.5

1

1.5

2

2.5

3

x 10-3

0.5

1

1.5

2

2.5

3

3.5
x 10-4

0

2

4

6

8

10

12

x 10-3

0

1

2

3

4
x 10-3

 0

1

2

3

4

5

6

 0

0.2

0.4

0.6

0.8

1

1.2

1
3

2

Optimal Weights (pixel 1) Optimal Weights (pixel 2) Optimal Weights (pixel 3) Noisy Image (σ=20)

1

2

3

Noisy Image (σ=20) Optimal Weights (pixel 1) Optimal Weights (pixel 2) Optimal Weights (pixel 3)

Noisy Image (σ=20) Optimal Weights (pixel 1) Optimal Weights (pixel 2) Optimal Weights (pixel 3)

1

2

3

Figure 4.3: Optimal filter weights for the labeled pixels in the images. The optimal
iteration and truncation numbers for each image are estimated as, House: k̂ = 0.16 and
m̂ = 40, Barbara: k̂ = 0.14 and m̂ = 65, Mandrill: k̂ = 0.33, m̂ = 165.

Performance of the proposed estimator in (4.16) is evaluated in Figs. 4.3 and

4.4. As can be seen in Fig. 4.3, the optimized filter weights for the labeled pixels

are computed based on the estimated iteration and truncation parameters. The actual

and estimated MSE plots are shown in Fig. 4.4 where, as can be seen, the estimated

shrinkage parameters are very close to their actual values.

63

Actual MSE (House) Actual MSE (Barbara) Actual MSE (Mandrill)

k

m

0 0.1 0.2 0.3 0.4 0.5

20

40

60

80

100

120

140

160

180

200
40

60

80

100

120

140

160

180

200

k

m

0 0.1 0.2 0.3 0.4 0.5

20

40

60

80

100

120

140

160

180

200 70

80

90

100

110

120

130

140

150

160

170

180

k

m

0 0.1 0.2 0.3 0.4 0.5

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

320

340

Estimated MSE (House) Estimated MSE (Barbara) Estimated MSE (Mandrill)

k

m

0 0.1 0.2 0.3 0.4 0.5

20

40

60

80

100

120

140

160

180

200
40

60

80

100

120

140

160

180

200

k

m

0 0.1 0.2 0.3 0.4 0.5

20

40

60

80

100

120

140

160

180

200 70

80

90

100

110

120

130

140

150

160

170

180

k

m

0 0.1 0.2 0.3 0.4 0.5

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

320

340

Figure 4.4: Corresponding MSE of the images in Fig. 4.3. The ideal and estimated
iteration and truncation numbers are respectively: House (ideal: 0.19, 45, estimated:
0.16, 40), Barbara (ideal: 0.14, 65, estimated: 0.14, 65), Mandrill (ideal: 0.34, 160,
estimated: 0.33, 165).

4.3 Results and Comparisons

In this section, performance of our algorithm is compared to state-of-the-art

denoising methods for some benchmark images. We selected NLM [2] as our baseline

kernel; however, any other non-local kernel could also be used. The filter approximation

described in Chapter 3 is employed in our experiments. Pixel samples for the Nyström

extension are uniformly selected and the sampling rate is set as 1% and is kept fixed

throughout the experiments.

Performance of the proposed filter is quantified across different noise levels in

Table 4.1. For each noise level, we report the Monte-Carlo average performance for

each algorithm over 5 different noise realizations. We highlight (in bold) both the best

64

Table 4.1: PSNR values of NLM [2] (1st column), and the proposed method (2nd column). Results noted are

average PSNR (top) and SSIM [10] (bottom) over 5 independent noise realizations for each σ.

σ
Monarch House Cameraman Aerial Mandrill Stream Avgerage

NLM G-NLM NLM G-NLM NLM G-NLM NLM G-NLM NLM G-NLM NLM G-NLM Improvement

10
33.43 33.50 35.25 35.46 33.43 33.62 30.54 30.78 30.01 30.30 30.54 30.79 0.22
0.940 0.945 0.893 0.901 0.914 0.921 0.930 0.932 0.891 0.903 0.893 0.903 0.009

20
29.26 29.67 32.37 32.63 29.41 29.49 26.23 26.59 25.69 25.96 26.36 26.67 0.29
0.894 0.903 0.847 0.857 0.834 0.852 0.829 0.834 0.769 0.781 0.736 0.748 0.014

30
27.16 27.65 30.18 30.57 27.54 27.78 24.36 24.65 23.85 24.42 24.69 25.19 0.39
0.841 0.863 0.796 0.827 0.786 0.817 0.755 0.770 0.652 0.684 0.646 0.671 0.031

40
25.53 26.32 28.32 29.01 25.98 26.47 23.01 23.34 22.69 22.36 23.61 24.29 0.62
0.778 0.833 0.721 0.799 0.715 0.787 0.691 0.713 0.578 0.628 0.579 0.630 0.055

50
24.44 25.24 26.94 27.73 24.90 25.28 21.95 22.39 21.80 22.64 22.75 23.56 0.71
0.727 0.802 0.670 0.773 0.657 0.735 0.629 0.658 0.507 0.584 0.518 0.592 0.074

results, and also results that are statistically within the margin of standard error from

the best results (0.05 dB in PSNR and 0.005 SSIM). In this set of experiments, the

pre-filtered images are obtained from NLM. As can be seen, our method consistently

improves upon NLM in terms of PSNR and SSIM index [10], especially for high noise

levels where local similar pixels are more difficult to find.

Fig. 4.5 demonstrates the denoising results obtained by NLM compared to the

proposed method. In addition to the PSNR improvement, visual quality of the proposed

method also is superior to the NLM filter. As it can be seen, both edges and smooth

features of the image are preserved better than the other methods.

In the next set of experiments shown in Table 4.2, the pre-filtered images are

obtained from BM3D [5]. Our method can improve upon BM3D especially at high noise

levels and for images with semi-stochastic textures which contain relatively few similar

patches.

Denoising results for the Mandrill and Monarch images for BM3D and the

globalized BM3D are compared in Fig. 4.6. As can be seen, the proposed method can

bootstrap the performance of BM3D.

Since in practice the distribution of the noise is not additive white Gaussian,

65

(a) Noisy Cameraman (b) NLM(PSNR=25.98, SSIM=0.715) (c) G-NLM(PSNR=26.47, SSIM=0.787)

(d) Noisy House (e) NLM(PSNR=28.32, SSIM = 0.721) (f) G-NLM(PSNR=29.01, SSIM = 0.799)

Figure 4.5: Comparison of denoising performance on noisy images corrupted by AWGN
of σ = 40. (a),(d) Noisy input, (b),(e) NLM [2], (c),(f) G-NLM.

we also tested our algorithm for real noise in color images2. In this set of experiments

the best results are optimized using the no-reference quality metric in [28]. Fig. 4.7

shows performance of the proposed method for improving the NLM filter. We also

compare our results to the commercial Neat Image™denoising software in Fig. 4.8. As

can be seen, our result is competitive to the commercial state-of-the art denoising. We

note that our Matlab code and additional results are available at the project website3.

Running time for denoising a 256 × 256 grayscale image with an unoptimized

2The color denoising is applied in YUV space, where the weights are computed from the Y channel,
and applied to the U and V channels.

3http://www.soe.ucsc.edu/~htalebi/GLIDE.php.

66

http://www.soe.ucsc.edu/~htalebi/GLIDE.php

Table 4.2: PSNR values of BM3D [5] (1st column), and the proposed method (2nd column). Results noted

are average PSNR (top) and SSIM [10] (bottom) over 5 independent noise realizations for each σ.

σ
Monarch House Cameraman Aerial Mandrill Stream Average

BM3D G-BM3D BM3D G-BM3D BM3D G-BM3D BM3D G-BM3D BM3D G-BM3D BM3D G-BM3D Improvement

10
34.12 34.08 36.67 36.70 34.05 34.06 31.09 31.07 30.57 30.65 31.14 31.17 0.02
0.956 0.956 0.920 0.921 0.930 0.932 0.938 0.939 0.896 0.902 0.906 0.909 0.002

20
30.42 30.56 33.78 33.81 30.41 30.45 27.22 27.32 26.58 26.71 27.25 27.33 0.08
0.920 0.923 0.871 0.872 0.874 0.878 0.864 0.869 0.790 0.802 0.790 0.798 0.006

30
28.42 28.52 32.04 32.09 28.58 28.61 25.24 25.31 24.53 24.70 25.46 25.59 0.09
0.885 0.889 0.846 0.849 0.835 0.840 0.798 0.806 0.697 0.728 0.700 0.719 0.012

40
26.66 26.85 30.56 30.61 27.09 27.20 23.77 23.90 23.07 23.25 24.32 24.51 0.15
0.846 0.851 0.822 0.828 0.804 0.819 0.737 0.740 0.614 0.652 0.630 0.654 0.015

50
25.72 25.98 29.64 29.73 26.05 26.28 22.94 23.14 22.32 22.57 23.57 23.79 0.21
0.820 0.827 0.809 0.813 0.779 0.801 0.690 0.705 0.545 0.587 0.575 0.596 0.019

implementation of our method is about 160 seconds on a 2.8 GHz Intel Core i7 processor.

However, parallelizing can significantly speed up our method. For instance, running time

of the parallelized version of our code executed with 4 separate cores takes about 50

seconds.

4.4 Oracle Results and Existing Room for Improvement

For better understanding of the global filter, we studied the oracle performance

of the proposed method and compared this to the oracle performance 4 of other (mainly

patch-based) methods in Table 4.3. As can be seen, the oracle GLIDE outperforms other

oracle methods by a significant margin. While this margin is only a bound on how much

improvement we can expect in practice, it does convey an interesting and tantalizing

message. Namely (at least asymptotically) patch-based methods are inherently limited

in performance [20] in a way that global filtering is not. More specifically, the oracle

PSNR values for the global filter point to essentially perfect reconstruction of the noise-

free image, which is apparently impossible to achieve for oracle versions of algorithms

4The oracle NLM has all the kernel weights computed from the clean image and in the case of the
oracle BM3D [5] which has been shown to be near optimal [46] (among patch-based methods), the
pre-filtered image is replaced by the clean image (which means that the Wiener shrinkage and the patch
grouping are implemented perfectly). Similarly, the oracle GLIDE has all the global weights computed
from the clean image.

67

(a) Zoomed Mandrill (b) BM3D (c) G-BM3D

(d) Zoomed Monarch (e) BM3D (f) G-BM3D

Figure 4.6: Comparison of denoising performance on noisy images corrupted by AWGN
of σ = 50. (a),(d) Original image, (b) BM3D [5] (PSNR=22.32, SSIM=0.545), (c)
G-BM3D (PSNR=22.57, SSIM=0.587), (e) BM3D [5] (PSNR=25.72, SSIM=0.820), (f)
G-BM3D (PSNR=25.98, SSIM=0.827).

like such as BM3D, even if all the filter parameters are known exactly.

The next chapter discusses oracle performance of the global filter in more

depth. Using the estimated MSE, an upper bound on the performance of the global

filter is derived in Chapter 5. More specifically, regardless of the image content, the

MSE bound has a decay rate of O(1n) where n denotes the number of pixels.

68

(a) Tower (b) CBM3D (c) G-NLM

(d) JFK (e) CBM3D (f) G-NLM

Figure 4.7: Comparison of denoising performance on the real noise. (a) and (d) Noisy
image, (b) and (e) CBM3D [5], (c) and (f) G-NLM.

Summary – This work is, to our knowledge, the very first truly global denois-

ing algorithm to be proposed. The global approach goes beyond the dominant paradigm

of non-local patch-based processing, which we have shown here to be inherently limited.

The specific contribution we have made is to develop a practical algorithm to compute

a global filter which in effect uses all the pixels in the input image to denoise every

single pixel. By exploiting the Nyström extension, we have made the global approach

computationally tractable. Since the global filter uses all the pixels of the image, exact

computation of the filter weights has a complexity O(n2), whereas the proposed sample

69

(a) Bird (Noisy) (b) Neat Image™ (c) G-NLM

Figure 4.8: Comparison of denoising performance on the real noise. (a) Noisy im-
age, (b) Neat Image™, (c) G-NLM. (Neat Image™denoising software is available at
http://www.neatimage.com.)

Table 4.3: PSNR values of oracle NLM [2] (1st column), oracle BM3D [5] (2nd column), and the oracle

GLIDE (3rd column). Results noted are average PSNR over 5 independent noise realizations for each σ.

σ
Monarch House Cameraman Aerial

NLM BM3D GLIDE NLM BM3D GLIDE NLM BM3D GLIDE NLM BM3D GLIDE

10 35.01 36.55 43.16 36.52 39.29 51.24 34.82 36.72 41.58 31.95 33.56 48.75

20 30.87 33.02 41.83 34.05 36.54 47.18 31.01 33.15 40.49 27.78 29.75 45.37

30 28.95 31.08 40.41 32.48 34.97 44.89 28.91 31.20 39.28 26.13 27.74 42.99

40 27.62 29.75 39.27 31.18 33.82 43.08 27.39 29.89 38.17 24.91 26.41 41.21

50 26.84 28.12 38.25 29.96 32.48 41.60 26.85 28.56 37.16 23.85 25.50 39.86

based approximation, the complexity is reduced to linear time O(mn), where m is the

number of samples, typically a small fraction of the total number of pixels. At the same

time, the experimental results demonstrated that the proposed approach improves over

the best existing patch-based methods in terms of both PSNR and subjective visual

quality. While this improvement is modest, it is only a starting point, as we have good

reason to believe that the improvement in performance brought by the global approach

will grow substantially with increasing image size. In Chapter 5, we will present a more

detailed analysis of the asymptotic performance of global denoising filters and quantify

this gain as a function of image size and the degrees of freedom implied by the the image

70

http://www.neatimage.com

content.

