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      Metamaterials are composites that are engineered purposefully for realizing 

electromagnetic characteristics that do not occur naturally in mineral or organic form. 

These characteristics are realized by regular arrangements of meta atoms, the building 

blocks of metamaterials, that mimic the atoms in an element. The electric and magnetic 

responses of these building blocks are engineered in such a way that the effective 

permittivity and permeability of metamaterials can be tuned. Similarly, the anisotropy of 

constitutive electromagnetic parameters can also be controlled efficiently.  This 

dissertation focuses on the enhancement of the interaction between light and matter using 

bulk anisotropic metamaterials and magnetic meta atoms, in order to enhance, control 

and/or isolate electric and magnetic nature of emitters. This is achieved first through 

utilization of hyperbolic metamaterials (HMs) which are a subcategory of uniaxially 

anistotropic materials exhibiting opposite signs of permittivity or permeability along and 

orthogonal the axis of anisotropy. HMs host a wide spatial spectrum of propagating waves, 

i.e., high gradient field features can be transferred in HMs owing to the propagating waves 

in ideally indefinitely large spatial spectrum. Optical HMs are mainly constructed by 
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periodic alternating layers of plasmonic metals and dielectrics. The power emitted by point 

sources (and arrays of point sources) in the vicinity of HMs is highly boosted compared to 

regular dielectric media. Moreover, most of the power is absorbed by the HM. Similar 

characteristics can be realized using graphene layers instead of metals in the infrared 

regime, where the chemical potential can be an effective means of controlling emission 

enhancement. Thereafter, a reactively loaded transmission line grid is presented as an 

example of a two-dimensional HMs, where the canalization of large spectral waves leads to 

transferring high resolution features.  HMs can also be molded into resonators that provide 

high-quality resonances even in subwavelength dimensions. These extraordinary 

resonances are demonstrated to boost radiative emission of dipolar emissions. Another 

exotic property of anisotropic metamaterials is investigated with near-zero permittivity 

conditions where huge electric field enhancements are achieved in larger intensities than 

those demonstrated using isotropic near-zero permittivity materials. Lastly, a circular 

cluster of plasmonic nanospheres under azimuthally polarized vector beams are studied as 

a way of boosting local magnetic field and isolating it from electric field, which is promising 

for studying weak magnetic transitions in high frequency range. 



1 
 

CHAPTER 1 
 
INTRODUCTION 

1 INTRODUCTION 

Sec. 1.1 The Concept of Metamaterials 

This dissertation is based on metamaterial concepts developed over the course of 

electromagnetics engineering in a quest to realize materials which exhibit characteristics not 

available in nature as a direct resource such as minerals or organic materials.  

Metamaterials are artificial composite materials whose structure are engineered in order 

to achieve certain constitutive electromagnetic parameters, such as permittivity, 

permeability and conductivity, in macro scale. They are usually made of meta atoms, which 

are the building blocks arranged in a periodic order in a scale much smaller than the 

wavelength of intended operation. The meta atoms mimic the atoms or molecules as in 

natural elements and compounds whose electromagnetic responses are established based 

on the response of the atoms’ nuclei and electrons to the external electromagnetic waves in 

a collective manner. Moreover, alternating layers of regular materials may be also employed 

to realized desired constitutive parameters. 
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The science of composite electromagnetic metamaterials seeks to engineer the frequency 

response, spatial variation, anisotropic properties of permittivity, permeability and/or 

conductivity of a bulk material or a surface. 

 

Fig. 1.1 The classification of media with respect to the real parts of the 
effective permittivity and permeability (© 2012 CRC Press, from 
William A. Goddard, Handbook of Nanoscience, Engineering, and 
Technology 3rd ed.. With permission.) 

A very prominent example of metamaterial design is the double negative media whose 

permittivity and permeability are negative in real part. These structures find potential use 

in inverting the refraction direction of light rays and also in super resolutions applications 

that substantially revolutionized the way the metamaterials are perceived by not only the 

scientists but also the general public. However, there is much more than this to the science 

of metamaterials including but not limited to improving performance of antennas, artificial 

magnetic surfaces, band-gap metamaterials, chirality engineering, realization of invisibility 

cloaks. The theory and applications of metamaterials have been published in several books 

[1-12]. 
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Any point on the permittiviy/permeability space depicted in Fig. 1.1, represents a specific 

form of material with exotic properties. Note that metamaterials may be isotropic in 

permittivity and permeability with a range of properties as in Fig. 1.1. Interestingly, and 

relevant to the presented work in this dissertation it is also possible to tailor anisotropic 

permittivity and/or permeability with control on its response to a specific field (electric or 

magnetic) polarized in a specific direction (x, y, z directions). The fundamental goal of this 

dissertation lies in that the interaction of emitters and light beams with metamaterials 

and/or meta atoms of anisotropic nature can enable engineering of their power emission, 

near-field and far field featuress. To this aim, uniaxially anisotropic metamaterials and 

anisotropic magnetic meta atoms are utilized. In the following, these concepts are briefly 

introduced, the content of chapters are explained, leaving the detailed introduction and 

literature survey of each method to the motivation sections of respective chapters. 

Sec. 1.2 The Main Concepts  

The main frame of the dissertation is based on the concept of hyperbolic metamaterials 

that are utilized for engineering the emission of sources nearby them. A bulk material with 

uniaxially anisotropic relative permittivity, represented as  ˆ ˆ ˆ ˆ ˆˆt zr    ε xx yy zz  , and an 

isotropic relative permeability r  , responds to transverse electric to z and the transverse 

magnetic to z plane waves (TE and TM) differently. The wavevector dispersion relations of 

TE and TM wave are different in that, TE waves only have transverse electric field component 

and does not respond to the anisotropy of the host material. On the other hand, TM waves 

experience the anisotropy and the dispersion relation takes, in general, an elliptic form as in 

Fig. 1.2. Moreover when the signs of permittivity along the transverse (t) and the normal (z) 
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directions are opposite, 0t z   , the dispersion relation of the TM wave turns into a 

hyperbolic equation. Ideally these waves show extraordinary dispersion, thus called 

extraordinary waves, where any plane wave component with an “indefinitely” large 

transverse wavenumber (i.e., high spatially oscillatory field components) can propagate and 

carry power. This exotic property is ideally not dependent on any resonant behavior, thus 

when proper materials are utilized, it can present itself over a wide range of frequencies. The 

example above is explained over uniaxially anisotropic permittivity, however a similar case 

can be constructed using TE waves and uniaxially anisotropic permeability too. Here it is 

intended to give a conceptual introduction, whereas any specific design and hyperbolic 

metamaterial synthesis will be presented in detail in the relevant chapter’s motivation 

section. 

 

Fig. 1.2 The hyperbolic metamaterial basics, based on the anisotropy 
permittivity engineering. 
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To achieve uniaxial anisotropy, especially hyperbolic metamaterial as in the top left 

quadrant of Fig. 1.3, one may utilize alternating layers of plasmonic metals and dielectrics, 

infinitely thing inductive admittance layers separated by dielectric spacers, and wire 

medium as illustrated in Fig. 1.3. Even though not shown for brevity in the illustration, one 

can also implement hyperbolic dispersion in 2-D metamaterials which can be realized by 

simple transmission line grids loaded with reactive components as presented in Chapter 4.  

 

Fig. 1.3 Fundamental ways of achieving anisotropic metamaterials, 
particularly those hosting hyperbolic dispersion and very large 
spatial frequency of wave propagation. 

Here it is helpful to introduce the idea of multilayered metamaterials since it is the most 

commonly used method of realization throughout this dissertation. Looking at the 

illustration in Fig. 1.4, the multilayer structure can be homogenized and thus be represented 

with an anisotropic, spatially invariant effective medium. The validity of such a 

homogenization applies to frequency range and the spectral range where one can make sure 
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also the period) of the multilayered medium. In the chapters of the dissertation, the results 

are not obtained relying only on the homogenization of the metamaterial, but also on 

accurate multilayer Green’s function and transfer matrix formulations. It is, however, of 

utmost practicality to represent the metamaterials with simple homogenized effective 

parameters to convey the principles of their functionality. 

 

Fig. 1.4 The most commonly utilized method of achieving anisotropy 
is the illustrated way of stacking alternating layers of two distinct 
materials. The optical regime of metals with negative permittivity 
together with dielectric layers lead to realization of hyperbolic 
metamaterials. This is the main way of obtaining hyperbolic 
dispersion in this dissertation. 

 

Fig. 1.5 The interaction of a vector beam with a magnetic nanoprobe, 
i.e. meta atom of a magnetic metamaterial, for boosting and studying 
the magnetism, by creating a magnetic dominant spatial reason. This 
constitutes a very special case of utilizing magnetic meta atoms, 
shown in the right panel. 
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By approaching from another perspective, an example to the ways to utilize a magnetic 

meta atom to investigate the weak magnetism optical regime is presented in Chapter 8. The 

magnetism becomes an exotic phenomenon in high frequency spectrum, thus the study 

thereof requires engineering specific setups which do not only enhance light matter 

interactions, but must also isolate the magnetism from the dominant electric phenomena. 

For this purpose, one can require both a specific form of light, called vector beams in addition 

to the use of magnetic meta atoms. Specifically, azimuthally polarized beams, having E-fields 

with circulating vectors disposition and donut-shaped intensity along with a purely 

longitudinal magnetic field along the beam axis is ideal. The availability of exotic structured 

beams opens new scenarios for studying near fields, specifically magnetism for spectroscopy 

and microscopy applications as in the system of vector beams and meta atoms depicted in 

Fig. 1.5. In Chapter 8, a road map to how to combine azimuthally polarized beam a magnetic 

meta atom made of plasmonic nanospheres is investigated. 

Sec. 1.3 The Content of Chapters  

The dissertation is organized into Chapters that involve specific methods of studying 

interaction of emitters and light beams with metamaterials and meta atoms. 

Chapter 2: The hyperbolic metamaterials (HMs) hosting hyperbolic wave-vector 

dispersion solutions are studied in detail demonstrating two important features related to 

super absorption: The total power scattered by a nanosphere is (i) greatly enhanced when 

placed at the HM surface, compared to other material surfaces, and (ii) almost totally 

directed into the HM. These two features are peculiar of HM interfaces, and we support them 

using a spectral theory study of transverse-electric and magnetic waves scattered by a 
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subwavelength nanosphere. The nanosphere's scattered power absorbed by various 

substrate configurations are investigated and categorized with realizations in mind, 

specifically for the multilayer composition and the nano scatterer material. 

Chapter 3: A novel implementation of hyperbolic metamaterial (HM) at far-infrared 

frequencies composed of stacked graphene sheets separated by thin dielectric layers is 

presented. Using the surface conductivity model of graphene, the homogenization formula 

for the multilayer structure by treating graphene sheets are derived as lumped layers with 

complex admittances. Homogenization results and limits are investigated by comparison 

with a transfer matrix formulation for the HM constituent layers. We show that infrared iso-

frequency wavevector dispersion characteristics of the proposed HM can be tuned by 

varying the chemical potential of the graphene sheets via electrostatic biasing. Accordingly, 

reflection and transmission properties for a film made of graphene-dielectric multilayer are 

shown to be tunable at terahertz frequencies. The graphene-based HM is also studied as a 

super absorber for near-fields generated at its surface. The power emitted by a dipole near 

the surface of a graphene-based HM is increased dramatically (up to 5 × 102 at 2 THz), 

furthermore we show that most of the scattered power is directed into the HM. The validity 

and limits of the homogenized HM model are assessed also for near-fields and show that in 

certain conditions it overestimates the dipole radiated power into the HM. 

Chapter 4: Subwavelength focusing by using a planar hyperbolic metamaterial (HM) at 

microwave frequencies is investigated oth theoretically and experimentally. The proposed 

HM consists of microstrip transmission lines (TLs) loaded by lumped components and 

exhibits a very flat wave vector iso-frequency dispersion diagram over a wide frequency 

range, and thus able to transport spectral component with large wavenumbers. This flatness 
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is here exploited to provide subwavelength focusing with a full width half maximum (3-dB 

power width) of about λg/31 and λg/19 at 0.5 and 1 GHz, respectively, where λg is the guided 

wavelength in the TL microtrip grid. Numerical simulation results are in good agreement 

with measurement ones. Moreover, we also investigate the capability of the proposed HM to 

resolve sources with subwavelength distance of about λg/6 and λg/3 at 0.5 and 1 GHz, 

respectively. 

Chapter 5: The capabilities of hyperbolic metamaterials (HMs) to couple near-fields (i.e., 

evanescent waves) emitted by a two-dimensional periodic array of electric dipoles to 

propagating waves is demonstrated. In particular, large-order Floquet harmonics with 

transverse-magnetic polarization that would be evanescent in free space, and therefore 

confined near the array surface, are transformed into a propagating spectrum inside the HM 

and thus carry power away. Because of this property, independent of the finite or infinite 

extent of the HM, the power generated by an array of elementary electric dipoles is strongly 

enhanced and is mostly directed into the HM when the array is located near a HM surface. In 

particular, the power coupled to the HM exhibits narrow frequency features that can be 

employed in detection applications. The results shown in this chapter provide a clear 

signature on wave dynamics in HMs. A link between the results pertaining to the case of an 

isolated dipole on top of HM and the planar array is found to be convenient in explaining 

both wave dynamics and spectral power distribution. The narrow frequency emission 

features appear in the array case only; they depend on its spatial periodicity and remarkably 

on the HM thickness. 

Chapter 6: A hyperbolic metamaterial (HM) resonator is analyzed as a nano-antenna for 

enhancing the radiative emission of quantum emitters in its vicinity. It has been shown that 
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the spontaneous emission rate by an emitter near a hyperbolic metamaterial substrate is 

enhanced dramatically due to very large density of states. However, enhanced coupling to 

the free-space, which is central to applications such as solid-state lighting, has not been 

investigated significantly. Here, it is numerically demonstrated that approximately 100 

times enhancement of the free-space radiative emission at 660 nm wavelength by utilizing a 

cylindrical HM resonator with a radius of 54 nm and a height of 80 nm on top of an opaque 

silver-cladded substrate. It is also shown that the free-space radiation enhancement factor 

depends on the dipole orientation and the location of the emitter near the subwavelength 

resonator. Furthermore, an array of HM resonators with subwavelength spacings is shown 

to be able to maintain most of the enhancement effect of a single resonator. 

Chapter 7: The concept of longitudinal epsilon-near-zero (LENZ) film for giant field 

enhancement is presented. LENZ films are uniaxially anisotropic films where the relative 

permittivity along the normal direction to the film is much smaller than unity, while the 

permittivity in the transverse plane of the film is not near zero. The LENZ condition is 

exceedingly superior to the standard ENZ condition in isotropic materials for generating 

large field enhancement in thin films. Specifically, giant field enhancement near the interface 

of LENZ films under TM-polarized plane wave incidence. It is proved that in comparison to 

the (isotropic) ENZ case the LENZ film’s field enhancement is not only extremely larger but 

it also occurs for a wider range of angles of incidence. Furthermore the field enhancement in 

LENZ does not exhibit significant dependence on the film thickness unlike the isotropic ENZ 

case. The effect of loss on the value of the field enhancement is also investigated emphasizing 

the advantages of LENZ versus ENZ. Finally, it is demonstrated that radiative emission in 

LENZ films is much higher than in IENZ films. 
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Chapter 8: The concept of magnetic nanoprobes (or magnetic nanoantennas), their 

excitation, and the capability of providing a magnetic near-field enhancement and vanishing 

electric field is presented and investigated. It is established that a particular type of 

cylindrical vector beam called an azimuthally electric polarized vector beam yields a strong 

longitudinal magnetic field on the beam axis where the electric field is ideally null. These 

beams, with an electric polarization vortex and cylindrical symmetry, are important in 

generating high magnetic to electric field contrast, i.e., large local field admittance, and in 

allowing selective excitation of magnetic transitions in matter located on the beam axis. We 

demonstrate that azimuthally polarized vector beam excitation of a photoinduced magnetic 

nanoprobe made of a magnetically polarizable nanocluster leads to an enhanced magnetic 

near field with resolution beyond the diffraction limit. Two figures of merit are introduced 

to quantify the meta atom / beam interaction: magnetic field enhancement and local field 

admittance normalized to that of a plane wave. The performance of magnetic nanoprobes 

and azimuthal polarized beams is quantified in comparison to other illumination schemes 

and with several defect scenarios. The proposed probes may be useful in spectroscopy and 

scanning probe microscopy applications. 
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CHAPTER 2 

 

HYPERBOLIC METAMATERIAL AS 

NEAR FIELD ABSORBER 

2. HYPERBOLIC METAMATERIAL AS NEAR FIELD ABSORBER 

Sec. 2.1 Motivation 

We show that hyperbolic metamaterials (HMs) that exhibit hyperbolic wavevector 

dispersion diagrams possess two important features related to super absorption: the total 

power scattered by a nanosphere is (i) greatly enhanced when placed at the HM surface, 

compared to other material surfaces and (ii) almost totally directed into the HM. We show 

that these two features are peculiar of HM interfaces, and support them using a spectral 

theory study of transverse-electric and magnetic waves emitted by a subwavelength 

nanosphere. We analyze the nanosphere’s scattered power absorbed by various substrate 

configurations, and various nanosphere materials. 

Composite hyperbolic metamaterials (HMs) are a particular kind of uniaxial anisotropic 

materials with iso-frequency hyperbolic-like wavevector dispersion diagram [1, 2] (as stated 

in the following, the wavevector dispersion curve of a realistic HM is not an exact hyperbola).  

The aim of this chapter is to use a spatial spectrum approach [1] to show that a HM may 

exhibit the potential to act as a super absorber for scattered fields generated by a 
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nanoparticle near its surface. In other words, two important phenomena occur: (i) the 

nanoparticle’s scattered fields will be enhanced by the presence of the HM, and (ii) fields are 

mainly directed into the HM, and hence there almost totally absorbed. Implicitly, this means 

that the local density of states, related to the total emitted power of a dipole, is greatly 

increased. These physical properties are of key importance and allow us to foresee 

broadband wide-angle absorption when scattering is created at the HM surface, by either 

purposely roughening a HM surface or, equivalently, locating many nano-scatterers at the 

HM surface.  

The use of spectral theory enables us to carefully analyze the radiation capabilities of 

elementary dipoles or small objects located close to HMs for different physical conditions 

including, but not limited to, distance from the HM, materials, shapes, and source power 

spectra. In particular, we analyze systematically all the physical parameters that affect 

absorption capabilities, and quantify their effect. This work aims at providing a clear and 

exhaustive analysis of the interaction between a single dipole, or a nano-scatterer, with a 

HM. This analysis may lead to possible developments of innovative ways to absorb fields at 

microwaves as well as millimeter-wave, infrared, and optical frequencies, since HM 

fabrication using composite materials is simple and does not require extreme, unfeasible 

material parameters. The HM considered here is either made by a multilayered metal-

dielectric composite or is a homogeneous HM. In both cases we demonstrate the HM 

suitability to super absorption capabilities, which are consistent also with other HM 

implementations as well (e.g., wire medium). We show that when a homogeneous HM is 

considered, the absorption properties discussed in this chapter are slightly overestimated 

when compared to a multilayered HM implementation. The formulation shown here is 
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general and can be applied to other envisioned applications involving HMs, not limited to 

absorption properties. Note that the design of a practical absorber would require the 

analysis of many nanoscatterers in proximity of the HM, and as such we postpone this 

discussion to a future effort. 

Multilayered structures as in Fig. 2.1 are practical implementations of HMs at optical 

frequencies and have been investigated for negative refraction [3], subwavelength field 

focusing and superlensing applications [4-10]. The spontaneous emission patterns of electric 

and magnetic dipoles above a multilayer HM surface were estimated using the dyadic Green’s 

function technique in [9]. An increased rate of spontaneous emission near nanostructured 

HMs has been reported in [11]. The absorption of thin dye-doped polymeric films located on 

top of several substrates (glass, silver, gold and multilayered HMs) has been shown in [12], 

concluding that absorption can be tuned and enhanced by controlling the substrate 

geometry and composition. As a result of a recent experiment in [13], corrugated surfaces of 

HMs lead to a very low reflectance and ultimate dark appearance, providing a further 

incentive to the analysis here proposed. 

The outline of the chapter is as follows. We first model multilayered HMs in Sec. 2.2using 

both effective medium approximation (EMA) and Bloch theory, showing that the former is 

applicable under certain limitations, and in general overestimates results for the 

multilayered systems. Then we study in Sec. 2.3 the power emitted by an impressed dipole 

close to HMs via spectral theory. We then extend in Sec. 2.4 the developed theory to analyze 

the power scattered by a nanoparticle close to HMs. Conclusions and final remarks are stated 

in Sec. 2.5. 
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Fig. 2.1 (a) Elementary dipole at a distance h from the interface 

between free space (upper space, denoted with subscript ‘u’) and a 

multilayered HM. (b) A silver nanosphere with radius r, located at the 

HM surface. 

Sec. 2.2 Layered Hyperbolic Metamaterial and Limitation of Effective Medium 

Approximation 

Consider a structure made by a stack of two homogeneous layers as in Fig. 2.1, with 

subwavelength thicknesses 1d  and 2d , with relative permittivity 1 1 1iε ε ε′ ′′= +  and 

2 2 2iε ε ε′ ′′= + (a prime and a double prime denote real and imaginary parts, respectively). 

This multilayered structure can be approximated by a homogeneous HM via EMA having the 

anisotropy axis coincident with the z axis and permittivity tensor  

 HM ˆ ˆ ˆ ˆ ˆ ˆ( )t zε ε= + +ε xx yy zz   (2.1) 

where the expressions for t t tiε ε ε′ ′′= +  and z z ziε ε ε′ ′′= +  are [14] 
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Assume for the moment absence of material losses (i.e., 0ε ′′ = ): a HM can be easily 

realized by choosing 1 0ε <  (metallic layer at optical frequencies) and 2 0ε > (dielectric 

layer). In general, two categories of plane waves, namely ordinary and extraordinary waves, 

are present in a uniaxial anisotropic medium propagating with ( )exp x y zi k x k y k z + + 
, as 

described in [15], where zk  and 
2 2 1/2( )t x yk k k= +  are the z and the transverse to z components 

of the wavevector ˆ ˆ ˆx y zk k k= + +k x y z . As shown already in [15], when considering a 

homogeneous HM with uniaxial anisotropy of permittivity, ordinary waves are TE (E field 

transverse to z) and related to tε . Similarly, extraordinary waves are TM (H field transverse 

to z) and exhibit a hyperbolic wavevector dispersion when 0t zε ε <  [15]. The dispersion 

relations of ordinary and extraordinary waves are given by 

 

2 2
2
0

2 2
2
0

TE (ordinary):  

TM (extraordinary):  

t z

t

t z

z t

k k
k

k k
k

ε

ε ε

+
=

+ =

  (2.3) 

where 0k  is the wavenumber in free space. In principle, the case with 0zε < , 0tε >  allows 

the extraordinary waves to propagate (carry power) in the HM for any tk , whereas the 

ordinary waves propagate only for 0t tk k ε< , provided EMA holds (see the discussion 

regarding Fig. 2.3). When 0zε > , 0tε < , instead, extraordinary waves propagate in the HM 

for any 0t zk k ε>  whereas ordinary waves are evanescent in the whole spectrum, provided 

EMA holds. This latter HM case is investigated here because its realistic design is achievable 

over a wide bandwidth at optical frequencies when using metallic (with large negative 
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relative permittivity values) and dielectric layers. It is fundamental to observe that TM waves 

can propagate in the HM up to very large values of tk  that would otherwise be evanescent in 

the upper isotropic half-space, resulting in the energy transfer from the evanescent spectrum 

into a propagating one in the HM. 

Consider now a lossy multilayered HM shown in Fig. 2.1 made of 1 2 5 nmd d= = -thick 

silver (complex permittivity obtained from [16]) and silica (
2SiO 2.2ε = ) layers. This leads to 

the permittivity tensor entries tε  and zε  evaluated by EMA shown in Fig. 2.2 with 0tε ′ <  and 

0zε ′ >  for the entire frequency band analyzed here, thus imposing hyperbolic dispersion 

diagrams. It has been recently reported in [17] that the power directed toward the metal–

dielectric multilayers is over estimated by EMA, and we provide here a discussion on the 

reasons behind this phenomenon. We employ Bloch theory [18] to determine the dispersion 

diagram complex zk  versus real tk  (with z z zk iβ α= + ) for TM waves inside the HM at 400 

THz, reported in Fig. 2.3 (solid blue curve) and compared to the dispersion diagram obtained 

by EMA (dashed red curve). In Fig. 2.3 we only show the mode with 0zβ >  and 0zα <  

because it is the only one decaying (carrying power) in the –z direction, inside the HM. The 

curve shows that  the wave propagating inside the HM  is backward because  0z zβ α <  [19, 

20]. The zk−  solution, with 0zβ <  and 0zα > , would be the equivalent solution decaying in 

the +z direction. We note that similar diagrams are preserved at other frequencies as well 

(see the discussion in Sec. 2.3 and Fig. 2.6). We observe that for a wide tk  spectrum the real 

part of the wavenumber zβ  computed by Bloch theory is close to the hyperbola obtained by 

EMA, confirming a hyperbolic-like dispersion (Fig. 2.3). However, for larger tk  the dispersion 
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curve significantly deviates from the one from EMA and it is not hyperbolic anymore. Indeed, 

close to 014.3tk k≈ , zβ  approaches the Brillouin zone edge ( 037.5 /z k dβ π≈ ≈  at 400 THz, 

where 1 2d d d= +  is the periodicity) and thereafter the attenuation constant zα  increases 

dramatically (behavior not modeled by EMA), marking a mainly evanescent spectrum in the 

HM. It is observed that even for small constituent-layer thicknesses and for large tk  it is 

important to take into account the heterogeneity of layered structures because a large 

wavenumber zk  implies a short wavelength in the z direction. Hence, a maximum 

propagating tk  spectral limit can be determined. Therefore one should not rely on EMA for 

large wavenumbers because EMA does not introduce any limitation for the propagating 

spectrum, i.e., theoretically all ,min( , )t tk k∈ ∞  would propagate in the HM, where ,mintk  is 

determined following the discussion after (2.3). In other words, according to EMA the 

emitted power spectrum coupled to the HM is limited only by the spatial spectrum of the 

field at the HM interface, and therefore EMA could lead to overestimation of the power 

emitted by physically very small sources (characterized by a very wide spatial spectrum of 

emission). It is for these reasons that in the following, we mainly treat the HM as a non-

homogeneous medium modeled via Bloch theory and we also provide results regarding the 

HM modeled by EMA in order to determine its validity range. 
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Fig. 2.2 Effective t t tiε ε ε′ ′′= +   and z z ziε ε ε′ ′′= +  evaluated by EMA 

versus frequency, pertaining to the HM made of silica (
2

2.2SiOε =  ) and 

silver layers, with thicknesses 1 2 5 nmd d= = .  

 

Fig. 2.3 z tk k−  dispersion diagram normalized by 0k . (a) Real and (b) 

imaginary parts of the wavenumber z z zk iβ α= +  in the multilayered HM 

with periodicity 1 2 010  nm / 75d d d λ= + = ≈  at 400 THz obtained via 

Bloch theory and EMA. 
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Sec. 2.3 Spectral Theory and the Power Emitted by an Impressed Dipole near 

Hyperbolic Metamaterial 

We consider first the power emitted by a transverse elementary dipole with electric 

polarization  ˆ ( )xp δ=P x r  located close to the interface between free space and the HM as 

illustrated in Fig. 2.1(a). To gain physical insight into the super absorption of the emitted 

power, we decompose the emitted power spectrum due to TE and TM polarized-field spatial 

harmonics and analyze their interaction with the HM. We use the equivalent transmission 

line theory  in chapters 2, 3 and 5 in [1]. The total power tot u dP P P= +  coupled to TE and TM 

waves (where ‘u’ and ‘d’ subscripts denote upward and downward directions, respectively) 

is computed by spectral integrals as 

 ( )
22

u,d u,d08

x
t t

p
P p k dk

ω

π

+∞
= ∫   (2.4) 

where 

 ( )
( )

( )

( )

( )

TM* TE*
u,d u,d

u,d 2 2
TM TE
tot tot

Re Ret t

t t t

t t

Y k Y k
p k k k

Y k Y k

   
   = +   (2.5) 

are the upward and downward directed power spectra, respectively, where “*” indicates 

complex conjugate operation. The terms  
TM,TE

u,dY  represent equivalent spectral admittances 

at the dipole location, looking upward ( z+  direction) or downward ( z−  direction), for TE 

and TM waves. Following  [1], where their expressions and physical interpretation are 

provided, we recall that the wave admittances relative to the upper half-space are simply 

given by 
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where 
2 2

,u u 0z tk k kε= − . The downward admittances 
TM

dY  and 
TE

dY  in (2.5) (evaluated 

at the dipole location) in the case of a homogeneous HM half-space have to be calculated 

using transfer matrix method [18] and the TM and TE wave admittances 

 

TE
,dTM TE0

TM
0,d

,
zt

z

k
Y Y

k

ωε ε

ωµ
= =   (2.7) 

where 
TE,TM
,dzk  is calculated using either the TE or TM dispersion relation in (2.3). In the case 

of multilayered HM, instead, the downward admittances 
TM

dY  and 
TE

dY  in (2.5) are 

calculated applying Bloch theorem to the multilayered structure and transfer matrix method 

[18]. Following [1], the total admittance in (2.5) is defined as 

 ( ) ( ) ( )TM,TE TM,TE TM,TE
tot udt t tY k Y k Y k= +   (2.8) 

Analogous calculations can be performed also for the power emitted by a z-directed dipole 

zp , not reported here for brevity. Note that with these expressions one can calculate the 

spectral power content of TE/TM waves, independently, and to the authors’ knowledge this 

exact spectral analysis has not been previously investigated for composite HMs. Moreover, 

this formalism can also model the effect induced by the periodic nature of the HM via Bloch 

theory [18], as was explained in regard to Fig. 2.3. The ratio tot free space/P P  of the total power 

emitted by an elementary dipole located at a distance 15 nmh =  from the interface between 

free space ( u 1ε = ) and five different kinds of bottom media, namely bulk silica, bulk silver, 
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HMm (HM with metal as the topmost layer), HMd (HM with dielectric as the topmost layer), 

and HM EMA (HM modeled by EMA) is plotted versus frequency in Fig. 2.4(a). free spaceP  is the 

total power emitted by the same dipole in free space. Similarly in Fig. 2.4(b) the ratio 

tot free space/P P  is plotted versus the dipole distance h from the interface, at 400 THz. In the 

HM cases, we assume the period equal to 1 2d d d= + =10 nm, as in Sec. 2.2. 

