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INTRODUCTION 

Ribonucleic acid (RNA) is hypothesized as the primordial molecule to carry 

biological information and therefore be the origin of all current life forms1. On one hand, the 

liner sequence of RNA makes it a source of genetic information. On the other hand, the 

ability of RNA to fold into secondary structures, which are sensitive to the environment, 

provides both flexibility and specificity in its interactions with other molecules. At a higher 

complexity, RNA can assume tertiary structures that create internal environments and present 

binding pockets for metal ions to promote catalysis. Thus RNA can serve both as an 

information molecule and a direct effector of a biological task. The unsurpassed range of 

chemical space and function place RNA at the center of all major cellular processes and gene 

regulation2. 

With the discovery of nucleic acids in the 1900s, and the realization years later 

that the flow of genetic information goes from DNA to RNA to protein, DNA took the center 

stage as the blueprint for heredity, and the function of mRNA was thought to be merely a 

messenger between DNA and proteins. Nevertheless, biochemical studies in the following 

decade provided increasing evidence that specialized RNA molecules such as tRNAs have 

complex tertiary structures. These cloverleaf-like structures of tRNA were shown to be 

essential for transferring the information encoded in the nucleotides of mRNA into a specific 

sequence of amino acids3. Such results suggested that RNA folding is more highly analogous 

to the folding of proteins rather than to the highly repetitive folded structure of the DNA 

double helix. In fact, Crick made the hypothesis that RNAs can perform the function of 

proteins as early as 19684, and fifteen years later the first RNAs with catalytic activity were 

discovered5,6.  
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In retrospect, it is not surprising that the RNA field has grown tremendously in 

the past decade. We now know that mRNAs can also form secondary structures that can have 

vital control over how the genetic information is read out – by dictating which DNA 

segments are transcribed7,8,9 or spliced together10,11, and how the message of the genetic code 

is localized12, translated13, and degraded14. From the discovery of small interfering RNAs15 

and long intervening non-coding RNAs16 that have essential functions in regulating gene 

expression, to the stunning observation that only 2% of the human genome codes for 

protein17,  the world of regulatory RNAs continues to expand. For example, the first 

eukaryotic riboswtich, or RNA that changes structure in the presence of a small metabolite in 

order to affect a biological outcome, was recently found in N. crassa18. Furthermore, there is 

now evidence through evolutionary conservation that a significant portion (~10%) of the 

human genome may function through the formation of specific RNA secondary structures19. 

Thus, central to our understanding of RNA as a regulatory molecule is the ability to 

determine RNA structure in its native environment inside cells. Therefore, the main focus of 

my thesis has been the development and application of a genome-wide approach to determine 

the structures and function of RNA molecules in a wide range of species including bacteria, 

yeast, and human cells.  
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RNA plays a dual role as an informational molecule and a direct effector of biological 

tasks. The latter function is enabled by RNA’s ability to adopt complex secondary and 

tertiary folds and thus has motivated extensive computational1-2 and experimental3-8 

efforts for determining RNA structures. Existing approaches for evaluating RNA 

structure have been largely limited to in vitro systems, yet the thermodynamic forces 

which drive RNA folding in vitro may not be sufficient to predict stable RNA structures 

in vivo5. Indeed, the presence of RNA binding proteins and ATP-dependent helicases can 

influence which structures are present inside cells. Here we present an approach for 

globally monitoring RNA structure in native conditions in vivo with single nucleotide 

precision. This method is based on in vivo modification with dimethyl sulfate (DMS), 

which reacts with unpaired adenine and cytosine residues9, followed by deep sequencing 

to monitor modifications. Our data from yeast and mammalian cells are in excellent 

agreement with known mRNA structures and with the high-resolution crystal structure of 

the Saccharomyces cerevisiae ribosome10. Comparison between in vivo and in vitro data 

reveals that in rapidly dividing cells there are vastly fewer structured mRNA regions in 

vivo than in vitro. Even thermostable RNA structures are often denatured in cells, 

highlighting the importance of cellular processes in regulating RNA structure. Indeed, 

analysis of mRNA structure under ATP-depleted conditions in yeast reveals that energy-

dependent processes strongly contribute to the predominantly unfolded state of mRNAs 

inside cells. Our studies broadly enable the functional analysis of physiological RNA 

structures and reveal that, in contrast to the Anfinsen view of protein folding, 

thermodynamics play an incomplete role in determining mRNA structure in vivo.  
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A wide range of chemicals and enzymes have been used to monitor RNA 

structure11,7. We focused on DMS as it enters cells rapidly9,12 and is a well-established 

tool for the analysis of RNA structure13. DMS is highly reactive with solvent accessible, 

unpaired residues but reliably unreactive with bases engaged in Watson-Crick 

interactions, thus nucleotides that are strongly protected or reactive to DMS can be 

inferred to be base-paired or unpaired, respectively. We coupled DMS treatment to a 

massively parallel sequencing readout (DMS-seq) by randomly fragmenting the pool of 

modified RNAs and size-selecting prior to 3’ ligation with a specific adapter oligo (Fig. 