4.A MSE analysis of the truncated filter

Each row of the truncated filter can be expressed as:

w̃T
i =

m∑
j=1

λjvj(i)v
T
j , (4.17)

where vj(i) denotes the i-th entry of the j-th eigenvector. Then each estimated pixel

ẑi has the following form:

ẑi =
m∑
j=1

λjvj(i)v
T
j y, (4.18)

Bias of this estimate can be expressed as5:

bias(ẑi) = zi − E(ẑi) = zi −
m∑
j=1

λjvj(i)bj (4.19)

where b = VT z = [b1, ..., bm]T contains the projected signal in the first m modes. The

variance term also has the following form:

var(ẑi) = σ2(w̃T
i w̃i) = σ2(

m∑
j=1

λjvj(i)v
T
j)(

m∑
j′=1

λj′vj′(i)vj′) = σ2
m∑
j=1

λ2
jvj(i)

2 (4.20)

The truncated filter’s expected squared error for the i-the pixel is::

E(m)[(ẑi − zi)
2] = bias(ẑi)

2 + var(ẑi)

= (zi −
m∑
j=1

λjvj(i)bj)
2 + σ2

m∑
j=1

λ2
jvj(i)

2

= z2i +
m∑
j=1

(
λ2
j(b

2
j + σ2)vj(i)

2 − 2ziλjvj(i)bj
)

(4.21)

We can show that the total MSE for the whole image is:

MSE =
1

n

n∑
i=1

E(m)[(ẑi − zi)
2] =

1

n

n∑
i=1

z2i +
1

n

m∑
j=1

(
(λ2

j − 2λj)b
2
j + σ2λ2

j

)
(4.22)

5It is worth pointing out that in the truncated space zi �= ∑m
j=1 vj(i)v

T
j z, because VVT �= I.

71

where ‖bias(ẑ)‖2 = 1
n

∑n
i=1 z

2
i +

1
n

∑m
j=1(λ

2
j − 2λj)b

2
j and var(ẑ) = σ2

n

∑m
j=1 λ

2
j .

72

Chapter 5

Asymptotic Analysis of the Global Filter

Abstract – This chapter provides an upper bound on the rate of convergence

of the mean-squared error for global image denoising, and illustrates that this upper

bound decays to zero with increasing image size. Hence, global denoising introduced

in Chapter 4 is asymptotically optimal. This property does not hold for patch-based

methods such as BM3D, thereby limiting their performance for large images. As ob-

served in practice and shown in this work, this gap in performance is small for moderate

size images, but it can grow quickly with image size.

5.1 Introduction

In the previous chapter, we advocated abandoning the explicit use of patches

(as done in leading methods such as BM3D) in favor of a global approach where every

pixel contributes to the denoising of every other pixel in the image [41]. The similarity

of pixels in this approach can still be measured using patches, but the application of the

filter is truly global. The advantage of this approach is that it is asymptotically optimal

73

in the sense that its mean-squared-error converges to zero with increasing image size –

a property that does not hold for any of the leading patch-based methods [5] – even if

the size of the image grows infinitely large, and the range of search for similar patches

is allowed to grow as well [46].

It is by now beyond dispute that images (or natural signals generally) contain

many redundancies. This notion has been cleverly exploited to design high performance

image denoisers with great success. It stands to reason then that a good denoiser should

exhibit improved performance as the number of samples (i.e. image size) grows. This

concept is not new. In fact, we can go back as far as Shannon who pointed out [47] more

than 60 years ago that ”If the source already has a certain redundancy and no attempt is

made to eliminate it, a sizable fraction of the letters can be received incorrectly and still

[perfectly] reconstructed by the context.” More recently, this fundamental result was in

fact shown for the case of restoring binary images from context in [48,49]. More relevant

still, the seminal paper on the Non-Local Means (NLM) method [2] was inspired in part

by [48,49] and itself gave a proof of the asymptotic consistency of the NLM method.

Over time, however, the idea of globally considering the denoising problem

was abandoned in favor of more computationally friendly methods that treat patches

(or groups of patches) together [5, 19]. Our approach in Chapter 4 relied on a truly

global methodology where the effect of every pixel was taken into account to develop a

denoiser, and the significant questions of computational complexity were also dealt with

by using a subsampling strategy based on the Nyström extension. In the course of that

work, we noted that the performance of the global approach consistently improved with

image size, but the same was not observed for patch-based methods, hence motivating

the work presented in this chapter. Intuitively, in larger images, as the total number

74

of patches grows, the expected performance improvement due to availability of more

overall patches is offset by the lower likelihood of finding closely matching patches (see

Fig. 5.1). Increasing the size of the patches reduces the number of available patches,

but increases the dimension of the space in which these patches live, hence sometimes

providing a helpful effect, but never enough to drive the error to zero asymptotically

(see Fig. 5.2). As a result, performance flattens out with increasing image size.

The story is very different (and much more favorable) with global filters. These

use all the pixels in the input image to denoise every single pixel. Here, we take the

analysis a step deeper to prove that the performance of the global approach always

improves as a function of image size, regardless of image content. Furthermore, we

provide a rate for this improvement, and show that this rate is a function of the sparsity

of the image in a naturally constructed basis adapted to the content of the image. More

specifically, we give an oracle upper bound on the mean-squared-error for estimating

each pixel using all the pixels in the image, and show that for typical images, it decays

at the rate of at least n−α for a
√
n×√

n image where α > 0 depends on the content of

the input image [50,51].

5.2 Computing and Bounding the Oracle Global MSE

The filter W, being data dependent, is of course impacted by the noise in the

given image. In practice the filter is never computed directly from the raw, noisy input

pixels. Instead, a “pre-filter” is always applied to y first to reduce the effect of noise,

and then the filter weights are computed from this result. When it comes time to the

actual filtering, however, this is done using the filter coefficients applied to the original

noisy pixels. In the present discussion, since we are interested in the oracle performance,

75

Center Patch

Local Patch (1)

Non-local Patch (1)

Local Patch (2)

Non-local Patch (2) Non-local Patch (3)

(1)

(2)

(2)
(1)

(3)

Local Patch (3)

(3)

Figure 5.1: Comparison of patch matching for local and non-local patches. Likelihood
of finding closely similar patches drops as the size of the search window increases.

(a) Small Patches (b) Similar Patches for (a) (c) Large Patches (d) Similar Patches for (c)

Figure 5.2: Comparison of patch matching for different patch sizes. As the patch size
grows, fewer similar patches are available.

we consider the case where the filter is directly computed from the clean latent image

z and is therefore deterministic.

Recall that the filtering framework ẑ = Wy = VSVTy leads to the estimated

closed form MSE as (see Chapter 2):

MSE =
1

n

n∑
j=1

(λj − 1)2b2j + σ2λ2
j (5.1)

where b = VT z = [b1, ..., bn]
T contains the coefficients representing the latent image

in the global basis, λj denotes the filter eigenvalue and the σ2 is the noise variance.

76

Minimizing the MSE with respect to the eigenvalues λi requires a simple differentiation:

∂MSE(λ)

∂λ
= 0 =⇒ λ∗

j =
1

1 + snr−1
j

, (5.2)

where, somewhat unsurprisingly, the “optimal” eigenvalues {λ∗
j} are the Wiener coef-

ficients with snrj =
b2j
σ2 . This shrinkage strategy leads to the minimum value of the

MSE1:

MMSE = MSE(λ∗) =
σ2

n

n∑
j=1

λ∗
j (5.3)

Fig. 5.3 depicts Wiener shrinkage factors of some test images shown in Fig. 5.7. Evi-

dently, stationary images with repetitive patterns such as Wall show a faster decay rate

of λ∗
j . This indicates that sparse signals (in the basis defined by the filter) are easier

to recover from additive white noise. In the case of stationary signals, as the image

size grows the decay rate of the Wiener shrinkage factors increases. Assuming that

the shrinkage factors decay in some fashion, the minimum MSE given in (5.3) can be

bounded (see Section 5.2.1). Furthermore, by clustering pixels into relatively stationary

subimages, this condition can be eased and a more generic denoising bound will be

obtained (see Section 5.2.3).

5.2.1 Bounding the Oracle MSE of Stationary Images

Expanding the minimum MSE given by (5.3):

MMSE =
σ2

n

n∑
j=1

λ∗
j =

1

n

n∑
j=1

σ2b2j
σ2 + b2j

(5.4)

1Since the equivalent shrunk filter should be kept doubly-stochastic, λ∗
1 should in theory be 1; a

constraint which increases the minimum MSE. This MSE increment is ΔMSE = σ2

n
(1−λ∗

1) =
σ4

n(b21+σ2)
.

Having the first eigenvector v1 = 1√
n
1n, the squared signal projection coefficient can be expressed as

b21 = 1
n
(
∑n

i=1 zi)
2. Practically, for a moderate size image in the range of [0,255], ΔMSE is very small

and can be neglected (or equivalently λ∗
1 ≈ 1). Consequently, it is not necessary to impose λ∗

1 = 1 as a
constraint in our analysis.

77

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Eigenvalue Index (j)

λ j*

Wall
Grass
Barbara
Man
Peppers

Figure 5.3: Wiener shrinkage eigenvalues (λ∗
j) computed for some test images shown in

Fig. 5.7. Images with repetitive patterns such as Wall represent fast decaying Wiener
coefficients. On the contrary, the optimal shrinkage factors of non-stationary images
(e.g. Grass) drop off in a slow fashion.

The last equality can be expressed as:

MMSE =
1

2n

n∑
j=1

σ|bj |
σ2+b2j

2

σ|bj | (5.5)

Using the Arithmetic-Geometric means inequality [52] we have σ|bj | ≤ σ2+b2j
2 , which

implies:

MMSE =
1

2n

n∑
j=1

σ|bj |
σ2+b2j

2

σ|bj | ≤ 1

2n

n∑
j=1

σ|bj | (5.6)

And this in turn means

MMSE ≤ σ

2n
‖b‖1 (5.7)

The oracle MSE is evidently bounded by the l1 norm of the projection coef-

ficients b. This implies that for a given n, the more sparse the signal is in the basis

given by the filter kernel, the smaller the MSE error will be. Furthermore, for a signal

(image) with finite energy, the 1-norm of b can not grow faster than n with increasing

dimension, so the upper bound must collapse to zero asymptotically. Let’s consider

the worst case pathology wherein |bj | = c (a constant), resulting in linear grown of

78

‖b‖1 with n. This essentially corresponds to the signal being “white noise” in the basis

defined by the kernel. In this worst case scenario, the MMSE is upper bounded by a

constant cσ
2 . In general, however, we expect the coefficients to drop off at some rate,

say α > 0. That is, |bj | = c
jα , which implies that

σ

2n

n∑
j=1

|bj | = σ

2n

n∑
j=1

c

jα
(5.8)

As n → ∞, MMSE will tend to zero for all α > 0, so this establishes the most general

(stationary) case of MSE convergence. Now let’s have a look at the rate of convergence

in more detail. For this purpose, it is useful to consider the coefficients bj as samples of

the function |b(t)| = c/tα. That is, define bj = b(j).

Using the integral test for convergence (Maclaurlin-Cauchy test) [53], we have

the following lower and upper bound:

1

n

∫ n+1

1

c

tα
dt ≤ 1

n

n∑
j=1

|bj | ≤ 1

n
(c+

∫ n

1

c

tα
dt) (5.9)

For 0 < α < 1 we have:

c(
(n + 1)1−α − 1

(1− α)n
) ≤ 1

n

n∑
j=1

c

jα
≤ c(

n1−α − α

(1 − α)n
) (5.10)

which means a convergence rate of O(n−α).

On the other hand, for α = 1 we have:

c ln(n+ 1)

n
≤ 1

n

n∑
j=1

c

j
≤ c(1 + ln(n))

n
(5.11)

which indicates a rate of O(n−1 ln(n)). Finally, the decay rate is O(n−1) for α > 1

since the summation in (5.8) converges to a finite constant. In summary, as long as the

coefficients decay at all, at whatever rate, the minimum MSE is guaranteed to approach

zero. Of course in the case of stationary images this decay rate is guaranteed to be

79

512x512

384x384

256x256

V10
V10

V10

512x512

384x384

256x256

V10
V10

V10

Figure 5.4: Sample eigenvectors computed from image windows of different sizes. Top:
Boat image, Bottom: Goldhill image. The 10-th eigenvectors (v10) of the three subim-
ages are illustrated.

fast. Yet, in the case of natural images, one might argue that the drop off rate could

be hamstrung by image size increment. In other words, as the image size grows, the

MSE bound computed for non-stationary images could be increasing. This is due to the

evolving filter eigenvectors, which affect the projection coefficients bj (or equivalently

the Wiener shrinkage factors λ∗
j). We address this issue next.