 

Fig. 2.4 The ratio tot free space/P P  related to an elementary transverse 

dipole located near the interface between free space and five  kinds of 

media: bulk silica, bulk silver, HMm (HM with metal as the topmost 

layer), HMd (HM with dielectric as the topmost layer) , and HM EMA 

(HM modeled by EMA). The multilayered HM is composed of 5-nm-

thick silver and silica layers. (a) The dipole is located at a distance 

15 nmh = and frequency is varied. (b) The dipole location h is varied 

at 400 THz. 
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Looking at the ratio tot free space/P P  in Fig. 2.4, without considering the HM EMA result for 

the moment, the highest emitted power occurs for the HMm case (slightly larger than the 

HMd case), and the smallest for the bulk silver case, over a wide frequency band. We note 

however that HM EMA overestimates scattered power amounts for low frequencies or low 

distances h, and the explanation behind this fact will be provided in the discussion regarding 

Fig. 2.5. The power emitted by an elementary dipole at a distance 15 nmh =  is about 7 to 15 

times higher than the power emitted by the same dipole in free space in the case of HM 

bottom half-space [Fig. 2.4(a)]. Moreover, for the HM case, the ratio tot free space/P P  increases 

almost exponentially if h is decreased, as shown in Fig. 2.4(b), thanks to the coupling of 

power between evanescent spectrum in free space and propagating spectrum in the HM. This 

clearly indicates that a large boost of emitted power occurs when the dipole is very close to 

the HM. 
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Fig. 2.5 (a) Downward, dp , and (b) upward, up , spectral power 

emitted by a transverse dipole located at 15 nmh = at 400THz, for the 

same case considered in Fig. 2.4. Note the large power spectrum dp  

for 0/tk k  between 2.1  and 14.3 , for the bottom HMm and HMd cases, 

and between 2.1  and 36.5 , for the bottom HM EMA case. 

To investigate the physical mechanism causing the enhancement of the power emission 

by a dipole in proximity of a HM, and the suitability to super absorption capabilities, we 

report in Fig. 2.5 the downward and upward spectra dp  and up  in (2.5) normalized by 0k . 

The very wide spectrum of d ( )tp k  coupled to the HM, from 02.1tk k≈  to 014.3tk k≈ , is clearly 

seen in Fig. 2.5(a), in agreement with the dispersion relation plotted in Fig. 2.3 that shows 

the tk  spectrum where TM waves have relatively small zα  and thus are mainly propagating. 

The upward power spectrum is instead present only for 0tk k< , the propagating spectrum 

in free space. Also note that EMA results in a wider propagating spectrum inside the HM, 
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from 02.1tk k≈  to 036.5tk k≈ , eventually in disagreement with Bloch theorem for large tk  

spectrum, specifically in the region 0 014.3 36.5tk k k< < . As mentioned in Sec. 2.2, EMA 

predicts that any 0t zk k ε>  is allowed to propagate in the HM, however due to the dipole 

distance from the HM interface, large tk  spectrum cannot couple power into the HM because 

of the free space evanescent field decay proportional to ( )2 2
0exp tk k h− − . It is this 

evanescent decay that leads to power spectrum ( )tp k  decay after 036.5tk k≈  in the HM EMA 

case in Fig. 2.5(a). This fact implies that the closer the distance h of the dipole from the HM, 

the larger the power coupled into the HM. 

Observing the power spectrum in Fig. 2.5 is also useful to explain why the total scattered 

power evaluated with EMA as in Fig. 2.4(a) is overestimated when compared to the one 

calculated with Bloch theory, in the low frequency region. The power spectrum difference 

between EMA and Bloch theory is mainly in the interval 
Bloch EMA
,max ,maxt t tk k k< < , where 

Bloch EMA
,max ,maxand t tk k  are evaluated as follows. The largest spectral component tk  of the field 

emitted by the source and coupled to the HM under EMA is determined assuming that the 

power spectrum decays as ( )2 2
0exp tk k h− −  and it is considered negligible when 

2 2
0tk k h ξ− > , where 1ξ ≥  is a predetermined number. This shows that the upper boundary 

of the tk -spectrum coupled to the HM under EMA (i.e., 
EMA
,maxt tk k< ) is 

( )2EMA 2
,max 0 / /tk k h hξ ξ= + ≈ . Note that this upper limit is independent of frequency in the 

assumption 
2 2 2

0/ h kξ >>  (fully verified in our case). 
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Fig. 2.6 z tk k−  dispersion diagram normalized by / dπ , at the three 

frequencies shown in the legend, obtained via Bloch theory (solid) 

and EMA (dashed dotted). (a) Real and (b) imaginary parts of the 

wavenumber z z zk iβ α= +  in the multilayered HM with periodicity 

1 2 10  nmd d d= + = . 

The upper spectral limit 
Bloch
,maxtk   denotes the maximum spectrum able to propagate in the 

HM using the more precise Bloch theory and it is determined by zβ  approaching the 

Brillouin zone edge. By looking at the dispersion diagrams in Fig. 2.6 relative to different 

frequencies, one can observe that the 
Bloch
,maxtk  decreases for decreasing frequency. However, 

since the ratio 
Bloch
,max 0/tk k  remains almost constant and equal to about 14, as in Sec. 2.2 for the 

multilayer HM under analysis, we can say that 
Bloch
,max 0tk Kk≈ , where K  is a proportionality 

constant determined mainly by the periodicity of the multilayered HM (see the discussion 
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regarding Fig. 2.7). This means that the difference between power spectra able to couple 

power into the HM under EMA and Bloch theory is as wide as 

EMA Bloch
,max ,max 0/t t tk k k h Kkξ∆ = − ≈ − . We note that tk∆  increases for decreasing frequency, hence 

leading to higher disagreement between EMA and Bloch theory at lower frequencies, 

explaining the power overestimation by EMA in Fig. 2.4(a) in the low frequency region of the 

plot. 

 

Fig. 2.7 (a) Downward, dp , and (b) upward, up , spectral power 

emitted by a transverse dipole located at 15 nmh = at 400THz, for the 

same case considered in Fig. 2.4, considering the two periods in the 

legend (individual silver and silica layers are assumed with equal 

thicknesses). 
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In Fig. 2.7, we analyze the power spectra of the HM for two illustrative cases: the one 

shown in Fig. 2.5 with a metamaterial period 1 2d d d= + =10 nm, and another one with 

doubled period 1 2d d d= + =20 nm (still keeping the same 1 2/d d  of the case in Fig. 2.5). This 

analysis is performed to stress that the metamaterial physical parameters impact the 

propagating spectrum inside the HM, which tends to be narrower as the period of the HM is 

increased. The upper edge of the propagating spectrum inside the HM shifts from 014.3tk k≈  

(10 nm period) to 07.1tk k≈ (20 nm), showing that the period of the HM needs to be 

minimized for having a wide propagating spectrum inside the HM that can be employed to 

couple power coming from the evanescent spectrum in free space. 

 

Fig. 2.8 The illustration showing the scattering problem and the 

contribution to the local electric field which excites the scaterrer. 

Sec. 2.4 Power Scattered by a Nanoparticle Close to Hyperbolic Metamaterial 

We show and explain now the phenomenon of strong absorption by the HM when a 

passive nanoscatterer in proximity of the HM interface is illuminated. Inspired by the 

experimental results in [21], we focus on understanding how a nanosphere’s scattered 

power is affected by its size and material properties. Hence, consider a silver nanosphere 

Reflected plane wave

2ε
1ε

Incident plane wave The re-scattered field from 

the substrate
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located as in Fig. 2.1(b), excited by a linearly polarized (say along the x direction) plane wave 

with normal incidence. The nanosphere is modeled as an equivalent electric dipole via the 

single dipole approximation [22, 23], and its induced dipole moment located at the center of 

the nanosphere (thus at a distance from the HM equal to the radius r) is given by 
loc

x xx xp Eα=

, where xxα  is the electric polarizability (Clausius-Mossotti expression reported in [22, 23]) 

and 
loc
xE  is the local electric field acting on the nanosphere. In particular, 

 
loc pw ,s
x x xE E E= +   (2.9) 

where 
pw
xE  is the total plane wave field, sum of the incident plane wave and the one reflected 

at the HM interface, evaluated at the nanosphere’s center. Furthermore, 
s s
x xx xE G p=  

represents the field produced by the dipole itself, and evaluated at its location, that accounts 

for the scattering by the bottom half-space. Accordingly, the term 
s
xxG  is the ˆˆxx  component 

of the regularized dyadic Green’s function, i.e., it does not account for the free-dipole field 

but includes all the spectral terms reflected by the HM interface. Accordingly, it is given by 

the spectral representation 
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TM TE
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+
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are the plane-wave reflection coefficients [1] of TE and  TM spectral component with 

transverse wavenumber tk  , looking towards the z−  direction, and evaluated at the 

nanosphere center location. By solving for the scatterer’s dipole moment one obtains the 

closed form expression 

 pw

1

xx
x xs

xx xx

p E
G

α

α
=

−
 . (2.12) 

The total plane field at the nanosphere’s center is given by ( )pw inc
d1 0x xE E= + Γ   , where 

inc
xE  is the incoming normally incident plane wave and ( )d 0Γ  is its reflection coefficient 

evaluated at the nanosphere’s center. This method is accurate when the nanosphere is very 

subwavelength and not far from its first Fröhlich resonance [22], so that the electric dipolar 

term is dominant compared to the field due to higher multipolar terms. Once the dipole 

moment xp  of the nanosphere is determined, its scattered power toward the upper (free 

space, u
sP ) and lower ( d

sP ) spaces is evaluated by using (2.4). The advantage of this semi-

analytical method is that it breaks down each scattering process into its basic components 

and provides a clear physical insight. 
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Fig. 2.9 Total power tot
sP

 
scattered by a silver nanosphere located on 

the surface of six kinds of media: bulk silver, bulk silica (
2SiO 2.2ε = ), 

free space, HMm, HMd, and HM EMA composed of silver and silica 

layers of thickness 5nm, under plane wave incidence ( inc
xE = 1 V/m) 

when (a) 15 nmr = and frequency is varied and (b) at 400 THz varying 

the nanosphere radius r . 
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Fig. 2.10 Ratio of downward over upward power d u/s sP P , for the same 

case considered in Fig. 2.9. 

The total scattered power tot u d
s s sP P P= +  due to a silver nanosphere located on top of six 

possible  substrates (HMd, HMm, HM EMA, bulk silver, bulk silica, and free space) under 

linearly-polarized, normally incident plane wave 
inc
xE  (with 1 V/m electric field amplitude) 

is shown in Fig. 2.9(a) for a nanosphere radius 15 nmr =  versus frequency, and in Fig. 2.9(b) 

versus the nanosphere radius r at 400 THz. The passive silver nanosphere on top of HMd and 

HMm apparently scatters one or two orders of magnitude more total power than when on 

top of bulk silica, free space or bulk silver, between 200 THz and 700 THz (in agreement with 

the total power emitted by an elementary transverse dipole shown in Fig. 2.4(a). Note also 
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that HM EMA gives overestimated scattered power amounts for smaller frequency/radius 

ranges in agreement with the discussion in Sec. 2.3 above Fig. 2.5.  

 

Fig. 2.11 The upward scattered power u
sP , for the same case 

considered in Fig. 2.9. 

The difference in scattered power among all substrate cases is less evident when the 

nanosphere radius is increased, as shown in Fig. 2.9(b), though the total power scattered by 

the nanosphere in the case of the HM substrates is still significantly larger than in the other 

bulk substrate cases. In Fig. 2.10, the ratio d u/s sP P  is plotted (a) for a nanosphere with 
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15 nmr =  versus frequency, and (b) at 400 THz versus the nanosphere radius r. One shall 

notice the remarkable effect that the scattered power into the bottom space d
sP  is much 

larger than the power scattered into the upper space ( d u
s sP P>> ) for HMm and HMd (where 

HMm has a larger ratio) indicating that the nanosphere’s scattered field is mainly absorbed by the 

HM (and giving direct proof of super absorption capabilities). Note that HM EMA gives 

overestimated results for smaller frequencies or radii, as explained in Sec 3. The case with 

bulk silver bottom space yields the lowest d u/s sP P  ratio in most of the shown frequency band 

when compared to all other substrates except free space, where power is evenly scattered 

and thus d u/ 1s sP P = . When the radius of the metal nanosphere is decreased, the ratio d u/s sP P  

increases for cases with HMd, HMm, HM EMA, and bulk silver bottom spaces because the 

power coupled to these media is related to a wide tk  spectrum that is purely evanescent in 

free space (where HM hosts mainly propagating waves, and bulk silver hosts mainly 

evanescent waves related to losses), whereas the case with bulk silica bottom space is 

slightly affected. For small nanospheres, e.g., 15 nmr =  or smaller, the downward power 

exceeds the upward power by at least two orders of magnitude. Therefore, we can observe 

that a proper distance and size shall be selected for the nanosphere to enhance its scattered 

power, and direct it toward the HM: if the nanosphere is much smaller than the wavelength, 

it will not scatter light efficiently; whereas if it is too large, it does not couple efficiently to 

the HM’s high density of states and the scattering directed toward the HM is weak (i.e., less 

power will be coupled into the HM). For the sake of completeness, we show in Fig. 2.11 the 

power scattered by the nanosphere into the upper space for the cases reported in Fig. 2.9 

and Fig. 2.10. When looking at Fig. 2.11(a), we note that in the HM cases the nanosphere 
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scatters less power (up to two orders of magnitude) into the upper space until 450 THz. For 

the remaining frequency range, as well as for the result in Fig. 2.11(b), the power scattered 

in the upper half-space in the presence of the HM is comparable to the one scattered when 

the nanosphere is in free space. Moreover, the amount of the scattered power into the upper 

space increases as the radius is increased. We however know from Fig. 2.9 that the total 

scattered power is about 1 to 2 orders of magnitude larger than the one in free space. This is 

a promising quality of the metamaterial under study: not only the downward power 

scattered by the nanosphere on top of HM is increased (remarking suitability to absorption 

capabilities) but also the upward scattered power is reduced or comparable to the one 

scattered in free space over a wide frequency band. 

Lastly, we inspect the influence of the nanosphere’s material on the scattered power. We 

consider the HMd substrate in Fig. 2.9 and nanospheres with radius r = 15 nm made of four 

materials, namely silver (Ag, with negative and large permittivity [16]), silica ( 2SiO  with 

small and positive permittivity 
2SiO 2.2ε = ), silicon carbide (SiC, positive and moderate 

permittivity [24]), and gallium phosphide (GaP, large positive permittivity with losses [24, 

25]) and show their scattered total power in Fig. 2.12. Apparently, when the permittivity of 

the nanosphere’s material increases in absolute value (Ag, GaP), the total power scattered 

by the nanosphere increases as well. Although the d u/s sP P  ratio does not depend on the 

excitation of the dipole itself, the material of the scatterer effectively determines how much 

power of the incident plane wave is scattered. Further conclusions about the usage of sets of 

scatterers on top of HM for achieving low reflectance need modeling of distributed scatterers 

on a HM surface and will be the object of future work. 
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Fig. 2.12 Total power tot
sP

 
scattered by a silver (Ag), silica ( 2SiO ), 

silicon carbide (SiC),  and gallium phosphide (GaP) nanosphere (r = 

15nm) located on top of the HMd in Fig. 2.9 composed of silver and 

silica layers of thickness 5nm varying frequency under plane wave 

incidence ( inc
xE  = 1 V/m). 

Sec. 2.5 Conclusion 

We have shown via spectral theory that: (i) the power scattered by a passive nanosphere 

located in the proximity of a HM is increased; (ii) scatterers located on top of HMs emit 

almost all power toward the HM. Both HM EMA and multilayer implementations (HMm, 

HMd) lead to similar super absorption properties (in some frequency range EMA 

overestimates absorption). Therefore, HMs have a clear potential of enhancing the decay rate 

of emitters near its surface and also for designing efficient and innovative absorbers. A list 

of foreseen applications of this “super absorber” with unprecedented performance in terms 

of bandwidth and wide angle of operations includes radar cross section reduction, near field 

absorbers, improved solar spectrum absorption, infrared absorbers. 

This chapter is reproduced based on the material in [C. Guclu, S. Campione, and F. 

Capolino, "Hyperbolic metamaterial as super absorber for scattered fields generated at its 

surface," Phys. Rev. B, Vol. 86, 205130, Nov. 2012], © 2012 American Physical Society. 
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CHAPTER 3 
 
GRAPHENE-BASED TUNABLE 
HYPERBOLIC METAMATERIAL 

3 GRAPHENE BASED TUNABLE HYPERBOLIC METAMATERIAL 

Sec. 3.1 Motivation 

A stack of graphene sheets, separated by subwavelength dielectric spacers, can be 

regarded as a composite material with uniaxial electric properties. Graphene layers strongly 

affect the complex effective permittivity of the composite for electric field components 

polarized parallel to the graphene sheets. Uniaxial anisotropic materials in general offer a 

variety of interesting electromagnetic properties. In particular, here a subcategory denoted 

as hyperbolic metamaterials (HMs) is investigated, which is named after the hyperbolic iso-

frequency wavevector dispersion curves that arise due to the negative permittivity 

experienced by the electric field component along either the axis of anisotropy or a direction 

orthogonal to the axis of anisotropy [1,2]. 

Strong interest in HMs is based on their specific property that enables propagation of a 

very wide spatial spectrum, that would be otherwise evanescent in free space, which is in 

principle unbounded for the ideal case of purely hyperbolic iso-frequency wavevector 

dispersion. In case of realistic hyperbolic-like dispersion, the spatial spectrum allowed for 
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propagation can still be extremely wide, as shown in [3–5]. This property is shared with 

uniaxial anisotropic materials with elliptic iso-frequency dispersion diagram, with a very 

large axial ratio. Though in practical cases purely hyperbolic dispersion cannot be obtained, 

effective medium models based on hyperbolic dispersion proves to be a very useful tool for 

understanding the physics behind the interesting electromagnetic properties of these 

metamaterials with extremely subwavelength features. 

Recently, metal-dielectric multilayers were proposed as candidates to realize HMs at 

optical frequencies [3,6,7]. This wide spatial spectrum of propagation can lead to novel 

phenomena as increasing the power scattered by imposed dipoles [3,8] or nanoparticles 

[3,9] on HM surfaces, and this power is mostly directed into HMs. This exotic property of 

HMs enables features like focusing with very subwavelength resolution [10,11], controlling 

absorption [12], enhancement of spontaneous emission [13], increasing the decay rate of 

emitters [6], designing quantum and thermal emitters [14]. HMs can also host backwards 

waves and thus they are utilized for achieving negative refraction as in [15]. As stated in [4], 

HMs are considered to be promising materials for advancement in the fields of tunable 

surface plasmon polaritons, super Planckian thermal emission [5], radiative decay 

engineering [16], and nano-imaging. 

HMs attract attention also because they are easy to fabricate using metal-dielectric 

multilayers or metallic nanowires embedded in dielectric substrates. Also, doped 

semiconductors [17,18] and conductive oxides used for generating surface plasmons can be 

used for HM designs in near- and mid-IR frequency bands [15]. In multilayer structures, 

metal is used as a negative permittivity layer-spaced by dielectric layers, overall creating a 
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negative permittivity effect for the electric field components tangential to the layers. This 

effect does not rely on any resonant behavior and thus is a very wide-frequency-band. 

In this chapter a multilayer HM design based on stacking dielectric layers and graphene 

sheets is investigated. A graphene sheet (a one-atom-thick carbon layer) is able to support 

surface plasmon modes at terahertz frequencies [19–23]. A recent work in [24] introduced 

the idea of a HM based on graphene-dielectric multilayers, assuming a semi-infinite structure 

studied at a temperature of 4 K, thus assuming graphene losses negligible, leading to purely 

real permittivity and wavenumbers. Our analysis instead accounts for losses at a room 

temperature of 300 K and their effect on (i) the effective permittivity that assumes indeed 

complex values, (ii) the hyperbolic-like dispersion (it is not exactly hyperbolic), and (iii) on 

the radiated power by a dipole near the HM surface, where losses play an important role. 

Moreover, the investigation is focused on practical cases with a finite number of graphene-

dielectric layers, and quantitatively show tunability aspects of graphene-based HMs using 

electrostatic biasing. The study is mainly presented with a detailed study about the 

dependence of power spectrum emitted by a dipole source in the proximity of the graphene-

based HM on the number of layers, as well as on frequency. Alternative to the HM 

implemented as a graphene-dielectric multilayer studied here, in [25] graphene stripes 

analogous to a metallic wire medium, are utilized for realizing hyperbolic dispersion in 

cylindrical wavenumber coordinates, with the aim of designing a hyperlens. The peculiar 

electronic properties of graphene [26,27], have been investigated for different 

electromagnetic applications such as lensing [28], transformation optics [29], 

nanomechanical resonators [30], and solar cells [31]. Moreover, based upon periodic 

patterning of graphene, bi-periodic and/or multilayered graphene structures were 
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extensively studied for enhanced transmission [32], optical absorption [33], and tunable 

metasurfaces in [34], as well as isolators and polarizers in the microwave regime [35–37]. It 

was shown that crystalline Graphite (the 3D parent of graphene) possess indefinite 

permittivity at UV frequencies [38]. 

A graphene sheet, in this chapter, has properties at THz frequencies similar to those of a 

thin metal film at optical frequencies. In principal, any inductive infinitesimally-thin layer 

can be used to realize HMs, however, at the terahertz regime, designing inductive layers is 

difficult due to metallic losses and dispersion introduced by periodically patterned 

conductive layers. For this aim, metallic meshes are mainly effective only in lower 

microwave regime [39–41]. On the other hand, the use of highly dispersive metals is practical 

the optical frequencies below the plasma frequency. Here it is shown that stacking graphene 

sheets can be utilized for designing tunable HMs in a wide frequency spectrum ranging from 

millimeter-waves up to tens of terahertz frequencies, encompassing the whole far-infrared 

band. In Sec. 3.2, the main content is the development of an effective medium approximation 

(EMA) to facilitate the characterization of graphene-based multilayer structure and its use 

in possible devices and its limits are assessed. Moreover, in Sec. 3.2 the basic properties of 

graphene and the associated hyperbolic wavenumber dispersive behavior of multilayer 

structures composed of graphene-dielectric layers are discussed. In Sec. 3.3 investigation is 

presented regarding  plane wave transmission and reflection for a thin slab made of several 

graphene sheets, as well as their tunability features, and we also show how EMA is able to 

describe these properties. In Sec. 3.4 the main aim is to study the radiation of a dipole at the 

interface of a finite thickness HM and it is shown that the HM is able to enhance the total 

power radiated by several orders of magnitude, reporting enhancement in the order of 5×102 
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at 2 THz. It is also shown that most of the power is directed into the HM, offering a viable 

route for wide band and wide incidence-angle super absorption interfaces at far-infrared 

frequencies, as previously discussed in [3,9,13,42] for optical frequencies. This large 

enhancement of power emission is shown to be associated to the wide spatial spectrum 

being able to propagate inside the HM, that would be otherwise evanescent in free space. 

 

Fig. 3.1 Composite multilayer material made by stacking graphene 
sheets and dielectric layers. Under certain conditions it exhibits 
hyperbolic-like iso-frequency wavevector dispersion as depicted in 
the inset, where vg indicates the direction of the group velocity. 

Sec. 3.2 Tunability of Hyperbolic Metamaterial Made of Graphene and Dielectric 

Layers 

A graphene monolayer is electrically characterized by its surface conductivity  , c   , 

where µc is the chemical potential related to the electrostatic biasing, which quantifies the 

electronic transport properties [43]. The frequency dependent conductivity follows the 

interband (boundelectrons) and the intraband (free-electrons) sum rules [44,45]. Spatial 

dispersion of graphene has negligible effects, since the graphene lattice constant a ≈0.246 

nm is extremely subwavelength at THz frequencies [34]. Therefore, a graphene layer is 
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modeled by the local isotropic surface conductivity  , c j         (assuming time-

harmonic fields of the form j te   ) that is calculated by the Kubo formula 
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is the Fermi-Dirac distribution, and   is the phenomenological scattering rate. Throughout 

our discussion, assuming Γ=0.1 meV, which is within the range of values considered in other 

studies [21, 37, 46, 47], at room temperature T= 300 K. Consider a periodic stack of 

graphene-dielectric layers, as depicted in Fig. 3.1. Each dielectric spacer has a subwavelength 

thickness d and relative permittivity d . In this premise, it is assumed that graphene sheets 

are electronically isolated, i.e., the electronic band structure of a graphene sheet is not 

affected by the neighboring graphene sheets (interlayer electronic coupling mechanisms as 

well as tunneling effects are ignored, due to the significant thickness of the dielectric with 

respect to quantum scales). Graphene sheets are modeled as complex lumped admittance 

layers, due to their extremely subwavelength thickness. Wave propagation in the multilayer 

structure, depicted in Fig. 3.1, can be modeled using (i) EMA that models the multilayer as a 

homogeneous medium and (ii) by applying Bloch theory (Chapter 8 in [48]) using the 

transfer matrix of a unit cell. When applying EMA, the multilayered structure is modeled as 

a homogeneous uniaxial anisotropic medium (with axis of anisotropy along z) whose 
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effective relative permittivity tensor effε   is a diagonal matrix in Cartesian coordinates given 

as 

  eff ˆ ˆ ˆ ˆ ˆ ˆ.t z   ε xx yy zz   (3.2) 

Since a graphene sheet is infinitesimally thin with respect to the dielectric thickness, one 

may assume that z d   , because a z−directed electric field would not excite any current in 

the graphene sheet. The transverse effective relative permittivity z  is determined as 

follows, considering a unit cell made of a dielectric layer with dielectric constant d  between 

0z   and z d , and a graphene sheet at 0z  . Within this unit cell one can write 

0 0d dj j     H E J ε E  , where the current density J  [A/m2] in the graphene sheet 

is reduced to the surface current along the sheet   tz J E  , where tE  is the transverse 

component of the electric field. Therefore, one has      0 ˆ ˆ ˆ ˆ/dd j z      ε I xx yy  , 

that when averaged over a period along z leads to the effective relative “transverse” 

permittivity t , 

 
 

0

,
.

c
t t t dj j

d

  
   


       (3.3) 

The formula for t  in Eq. (3.3) could be obtained alternatively by following the method 

used for homogenization involving thin metal-dielectric layers [49]. Accordingly, a graphene 

sheet may be treated as a layer with extremely subwavelength, but finite, thickness with bulk 

properties. Exploiting the continuity of the electric field, along x and y, at the boundaries 

between graphene and dielectric layers, and averaging the transverse component of the 

effective displacement current over a period d also leads to Eq. (3.3) (here the effective 
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displacement current account for the displacement current in the dielectric and the 

conduction current in the graphene sheets). In Eq. (3.3), it is highlighted that the graphene 

conductivity is strongly dependent on the frequency and chemical potential. It is important 

to note that if a graphene sheet has a sufficiently large inductive susceptance, i.e., if  

0 d d     , then the effective relative permittivity term t t tj       has a negative real 

part, i.e., 0t   . Under this condition, and recalling that 0z d    , extraordinary waves, 

with TMz polarization (magnetic field transverse to z), are allowed to propagate inside the 

HM, with wavevectors exhibiting iso-frequency hyperbolic dispersion as explained in [3]; 

whereas ordinary waves with TEz polarization (electric field transverse to z) are mainly 

evanescent. This allows for the propagation of TEz waves with transverse wavenumber 

0 0 ,t dk      that would otherwise be evanescent in free space. 

To better illustrate the possible homogenized parameters that can be obtained, it is 

reported in Fig. 3.2 the real and imaginary parts of t t tj      using the EMA formula Eq. 

(3.3), assuming that graphene sheets are spaced by silica layers with permittivity 2.2d   

and thickness d = 0.1 µm. Note that t   approaches d  at higher frequencies due to saturation 

of the graphene conductivity to its universal value πe2/(2h) [44] which gives a negligible 

contribution compared to d . Moreover, the imaginary part of the effective permittivity term 

( t ) is remarkably small in a certain frequency band, showing that waves in this composite 

material can propagate large distances. Indeed, it is known that a graphene layer may 

support weakly attenuated plasmonic modes in at terahertz frequencies [45]. It is noted that 

t  is very sensitive to the chemical potential c  , and it is shown that the zero-crossing 
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frequency of t  , when 0 d d     , occurs at 6.6, 11, and 24.6 THz, for different values of 

c   0, 0.1, and 0.4 eV, respectively. The tunability of the proposed HM structure is then 

quantified, as seen in Fig. 3.3(a) and (b), where the chemical potential and stacking density 

(thickness of dielectric layer d) are varied assuming a frequency of 12 THz. When the 

dielectric thickness d is increased, one should note that t   increases toward 0. Note also that 

as the chemical potential (tuned by electrostatic biasing) increases t   takes smaller values. 

Hence, at 12 THz, t   is positive (≈ 2.2) for zero chemical potential, and at higher chemical 

potential values, t   becomes negative: for example at c  0.5 eV, with d= 0.1 µm, one has 

9.5t   . In summary, a composite material made by layered graphene sheets possesses 

interesting performance in terms of losses, inductive response, and tunability from 

millimeter-waves up to mid-infrared frequencies, hard to find in any other known material. 

This makes it a good candidate for realizing HM designs in the THz range. 

 

Fig. 3.2 Effective medium complex relative permittivity term 

t t tj      for biased and unbiased graphene multilayer 

configuration 



49 
 

 

Fig. 3.3 Relative effective medium complex permittivity term 

t t tj      of graphene HM versus the graphene sheets’ chemical 

potential for various spacer thicknesses at 12 THz. 

When considering plane waves propagating in a homogeneous uniaxial anisotropic 

medium it is useful to decompose them into the modal polarizations TEz and TMz. A 

description using EMA, when valid, gives a neat physical insight into wave propagation in 

this structure. Wavevector dispersion relations for ordinary (TEz) and extraordinary (TMz) 

waves in a uniaxial anisotropic materials are written as 

 2 2 2
0 , TEz

z t tk k k   (3.4) 

 
22

2
0 , TMztz

t z

kk
k

 
   (3.5) 

where 0 0 0k     is the wavenumber in vacuum, and 2 2
t x yk k k   thanks to symmetry 

about the z axis. It is apparent that TMz waves in a medium with 0t    exhibit an iso-

frequency wavenumber dispersion with hyperbolic shape, as explained in [3,5,50]. This 

allows the propagation of the extraordinary waves (TMz) with any transverse wavenumber 
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0t dk k  that would be otherwise evanescent in a homogeneous dielectric with 

permittivity d . However, one should note that TEz waves are mainly evanescent when 

0t  , for any tk . The proposed graphene-dielectric metamaterial can be used for realizing 

hyperbolic dispersion with 0t   and 0z  , and with the present implementation it is not 

possible to have anisotropy such that 0t   and 0z  . Elliptic dispersion regime occurring 

when both 0t   and 0z  , inherently implies a propagating spectrum with 0t zk k  . 

Considering the multilayered structure depicted in Fig. 3.1, considering the root of 2
zk , 

solution of Eq. (3.5), that corresponds to a wave whose Poynting’s vector is directed toward 

the graphene-based HM, i.e, in the −z direction, as shown with gv  in Fig. 3.1. It is assumed 

here that the z-directed wavenumber may assume complex values, i.e., z z zk j   , since 

the graphene conductivity σ is complex, modeling the inhomogeneous plane wave spectrum. 

Accordingly, a wave that carries power in the −z direction shall have the attenuation constant 

(αz) with negative sign, associated to field decay (due to possible losses) along the −z 

direction. In general, z  can have both signs, though in our case it is positive, implying that 

the TMz mode is a backward wave for 0t dk k  , since 0z z    [51, 52]. 

With the aim of assessing the validity of EMA in Eq. (3.4), we calculate the iso-frequency 

wavevector dispersion with the more accurate Bloch theory for the periodic structures. This 

is done by treating each graphene layer as a complex lumped admittance sY   (where the 

subscript “s” denotes surface) as a shunt load in a transverse equivalent network (TEN, see 
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Chapters 2 and 3 in [1]). This leads to the dispersion relation as (see Appendix A for more 

details) 

    
1

cos cos sin( ),
2

z d d dk d d j Z d      (3.6) 

where 2 2
0d d tk k    is the z-directed wavenumber of a wave inside the dielectric, 

TE
0 /d dZ    and  TM

0/d d dZ     are the characteristic wave impedances for TEz and 

TMz waves, respectively. Here we report only the dispersion curves that belong to TMz modes 

for brevity, since they are those exhibiting hyperbolic-like dispersion. We report in Fig. 