1a). Since DMS modifications at adenine and cytosine residues block reverse 

transcription14 (RT), we used a second size selection step to collect and sequence only the 

prematurely terminated cDNA fragments. Sequencing of the fragments reveals the 

precise site of DMS modification, with the number of reads at each position providing a 

measure of relative reactivity of that site. The results are highly reproducible and robust 

against changes in the time of modification or concentration of DMS used (Fig. 1b). The 

sequencing readout allowed global analysis with a high signal-to-noise ratio—in DMS 

treated samples, >90% of reads end with an adenine and cytosine, corresponding to false 

positives for A and C of 7% and 17%, respectively (Fig. 1c). For each experiment, we 

measured RNA structure both in vivo and in vitro (i.e. refolded RNA in the absence of 

proteins). We also measured DMS reactivity under denaturing conditions (95°C) as a 

control for intrinsic biases in reactivity, library generation or sequencing, revealing only 

modest variability compared to that caused by structure-dependent differences in 

reactivity (Fig. 2c, Extended Data Fig. 1a).  
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The in vivo DMS-seq data are in excellent agreement with known RNA 

structures. We examined three validated mRNA structures in S. cerevisiae: HAC1, 

RPS28B, and ASH115-17. In each case, the DMS-seq pattern qualitatively recapitulates 

secondary structure with high reactivity constrained to loop regions in both the in vivo 

and the in vitro samples but not in the denatured (Fig. 2a-b). Recent determination of a 

high-resolution yeast 80S ribosome crystal structure10 allowed us to comprehensively 

evaluate the DMS-seq data for rRNAs. Comparison of the 18S (Fig. 2c) and 25S 

(Extended Data Fig. 1b) rRNA DMS signal in vivo versus denatured reveals a large 

number of strongly protected bases in vivo. Based on DMS reactivity, we used a 

threshold to bin bases into reactive and unreactive groups, then calculated agreement with 

the crystal structure model as a function of the threshold. True positives were defined as 

both unpaired and solvent accessible bases according to the crystal structure, and true 

negatives defined as paired bases. A receiver operator characteristic (ROC) curve shows 

a range of thresholds with superb agreement between the in vivo DMS-seq data and the 

crystal structure model (Fig. 2d). For example, at a threshold of 0.2 the true positive rate, 

false positive rate, and accuracy are 90%, 6%, and 94% respectively. Bases that were not 

reactive at this threshold in vivo showed normal reactivity when denatured (Extended 

Data Fig. 1c). This argues that the small fraction (~10%) of residues that are designated 

as accessible, but are nonetheless strongly protected from reacting with DMS, resulted 

from genuine differences in the in vivo conformation of the ribosome and the existing 

crystal structures. Agreement with the crystal structure was far less good for in vitro 

refolded rRNA (as expected given the absence of ribosomal proteins) and was completely 

absent for denatured RNA. By contrast, probing of intact purified ribosomes gave a very 
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similar result to that seen in vivo, further demonstrating that DMS-seq yields comparable 

results in vitro and in vivo when probing the same structure.  

Qualitatively, we observed many mRNA regions where structure was apparent in 

vitro but not in vivo.  For example, computational analysis18 predicts a stem loop 

structure in RPL33A. The in vitro DMS-seq data strongly supported this predicted 

structure whereas this region showed little to no evidence of structure in cells (Fig. 3a). 

To systematically explore the relationship between mRNA structure in vivo and in vitro, 

we quantitated structure in a given region using two metrics: Pearson correlation 

coefficient (r value), which reports on the degree of similarity of the modification pattern 

to that of a denatured control, and the Gini index19, which measures disparity in count 

distribution as would be seen between an accessible loop verses a protected stem (Fig. 

3b). We then applied these metrics to windows containing a total of 50 A/C nucleotides. 

Globally, mRNAs are much more structured in vitro compared to in vivo: there is a strong 

shift towards low r values and high Gini indices for the in vitro data that is far less 

pronounced in vivo (Fig. 3c). Thus unlike the ribosomal RNA, we find little evidence 

within mRNAs for in vivo DMS protection beyond what we observe in vitro, suggesting 

that the DMS protection we observe in vivo is not due to mRNA-protein interactions. For 

example, using a cut-off (r value <0.55, Gini index >0.14) which captured the rRNAs and 

functionally validated mRNA structures, including both previously characterized and 

newly identified structures (see below), we found that out of 23,412 mRNA regions 

examined (representing 1,948 transcripts), only 3.9% are structured in vivo compared to 

24% in vitro (Fig. 3c and Extended Data Fig. 2 for similar results obtained with windows 

of different sizes). In addition, 29% of the regions in vivo are indistinguishable from 
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denatured (Fig. 3c, orange circle), whereas in vitro only 9% of regions were fully 

denatured. We also applied DMS-seq to mammalian cells (both K562 cells and human 

foreskin fibroblast), which revealed qualitatively very similar results to yeast—a limited 

number of stable structures in vivo compared to in vitro (Fig. 3d, Extended Data Fig. 3-

4).  