5.2.2 Filter Eigenvectors

Some eigenvector examples computed from image windows of size 256 × 256,

384× 384 and 512× 512 are shown in Fig. 5.4. As the image size grows, the 256× 256

eigenvector window may remain visually unchanged (such as Boat image in Fig. 5.4), or

80

Eigenvalue Index (j)
0 50 100 150 200

λ
j*

0

0.2

0.4

0.6

0.8

1
Boat

 256x256
 384x384
 512x512

Eigenvalue Index (j)
0 50 100 150 200

λ
j*

0

0.2

0.4

0.6

0.8

1
Goldhill

 256x256
 384x384
 512x512

Figure 5.5: Wiener shrinkage factors (λ∗
j) of the global filter computed for image win-

dows of different sizes shown in Fig. 5.4.

may alter across the three eigenvectors (such as Goldhill image in Fig. 5.4). Increasing

the window size may introduce new content to the image, which may lead to changing

eigenvectors. Fig. 5.5 shows that the image size growth could affect the drop-off rate

of the Wiener shrinkage factors (λ∗
j). The shrinkage factors illustrated in Fig. 5.5 are

computed for the image windows given in Fig. 5.4. This change in the decay rate of

the λ∗
j coefficients has direct impact on the estimated bound. To tackle the problem

of evolving eigenvectors, we propose clustering pixels, such that each cluster filter deals

with relatively stationary subimages. We demonstrate this in the following section.

5.2.3 Bounding the Oracle MSE of Generic Images

For pixel grouping, the concept of diffusion maps [54] is used; wherein each

pixel located at position xi is mapped into a manifold defined by the weighted eigen-

vectors as:

Ψt(xi) = (λt
2vi2, λ

t
3vi3, ..., λ

t
mvim) (5.12)

81

where vim denotes the i-th entry of the m-th eigenvector and t represents the diffusion

parameter. These descriptors are fed into the k-means classifier to obtain the clustering

map of p clusters shown in Fig. 5.6 (in our experiments t and p are set to 1 and 5,

respectively). Our descriptors are then computed from the filter eigen-decomposition,

leading to clustering similar pixels together.

Now we are ready to apply a denoising filter to each cluster separately and

compute the overall MSE bound. Fig. 5.6 shows the benefit of grouping similar pixels

over global filter. As can be seen, in comparison to the global filter, the Wiener shrinkage

factors decay more rapidly for the similar pixels in each cluster.

The overall minimum MSE bound can be expressed as:

MMSE ≤ σ

2n
‖b1‖1 + · · ·+ σ

2n
‖bp‖1

≤ σ

2n

p∑
l=1

‖bl‖1 (5.13)

where p denotes the number of clusters and bl represents the projection coefficients of

the l-th cluster onto the respective basis. With p = 1, the bound will be given by the

expression in (5.7). As the image size grows, assuming that each newly added pixel

falls at worst, into one unique cluster of size 1 (meaning that p = n), the MMSE will

be bounded by σ max(‖b1‖1,...,‖bn‖1)
2 . In practice, however, the number of clusters is

much smaller than the number of pixels (p << n). When each subimage is relatively

stationary, the overall decay rate of the MSE bound is determined by the minimum

drop-off rate of |bl| for l = 1, · · · , p. In other words, as the image size grows, and

assuming that no new cluster is added, the overall decay rate of the MSE bound is

governed by the slowest term in (5.13). Next, we illustrate these results with some

experiments.

82

1

2

3

4

5

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Eigenvalue Index (j)

λ j*

Global
cluster 1
cluster 2
cluster 3
cluster 4
cluster 5

Figure 5.6: Left: clustering map, Right: Wiener shrinkage factors (λ∗
j) of the global

and clustered filters. The shrinkage coefficients of the clustered pixels show faster decay
rate compared to the global filter.

Barbara Stream Peppers Mandrill

Boat Man Goldhill Lena

Wall

Grass

Figure 5.7: Some benchmark images used to evaluate performance of our denoising
method.

5.3 Results and Comparisons

Some benchmark images used in this section are shown in Fig. 5.7. The effect

of image size on denoising performance is explored in the first set of experiments in Fig.

5.8. For this experiment we denoised the central part of an image with increasing size.

As can be seen, the increment in the number of pixels consistently leads to lower MSE.

83

Su
bi

m
ag

e

Subimage
Size

128 128 256 256 384 384 512 512 128 128 256 256 384 384 512 512 128 128 256 256 384 384 512 512 128 128 256 256 384 384 512 512 128 128 256 256 384 384 512 512

Su
bi

m
ag

e

Subimage
Size

128 128 256 256 384 384 512 512 128 128 256 256 384 384 512 512 128 128 256 256 384 384 512 512 128 128 256 256 384 384 512 512 128 128 256 256 384 384 512 512

 1.82 0.57 0.27 0.17 1.15 0.34 0.17 0.09 1.05 0.73 0.14 0.11 1.04 0.66 0.42 0.21 0.93 0.25 0.18 0.06

 4.19 1.49 0.76 0.52 9.77 1.78 0.74 0.50 3.44 1.24 0.42 0.29 5.13 2.49 0.88 0.59 2.74 0.73 0.42 0.24

 7.18 2.73 1.44 1.01 11.40 3.38 1.35 0.93 6.80 2.12 0.81 0.67 7.87 5.08 1.57 1.13 5.42 1.43 0.87 0.54

 1.39 0.56 0.33 0.22 6.49 0.70 0.28 0.12 3.32 0.64 0.29 0.17 1.57 0.69 0.23 0.09 4.28 1.73 0.98 0.71

 3.79 1.58 0.91 0.47 5.46 1.51 0.77 0.33 4.64 0.99 0.49 0.28 3.85 1.72 0.72 0.21 8.19 3.25 1.66 1.41

 6.84 2.94 1.70 1.04 9.90 2.56 1.43 0.65 5.12 1.93 0.93 0.48 6.56 3.32 1.22 0.51 14.24 4.22 2.73 2.61

Figure 5.8: Oracle performance of the global denoising scheme for different window
sizes. MSE values are averaged over 20 independent WGN realizations and k-means
initialization points.

It is also important to highlight that the MSE values of the full size image (512 × 512)

are very small and below round off error.

The oracle MSE for the images in Fig. 5.8 are shown in Fig. 5.9 where for

each noise level, the bound in (5.13) and the oracle MSE values are computed and then

averaged across images given in Fig.2 5.7. Each experiment is repeated and averaged

for 20 independent noise realizations and 20 different initializations of the k-means

clustering.

2We note that for practical purposes, our experiments are carried out using a truncated filter with
only a small percentage of the leading eigenvectors of W. Still, the averaged MSEs in Fig. 5.9 capture
the decay rate for the tested images as hypothesized. See Appendix 5.A.

84

Table 5.1: Estimated decay rate of the oracle MSE and estimated bound obtained from
test images corrupted by WGN with σ = 30. By using a least square approach, γ

nα is
fitted on the data points of the MSE and estimated Bound.

Test Images Peppers Man Stream Lena Wall

αMSE 1.32 (±0.19) 0.98 (±0.15) 0.96 (±0.11) 0.94 (±0.08) 0.89 (±0.12)

αBound 0.57 (±0.05) 0.55 (±0.04) 0.52 (±0.05) 0.51 (±0.03) 0.50 (±0.01)

Test Images Barbara Goldhill Boat Mandrill Grass

αMSE 0.79 (±0.04) 0.75 (±0.07) 0.71 (±0.13) 0.58 (±0.10) 0.55 (±0.16)

αBound 0.50 (±0.05) 0.48 (±0.03) 0.49 (±0.05) 0.44 (±0.02) 0.45 (±0.07)

In this example, the function γ
nα is fitted on both bound and MSE data points

using a least square approach where n denotes the image size and γ is a constant. Table

5.1 represents the estimated α values for our test images. The estimated αMSE values

indicate the decay rate of MSE with respect to image size. As can be seen, stochastic

textures such as Mandrill and Grass show smaller αMSE. Although the estimated

αBound does not match αMSE (because (5.13) is an upper bound), relative ordering of

the decay rates are preserved. The estimated bound is also depicted individually for

each test image in Fig. 5.10. As can be seen, the proposed bound nearly captures the

decay rate of the MSE function. The oracle performance of NLM [2], BM3D and our

approach are compared in Table 5.2. BM3D is a two-stage image denoising scheme

in which the first stage, as a pre-filter, provides a “pilot” estimate of the noise free

image. The second stage uses the pre-filtered image to obtain the near optimal Wiener

shrinkage using an estimate of the SNR and also to perform a more accurate patch

matching. In other words, in the oracle BM3D the output of the first stage is assumed

to be the clean image. As the noise level increases, results in Table 5.2 suggest that the

gap between our oracle scheme and oracle BM3D grows monotonically.

Summary – We emphasize that the oracle results do not correspond to practi-

cal denoising algorithms yet, and practical realization of the global scheme remain to be

85

0 50,000 100,000 150,000 200,000 250,000
0

5

10

15

20

25

n

Oracle MSE
Fitted curve (MSE)
Bound
Fitted curve (Bound)

σ = 10

0 50,000 100,000 150,000 200,000 250,000
0

10

20

30

40

50

n

Oracle MSE
Fitted curve (MSE)
Bound
Fitted curve (Bound)

σ = 20

0 50,000 100,000 150,000 200,000 250,000
0

10

20

30

40

50

60

70

n

Oracle MSE
Fitted curve (MSE)
Bound
Fitted curve (Bound)

σ = 30

0 50,000 100,000 150,000 200,000 250,000
0

20

40

60

80

100

n

Oracle MSE
Fitted curve (MSE)
Bound
Fitted curve (Bound)

σ = 40

0 50,000 100,000 150,000 200,000 250,000
0

20

40

60

80

100

120

n

Oracle MSE
Fitted curve (MSE)
Bound
Fitted curve (Bound)

σ = 50

0 50,000 100,000 150,000 200,000 250,000
0

20

40

60

80

100

120

140

n

Oracle MSE
Fitted curve (MSE)
Bound
Fitted curve (Bound)

σ = 60

Figure 5.9: Averaged MSE of denoising images given in Fig. 5.7 for different noise
levels. The estimated bound given in (5.13) is averaged across all the images.

studied. However, global filtering has an interesting asymptotic behavior that surpasses

the existing patch-based bounds by a large margin. The oracle MSE values for the

global filter converge to perfect reconstruction of the clean image, which is apparently

impossible to achieve for oracle versions of algorithms such as BM3D. This implies that

global filtering is promising as a way to see how much farther practical algorithms can

be pushed.

86

0 50,000 100,000 150,000 200,000 250,000
0

20

40

60

80

100

n

Oracle MSE
Fitted curve (MSE)
Bound
Fitted curve (Bound)

Goldhill

0 50,000 100,000 150,000 200,000 250,000
0

50

100

150

200

n

Oracle MSE
Fitted curve (MSE)
Bound
Fitted curve (Bound)

Grass

0 50,000 100,000 150,000 200,000 250,000
0

50

100

150

n

Oracle MSE
Fitted curve (MSE)
Bound
Fitted curve (Bound)

Lena

0 50,000 100,000 150,000 200,000 250,000
0

50

100

150

n

Oracle MSE
Fitted curve (MSE)
Bound
Fitted curve (Bound)

Mandrill

0 50,000 100,000 150,000 200,000 250,000
0

50

100

150

n

Oracle MSE
Fitted curve (MSE)
Bound
Fitted curve (Bound)

Peppers

0 50,000 100,000 150,000 200,000 250,000
0

20

40

60

80

100

120

n

Oracle MSE
Fitted curve (MSE)
Bound
Fitted curve (Bound)

Wall

Figure 5.10: Fitted curves of MSE and the estimated bound for some test images
corrupted by WGN of σ = 30. The decay rate of the fitted curves are given in Table 5.1.

5.A The Truncated Filter and Its MSE analysis

Keeping m leading eigenvectors of the filter W, the total MSE of the truncated

filter can be expressed as (proved in Chapter 4):

MSE(m) =
1

n

n∑
i=1

z2i +
1

n

m∑
j=1

(
(λ2

j − 2λj)b
2
j + σ2λ2

j

)
(5.14)

87

Table 5.2: Oracle MSE values of NLM [2] (1st column), oracle BM3D [5] (2nd col-
umn), and Ours (3rd column). The MSE values are averaged over 20 independent noise
realizations for each σ.

