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ABSTRACT OF THE DISSERTATION

General Purpose MCMC Sampling for Bayesian Model Averaging

By

Levi Beinarauskas Boyles

Doctor of Philosophy in Computer Science

University of California, Irvine, 2014

Professor Max Welling, Chair

In this thesis we explore the problem of inference for Bayesian model averaging. Many

popular topics in Bayesian analysis, such as Bayesian nonparametrics, can be cast as model

averaging problems. Model averaging problems offer unique difficulties for inference, as the

parameter space is not fixed, and may be infinite. As such, there is little existing work on

general purpose MCMC algorithms in this area. We introduce a new MCMC sampler, which

we call Retrospective Jump sampling, that is suitable for general purpose model averaging. In

the development of Retrospective Jump, some practical issues arise in the need for a MCMC

sampler for finite dimensions that is suitable for multimodal target densities; we introduce

Refractive Sampling as a sampler suitable in this regard. Finally, we evaluate Retrospective

Jump on several model averaging and Bayesian nonparametric problems, and develop a novel

latent feature model with hierarchical column structure which uses Retrospective Jump for

inference.
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Chapter 1

Introduction

The body of scientific knowledge is ever growing, and with it grows the size of the scientific

community. This growing scientific community is also increasingly Bayesian; as scientists rec-

ognize that their particular problem might benefit from the inclusion of prior information,

the ability to integrate over uncertainty, and a more natural interpretation of the resulting

inference. Bayesian inference gives us the posterior distribution, the probability of a param-

eter given the observed data. Indeed, it is not hard to see why a scientist may be interested

in the probability of a parameter given a measurement rather than in the probability of the

measurement given the parameter.

The posterior distribution of a parameter is a useful object; with it we can compute arbitrary

expectations of functions of interest, including summary statistics such as the mean and

variance of the parameter, to more sophisticated quantities such as the expected cost (in

time, money, or human lives) involved with continuing an experimental evaluation of a new

medical treatment. However, the posterior distribution usually cannot be represented in

closed form, and inference must then be done using an approximate inference technique such

as Markov Chain Monte Carlo (MCMC). MCMC is general enough to handle most Bayesian
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inference tasks, however, the design and implementation of such methods typically require a

good deal of expertise. It is common in publications involving Bayesian methodologies that

a good deal of attention is spent explaining and justifying the MCMC method used; some

critics claim that this even occurs to the point of neglecting discussion of the assumptions,

strengths, and weaknesses associated with the proposed statistical model. As the Bayesian

community grows, this problem is likely to get worse.

There have been some recent developments in “general purpose” MCMC sampling methods

that address this problem. These methods, such as slice sampling [44] or Hamiltonian Monte

Carlo [10, 45], are general in the sense that only a density function (and perhaps its gradient)

are needed to perform inference. One still requires some expertise in order to use such

algorithms effectively, however, the availability of such methods as “black boxes” in software

packages is beneficial for many reasons. For one, any fresh implementation of a MCMC

algorithm will likely contain bugs which are difficult to track down; having a standard

implementation that is openly available to the public eliminates a great deal of redundant

work. Secondly, publications are more free to discuss the implications of the model at hand

without getting bogged down in technical detail. Finally, it allows those who may not be

interested implementing a MCMC procedure themselves to make use of such methods1. This

third reason is likely the most important to the Bayesian statistics advocate; perhaps the

largest hurdle to the widespread adoption of Bayesian methodology is its computationally

intensive nature. To a scientist who is “on the fence” regarding Bayesian analysis, reliable

and readily available software packages for Bayesian inference will increase the attractiveness

and improve the practicality of Bayesian analysis.

Such software packages already exist for problems of fixed dimension. However, in a model

averaging setting, we wish to infer the model underlying the data, along with the associated

1Note we are not advocating the replacement of careful inspection and understanding of an inference
method with an automated method whose output is taken without discretion. Of course, convergence
diagnosis and chain quality will always be in issue of any MCMC method; a good software package will
include tools for assessing the quality of the chain produced by the software.
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parameters. For example, we may be interested in inferring the number of components in a

Gaussian Mixture Model, along with the parameters of the components themselves. Some

probabilistic programming languages, that is, computer languages where a model or genera-

tive process is specified by the user and inference is can then be performed automatically, are

capable of handling model uncertainty, however these languages still rely on an underlying

sampling algorithm. The success of probabilistic programming or any other software package

for model averaging is contingent on the inference algorithms it uses. Thus, improvements

in the generality and efficiency of such algorithms would be a boon to the utility of such

software.

Our main contribution is Retrospective Jump (RTJ) sampling, a sampling algorithm suitable

for model averaging tasks. Retrospective Jump is aimed at this gap in general purpose

sampling methods for model averaging. RTJ operates by sampling from mixtures of posterior

distributions, where the mixture is taken over a finite subset of the potentially infinite set of

models under consideration. In this way, RTJ is able to explore higher and lower dimensional

spaces before deciding to select the associated models, simplifying the problem of initializing

parameters which have yet to be represented.

In this dissertation, we will introduce a few novel MCMC algorithms. As it will be important

to understand the underpinnings of a valid MCMC method, we review Markov Chain Monte

Carlo in Chapter 2. Chapter 3 details model averaging and introduces some fundamental

Bayesian nonparametric models that we will see throughout. Chapter 4 discusses existing

work for inference in variable dimension and BNP models. Chapter 5 introduces Refractive

Sampling, a MCMC sampler for finite target distributions which, for many problems of in-

terest, is capable of finding high probability regions and exiting the transient phase more

quickly than existing samplers. Refractive Sampling plays an important role as the black-

box sampler for Retrospective Jump Sampling. Chapter 6 introduces Retrospective Jump

Sampling (RTJ), a general purpose sampler suitable for model averaging. Chapter 7 demon-

3



strates the application of RTJ to a novel model for hierarchical latent feature modelling, the

Infinite Sites Feature Prior. Finally, we conclude in Chapter 8. A list of common notation

can be found in Appendix A.

4



Chapter 2

Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) is a statistical inference method that is widely applica-

ble. Generally speaking, it is used for computing expectations of interest – for example, we

may be interested in the posterior mean and variance of some important model parameter

θ. MCMC simulates from the posterior distribution of θ, allowing us to approximate E[g(θ)]

for arbitrary functions g.

2.1 Monte Carlo

Consider the problem of computing the mean of some distribution with density p(x), with

x lying in some sample space Ω, for example R
d:

E[x] =

∫

x∈Ω
xp(x)dx (2.1)

Computing this integral numerically can be difficult if Ω is a high dimensional space. Any

integration technique that divides Ω into segments will need a number of segments exponen-

tial in the dimension d, this is the so-called curse of dimensionality. Monte Carlo techniques

5



offer an alternative that avoids this cost to high dimensional integrals. If we can sample

from p(x), we can approximate E[x] via a Monte Carlo estimate using T samples from p(x).

E[x] ≈ 1

T

T
∑

i=1

xi (2.2)

where xi ∼ p(x). Furthermore, we can compute expectations of functions of x easily,

E[g(x)] ≈ ḡT ,
1

T

T
∑

i=1

g(xi) (2.3)

We can assess the convergence rate of ḡT by considering the properties of the variance as T

increases:

Var(ḡT ) =
1

T 2

M
∑

i=1

Var(g(x)) ≈ VT ,
1

T 2

T
∑

i=1

(g(xi)− ḡT )2 (2.4)

Therefore, if g is sufficiently well-behaved,

ḡT − E[g(x)]√
VT

(2.5)

is asymptotically standard Normal via the Central Limit Theorem. Furthermore, TVT →

Var(g). Therefore, the error of the estimate |ḡT − E[g(x)]| converges at a rate proportional

to 1√
T
. This rate does not depend on the dimension of x, thus Monte Carlo avoids the curse

of dimensionality.

Unfortunately, it is not commonly the case that we can draw independent samples from

p(x). Furthermore, we typically can only evaluate p(x) up to a proportionality constant.

For example, in a Bayesian analysis with data X and parameter θ, we want to sample from

p(θ|X). We have by Bayes’ Rule

p(θ|X) =
p(X|θ)p(θ)

∫

p(X|θ)p(θ)dθ (2.6)

6



Thus we cannot evaluate p(θ|X) efficiently due to the integral in the denominator. However,

this integral is a constant with respect to θ, so we can easily evaluate

p(X, θ) = p(X|θ)p(θ) = Zp(θ|X) (2.7)

where Z = p(X) =
∫

p(X|θ)p(θ)dθ is the normalization constant, also called the partition

function.

MCMC is an integration technique that forms a Markov Chain whose stationary distribution

is equivalent to that of the distribution of interest, with the idea being that the Markov Chain

is easier to sample. After drawing many samples from such a Markov Chain, we will have

a set of samples that approximates a set of draws from p(x), which can then be used for

estimating expectations. In the next section, we review Markov Chains and their relation

to MCMC. This section follows Chapters 6 and 7 of [50]; we refer the reader there for more

detail.

2.2 Markov Chains

A Markov Chain is a sequence of random variables Xt, t ∈ N, so that Xt ⊥ Xs|Xt−1 for all

s < t− 1. That is, Xt is independent of all preceding variables, conditioned on the previous

one. From this it is easy to conclude that Xt is independent of all other variables conditioned

on Xt−1 and Xt+1. One simple example of a Markov Chain is

Xt ∼ N (Xt−1, 1) (2.8)

where X1 ∼ N (0, 1). We are interested in the asymptotic behavior of a Markov Chain. That

is, we are interested in the distribution of X∞ , limt→∞Xt, if the limit exists. In the case

of (2.8), we can view Xt =
∑t

s=1 Ys, where Ys ∼ N (0, 1). So, Xt ∼ N (0, t), giving X∞

7



distributed as the improper uniform on the real line. A bit more interesting example is to

take

Xt ∼ N (Xt−1,
1

2t
) (2.9)

In this case, the sum of variances converges, giving X∞ ∼ N (0, 2). As the variance depends

on t, this is an example of a time heterogeneous Markov Chain. When the form of Xt|Xt−1

does not depend on t, the chain is time homogeneous.

2.2.1 Invariant Distributions

Most MCMC algorithms are constructed using time homogeneous chains, so we restrict our

attention to this case. If a chain is time homogeneous, we can specify it with a single

transition operator, called the kernel function:

K(x,A) = P (Xt ∈ A|Xt−1 = x) (2.10)

with an associated density K(x, y). In order for a chain to simulate from a specified target

distribution π(x), we need π to be invariant with respect to K, that is, applying K as an

operator to π gives back π:

π(A) = (Kπ)(A) =

∫

K(x,A)π(dx) (2.11)

for all Borel sets A. Chains that allow for invariant distributions are called positive chains.

There are some choices for Xt|Xt−1 such that there is no unique invariant distribution, or

that Xt does not converge to the invariant distribution. For example, we may take

Xt ∼ sgn(Xt−1)Exponential(1) (2.12)

8



In this case, the Markov Chain is highly dependent on the initial state; if the initial state

is positive, then Xt is always positive, and similarly if the initial state is negative. Thus, in

this case there are two base invariant distributions, the positive and negative Exponential

distributions, and any mixture of these distributions is also invariant under this kernel. This

is an example of chain that is not irreducible. As another example, we may take

Xt ∼ Exponential(2Xt−1) (2.13)

This would give a divergent sequence, thus there is no invariant distribution. This is an

example of a chain that is not recurrent. Finally, taking

Xt ∼ − sgn(Xt−1)Exponential(1) (2.14)

gives a sequence that oscillates between positive and negative exponential distributions. The

Laplace distribution is invariant to the kernel of this chain, however Xt does not converge to

the Laplace distribution, as at any step the distribution of Xt is either positive or negative

Exponential. This is an example of a chain that is not aperiodic.

In some sense, aperiodicity is less important than the other conditions, as expectations

taken with respect to aperiodic chains may still converge. However, as we will see later,

most MCMC algorithms are aperiodic anyway.

These examples illustrate the pitfalls that can occur when constructing a Markov Chain. If

we are pursuing a Markov Chain whose equilibrium distribution is the same as some specified

target distribution, we need the chain to have a well defined, unique equilibrium distribution.

A chain is said to be ergodic if any choice for the initial state leads to a unique equilibrium

distribution. One formal definition of ergodicity can be made as follows: a chain with kernel

9



K is ergodic with invariant distribution π if

lim
n→∞

∥

∥

∥

∥

∫

Kn(x, ·)µ(dx)− π
∥

∥

∥

∥

TV

= 0 (2.15)

where || · ||TV is the total variation norm, and µ is an arbitrary initial distribution.

Note that a chain that is invariant to distribution π is invariant to any measure1 of the form

Cπ with C a positive constant. This is convenient if we only know π up to a constant of

proportionality.

2.2.2 Ergodicity

The three cases in the previous section where the chain had no unique invariant distribution

are counterexamples of three conditions that are required for an ergodic chain.

The first condition is irreducibility. Loosely speaking, a chain is irreducible if any state can

be reached from any other state. More formally, a state is ψ-irreducible if for measure ψ, for

all sets A with ψ(A) > 0, and for all states x, there exists n such that

Kn(x,A) > 0 (2.16)

If this condition is not met, there may be multiple invariant distributions.

The second condition is recurrence. A chain is recurrent if, when starting from some state

we will return to it infinitely often. More formally, a chain is Harris recurrent, if the chain

1In this chapter we assume a basic familiarity with measures. Uninitiated readers may see Section 3.2 for
a brief introduction.
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is ψ-irreducible and for every A such that ψ(A) > 0 and for every x ∈ A

P

( ∞
∑

n=1

1(Xt ∈ A) =∞|X1 = x

)

= 1 (2.17)

If this condition is not met, some sets of states (called transient states) may only be explored

for a finite number of steps. Thus the chain cannot have an invariant distribution with

positive probability assigned to these sets. Note this definition includes irreducibility as a

prerequisite condition.

Finally, there is aperiodicity. A chain is periodic if there exist sets of states such that the

waiting times to return have non-unit g.c.d. For a formal definition, we need the concept

of a small set. A set C is small if for all x ∈ C and all sets A, there exists integer m and

nonzero measure νm such that

Km(x,A) ≥ νm(A) (2.18)

That is, there exists a m such that x ∈ C can reach any set with positive probability.

The intuition is that C is “small” in the sense there is a component of the (compounded)

transition probability that is independent of x and shared for all choices of x ∈ C. That is,

the kernel is not too sensitive to variations of x, as long as x ∈ C.

A ψ-irreducible chain has a cycle of length d if there exists a small set C with integer M ,

and distribution νM such that the g.c.d. of

{m ≥ 1|C is small for νm ≥ δmνM , δm > 0} (2.19)

is d. If d > 1, then C is only periodically small, meaning repeated compositions of the

transition kernel does not converge. This means the chain can be decomposed into sets of

states that communicate with each other in a cyclic fashion. As it turns out, d is independent

11



of the small set C, and the period of the chain is taken as d. A chain is aperiodic if d = 1,

and if a chain is not aperiodic, then the chain will not converge to any invariant distribution.

A chain that has these three properties is ergodic:

Theorem 2.2.1 If a chain (XT ) is has invariant distribution π, is Harris recurrent and

aperiodic, then

lim
n→∞

∥

∥

∥

∥

∫

Kn(x, ·)µ(dx)− π
∥

∥

∥

∥

TV

= 0

for every initial distribution µ.

Furthermore, we can compute expectations of functions of interest by using an ergodic chain

(XT ), rather than independent samples in a Monte Carlo estimate:

ST (g) =
1

T

T
∑

t=1

g(Xt) (2.20)

The error of this estimate will go to zero as T goes to infinity:

Theorem 2.2.2 (The Ergodic Theorem) If a chain (Xn) has an invariant finite measure π,

then the following are equivalent:

1. If f, g ∈ L1(π), and
∫

g(x)dπ(x) 6= 0, then

lim
T→∞

ST (f)

ST (g)
=

∫

f(x)dπ(x)

g(x)dπ(x)

2. (XT ) is Harris recurrent

Therefore, an average computed with ergodic Markov chains with invariant measure π will
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converge to the corresponding expectation taken with respect to π. As π only needs to be a

finite measure, we only need to specify a target distribution up to a normalization constant.

2.3 Detailed Balance and MCMC

We wish to construct Markov chains where X∞ ∼ π for some specified target distribution

π(x). Luckily, it is uncommon that we need to verify by hand that a kernel K satisfies all

the desired properties:

1. Invariant to π

2. Irreducible

3. Recurrent

4. Aperiodic

Instead, we may check that the chain follows detailed balance, a sufficient condition for

invariance, and, if given ψ-irreducibility, a sufficient condition for recurrence. A kernel

follows detailed balance with invariant density π if

K(y, x)π(y) = K(x, y)π(x) (2.21)

The intuition here is that the probability flow out of state x into state y is the same as the

probability flow out of state y into state x. This is a simple condition to check (or ensure)

that a kernel follows. The vast majority of MCMC algorithms used in statistical inference

follow detailed balance.

The other two criteria, irreducibility and aperiodicity, must still be verified. Aperiodicity

is generally easy to show; for example, any MCMC method that has an accept/reject step
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will be aperiodic as transitions of the form Xt = Xt−1 will occur with nonzero probability.

Showing irreducibility requires more work, however for many sensible kernels, showing that

any state can be reached from any other state in a finite number of steps is not terribly

difficult.

2.4 Examples

The following sections provide a few examples of popular MCMC algorithms. To simplify

exposition, we present the algorithms without consideration of numerical issues. Typically,

a MCMC implementation will take the log-density of the target distribution as input, rather

than the density itself. As the density is often the product of many small terms, directly

representing it may result in underflow. Thus, the reader should keep in mind that, in a

true implementation, π(x) should be replaced with ln π(x), π(x′)
π(x)

with ln π(x′)− ln π(x) , and

Uniform(0, π(x)) with ln π(x)− Exponential(1), to name a few examples.

2.4.1 Metropolis Hastings

Metropolis Hastings (MH) [39, 24] is perhaps the simplest MCMC algorithm available.

Metropolis Hastings operates by making proposed updates from a proposal distribution q

that is easy to sample from, and then deciding whether to accept or reject the update.

Algorithm 1 shows one step of the MH sampler. The acceptance probability α ensures that

the kernel of MH follows detailed balance. A simple choice for the proposal distribution q is

a symmetric Gaussian distribution; this choice is known as Random Walk Metropolis.