Because the pool of stable structures seen in vivo includes previously validated 

functional mRNA structures, this relatively small subset of mRNA regions provides 

highly promising candidates for novel functional RNA structures. To explore this, we 

focused on two structured 5’ untranslated regions (UTRs) from PMA1 and SFT2 and on 

the structured PRC1 3’UTR for more detailed functional analyses. We fused these UTRs 

upstream or downstream, respectively, of a Venus protein reporter and quantified Venus 

levels by flow cytometry. Stem loop structures in these UTRs significantly increased 

(5’SFT2) or decreased (5’PMA1 and 3’PRC1) protein levels upon disruption of their 

predicted base pairing interactions, and Venus protein levels were rescued by 

compensatory mutations (Extended Data Fig. 5-6, Extended Data Table 1). Phylogenetic 

analysis revealed the 5’UTR PMA1 stem is under positive evolutionarily selection 

(Extended Data Fig. 5c), lending additional support for a physiological function. A list of 

189 structured regions, along with a model of their secondary structures that are similarly 

supported by phylogenetic analysis of compensatory mutations, is hosted on an online 

database (http://weissmanlab.ucsf.edu/yeaststructures/index.html). In addition, we 

mutated predicted stems in three 3’UTRs with evidence of strong ordered structures in 

vitro but not in cells, and these mutations resulted in minimal expression changes 

(Extended Data Fig. 6d). Nonetheless, it remains possible that transient, heterogenous or 
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weakly ordered structures in vivo have biological roles especially if they become more 

ordered under different physiological conditions.  

 To evaluate what role in vitro thermodynamic stability plays in driving mRNA 

folding in vivo, we performed genome-wide structure probing experiments in vitro at five 

temperatures (30, 45, 60, 75, and 95°C). As temperature rises and structure unfolds (Fig. 

4a), the DMS signal becomes more even (low Gini index) and the modification pattern 

resembles that of the 95°C denatured control (high r value). We defined in vitro 

temperature of unfolding (Tunf) as the lowest temperature where a region appeared similar 

to the denatured controls. Remarkably, many regions with little or no detectable structure 

in vivo show similar thermostability to highly structured regions, including structures that 

are functionally validated (Fig. 4a, b). For example, the regions of RPL33A (unfolded in 

vivo) and RPS28B (a functionally validated structure in vivo) are both highly structured in 

vitro and have Tunf = 60°C. Nonetheless, we find that structures present in vivo do have a 

strong propensity for high thermostability (Fig. 4b), consistent with a recent in vitro 

mRNA thermal unfolding study8. In addition to the role of thermostability in explaining 

the disparity of RNA structure between in vivo and in vitro samples, we tested the effect 

of Mg2+ concentration in vitro. We obtained similar structure results with 2-6mM Mg2+. 

However, at 1 mM Mg2+, we observe unfolding of most structures including the 

functionally validated ones (Extended Data Fig. 7a). The above observations indicate that 

Mg2+ concentration and thermodynamic stability play an important but incomplete role in 

determining mRNA structure in vivo. 
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A central question is what accounts for the differences between in vivo and in 

vitro mRNA structure. Although translation by ribosomes plays a role in unwinding 

structure, this is unlikely to be the dominant force for unfolding in vivo since the average 

in vivo structure for coding regions was not distinguishable from 5’ and 3’UTRs 

(Extended Data Fig. 7b). Moreover, within coding regions, high ribosome occupancy of 

an mRNA as measured by ribosome profiling21 was not generally associated with lower 

structure (Extended Data Fig. 7c). It is likely that both active mechanisms (e.g., RNA 

helicases) and passive mechanisms (e.g., single stranded RNA binding proteins) 

counteract mRNA’s intrinsic propensity to form the stable structures22 seen with in vitro 

studies3,23 and computational approaches18. To investigate how energy-dependent 

processes contribute to unfolding mRNA in vivo, we performed DMS-seq on yeast 

depleted of ATP24. We observed a dramatic increase in mRNA structure in vivo following 

ATP depletion (Fig. 4c). Moreover, the structural changes seen upon ATP depletion are 

strongly correlated (r = 0.54, p < 10-307) to the changes between in vivo and in vitro 

samples (Fig. 4d-e, and Extended Data Fig. 8). We also observed a large increase in 

mRNA structure at 10°C in vivo (Extended Data Fig. 9a), but these changes are not as 

strongly correlated with those seen upon ATP depletion (Extended Data Fig. 9b). Thus 

the mRNA structures present in a cell are impacted by a range of factors, underscoring 

the value of DMS-seq in defining the RNA structures present in a specific physiological 

condition or perturbation.  