σ
Barbara Stream Peppers Mandrill Wall

NLM BM3D Ours NLM BM3D Ours NLM BM3D Ours NLM BM3D Ours NLM BM3D Ours

10 29.36 11.34 0.08 62.95 26.93 0.05 21.87 11.41 0.06 70.97 31.32 0.02 18.91 8.02 0.03

20 42.15 22.98 0.17 120.77 63.42 0.09 33.43 20.81 0.11 166.23 76.30 0.06 28.72 16.23 0.05

30 61.91 34.11 0.29 171.91 98.39 0.29 45.18 28.53 0.38 196.61 121.54 0.16 39.33 24.52 0.09

40 91.74 45.14 0.52 233.03 130.44 0.50 58.84 35.83 0.59 275.49 164.95 0.24 56.27 31.26 0.15

50 126.43 59.80 0.73 285.12 158.55 0.81 75.23 48.33 0.86 391.81 188.16 0.42 70.42 41.91 0.20

60 163.33 71.26 1.01 329.89 184.09 0.93 93.52 56.87 1.13 431.36 220.80 0.54 87.43 48.92 0.27

σ
Boat Man Goldhill Lena Grass

NLM BM3D Ours NLM BM3D Ours NLM BM3D Ours NLM BM3D Ours NLM BM3D Ours

10 31.87 14.30 0.09 36.25 16.26 0.06 31.16 14.93 0.10 19.77 9.71 0.02 68.35 30.04 0.02

20 56.96 29.42 0.22 67.85 35.59 0.12 53.47 29.72 0.17 31.07 18.34 0.09 164.01 75.72 0.05

30 80.44 43.16 0.31 94.89 53.72 0.19 78.67 42.06 0.23 44.68 26.28 0.16 191.16 120.56 0.15

40 108.72 56.16 0.47 125.95 70.61 0.33 105.51 52.91 0.28 60.46 34.13 0.21 270.90 160.11 0.24

50 138.42 75.05 0.74 158.01 93.27 0.51 131.17 69.78 0.39 76.56 45.22 0.39 390.17 186.94 0.41

60 168.69 88.32 1.04 188.98 109.14 0.65 155.07 80.54 0.48 92.94 53.70 0.51 420.11 211.56 0.59

where ‖bias(ẑ)‖2 =
∑n

i=1 z
2
i +

∑m
j=1(λ

2
j − 2λj)b

2
j and var(ẑ) = σ2

∑m
j=1 λ

2
j . Truncation

results in larger bias and smaller variance as shown by the expressions.

The optimal eigenvalues are again the Wiener shrinkage coefficients (λ∗
j) which

lead to the minimum MSE as:

MMSE(m) =
1

n

n∑
i=1

z2i −
1

n

m∑
j=1

b2jλ
∗
j (5.15)

Of course this MSE will necessary be larger than the case where all the eigen-

vectors are used. Replacing 1
n

∑n
i=1 z

2
i with 1

n

∑n
j=1 b

2
j and after some simplifications:

MMSE(m) =
1

n

n∑
j=1

b2j −
1

n

m∑
j=1

b2jλ
∗
j

=
1

n

n∑
j=1

b2j −
1

n

n∑
j=1

b2jλ
∗
j +

1

n

n∑
j=m+1

b2jλ
∗
j

=
1

n

n∑
j=1

σ2b2j
σ2 + b2j︸ ︷︷ ︸

MMSE

+
1

n

n∑
j=m+1

b4j
b2j + σ2︸ ︷︷ ︸

ΔMSE(m)

(5.16)

where the first term is the same as the minimum MSE given in (5.4) and ΔMSE(m)

88

denotes the filter truncation effect on the MSE. We can show that the added MSE term

is bounded and consequently, the MMSE(m) will be upper bounded.

We start with an upper bound on ΔMSE(m):

ΔMSE(m) =
1

n

n∑
j=m+1

b4j
b2j + σ2

≤ 1

σ2n

n∑
j=m+1

b4j =
1

σ2n
(‖b‖44 − ‖bm‖44) (5.17)

where 3 ‖bm‖44 =
∑m

j=1 b
4
j . Again, assuming a decay rate of α > 0 for the coefficients

|b(t)| = c/tα and using the integral test for convergence [53], we obtain the following

lower and upper bound:

1

σ2n

∫ n+1

m+1

c4

t4α
dt ≤ 1

σ2n

n∑
j=m+1

b4j ≤
1

σ2n
(

c4

(m+ 1)4α
+

∫ n

m+1

c4

t4α
dt) (5.18)

For 0 < α < 1
4 we have:

c4

σ2

(
(n+ 1)1−4α − (m+ 1)1−4α

(1− 4α)n

)
≤ 1

σ2n

n∑
j=m+1

c4

j4α

≤ c4

σ2

(
1

n(m+ 1)4α
+ (

n1−4α − (m+ 1)1−4α

(1− 4α)n
)

)
(5.19)

where a convergence rate of O(n−4α) is guaranteed. For α = 1
4 we have:

c4

σ2
(
ln(n+1

m+1)

n
) ≤ 1

σ2n

n∑
j=m+1

c4

j4
≤ c4

σ2
(

1

n(m+ 1)
+

ln(n
m+1)

n
) (5.20)

which means a decay rate of O(n−1 ln(n)). Similar to our previous analysis, for α > 1
4

the decay rate is O(n−1). Overall, the minimum MSE of denoising by the truncated

filter has the following bound:

MMSE(m) ≤ σ

2n
‖b‖1 + 1

σ2n
(‖b‖44 − ‖bm‖44) (5.21)

It is not hard to see that even when m is kept fixed and n tends to infinity, a sufficiently

fast decay of the coefficients b will still yield an asymptotic MSE of zero. In our

3In practice, for j > m we have b2j � σ2. This means that
b4j

b2j+σ2 ≤ b4j
σ2 ≤ b2j .

89

experiments the ratio between m and n is kept fixed as m
n = 1

1000 , which leads to

m ≈ 250 for a test image of size 512 × 512.

90

Chapter 6

Global Image Editing

Abstract – In this chapter we introduces a new image editing tool, based

on the spectrum of a global filter computed from image affinities. In Chapter 3, it

was shown that the global filter derived from a fully connected graph representing the

image, can be approximated using the Nyström extension. This filter is computed by

approximating the leading eigenvectors of the filter. These orthonormal eigenfunctions

are highly expressive of the coarse and fine details in the underlying image, where

each eigenvector can be interpreted as one scale of a data-dependent multiscale image

decomposition. In this filtering scheme, each eigenvalue can boost or suppress the

corresponding signal component in each scale. Our analysis shows that the mapping of

the eigenvalues by an appropriate polynomial function endows the filter with a number

of important capabilities, such as edge-aware sharpening, denoising, tone manipulation

and abstraction, to name a few. Furthermore, the edits can be easily propagated across

the image.

91

6.1 Introduction

Edge-aware image filtering is a key tool in image processing, computer vision

and graphics. In most existing methods the underlying image is first decomposed into

piecewise smooth and detail layers. Then, a variety of capabilities, such as tone mapping,

edge editing and edit propagation are developed based on this type of decomposition

[55–59].

The ideal edge-aware filter coarsens details of the image, yet the principal edges

are not altered. Given the difficulty in determining what should qualify as an edge, and

which edge should be preserved or smoothed, designing such a filter is quite challenging.

Many smoothing operators have been proposed in the past few years, and anisotropic

diffusion is perhaps one of the most well-known methods [60]. Anisotropic diffusion

tends to preserve (and even sharpen) main edges while smoothing the texture regions.

However, the iterative nature of this filter can make the computational burden quite

heavy. Also, the ideal iteration number for each region of the image could be different;

yet, an infinite iteration number can produce a constant image.

Several non-linear (data-dependent) operators such as the bilateral filter [1,61]

have been used for the same task. Chen et al. [62] used the bilateral filter, while

progressively incrementing the spatial and range width of the Gaussian for building

a pyramid of image layers. In a similar iterative approach [63], the bilateral filter is

applied successively on the coarsened image while decreasing the range width. In all

of these methods edges are preserved by the gradual change in the tuning parameters

of the bilateral kernel. However, the kernel weights have to be recomputed in every

iteration.

Almost all existing edge-aware methods use the same general idea: Using a

92

local operator, they decompose the image into a base layer and a detail layer, and then

manipulate each layer and recombine to reach the desired edit. There are two main

problems with this approach:

• Since noise is always an unavoidable part of any imaging system, boosting the

detail layer usually worsens the signal-to-noise-ratio (SNR). Even with today’s

mega-pixel imagers, the trade off between sharpness and SNR is still a bottleneck.

Increasing exposure time will result in higher SNR, but a more blurry image. On

the other hand, a short exposure leads to sharper but noisier images.

• While it is often desirable to treat similar edges of an image in the same way, the

existing local filters have irregular behaviors when handling edges with slightly

different brightness and gradient profiles. In other words, global structure common

among similar edges are usually ignored by the low-level feature vectors associated

with each pixel. Even with all the edge-aware operators in hand, performing local

adjustments to pixels and then evenly propagating the edit to the similar regions

all across the image has proved to be challenging.

To alleviate the first problem, some methods have been proposed that build

on classic linear unsharp masking. Adaptive unsharp masking [6] controls contrast en-

hancement in texture areas and avoids noise magnification by leaving relatively smooth

regions unchanged. A hierarchical framework based on Non-Local Means (NLM) ker-

nel [2] is proposed in [64] where noise removal is applied first as a separate step and

then the detail layers are extracted. Another technique in [65] applies an offset to the

bilateral filter to change its usual coarsening behavior to sharpening. This adaptive

bilateral filter sharpens an image by increasing the slope of edges; however, its sharp-

93

ening strength is limited. Recently a new restoration method for handling mild blur

and strong noise has been introduced in [66], where using the steering kernel regression

technique [3] both denoising and sharpening are combined in one framework.

To mitigate the second problem, there have been some efforts to interactively

propagate the edits to regions with similar appearance. Recently, the sparse optimiza-

tion formulation is used to provide stroke-based editing workflows with propagative tonal

adjustments [59, 67, 68]. Using an edge-aware energy minimization method, the tonal

adjustment imposed by the user is interpolated to the pixels with similar luminance.

Farbman et al. [58] also proposed an edit propagation method based on the concept

of diffusion distances which can measure closeness of pixels on a manifold space. By

approximating a diffusion map built upon this high-dimensional similarity measure, the

input adjustments can propagate to nearby pixels on the manifold.

In our framework, the two above-mentioned shortcomings of the existing meth-

ods are tackled at the same time. Our image filter is global in the sense that all the node

(pixel) pairs on the graph (image) are directly connected to each other. As shown in

Chapter 3, the eigen-decomposition of the corresponding symmetric, doubly-stochastic

filter matrix can be approximated using the Nyström extension. The obtained eigen-

vectors are very informative of the similar regions and edge information of the image1

(Fig. 6.1). More specifically, the approximated eigenfunctions enable us to employ dif-

fusion distance for propagating the same manipulation over pixels belonging to similar

regions globally. Having the spectrum of the filter, simultaneous noise suppression and

detail enhancement become much easier by mapping the spectrum of the filter using

a polynomial function, with a few parameters to tune. Our experimental results show

1Supplementary materials, including MATLAB code, additional experimental results and manuscript
figures are available at the project website: http://www.soe.ucsc.edu/~htalebi/NLEditing.html

94

http://www.soe.ucsc.edu/~htalebi/NLEditing.html

(a) House (b) v2(λ2 = 0.9917)

(c) v3(λ3 = 0.9045) (d) v10(λ10 = 0.2406)

(e) v25(λ23 = 0.0508) (f) v50(λ50 = 0.0025)

Figure 6.1: Some leading eigenvectors computed from the luminance channel of the
house image using 0.01% of the pixels.

95

that this strategy reduces the halo artifacts around principal edges, avoids the common

noise magnification problem, and can interactively propagate the user’s edit across the

intended similar regions with ease. In contrast to [58], our approach does not require

the solution of a complex optimization problem to achieve this effect.

Our contributions are as follows: First, our framework handles noise natu-

rally, because the image is projected into the data-adapted basis obtained from affinity

weights. In other words, the noise is naturally separated from the underlying signal

components by projecting the image into the approximated leading eigenvectors. Sec-

ond, our global framework is better than the existing propagation approaches where

the global affinity approximation is used just as a guide mask. In addition to pro-

viding such a mask, the proposed scheme is able to deliver a filtering tool with many

capabilities [69,70].

6.1.1 Non-local Affinities

As discussed in previous chapters, our filtering framework is based on non-

parametric regression in which a kernel function Kij measures the similarity between

the samples yi and yj, located at xi and xj coordinates, respectively. Recalling the

NLM kernel [2] in which the photometric similarity is captured in a patch-wise manner:

Kij = exp

{
−‖xi − xj‖2

h2x
+

−‖yi − yj‖2
h2y

}
(6.1)

The spatial and photometric smoothing parameters of the kernel (hx and hy in

(6.1)) can affect the rank of the kernel matrix K. Specially small hx makes the kernel

matrix K high-rank (more diagonally dominant), and as a result, the Nyström extension

will need more samples for an accurate reconstruction of the eigenvectors of the filter

matrix. However, we observed that this approximation of the filter matrix Wm also has

96

some nice properties. To illustrate, the leading eigenvectors of Fig. 6.1(a) are computed

for the kernel with small spatial smoothing parameter in Fig. 6.2. Comparing these

eigenvectors to the ones presented in Fig. 6.1, it can be seen that the spatial term forces

the eigenvectors to become piecewise smooth. As we will discuss in Section 6.4, these

eigenfunctions force the filter to become a local smoother. In this chapter, hx is assumed

to be very large (practically NLM kernel without the spatial term) for the purpose of

detail manipulation, and fixed as 20 for other applications. Based on image content, we

also optimize hy to minimize the filter approximation error (See Appendix 5.A).

In what follows, our detail manipulation strategy is explained in Section 6.2.

Next, our propagation mask and experimental results for different applications are de-

scribed.