As MH follows detailed balance, the chain has π as its invariant distribution. If q(·|x) is

positive everywhere, then any state can be reached from any other state, and the chain is
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irreducible, also giving recurrence as the chain follows detailed balance. Finally, the chain is

aperiodic due to the reject step; the chain can remain at a specific value of x for a random

number of iterations.

Algorithm 1 Metropolis Hastings

Given: Target density π, initial state x, proposal distribution q
Sample y ∼ q(y|x)
Let

α← min

(

1,
π(y)

π(x)

q(x|y)
q(y|x)

)

Take

x′ ←
{

y with probability α

x otherwise

return x′

2.4.2 Slice Sampling

Slice sampling [44] is a MCMC technique that operates by introducing an auxiliary variable

u that, given the parameter x, varies uniformly from 0 to π(x), giving the joint for x and u:

π(x, u) ∝ 1 (u < π(x)) (2.22)

This can be seen as the uniform distribution on (x, u), but constrained so that u < π(x). Put

another way, this is the uniform distribution over the area under the curve π(x). Integrating

out u gives back π(x), so if we can sample (x, u) jointly and discard u, we will have a valid

Markov chain on x.

Sampling (x, u) jointly can be done by sampling each variable in turn from horizontal and

vertical cross sections (called slices) of the area under π(x). u|x is simply drawn from

Uniform(0, π(x)), however sampling x|u first requires computing bounds on the slice by a
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“stepping out” procedure, see Algorithm 2.

Stepping out is not guaranteed to compute the full horizontal slice. Instead, it computes

a random interval (xl, xr) that contains x. This is done in a way that still follows detailed

balance. The idea is that for a fixed choice of u, any state x′ reached by x using the interval

(xl, xr) has the same probability of constructing the same interval (xl, xr) when going in

reverse.

As long as the target distribution π(x) is not comprised of “probability islands” separated by

a regions of 0 probability with width greater than the stepping width w, then slice sampling

is irreducible and thus ergodic.

2.4.3 Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC) [10, 45] is a MCMC algorithm that makes use of gradient

information in order avoid random walk behavior and improve sample efficiency. HMC

introduces a momentum variable p ∼ N (0,M), and is invariant to the joint distribution

π(x, p) = exp (−H(x, p)) (2.23)

where H is the Hamiltonian

H(x, p) = − ln π(x) +
1

2
pTM−1p (2.24)
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Algorithm 2 Slice Sampling

Given: Target density π, initial state x, stepping width w, stepping iterations m
Sample u ∼ Uniform(0, π(x))
Sample xl ∼ x− Uniform(0, w)
Set xr ← xl + w

////// Stepping out //////
ml ← ⌊Uniform(0,m)⌋
mr ← m− 1−ml

while u < π(xl) and ml > 0 do
ml ← ml − 1
xl ← xl − w

end while
while u < π(xr) and mr > 0 do
mr ← mr − 1
xr ← xr + w

end while

////// Sample and shrink interval //////
x′ ∼ Uniform(xl, xr)
while π(x′) > u do
if x′ < x then
xl = x′

end if
if x′ > x then
xr = x′

end if
x′ ∼ Uniform(xl, xr)

end while
return x′
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Sampling from π(x, p) and discarding p produces samples from π(x). The most common way

to produce a Markov chain with invariant distribution π(x, p) is the leapfrog integrator2

p← p+
ε

2
g(x) (2.25)

x← x+ εM−1p (2.26)

p← p+
ε

2
g(x) (2.27)

where ε is the stepsize parameter and g(x) = ∇x ln π(x) is the gradient of the log-density.

These updates are repeated for L leapfrog iterations, and then the resulting state (x′, p′) is

accepted with probability

α(x, p→ x′, p′) = min

(

1,
exp(f(x′)− p′TM−1p′/2)

exp(f(x)− pTM−1p/2)

)

(2.28)

This algorithm follows detailed balance: the mapping (x, p)→ (x′, p′) has unit Jacobian (see

[45] for details), and (2.28) is the standard Metropolis Hastings acceptance probability.

As p is independent of x, we may draw p ∼ N (0,M) at the beginning of every iteration. See

Algorithm 3.

2Integration in this context refers to simulation from a differential equation by discretization. See Section
5.1 or [45] for more background on the motivation of the leapfrog method.
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Algorithm 3 Hamiltonian Monte Carlo

Given: target density π, gradient g, initial state x
Given: stepsize ε, leapfrog iterations L, covariance M
Sample p ∼ N (0,M)
Set x′ ← x
Set p′ ← p
for l = 1 : L do
p′ ← p′ + ε

2
g(x′)

x′ ← εM−1p′

p′ ← p′ + ε
2
g(x′)

end for
Take

α← min

(

1,
exp(f(x′)− p′TM−1p′/2)

exp(f(x)− pTM−1p/2)

)

Take

x′ ←
{

x′ with probability α

x otherwise

return x′
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Chapter 3

Model Determination

In designing a model for an inference task, one must make many important decisions that will

affect the outcome of the inference. Should this parameter be constrained to be positive?

How should it tie in with other, related parameters? Should this matrix be symmetric?

Should there be 10 clusters or 100? What is the loss function? A Bayesian has a further

need to specify the priors of the parameters of interest: Should this parameter be heavy-

tailed? Should it be skewed? These choices make up the problem of model selection. In some

cases, there is no obvious choice, and the best choice may depend on the particular data on

hand. There has thus been extensive study on performing model selection in an automated

way, using the data to inform the models selected.

Consider an inference task in which we have a finite number of models under consideration,

indexed by m. Perhaps the most common strategy for model selection is to use one of the

many available Information Criteria, for example the Akaike Information Criterion (AIC)

[1]. The AIC of a model m is defined as

AIC(m) = 2k − 2 ln(Lmax) (3.1)
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where Lmax = maxθ p(X|θ,m) is the maximum likelihood of the data X over the parameters

θ under model m, and k is the number of free parameters of the model. Models with lower

AICs are preferred, as they exhibit a lower information loss in representing the true model as

measured using the KL-divergence. The AIC increases with k, so overly complex models are

penalized. The AIC is usually used for model selection in maximum-likelihood frameworks.

Another choice, which is suitable for Bayesian inference, is the Bayes Factor [31]:

BF (m1,m2) =
p(X|m1)

p(X|m2)
(3.2)

where p(X|m) is the marginal likelihood of X under model m. As the parameters of each

model are integrated out, overly complex models will be naturally penalized. If a prior belief

on the available models is available, then one may instead use the posterior odds ratio:

PO(m1,m2) =
p(X|m1)P (m1)

p(X|m2)P (m2)
(3.3)

A rather different approach is to treat the model as a random variable M , and infer it along

with all other parameters; see, for example, [19], which motivates Reversible Jump MCMC

via this Bayesian Model “selection” problem.

Taking M as random gives it the full Bayesian treatment, where we are interested in the

posterior distribution of M , and not a single value. Predictions can still be made with this

posterior over M , and as this involves computing expectations over a range of models, this

is called model averaging. A more general classification encompassing both model selection

and model averaging is model determination [19].

If θ(i) are the parameters associated with model mi, then we can take θ =
⋃

i θ
(i) and infer

p(θ,M = mi|X) ∝ p(X, θ,M = mi) = p(X|θ(i),M = mi)p(θ)P (M = mi) (3.4)
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where p(M = mi) is the prior probability of model mi, and p(θ) is defined agnostic to the

value of M . The posterior probability of model mi is

p(M = mi|X) =
p(X|M = mi)P (M = mi)
∑

j p(X|M = mj)p(M = mj)
= PO(mi,

⋃

j

mj) (3.5)

Thus the posterior probability of M = mi is simply the posterior odds ratio of mi versus

all models combined. So, Bayesian inference of M will also guard against overly complex

models. This is the approach we consider throughout this thesis.

We will focus our attention on the case where the models mi are nested, that is, if Ω
(i) is the

space of possible θ(i), then i < j implies that Ω(i) ⊆ Ω(j). We call such sets of models variable

dimension models, wherein the model structure is shared across all models mi, and all that

changes is some notion of dimension. Most Bayesian nonparametric (BNP) models are

examples of this case. Despite the attention given to nested model determination problems,

we note that many of the techniques explored also apply to general model determination

problems.

3.1 Model Averaging

Consider a basic model determination task, where we believe the data to be modeled well

by a mixture of Gaussians, but we do not know the number of components. We might write
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a generative model for the data X, with Xi ∈ R
d:

K ∼ Poisson(λ)

w ∼ Dirichlet(α1(K))

µk ∼ N (0,Σµ)

Σk ∼ InvWishart(Ψ, ν)

zi ∼ Categorical(w)

Xi ∼ N (µzi ,Σzi) (3.6)

In a standard setting where K is known, we would be interested in sampling the posterior

distribution of w, µ, and Σ (in this case z can be integrated out, so we may restrict our

attention to the continuous parameters):

p(w, µ,Σ|X,K) ∝ p(w, µ,Σ, X,K) = p(X|w, µ,Σ, K)p(w, µ,Σ|K) (3.7)

In this case, we can perform inference by constructing an ergodic Markov Chain whose

invariant distribution is proportional to p(w, µ,Σ, X|K), and sample w, µ and Σ, holding X

fixed. The difficulty of this inference task is that the degrees of freedom in each of w, µ and

Σ depends on K, so this problem cannot be framed as sampling from some distribution in a

finite dimensional space.

Still, there are inference techniques that can handle this type of problem, for example Re-

versible Jump MCMC, which we will see in detail later. Reversible Jump infers K along

with all other parameters to build a Markov chain on state spaces of varying dimension.

The ability to make predictions averaged over the posterior distribution, rather than simply

choosing a point estimate for the parameters, is one of the main advantages of Bayesian

inference. We are free to do this even in the variable dimension context by averaging over
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the models as well:

p(XN+1) = Ep(K,w,µ,Σ|X)[p(XN+1|K,w, µ,Σ)] ≈
1

T

T
∑

t=1

p(XN+1|K(t), w(t), µ(t),Σ(t)) (3.8)

where θ(t) is the tth MCMC iterate for parameter θ.

Another approach would be to define the mixture with a Bayesian nonparametric prior,

for which w is infinite dimensional by definition. In this setting, the zi are not integrated

out, and the elements of w are only represented if there is data assigned to the associated

component (that is, wk is represented if zi = k for some i). Thus the “effective K” for

the Bayesian nonparametric model is simply the number of clusters to which data has been

assigned.

In either case, the parameter spaces we are dealing with are potentially infinite. Measures are

the natural means through which to reason about random variables on infinite parameter

spaces, and are fundamental to the development of Bayesian nonparametrics. We briefly

review measures and related concepts in the next section; much of the material follows

Chapter 2 of [3], we refer the reader there for more detail.

3.2 Measures

Consider a univariate continuous random variable X, which can be represented in two ways,

either through the probability density function (pdf) f or the cumulative distribution func-

tion (cdf) F . Thus,

F (b) =

∫ b

−∞
f(x)dx = P (X ≤ b) (3.9)

24



The cdf is often extended to take intervals as its argument, so that

F ([a, b]) = F (b)− F (a) = P (a ≤ X ≤ b) (3.10)

Measures can be used to generalize this concept to higher dimensions. A measure is a

nonnegative function on Borel-measurable1 subsets of a space Ω that gives some notion of

the “size” of the set. For example, the Lebesgue measure λ, put simply, is the volume of the

set in the traditional sense: if Ω = R
n and Cn is a n-dimensional cube with edge length 2,

then λ(Cn) = 2n.

However, other measures are possible that give more or less weight to particular regions of

the space. For example, for a given measure µ and the cube Cn described above, we may

have µ(Cn) = 5, or µ(Cn) =∞, or µ(Cn) = 0. If A ⊆ Ω, µ(Ω) may either be finite or infinite.

A measure µ is σ-finite if Ω is a countable union of sets of finite measure, for example the

Lebesgue measure is not finite but is σ-finite.

Finite measures have the benefit that they can be normalized so that µ(Ω) = 1, and such

normalized measures are called probability measures. We may associate a random variable

X to a probability measure µ on a space Ω, so that X ∈ Ω, and

P (X ∈ A) = µ(A) (3.11)

Furthermore, there is an associated density function of µ:

1A Borel-measurable set is a set that can be constructed via countable union, countable intersection, and
complementation of open sets. Thus, the Borel sets capture nearly all sets that may be of interest, and all
sets in this dissertation may be assumed to be Borel-measurable unless otherwise specified.
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Theorem 3.2.1 (The Radon-Nikodym Theorem) If µ is an absolutely continuous σ-finite

measure with respect to a σ-finite measure λ, then there exists a function f such that

µ(A) =

∫

A

fdλ =

∫

A

f(x)λ(dx) (3.12)

f is called the Radon-Nikodym derivative of µ, and can be denoted as dµ
dλ
. When µ is

a probability measure, and λ is the Lebesgue measure, f is the usual probability density

function.

The integral shown in Theorem 3.2.1 is a Lebesgue integral; recall that the Lebesgue integral

can be constructed by taking horizontal slices of a function, rather than vertical as in the

Riemann integral; if we define

f ∗(t) = µ({x|f(x) > t}) (3.13)

then we can construct the Lebesgue integral in terms of a Riemann integral:

∫

A

fdµ =

∫ ∞

0

f ∗(t)dt (3.14)

Note that the Lebesgue integral has several advantages; for one, if we have a σ-finite measure

on an infinite dimensional space, we can construct integrals over sets with infinite dimension

that may still be finite. Thus it is possible to reason about random variables that live in

infinite dimensional spaces, if we use a prior that is a probability measure on the infinite

space as our measure of integration.
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3.2.1 Infinite Product Spaces

A product space is the space formed by taking the Cartesian product of the elements of

multiple spaces, for example if we have spaces Ω1 and Ω2, we can define the product space

Ω = Ω1×Ω2, and ω is an element of Ω if we can write ω = (ω1, ω2), and ωj ∈ Ωj. If we have

d spaces, we can similarly define a product space of dimension d. If we have measures µj for

each of the corresponding spaces, then we can define the measure on the set A1× . . .×Ad as

µ(A1 × . . .× Ad) =
∏

µj(Aj) (3.15)

We next extend this definition to the limit d→∞. Let Ω =
∏∞

j=1Ωj, and define Cd to be a

cylinder with base Bd if

Cd = {ω ∈ Ω|(ω1, . . . ωd) ∈ Bd} (3.16)

We can construct a series of measures on the bases of dimension d given a “conditional”

probability measure µd(ω1, ω2, . . . ωd−1, dωd), where we have defined a measure on Ωd condi-

tioned on an element in
∏d−1

j=1 Ωj. We can construct the marginal probability of the base Bd

Pd(B
d) =

∫

Ω1

µ1(dω1)

∫

Ω2

µ2(ω1, dω2) . . .

∫

Ωd

1(ω ∈ Bd)µ(ω1, . . . , ωd−1, dωd) (3.17)

Pd can be seen as the probability of the event Bd, with all variables not in
∏d

j=1Ωj marginal-

ized out. By Theorem 2.7.2 of [3], there is a unique probability distribution P that agrees

with Pd on all d-dimensional cylinders.

It is thus reasonably straightforward to define probability measures on infinite product

spaces2. However, in this dissertation, we are primarily interested in MCMC inference al-

gorithms in infinite parameter spaces. Measures are not suitable for representation on a

2Using Kolmogorov’s Extension Theorem, it is even possible to define measures over a continuum of
spaces.
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computer, which would generally involve an expensive integration. We would rather work

with density functions; however we cannot represent a density function on an infinite space

either. We may, however, consider the Radon-Nikodym derivative taken with respect to the

Lebesgue measure on the base Bd of a cylinder, giving a d dimensional marginal density

function.

If we take λd to be the Lebesgue measure on
∏d

j=1Ωd, and given a measure P for Ω

dP

dλd
=
dPd

dλd
(3.18)

That is, we may take the density function of Pd as only the parameters in the base of a

d-dimensional cylinder affect λd.

3.3 Bayesian Nonparametrics

One way to define a model with potentially infinitely many parameters is to define a prior

such as that in (3.6): first define a prior on the dimension of the parameter space, and then

define the parameters conditioned on this dimension. Note that this prior puts probability

1 on models with finite dimension, that is

P
(∣

∣{wi|wi > 0}
∣

∣ <∞
)

= 1 (3.19)

An alternative is to allow the parameters to live in an infinite dimensional space and defining

a suitable prior in that space. For example w in (3.6) may be defined according to a stick-

breaking procedure such as (3.23). This prior puts probability 1 on models with infinite

dimension. However, in this GMM example, a finite dataset will only be associated with

finitely many components, and thus only finitely many parameters need be represented.
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The distinction between these two priors is important for considering the consistency prop-

erties of Bayesian models involving them. In this context, consistency is the property that

the data eventually overwhelms the prior, so that eventually the model with find the “true”

parameter. [15] showed that in infinite dimensional settings, priors are not necessarily con-

sistent even when they put positive probability density on the truth. [15] also defines a class

of priors, called tail-free priors, which are consistent in this sense. This work gave rise to the

popularity of the Dirichlet Process.

The question so far has been consistency in distribution: does the model’s posterior predictive

density converge to the true density generating the data? For models using the Dirichlet

Process, the answer is yes. Consistency in these types of problems is an ongoing area of

research, see [16, 17, 36, 34]. However, some recent work has made an important point:

consistency in distribution does not imply consistency in parameters. In fact, a Dirichlet

Process Mixture Model applied to data from a finite mixture will not estimate the number

of components correctly, even in the limit of infinite data [40]. Therefore, it is advisable to

carefully consider the end goal of the inference task. Infinite priors such as a Dirichlet Process

would be well suited for prediction tasks wherein the interpretation of the parameters is not

important. If interpretability is important, then perhaps a model such as (3.6) would be

more appropriate.

