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EPIGRAPH

When you meet a virtuous person,
think of becoming like them;

when you meet an unvirtuous person,
reflect on your own faults.

Confucius

Stay hungry.
Stay foolish.

Steve Jobs

If you shut the door to all errors,
truth will be shut out.

Rabindranath Tagore

I’m just like my country
I’m young, scrappy, and hungry,

and I am not throwing away my shot.

Hamilton musical
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Satellite altimetry has revolutionized our understanding of upper-ocean circulation dy-

namics and sea level change. However, there is limited understanding of sub-mesoscale to

mesoscale ocean dynamics because they are too small to be detected globally with today’s

technology. Mesoscale ocean activities are associated with eddy kinetic energy generation and

dissipation, and play an important role in the dynamics of ocean energy transfer and mixing

(Ferrari and Wunsch, 2009) and local and global budgets of heat and carbon (Morrow et al.,

2019). The Surface Water and Ocean Topography (SWOT) satellite altimetry mission, launched

in December 2022, will provide an opportunity to refine the measured sea surface height resolu-
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tion down to 15 km, allowing for direct global observations of mesoscale oceanic activity. This

new capability motivates investigations of submesoscale to mesoscale oceanic activities, and the

separation between balanced geostrophic flows and unbalanced wave motions. This thesis uses

the ICESat-2 photon height data and radar altimetry data collected over the past thirty years to

study small-scale ocean surface variability, its influencing factors, and seasonality. The results in

Chapter 2 show that an ICESat-2 single track can recover the marine geoid at wavelengths > 20

km, which is similar to the best radar altimeter data. However, the wavelength and propagation

direction of surface gravity waves are sometimes well resolved by using a combination of the

strong and weak beams, which are separated by 90 m. In Chapter 3, we identify the most

important factors that influence mesoscale ocean variability to be the distance to the nearest

thermocline boundary, significant wave height, mean dynamic topography gradient, and M2

tidal speed. Nonetheless, some regions such as the Amazon outflow cannot be predicted by the

model, suggesting that these regions are governed by local processes not represented in the input

features. In Chapter 4 we found that the high-latitude Northern Hemisphere and the south Indian

Ocean are associated with large annual cycles at mesoscales. The variability is higher in local

wintertime, except for a few regions such as the Bay of Bengal, which shows high variability in

the boreal spring and fall.
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Chapter 1

Introduction

The ocean serves as the primary repository of the Earth’s heat and carbon dioxide. Ad-

vances in Earth-observing satellite technology have revealed crucial connections between climate

change and the ocean. Sea level rise is one of the most widely studied and discussed phenomena

within the context of climate change. The rate of sea level rise varies from region to region and

is related to thermal expansion, melting of ice sheets and glaciers and ocean mass redistribution,

geological patterns, and ocean/atmospheric dynamics (Kopp et al., 2015).

Ocean dynamics have a wide range of temporal and spatial scales (Figure 1.1). At the

smallest scales, molecular mixing occurs. When winds blow over the ocean surface, capillary

waves are generated at the scale of centimeters, which can grow into surface gravity waves with

wavelengths ranging from tens to a few hundreds of meters. These waves can be short-period,

locally generated wind seas, occuring in all directions, or propagating over long distance develop-

ing into long-period, narrow-banded swells. Surface gravity waves can reach heights of several

meters, making them a major source of error in radar altimetry observations. At submesoscales

to mesoscales, (including the 30-100 km range which is the focus of this dissertation), there are

internal waves and tides, as well as instabilities of currents such as eddies, fronts, and meanders.

Internal gravity waves are characterized by water parcels oscillating in stratified water, with

restoring by the buoyancy force. They are typically generated by tides interacting with rough
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topography or by winds stirring the mixed layer, producing internal waves with near-tidal or

near-inertial frequency. Strong ocean currents such as the Gulf Stream have spatial scales of

hundreds of kilometers and are balanced by the Coriolis force and pressure gradient force. Small

pockets of water breaking off from the main body of a current may form eddies, fronts, or

meanders, having scales on O(100km) and traveling for months across thousands of kilometers.

Ocean general circulation represents the time-mean features of the ocean, with basin to global

spatial scales. These features are major errors in constructing a marine gravity field.

Figure 1.1. Time and space scales of physical oceanographic phenomena from bubbles and
capillary waves to changes in ocean circulation associated with Earth’s orbit variations. Credit:
Talley 2011.

Since the 1990s, satellite altimetry has been providing continuous global measurements

of the sea surface height (SSH), greatly advanced our understanding of ocean dynamics, climate

variability, weather forcasting and marine navigation (Fu and Cazenave, 2000; Nerem et al.,

2018; Schiller and Brassington, 2011). The first successful satellite altimetry mission SEASAT

was launched in 1978. This mission provided the first global map of SSH, followed by GEOSAT
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and ERS-1, which provided improved accuracy and precision. The modern era of satellite radar

altimetry started with the launch of TOPEX/Peseidon in 1992, and was followed by Jason 1/2/3,

Envisat, Cryosat-2, SARAL/ALtiKa and Sentinel-3A/B, HY-2, and Sentinel-6 (see Figure 1.2).

Figure 1.2. Altimeter satellite missions’ timeline overview along with the missions’ orbit
reportativity and information about their countries of origin. Cited from Grgić and Bašić, 2021.

The fundamental principle of satellite altimetry is based on the transmission of a radar

pulse from the satellite antenna to the Earth’s surface. Upon reflection from the surface, the

pulse is detected by the satellite receiver, and the time taken for the pulse to travel provides

the range between the satellite and the ocean surface, as illustrated in Figure 1.3. The GPS

tracking systems provide the altitude of the satellite with reference to a particular standard

surface, typically the WGS84 ellipsoid. The SSH can be determined by subtracting the altimeter

range from the satellite altitude, taking into account the geophysical corrections. The SSH

represents the sum of the time-invariant marine geoid, dynamic ocean variabilities, and tides.

The geoid is an equipotential surface of the Earth’s gravity field, representing the non-uniform

mass distribution of the Earth’s interior. Barotropic ocean tides are generally well modeled in the

open ocean (RMS error < 5cm) and less well modeled at coasts (RMS error < 10 cm) (Lyard

et al., 2021; Stammer et al., 2014). For recovery of a static marine gravity field or predicting
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the bathymetry, the critical measurement is the slope of the ocean surface (Sandwell and Smith,

2005), where the largest error comes from the satellite altitude measurement and wave height

noise. To analyze oceanic dynamics, it is necessary to subtract the mean sea surface (MSS),

which represents the geoid and the mean dynamic topography, from the satellite measurement.

Figure 1.3. Principle of Satellite Altimeter (Courtesy of AVISO).

Ocean dynamics in the sub-mesoscale to mesoscale range, here defined as in 30-100

km wavelength band, are poorly understood because they are shorter than the O(100km) spa-

tial resolution of the most commonly used gridded multi-mission SSH products distributed by

Copernicus Marine Environment Monitoring Service (CMEMS) (Le Traon et al., 1998; Le Traon

and Dibarboure, 1999). The multi-mission SSH has a temporal resolution of ∼ 10 days and

spatial resolution of 100-200 km, restricted by measurement noise and the wide separation

between nadir tracks (Ballarotta et al., 2019; Taburet et al., 2019). High-resolution ocean

general circulation models with ∼2km spatial-resolution (Marshall et al., 1997b; Shchepetkin

and McWilliams, 2005; Chassignet et al., 2003) generally lack surface wave forcing and have
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weak constraints of large-scale features. Thus they cannot produce realistic realizations in this

band. Ocean activities in this band are associated with the generation and dissipation of eddy

kinetic energy, and contain most of the energy that powers ocean energy transfer and mixing

(Ferrari and Wunsch, 2009), and local and global budgets of heat and carbon (Morrow et al.,

2019). Ocean currents and eddies at these scales are important to coastal processes such as ship

navigation, beach erosion, and dispersing pollutants. Therefore, this dissertation aims to narrow

the research gaps in our understanding of sub-mesoscale to mesoscale ocean variability, and

answer the following questions:

1. how well can we observe and understand sub-mesoscale to mesoscale ocean dynamics?

2. what are the driving forces of the ocean dynamics in this band?

3. what are the seasonal ocean dynamics in this wavelength band?

The main objective of this dissertation is to utilize satellite altimetry data to observe and

examine changes in the sea surface resulting from ocean dynamics in the 30-100 km wavelength

band. I use photon height data from the ICESat-2 (Ice, Cloud, and land Elevation Satellite-2)

laser altimetry mission to explore its potential in reconstructing ocean topography. I also use

30 years of high-quality, repeated and non-repeated satellite radar altimetry data, to generate

maps of sea surface variability with a spatial resolution of approximately 10 km and explore

the seasonal variability. There are two critical components to our radar altimetry data analysis

that enable the observation of small-scale ocean variability. The first is the two-step retracking

of the raw waveform data from low-resolution mode (LRM) altimeters, where the footprint is

circular and several kilometers in diameter. This technique improves the range precision and

reduces the noise in the 10-45 km wavelength band by a factor of 1.5–1.7 (Zhang and Sandwell,

2017). This improves the along-track resolution. The second is the use of altimeter data with

smaller cross-track spacing than that is normally used for oceanographic studies. These data

were collected by Cryosat-2, SARAL/Altika and Jason-1/2 during their extended life phases.

Using these improved data, I investigate the primary factors influencing ocean variability in
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the 30-100 km band, along with its mean, annual, and semi-annual variations. The wide-swath

SWOT (Surface Water and Oceanography Topography) mission, launched on December 16,

2022, will provide unprecedented details in measuring the world’s surface water, both on land

and in the ocean.

This dissertation comprises five chapters. This chapter serves as an introduction to the

key concepts and altimeter data employed in this dissertation. In Chapter 2, I investigate the

potential of ICESat-2 for measuring ocean topography and individual surface waves. Addition-

ally, I highlight the challenges posed by one-dimensional observations of two-dimensional ocean

surfaces. In Chapter 3, I present small-scale ocean variability maps constructed using satellite

altimetry measurements. Furthermore, I employ machine learning techniques to identify the

critical influencing factors of small-scale ocean dynamics. Chapter 4 explores the seasonal varia-

tions of ocean dynamics and establishes that they are related to changes in SWH and thermocline

depth. In Chapter 5, I outline the future work, introducing the investigation of SWOT data to be

collected over the Foundation Seamounts and the tidal conversion over rough topography.

Chapter 2 of this dissertation explores the potential of ICESat-2 in measuring the ocean

topography and surface waves. ICESat-2 is a NASA laser altimetry mission that was launched

in September 2018. It utilizes lidar tracks with a very fine spatial resolution of approximately

15 meters to measure the topography of ice, water, and land surfaces elevations. The mission’s

primary instrument is the Advanced Topographic Laser Altimeter System (ATLAS), which splits

the green laser into six beams arranged in three pairs (refer to Figure 1.4). Compared to radar

altimeters, which have a footprint of 5-10 kilometers, ICESat-2 has the ability to measure individ-

ual sea surface waves and reveal much higher resolution 1-D profiles of the ocean surface. Our

results show that: (i) an ICESat-2 single track can recover the marine geoid at wavelengths >20

km which is similar to the best radar altimeter data; (ii) the wavelength and propagation direction

of the dominant surface gravity waves are sometimes well resolved by using a combination of the

6



strong and weak beams; (iii) there is higher than expected power in the 3-20 km wavelength band

where geoid and ocean signals should be small. This artificial power is caused by the projection

of 2-D surface waves with ∼ 300 m wavelengths into longer wavelengths (5-10 km) because

of the 1-D sampling along the narrow ICESat-2 profile. Thus ICESat-2 will not provide major

improvements to the geoid recovery in most of the ocean.

Figure 1.4. This graphic shows the six-beam pattern from the Advanced Topographic Altimeter
System (ATLAS) instrument and how it measures ice thickness. Each pair consists of a strong
and weak beam, with an energy ratio of about 4:1. The beams are separated by 90 meters in the
cross-track direction and approximately 2.5 kilometers in the along-track direction. The three
beam pairs are 3.3 kilometers apart in the cross-track direction. The photon beams that reflect
from the ocean surface provide estimates of height above a reference ellipsoid, with a horizontal
accuracy of 10 meters and a vertical precision of 0.03 meters. ICESat-2 has a high sampling
rate of 10 kHz, a narrow footprint of 15 meters in diameter, near-global coverage with a 92°
inclination, and a 91-day repeat. Credit: Smith et al., 2020.

Chapter 3 of this dissertation utilizes satellite radar altimetry waveform data collected

over the past three decades to create sea surface slope (SSS) maps. SSS is the spatial derivative

of SSH. Computating the spatial derivative enhances high-wavenumber signals and “whitens”

the power spectral density (PSD) by k2. We focus on focus on small resolvable scales in the

30-100 km wavelength band and use machine learning algorithms to identify the environmental
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factors that influence the SSS variability. We identify the dominant factors to be the distance to

the nearest thermocline boundary, significant wave height (SWH), mean dynamic topography

gradient, and M2 tidal speed. However, there are individual regions, such as, the Amazon

outflow, that cannot be predicted by our model, suggesting that these regions are governed by

processes that are not represented in our input features. This study highlights both the value of

machine learning and its shortcomings in identifying mechanisms governing oceanic phenomena.

Chapter 4 of this dissertation explores the seasonal variability of the SSS variability in

the 30-100 km band using satellite altimetry data. We derive the mean, annual, and semi-annual

components of SSS variability in multiple wavelength sub-bands from 10 to 1,000 km. The

results show that: (i) the seasonal components are generally small (<10% in amplitude) com-

pared to the mean variability; (ii) at the 30–100 km wavelength band, there is high variability

over western boundary currents and regions of rough topography. In this band, the high-latitude

Northern Hemisphere and the south Indian Ocean are associated with large annual cycles; (iii)

the variability is higher in local wintertime except for a few regions, for example, the Bay of

Bengal, which shows high variability in the boreal spring and fall; (iv) through power spectral

density analysis of the seasonal SSS variability, we find that the energy differences between local

winter and summer are stronger at smaller scales (<100 km).

Chapter 5 of this dissertation introduces two future projects, focusing on SWOT data

analysis and the tidal conversion over the Foundation Seamounts. This chapter also presents

the preliminary data from the SWOT mission, showing details of the Gulf Stream in ways that

satellite radar altimetry could not before. SWOT is a collaborative effort between NASA, the

French space agency CNES, in partnership with the Canadian Space Agency and UK Space

Agency, and is designed to provide high-resolution measurements of water surface elevation and

its associated properties, with the aim of providing new insights into the dynamics of the world’s

water cycle, including how water is stored, transported, and exchanged between the oceans,
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atmosphere, and land. The wide-swath SWOT system is designed to measure the elevation of

water surfaces over a swath of approximately 120 km in width at 21-day repeat. The principal

instrument on SWOT is a Radar Interferometer (KaRIn, 0.86 cm wavelength) which is a Ka-band

( 0.86 cm wavelength) SAR system with two antennas at each end of a 10-m long baseline.

The observation geometry is illustrated in Figure 1.5. The SWOT KaRIn system operates by

transmitting two radar signals at slightly different frequencies. The returning radar signals

arrive at each antenna slightly out of phase and the phase difference between the two signals is

measured by the interferometer, which can then be used to calculate the surface height with a

very high degree of accuracy. Early commissioning phase shows that SWOT is able to measure

rivers > 100 m and ocean dynamics above 15 km wavelengths.
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Figure 1.5. The configuration of the measurement system of the SWOT mission. The red
and blue dashed lines represent the path of the transmission and reception of radar signals,
respectively, over the two 50-km-wide swaths for interferometry between the two interferometer
antennas. The green dashed lines represent the reception of radar signals near the nadir for
interferometry between the nadir altimeter antenna and one of the interferometer antennas
for observing the near-nadir regions where the targets have nearly equal distance to the two
interferometer antennas. Both swaths have the same capability of making observations either
over the ocean or the land surface water. (cited from Fu and Ubelmann, 2014)

In this dissertation, we utilized satellite radar and laser altimetry data, through careful

data processing and analysis, to investigate small-scale ocean dynamics on a global scale. Our

findings provide important insights into the variations and mechanisms of small-scale ocean

dynamics, as well as advantages and caveats of different data analysis methods. Furthermore,

this dissertation has laid the foundation for taking full advantage of the upcoming SWOT data,

which will provide high-resolution, high-precision, wide-swath SSH measurements and enable

significant discoveries in our understanding of ocean dynamics.
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Chapter 2

Assessment of ICESat-2 for the Recovery
of Ocean Topography

The Ice, Cloud and land Elevation Satellite 2 (ICESat-2) laser altimetry mission, launched

in September 2018, uses six parallel lidar tracks with very fine along-track resolution (15 m) to

measure the topography of ice, land and ocean surfaces. Here we assess the ability of ICESat-2

ocean data to recover oceanographic signals ranging from surface gravity waves to the marine

geoid. We focus on a region in the tropical Pacific and study photon height data in both the

wavenumber and space domain. Results show that an ICESat-2 single track can recover the

marine geoid at wavelengths >20 km which is similar to the best radar altimeter data. The

wavelength and propagation direction of surface gravity waves are sometimes well resolved by

using a combination of the strong and weak beams, which are separated by 90 m. We find higher

than expected power in the 3-20 km wavelength band where geoid and ocean signals should

be small. This artificial power is caused by the projection of 2-D surface waves with ∼300 m

wavelengths into longer wavelengths (5-10 km) because of the 1-D sampling along the narrow

ICESat-2 profile. Thus ICESat-2 will not provide major improvements to the geoid recovery in

most of the ocean.
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2.1 Introduction

Over the past four decades, radar altimetry has been providing high-accuracy global sea

surface height (SSH) measurements associated with the time-invariant marine geoid as well

as dynamic oceanic variabilities. Several recent studies have highlighted the need to achieve 1

mGal gravity accuracy at a half wavelength spatial resolution of about twice the mean ocean

depth (∼8 km) to map small-scale tectonics, seamounts and continental margin structure (e.g.

Andersen et al., 2017; Sandwell et al., 2014). This 1 mGal objective corresponds to a sea surface

slope accuracy of ∼1 µrad or 8 mm over a distance of 8 km. The distance of 8 km corresponds

to the optimal recoverable resolution of gravity anomaly from seafloor roughness, limited by

the ocean depth due to upward continuation. The current best static gravity model based on all

available repeat and non-repeat radar altimetry has reached an accuracy of 1 or 2 mGal in most

ocean areas at a full-wavelength spatial resolution of 16-20 km (Sandwell et al., 2019).

At these small spatial scales, the largest error source in radar altimetry of SSH is related

to ocean surface gravity waves. The sharp outgoing radar pulse is blurred by reflections from the

peaks and troughs of the surface waves within the pulse-limited footprint of the radar altimeter

(3 km at 2 m significant wave height, SWH). Individual radar waveforms at a 20 Hz sampling

rate have a range error of ∼40 mm (Zhang and Sandwell, 2017). Better range precision of

about 20 mm has been achieved by SARAL/ALtiKa which operates at a shorter wavelength

and has a higher bandwidth and pulse repetition frequency. Further gravity improvements with

pulse-limited radar altimetry will be gradual as the noise is reduced as the square root of the

number of observations. Here we investigate the laser altimeter data from the Ice, Cloud and land

Elevation Satellite 2 (ICESat-2) to better understand its potential contributions to gravity field

recovery as well as to understand how surface waves and other oceanographic signals degrade

radar range precision.
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ICESat-2, which launched in September 2018, uses lidar to measure elevation with a

primary focus on the cryosphere and a tertiary objective of ocean topography. The Advanced

Topographic Laser Altimeter System (ATLAS) onboard splits the green laser into six beams

arranged in three pairs. Each pair consists of a strong and a weak beam with an energy ratio

about 4:1. The beams are separated by 90 m in the cross-track direction and by ∼2.5 km in the

along-track direction. The three beam pairs are 3.3 km apart in the cross-track direction (Smith

et al., 2020). The round-trip traveltimes of photon beams that reflect from the ocean surface

provide estimates of height above a reference ellipsoid with 10 m horizontal accuracy and 0.03

m vertical precision (Smith et al., 2020). ICESat-2 has a high sampling rate (10 kHz), narrow

footprint (15 m in diameter), near-global coverage (92◦ inclination) and a 91-day repeat. Around

1014 photons leave the ATLAS sensor per laser shot. Among photons that are reflected off the

ocean surface, only 0-4 per laser shot travel back to the ATLAS because the open ocean has

low reflectance in the visible spectrum (Hartmann 2015; Neumann et al., 2020). The ocean

signal rates are similar to land. Neuenschwander and Magruder (2016) initially showed that

ICESat-2 is able to accurately retrieve terrain heights from photon signal aggregation, which

can be applied to surface wave characterization. Over the ocean, ICESat-2 is proven to allow for

imaging individual waves (Klotz et al., 2019), and the signal that it detects is influenced by a

mixture of surface and internal waves, tides and balanced flows.