6.2 Eigenvalue Mapping Function

The filtered image ŷ can be expressed as:

ŷ = f(W)y (6.2)

where in general, f(W) denotes a matrix function. Analogously to scalar analytic

functions, matrix functions of an n× n square matrix W can be defined using a power

series:

f(W) =

∞∑
i=0

ciW
i (6.3)

The above series exists and is finite for a given argument, if the coefficients

ci satisfy
∑∞

i=0 cix
i < ∞ [71]. Therefore for any analytic function f(x) there exists

a corresponding matrix function f(W) constructed by the power series. The analytic

(differentiability) constrained can be relaxed over a closed interval using the Weierstrass

97

(a) House (b) v2(λ2 = 0.9966)

(c) v3(λ3 = 0.9948) (d) v10(λ10 = 0.9667)

(e) v25(λ25 = 0.8810) (f) v50(λ50 = 0.7387)

Figure 6.2: Some leading eigenvectors computed from the luminance channel of the
house image using less than 0.04% of the pixels. (hx = 20, hy = 5)

98

approximation theorem [72] which only needs the function f(x) to be continuous on an

interval [a, b]. Based on this theorem, for every ε > 0, there exists a polynomial pk(x)

of sufficiently high degree k, such that for all x in [a, b], we have ‖f(x) − pk(x)‖ < ε.

Consequently, the matrix function f(W) given in (6.3) can be approximated by a matrix

polynomial pk(W) of order k:

f(W) ≈ p(W) = c0I+ c1W+ c2W
2 + · · ·+ ckW

k (6.4)

with k a function of ε, as long as the eigenvalues of W reside in a closed compact

interval. Having the matrix filter eigen-decomposition as W = VSVT , any continuous

function on the eigenvalue interval [0, 1] can be approximated as:

f(W) ≈ c0VIVT + c1VSVT + c2VS2VT + · · ·+ ckVSkVT

= V(c0I+ c1S+ c2S
2 + · · ·+ ckS

k)VT

= Vpk(S)V
T (6.5)

where pk(S) = diag[pk(λ1), pk(λ2), · · · , pk(λn)] denotes the mapped eigenvalues. In-

stead of approximating, we chose to directly use a polynomial function for f(x), be-

cause it conveniently gives the interesting interpretation of the multiscale decomposi-

tion/reconstruction explained in the following.

6.2.1 Multiscale Detail Manipulation

Fig. 6.3 depicts the multiscale decomposition and reconstruction where the

input image y is layered to k detail layers ydi and one basic smooth layer ysk such that

the exact decomposition is:

y = yd1 + . . .+ ydk + ysk (6.6)

99

- - - - -

Multiscale Decomposition

+ ++++++

Multiscale Reconstruction

Input Image

Output Image

Figure 6.3: (a) Mutiscale decomposition: The low-pass filter Wm is used to extract
detail layers ydi . Multiscale reconstruction: Weighting each layer with αi and adding
them together.

The edited image ŷ can be computed by weighting each layer and adding them back

together:

ŷ = α1yd1 + . . .+ αkydk + αk+1ysk (6.7)

Replacing the orthonormal eigen-decomposition of the filter Wm in the above, the

equivalent filter is (Fig. 6.4):

ŷ = α1(I −Wm)y+ α2Wm(I−Wm)y+ ...+ αkW
k−1
m (I−Wm)y+ αk+1W

k
my

≈ Vm(α1(I− Sm) + α2Sm(I− Sm) + ...+ αkS
k−1
m (I− Sm) + αk+1S

k
m)VT

my

= Vm(α1I+ Sm(α2 − α1) + S2
m(α3 − α2) + ...+ Sk

m(αk+1 − αk))V
T
my

= Vmf(Sm)VT
my (6.8)

100

v1

v2

vm

v1

v2

vm

Input Image Output Image

Figure 6.4: The process given in Fig. 6.3 can be interpreted as the band-pass f(Wm)
in which the eigenvalues are a polynomial function of the low-pass filter’s eigenvalues
given by (6.9).

where the approximation concerns replacing y by VmIVT
my (see Appendix 6.B for

detailed explanations). Function f has the following effect on each eigenvalue λj:

f(λj) = α1 + (α2 −α1)λj + (α3 −α2)λ
2
j + ...+ (αk −αk−1)λ

k−1
j + (αk+1 −αk)λ

k
j (6.9)

This is a special polynomial with f(0) = α1 and f(1) = αk+1. The two coefficients α1

and αk+1 correspond to the first detail layer and the basic smooth image, respectively.

For example, a 3rd order polynomial is evaluated as a function of the input eigenvalues

in Fig. 6.5. While the input eigenvalues act as a low-pass filter (this is equivalent to

α1 = 0, α2 = 1, α3 = 1, α4 = 1 in the new filter f(Wm), the function f can change

the filter’s behavior with αi as the tuning parameter. The mapped eigenvalues in Fig.

6.5 (a) keep the details of the image untouched, but the leading eigenvalue manipulates

the contrast of the image. Fig. 6.5 (b) is a high-pass filter with the opposite effect

as compared to part (a). Fig. 6.5 (c) and (d) are two band-pass filters boosting the

eigenvectors containing the main edges and possibly suppressing the existing noise.

Figs. 6.6-6.9 give a visual comparison of the effect of the filters described

101

5 10 15 20 25 30 35 40 45
0

1

2

3

4

5

j

f
(λ

j
)

α1 = 0, α2 = 1, α3 = 1, α4 = 1
α1 = 1, α2 = 1, α3 = 1, α4 = 1
α1 = 1, α2 = 1, α3 = 1, α4 = 2
α1 = 1, α2 = 1, α3 = 1, α4 = 5

(a)

5 10 15 20 25 30 35 40 45
0

1

2

3

4

5

j

f
(λ

j
)

α1 = 0, α2 = 1, α3 = 1, α4 = 1
α1 = 2, α2 = 1, α3 = 1, α4 = 1
α1 = 5, α2 = 1, α3 = 1, α4 = 1

(b)

5 10 15 20 25 30 35 40 45
0

0.5

1

1.5

2

j

f
(λ

j
)

α1 = 0, α2 = 1, α3 = 1, α4 = 1
α1 = 1, α2 = 2, α3 = 1, α4 = 1
α1 = 1, α2 = 5, α3 = 1, α4 = 1

(c)

5 10 15 20 25 30 35 40 45
0

0.5

1

1.5

2

j
f
(λ

j
)

α1 = 0, α2 = 1, α3 = 1, α4 = 1
α1 = 1, α2 = 1, α3 = 2, α4 = 1
α1 = 1, α2 = 1, α3 = 5, α4 = 1
α1 = 0, α2 = 1, α3 = 5, α4 = 1

(d)

Figure 6.5: (a)-(d) The 3th order function f(λj) is evaluated for different αi weights.

above. As can be seen, applying the filter f(Wm) can boost the contrast and details of

the image in fine, medium and coarse scales.

6.3 Globalizing Mask

As discussed earlier, the proposed global filter connects all the pixels in the

image with weights commensurate to their similarity. As a result, any set of edits can

be appropriately globalized to the whole image. In particular, one can automatically

endow similar pixels with likewise similar editing parameters. Using the concept of

diffusion maps [54], each pixel located at position xi is mapped into a manifold defined

102

(a) House corner (b) Change of Contrast (c) Fine Scale Details

(d) Medium Scale Details (e) Coarse Scale Details (f) Combination

0 20

20

20

2 0

0

0

0 20

20

20

2 0

0

0

0 20

20

20

2 0

0

0

0 20

20

20

2 0

0

0

0 20

20

20

2 0

0

0

0 20

20

20

2 0

0

0

Figure 6.6: Contrast and detail manipulation of the house corner image. (a) Input
image, (b) α1 = 1, α2 = 1, α3 = 1, α4 = 1.4, (c) α1 = 4, α2 = 1, α3 = 1, α4 = 1, (d)
α1 = 1, α2 = 12, α3 = 1, α4 = 1, (e) α1 = 1, α2 = 1, α3 = 20, α4 = 1, (f) α1 = 4, α2 =
3, α3 = 3, α4 = 1.05.

by the weighted eigenvectors as:

Ψt(xi) = (λt
2vi2, λ

t
3vi3, ..., λ

t
mvim) (6.10)

where t denotes the diffusion parameter and vik denotes the i-th entry of the k-th

eigenvector. The squared diffusion distance between two pixels located at positions xi

103

(a) Flower (b) Change of Contrast (c) Fine Scale Details

(d) Medium Scale Details (e) Coarse Scale Details

0 20

20

20

2 0

0

0

0 20

20

20

2 0

0

0

0 20

20

20

2 0

0

0

0 20

20

20

2 0

0

0

0 20

20

20

2 0

0

0

0 20

20

20

20

0

0

(f) Combination

Figure 6.7: Contrast and detail manipulation of the flower image. (a) Input image, (b)
α1 = 1, α2 = 1, α3 = 1, α4 = 1.5, (c) α1 = 5, α2 = 1, α3 = 1, α4 = 1, (d) α1 = 1, α2 =
10, α3 = 1, α4 = 1, (e) α1 = 1, α2 = 1, α3 = 15, α4 = 1, (f) α1 = 3, α2 = 5, α3 = 10, α4 =
1.1.

and xj is defined as:

D2
t (xi,xj) = ‖Ψt(xi)−Ψt(xj)‖22 =

m∑
l=2

λ2t
l (vil − vjl)

2 (6.11)

As t grows, the diffusion distance between any two pixels on the manifold shrinks. We

employ a simple Gaussian function to embed this squared distance into [0, 1] interval

104

0 20

20

20

20

0

0

(a) Old man (b) Change of Contrast (c) Fine Scale Details

(d) Medium Scale Details (e) Coarse Scale Details (f) Combination

0 20

20

20

2 0

0

0

0 20

20

20

2 0

0

0

0 20

20

20

2 0

0

0

0 20

20

20

2 0

0

0

0 20

20

20

20

0

0

Figure 6.8: Contrast and detail manipulation of the old man image. (a) Input image,
(b) α1 = 1, α2 = 1, α3 = 1, α4 = 1.4, (c) α1 = 3, α2 = 1, α3 = 1, α4 = 1, (d) α1 =
1, α2 = 8, α3 = 1, α4 = 1, (e) α1 = 1, α2 = 1, α3 = 16, α4 = 1, (f) α1 = 2, α2 = 3, α3 =
5, α4 = 1.1.

and define the propagation mask as:

Mt(xs) ≡ exp(−D2
t (xi,xs)) (6.12)

where xs refers to the average diffusion map (given in (6.10)) over a region S selected

by the user. Mt values close to one represent the pixel candidates to be propagated

with the edit and Mt values close to zero stand for pixels that receive a small fraction

of the edit. Fig. 6.10 illustrates the globalizing mask evaluated for different diffusion

parameters obtained from the user’s input. As can be seen, larger diffusion parameters

lead to more aggressively propagated masks. Using these masks, it can be seen that the

105

(a) Door (b) Change of Contrast (c) Fine Scale Details

(d) Medium Scale Details (e) Coarse Scale Details

0 20

20

20

2 0

0

0

0 20

20

20

2 0

0

0

0 20

20

20

2 0

0

0

0 20

20

20

2 0

0

0

0 20

20

20

2 0

0

0

0 20

20

20

2 0

0

0

(f) Combination

Figure 6.9: Contrast and detail manipulation of the door image. (a) Input image, (b)
α1 = 1, α2 = 1, α3 = 1, α4 = 1.5, (c) α1 = 5, α2 = 1, α3 = 1, α4 = 1, (d) α1 = 1, α2 =
10, α3 = 1, α4 = 1, (e) α1 = 1, α2 = 1, α3 = 20, α4 = 1, (f) α1 = 3, α2 = 6, α3 = 10, α4 =
1.1.

(c) Propagated Edit

(a) User’s input (b) t=1 (c) t=5 (d) t=10

(e) User’s input (f) t=1 (g) t=5 (h) t=10

Figure 6.10: Propagation masks with different diffusion parameters for Persepolis and
Castle images.

106

(a) Persepolis

(d) Global Editing (e) Propagated Edit

 zoomed region from (a)

zoomed region from (d) zoomed region from (e)

(b) Adaptive Unsharp Masking

(c) Constraint Unsharp Masking

zoomed region from (c)

zoomed region from (b)

Figure 6.11: Detail propagation of the Persepolis image compared to the results from
adaptive unsharp masking [6] and constrained unsharp masking [7]. Edit propagation
(shown in (e)) reduces the halo artifacts compared to the global edit (shown in (d)) and
adaptive unsharp masking [6].

edited region is propagated to the similar pixels in Fig. 6.11 and Fig. 6.12. Comparing

results of the global editing (Fig. 6.11(d) and Fig. 6.12(d)) and propagated edit (Fig.

6.11(e) and Fig. 6.12(e)), we can conclude that: (1) The main edges of the image are

preserved and there is almost no halo effect on them, (2) existing noise in image regions

with low SNR is no longer boosted. Our results are also compared to the adaptive [6]

107

(a) Castle

(d) Global Editing (e) Propagated Edit

zoomed region from (a)

zoomed region from (d) zoomed region from (e)

(b) Adaptive Unsharp Masking

zoomed region from (b)

(c) Constraint Unsharp Masking

zoomed region from (c)

Figure 6.12: Detail propagation of the castle image compared to the results from adap-
tive unsharp masking [6] and constrained unsharp masking [7]. Edit propagation (shown
in (e)) reduces noise and halo artifacts compared to the global edit (shown in (d)) and
adaptive unsharp masking [6].

and constrained [7] unsharp masking in Fig. 6.11 and Fig. 6.12. As can be seen, while

the sharpness is well enhanced, both noise and artifacts are suppressed in our results.

Depending on the application, the user can include the spatial term in the NLM

kernel (6.1). This leads to a class of eigenvectors shown in Fig. 6.2 where similarity

is captured more locally. Propagation masks built on these eigenvectors are used to

108

explore other applications of our framework in the following.