Priors that put probability 1 on models with infinite dimension are classified as Bayesian

nonparametric models. Bayesian nonparametric (BNP) modelling is growing in popularity

among scientists and statisticians; Bayesian models whose complexity adapts to the com-

plexity of the data is a strikingly attractive property. The prior complexity of a BNP model

typically grows with N ; for example, the expected number of clusters in N data generated

from the Dirichlet Process is O(lnN).3 This is in accordance with the intuition that more

data affords more model complexity. Many practitioners use these models to infer the model

3As the introduction of the ith point introduces a new cluster with probability α
i+α−1

, the expected

number of clusters in the prior is α
∑N

i=1
1

i+α−1
≈ αHN ≈ α lnN , where HN is the N th Harmonic number.
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complexity4 from the data along with the rest of the model, though this is perhaps ill-advised

as stated above. With fixed N , many BNP models can be viewed as mixtures of finite mod-

els, fitting into the model averaging framework outlined in Chapter 1. Here, we outline two

important BNP priors, the Dirichlet Process and the Indian Buffet Process.

3.3.1 Dirichlet Process

The Dirichlet Process (DP) [13] is a distribution over measures. Define an event space Ω, a

base probability measure G, a constant α > 0, and a finite partition {Ai}Ki=1 of Ω. Then a

draw from the Dirichlet Process Y ∼ DP(αG) follows

Y (A1), Y (A2), . . . Y (AK) ∼ Dirichlet(αG(A1), αG(A2), . . . αG(AK)) (3.20)

That is, Y is a random measure, and the distribution of the measures of a partition are

Dirichlet. Thus, Y is probability measure: Y (Ω) = 1. Interestingly, Y can be represented

as a countable sum of degenerate measures. Sethuramen [52] showed that Y follows the

following recursive distributional equation:

Y
d
= v1δθ1 + (1− v1)Y (3.21)

where v1 ∼ Beta(1, α), δθ(A) = 1 if θ ∈ A and 0 otherwise, and θ1 is drawn from G. This

leads to the following constructive definition of Y :

Y (A) =
∞
∑

i=1

wiδθi(A) (3.22)

4that is, the dimension of the parameter space.
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The θi are drawn from G and the wi determined by stick-breaking :

vi ∼ Beta(1, α)

wi = vi

i−1
∏

j=1

(1− vj) (3.23)

Stick-breaking provides a convenient way to (partially) represent a draw from the DP, and

is frequently used when performing inference on models using the DP prior.

Dirichlet Process Mixture Model

A common use for the DP is to use the sticks wi as mixture weights and the atoms θi as

cluster parameters for a mixture model. For example, we may define a Dirichlet Process

Mixture of Gaussians:

θk ∼ G

vk ∼ Beta(1, α)

wk = vk

k−1
∏

m=1

(1− vm) (3.24)

zi = Categorical(wk)

Xi ∼ F (θzi)

For a Dirichlet Process Mixture of Guassians, θk = (µk,Σk) and F (θk) = N (µk,Σk). Typi-

cally, the difficulty in performing inference in a DPMM lies in introducing new θk that have

yet to be explicitly represented, inferring wk as it has infinite length, and inferring zi as it is

a discrete variable with infinite support.
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3.3.2 Chinese Restaurant Process

When the wi of the DP are used as mixing weights in a mixture model, they can be integrated

out and the distribution of assignment variables zi remains:

P (z) =
Γ(α)αK

Γ(N + α)

K
∏

k=1

Γ(nk) (3.25)

where nk is the number of i such that zi = k. This distribution is the Exchangeable Partition

Probability Function (EPPF) [48] for the Chinese Restaurant Process (CRP). The CRP can

also be expressed as a conditional prior giving the probability of zi given all other elements

of z (denoted z¬i). Let the counts N and nk be determined from z¬i (that is, the counts do

not include zi in their sums), and if there are a total of K clusters represented in z¬i, then

P (zi = k|z¬i) =















nk

N+α
if k ≤ K

α
N+α

if k = K + 1

(3.26)

If G is a conjugate prior of F , then the parameters θk can be marginalized and sampling the

zi via Gibbs sampling allows the creation and destruction of clusters. If F and G are not

conjugate, then the instantiation of new parameters θk when sampling k = K + 1 becomes

a tricky issue, and Gibbs sampling is no longer applicable.

3.3.3 Indian Buffet Process

Frequently flat clustering models are too restrictive. For example, in a social network setting,

an individual may belong to several latent groups; say Alice’s hobbies include running and

board games, Bob enjoys soccer and running, and Carol enjoys reading. As Alice and Bob

share similar interests, a reasonable model may predict an increased probability that Alice

and Bob are friends. No individual is restricted to having only one interest, so we may wish
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to model these latent properties with a “clustering” model where an individual can belong

to multiple clusters.

The Indian Buffet Process (IBP) [22] is a prior over binary matrices with unbounded width.

A draw Z from the IBP represents the assignments of datapoints to latent “features” or

“groups;” Zik = 1 if datapoint i belongs to feature k. As this assignment is not exclusive

or constrained in any way, a datapoint may be assigned to multiple features. Although the

draw Z has unbounded width, when the height of Z (the number of datapoints observed) is

finite, the set of columns with nonzero entries is finite.

The IBP can be characterized by its Exchangeable Feature Probability Function (EFPF) [6].

The prior probability of a matrix Z with N rows and K columns is:

P (Z) =
αK exp(−αHN)
∏2N−1

h=1 Kh!

K
∏

k=1

(N − nk)!(nk − 1)!

N !
(3.27)

where Ht is the tth Harmonic number and nk =
∑N

i=1 Zi,k. h indexes all possible nonzero

binary vectors of length N , and Kh is the number of columns of Z that are equivalent to the

hth binary vector.

The IBP can also be expressed as a conditional prior. Let Z¬i,· denote the matrix Z but

with row i removed, and define the sums nk in terms of Z¬i,·. For columns k with nk > 0,

Zi,k|Z¬i,· ∼ Bernoulli(
nk

N
) (3.28)

For Poisson(α/N) columns with nk = 0, Zi,k is set to 1, forming a number of new features.

This perspective is useful for Gibbs sampling in conjugate models, in a similar manner to

Gibbs sampling for the CRP.
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3.3.4 Stick Breaking for the Indian Buffet Process

There is also a stick-breaking representation for the IBP, related to its connection to the

Beta Process [25, 56]. This construction is given in [55] as:

νi ∼ Beta(α, 1) (3.29)

µi = µi−1νi =
i
∏

j=1

νj (3.30)

Note that in this stick breaking construction, µi ≤ µi−1 for all i, and
∑

i µi 6= 1, unlike stick

breaking for the DP. The conditional distribution of Z is simply a Bernoulli draw for each

entry of Z:

Zik|µ ∼ Bernoulli(µk) (3.31)
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Chapter 4

Related Work

One of the primary difficulties in performing inference in model averaging is the problem of

parameter instantiation – how should a new parameter that has not been explicitly repre-

sented be set initially when it is first needed? Furthermore, how should existing parameters

adjust to this newly introduced parameter? These choices dramatically affect the ability of

the sampler to mix across models. In this chapter we review several MCMC methods for

model averaging. The methods outlined here range from generally applicable to prior-specific

MCMC algorithms. Each method also has its own means for instantiating parameters; these

means are also summarized at the end of this chapter.

4.1 Reversible Jump

Inference for model averaging can be performed using Reversible Jump MCMC (RJMCMC)

[19], in which a random walk along M is performed by proposals to higher or lower dimen-

sional representations. This method is generally applicable but requires careful construction

of a proposal distribution in order to be effective.
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Let the target posterior for models mk with parameters θ(k) be π(θ(k),mk). Reversible

Jump operates by drawing auxiliary random variables so as to match the dimensions of

the current and proposed models. Specifically, we propose to jump to model l from k with

probability qkl. A proposal is constructed by taking a draw ukl ∼ ρkl and applying an

invertible transformation T so that (θ(l), vlk) = Tkl(θ
(k), ukl), where Tlk = T−1

kl . u and v are

chosen so that the dimensions of the augmented spaces are “matched.” We then accept θ(l)

with probability

α = min

(

1,
π(θ(l),ml)

π(θ(k),mk)

qkl
qlk

ρkl(ukl)

ρlk(vkl)

∣

∣

∣

∣

∂Tkl(θ
(k), ukl)

∂(θ(l), vlk)

∣

∣

∣

∣

)

(4.1)

This provides a general framework for sampling in model averaging, but the proposal ρkl and

the transformation T must be tailored for the problem at hand. For example, in split-merge

RJMCMC for variable dimension Gaussian Mixture Model settings, T is a transformation

that takes one cluster’s parameters, and splits it into two clusters randomly depending on

the value of u [20, 29, 30]. The reverse move corresponds to merging two clusters randomly.

4.2 Gibbs Inference for BNP Models

Bayesian nonparametric models frequently allow for inference schemes in which each data

point is visited in sequence and assigned to some object (say a cluster), conditioned on

all other variables. For conjugate models, this assignment step allows for the creation and

destruction of “active” objects, giving a random walk on finite representations.

4.2.1 Example: Dirichlet Process Mixture Model

Consider the Dirichlet Process Mixture Model (DPMM), where we have marginalized out

the mixing weights to obtain the following model defined in terms of a CRP:
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θk ∼ H (4.2)

zi ∼ CRP (α) (4.3)

xi ∼ F (θzi) (4.4)

Thus we have p(x, z, θ) = p(θ)p(z)
∏

i p(xi|θzi). If H is conjugate to F , then we can marginal-

ize θ to get p(x, z) = p(z)
∏

k

∏

i|zi=k p(xi|zi = k). Thus we can evaluate p(zi = k, x, z¬i) ∝

p(zi = k|x, z¬i) in order to sample zi.

If the assignment step for z creates a new partition, then there is an implicit instantiation of

a new parameter which is integrated out. However, if this parameter is needed explicitly, we

may sample it from the posterior p(θ|x, z). As the model is assumed to be conjugate in this

case, the posterior on θ takes on a closed form which may have readily available sampling

algorithms.

4.3 Retrospective Sampling

In [47], the active dimension is sampled by first sampling a uniform variate, and second

(retrospectively) sampling the dimension using the inverse CDF over all dimensions – because

the chosen uniform variate will always correspond to a finite representation, this can be done

tractably.
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Consider the Dirichlet Process once again, where we generate the stick lengths wi according

to stick-breaking:

vi ∼ Beta(1, α) (4.5)

wi = vi

i−1
∏

j=1

(1− vj) (4.6)

If we wish to make a draw z ∼ Categorical(w), we can do this with the following scheme,

even though the length of w is infinite:

1. Draw u ∼ Uniform(0, 1)

2. Iterate through the sums Sk =
∑k

i=1wi, checking for the first k such that Sk > u

3. Take this k as the draw from Categorical(w)

This can be done in finite time almost surely. This method can be extended to posterior

simulation as well. If we have a likelihood p(Xj|θi), then p(zj = i) ∝ qi = wip(Xj|θi), then

we need to sample from Categorical(qi/c), where c =
∑∞

i=1 qi. The normalization constant c

adds a complication to the simulation scheme used above, as we generally cannot compute

Sk =
∑k

i=1 qi/c tractably.

The simplest way to handle this is to construct sequences cl(k) ↑ c and cu(k) ↓ c, so that

cl(k) and cu(k) depend only on wi and p(Xj|θi) for i ≤ k. For example,

cl(k) =
k
∑

i=1

wip(Xj|θi) (4.7)

cu(k) = cl(k) +M(1−
k
∑

i=1

wi) (4.8)

whereM > p(Xj|θi) for all θi. Given these bounds, we can construct sums Lk,l =
∑l

i=1 qi/cl(k)
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and Uk,l =
∑l

i=1 qi/cu(k). After drawing u ∼ Uniform(0, 1), we can take zj = l if for l ≤ k

Lk,l−1 ≤ u ≤ Uk,l (4.9)

This works because Lk,l−1 ≥
∑l−1

i=1 qi/c and Uk,l ≤
∑l

i=1 qi/c, thus we are guaranteed that

Sl−1 ≤ u ≤ Sl.

4.4 Slice Sampling for the Dirichlet Process

Slice sampling for the Dirichlet Process [57] introduces auxiliary uniform variates that allows

for efficient inference of BNP models with stick-breaking representations. These uniform

variates are inspired from [9], where N auxiliary variables are introduced in the context of a

generic Bayesian model, so that:

p(θ, u1, . . . uN) ∝ p(θ)
N
∏

i=1

1 (ui < p(X|θ)) (4.10)

where 1 is the indicator function. This is distinct from the slice sampling in [44], where

p(θ, u) ∝ 1

(

u < p(θ)
N
∏

i=1

p(X|θ)
)

(4.11)

Consider again the DPMM (3.24). Slice sampling for the DP introduces uniform variates so

that:

p(θ, u1, . . . uN) ∝
∞
∑

k=1

1(ui < wk)
N
∏

i=1

p(Xi|θk) (4.12)
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Giving the conditional distributions of ui:

ui|wk ∼
∞
∑

k=1

wkUniform(0, wk) (4.13)

ui|zi, wk ∼ Uniform(0, wzi) (4.14)

Conditioning on u allows for tractable inference for both the weights wk and the allocations

variables zi. The conditional for the sticks vi is a truncated Beta:

p(vk|v¬k,−) = Beta(1, α)1(ak < vk < bk) (4.15)

ak = max
i|zi=k

{

uk
∏

l<i(1− vl)

}

(4.16)

bk = 1− max
i|zi>k

{

uk
vzi
∏

l<zi,l 6=i(1− vl)

}

(4.17)

The conditional for the allocations zi is the truncated likelihood of Xi:

p(zi = k|−) ∝ 1(ui > wk)p(Xi|θk) (4.18)

Because we are conditioning on the slice variable ui, the set of k for which p(zi = k|−) is

nonzero is almost surely finite. In this step, we need to draw wk for clusters that have no

data until 1(ui > wk) can no longer be satisfied. For these empty clusters, the associated θk

are drawn from the prior, which then allows an update to zi using (4.18).

4.5 Slice Sampling for the Indian Buffet Process

Slice sampling for the IBP [55] introduces the variable u that determines a set of µ (in the

stick-breaking representation (3.30)) that are “active” – u is a lower bound to the µk that
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are explicitly represented. The joint distribution with u is given by

p(Z,X, µ, u) = p(Z,X, µ)
1

µ∗1(0 ≤ u ≤ µ∗) (4.19)

where

µ∗ = min

(

1, min
k|∃i,Zik=1

µk

)

(4.20)

is the minimum stick length across all features for which at least one datapoint is assigned.

The conditional distributions of u and Z are then

u ∼ Uniform(0, µ∗) (4.21)

p(Z|X,µ, u) ∝ p(Z|X,µ) 1
µ∗1(0 ≤ u ≤ µ∗) (4.22)

The conditional for Z is thus simply the conditional on X and µ, but with all columns with

µk < u forced to zero, so only a finite number of columns need to be considered for updating.

There is a complication to the update to u, as any columns with µk > u can have nonzero

entries. Thus, we need to draw µk for empty columns of Z until it is guaranteed that further

columns would have µk < u. Thus the conditional distribution of µk|µk−1, Z·,k:∞ = 0 is

needed:

p(µk|µk−1, Z·,k:∞ = 0) ∝ exp

(

α
N
∑

i=1

1

i
(1− µk)

i

)

µα−1
k (1−µk)

N
1(0 ≤ µk ≤ µk−1) (4.23)

[55] updates µk using adaptive rejection sampling, as p(µk|−) is log-concave in log µk. As

for updating µ during its turn in the Gibbs sequence, the implicit ordering of the active µ

can be dropped and µk drawn conditioned on Z:,k
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µk|Z ∼ Beta(nk, 1 +N − nk) (4.24)

where nk =
∑N

i=1 Zi,k. Inactive µk can still be updated as in (4.23).

4.6 Approximate Methods

There are also methods that allow for approximate sampling. In some BNP settings, infinite

objects are simply truncated to give approximate sampling methods [28], for example we

may approximate the DP with Dirichlet(α1(K)/K), where K is large and 1(K) is a vector

of ones of length K. Alternatively, sequential Monte Carlo may be used to approximately

sample from the infinite posterior [21].

4.7 Summary

There are many available options for performing inference for model averaging, each with

its merits and drawbacks. Reversible Jump MCMC is extremely general, but it can require

considerable work in constructing a suitable proposal distribution. Gibbs inference, on the

other hand, is straightforward to implement, but it requires that the prior and likelihood are

conjugate, limiting its applicability. Retrospective Sampling and the Slice Sampling variants

strike a balance between these extremes, being fairly easy to implement and applicable to

BNP models having a stick-breaking representation.

Each of these methods deals with parameter instantiation in a different way. Reversible

Jump handles this problem directly; the proposal distribution is responsible for handling such

issues. In the conjugate case, the parameters can be integrated out, the model sampled, and
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the parameter drawn directly from the posterior if the newly sampled model requires it. The

samplers making use of stick-breaking representations draw some set of new parameters from

the prior, without data assigned to the corresponding components. If data are eventually

assigned to these new components, the associated parameters can then be updated.

However, none of these algorithms leverage the impressive set of algorithms available for

finite dimensional inference to the problem of parameter instantiation. Retrospective Jump

Sampling does just that; newly instantiated parameters are given a chance to update condi-

tioned on the data before a model is taken for the next MCMC iterate1.

1The split-merge sampler also benefits from this type of “exploration step.” However, this is done through
a RJMCMC proposal that is typically specified on a per-model basis.
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Chapter 5

Refractive Sampling

As mentioned in the introduction, Retrospective Jump Sampling depends on a “black-box”

sampler suitable for sampling from finite dimensional distributions, such as Hamiltonian

Monte Carlo (HMC). However, in practice HMC’s hyperparameters are sensitive to the

dimension of the target distribution (and sensitive in general), and so complicates its use as

a black box sampler for Retrospective Jump. Here we develop Refractive Sampling, a more

robust gradient-informed black-box sampler for finite dimensional problems.

5.1 Introduction

Markov Chain Monte Carlo (MCMC) is an effective tool for performing Bayesian inference.

Frequently, a practitioner must design and implement a MCMC algorithm that is suited

to his or her problem, which can be time consuming and error-prone. Tools that allow the

general application of MCMC to wide varieties of models are thus attractive. State-of-the-art

black-box samplers such as slice sampling [44] and Hamiltonian Monte Carlo (HMC) [10, 45]

that require only a log-density (and perhaps its gradient) as input are hence popular tools for
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Bayesian modelling. Even so, there are some drawbacks: slice sampling does not generalize

well to problems in high dimensions, and HMC has some associated hyperparameters which

can be difficult to tune. In this chapter we propose refractive sampling, a new black-box

sampler that makes effective use of gradient information while remaining easy to tune in

complex settings.