Each ICESat-2 ATLAS data set begins with the prefix “ATL”. All products and related

documents can be accessed through the National Snow & Ice Data Center. The ICESat-2 team

provides a standard ocean height product ATL12 (Morison et al., 2019) which takes in ATL03

photon heights (Neumann et al., 2020) and outputs heights at a variable spacing (5-7 km over

the tropical Pacific) along with SWH and statistics. Although ATL12 aims to achieve 10 mm

accuracy for mean sea surface (MSS) height (Morison et al., 2019), the 5-7 km along-track

sampling of that product is not adequate for our analysis which investigates the adverse effects

of surface gravity waves on the recovery of the MSS.
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The fine spatial resolution of ICESat-2 photon height data (∼15 m) motivates us to inves-

tigate its potential for ocean topography recovery. In this paper, we divide the ocean topography

signals into three wavelength bands: MSS (MSS = geoid + mean dynamic topography, >20 km);

surface gravity wave band (<3 km); and the less well understood intermediate band (3-20 km).

We address the following questions: (1) Can the ICESat-2 ocean data be used to improve the

accuracy and resolution of the marine geoid and gravity field? (2) What type of filter is best for

the recovery and removal of sea surface signals that have scales less than 3 km in wavelength?

(3) What is the origin of the height signal in the intermediate band range (3-20 km)? We address

these questions by investigating ICESat-2’s photon height profiles in an area of the tropical

Pacific (longitude -120° to -100°, latitude -11° to -1°) having relatively low mesoscale ocean

variability (Tchilibou et al., 2018) and calm sea state, with typical SWH less than 2 m (Stopa,

2019). These height profiles measure the MSS as well as temporal variations associated with

tides, ocean currents, and gravity waves.

The ICESat-2 ATL03 photon height data are analysed in both the wavenumber domain

and the space domain. The wavenumber domain analysis reveals the full spectrum of height

variations over wavelengths from 50 m to 500 km. In addition, cross-spectral analysis among the

three strong lidar beams, as well as a MSS height model (MSSCNESCLS19), which is based on

all available radar altimeter data (Schaeffer et al., 2018) with 16-20 km spatial resolution, reveals

the best spatial resolution that is consistently recorded in ICESat-2 tracks. This wavenumber

analysis also provides the rationale for the design of along-track filters to separate the signal and

noise components. We then use bandpass filters to analyse the signal and noise of the ICESat-2

data in the space domain. We also generate synthetic SSH fields using wave buoy data to assist

understanding the 1-D sampling of 2-D surface waves. In addition, we show that there are errors

related to ocean surface gravity waves contaminating ICESat-2 observations in two ways: (1)

surface waves are energetic and need to be reduced by averaging repeating observations and (2)
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surface waves in the 1-D sampling of laser altimeters could be projected to much longer apparent

wavelengths and contaminate longer wavelength signals (5-10 km and longer).

2.2 Wavenumber Domain Analysis

We choose ATL03 geolocated photon heights in a 20° by 10° tropical Pacific box (longi-

tude: -120° to -100°, latitude: -11° to -1°), selected because of its low variability in dynamic

ocean topography. We use the strong beam photon heights that have medium and high confidence

values. We assembled all strong beam profiles having more than 70% cloud-free data spanning

the time period from December 2018 to May 2020. About 15% of the profiles satisfy these

criteria (341 out of 2325 profiles). Heights were corrected for solid earth tides, solid earth pole

tides, ocean loading and ocean pole tides and referenced to the WGS84 ellipsoid (Neumann et al.,

2020). We further apply ocean tides and inverse barometer corrections to the geolocated photons

using geophysical corrections provided in the ATL03 data set. Original data are sampled at 10

kHz, which corresponds to roughly 0.7 m in the along-track direction. We resample the data at 5

m intervals using a robust median, low-pass Gaussian filter with 0.5 gain at 30 m wavelength

with the robust option in the Generic Mapping Tools “filter1d” function (Wessel et al., 2013).

Median filtering reduces potential contamination from large height outliers caused by scattering

of photons in the atmosphere as well as reflections from the subsurface. The filtered heights are

used for all the analysis that follows.

First, we calculate the power spectral density (PSD) of each height profile using the

Lomb-Scargle method (Lomb 1976; Scargle 1982). Interpolating gaps in height profiles is not

desirable considering the large percentage of missing data. The Lomb-Scargle method is a

spectral analysis algorithm for irregularly sampled and gappy data that is widely used in the

astronomy community. We finally average the 341 power spectra to obtain the PSD in the Pacific
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box, which is shown in Figure 2.1. The 99% confidence interval is shaded in red.

Figure 2.1. Averaged SSH power spectral density in the Pacific box. The spectrum can be
divided into three bands representing long wavelength MSS signals (20-500 km), surface gravity
waves (<3 km), and the more poorly understood intermediate wavelength band (3-20 km). The
99% confidence interval is shaded in red.

From the average spectra (Figure 2.1), we identify three main spectral bands:

1. The long-wavelength band (> 20 km) mainly reflects the MSS height which is a combina-

tion of time-invariant geoid height and mean ocean dynamic topography. We also use the

MSSCNESCLS19 MSS model as the reference to remove the MSS and isolate the power

spectrum of the sea level anomaly (SLA, Figure 2.11). Since the barotropic tides have also

been removed, and there is no strong current in this tropical Pacific box, the remaining

sea level variations are hypothesized to be primarily attributable to unbalanced flows and

internal tides. This hypothesis is supported by the k-1 to k-2 spectral slope of SLA (Figure

2.11).
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2. The short wavelength part of the spectrum has a broad peak centered around 300 m. We

show that this is mainly due to surface gravity waves. Note that the 341 profiles were

collected at different times and thus sample different sea states, composed of waves with

multiple wavelengths and directions. In particular, there is a wide range of possible

wave directions α with respect to the ascending and descending tracks of the ICESat-2

orbit. This causes an increase in the apparent wavelength of the waves due to a 1/cosα

trigonometric relation.

3. The power in the intermediate part of the spectrum is less well understood since this band

is poorly sampled by radar altimeters because of their large pulse-limited footprint (3-5

km, Xu and Fu, 2012). In situ measurements, i.e., ocean buoys, profilers, suggest two

dominant types of ocean phenomena in this band: (i) Infragravity waves with wavelengths

> 1 km typically have amplitudes of < 10 mm in the tropical Pacific (Aucan and Ardhuin,

2013); (ii) High mode internal waves/tides are also common and have amplitudes ∼ 10

mm (Savage et al., 2017). Our more detailed, space-domain analysis of the ICESat-2 data,

provided below, shows amplitudes of 100-200 mm in this band which is much larger than

expected. A major focus of this paper is to understand the source of these large amplitude

signals. If they are true oceanographic signals, they will be observed by the Surface

Water and Ocean Topography mission (SWOT) due to SWOT’s high spatial resolution and

50-fold decrease in noise level (2 cm2/(cycle/km)) (Desai et al., 2018). As we show further

in this manuscript, it is more likely that these large amplitude signals in intermediate

wavelengths are due to instrument or sampling issues.

To better understand the signal and noise characteristics of ICESat-2 as a function of

wavelength we perform two types of cross-spectral analyses. The first inter-compares the three

strong beams of individual tracks to understand the MSS resolution capability of ICESat-2.

This type of cross-spectral analysis is commonly used by the marine geophysics community

to characterize the shortest wavelength resolvable in the along-track altimeter data (Marks and
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Sailor, 1986; Marks and Smith, 2006; Yale et al., ,1995). We select one profile (reference ground

track: 0394, cycle: 02, segment number: 08, sensing time: 2019/01/23) in the Pacific Ocean

with latitudes ranging from -21.5◦ to -11◦ and compute cross-spectra for the height in the three

parallel strong beams. We use data with latitudes shifted to -21.5◦ to -11◦ that is beyond the

Pacific box because there is no gap larger than 10 km and fewer than 20% of data are missing for

all 3 beams. We interpolate gaps, detrend, apply a Von Hann taper (also known as the Hanning

window) to each 82 km segment, and use Welch’s method to obtain the cross-spectrum (including

the coherence magnitude squared, or CMS, and phase), which is shown in Figures 2.2a and 2.2c.

Figure 2.2. (a) CMS and (c) phase between beams 1l-2l, 2l-3l, 1l-3l of a selected ICESat-2 track
(ground track: 0394, cycle: 02). CMS falls to below 95% CL at ∼ 25 km. (b) CMS and (d)
phase between MSS and each strong beam. Black line is the spectral CMS and phase between
20Hz Jason-2 and MSS. CMS falls to below 95% CL at ∼ 20 km for both the ICESat-2 and the
Jason-2 cases.

In this intercomparison, CMS is large at longer wavelengths where the MSS signal
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dominates, and it falls below the 95% confidence level (CL) at around 25 km (Figure 2.2a). The

phase lag is around zero for the coherent wavelengths (Figure 2.2c). There are many factors that

control resolution, including: gravity signal, oceanographic and instrument noise, ocean depth

and number of cycles (Yale et al., 1995). Here we analyse only one track consisting of three

beams, which are separated by 3.3 km in the cross-track direction and have slightly different

MSS. Low CMS does not necessarily mean that measurement noise dominates. Below, in the

space domain analysis, we will show an example of high CMS at ∼300 m wavelengths for strong

and weak beams separated by 90 m in the cros-track direction; this high CMS is due to surface

waves. Yet neighbouring strong beams separated by 3.3 km are generally not coherent in the

surface wave band.

The second coherence analysis uses the MSSCNESCLS19 MSS model as the reference

for each of the strong beams. This MSS model has spatial resolution of 16 km so we cannot

expect the analysis to reveal shorter wavelength signals in the altimetry but we can evaluate the

accuracy at longer wavelengths (∼20 km) and also indirectly compare the resolution of ICESat-2

with other altimeter data. We correct for cross-track MSS differences by removing the MSS at

the location of each of the three beams and adding back the MSS for the centre beam 2l. The

spectral CMS and phase between each beam and the MSS are shown in Figures 2.2b and 2.2d.

In this case, the signal is the time invariant MSS, which is common to all three beams, and

noise arises from oceanic processes and measurement noise. This analysis shows statistically

significant CMS and low phase for wavelengths longer than 20 km. The greater CMS between

the ICESat-2 profiles and the MSS compared to the interbeam CMS is consistent with what we

would expect if we assume that ICESat-2 SSH beams contain noise while the MSS is noise free

(Bendat and Piersol, 2011). A higher CMS limit could be achieved with multitrack stacking.

To compare these ICESat-2 results with radar altimetry, we analysed 20 Hz sampled

Jason-2 radar altimetry height profiles (cycle 233) and calculated their cross-spectrum with the
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MSS. The along-track spacing of Jason-2 is 296 m. We apply a 256-point non-overlapping Von

Hann window (segment length is about 76 km) and use Welch’s method to compute the spectral

CMS and phase between Jason-2 and MSS, which is shown in Figures 2.2b and 2.2d in black

lines. A shorter track is used in order to obtain the same number of segments as ICESat-2. We

find that Jason-2/MSS drops to 99% and 95% CLs at similar wavelengths as the ICESat-2/MSS

CMS. This suggests that ICESat-2 has signal and noise characteristics similar to those of Jason-2

in terms of MSS reconstruction, with a characteristic coherent length scale of about 20 km for

a single pass. Although the analysis focuses on single ICESat-2 and Jason2 tracks, we have

analysed more tracks in the Pacific box and see that the results shown in Figure 2.2 are repre-

sentative, when all three beams show good quality and have no major data gaps larger than 10 km.

2.3 Space Domain Analysis

Given these wavenumber domain analyses, we examine the signal and noise of ICESat-2

data in each of the three bands in the space domain using the same three strong beams (reference

ground track: 0394, cycle: 02, segment number: 08, sensing time: 2019/01/23) as in Figure 2.2.

2.3.1 Long Wavelength Mean Sea Surface

The coherence analyses (Figure 2.2) suggest that the three beams all measure the same

MSS at wavelengths greater than 20 km. A space domain example is shown in Figure 2.3 where

each of the three beams was low-pass filtered using a Gaussian with 0.5 gain at 20 km. As

described above, beams 1l and 3l were corrected to the location of the beam 2l, and a trend was

removed from each. There is general agreement between ICESat-2 and radar altimeter derived

MSS at long wavelengths. A shorter segment of the plotted beams (Figure 2.3b) reveals that the

differences have amplitudes of ∼0.03 m.
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Figure 2.3. (a) SSH of ICESat-2 3 strong beams (ground track: 0394, cycle: 02) along with
MSS at beam 2l’s position. Data are low-pass filtered at 20 km, and the linear trend of beam
2l has been removed from all four height series. The MSS is offset for plotting. (b) a shorter
segment with no MSS offset. Tracks run almost north-south so 1◦ in latitude corresponds to ∼
110 km along track.

2.3.2 Short Wavelength: Surface Gravity Waves

To isolate the signals from surface waves, we first remove the MSS from each strong

beam profile to create SLA (Figure 2.4). These profiles contain oceanographic signals and noise

over the entire spectrum. Most of the cross-beam differences and along-track variations have a

wavelength of a few hundred metres and are consistent with height signals from surface gravity

waves (Figure 2.4b).
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Figure 2.4. (a) SLA of ICESat-2 3 strong beams (ground track: 0394, cycle: 02). (b) a shorter
segment of (a) showing peak to trough variations having wavelengths of a few hundreds of
meters. Tracks run almost N-S so 1◦ corresponds to ∼ 110 km along track and each 0.002◦ grid
in (b) is about 200 m.

Significant wave height analysis

We further calculate the SWH from ICESat-2 SLA data. For radar altimetry, the SWH

is four times the root-mean squared (rms) height variation in the 3-km pulse-limited footprint

averaging area, and it is derived from the rise time of the fit to the return waveform. To calculate

SWH for the ICESat-2 data, we first low-pass filter the SLA using a running mean over a 3 km

window. This is done to simulate the 3-km pulse-limited footprint of a radar altimeter. The

rms difference from the mean, times 4, is further low-pass filtered over 6 km to simulate the

1Hz averaged SWH in radar altimetry. The results are shown in Figure 2.5 where the SWH

varies between 1.5 and 2 m, which is typical for this region (Stopa 2019; Dodet et al., 2020).

Differences in SWH between the 3 beams can be up to ∼0.3 m. This is to be expected since

there could be sea state gradients over scales of kilometres.
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Figure 2.5. (a) SWH calculated from 3-km-running standard deviation of SLA from ICESat-2 3
strong beams (ground track: 0394, cycle: 02). Background light dots are SWH before filtering
and darker lines are low-pass filtered at 6 km so that they resemble the 1Hz averaged SWH in
radar altimetry. (b) a shorter segment of (a). Tracks run almost N-S so 1◦ corresponds to ∼ 110
km along track.

Dominant ocean wave reconstruction

We can further analyse the surface gravity wave signal using the strong/weak beam pairs

spaced at 90 m. Considering that weak beam data have very limited photon recovery from

the ocean surface, the analysis here is applied to segments with a minimum length of 20 km,

where a pair of strong and weak beams both have collected good-quality photon data. Each

pair of strong and weak beams is generally highly coherent since the 90 m cross-track distance

is less than the average wavelength of surface waves (including swell and wind seas) in this

region (Young 1999; Arinaga and Cheung, 2012). The wavenumber of the CMS peak identifies

the wavelength of the dominant wave projected in the orbit direction. The spectral phase is

23



the relative phase shift between two beams, and we can use it to reconstruct wave direction,

though with a 180° ambiguity. We can further recover the true wavelength by combining wave

direction and projected wavelength (details are provided in Figure 2.12 in Section 2.6). There

is also ∼2.5 km along-track offset between each pair of strong and weak beams, as the weak

and strong beam pairs are offset relative to each other. This corresponds to ∼0.35 second shift

in time during which surface waves only travel a few metres. We identify phase shift from this

time delay to error in wave reconstruction. This error has little influence on the CMS but will

shift the phase by up to 10◦. Figure 2.6 shows an example where a weak beam leads a strong

beam in an ascending track. Statistically significant CMS over wavelengths in the swell band

(100-1000 m) peaks around 465 m (observed wavelength in the orbit direction) with a phase

shift of -70.3◦. These two effects are consistent with a 327 ± 16.8 m swell wavelength coming

from an azimuth of 223.3 ± 7.3◦ (clockwise from north). The error ranges are obtained via the

following steps: (1) dividing the beam pair into 11 equal-length segments, each subdivided into

10 short segments that are used to calculate the coherence between the strong and weak beams

and (2) bootstrapping the 11 sets of coherence results over 100 realizations and calculating

the 95% confidence interval. This reconstruction from ICESat-2 observations agrees with a

WAVEWATCH III hindcast multigrid product (Chawla et al., 2012), which uses the operational

National Centers for Environmental Prediction winds and ice fields as input forcing fields and

is independent of altimetry observations. WAVEWATCH III provides a predicted wavelength

of 336.0 ± 15.9 m and azimuth of 209.8 ± 1.6◦ at the nearest gridpoint and the closest time.

The error ranges for WAVEWATCH III hindcast wavelength and direction come from the 95%

confidence interval of data collected in a 7◦ × 7◦ region over 9 hours.
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Figure 2.6. (a) A small segment of ICESat-2 photon height data w.r.t WGS 84. (ground track:
0326, cycle: 01). The strong and weak beams are separated by 90 m and both are low-pass
filtered at 30 m. (b) CMS and (c) phase between beams 1l and 1r. Coherence peaks around 465
m, and the corresponding phase shift is -70.3◦. The 99% and 95% CL are labeled.

We have performed 456 sets of strong/weak beam analysis in the tropical Pacific region to

establish the wavelength and wave direction from ICESat-2 photon data and compare the results

with predictions of peak direction and peak wavelength from the WAVEWATCH III model at

the gridpoint closest to the middle of each track. We also calculated the SWH from each set of

beam pairs and made a comparison with the WAVEWATCH III model. The results are provided

in Figure 2.7. Figures 2.7a-c shows joint probability histograms for wavelength, wave directions

and SWH of WAVEWATCH III predictions and ICESat-2 pairs. In the histograms, wavelengths

are binned by 50 m increments and directions by 15◦ increments. The SWHs are rounded to

the nearest multiple of 0.2 m. Histograms of ICESat-2 and WAVEWATCH III differences are

shown in Figures 2.7d-f, respectively. The ICESat-2 reconstructed wavelengths are slightly

longer, and the best fit ICESat-2 to WAVEWATCH III wavelength slope is 1.11 with intercept

set to zero. The histogram of wavelength differences (Figure 2.7d) has a quasi-Gaussian shape
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and is slightly biased to the positive with a mean difference µ of 57.3 m, and root mean square

error (RMSE) of 151.0 m. The ICESat-2 reconstructed wave directions are generally between

0◦-60◦ and 120◦-180◦, as waves propagating orthogonally to satellite ground tracks are less

likely to show coherence between a pair of strong and weak beams. A regression of ICESat-2 to

WAVEWATCH III directions shows that for the propagation directions from 0◦ to 60◦, ICESat-2

propagation directions are about 81% of WAVEWATCH III directions. The histogram of wave

directional differences (Figure 2.7d) centres around zero, although it spreads widely from -90◦

to 90◦ (directional differences larger than ±90◦ are indistinguishable from directional differences

between -90◦ and 90◦; the plot shows only the smallest possible directional difference). The

mean value of direction differences µ is 20.5◦, and the RMSE is 69.4◦. For SWH, the ICESat-2

values compare well with WAVEWATCH III, with a mean difference of -0.04 m and RMSE of

0.34 m, which is similar to the result in Klotz et al. (2019), who compared ICESat-2 and the

ERA-5 reanalysis in the Atlantic Ocean. The ICESat-2 SWHs are slightly small and are about

0.96 of WAVEWATCH III SWH.
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Figure 2.7. Joint probability histograms for (a) wavelength, (b) wave directions and (c) SWH of
WAVEWATCH III (WW3) predictions and ICESat-2 (IS2) reconstructions. The black dotted
line is the 1:1 relationship and the red line is the best fitted slope. Histogram of (d) wavelength,
(e) direction and (f) SWH differences between IS2 reconstructions and WW3 predictions. The
mean µ and RMSE of wavelength/direction/SWH differences are shown in (d)-(f).