6.4 Practical Applications

The global filter studied here has many applications such as sharpening, de-

noising, recoloring, colorization, abstraction and fake depth of field. For the purpose

of recoloring and abstraction, the kernel can be computed from the luminance channel.

Color channels can be used to make the kernel for colorization and fake depth of field.

In general, after computing the leading eigenvectors, an appropriate propagation mask

is built to apply the user’s input.

6.4.1 Recoloring

Figs. 6.13-6.14 illustrate recoloring examples where the color strokes are prop-

agated. These color strokes are applied on the chrominance channels. As discussed

previously, image pixels can be represented by their corresponding diffusion map co-

ordinates given in (6.10). Thus, each image region selected by user strokes contains a

group of pixels with the diffusion map vectors assigned to them. A binary mask can

be obtained (see Figs. 6.13(c)-6.14(c)) using k-means clustering with the center of each

diffusion map group as its initialization points. As shown in Figs. 6.13(d)-6.14(d), using

this guide mask, the input color brushes are propagated in the chroma channels. Again,

the mask can be tuned using the diffusion parameter t. Our globalizing mask for the

colorization application is also obtained through the same procedure described here.

The non-local nature of our recoloring method is better illustrated in Fig. 6.13

where a small color brush on one tulip is effectively propagated to other tulips. Color

replacement tool in Photoshop CC was used for the same purpose in Fig. 6.13(e). As

109

(a) Tulips (b) User’s input (c) Mask

(d) Output (e) Photoshop CC

Figure 6.13: Recoloring example based on the propagation mask. Results from the
proposed method (d) and color replacement tool of Photoshop CC (e) are compared.

can be seen, the result obtained from Photoshop fails to evenly propagate the color

stroke. Given that the color replacement tool employs a soft propagation mask, it tends

to unequally spread the input color even across the same objects. Fig. 6.14 shows

recoloring example by two different color brushes. In this case the mask was tuned by

the diffusion parameter (t) in a way that the right and left side flowers in the image fall

into different clusters.

110

(a) Purple Flower (b) Two color brushes

(c) Mask (d) Output

Figure 6.14: Recoloring example based on the propagation mask. The mask (c) is built
based on the two input color brushes (b).

6.4.2 Colorization

Our colorization example is shown in Fig. 6.15 where three input color brushes

are propagated on the gray input image. The mask is based on affinities computed from

the luminance channel. Same as recoloring, the mask is binerized using k-means to

obtain a segmented guide map Fig. 6.15(c). The edit is propagated to the chroma

components and the luminance channel is not changed. We also compared our result

with the colorization method of Levin et al. [8] where an optimization problem is solved

to propagate the input color scribbles. For the purpose of fair comparison, we fed the

same color brushes shown in Fig. 6.15(b) to both methods. This example indicates

111

(a) Field (b) Four color brushes (c) Mask

(d) Output (e) Colorization using optimization [8] zoomed region from (d) zoomed region from (e)

Figure 6.15: Colorization example based on the propagation mask. The gray scale image
is given in (a) and our input brush colors are shown in (b). Using the mask in (c) the
color brushes are propagated throughput the gray image (shown in (d)). For a better
comparison, our output is shown next to the results from [8].

superiority of our method while working with only a few color brushes. As can be seen

in the results of [8], blue color is leaked on the trees. While adding more color brushes

especially around the object boundaries may result in a better performance from [8],

our method takes advantage of the guide mask to easily distinguish the sky and forest

regions. Yet, working with segmented guide masks might sometimes lead to false color

propagation too. The project webpage contains more colorization examples comparing

both methods and also shows some failed cases.

6.4.3 Fake Depth of Field

We can also employ the proposed propagation mask for applying fake depth of

field. Although the produced mask does not represent the true depth information of the

image, it still can be used to apply selective blur to each image region. Two examples

are illustrated in Fig. 6.16, where the user selects the region which is supposed to stay

112

in focus. Then, our blur map is built using the globalizing mask explained in Sec. 6.3

and based on this, each pixel is blurred using a Gaussian function. The blur intensity of

each pixel is proportional to the mask such that mask values close to 0 receive more blur.

Our results are compared with the manually edited results obtained from Photoshop

CC software where the same Gaussian blur was selected. The blur propagation of the

results from Photoshop are manually tuned to get the best possible output. As can be

seen, results obtained from our blur map are competitive with the Photoshop outputs.

Based on our observation, the kernel’s spatial and photometric terms play

important roles in building the blur map. We used the RGB channels in the photometric

term of the NLM kernel and included the spatial term as:

Kij = exp

{
−‖xi − xj‖2

h2x
+

−‖yRGB
i − yRGB

j ‖2
h2y

}
(6.13)

The spatial term enforces the locality of the propagated blur and the RGB photometric

term distinguishes object boundaries with different colors. Relatively large hy values suit

blur maps of images with distinctive color boundaries in background and foreground.

On the other hand, blur maps of images with comparable color in background and

foreground could be better localized by tuning hx. Of course, any fake depth of field

method has its own limitations since the real depth information is not available.

6.4.4 Abstraction

Fig. 6.17 illustrates the abstraction application where iteration of the filter

leads to stylized filtered image as ŷ = Wk
my (effect of the iteration number k is illus-

trated in the project website where different results are shown with various iteration

numbers). In practice, instead of multiplication of the filter matrix, the iterative filter-

ing is implemented by raising the eigenvalues to a power. Fig. 6.17 shows our stylized

113

(a) User’s input

(e) User’s input

(b) Blur map for input (a)

(f) Blur map for input (e)

(c) Output for input (a)

(g) Output for input (e)

(d) Photoshop CC

(h) Photoshop CC

Figure 6.16: Fake depth of field example. Based on the depth map, pixels with lower
map values are more blurred. Our results shown in (c) and (g) are competitive to the
manually edited outputs from Photoshop software in (d) and (h).

114

(a) House

(d) Result from [9]

(b) Our abstraction result

(c) Our stylized result

Figure 6.17: Image abstraction application. (a) Input image and zoomed regions, (b)
Our abstraction result as ŷ = Wk

my with iteration number k = 0.1, (c) The abstracted
image given in (b) is stylized using the edge-exaggeration and luminance quantization
of [9], (d) Result from [9].

result compared to the one from Winnemöler et al. [9]. In this method, the input image

is filtered by an iterative bilateral filter to produce a piece-wise smooth output. Then,

an edge-exaggeration step followed by luminance quantization is employed to stylize the

abstracted image (see Fig. 6.17(d)). To further stylize our abstracted result shown in

Fig. 6.17(b) and also for a better comparison to [9], the edge-exaggeration and lumi-

nance quantization of [9] was applied on our abstracted result to produce Fig. 6.17(c).

Although comparing abstracted images is very subjective, Fig. 6.17(c) and Fig. 6.17(d)

115

show that replacing the iterative bilateral smoother of [9] with our filter can result in

visually superior results.

Summary – In the chapter, some applications of the global, affinity based

filters are explored. Having eigenfunctions of these filters, complex nonlinear smoothing

or sharpening operators are easily implemented by means of mapping the corresponding

eigenvalues. The global nature of the eigenvectors let us propagate these edits easily

throughout the image. This type of editing enables us to prevent noise magnification

and also effectively reduce common artifacts such as halo. Beside filtering applications,

the obtained propagation map can be used to effect many other types of edits.

6.A Parameter Tuning of the Filter

The approximated filter spans the input image onto its eigenvectors. These

projected image coefficients are bj = vT
j y where j = 1, . . . ,m. For any m ≤ n, energy

of these coefficients is less than the energy of the input image as
∑m

j=1 b
2
j ≤ ∑n

i=1 y
2
i

(ideally, the two energy terms are equal). The approximated filter should preserve

energy of the image, which means β should be close to one, where:

β =

∑m
j=1 b

2
j∑n

i=1 y
2
i

(6.14)

Assuming that the sample number m is fixed, β is determined by the kernel smoothing

parameter.

The approximation accuracy is directly affected by the smoothing parameter

of the NLM kernel (hy given in (6.1)). For the images given in Fig. 6.18, β is computed

using different smoothing parameters in Table 6.1. As can be seen, β gets closer to

one for larger hy. However, for a better multiscale decomposition, it is necessary to

116

(a) Flower (b) Rock (c) Monastery

Figure 6.18: Test images with the following mean gradient magnitudes: (a) 3.66, (b)
7.51, (c) 12.78.

select a small smoothing parameter. We set β ≥ 99.9% to determine the optimal

kernel parameter. This test could be useful after approximation to check if the kernel

parameter is not too small or large. To avoid the computation burden, a simple ad-hoc

method is introduced in the following to adapt the kernel smoothing parameter into the

latent image.

Image content has a direct impact on the accuracy of the approximation. Im-

ages containing more variants tend to settle for larger hy (for a fixed β). This can be

observed by comparing the mean gradient magnitude of the test images (given in Fig.

6.18) and the β values in Table 6.1. Without any need to compute β, we empirically

estimate the smoothing parameter as a function of the mean gradient magnitude:

ĥy =
0.6

n

√
gTx1

gx1
+ gTx2

gx2
(6.15)

where gx1
and gx2

denote the gradient vectors in x1 and x2 directions.

6.B Approximation of Eq. 6.8

The approximation made in (6.8) is y ≈ VmIVT
my, or in effect replacing the

identity matrix with VmVT
m. This assumption means that the underlying image y

117

Table 6.1: β percentage values for images given in Figure 6.18

hy 2 4 6 8 10

Flower 99.95 99.99 100 100 100

Rock 99.83 99.95 99.97 99.98 99.99

Monastery 99.63 99.80 99.88 99.93 99.96

20 40 60 80 100 120 140 160
0.5

1

1.5

2

2.5

3

3.5

4

4.5

m

R
el

at
iv

e
R

M
S

E
 P

er
ce

n
ta

g
e

House corner
Door
Old Man
Rock
Flower

Figure 6.19: Approximation error of (6.8) computed as relative RMSE = ‖y−VmIVT
my‖

‖y‖ ×
100% for different numbers of retained eigenvectors m.

should be “well represented” (or spanned) by the retained eigenvectors. For a better

validation of this approximation, Fig. 6.19 shows relative root-mean-square-error2 for

some of the test images. The relative RMSE values are computed for images in the

range [0,255] and various values of m. Unsurprisingly, the approximation error decays

quickly as the number of retained eigenvectors grows. Overall, keeping m > 75 in our

framework leads to around 1% approximation error.

2relative RMSE =
‖y−VmIVT

my‖
‖y‖ × 100%

118

Chapter 7

Conclusions and Future Work

7.1 Conclusions

This dissertation introduces an innovative image-dependent filtering paradigm

capable of realizing state-of-the-art image enhancement and editing results. Our filtering

process is a simple weighted averaging with image-dependent weights representing local

or global pixel similarities. The pixel averaging operation can be interpreted as shrinking

or boosting the spectrum of the corresponding filter weight matrix. Depending on

the filtering application, a proper mapping function can be used to manipulate the

corresponding eigenvalues in the spectrum.

In the process of exploring the local pixel similarities, a new spatially adaptive

denoising filter (SAIF) was introduced in Chapter 2. Using the iteration mechanisms

of diffusion and twicing (which are equivalent to shrinkage or boosting of the filter

eigenvalues), SAIF improves performance of similarity-based filters such as NLM [2],

bilateral [1] and LARK [3]. In the SAIF algorithm, the appropriate type and number

of iteration in each patch is determined through the estimation of the local SNR. Ex-

119

periments show that this method enhances performance of the base filter both visually

and quantitatively.

By exploring the global pixel similarities, a novel image filtering algorithm

was described in Chapter 3. This global filter relies on the low-rank property of the

weight matrix, which can be approximated with only a few leading eigenvectors. These

eigen-functions provide a multiscale representation of the underlying image, while the

eigenvalues denote the significance of each basis function. The eigen approximation is

implemented by the Nyström technique, which operates on a few sampled pixels and

effectively lowers the required memory and complexity from quadratic to linear, in the

number of pixels.

Denoising application of the global filter (GLIDE) was presented in Chapter 4

where each pixel was denoised using all available pixels in the image. Our statistical

analysis in Chapter 5 showed that global denoising is asymptotically optimal. Namely,

incrementing the number of pixels n leads to lowering the mean-squared-error at the

rate of 1
nα (α depends on the content of the image).

Practical applications of the global filter are not limited to image denoising.

As explained in Chapter 6, a polynomial mapping of the eigenvalues enables the filter

for other applications, such as tone-mapping, edge-aware sharpening and abstraction.

All of these filtering results can be propagated to similar image regions using a diffusion

mask developed from filter eigenvectors.

7.2 Future Work and Extensions

The filer approximation steps and the applications of the global filter can be

improved as parts of our future work. Our proposed sampling approach is simple,

120

yet not necessarily optimal. More sophisticated and effective sampling strategies could

lessen the error and computational burden of the filter approximation. The order of

the filter basis functions is also an important issue to address in future studies. In this

dissertation, the eigen-functions are ordered based on the magnitude of the eigenvalues,

which is optimal for approximating the filter, but not optimal for representing an image.

In other words, our image filtering process can benefit from other possible ordering

modes of the eigenvectors. A further extension to this dissertation could be an automatic

tuning parameter selection for the filter. Since the filter has only a few knobs, a possible

approach to tune the filter is parameter learning. These topics are explained in the

following sections.