Many black-box MCMC algorithms, such as HMC and Reflective Slice Sampling [44] in-

troduce an auxiliary variable p ∼ N (0, I), and propose updates to the state x with target

log-density f(x) as follows:

p′ = T (x, p) (5.1)

x′ = x+ wp′ (5.2)

with the step-size w a parameter of the inference algorithm, and T some transformation on

x and p. In Reflective Slice Sampling, we sample a slice variable s ∼ Uniform(0, f(x)), and

take T as:

T (x, p) =















p if f(x(1/2)) > s

p− 2g(x) pT g(x)
||g(x)||2 otherwise

(5.3)

where x(1/2) = x + wp and where g(x) = ∇xf(x). Proposals from reflective slice sampling

are always accepted, provided the reverse reflection would have occurred as well. Reflective

slice sampling can be inefficient relative to other algorithms making use of the gradient; the

gradient is used only to reflect p near the slice boundary, so it does not strongly influence

the chain to find (or escape) regions of high probability.
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HMC algorithms operate by performing moves that leave approximately invariant the Hamil-

tonian:

H = −f(x) + 1

2
pTM−1p (5.4)

Hamilton’s equations define a differential equation on x and p:

dx

dt
=
∂H

∂p
=M−1p (5.5)

dp

dt
= −∂H

∂x
= g(x) (5.6)

Thus, in order to preserve H, an update to p proportional to g(x) should be met with an

update to x proportional to M−1p – the leapfrog integrator does this in a reversible way.

For HMC using the leapfrog integrator:

T (x, p) = p+
ε

2
g(x) (5.7)

In this case, an additional update to p is made after updating x in order to obtain a reversible

procedure. Updates to the state x and momentum p ∼ N(0,M) are then:

p← p+
ε

2
g(x) (5.8)

x← x+ εM−1p (5.9)

p← p+
ε

2
g(x) (5.10)

This update corresponds to one leapfrog step; multiple steps may be chained together before

the accept/reject step with acceptance probability:

α(x, p→ x′, p′) = min

(

1,
exp(f(x′)− p′TM−1p′/2)

exp(f(x)− pTM−1p/2)

)

(5.11)
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In order to preserve H well, the step size ε must be small enough that the error of discretizing

(5.5) and (5.6) is not too large. Typically, there is a narrow range of ε that will produce

reasonable acceptance rates while producing large steps; intuitively, we must have ε inversely

proportional to ||g(x)||. If ε is not chosen carefully, HMC will exhibit either low acceptance

rates or very small updates per iteration. This problem becomes evident when the gradients

become large, particularly when the curvature of f is also extreme.

In many applications, updates are performed in a Gibbs sampling style, where different

parameter sets are updated in turn, often because each set requires different hyperparameter

settings, or one set has closed form updates. In cases where one set of parameters has

more degrees of freedom or is more flexible than another, the more flexible parameters can

update too quickly and take the chain into a mode that fits the data poorly. For example, if

one were sampling the means and covariances of a Gaussian Mixture Model using a black-

box sampler, allowing the covariances to update too quickly can result in chains where a

few large components (poorly) explain all the data. Because HMC has a narrow range of

hyperparameter settings that allow for efficient sampling, it can be difficult to tune multiple

HMC algorithms so that some update more slowly than others while still giving efficient

sampling.

Finally, HMC can perform poorly in multimodal settings. As the momentum update (5.7)

is proportional to the gradient, it is unlikely that updates to x that do not follow large

gradients will be proposed. Even though HMC is a valid MCMC sampler, it can be myopic

in that it tends to focus on the mode in which the current state happens to reside, resulting

in poor mixing.

Techniques such as updates in alternate geometries [18], allowing an intelligent or automati-

cally tuned number of steps [27, 58], and automatically tuning ε [49, 27, 58] are thus popular

for their ability to improve acceptance rates and allow larger steps. Even so, these extensions

still rely on an underlying sampler that can be sensitive to markedly fluctuating gradients.
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Thus, MCMC algorithms that instead use only the gradient direction, and not its magnitude,

may be able to escape these problems.

5.2 Refractive Sampling

We wish to construct a MCMC proposal scheme that makes stronger use of the normalized

gradient than reflective slice sampling. We would also like it to be easy to tune and not

sensitive to the peculiarities of the target distribution – therefore we still desire a proposal

that preserves the norm of p rather than allowing the size of steps to grow or shrink with

each step taken. One obvious choice is then to add the normalized gradient g(x)
||g(x)|| to p, and

then normalize to keep the norm preserved.

Consider again the update of the form (5.1). The Jacobian determinant of the joint trans-

formation is:

∣

∣

∣

∣

∣

∣

∣

∂x′

∂x
∂x′

∂p

∂p′

∂x
∂p′

∂p

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

I + w ∂p′

∂x
w ∂p′

∂p

∂p′

∂x
∂p′

∂p

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∂p′

∂p

∣

∣

∣

∣

(5.12)

where we have used the following determinant identity for block matrices:

∣

∣

∣

∣

∣

∣

∣

A B

C D

∣

∣

∣

∣

∣

∣

∣

=

|D| · |A−BD−1C| for invertible D. In Reflective Slice Sampling and HMC,
∣

∣

∣

∂p′

∂p

∣

∣

∣ = 1. This is

not a required feature of a MCMC sampler, however, as any proposal with nonzero Jacobian

can be corrected with an accept/reject step.

Consider the following update for p:

p′ = T (x, p) =
w1p+ w2v

||w1p+ w2v||
||p|| (5.13)
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where v = g(x)
||g(x)|| and w1 and w2 are positive. This add-then-normalize proposal might be

used for gradient informed MCMC algorithms that are less sensitive to gradient magnitudes.

In order to construct valid MCMC moves using this proposal, however, it must be reversible:

p = T (x,−p′) = −w1p
′ + w2v

|| − w1p′ + w2v||
||p′|| (5.14)

(5.13) and (5.14) cannot both be satisfied with constant w1 and w2. Instead, we may let

them depend on p and x. An interesting class of solutions for (5.13) and (5.14) are those in

which wi behaves differently depending on the sign of pTv. If we can choose w1(p
Tv) and

w2(p
Tv) so as to ensure that

sgn(pTv) = − sgn(−p′Tv) (5.15)

while satisfying (5.13) and (5.14), then the proposal is reversible. One solution is to define

a positive constants rl and rh such that

rl =















w1||p|| if pTv > 0

||w1p+ w2v|| otherwise

(5.16)

rh =















||w1p+ w2v|| if pTv > 0

w1||p|| otherwise

(5.17)

There are multiple solutions for w2, the one that satisfies (5.15) gives

p′ =
r1
r2
p− ||p||

[

r1
r2

cos θ1 − cos θ2

]

u (5.18)

49



where

r1 =















rl if pTv > 0

rh otherwise

(5.19)

r2 =















rh if pTv > 0

rl otherwise

(5.20)

u = sgn(pTv)v (5.21)

cos θ1 =
pTu

||p|| (5.22)

cos θ2 =
p′Tu

||p′|| =
[

1− r21
r22

(

1− cos2 θ1
)

]
1
2

(5.23)

It can easily confirmed that (5.18) satisfies (5.13) and (5.14).

The above transformation to p is refraction. Refraction occurs according to Snell’s Law as

follows: if a ray of light p travelling in a medium with index of refraction r1 passes through

a boundary to another medium with index of refraction r2, then the ray refracts to a ray

p′. If the boundary has surface unit normal u (defined so that pTu > 0), then the angle

of incidence θ1 and angle of refraction θ2 are determined by (5.22) and (5.23), respectively.

The refracted ray p′ can then be constructed as in (5.18).

Refractive Sampling makes use of this update for T (x, p). We let rh > rl so that p is refracted

into a higher index of refraction from a lower one if pT g(x) > 0, and vice versa if pT g(x) < 0.

That is, the gradient will always be pointing into the side with higher index of refraction, so

that p will always be rotated towards the gradient.
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Thus we can define T (x, p) as follows:

(u, r1, r2) =















( g(x)
||g(x)|| , 1, r) if pT g(x) > 0

(− g(x)
||g(x)|| , r, 1) otherwise

cos θ1 =
pTu

||p||

cos θ2 =

[

1− r21
r22

(

1− cos2 θ1
)

]
1
2

T (x, p) =
r1
r2
p− ||p||

[

r1
r2

cos θ1 − cos θ2

]

u

(5.24)

where r is a parameter of the procedure defining the ratio between the indices of refraction r1

and r2. This transformation is illustrated in Figure 5.1. The Jacobian of this transformation

is

∣

∣

∣

∣

∂T (x, p)

∂p

∣

∣

∣

∣

=

det

(

r1
r2
I + cos θ2

[

1−
(

r1 cos θ1
r2 cos θ2

)2
]

puT

||p||−

r1
r2

[

1− r1 cos θ1
r2 cos θ2

]

uuT

)

=

(

r1
r2

)d−1
cos θ1
cos θ2

(5.25)

where d is the dimension of p.

Note that cos2 θ2 can be negative1; this occurs when moving from a medium of higher index

of refraction to lower, and the angle of incidence is too shallow. In this case, the reverse

1Giving a complex cos θ2
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Figure 5.1: One step of a refractive sampling proposal. From state (x0, p0) we arrive to x1.
p0 is then refracted through a surface with normal ∇xf(x1) to produce a p1 that has been
rotated in towards the gradient. Going in reverse with p = −p1 would result in p′ = −p0.
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Figure 5.2: Example trajectories of refractive sampling whose final states were accepted.
When the sampler repeatedly encounters gradients pointing in the opposite direction to p,
it changes course until the angle of incidence to the gradient tangent plane is too shallow
and p is reflected, giving a serpentine behavior reminiscent of HMC.

52



move is impossible, and so we instead reflect2. Thus

T (x, p) =














r1
r2
p− ||p||

[

r1
r2
cos θ1 − cos θ2

]

u if cos2 θ2 > 0

p− 2(pTu)u otherwise

(5.26)

It is necessary to use a “leapfrog” style algorithm for a reversible proposal, so that an update

to p is always done at both the initial state x0 and the final state x1:

p1 = T (x0, p0)

x1 = x0 + wp1 (5.27)

p2 = T (x1, p1)

This can be repeated m times, where only one intermittent update to p is needed between

updates to x.

After performing the above proposal, we determine whether to accept or reject. Let y = (x, p)

and let S(y) be the full transformation in (5.27), with m updates to x. We need to choose

acceptance probabilities α to satisfy detailed balance:

π(y)α(y → S(y)) = π(S(y))

∣

∣

∣

∣

∂S(y)

∂y

∣

∣

∣

∣

α(S(y)→ y) (5.28)

Where π is the target density. Taking y′ = S(y), we have

α(y → y′) = min

[

1,
π(x′)

π(x)

m
∏

i=0

αi

]

(5.29)

2Incidentally, this is what occurs in nature as “total internal reflection”
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where

αi =

∣

∣

∣

∣

∂T (x, p)

∂p

∣

∣

∣

∣

(x,p)=(xi,pi)

(5.30)

If, for update i, cos2 θ2 > 0 and thus refraction was performed, then αi is of the form (5.25).

Otherwise the transformation was reflection and αi = 1. There is no dependence on π(p) as

we still take p ∼ N (0, I) or some other symmetric distribution. ||p|| is preserved throughout

all updates, thus the terms involving π(p) and π(p′) cancel.

Example trajectories of this sampler are given in Figure 5.2. One issue that might alert the

reader is the Jacobian (5.25) depends on (r1/r2)
d−1, and thus may suffer from the curse of

dimensionality. We have found that this is not so dire an issue; as the dimension d increases

we expect the ratio π(x′)
π(x)

to grow/shrink with exponent d as well. See also the experimental

evaluation regarding dimensionality, Section 5.4.2.

It is worth noting that the notion of a medium with a static index of refraction does not

apply here: the indices of refraction used to refract p are determined entirely by the local

gradient and its inner product with p. We are not attaching indices of refraction to various

regions of parameter space, and using such a scaffold to propose updates. Rather, the index

of refraction associated with one region may be different from iteration to iteration. See

Algorithm 4 for pseudocode.

5.2.1 Ergodicity

We have already shown that Refractive Sampling follows detailed balance, thus any specified

target distribution will be invariant to the Markov chain produced by Refractive Sampling.

It remains to be shown that this invariant distribution is unique and the Markov chain will

converge to it; that is, we need to show that Refractive Sampling is ergodic.
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Algorithm 4 Pseudocode for Refractive Sampling

Input: x0, f(x), g(x), m, w, r
x← x0
p ∼ N (0, I)
α← 1
for i = 1 : m+ 1 do
if pT g(x) > 0 then

u← g(x)
||g(x)||

(r1, r2)← (1, r)
else
u← − g(x)

||g(x)||
(r1, r2)← (r, 1)

end if
cos θ1 ← pTu

||p||

cos2 θ2 ← 1− r21
r22
(1− cos2 θ1)

if cos2 θ2 < 0 then
p← p− 2(pTu)u

else
p← r1

r2
p− ||p||

[

r1
r2
cos θ1 − cos θ2

]

u

α←
(

r1
r2

)d−1
cos θ1
cos θ2

α

end if
if i ≤ m then
x← x+ wp

end if
end for
α← f(x)

f(x0)
α

z ∼ Uniform()
if z < α then
return x

else
return x0

end if
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We begin with irreducibility. Recall a Markov chain is ψ-irreducible if for all sets A with

ψ(A) > 0, and for all states x, there exists n such that

Kn(x,A) > 0 (5.31)

As the momentum p is drawn independently every iteration, we need only show irreducibility

for the state x.

The transition kernel is composed of two parts that depend on p and the normalized gradient

v = g(x)
||g(x)|| , the refractive case and the reflective case. If pTv > 0, then we are in the

refractive case, moving “upwards.” Let θ∗ be the resulting angle of refraction when the

angle of incidence θ1 =
π
2
; θ∗ is the largest possible angle of refraction. The update maps p

to a p′ with p′Tv ≥ cos θ∗. If pTv < 0, and −pTv ≥ cos θ∗, then we are in the refractive case

moving “downwards.” Otherwise, we reflect. As ||p′|| = ||p|| and every initial p has a unique

corresponding reverse move −p′, these operations together map the sphere with fixed norm

||p|| to itself. Thus there is positive density for any orientation of p′. As p ∼ N (0, I) and

x′ = x+ wp′, it is easy to see that K(x,A) > 0 for π(A) > 0, x′ ∈ A.

As the kernel follows detailed balance with invariant distribution π and is irreducible, it is

a positive chain, and thus recurrent (see Proposition 6.36 of [50]). As the kernel includes an

accept/reject step, it is aperiodic. Thus Refractive Sampling is ergodic.

5.3 Setting r

For high-dimension problems, it may be difficult to find parameter settings that give large

acceptance rates. HMC has the property that as ε → 0, the acceptance rate goes to 1;

however this is not true for refractive sampling when w → 0. Generally speaking, larger d

will warrant a smaller r. By roughly matching the equilibrium term π(x′)
π(x)

with the Jacobian
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terms in the acceptance probability, we can choose a setting of r that depends on the gradient

that will give high acceptance rates when w is small.

For a high acceptance rate, we want the change in log-density of the posterior to be ap-

proximately the same as the log-Jacobian for each step. Thus, when w is small, we want to

choose r such that

||g||w ≈ lnαi (5.32)

||g||w ≈ (d− 1) log r + log cos θ1 − log cos θ2 (5.33)

Letting r = 1 + x and taking first order Taylor expansions of log r and log cos θ2 around

x = 0 gives

r = 1 +
4||g||w cos θ21

1 + (4d− 5) cos θ21
(5.34)

Allowing r to depend on x in this way does not violate reversibility, nor does it affect the

functional form of the Jacobian, as it only directly affects the update to p′. This choice

of r allows for a larger number of steps, which can be important for particularly difficult

posteriors.

5.4 Evaluation

We compare Refractive Sampling, HMC and the No U-Turn Sampler (NUTS) [27] over

several measures of sampler performance. In preliminary experiments on a Gaussian target

distribution, we found Reflective Slice Slice sampling was about ten times slower per effective

sample than the other algorithms; thus we do not compare to it in the following.
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5.4.1 Bimodal Distribution

We begin with a simple demonstration on a two dimensional bimodal target distribution.

We define the target distribution as an equal mixture of two Gaussians, with µ1 = [1, 1]T and

µ2 = [−1,−1]T . We take both covariance parameters to be Σ, with unit diagonal entries,

and with the offdiagonal entries Σ12 = Σ21 ≤ 0. As we decrease Σ12, the target distribution

becomes a pair of parallel elliptical Gaussians. In order to measure how well a sampler mixes

between the two modes, we count the number of times the sampler crosses the line x1 = −x2,

a larger number of crossings indicating better mixing between the two modes. For Refractive

Sampling we set w = 0.5, m = 4, and r = 1.3, and for HMC we set ε = 0.5 and L = 4. We

also tried HMC with a preconditioning matrices M = Σ and M = 10I.3 The stepsizes w

and ε and numbers of steps m and L were chosen so that the sampler would not be likely

to propose from one mode to the other in one step of size w (or ε), but it may be likely in

m (or L) steps. We performed four trials for each setting of Σ12, reporting the mean and

standard deviation estimates of the number of crossings and acceptance rates.

As seen in Table 5.1, HMC and NUTS cross more often than Refractive Sampling for Σ12 ∈

{0.0,−0.5}, largely due to the higher acceptance rates. However, as Σ12 decreases, the

number of crossings for the HMC based algorithms degrades quickly, so that Refractive

Sampling crosses ten times more often when Σ12 = −0.8. We also tuned HMC to give

an acceptance rate of about 60% for the Σ12 = −0.8 case, giving ε = 0.8 and a mild

improvement. Using HMC with a preconditioner did not help. HMC using M = Σ, the

natural choice for sampling from either of the modes independently of the other, still degrades

quickly when Σ becomes elliptical. We found that increasing L to 20 or 50 did not improve

performance commensurate with the increased computational cost.

3We found that for Σ12 = −0.8, the stepsize ε = 0.5 was too large for HMC with M = Σ, and for this
experiment we used ε = 0.25.
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This demonstrates the fundamental difference between Refractive Sampling and HMC-related

samplers: as the target distribution becomes more peaked, the gradient becomes steeper,

and HMC has a more difficult time leaving the mode it is currently exploring. Refractive

Sampling, on the other hand, is able to jump between peaked modes more freely.