In summary, DMS-seq provides the first comprehensive exploration of RNA 

structure in a cellular environment and reveals that in rapidly dividing cells, mRNAs in 

vivo are far less structured than in vitro. This scarcity of structure is well suited for the 
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primary role of mRNA as an informational molecule providing a uniform substrate for 

translating ribosomes. Nonetheless, we identify hundreds of specific mRNA regions that 

are highly structured in vivo, and we show for three examples that these structures impact 

protein expression. Our studies provide an excellent set of candidate regions, among the 

truly enormous number of structured regions seen in vitro, for exploring the regulatory 

role of structured mRNAs. The DMS-seq approach is readily extendable to other 

organisms, including human-derived samples as we show here, and to the analysis of the 

wide range of functional RNA molecules present in a cell. Thus DMS-seq broadly 

enables the analysis of structure-function relationships for both informational and 

functional RNAs. Among the many potential applications, attractive candidates include 

the analysis of long noncoding RNAs25,26 , the relationship between mRNA structure and 

microRNA/RNAi targeting27, and functional identification and analysis of ribozymes28, 

riboswitches29, and thermal sensors30. 

Method Summary 

DMS Modification  

For in vivo DMS modification, 15 ml of exponentially growing yeast (strain BY4741) at 

30°C were incubated with 300-600 µl DMS for 2-4 min (which results in multiple 

modifications per mRNA molecule). DMS was quenched with the addition of 30 ml stop 

solution (30% BME, 25% Isoamyl Alcohol). Total RNA was purified using hot acid 

phenol (Ambion). PolyA(+) mRNA was obtained using magnetic poly(A)+ Dynal beads 

(Invitrogen).  

 

 



! 16!

Library Generation 

Sequencing libraries were prepared as outlined in Fig. 1. Specifically, DMS treated 

mRNA samples were denature at 95°C and fragmented in 1X RNA fragmentation buffer 

(Ambion). Fragments of 60-80 nucleotides were gel purified and ligated to microRNA 

cloning linker-1 (IDT) and reverse transcribed using SuperscriptIII (Invitrogen). 

Truncated RT products were gel purified and circularized using circ ligase (Epicenter). 

Illumina sequencing adapters were introduced by 8-10 cycles of PCR.  

Sequencing and sequence alignment 

Raw sequences obtained from Hiseq2000 (Illumina) were aligned against Saccharomyces 

cerevisiae assembly R62 (UCSC: sacCer2). Aligned reads were filtered so that no 

mismatches were allowed and alignments were required to be unique. 

Online Resources:  

For secondary structure models that are supported by DMS seq and have evidence for 

phylogenetic conservation, visit http://weissmanlab.ucsf.edu/yeaststructures/index.html 
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Figure 1 | Utilizing DMS for RNA structure probing by deep sequencing. a, 

Schematic of strategy for library preparation with DMS-modified RNAs. b, DMS-seq 

data is highly reproducible and robust against changes in time and DMS concentration in 

different biological replicates. c, In vivo DMS treatment dramatically enriches for 

sequencing reads mapping to A/C bases compared to untreated control. d, DMS-seq was 

completed for in vivo, denatured, and in vitro samples. The denatured sample served as 

an ‘unstructured’ control. 

Figure 2 | Comparison of DMS-seq data to known RNA structures. a-b, DMS signal 

in (a) HAC1 (position 1 corresponds to chrVI:75828) (b) ASH1 (position 1 corresponds to 

chrXI:96245). Number of reads per position was normalized to the highest number of 

reads in the inspected region, which is set to 1.0. Also shown are the known secondary 

structures with nucleotides color-coded reflecting DMS-seq signal in vivo. c, DMS signal 

on 18S rRNA A bases plotted from least to most reactive. d, ROC curve on the DMS 

signal for A/C bases from the 18S rRNA. Threshold at 94% accuracy corresponds to 0.2 

for the A bases.  

Figure 3 | Identification of structured mRNA regions reveals far less structure in 

vivo than in vitro. a, DMS signal in RPL33A mRNA, position 1 corresponds to 

chrXVI:282824. In vitro DMS signal color-coded proportional to intensity and plotted 

onto the Mfold structure prediction. b, Schematic representation of the two metrics used 

to define structured regions within mRNAs. c-d, Scatter plots of Gini index versus r value 

from biological replicates or in vivo and in vitro relative to denatured samples for non-

overlapping mRNA regions of 50 A/C nucleotides for (c) yeast and (d) K562 cells. 5,000 

randomly selected regions are shown. Red dots represent regions spanning validated 
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mRNA structures and blue dots are regions from rRNA. Evaluated regions have a 

minimum of 15 reads per A/C on average and their total number for in vivo data is (c) 

23,412 and (d)17,242. 