2.3.3 Sea Level Anomalies at Wavelengths >3 km

Finally, we investigate the SLA for wavelengths >3 km. We low-pass filter ICESat-2

SLA using a Gaussian with a 0.5 gain at 3 km to remove most of the signals from the surface

gravity waves and isolate other oceanography signals (see Figure 2.8). The low-pass filtered

SLA shows much smaller amplitude (0.1-0.2 m) than the full band SLA in Figure 2.4 (∼1 m).

All three beams show a common undulation having a characteristic wavelength of about 400-500

km. This signal is likely due to the dynamic topography of the ocean caused by currents or

tide-model error, as it also shows up in other cycles of the same ground track, but in different

phases.
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Figure 2.8. (a) Low-pass filtered (3 km and sampled at 50 m) SLA. Missing data were not
included in the filter. (b) a shorter segment of (a). Tracks run almost N-S so 1◦ corresponds to ∼
110 km along track.

In addition to this expected longer wavelength oceanographic signal, there are rather large

signals (0.1-0.2 m) with wavelengths of 5-10 km (Figure 2.8b). As noted in the introduction we

expected that oceanographic signals should be 10 times smaller in this wavelength band (Savage

et al., 2017; Aucan and Ardhuin, 2013). Moreover, if they are due to ocean phenomena with

length scales of 5-10 km, then the signals should be coherent among the three beams. However,

in our coherence analysis (Figure 2.2), we show that the three beams are incoherent over this

band. The remaining explanations for these signals are either that errors in the ICESat-2 photon

data are different among the three beams or that shorter wavelength signals are projected into

longer wavelengths. We note that the ICESat-2 sampling is a very narrow 1-D track sample of a

2-D ocean surface.
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1-D sampling of a 2-D ocean waves

The largest signal in the ICESat-2 SLA data is due to surface waves. If the dominant wave

direction is roughly aligned with the direction of an ICESat-2 track, then the 3 km low-pass filter

will remove this signal, leaving behind an essentially flat SLA. However, if the wave direction

is nearly perpendicular to the track, the ocean swell having characteristic wavelengths of a few

hundred metres will be projected to wavelengths longer than 3 km. Next, we illustrate the extent

of this projection.

Assume there is a plane wave with wavelength L0 and amplitude A coming from the

north (θ = 0◦), then the SSH (η) due to the wave can be described as:

η(x,y, t) = Acos(ky−ωt +ϕ), (2.1)

where x is in the eastward direction and y is northward, k = 2π

L0
is the horizontal wavenum-

ber, ω =
√

gk is the angular frequency ( g = 9.81 m/s2 is the gravitational acceleration) , and ϕ

is the initial phase. In the 1-D sampling of a satellite flying from direction θ0 (north: 0◦ , east:

90◦ ) at a ground speed of Vs (∼ 7 km/s), the observed along track wave height should be:

η(S, t) = Acos(kScosα −ω
S
Vs

+ϕ) (2.2)

= Acos((k cosα − ω

Vs
)S+ϕ), (2.3)

where α = θ − θ0 is the angle between wave direction and orbit, S = y/cosα is the

along-track distance. The observed wavenumber k′ is:

k
′
= k cosα − ω

Vs
, (2.4)
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and the observed wavelength L
′
is:

L
′
=

2π

k cosα − ω

Vs

= L0/(cosα − ωL0

2πVs
)≈ L0/cosα. (2.5)

ICESat-2 has a ground velocity of 7 km/s so waves propagating at an angle α with respect

to the track will shown an apparent wavelength that is longer by around 1/cosα . As cosα

approaches zero, the satellite ground speed becomes increasingly important. For example, for a

200 m plane wave, when α = 88◦, the satellite will observe an 8 km apparent wavelength; when

α = 90◦, the apparent wavelength is 79 km. This projection pattern is a particular challenge for

ICESat-2’s small footprint, as it implies that any component of 50-300 m surface wave crests

aligned with the satellite orbit could project to wavelengths of 20 km or longer. Because surface

gravity waves are energetic compared with the background large-scale SSH, even low-amplitude

waves have the potential to fill in the intermediate portion of the spectrum.

In the extreme case of the waves propagating in a direction nearly perpendicular to the

track with the relation cosα = ωL0
2πVs

( α =89.855◦ if L0 =200 m; α =89.771◦ if L0 =500 m),

ICESat-2 will only sample a single height, so the observed wavelength will be shifted away from

the true wavelength to infinitely long scales, and all three beams will be measured as different

heights depending on the phase of the waves they sample. Here we assumed only a plane wave

case which does not capture the complexity of true sea states, so we need to investigate how

ICESat-2 would sample a more realistic ocean surface.

Synthetic wave field analysis

To generate a realistic 2-D sea state we use a time series of ocean surface elevation

collected from a 3-component GPS receiver on a wave buoy. There are no wave buoys in our

South Pacific box so we selected buoy data from the Coastal Data Information Program (CDIP)
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at station Point Reyes, off the California coast (latitude: 37.94°N, longitude: -123.46°E, depth:

550 m, time: 2019-09-29, 19:00 UTC). This buoy is located in deep water, so we will assume

that waves follow the deep water dispersion relation. Although the CDIP directional spectrum

only reflects the wave conditions at a specific point, time-averaged over half an hour, it provides

realistic statistics of waves coming from all directions to generate a surface wave only SSH field.

We generate finite length, 2-D synthetic sea surface elevations by assuming that the sea

state results from the linear superposition of all wave components measured by the wave buoy

and assigning random phases to the amplitudes. To avoid the extreme case of waves being

projected to infinitely long scales in the ICESat-2 orbit direction (182°), we omit a 2° range of

the 2-D wave spectrum (91-93°, 271-273°, white area in Figure 2.9a). The directional wave

spectrum as a function of wave period and direction (Figure 2.9a) was computed from the angular

moments provided by CDIP using the maximum entropy method (Lygre and Krogstad, 1986).

The wave period varies between 1.72 and 40 s, with a corresponding wavelength between 5 and

2500 m. In this case study, most energy comes from 330° (northwest), and there is almost no

energy for waves longer than 20 s (∼624 m in wavelength). In addition to the most energetic

wave systems, coming predominantly from 330°, the wavefield at this specific time and location

also contains some wave energy at periods between 8 and 13 s (100-264 m in wavelengths) that is

spread across directions between 240° and 360°. It is also worth noting that there is some energy

in direction bins that are nearly perpendicular (e.g. from ∼269°) to the ICESat-2 trackline. In

this case, the 1-D sampling will increase the apparent wavelength of these waves by a factor of

∼20, so the energy of a 300 m wave would appear as a 6 km wavelength signal. The questions

now are: what is the amplitude of this effect, and can it explain the observations in the 3-20 km

wavelength shown in Figure 2.8?
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Figure 2.9. (a) Directional spectrum from CDIP station Point Reyes at time: 2019-09-29, 19:00
UTC. Energy density is in dB so as to show a large range of energy levels. The directional
spectrum was computed using the maximum entropy method (Lygre and Krogstad, 1986).
ICESat-2 orbit inclination is 92◦ and here we show a synthetic descending track (in red). Panel
(b) gray: along-track PSD; blue: true PSD. Both are derived from the directional spectrum in (a).

We use the CDIP directional spectrum and positions of the ICESat-2 beams (ground track:

0394, cycle: 02) to take 1-D samples of the 2-D synthetic sea surface elevations in the ICESat-2

orbit direction. Following this method we generate three synthetic SLA profiles spaced by 3.3

km. We then apply a 3 km low-pass Gaussian filter. The synthetic profiles and 3 km low-pass

filtered results are shown in Figure 2.10. We compute a 3 km running standard deviation of the

synthetic SLA profiles and then multiply by 4 to get the SWH, which is around 1.95 with 0.4 m

variation in amplitude. The SWH of synthetic along track SLA is smaller than the true SWH

of 2.79 m from the CDIP buoy observations. While the synthetic SLA signals are realizations

of surface gravity waves with wavelength less than 1 km, there are 0.2 m undulations with

wavelengths of 5-10 km in the low-pass filtered SLA (Figure 2.10b), which result from short

wavelength surface waves projected to much longer wavelengths in 1-D sampling profiles.
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Figure 2.10. (a) Synthetic SLA using CDIP directional spectrum in Figure 2.9a and the positions
of ICESat-2 track (ground track: 0394, cycle: 02). (b) 3 km low-pass filtered synthetic SLA for
a 100-km segment.

To support our findings, we calculate the true PSD as well as the along-track PSD —

as it would be observed by ICESat-2 — as a function of wavenumber (Figure 2.9b). The true

wavenumber PSD E (q) (Figure 2.9b, blue) is obtained from the CDIP frequency spectrum E ( f )

using the deep water dispersion relation:

ω
2 =

2πg
L

= 2πgq, (2.6)

where ω = 2π f is the angular frequency, L is the wavelength, and q = 1/L is the

wavenumber, such that:

33



E(q) =
g

4π f
E( f ). (2.7)

We calculate the along-track PSD (Figure 2.9b, gray) that would be observed by ICESat-2

following the steps below:

1. Convert the observed directional wave spectrum E( f ,θ) with dimensions of m2/Hz/degree

in Figure 9a to a function of wavenumber and direction E(q,θ) with dimensions of

m3/degree, following the deep water dispersion relation (2.6)

E(q,θ) =
g

4π f
E( f ,θ). (2.8)

2. Project the wavenumbers q from the wave direction θ to the orbit direction θ0

q′ = qcosα, (2.9)

where q′ is the wavenumber projected to the along-track direction, and α = θ −θ0 is the

angle between the wave direction and the orbit direction.

3. We then create equally spaced along-track wavenumber bins qs ranging from 0.01cpkm

to 250.01cpkm with a spacing of 0.1 cpkm, and, for each bin, the along-track energy

density E(qs) is the integral of the projected energy density E(q,θ)cosα over all grid

points where q′ = qs .

As an example of the steps above, let us consider waves coming from θ = 332◦ with

a period of 12 s and wavenumber q = 4.45 cpkm ( L = 225 m). In the 1-D sampling from

ICESat-2’s descending orbit ( θ0 = 2◦ ), the satellite would observe an apparent wavenumber q′ =

3.86 cpkm ( L′ = 225m/cos(330◦ ) = 259 m). We would then integrate all projected wave energy
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associated with an apparent wavenumber in the 3.81-3.91 cpkm bin to get the corresponding

spectral energy at that bin in the along-track PSD (Figure 2.9b, in gray).

We compare the along-track PSD and the true PSD in Figure 2.9b to guide our inter-

pretation of 1-D wave behaviour. In general, in the along-track PSD, there is decreased energy

at the high wavenumber end (>5 cpkm) and extra energy associated with low wavenumbers

(<0.3 cpkm) that are beyond the surface gravity wave range. Short-wavelength surface waves

are projected to longer apparent wavelengths in the along-track direction; if they propagate in a

direction nearly perpendicular to the orbit direction, surface waves could be projected to much

longer wavelengths (>3 km). There are several shifted swell peaks, including (1) the ∼16 s wave

(430 m in wavelength, 2.3 cpkm in the true PSD) from direction 213° projected to 2 cpkm in the

along-track direction and (2) the ∼12.5 s (244 m in wavelength, 4.1 cpkm in the true PSD) wave

from direction 330° projected to 3.5 cpkm.

In the ocean, surface waves propagate from all directions with a broad range of frequen-

cies and amplitudes of the order of 10 cm or more. If the wave field is fully isotropic, then an

along-track spatial average of ICESat-2 measurements will minimize surface wave effects. As

the example in Figure 2.9a indicates, often a single wavenumber and direction dominate the wave

field. Problems will arise when the dominant surface wave crests align with the orbit direction,

so that waves appear to have wavelengths of ∼10 km or more. In these cases a low-pass filter

will not be able to suppress effects due to surface waves.

2.4 Discussion and Conclusions

We have studied the ability of ICESat-2 photon height data to recover oceanographic

signals ranging from surface gravity waves to the marine geoid using data over a tropical Pacific
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box in both the wavenumber domain and space domain. We analyse the data in three bands: long

wavelengths (20-500 km), intermediate wavelengths (3-20 km) and short wavelengths (15 m-3

km).

At long wavelengths, we use coherence to compare the three parallel beams of ICESat-

2, as well as a high resolution MSS model based on radar altimetry, to show that the single

track can recovery along-track MSS with wavelength about 20 km, which is similar to the

best radar altimeters. However, ICESat-2 data are not as continuous as radar altimeter data.

There are large gaps due to clouds and smaller gaps because the open ocean has low reflectance

in the visible spectrum. Data gaps complicate the usage of ICESat-2 photon data on global scales.

At short wavelengths we find that ICESat-2 provides accurate and high-resolution profiles

of surface waves in agreement with previous studies (Klotz et al., 2019). Moreover, data from

a pair of strong and weak beams, separated by 90 m, can be used to estimate the dominant

wave direction and wavelength. The wave reconstruction in this study (see Figures 2.6 and

2.7) is only tentative, yet it demonstrates ICESat-2’s potential in monitoring global ocean wave

conditions, especially in the south Pacific Ocean where in situ wave measurements are not usually

available. Estimates of SWH from ICESat-2 data generally agree well with WAVEWATCH III

hindcasts and independent buoy measurements (Klotz et al., 2019). As directional wave spectrum

measurements from the Chinese-French Oceanography Satellite (CFOSAT) become available,

the method proposed here could be further validated in the open-ocean without having to rely

exclusively on wave model output.

We find that signals in the intermediate wavelength band from 3 to 20 km provided by

ICESat-2 are 10 to 20 times more energetic than expected (Aucan and Ardhuin, 2013; Savage

et al., 2017). The sea state is generally determined by a superposition of long-period, narrow-

banded swell and short-period, locally generated wind seas, having a wide range of wavelengths
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and directions (Sverdrup and Munk, 1947; Villas Bôas et al., 2017). ICESat-2 samples this

2-D wave field with a narrow beam in 1-D so the wavelength of surface waves observed by

ICESat-2 is always greater than the true wavelength. For example, a 300 m swell having a 0.2 m

amplitude and an orientation of 87° with respect to the ICESat-2 track will project into a signal

with the same amplitude at 6 km wavelength. The three beams have a wide enough spacing

to provide independent estimates of this projected swell, so averaging the three beams could

reduce this projection by 1.7 times but not the 10-20 times needed for accurate measurements in

this band. Note that pulse-limited radar altimeters do not suffer from this projection. A typical

footprint diameter of a radar altimeter is 3 km at a 2 m SWH. Therefore there is a natural 2-D

low-pass filter applied during the interaction of the radar pulse with the ocean surface waves. This

suppresses all the wave energy shown in the spectra in Figure 2.9a. Nevertheless the wave noise

re-appears as a smoothing of the radar return pulse that reduces the precision of measurement of

the arrival time of the radar pulse.

To conclude, ICESat-2 is a highly capable instrument with the potential to yield new

information about along-track surface waves over distances of 10 km or less, but it will not

provide major improvements to the geoid in the open ocean, where many years of radar altimeter

observations are providing increasingly accurate global marine gravity maps approaching 12

km wavelength resolution. However, ICESat-2 data may be valuable in regions where surface

gravity waves have low amplitude, and the broad radar altimeter waveforms are corrupted by

land reflections in a 5 km radius.
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2.6 Appendix

This supporting document contains 2 figures. Figure 2.11 shows the average power

spectral density of ICESat-2 sea level anomaly in a Pacific box [-120°/-100°/-11°/-1°]. Figure

2.12 shows a sketch of a surface wave projected in the 1-D ICESat-2 orbit and how to reconstruct

the wave direction and wavelength from a pair of strong and weak beams.
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Figure 2.11. Averaged power spectral density of ICESat-2 sea level anomaly (w.r.t. to the
mean sea surface) in a Pacific box [-120°/-100°/-11°/-1°] using the Lomb-Scargle method. This
analysis uses 341 strong beams having more than 70 % cloud-free data. ICESat-2 photon height
data are first low-pass filtered at 30 m. Vertical dashed lines indicate the separations between
the three bands considered in this paper: large-scale flows (20-500 km), the shorter wavelength
gravity waves (< 3 km) and the more poorly understood intermediate wavelength (3-20 km)
band. The k−1 and k−2 spectral slopes are labeled. The relative flat spectral slopes suggest that
the long wavelength band is dominated by unbalanced flows and internal tides.
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Figure 2.12. Sketch of a pair of ICESat-2 descending beams (flying from θ = 2◦) and a
wave coming from southwest, forming an angle α . Beam l and beam r are separated by a
cross-track distance d of 90 m. The wavelength L0 is projected to be L

′
= L0/|cosα| in the

orbit direction. The wave in the observation of beam l leads beam r by a phase shift β , where
β = 360◦d| tanα|/L

′
= 360◦d|sinα|/L0. The true wavelength L0 and wave direction θ =α +θ0

could be reconstructed from the projected wavelength L
′

and phase shift β , though comes with a
180◦ ambiguity. The along-track distance between beam l and beam r is about 2.5 km, which
corresponds to ∼ 0.35 s shift in time during which surface waves only travel a few meters. This
time shift appears in the coherence as a phase offset between the strong and weak beams. We
neglected this phase offset and identified it as errors in the wave reconstruction.The ∼2.5 km
along-track offset between the strong and weak beams is not shown here. There are 4 cases with
the combination of ascending/descending track and beam l leads/lags beam r. Here we illustrate
the descending track, with beam l leading beam r. The wave reconstruction scheme for the other
three could be similarly derived.
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Chapter 3

Global Mesoscale Ocean Variability from
Multi-Year Altimetry: an Analysis of the
Influencing Factors

Sea surface slope (SSS) responds to oceanic processes and other environmental param-

eters. This study aims to identify the parameters that influence SSS variability. We use SSS

calculated from multiyear satellite altimeter observations and focus on small resolvable scales in

the 30-100 km wavelength band. First, we revisit the correlation of mesoscale ocean variability

with seafloor roughness as a function of depth, as proposed by Gille et al. (2000). Our results

confirm that in shallow water there is statistically significant positive correlation between rough

bathymetry and surface variability, whereas the opposite is true in the deep ocean. In the next

step, we assemble 27 features as input variables to fit the SSS with a linear regression model and

a boosted trees regression model, and then we make predictions. Model performance metrics

for the linear regression model are R2 = 0.381 and mean square error = 50.010 µrad. For the

boosted trees model, R2 = 0.563 and mean square error = 0.007 µrad. Using the hold-out data,

we identify the most important influencing factors to be the distance to the nearest thermocline

boundary, significant wave height, mean dynamic topography gradient, and M2 tidal speed.

However, there are individual regions, that is, the Amazon outflow, that cannot be predicted by

our model, suggesting that these regions are governed by processes that are not represented in

our input features. The results highlight both the value of machine learning and its shortcomings
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in identifying mechanisms governing oceanic phenomena.

3.1 Introduction

Sea surface slope (SSS) varies in response to a range of oceanic processes. On scales

large enough to represent geostrophic flows, it is a measure of geostrophic velocity; on smaller

scales, it varies with tides, surface waves, internal waves, eddies, etc. Large-scale ocean pro-

cesses are generally well observed and have been studied since the era of satellite altimetry.