5.4.2 Sample Efficiency

There is an inherent trade off between a MCMC sampler’s ability to explore a mode quickly

and its ability to escape that mode; a sampler that spends too much time attempting to

find alternative modes will have inferior sample efficiency. As such, we should not expect

Refractive Sampling to outperform HMC or NUTS on metrics such as Effective Sample Size

(ESS) for unimodal posteriors.

We compare sample efficiencies on Bayesian Logistic Regression applied to three benchmark

datasets4. We mean-centered and whitened all datasets for evaluation. We compute ESS as

estimated in [27]: a 50,000 iteration run of NUTS is used to estimate the posterior mean and

variance for each parameter, and for each algorithm being evaluated, the ESS for estimators

of the mean and central second moment for each parameter is estimated, and the minimum is

reported. We tuned Refractive Sampling and HMC manually, trying m and L in {1, 2, 4, 8}

with various stepsizes in order to maximize ESS per second in preliminary runs. We found

that r = 1.3 worked well across all datasets. We ran each algorithm for 10,000 iterations,

discarding the first 5,000 as burn-in.

We repeated each evaluation for 8 trials and report the mean and standard deviations of the

ESS and ESS per second in Table 5.2. On these problems Refractive Sampling is roughly 3-7

times less sample efficient than HMC and NUTS. This is not a prohibitively large difference.

4German Credit (N = 1000, d = 24), Pima Indians (N = 768, d = 8), and Statlog Heart (N = 270,
d = 7) datasets, all available at the UCI Machine Learning Repository [4]
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Table 5.1: Refractive Sampling Bimodal Mixing Example
Σ12 0.0 -0.5 -0.8

Num. Cross Accept Rate Num. Cross Accept Rate Num. Cross Accept Rate
Refractive 1002.5± 54.3 0.449± 0.003 760.5± 49.4 0.405± 0.006 527.0± 17.9 0.354± 0.003
HMC 2308.0± 48.1 0.977± 0.002 1163.5± 7.7 0.972± 0.003 64.3± 7.4 0.880± 0.004
HMC (ε = 0.8) 3550.5± 16.6 0.963± 0.001 1626.8± 37.1 0.882± 0.002 93.3± 2.9 0.652± 0.004
HMC (M = Σ) 2288.3± 10.2 0.976± 0.001 1469.2± 12.8 0.917± 0.004 78.3± 8.1 0.875± 0.002
NUTS 2229.0± 54.4 0.788± 0.008 804.5± 12.5 0.808± 0.008 44.5± 4.1 0.774± 0.003

Table 5.2: Refractive Sampling Sample Efficiency
German Credit Pima Heart
ESS ESS/sec. ESS ESS/sec. ESS ESS/sec.

Refractive 175.8± 51.4 4.7± 2.0 445.3± 44.0 31.4± 2.0 92.6± 38.7 10.2± 4.5
HMC 1140.8± 167.8 34.1± 8.1 1603.4± 155.6 116.7± 13.6 359.4± 93.9 42.5± 10.9
NUTS 623.5± 85.8 13.6± 4.3 1474.4± 207.8 99.6± 14.0 912.8± 244.0 61.0± 16.5

Table 5.3: Refractive Sampling Sample Efficiency – Synthetic Data
d=20 d=100 d=400 d=1000

ESS ESS/sec. ESS ESS/sec. ESS ESS/sec. ESS ESS/sec.
Refractive 142.0± 38.4 6.5± 2.0 419.3± 59.2 13.6± 5.6 119.8± 79.3 1.8± 1.2 1.5± 0.4 0.06± 0.01
HMC 503.6± 37.2 19.7± 1.8 1175.3± 112.1 32.7± 8.5 1068.2± 80.1 17.2± 7.8 2928.0± 614.8 16.6 ± 5.0
NUTS 1154.1± 132.4 112.9± 6.5 1517.2± 79.0 36.2± 4.1 1732.4± 102.5 13.1± 2.2 1219.5± 78.3 5.5 ± 1.1
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Dependence on Dimension

To evaluate the behavior of Refractive Sampling in higher dimensions, we compare it against

HMC and NUTS on a synthetic logistic regression problem. The data are generated from

a mixture of two spherical Gaussians in d ∈ {20, 100, 400, 1000} dimensions, which each

component representing one class. We tuned HMC and Refractive Sampling manually, trying

m and L in {1, 2, 3, 8, 16, 32} with various stepsizes. We found that for these problems, setting

r automatically as in Section 5.3 was beneficial as it allowed for larger choices of m.

Table 5.3 summarizes the results of this comparison. For d = 400, Refractive Sampling is 10

times less sample efficient than HMC or NUTS, which is not a prohibitively large difference.

However, for d = 1000, the automatic setting for r requires a small w, and the sample

efficiency for Refractive Sampling becomes quite poor5.

It is unfortunate, yet unsurprising, that Refractive Sampling is not as sample efficient as

HMC or NUTS on these simple problems. We reiterate that Refractive Sampling is designed

for use in problems where HMC-based algorithms have difficulty; particularly those with

pathologically steep gradients or multiple modes. However, sample efficiency remains im-

portant. Perhaps the easiest way to combine the sample efficiency of HMC-based sampling

with the robustness of Refractive Sampling is to simply mix two such samplers together.

5Setting r manually does not improve performance much for this case.
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5.4.3 Convergence Comparison

We compare refractive sampling to HMC and NUTS on how well they manage to find high-

probability regions of parameter space while sampling. We compare Refractive Sampling,

HMC, NUTS with a mixed sampler that randomly chooses either Refractive Sampling or

HMC at each iteration – we call this Ref-HMC. We used HMC’s initial ε for the initialization

scheme in NUTS, all other tuning hyperparameters for NUTS are as in [27].

Gaussian Mixture Model

Gaussian Mixture Models (GMM), despite their apparent simplicity, can be difficult models

for black box samplers. The covariance parameters are more flexible than the means, which

manifests as modes in the posterior where a few components with large covariances explain

the majority of the data, and the remaining clusters explain few points, if any. Specifically,

we define our Bayesian GMM as:

w ∼ Dirichlet(α)

µk ∼ N (0,Σµ)

Σk ∼ InvWishart(Σ0, ν)

zi ∼ Categorical(w)

Xi ∼ N (µzi ,Σzi)

We set K = 5, α = 2(K) (that is, a K-vector of 2s), ν = 2d + 2, and Σµ = Σ0 = I. We

represent the precision matrix as a modified Cholesky decomposition Σ−1 = AD−1A, where

A is lower unitriangular and D is diagonal, with priors as in [8] so that Σ−1
k ∼Wishart(Σ0, ν).

We marginalize out the z variables, leaving a representation for w, µ, L and D.

We compare refractive sampling to HMC and NUTS on inference of the means and variances
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on the Yeast dataset [4], with dimensions of small variance removed giving d = 6. As mixture

models have modes with high posterior probability, but poor predictive performance (for

example, a single cluster with small variance explaining a single datapoint), we split the

data into train/test splits and also evaluate on the held-out data.

We report test log-likelihood in addition to model posterior probability. The test log-

likelihood and posterior probabilities we report are not averaged over the chain to highlight

the behavior of the chains themselves. Thus, for MCMC iterate θt, train set X and test set

X(test) we report p(X(test)|θt) and p(X|θt)p(θt).

All algorithms began with the same train/test splits and initial states for a given trial. We

ran all samplers for 1000 iterations, with NUTS taking about six times as long as refractive

sampling and HMC.

Additionally, we show the result of MAP inference performed by optimization via L-BFGS

[37]. The model above is not conjugate, hindering the application of a traditional Expectation

Maximization (EM) algorithm. However, we marginalize out the z variables as above, thus

this optimization procedure can be viewed as a generalized EM algorithm in which the E

step is performed at every update to the parameters. We performed 100 random restarts

and report the trial with the highest posterior probability.

In Figures 5.3 and 5.4, we plot the model probability and test log-likelihood versus iteration,

averaged over trials (but not averaged over the chains). The error bars correspond to 1

standard deviation. NUTS and HMC do not reach the regions of parameter space with the

same posterior probability or test log-likelihood as Refractive Sampling and Ref-HMC do.

The MAP estimator finds a mode not found by any of the samplers above, however this

mode does not correspond to higher test log-likelihood.
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Figure 5.3: Model posterior log-probability for the Yeast dataset.
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Figure 5.4: Test log-likelihood for the Yeast dataset.
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Bayesian Softmax Regression

Finally, we compare all algorithms on Bayesian Softmax Regression (also known as multino-

mial logistic regression). The model for data X ∈ R
N×D, Y ∈ Z

N
C , and C > 1 is:

βc,j ∼ N (0, σβ)

Yi ∼ Categorical(P (Yi|β,Xi))

P (Yi = c|β,Xi) =
exp(βT

c Xi)
∑C

c′=1 exp(β
T
c′Xi)

where we set the parameters of the pivot class βC = 0 as they are superfluous degrees

of freedom. We apply the model to the St. Jude Leukemia dataset [60], a data set with

N = 327 and d > 10000. Many of these dimensions are small-variance, so we preprocess

the data using PCA to give d = 140, retaining about 90% of the data variance. The data

are gene expression levels from 6 different diagnostic classes of leukemia, with a 7th class

denoting cases that were not assigned a diagnostic label. We treat each designation as its

own class, including the 7th “unlabeled” class, which we set as the pivot class.

Here we plot only the model probability, as there is little danger of extreme overfitting as

is the case with the GMM. Again, we plot the model probability averaged over trials, but

not over the chains, see Figure 5.5. Refractive Sampling and Ref-HMC reach regions of

higher posterior probability more quickly than HMC and NUTS. The MAP estimate finds

an even higher region of posterior probability, however this corresponds to an extremely

narrow (and thus low probability) peak: in a separate experiment when Refractive Sampling

was initialized to this mode it slowly escapes to a region of parameter space with the same

probability as found with random initialization.

65



MAP

HMC

NUTS

Ref

Ref−HMC

−3300

−3200

−3100

−3000

−2900

−2800

P
o
s
te

ri
o
r 

L
o
g
−

p

ro
b

a

b

il
it

y

0 2000 4000 6000 8000 104

Iteration

Figure 5.5: Model posterior log-probability for the Leukemia dataset.

5.5 Additional Remarks

There are some drawbacks to refractive sampling. Refractive Sampling does not fully leverage

the gradient magnitude, and so performance can suffer where this information is useful.

Highly elliptical problems – where an update with fixed norm may not be optimal – are

another issue. We suggest standardizing or whitening data where possible so as to potentially

reduce the severity of elliptical posteriors. In extremely high dimensions, Refractive Sampling

may not be sample efficient.

There are possible improvements and variants of refractive sampling that have yet to be

explored. One obvious direction is that any vector-valued function may be substituted for

the gradient for use in the refraction transformation. Stochastic approximations of the

gradient can be used while still providing a valid Markov Chain, and other schemes choosing

directions other than that of steepest ascent may be fruitful. Many of the ideas in Riemannian
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geometry variants of HMC and Metropolis Adjusted Langevin Algorithm (MALA) can be

applied to refractive sampling, as well as the automated/incorporated choice of the number

of steps and stepsizes in [27] and [58].

5.6 Summary

Refractive Sampling is a Metropolis Hastings sampler which uses the normalized gradient

to guide its proposals. It constructs proposals based on basic physical processes and is

easy to implement. Refractive Sampling enjoys many of the benefits of other gradient-

based samplers without the sensitivity to large fluctuations in gradients – in some settings,

this enables refractive sampling to find regions of high probability more easily. As such,

refractive sampling is less sensitive to initialization. Additionally, it can be used as a large-

step sampler in conjunction with small-step samplers such as HMC in order improve overall

sampler behavior.
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Chapter 6

Retrospective Jump Sampling

6.1 Introduction

In this chapter, we introduce Retrospective Jump Sampling (RTJ), a general purpose sam-

pler for model averaging inference tasks. There are several existing algorithms for MCMC

inference on model averaging tasks (see Chapter 4), however not many are suitable for gen-

eral purpose sampling. RTJ only requires as input the model log-density, a black box sampler

suitable for MCMC sampling from arbitrary distributions in finite dimensions, and a few in-

ference hyperparameters, making it a useful algorithm suitable for general purpose sampling

frameworks.

For the sake of exposition, we will make use of a running example throughout. We consider

RTJ applied to a Gaussian Mixture Model with a random number of components. Given
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data Xi ∈ R
d:

K ∼ Poisson(λ)

w ∼ Dirichlet(α1(K))

µk ∼ N (0,Σµ)

Σk ∼ InvWishart(Ψ, ν)

zi ∼ Categorical(w)

Xi ∼ N (µzi ,Σzi) (6.1)

where 1(K) is a vector of ones of length K. Here the model parameter is θ = (w, µ,Σ, z), but

in this case z can be integrated out and we take θ = (w, µ,Σ). When speaking generically,

we will refer to the K clusters as “objects.” In the model determination context, let mk

correspond to the GMM with K = k, giving P (M = mk) = P (K = k).

6.2 Retrospective Jump

There are many “black box” samplers that can be used for finite dimensional inference

problems that require little problem specific tuning. For example, Hamiltonian Monte Carlo

(HMC) [45] performs well when a gradient is available, and slice sampling [44] is efficient in

univariate settings or those in which the variables are not highly codependent. Neither of

these algorithms require any special structure in the model in order to work reasonably well.

Unfortunately, sampling in the infinite dimensional setting is more complicated. Some meth-

ods are available for inference in infinite spaces. The most classic is Reversible Jump MCMC

(RJMCMC) [19], in which a random walk along M is performed by proposals to higher or

lower dimensional representations. This method is generally applicable but requires careful

construction of a proposal distribution in order to be effective. In Bayesian nonparametrics,
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Figure 6.1: Retrospective sampling for mixed discrete and continuous distributions. Even
though q0δθ0(θ)+ q1(θ) is unnormalized, by representing the probability of the point mass q0
as a weighted continuous pdf, we can create a single continuous distribution from which we
can slice sample. Given a particular θ, we can then choose either the discrete or continuous
component by sampling from the probability vector proportional to (q0N(θ; θ0, 1), q1(θ)).

the models frequently lend themselves to inference schemes in which each data point is visited

in sequence and assigned to some object (say a cluster). This assignment step allows for the

creation and destruction of “active” objects, giving a random walk on finite representations.

In [47] the active dimension is sampled by first sampling a uniform variate, and second (ie

retrospectively) sampling the dimension using the inverse CDF over all dimensions – be-

cause the chosen uniform variate will always correspond to a finite representation, this can

be done tractably. Slice sampling methods can be used in which an auxiliary slice variable is

introduced which allows sampling the effective dimension in BNP models with stick-breaking

representations [57]. There are also methods that allow for approximate sampling.

The above methods are useful tools but none are quite up to the task of being a black box

sampler in which only the model densities need to be specified (along with some MCMC

tuning parameters) in order to sample from an infinite dimensional model. Many of these

algorithms, particularly those in which data are assigned to objects, can have problems with

mixing as it requires a search over a combinatorial space with many local maxima. Methods

such as split-merge [20, 29, 30] can address this for some specific problems, but this also is

a solution that must be tailored to the model in order to be effective.
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In an aim towards a black box sampler for infinite dimensional models, we introduce the

Retrospective Jump Sampler. RTJ operates by introducing an auxiliary variable L, that,

when conditioned upon, allows a random walk on M . RTJ rests upon two basic principles:

1. (Augmentation) A distribution of dimension d can be augmented to distribution

d + k by introducing k independent auxiliary variables, that, when marginalized out

give back the original distribution of dimension d. This is useful when relating MCMC

states of different dimensionality.

2. (Retrospective Sampling) Given a mixture q over k pdfs such that q =
∑k

i=1 pi(θ),

one can sample the state θ directly from the mixture, and subsequently sample i|θ from

normalizing the probability vector {pi(θ)}ki=1. This is a slightly different definition of

Retrospective Sampling as given in [47], in which the mixture q has infinitely many

components.

We begin with an observation on how one might sample from a mixture of discrete and con-

tinuous (unnormalized) measures. The straightforward approach would be to integrate out

the continuous component to give another discrete component, sample from the correspond-

ing mixture, and then pick a sample based on the mixture component that was selected. This

is costly in the general case as it involves integrating over the continuous component. A use-

ful alternative is to instead augment the lower-dimensional, discrete components, into the

continuous space, rather than integrate the continuous component into the discrete space.

Then, we can sample directly from the mixture of continuous pdfs using methods such as

slice sampling or HMC, and then retrospectively sample the mixture component. See Figure

6.1.

This augmentation/retrospective sampling scheme allows for samplers that can sample from

mixtures of distributions of different dimensions. We apply this scheme to the problem of

inference for model averaging in the following.
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Consider a set of models M = {mk}, which may be finite or countably infinite – let M

denote a random variable whose support is M. Let each parameter θj occupy a space Ωj ,

and let Ω =
∏∞

j=1 Ωj. Each model has a set of parameters θ(k) ∈ Ω(k), where Ω(k) is subspace

of Ω. The particular subspace is determined by an index set of size1 dk: Ik = {ik1, . . . ikdk}.

Let ΩI =
∏

i∈I Ωi denote the subspace defined by restricting Ω to the indices that are in

I. The index sets of different models may be disjoint or they may overlap – that is, some

parameters might be shared between models. Let θI = {θi|i ∈ I}, so that θIk = θ(k). The

observations X live in the dataspace XN . Let A be a cylinder with base B ⊆ ΩI with

I = {i1, . . . id} if

A = {ω ∈ Ω|(ωi1 , . . . ωid) ∈ B} (6.2)

Let A ⊆ Ω, C ⊆ XN , D ⊆ M, and ABk
be a cylinder with base Bk ⊆ ΩIk . Define a

probability measure µ(A,C,D) such that:

µ(Ω,XN , {mk}) =P (M = mk) (6.3)

µ(ABk
, C, {mk}) =P (X ∈ C|θ(k) ∈ Bk,M = mk)

P (θ(k) ∈ Bk|M = mk)P (M = mk) (6.4)

where P (M = mk) is the prior probability of model mk, P (θ
(k) ∈ Bk|M = mk) is the prior

measure for θ(k), and P (X ∈ C|θ(k) ∈ Bk,M = mk) is the data generating measure. As it

stands, µ is not fully defined; we need to specify how µ(AB, C, {mk}) should behave when

B is a base that is contained in ΩI(−k)
with I(−k) ⊆ N \ Ik. This choice determines the

probabilities of parameters in “augmented” dimensions. Let θ(−k) = θI(−k)
∈ ΩI(−k)

be the

1Note that a particular index in an index set may actually correspond to multiple parameters, that is
dim(Ωj) ≥ 1. In the GMM example, we may have each index i correspond to the mean, covariance, and
mixing weight for a single Gaussian component.
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parameters associated with these augmented dimensions. We have

µ(AB, C, {mk}) =P (X ∈ C|θ(k) ∈ Ω(k),M = mk)

P (θ(−k) ∈ B|M = mk)P (M = mk) (6.5)

where P (θ(−k) ∈ B|M = mk) is an arbitrary probability distribution on θ(−k) ∈ ΩI(−k)
.