 

Figure 4 | Factors affecting the difference between mRNA structure in vivo and in 

vitro. a, Example of DMS signal changes for RPL33A and RPS28B in vivo and in vitro 

with increasing temperature. b, Histogram of in vitro unfolding temperature (Tunf) for 

denatured (green bars) or structured (red bars) regions in vivo. c, Histogram of Gini index 

difference between ATP-depleted and wildtype yeast samples. d, Gini index differences 

in ATP-depleted yeast or in vitro refolded mRNAs relative to wildtype yeast, calculated 

over 50 A/C nucleotides. e, Example of in vivo structure changes during ATP depletion. 

Position 1 corresponds to chrXVI:643,069. 

 

METHODS 

 

Media and Growth Conditions 

Yeast strain BY4741 was grown in YPD at 30°C. Saturated cultures were diluted to 

OD600 of roughly 0.09 and grown to a final OD600 of 0.7 to 0.8 in YPD at the time of 

DMS treatment or mRNA harvesting. For ATP depletion experiments, cells were 

incubated for 1h in 10mM sodium azide and 10mM deoxyglucose prior to DMS 

treatment31. For 10ºC experiments, cells were grown to exponential phase and shifted to 

10ºC by diluting the 30ºC media with 4ºC media. Mammalian cells were grown and 
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treated with DMS in log phase (K562 cells) or at ~80% confluency for adherent cells 

(human foreskin fibroblast).  

 

DMS Modification  

For in vivo DMS modification, 15 ml of exponentially growing yeast at 30°C were 

incubated with 300-600 µl DMS for 2-4 min (which results in multiple modifications per 

mRNA molecule). Cells at 10ºC were incubated with 400 µl DMS for 40min to achieve 

similar modification levels as cells grown at 30ºC. DMS was quenched by adding 30 ml 

stop solution (30% BME, 25% Isoamyl Alcohol) after which cells were quickly put on 

ice, collected by centrifugation at 3000g and 4°C for 3 min, and washed with 15 ml 30% 

BME solution. Cell were then re-suspended in total RNA lysis buffer (10 mM EDTA, 50 

mM NaOAc pH 5.5), and total RNA was purified with hot acid phenol (Ambion). 

PolyA(+) mRNA was obtained using magnetic poly(A)+ Dynal beads (Invitrogen). For in 

vitro and denatured DMS modifications, mRNA was collected in the same way as 

described above but from yeast that were not treated with DMS or quench solution. 4 µg 

of mRNA was denatured at 95°C for 2 min and either incubated in 0.2% DMS for 1 min 

(denatured control sample) or cooled on ice and re-folded in RNA folding buffer (10 mM 

Tris pH 8.0, 100 mM NaCl, 6 mM MgCl2) at 30°C for 30 min then incubated in 3-5% 

DMS for 2-5 min (in vitro sample). For intact ribosomes, polysomes were isolated on a 

sucrose gradient and treated with 4% DMS at 10° for 40 min in polysome gradient buffer 

(20mM Tris pH 8.0, 150mM KCl, 0.5mM DTT, 5mM MgCl2). DMS amounts/times 

were chosen to give a similar overall level of modification for the in vivo, in vitro and 

denatured sample. For in vitro probing at different temperatures, the RNA was re-folded 
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at 45°C, 60°C, or 70°C. The DMS was quenched using 30% BME, 0.3M NaOAc, 2 µl 

GlycoBlue solution and precipitated with 1X volume of 100% Isopropanol. For K562 

cells, 15ml of cells were treated with 300µl (in-vivo replicate 1) or 400µl (in vivo 

replicate 2) DMS and modified for 4 minutes. DMS was quenched by adding 30ml of 

30% BME solution after which cells were quickly put on ice, collected by centrifugation 

at 1000g at 4°C for 3 min, and washed twice with 15 ml 30% BME solution. For 

fibroblast cells, 15cm32 plates with 15ml of media were treated with 300µl DMS for 4 

min. The DMS was decanted and the plates were washed twice in 30% BME stop 

solution.  Both K562 cells and fibroblasts were resuspended in Trizol Reagent and total 

RNA was isolated. PolyA(+) mRNA was obtained using oligotex resin (Qiagen). 

 

Library Generation 

Sequencing libraries were prepared as outlined in Fig. 1 with a modified version of the 

protocol used for ribosome profiling32. Specifically, DMS treated mRNA samples were 

denatured for 2 min at 95°C and fragmented at 95°C for 2 min in 1X RNA fragmentation 

buffer (Zn2+ based, Ambion). The reaction was stopped by adding 1/10 volume of 10X 

Stop solution (Ambion) and quickly placed on ice. The fragmented RNA was run on a 

10% TBU (Tris Borate Urea) gel for 60 min. Fragments of 60-80 nucleotides in size were 

visualized by blue light (Invitrogen) and excised. Gel extraction was performed by 

crushing the purified gel piece and incubating in 300 µl DEPC treated water at 70°C for 

10 min with vigorous shaking. The RNA was then precipitated by adding 33 µl NaOAc, 2 