7.2.1 Adaptive Sampling

The Nyström method is an efficient technique for obtaining a low-rank ap-

proximation of the large affinity matrix, based on a subset of its samples. The quality

of this approximation depends strongly on the set of samples used, which are usually

selected randomly. An efficient sampling technique can effectively reduce memory and

computational complexity of the global filter by representing the latent image with even

fewer basis functions. In the current work we used evenly-spaced pixel samples to take

advantage of the local redundancies of natural images.

Recent research on various sampling options of low-rank approximation aim

to select more informative rows (columns) from the kernel matrix K [43, 73–77]. The

Sparse Matrix Greedy Approximation (SMGA) [73] and the Incomplete Cholesky De-

composition (ICL) [74, 75] are among the first adaptive sampling schemes suggested

for the Nyström extension. SMGA is an iterative matching pursuit process which se-

121

lects random samples from subsets that make the least approximation error. ICL is

a deterministic technique that adaptively selects rows based on potential pivots of the

Incomplete Cholesky Decomposition. More recently, clustering-based sampling was in-

troduced in [76] where the cluster centroids from k-means were selected as informative

samples. Also, new adaptive random sampling methods are proposed in [43, 77] where

samples are selected based on an estimated probability distribution to outperform the

uniform distribution sampling. Overall, the existing sampling approaches are generic

and not specialized for images. Incorporating the existing spatial redundancy of images

and greedy sampling techniques can possibly improve our filter approximation step.

Beside the quality of samples in the eigen approximation of the affinity matrix,

specifics of the basis functions derived from the samples are also important. Assuming

that the number of samples m is fixed, the retained eigenvectors to be used in the

filtering process should be highly descriptive of the latent image. This is discussed in

more details next.

7.2.2 Basis Ordering

The filter approximation provides us with the m leading orthonormal eigen-

vectors Vm = [v1, ...,vm] and eigenvalues Sm = diag[λ1, ..., λm] where 0 ≤ λm ≤ ... <

λ1 = 1. This implies that the approximation minimizes the error when reconstructing

the filter Wm. However, the purpose of the filter approximation is to span the input

image using the truncated eigenvector space Vm. More explicitly, the quality of the

filter approximation hinges on the behavior of the projected image coefficients into the

leading eigenvectors:

|b| = |VT
my| = [|v1y|, ..., |vmy|]T = [|b1|, ..., |bm|]T (7.1)

122

Number of Retained Eigenvectors (p)
5 10 15 20 25 30 35 40 45 50

R
el

at
iv

e
R

M
S

E
 P

er
ce

n
ta

g
e

1

2

3

4

5

6

7

8

9

10
(a) Barbara

Without sorted coefficients
With sorted coefficients

Number of Retained Eigenvectors (p)
5 10 15 20 25 30 35 40 45 50

R
el

at
iv

e
R

M
S

E
 P

er
ce

n
ta

g
e

2

3

4

5

6

7

8
(b) Boat

Without sorted coefficients
With sorted coefficients

Number of Retained Eigenvectors (p)
5 10 15 20 25 30 35 40 45 50

R
el

at
iv

e
R

M
S

E
 P

er
ce

n
ta

g
e

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6
(c) Goldhill

Without sorted coefficients
With sorted coefficients

Number of Retained Eigenvectors (p)
5 10 15 20 25 30 35 40 45 50

R
el

at
iv

e
R

M
S

E
 P

er
ce

n
ta

g
e

1

2

3

4

5

6

7
(d) Peppers

Without sorted coefficients
With sorted coefficients

Figure 7.1: Effect of the projection coefficient sorting on the filter approximation for
some test images from Chapter 5. The approximation error is computed as relative

RMSE =
‖y−VpIVT

p y‖
‖y‖ × 100% for fixed number of samples m = 50 and various retained

eigenvectors p.

These coefficients represent the signal component in each channel. Magnitude

of the projection coefficient bj denotes significance of the j-th basis function (vj) in

modeling the latent image y. One might argue that sorting the leading filter eigen-

vectors based on the magnitude of their respective coefficients could lead to a more

reasonable truncation of the filter. The experiment illustrated in Fig. 7.1 exemplifies

the filter approximation with and without projection coefficient sorting. As can be seen,

123

after sorting the projection coefficients, fewer eigenvectors are needed to obtain a given

approximation error1. The coefficient sorting step could be an extension to our algo-

rithm to further improve memory-efficiency of our filtering process. Next, the process

of learning the editing parameters is discussed.

7.2.3 Learning Filter Knobs

The editing operations described in Chapter 6 are achievable with only a few

tuning parameters. Sharpening, tone mapping and brightness tuning were implemented

by varying only four polynomial coefficients. This leads us to employ our global filter

to learn unknown image editing operators. For instance, basic operators employed in

commercial auto enhancing softwares are undisclosed. One might argue that proper sets

of parameters in our global filter could “imitate” the editing style of an arbitrary filter.

Recently a few learning-based image enhancement and editing methods have

been proposed [78–83]. Supervised learning is employed in some of these approaches

to personalize the edit using before and after image pairs [79–82]. Other methods,

such as [78, 83] use the image context to estimate the best restoration parameters for

exposure correction and contrast enhancement operations. Together these methods

assume separate filtering operations with independent parameters to be learned. In

these methods, sharpening, color balancing, tone mapping and exposure correction are

applied separately. On the other hand, our proposed filter provides a unified editing

framework including all these operations.

1It is worth mentioning that computing the projection coefficients b will not impose any extra
computation to our current filtering framework, because the filtered image is ŷ = Vmf(Sm)VT

my =
Vmf(Sm)b.

124

7.2.3.1 Estimating Filter Parameters Using Image Pairs

Our filtering scheme introduced in Chapter 6 was based on the eigenvalue

mapping as:

ŷ = Vmfα(Sm)VT
my (7.2)

where a 3rd order polynomial function with parameters α = [α1, α2, α3, α4]
T is applied

on the eigenvector matrix Sm. Starting with the image pairs ŷ and ỹ, where the latter

denotes a reference image, our proposed training framework for estimating the filter

parameters α is:

α̂ = argmin
α

1

n
‖ỹ− ŷ‖2 + γ‖α−αr‖2 (7.3)

where the first term minimizes the squared error between the image pairs, and the

second term guarantees closeness of α̂ to a pre-defined reference parameters αr. The

positive weight γ varies the dominance of each term in our constrained least square

problem. Our objective function can be rewritten by replacing ŷ with the filtering

scheme in (7.2):

J(α) =
1

n
‖ỹ−Vmfα(Sm)VT

my‖2 + γ‖α−αr‖2 (7.4)

With a polynomial mapping fα(.), J(.) is a quadratic function of α; meaning

that, solving ∂J
∂α = 0 results in the optimal parameters as:

α̂ = A−1c (7.5)

where

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

bT (Im − Sm)2b+ nγ bTSm(Im − Sm)2b bTS2
m(Im − Sm)2b bTS3

m(Im − Sm)b

bTSm(Im − Sm)2b bTS2
m(Im − Sm)2b+ nγ bTS3

m(Im − Sm)2b bTS4
m(Im − Sm)b

bTS2
m(Im − Sm)2b bTS3

m(Im − Sm)2b bTS4
m(Im − Sm)2b+ nγ bTS5

m(Im − Sm)b

bTS3
m(Im − Sm)b bTS4

m(Im − Sm)b bTS5
m(Im − Sm)b bTS6

mb+ nγ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(7.6)

125

Input

Smart Sharpen (Photoshop CC)

Global Filter

Figure 7.2: Input image is sharpened by smart sharpening tool in Photoshop CC to
produce the reference image ỹ. Then, the cost function given in (7.3) is solved to produce
the global filter output. The estimated parameters are α̂ = [2.86, 0.01, 0.24, 1]T .

and

c =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

bT (Im − Sm)b̃m + nγαr
1

bTSm(Im − Sm)b̃m + nγαr
2

bTS2
m(Im − Sm)b̃m + nγαr

3

bTS3
mb̃m + nγαr

4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(7.7)

in which b = VT
my and b̃ = VT

mỹ. As can be seen, the positive weight γ can improve

the condition number of the matrix A.

Fig. 7.2 and Fig. 7.3 demonstrate examples of minimizing the cost function

in (7.3). Throughout the experiment γ is fixed as 2, and the reference parameters αr

126

Input

Unsharp Masking (Photoshop CC)

Global Filter

Figure 7.3: Input image is sharpened by unsharp masking tool in Photoshop CC to
produce the reference image ỹ. Then, the cost function given in (7.3) is solved to produce
the global filter output. The estimated parameters are α̂ = [3.82,−9.48, 9.50, 1]T .

are [3, 4,−4, 1]T . In this experiment, smart sharpen (Fig. 7.2) and unsharp masking

(Fig. 7.3) of Photoshop CC are used to create the reference image ỹ. The global

filter result is Vmfα̂(Sm)VT
my where fα̂(.) is the 3rd order polynomial with optimal

coefficients α̂ obtained for each image pair. Visual comparison of the results from

global filter and Photoshop CC shows that our filter better handles noise and JPEG

artifacts. Although these examples might have no practical usage at this stage, training

127

the proposed framework for a large set of image pairs can be potentially very interesting.

This could result in a unified filtering framework capable of imitating, and possibly

improving, various filtering operators. We leave this for future work.

128

Bibliography

[1] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” Inter-

national Conference on Computer Vision (ICCV), pp. 836–846, January 1998. vi,

xii, 6, 8, 24, 25, 30, 41, 92, 119

[2] A. Buades, B. Coll, and J. M. Morel, “A review of image denoising algorithms, with

a new one,” Multiscale Modeling and Simulation (SIAM interdisciplinary journal),

vol. 4, no. 2, pp. 490–530, 2005. vi, vii, viii, xii, 6, 7, 8, 24, 26, 30, 34, 35, 41, 44,

49, 64, 65, 66, 70, 74, 85, 88, 93, 96, 119

[3] H. Takeda, S. Farsiu, and P. Milanfar, “Kernel regression for image processing

and reconstruction,” IEEE Transactions on Image Processing, vol. 16, no. 2, pp.

349–366, February 2007. vi, vii, xii, 6, 7, 8, 9, 24, 26, 31, 34, 36, 40, 94, 119

[4] L. Zhang, W. Dong, D. Zhang, and G. Shi, “Two-stage image denoising by principal

component analysis with local pixel grouping,” Pattern Recognition, vol. 43, pp.

1531–1549, Apr. 2010. vii, xii, 6, 15, 32, 34, 35, 36, 42

[5] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3-D

transform-domain collaborative filtering,” IEEE Transactions on Image Processing,

129

vol. 16, no. 8, pp. 2080–2095, August 2007. vii, viii, xii, 6, 15, 32, 34, 35, 36, 42,

65, 67, 68, 69, 70, 74, 88

[6] A. Polesel, G. Ramponi, and V. J. Mathews, “Image enhancement via adaptive

unsharp masking,” IEEE Transactions on Image Processing, vol. 9, no. 3, pp. 505–

510, 2000. x, 93, 107, 108

[7] R. C. Bilcu and M. Vehvilainen, “Constrained unsharp masking for image enhance-

ment,” Proceedings of International Conference on Image and Signal Processing,

pp. 10–19, 2008. x, 107, 108

[8] A. Levin, D. Lischinski, and Y. Weiss, “Colorization using optimization,” ACM

Transactions on Graphics, vol. 23, no. 3, pp. 689–694, 2004. x, 111, 112

[9] H. Winnemöller, S. C. Olsen, and B. Gooch, “Real-time video abstraction,” ACM

Transactions on Graphics, vol. 25, no. 3, pp. 1221–1226, 2006. x, 115, 116

[10] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assess-

ment: From error visibility to structural similarity,” IEEE Transactions on Image

Processing, vol. 13, no. 4, pp. 600–612, April 2004. xii, 30, 34, 65, 67

[11] Y. Tsin, V. Ramesh, and T. Kanade, “Statistical calibration of ccd imaging

process,” Proceedings of IEEE International Conference on Computer Vision, p.

480487, July 2001. 1

[12] J. R. Janesick, Scientific Charge-Coupled Devices. Bellingham,WA: SPIE, 2001.