We can take Radon-Nikodym derivatives of µ restricted to particular subspaces to get inter-

esting density functions that are useful for inference. If we take λ(Bk, C) = µ(ABk
, C, {mk}),

and ν to be the Lebesgue measure, then

1

P (M = mk)

dλ

dν
= p(X, θ(k)|M = mk) (6.6)

is the joint density of X and θk conditioned on model mk. A bit more interesting is to

choose a set of indices I(−k) that are disjoint with Ik, and to take λ(B,C) with B ⊆ ΩIa ,

and Ia = Ik ∪ I(−k):

1

P (M = mk)

dλ

dν
= p(X, θ(k)|M = mk)p(θ

(−k)|M = mk) (6.7)

where p(θ(−k)|M = mk) is the density function of P (θ(−k) ∈ B|M = mk). ΩIa acts as the

“augmented” space in which we may sample parameters θ(k) and θ(−k) simultaneously.

Different sampling algorithms can be derived depending on whether the Ik are disjoint or

overlapping. First we consider the disjoint case.

73



6.2.1 Disjoint RTJ

If M is finite, we can take B ⊆ Ω, and AB = B. Let all models mi, i 6= k share the

same prior for θ(k) as that for mk, so we may write p(θ|M = mk) = p(θ).2 If we take

λ(B,C) = µ(B,C,M), then

p(θ|X) ∝ dλ

dν
= p(θ)

∑

k

p(X|θ(k),M = mk)P (M = mk) (6.8)

From this we can derive

p(θ(k)|X) ∝p(X, θ(k)|M = mk)P (M = mk)+

p(θ(k))
∑

j 6=k

p(X|θ(j),M = mj)P (M = mj) (6.9)

And note that

P (M = mk|θ,X) ∝ p(X, θ(k)|M = mk)P (M = mk) (6.10)

This lends itself to a very simple inference algorithm:

1. Update the model parameters for each model according to (6.9)

2. Sample M according to (6.10)

WhenM is infinite, we may still perform inference by introduction of an auxiliary variable

L ∈ N0, defined so that conditioning on L restricts the chain to considering a finite set of

models. We define L|M in the following way. First, we draw δ ∼ Categorical(1
3
, 1
3
, 1
3
)− 2 so

that δ ∈ {−1, 0, 1}. If M = mk, then we take L = k + δ. Introducing L gives a measure on

2This choice of augmenting distribution is not too restrictive – it simply means that a parameter θi has
the same prior regardless of the state of M , and is in fact equal to the prior p(θi|M = mk) if θi is a parameter
of mk. Other choices are possible but we have found that simply using the prior works well.
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(Ω,XN ,M,N0):

µ(A,C,M, {L}) = 1

3
µ(A,C, {mL−1,mL,mL+1}) (6.11)

As µ(A,C, {mk}) = 0 with k ≤ 0, it is easy to confirm that the measure in (6.11) is

still a probability measure. As conditioning on L is equivalent to conditioning on M ∈

{mL−1,mL,mL+1}, sampling and then conditioning upon L renders the infinite model de-

termination problem into a finite model determination problem. We can thus apply the

algorithm for a finiteM to the infinite case by sampling and conditioning upon L. We can

then sample θ|L using (6.9), but where only models in {mL−1,mL,mL+1} are considered,

and finally sample M |θ, L.

This algorithm for infiniteM may be slow to mix: if the parameters for model mk happen

to be in a poor state relative to the other models, then M = mk will not be selected easily

and the overall chain may have trouble transitioning “past” M = mk. If the set of models

M are all related models, then we may instead choose to share some parameters between

them. Sharing parameters will tie the models together, reducing the prevalence of such

complications.

6.2.2 Nested RTJ

When the models inM are related, it may be sensible to share parameters between models.

For example, if mk represents a Gaussian Mixture Model with k components, we may want

to tie the parameters of k − 1 clusters in mk to the parameters of mk−1. To do this we can

set Ik−1 = {1, . . . k − 1} and Ik = {1, . . . k}, so that the parameters of k − 1 clusters are

shared between mk−1 and mk.
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We restrict our attention to the case where the models mk are nested, that is, Ik ⊆ Ik+1. We

again assume the prior on θ does not depend on M : p(θ|M = mk) = p(θ)

Consider again the finite M case. As the parameters are now tied between models, we

cannot update each model’s parameters independently of the other models. Taking θ ∈ Ω,

A ⊆ Ω, and λ(A,C) = µ(A,C,M), we have

p(θ|X) ∝ dλ

dν
= p(θ)

∑

k

p(X|θ(k),M = mk)P (M = mk) (6.12)

and

P (M = mk|θ,X) ∝ p(X|θ(k),M = mk)P (M = mk) (6.13)

Thus for the nested case, we can update the full θ with (6.12), and then sample M .

For the infinite M case, we can introduce the variable L that restricts the conditional

measure to finite sets of models in the same manner as in Section 6.2.1. Let λ(B,C) =

µ(AB, C,M, {L}), with B ⊆ ΩI(L)
, θI(L)

∈ ΩI(L)
, and I(L) = IL−1 ∪ IL ∪ IL+1. Then

p(θI(L)
|X,L) ∝ dλ

dν
= p(θI(L)

)
L+1
∑

k=L−1

p(X|θ(k),M = mk)P (M = mk) (6.14)

and

P (M = mk|θI(L)
, X, L) ∝ p(X|θ(k),M = mk)P (M = mk) (6.15)

for k ∈ {L− 1, L, L+ 1}.

We now give an overview of the nested RTJ algorithm for infinite M with important im-

plementation details. Let R be the set of indices associated with models mk that have been

visited in the chain so far. Thus the parameters θR ∈ ΩR are those that are explicitly rep-

76



resented. Begin at a state (θR,M = mk). First, we sample L|M . Given L, we determine

θI(L)
∈ ΩI(L)

. For i ∈ Ik, we keep the given value of θi. For i ∈ R ∩ I(L) \ Ik, we may keep θi

or overwrite it with a draw from the prior p(θi). For i ∈ I(L) \ (R ∪ Ik), we may initialize θi

to a value arbitrarily as this is the first time θi is being represented. We then update θI(L)

according to (6.14) using a black box sampler for finite models initialized to θI(L)
to give a

new parameter θ′. Finally, we sample a model M ′ conditioned on θ′ using (6.15), and we

have our new state θ′,M ′. Thus we have performed a valid set of MCMC steps that allowed

the transition from M = mk to some other model. Furthermore, the sampling of θ′|L, θ

acts as an “exploration” step which seeks out (M ′, θ′) pairs with high probability, much like

split-merge sampling techniques. Pseudocode for this algorithm (with sampling from the

prior rather than using previous values for i ∈ I(L) \ Ik) is given in Algorithm 5. Note that in

one complete Retrospective Jump step we may sample k′ ∈ {k−2, . . . k+2}, as, for example,

we might first sample L = k + 1, and then k′ = L+ 1.

Algorithm 5 Nested RTJ with infiniteM
Input: Model specificationsM = {mk|k ∈ N}
Input: Sampler SΩ ∈ ((Ω 7→ R),Ω) 7→ Ω
Input: Initial model index k
Input: Initial parameters θ(k)

Input: Index sets I = {Ik|k ∈ N}
for j = 1 : iterations do
δ ∼ Categorical(1

3
, 1
3
, 1
3
)− 2

L← k + δ
I(L) = IL−1 ∪ IL ∪ IL+1

for i ∈ I(L) \ Ik do
θi ∼ p(θi)

end for
θI(L)

← SΩI(L)
(p(θI(L)

|X,L), θI(L)
)

M ∼ P (M |θI(L)
, X, L)

k = k′ such that M = mk′

Record (θ(k),mk)
end for

The idea of treating parameters of potentially new spaces as auxiliary variables is not new;

see [43, 12]. However, RTJ is distinct in that these auxiliary variables can be updated using
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data, while still maintaining detailed balance, before the next model M ′ is sampled. This

capability impacts the mixing efficiency of the algorithm. Split-merge algorithms [30] also

allow the augmented space to be explored before sampling M ′, however it does so in a

more directed and problem specific manner via construction of a proposal distribution for

RJMCMC.

6.2.3 Making use of Exchangeability

The nested RTJ sampler for infiniteM described above imposes an ordering on the dimen-

sions i, and thus also on the parameters. When sampling M ′ = mk−1, the parameters in

Ik\Ik−1 are “deactivated.” For the nested case, this is somewhat arbitrary: if the parameters

are exchangeable, why not allow any of the parameters in Ik to be removed instead? In this

case, there is some flexibility as to the choice of index sets Ik, all of which define equivalent

measures µ. We can treat these Ik as random variables that we should sample, which then

affects the set of parameters that are removed when sampling k′ < k. Note that the disjoint

RTJ algorithm avoids this issue, as each model has its own set of parameters.

Constructions with O(1) components

Let nk = |Ik|, and let I = {Ik|k ∈ N}. Given the requirement that Ik−1 ⊆ Ik, there are
(

nk

nk−1

)

ways to define Ik−1 that respects Ik. Let I denote the set of all such consistent sets of index

sets I. Extend the definition of µ to also depend on the index set: µ(A,C,D) = µ(A,C,D|E),

with E ⊆ I. We may take the uniform measure on I to obtain a probability measure

µ(A,C,D,E) = µ(A,C,D|E)µ(E). We may extend these definitions to include L as well.
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Explicating the dependence on I gives the following conditionals for θ and M :

p(θ|X,L, I) ∝ p(θ)
L+1
∑

k=L−1

p(X|θ(k),M = mk, I)P (M = mk) (6.16)

and

P (M = mk|θ,X, L) ∝ p(X|θ(k),M = mk, I)P (M = mk) (6.17)

where k ∈ {L − 1, L, L + 1} and θ(k) = θIk . Conditioned on M = mk, we can sample I

constrained so that I ′k = Ik, effectively choosing a random I ′k−1, I
′
k−2, . . . so that I ′k−1 ⊆ I ′k

is still satisfied for all k. Thus on the subsequent RTJ sampling step, the model with

M = mk−1 will correspond to the random set of parameters in I ′k−1, rather than a fixed

set. This modification can greatly improve mixing by allowing objects to be removed in any

order.

Constructions with O(K) components

In Section 6.2.3, we sampled I uniformly (subject to some constraints) conditioned on M .

Here, we sample I along with θ conditioned on L. This allows the sampler to find index sets

that correspond to suitable parameter sets for model mL−1.

Let J(I, L) be the set of I ′L−1 such that I ′L−1 ⊆ IL. Note that |J(IL)| =
(

nL

nL−1

)

. We have

p(θ, I|X,L) ∝ p(θ)
L+1
∑

k=L−1

p(X|θ(k),M = mk, I)P (M = mk)

= p(θ)
L+1
∑

k=L−1

p(X|θIk ,M = mk)P (M = mk) (6.18)

Thus the conditional depends on only the index sets IL−1, IL, IL+1. Letting I ′L−1 ∈ J(I, L)
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and integrating,

p(θ|X,L) ∝ p(θ)
L+1
∑

k=L

(

nL

nL−1

)

p(X|θIk ,M = mk)P (M = mk)

+
∑

I′
L−1∈J(I,L)

p(X|θI′
L−1

,M = mL−1) (6.19)

This gives a total of
(

nL

nL−1

)

+ 2 likelihood evaluations to evaluate (6.19). After updating θ,

we sample M and I ′. The conditional for M, I ′ is

P (M, I ′|θ, L) ∝ p(X|θ(k),M, I ′)P (M) (6.20)

where I ′L−1 ∈ J(I, L), I ′L = IL, I
′
L+1 = IL+1, and M ∈ {mL−1,mL,mL+1}. Again, the terms

for M ∈ {mL,mL+1} can be collected to save computation. Upon sampling M = mL−1 and

I ′L−1, I
′
k with k < L− 1 can be set arbitrarily or at random.

6.3 Invariance and Ergodicity

In this section we explicate the correctness of the disjoint and nested RTJ samplers; similar

arguments apply to the other variants of the algorithm.

First we show that RTJ follows detailed balanced if the underlying finite dimensional sam-

plers also follow detailed balance. First recall that by definition the measure µ respects all

probability measures of interest; that is the model prior probabilities P (M = mk) and model

priors p(θ(k)|M = mk). Thus the density p(θ|X) respects the posteriors P (M = mk|X) and

p(θ(k)|M = mk, X). In the finite M case, the target distribution of the finite sampler is

p(θ|X), so RTJ is invariant to p(θ|X). M is then sampled conditioned on θ in a Gibbs step,

leaving the chain invariant to p(θ,M |X).
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For the infiniteM case, the introduction of L does not affect the marginal distributions of θ or

M . MCMC updates conditioned on L leave the conditional distribution p(θ|L,X) invariant.

M and L are updated by Gibbs steps, so the overall chain is invariant to p(θ,M,L|X), and

discarding L gives a chain invariant to p(θ,M |X).

Thus the invariant distribution for RTJ is the specified target distribution. The MCMC chain

is also irreducible. For the finite M case, RTJ is irreducible by virtue of the irreducibility

of finite dimensional sampler, and the Gibbs sampling of M . For the infiniteM case, when

conditioned on L, the chain is irreducible for the parameter spaces Ω(l−1), Ω(l) and Ω(l+1).

As any state L = l′ can be reached from L = l via a random walk by a series of Gibbs steps,

and likewise for M , the overall chain is irreducible.

As RTJ leaves the target distribution invariant and the chain is irreducible, the chain is

positive. Positivity implies that the chain is recurrent (see Proposition 6.36 of [50]). As the

updates to M are a random walk, the chain is aperiodic. Thus RTJ is ergodic.

6.4 Retrospective Sampling and Reversible Jump

Retrospective Jump gets its name from two existing sampling algorithms, Retrospective Sam-

pling and Reversible Jump MCMC. Retrospective Sampling operates on Dirichlet Process

mixture models, where a datapoint Xj is assigned to a cluster with probability proportional

to

p(zj = k|X, θ) ∝ qk = wkp(Xj|θk) (6.21)

This step is done retrospectively, that is, first a uniform variate u is drawn, and then zj is

selected in finite time using bounds on qi so that a full normalization of an infinite vector is

not necessary.
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The introduction of the variable L simplifies the above procedure, in that conditioning on

L = l leaves zj ∈ {l− 1, l, l + 1} as the only values of zj that have nonzero probability, thus

normalization is tractable. Furthermore, this easily generalizes to arbitrary model averaging

problems (and is not restricted to updates for individual assignment variables), and we may

even update θ conditioned on L to improve mixing. The retrospective step comes in when

we sample zj (or, more generally, M) conditioned on θ and L.

This generalization leads to an algorithm that is in similar in some regards to Reversible

Jump, most notably, the chain for M updates via a random walk. However, rather than

requiring a manually specified proposal distribution that proposes jumps to higher or lower

dimensional representations, Retrospective Jump augments the parameter space so that

all models share the same space, and a random walk is performed on M by sampling it

conditioned on L and θ.

6.5 Demonstration

We demonstrate the RTJ algorithm on variable dimension variants of two basic problems:

mixture modelling and social network analysis. To demonstrate the general applicability of

our sampler, we did not make use of conjugacy for the purposes of sampling any variables –

all low level samplers involved are “black box” samplers.

6.5.1 Mixture Modelling

We demonstrate RTJ on our GMM running example (6.1). Gaussian mixture models with

a parametric yet random number of components has been studied before in [19] using RJM-

CMC, however when using RTJ we do not need to provide a proposal distribution. Dirichlet

Process Mixtures remain a popular choice for cluster analysis where the effective number of
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Figure 6.2: RTJ demonstration on a mixture of GMMs. The final state of our sampler (left)
and the trajectories of the first dimension of µk (middle) and the offdiagonal term of Σk

(right) for all active k. The red ellipses correspond to the 2 standard deviation level sets of
the active clusters, and the light gray correspond to those of the inactive clusters (ie k > K),
that are being explicitly represented. For the middle and right figures, the solid lines are
the sampled trajectories and the dashed lines are the generating parameters. The red line
corresponds to the parameters associated with the highly elliptical data.

components is inferred. For inference in the DPM, the zis are sampled and w integrated out.

However, in this parametric setting it is possible to instead integrate out the zis and repre-

sent w. We applied this model to synthetic data generated from three Normal distributions

in two dimensions. We synthesized enough points so that the generating parameters could

easily be recovered. In this case we have N = 1500.

Inference

We use the RTJ algorithm as given in Section 6.2.3. For each RTJ iteration, we sampled

w, µ, and Σ in turn, and for µ and Σ, we sampled each component’s parameters µk or Σk

in turn. We represented w as the normalization of K independent Gamma draws. As the

density (6.19) may be multimodal, we used refractive sampling for all of w, µ, and Σ. With

a suitable caching scheme for sharing computations between different components of (6.19),

our sampler completed 500 Retrospective Jump iterations in a few hours, with six sweeps

through the parameters per RTJ iteration.
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Results

Figure 6.2 shows the final state recovered and the trajectory of some of the parameters

during inference. As shown, the sampler begins with K = 1 and quickly ramps up to K = 5.

After about 200 iterations, the 4th and 5th components have been removed and the sampler

remains at K = 3.