µl GlycoBlue (Invitrogen), and 900 µl 100% EtOH, incubating on dry ice for 20 min and 

spinning for 30 min at 4°C. The samples were then re-suspended in 7 µl 1X PNK buffer 
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(NEB) and the 3’phospates left after random fragmentation were resolved by adding 2 µl 

T4 PNK (NEB), 1 µl of Superase Inhibitor (Ambion) and incubating at 37°C for 1h. The 

samples were then directly ligated to 1 µg of microRNA cloning linker-1, 

/5rApp/CTGTAGGCACCATCAAT/3ddC/ (IDT DNA) by adding 2µl T4 RNA ligase2, 

truncated K227Q (NEB), 1 µl 0.1M DTT, 6 µl 50%PEG, 1 µl 10X ligase2 buffer, and 

incubating at room temperature for 1.5 hr. Ligated products were run on a 10% TBU gel 

for 40 min, visualized by blue light, and separated from unligated excess linker-1 by gel 

extraction as described above. Reverse transcription (RT) was performed in 20 µl volume 

at 52°C using SuperscriptIII (Invitrogen), and truncated RT products of 25-50 nucleotides 

(above the size of the RT primer) were extracted by gel purification. The samples were 

then circularized using circ ligase (Epicenter), and Illumina sequencing adapters were 

introduced by 8-10 cycles of PCR.  

 

Sequencing and sequence alignment 

Raw sequences obtained from Hiseq2000 (Illumina) corresponding to the DNA sequence 

from the RT termination products were aligned as described33, against Saccharomyces 

cerevisiae assembly R62 (UCSC: sacCer2) downloaded from the Saccharomyces 

Genome Database on October 11, 2009 (SGD, http://www.yeastgenome.org/). Aligned 

reads were filtered so that no mismatches were allowed and alignments were required to 

be unique. Mammalian cells data was aligned to a transcript collection downloaded from 

RefSeq(http://www.ncbi.nlm.nih.gov/refseq/), in which each gene is represented by its 

longest protein-coding transcript. Aligned reads were filtered so that no more than 2 
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mismatches were allowed and the alignments were required to be unique. All data is 

deposited in Gene Expression Omnibus (series record GSE45803).  

Computing the DMS signal 

For the ribosomal RNA, the raw data was normalized proportionally to the most highly 

reactive residue after removing the outliers by 90% Winsorisation (all data above the 95th 

percentile is set to the 95th percentile)34. For the mRNA, the raw data was normalized 

proportionally to the most highly reactive base within the given structured window. 

Normalization of DMS data in windows of 50-200nt counteracts artifacts caused by 

mRNA fragmentation before polyA selection, which can lead to increased overall signal 

towards the 3’end of longer messages (since any 5’ end that was broken off before the 

polyA(+) selection would be lost after the polyA(+) selection). 

Computing the agreement with ribosomal RNA: 

The secondary structure models for yeast ribosomal RNAs were downloaded from 

Comparative RNA Website and Project database 

(www.rna.icmb.utexas.edu/DAT/3C/Structure/index.php). The crystal structure model 

was downloaded from Protein Data Bank (PDB) (DOI:10.2210/pdb3u5b/pdb). The 

solvent accessible surface area35 was calculated in Pymol, and DMS was modeled as a 

sphere with 3 Å radius (representing a conservative estimate for accessibility since DMS 

is a flat molecule). Accessible residues were defined as residues with solvent accessibility 

area of greater than 2 Å2. True positive bases were defined as bases that are both unpaired 

in the secondary structure model and solvent accessible in the crystal structure model. 

True negative bases were defined as bases than are paired (A-U or C-G specifically) in 

the secondary structure model. The DMS data was normalized as described above. 
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Accuracy was calculated as the number of true positive bases plus the number of true 

negative bases divided by all tested bases.  

Secondary structure models 

 Secondary structure models were generated using mfold36. Color coding by DMS signal 

was done using VARNA (http://varna.lri.fr/) 

In vivo and in vitro DMS analysis 

Saccharomyces cerevisiae transcriptome coordinates were taken from Nagalakshimi et 

al.37. In total we collected between 140-200 million reads that uniquely aligned to the 

yeast genome per each sample (in vivo, in vitro, and denatured). Raw data was filtered for 

messages that have at least 15 reads on average per A or C position. The full yeast dataset 

is comprised of two biological and two technical in vivo replicates, two biological and 

one technical in vitro replicates, and two biological and one technical denatured 

replicates. For mammalian K562 dataset we collected two biological in vivo replicates (at 

2%DMS and 2.7%DMS), one in vitro, and one denatured samples. For mammalian 

fibroblast data we collected of one in vivo, one in vitro, and one denatured samples. 