Mesoscale oceanic variability (30-100 km), however, is less understood, as its signatures on the

sea surface generally occur on scales smaller than the 100-200 km resolution of the widely used

multimission sea surface height (SSH) product distributed by the Copernicus Marine Service

(CMEMS; Ballarotta et al., 2019). Despite their small scales, mesoscale oceanic processes

provide an essential link in the ocean’s large-scale circulation and are associated with eddy

kinetic energy generation and dissipation (Ferrari and Wunsch, 2009).

In this paper, our goal is to investigate the sea surface variability of small resolvable

scales in the 30-100 km wavelength band and to contrast this with variability at scales greater

than 100 km. We use SSS calculated from multiyear satellite altimeter observations as a metric

for ocean variability. The major questions that we address are: how well can we characterize SSS

variability, and what variables are needed to explain SSS variability? We know from previous

studies (e.g., Gille et al. 2000; Nikurashin and Legg 2011) that surface variability is linked to

bathymetry, seafloor roughness, and baroclinic instability, among other variables. Using satellite

altimeter data, Gille et al. (2000) found evidence that mesoscale oceanic variability (with spatial

scales from 80 to 160 km) is indirectly controlled by bathymetry: in ocean regions that are deeper

than 4800 m, seafloor roughness is anticorrelated with SSS variability, implying that rough

topography helps to dissipate mesoscale kinetic energy. In contrast, in shallow waters, seafloor
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roughness and sea surface slope variability are correlated, implying that mesoscale variability

is generated over rough topography. Nikurashin and Legg (2011) used numerical simulations

to show that the energy from large-scale internal tides to smaller-scale internal waves depends

on seafloor roughness, tidal amplitudes, and the Coriolis frequency. While the comparisons

of Gille et al. (2000) provided a statistical assessment, depth-dependent impacts of roughness

could explain less than 10% of the overall variability in SSS. Here we aim to learn what other

parameters might influence small-scale SSS variability.

We address the major question in two ways: (i) How well can we predict oceanic vari-

ability on global scales, and what fraction of the global variance can we predict? (ii) Are

there particular regions that are unusual and cannot be predicted? For places where the surface

variability responds to a particular local effect, (e.g., the Amazon outflow), can the variability be

represented using a statistical model derived with machine learning?

We aim to answer the above questions by using three statistical methods: (1) Correlation

analysis, in which we revisit the conditional correlation between seafloor roughness versus SSS

variability as a function of depth, as proposed in Gille et al. (2000), with updated datasets, and

we explore linear correlations between sea surface variability and other variables. (2) Machine

learning using a linear regression approach. (3) Machine learning with a boosted trees algorithm.

Both machine learning methods take in multiple features to predict the sea surface variability,

analyze the relevance of each feature, and discuss prediction failures. While conditional correla-

tion analysis quantifies the linear dependence between variables, it lacks the flexibility to handle

nonlinear dependencies on multiple variables. The linear regression model is straightforward,

and it assumes that labels (what we are attempting to predict or forecast, i.e. SSS variability

in this study), are a linear combination of different features. While this assumption will prove

to be inadequate to explain all variability, the linear regression is a base model that is able to

identify linear relations between the SSS variability and features. In contrast to conventional
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linear regression, the boosted tree model can capture nonlinear relationships between the features

and the outcome. It uses the boosting method that sequentially combines decision trees, in a way

that each new tree fits the residuals from the previous step so that the model improves (Friedman,

2002). Decision trees use a greedy algorithm that finds the optimal data split solution for each

node, which is a split on a feature at a specific value, resulting in the largest information gain

(Quinlan, 1986). Both models assist in understanding the governing factors of SSS variability in

our case. In Section 3.2.2 we introduce strategies for ranking features, i.e., selecting governing

factors.

We estimate the global ocean variability in the form of SSS variability using satellite

altimetry profiles from Geosat, Envisat, Cryosat-2, Jason 1/2, Altika and Sentinel-3A/B collected

from 1993 to 2021 (an updated version of the dataset as in Sandwell et al., 2019). SSS is the

along-track derivative of SSH. Thus it achieves finer spatial resolution than SSH by “whitening”

the red spectrum slope of SSH and is more sensitive to high-wavenumber signals. Note that this

is a 1-D along-track slope, so it only approximates a 2-D slope estimate. The slope estimates

come from a variety of directions depending on the inclination of the satellite orbit. Sandwell

et al. (2019) showed that SSS variability from multi-year repeat and non-repeat altimetry mis-

sions is able to reveal oceanic processes with scales as small as 25 km. The combination of

multi-year satellite altimetry profiles provides a dense ground track coverage at the cost of losing

temporal resolution. In contrast, the gridded SSH product using multi-satellite data distributed by

CMEMS, has a temporal resolution of 10 to 33 days and a spatial resolution of about 100-200 km

(Ballarotta et al., 2019; Taburet et al., 2019). The coarse spatial resolution of the multi-satellite

data is restricted by the wide cross-track distance and instrument noise (Fu and Ubelmann, 2014).

This product is not able to fully capture mesoscale oceanic activities and is thus not adopted in

our study.

We study the SSS variability in two wavelength bands: (1) a band encompassing
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mesoscale variability as well as larger submesoscale features (30-100 km). As a shorthand,

we refer to this band as the mesoscale; (2) the large-scale band (>100 km). The mesoscale

band is generally hard to observe on a global scale. It contains the variation of unbalanced

wave motions and the mesoscale eddies that include coherent vortices, filaments, squirts and

spirals. Unbalanced wave motions are mostly attributed to internal tides or waves, and they are

generally greater in amplitude over rough topography (i.e., the Hawaiian Ridge) or in highly

stratified zones (i.e., the Amazon shelf). The mesoscale eddies emerge from the instabilities

of strong geostrophic flows, and they contain the majority of oceanic kinetic energy (Zhang

and Qiu, 2018). Large-scale SSS variability is well-characterized and it is related to balanced

geostrophic flows which have large values of mean SSS, i.e. western boundary currents and the

Antarctic Circumpolar Currents (ACC). Slight perturbations to the large-scale mean SSS lead to

variability at large spatial scales. The transition scale that delineates balanced geostrophic flows

and unbalanced wave motions depends sensitively on local mesoscale eddy variability and varies

with time (Qiu et al., 2018). The 100 km delineation here is an empirical choice. While there

is no consensus on the transition scale, it is generally short (below 40 km) in eddy-intensified

western boundary currents and in the ACC, and it increases equatorward in relative stable regions

(40-100 km in subtropical and subpolar gyres; > 200 km in the tropical oceans) (Qiu et al.,

2017; Qiu et al., 2018). The 30-100 km mesoscale band contains both unbalanced wave motions

(internal tides, near-initial flows) and balanced geostrophic flows. The dominant component of

the flow is geographically and temporally dependent.

45



3.2 Data and Methods

3.2.1 Data

Sea surface slope variability

In this paper, we calculate SSS variability in the mesoscale band (30-100 km) and large-

scale band (>100 km) using multi-year along-track altimetry. Calculation steps are described

below.

We take the along-track profiles from Geosat, Envisat, Cryosat-2, Jason 1/2, SARAL/

Altika and Sentinel-3A/B collected from 1992 to 2021. Standard 1 Hz geophysical data records

are inadequate for this analysis because the retracking of the waveform does not account for

the high correlation between significant wave height (SWH) and arrival time (Sandwell and

Smith, 2005; Zaron and DeCarvalho, 2016). Moreover, the 1 Hz boxcar averaging aliases

noise at less than 1 Hz (∼14 km wavelength) into the 30-50 km wavelength band. Finally, to

achieve a uniform quality among the various altimeters, one must retrack, filter, and edit the raw

waveform data in a consistent way. To retrack raw waveform data (except for Cryosat SAR/SIN

and Sentinel-3A/B), we adopt a two-pass method that effectively reduces the wave height noise

and improves the range precision of altimeter echoes by a factor of 1.5-1.7 (Garcı́a-Garcı́a and

Ummenhofer, 2015; Zhang and Sandwell, 2017). We edit 20 Hz waveform data using flags

provided in the level 1 product. We then apply a Parks-McClellan low-pass filter with half

gain at 6.7 km and downsample data to 5 Hz. We apply geophysical corrections, including wet

and dry troposphere delay, inverse barometer effect, and solid Earth and ocean tides (FES2014,

Carrère et al., 2016). We further edit data with residuals from the EGM 2008 model greater

than 3 standard deviations (typically > 30 microradians). We apply a second Parks-McClellan

low-pass, derivative filter with half gain at 8.3 km to all profiles and form along-track SSS. We

apply local geoid corrections (Sandwell and Smith, 2014) and remove the mean SSS to obtain

slope anomalies that reflect oceanic variability, wave height noise, and tide model error.
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For isotropic geostrophic flows, SSS variability is linearly related to eddy kinetic en-

ergy: Ek =< v
′2 >=< (∂η

′
/∂ l)2 > g2/ f 2, where Ek, eddy kinetic energy, is defined as the

time-averaging of squared surface geostrophic velocity perturbations < v
′2 > , g is gravity,

f is the Coriolis parameter, ∂η
′
/∂ l is the along-track SSS anomaly. Thus SSS variabil-

ity
√

< (∂η
′
/∂ l)2 > represents eddy kinetic energy for flows on scales large enough to be

geostrophically balanced. The relation does not apply for flows that are not geostrophically

balanced, either because they represent small-scale ageostrophic motions or because they oc-

cur in equatorial regions, where the Coriolis parameter approaches zero. SSS variability with

wavelengths shorter than 30 km is mostly buried in wave height noise. Thus we apply a 30-km

Gaussian low-pass filter to reduce noise (Sandwell et al., 2019).

We sort the SSS anomalies into 7 by 5 arc minute blocks and use the absolute median

value in each block to represent oceanic variability. The mesoscale and large-scale SSS variabil-

ity are shown in Figure 3.1. In the mesoscale band, we can see patterns of variability that are

potentially consistent with signals due to internal tides as well as horizontally sheared boundary

current motions. For example, there is strong variability associated with internal tides over rough

topography (the Mid-Atlantic Ridge, the Southwest Indian Ridge, and the Hawaiian Ridge) and

continental shelves (the Amazon shelf and the Mascarene Basin). There is also strong SSS

variability in the vicinity of western boundary currents and the ACC. On large scales, the strong

SSS variabilities are always associated with western boundary currents and the ACC, where the

mean SSS are large.
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Figure 3.1. (a) Mesoscale SSS variability (30-100 km). (b) large-scale SSS variability (>100
km). 1 microradian equals 1 cm change in height over a horizontal distance of 10 km. All plots
are at 7 by 5 arc minute resolution using a Mercator projection. All land is gray. Note that the
color scales for (a) and (b) are different.

environmental parameters

For the correlation analysis, we use bathymetry, seafloor roughness, and SSS variability,

to revisit the relation between roughness and eddy kinetic variability as a function of seafloor

depth as in Gille et al. (2000). For machine learning approaches, we use 27 features (listed below)

as input variables to build a linear regression model and a boosted tree model to predict the SSS
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variability. Our analysis screens out regions poleward of 60°, where strong seasonal sea ice

contaminates oceanic signals. The Jason-1/2 orbit was designed with a 66° latitude inclination.

We exclude all land, lakes, ponds, and semi-enclosed seas including the Mediterranean, Gulf of

Mexico, and Caribbean Sea. We also exclude coastal regions where ocean depth is less than 100

m. All features are processed to have consistent spatial coverage (60°S to 60°N) and resolution (7

by 5 arc minutes). We normalize features such that the normalized features have similar ranges

and comparable variances. We retain the sign of latitude; we linearly scale the absolute latitude

to range from 0 to 2; we apply a scaler to all other features that subtracts the median, and we

scale each feature to the interquartile range. The centering and scaling statistics of the scaler

are based on percentiles and are therefore robust to large marginal outliers. The 27 features are

either associated with the solid Earth or the dynamic ocean. Features are described below and

shown in Figure 3.2.

1. Seafloor roughness

Seafloor roughness is the root-mean-square, or RMS height of short wavelength bathymetry

(we use a wavelength range of 50-160 km in this study). The roughness directly derived from

SRTM15+V2.3 predicted bathymetry (Tozer et al., 2019) is underestimated, because the gravity

anomalies from small structures including abyssal hills, small seamounts etc., are attenuated

in altimetry measurements. Goff (2010) put forward that the statistical properties of abyssal

morphology can be related to the gravity field that is derived from satellite altimetry using the

upward continuation formulation. We produce a roughness map by adding back the latest abyssal

hill RMS height from Goff (2020) to predicted bathymetry in the following steps:

(i) square the Goff (2020) RMS height and replace with 0 over regions measured by ship sound-

ings;

(ii) apply a high-pass Gaussian filter to the SRTM15+V2.3 predicted bathymetry at 160 km then

square the result;
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(iii) combine the above two datasets and apply a low-pass Gaussian filter with 0.5 gain at 50 km

to eliminate contamination from wave height noise in satellite measurements;

(iv) take the square root of the dataset in step (3) to get RMS roughness, which is the square-root

of the average squared bathymetry deviation about a linear trend. We recovered the abyssal hill

roughness while keeping all ship soundings untouched. The uncharted small seamounts are not

taken into consideration in this study.

2. Smooth seafloor roughness

Seafloor roughness is low-pass filtered using a Gaussian filter with half gain at 500 km to

obtain the smooth seafloor roughness. This captures the locations of large-scale rough seafloor

and is less sensitive to estimation errors than roughness itself.

3. Bathymetry

We use the STRM15+V2.3 15 arcsecond resolution bathymetry map which includes >

33.6 million multibeam and single beam measurements (covering 15% of the ocean; Wölfl

et al., 2019) and retracked range measurements from Geosat, Envisat, Cryosat-2, Jason-1/2 and

SARAL/Altika (Tozer et al., 2019).

4. Ocean depth slope

Internal tides are generally generated over variable bottom topography such as continental

slopes (Baines 1982). Small topography structures like abyssal hills and seamounts associated

with slopes up to 0.2, are not fully captured in the SRTM15+V2.3 bathymetry map. These

features are potential sites for internal tide generation. The synthetic bathymetry map SYNBATH

includes the statistics of abyssal hills and Gaussian-shaped small uncharted seamounts (Sandwell

et al., 2022). We use the magnitude of the vector gradient of the SYNBATH to represent the

ocean depth slope.
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5. Vertical gravity gradient

Vertical gravity gradient (VGG) is the vertical derivative of gravity anomaly and is linearly

related to the derivative of the mean SSS through Laplace’s equation (Sandwell, 2022). It

describes the bumps and dips from the topography of the seafloor. We use the 1 arc minute

marine VGG of the SRTM15+V2.3 product (Tozer et al., 2019).

6. Free-air gravity

Free-air gravity is the negative radial derivative of the disturbing potential evaluated on

the geoid (Sandwell, 2022). We use the 1 arc minute marine free-air gravity anomalies of the

SRTM15+V2.3 product (Tozer et al., 2019). In Figure 3.6 “FA gravity” represents free-air

gravity.

7-8. Seafloor spreading rate and crustal age

Seafloor spreading rate and oceanic crustal age are two fundamental geophysical variables.

Oceanic crusts are young at newly generated mid-ocean ridges. Spreading rate is the rate at

which an ocean basin widens due to seafloor spreading. It ranges from less than 40 mm/year

at the Mid-Atlantic Ridge to more than 100 mm/year at the East Pacific Rise. We use the

seafloor spreading rate and oceanic crustal age from Seton et al. (2020). The dataset is based on

magnetic anomaly identifications and the plate tectonic model of Müller et al. (2019). Regions of

present-day deformation are not available and are replaced with zeros in the normalized datasets.

9. Mean dynamic topography

The mean dynamic topography (MDT) is the current relief that shows steady-state general

circulation with gyres and associated western boundary currents. We use the DTU10 MDT,

which is the difference between the 12-year averaged sea surface and the EGM2008 geoid
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(Andersen and Knudsen, 2009). It measures the expected sea surface height due to currents like

the Gulf Stream and the Kuroshio.

10. Mean dynamic topography gradient

The gradient of dynamic topography is proportional to the geostrophic component of ocean

surface current speed. We take the vector gradient of the MDT topography, and use the magnitude

as MDT gradient.

11-14. K1 and M2 tidal amplitude and current speed

Barotropic tides are the major origin of internal tide generation, which leads to SSS vari-

ability. We use the two largest components, the K1 and M2 tides, with their tidal amplitude and

surface current speed from the FES2014 tide model as features. FES2014 tide model is the latest

finite element solution tide model assimilating long-term altimetry data and tidal gauges (Carrère

et al., 2016). Note that barotropic tides are removed from along-track altimetry observations.

15. Sediment thickness

The seafloor is covered in varying amounts of sediment, and the thickness ranges from a

few tens of meters in the open ocean, to several kilometers near the coasts. We use the global

ocean sediment thickness map, GlobSed, derived from seismic reflection data (Straume et al.,

2019).

16-18. Stratification N2

Internal tides are generated in stratified water by the interaction of barotropic tides over

rough bottom topography (Garrett and Kunze, 2007), and stratification is a key factor in learning

the SSS variability. Stratification can be represented by the buoyancy frequency N, or the

Brunt–Väisälä frequency. Using the annual statistical mean salinity and temperature data from
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the World Ocean Atlas 2018 (WOA18), we evaluate the mean buoyancy frequency N for the

mixed layer (0-100 m), upper ocean (100-300 m) and deep ocean (300-2000 m) with the Gibbs

SeaWater (GSW) oceanographic toolbox (McDougall and Barker, 2011).

19. M2 tide critical slope

Critical slope is the bottom slope that equals the angle at which rays of internal waves

of tidal frequency propagate. It is a key parameter governing the internal tide generation. We

estimate the critical slope of the M2 tide following equation (1) of Becker and Sandwell (2008).

The calculation uses WOA18 salinity and temperature data to calculate the buoyancy frequency

N at different depths and then extrapolates N to the seafloor, assuming an exponential function

of depth (St. Laurent and Garrett, 2002).

20. Fractions of slope above critical

The smallest seamounts that are detectable in the satellite altimetry could be 800 m in

height and 4 km in radius (Gevorgian et al., 2021). Our spatial resolution of 7 by 5 arc minutes

is coarser than the scales of small tectonic structures including seamounts. We use the 15 arc

second SYNBATH bathymetry map (Sandwell et al., 2022) to calculate seafloor slope, then

calculate the fractions of super critical slope of M2 tide in each 7 by 5 arc minute grid. In Figure

3.6, we use “Fractions” to represent fractions of slope above critical.

21. Mixed layer depth

The ocean mixed layer is a surface layer of nearly uniform density resulting from stirring

of surface waters by the wind or heat fluxes. As a feature, we use the 12-month average of the

monthly mean mixed layer depth (MLD) product derived from almost 2,450,000 Argo profiles

collected through March, 2021(Holte et al., 2017).
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22-23. Absolute latitude and the sign of latitude

Some ocean activities are tied to the latitude., i.e, ocean eddies scale with the Rossby

radius, which varies with latitude; zonal jets are also shown to populate every part of the ocean

(Maximenko et al., 2005). We use the absolute latitude and the sign of latitude (1 for the Northern

Hemisphere and -1 for the Southern Hemisphere) as features in this study. We avoid using

longitude as a feature. Using both the longitude and latitude as features would allow the model to

take a shortcut using geographic coordinates in training, instead of learning the relations between

input physical features and output labels as we expect.

24. Reciprocal of latitude

The reciprocal of Coriolis frequency connects the SSS to the EKE, or the average geostrophic

flow speed. Coriolis frequency is defined as f = 2ω sinψ , where ψ is the latitude, ω is earth’s

angular speed. Coriolis frequency f sets the lower bound for the frequency of internal wave mo-

tions. For this study, we neglect the constants and slightly modify the term to be 1/(sin |ψ|+0.2)

where 0.2 is added to the denominator to avoid a singularity at the equator.

25. Ocean basins

Different basins of the ocean exhibit large-scale differences in stratification and circulation.

To allow for the possibility of basin-scale variability that is not readily represented by the other

variables, we identify each ocean basin with an integer from -1 to 4 to distinguish: the Southern

Ocean, the Indian Ocean, the north Pacific, the south Pacific, the north Atlantic, and the south

Atlantic.