3

[13] K. A. Jain, Fundamentals of Digital Image Processing. Cliffs, NJ: Prentice-Hall,

1989. 3

130

[14] F. J. Anscombe, “The transformation of Poisson, binomial and negative-binomial

data,” Biometrika, vol. 35, no. 3/4, pp. 246–254, December 1948. 3

[15] E. Nyström, “Über die praktische auflösung von linearn ingtegraglechungen mit an-

wendungen auf randwertaufgaben der potentialtheorie,” commentationes Physico-

Mathematicae, vol. 4, no. 15, pp. 1–52, April 1928. 4, 43, 45

[16] J. Portilla, V. Strela, M. Wainwright, and E. P. Simoncelli, “Image denoising using

scale mixtures of Gaussians in the wavelet domain,” IEEE Transactions on Image

Processing, vol. 12, no. 11, pp. 1338–1351, November 2003. 6

[17] D. D. Muresan and T. W. Parks, “Adaptive principal components and image

denoising,” Proceedings of IEEE International Conference on Image Processing,

vol. 1, pp. 101–104, Sep. 2003. 6

[18] M. Elad and M. Aharon, “Image denoising via sparse and redundant representations

over learned dictionaries,” IEEE Transactions on Image Processing, vol. 15, no. 12,

pp. 3736–3745, Dec. 2006. 6, 42

[19] P. Chatterjee and P. Milanfar, “Clustering-based denoising with locally learned

dictionaries,” IEEE Transactions on Image Processing, vol. 18, no. 7, pp. 1438–

1451, July 2009. 6, 74

[20] ——, “Is denoising dead?” IEEE Transactions on Image Processing, vol. 19, no. 4,

pp. 895–911, April 2010. 6, 42, 67

[21] C. Kervrann and J. Boulanger, “Optimal spatial adaptation for patch-based image

denoising,” IEEE Transactions on Image Processing, vol. 15, no. 10, pp. 2866–2878,

Oct. 2006. 6

131

[22] J. Boulanger, C. Kervrann, and P. Bouthemy, “Space-time adaptation for patch-

based image sequence restoration,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 29, no. 6, pp. 1096–1102, Jun. 2007. 6

[23] P. Milanfar, “A tour of modern image filtering,” IEEE Signal Processing Magazine,

vol. 30, no. 1, pp. 106–128, 2013. 7, 8, 10, 14, 15, 16, 58, 60

[24] E. Seneta, Non-negative Matrices and Markov Chains. Springer Series in Statistics.

Springer, 1981. 10

[25] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge University Press,

1991. 10

[26] P. Milanfar, “Symmetrizing smoothing filters,” SIAM Journal on Imaging Sciences,

vol. 6, no. 1, pp. 263–284, 2013. 10, 37, 50, 61

[27] S. Ramani, T. Blu, and M. Unser, “Monte-Carlo SURE: A black-box optimization

of regularization parameters for general denoising algorithms,” IEEE Transactions

on Image Proc., vol. 17, no. 9, pp. 1540–1554, September 2008. 13, 24, 62

[28] X. Zhu and P. Milanfar, “Automatic parameter selection for denoising algorithms

using a no-reference measure of image content,” IEEE Transactions on Image Pro-

cessing, vol. 19, pp. 3116–3132, 2010. 13, 66

[29] H. Talebi, X. Zhu, and P. Milanfar, “How to SAIF-ly boost denoising performance,”

IEEE Transactions on Image Processing, vol. 22, no. 4, pp. 1470–1485, April 2013.

14

[30] C. M. Stein, “Estimation of the mean of a multivariate normal distribution,” The

Annals of Statistics, vol. 9, no. 6, pp. 1135–1151, November 1981. 14, 19, 62

132

[31] M. Van De Ville, D. Kocher, “Nonlocal means with dimensionality reduction and

sure-based parameter selection,” IEEE Transactions on Image Processing, vol. 20,

no. 9, pp. 2683–2690, September 2011. 14

[32] H. Talebi and P. Milanfar, “Improving denoising filters by optimal diffusion,” Pro-

ceedings of International Conference on Image Processing (ICIP), Orlando, 2012.

15

[33] J. Salmon and E. Le Pennec, “NL-Means and aggregation procedures,” Proceedings

of International Conference on Image Processing (ICIP), pp. 2977–2980, 2009. 29

[34] A. S. Dalalyan and A. B. Tsybakov, “Aggregation by exponential weighting, sharp

PAC-Bayesian bounds and sparsity,” Machine Learning, vol. 72, no. 1-2, pp. 39–61,

2008. 29

[35] A. Levin, B. Nadler, F. Durand, and W. T. Freeman, “Patch complexity, finite pixel

correlations and optimal denoising,” European Conference on Computer Vision

(ECCV), October 2012. 43

[36] C. Williams and M. Seeger, “Using the Nyström method to speed up kernel ma-

chines,” in Advances in NIPS 13. MIT Press, 2001, pp. 682–688. 43, 48

[37] C. T. Baker, The Numerical Treatment of Integral Equations. Clarendon Press,

Oxford, 1977. 43

[38] A. Talwalkar, S. Kumar, and H. Rowley, “Large-scale manifold learning,” Computer

Vision and Pattern Recognition (CVPR), 2008. 44, 48

[39] C. Fowlkes, S. Belongie, F. Chung, and J. Malik, “Spectral grouping using the

133

Nyström method,” IEEE Transactions on Pattern Analysis Machine Intelligence,

vol. 26, no. 2, pp. 214–225, 2004. 44, 45, 48, 51

[40] R. Farbman, Z.and Fattal and D. Lischinski, “Diffusion maps for edge-aware image

editing,” ACM Transactions on Graphics, vol. 29, no. 6, p. 145, 2010. 44

[41] H. Talebi and P. Milanfar, “Global image denoising,” IEEE Transactions on Image

Processing, vol. 23, no. 2, pp. 755–768, February 2014. 44, 56, 73

[42] P. Drineas and M. W. Mahoney, “On the Nyström method for approximating a

Gram matrix for improved kernel-based learning.” Journal of Mach. Learn. Res.,

vol. 6, pp. 2153–2175, 2005. 48

[43] S. Kumar, M. Mohri, and A. Talwalkar, “Sampling methods for the Nyström

method,” Journal of Machine Learning Research, vol. 13, pp. 981–1006, 2012. 48,

49, 121, 122

[44] E. J. Candès and B. Recht, “Exact matrix completion via convex optimization,”

Foundations of Computational Mathematics, vol. 9, no. 6, pp. 717–772, 2009. 49

[45] G. Wahba, “The fast Monte-Carlo cross-validation and CL procedures: Comments,

new results and applications to image recovery problems-comments,” Comput.

Stat., vol. 10, pp. 249–250, 1995. 62

[46] P. Chatterjee and P. Milanfar, “Practical bounds on image denoising: From esti-

mation to information,” IEEE Transactions on Image Processing., vol. 20, no. 5,

pp. 1221–1233, May 2011. 67, 74

[47] C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J.,

vol. 27, pp. 379–423, 1948. 74

134

[48] E. Ordentlich, G. Seroussi, S. Verdu, M. Weinberger, and T. Weissman, “A discrete

universal denoiser and its application to binary images,” Proceedings of Interna-

tional Conference on Image Processing (ICIP), 2003. 74

[49] T. Weissman, E. Ordentlich, G. Seroussi, S. Verdu, and M. Weinberger, “Universal

discrete denoising: Known channel,” IEEE Transactions on Information Theory,

vol. 51, no. 1, pp. 5–28, 2005. 74

[50] H. Talebi and P. Milanfar, “Global denoising is asymptotically optimal,” Proceed-

ings of International Conference on Image Processing (ICIP), 2014. 75

[51] ——, “Asymptotic performance of global denoising,” submitted to SIAM Journal

on Imaging Sciences, 2015. 75

[52] J. M. Steele, The Cauchy-Schwarz Master Class: An Introduction to the Art of

Mathematical Inequalities. Cambridge University Press, 2004. 78

[53] K. Knopp, Infinite Sequences and Series. Dover Publication, 1956. 79, 89

[54] R. R. Coifman, S. Lafon, A. B. Lee, M. Maggioni, F. Warner, and S. Zucker,

“Geometric diffusions as a tool for harmonic analysis and structure definition of

data: Diffusion maps,” Proceedings of the National Academy of Sciences, vol. 102,

no. 21, pp. 7426–7431, 2005. 81, 102

[55] Z. Farbman, R. Fattal, D. Lischinski, and R. Szeliski, “Edge-preserving decomposi-

tions for multi-scale tone and detail manipulation,” ACM Transactions on Graph-

ics, vol. 27, no. 3, August 2008. 92

[56] K. Subr, C. Soler, and F. Durand, “Edge-preserving multiscale image decompo-

135

sition based on local extrema,” ACM Transactions on Graphics, vol. 28, no. 5,

December 2009. 92

[57] S. Paris, S. W. Hasinoff, and J. Kautz, “Local Laplacian filters: edge-aware image

processing with a Laplacian pyramid,” ACM Transactions on Graphics, vol. 30,

no. 4, July 2011. 92

[58] Z. Farbman, R. Fattal, and D. Lischinski, “Diffusion maps for edge-aware image

editing,” ACM Transactions on Graphics, vol. 29, no. 6, December 2010. 92, 94,

96

[59] X. An and F. Pellacini, “Appprop: all-pairs appearance-space edit propagation,”

ACM Transactions on Graphics, vol. 27, no. 3, August 2008. 92, 94

[60] P. Perona and J. Malik, “Scale-space and edge detection using anistropic diffusion,”

IEEE Transactions in Pattern Analysis and Machine Intelligence, vol. 12, no. 9,

pp. 629–639, July 1990. 92

[61] F. Durand and J. Dorsey, “Fast bilateral filtering for the display of high-dynamic-

range images,” ACM Transactions on Graphics, vol. 21, no. 3, July 2002. 92

[62] J. Chen, S. Paris, and F. Durand, “Real-time edge-aware image processing with

the bilateral grid,” ACM Transactions on Graphics, vol. 26, no. 3, July 2007. 92

[63] R. Fattal and S. Agrawala, M. Rusinkiewicz, “Multiscale shape and detail enhance-

ment from multi-light image collections,” ACM Transactions on Graphics, vol. 26,

no. 3, July 2007. 92

[64] A. Choudhury and G. G. Medioni, “Perceptually motivated automatic sharpness

136

enhancement using hierarchy of non-local means,” Proceedings of Internationa Con-

ference on Computer Vision Workshops, pp. 730–737, November 2011. 93

[65] B. Zhang and J. P. Allebach, “Adaptive bilateral filter for sharpness enhancement

and noise removal,” IEEE Transactions on Image Processing, vol. 17, pp. 664–678,

2008. 93

[66] X. Zhu and P. Milanfar, “Restoration for weakly blurred and strongly noisy im-

ages,” IEEE Workshop on Applications of Computer Vision (WACV), pp. 103–109,

2011. 94

[67] D. Lischinski, Z. Farbman, M. Uyttendaele, and R. Szeliski, “Interactive local

adjustment of tonal values,” ACM Transactions on Graphics, vol. 26, no. 3, July

2006. 94

[68] F. Pellacini and J. Lawrence, “Appwand: editing measured materials using

appearance-driven optimization,” ACM Transactions on Graphics, vol. 27, no. 3,

August 2007. 94

[69] H. Talebi and P. Milanfar, “Non-local image editing,” IEEE Transactions on Image

Processing, vol. 23, no. 10, pp. 4460–4473, October 2014. 96

[70] ——, “Global image editing using the spectrum of affinity matrices,” Global Con-

ference on Signal and Information Processing (GlobalSIP), pp. 771–774, December

2013. 96

[71] G. H. Golub and C. F. Van Loan, Matrix Computations. JHU Press, 1996. 97

[72] J. A. Dieudonne, Foundations of Modern Analysis. New York: Academic press,

1960. 99

137

[73] A. J. Smola and B. Schölkopf, “Sparse greedy matrix approximation for machine

learning,” International Conference on Machine Learning, 2000. 121

[74] S. Fine and K. Scheinberg, “Efficient SVM training using low-rank kernel repre-

sentations,” The Journal of Machine Learning Research, vol. 2, pp. 243–264, 2002.

121

[75] F. R. Bach and M. I. Jordan, “Kernel independent component analysis,” The Jour-

nal of Machine Learning Research, vol. 3, pp. 1–48, 2003. 121

[76] K. Zhang, I. W. Tsang, and J. T. Kwok, “Improved Nyström low-rank approx-

imation and error analysis,” International Conference on Machine Learning, pp.

1232–1239, 2008. 121, 122

[77] A. Deshpande, L. Rademacher, S. Vempala, and G. Wang, “Matrix approxima-

tion and projective clustering via volume sampling,” Symposium on Discrete Algo-

rithms, 2006. 121, 122

[78] K. Dale, M. K. Johnson, K. Sunkavalli, W. Matusik, and H. Pfister, “Image restora-

tion using online photo collections,” International Conference on Computer Vision

(ICCV), pp. 2217–2224, 2009. 124

[79] S. B. Kang, A. Kapoor, and D. Lischinski, “Personalization of image enhancement,”

Computer Vision and Pattern Recognition (CVPR), pp. 1799–1806, 2010. 124

[80] J. C. Caicedo, A. Kapoor, and S. B. Kang, “Collaborative personalization of image

enhancement,” Computer Vision and Pattern Recognition (CVPR), pp. 249–256,

2011. 124

138

[81] V. Bychkovsky, S. Paris, E. Chan, and F. Durand, “Learning photographic global

tonal adjustment with a database of input/output image pairs,” Computer Vision

and Pattern Recognition (CVPR), pp. 97–104, 2011. 124

[82] N. Joshi, W. Matusik, E. H. Adelson, and D. J. Kriegman, “Personal photo en-

hancement using example images,” ACM Transactions on Graphics, vol. 29, no. 2,

p. 12, 2010. 124

[83] F. Berthouzoz, W. Li, M. Dontcheva, and M. Agrawala, “A framework for content-

adaptive photo manipulation macros: Application to face, landscape, and global

manipulations.” ACM Transactions on Graphics, vol. 30, no. 5, p. 120, 2011. 124

[84] J. A. Guerrero-Colon and J. Portilla, “Deblurring-by-denoising using spatially

adaptive Gaussian scale mixtures in overcomplete pyramids,” Proceedings of the

International Conference on Image Processing (ICIP), Atlanta, GA, pp. 625–628,

October 2006.

139