Sliding non-overlapping windows spanning a specified number of As and Cs starting at 

the 5’UTR were used to parse each message into a number of regions. Regions with 

matching length were taking from the 18S ribosomal RNA. A Gini Index and r value 

relative to that of a denatured control was calculated for each region. Highly structured 

regions in windows of 50 A or C nucleotides were defined with r value <0.55 and Gini 

Index >0.14 to encompass the in vivo regions containing validated structures and 

ribosomal RNA. Regions that are denatured in vivo were defined with r value >0.70 and 

Gini Index <0.08. Melting temperature (Tunf) was defined as the lowest temperature 
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where the DMS signal for a given mRNA region resembles denatured and was estimated 

based on the temperature at which a region reached r >= 0.70 or Gini Index <= 0.11. This 

represents relaxed criteria for unfolding to avoid bias towards overestimating 

thermostablity of regions due to sample variability caused by sequencing depth of in vitro 

temperature samples (which have 5-10 fold less coverage than the in vivo, in vitro (30°C), 

and denatured samples). For metagene analyses, the DMS signal was normalized in 

windows of 200 A or C nucleotides (relative to the top five most reactive residues), and 

the in vivo data was normalized by the denatured. Translation efficiency (TE) per 

message was calculated as number of ribosome footprints divided by the number of 

mRNA fragments.  

 

Conservation Analysis  

For a list of regions as well as secondary structure models supported by DMS data and 

conservation analysis visit:  

 http://weissmanlab.ucsf.edu/yeaststructures/index.html 

 Multiple sequence alignments generated by MultiZ38  were downloaded from 

http://hgdownload.cse.ucsc.edu/goldenPath/sacCer2/multiz7way. Small (50 As or Cs) 

and large (100 As or Cs) overlapping regions with evidence for structure from the DMS 

probing experiment were inspected by the phylogenetic conservation analysis. The 

consensus secondary structure prediction was compared to normalized DMS data. The 

DMS values were separated in two groups for paired and unpaired bases, respectively. 

The median of both groups and the p-value from a one-sided Wilcoxon rank sum test is 

reported, testing the hypothesis that unpaired bases have higher DMS values. Both 
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distributions are shown as box plots for each region on the website. For each region (i) a 

consensus secondary structure was predicted and (ii) the consensus structure was 

assessed for features typical of a functional RNA. The consensus secondary structure (i) 

was done using RNAalifold39 which extends the classical thermodynamic folding for 

single sequences in two ways: it averages over the sequences while evaluating the energy 

for a given fold and it adds “pseudoenergies” to account for consistent or inconsistent 

mutations. The goal is to find the structure of the minimum free energy in this extended 

energy model. RNAalifold readily predicts a consensus structure even if there is no 

selection pressure for a conserved RNA structure. RNAz40,41 was used to address the 

question if a predicted structure is likely to be a functional structure that is evolutionarily 

conserved. RNAz calculates two metrics typical for functional RNAs: (i) thermodynamic 

stability and (ii) evolutionary conservation. RNAz calculates a z-score indicating how 

much more stable a structure is compared to a random background of sequences of the 

same dinucleotide content. By convention, negative z-score indicates more stable 

structures and all reported z-scores are the average of all sequences in the alignment. 

RNAz calculates a metric known as structure conservation index (SCI). The SCI takes 

values between 0 and 1.0 means there is no structure conserved at all, 1 means the 

structure is perfectly conserved. The SCI is not normalized with respect to sequences 

conservation, so an alignment with sequences 100% conserved has by definition SCI = 

1.0. RNAz evaluates z-score, SCI and sequence diversity of the alignment and provides 

an overall classification score that is based on a support vector machine classifier. It 

ranges from very negative values with little evidence for a functional RNA, over 0 which 

means undecided to high positive values with good evidence for a functional RNA. For 
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convenience, this score is mapped to a probability of being a functional RNA which is 

reported in the results (the higher the better).  A total of 189 structures with RNAz 

significance value > 0.5 and a correlation p-value between the predicted structure and the 

DMS signal of < 0.01 are displayed on the aforementioned website.  

Functional UTR Cloning 

A fluorescent Venus reporter driven by a Nop8 promoter (chrXV:52262-53096) and C. 

albicans ADH1 terminator was genomically integrated into yeast strain BY4741 at the 

TRP1 locus (chrIV:461320-462280). Plasmids containing kanamycin resistance and the 

untranslated region (UTR) of interest were made in a pUC18 plasmid backbone (Thermo 

Scientific). For the PMA1 5’UTR, the entire 1kb promoter region and 5’UTR 

(chrVII:482672-483671) was used. The pNop8 promoter was retained for the SFT2 

5’UTR investigation, with only the Nop8 5’UTR replaced by the SFT2 5’UTR. All 

3’UTRs were cloned to include >100bp after evidence of transcription ends (see 

Extended Data Fig. 5-6 and Extended Data Table 1 for sequence of PMA1, SFT2, and 

PRC1 structures). BY4741-Venus yeast were transformed using the standard technique of 

homologous recombination from a plasmid PCR product containing either a wildtype, 

mutant, or compensated UTR. Successfully transformed yeast were identified by check 

PCR and subsequently sequenced to confirm the presence of only the desired mutations. 