26. Distance to the nearest thermocline boundary

A thermocline is the transition layer where temperature decreases rapidly from the mixed

upper layer of the ocean to much colder deep water. It is associated with high stratification and
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creates conditions for internal tide generation. We use the 12 month average of the monthly max-

imum mean mixed-layer depth product collected from Argo profiles to represent the thermocline

depth (Holte et al., 2017). We pick out the boundary where the thermocline intersects the ocean

floor, and we calculate the nearest distance to the boundary as a feature. In Figure 3.6, “Distance”

denotes distance to the nearest thermocline boundary.

27. Significant wave height

Winds and wave heights are highly correlated. Most ocean surface currents are caused by

wind, and surface gravity waves are also generated by the friction between wind and water. We

use the multi-year mean significant wave height (SWH) as a feature. SWH is provided in the

waveform data in the along-track satellite altimetry product.
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Figure 3.2. Normalized environmental parameters used in this study. Land is masked as light
gray. All areas excluded (lakes, ponds, inland ocean and coastal areas) are masked as dark gray.
All plots are at 7 by 5 arc minute resolution using a Mercator projection.

3.2.2 Methods

Correlation analysis: revisiting Gille et al. (2000)

Correlation is a statistical method that measures the strength of association between two

linearly related variables and the direction of the relationship. Gille et al. (2000) calculated

the Pearson correlation coefficients between seafloor roughness and eddy kinetic energy as a

function of depth. Their analysis built on a hypothesis that seafloor roughness could serve either

to dissipate eddy kinetic energy by exerting friction at observed scales, or it could be a source of

energy by generating lee waves or instabilities or steering eddies. Roughness was computed by
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band-pass filtering Smith and Sandwell (1997) bathymetry to retain wavelengths between 80 and

160 km and then computing RMS height. Eddy kinetic energy Ek was derived from along-track

slopes of TOPEX, ERS-1/2 using the geostrophic relationship and assuming eddy variability to

be isotropic. Along-track slopes were low-pass filtered to retain signals with wavelengths longer

than 80 km, and data equatorward of 20° were omitted because of errors associated with small

Coriolis parameter f . They found a positive correlation between roughness and E1/2
k in regions

shallower than 3000 m and a negative correlation at depths greater than 4800 m.

In this study, we repeat the correlation analysis of Gille et al. (2000) using updated

SSS variability, bathymetry and roughness datasets as described in Section 3.2.1. We bin the

roughness and SSS variability (30-100 km, >100 km) by local depth in each 100 m range, and

as a function of depth calculate the Pearson correlation coefficient between roughness and SSS

variability. The result is shown in Figure 3.3.

For each 100 m depth range, we fit the corresponding 30-100 km SSS variability as a

linear function of roughness and use this information to predict SSS variability. We then combine

the predictions made over each depth range to map predicted SSS variability (Figure 3.4a) and

the differences with the observed SSS variability (Figure 3.4b). We also predicted the large-scale

SSS variability (>100 km) (Figures 3.5a and 3.5b).

Mean squared error (MSE) and R2 serve as metrics of model performance. MSE is the

second moment of the error (L2 norm) and incorporates both the variance of the estimator and

its bias. It is computed as (Sammut and Webb, 2011):

MSE =
1
N

N

∑
i=1

(yi − ŷi)
2 (3.1)

The R2 score is a measure of the amount of variance in the predictions explained by the
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dataset. R2 values near 1 indicate better predictions. R2 is defined as (Devore, 2011):

R2 = 1−
N

∑
i=1

(yi − ŷi)
2/

N

∑
i=1

(yi − ȳ)2 (3.2)

where yi is the ith observation, ŷi is the ith prediction, and ȳ is the mean value of observed

SSS variability. The total number of observations, N, is 2,677,475 grid points in this study. We

assume that the prediction at each data point has the same uncertainty.

Linear Regression Model

Linear regression assumes linear relationships between the input features and the output

labels. It can be computed via ordinary least squares fitting, which minimizes the sum of the

squared residuals. Although SSS variability may have non-linear or high-order dependences

on the environmental parameters, we do not consider higher-order terms and focus only on the

linear correlation between SSS variability and environmental variables. We adopt the linear

regression model from the scikit-learn library (Pedregosa et al., 2011) to build models between

the SSS variability and 27 environmental parameters and to evaluate model performance as well

as feature importance.

We compute a global mesoscale SSS variability (30-100 km) prediction map using the

linear regression model and evaluate model performance using the R2 and MSE metrics. Steps

to construct the predicted map are as follows: (1) First, we divide the ocean into 64 blocks of

equal area (see Figure 3.8 in the appendix for the block separation). (2) We make predictions

over each block. For each unique block that is used as a test set, we randomly select 44 out

of the remaining 63 blocks as training datasets (around 70%). We adopt all 27 environmental

parameters as features and SSS variability (30-100km) as labels (i.e. the predicted variable) and

train a linear regression model, then use the model to predict SSS variability over the selected
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block. (3) We then shuffle the training datasets 30 times. Each time we randomly select 44 out of

63 blocks as training datasets and repeat the above step to get predictions over the chosen block

or test set. (4) We use the average of the 30 predictions, concatenate the averaged predictions

over each unique block, and make a global prediction-only map (Figure 3.4c). The training

strategy of splitting the data into 64 geographical bins and using the input from different separate

regions to make predictions over a specific region ensures model generalizability and prevents the

model from simply learning local information. The differences between predicted and observed

SSS variability (30-100 km) are shown in Figure 3.4d. We also run the same processes to obtain

the prediction map for the large-scale SSS variability (>100 km; Figures 3.5c and 3.5d. Note

that R2 and MSE are calculated using the prediction map (test sets only) and observations.

We use two methods to evaluate the feature importance of the linear regression model:

(1) feature forward selection; (2) feature ablation. The details are described below:

(1) Forward selection:

The forward selection algorithm starts with a model with zero features and iterates through

all single-feature models to find one that is most predictive (for example, with the smallest L2

norm); picks the feature; then for all the remaining features, considers adding each of them to

build a two-feature model, by including whichever second feature is most predictive; always

includes the feature giving the biggest marginal gain in predictive power in the presence of all

other selected features. The order in which features are selected is a measure of feature impor-

tance. We use the sequential forward selection method from the scikit-learn library to select and

rank features that are most relevant to the SSS variability. We evaluate model performance using

5-fold cross-validation, in which data are split into 5 groups; each unique group will be used as

a test set and remaining groups will be used as a training set; we train a model, retain the eval-

uation score (L2 norm), and then summarize the model performance using the 5 evaluation scores.
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(2) Feature ablation:

Feature ablation measures how much the model performance is degraded by deleting one

feature. First, we use all M (27 in this study) features and 70% of data as training datasets

to train a linear regression model. (The process can also be applied with any other machine

learning model.) Models with M-1 features obtain worse performance over the test dataset,

which comprises the remaining 30% of the data, for example, with increased MSE compared to

the model using all available M features. The reduction in performance, as quantified by the L2

norm, provides a measure of the importance of the deleted feature.

Boosted Trees Algorithm

The gradient boosted trees algorithm is an ensemble of decision trees as weak learners.

Each tree tries to fit the residuals from previous models. All those trees are trained by propagating

the gradients of errors throughout the system. We implement the boosted trees algorithm using

the Light Gradient Boosted Machine (LightGBM, Ke et al., 2017). LightGBM is a fast and

efficient framework. It splits the tree leaf-wise using a histogram-based method for selecting the

best split and buckets continuous feature values into discrete bins thus lowering memory usage.

It works with large datasets with ease and results in much better accuracy, which can rarely be

achieved by any of the existing boosting algorithms. The main drawback of gradient boosted

trees is that finding the best split points in each tree is time consuming.

We compute a global prediction-only SSS variability (30-100 km) map with the boosted

trees model, again using 27 environmental parameters as features as described in Section 3.2.1.

The steps to calculate predictions are basically the same as for the linear regression model (as

discussed in Section 3.2.2) with the exception that for each model we randomly select 44 out

of the remaining 63 blocks as training datasets, and the other 19 blocks as validation datasets.
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Figure 3.4e shows the prediction-only map, and Figure 3.4f shows differences with observations.

We evaluate the model performance through the R2 score and the MSE.

We identify the dominant features in the boosted trees model using two methods: (1)

feature ablation; (2) feature importance inbuilt by the boosted trees model. Feature ablation is

introduced in Section 3.2.2. For method (2), we train a boosted trees linear regression model

with feature sub-sampling (0.8) and bagging (bagging fraction 0.7 and bagging frequency 5) to

avoid over-fitting and use the feature importance returned by the model’s split gain.

3.3 Results

3.3.1 Correlation with Roughness

As a baseline for the machine learning analyses, we first assess the skill of the roughness

correlation of Gille et al. (2000) in predicting SSS. Figure 3.3 shows the correlation coefficients

between SSS variability and seafloor roughness as a function of depth. The blue curve, indicating

the correlation between roughness and full-scale SSS variability (>30 km), resembles Figure 2a

in Gille et al. (2000), which focused on the 80-160 km wavelength band. Both show that there is

positive correlation between roughness and SSS variability in regions shallower than 3000 m

and negative correlation in regions deeper than 5000 m. The correlation with large-scale SSS

variability (>100 km, green curve) is similar to the correlation with full-scale SSS variability

(blue curve) in the deep ocean. It has reduced values at shallow water, and the correlation is

sometimes insignificant. The negative correlation between roughness SSS variability (>100km)

and roughness at depths greater than 5000 m are mostly attributed to the Argentine Basin, where

the energetic Zapiola Anticyclone circulates counterclockwise over smooth abyssal plains (Sara-

ceno et al., 2009). The negative correlation also indicates that the variation of geostrophic flows

is not related to seafloor roughness. At mesoscales (30-100 km), the correlation between seafloor
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roughness and SSS variability is basically positive at all depth levels, and the correlation is much

higher in shallow water compared with large-scale flows. This pattern of positive correlation

suggests that the mesoscale oceanic variability is generated as a response to rough topography.

Figure 3.3. Correlation coefficients of seafloor roughness versus SSS variability in three
wavelength bands (>30km or full band, 30-100km, > 100km) as a function of ocean depth.
Black dashed lines are the 95% confidence intervals beyond which correlation coefficients are
statistically reliable.

3.3.2 Predicted SSS Variability

Mesoscale SSS variability prediction

We have introduced three statistical methods for producing predictions of SSS variability

in Section 3.2.2. We show the predicted SSS variability and prediction errors for the mesoscale

band in Figure 3.4.

Using the correlation between seafloor roughness and SSS variability as a function of

ocean depth, we map global predicted mesoscale SSS variability (Figure 3.4a). The prediction is
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far from being realistic. It is only capable of capturing SSS variability over regions with rough

topography, for example over the slow-spreading ridges (the southwest Indian Ridge and the

Mid-Atlantic Ridge), fracture zones (the Challenger Fracture Zone), and hotspot chains (the

Emperor Seamount Chain and the Louisville Seamount Chain). The difference with the observed

SSS variability (30-100 km) is shown in Figure 3.4b. The prediction error is large over western

boundary currents and the ACC. This model has an R2 score of 0.064 and an MSE of 0.015

µrad2 on a global scale.

The linear regression model, which uses 27 features as variables to fit the SSS variability

(30-100 km), makes predictions over each individual block. The prediction map that concatenates

the predictions is shown in Figure 3.4c and the prediction errors in Figure 3.4d. This time the

predicted variability map is able to capture signatures of most geostrophic flow instabilities, and

unbalanced flows over rough topography. It has an R2 score of 0.362 and an MSE of 0.010 µrad2.

It also shows significantly reduced prediction errors in the Southern Ocean compared with the

correlation analysis (Figures 3.4d compared to 3.4b).

The non-linear boosted trees model provides the best prediction (Figure 3.4e) among the

three models. On global scales, the R2 score is 0.563, the MSE is 0.007 µrad2, and the model

provides realistic predictions. For example, it predicts high SSS variability in the Mascarene

Basin; the prediction in the tropical Pacific agrees well with observations. However, this model,

like the other two models, fails to predict the internal tide variability in the Amazon outflow. We

hypothesize that this local variability is related to physical processes that are not accounted for

in our features. There are some discontinuities at the block edges (e.g. a zonal stripe above the

Mascarene Ridge) arising from the fact that predictions for each block are independent. Using

the average from 30 rounds of training/predicting greatly reduces the discontinuities.
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Figure 3.4. (a) The predicted mesoscale SSS variability map (30-100km) and (b) the associated
prediction error using the correlation between seafloor roughness and SSS variability (30-100km)
as a function of seafloor depth. (c) and (d) are the same as (a) and (b) except for using the linear
regression model. (e) and (f) are the same as (a) and (b) except for using the boosted trees model.
Regions with prediction failures are enclosed in red boxes in (b), (d) and (e).

Large-scale SSS variability prediction

At large scales, SSS variability (>100 km) is well categorized, and it is expected to be

dominated by western boundary currents and the ACC, regions where the mean SSS is large. In

general, large-scale SSS variability (>100 km) is linearly related to the MDT gradient, which

represents the strength of geostrophic flows. We expect that both the linear regression model and

the boosted trees algorithm, which use MDT gradient as a feature, should capture the relations

with the large-scale SSS variability and make realistic predictions. We use the three models

introduced in Section 3.2.2 to predict large-scale SSS variability (>100 km) and to check if the
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model performance is consistent with our current knowledge. The prediction and associated

errors are shown in Figure 3.5.

We expect that by employing the correlation between seafloor roughness and SSS vari-

ability, we will not be able to make good predictions since the MDT gradient is not correlated

with seafloor roughness. This expectation is borne out in Figure 3.5a, which captures almost no

large-scale SSS variability. The prediction has an R2 score of 0.010 and an MSE of 0.208 µrad2.

The linear model uses MDT gradient as one of the 27 input variables. Overall, it captures

the variations of geostrophic flows relatively well and shows strong variability in the vicinity of

strong geostrophic flow. The predicted SSS variability (Figure 3.5c) is somewhat biased: it is

larger than observations over regions where the SSS is larger and smaller in background regions

where SSS is small. This model has an R2 score of 0.667 and an MSE of 0.070 µrad2.

The boosted trees model makes the best predictions for the large-scale SSS variability

(>100 km). It makes realistic predictions (Figure 3.5e), and the prediction error (Figure 3.5f) is

reduced and less biased, compared to the linear regression model (Figure 3.5d). This model has

a R2 score of 0.776 and an MSE of 0.047 µrad2.
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Figure 3.5. (a) The predicted SSS variability map (>100km) and (b) the associated prediction
error using the correlation between seafloor roughness and SSS variability (> 100 km) as a
function of seafloor depth. (c) and (d) are the same as (a) and (b) except for using the linear
regression model. (e) and (f) are the same as (a) and (b) except for using the boosted trees model.

3.3.3 Feature Importance

One key question that arises from using the 27 environmental parameters described in

Section 3.2.1 is to determine which features are most critical in training the linear regression

model and the boosted trees model. As described in Section 3.2.2, we evaluate the feature

importance of the linear regression model using feature forward selection and feature ablation,

and we evaluate the boosted tree model using feature ablation and the boosted tree embedded

feature importance. We list feature importance in the form of ranks (from 1 to 27) for the

mesoscale SSS variability (30-100 km) in Figure 3.6. Features with smaller ranks have higher
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importance.

Figure 3.6. Ranks of features of the mesoscale SSS variability (30-100 km) from the linear
regression model using the forward selection and the feature ablation; from the boosted trees
model using the feature ablation and the feature importance returned by the model. Features with
smaller ranks have higher importance. Features and their full name are introduced in Section
3.2.1.

These four methods provide different ranks of feature importance. At least two out

of four show that distance to the nearest thermocline boundary, SWH, MDT, MDT gradient,

absolute latitude, seafloor roughness, ocean basins and M2 tidal speed, K1 tidal amplitude,

and N2(0-100m) are the governing features in predicting the mesoscale SSS variability. The

boosted trees ablation methods show that the model performance would decrease the most when

removing SWH as a feature (L2 norm increases by 35.6%). The sign of latitude, the critical

slope of the M2 tide, VGG, topography gradient, and fractions of slope above critical, are not

important in any of the four methods. While SSS variability is relevant to ocean basins, it is
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not hemispherically related. Note that the lack of correlation with VGG is an indication that the

mean SSS model removed from the profiles accurately captures the small-scale gravity features

that are represented by VGG. The remaining SSS variability, which is used as a label in this

study, represents oceanic signals, a main assumption of the entire analysis.

At large scales (>100 km), feature rankings in Figure 3.7 indicate that all methods show

MDT gradient to be the most dominant feature in predicting SSS variability, in accord with

our initial expectation. Large-scale SSS variability can be represented by the strength of the

geostrophic flow, which scales with MDT gradient. Where the mean flow is large, the variation

is large as well.

Figure 3.7. Same as Figure 3.6 but for ranks of features of the large-scale SSS variability (>100
km).
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3.4 Discussion and Conclusions

We have used three statistical methods to build models and predict the SSS variability in

the mesoscale band (30-100 km) and in the large-scale band (>100 km). We have revisited the

correlation analysis of Gille et al. (2000) and then extended our analysis to incorporate more

environmental parameters and to test additional methods to understand the governing factors of

sea surface variability. Both the linear regression model and the boosted trees model incorporate

27 features, and they significantly outperform the correlation analysis that only accounts for

the seafloor roughness and ocean depth. The boosted trees model also has advantages over the

linear regression model in that it is capable of building more complicated non-linear relations

between environmental parameters and the mesoscale SSS variability. Thus it has a higher R2

score (0.563 compared to 0.381) and results in a smaller MSE in prediction errors (0.007 µrad2

compared to 0.010 µrad2) for the mesoscale SSS variability. The large-scale SSS variability is

largely consistent with geostrophy, with both the linear regression and the boosted trees model

able to explain more than 60% of the variance, and MDT gradient serving as the leading order

predictor.

We divide data into 64 geographical blocks and use data from separate blocks to train

models and make predictions. This approach is essential for the boosted trees model because it

prevents the model from simply using local information to make unrealistically good predictions.

Although this approach is unnecessary for the linear regression model, for consistency, we use

it for both the boosted trees model and the linear regression model to train the models, make

predictions, and evaluate model performance. For each test block, we train the model 30 times as

introduced in Section 3.2.2. The prediction map concatenated from 30-realization average greatly

reduces the discontinuities at block edges and has little impact on evaluating model performance.

The variance of 30-realization of predictions is a measure of model uncertainty. We calculate

the standard deviation (std) and use 1/std as weights to recalculate the R2 score. The updated
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R2 scores using 1/ std as weights are 0.407 for the linear regression model, and 0.583 for the

boosted trees model, which are similar to R2 scores assuming uniform weights (0.381 for the

linear regression model and 0.563 for the boosted trees model).

Although the machine learning models in this study predict SSS variability, our fun-

damental goal is to use machine learning to identify the physical processes governing SSS

variability. There are two categories of conclusions that we can reach from this study: (1) what

environmental parameters matter in predicting SSS variability? (2) in which regions of the ocean

do our models fall short, and why? We hypothesize that processes or regions that are not readily

represented by a simple model might indicate the presence of unusual or complicated physical

mechanisms.

We have used four methods to rank the importance of environmental parameters, that is

to calculate the feature importance. Rankings from the four methods can diverge substantially,

although the linear regression and the boosted trees model show some overlap. Overall, the

rankings show that distance to the nearest thermocline boundary, SWH, MDT, MDT gradient,

seafloor roughness, ocean basins and M2 tidal speed, K1 tidal amplitude, and N2 (0-100m) are

key features in predicting the mesoscale SSS variability (30-100 km). For large scales (>100

km), all methods show that MDT gradient is the dominant feature in predicting SSS variability.

The high feature importance assigned to the distance to the nearest thermocline boundary

suggests that internal wave generation plays a role in generating SSS variability. This is because

internal waves have the largest amplitudes at the base of the thermocline. They can be generated

when tides disturb water to move up and down the steep seafloor boundary, so waves are larger

close to the boundary and dissipate as they move away. Tidal wave beams interact with the

thermocline and will generate large-amplitude solitary waves (Akylas et al., 2007).
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The role of SWH in governing mesoscale SSS variability (30-100 km) could have two

interpretations: first it could mean that wave height noise leaks into the 30-100 km wavelength

band; alternatively, it could indicate that SWH reflects increased wind forcing, which produces

more mesoscale ocean variability. We correlate the mean SWH with multiple band-pass filtered

SSS variability and find that they are highly correlated (coefficients > 0.5) when the SSS vari-

ability has a wavelength less than 30 km (Figure 3.9 in Section 3.6). The correlation coefficient

drops below 0.5 where the SSS wavelength is longer than 30 km, which indicates SWH noise is

not the dominant force anymore, but its influence cannot be ruled out.