3.4(a)-(b), and Fig. 3.4(c)-(d) the plots of z z zk j   versus tk  for TMz waves at 2 and 12 

THz, respectively, by applying EMA Eq. (3.5) and Bloch theory Eq. (3.6), for the graphene-

dielectic HM (with 2.2d   and d= 0.1 μm), for various chemical potentials c . We plot only 

the dispersion branch relative to power propagation in the downward direction (see Fig. 

3.1). However one should note the zk   symmetry in the solutions of Eq. (3.6). One can 

observe in Fig. 3.4 that EMA and Bloch theory are in very good agreement for a wide range 

of transverse wavenumber tk  showing a hyperbolic relation, whereas the curves obtained 

from the two methods diverge for large tk  and the dispersion curve obtained via Bloch 

theory shows a switching to a mainly evanescent spectrum after certain tk . This observation 

is in accordance with the simplification of the dispersion relation obtained from Bloch theory 

as follows. Let us consider the special but important case with 1d d   and 1zk d  , i.e., 

the period d is subwavelength, with respect to the wavenumber in the dielectric and with 

respect to the Bloch wavenumber (the second inequality also implies that zk  is far from the 



52 
 

edge of the first Brillouin zone where /z d   ). Thus, we approximate Eq. (3.6) by taking 

into account the first and second order Taylor expansion terms corresponding to the 

approximations    
2

cos 1 / 2d dd d     and  sin d dd d  , that lead to 

 
   

22

1 1 .
2 2 2

dz
d d

dk d
j Z d

 
      (3.7) 

After substituting the characteristic impedance by its corresponding value for TEz and TMz 

waves, Eq. (3.7) leads to 

 2 2 0 , TEz
z dk j

d


    (3.8) 
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z d

d
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 
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Substituting 2 2
0d d tk k     we find that for TEz 

 2 2 2
0

0

,z d tk j k k
d






 
   
 

  (3.10) 

Similarly for TMz 

 2 2 2
0

0 0

,z d d tk j k j k
d d

 
 

 

   
      
   

  (3.11) 

Note that if one defines an effective transverse permittivity as in (3.3), the wavenumber 

dispersion just found above become  

 2 2 2
0 , TEz

z t tk k k    (3.12) 
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 2 2 2
0 , TMzt

z t t
z

k k k





    (3.13) 

which are identical to the wavevector dispersion relations provided in (3.4) and (3.5) using 

EMA. 

 

Fig. 3.4 Iso-frequency wavevector dispersion ( z z zk j   ) versus 

kt computed by both Bloch theory (dashed-dotted lines) and EMA 
(solid lines), for different chemical potential levels at 2 THz (a,b), and 
at 12 THz (c,d). 
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It is clear from the analytical analysis above and from Fig. 3.4 that EMA well describes the 

wavevector dispersion when 1d d   and 1zk d  , which can be verified when the 

transverse wavenumber tk  is not too large. For larger and larger values of tk , the two 

assumptions would not be valid anymore. In Fig. 3.4, we also report the evolution of the 

dispersion curves by varying the chemical potential c  at 2 THz and 12 THz. For example at 

2 THz, when c   0.4 eV, the spatial spectrum is bounded by 036tk k  after which z  

increases dramatically. However, by increasing the chemical potential, t   assumes larger 

negative values and z tk   dispersion in Fig. 3.4 evolves to a flatter curve, thus the Brillouin 

zone edge is reached at larger values of tk . Note that at larger spatial spectrum, the 

attenuation constant z  increases due to finite losses, as shown in Fig. 3.4(b). By tuning the 

chemical potential, the dispersion characteristics can be controlled, for example, at 12 THz 

the dispersion for unbiased graphene is elliptic as well as when c   0.1 eV. This behavior 

appears since t   exhibits zero crossing and becomes positive at 6.6 THz and 11 THz, when 

c   0 and c   0.1 eV, respectively. However, when the chemical potential is increased to 

0.4 eV, hyperbolic dispersion arises at 12 THz, as shown in Fig. 3.4(c)-(d) where the inset of 

Fig. 3.4(c) shows the elliptic behavior for 0t dk k . At high frequencies where the 

conductivity saturates to its universal value, the TMz plasmonic modes are extremely 

confined to graphene layers (σ″ becomes very small) and higher frequencies, once σ″ > 0, 

graphene layers are incapable of supporting those modes [21]. Hence, the spectrum 

0t dk k  becomes mainly evanescent at frequencies with 0t    . In other words, after t   

exhibits a zero-crossing and becomes positive, the wavevector dispersion becomes elliptic. 
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Sec. 3.3 Plane-wave Scattering Through a Thin Film of Graphene-based Hyperbolic 

Metamaterial 

A finite thickness graphene-dielectric multilayer film is considered comprising N 

graphene sheets stacked with silica SiO2 dielectric spacer, such that a graphene sheet is at 

the topmost layer. The thickness of each SiO2 spacer is 0.1 μm, and the total multilayered film 

thickness is D = Nd. For simplicity, all graphene layers are biased equally using a constant 

electrostatic potential [34]. For practical consideration, suppose that a thin film of silica (in 

the order of 100 nm) is deposited on an epitaxially-grown graphene monolayer repeatedly 

until creating an N layer stack; though larger thicknesses could be considered, it is rather 

simple to achieve the biasing range ( c  up to 0.5 eV) using relatively lower electrostatic 

potential for smaller thicknesses [34, 53]. 

We investigate reflection and transmission under normal plane wave incidence, and at 

30° oblique incidence for both TEz and TMz polarizations (here  0 sin i
tk k  , where i  is 

the incidence angle). Reflection and transmission coefficients are reported using the transfer 

matrix method (solid lines), and using EMA (circles) as well, for the two cases with N = 10 (D 

= 1 μm) and N = 20 (D = 2 μm), when c   0 eV and 0.4 eV in Fig. 3.5 and Fig. 3.6, respectively. 

As discussed in Sec. 3.2, at lower frequencies, TEz waves are evanescent for any tk  when 

0t    , while for TMz waves the iso-frequency wavenumber dispersion is hyperbolic (when 

0t   ), consequently, a plane wave impinging on the structure with 0t dk k  is very 

weakly transferred, specifically by evanescent coupling. This property is demonstrated in Fig. 3.5 

at frequencies lower than 6 THz, and in Fig. 3.6 at frequencies lower than 24.6 THz. However, 
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after t   exhibits a zero-crossing and becomes positive, the plane wave is able to propagate, and 

the hyperbolic wavevector dispersion turns into elliptic (thus waves with 0t dk k  can 

propagate).  

  

Fig. 3.5 Reflection and transmission versus frequency for a finite 
thickness graphene-silica multilayered HM, at normal, and oblique 
incidence for both TEz and TMz polarizations, calculated by transfer 
matrix method (solid lines) and EMA (circles) when graphene layers 

are unbiased, i.e., c   0 eV. 

The transmission peak for normal incidence occurs when the effective t   is near unity (matched 

to the free space, where the losses are negligible) for c   0 eV at ≈ 8 THz (reported in Fig. 3.5) 

and for c  0.4 eV at ~ 33 THz (reported in Fig. 3.6); this is in accordance with the effective t   

plotted in Fig. 3.2(a). It is clear that changing the chemical potential of the graphene layers offers 

great tunability and possibility to control the transmission peak and spectrum. EMA is a good tool 

to describe plane wave interaction with a graphene-dielectric multilayer thin film, for small 
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dielectric thickness d. In order to explore the validity of EMA for thicker dielectric spacers, we 

report in Fig. 3.7 the reflection and transmission coefficients for 10 layers of graphene-dielectric 

layers with varying thickness d, at 10 THz, assuming c   0.4 eV. It is shown that EMA yields a 

noticeable deviation from transfer matrix calculations when d > 0.2λ0. Note that in Fig. 3.7 the 

transition from hyperbolic to elliptic dispersion occurs at d = 0.02λ0, which implies 0t   . 

 

Fig. 3.6 Reflection and transmission versus frequency, for the same 
set of parameters as Fig. 3.5, except that now graphene layers are 
biased with c   0.4 eV. 

In particular, these results show two remarkable facts: (i) EMA agrees well with transfer 

matrix calculations for a wide range of frequencies and dielectric thicknesses, (ii) 

transmission and reflection by the graphene-based multilayered structure can be effectively 

tuned by electrostatic biasing. It is evident that graphene layers despite controlling 
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transmission with such small thicknesses, at the same time can be designed to be almost 

transparent to plane wave excitation [32]. 

 

Fig. 3.7 Reflection and transmission of a 30° TMz wave from a 10 layer 
graphene-dielectric stack at 10 THz with variable spacer d, based on 
transfer matrix (solid lines) and EMA (circles). 

In this Section we have investigated reflection and transmission, and how this is predicted 

by EMA, for an incident plane wave, however a source or scatterer near the HM interface is 

able to generate a very wide spatial spectrum of plane waves, including the spectrum with 

0tk k  , which would be evanescent in free space. In the next Section we show how this wide 

spectrum is able to propagate inside the HM, similarly to what was done in [3] for a HM at 

optical frequencies made of dielectric and metallic layers. 

Sec. 3.4 Enhancement of Emitted Power by an Impressed Dipole on the Surface of 

Graphene-based Hyperbolic Metamaterial 

We investigate the power emitted by a transverse dipole located at a distance h above the 

graphene-silica multilayered HM as depicted in Fig. 3.8(a), over a silicon substrate 

(sufficiently thick to be assumed infinitely long, with relative permittivity Si 11.7  ). We 

assume here a unit cell of the HM consisting of a 0.1-μm thick silica layer stacked with a sheet 
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of graphene sheet on top. We calculate the power emitted by the transverse dipole located 

at z = 0 as in Fig. 3.8(a), by using the spatial spectral formalism of TEz and TMz waves as 

outlined in [1]. The total power tot up downP P P   emitted by the transverse dipole illustrated 

in Fig. 3.8 is decomposed into the power terms directed toward the +z and −z directions (

upP  and downP , respectively) that are found by the spectral integrals 

  
22

TE TM
up,down up,down up,down0

,
8

t
tP p p dk






 

p
  (3.14) 

and  tp k  is the spectral power either in the “up” or “down” direction, with transverse 

wavenumber tk  and tp   is magnitude of the transverse electric dipole moment. The spectral 

power  TE,TM
up,down tp k  can be written as 

  
  

 

TE,TM*
up,downTE,TM
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Re
.

t

t t

t

Y k
p k k

Y k

   (3.15) 

Here Y represents the equivalent admittance of TEz/TMz waves seen at the location of the 

dipole either toward free space or toward the HM (indicated by the subscripts “up” and 

“down”, respectively), whereas tot up downY Y Y  , and “*” denotes the complex conjugate. In 

particular, for what concerns free space (up), the terms TE,TM
upY are straightforwardly the TEz 

and TMz wave admittances in free space given by  TE
up 0 0/Y   , and  TM

up 0 0/Y  

where 2 2
0 0 tk k    is the wavenumber along the z axis in free space. The calculation of the 

admittance downY , for either TEz or TMz waves, is done by translating HM,NY which is the 

https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-21-6-7614&id=251556#ref1
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admittance toward −z direction, shown in Fig. 3.8(b), evaluated at the surface of HM (at

z h   ), to z = 0 by the simple formula 

 
   

   
0 0 0 HM,

down 0
0 0 0 HM,

sin cos
.

cos sin

N

N

jY h h Y
Y Y

Y h j h Y

 

 





  (3.16) 

The calculation of HM,NY  (see Fig. 3.8), for either TEz or TMz waves, is done by using the 

transfer matrix of N unit cells, and representing the silicon substrate at the bottom with a 

TEz/TMz wave admittance, as detailed in Appendix B. When using EMA, the multilayer 

structure is treated as an anisotropic dielectric with relative permittivity in Eq. (3.2). In Fig. 

3.9 and Fig. 3.10 (for c   0 eV and c   0.4 eV, respectively, and assuming a dipole distance 

h = 2 μm) we report two power ratios aiming at showing their enhancement: (i) the total 

power tot up downP P P   emitted by the dipole normalized by the power emitted by the same 

dipole in free space free spaceP ; (ii) the ratio of the power directed downward to the HM, downP

, and the power directed into the upper free space, upP , for four different cases where the 

number of graphene sheets is changed as N = 1, 3, 10 and N → ∞, as well as for a transverse 

dipole at a distance h above a silicon substrate (dashed lines) for comparison purposes. 
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Fig. 3.8 (a) Dipole near-field emission over a finite thickness 
multilayer graphene HM over of a substrate, and (b) the its transverse 
equivalent network (TEN) for every spectral wave (both TEz and 
TMz). 

The ratio tot free space/P P  also represents the increase of the local density of states (LDOS) 

with respect to LDOS at a point in free space [5, 50, 54], and this is also referred to as Purcell 

effect [6, 24]. We model the HM with thickness Nd via both the more accurate transfer matrix 

method (denoted by lines in the figure) and EMA (denoted by circles), and provide the 

results in Fig. 3.9(a) and (b) for unbiased graphene ( c   0 eV), and in Fig. 3.10 for biased 

graphene ( c   0.4 eV). In Fig. 3.9 one can observe that, at the lowest frequency 0.1 THz, 

there is a clear trend showing that when the number of layers (N) increases the ratio 

down up/P P  also increases from ~ 106 up to ~ 2.7 × 108, when using calculations based on the 

transfer matrix method. Moreover, in the lower frequency range, EMA overestimates 

down up/P P  by almost one order of magnitude, as also discussed in [3] for a different HM 

configuration; however, as the frequency increases EMA and the transfer matrix method 

agree well. In Fig. 3.9(b), we observe the same disagreement of the transfer matrix 

calculations and EMA at lower frequencies, and it is clearly seen that the normalized emitted 
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power ( tot free space/P P ) is 34 10  at the lowest frequency 0.1 THz and drops linearly as the 

frequency increases. down up/P P  exhibits a very sharp drop for N = 1 after around 1 THz, for 

N = 3 after about 2 THz, for N = 10 after 4 THz, and for N → ∞ after 6 THz (note that the 

hyperbolic to elliptic dispersion curve transformation occurs at 6.6 THz when c   0 eV 

obtained via EMA, see Fig. 3.2, in very good agreement with the N → ∞ case).  

 

Fig. 3.9 (a) Ratio between power emitted in the lower space with the 

one in the upper space, down up/P P , and (b) the ratio tot free space/P P  

related to the transverse dipole located near the interface of free 
space and graphene-based HM made by N graphene layers on top of 
Si substrate. Calculations done via multilayer transfer matrix method 

(lines) and via EMA (markers) when chemical potential is c   0 eV. 
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Fig. 3.10 (a) Ratio down up/P P  and (b) ratio tot free space/P P  for the same 

set of parameters in Fig. 3.9, but when chemical potential is c   0.4 

eV. 

When the chemical potential is increased to c   0.4 eV, the “transverse” permittivity ε′t 

decreases to further negative values and the frequency of hyperbolic to elliptic dispersion 

curve transformation shifts from 6.6 THz ( c   0 eV) to 24.6 THz ( c   0.4 eV). In Fig. 

3.10(a), at lower frequencies one can observe that down up/P P  is increased by one order of 

magnitude for all cases whereas tot free space/P P  decreases by almost one order of magnitude 

when compared to the case with c   0 eV. Moreover the frequency where tot free space/P P  
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exhibits a sharp decrease shifts to a higher frequency when the chemical potential is 

increased to 0.4 eV in agreement with the change in the frequency of hyperbolic to elliptic 

dispersion curve transformation, as illustrated from Fig. 3.4(c). As seen in Fig. 3.10(a) and 

(b) both the enhancement of emitted power and the ratio of power directed to the  –z 

direction are much larger than the Si-substrate case for a wide frequency band (1–6 THz) in 

the presence of graphene-dielectric. The interesting features in Fig. 3.9 and Fig. 3.10 are 

related to the power spectrum in Eq. (3.15), which is described in the following. 

We report the emitted power spectrum for TMz waves (solid lines), 

     TM TM TM
up downt t tp k p k p k  , versus normalized transverse wavenumber /tk d   at 0.1 

in Fig. 3.11(a) and 3 THz in Fig. 3.11(b), varying the number of graphene-dielectric layers 

assuming c   0 eV, and for a better visualization we provide Fig. 3.11(a) and (b) in both 

logarithmic and linear scales for the horizontal axis, in the left and right panels, respectively. 

For comparison we also show the power spectrum      TE TE TE
up downt t tp k p k p k   for N =1 

and N → ∞ (dashed lines). At these two frequencies the composite multilayer exhibits 

hyperbolic dispersion for TMz waves and propagation inside the HM occurs for 0t dk k . 

We observe in Fig. 3.11(b) that in the high kt spectrum, there are a larger number of spectral 

peaks when N increases; eventually yielding a continuous distribution of large spectral 

intensities when N → ∞. This explain the advantage of having a large number of layers. 

Moreover when N → ∞, one can notice that the power spectrum starts to rise strongly after 

0t dk k , in agreement with the propagating spectrum’s lower limit in the hyperbolic 

dispersion diagrams in Fig. 3.4. We would like to emphasize that plots in linear scale in Fig. 
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3.11 clearly show that the propagating power spectrum in the large tk  region is very wide 

and therefore it strongly contributes to the spectral integral in Eq. (3.14). Note that the upper 

limit of the power spectrum, cut-off at ,maxtk , can be determined by evaluating the 

evanescent decay in free space between the dipole at z = 0 and the surface of the composite 

material at z = −h, given by  2 2
0exp tk k h  . For example, by setting  2 2

0exp tk k h    , 

where   is a predetermined small number, we can consider the power spectrum negligible 

when ,maxt tk k . It is important to note that for h ≪ λ0 this upper wavenumber limit ,maxtk  

is independent of the operating frequency when ,maxt tk k , because in this case 

   2 2
,max 0 ,maxexp expt tk k h k h    . These considerations explain why all spectral curves 

decay with very similar profile for very large tk  and therefore it is imposed mainly by the 

dipole distance h, for both frequencies examined in Fig. 3.11(a) and (b), i.e., at 0.1 and 3 THz. 
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Fig. 3.11 Emitted power spectrum      TM TM TM
up downt t tp k p k p k   in 

Eq. (3.15), solid lines, versus normalized traverse wavenumber 

/tk d   at (a) 0.1 THz, and (b) 3 THz, for different number of 

graphene-dielectric layers:N = 1, 10, and N → ∞. For comparison we 

also show the power spectrum      TE TE TE
up downt t tp k p k p k   for N 

=1 and N → ∞ (dashed lines). The points A, B, and C denote the 

spectrum points 0 /k d  , 0 /d k d  , and Si 0 /k d  , respectively. 

Left panel plots have a horizontal logarithmic scale whereas right 
panel plots have a horizontal linear scale. 

At low frequency, in Fig. 3.11(a) all curves with different N, tend to exhibit the same 

behavior at the large tk  in particular when   2/ 10tk d   . The reason of this low frequency 
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property, that does not occur at higher frequency in Fig. 3.11(b), is explained as follows. 

Propagation inside such multilayer stack consists in strong evanescent coupling between 

adjacent graphene sheets [23, 32], that is approximately proportional to  2 2
0exp t dk k d 

. Considering now the large tk  region where the power spectrum  TM
tp k  is intense in Fig. 

3.11(a), the exponential interlayer decay becomes stronger, at fixed tk , when the frequency 

decreases (i.e., when 2
0d k  decreases). Thus, at low frequencies, less power is coupled to 

lower graphene layers, whereas most of the power is coupled to losses in the first graphene 

sheet closest to the dipole, implying that the number of layers becomes less effective on the 

power spectrum for large tk  and hence on the total emitted power integral in Eq. (3.14). For 

example, the case with 0.1 THz in Fig. 3.11(a), the total TMz power emitted by the dipole is 

dominated by the wide power spectrum region  3
,max5 10 / t td k k     which is weakly 

dependent on the number of layers. Under this low frequency condition, we observe that the 

total TMz emitted power becomes proportional to 2 , independently on the number of 

layers, in agreement with the findings in [21] for a single graphene layer. A similar trend 

occurs for the power emitted as TEz waves at these lower frequencies, though it is several 

orders of magnitude weaker than TMz cases for large kt (see the dashed curves in Fig. 3.11). 

Note that, instead, the free space emitted power by a dipole  4 2
0 / 12t c  p  is proportional 

to 4 . Comparing the low frequency trends of the power emitted in free space with the one 

in presence of the HM one can explain the strong increase of the power ratio 

  2
tot free space/P P   in Fig. 3.10(b) as frequency decreases. 
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It is also important to provide a physical insight into the effect of the distance h on the 

power emitted by the impressed transverse dipole. In Fig. 3.12, we provide the plots of 

tot free space/P P  and down up/P P  at 2 THz versus the dipole’s distance h for the semi-infinitely 

periodic (N → ∞) graphene-dielectric multilayered structure with c   0 eV and c   0.4 

eV, obtained both via EMA (markers) and the transfer matrix method (lines). In Fig. 3.12(a) 

and (b) we report the power ratios down up/P P  and tot free space/P P  for both HMg and HMd 

configurations, denoting a HM with graphene (HMg) and dielectric (HMd) as topmost layer, 

respectively [3,49]. We notice that the responses of both HMg and HMd configurations are 

very similar while the HMg has a slightly larger down up/P P  and tot free space/P P  for smaller h, 

in agreement with the observations in [49]. For the smallest reported distance h = 0.2 μm, 

the emitted power ( tot free space/P P ) and down up/P P  are maximum. However, for small h, EMA 

overestimates the reported parameters by one to two orders of magnitude for small h, as 

demonstrated in [49], whereas for h > 1 μm both methods agree well at the given frequency. 

Using the transfer matrix method we find the maximum ratio down up/P P  ≈ 2 × 106 when c 

0 eV, and it decreases to down up/P P  ≈ 5 × 105 as a result of increasing TM
downY  when t    

possesses more negative values. A similar change is also observed such that the maximum 

ratio tot free space/P P  becomes ≈ 2×104 when c   0 eV, and it decreases to 

2
tot free space/ 4 10P P    when c   0.4 eV. The total emitted power decreases as the distance 

h increases, due to the stronger evanescent decay of high tk  spectrum. However, since the 

distance h is subwavelength, still a lot of power is able to couple into the HM. The power ratio 
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down up/P P  also exhibits a decrease with increasing h showing the key role of the coupling of 

the evanescent spectrum in free space to the propagating spectrum in the HM. We finally 

note from the observations in Fig. 3.12 that the accuracy of EMA is influenced by changing 

the values of c , implying the effect of t  on EMA’s validity. 

 

Fig. 3.12 (a) Ratio down up/P P  and (b) ratio tot free space/P P  related to the 

transverse dipole located near the interface of free space and a semi-
infinite graphene-based HM at 2 THz plotted versus dipole distance h, 

for different chemical potential c  values obtained via transfer matrix 

method (lines) and EMA (markers). 

In summary, we have shown that the power emitted by a dipolar source in the proximity 

of a graphene-based HM is strongly enhanced, and that it can be effectively tuned by 

electrostatically biasing the graphene sheets, which makes this HM a promising candidate 

for tunable applications in the far-infrared frequencies. 

Sec. 3.5 Conclusion 

We have investigated a novel design of HM for far-infrared frequencies based on graphene 

layers. The multilayer structure has been analyzed using EMA which, based on a permittivity 
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homogenization model, predicts the HM features at far-infrared frequencies. We have 

quantitatively shown the capability of tuning the composite material properties via chemical 

potential of graphene. We have investigated plane wave interaction with a thin film made by 

few graphene sheets, and showed how the transmission frequency spectrum can be tuned. 

We have assessed the validity of EMA for both plane wave incidence and near-field radiation 

from a dipole, and we have shown that under certain conditions EMA is in good agreement 

with the transfer matrix analysis. In the last part of the chapter, we have shown that a very 

wide spatial spectrum emitted by an electric dipole is allowed to couple into the graphene-

based HM, that would be otherwise evanescent in free space. This generates two interesting 

main features: (i) the power emitted by the dipole is strongly enhanced (up to several orders 

of magnitude) by the presence of the graphene-based HM, and (ii) most of the power is 

directed into the HM, also for relative subwavelength HM thicknesses realized with only a 

few graphene sheets. These properties seem to enable the use of this tunable graphene-

based HM to efficiently absorb mm-waves and terahertz frequencies, and give rise to other 

possible applications including super resolution lenses. 

Appendix A Derivation Steps Regarding Transfer Matrix Method 

The transfer matrix [Tunit] of a unit cell composed of a graphene sheet (modeled as a 

lumped shunt complex admittance sY  ) and a dielectric layer of thickness d (modeled as 

a transmission line) for TEz/TMz waves can be written as (assuming time-harmonic fields of 

the form j te   ) 
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  (3.17) 

where 2 2
0d d tk k    is wavenumber along the z axis inside the dielectric, and for TEz and 

TMz waves: TE
0 /d dZ    and TM

0/d d dZ    , respectively. We are interested in 

determining the Bloch wavenumber kz in the z-direction, that describes layer to layer 

propagation. Following the simple procedure in [48], the wavevector dispersion relation can 

be obtained from the solution of the eigenvalue problem    unitT I 0zjk d
e


  , where [I] is 

the identity matrix. This leads to the simple dispersion relation in Eq. (3.6). 

Appendix B Calculation of the Admittance Toward Hyperbolic Metamaterial 

The calculation of the admittance looking toward the −z direction HM,NY  (see Fig. 3.8) can 

be straightforwardly carried out by constructing the transfer matrix of the HM film made of 

N unit cells [TN], between the bottom-most material, i.e., the silicon substrate at z = −(Nd + 

h), and the surface of HM at z = −h. By knowing the transfer matrix of the unit cell [Tunit], 

given in Eq. (3.17), one has 

    unitT T .
NN N

N
N N

A B

C D

 
  
 

  (3.18) 



72 
 

Then HM,NY  is evaluated using the entries of the transfer matrix [TN] and the wave 

admittance inside silicon substrate, Ysubs, as 

 subs
HM,

subs

,N N
N

N N

C D Y
Y

A B Y





  (3.19) 

where  TE
subs subs 0/Y    and TM

subs subs 0 subs/Y     are the TEz and TMz wave impedances 

in the substrate, 2 2
subs subs 0 tk k    is the z-directed wavenumber, and subs Si   is the 

relative permittivity of silicon. When we consider the semi-infinite case, N → ∞, the 

admittance HM,NY  becomes the Bloch admittance BlochY  of the periodic multilayer evaluated 

using the unit cell’s transfer matrix entries in Eq. (3.17) as 

 
 

2
unit unit unit unit

Bloch
unit

4
.

2

A D A D
Y

B

   



  (3.20) 

Here one should pick the root of BlochY  such that  BlochRe 0Y  , representing waves that 

carry power in the −z direction. 
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CHAPTER 4 

 

WIDEBAND PLANAR TRANSMISSION 

LINE HYPERBOLIC METAMATERIAL 

4. Wideband planar transmission line hyperbolic metamaterial 

 Motivation 

The analysis here is presented both theoretically and experimentally pertaining to the 

subwavelength focusing by using a planar hyperbolic metamaterial (HM) at microwave 

frequencies. The proposed HM consists of microstrip transmission lines loaded by lumped 

components and exhibits a very flat wavevector iso-frequency dispersion diagram, over a 

wide frequency range, and thus able to transport spectral component with large 

wavenumbers. This flatness is here exploited to provide subwavelength focusing with a full 

width half maximum (3 dB power width) of about / 31gλ  and /19gλ  at 0.5 and 1 GHz, 

respectively, where gλ  is the guided wavelength in the transmission line (TL) microtrip grid. 

Numerical simulation results are in good agreement with the measurement ones. Moreover, 

the investigations regarding the capability of the proposed HM to resolve sources with 

subwavelength distance of about / 6gλ  and / 3gλ  at 0.5 and 1 GHz, respectively, are 

presented. 
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The resolution of a conventional lens is limited by the Abbe diffraction limit [1] that 

imposes a maximum resolution of ( )0 / 2d nλ= , with 0λ  the free-space wavelength and n the 

refractive index of the medium. This limitation rises from the fact that conventional lenses 

cannot transfer the evanescent spectrum emitted by a source, which is essential to 

reconstruct subwavelength information [2]. In other words, to overcome the diffraction limit 

one should transfer a very wide spatial spectrum of waves, including both propagating and 

evanescent components. The propagating (evanescent) spectrum includes all the spatial 

spectral components with transverse (to the lens axis) wavenumber tk  smaller (larger) than 

0k n , where 0 02 /k π λ=  is the free space wavenumber.  

Transfer of both propagating and evanescent spectra has been achieved through the use 

of negative refractive index (NRI) materials. The “perfect lens” introduced by Pendry in [3] 

is a direct example of the fact that a slab of NRI material is able to amplify the evanescent 

spectral components emitted by a source, in addition to provide the standard focusing of the 

propagating spectrum. A NRI slab is thus able to compensate the evanescent decay in free 

space, overcoming the diffraction limit. However, the performance of a perfect lens is largely 

diminished by the presence of losses as outlined in [4, 5]. Transmission line (TL) 

implementations of Pendry's lens have been reported in [6-9], where the NRI medium has 

been achieved via a periodically LC-loaded transmission line medium. The authors of [6-9] 

have demonstrated sub-diffraction focusing whose resolution limit is imposed by the 

periodicity of the implemented metamaterial NRI lens. 

Another way of transferring both propagating and evanescent spectra is by using wire 

media [10-12], photonic crystals [13], and metal-dielectric multilayers [14-17] without 
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involving the use of negative refraction or amplification of evanescent spectral components. 

All the artificial materials mentioned above support the propagation of a wide spatial 

spectrum of waves generated by one or more scatterers in their vicinity, otherwise 

evanescent in free space, due to the presence of a hyperbolic dispersion (see for example 

[16] for more details). In the following, such artificial materials are referred to as hyperbolic 

metamaterials (HMs). It has been shown in [10, 13, 14, 17, 18] that when these media possess 

a flat dispersion relation, in a regime referred to as canalization regime, they can be used to 

obtain subwavelength focusing. In other words, the canalization regime occurs when a wide 

spatial spectrum is allowed to propagate with almost the same phase constant inside the 

artificial medium. It is this peculiar regime that the proposed designs are going to exploit in 

two dimensional (2D) TL HM implementations for subwavelength focusing purposes. It is 

noted that, to the authors’ knowledge, the use of very flat dispersion diagrams in 2D TL HMs 

to achieve subwavelength focusing has not been demonstrated before. 

In alternative to the canalization regime here investigated, in the 2D TL HM scenario, a 

LC-loaded TL grid capable of forming “resonance cones” [19, 20] has been experimentally 

demonstrated in [19] to achieve subwavelength focusing. Also unloaded TL grids with 

unequal periods along the principal directions, creating anisotropy, have been proven to 

support hyperbolic dispersion [21]. There, by interfacing two identical HMs, but one with 

90-degree rotation, negative refraction and subwavelength focusing have been achieved. In 

[22], the use of periodic circuits with unit cells comprising series capacitor or inductor in 

orthogonal directions led to extraordinary reflection and refraction phenomena including 

negative refraction. 
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Very recently, another experimental realization of HMs using 2D TLs made of lumped 

capacitors and inductors has been reported in [23], with the goal of classifying the different 

configurations that lead to hyperbolic dispersion, however without dealing with 

subwavelength focusing  or with very flat dispersion.  