6.5.2 Network Analysis

Given aN×N matrix of binary observations Y , the Latent Feature Relational model (LFRM)

[42] defines a Bayesian nonparametric model using the Indian Buffet Process (IBP) [23] to

describe Y . Rather than use the IBP, we can opt for a parametric distribution over binary

matrices, which we call a Binary Matrix Prior (BMP). The model is:

K ∼ Poisson(λ)

pk ∼ Beta(α, β)

Zi,k ∼ Bernoulli(pk)

Wk1,k2 ∼















Gamma(2, σW ) if k1 = k2

N (0, σW ) otherwise

Aj ∼ N (0, σA)

Bi ∼ N (0, σB)

C ∼ N (0, σC)

p(Yi,j = 1) = σ(Zi,·WZT
j,· + Aj +Bi + C)

K, α and β define the BMP prior on Z, which is used in the likelihood as in the LFRM.

Y is the adjacency matrix of the graph describing the observed relationships between the
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N individuals (or “actors”). An edge between two actors may be directed to represent

relationships that are not symmetric. Here we adopt the convention Yi,j = 1 if there is a

directed edge from i to j. Z is a binary matrix that describes a latent group structure to the

network. That is, Zi,k = 1 if actor i belongs to group or “feature” k; an actor can belong to

multiple features. W determines the effect of the feature interactions. As we may rewrite

Zi,·WZT
j,· =

∑

k1|Zi,k1
=1

∑

k2|Zj,k2
=1

Wk1,k2 (6.22)

Wk1,k2 describes the affinity that actors in k1 feel towards actors in k2. We restrict the

diagonal entries of W to be positive by using a Gamma prior as we desire groups to repre-

sent tightly knit sets of actors. Finally, the terms A and B are column-wise and row-wise

intercepts for modelling a particular actor’s “popularity” or “friendliness,” respectively.

We applied this model to two datasets:

Sampson’s Monastery

We applied this model to Sampson’s Monastery data [51]. N = 18 monks were inquired as

to which three of his peers he held in highest esteem, at three different time periods during

a social falling out at the monastery. Four distinct factions are commonly believed to be

present in the data (three main factions “Young Turks,” “Loyal Opposition,” “Outcasts”,

and a set of “Waverers” whose allegiances were unsteady during the conflict). Because a

monk may be selected by his peers arbitrarily many times, but each monk can only choose 3

peers, we included the receiver effects A in the model, but no sender effects B. We trained

our models on the first two snapshots of the Monastery data, holding out the third for

evaluation.
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Figure 6.4: RTJ comparison on C. elegans. Each boxplot summarizes the performance
among the 8 trials that were run. Each trial had a different train/test split of the data. “SS”
corresponds to inference using slice sampling for the IBP. “Average K” is the average active
K over a trial’s chain.

Protein Interaction

We also applied our model to the protein interaction network for caenorhabditis elegans from

the KONECT database [35]. We removed proteins that had fewer than 8 interactions, leaving

a network among N = 120 proteins. The problem is symmetric, so we impose a symmetric

prior on W and restrict B = A. We randomly split the matrix entries into train/test sets,

so an entry in Y may be 1, 0, or missing.
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Inference

We compared the BMP model to the LFRM with the IBP, performing inference with slice

sampling for the IBP [54], which has been applied to interaction network problems previously

in [14]. These models shared the above specification for W , A, C, and Y , except that they

employ a different prior over Z parameterized by αIBP , and the slice sampler also includes

a stick-breaking representation µ of the Beta Process. We set λ = 3, and for the IBP

experiments, we set αIBP = λ/HN , where Ht is the tth Harmonic number. With these

settings both models have E[K] = λ in the prior.

We compare the RTJ variants using (6.16) (O(1) cost) and (6.19) (O(K) cost), which we

call RTJ1 and RTJK, respectively. We also apply both algorithms to the IBP based LFRM

model. We do not provide a formal comparison to RJMCMC, as preliminary experiments

using the prior as a RJMCMC proposal gave prohibitively low acceptance rates.

For each Retrospective Jump iteration, we sampledW , A, B, C, and Z in turn. We sampled

W (represented in log-space), A, and B using refractive sampling, C using univariate slice

sampling, and Gibbs sampled each Zik in turn. We initialized auxiliary dimensions of W

and Z by sampling from the prior.

For Sampson’s Monastery we ran all samplers for 6000 iterations, performing fifteen sweeps

through the parameters per iteration. Using multiple sweeps through the parameters when

sampling θ′|L, θ can improve mixing. We found that using five such sweeps proved beneficial

for the c. elegans experiments. We ran all samplers for 1000 iterations on the c. elegans

data, giving a total of 5000 sweeps through the parameters. Burn-in iterations discarded for

Sampson’s Monastery and c. elegans where 1000 and 500, respectively.

Due to the overhead associated with evaluating (6.19) and (6.16), there is extra computa-

tional cost associated with RTJ, so the RTJ results generally took longer. The total running
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time for a trial also depends on the chain’s trajectory through K, so the BMP-based models

usually ran in relatively less time as they generally used fewer features. For the Sampson’s

Monastery dataset, the IBP with slice sampling finished in 30-40 minutes, IBP with RTJ1

finished in 3 hours, and with RTJK finished in 4-5 hours. BMP with RTJ1 finished in 1

hour and with RTJK finished in 2 hours. For the c. elegans data, IBP with slice sampling

finished in approximately 3 hours, IBP with RTJK in about 12-30 hours, and RTJ1 in about

12 hours. The BMP runs with RTJ1 finished in about 3 hours and RTJK finished in about

5-10 hours. The bottleneck for all samplers is Gibbs sampling the entries of Z.

We note that RTJ was implemented for use within a general software package that can apply

to a wide variety of problems, while Slice Sampling for the IBP is a much simpler imple-

mentation free from the technical details needed in a general inference framework. Thus,

there is significant overhead associated with the RTJ implementation in addition to the cost

of evaluating the mixed distributions. Implementations of RTJ that are designed specifi-

cally for use on models involving latent binary matrices would see a significant reduction in

computational cost.

For the Sampson’s Monastery experiment, we compare to the Latent Space model [26] using

the latentnet R package [33]. We set the number of clusters equal to 3 and latent space

dimension to 2. We provided the latent space model with the same sender and receiver

effects provided to the latent factor models. We ran 8 independent trials using the default

latentnet settings for the Latent Space model: 14000 iterations, discarding the first 10000

as burn-in. In addition, the Latent Space model is initialized by an optimization procedure,

where as the IBP and BMP models are initialized randomly.

We found that the IBP-based models overfit on the c. elegans by introducing too many

features. Constraining all entries of W to be positive improves this issue, thus for this

dataset we use the prior Wk1,k2 ∼ Γ(1, σw) for all k1 and k2.
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Results

For each sampler, we performed 8 independent trials which were used in the Monte Carlo

test in [53] to assess convergence. All samplers exhibited similar evidence of convergence3.

For each Yi,j, we computed its predictive log-likelihood averaged over the sampled chain for

a given trial, and we also computed the test AUC using these averaged predictions. We ran

RTJ on the BMP model with α = β = 1.1.

On the Sampson’s Monastery data, (see Figure 6.3), we find that all algorithms and models

aside from the Latent Space model perform similarly well on held-out test log-likelihood, and

all algorithms performed equally well on AUC. The BMP-based models use less features on

average than the IBP-based models, while still providing competitive predictive performance.

We note that there is significantly more variance across trials for the IBP and BMP models

compared to the Latent Space model; this is not too surprising considering these models are

not of fixed dimension, whereas the Latent Space model is parametric.

For the c. elegans trials, we split the data into 50-50 train/test splits, with different splits

of the data for each trial (but shared between samplers). See Figure 6.4. Again, the BMP-

based model uses less features on this larger dataset, while still maintaining competitive

performance with the IBP-based model.

6.6 Summary

Retrospective Jump sampling can be easily applied to a wide variety of problems, as models

can be specified to RTJ simply by specifying the relevant density. While more computational

demanding than model specific algorithms, RTJ is a general purpose algorithm that can

3Note that algorithms that have tendencies to fall into similar modes across trials will still report evidence
for convergence.
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effectively perform inference in a wide variety of problems. When updating θ′|L, θ, RTJ is

able to seek M, θ pairs with high posterior probability; this is an “exploration” step that is

critical to transitioning between spaces of differing dimension. RTJ opens the door for many

interesting models that would otherwise require sophisticated RJMCMC proposals.
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Chapter 7

Application: Infinite Sites Feature

Prior

In this chapter, we apply Retrospective Jump sampling to a novel model that would otherwise

require sophisticated RJMCMC proposals.

7.1 Introduction

It is normally understood that interpretability and predictive accuracy are two properties

of statistical models that are at odds with each other. A simpler, more interpretable model

will give an elegant interpretation to the data, but fail to capture the more subtle patterns

that may be present. A more complex model can capture these tendencies, but may report

them in an obscure manner that is difficult to interpret.

Hierarchical clustering models, on the other hand, are models with varying levels of reso-

lution; parameters higher up in the hierarchy explain the overall trends in the data, and

lower-level parameters explain local trends. After a hierarchical clustering model is learned,
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the hierarchy can be pruned at different levels to give clusterings of different resolutions.

Thus these models allow parameters for a range of high-level to low-level effects to explain

all trends in the data, while also allowing that the level of interpretability of the model can

be chosen (or varied) after inference is performed.

There has been growing interest in nonparametric latent feature models such as the Indian

Buffet Process (IBP) [23] which provide high predictive accuracy due to their flexible model-

ing capacity. Several extensions and modifications to the IBP have been introduced to give

latent feature models with varying properties. [7] provides a nonparametric latent feature

model where the rows are not marginally Poisson (as is the case with the IBP). [59] extends

this capability, by “restricting” the IBP (or other nonparametric distributions) to have cer-

tain properties while still maintaining exchangeability – these restrictions may include user-

specified marginal distributions for the number of features assigned to a datapoint. The

phylogenetic IBP [41] modifies the IBP with a given tree structure which expresses apriori

dependencies between the data.

In this chapter we combine hierarchical clustering with latent feature modelling to give a

latent feature model whose features have varying scopes. Specifically, we combine a prior

over trees known as the Beta-Splitting prior [2] with the Infinite Sites model from population

genetics [32, 11] to obtain a distribution over binary matrices with hierarchical column

structure.

First, we review the Beta-Splitting model and Infinite Sites model, and define the Infinite

Sites Feature Process (ISFP). Next we detail the inference scheme that we use for this model.

Then, we detail our application of interest, namely social network analysis, and finally we

give experimental results and conclusions.
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Figure 7.1: Aldous Beta-Splitting. (top) Five points are given locations on the unit interval
uniformly at random. A symmetric random variable is drawn that splits the interval into
two. The remaining intervals are recursively split until each point is isolated. (bottom)
The hierarchy of the five points generated by the beta-splitting procedure.
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7.2 Infinite Sites Feature Process

In order to define a prior over binary matrices with underlying hierarchical structure, we first

define a distribution over trees using Aldous’ beta-splitting model [2, 38], and then define a

distribution over binary matrices given the tree.

We denote tree structures (or hierarchical partitions) with ψ. Given a set X with N = |X|,

ψ is an ordered set of partitions of X. That is, ψ = {Λi|i ∈ {1, . . .M}}, with Λi a partition

of X, |Λi| < |Λj| if i < j, and Λ1 = {X} is the trivial partition. As each Λi is a partition

of X, it is exhaustive and pairwise mutually exclusive:
⋃

a∈Λi
a = X and a ∩ b = ∅ for all

a, b ∈ Λi and for all i. Furthermore, Λi is constructed from Λi−1 by splitting one or more

of its clusters. In the case of a binary tree, as in this work, we have |Λi+1| = 1 + |Λi| and

M = N − 1.

ψ defines parenthood and childhood relationships among nodes in a tree. There is an internal

node i for each unique subset bi ⊂ X with bi ∈ Λj for any j. ψ is binary, so there are N

leaf nodes, and N − 1 internal nodes. Every internal node has two children, and every node

except the root has one parent. A node p is the parent of l and r if l and r were formed

by splitting p. We also allow the root to have a “parent,” which we call the supraroot. The

supraroot has only one child, the root.

7.2.1 Beta-Splitting Trees

Beta-splitting defines an infinite tree-structure in a top-down fashion. Define a symmetric

density f(x) on the unit interval. Begin by placing N points, or individuals, uniformly at

random on the unit interval. Then repeat until all points are isolated:
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1. Draw x ∼ f .

2. Draw li ∼ Bernoulli(x) for each point i

3. Those i with li = 1 are designated to the left branch, all others designated to the right

4. Recurse on each subtree, until all points are assigned their own branches as leaves.

See Figure 7.1 for an illustration. This process defines an infinite tree if we let N → ∞.

[2] specializes f to a one-parameter Beta distribution, so that x ∼ Beta(β + 1, β + 1).

Picking β and marginalizing out x gives rise to many familiar priors, for example β = 0

corresponds to Yule trees or Kingman’s Coalescent prior, and β = −3
2
corresponds to the

uniform distribution on trees.

Typically, x is integrated out and the resulting discrete distribution over tree structures re-

mains, with an additional time variable for each internal node representing the time at which

a set of leaves’ lineages split. However, we will instead represent the splitting proportions x

as it gives a convenient way to define the times of the internal nodes of the tree.

For a tree with N leaves, let the indices i ∈ {1, . . . 2N −1} index the internal and leaf nodes,

where i ∈ {1, . . . , N} correspond to leaf nodes and i ∈ {N + 1, . . . 2N − 1} correspond to

internal nodes. No special structure is assumed for the indices of the internal nodes. Let

νi ∼ Beta(β + 1, β + 1) be the splitting proportion associated with node i, and µi be the

total proportion of mass associated with the subtree rooted at node i, as drawn from the

beta-splitting process. Here, an internal node represents the most recent common ancestor

(MRCA) of all its descendant leaf nodes.

In the beta-splitting process, a finite set of N points may sometimes all draw equal values of

l, thus causing a split in the infinite tree that is not represented in the tree restricted to the

N points. Thus, with finite N , µi is not simply νi
∏

j∈An(i) νj, where An(i) is the ancestor

set of i – we must account for these unobserved splits in the infinite tree. Consider node i
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with children l and r, where Ni points split into two sets of sizes Nl and Nr. Let ν̃i be the

total split proportion accumulated by repeated beta-splitting of the Ni points until a split

actually occurs. We derive the distribution of ν̃i next.

We restrict our attention to the Coalescent model, β = 0, so that x ∼ Uniform(0, 1). The

marginal probability of a set of N points failing to split apart is

2

∫

xN(1− x)0f(x)dx =
2

N + 1
(7.1)

Let ξN = 1 − 2
N+1

. Then D ∼ Geometric(ξN) gives the number of failures until the N

points are split. The distribution of ν̃i is thus the product of D uniform draws. If we take

Ui ∼ Uniform(0, 1), and U (d) =
∏d

i=1 Ui, then − lnU (d) is the sum of d Exponential draws,

and

− lnU (d) ∼ Γ(d, 1) (7.2)

And so

p(− ln ν̃i = y) =
∞
∑

d=1

p(D = d)p(− lnU (d) = y) + p(D = 0)δ0(y) (7.3)

=
∞
∑

d=1

(1− ξN)dξN
1

(d− 1)!
yd−1e−y + ξNδ0(y) (7.4)

= (1− ξN)ξNe−y

∞
∑

k=0

((1− ξN)y)k
k!

+ ξNδ0(y) (7.5)

= ξNδ0(y) + (1− ξN)ξNe−ξNy (7.6)

Which gives

ν̃i ∼ ξNδ1(ν̃i) + (1− ξN)Beta(ξN , 1) (7.7)
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This result agrees with intuition; if N is large, then ξN is close to 1, and ν̃i approaches a

point mass at 1. νi is simply Uniform(0, 1), and if nodes l and r are siblings, then νr = 1−νl.

If N points are split between siblings l and r into groups of sizes Nl and Nr, then

p(νl, Nl, Nr) ∝
1

N(N − 1)
νNl−1
l (1− νl)Nr−1 (7.8)

This form arises from the fact that we are conditioning on a split occurring, that is, Nl > 0

and Nr > 0. Finally, we can write µi:

µi = νiν̃i
∏

j∈A(i)

νj ν̃j (7.9)

Introducing Time Variables

Variables that denote the time from leaf to internal node are typically employed in hierar-

chical clustering models. If these variables have the property that internal nodes that have

few descendants are strongly encouraged to have smaller times (and thus are “closer” to the

leaves), then the clustering model is less likely to be overly flexible and in danger of over-

fitting. Kingman’s Coalescent the Dirichlet Diffusion Trees [46] both employ time variables

with this property.

The choice of time variables is a delicate one, as any choice should leave the overall distri-

bution Kolmogorov consistent. One way to ensure that the times retain a consistent prior

distribution is to show that the time to the most recent common ancestor (MRCA) for a pair

of nodes is the same in the infinite tree as it is in a finite projection. If we take ρ̃p = ν̃l = ν̃r

for children l and r of p, then we may define the time tp

tp = µγ
p (7.10)
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where γ > 0. As µp is the beta-splitting proportion of the MRCA of l and r in the infinite

tree, using it to define a time variable gives a consistent prior over times. As 0 ≤ µp ≤ 1,

choosing larger values of γ will correspond to nodes that are closer to the leaves, and thus

to a less flexible prior.

This choice of time variable has two main advantages over the times used for the Coalescent

model. First, the time for a node p is dependent only on the number of individuals delegated

to each of its children, l and r. Coalescent times, on the other hand, are determined by

starting with N individuals and recursively joining pairs of with exponential waiting times –

the time for node p is directly dependent on the times of many other nodes throughout the

tree. Second, this construction allows for more choice in the specification of how the times

are distributed for nodes that are deeper in the hierarchy, for example the choice of γ can

be modified to push internal nodes leaf-wards or root-wards.

This particular choice of time variable is also convenient for inference when used in conjunc-

tion with the Infinite Sites model, which we review next.

7.2.2 The Infinite Sites Model

The infinite sites model from population genetics originated as a model for the evolution

and mutation of the genetic sequences of a population [32]. Given an ancestral hierarchy ψ,

the infinite sites model gives a prior over binary matrices Z, which can be used as a latent

feature model akin to the Indian Buffet Process. The infinite sites model is a mutation

process in which mutations can only occur in a locus at most once, such that there is no

back mutation. That is, if we assume that each point starts at a state of an infinite length

vector of all 0s, elements are flipped to 1 at each mutation event, and no 1 is ever flipped

back to 0. Mutation events occur according to a Poisson Process of rate λ down the branches

of the tree. Thus all mutations that occur on the path from leaf-to-root are features that
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Figure 7.2: Grafting step of the prune/graft MCMC inference for ψ. Diamonds represent
features, circles represent nodes. When considering attaching ai between j and aj, the
features in c(i) – in this case a single feature – can be moved to any of the edges incident to
ai.

help describe the datapoint associated with that particular leaf of ψ. The binary matrix Z

can be characterized by the number of mutations u found on each branch of the tree.