There are straightforward relations between mesoscale SSS variability and MDT gra-

dient, seafloor roughness, absolute latitude, ocean basins, stratification N2 (0-100m), M2 tidal

speed and K1 tidal amplitude. MDT gradient represents the strength of geostrophic flows. The

mesoscale eddies emerging from the instabilities of strong geostrophic flows could appear in

smaller spatial scales. Thus, there is strong mesoscale SSS variability in the vicinity of western

boundary currents and the ACC, and the MDT gradient is highly correlated with mesoscale SSS

variability. As discussed by Gille et al. (2000), seafloor roughness could dissipate eddy kinetic

energy in the deep ocean, or it could be a source of energy by generating internal waves or

instabilities in the shallow ocean. Some ocean activities, e.g. ocean eddies, are tied to the latitude.

The physical processes and the generation mechanisms are different in different dynamical zones

or ocean basins. The M2 and K1 barotropic tides can convert to internal tides when they impinge

on a steep seafloor in stratified water.

We have identified a number of regions where machine learning consistently fails to yield

good predictions for the mesoscale SSS variability: (1) the Amazon outflow (310°/325°/0°/15°)

in the tropical Atlantic Ocean; (2) the Mascarene Ridge (45°/63°/-15°/-3°) in the Indian Ocean;

(3) the Kerguelen Plateau (75°/95°/-60°/-45°) in the Southern Ocean. Each of these regions

displays large negative prediction errors (red boxes in Figures 3.4b, 3.4d and 3.4f). The Amazon
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outflow is associated with strong local and seasonal freshwater input. This freshwater input

affects stratification, likely in ways that are not replicated elsewhere in the global stratification

data that we use in the study. There is also a strong tidal impact that is not necessarily well

captured. The Mascarene Ridge is located in an area of energetic barotropic tidal currents that

are normal to the ridge (Lozovatsky et al., 2003; Morozov 2006). The ridge is characterized

by guyots with flat summits straddled by channels. The shallow banks, the shallow channel

between the banks, and deep waters around the Mascarene Ridge provide unique conditions

for the generation of intense internal tides (Morozov, 2006). The Kerguelen Plateau is a major

topographic feature in the Southern Ocean where the main fronts of the ACC encounter rough

topography. The strong geostrophic flow converts to upward-propagating internal waves over

rough bottom topography. Strong wind forcing generates near-initial downward-propagating

internal waves (Meyer et al., 2015).

The difficulties that the boosted trees approach encounters in modeling these three re-

gions, suggest that they are unusual areas relative to the training data sets, and in the language of

machine learning can be considered to be “out of distribution” (Hendrycks and Gimpel, 2016)

unless they are specifically included as training data. The R2 scores excluding the above three

outlier regions are 0.407 and 0.579 for the linear regression and the boosted trees model, which

are slightly better than R2 scores for the global ocean (0.381 and 0.563, respectively). The outlier

regions have little impact on skewing model accuracy. The physical processes within these

regions are possibly strongly governed by regionally specific environmental parameters that are

not in our features. Local parameters like freshwater input are hard to incorporate, because they

are concentrated near the coast and sparsely distributed in space. Our model has no temporal

resolution, and some important environmental parameters, i.e., wind stress, are also not included.

This is consistent with findings in other studies showing that machine learning algorithms are

less likely to succeed when validation or test data do not lie within the distribution of the training

data (Liang et al., 2017; Partee et al., 2022; Sonnewald et al., 2021; Sinha and Abernathey,
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2021). In these regions, a physical model that incorporates existing physical knowledge may

have better predictive skills.

Other than the linear regression and the boosted trees model, we also tested the possibility

of training with the lasso regularization, and the random forest models. The regularization

parameter for the lasso model is too small to make it different from the linear regression. The

performance of random forest proved to be worse than boosted trees, and thus we discarded

its use as a non-linear model in this study. Deep learning or neural networks can also be a

potential class of models to explore. We adopted the boosted trees model as our preferred

nonlinear machine learning model because it is efficient, it converges well compared to random

forests, and it provides enough flexibility to test multiple inputs and multiple scenarios efficiently.

Data quality goes a long way toward determining the performance of the machine learn-

ing model and the predictions. Machine learning algorithms are not able to train a good model

by identifying all possible connections between poorly selected input features. To explore

the importance of using physically relevant input features, we chose as features 27 pictures

of animals that have no relation to the SSS variability, although the animal pictures do have

large-scale patterns of spatial variability that are comparable to our environmental parameters.

We used these pictures to train a linear regression model and a boosted trees model to predict SSS

variability following the same procedures that we used with the environmental parameters (see

Figure 3.10 in Section 3.6). Since the animal pictures have no physical relation to environmental

parameters, we would expect a large MSE and an R2 of 0. Indeed, if we use 27 pictures of

Gaussian noise as inputs, the MSE and R2 are 0.025 µrad2 and -0.007 for both models. However,

counter to expectations, when we use animal pictures for the linear regression model the MSE

and R2 are 0.023 µrad2 and 0.08, and for the boosted trees model they are 0.018 µrad2 and

0.273. Overall, with unphysical data, both models perform worse than they do when using

environmental parameters. For the boosted trees model, the fact that irrelevant data with feature
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scales comparable to observed spatial scales can explain 0.273 of the variance should serve as

a cautionary warning that spatially correlated irrelevant fields can yield artificially high skill

metrics.

The swath Surface Water and Ocean Topography (SWOT) mission to be launched in late

2022, will have the ability to resolve scales of a few tens of kilometers where internal tides/waves

are mixed with geostrophic currents (Morrow et al., 2019). SWOT’s spatial resolution capabili-

ties call for understanding unbalanced waves and mesoscale ocean activities. Our study shows

both the potential and limitations of using machine learning to unveil the driving forces and to

make global predictions of mesoscale SSS variability. Machine learning is a powerful tool, and

this study is a step forward in using machine learning to advance our understanding of Earth

system science.
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Links to the open accessible data are provided here:

SYNBATH:

https://topex.ucsd.edu/pub/synbath/

STRM15+:

https://topex.ucsd.edu/pub/srtm15 plus/

VGG and free-air gravity:

https://figshare.com/articles/online resource/Tozer et al 2019 SRTM15 GMT Grids/7979780
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Seafloor spreading rate and oceanic crustal age:

https://earthbyte.org/webdav/ftp/earthbyte/agegrid/2020/

mean dynamic topography:

https://www.space.dtu.dk/english/Research/Scientific data and models/downloaddata/

Salinity and temperature data:

https://www.ncei.noaa.gov/access/world-ocean-atlas-2018/

Mixed-layer depth:

http://mixedlayer.ucsd.edu

Sediment thickness:

http://earthdynamics.org/data

All other data including the sea surface slope variability and processed features are available

upon requesting the corresponding author.

Chapter 3, in full, is a reprint of the material as it appears in Artificial Intelligence for the

Earth Systems, 2022, Yu, Yao; Gille, Sarah T.; Sandwell, David T.; McAuley, Julian, American

Meteorological Society, 2022. The dissertation author was the primary author of this paper.
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3.6 Appendix

Figure 3.8. Equal-area block separation. Each block is assigned with a unique ID from 0 to 63.
The longitude (0º to 360 º) and latitude (-60 º to 60 º) are linearly normalized to -1 and 1.
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Figure 3.9. The Pearson correlation coefficient for the mean significant wave height and the
SSS variability in multiple sub-bands (10-15 km, 15-25 km, 25-39 km, 39-63 km, 63-100 km,
100-158 km, 158-251 km, 251-398 km, 398-630 km, 630-1000 km). A coefficient of ±0.5 means
strong correlation.
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Figure 3.10. (a) The predicted SSS variability map (30-100km) and (b) the associated prediction
error using the linear regression model with 27 features of random animals. (c) and (d) are the
same as (a) and (b) except for using the boosted trees model. The MSE and R2 for the linear
regression model are 0.023 µrad2 and 0.080, for the boosted trees model are 0.018 µ rad2 and
0.273. (e) The predicted SSS variability map (30-100km) and (f) the associated prediction error
using the linear regression model with 27 features of random gaussian noise. (g) and (h) are the
same as (e) and (f) except for using the boosted trees model. The MSE and R2 for both models
are 0.025 µ rad2 and -0.007.
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Chapter 4

Seasonality of the Sub-Mesoscale to
Mesoscale Sea Surface Variability from
Multiple Satellite Altimetry

Sea surface slope (SSS) varies in response to a range of physical processes: tides,

geostrophic flows, surface and internal waves, etc. We present the sea surface variation in the

form of the SSS variability using 30 years of heterogeneous satellite altimetry measurements.

We apply band-pass filters to the along-track SSS, and derive the mean and seasonal (annual and

semi-annual) components of SSS variability in multiple wavelength sub-bands from 10 to 1000

km. We show that the seasonal components are generally small (<10% in amplitude) compared

to the mean variability. Through correlation analysis, we show evidence that SSS variability with

wavelengths less than 30 km is dominated by wave height noise. At sub-mesoscale to mesoscale

(30-100 km) wavelengths, we identify high variability over western boundary currents and

regions of rough topography. In this band, the high-latitude Northern Hemisphere and the south

Indian Ocean are associated with large annual cycles. The variability is higher in local wintertime

except for a few regions, for example the Bay of Bengal, which shows high variability in the

boreal spring and fall. Through power spectral density analysis of the seasonal SSS variability,

we find that the energy differences between local winter and summer are stronger at smaller

scales (<100 km). The Ka-band radar interferometry instrument on the Surface Water and Ocean

Topography (SWOT) satellite mission will allow observation of ocean surface activities down to
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∼20 km at submonthly time scales, but wave-related errors (sea state bias, aliasing, wind-driven

activities, etc.) will still be a major challenge.

4.1 Introduction

Satellite altimetry has revolutionized our understanding of upper-ocean circulation dy-

namics and sea level change. However, we still have limited understanding of sub-mesoscale to

mesoscale ocean activity, defined here as variability in the 30-100 km wavelength band. This

band is less well observed and less understood compared to the geostrophic band. Motions in

this band have smaller scales than the O(100 km) resolution (Ballarotta et al., 2019) of the most

commonly used gridded sea surface height (SSH) product, distributed by the Copernicus Marine

Environment Monitoring Service (CMEMS). The spatial resolution of the CMEMS product

are restricted by measurement noise and the wide separation between nadir tracks for satellite

altimeters. SSH in the 30-100 km band is associated with strong eddy kinetic energy and plays

an important role in the dynamics of ocean energy transfer and mixing (Ferrari and Wunsch,

2009). It contains both unbalanced wave motions (internal tides/waves, near-inertial flows) and

balanced geostrophic flows. In the 30-100 km band, there are pronounced seasonal sea surface

height variations, which are about 10% of the mean variability in amplitude (Chen and Qiu,

2021). The average variability of SSH is related primarily to the mean dynamic topography,

significant wave height (SWH), lunar semi-diurnal (M2) tides, thermocline depth, and seafloor

roughness (Yu et al., 2022). Among those factors, the SWH and thermocline depth have strong

seasonality. Previous studies have proposed that the seasonal variability stems from (i) changes

in inertia-gravity waves from the seasonally changing upper-ocean stratification (Rocha et al.,

2016); or (ii) changes in eddy kinetic energy from seasonally varying mixed-layer instability

(Qiu et al., 2014; Callies et al., 2016; Uchida et al., 2017). These seasonality studies have

the limitations of being either regional or based on model output. Our study takes a global

approach, based on satellite data, using the SSS from along-track altimetry to study seasonal
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ocean variability and to investigate the influence from surface waves and thermocline depth

change. With more than 30 years of high-quality, repeat and non-repeat satellite altimetry data

collected, the dense ground track coverage and diverse track orientations allow us to create sea

surface slope (SSS) variability maps with ∼10 km spatial sampling and to investigate mean,

annual and semi-annual variability.

The major objective of this work is to estimate the seasonal variations (the annual and

semi-annual components) of SSS variability with wavelengths from 30 km to 100 km and to

study the seasonal spectral characteristics of SSS variability. We try to understand the influence

of the SWH and the thermocline depth on the SSS variability. We compute the SSS variability

using the block median value of the absolute SSS anomaly from multiple altimeter profiles,

referenced to the mean sea surface slope. Compared to SSH, along-track slopes amplify high-

wavenumber signals and “whiten” the power spectral density (PSD) by k2, because slope is the

spatial derivative of SSH. The kinetic energy tends to fall off like k−2 in the submesoscale range

(Callies and Wu, 2019), which results in a near white PSD of SSS in the 30-100 km wavelength

range. We divide the SSS variability into multiple sub-bands to investigate the seasonal spectral

characteristics.

As discussed by Chen and Qiu (2021), altimeter SSH data have a white noise floor. This

noise floor intersects the red-spectrum of the ocean SSH variability at wavelengths somewhat

greater than 30 km. Chen and Qiu (2021) use along-track altimetry data to study the SSH in

the 30-120 km band after subtracting a white noise floor for the Jason and SARAL/ALtiKa

(Satellite with ARgos and ALtiKa) data (Xu and Fu, 2012). Similarly, to study the wavenumber

spectra from recent missions, (Vergara et al., 2019) remove a white noise floor from Jason-2

and SARAL/ALtiKa and a red noise floor from Sentinel-3. However, extrapolating the high-

frequency noise floor back to lower frequencies could provide the wrong value of SSH if the

white noise assumption is not valid. Moreover, it could introduce a false seasonal variation
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if the noise floor is linked to SWH (Lawrence and Callies, 2022), which has a large seasonal

component. A major focus of our analysis is to reduce the noise by a factor > 1.6 through

two-pass waveform retracking (Garcı́a-Garcı́a and Ummenhofer, 2015; Zhang and Sandwell,

2017) and careful editing. This enables us to retain shorter wavelengths in the ocean variability

analysis and hopefully reduce the seasonal contamination.

The SSS variability map constructed in this study has a spatial sampling of about 10 km,

and we show through correlation analysis that SSS variability is highly correlated with wave

height noise at wavelengths less than 30 km (Pearson coefficient >0.5) and that the correlation

is close to zero at 50-km wavelength. Thus we adopt 30 km as the shortest wavelength used

in the seasonality analysis. Nevertheless there is still some correlation between SSS and SWH

in the 30–50 km band. This could have two causes: (1) residual wave height noise leaks into

SSS variability or (2) surface gravity waves are wind-driven, and part of the SSS variability is

also wind-generated, thus leading to a strong correlation without a direct mechanistic connection

between surface waves and SSS variability. We use the surface wind stress data from the version

2 Cross-Calibrated Multi-Platform (CCMP2) to help understand the impact of waves from the

above two sources. A definitive understanding of the correlation between SSS and SWH will be

provided by the Surface Water and Ocean Topography (SWOT) altimeter mission which will

have dramatically lower SWH contamination (Fu and Ubelmann, 2014).

This paper is structured as follows: in the next section, we describe the data sets used

in the study, including the SSS from satellite altimetry, high-resolution model output (Rocha

et al., 2016), the SWH, the surface wind speed (WSP), and the thermocline depth. We show

that SWH contaminates the shortest wavelengths (<30 km) of SSS variability. In the result

section, we present the mean, annual, and semi-annual components of SSS variability in the

sub-mesoscale to mesoscale bands (30–100 km). We also show the seasonal power spectra of

SSS and investigate the influence of SWH and thermocline depth on the SSS variability. In
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Section 4.4 we discuss the details of the spatial and temporal variations in SSS variability, and

investigate the latitude variations in terms of solar forcing and oceanographic processes.

4.2 Datasets

4.2.1 Sea Surface Slope from Altimetry

We use the along-track profiles from Envisat, Cryosat-2, Jason 1/2, SARAL/ALtiKa and

Sentinel-3A/B collected from 2001 to 2022. The altimeter data have two modes. The older

altimeters operate in the standard low-resolution mode (LRM), where the radar footprint is

circular and several km in diameter depending on SWH. Cryosat-2 and Sentinel-3 can operate in

the synthetic aperture radar (SAR) mode, where the along-track footprint is reduced to ∼250 m

through synthetic aperture analysis. The noise level of the Sentinel-3 SAR altimeter is 1–2 times

lower than other LRM altimeters (Ranndal et al., 2020). However, as shown in previous studies

(Garcia et al., 2014; Zhang and Sandwell, 2017), the noise floor of all the LRM altimeters can

be reduced by a factor of 1.5-1.7 through two-step retracking to match the precision of SAR

data. Moreover these studies provide a spectral comparison between the standard 3-parameter

retracking (CMEMS) and the two-step retracking. The two-step retracking method provides the

largest noise reduction in the 10-45 km wavelength band which is the band of the spectral hump

(Dibarboure et al., 2014). Note that the noise floor of the SARAL/ALtiKa data is nearly 2 times

lower than the best SAR data from Sentinel-3 (Zhang and Sandwell, 2017). This retracking

combined with careful editing, discussed next, is essential for resolving 30 km ocean variability

without having to shape the spectra of the LRM data as was needed in the Chen and Qiu (2021)

analysis. We push the limits to 30 km by applying a two-step waveform retracking, which makes

the radar data match the precision of SAR data.

After retracking the raw waveforms, we re-estimate, and correct, sea state bias by re-
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moving 8%–10% (dependent on satellites) of SWH in the range measurements. There are two

steps to edit outliers, which further improve the spatial resolution of the profiles. First, we edit

20-Hz waveform data using flags supplied with the level-1 product. In addition, waveforms

having a large misfit from the Brown model and large SWH (>10 m) are excluded. These 20-Hz

data are low-pass filtered using a Parks-McClellan filter with a half gain at 6.7 km wavelength

and down- sampled to 5 Hz. Standard geophysical corrections are applied, including wet and

dry troposphere delay, inverse barometer effect, and solid Earth and barotropic ocean tides

(FES2014, Carrère et al., 2016). The corresponding slopes from geophysical corrections are

small (<1 µrad) except for the barotropic ocean tide at coastal areas (Zhang et al., 2018), which

are excluded in this study. Second, the 5 Hz along-track slopes are compared with the best mean

SSS model (Sandwell et al., 2019), and outliers more than 3 standard deviations (typically >30

µrad) are removed. These data are further low-pass filtered with a second Parks-McClellan

deriva- tive filter with a half gain at 8.3 km wavelength to form along-track SSS. We apply local

slope geoid corrections (Sandwell et al., 2014) and remove the mean SSS to obtain SSS anomaly

profiles that reflect oceanic variability, wave height noise, and tide model error.

We are interested in the spectral characteristics and seasonality of the SSS variability. To

allow for spectral analysis, we decompose the SSS variability into 10 sub-bands that are evenly

spaced in the logscale wave- number domain (10.00–15.84 km, 15.84–25.12 km, 25.12–39.81

km, 39.81–63.09 km, 63.09–100.00 km, 100.00–158.48 km, 158.48–251.18 km, 251.18–398.10

km, 398.10–630.95 km, and 630.95–1000.00 km) using 1-D band-pass Gaussian filters applied to

the along-track profiles. Ideally we should apply a 2-D filter to the surface slope anomalies, but

only 1-D profiles are available, so our band-pass filters are sub-optimal. The results are further

subdivided into 12 months for the temporal analysis assuming that the interannual variations are

small. We then calculate the median of the absolute value of the filtered slope anomalies in 7 by

5 arc minute spatial bins, which represent SSS variability. These block median compilations are

weighted by a polynomial function of the SWH for each satellite mission. Finally the 7’ by 5’
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median absolute deviations are smoothed spatially using a low-pass Gaussian filter having a half

gain at 200 km wavelength to further suppress noise in the monthly maps. We generate a mask to

exclude regions poleward of 66°N or 60°S, land, and shallow water areas with depths less than

100 m (because of the inaccuracy of tide models around coasts). We calculate the mean, annual,

and semi-annual components of the monthly SSS variability in the 30–100 km wavelength band

(which roughly combines three sub-bands that have similar spatial patterns: 25–39 km, 39–63

km, and 63–100 km), and screen out regions associated with large standard deviation (>0.4

µrad) or large mean values (>0.4 µrad), where seasonal variabilities are mostly from ice change.