In this chapter, a planar TL HM with very flat dispersion is utilized and it allows the 

subwavelength focusing by means of the above mentioned canalization regime. The flatness 

of the HM dispersion curve is easy to design and realize experimentally in a 2D TL grid, and 

this is a great motivation of our analysis. It is thus demonstrated theoretically and 

experimentally that the subwavelength focusing capabilities can be obtained by a HM with 

extremely flat dispersion diagram over a wide frequency range implemented by using loaded 

microstrip TLs. The wide frequency range of operation, without the change of focus location, 

constitutes the main advantage of the proposed design when compared to previous 

literature. 



81 

 

 

Fig. 4.1 (a) Schematic of the two-dimensional periodic transmission 

line implementation of HM; (b) a close-up view of the schematic in (a); 

(c) illustration of the HM region unit cell; (d) the network 

representation of the HM region unit cell. Note that in the unit cell 

choice in (d), each microstrip segment is loaded by twice the 

capacitance in the relative direction. 

The outline of the chapter is as follows. In Sec. 4.2 the theoretical model is constructed 

and it is required to calculate the wavenumber dispersion diagram in the planar HM 

implemented via TLs. Both Bloch theory and homogenization theory are employed, and the 

comparisons of two methods are presented. The developed model is then adopted to design 

a HM with very flat iso-frequency dispersion diagram used in the subsequent sections. The 

proposed finite structure with HM is simulated in Sec. 4.3 using a microwave circuit 

simulation package [Agilent Advanced Design System (ADS)], and it is shown to exhibit 

subwavelength focusing capabilities. It is also shown that the HM allows for the 
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discrimination of two sources with subwavelength relative distance. Sec. 4.4 documents the 

fabricated proposed HM design and experimental results exhibiting subwavelength focusing 

capabilities, in good agreement with simulation results. The required steps to achieve the 

iso-frequency dispersion diagrams according to both Bloch theory and homogenization 

theory are reported in Appendix A and B, respectively. 

  Hyperbolic Dispersion Diagrams in HMs Implemented via Planar 

Transmission Lines 

4.2.1 Analytical Model 

The 2D microstrip TL grid implementation here proposed for subwavelength focusing 

and resolution is illustrated in Fig. 4.1. The upper 2D “isotropic region”, referred to as 

background medium [light blue in Fig. 4.1(a-b)], is made by a 2D microstrip TL grid with 

square unit cells. The lower HM region [light brown in Fig. 4.1(a-b)] is realized by 

periodically loaded (by series lumped capacitors) microstrip lines, whose unit cell is shown 

in Fig. 4.1(c). In the following, consider a square unit cell with period d along the x and z axes. 

The infinitely periodic representation of the HM design in Fig. 4.1(c) is here studied by using 

Bloch theory, following the formulation presented in [8]. The HM dispersion relation of the 

z-component of the wavevector zk  versus the x-component of the wavevector xk  is given by 

(see Appendix A for more details) 

 

22

0

sinsin
22

2 sin 0
2

xz

z x

k dk d

d
j Y

B B

β
  

   
    + + = 
 

  (4.1) 

where 



83 

 

 ,
0

,

1
sin cos

2 2 2

x z

x z

d d
B jZ

j C

β β

ω

   
= +   

   
  (4.2) 

The coefficients ,x z
B  are the "B" entries of the ABCD matrices of the microstrip branches 

of length / 2d  along the x and z axes in the unit cell that are loaded by capacitors xC  and zC

, respectively, as illustrated in Fig. 4.1(c,d). Furthermore, 0 dis dis/Z L C=  and 

dis disL Cβ ω=  are the characteristic impedance and the propagation constant of the 

microstrip lines used in the grid implementation, respectively, where dis [H/m]L  and 

dis [F/m]C  are the distributed (per-unit-length) inductance and capacitance of the microstrip 

line (for simplicity here it is  assumed that TL segments along x and z are identical). As shown 

in Appendix B, in the particular case of TL-grid period much smaller than the guided 

wavelength in the HM (i.e., , 1x zk d ≪ ) and the microstip TL (i.e., 1dβ ≪ ), the dispersion 

relation in (4.1) can be simplified to 
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= − = − =   (4.4) 

Equation (4.3) is the wavevector dispersion relation in an effective homogeneous material 

with anisotropic (absolute) magnetic permeability represented by the diagonal tensor 

ˆ ˆ ˆˆx zµ µ= +μ xx zz  and the absolute effective permittivity ε .  
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Fig. 4.2 (a) Relative permeability , 0/x zµ µ  versus capacitance ,z xC  

calculated by the homogenized medium approach (4) for various 

frequency values. The inset shows the region of small , 0/x zµ µ  where 

zero crossing occurs. 

Based on (4.4), one can realize a positive xµ  and a negative zµ  or, vice versa, a positive 

zµ  and a negative xµ , by proper loading the 2D microstrip line with capacitors xC   and zC . 

To show this feature, plots show the relative permeabilities , 0x zµ µ  versus ,z xC  in Fig. 4.2 

(where 0µ  and 0ε  are the free space absolute permeability and permittivity, respectively) 

for different frequencies, assuming 1.5mm-wide microstrip lines on top of a grounded 

dielectric substrate (i.e., FR4) with relative permittivity FR4 4.5ε =  and thickness 

0.76 mmh = , and square unit cells with d = 1 cm. This microstrip line is modeled by the 

distributed inductance dis 298nH/mL =  and capacitance dis 127pF/mC =  leading to the 

characteristic impedance 0 48.4Z = Ω . Under these assumptions, the background region 

(comprising the unloaded TL grid) corresponds to an effective isotropic medium with 

relative permeability 0/ 0.237bµ µ ≈  and relative permittivity 0/ 28.7bε ε ≈  (where the 
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subscript “b” stands for “background”). One can see from  that depending on the adopted 

capacitances ,z xC , the relative permeabilities , 0x zµ µ  cross zero for different capacitance 

values depending on the frequency. For any frequency, there is a capacitance value resC   

 
2

dis

1
resC

L dω
=   (4.5) 

responsible for a series resonance of the loaded microstrip branch (for example, 8.5pFresC =  

at 1 GHz). When  ,z x resC C<  at a given frequency, the relative permeability is negative and 

has a steep behavior, i.e., it varies largely with small capacitance variations. On the contrary, 

for capacitance values ,z x resC C> , the relative permeability , 0x zµ µ  changes rather slowly 

and it approaches the unloaded microstrip line’s permeability 0bµ µ  as ,z xC → ∞ , as the 

inset in Fig. 4.2 shows.  

A hyperbolic dispersion diagram is obtained only when the ratio /z xµ µ  is negative, as 

dictated by (4.3), i.e., when one of the two conditions is verified: 

 orx res z z res xC C C C C C< < < <   (4.6) 

where the first or second condition corresponds to HM with either zµ  or  xµ   negative value. 

The rest is carried on by assuming the condition x res zC C C< <   (i.e., 0zµ < , 0xµ > ) as it 

leads to a canalization regime. It is also stressed that the frequency band of canalization is 

intimately related to the chosen capacitance values: the low (high) frequency edge is 

determined by zC  ( xC ) as for lower (higher) frequencies resC  increases (decreases) in view 

of (5). Thus, the condition  x res zC C C< <  may be satisfied only for a wide though limited 
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frequency band. To outline a design procedure, it is noted that a large ratio /z xµ µ  is 

determined by either having zµ  large or xµ small, or both at the same time. It is observed 

that a very small xµ  (governed by zC ) cannot be achieved in a wide frequency band. For this 

reason, it will be assumed that in the experimental verification there is the condition x bµ µ≈

, realizable over a wide band, achieved with zC → ∞   (i.e., large), whereas zµ  large and 

negative can be easily achieved in a large frequency band by selecting a proper xC , as it will 

be illustrated next (for the sake of knowledge, start by assuming a finite value for zC ). 

Table 4.1 Permeability ratios for four representative cases of 

capacitances xC  at 1 GHz for the HM under investigation when  

13.5 pFzC = ( 00.0877xµ µ= )  

Case 
xC  

/z xµ µ  

A 0.005 pF −4600 

B 1.5 pF −12.6 

C 4.6 pF −2.30 

D 6 pF −1.13 

 

By properly choosing the series loading capacitors for the HM TL region, one can then 

achieve different hyperbolic dispersion curves, including extremely flat ones. To stress this 

capability, in Fig. 4.3 the four representative cases of xC  summarized in Table I at 1 GHz are 



87 

 

analyzed under the assumption 13.5 pFzC =  ( 00.0877xµ µ= ), considering that for these 

cases 8.5 pFresC ≈ .  

In Fig. 4.3 one finds the normalized dispersion diagrams by using (4.1) based on Bloch 

theory, and by using (4.3) based on homogenization theory. The plots show that the 

dispersion diagram evolves from a flat curve (Case A) to a steep hyperbola (Case D). In 

particular, Case A is characterized by a xC  smaller than the other cases, thus exhibiting a 

negative zµ  and / 4600z xµ µ ≈  much larger than the other three cases. Case D is instead 

characterized by a xC  larger than the other cases, still satisfying  x resC C<  and thus still 

exhibiting HM with a negative zµ  and / 0.535z xµ µ ≈ , smaller than the other three cases. 

Accordingly, when keeping both zC  and frequency constant, a smaller xC  is required to 

achieve a very flat dispersion curve. In turn the very flat dispersion curve assures that spatial 

spectral components with any xk  generated by a source at the interface of the HM region are 

able to propagate inside the HM with almost the same zk , as can be ascertained by looking 

at Case A in Fig. 4.3 where for any xk , / 0.1zk d π ≈ . 
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Fig. 4.3 z xk k− wavenumber dispersion diagram at 1 GHz using Bloch 

theory (solid) and homogenization theory (dashed) of the 2D TL HM 

for (a) cases A, and B, and (b) cases C and D, described in Table I. The 

group and phase velocities are drawn to indicate the direction of 

power flow and phase propagation, respectively. The group velocity 

is along the frequency gradient of the dispersion surface, so the 

Poynting vector is normal to the dispersion surface. 

4.2.2 Proposed HM TL Design 

Both background and HM TL grids are here made of 1.5mm-wide microstrip lines above 

on a FR4 grounded dielectric substrate (the microstrip lines are as in Subsec. 4.2.1). The 

upper 12×23 unit cells represent the background medium and the bottom 11×23 unit cells 
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the HM. The unit cell dimension is 1cm×1cm ( 0.0869 0.0869g gλ λ× ), whereas the whole 

board size is 23cm×23cm ( 2 2g gλ λ× ), where 11.5 cmgλ =  is the guided wavelength in the 

background medium at 1 GHz. The microstrip line segments are the same as inSubsec. 4.2.1 

thus modeled by the same disL  and disC  values provided in Subsec. 4.2.1. The microstrips in 

the HM region are loaded in series with capacitances for achieving here a very flat dispersion 

curve.  

Consider now Case A in Table I ( 0.005pFxC = ) that exhibits a very flat dispersion diagram 

as reported in Fig. 4.3. It can be inferred from Fig. 4.2 that 0xµ µ varies from 0.0877 to 0.237 

when zC  is increased from 13.5 pF to infinity (short circuit). Also, replacing the capacitor zC  

with a short circuit decreases the ratio /z xµ µ  from 4600 to 1700 at 1 GHz and this change 

implies a slightly less flat dispersion diagram, though still much flatter than the other three 

cases in Table 4.1. Therefore, for simplicity of realization it is shown that if one increases zC   

from 13.5 pF to infinity, the z xk k−  dispersion curves remain still very flat as reported in Fig. 

4.4 (obtained by Bloch theory) at 1 GHz. Note that zk  varies due to the change in 0xµ µ ; in 

particular, /zk d π  goes from 0.1 to about 0.2. This is still good for the purpose of employing 

the canalization regime, and the choice of zC → ∞  (short circuit) eases a fabrication 

realization. Regarding xC , instead, the one reported in Table 4.1 for Case A ( 0.005pFxC = ), 

is kept which is realized simply by a 1-mm gap in the x-directed TL branches (the value of 

this gap capacitance has been verified by using the finite element method full-wave solver, 

HFSS by Ansys Inc.). It is further shown that this design is characterized by a very flat 
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dispersion diagram for a wide frequency band (0.1– 4 GHz) as reported in Fig. 4.5(a) 

(obtained by Bloch theory), where only the propagating zk  value varies from case to case. 

The obtained very flat iso-frequency dispersion diagrams imply that the reported 2D TL HM 

can be in principle used for subwavelength focusing applications with large bandwidth of 

operation. In contrast, we show in Fig. 4.5(b) the dispersion diagram at various frequencies 

for Case C. Below 0.8 GHz, both xµ  and zµ  are negative for Case C, implying that the 2D TL 

grid hosts only evanescent waves. However, above 0.8 GHz we observe hyperbolic 

dispersion because xµ  becomes positive. As the frequency increase also zµ   turns positive 

and thus the hyperbolic dispersion is lost as depicted by the dot-dashed black elliptic curve 

at 2 GHz in Fig. 4.5(b). This strengthens our choice of the flat dispersion for which we have a 

wider frequency band of operation. 

 

Fig. 4.4 z xk k− wavenumber dispersion diagram obtained by Bloch 

theory for the 2D TL HM medium versus lumped capacitance zC . 

Other design parameters are as in Case A in Fig. 4.3. 
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Fig. 4.5 z xk k−  wavenumber dispersion diagram obtained by Bloch 

theory for the 2D TL HM medium for various representative 

frequencies, for (a) Case A in Fig. 4.3, using zC → ∞(i.e., short circuit), 

and (b) Case C . Note that in (a) the curves remain flat for a wide 

frequency range, whereas in (b) the hyperbolic dispersion varies 

considerably with frequency and is even lost, becoming elliptic, for 

instance, at 2 GHz. 

4.2.3 Evaluation of Transmission Line Termination Impedances via Bloch Theory 

Due to the finite size of the designed board, the reflection from the board edges should be 

avoided in order to mimic  semi-infinite HM and background half-spaces. For this reason, the 
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TL grids (for both background and HM) need to be terminated to proper impedances. Here, 

similarly to what done in [8], the proper termination impedances are equal to the Bloch 

impedances 
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where the subscripts “x” and “z” of Z indicate the direction of the termination (i.e., xZ  is the 

Bloch impedance for terminating the transmission lines along the x direction). 

As discussed in the previous section, because of the flat dispersion diagram, all the 

spectral waves in the HM propagate with almost the same wavenumber along the z direction 

as z xk ω µ ε= . By using (4.7) and the TL parameters introduced in the previous sections, 

the HM Bloch termination is 33 Ω, which matches waves propagating along the –z direction. 

Note that since the power inside the HM is canalized mainly into the −z direction, the power 

propagating in the +/− x directions is negligible, hence we can leave the TL endings along x 

as open circuit. For the background medium, that is characterized by a circular iso-frequency 

dispersion wavenumber curve, the Bloch impedances in the x and z directions vary for any 

wavenumber pair ( , )x zk k , i.e., with the angle of propagation. Based on the background 

medium dimensions, the waves excited at the center of the board, that are, in turn, incident 

on the three edges of the upper background region in Fig. 4.1, have an angle of incidence 

between 0° and 45°. This in turn means that the ratio  ,x z bk k , with 

2b b b dis disk L Cω µ ε ω= = , changes between 0 and 1 2 . Thus, using (4.7) and the TL 

parameters from the previous section, the Bloch impedances in the z and x direction change 
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from a minimum of 29 Ω, for , / 0x z bk k =  to a maximum of 42 Ω for , / 1/ 2x z bk k =  . For 

simplicity we chose to terminate all TLs in the background part with a constant resistance of 

33 Ω. A detailed analysis of this choice has been carried out proving that this constant 

termination impedance causes negligible reflection from the boundaries (not reported here 

for brevity) and this does not hinder the subwavelength focusing capabilities. 

 Numerical Simulations of Subwavelength Focusing and Resolution 

We use a microwave circuit simulator (Agilent’s Advanced Design System, ADS) to 

simulate the design discussed in Subsecs. 4.2.2 and 4.2.3. A shunt voltage source is exerted 

between the ground and the TL grid at the center of the interface between the background 

and the HM, as illustrated in Fig. 4.1(b). The voltage of the nodes (intersection points of 

microstrip lines along x and z) toward the ground, in the case of a single voltage source 

excitation at 1 GHz, is shown in Fig. 4.6(a). The color of each square represents the node 

voltage (in dB) of the board normalized with respect to the maximum voltage in the board, 

which occurs to be the voltage of the closest node to the source on the HM side. The 

canalization regime is clearly observed in Fig. 4.6(a). We also report the normalized node 

voltages versus the cell number along x, at the interface between the HM and the background, 

at the top (background) edge, and at the bottom (HM) edge in Fig. 4.6(b, c), at 0.5 and 1 GHz, 

respectively. These plots show that the voltage profile along the HM–background interface 

is transferred to the bottom edge of the HM region with almost the same pattern, indicating 

that the HM is able to transport all the large wavenumber spectral components generated by 

the voltage source. Instead, the voltage profile at the top egde of the background region (the 

isotropic region) shows that focusing is lost because waves with large spectral wavenumbers 
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are evanescent and thus do not propagate away from the source. In summary, the source 

information in free space is lost due to evanescent decay, whereas it is kept in the HM 

because waves with large wavenumbers are propagating in the HM. We annotate the full 

width half maximum (FWHM) by arrows and the result in Fig. 4.6(b, c) clearly shows that 

subwavelength focusing with FWHM of / 31gλ  and /19gλ  at 0.5 and 1 GHz is achieved, 

respectively. 

Next, we consider the case of two point sources with subwavelength distance of 4 cm 

(equal to / 6gλ  and / 3gλ  at 0.5 and 1 GHz, respectively) to verify the potential of 

subwavelength resolution. Fig. 4.6(d) shows the voltage color map of the case with two 

voltage sources, and we show that the voltage of each source is clearly canalized in the HM. 

Moreover the normalized voltage profiles at the interface, top edge, and bottom edge of the 

background and HM media are reported in Fig. 4.6(e, f), at 0.5 and 1 GHz, respectively. It can 

be seen that the peaks of the two sources are clearly resolved and a resolution of sources 

with an inter-distance of at least / 6gλ   at 0.5 GHz and / 3gλ  at 1 GHz is achieved. 
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Fig. 4.6 The simulated voltage magnitude distribution, normalized by 

the maximum voltage maxV on the designed board, at 1 GHz for (a) one 

and (d) two excitation point sources.  Normalized voltage magnitude 

at the interface, top and bottom boundary of the structure for (b) one 

point source at 0.5 GHz, (c) one point source at 1 GHz, (e) two point 

sources at 0.5 GHz, and (f) two point sources at 1 GHz. 

 Measurement Results of Subwavelength Focusing 

In this section we elaborate on the fabrication and measurement of the design whose 

specifications and simulation results were provided in Secs. II and III. For implementation 

purposes, we used a TL grid printed with placement pads left for surface mounted devices 

(SMDs). The fabricated circuit board with FR4 grounded dielectric substrate is depicted in 

Fig. 4.7. We used 0 Ω SMD resistors in the z direction for realization of zC → ∞ , whereas the 

microstrip gap capacitance on the SMD placement pads were sufficient along the x direction 

to achieve the designed capacitance value of 0.005 pFxC =  in Case A in Table I and Fig. 4.5 
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(designed to achieve a very flat wavenumber dispersion diagram). At the center of the board, 

a SMA connector is mounted from the bottom side and is connected to one port of the vector 

network analyzer (VNA, Rhode Schwarz ZVA67). The second port of the VNA is connected to 

an in-house built probe (which is a modified SMA edge-mount connector with two points of 

contact, one for ground and one for signal to ensure low-resistance contacts across the 

termination resistors). Then S21 is recorded along the HM (bottom) and the background (top) 

edges by sampling S21 for each termination resistor. Note that all the termination resistors 

have the same value of 33 Ω, therefore S21 values are indicative of the voltage along the edges. 

We first start discussing the measurement across the bottom edge of the HM. Simulation 

have been carried out in order to assure that the probe impedance (as a parallel 50 Ω to the 

termination impedance) does not have a significant impact on the results and this method is 

sufficiently accurate for the purpose of showing subwavelength focusing. Fig. 4.8 shows the 

measurement and simulated voltage profiles (normalized to the maximum value at the HM 

bottom edge) at the HM bottom edge of the structure at 0.5, 0.75, 1, 1.25, and 1.5 GHz, 

respectively. It is clear that the voltage profile at the bottom edge of the HM is almost a replica 

of the voltage profile along the x direction at the interface between the two grid media, 

therefore exhibiting a focus with subwavelength dimension. Similarly to what done for the 

HM bottom edge, we have also reported the simulation and experimental results relative to 

a scan line at the background top edge. The presence of  very flat voltage profile shows that 

focusing is lost, as expected, due to evanescent decay of large spectral component in the 

isotropic region (i.e., the background grid) generated by the voltage source. The small 

disagreement, in the 15 20− ÷ −  dB range, may be due to the non-perfect contact between the 

probe and the metallization on the circuit board, to the 5%-10% tolerance in termination 
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resistances, and to the probe loading the termination resistors (in particular the latter might 

affect the recorded signal along HM and background edges differently). In summary, after 

comparing the voltage profiles along the HM bottom and background top edges, these results 

numerically and experimentally verify the subwavelength focusing capabilities of the 

proposed HM-based device over a wide frequency band. 

 

Fig. 4.7 Fabricated TL grid over a grounded dielectric substrate. The 

background and HM are represented by the upper and lower half 

parts of the TL grid, respectively. Each component is indicated by 

yellow lines. 
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Fig. 4.8 Simulation and measurement results of the voltage magnitude 

profile at the HM bottom edge and at the Background top edge 

normalized by the maxima maxV  at the HM bottom edge for 

simulation and measurements respectively at 0.5, 0.75, 1, 1.25, and 

1.5 GHz. Measured and simulated results, in good agreement, show 

that subwavelength focusing is preserved across the HM. 
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 Conclusion 

This chapter shows a practical implementation of a planar (2D) HM able to transport 

waves with large spectral wavenumber. In particular, the planar HM is realized using 

microstrip transmission lines, and is designed to achieve subwavelength focusing over a 

wide frequency range by engineering very flat, and stable-with-frequency, wavenumber 

hyperbolic dispersion curves. This has been achieved by loading a transmission line grid 

with capacitors in the x and z directions, leading to a canalization regime for the node voltage 

in the HM region. We have shown that the HM design can provide subwavelength focusing 

of / 31gλ  and /19gλ  at 0.5 and 1 GHz, respectively, with good agreement between 

simulation and measurement results. We have also shown that the proposed HM can be used 

to resolve two sources separated by subwavelength distance of / 6gλ  and / 3gλ  at 0.5 and 

1 GHz, respectively. 

Appendix A Derivation of the Dispersion Relation via Bloch Theory 

According to Bloch theory applied to 2D TLs [8], the wave-vector dispersion relation of a 

loaded 2D TL grid is obtained by solving the equation  
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,

0 sin ,
2

x z d
C jY

β 
=  

 
  (4.11) 

 
, cos

2

x z d
D

β 
=  

 
  (4.12) 

are the transfer (ABCD) matrix entries of the microstrip lines of length / 2d (with 

characteristic impedance 0 01/Z Y=  and wavenumber β ) along the x and z axes (indicated 

by the superscripts x and z) loaded by capacitors ,2 x zC  in a d d×  unit cell as depicted in Fig. 

4.1(c). Due to the reciprocity of the unit cell, it follows that
, , , ,

1
x z x z x z x z

A D B C− = , thus  

 
( ) ( )

( ) ( )

cos 2 1

cos 2 1 0

x x z z
z

z z x x
x

B D k d C B

B D k d C B

 − + +
 

 − + =
 

  (4.13) 

Moreover, due to the symmetry of the unit cell in our setup, 
z x

C C=  and z x
D D= , thus 

the dispersion relation can be further simplified as 

 
2 2

sin sin 0
2 2

x x z z x xxz k dk d
B C B B C B

     
+ + + =     

      
  (4.14) 

By dividing all the terms in (4.14) by x z
B B  and substituting 

x
C  from (4.11), we arrive at 

the dispersion relation in (4.1). 
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Appendix B Effective Medium Approach as a Particular Case of Bloch Theory 

It is interesting how the effective medium model can be derived from the Bloch 

formulation based on the transfer matrix approach. We can simplify the dispersion relation 

in (4.1) by assuming , 1x zk d ≪  and 1dβ ≪ . After using the approximation 

( ), ,sin / 2 / 2x z x zk d k d≈ , expression (4.1) is rewritten as 

 

22

0

22
2 sin

2

xz

z x

k dk d

d
j Y

B B

β

  
   

    + = −  
 

  (4.15) 

Then, by using the approximations ( )sin / 2 / 2d dβ β≈  and ( )cos / 2 1dβ ≈ , the expressions 

,x z
B  [given in (4.2)] are simplified as 

 , 0
,

1
.

2 2
x z

x z

d
B jZ

j C

β

ω
≈ +   (4.16) 

The right-hand side of (4.15) is also simplified as 

 02 sin
2

d
j Y jY d

β
β

 
− ≈ − 

 
  (4.17) 

By replacing approximations (4.16) and (4.17) into (4.15) and using the definitions 

dis disL Cβ ω=  and 0 dis dis/Z L C= , we reach the dispersion relation of the HM effective 

medium approach as given in (4.3). 

Note that for the background isotropic region, where we can assume ,x zC = ∞ , the 

dispersion relation (4.3) leads to the wavenumber in the background region 

2 2
dis dis2 2b x z b bk k k L Cω µ ε ω β= + = = = , where b x z disLµ µ µ= = =  and 2b disCε = . 
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CHAPTER 5 

 

ARRAY OF DIPOLES NEAR 

HYPERBOLIC METAMATERIAL 

5 Array of dipoles near a hyperbolic metamaterial 

Sec. 5.1 Motivation 

We investigate the capabilities of hyperbolic metamaterials (HMs) to couple near-fields 

(i.e., evanescent waves) emitted by a two-dimensional periodic array of electric dipoles to 

propagating waves. In particular, large order Floquet harmonics with transverse magnetic 

(TM) polarization, that would be evanescent in free space and therefore confined near the 

array surface, are transformed into propagating spectrum inside the HM, and thus carry 

power away. Because of this property, independent of the finite or infinite extent of the HM, 

the power generated by an array of elementary electric dipoles is strongly enhanced when 

the array is located near a HM surface and is mostly directed into the HM. In particular, the 

power coupled to the HM exhibits narrow frequency features that can be employed in 

detection applications. The results shown in this chapter provide a clear signature on wave 

dynamics in HMs. A link between the results pertaining to the case of an isolated dipole on 

top of HM and the planar array is found convenient to explain both wave dynamics and 
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spectral power distribution. The narrow frequency emission features appear in the array 

case only; they depend on its spatial periodicity and remarkable on the HM thickness. 

Hyperbolic metamaterials (HMs) are a subcategory of artificial uniaxial anisotropic 

materials that exhibit hyperbolic isofrequency wave-vector dispersion diagram [1-3]. HMs 

allow for engineering the spatial spectrum of propagating waves and thus power emission 

exploiting a wide propagating spectrum when compared to common dielectrics. This 

unusually wide spatial spectrum of power emission leads to novel phenomena such as the 

enhancement of the power scattered by nanospheres [1] or of the one emitted by imposed 

dipoles [1-3] located above HM surfaces. Furthermore, HMs are capable of absorbing (in the 

form of propagating waves) the power emitted by sources in their proximity. This, in turn, 

means that decay rate of emitters can be controlled without resorting to substrate’s loss 

engineering. For this reason, HMs have been used to engineer the Purcell effect and emission 

decay rate, as well as the enhancement of spontaneous emission [4-11]. Moreover, the wide 

spatial spectrum supported by HMs leads to applications such as focusing with extreme 

subwavelength resolution and superlensing [6, 12-18], as well as absorption and reflection 

control [19-21]. HMs have also been shown to exhibit negative refraction [22-25] and 

epsilon-near-zero capabilities [26, 27], and the latter could be for example employed to 

improve nonlinear processes. In [28] the formation of second harmonic double-resonance 

cones has been proven. Moreover, efficient second harmonic generation has been reported 

in [29] through the use of micrometer-thick slabs with hyperbolic permittivity tensor.  

HMs can be fabricated at infrared and optical frequencies using metal-dielectric 

multilayers [6, 30], dielectric-semiconductor multilayers [31], graphene-dielectric 

multilayers [2, 24, 27, 32] or metallic wires embedded in dielectric substrates [21, 33]. In 
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particular, the emergence of hyperbolic dispersion in multilayered HMs does not rely on any 

resonant behavior and thus occurs in a wide frequency band. A review of certain wave 

properties in HMs is reported in [1, 34-36]. We stress that practical HM realizations alter the 

ideal hyperbolic wavevector dispersion curve, and limit the propagating spectrum in 

contrast to what is predicted by the effective medium approximation (EMA) that does not 

introduce any limitation for the propagating spectrum in HMs [1, 3, 37]. 

In this study, we carry for the first time an analysis of electromagnetic waves generated 

by a two-dimensional (2D) periodic array of electric dipoles located above a HM. This study 

is a precursor to the investigation of the scattered power upon an array of passive, 

polarizable particles on top of HM, as for example done in [1] for a single spherical 

nanoparticle. Once the resulting linear system is solved for the induced dipole moments of 

the particles, the scattered power evaluation would follow a similar procedure to the one 

reported here. We first show how Floquet waves (FWs) emanating from such an array, that 

would be otherwise evanescent in free space, are instead transformed into propagating 

extraordinary waves inside a HM. We then investigate the enhancement of the power 

radiated by a 2D periodic array of impressed electric dipoles above a HM substrate, 

motivated by earlier work in which small scatterers on top of HMs (which can be modeled 

using single dipole approximation) or roughness on HM surfaces are shown to realize 

unprecedented absorption of plane waves [19, 21]. We show that most of the power 

generated by the 2D periodic array is directed towards the HM. We investigate how the array 

periodicity plays a critical role in the possibility to allocate wave propagation in the ideally 

indefinite spectral propagating channels of the HM. We further show the effect of HM 

substrate's thickness on the properties mentioned above. For the first time, for the case of a 
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2D periodic array of sources on top of HM, we show the existence of very narrow-frequency 

emission peaks in both infinite and finite-thickness HMs, and then explain the theory thereof. 

Such peaks can be useful for sensing applications. Finally the discrete dipole approximation 

and its limitations are discussed over a representative example of array of rectangular 

current sheets (i.e., with limited physical domain). 

Sec. 5.2 Coupling and Propagation of large-index Floquet Waves to a HM 

The 2D periodic array of elementary electric dipoles is located above a HM at a distance h 

from its surface as in Fig. 5.1(a). Electric dipolar sources in the array are located at 

00 ˆ ˆmn ma nb= + +r r x y   ( , 0, 1, 2,...m n = ± ± ), where a  and b  are the periods along the x and y 

directions, respectively, and 00 00 00 00ˆ ˆ ˆx y z= + +r x y z  is the location of the reference dipole. In 

the following, the 00th reference dipole is assumed to be located at 00 =r 0  (here we implicitly 

assume the time harmonic convention 
i te ω−

). Thus an electric dipole at mnr  has a dipole 

moment ( )00 expmn t mni= ⋅p p k r , where ˆ ˆt x yk k= +k x y  is the wavevector defining the 

progressive phasing of the dipoles on the x,y plane, and 00 ˆ ˆ ˆx y zp p p= + +p x y z  is the electric 

dipole moment of the 00th reference dipole. 
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Fig. 5.1 (a) Schematic of an array of electric dipoles at a distance h 

from the surface of a hyperbolic metamaterial. Example of HM made 

of a stack of dielectric and silver layers with thicknesses 1d  and 2d  

and relative permittivities 1ε  and 2ε . (b) Schematic of single dipole at 

a distance h from the surface of a hyperbolic metamaterial as in part 

(a). 