The number of mutations ui on a particular branch of length vi is Poisson(λvi), where the

branch lengths are equal to the time from parent to child: vi = tai − ti = tai(1 − (νiν̃i)
γ),

where ai is the parent of i. To construct Z, we can traverse the tree from supraroot to leaf,

adding a column to Z for each mutation we encounter, and setting Zij to one if leaf i lives

below mutation j. Fig 7.3 shows an example Z drawn from the ISFP. As a prior over Z,

a smaller mutation rate λ encourages an overall smaller number of features, while a larger

branching time parameter γ encourages less new features near the leaves, and more near the

root.

This prior over Z defines what we call the Infinite Sites Feature Prior (ISFP).
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7.3 Inference

Let p(X|Z, θ) denote the likelihood of a particular data model, where θ denotes addi-

tional parameters associated with the likelihood model. To perform posterior inference on

p(Z, ψ, θ|X), we perform blocked Gibbs sampling, drawing ψ, Z, and θ in turn.

7.3.1 Sampling ν, ν̃|ψ,Z, θ,X

Given a fixed tree ψ, each branch l (associated with node l) has ul ∼ Poisson(λ(tp − tl))

mutation events, where p is the parent of l. Let r be the sibling of l. Note that

λ(tp − tl) = λ(1− (ν̃lνl)
γ)

∏

j∈An(l)

(ν̃jνj)
γ (7.11)

νl = 1− νr (7.12)

We can take ρp = νl, if l is the left child of p. Then,

p(ν̃p|−) ∝Rp(ν̃pνp)
kp ν̃γKp

p (7.13)

exp
(

−λ
[

Rp(ν̃pνp)Tp + ν̃γp ν
γ
pSp

])

[

ξNp
δ1(ν̃p) + (1− ξNp

)ξNp
ν̃
ξNp−1
p

]

p(ρp|−) ∝Rl(ν̃lρp)
klRr(ν̃l(1− ρp))krργKl+Nl−1

p (1− ρp)γKr+Nr−1 (7.14)

exp
(

−λ
[

Rl(ν̃lρp)Tl +Rr(ν̃l(1− ρp))Tr + ν̃γl ρ
γ
pSl + ν̃γr (1− ρp)γSr

])
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where there are Nj leaves in the subtree rooted at j, and

Ki =
∑

j∈De(i)

kj (7.15)

Ti =
∏

k∈An(i)

(ν̃kνk)
γ (7.16)

Si =
∑

j∈De(i)

Rj(ν̃jνj)
∏

k∈An(j)\{i}
(ν̃kνk)

γ (7.17)

Ri(x) = 1− xγ1[i 6∈ Leaves(ψ)] (7.18)

where Leaves(ψ) are the leaf nodes of ψ. ρp can be updated easily enough using slice

sampling. The measure of ν̃p, however, is mixed discrete and continuous:

p(ν̃p|−) ∝ f1δ1(ν̃p) + f2(ν̃p) (7.19)

f1 = ξNp
f(1)

f2(ν̃p) = (1− ξNp
)ξNp

ν̃
ξNp−1
p f(ν̃p)

f(ν̃p) = Rp(ν̃pνp)
kp ν̃γKp

p exp
(

−λ
[

Rp(ν̃pνp)Tp + ν̃γp ν
γ
pSp

])

To sample ν̃p, we define variables x ∈ [0, 1], u ∈ [0,∞) with joint density

p(x, u) ∝ 1(u < f1 + f2(x)) (7.20)

p(x, u) specifies a uniform distribution on the set u < f1 + f2(x). Sampling from p(x, u) and

discarding u generates samples from p(x) = f1 + f2(x) – this is the same trick used in slice

sampling. However, we note that
∫

1(u < f1 + f2(x))dxdu =
∫

1(u < f1) ∨ 1(f1 < u <

f2(x) + f1)dxdu = f1 +
∫

f2(x)dx, so sampling uniformly from p(x, u), and then setting

ν̃p =















x if f1 < u < f1 + f2(x)

1 if u < f1

(7.21)
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will sample correctly from p(ν̃p|−). To make use of this within a MCMC algorithm, we can

slice sample from p(x) and then draw a uniform u|x ∼ Uniform(0, p(x)), and then set ν̃p as

in (7.21). To initialize the sampler, we should set x = ν̃p if ν̃p < 1, and x ∼ Uniform(0, 1)

if ν̃p = 1. This is similar to the trick used in Retrospective Jump sampling for traversing

dimensions.

Thus we can cycle through all internal nodes p, update ρp and ν̃p, setting νl = ρp, νr = 1−ρp.

7.3.2 Sampling ψ,Z|ν̃, ν, θ,X

Keeping the total number of features fixed, we can perform MCMC moves consisting of

pruning a branch from the tree ψ and grafting it to another location. Let c(i) be the set

of columns (mutations) that are introduced directly above node i (“on branch i”), ai the

parent index of node i in ψ, and De(i) all descendants of i.

A particular jump for ψ,Z proceeds as follows: First, an arbitrary node i is pruned from

the tree ψ, so that ai only has one child and no parents. This splits ψ into two structures,

ψ(i) is the original ψ with i pruned from it, and Si is the subtree rooted at ai. Then we can

consider grafting Si back into ψ(i) above a particular node j so that j’s new parent becomes

ai. The resulting tree is denoted ψ(i, j). See Figure 7.2.

This move preserves the number of columns K, and only changes the assignment of features

to datapoints. When we consider joining Si into ψ(i) above j, we can reassign the features

in c(j) ∪ c(i) to be above ai, above i, or above j
1.

The ν̃ and ν variables can be kept fixed while we sample ψ. For a given adjoining edge

j, with a particular assignment of features to edges, we need to evaluate p(ψ,Z|−) ∝

p(ψ|ν̃, ν)p(X|θ, Z)p(Z|ψ). Attaching Si above j changes the times (but not the ν and ν̃) for

1In practice we only allow assigning above i or ai, effectively considering all “splits” of the features on
the adjoining branch, and not pulling them away from data that they currently help explain
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all descendants of j. Thus the change in probability for attaching i above j with a particular

assignment of features is

p(ψ(i, j), Z|ψ(i), Si, ν̃, ν) ∝
∏

k∈De(ai)

Poisson(u′k;λ(t
′
ak
− t′k))

Poisson(uk;λ(tak − tk))
(7.22)

∏

k∈An(j)

Nk(Nk − 1)

N ′
k(N

′
k − 1)

ν
N ′

lk
−Nlk

lk
ν
N ′

rk
−N ′

rk
rk (7.23)

∏

k∈An(j)

p(ν̃k|N ′
k)

p(ν̃k|Nk)
(7.24)

where the primed variables are those associated with ψ(i, j) and unprimed variables are

associated with ψ(i), lk and rk denote the left and right children of k, respectively, and

p(ν̃k|Nk) is determined by (7.7) . Here De() and An() operate on ψ(i, j), so that the nodes

in Si are included in the computation as necessary.

p(ψ(i, j), Z|ψ(i), Si, ν̃, ν) can be computed efficiently for all nodes j via memoization. Com-

bining with the likelihood p(X|θ, Z) gives a discrete conditional posterior for ψ.

7.3.3 Sampling θ|Z, ψ,X

Sampling for θ is straightforward, as we have

p(θ|Z, ψ,X) ∝ p(θ)p(X|θ, ψ, Z) (7.25)

Thus we may use a black-box sampler such as HMC for updating θ.
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7.3.4 Sampling Z, θ|ψ,X

To allow moves which can add and remove features, we use Retrospective Jump sampling. To

apply Retrospective Jump to ISFP, we sample the features for each of the 2N − 1 branches

in turn, treating each as its own model determination problem. Consider the inference task

on branch b if we are given Z ∈ Z
N×K . If there are ub features on branch b, then we

take L = ub + δ with δ ∼ Categorical
(

1
3
, 1
3
, 1
3

)

− 2. Then RTJ will consider transitions to

u′b ∈ {L−1, L, L+1}, giving K ′ ∈ {K+δ−1, K+δ,K+δ+1}. θ will need to be augmented

accordingly. In the experiments that follow, θ is a K×K matrix. We then need to augment

θ to a (L+ 1)× (L+ 1) matrix2. We used the nested RTJ-K algorithm in 6.2.3, so we also

introduce the index set variable I where I = {Iu|u ∈ N0} is sequence of index sets with

Iu ⊆ Iu+1. Recall that I determines which features are removed upon sampling u′b < ub.

Thus we need to be able to evaluate

p(θ, Z(u,I), I|ψ,X,L) ∝ p(θ)p(X|θ(u,I)), ψ, Z(u,I))p(Z(u,I)|ψ) (7.26)

where θ(u,I) and Z(u,I) map θ and Z to updated parameters with the appropriately removed

features. If θ is a (L+1)× (L+1) matrix, then θ(u,I) is a (L+1+ u−ub)× (L+1+ u−ub)

matrix:

θ(u,I) = θIu,Iu (7.27)

Also, we have

Z(u,I) = Z·,Iu (7.28)

2To do this, we did not take draws from the prior and instead used the “initialize once arbitrarily” method
for instantiating the augmented θ as we found it worked better in practice. This is due to the fact that on
each iteration 2N −1 possible updates to Z are made. During the transient phase, proposals are more easily
accepted, and initializing from the prior leads to poor modes with extremely large K.
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where AIk,Ij is the submatrix constructed by taking the rows Ik and columns Ij from A. We

need to evaluate (7.26) for u ∈ {L− 1, L, L+1} and I ′L−1 ∈ J(I, L), where J(I, L) is the set

of IL−1 consistent with IL. We then update θ from the mixture (6.19), and finally sample u

and I from (6.20), which gives u′b = u the number of features on branch b and θ′ = θ(u,I).

7.4 Social Network Analysis

We apply the ISFP to social network analysis task, using again the likelihood:

p(Yij = 1) = σ(Zi,·WZT
j,· + Aj + Bi + C) (7.29)

but now Z is drawn from the ISFP. The ISFP imposes an important restriction on the

structure of Z – if feature k1 is shared between two actors, but k2 only belongs to one of the

actors, then a third actor may not take up k2 without also taking k1. This can be interpreted

as a hierarchical restriction on the structure of Z. This gives an interesting interpretation to

the groups or features inferred by the model: if feature k2 occurs below k1 in the hierarchy,

then we may expect k1 to represent a large faction and k2 a subpopulation within k1.

7.5 Demonstration

We evaluate the ISFP on synthetic and real data. In the real data experiments, we compare

to the LFRM, using slice sampling for the IBP for inferring Z. In all experiments we run

10 independent trials each with a different 80/20 split of the adjacency matrix entries into

training and test sets. The diagonal entries of Y were ignored for both training and evaluation

in all experiments. Hyperparameters were set to give a “reasonable” number of features.
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Figure 7.3: A network generated by the ISFP-based LFRM.
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Figure 7.4: A posterior sample from the synthetic data experiment. There are some duplicate
features which could be represented as single features with appropriate modifications to W .
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Figure 7.5: Another posterior sample from the synthetic data experiment. Here, not only
are there duplicate features, there are also a few extra features near the leaves.

7.5.1 Synthetic Data

We first explore the behavior of the inference algorithm on synthetic data. We generated a

network from the ISFP with 100 actors using γ = 2.0, λ = 0.1, and σW = 1.0, see Figure

7.3. We attempted to infer back the Z and W that generated the data, using the same

hyperparameters for inference as were used for generation. We ran our MCMC chain for 500

iterations.

Despite the constrained prior on Z that the ISFP gives, the overall model is not identifiable.

In particular, with the LFRM likelihood, one branch segment may contain multiple features

that could be represented with a single feature. Despite this identifiability issue, the model

is able to recover the structure of p(Y ), see Figures 7.4 and 7.5. Note that this identifiability

issue is dependent on the choice of likelihood; it is certainly possible that, for some models,

multiple features on a single branch segment could not be reduced and would correspond to

meaningfully different aspects of the underlying data.
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Table 7.1: Sampson’s Monastery predictive results.

Train Error Test Error Avg. Test LL AUC K
LFRM 0.102 ± 0.011 0.179 ± 0.052 -0.417 ± 0.084 0.760 ± 0.065 5.870 ± 0.460

LFRM W > 0 0.123 ± 0.016 0.194 ± 0.053 -0.446 ± 0.091 0.713 ± 0.055 5.646 ± 0.956
ISFP 0.146 ± 0.012 0.174 ± 0.058 -0.405 ± 0.103 0.736 ± 0.085 2.520 ± 0.453

ISFP W > 0 0.142 ± 0.014 0.183 ± 0.049 -0.388 ± 0.076 0.767 ± 0.053 2.651 ± 0.394
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7.5.2 Sampsons’s Monastery

We again evaluate our model on Sampson’s Monastery data [51, 5], treating the sociomatrices

from the 3 timepoints of the conflict as iid draws from the model to see if the ISFP can recover

the structure of these networks. We ran our model with σW = 1, λ = .1, and γ = 2.0. As

with any nonparametric model, inference can be sensitive to the choice of hyperparameters;

in this case choosing λ = 1 or γ = 1 would produce an unreasonable number of latent

features.

We compared to the LFRM with σW = 1, and IBP concentration parameter α = 3/H18,

giving E[K] = 3 in the prior. For this dataset, we might expect that models that allow

negative weights are too flexible, so we also tried a positive prior on the weights: Wij ∼

Exponential(1). We ran all trials for 1000 iterations, discarding the first 500 as burn-in.

The predictions from the remaining 500 samples were averaged for evaluation on test data,

where we report train classification error, test classification error, posterior predictive log-

likelihood, and AUC; see Table 7.1. In this case, restricting the weights to be positive does

not improve performance, nor does it significantly affect the number of clusters used for

either the LFRM or the ISFP. The LFRM gives models with around 6 features, whereas the

ISFP typically gave 2-4. We were not able to reduce the number of features used by the

LFRM with moderate alterations of the hyperparameters.

Example clusterings from our model are given in Figure 7.6. These are the final samples

given in 3 of the 10 independent runs. The first two show the Loyal Opposition and the

Young Turks clearly separated, the Outcasts in their own cluster, and with the Waverers

mixed in. The third sample shows the Outcasts the Young Turks in one group and the Loyal

Opposition in another.

In Table 7.1, we have compared LFRM to ISFP, and we see that ISFP performs better on

test error, average test log likelihood, and area-under-the-curve (AUC). Here we see that
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Figure 7.6: Example posterior trees and feature assignments from our model on the
Monastery data. Diamonds correspond to features (that is, mutation events). The leaves are
marked with labels assigned to the monks in Sampson’s analysis: ’o’ corresponds to Loyal
Opposition, ’y’ to Young Turks, ’+’ to Outcasts, and ’w’ to Waverers.
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Figure 7.7: Example weight matrices W learned by the ISFP (left) and the LFRM (right)
on the Monastery data.

there was little effect for restricting the weights to be positive, and that the ISFP used less

features than the LFRM, but maintained the same predictive capability.

We show example W matrices from the ISFP and the LFRM (with prior W ∼ N (0, σW ))

in Figure 7.7. The ISFP gives a weight matrix with positive diagonal entries, and negative

off diagonal entries, signifying that the features found from the ISFP correspond to groups

in which members like members who share their features and dislike those that do not. The

three features we find are consistent with Sampson’s analysis. The LFRM, on the other

hand, includes features with negative weights on the diagonal, signifying that individuals

sharing these features dislike each other, giving a less interpretable result.
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7.6 Summary

The ISFP combines latent feature modelling with hierarchical clustering, giving a nonpara-

metric latent feature model with hierarchical column structure. This more restrictive prior

over binary matrices can improve the interpretability of the learned latent factors, and allows

a hierarchical clustering interpretation as well. The beta-splitting prior used to construct

the ISFP has potential applications to other hierarchical clustering problems; one advantage

that it has over the Coalescent prior is that time variable of an internal node is only depen-

dent on the number of datapoints that have split to each child of that node, thus improving

tractability and allowing a wider range of MCMC procedures.
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Chapter 8

Conclusion

There are many possible avenues for future research. For the RTJ sampler, we have used the

prior for representing auxiliary parameters, though any probability density may be used. We

have not yet explored the practicality of the Disjoint RTJ algorithm; this may be interesting

as it would allow any sensible move to be made every iteration as in RTJK, while using

roughly the same computational cost as RTJ1.

We have focused on Refractive Sampling as the black-box sampler for RTJ as it is simple

to implement and efficient: however if computational resources are not an issue, then other

sampling methods designed for multimodal densities such as parallel tempering will likely

do well. There is also the opportunity for designing samplers specialized for densities such

as (6.19).

RTJ relies on sampling from density functions that may be multimodal, thus it is important

to ensure that we sample from these density functions efficiently. Refractive Sampling works

well in this context, and future advances in such samplers will further improve the usefulness

of RTJ.
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Nevertheless, RTJ can be applied to nearly any model determination problem. Although

there is computational overhead associated with using RTJ, this can be mitigated by caching

the results of expensive computations that are shared across models. On a per-iteration basis,

RTJ has been shown to perform as well as specialized samplers. Thus, RTJ is can be easily

applied to any problem where computational cost is not an issue. Even so, implementations

of RTJ that are designed for use on particular classes of models would see significantly

reduced computational overhead.

RTJ opens the door for many models which otherwise would require RJMCMC, for example

the ISFP. As RTJ may be applied to a large variety of problems, it is suitable for use within

software packages for MCMC inference, and may serve as a powerful tool for simplifying the

process of performing Bayesian inference for model averaging.
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Appendices

A Notation

Common notation used throughout this thesis:

R the real line

N the natural numbers

N0 the nonnegative integers

Z the integers

1 a vector of ones

1(K) a vector of ones of length K

1 the indicator function

δa the measure degenerate at a: δa(A) = 1 iff a ∈ A

Ht the tth Harmonic number

p() density function

P () probability function

(XT ) sequence or Markov chain
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