We update the mask and apply it to all monthly data sets in the following analysis.

4.2.2 Impacts from Wave Height Noise

As shown in previous studies (Zhang and Sandwell, 2017), noise from ocean surface

gravity waves dominates the SSH and slope for wavelengths less than 20–50 km depending on

the amplitude of the SWH as well as the retracking method used for the low-level processing.

To assess this SWH contamination, we compile the SWH estimates from along-track profiles

using block medians in 7’ by 5’ bins. These are further low-pass filtered at 200 km to reduce

noise. The mean SWH map (Figure 4.1a) shows the expected features with typically large

waves >4 m in the Southern Ocean (latitudes: -60° to -35°) and low wave height (<1.5 m) in

regions that are sheltered by islands from waves generated by high-latitude storms (such as the

Southern California Bight or the Gulf of Mexico). We are concerned that the noise from waves

will contaminate the small-spatial scale SSS variability (e.g., Figure 4.1b), and especially their

seasonal variations. We have no independent way to assess this contamination so we perform a

spatial correlation based on a linear regression between the band-pass filtered SSS and SWH,

as shown in Figure 4.1c. The SWH is highly correlated (Pearson correlation coefficient >0.5)

with SSS variability for wavelengths shorter than about 30 km but poorly correlated at longer

wavelengths. The high correlation suggests that the SSS variability map is dominated by noise
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due to ocean waves, and we exclude wavelengths less than 30 km. The same high correlation

between SSS and SWH has been noted in studies where gravity anomaly has been derived from

multi-mission altimetry data (Zhang et al., 2017). Those studies typically low-pass filter the

SSS data at 14–18 km to reduce SWH noise while still retaining the relatively large gravity

signals (∼1.0 µrad). The expected oceanographic signals are much smaller (∼0.1 µrad) than the

gravity signals so the SWH contamination will extend to longer wavelengths, and more filtering

is needed.
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Figure 4.1. (a) Long-term average significant wave height (SWH) is large in the Southern Ocean
and high-latitude Northern Hemisphere. (b) SSS variability in the 10-15 km wavelength band
shows similar patterns as (a), yet with more detailed patterns. (c) Correlation between average
SWH and band-pass filtered SSS variability. Correlation is higher than 0.5 at wavelengths shorter
than 30 km. Error bars indicate the 99% confidence interval.
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Mean slope variability in all the sub-bands is shown in the Appendix (Figure 4.8). Here

we focus on two of the sub-bands at 100–158 km and 39-63 km wavelengths (Figure 4.2). The

longer wavelength band (100-158 km, Figure 4.2a) shows all the usual features of mesoscale

variability (Fu et al., 2010; Pascual et al., 2006) such as the western boundary currents, the

Antarctic Circumpolar Current, and low variability in the centers of the gyres. The units of slope

are in µrads (10−6), where 1 µrad of slope corresponds to 63 mm of height change over a 1/2

wavelength of 63 km in horizontal distance, at the center of the 100-158 km wavelength band. In

this band, the smallest resolvable variation is about 0.1 µrad, which corresponds to the slope of a

1 cm/s geostrophic flow in the midlatitude with a typical value of Coriolis parameter of 10−4 rad/s.

Many of the features seen in the shorter wavelength sub-band are new (39–63 km, Figure

4.2b). As expected there is high variability over eddy-intensified western boundary currents

where large-scale fronts generate sub-mesoscale variance. In addition, there is high variabil-

ity associated with prominent topographic features (locations labeled in Figure 2c) such as:

fracture zones (Eltanin Fracture Zone, Diamantina Fracture Zone); trenches (Aleutian Trench,

Mariana Trench, Tonga Trench), spreading ridges (mid-Atlantic Ridge, Pacific-Antarctic Ridge,

Southwest Indian Ridge); seamount chains (Hawaiian-Emperor seamount chain, Salas y Gómez

Ridge); and continental margins (Amazon Outflow, and Mascarene plateau). While this band

shows certain similarities to the M2 internal tide signatures from model output (Arbic et al.,

2012), there are differences over mid-ocean ridges as well as with the intensity of internal tides.

This relatively narrow band captures only part of the unbalanced wave motions from satellite

altimetry observations. We also notice the strong variability in the Inter Tropical Convergence

Zone (ITCZ) and the North Equatorial Countercurrents.
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Figure 4.2. (a) SSS variability in the 100-158 km wavelength band shows high variability
associated with western boundary currents and the Antarctic Circumpolar current. (b) SSS
variability in the 39-63 km wavelength band shows high variability over mid-ocean ridges, large
seamounts chains, trenches and the Amazon shelf. Regions masked out are in gray. (c) Locations
of prominent bathymetric features mentioned in text. Land is in gray and blue shading illuminates
ocean topography.
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4.2.3 Sea Surface Slope from llc4320

We use the Estimating the Circulation and Climate of the Ocean (ECCO) Project’s 1/48°

MIT general circulation model with Latitude-Longitude-polar-Cap grid layout (aka llc4320,

Rocha et al., 2016; Torres et al., 2018). The model is forced by 6-hourly ERA-Interim atmo-

spheric reanalysis (Menemenlis et al., 2008) and 16 tidal components. The model has a 1/48°

horizontal resolution and 90 vertical levels. We use the simulated SSH anomaly, which is refer-

enced to the equipotential field and is noise free. We take the north-south spatial derivative of the

SSH anomaly to construct the SSS anomaly, which can be directly compared with our processed

SSS anomaly from satellite altimetry. We apply a 2-D bandpass filter to the hourly llc4320 SSS

anomaly maps. This filter resembles the 30–100 km 1-D filter applied to the altimetry along-track

SSS. We use data simulated from October 2011 to September 2012 and divide the hourly SSS

data into 12 months. For each month of data, we use the median value of the absolute slope

anomaly in each 7’ by 5’ grid to represent the slope variability. We further apply a 200 km

wavelength Gaussian low-pass filter in space and obtain the monthly SSS variability maps in the

30–100 km band from llc4320 output.

4.2.4 Surface Wind Speed

We adopt the CCMP2 gridded surface vector winds analysis product (Atlas et al., 2011)

to create monthly WSP maps. CCMP2 is produced using satellites, moored buoys, and model

wind data. We use the monthly averaged WSP provided over a 0.25° by 0.25° grid, collected

from 1990 to 2018, to calculate the multi-year mean monthly WSP then downsample to 7’ by 5’

grids. We apply a 200 km low-pass Gaussian filter in space and apply the geographical mask to

obtain monthly WSP maps that will be used in Section 4.3.5 in this study.
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4.2.5 Thermocline Depth

We use a climatology of monthly maximum mixed-layer depth (Holte et al., 2017) to

construct the thermocline depth maps. The original data are monthly averages over the entire

Argo record up to April 2022 on 1° bins, presenting an annual cycle of monthly mixed-layer

properties. We apply a 200 km low-pass Gaussian filter to the maximum mixed-layer depth in

space, sample the data to 7’ by 5’ grids, and apply the geographical mask to make the monthly

thermocline depths. It has the same sampling and coverage as other data sets used in this paper.

4.3 Results

4.3.1 Seasonality: Annual Variability

For each 7’ by 5’ cell, we perform a point-wise least-square fit to a 5-parameter model

consisting of the mean, and the sine and cosine components of the annual and semi-annual terms.

We derive the amplitudes and phases, which are the months when the local periodicities reach

their maxima, of the SSS variability in the 30–100 km range. We also derive the annual cycles for

the SWH and the thermocline depth. At locations where amplitudes are small, the corresponding

phases are not well defined.

In Figures 4.3a and 4.3b, we show the annual cycles of the SSS variability from satellite

altimetry in the 30–100 km wavelength band. Here 0.1 µrad in SSS variability corresponds

to 5 mm in SSH variation over a 50 km half wavelength. The annual cycle amplitude (Figure

4.3a) is large in the high-latitude Northern Hemisphere and the southern Indian Ocean, and their

maxima are reached in local winter months (December–January in the Northern Hemisphere,

June–July in the Southern Hemisphere; Figure 4.3b). This indicates that winter storms might

be the major driving force of the SSS seasonal variability. A few regions deviate from this

hemispheric-scale seasonal pattern, for example, the Philippine Sea, the Arabian Sea, the Bay of
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Bengal, the Mascarene Ridge, and the Northeastern Australian coasts. These regions might be

driven by other strong forces that differ from the global ocean. Our altimetry annual variability

(Figures 4.3a and 4.3b) resembles the annual SSH variability (30–120 km) in Chen and Qiu

(2021) (see their Figures 6a and 6e) using the Sentinel-3A along-track data set, where there is no

noise floor removal. There are fewer similarities compared to the SARAL/ALtiKa and Jason

results in Chen and Qiu (2021), where a white noise floor was subtracted from the power spectra

of along-track data.

Figures 4.3c and 4.3d present the annual variability results from the llc4320 simulation

data. Compared to satellite altimetry results, llc4320 shows clear signatures of individual eddies,

mainly because only 1 year of simulated data is available, so long-lived eddies are visible. There

are both agreements and mismatches between the annual cycles from satellite altimetry and from

llc4320 (Figures 4.3a and 4.3c). For example, they both show high annual variability in regions

of high geostrophic variability, in the north Atlantic Ocean and in the Southwest Indian Ridge

(Figure 4.3a, vs. Figure 4.3c). The altimetry results show strong annual signals in the ITCZ and

south Indian Ocean around 30°S (Figure 4.3a) where there are strong salinity changes, while

these patterns are missing in the llc4320 annual cycle (Figure 4.3c). The discrepancies between

satellite altimetry and llc4320 could be partially related to different sampling time spans as

well as slightly different along-track directions. In llc4320, SSS is computed in the north-south

direction, while satellite altimetry combines along-track slopes from multiple directions ranging

from 66° to 88°. The fundamental reasons could be related to the lack of surface wave forcing

and the weak constraints of large-scale features in the llc4320 simulation. The spatial patterns of

the llc4320 SSS annual variability and phase (30–100 km) shown in Figures 4.3c and 4.3d are

similar to spatial patterns of llc4320 SSH variability and phase (30–120 km wavelength band)

found by Chen and Qiu (2021).
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Figure 4.3. (a) Amplitude and (b) phase for annual SSS variability in the 30-100 km wavelength
band from satellite altimetry. (c) and (d) are the same as (a) and (b) but from the llc4320 output.
(e) and (f) for are the annual amplitude and phase for the SWH. (g) and (h) are the annual
amplitude and phase for the thermocline depth. Streak patterns in (e) and (f) are artifacts of the
altimeter sampling patterns. Regions masked out are in gray.
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The annual amplitude of the SSS variability (30–100) from satellite altimetry (Figure

4.3a) is significantly correlated with both the annual amplitude of the SWH (Figure 4.3e) and

the thermocline depth (Figure 4.3g), for example, strong amplitudes in the Kuroshio region, the

north Atlantic Ocean, and the Southern Ocean. The annual phase of SSS variability (Figure

4.3b) is closer to the SWH (Figure 4.3f) than the thermocline depth (Figure 4.3g) except for

a few regions where the thermocline depth has the largest annual changes, which implies a

generally stronger link between SWH and SSS variability. Special attention should be given to

the north Atlantic Ocean, where the annual amplitude of SWH is spatially uniform and reaches a

maximum in January, while the thermocline annual change is significantly larger north of 50°N

(red box in Figure 4.3g) than in mid-latitudes and peaks in February. The thermocline annual

cycle maximum region (red box in Figure 4.3g) agrees well with the region where SSS variability

reaches a maximum in February north of 50°N in the Atlantic Ocean (red box in Figure 4.3b).

Our north Atlantic results support the hypothesis that under the same wave conditions (implying

comparable wind forcing), a deeper thermocline promotes more sub-mesoscale SSS variability.

Under this hypothesis, we expect to see that the time series of thermocline depth leads the

sub-mesoscale SSS variability in time, probably on the order of a few weeks, in regions like the

Atlantic Ocean north of 50°N. In contrast, within the ITCZ in the tropical Pacific and Atlantic

Oceans, both the SWH and the thermocline depth show low annual variability, which disagrees

with the high SSS variability.

4.3.2 Seasonality: Semi-Annual Variability

We present the semi-annual cycle of the SSS variability (30–100 km) from satellite

altimetry in Figures 4.4a and 4.4b. Semi-annual variations are mostly confined within ±15°

latitude (Figure 4.4a), and they are highly corre- lated with principal monsoon regions (Saha,

2009). We identify strong semi-annual variations in the Arabian Sea and the Bay of Bengal, and

the driving forces could be related to the South Asian monsoon’s semi-annual occurrence and
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the salinity variability (Drushka et al., 2019).

In the Pacific and Indian Ocean tropics, the annual and semi-annual components of the

SSS variability are strong and orthogonal in space. We show the annual/semi-annual amplitude

and phase along a meridional profile zonally averaged over 150°W–90°W in Figures 4.4c and

4.4d. The annual cycle shows double peaks around 4°N and 11°N, with maxima in March or

September. The semi-annual cycle peaks around 7°N in June and December. These results

are consistent with a spatially oscillating pattern in SSS variability, centered around 7°N and

migrating in the meridional direction at an annual period. It is highly correlated with the marine

ITCZ, which undergoes a regular seasonal migration reaching its northernmost position during

late boreal summer (August–September) and approaching the equator during boreal winter

(February–March), passing the central latitude twice a year (Koutavas and Lynch-Stieglitz, 2004).

In contrast to the altimeter results, in the llc4320 model, the semi-annual amplitude resem-

bles the annual amplitude, and the phase has no clear pattern. The annual and semi-annual cycles

with poorly defined phases might be hard to differentiate given that only 1 year of data is available.

We show the comparison of the mean SSS variability (30–100 km) from satellite altimetry and

llc4320 (Figure 4.9) and show the semi-annual variations from llc4320 (Figure 4.10) in Appendix.
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Figure 4.4. The amplitude (a) and phase (b) for semi-annual SSS variability in the 30-100 km
wavelength band from satellite altimetry. Regions masked out are in gray. Panels (c) and (d)
show the amplitude and phase along a meridional profile averaged over 150°W to 90°W as shown
in the red boxes in (a) and (b).

4.3.3 Seasonality: Assessment

We next assess the success of our fitted seasonal cycles. We run the 5-parameter least-

squares fitting with the assumption that the annual and semi-annual variations contain the

majority of SSS variance and they undergo sinusoidal cycles. To evaluate the least-squares fitting,

we adopt the metric of fraction of variance explained (FVE) (Colosi et al., Colosi et al.; Draper

and Smith, 1998), defined as:

FV E = 1− ∑
N
i=1(yi − ŷi)

2

∑
N
i=1(yi − ŷ)2

(4.1)

where yi is the ith observation, ŷi
2 is the ith estimate, and ŷ is the mean value. N is
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the number of total observations, which is 12 in this study. We assume that each estimate has

the same uncertainty. The global maps of FVE for each sub-band of the SSS variability from

satellite altimetry are provided in Figure 4.11 of the Appendix. In general, the percent of variance

explained by the least-squares fit is high in regions of high variability and low in regions of

small annual amplitude. SSS variability with shorter wavelengths is associated with higher

FVE, indicating that the sub-mesoscale to mesoscale bands (30–100 km) are mostly governed by

annual and semi-annual cycle processes. The complete set of plots showing the mean, the annual

and semi-annual amplitudes of SSS variability using satellite altimetry data, as well as the FVE

maps are provided in Figures 4.8, 4.11, 4.12, and 4.13 of the Appendix.

4.3.4 Spectral analysis

In this section, in order to highlight different dynamical features, we present the PSD from

satellite altimetry as well as time series in six selected regions. Table 1 summarizes representative

statistics for the global median value of the mean, annual/semi-annual amplitude of the SSS

variability, and the FVE in three wavelength bands: the 10–30 km band which is contaminated by

waves; the 30–100 km submesoscale band; and the >100 km mesoscale band. Table ?? allows

magnitude comparisons between the annual, semi-annual, and mean SSS variability. Because we

use different bandwidths, we avoid comparison across different wavelength bands. We find that

the seasonal components are small: the annual amplitude is ∼10%, and semi-annual amplitude

is ∼4% of the mean variability. The median FVE by the annual and semi-annual least-squares

fit is 85.7% at the short wave band, then decreases to 58.0% at mesoscales. This means that

mesoscale SSS variability is more complicated than a simple seasonal cycle.
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Table 4.1. The Global Median Value of the Mean, the Annual/Semi-Annual Amplitude of the Sea
Surface Slope Variability, and the Median Fraction of Variance Explained in Three Wavelength
Bands.

SSS band (km) Mean (µrad) Annual

(µrad)

Semi-annual

(µrad)

FVE(%)

10-30 2.52 0.27 0.083 85.7%

30-100 0.91 0.096 0.036 79.0%

>100 0.65 0.057 0.037 58.0%

We discuss the seasonal PSD in six selected regions: the Kuroshio region

(140°/190°/30°/45°); the North Atlantic Ocean (320°/350°/56°/66°); the California coast

(23°/239°/29°/42°); the Bay of Bengal (80°/100°/0°/20°); the west of Australia

(60°/120°/-45°/-30°); and the Atlantic equatorial area (320°/345°/0°/15°) and present the PSD

in Figure 4.5. The six regions are selected to highlight a range of specific dynamical features:

(a) there are consistent strong geostrophic currents over the Kuroshio region; (b) the Atlantic

Ocean north of 50°N is associated with the largest thermocline depth change; (c) there are strong

local winds in late boreal spring at the California coast; (d) the semi-annual SSS cycle dominates

the Bay of Bengal; (e) the west of Australia demonstrates intense SSS variability and salinity

change; (f) both the annual and semi-annual SSS cycles are strong in the Atlantic equatorial area.
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Figure 4.5. The PSD of the seasonal SSS variability in (a) the Kuroshio region; (b) the north
Atlantic Ocean; (c) the California coast; (d) the Bay of Bengal; (e) the west of Australia; and
(f) the Atlantic equatorial area. The 99% confidence intervals are provided at the center of each
band. The k and k2 spectral slopes are indicated for reference.

We use 3-month intervals to compute the seasonal SSS variability, that is, December-

January-February for winter, March-April-May for spring, June-Jul-August for summer, and

September-October -November for fall in the Northern Hemisphere. For each wavelength band,

we square the median value of the absolute seasonal SSS anomaly in the selected area, then divide

it by the bandwidth to represent the seasonal PSD. The 10 wavelength sub-bands (10.00–15.84

km, 15.84–25.12 km, 25.12–39.81 km, 39.81–63.09 km, 63.09–100.00 km, 100.00–158.48 km,

158.48–251.18 km, 251.18–398.10 km, 398.10–630.95 km, and 630.95–1000.00 km) are equally

spaced in the logscale wavenumber domain, and the band widths are larger at high wavenumbers.

The result is shown in Figure 3.5, where PSD has units of µrad2 km. PSD does not depend on

the choice of bandwidth, so we can compare the energy across different wavelengths. Error bars

indicate the 99% confidence interval in the selected area, and the k and k2 spectral slopes are

labeled in the 20–100 km range.
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The six selected regions show blue spectra at high wavenumbers (> 10−2 cycles/km),

which means that the SSS variability in the 30–100 km band is dominated by energy in the

shortest wavelengths. The PSD of SSS in the 20–50 km wavelength range basically follows a k

or even smaller spectral slope, which suggests a roughly k−1 SSH spectrum. This means that

our data processing method has effectively reduced the white measurement noise in the satellite

altimetry along-track observations. At high wavenumbers (> 10−2 cycles/km), the energy in

general reaches a maximum in local winter and minimum in local summer (Figures 4.5a, 4.5b,

4.5c, and 4.5e). This agrees with Figure 4.2b showing that the annual cycles reach their maxima

in local winter within the 30-100 km band with a few exceptions including the Bay of Bengal

(Figure 4.5d). At the Bay of Bengal where semi-annual variability dominates, the energy is high

in the boreal spring and fall. The Bay of Bengal also demonstrates higher energy in the summer

at high wavenumbers (> 10−2 cycles/km), possibly under the influence of strong surface winds.