We demonstrate here that near fields, in the form of FWs, emitted by a 2D periodic array 

of electric dipolar sources are coupled to propagating waves inside the HM substrate. It is 

well known that, in general depending on the array periodicity, only a certain (finite) number 

of FWs are propagating in a common dielectric, and thus carry power away from the array. 

The remaining FWs are in general evanescent and are confined mostly to the array plane 

forming the near field.  

Consider for example the direct electric field produced by a 2D periodic array of 

elementary electric dipoles in free space, represented in terms of transverse-to-z  polarized 

electric (TE) and magnetic (TM) pq-indexed FWs as 

 ( ) ( )TM TE

,

.pq pq

p q

∞

=−∞

= +∑E r E E   (5.1) 

Each FW in free space is given by [38] 
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( ), 0,
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0 0,

,
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i e

ab kε

⋅ +

=

k r

E r e   (5.2) 
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k

k

k k

k

k

  
  
  = ⋅  
 

 +   

= × × ⋅

k z k

e p

z k z

e k z k z p

∓

∓   (5.3) 

where the minus (plus) sign in Eq. (5.3) is used when the observation point is above (below) 

the array plane. Longitudinal wavenumbers in free space, 0,z pqk , will be denoted with ‘0’ in 

the subscript. The transverse wavevector of a pq-indexed FW is defined as 

 , ,00

2 2
ˆ ˆ ,t pq t

p q

a b

π π
= + +k k x y   (5.4) 

and 2
, , ,t pq t pq t pqk = ⋅k k . It is clear that the field in Eqs. (5.1-3)is intimately related to the 

transverse and longitudinal wavenumbers, ,t pqk  and 0,z pqk , respectively.  In free space the 

relation of ,t pqk  and 0,z pqk  follows the free space isofrequency wavenumber dispersion 

equation, 2 2 2
, 0, 0t pq z pqk k k+ = , with 0 /k cω=  the free space wavenumber, ω the angular 

frequency and c the speed of light in vacuum. Therefore, for large pq-indexed FWs, the 

longitudinal wavenumber in free space  2 2
0, , 0z pq t pqk i k k= −  is purely imaginary, with 

( )0,Im 0z pqk >  to satisfy the radiation boundary condition at infinity (for “proper” waves, 

detailed information on proper and improper wave can be found in [38-41]). Such FWs are 
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evanescent waves decaying exponentially away from the array plane (on the other hand, 

improper waves have opposite sign and grow exponentially toward infinity).  

 Consider now the scenario in Fig. 5.1(a), where the FWs generated by a 2D periodic 

array of electric dipoles with transverse wavenumber ,t pqk  couple to a homogeneous HM 

characterized by the relative permittivity tensor 

 ( )HM ˆ ˆ ˆ ˆ ˆ ˆ,t zε ε= + +ε xx yy zz   (5.5) 

with 0t zε ε <  in an ideal lossless case, where tε  and zε  (both real numbers) represent the 

transverse and longitudinal entries of the diagonal relative permittivity tensor, respectively. 

Inside the HM, TM waves are extraordinary waves that satisfy the hyperbolic isofrequency 

dispersion relation [1, 42, 43] (assuming non-magnetic materials, thus relative permeability 

is taken as unity in the following) 

 
( )

2
TM2
1,, 2

0 ,
z pqt pq

z t

kk
k

ε ε
+ =   (5.6) 

where ,t pqk  is matched to that of the FWs in free space above the HM (longitudinal 

wavenumbers in HM are denoted with ‘1’ in the subscript). Isofrequency hyperbolic 

wavevector dispersion occurs when 0t zε ε < , and we recall that two possible scenarios may 

occur, with either  0zε <  or 0tε < . The latter will be treated in Sec. 5.4 pertaining to 

discussion and illustrative examples because it can be obtained at optical frequencies by 

simply stacking metal and dielectric layers of subwavelength thicknesses [1, 3, 25, 30]. 
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Following Eq. (5.6), the pq-indexed TM FWs in the HM have longitudinal wavenumbers 

given by 

 TM 2 2
1, 0 ,

1
,z pq t t pq

z

k k kε
ε

 
= − 

 
  (5.7) 

with sign of the square root chosen regarding the condition explained in the following. In 

general, assuming the presence of losses in the HM, the longitudinal wavenumber is complex 

and given as 

 TM TM TM
1, 1, 1, .z pq z pq z pqk iβ α= +   (5.8) 

A FW generated by the array at z = 0, with transverse wavenumber ,t pqk , assumes the  

wave propagator TM TM
1, 1,exp( ) exp( )z pq z pqik z ik z= −  along the z−  direction inside the HM 

underneath. The condition TM
1, 0z pqα >  is necessary to satisfy the boundary condition when z  

tends to −∞ . Also, as explained in [1, 23, 25], waves in the HM are backward when 0tε <  

and 0zε >  and hence characterized by TM
1, 0z pqβ < , i.e., phase propagation occurs along z+  

while power flows along z− . Indeed, as specified in [38-41] backward waves are 

characterized by a wavenumber that satisfies the relation TM TM
1, 1, 0z pq z pqβ α < .  

Note that observing Eq. (5.7), when assuming absence of losses inside the HM, TM
1,z pqk  is 

purely real for large pq index values since the ratio /t zε ε  is negative. This means that any 

TM FW with sufficiently large pq order is able to propagate inside the HM with a real 

longitudinal wavenumber TM
1,z pqk . Note that FWs with small pq indexes, in particular the 
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fundamental one with ( , ) (0,0)p q = , may or may not be propagating. Low order FWs are 

propagating if 0tε >  whereas they are evanescent when 0tε < . Nevertheless, the most 

important phenomenon is that in theory an infinite number of FWs are able to propagate in 

an ideal HM with unlimited hyperbolic isofrequency wavevector dispersion curve. In 

practical realization of HMs however, the HM periodicity along a coordinate would restrict 

the range of FWs are able to propagate, as it will be briefly discussed in Sec. 5.4, and the 

power in FWs would strongly depend on the distance of the array from the HM and the 

presence of losses 

Having clarified the propagation of TM and TE FWs inside a HM, we now analyze their 

excitation generated by a 2D periodic array of dipoles located at a distance h below the array. 

We first assume that the HM is homogenous with relative permittivity tensor as in Eq. (5.5) 

and it is semi-infinite. As previously described, the direct field produced by the array is 

represented as a sum of pq-indexed FWs (i.e., plane waves) as in Eqs. (5.1-3)for an array in 

free space. Each pq-indexed FW generated by the array and directed towards −z is partly 

reflected at the free-space/HM interface, with TM/TE Fresnel reflection coefficient 

 
( ) ( )
( ) ( )

TM,TE TM,TE
, ,HM 0TM,TE

TM,TE TM,TE
, ,HM 0

,
t pq t pq

pq

t pq t pq

Z Z

Z Z

−
Γ =

−

k k

k k
  (5.9) 

conveniently given in terms of the characteristic wave impedances of free space 

 ( ) ( )0,TM TE 0
0 , 0 ,

0 0,

, ,
z pq

t pq t pq
z pq

k
Z Z

k

ωµ

ωε
= =k k   (5.10) 

and the characteristic wave impedances 
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 ( ) ( )
TM
1,TM TE 0

HM , HM , TE
0 1,

, ,
z pq

t pq t pq
t z pq

k
Z Z

k

ωµ

ωε ε
= =k k   (5.11) 

for the extraordinary (TM) and ordinary (TE) waves inside the HM, here assumed 

homogeneous. Note that TM
1,z pqk  for the extraordinary wave (TM) inside the HM is evaluated 

as in Eq. (5.7), whereas TE
1,z pqk  for the ordinary (TE) wave is evaluated by the ordinary wave 

dispersion relation  ( )
2

2 TE 2
, 1, 0t pq z pq tk k kε+ =  , and thus 

 TE 2 2
1, 0 ,z pq t t pqk k kε= −   (5.12) 

As discussed above, for TM waves with large pq indexes, TM
1,z pqk  is real, assuming a lossless 

HM, and thus also ( )TM
HM ,t pqZ k  is real. Furthermore, in the case of a HM with 0tε <  

considered here we conclude after observing Eq. (5.11) that ( )TM
HM ,t pqZ k  is real positive 

because a TM wave in the HM is backward (i.e., TM
1, 0z pqβ < ) as discussed previously. 

Therefore, in a HM, including the occurrence of losses, the characteristic wave impedance 

( )TM
HM ,t pqZ k  as in Eq. (5.11) has a positive real part which is associated to power flowing in 

the HM in the −z direction. [Here, the general expression of a characteristic wave impedance 

( ),t pqZ k  is defined assuming that the real part of the z-directed (in the positive or negative 

z direction) Poynting vector emitted by the array of dipoles in absence of reflections is given 

by ( ) ( )
2

*
, , 0 ,

1
Re /

2
t pq t pq t pqS Z

 
=   

k E k , where ,t pqE  is the transverse field of the harmonic, 

yielding always positive ( ),t pqS k  for waves carrying power away from the array (note that 
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a ‘*’ denotes complex conjugation).] We recall that the total power propagating in the +/-z 

direction is the sum of power of all the Floquet harmonics, given as 

 

( ) ( )

( ) ( )

*

2 2
TM TE
, ,

TM* TE*
, 0 , 0 ,

1
ˆRe

2

1
Re

2

z

A

t pq t pq

p q t pq t pq

P dA

ab
Z Z

±

∞

=−∞

= × ⋅ ± =

  
  

= +  
    

∫∫

∑

E H z

E E

k k

  (5.13) 

owing to the spatial orthogonality of Floquet harmonics with different orders and the 

vectorial orthogonality of TM and TE waves with same harmonic order (details can be found 

in Sec. 2.2 of [42]). Here A is the unit cell cross-section orthogonal to the z direction. 

Each FW generated by the array above the HM is partly transmitted into the HM with 

transmission coefficient TM,TE TM,TE1pq pqT = + Γ . We recall that all reflection and transmission 

coefficients TM,TE
pqΓ  and TM,TE

pqT  are defined with respect to transverse electric fields [44] ) 

Therefore the transverse field at any location r  above the 2D periodic array of dipoles (i.e., 

z > 0) is represented as 
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  (5.14) 

where the subscript t denotes the transverse component of the direct electric field TM,TE
pqE  

in Eq. (5.2) and +/− superscripts denote that the respective quantity is evaluated at the limit 

0z +→   and  0z −→ , respectively [the array plane is assumed at 0z = ].  Note that the 

transverse component of TE
pqE   is always continuous across the array plane, i.e. TE TE

, ,t pq t pq
+ −=E E
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, and TE FWs are only emitted by transverse-to-z dipole components. On the other hand, the 

transverse component of TM
pqE  should be treated carefully. For example when 00p  is 

transverse to z, the transverse component of TM
pqE   is continuous across the array plane, i.e.

TM TM
, ,t pq t pq

+ −=E E ; however when 00p  is along  z,  the transverse component of TM
pqE   follows 

the relation TM TM
, ,t pq t pq

+ −= −E E  [dictated by Eq. (5.3)]. 

At any location r  below the array of dipoles and above the HM (i.e., 0h z− < < ) the 

transverse electric field is 
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  (5.15) 

The transverse field transmitted to a homogeneous HM (i.e., at any location r  belonging 

to the HM, with z h< − ) is represented as 
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  (5.16) 

Looking at Eq. (5.16), it is clear that the distance h plays a fundamental role in determining 

the spectrum of evanescent waves in free space that can be coupled to propagating waves in 

the HM. In particular, when the array is located at a certain distance h from the HM surface, 

waves will decay with the propagator 0,z pqik h
e  , resulting in a decay factor 0,Im( )z pqk h

e
−

,  in 

free space, and this will prevent high pq-indexed FWs from transferring power to the HM 

underneath. 
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Sec. 5.3 Power generated by a 2-D Periodic array of Electric dipoles above a HM 

The real power density (the real part of the Poynting vector) of each pq-th FW in (+z) 

upward direction above the array is expressed as 
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  (5.17) 

where ( )0 ,t pqZ k  is the TM/TE wave impedance in vacuum. 

Analogously, the real power density of each pq-th FW evaluated at the HM interface in the 

downward direction, and thus entering the HM, is given by 
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 , (5.18) 

where ( )HM ,t pqZ k  is the wave impedance in HM. In Eq. (5.18) through the 1st to the 3rd 

expression, the power density in the –z direction is given (1st) at the array level, (2nd) in 

vacuum side of the HM-vacuum interface, and (3rd) in the HM side of the same interface, 
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respectively. Note that, in Eqs. (5.17) and (5.18), 0,z pqk  and ( )0 ,t pqZ ∗
k  are both either purely 

real or purely imaginary in vacuum and thus the three expressions yield equal results. In the 

1st expression, 0,2 z pqi k h

pqeΓ  [appearing in both Eqs. (5.17) and (5.18)] is the reflection 

coefficient pqΓ  evaluated at the array plane, observing the downward direction, and 

0,
,

z pqik h

t pqe−
E  represents the transverse field of the downward-propagating wave evaluated 

at the HM’s top surface in both 2nd  and 3rd expressions. The superscript TM/TE is omitted in 

Eqs. (5.17) and (5.18) since both expressions are valid for both TM and TE waves, assuming 

all quantities are evaluated accordingly. The superscripts +/− follow the same convention 

introduced in Sec. 5.2.  

In Eqs. (5.17) and (5.18) numerators are real valued; in contrast, denominators may be 

complex valued, depending on the medium where each FW is propagating into and the 

transverse wavevector ,t pqk . In particular, ( )0 ,t pqZ k  is real only when 2 2
, 0t pqk k<  and purely 

imaginary otherwise (for both TM and TE waves). In other words, only low pq-indexed FWs, 

with real 0,z pqk , carry power away from the array in the upward direction. Similarly, 

( )TE
HM ,t pqZ k  is (assuming lossless HM) either purely imaginary for any ,t pqk  (when 0tε <  

and 0zε > ), or purely real only for the spectrum 2 2
, 0t pq tk kε<  (when 0tε >  and 0zε < ). 

However for extraordinary waves with TM polarization inside the HM, the situation is rather 

different. The term ( )TM
HM ,t pqZ k  has a real part (purely real for a lossless HM as discussed in 

Sec. 5.2) for large pq-indexed FWs because TM
1,z pqk  has a real part (purely real for a lossless 

HM) for large pq indexes as described in Sec. 5.2. Therefore, the total power coupled from 
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the array in free space to the HM underneath is determined by the power carried by a very 

large number (infinite for an ideal lossless HM) of propagating FWs hosted by HM (however, 

note that the power coupled to FW with large pq is also limited by the decay along the 

distance h as described in Sec. 5.2). Indeed, as it will be discussed in later sections, practical 

HM implementations based on periodic arrangement of layers or other configurations (e.g., 

wire medium) limit the maximum pq indexes of FWs that can propagate in HM, thus limiting 

the maximum amount of power coupled to HM. Equation (5.18) is valid for a homogeneous 

HM (that includes losses) and it is generalized to the case of multilayer HM by substituting 

pqT  with 1 pq+ Γ , and ( )HM ,t pqZ k  with the impedance at the multilayer HM interface, in the 

downward direction, down ,( )t pqZ k , as explained in [2]. The field inside the HM multilayer can 

be evaluated via transfer matrix method. 

We now investigate in detail the power coupled to TM and TE plane wave spectra, based 

on [42, 45, 46], adapted to periodic structures, as in [47], for modeling the power emitted by 

a 2D periodic array of impressed (transverse or vertical) electric dipoles located slightly 

above an infinitely extended HM as in Fig. 5.1(a). Then we establish the relation between the 

plane wave spectra emanating from an array and a single dipole [as in Fig. 5.1(b)] above the 

same HM. Note that this TL formalism represents the solution of Maxwell’s equations in the 

analyzed environment, i.e., it is an exact representation [42, 45, 46]. 

We are interested in the power emitted in +z and −z directions, in the following denoted 

by superscripts “up” and “down”, respectively. The power emitted in a unit cell directed 

up/down for an array of transverse dipoles with  00 ˆ ˆx yp p= +p x y  is given as a sum of TM and 

TE contributions as 
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expressed in [W].  The TM and TE power spectra in Eq. (5.19) (normalized by angular 

frequency squared, 2ω ) directed toward the  +/−z directions are 
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The power emitted in a unit cell in an array of vertical dipoles with 00 ˆzp=p z  is instead 

 ( )
2

TM
up/down up/down , ,

2
t pq

p q

P W
ab

ω ∞ ∞

=−∞ =−∞

= ∑ ∑ k   (5.22) 

where the power spectrum (normalized by angular frequency squared, 2ω ), which has 

contribution only from TM waves, is 
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Here ( )
1

TM/TE TM/TE
up/down up/downY Z

−
= , and the impedances TM/TE

up/downZ  are defined by the ratio of 

transverse field components [42] 
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where the “tot” superscript indicates that the E/H-field is the sum of both the direct and the 

reflected fields of the respective pq-th Floquet harmonic and here in the limit operation, the 

sign + (−) is taken for the “up” (“down”) direction. Note that in this case TM/TE TM/TE
up 0Z Z= , 

because there is no wave reflected from the upper space; whereas ( )TM/TE
down ,t pqZ k  needs to 

be computed via transfer matrix method, since it accounts for the reflection at the HM 

interface. Equations (5.19-23) are derived by lengthy though straightforward substitutions 

of Eqs. (5.1-3) into Eqs. (5.17) and (5.18) utilizing the reflection coefficients evaluated at the 

array plane based on TM/TE
up/downY and TM/TE

up/downZ  for particular dipole orientations as 

00 ˆ ˆx yp p= +p x y  or as 00 ˆzp=p z . Accordingly, the power carried in a FW harmonic is 

( ) ( ) ( )2
, ,/ 2t pq t pqA

S dA ab Uω =  ∫∫ k k  for transverse dipoles' excitation and 
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( ) ( ) ( )2
, ,/ 2t pq t pqA

S dA ab Wω =  ∫∫ k k  for vertical dipoles' excitation (Since these 

expressions are applied to either TM or TE polarizations, and either the up or down 

directions, the common TM/TE superscripts, and up/down subscripts have been omitted). 

In Appendix B, the derivation steps for TM
downU  are provided as an example. Those for the 

other terms can be derived in an analogous way. 

In the following we establish a relation between the power expressions related to the 2D 

periodic array of electric dipoles to that of a single electric dipole on top of HM as in Fig. 

5.1(b), analyzed in [1] for example. According to the expressions presented in [1] for the 

single dipolar source case, the upward and downward directed power emitted by a transverse 

dipole are 
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  (5.26) 

The power emitted by a vertical dipole is 

 ( )
2

TM
up/down up/down2

.
8

t x yP W dk dk
ω

π
= ∫∫ k   (5.27) 

Note that the functions U and W within the summations in Eqs. (5.19) and (5.23), for the 

periodic array case, are the same functions as the integrands in Eqs. (5.26) and (5.27), for 

the single dipole. In other words, the radiation from the array corresponds to a spectral 

sampling of the continuous spectrum of waves emanating from a single source. This fact 

emphasizes the importance of array periodicity to control effectively the sampling in the 

band of propagating FWs in HM, as it will be pointed out in what follows. 
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Fig. 5.2 (a) Enhancement of the power up downP P P= +   emitted by an 

array of dipoles ( 300 nma b= = ) with a HM underneath with respect 

to that emitted in free space. Dipoles are polarized along x, with 

,00 0 ˆ0.5t k=k x . For comparison, also the power enhancement 

pertaining to a single dipole over the HM is provided. (b) Ratio of 

power emitted by the array and a single dipole towards HM (down) 

and towards the upper homogeneous isotropic space (up) versus 

frequency. Dashed lines are obtained for a homogeneous HM (via 

EMA) made of silver and silica layers with equal thicknesses 

1 2 10 nmd d= =  whereas solid lines are obtained using a rigorous 

multilayer Green's function implementation for the same HM. Silver 

permittivity 2ε  is from [48] and dielectric relative permittivity 1ε  is 

equal to 2.2. Source distance from the HM is assumed as 10 nmh = . 

Before going into the details of the wave dynamics of the system under analysis, we 

provide two preliminary examples showing how the HM impacts the emitted power and the 

ratio of the power directed toward the HM for an array of dipoles against a single dipole for 

an infinitely extended HM substrate. Here we utilize a semi-infinite practical HM 

implementation consisting of a stacked bi-layers made of silver (whose dielectric relative 

permittivity function 2ε  is taken from the experimental results including losses in [48]) and 

silica ( 1 2.2ε = ) layers with equal thicknesses 1 2 10 nmd d= = . The power evaluations are 

carried out using  HMs modeled with two methods: the effective medium approximation 

(EMA) as given in [49] where 
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and the more accurate multilayer Bloch analysis [44] based on the transfer matrix method 

in evaluation of the impedances ( )down ,t pqZ k . 

In Fig. 5.2(a), we report the enhancement of the total power up downP P P= +  emitted by 

an array of dipoles with respect to  the total power emitted by the array in free space. The 

power enhancement for an array of dipoles in general increases as the frequency is 

increased. As a comparison we also provide the enhancement for a single dipole which 

exhibits less dependence on frequency and the enhancement is larger than the one in the 

array case at lower frequencies whereas at higher frequencies, the array case shows more 

enhancement due to periodicity of the sources as will be shown in Sec. 5.4. Moreover the 

EMA vastly overestimates the power enhancement at lower frequencies for both cases. We 

will recall the reasons behind this overestimation in the next section using a spatial spectrum 

interpretation. This is a well-known shortcoming of EMA [1, 3, 37], which was recently 

discussed in [50] by showing that the presence of surface plasmon modes supported by 

multilayer HMs limits the validity of EMA. In our multilayer HM we have used a silver layer 

as the topmost layer. If we were to use a silica layer instead, its effect would result to an 

increased distance of the dipole array from the HM, which would in turn reduce the coupling 

of power from the array of dipoles to the HM. We refer the reader to detailed investigations 

on the topic reported in [1, 3]. When using the rigorous multilayer Bloch theory (it is exact 

when assuming ideally smooth surface boundaries), the enhancement for the array case is 

between 10 to 30 folds for frequencies between 500 and 800 THz, where EMA yields at least 
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one order more enhancement at low frequency. In Fig. 5.2(b), we report the ratio down up/P P  

for the cases in Fig. 5.2(a). When using the Bloch model, we observe that the array has 

down up/P P  ratio between 20 and 30 over the whole frequency range whereas the ratio is 

higher for the single dipole case especially at the lower frequencies. The overestimation of 

down up/P P  by the homogenized HM model (EMA) is also observed, particularly at low 

frequency. We further show in Fig. 5.3 the ratios free space/P P and down up/P P  by changing the 

period of the array of dipoles along the x and y axes, calculated assuming a multilayer HM. 

We observe that as the period increases both free space/P P  and down up/P P  increase. A period 

of 300 nma b= = (half a wavelength at 500 THz) leads to an enhancement almost more than 

10 folds above 500 THz and it increases at higher frequencies; the power is mostly directed 

to the HM over the whole frequency range shown here (300-800 THz), especially for larger 

period. 

 
Fig. 5.3 (a) Emitted power up downP P P= +  by an array of dipoles 

(polarized along x and with ,00 0 ˆ0.5t k=k x ) and (b) the ratio of power 

emitted by the array towards HM and towards free space versus 

frequency with respect to different array periods a b= . The HM is as 

in Fig. 5.2. This result is calculated assuming a multilayer HM. 
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It is important to note for the array case the occurrence of the peaks at about 627 THz for 

300 nma b= =  case only; we attribute this peak to the surface plasmon polariton (SPP) at 

the interface of free space and HM for which the modal wavenumber elaboration is provided 

in the Appendix A. Moreover similar narrow-frequency peaks are also present at many more 

frequencies when considering finite-thickness HMs. These peaks are particular to the array 

of dipoles, and are not observed for the single dipole emission on top of HM. The reasons of 

these peaks will be explained in Sec. 5.5. In the next section it is proven that we can achieve 

enhanced, coupled power toward HM by proper design of the array on top of HM. 

Sec. 5.4 Discussion and Illustrative Examples 

We consider here the same HM as introduced in the previous section assumed to have 

semi-infinite extent in z, and investigate the dynamics of the FWs emitted by an array of 

dipoles. The array of electric dipoles oscillating at 650 THz (i.e., a free-space wavelength of 

0λ = 462 nm) is assumed to be located in free space at a distance 10 nmh =  from the HM 

(subwavelength proximity).  

We first recall the case for a single emitting dipole as in Fig. 5.1(b) that will be helpful in 

subsequent analyses. The total power spectra (in logarithmic scale) are given in Fig. 5.4 

versus xk  and yk  for both a transverse unit electric dipole located as in Fig. 5.1(b) with 

( )00 ˆ ˆ / / 2= +p x y  Cm [evaluated as TM TM TE TE
up down up downU U U U+ + +  , terms taken from Eqs. 

(5.20) and (5.21)] and a vertical unit electric dipole 00 ˆ=p z  [evaluated as TM TM
up downW W+ , 

terms taken from Eq. (5.23)]. 
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Fig. 5.4 Total spectral power versus xk  and yk  (a, b) 

( ) ( )TM TM TE TE 2 2
10 up down up downlog / Wm sU U U U + + +
 

 emitted by the unit 

transverse electric dipole ( )00 ˆ ˆ / / 2= +p x y  Cm, (c, d) 

( ) ( )TM TM 2 2
10 up downlog / Wm sW W +
 

 emitted by the unit vertical dipole 

00 ˆ=p z . In (a) and (c) EMA is used in HM modeling whereas in (b) and 

(d) multilayer HM is assumed, at 650 THz. 

We first note in Fig. 5.4 the strong power spectrum for large transverse wavevectors. We 

also  observe a strong dependence on the transverse wavevector direction for the transverse 

dipole, and no dependence for the vertical one due to symmetry reasons. Fundamentally, for 

metal-dielectric HMs the spectra provided in Fig. 5.4 is a wide-frequency phenomenon that 

does not rely on resonant characteristics, and it is provided for a representative frequency. 

Moreover, we note the presence of a much wider spectrum of waves carrying power in 

the HM when looking at EMA results than multilayer ones. This result clearly explains that 

EMA overestimates power quantities, and is in agreement with previous investigations [1, 3, 
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37]. Since Bloch analysis models accurately the HM dispersion properties and EMA 

overestimates features for high spectral regions we will use Bloch multilayer modeling from 

this point on. 

 

Fig. 5.5 Spectral power ( )TM/TE 2 2
10 up/downlog / Wm sU 
 

 versus xk  and yk  

emitted by the unit transverse dipole ( )00 ˆ ˆ / / 2= +p x y  Cm in (a) 

TM
upU : TM polarization and +z direction, (b) TM

downU : TM polarization 

and −z direction, (c) TE
upU : TE polarization and +z direction, and (d) 

TE
downU : TE polarization and −z direction. This result is calculated 

assuming a multilayer HM. 

We then turn our attention to understanding which waves carry most of the power. To do 

so, we plot in Fig. 5.5the spectral power TM/TE
up/downU  in Eqs. (5.20) and (5.21) coupled to TM and 

TE waves toward both upper and bottom half spaces at 650 THz for the transverse dipole 

case in Fig. 5.4(b). It is clear that the power is mostly emitted in TM spectrum in −z direction, 

 

 

k
x
 / k

0

k y /
 k

0

-20 -10 0 10 20
-20

-10

0

10

20

-3

-2

-1

0

1

2

3(a)

 

 

k
x
 / k

0

k y /
 k

0

-20 -10 0 10 20
-20

-10

0

10

20

-3

-2

-1

0

1

2

3(b)

 

 

k
x
 / k

0

k y /
 k

0

-20 -10 0 10 20
-20

-10

0

10

20

-3

-2

-1

0

1

2

3(c)

 

 

k
x
 / k

0

k y /
 k

0

-20 -10 0 10 20
-20

-10

0

10

20

-3

-2

-1

0

1

2

3(d)

TM, up TM, down

TE, up TE, down



128 

 

i.e., towards the HM. A similar situation is encountered when analyzing the spectral power 

TM
up/downW  in Eq. (5.23) for a vertical dipole (not shown for brevity). 

The information in Fig. 5.4 and Fig. 5.5 will be now used to study the case of a 2D periodic 

array of electric dipoles on top of HM as in Fig. 5.1(a). Indeed, the spectral power quantities 

discussed in Figs. 4 and 5 are subject to sampling in the case of an array of dipoles as 

mentioned in Sec. 5.2. Here we assume the array's progressive phasing is governed by 

,00 0 ˆ0.5t k=k x  where 0k  is the free-space wavenumber, and we investigate the spectral 

power for three sets of periods (assuming square lattice): 150, 300, and 600 nm. On the left 

panels of Fig. 5.6, the power in FW harmonics (normalized by angular frequency squared 
2ω

) is reported versus FW indices p and q. The larger the period, the more is the number of 

propagating FWs carrying power away as discussed in Sec. 5.2. On the right panels of Fig. 5.6, 

we show the spectral power map pertaining to a single transverse dipole on top of HM where 

we superimpose the sampling points due to array periodicity (white circles) [the sampling 

procedure was mentioned in Sec. 5.3]. It is clear that as the period increases the spectral 

power in the case of the array resembles that of the single dipole. This result indeed 

demonstrates that, for increasing periods, dipoles in the array experience less and less 

coupling between each other, therefore the array response tends to be very similar to an 

isolated dipole. Moreover, it is evident that periodicity can be optimized to couple most of 

the power to propagating extraordinary waves in HM. 
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Fig. 5.6 (a, c, e) The spectral power of the Floquet harmonics versus 

the indices p and q for the array periods a b= =   150, 300, 600 nm; (b, 

d, f) total spectral power (

( ) ( )TM TM TE TE 2 2
10 up down up downlog / Wm sU U U U + + +
 

) versus xk  and yk  

emitted by the unit transverse dipole ( )00 ˆ ˆ / 2= +p x y Cm at 650 THz 

where the white circles denote the Floquet harmonic sampling 

locations on xk - yk  plane in the array case for various array periods 

as in (a, c, e). This result is calculated assuming a multilayer HM. 

Indeed, the impact of the period, thus the sampling of the spatial spectral power, manifests 

itself in the enhancement and upward/downward redistribution of the emitted power. In 

order to achieve enhancement of emitted power with respect to free space, free space/P P , one 
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needs to sample at as many points as possible inside the propagating spectrum of HM with 

high xk  and yk . The increase in the period realizes this with a large ratio of down up/P P  as 

well. On the other hand if an array of dipolar sources were to represent induced dipoles 

modeling polarized scatterers, the fraction of the scattered power to the power impinging 

on a unit cell would decrease with increasing period, thus this decrease would undesirably 

downplay the coupling to the propagating spectrum in HM. A critical balance must be 

determined for this situation and will be studied in the future. 

Sec. 5.5 Floquet waves Coupled to Modes in HM: Array Over Finite-thickness HM 

Substrates 

We analyze the effect of finite HM thickness as in Fig. 5.7 on the power emission 

enhancement and redistribution. The impact of the number of the bi-layer unit cells N on the 

spectral power and then on the enhancement and redistribution of the emitted power is 

demonstrated. 

 
Fig. 5.7 HM substrate with finite thickness where N is the number of 

metal-dielectric bi-layers. This substrate configuration is investigated 

for both single dipolar source and an array of sources. 

z

h

Si

1d
2d

1 2( )w N d d= +
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The spectral power density sampling scheme explained in the previous section stresses 

the relationship between the power emitted into FWs and the spectral power emitted by a 

single dipole. Therefore the study of spectral power due to a single source over a finite-

thickness HM is fundamental to characterize the emission from an array in the same setup. 

We start by showing in Fig. 5.8 how the number of layers affects the spectral power 

distribution, generated by a single dipole polarized along x, for varying number of bi-layers 

1,5,10N =  and N → ∞ , using the same HM composition as in the previous examples. We first 

observe that the power spectrum is strong over a wide wavevector space, a sign that large 

wavenumber waves are actually able to transport energy away from the array. Furthermore, 

we observe circular “belts” of spectral peaks in high xk  and yk  regions. The number of peaks 

depends on the number of metal-dielectric layers, in agreement with the bulk plasmon 

modes reported in [36]. As the number of layers N tends to infinity in Fig. 5.8(d), the field 

inside the HM is composed of a more uniform spectrum of propagating waves guided by the 

HM substrate. Next we stress the presence of the peak representing the wavenumber 

spectrum coupled to the SPP mode on the interface of free space and HM whose existence 

and wavenumber are determined in the Appendix A for the case of homogeneous HM. The 

power coupled to this mode is in the spectrum slightly larger than 0t k=k circle and it is 

clearly visible in the close-up view in Fig. 5.8(d) which is present in all cases reported in Fig. 

5.8, but not so well defined for N=1. We stress that this innermost circular peak of the 

spectrum in the vicinity of circle with the radius 0k , remains a distinct spectral feature as N 

increases, even when the aforementioned spectrum becomes uniform for N → ∞ . This 
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distinct spectral feature will, of course, affect the total emitted power by an array when some 

spectral sampling point lays on it, as discussed next. 

 

Fig. 5.8 Spectral power ( )TM 2 2
10 downlog / Wm sU 
 

versus xk  and yk  

emitted by  the unit transverse dipole 00 ˆ=p x  Cm over a multilayer 

HM at 650 THz, for varying number of bi-layers N. 

In Fig. 5.9, we report the emitted power enhancement free space/P P  and the ratio of the 

power in the downward/upward direction down up/P P   as previously done in Fig. 5.3. The left 

panels are pertinent to the array of dipoles, whereas the right panels show the case of a single 

dipole for comparison. Various number of bi-layers 1,5,10N =  and N → ∞  are analyzed. 

Importantly, power enhancement is observed in all cases. Furthermore, in the case of array 

of dipoles on top of a HM substrate with finite N, the spectral sampling of the spectral peaks 

in Fig. 5.8 by the FW harmonics, which depends on the frequency, results in narrow 
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frequency peaks of the total emitted power and the power in the downward direction as in 

Fig. 5.9(a) and (c). This will be further justified by the discussion relative to Fig. 5.10.  

 
Fig. 5.9 Emitted power by an array of dipoles (normalized to the 

power emitted by the same array in free space) and ratio of power 

emitted towards HM and towards free space versus frequency, 

compared to the case of single dipole on HM. This result is calculated 

assuming a multilayer HM. 

Moreover for array of dipoles, we observe that as N increases, free space/P P and down up/P P  

become more stable versus frequency whereas for 1N =  the peaks are sharper and 

down up/P P  becomes lower than other cases at lower frequencies. This is due to several FW 

harmonics sampling the very sharp circular peak in spectral power [given in Fig. 5.8(a) for a 

certain frequency] when varying the frequency. In single dipole case, it is clear that even 

5N =  is enough to emulate the effect of N → ∞ . Therefore, having greater N causes larger 

values of free space/P P and down up/P P  at low frequency with respect to the 1N =  case.  For the 
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array of dipoles, when   N → ∞ , we still observe a peak at 627.4 THz, absent in the single 

dipole case. This particular peak is due to the innermost peak circle in Fig. 5.8 [a close up 

view is provided in Fig. 5.8(d) representative for other cases as well] that corresponds to the 

SPP, briefly described in the Appendix A. 

The power enhancement peaks for the array of dipoles can be explained by investigating 

the frequency evolution of the sampling points of the spectrum emitted by a single dipole. 

This is shown in Fig. 5.10 assuming N = 5 where TM
downU  is plotted versus 0/xk k  (x-axis) and 

frequency (y-axis), for 0yk = . We also superimpose the frequency evolution of 

, , ˆx p t pqk = ⋅k x  normalized by 0k  (the p index is indicated on the top of the plot) denoted by 

dashed lines, assuming ,00 0 ˆ0.5t k=k x . One can note that as the frequency increases more and 

more FW harmonics fall in the propagating spatial spectrum of HM. At certain frequencies a 

,x pk  sample coincides with a spectral peak (observed as circular spectral regions in Fig. 5.8) 

and this causes the occurrence of a narrow frequency feature in Fig. 5.9. Since several FW 

wavenumbers can meet the peaks of the power spectrum in the HM, several power emission 

peaks can occur when varying frequency.  Therefore the finite thickness HM has very narrow 

frequency features in power emission which can be useful in detection applications. It is 

important to note that the mode represented by the peak in the region where xk  is slightly 

larger than 0k  does not belong to the propagating spectrum of HM, but it is the long-range 

SPP as shown in [36] and in Appendix A. The sampling of this mode by the FW with 1p = − , 

0q =  harmonic (pointed by the pink arrow in Fig. 5.10) results in the peak at 627.4 THz 

previously observed in Fig. 5.2 and Fig. 5.3. Note that this mode is distinct from the 
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propagating spectrum of HM and is present even for N → ∞ . On the other hand, for the single 

dipole case the wavenumber associated to the power coupled to this SPP mode is included 

in the integration domain of Eq. (5.26) at any frequency, thus we do not observe a power 

peak in Fig. 5.2. 

 
Fig. 5.10 Power spectrum of extraordinary TM waves carrying power 

in the negative z direction,  ( )TM 2 2
10 downlog ( ) / Wm stU 
 

k , versus xk  

(horizontal axis) and frequency (vertical axis) emitted by a single 

transverse dipole with 00 ˆ=p x  Cm on top of a finite thickness HM with 

N = 5 layers. Black dashed curves indicate spectral sampling lines 

corresponding to , 0 , ˆt p x pk=k x   for 8, 7,...,0,...,7,8p = − − (denoted on 

top of the plot) when an array of dipoles in considered. This result is 

calculated assuming a multilayer HM. 

Sec. 5.6 Effect of Source Spectrum 

In the previous sections we have considered ideal (i.e., point like) dipoles as array 

elements. However in general, the size and physical domain of existence of the extended 

electric currents of the array elements also affect the amount of power coupled to the HM. 

This becomes especially important when the domain of the array-element current is no more 

extremely subwavelength. For example if we assume an extremely impressed flat current 

domain, then in Eqs. (5.20) and (5.21) the dipolar term 00p  can no longer be assumed having  
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a constant spatial spectrum. It should be replaced by ( )00 tp k  evaluated in terms of the sheet 

electric current density ( )00 ,x yJ  flowing over the unit cell area S, at z = 0, as 

 ( ) ( ) ( )
00 00

1
,

x yi k x k y

t S
x y e dxdy

iω

− +
= ⋅

− ∫∫p k J   (5.29) 

As an example, consider a periodic array of flat rectangular current domains with 

dimensions xl  and yl  , as depicted in Fig. 5.11(a), on which a constant current 00J  flows in 

the region ( / 2, / 2)x xx l l∈ −  and ( / 2, / 2)y yy l l∈ − . Then, the spectral power emitted by this 

array will be the FW sampling of the spectrum emitted by the isolated current sheet in Fig. 

5.11(b), equivalent to the case described in Sec. 5.4 for imposed dipoles. The dipolar term 

( )00 tp k  is a function of  tk  and is given by 

 ( ) ( )00 00

sinsin1 y yx x
t x y

x x y y

k lk l
l l

i k l k lω
=

−
p k J   (5.30) 

It is clear that when 1x xk l ≪  and 1y yk l ≪ , then ( )00 tp k  becomes constant (and 

independent of tk ) approaching the discrete dipole case as 

 00 00

1
x yl l

iω
≈

−
p J   (5.31) 

Now let us show the impact of the source spatial spectrum on the total emitted power 

spectrum. For a fair comparison with the cases in Sec. 5.3, here we will assume  ( )00 tp k  

having unity maximum, determined by imposing 00

1
( , ) 1x yx y l l

iω
=

−
J  Cm. 
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Fig. 5.11 The schematic of  (a) a periodic array of rectangular current 

sheets on top of HM, and (b) a single rectangular current sheet on top 

of HM. 

 

Fig. 5.12 Spectral power ( ( ) ( )TM 2 2
10 downlog / Wm sU 
 

) versus xk  and 

yk  emitted at 650 THz (a) by the discrete dipole ( )00 ˆ ˆ / 2= +p x y  Cm 

and (b,c,d) by the constant sheet current ( )00 00 / x yi l lω= −J p  flowing 

over a flat square sheet with sides 20, 30, 40 nmx yl l= = , respectively, 

centered at the origin. This result is calculated assuming a multilayer 

HM. 
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In Fig. 5.12(a) we report the power spectrum pertaining to an ideal elementary dipole 

with ( )00 ˆ ˆ / 2= +p x y  Cm (note that 00 1=p  Cm) and in Fig. 5.12(b)-(d) the ones pertaining 

to the sheet current ( )00 00 / x yi l lω= −J p  for 20, 30, 40 nmx yl l= = , respectively. As clearly 

observed, the distributed current source truncates the high xk  - yk  spectrum due to the 

double sinc envelope in Eq. (5.30) imposed by the current domain’s shape and dimensions. 

Moreover, by visual inspection of Fig. 5.12, it is clear that the power spectrum with large tk  

(which would be able to couple to the HM) is suppressed in the distributed current domain 

case, when compared to the discrete dipole case. This causes a decrease of the power coupled 

to the HM, although for electrically small current domains its impact is limited. Therefore the 

total power emitted by an array of current sheets (evaluated by sampling of the spectrum in 

Fig. 5.12, as shown in Fig. 5.6) and the power emitted towards the HM will both decrease as 

either xl  or yl increases if array periodicity is unchanged. 

Sec. 5.7 Conclusion 

In this work, the dynamics of Floquet waves emanating from a periodic set of emitters 

above HM substrate is studied analytically for the first time. The power coupled to the HM 

from the array of dipoles is shown to encompass numerous Floquet waves with high indices. 

The power emitted by an array of dipolar sources (over a unit cell) is highly enhanced with 

respect to free-space emission; moreover this power is mostly coupled to the HM substrate. 

We have also observed the interesting feature that the power emitted by the array, and the 

one coupled to the HM, exhibit narrow frequency peaks of very strong enhancement which 

can be useful in detection, probing and filtering applications. The physics behind this feature 
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associated to arrays over HM has been explained through the concept of sampling the power 

spatial spectrum of the isolated dipole on top of HM. 

This chapter is reproduced based on the material in [C. Guclu, S. Campione, and F. 

Capolino, "Array of dipoles near a hyperbolic metamaterial: Evanescent-to-propagating 

Floquet wave transformation," Phys. Rev. B, vol. 89, 155128, 2014], © 2014 American 

Physical Society. 

Appendix A A Surface Plasmon Polariton Mode Supported at the Interface of Free 

Space and HM 

We derive here the transverse wavenumber of the SPP mode associated to the free space-

HM interface. We use the transverse resonance method [42] applied at the interface, i.e., 

 ( ) ( )TM TM
HM 0 0t tZ k Z k+ =   (5.32) 

where TM
0Z  and TM

HMZ  are evaluated using Eqs. (5.10) and (5.11), respectively for the case of 

homogeneous HM. (In the case a multilayer HM, Eq. (5.32) is still valid but TM
HMZ  could be 

evaluated using the transfer matrix method.) Then Eq. (5.32) leads to 

 1
0 ,z

z
t

k
k

ε
= −   (5.33) 

where for simplicity we have omitted the superscript TM for 1zk . Note that, when losses are 

neglected, a solution may exist only if both 0zk  and 1zk  are imaginary. Assuming a lossless 

case for simplicity, with 0tε <  and 1zε >  (recall that we analyzed the case with { }Re 0tε <  
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{ }Re 1zε >  in Sec. 5.3-Sec. 5.5), solutions of imaginary 0zk  and 1zk  may be found in the range 

of transverse wavenumber as 

 2 2 2
0 0 .t zk k kε< <   (5.34) 

Solving Eq. (5.33) for tk  one has 

 

( ) ( )

( )

22
1 0

2 2 2 2
0 0

,

1

z t z

t t t
z

k k

k k k k

ε

ε
ε

= −

− = −
  (5.35) 

and both the left and right hand side members of the last equations should be positive. Thus, 

 

( )2 2
0

2 2
0

1
1

.
1

t t t
z

z t z
t

t z

k k

k k

ε ε
ε

ε ε ε

ε ε

 
− = − 

 

−
=

−

  (5.36) 

Note that the fraction term is a positive number larger than unity since 1zε > , implying 

that 2
tk  satisfies the original assumption in Eq. (5.34). The wavenumber of the SPP wave at 

the interface of free space and HM thus is 

 0
1

z t z
t

t z

k k
ε ε ε

ε ε

−
=

−
  (5.37) 

when 0tε <  and 1zε > . For 1t zε ε ≫  and t z zε ε ε≫ this mode has tk slightly greater than 

0k  which can be observed in Fig. 5.10 particularly at smaller frequencies. This result is in 

agreement with previous predictions [51, 52]. No wave solutions can be found when 0tε <  
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and 0 1zε< <  since 0zk  and 1zk  cannot be imaginary simultaneously. Similarly, when 0tε >  

and 0zε < , 1zk  is never imaginary thus a bound mode at the surface is not supported. 

Appendix B Example of the Derivation of Power Spectrum Expressions 

This appendix provides the derivation details of Eq. (5.20) [the power spectrum for TM 

waves TM
downU ] starting from the 1st line of Eq. (5.18) [the real (i.e. the time-average) power 

density flowing in the −z direction]. This is given as an example, and the expressions for other 

polarization and up/down directions can be derived by an analogous treatment. In the 1st 

line of Eq. (5.18) the equality 

 
( ) ( )
( ) ( )

0,

TM TM
up , down ,2

TM TM
up , down ,

z pq
t pq t pqi k h

pq

t pq t pq

Y Y
e

Y Y

−
Γ =

+

k k

k k
  (5.38) 

is used together with the admittance definition in Eq. (5.24) recalling that

( ) ( )TM TM
up , 0 ,t pq t pqY Y=k k . Then we rewrite ( )TM

down ,t pqS k as 

 

TM TM*
2 up downTM TM TM*

down , up 2
TM TM

up down

TM*
2 2 downTM TM

, up 2
TM TM

up down

41
Re

2

Re
2

t pq

t pq

Y Y
S Y

Y Y

Y
Y

Y Y

−

−

  
  

=   
+    

 
 =

+

E

E

 , (5.39) 
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where we have omitted the common dependence on ( ),t pqk . Next, TM
,t pq

−
E  is derived from Eqs. 

(5.2) and (5.3) for transverse dipoles' excitation 00 ˆ ˆx yp p= +p x y  evaluated at the array plane 

( )0z −→ , and it is given by 

 

( )
( )

,
0,TM

, , , 002
0 ,

2

t pqi
z pq

t pq t pq t pq

t pq

kie

ab kε

⋅
− = ⋅

k r

E k k p   (5.40) 

In Eq. (5.39), 
2

TM
,t pq

−
E  is evaluated as 

 

( )

( )

22
2 00 , 0,TM

, 2 2
0

,

2
2

00 ,

2 2 2
TM

, up

1

4

1

4

t pq z pq
t pq

t pq

t pq

t pq

k

ab

ab Y

ε

ω

−
⋅

=

⋅
=

p k
E

k

p k

k

  (5.41) 

Substituting Eq. (5.41) in Eq. (5.39) yields 

 

( )
( )

( )
( )

2 TM*
2

down00 ,TM
down , 2 2 2

TM TM
, up down

2
TM
down ,2

Re

2

2

t pq

t pq

t pq

t pq

Y
S

ab Y Y

U
ab

ω

ω

 ⋅  =

+

=

p k
k

k

k

  (5.42) 

where we have used the definition of ( )TM
down ,t pqU k  in Eq. (5.20). The time-average power 

carried by the pq-th TM-polarized FW is ( )TM
down ,t pqA

S dA∫∫ k , where A is the cross-section 

area of the unit cell orthogonal to the z axis. Note that ( )TM
down ,t pqS k  has no x and y 
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dependence. The total time-average power of TM-polarized waves in the downward 

direction is the sum of the power carried by all FWs given as 

 

( ) ( )

( )( )

( )

TM TM
down , down ,

,

TM
down ,

,

2
TM
down ,

,
2

t pq t pqA
p q

t pq

p q

t pq

p q

P S dA
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ω

∞

=−∞

∞

=−∞

∞
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∑

∑
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k

  (5.43) 
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CHAPTER 6 

 

RADIATIVE EMISSION ENHANCEMENT 

USING HYPERBOLIC METAMATERIAL 

RESONATORS 

6. Radiative Enhancement Using Hyperbolic Metamaterial Resonators 

Sec. 6.1 Motivation 

A hyperbolic metamaterial (HM) resonator is analyzed as a nano-antenna for enhancing 

the radiative emission of quantum emitters in its vicinity. It has been shown that the 

spontaneous emission rate by an emitter near a hyperbolic metamaterial substrate is 

enhanced dramatically due to very large density of states. However, enhanced coupling to 

the free-space, which is central to applications such as solid-state lighting, has not been 

investigated significantly. Here, it is numerically demonstrated that approximately 100 

times enhancement of the free-space radiative emission at 660 nm wavelength is achieved 

by utilizing a cylindrical HM resonator with a radius of 54 nm and a height of 80 nm on top 

of an opaque silver-cladded substrate. Also the ways that the free-space radiation 

enhancement factor depends on the dipole orientation and the location of the emitter near 

the subwavelength resonator are shown. Furthermore, calculations are provided that an 
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array of HM resonators with subwavelength spacings can maintain most of the enhancement 

effect of a single resonator. 

 

Fig. 6.1 The conceptual illustration of radiative emission 

enhancement of a dipolar radiator in the vicinity of a HM resonator 

nano antenna. The concept consists of an array of HM resonators 

antenna which are host to scattered point dipolar sources. Illustration 

is used as the cover figure of Applied Physics Letters volume 105. 

Control of the spontaneous emission process is of fundamental and practical interest for 

enhanced light-matter interaction, quantum information processing, solid-state lighting, and 

biological sciences. Hyperbolic metamaterials (HMs) have been proposed for enhancing 

spontaneous emission rate owing to indefinite photonic density of states. HMs are 

characterized by an indefinite permittivity tensor (for example, ( )ˆ ˆ ˆ ˆ ˆ ˆr t zε ε= + +ε xx yy zz ,  

where t zε ε  is negative) and are in general made of metal-dielectric multilayers [1]–[3]; 

dielectric-semiconductor multilayers [4];  graphene-dielectric multilayers [5]–[7];  or by an 
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array of metallic nanopillars[8], [9]. HMs possess hyperbolic iso-frequency wavevector 

dispersion properties and can host ideally an infinite spectrum of propagating plane waves, 

which in turn leads to a dramatic increase in the photonic local density of states. The 

hyperbolic dispersion characteristic in a multilayer HM does not rely on building blocks with 

narrow-band resonances, therefore this property is maintained over a wide frequency band. 

Theoretical analysis of enhanced spontaneous emission due to a broadband Purcell effect in 

HMs is reported in [10], [11] and the spontaneous emission lifetime reduction of dyes 

deposited on HM substrates have been experimentally observed[12]–[14]. Directional single 

photon emission has also been reported[15]. However, in those studies, the emitted power 

is mostly directed into the HM substrate where it is eventually dissipated as heat[1]. This 

leads to a very low external quantum efficiency even though there is a significant increase in 

the decay rate. In many enhanced emission applications, such as solid-state lighting, it is 

important to enhance the free-space radiative emission, i.e., the power escaping out of the 

system and not just the emitted one by the source. While enhanced free-space radiative 

emission has been shown in a HM grating structure[16], three-dimensional HM resonator 

properties have not been explored. Here an approximately 100-fold enhancement in free-

space radiation emission is calculated when using three-dimensional nanoscale HM 

subwavelength resonators. 

 It has been shown that HM resonators can possess high optical quality factor even in 

extreme subwavelength dimensions and that the radiated power by an excited HM resonator 

can be larger than the dissipated power[17], [18]. However, free-space radiative emission 

enhancement due to HM resonators was not studied in [17], [18]. Due to the anomalous 

resonance wavelength scaling with HM resonator size, one can adjust the resonator size 
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without changing the resonance wavelength in contrast to standard dielectric or plasmonic 

resonators. These properties are unique to HM resonators and allow one to optimize the 

radiation efficiency and radiative emission enhancement when a sub-wavelength HM 

resonator is used as a nano-antenna. Here it is explicitly shown that there is the strong 

enhancement of free-space radiative emission and quantum efficiency when a quantum 

emitter is placed close to a HM resonator. The concept in mind is summarily provided as an 

illustration in Fig. 6.1 and the details of the concept and the calculations thereof is presented 

in detail in the rest of this chapter. 

Sec. 6.2 Definition of the Problem 

In the following the first discussion is on the optical properties of an isolated cylindrical 

HM resonator (comprising silver-silica multilayers) located on top of an opaque silver-

cladded substrate. Then the results are provided for the radiation enhancement for varying 

dipole position and orientation. Finally, elaborations are provided on the the radiation 

enhancement produced by a finite two-dimensional array of HM resonators with 

subwavelength spacings. The reported enhancement opens up a possibility for enhancing 

solid state lighting performance. 

Consider a quantum dot (QD) emitter located very close to the HM resonator. The 

modeled QD emitter is at various locations relative to the resonator as a dipole with 

polarization oriented along the principal axes.  A schematic view of the configuration is 

shown in Fig. 6.2 



151 

 

 

 

Fig. 6.2 Schematic view of a quantum dot (QD) emitter located on the 

top surface of a subwavelength HM resonator (top left).  The QD is 

modeled as an impressed dipole with an arbitrary polarization (top 

right). The bottom panel shows the representation of the power 

radiated into the upper free-space (through the surface S) which is 

the difference of the total emitted power by the dipole totP  (through 

the surface A) and the power dissipated in the HM resonator and 

substrate. 

The QD modelled as a point dipole generates a very wide wavenumber-spectrum of waves 

enabling the emitted radiation to couple to modes in the HM resonator, and thus polarizes 

the HM resonator. Some excited mode is suitable for radiation enabling the use of the HM 
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resonator as a nano-antenna. Part of the total emitted power totP  is dissipated as heat due to 

material losses (non-radiative process) in the HM, whereas the rest propagates away as 

radiation into the upper free space, radP . In this chapter, the focus is on enhancing the 

radiated power into the upper free-space, hence it is useful to define the radiative emission 

enhancement (REE) factor for each frequency as 

 rad fs/REE P P=   (6.1) 

where fsP  is the power emitted by an isolated dipole in free space (vacuum). The radiated 

power radP  is evaluated by integrating the real part of the Poynting vector over the surface 

S: 

 ( )*
rad

1
ˆRe

2 S
P dS= × ⋅∫ E H s   (6.2) 

On the other hand, the total power emitted by the dipole, which includes the one 

dissipated in the materials and the radiated one into the upper space, is similarly evaluated 

as 

 ( )*
tot

1
ˆRe

2 A
P dA= × ⋅∫ E H a   (6.3) 

where the surface A is shown in Fig. 6.2. The dissipated power is dis tot radP P P= − , and can 

also be evaluated as 

 ( )*
dis

1
Re

2
P j dVω = ⋅

 ∫ E D   (6.4) 
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where V is the volume of the substrate and the resonator. Most of previous work involving 

HMs focused on boosting the emission rate, i.e., on enhancing totP . Here, the quantity of 

interest is radP , the portion of totP  that is radiated into the upper space. In the following, the 

evaluated values of these power quantities are obtained via full wave simulations based on 

the frequency-domain finite-element method[19] 

Sec. 6.3 Resonator Example 

The HM nano-antenna is designed to resonate at the wavelength of 660 nm, which is 

accessible using CdSe QDs. The multilayer HM resonator comprises silver (Ag) and silica 

glass (SiO2) layers (Fig. 6.3). Measured relative permittivity functions of the constituent 

materials are used for modeling the materials and , at the wavelength of interest, 

0 660 nmλ = , one has Ag 17.19 0.69jε = − −  and 
2SiO 2.12ε = . The resonator is designed as a 

cylinder made of three pairs of alternating layers of SiO2 (the bottom layer) and Ag (each 

with a thickness of 12.5 nm) and the top is capped with 5-nm-thick SiO2 to protect Ag. The 

resonators are deposited on top of a Ag-cladded substrate as in Fig. 6.3(a). The resonator has 

a radius of 54 nm and a total height of 80 nm. Based on previous studies, three pairs of metal-

dielectric planar structure are sufficient to exhibit hyperbolic metamaterial properties[2].  

The calculated radiated power into the upper free space radP , as well as disP  and totP  

versus wavelength for an x-directed dipole are shown in Fig. 6.3(b).  The dipole is located at 

a height 10 nmh =  above the top center of the resonator. These powers are normalized to fsP

. totP  is enhanced by 30 folds due to Purcell effect, the radiative emission and dissipated 

power are enhanced by 19 (=REE) and 9 times, respectively, at the antenna resonance, 
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peaking around 660 nm. It is to be stressed that a large portion of the total power emitted is 

actually radiated into upper free-space. It is convenient to define the radiation efficiency as 

the fraction of radiated power over the total emitted one, rad tot/P P  (this coincides with the 

analogous definition used in antenna theory). Results in Fig. 6.3(b) show that rad tot/P P  is 

approximately 66% indicating that HM subwavelength resonators can be used as efficient 

nano-antennas. Using an alternative metric, for example as that in [16], the free-space 

radiation enhancement can be defined as the radiated power normalized to that radiated by 

the same dipole either over a flat Ag or over a HM substrate, leading to even larger 

enhancement factors of  102 and 143, respectively (plots not shown here for brevity). 

 

Fig. 6.3 (a) The illustration of the multilayer HM resonator on top of 

silver substrate. (b) Enhancement of radiated, dissipated and total 

power emitted relative to the power of the same dipole radiated in 

free-space ( fsP ) 

Now the focus is how the dipole orientation affects the REE.  In Fig. 6.4, REE is plotted for 

dipoles polarized along x, y, and z, showing maximum REE of 25, 20 and 100, respectively.   

In addition, it is also found that REE is sensitive to the location of the dipole relative to the 

HM resonator. 
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Fig. 6.4 Radiative emission enhancement REE of a QD versus 

wavelength model as a single dipole emitting with (a) x-, (b) y-, (c) z-

polarization, for the enumerated QD  positions in (d) (position 1: blue 

solid line, 2: red dashed line, 3: black dotted-dashed line, 4:, purple 

line with circle markers and 5: green dotted line) 

The dipole positions explored are denoted by numbers { }1,2,3,4,5N =  in Fig. 6.4(d). For 

the x-directed dipoles at positions 1, 3, and 4 as well as for y-directed dipoles at positions 1 

and 2 the enhancement factors are larger than 15 folds. On the other hand, for a z-directed 

dipole, all positions except position 1 yield enhancement factors larger than 30. The 

maximum enhancement is achieved for the z-directed dipole at position 4 with an 

enhancement factor larger than 100. Using the effective medium approach[1], [11] (EMA) to 

model the HM nano-antenna as a bulk anisotropic material, simulations are found to be 5% 

larger for the resonance wavelength and %20 smaller for the REE. In Fig. 6.5, the far-field 
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directivity patterns pertaining to dipoles polarized along x and z at positions 1 and 4, 

respectively, are reported. Here directivity is defined as ( ) ( ) radDirectivity , , 4 /U Pθ φ θ φ π=   

where U is the radiation intensity  per unit solid angle. The HM nano-antenna radiates with 

a single lobe in the +ve z direction and it is nearly symmetric about the z-axis with a half-

power beam width of 95°. The maximum directivity is 5.7, which is almost 4 times that of a 

dipole in vacuum (For a point dipole, the maximum directivity is 1.5). Therefore the field 

intensity in +z direction is further enhanced due to enhanced directivity. In addition, the 

radiation patterns obtained using EMA are found to be in very good agreement with those 

using the multilayer HM simulations. 

 

Fig. 6.5 Directivity patterns of (a) x-directed dipole at position 1 and 

(b) z-directed dipole at position 4. 

In order to provide a physical insight into this characteristic, in Fig. 6.6 one can find the 

instantaneous electric field vector map at the 660 nm resonance when the resonator is 

excited by an x-directed dipole at position 1; the arrows indicate the E-field direction and the 

color indicates its magnitude. A similar E-field distribution is found for the z-directed dipole 
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at position 4, with the only difference being that the E-field is much stronger. The vector field 

map shown in Fig. 6.6 is basically the modal field of the resonance.  From these field maps, 

one can correlate the emission enhancement factor to the position and dipole orientation. 

For example, when a z-directed dipole is place in location 4 where the z-component of the 

field is strong, the maximum enhancement factor is obtained. In contrast, the enhancement 

factor of the x-directed dipole at position 1 is smaller than that of the z-directed dipole at 

position 4, due to the fact that the x-component of the modal E-field in this position is weaker. 

Instead, the x-oriented dipole at location 3 matches the polarization of the modal E-field and 

therefore it exhibits a comparable enhancement factor as the z-oriented dipole at location 4.  

These results correlate with an increase of the local density of states.  One can envision that 

further enhancement may be realized using different geometrical shapes that produce even 

stronger modal E-field intensities where a QD can be positioned. 

 

Fig. 6.6 Normalized electric field vector maps in the two principal 

planes at 660 nm wavelength. The color bar is in linear scale. The 

dipole is polarized along the x-axis as illustrated. Note that the field 

vector lies mainly on the xz plane. 
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Sec. 6.4 Array Effect 

In a practical implementation, HM resonators are fabricated in a two-dimensional array 

and the QDs will be dispersed on the surface hosting the array. Here a discussion is presented 

on how nearby HM resonators affect the radiative emission enhancement. As mentioned 

earlier, an advantage of using HM resonators lies in the opportunity of high packing density 

due to their small size. In full-wave simulations the implementation of an infinitely periodic 

array with a single dipole excitation is  impractical from numerical simulation standpoint 

even when taking advantage of the structure periodicity [20], therefore in the following the 

analysis of a finite array of resonators is provided. In particular a 3-by-3 square array of 

resonators identical to the one previously introduced is investigated showing the radiation 

enhancement pertaining to an x-directed dipole at position 1 and a z-directed dipole at 

position 4, as depicted in Fig. 6.7. The enhancement of radiated power REE is plot in Fig. 6.8 

for four different periods x yd d= : 175, 200, 225, and 250 (all in nm). As a comparison also 

the enhancement for an isolated HM resonator (no-array) is reported. 

 

Fig. 6.7 A 3-by-3 array of cylindrical subwavelength HM resonators 

with a QD located in two possible positions. 
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Fig. 6.8 Radiative emission enhancement REE versus wavelength for 

(a) an x-directed dipole at position 1 and (b) for a z-directed dipole at 

position 4, periods of x yd d= = 175 nm (green solid line), 200 nm 

(purple dotted line), 225 nm (cyan dotted-dashed line), and 250 

(orange dashed line) as in Fig. 6.7, and for the “no-array” case (black 

solid line with square markers). 