The cross-season energy differences are smaller at low wavenumbers (< 10−2 cycles/km) in

general.

4.3.5 Impacts from SWH

While the high correlation between SWH and SSS (<30 km) is suggestive of SWH noise

leakage into the SSS variability, there are also good physical reasons why SSS variability could

be correlated with SWH. Winds and wave heights are highly correlated. Surface gravity waves

are generated by the friction between wind and water, and upper-ocean geostrophic currents are

established in response to winds (e.g., Stommel, 1948). If both the SSS and SWH are responding

to wind forcing then there should be a strong correlation in their time series. The thermocline

depth as a secondary driving factor, as shown in Section 4.3.1, promotes SSS variability by

storing potential energy, which can be converted to eddy kinetic energy (Callies et al., 2016;

Qiu et al., 2014; Uchida et al., 2017). To further understand the impact from waves and the
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thermocline depth, in Figure 4.6 we plot the normalized time series of the mean SSS variability

in the 30–100 km wavelength band, SWH, WSP, and thermocline depths in the six regions as

introduced in Section 4.3.4.

Figure 4.6. The normalized time series of the mean SSS variability (30-100 km, thick black line
with rounds dots), SWH (blue line with triangle dots), WSP (orange line with round dots), and
the thermocline depth (green line with triangle dots) in (a) the Kuroshio region; (b) the north
Atlantic Ocean; (c) the California coast; (d) the Bay of Bengal; (e) the west of Australia; and (f)
the Atlantic equatorial area.

For each region, we compare the time series of SSS variability (30–100 km) from satellite

altimetry, SWH, WSP, and the thermocline depth. In the west of Australia, the SSS variability,

SWH, and WSP undergo correlated annual cycles that peak in July (Figure 4.6e). The Kuroshio

region (Figure 4.6a) and the North Atlantic Ocean (Figure 4.6b) show similar patterns except that

there are phase differences between the SSS and SWH/WSP (leading/lagging by 1 month). In

the Kuroshio region (Figure 4.6a), the thermocline depth leads the SSS by 1 month, which agree

s with the numerical study of Dong et al. (2020). The Atlantic Ocean north of 50°N (Figure

4.6b) witnesses the largest thermocline depth annual cycle, reaching its minimum around July.
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Shallower thermocline depths are hypothesized to be less effective at storing potential energy

and thus less effective in promoting sea surface variability. This is consistent with the fact that

SSS variability reaches its minimum 1 month afterward. Regions with weak thermocline depth

changes may not be impacted as much and are thus not discussed here. The California coast

experiences strong local winds in late spring, yet the SWH and SSS are not affected (Figure 4.6c).

In the Bay of Bengal (Figure 4.6d), the SSS variability shows semi-annual cycles peaking in

boreal spring and fall, while the SWH and WSP reach maxima in July. The anti-correlation indi-

cates that winds and surface waves are not the sole drivers of the ocean sub-mesoscale variability,

and local factors might have stronger influences. For example, the northern Bay of Bengal has

strong submesoscale salinity variability, influenced by the Ganges-Brahmapputra River outflows

(Gordon et al., 2016). This region is also influenced by the South Asian monsoon’s semi-annual

occurrence. The Atlantic equatorial area shows a strong SSS peak in October which is in phase

neither with SWH nor with WSP. The different variability patterns between the SSS variability

and SWH/WSP in the Bay of Bengal (Figure 4.6d) and the Atlantic equator (Figure 4.6f) indicate

that surface waves/winds are not the only driving factor of the SSS variability. The different

timing between SSS and SWH in the Kuroshio (Figure 4.6a) and the north Atlantic Ocean (Figure

4.6b) shows that there are real energetics in the upper ocean other than signal leakage from SWH

in the 30–100 km wavelength band.

4.4 Discussion and Conclusions

Repeat-pass altimetry cannot resolve the small wavelength (<150 km) spatial variations

in ocean surface height/slope variability for three reasons: first, the smallest track spacing is ∼80

km (Envisat) at the equator; second, errors in the marine geoid/slope can dominate the residual

SSH/SSS in the gaps between the repeat tracks; and third, ocean waves produce white noise in

the SSH/SWH, known as a noise hump in the PSD of SSH, which commonly dominates the
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signal at wavelengths <50 km. Since 2014, the marine geoid/gravity community (Andersen

and Knudsen, 2020; Li et al., 2022, Sandwell et al., 2019, Zhang et al., 2020) has been focused

on improvements in spatial resolution and accuracy by addressing each of these issues. The

quantity and quality of non-repeat and gap-filling altimeter data has increased dramatically

with CryoSAT-2, Jason-1/2 geodetic phases, the SARAL/AltiKa geodetic mission, and the new

repeat track of the Sentinel-3A/B satellites. In addition, the short-wavelength altimeter noise

for the standard LRM products can be reduced to the noise level of the latest SAR mission

products through 2-pass retracking (Garcia et al., 2014; Zhang and Sandwell, 2017) and careful

editing. Of course, the recent launched SWOT altimeter mission will, hopefully, resolve 20 km

spatial wavelengths at a high temporal sampling to reveal a wealth of new ocean dynamics (Fu

and Ubelmann, 2014). Here we reprocessed the available repeat and non-repeat altimeter data,

collected over the past 30 years, using the 2-step retracking to reduce the noise hump, to begin to

resolve the small spatial patterns at a low temporal resolution (mean, 12 months, 6 months). We

worked with the original trackline altimeter data, as residual SSS, to pre-whiten the red spectrum

of the ocean dynamic signals which enables along-track, band-pass filtering.

Our overall analysis has 10 spatial bands between wavelengths of 10 and 1,000 km and

three temporal bands: mean, annual, and semi-annual (i.e., 5 coefficients). In many cases, the

individual bands have low signal-to-noise ratios so we combined the spatial bands into three

groups. Spatial variations in mesoscale variability (>100 km wavelength) are discussed and

analyzed in many previous publications (e.g., Qiu et al., 2014; Sasaki et al., 2017) so they

are not repeated here. We showed through correlation analysis that SWH noise dominates the

residual SSS between wavelengths of 10–30 km, so these bands are not considered further. The

remaining bands from 30 to 100 km wavelength have sufficient signal-to-noise ratios to reveal

new signals at mean, annual, and semi-annual timescales. The three sub-bands in the 30–100

km range (25–39 km, 39–63 km, and 63–100 km) all have similar spatial patterns, so they were

combined to improve the recovery of the annual/semi-annual signals. We also calculate the
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seasonal components of other wavelength bands (39–100 km and 50–100 km) and they show

similar spatial patterns as the 30–100 km. Thus, we think that 30–100 km is a robust choice. The

30–100 km submesoscale band contains both unbalanced wave motions (internal tides/waves,

near-inertial flows) and balanced geostrophic flows, and which one dominates is geographically

dependent (Chen and Qiu, 2021; Chereskin et al., 2019; Qiu et al., 2017; Qiu et al., 2018).

4.4.1 Interpretation of the Mean SSS

The analysis of the long-term average of the SSS variability in the 30-100 km wavelength

band is more completely discussed in a related publication (Yu et al., 2022), so only the high-

lights are discussed here. That study used a machine learning approach to rank the dominant

environmental factors that influence the SSS variability over the 30-100 km band, which are

distance to the nearest thermocline boundary, SWH, MDT, MDT gradient, seafloor roughness,

M2 tidal speed, K1 tidal amplitude, and stratifications. The stratification is closely related to the

thermocline depth. The correlation with the SWH and the thermocline depth, and especially the

annual variations, will be discussed more completely below. In this study, we also investigate the

annual and semi-annual variations (amplitude and phase) in SSS in the 30–100 km wavelength

band. An initial finding is that the annual amplitude is one tenth the mean amplitude, and the

semi-annual amplitude is 1/25th the mean amplitude. This makes the interpretation of these

temporal signals both challenging and new.

4.4.2 Interpretation of the Annual SSS

One new finding of our seasonal analysis is that SSS variability is correlated with both

the SWH and the thermocline depth. We expect there will be some SWH noise leakage into

SSS at longer wavelengths (>30 km). To address this issue, we present the spatial correlation

between the SSS variability and SWH as well as the thermocline depth in Figure 4.7. The
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SSS variability at smaller wavelengths is associated with more seasonal variability as summa-

rized in Table 4.1. The correlations between annual components are higher compared to the

mean components at short wavelengths (<100 km), and lower at longer wavelengths (>100

km). The correlation with thermocline depth is smaller compared to the correlation with SWH

at sub-mesoscales (<100 km), which supports Figure 4.3 result that the annual phase of the

SSS variability agrees better with SWH. The differences in the annual phase (Figure 4.3) and

the time series of SSS and SWH/WSP (Figure 4.6) indicate that the SSS variability (30-100

km) is not entirely driven by wind or surface waves, nor is it contaminated by SWH leakage.

In the future, in situ measurements from wave buoys can help to evaluate the influence from SWH.
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Figure 4.7. (a) Correlation between the mean SWH and mean band-pass filtered SSS (black
curve); correlation between the annual amplitude of SWH and annual amplitude of the band-pass
filtered SSS (red curve); (b) same as (a) but for the correlation between the thermocline depth
and the SSS. Error bars indicate the 99% confidence interval.

There are two competing hypotheses for the influence of the thermocline depth on the

ocean surface variability. One hypothesis predicts that the deeper thermocline associated with

less stratified water stores more potential energy, which can be transferred to more eddy kinetic

energy and create more small-scale surface motions (Callies et al., 2016; Qiu et al., 2014; Sasaki

et al., 2014; Uchida et al., 2017). The second hypothesis is that shallower thermoclines have

thinner upper layers. Momentum from the atmosphere can be transferred to a thinner upper

layer in a more effective way and make the ocean surface move faster (Peng et al., 2022). For
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geostrophic motions represented by SSS variability and for the time scales resolved in the altime-

ter record, our results support the first hypothesis that in the local winter when the thermocline

is deeper, the SSS variability is stronger, though the thermocline depth is a secondary driving

factor compared to the SWH. Baroclinic mixed-layer instabilities, arising from density gradients,

can restratify the system and lead to turbulence, converting potential energy into eddy kinetic

energy. In this study we focus on the seasonality in the 30-100 km spatial scale and our attention

is not on any specific ocean activities in this band.

4.4.3 Interpretation of the Semi-Annual SSS

A significant new finding of our combined annual/semi-annual analysis is that there is an

equatorial region of high SSS variability that essentially follows the atmospheric ITCZ. This

signal is most prominent in the Pacific and Atlantic Oceans, where it appears as a north-south

annual migration of the high variability bands. When this is modeled as combined annual and

semi-annual signals, the two components have spatially orthogonal patterns. At the central

latitude (∼7°N) where the SSS variability peak passes twice a year in June and December,

the semi-annual amplitude is the largest; at the two boundaries (∼4°N and ∼11°N) where

the peak passes once a year in February–March and August–September, separately, there are

strong annual signals. We propose that this pattern is related to the seasonal marine ITCZ shift,

driven by interhemispheric solar heating differences and the cross-equatorial atmospheric energy

heating (Bischoff and Schneider, 2016). The interannual migration of the ITCZ is related to

El Niño-Southern Oscillation (Bischoff and Schneider, 2016), which modulates the sea surface

temperature at interannual scales, but our analysis has not been constructed to analyze interannual

time scales.
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4.4.4 Future Work Needed to Resolve These Issues

The SWOT wide-swath altimetry mission, which was launched in late 2022, will charac-

terize the ocean sub-mesoscale activities at spatial scales larger than 20 km and answer some

fundamental questions about the formation and dynamics of sub-mesoscale activities and ocean

circulation (Fu and Ubelmann, 2014). But wave-related errors (sea state bias, aliasing, wind-

driven activities, etc.) will still be a major issue that SWOT has to face. SWOT’s an initial phase

of 90 1-day repeats will allows us to evaluate the along-track and cross-track slope accuracy over

wellcharted, large seamounts (i.e., Foundation seamounts, South Pacific), where we have a mean

SSS model with accuracy better than 1 µrad at wavelengths at a 10 km wavelength resolution.

We expect the accuracy will primarily depend on the SWH, and studying the accuracy under

different wave conditions will help us to understand the influence of wave-related errors.
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Chapter 4, in full, is a reprint of the material as it appears in Journal of Geophysical

Research: Oceans, 2022, Yu, Yao; Sandwell, David T.; Gille, Sarah T., 2022. The dissertation

author was the primary author of this paper.
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4.6 Appendix

Figure 4.8. Mean SSS variability in the 10 sub-bands.
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Figure 4.9. The mean SSS variability in the 30-100 km wavelength band from (a) multi-year
satellite altimetry along track data and (b) llc4320. The color scales are different. llc4320
shows much smaller signals in general. Both show high variabilities in the western boundary
currents, the north Atlantic ocean, and highly-stratified zones by river flows (Amazon outlet,
Gulf of Bengal). Satellite altimetry shows strong variabilities over rough topography (Hawaiian
Seamount chains, Mid-Atlantic Ocean Ridge) and the ITCZ which are missing in the llc4320.
Llc4320 shows strong variability in several regions on the Pacific equatorial area (longitude
centers are around 165° E, 165° W,135° W) that are invisible in the satellite altimetry results.
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Figure 4.10. The semi-annual (a) amplitude and (b) phase of the SSS variability from 30 km to
100km wavelength bands using llc4320 model outputs.
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Figure 4.11. Fractions of variance explained by the annual and semi-annual least-squares fit for
10 sub-bands.
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Figure 4.12. The annual amplitudes of SSS variability in the 10 sub-bands. Note the reduction
in the color scale as the wavelength band increases.
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Figure 4.13. The semi-annual amplitudes of SSS variability in the 10 sub-bands.
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Chapter 5

Future work

This chapter introduces two future projects. One is to investigate SWOT data to be

collected over the Foundation Seamounts in the South Pacific during the “fast sampling” phase.

The other is to study the tidal conversion rate over rough topography.

5.1 High-resolution small-scale variability at the Founda-
tion Seamounts from SWOT

5.1.1 First glimps of SWOT images

SWOT was launched on December 16, 2022 from Vandenberg Space Force Base, Cali-

fornia, and has since entered the commissioning phase for engineering checkout and adjustment.

During this phase, an issue was encountered with KaRIn’s power amplifier shutdown, which was

later resolved by turning on the cold unit. In April 2023, SWOT moved into the “fast-sampling”

phase, where specific areas are revisited once per day for calibration and validation purposes.

Following the 1-day repeat phase, SWOT will enter the operational phase, which is expected to

last 3 years. During this phase, SWOT will have a 21-day repeat orbit to balance global coverage

and frequent sampling. On March 24, 2023, the SWOT team released the first images of the

KaRIn data, revealing ocean currents such as the Gulf Stream in unprecedented detail (Figures

5.1 and 5.2).
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Figure 5.1. Sea level data gathered March 16, 2023 in the Gulf Stream by SWOT’s KaRIn
instrument, visualized at right, has 10 times the spatial resolution of data taken over the same
area by altimeters on seven other satellites, visualized at right. Red represents sea levels higher
than the global average, while blue is lower. Credit: left: NASA/JPL-Caltech/Copernicus Marine
Service of ESA; right: NASA/JPL-Caltech.

Figure 5.2. Same as Figure 5.1 but collected in January 21, 2023. Credit: left: NASA/JPL-
Caltech/Copernicus Marine Service of ESA; right: NASA/JPL-Caltech.

The SWOT ocean measurements have a spatial resolution that is 10 times higher than

the composite of sea surface height data collected over the same area by seven other satellites,
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including Sentinel-6 Michael Freilich, Jason-3, Sentinel-3A and 3B, Cryosat-2, SARAL/Altika,

and Hai Yang 2B. The pixel size for SWOT is 2 km by 2km and early images show that SWOT

is able to recover the marine gravity field at better than ∼ 16 km wavelength.

5.1.2 Foundation Seamounts investigation plan

We aim to investigate SWOT data collected over the Foundation Seamounts in the South

Pacific (as shown in Figure 5.3a) during the “fast sampling” phase. This analysis is crucial for

our SWOT investigation and serves as an essential validation site for SWOT. Our primary focus

is on the crossover point at ∼35◦S in the South Pacific region, where ocean SSS variability is

relatively low (RMS < 1 µrad). This remote region has several vast seamounts that were initially

identified using Seasat and Geosat altimetry data (Mammerickx, 1992) and later surveyed by

French scientists aboard the RV L’Atlante in 1997 (Maia et al., 2000). The complete multibeam

coverage has enabled us to construct a sea surface slope model with an accuracy of better than 1

µrad at wavelengths as small as 10 km (Figure Figure 5.3b).

We will evaluate the along-track and across-track slope from SWOT as a function of the

number of repeats, using the known small-scale signal. Our primary expectation is that the accu-

racy of the SWOT data will depend on SWH. If SWOT can achieve better than 1 µrad accuracy

at 10 km wavelength resolution, it will have the potential to detect all uncharted seamounts in

the ocean taller than 1 km. This estimated number is more than 100,000 (Wessel, 2001). Further-

more, this study will provide a significant improvement in the resolution of detailed tectonics

of ocean basins and better bathymetric estimation, which is the ultimate focus of our investigation.
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Figure 5.3. Bathymetry of Foundation seamounts first mapped in 1997 using multibeam sonar
(a) and shipboard gravity (b) (Maia et al., 2000). Many of these seamounts are more than 3000
m tall and produce gravity anomalies (b) and sea surface slopes of more than 100 mGal and
100 µrad, respectively. The satellite-derived gravity (green) does not completely resolve the
shipboard gravity (red) at the tops of the seamounts. The full amplitude gravity (and SSS) can be
reconstructed using a combination of altimeter-derived gravity for wavelengths > 40 km and
gravity calculated from the multibeam bathymetry for the shorter wavelengths (blue). Note the
very small spatial scale wiggles in the ship data are errors due to unmodeled ship motions.

5.2 Tidal conversion over rough topography

5.2.1 Motivation

The conversion from barotropic ocean tides to internal tides is a classic geophysical

problem (Bell, 1975a; Bell, 1975b; Llewellyn Smith and Young, 2002). When a tide sloshes over

an uneven bottom in stratified ocean, it transfers energy from the spin of the Earth into internal
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gravity waves. This tidal conversion process plays a vital role in mixing the deep ocean and

energy exchange. By investigating the one-day repeat from the SWOT mission over the Founda-

tion Seamounts, which have depths as shallow as 600 meters, we can gain new insights into the

interaction between tidal flow and these large structures (Noble and Mullineaux, 1989; Gerkema

and Van Haren, 2007; Zeiden et al.. The tidal flow may be evident in the small-scale residual

SSS related to oceanographic processes. Since SWOT has the ability to detect small-scale ocean

variability down to approximately 16 km, internal tides, particularly the non-stationary internal

tides, pose a significant challenge. We believe that that this research will aid in the interpretation

of SWOT data.

5.2.2 Research plan

In our treatment of the tidal conversion problem, we assume a simple harmonic flow over

a stratified fluid with non-uniform stratification in a realistic ocean bottom with finite depth. We

follow the analytic estimate proposed by Llewellyn Smith and Young (2002) and keep the three

approximations to simplify the situation: (i) hydrostatic approximations; (ii) small topography

amplitude assumption; (iii) quasistatic limit.

The major questions we have are:

1. What is the global barotropic tidal conversion energy estimate using an updated synthetic

bathymetry model (SYNBATH; Sandwell et al., 2022) and the FES2014 tide model (Lyard

et al., 2021)?

2. To what extent is it affected by uncertainties in tidal directions?

3. To what extent is it affected by different modelings of seamounts and ridges?
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We will calculate the tidal conversion rate over the global ocean and do sensitivity tests

to help understand the above questions. We will also extract hourly and the aliased daily output

from the MITgcm llc4320 1/48 degree model (Marshall et al., 1997b; Adcroft et al., 2004) as

well as the one-day repeat data from SWOT to study the tidal propagation over the Foundation

Seamounts.
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