Within the considered parameter range, the enhancement increases as the period x yd d=  

is increased as shown in Fig. 6.8. For 200 nmxd =  ( 0 / 3.3λ ) the enhancement values are still 

high, and more than 50% of that of the no-array case. The case with largest spacing 

250 nmxd =  ( 0 / 2.6λ , i.e., still subwavelength) yields a level of enhancement comparable to 

the no-array case. This implies that HM resonators can be densely arranged in array 

configuration with subwavelength period still keeping large power enhancement levels. As 

in the single resonator case, the z-oriented dipole at position 4 in the array yields much 

higher REE than the other locations.  For randomly oriented QDs, therefore, the average 

enhancement effect is expected to be smaller. 
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Sec. 6.5 Conclusion 

It is shown for the first time, to the authors' knowledge, that subwavelength HM 

resonators can be used as efficient radiators (i.e., as efficient optical nano-antennas). They 

have the ability to enhance both the radiative emission and the Purcell factor of quantum 

emitters in their vicinity. It is shown that the total emission of a QD near a HM resonator 

nano-antenna is mostly coupled to the radiated power into the upper free space. The results 

show up to 100 times free-space radiation enhancement in the presence of HM resonators, 

indicating that these HM resonators are efficient radiators. The enhancement strongly 

depends on the dipole position and polarization. The combined effect of the enhanced REE 

and the directive emission produces further enhancement of field intensity in the broad side 

up to 400 times. Moreover significant enhancement levels are achieved also in the presence 

of surrounding nano-antennas in a two-dimensional array configuration. It is presented that 

the presence of nearby HM resonators in a 3-by-3 square array lead to large power 

enhancement levels, especially for QD at position 4 (i.e. for QD sitting next to the resonator, 

on top of the substrate), slightly lower than those for a single HM resonator. The conclusion 

is that nanostructures made of HM may prove useful for improvement of light-matter 

interaction and solid-state lighting applications. 
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CHAPTER 7 

 

ENHANCING FIELDS AND LIGHT 

EMISSION IN VICINITY OF 

ANISOTROPIC METAMATERIALS 

WITH NEAR ZERO PERMITTIVITY 

7  ENHANCING FIELDS AND LIGHT EMISSION IN VICINITY OF ANISOTROPIC METAMATERIALS WITH NEAR ZERO PERMITTIVITY 

Sec. 7.1 Motivation 

Materials with extremely small permittivity, namely epsilon near zero (ENZ) materials 

have been on the focus of attention due to their natural existence in optical frequencies and 

their unprecedented properties. Realization of ENZ behavior has been achieved using 

multilayer stack of metal and dielectric [1], 3-D periodic array of dielectric-core metallic-

shell nanospheres with fluorescent dyes in the core of each nanoparticle for the loss-

compensation [2] or employing metal-coated waveguides at their cut-off frequency [3]. 

Owing to their extremely large velocity of phase propagation, such materials enable linear 

applications such as tailoring radiation emission [4]–[7], energy squeezing and 

supercoupling [8]. On the other hand ENZ materials can be utilized to achieve huge field 

enhancement. In [9] the field intensity enhancement (FIE) of a isotropic ENZ semi-infinite 

medium and a isotropic ENZ slab under TM (transverse magnetic) plane wave incidence is 
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theoretically investigated. Exploiting this ability, optical nonlinearities such as second or 

third harmonic generation [10]–[12] and Kerr nonlinearities [13] have been enhanced 

significantly. 

 

 

Fig. 7.1 Schematic of longitudinal epsilon near zero film (a) under TM-
plane wave incidence and (b) with dipole located in the hotspot. 

In the present letter we establish that under TM wave incidence a uniaxially anisotropic 

epsilon near zero film exhibits  remarkably stronger FIE than isotropic epsilon near zero 

(hereafter we will use IENZ for isotropic epsilon near zero) studied in [9]. The film whose 

surfaces are normal to the z axis, shown in Fig. 7.1, is marked by the subscript ‘2’, and 

modeled via a relative permittivity tensor ( )2 ˆ ˆ ˆ ˆ ˆˆε xx+yy zzt zε ε= + . Particularly we show that 

the specific type of anisotropy useful for super-field enhancement occurs when the zz entry 

of the permittivity tensor is near zero, which in the following we call it longitudinal epsilon 

near zero (LENZ) condition. Furthermore, through reciprocity, we demonstrate that a z-

polarized dipole located at the E-field hotspot in the LENZ film radiates extremely strong far 
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field. We also show that FIE in LENZ films is not strongly dependent on and sensitive to the 

film thickness and remarkably it occurs for a wide angular incidence range unlike what 

happens in IENZ films. LENZ film can be realized in various ways, for example by a 

multilayered medium made of a stack of metallic and insulator layers or by stacking 

semiconductor layers. 

Sec. 7.2 Statement of the Problem and the Analytical Model 

The geometry of the investigated problem is depicted in Fig. 7.1. We investigate first the 

FIE in a film with thickness d  under a TM plane wave as in Fig. 7.1(a), and then we investigate 

the radiative emission enhancement of a point dipole inside a LENZ film as illustrated in Fig. 

7.1(b). 

The electric field vector of the incident TM wave is in the x z−  plane, i.e., 

( ) 1·
1 1 ˆ ˆcos sin

ii i
i iE eθ θ= k r

E x+ z  where 1k  is the wavevector of the impinging TM wave where  

1 1 0 0 1k ω µ ε ε= =k  is the wavenumber in medium 1. The transverse (to the z axis) 

wavenumber is tk  whereas the longitudinal wavenumber outside the film is 2 2
1 1z tk k k= − . 

A monochromatic, time harmonic convention i te ω−  is implicitly assumed. In the LENZ film 

the entries of the relative permittivity tensor are t t tiε ε ε′ ′′= +  and z z ziε ε ε′ ′′= + . We will use 

( )2 2
2 0 /z t t z tk k kε ε ε= −  for denoting the longitudinal wavenumber in the film. Owing to the 

continuity of the normal displacement field component at / 2z d=  : 

 
( ) ( )1 1 2/2 /2z z zz d z d

E Eε ε+ −
= =

=   (7.1) 
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in which 1zE  and 2zE  are the longitudinal components of the total electric field in media 1 

and 2 respectively. By replacing the value of the 1zE  in the abovementioned equation one 

obtains [9] 

 1 1 2(1 )sini
i z zE Eε θ ε− Γ =   (7.2) 

where Γ  is the reflection coefficient towards the z−  direction, seen from the upper interface 

and is given by 

 ( )
( )

( )

2 2 2
2 1

2 2 2
1 2 2 1

ˆ
,

ˆ ˆ2

z z t h

i

z z t h z z t h

i k k s
d

k k c i k k s

ε
θ

ε ε

− −
Γ =

− +
  (7.3) 

with ( )2sinh zs k d=  , ( )2cosh zc k d=  and 1ˆ /t tε ε ε= . Therefore, assuming 1ˆ /z zε ε ε= , it is 

convenient to define the local z-polarized field intensity enhancement at ( )/ 2z d
−

=  as 

 
( )

22

2

1

1 sin
FIE

ˆ
z

z

E

E

θ

ε

− Γ
= =   (7.4) 

which is the ratio of the electric field in the longitudinal direction in the film to the incident 

electric field amplitude at the same place in the absence of the film. In the following, unless 

stated otherwise, FIE is always calculated just below the top surface of the film at ( )/ 2z d
−

=

. The field intensity enhancement depends strongly on the choice of zε , i.e., by choosing zε  

close to zero FIE gets large. FIE is also strongly dependent upon the reflection coefficient Γ , 

which is in general complex, and if it gets close to unity then FIE vanishes. We will compare 

the LENZ and IENZ cases for their field enhancement and radiation enhancement capabilities 

using examples and analytical calculations. 
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As an example, in Fig. 7.2, we consider a film with thickness / 3d λ= , with 12 / kλ π= , made 

of LENZ material surrounded by vacuum i.e. 1 1ε = . In Fig. 7.2(a) we assume that the film has 

longitudinal permittivity of 0.001 0.001z iε = +  and transverse permittivity of 0.001t t iε ε ′= +  

at wavelength λ . We report the FIE at ( )/ 2z d
−

= , i.e. just below the top surface of the film, 

versus the real part of the transverse permittivity of the film tε ′  and the angle of incidence 

of the impinging TM-polarized wave. The IENZ case, as a subset of LENZ cases reported in Fig. 

7.2(a), is marked with white dashed line where t zε ε′ ′= . Notably, we observe that FIE is the 

lowest for the IENZ case compared to LENZ cases with larger tε ′ . As the anisotropy of the 

film becomes starker, the FIE increases, in other words it is better not to have a vanishing tε ′

. This figure clearly exhibits the superior field enhancement capability of LENZ over IENZ. 

Also provided in Fig. 7.2(b) is the comparison of FIE in IENZ case and LENZ case with 

2.5 0.001t iε = +  as a function of angle of incidence. The FIE of the reported LENZ case is 23 

folds of the FIE of the IENZ case. Moreover the angular range at which FIE occurs is much 

wider in the LENZ case than in the IENZ case. Using angular full width at half maximum 

(FWHM) of FIE defined as the range of angles in which FIE is higher than the half of its 

maximum value, the angular FWHM of FIE in LENZ case is at least 45˚ whereas for the 

isotropic case is less than 5˚. We can state that LENZ leads to not only larger FIE, but also to 

a wider angular span of large FIE. To differentiate the IENZ and LENZ behavior 

mathematically, assuming 1 1ε =  we substitute Γ  from (7.3) in (7.4) 

 

( )

2

2 2
1 2 1

2 2 2
1 2 2 1

2 2
FIE = sin

2

z z t h z t h

z z z t h z z t h

k k c ik s

k k c i k k s

ε ε
θ

ε ε ε

−

 − +
 

  (7.5) 



168 
 

From this equation one may observe that for an isotropic film with permittivity 2 0ε →  and 

0θ ≠  equation (7.5) can be written as 

 
( )

( )

2

1
IENZ

1

2cos cos sin
FIE

sin sin

ik d

ik d

θ θ

θ

−
=

−
  (7.6) 

which is a finite (i.e., not large) value unless θ  or d  (or both) tends to zero. Note that for an 

assigned θ , IENZFIE  is not infinity even if we have assumed that 2 0ε → . It is also worth 

mentioning that the maximum of IENZ case in Fig. 7.2(b) does not go to infinity as θ  tends 

to zero due to nonzero 2ε . Instead, for the LENZ case assuming near zero values for zε  and 

angles such that 2sinzε θ≪  (because the proper limit is for 2/ sin 0zε θ → ), by simplifying 

the numerator and denominator of (7.5), assuming finite values of tε  and d , we obtain 

 

2

2
LENZ

2
FIE cos 4 cos

t t

zz

ε ε
θ θ

εε
≈ ≈   (7.7) 

Here the denominator goes to zero as 0zε →  which causes the FIE to tend to infinity for the 

LENZ case. Note that to obtain giant FIE is not necessary to illuminate with small incidence 

angle θ , whereas in the IENZ case only for small θ  one can get giant FIE. In contrast to (7.6) 

which does not depend on 2ε , FIE in LENZ case as reported in (7.7) depends on permittivity 

tensor entries. It shows that having large tε  is favorable for having large FIE, contrary to the 

assumption that IENZ is supposed to be good for field enhancement. 
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Fig. 7.2 (a) FIE at ( )/ 2z d
−

=  in the geometry of Fig. 7.1 with / 3d λ=  

and 0.001 0.001z iε = +  and 0.001t t iε ε ′= +  as a function of tε ′  and 

incident angle θ  (b) Comparison of the FIE at ( )/ 2z d
−

=  between the 

IENZ case (blue line) with 2 0.001 0.001iε = +  and the LENZ case (red 

line) with 2.5 0.001t iε = +  (c) Value of ( )1 / zε− Γ  versus tε ′  and zε ′  

for o40θ =  and 0.001t zε ε′′ ′′= =  (d) ( )1 sinθ− Γ  as a function of 

incident angle and tε ′  with 0.001t zε ε′′ ′′= = . 

Sec. 7.3 Numerical Computations of Field Enhancement 

In this section, the numerical calculation carried out with exact formulae are presented. 

The approximated formulae that are derived in previous sections are used for guidance in 

selecting distinctive cases demonstrating the advantages of LENZ slabs. The initial 

interpretation of (7.7) was that the FIE is enhanced for high transverse permittivity in 

general, a case not observed in IENZ. This fact is clearly shown in Fig. 7.2(c) where 

( )1 / zε− Γ  of (7.4) is reported versus real part of the transverse and longitudinal 
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permittivities for slab with / 3d λ=  and 0.001t zε ε′′ ′′= = . It is clear that as zε  tends to zero 

the abovementioned value increases. It is also worth noting that as the film becomes more 

anisotropic (larger tε ′ ) FIE increases as well. Fig. 7.2(d) shows the value of ( )1 sinθ− Γ , i.e. 

the numerator inside the absolute value function in (7.5), as a function of tε ′  and θ  for the 

same slab of Fig. 7.2(a). As it is clear from this figure, ( )1 sinθ− Γ  is much larger than zε  for 

LENZ cases which leads to giant FIE. On the line denoting IENZ in Fig. 7.2(d) the behavior of 

( )1 sinθ− Γ  is a signature of the reflection coefficient Γ  which tends to 1 unless when d  

tends to zero. However, for LENZ case the real part of Γ  does not tend to 1, paving the way 

toward increasing FIE, over a wide range of angles. To sum up, the FIE is remarkably higher 

for the anisotropic case than the isotropic case. 

 

Fig. 7.3 (a) FIE at ( )/ 2z d
−

=  with / 3d λ=  as a function of tε ′  and θ  

for 0.001 0.01z iε = +  and 0.01tε ′′ =  (b) Comparison of IENZ (dotted 

lines) with 2 0.001ε ′ =  and LENZ (solid lines) with 2.5tε ′ =  and 

0.001zε ′ =  for different losses: 0.01t zε ε′′ ′′= =  (low loss), 0.05t zε ε′′ ′′= =  

(high loss). 

One of the most important factors in determining the FIE in LENZ film is the loss 

represented by the imaginary parts of the transverse and the longitudinal permittivities. To 
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investigate the effect of the loss in Fig. 7.3(a) we reproduce the same set of cases as in Fig. 

7.2(a) but with higher film loss modeled by 0.01t zε ε′′ ′′= =  reporting that FIE decreased 

drastically due to the loss in the film. However, LENZ still yields higher FIE compared to IENZ 

(marked with dashed white line). To better appreciate FIE superiority of LENZ over IENZ 

over a wide angular range both in low and high loss cases, in Fig. 7.3(b) FIE is plotted versus 

incident angle for IENZ with 2 0.001ε ′ =  and LENZ with 2.5tε ′ =  and 0.001zε ′ = . The high loss 

cases have 2 0.05ε ′′ =  for IENZ and 0.05t zε ε′′ ′′= = for LENZ; the low loss cases have 2 0.01ε ′′ =  

for IENZ and 0.01t zε ε′′ ′′= =  for LENZ. The outstanding performance of LENZ is demonstrated 

in this figure by noting that high loss LENZ provides much higher FIE even than low loss IENZ 

for angles of incidence o10θ > . Assuming similar imaginary permittivity, the FIE of LENZ is 

two orders of magnitude higher than that for IENZ for a wide range of angles of incidence. 

So far we have investigated FIE at ( )/ 2
−

=z d . Another important quality of FIE is its 

profile within the film. This is reported in Fig. 7.4(a) as a function of /z d  and /d λ  for a 

specific case of o40θ = , 0.001 0.035z iε = +  and 2.5 0.035t iε = + . As it is clear from the results, 

the FIE is maximum at the interface between the film and the air and it decreases by getting 

deeper into the film. For small thicknesses, when 0.1d λ< , the FIE has a more uniform 

distribution inside the film, and the FIE is at similar levels as in thicker films. In Fig. 7.4(b) 

the dependence of FIE on the film thickness has been studied as a function of tε ′ , analyzing 

three cases with / 1d λ = , / 0.1d λ =  and even / 0.01d λ = , assuming incidence at o40θ = , 

0.001 0.01z iε = +  and 0.01tε ′′ = . An important result from this figure is that in films with 

thickness larger than / 0.1d λ =  increasing anisotropy (larger tε ) will boost FIE. This can 
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be simply understood from equation (7.7) in which numerator increases with tε . 

Importantly, from Fig. 7.4(b) we observe also that very thin films (e.g., / 0.01d λ = ) can 

provide high FIE almost independently of tε . Indeed, FIE is inversely proportional to the 

thickness and for the IENZ case it is readily explained by simplifying equation (7.6) for 

0d →  and using ( )1cos sin 1ik d θ− ≈  and ( )1 1sin sin sinik d ik dθ θ− ≈ −  that leads to 

 IENZ
1

2cos
FIE

sinik d

θ

θ
≈

−
  (7.8) 

The presence of d  at the denominator explains the mentioned behavior. 

We consider an example of a LENZ case obtained from a multilayer structure in Fig. 7.5(a) 

and compare it to a IENZ case. The multilayer structure is made of alternate layers, of equal 

thickness, of silver with permittivity described using Drude model given in [9] and alumina 

with permittivity taken from [14]. We assume thicknesses small enough such that the 

homogenization model is valid. LENZ condition for this homogenized structure happens at 

f0 = 974 THz in which [using effective medium approximation (EMA)] 0.044z iε =  and 

1.62 0.011t iε = + . In Fig. 7.5(b) we compare the FIE of this structure with bulk silver at its 

ENZ frequency at at 0 962 THzf =  with 0.022iε = . Films have thicknesses / 3d λ= . As it can 

be seen, not only FIE for the multilayer (LENZ) is higher for all angles of incidence than bulk 

silver (IENZ) but also its maximum is 6 folds of that of the IENZ, even when Im( )zε  is twice 

Im( )ε  of the IENZ. We also provided the FIE calculated via the transfer-matrix method 

(TMM) alternating five layers of silver (in its ENZ frequency with 0.022iε = ) and five of silica, 



173 
 

all with thicknesses / 30λ . The FIE just below the top surface of the top layer (silver) is even 

higher than that in the homogenized LENZ. 

 

Fig. 7.4 FIE for o40θ =   and '' '' 0.035t zε ε= =  and 0.001zε ′ =  (a) in the 

film profile for 2.5tε ′ = and (b) as a function of tε ′  for various 

thicknesses, d λ=  (blue), 0.1d λ=  (red) and 0.01d λ=  (green), at

( )/ 2z d
−

= . 

 

Fig. 7.5 (a) LENZ design based on multilayer structure of silver and 
alumina compared to bulk silver. (b) FIE versus angle of incidence for 

homogenized LENZ with 0.044z iε =  and 1.62 0.011t iε = +  and IENZ 

case with 0.022iε = .  The FIE in the top layer using the TMM is also 
shown, showing even higher FIE. 
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Sec. 7.4 Radiative Emission Enhancement of an Impressed Dipole in LENZ 

Giant z-polarized E-field enhancement inside the film for a wide range of angles of 

incidence in LENZ also implies, via the reciprocity theorem, that, a z-polarized dipole located 

at the E-field hotspot in a LENZ film radiates very strong far-fields over a wide angular region. 

With this in mind, we next investigate the capability of LENZ films to enhance a dipole 

radiation emission. The main parameter we are interested in is the radiative emission 

enhancement, REE, defined as 

 rad fsREE /P P=   (7.9) 

where radP  is the amount of power radiated by a dipole inside the anisotropic film (in both 

vacuum half-spaces) and fsP  is the total power emitted by the same dipole in free space. radP  

does not account for the power emitted by that dipole which is then dissipated as loss in the 

LENZ film. In Fig. 7.6, REE of a z-polarized dipole inside the LENZ film with thickness / 3d λ=  

at an infinitesimal distance from the top surface is plotted versus tε ′  and zε ′  for the lossless 

case in (a) and when 0.01t zε ε′′ ′′= =  in (b). We observe that regardless of the sign of zε ′ , when 

it is small, REE is large. Moreover REE increases as tε ′  increases in absolute value. In the 

lossless case, the REE is maximized when 0 and 0t zε ε′ ′< >  or 0 and 0t zε ε′ ′> < , however 

when losses are introduced, this behavior is less pronounced. 
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Fig. 7.6 REE, the radiative emission enhancement, versus tε ′  and zε ′  

when a z-polarized dipole is right below the top surface of a LENZ film 
of thickness / 3d λ= , (a) for the lossless case (the color legend is 
saturated for values more than 1000) and (b) for a lossy  case with 

0.01t zε ε′′ ′′= = . 

 

Fig. 7.7 The normalized radiation pattern in dB (a) for the IENZ case 
and (b) for the LENZ case with a film thickness of / 3d λ=  in both 
cases for various values of imaginary part of permittivities. 

A main difference between the radiation from the z-polarized dipole in an LENZ film and 

that in an IENZ film arises in the radiation patterns. In Fig. 7.7(a) and (b), the normalized 

radiation patterns of the dipole in IENZ and LENZ, respectively, are provided for various loss 

levels. IENZ case represents a very sharp radiation peak when loss is very low. On the other 

hand LENZ leads to a much wider beam than IENZ even in the extremely low loss case which 
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relates to its superior REE performance, as it leads to intense radiation over a wide solid 

angle. The pattern in both IENZ and LENZ cases gradually gets less directive and the 

radiation peak moves away from the bore side as losses increase. Dipoles in LENZ films 

radiate over a wider angular region than in IENZ fields and are thus suitable for boosting the 

power through radiative emission, i.e. far-field radiation, of dipolar emitters. 

Sec. 7.5 Conclusion 

In conclusion, we have investigated the ability of LENZ films for electric field 

enhancement in proximity of the film interface and demonstrated its superiority over IENZ. 

We have showed that for the same level of loss, LENZ gives much higher FIE than IENZ and 

also it occurs for a wider range of angles of incidence compared to the IENZ, while being also 

less sensitive to the thickness of the film than the IENZ case. Finally, radiative emission in 

LENZ is higher than in IENZ films.   
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CHAPTER 8 

 

ENHANCING MAGNETIC FIELD-

MATTER INTERACTIONS 

8  ENHANCING MAGNETIC FIELD-MATTER INTERACTIONS 

Sec. 8.1 Motivation 

Natural magnetism at optical frequencies is rather weak when compared to electric 

response of matter [1]. Indeed, optical spectroscopy and microscopy systems mainly work 

based on electric dipolar transitions in matter rather than their magnetic counterparts. On 

the other hand, even though natural optical magnetism vanishes, metamaterials with 

equivalent magnetic dipolar responses have been widely studied in the past decade. For 

example, arrays of magnetic meta atoms are employed in engineering bulk effective 

permeability [2]–[7]. Several studies have been devoted to generating artificial magnetism 

(i.e., effective relative permeability different from unity) for such structures leading to 

effective permeability engineering. However, artificial magnetism for magnetic near-field 

enhancement is a rather newer subject of research and its application to boost the weak 

natural magnetism in matter at the short wavelength range of the electromagnetic spectrum 

for microscopy applications is rather unexplored yet. 
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The building blocks of metamaterials are scatterers that possess scattering modes 

modeled via multipolar expansion. The magnetic dipolar term in the scattering multipolar 

expansion of such scatterers is always present alongside the electric dipolar response. 

Magnetic resonances in such meta atoms have been used also to generate high-quality 

resonances owing to the reduced radiative losses. In particular, clusters of plasmonic 

nanoparticles such as the spherical constellations [8]–[10] have been suggested to generate 

effective bulk permeability when arranged in array configuration. Also circular clusters of  

 

Fig. 8.1 Illustration of the exemplary setup in which generation of a 

large magnetic to electric field contrast could be beneficial in 
detection of (or interaction with) a weakly magnetic response of a 

matter sample placed at the center of the cluster. The nanoantenna 
studied here, called magnetic nanoprobe, is made of a resonating 
circular cluster excited by an APB with longitudinal magnetic field and 

it generates a strong magnetic field at its center 

plasmonic particles, which are of interest in this chapter, have been suggested with the 

purpose of engineering negative effective permeability [5], for achieving Fano resonances 

[11]–[15], and in the quest for detectable photoinduced magnetic forces via artificial 

magnetism [16]. The characterization of the near-field signature of magnetic nanoprobes 
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may be functional in adding an extra dimension to optical spectroscopy using photoinduced 

force microscopy [17]. The extra dimension based on magnetic near-field signature could be 

provided in addition to the electric dipolar near-field signature. 

The utilization of a magnetic nanoprobe for enhancing the magnetic transitions and 

suppressing the electric dipolar ones in matter requires: (i) excitation of the magnetic mode 

of the nanoprobe leading to enhanced magnetic near field, (ii) suppressing the electric near 

field where magnetic field is enhanced. To help in the latter magnetic to electric field contrast 

aspect, symmetry in the magnetic nanoprobe and in its excitation plays an important role as 

we show in this chapter. This entails the suppression of the electric dipolar mode and the 

rest of the higher order electric multipoles in the magnetic nanoprobe. In the quest of 

selective excitation of the magnetic dipolar mode of the nanoprobe, we turn our attention to 

vector beams with cylindrical symmetry, so-called cylindrical vector beams [18]–[21], which 

have been proved to be experimentally functional in the selective excitation of Mie 

resonances in dense dielectric particles [22], [23]. Cylindrically symmetric vector beams 

with spatially-dependent electric field vectors, namely radially [18]–[21], [24]–[28] and 

azimuthally [18]–[21], [29]–[32] polarized vector beams, have been thoroughly investigated 

specially under tight focusing [24], [27]. A particular cylindrically symmetric vector beam 

category useful for selective excitation of the magnetic dipolar moment is the azimuthally 

electric polarized vector beams which hosts a strong longitudinal magnetic field along the 

beam axis where electric field vanishes [29]–[33]. In the following, we call such beams 

simply as azimuthally polarized beam (APB) referring to the local orientation of their vector 

electric field. An APB does not only have the capability to selectively excite the magnetic 

dipolar moment of a magnetic nanoprobe, but also to boost intensity and resolution of the 
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magnetic near-field scattered by a nanoprobe. Owing to the rotational symmetry of the APB 

and nano probe setup (Fig. 8.1), one can obtain large magnetic to electric field ratio, denoted 

also as local field admittance, around the magnetic nanoprobe center when aligned with the 

beam axis. In [32], the authors quantify electric and magnetic fields of the tightly focused 

APB within a region with a very large local field admittance and report that scattering by a 

dense dielectric nanosphere placed in the focal plane of the focused APB leads to enhanced 

magnetic field with resolution below the diffraction limit. 

In this chapter, we elaborate on the excitation of a magnetic nanoprobe consisting of a 

cluster of plasmonic nanospheres which provides significant accessible area with enhanced 

magnetic field for placing matter samples (i.e., molecules, quantum dots, etc.). The near field 

of such a plasmonic nano clusters is characterized in terms of newly introduced figures of 

merit quantifying the magnetic and electric field enhancements and the magnetic to electric 

field contrast, i.e., the local field admittance. The magnetic nano cluster therefore 

significantly boosts the total magnetic field and increases spatial magnetic resolution. Such 

nano clusters when excited with an APB could be useful in boosting the magnetic dipolar 

transitions of materials located at the cluster’s center which are in general weak and 

overshadowed by stronger electric dipolar transitions. The setup proposed in this chapter is 

depicted in Fig. 8.1 where a magnetic-dominant region with a strong magnetic field and a 

vanishing electric field is generated.  

Sec. 8.2 Large Local Field Admittance and Enhanced Magnetic Field 

In the selective excitation of the magnetic dipolar transitions with magnetic-based 

spectroscopic applications in mind, the main goal is to investigate the physics of magnetic 
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field enhancement within a region where electric field vanishes, so-called magnetic-

dominant region. To this purpose we investigate a circular cluster of plasmonic nanospheres 

that supports a “magnetic” resonance, excited by an APB, whose electric field vanishes on 

the beam axis aligned with the cluster center. These kinds of nanoantennas are here called 

magnetic nanoprobes because they are used to enhance the magnetic near field. Several 

concepts developed in this chapter for a circular cluster of plasmonic nanospheres are also 

applicable to other kinds of magnetic nanoantennas. 

We introduce some figures of merit to characterize the quality of magnetic nanoprobes 

and their excitation. The goal is to quantify the magnetic field enhancement and the magnetic 

to electric field ratio, i.e., the absolute value of local field admittance normalized by that of a 

plan wave 1/ /η ε µ= , defined as 

 
( )

( )

( )

( )

tot tot

ext tot
, ,H YF F

η
= =

H r H r

H r E r
  (8.1) 

where the superscripts “tot” and “ext” refer to the total field and external excitation field, 

respectively. For completeness we define also the electric field enhancement as 

 
( )

( )

tot

extEF =
E r

E r
  (8.2) 

although in this chapter the goal is to boost only the figures of merit in (8.1). The subscripts 

of figures of merit H, E, and Y stand for magnetic field, electric field and local field admittance, 

respectively. In this chapter bold fonts denote phasor vector quantities with time-harmonic 
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convention ( )exp i tω−  where ω  and t  refer to real angular frequency and time, respectively. 

A hat “^” is used to denote unit vectors. 

To have large values of figures of merit, we propose to use an APB to illuminate the 

magnetic nanoprobe as in Fig. 8.1.  The external electric field of the APB is given by the 

expression 
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  (8.3) 

where 
LG
lE  is the field expression of a Laguerre-Gaussian beam with orbital angular 

momentum (OAM) order of l, and  radial mode number p = 0 that propagates in the +z 

direction. Note that the choice of + or - sign in (8.3) is irrelevant. The APB ideally does not 

possess longitudinal electric field anywhere, while possessing a longitudinal magnetic field 

that reaches its maximum on the beam axis. On the beam axis, for symmetry reasons, there 

are no transverse electric and transverse magnetic fields [30]. Note that Laguerre-Gaussian 

beams are solutions to the wave equation under paraxial approximation [34]. The 

expression of the Laguerre-Gaussian mode with OAM order[30] 1l = ±   and radial order 

0p =  is 
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  (8.4) 
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where  2 2x yρ = +  and ϕ  are the cylindrical coordinates,  2 /k π λ=  and λ  are the 

wavenumber and wavelength in the host medium, 0w  is the beam parameter and represents 

the spatial extent of the beam at 0z =  that is the beam’s minimum-waist plane, and the 

Rayleigh range is defined as 
2
0 /Rz wπ λ= . Note that at any given z, the azimuthal electric 

field is maximum at the radius Mρ ρ=  where / 2M wρ =  [32], and its maximum value is 

equal to 

 

2

APB

2

2 1 2
( , )

M

w
ME z V e V

w ew

ρ

ϕ

ρ ρ

ρ
ρ

ππ

 
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 

=

= =   (8.5) 

The magnetic field of the APB is then calculated via ( )/ iωµ= ∇ ×H E  with the electric field 

of the APB given in Eq. (8.3). The z component of the magnetic field is 

 

2
12 tan 2

APB

2 23

2
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z ikzw
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V i
H e e e
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η π
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  (8.6) 

which is not only nonzero on the beam axis ( 0ρ = ) but also reaches its maximum magnitude 

 ( )APB

23

2
0z

V
H

w

λ
ρ

η π
= =   (8.7) 

Here note that the maximum electric field magnitude is inversely proportional to w whereas 

the maximum longitudinal magnetic field is inversely proportional to 
2

w . Therefore, when 

keeping the power in the APB constant, one can boost maximum magnetic field relatively 

more than the maximum electric field by focusing the beam to tighter spots. Note that APB 
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excitation ideally provides a YF → ∞  on the beam axis, hence it is ideal for obtaining regions 

with large local field admittance. The radial magnetic field is accordingly found as 

 
2 2

APB APB 0
2

21 1
1

R

w
H E

kz w
ρ ϕ

ρ

η

 −
= − + 

  
  (8.8) 

It is observed that when 1Rkz >>  the radially polarized magnetic field component follows 

mainly the same intensity profile as the azimuthally polarized electric field. For very tight 

beams, however, the second term inside the brackets in (8.8) becomes non negligible, and a 

slight difference between the intensity profiles of 
APBHρ  and 

APBEϕ  starts to appear. The 

formula of the power of the APB, P, as a function of V and 0 /w λ  is given in Appendix. 

Next we emphasize the relative increase of the longitudinal magnetic field of an APB and 

its resolution as 0w  decreases. In Fig. 8.2 all the field components of APBs with 0w λ=  and 

0 0.5w λ=  are reported, keeping the power carried in the beams constant and equal to 1 mW. 

We observe that the longitudinal magnetic field is boosted relatively more than the 

transverse magnetic and electric field components when the beam is tighter, i.e., when 0w  

decreases. Therefore, just using an APB with a tighter spot is on its own an intriguing way to 

boost the magnetic field, the magnetic field resolution and the figure of merit YF . Moreover, 

in the following we will analytically prove that a magnetically polarizable cluster further 

enhances the magnetic field at its center, almost independently of the beam parameter of the 

incident APB. 
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Fig. 8.2 Field profiles of an APB in vacuum with two different beam 

parameters, 0w λ=  and 0 0.5w λ=  at 632 nmλ =  keeping the power 

in the beam constant and equal to 1 mW (i.e., with 0.972 VV =  for 

0w λ=  and 0.891 VV =  for 0 0.5w λ= ). Longitudinal magnetic field 

APB
zH  is boosted in tight beams (i.e., with small beam parameter 0w

). 

We define a figure of longitudinal magnetic field at the minimum waist (i.e., at 0z = ), 

quantifies the magnetic field strength independent of the power of the beam. It is equal to 

the longitudinal magnetic field of an APB normalized by the magnetic field of a plane wave 

whose power intensity is equal to the power of the APB divided by an area 
2λ  

 
2

2
/z z

P
h H

ηλ
=   (8.9) 

where P is the power in the APB which possesses the longitudinal magnetic field zH . The 

figure zh , evaluated at the minimum waist is only a function of 0 /w λ  and its explicit formula 

is provided in Appendix. In Fig. 8.3, we report such figure of magnetic field and it clearly 

shows that the magnetic field of an APB is significantly boosted as the beam parameter 

decreases, especially when 0w λ< . 

0w λ= 0 0.5w λ=

APB
zH APBHρ

APB /Eϕ η
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Fig. 8.3 The nondimensional figure of longitudinal magnetic field 
defined in (8.9). 

In the following, we introduce the analytical equations used in the single dipole 

approximation (SDA) calculations for quantifying the two main figures of merit in (8.1), the 

magnetic field enhancement and the normalized absolute local field admittance, and then 

explain the physics behind the capability of the cluster for boosting these two figures of 

merit. Note that in our characterization of the cluster under APB illumination, we put special 

emphasis on the magnetic field enhancement, i.e., on HF ,  achieved in the presence of the 

ring cluster as a way of boosting natural magnetism, rather than the cluster’s magnetic 

polarizability as done in several previous publications [15]. 

Sec. 8.3 Analytical Model of Cluster Scattering 

We briefly summarize the analytical model utilized in solving a scattering problem where 

a cluster made of electrically polarizable plasmonic nanospheres in homogeneous free space, 

vacuum, is excited by an external field. For comparison we also consider external field such 

as a single plane wave and a superposition of two plane waves. 

h
z
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The nano cluster is made of N plasmonic particles at positions nr , displaced in the x-y 

plane (Fig. 8.1).  For simplicity we assume that each particle is a nanosphere modeled by a 

scalar (isotropic) electrical polarizability nα  where {1,..., }n N∈ . The local electric field 

exciting the nth particle is evaluated as 

 
loc ext

1

( ) ( ) ( , )
N

n n n m mEp
m
m n

=
≠

= + ⋅∑E r E r G r r p   (8.10) 

where the superscript ‘ext’ denotes the external excitation (i.e., the illuminating APB) and 

( , )n mEpG r r   is the dyadic Green’s function that gives the electric field at nr  generated by the 

electric dipole mp  at mr , and here we use the fully dynamic and exact expression in Chapter 

8 of [35].   Each nanosphere’s electric dipole moment is evaluated via the Mie polarizability 

of the nanosphere and the local field at the nanosphere’s center as 
loc( )n n nα=p E r , where 

the local field is the sum of the external field and the field scattered by all the other 

nanospheres. Thus (8.10) is rewritten in terms of the unknown electric dipole moments as 

 
ext

1

( , ) ( )
N

n n n m m n nEp
m
m n

α α
=
≠

− ⋅ =∑p G r r p E r   (8.11) 

By writing (8.11) for n = 1, …, N, we construct a linear system of N equations as 

 [ ]

ext
1 1 1
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α
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where [ ]A  is a 3 3N N×  matrix made of 3 3×  sub-blocks nmA  with , {1,..., }n m N∈   that are 

given by 

 
when

( , ) otherwisenm
n n mEp

m n

α

=
= −

I
A

G r r
  (8.13) 

where I  is the 3 3×  identity matrix. The system of linear equations in (8.12) is solved for 

the electric dipole moments under external excitation. Subsequently the electric and 

magnetic fields scattered by the cluster are evaluated using the fully dynamic and exact 

dyadic Green’s functions HpG  (Section 2.3 in [36]) and EpG  which provide the magnetic and 

electric fields due to an electric dipole, respectively. The total electric and magnetic fields at 

an observation point r  are evaluated as 

 

tot ext
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  (8.14) 

For simplicity, in the following section (Sec. 8.4) we assume that all nanospheres are 

identical and we drop the subscript n in the polarizability symbol. 

Sec. 8.4 Physics of Cluster Azimuthal Excitation, Resonance, and Field Enhancement 

A cluster made of plasmonic nanospheres offers a large degree of flexibility in tuning the 

magnetic resonance wavelength. In general, we define the real magnetic resonance 

wavelength as the wavelength at which the magnitude of the magnetic dipole moment of the 

cluster under a time harmonic field peaks. The magnetic dipole moment of the cluster as in 

Fig. 8.1 is defined as 
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1

2

N

n n

n

iω

=

= ×∑m r p   (8.15) 

The cluster has the significant cross-sectional area only on the plane normal to the z axis, 

i.e. the main magnetic moment of the cluster will be aligned along z under various types of 

excitations. The magnetic moment of the cluster is proportional to the local magnetic field 

(assumed not varying significantly over the cluster area). Therefore we define the magnetic 

polarizability of the cluster as a way of modeling its magnetic response. The magnetic 

polarizability is in general represented as a tensor, however here we are interested in the z-

directed magnetic moment induced by the z-component of the external magnetic field (i.e., 

an APB with strong longitudinal magnetic field along its propagation axis z). Accordingly, the 

magnetic polarizability of the cluster centered at the origin is 

 
ext ( )

mm z
zz

z

m

H
α =

=r 0
  (8.16) 

Due to symmetry, the magnetic dipole moment is generated by circulating electric dipolar 

moments (Fig. 8.1), which are excited by an APB. The cluster in Fig. 8.1 is made of 

nanospheres equally spaced on a perfect circle with the cluster radius 

( ) ( )2 / 2sin /a r g Nπ= +     where r is the nanosphere radius and g is the inter-nanosphere 

gap distance. The cluster is excited by an ideal APB whose electric field 
APBEϕ  is purely 

azimuthal, i.e., transverse to z and along the ϕ direction. Under rotational symmetry, all the 

induced electric dipole moments are polarized azimuthally and equal in magnitude given by 
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where ( ) ( )ˆ ˆ ˆsin 1 cos 1n n nδ δ= − − + −      φ x y  with 2 / Nδ π= . In the following the 

denominator in (8.17) is called 

 ( )1 1

2

ˆ ˆ1 ,
N

n nEp
n

D α
=

= − ⋅ ⋅∑ φ G r r φ   (8.18) 

and it reaches its minimum absolute value at the “magnetic” resonance. 

Since the electric dipole moments and the position vectors ( andn np r ) lie on the same 

plane (orthogonal to z) the magnetic dipole moment of the cluster would be purely in the z 

direction based on (8.15). This leads to an equivalent cluster magnetic dipole moment and 

the magnetic cluster polarizability as 
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By substituting (8.17) in (8.19), the cluster magnetic polarizability (v16)  is found as 
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The 
APB APB/ zE Hϕ field ratio is found by looking at (8.3) and (8.6): 
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and reaches maximum when 0 / 2Ma wρ= = . 

From (8.1) the longitudinal magnetic field enhancement at the cluster center is 
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where 
ext APB
z zH H≡ . The scattered magnetic field enhancement is 
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  (8.23) 

which is the most significant term in the magnetic field enhancement reported in (8.22) 

when maximized. In the expressions in (8.20) and (8.23) we see the common term 

( )APB APB
zE Hϕ 0  given in (8.21). 
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Fig. 8.4 (a) Cluster magnetic polarizability and (b) magnetic field 

enhancement HF  at the cluster’s center (purely z-polarized owing to 

the symmetry of the cluster geometry and APB excitation), at the 

respective wavelengths where each peaks, versus nanosphere radius 

r and gap g between neighboring nanospheres when N = 6. (c) HF at 

the wavelength where it peaks, versus N and r when gap is fixed at g 
= 5 nm. The superimposed iso-wavelength contours annotated with 

the wavelengths in nm denote the wavelength at which the reported 

quantity peaks. (d) HF  versus wavelength for various r and the effect 

of losses on the maximum magnetic field enhancement at the 

wavelengths where it peaks using two different silver permittivity 

functions, Drude’s model and experimental Palik data. 

The optimum cluster design that maximizes either one of the magnetic polarizability and 

the magnetic field enhancement does not necessarily maximize the other one. In this chapter 

r (nm)g = 5 nm, N = 6

dashed: Drude, solid: Palik

FH at center

FH at center

F
H

at
 c

en
te

r

N = 6N = 6

g = 5 nm

(a) (b)

(c) (d)



194 
 

the main quantity of interest is not the magnetic moment or the magnetic polarizability of 

the cluster but rather the magnetic field enhancement in the central area of the cluster. The 

magnetic field enhancement at the cluster center is purely due to enhancement of the 

longitudinal (z-directed) magnetic field and we will use the figure of merit ( HF ) to quantify 

it. 

We plot in Fig. 8.4(a, b) the peak of the cluster magnetic polarizability 
mm
zzα  and the peak 

of the magnetic field enhancement HF  of a cluster made of 6 silver nanospheres excited by 

an APB with beam parameter 0w λ= , versus nanosphere radius r and inter-sphere gap g 

using SDA model. The cluster is placed at the APB minimum waist plane (i.e, at 0z z= ) and 

nanospheres’ silver is described by the “Palik” permittivity function taken from [37]. The iso-

wavelength contours, annotating the wavelength in nm at which these peaks occur is shown 

in Fig. 8.4(a-c). The colormaps are generated by calculating the peak values (that are 

wavelength dependent) for each pair of g, r or N, r parameters. Note that as the nanospheres 

radius increases the peak magnetic polarizability increases monotonically in the reported 

range, whereas the field enhancement peaks at a certain nanosphere radius, for each gap 

distance. Moreover the magnetic polarizability and magnetic field enhancement peaks occur 

almost at the same wavelength. As the gap g increases and r is kept constant, the peak 

magnetic polarizability and the peak magnetic field enhancement decreases. Therefore small 

gaps are important for achieving strong resonances. 

In Fig. 8.4(c) the magnetic field enhancement peak is plotted versus N, the number of 

nanospheres, and nanospheres radius r where the inter-sphere gap is fixed at 5nmg = . 

Similarly, there appears to be an optimum nanosphere radius for each N. Also it is observed 
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that N = 3 or 4 lead to largest field enhancement values, however it may be preferable to use 

N = 6 which leads to a larger accessible area of magnetic field enhancement inside the cluster. 

It is observed in Fig. 8.4(a,b) that for a specified N and when keeping r constant, the 

resonance wavelength decreases very slightly as g increases. On the other hand, when N and 

g are kept constant, the resonance wavelength of the cluster increases significantly as r 

increases. In Fig. 8.4(c) where g is fixed to 5 nm, the resonance wavelength increases notably, 

either with increasing r and keeping N constant or with increasing N and keeping r constant. 

Recalling that the cluster radius is ( ) ( )2 / 2sin /a r g Nπ= +    , as either r or N gets larger the 

cluster radius increases. Furthermore, when r g>> , a becomes proportional to r as 

( )/ sin /a r Nπ≈ .  Therefore, the main trend in Fig. 8.4(a-c) is that the resonance wavelength 

increases when the cluster radius a increases due to an increase of r or N. 

Finally, in Fig. 8.4(d) the magnetic field enhancement versus wavelength is plotted for 

various nanosphere radii using the Palik permittivity function [37] (as in the other map plots 

in Fig. 8.4) and Drude’s model [38] which underestimate losses in silver at smaller 

wavelength range and leads to larger magnetic field enhancement values. 

The optimum magnetic field enhancement occurs at certain nanosphere radius and 

number of nanospheres N whereas the magnetic polarizability is monotonically increasing 

with the increase of nanosphere radius in the reported range. Therefore, it is apparent that 

different design considerations apply to maximize either magnetic field enhancement or 

magnetic polarizability. The cluster is equivalent to a circulating electric current as an 

effective magnetic dipole. The radius a of the cluster is a crucial parameter because a larger 

cross-sectional area of the cluster leads to a larger magnetic polarizability but not necessarily 
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to a larger magnetic field enhancement. Next we interpret the observations based on the 

analytical formulas. 

The term D at the denominator in (8.17) [given in (8.18)] determines the resonance of the 

cluster, and it appears in both the magnetic polarizability (8.20) and the scattered magnetic 

field enhancement (8.23). These quantities are proportional to the electric polarizability α  

of each nanosphere which grows as 
3

rα ∝ . Keep in mind that as r increases, the cluster 

radius ( ) ( )2 / 2sin /a r g Nπ= +     also increases. Next, the term ( ) ( )APB APB
zE a Hϕ 0  in 

(8.21) is common for both the magnetic polarizability in (8.20) and the scattered magnetic 

field enhancement in (8.23). Here we emphasize that, when neglecting the signature of D, 

both 
mm
zzα   and ( ) ( )APB APB

zE a Hϕ 0  tend to grow with the cluster radius a (i.e., with 

increasing r or N), assuming that 
2 2

0a w<< . When this assumption is not verified, the 

exponential function 2
0exp ( / )a w −   in the common term (8.21) limits the growth of 

APB APB/ zE Hϕ . We now focus on the cluster radius that maximizes either 
mm
zzα   or the 

scattered field enhancement ( ) ( )scat APB/z zH H0 0 . To do so we utilize the dimensionless ratio 
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H H

ka ka

π

α λ
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in order to assess the relative dependence of 
mm
zzα   and the scattered field enhancement on 

the cluster radius a. The ratio in (8.24) does not depend on the term D in (8.18) and it grows 

when a decreases. It is clear that among different resonant designs, the cluster with smaller 

cluster radius tends to have relatively large field enhancement compared to the absolute 
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magnetic polarizability normalized by 
3λ . As a increases, the magnetic cluster polarizability 

grows faster than the magnetic field enhancement with an extra 
3a  factor dependence when 

( )2
1ka << . On the other hand as a increases further, the term ( )2 2

0exp /a w−  causes both 

quantities in (8.20) and (8.23) to reach a peak and then decrease. However, 
mm
zzα   in (8.20) 

and the scattered field enhancement in (8.23) reach maximum at different cluster radii. We 

observe in Fig. 8.4(a,b) that when keeping g and N constant, the magnetic field enhancement 

HF  reaches peak value for certain r values in the reported range whereas the magnetic 

polarizability 
mm
zzα  grows monotonically in the reported r range and it is expected to reach 

peak value at a large r  out of the reported range. Thus, 
mm
zzα  peaks at larger cluster radii than 

the one where HF  peaks, when g and N are kept constant. 

The cluster here is seen as a current loop and this analogy helps us conceive the physics 

behind maximizing the magnetic field enhancement rather than the magnetic polarizability. 

The magnetic polarizability of a current loop is proportional to the loop area squared, thus 

proportional to 
4a . Moreover, the current induced on a loop is proportional to the area and 

the incident magnetic field. Accordingly, the magnetic field at the center of a current loop is 

proportional to the loop current but inversely proportional to a, thus the magnetic field 

enhancement is proportional to the loop radius a. Eventually we observe a factor difference 

of 
3a  in the dependences of the magnetic polarizability and the magnetic field enhancement 

on a which is in agreement with the formula in (8.24) for a cluster when ( )2
1ka << . 
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Fig. 8.5 Local magnetic field enhancement HF  (First column of plots) 

and normalized local field admittance YF  (second column of plots), 

both evaluated on the transverse symmetry plane of the cluster for 

three different excitation schemes: (i) single plane-wave incidence, 

(ii) two antisymmetric plane-wave incidence, (iii) normally incident 
APB. 

Having discussed the characterization of the cluster magnetic resonance and the magnetic 

field enhancement, in the following we stress the advantages of exciting the nano cluster 

with an APB compared to other possible excitation schemes. In Fig. 8.5, we compare the two 

figures of merit, the magnetic field enhancement HF  and the normalized absolute local field 

admittance YF , both evaluated at the cluster plane using three different excitation schemes: 
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(i) TE (with respect to z) plane wave propagating in the x direction, (ii) two antisymmetric 

plane waves propagating in +/˗ x directions, (iii) APB with 0w λ=  whose beam axis coincides 

with the cluster axis (the z axis). The case with two plane waves has a vanishing electric field 

at the cluster center. All the excitation schemes excite the magnetic resonance significantly 

and lead to a magnetic field enhancement of about 4.2. This indicates that, under a scanning 

microscopy setup, the magnetic mode of the cluster would be excited sharply as the 

illumination beam’s strong longitudinal (axial) magnetic field is aligned with the cluster 

center. The cluster has a dominant magnetic dipolar mode with a rather high quality factor 

at the reported wavelength. Therefore, the presence of the z-directed external magnetic field 

leads to a dominant magnetic dipole response which is observed for the three illumination 

schemes reported in Fig. 8.5. Accordingly, this justifies the similar HF  observed in all cases 

reported in Fig. 8.5. It is noteworthy that there are very bright vertical bands of exceptionally 

large HF  in Fig. 8.5 for the antisymmetric plane waves case, this is due to the standing wave 

pattern of the incident magnetic field, which has two nulls separated by half a wavelength. 

Therefore, any scattered magnetic field at these bands corresponds to locally huge magnetic 

field enhancement. Furthermore, the single plane wave case does not lead to an increased 

local admittance, the two plane-waves provide high local field admittance, and the APB 

excitation leads to the largest value and widest area of enhanced local admittance, 

representing a wide magnetic-dominant region. Note that even though the two 

antisymmetric plane-wave scheme also results in a large local field admittance in the 

cluster’s center, it is difficult to phase synchronize these plane waves in practical cases such 

that their electric fields cancel out exactly at the cluster’s center, whereas vanishing electric 

field at the cluster center is a natural property of the APB. 
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Sec. 8.5 Field Characteristics under Azimuthally Polarized Beam Excitation 

At this point we have only plotted the characteristic field maps of the nano cluster excited 

by an APB with 0w λ= . In this section, we first characterize the cluster magnetic response 

versus the beam parameter 0w  of the APB and then report the figures of merit at several 

planes, when illuminated by an APB propagating in +z direction as in Fig. 8.6. 

 

Fig. 8.6 Illustration of the cluster located at the minimum waist plane 

of an APB propagating in the +z direction. The radial distance Mρ  

where the electric field is maximum is denoted by a dashed line. 

In general, the figures of merit, investigated quantitatively in Sec. 8.4, depend on the beam 

parameter 0w  of the illuminating APB that determines also the radial location 0 / 2M wρ =  

of the maximum of the electric field.  Note that the cluster considered in this section with 

parameters 50 nm,r =  5 nm,g =  6N =  resonates at a wavelength of 632 nmλ = , and its 

radius is / 6a λ≈ . In order to ensure that the APB electric field maximum coincides with the 

cluster radius, so M aρ = , the beam parameter of the APB should be 0 0.24w λ≈ . However 

the field features of such an APB is beyond the diffraction limit, and cannot constitute a 

propagating beam as investigated in [32]. However, it is still important to assess the impact 
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of the beam parameter 0w , i.e. the spatial extent and amplitude distribution of the excitation 

field, on the magnetic field enhancement of the cluster-APB system. Therefore, we report in 

Fig. 8.7 the magnetic cluster polarizability 
mm
zzα  and the magnetic field enhancement HF  at 

the cluster center versus beam parameter. In both plots we observe the signature of 

( )APB APB
zE Hϕ 0  term [appearing as a function of 0w   in (8.20) and (8.23)] as a slight 

decrease with 0w  since the exponential term in (8.24) becomes significant. It is shown that 

for 0w λ>  both quantities plotted in Fig. 8.7 saturate, and around 0w λ≈  the reported 

quantities take values close to the saturated ones. Note here that even though the APB’s 

maximum electric field location, as illustrated in Fig. 8.6, moves farther from the cluster 

radius, when 0w  is increased; the magnetic field enhancement does not change significantly.  

Smaller 0w  indicates tighter field features that start to be comparable to the cluster size, thus 

the magnetic polarizability and the magnetic field enhancement decrease slightly as 0w  

decreases. However, the slight decrease in the magnetic field enhancement HF  with 

decreasing 0w  does not mean that the APBs with tighter features should be avoided. In fact, 

we recall that HF  is defined in (8.1) as the ratio of the total field over the incident (external) 

field, and despite the slight decrease of HF  with decreasing 0w , the incident (external) 

magnetic field of a tighter beam is much stronger, assuming  that the power of the beam is 

kept constant. This is easily understood by looking at the magnetic field of the incident APB 

in Fig. 8.2 for a tightly focused APB ( 0 / 2w λ= ) and a weakly focused APB ( 0w λ= ). It is clear 

from Fig. 8.2 that the incident magnetic field with 0 / 2w λ=  is almost 3 times the one with 
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0w λ= , whereas in Fig. 8.7 we observe only a 10% drop in enhancement from 0w λ=  to 

0 / 2w λ= . Eventually, we still stress that tighter beams lead to larger total magnetic fields. 

In Fig. 8.7, the sweep of 0w  is started at 0 / 2w λ=  because as the beam parameter 0w  

decreases to values smaller than / 2λ  the plane wave spectrum of its field starts to extend 

over to the evanescent spectrum and these beams are no more composed of a spectrum of 

propagating waves and the paraxial approximation in (8.1) loses accuracy [32]. The field 

features throughout this chapter are calculated using an APB with 0w λ=  which represents 

a self-standing beam whose field spectrum is only confined to the propagating plane-wave 

spectrum. 

 

Fig. 8.7 
mm
zzα  and HF  at the origin, i.e., center of the cluster, versus the 

beam parameter of APB. 

In Fig. 8.8(a-c), we report HF , EF , and YF  and then along the x and y axes at several z-

planes, from 0.5z λ= −  to 0.5z λ=  where we assume the cluster is centered at the minimum 

waist plane 0z =  and the APB is incident from below as in Fig. 8.6. It is observed that the 

field enhancement features are mainly confined to the cluster plane, and the normalized 

absolute local field admittance YF  is maximum around the z axis and in contrast to the other 
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figures of merit, it maintains its large value at different z values. It is important to note here 

that YF  ideally tends to infinity on the z axis, and is there truncated (for graphic 

representation) at a maximum of 103 (or 60 dB) in the plots. Lastly we report the magnetic 

field enhancement HF  along the z axis, whose maximum value occurs at 0z = . Importantly, 

we see the destructive interference signature of the incident magnetic field and the scattered 

one as a minimum at 0.25z λ= − . 

 

Fig. 8.8 (a) Magnetic and (b) electric field enhancement ( HF  and EF

). (c) Normalized absolute local field admittance YF  versus x and y at 

various z planes. (d) The magnetic field enhancement on z axis 

showing destructive interference at 0.25z λ≈ −  and a maximum at 

/ 0z λ ≈ . 
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Sec. 8.6 Effect of Cluster Defects and Beam Alignment on Figures of Merit 

In the Sec. 8.5, we have shown that the normalized absolute local field admittance YF  

around the center of the nano cluster excited by the APB is ideally very large alongside a 

magnetic field enhancement HF  around 4.2. In addition to an increase of HF  due to the nano 

cluster, stronger incident magnetic field is also achieved with tighter APBs. However, it is 

supposable that the perfect alignment of the beam axis with the cluster axis and also the ideal 

symmetry of the circular cluster may not be easily achieved in practical applications. In this 

section, we provide a short assessment of the sensitivity of advantages of the APB 

illumination obtained with the proposed setup in Fig. 8.1 with respect to some defect 

scenarios. 

 

Fig. 8.9 HF  and YF  at the origin, i.e., center of the cluster, versus two 

defect scenarios, either (i) only the radius of 1st sphere in the cluster, 
or (ii) only the position of the 1st sphere in the cluster is scaled by a 

factor κ with respect to the ideally symmetric cluster. The reference 
nanosphere radius is set to 50 nm and the reference distance of the 
nanospheres from the origin is equal to 105 nm. 

We investigate two possible defect scenarios of nano clusters where the nanosphere on 

the +x axis (1st sphere) (i) has a different radius than the rest of the nanospheres, and (ii) is 
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displaced along the x axis. To examine the effect of these defects in the nano cluster on its 

figures of merits, the radius and position of the 1st nanosphere in the regular symmetric 

cluster are, respectively, scaled by a coefficient κ , namely equal to 1 (50nm)r κ=  and 

1 (105nm)x κ= , respectively. It is observed in Fig. 8.9 that by scaling the 1st nanosphere’s 

radius with 0.9κ =  to 1.25κ = , one still has a magnetic field enhancement HF  at the cluster 

center larger than 90% of its nominal value with 1κ = . In addition, the magnetic field 

enhancement HF  increases as the nanosphere is placed closer the cluster center. In contrast 

to the magnetic field enhancement, the magnetic to electric field ratio YF  at the cluster 

center  

 

Fig. 8.10 Effect of beam axis displacement from the center of the 

cluster 
APB

x∆  on the magnetic field enhancement HF  (left) and the 

normalized absolute local field admittance YF  (right) at the cluster 

center. It is shown that independently of the beam parameter 0w  the 

field enhancement is resilient to the beam alignment whereas the 
normalized absolute local field admittance is highly sensitive, and 

remains larger than 10 at the cluster center for 
APB

0 0.08x λ≤ ∆ < . 
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shows a very strong dependence on the physical defects in the cluster. We recall that in an 

ideal symmetric setting YF = ∞  when 1κ = . However even 10% variation in the radius or 

the position of the 1st sphere can lead to a decrease to 15YF =  due to the loss of the radial 

symmetry in the cluster-APB setup. For variations within  0.83 1.13κ< <  one still has YF >  

10. 

Next, we plot in Fig. 8.10, the magnetic field enhancement HF  and normalized magnetic 

to electric field ratio YF  at the cluster center versus the displacement 
APB

x∆  of the APB beam 

axis along the +x direction from the center of the circular nano cluster. While the magnetic 

field enhancement HF  is not strongly affected by the offset of the beam axis, the normalized 

local admittance YF  drops significantly. However, for small displacements within 

ABP
0 / 0.08x λ≤ ∆ <  one still has YF >  10 at the cluster center, since ideally one has YF = ∞  

there. Recalling that the spatial extent of the APB depends on the beam parameter 0w , in Fig. 

8.10 we report the figures of merit for two different values 0w . We stress that different 

choices of the beam parameter do not create a significant difference on the figures of merit 

when it comes to the effects of beam’s misalignment 
APB

x∆ . The strong dependence of YF  

on the relative position of the beam axis with respect to the nanoprobe center indeed may 

have a role in high resolution in scanning probe microscopy. 
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Fig. 8.11 Effect of beam tilt angle tiltψ  between the beam axis and the 

normal of the cluster plane on the magnetic field enhancement HF  

(left) and the normalized absolute local field admittance YF  (right) 

evaluated at the cluster center. 

The final possible scenario under examination is regarding the tilt of beam axis. For 

illustrating the impacts of such a problem, in Fig. 8.11 we report the magnetic field 

enhancement HF  and the normalized magnetic to electric field ratio YF  evaluated at the 

cluster center versus the beam tilt angle tiltψ  between the beam axis and the normal of the 

cluster plane. The beam tilt up to 15˚ results in a 10% decrease in HF  and it drops below 2 

at a tilt angle of 45˚. Similarly, the normalized local field admittance YF , which is ideally 

infinite (out of the limits of the plot) when the beam is not tilted, decreases down to 100 at a 

tilt angle of 6˚. YF  decreases down to 15 at the maximum reported tilt angle of 45˚. Note that 

YF  is rather sensitive to tilt angle and this parameter should be kept in check during the 

efforts of maximizing YF  . Here we also remind that the vertical displacement of the focus 

plane with respect to the cluster plane is inherently studied in Fig. 8.7, as the vertical 

displacement of focus is equivalent to changing the beam parameter. As a result, we conclude 

that the magnetic field enhancement HF  is insensitive to the vertical displacement of the 
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focus, whereas YF  is ideally infinite as long as the beam axis coincides with the center of the 

cluster. 

Sec. 8.7 Conclusion 

A circular cluster of nanoparticles excited by an azimuthally polarized beam (APB) is 

utilized as a magnetic nanoprobe for enhancing the magnetic near-field and the spatial 

resolution of the enhanced magnetic field in a magnetic-dominant region. In the same region 

a huge local field admittance is achieved, much larger than that of a plane wave, meaning that 

the magnetic to electric field ratio is very high. We demonstrate that large magnetic field 

enhancement is robust to small physical defects in the nano cluster and to small 

misalignments of the APB with respect to the cluster’s center, though the latter decreases 

the local field admittance. In this chapter circular clusters of nanospheres as magnetic 

nanoprobes excited by APBs have been studied as an example, but similar conclusions are 

expected to hold for other magnetic nanoprobes with symmetry properties. Moreover, any 

required improvement of the model regarding specific fabrication methods and 

experimental setups (for example the presence of a substrate) should be accounted for in 

future studies. We remind that different types of magnetic nanoprobes such as silicon 

spheres or clusters made of different geometries of nanoparticles may provide advantages 

in experimental setups, tuning wavelength of operation and controlling the magnetic field 

enhancement level and the area of the magnetic-dominant region. The enhanced magnetic 

fields in magnetic-dominant regions with resolutions beyond the diffraction limit obtained 

using magnetic nanoprobes may prove useful in optical spectroscopy and microscopy 

applications based on detection of magnetic field interacting with matter. 
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Appendix A - Power in the Azimuthally Polarized Beam under Paraxial 

Approximation 

The power P carried by the beam in the + z direction, in the figure of longitudinal magnetic 

field defined in (8.9) is given by 
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whose derivation is shown in [32]. Therefore zh  in (8.9), evaluated at z = 0 is 
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and it is a function of only 0 /w λ . 
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