Mutagenesis in the endogenous PMA1 locus was done via the strategy described above 

for the PMA1 5’UTR, except homologous recombination was targeted to the endogenous 

PMA1 locus and surrounding genomic region rather than to Venus. After sequencing to 

confirm the presence of only the desired mutations, PMA1 was C-terminally tagged with 

Venus via PCR product from the pFA6a-link-yEVenus-SpHIS5 plasmid42. 
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Flow Cytometry  

A saturated yeast culture was diluted 1:200 fold in minimal media and grown at 30°C for 

6-8 hr before flow cytometry using a LSRII flow cytometer (Becton Dickinson) and 

530/30 filter. 10°C cultures were grown for 72 hr. Venus signal from each cell was 

normalized to cell size (Venus/sidescatter) using Matlab 7.8.0 (Mathworks)43, and once 

normalized, all events (~20,000 per experiment) were averaged for a final 

Venus/sidescatter value. 

 

References: 

 
31. Kortmann, J., Sczodrok, S., Rinnenthal, J., Schwalbe, H. & Narberhaus, F. 

Translation on demand by a simple RNA-based thermosensor. Nucleic Acids Res. 39, 

2855–2868 (2011). 

32. Ingolia, N. T., Brar, G. A., Rouskin, S., McGeachy, A. M. & Weissman, J. S. The 

ribosome profiling strategy for monitoring translation in vivo by deep sequencing of 

ribosome-protected mRNA fragments. Nat Protoc 7, 1534–1550 (2012). 

33. Ingolia, N. T., Ghaemmaghami, S., Newman, J. R. S. & Weissman, J. S. Genome-

wide analysis in vivo of translation with nucleotide resolution using ribosome 

profiling. Science 324, 218–223 (2009). 

34. Hastings, C., Mosteller, F., Tukey, J. W. & Winsor, C. P. Low Moments for Small 

Samples: A Comparative Study of Order Statistics. The Annals of Mathematical 

Statistics 18, 413–426 (1947). 

35. Lee, B. & Richards, F. M. The interpretation of protein structures: estimation of static 

accessibility. J. Mol. Biol. 55, 379–400 (1971). 



! 36!

36. Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. 

Nucleic Acids Res. 31, 3406–3415 (2003). 

37. Nagalakshmi, U. et al. The transcriptional landscape of the yeast genome defined by 

RNA sequencing. Science 320, 1344–1349 (2008). 

38. Blanchette, M. et al. Aligning multiple genomic sequences with the threaded blockset 

aligner. Genome Res. 14, 708–715 (2004). 

39. Bernhart, S. H., Hofacker, I. L., Will, S., Gruber, A. R. & Stadler, P. F. RNAalifold: 

improved consensus structure prediction for RNA alignments. BMC Bioinformatics 

9, 474 (2008). 

40. Washietl, S., Hofacker, I. L. & Stadler, P. F. Fast and reliable prediction of noncoding 

RNAs. Proc. Natl. Acad. Sci. U.S.A. 102, 2454–2459 (2005). 

41. Gruber, A. R., Findeiß, S., Washietl, S., Hofacker, I. L. & Stadler, P. F. Rnaz 2.0: 

improved noncoding RNA detection. Pac Symp Biocomput 69–79 (2010). 

42. Sheff, M. A. & Thorn, K. S. Optimized cassettes for fluorescent protein tagging in 

Saccharomyces cerevisiae. Yeast 21, 661–670 (2004). 

43. Brandman, O. et al. A Ribosome-Bound Quality Control Complex Triggers 

Degradation of Nascent Peptides and Signals Translation Stress. Cell 151, 1042–1054 

(2012). 

 
 
 
 
 
 
 
 
 
 



! 37!

 
 
 
 

 
 
 Extended Data Table 1 | Sequences of functional structure mutations. 5’-3’ mRNA 

structure sequences are listed. Lowercase letters correspond to non-paired bases, found in 

bulges or loops within the stem. Mutated bases are underlined. 
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Extended Data Figure 1 | Ribosomal RNA analysis. a, Histogram of raw counts 

distribution for denatured and structured 18S rRNA. Log2 (raw counts) for A bases 

plotted for in vivo and denatured samples. b, ROC curve on the DMS signal for A and C 

bases from the 25S rRNA in denatured, in vitro, intact ribosomes, and in vivo samples. 

True positives are defined as bases that are both unpaired and solvent accessible, and true 

negatives are defined as bases that are paired. c, DMS signal on all of the 18S rRNA A 

bases plotted from least to most reactive in the denatured or in vivo samples. The A bases 

that are false negatives relative to the crystal structure are colored as black dots on both 

the denatured and in vivo samples. 
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Extended Data Figure 2 | mRNA structure analysis with different window sizes. 

Scatter plots of Gini Index verses r values in replicate samples and for in vivo or in vitro 

samples relative to denatured sample for mRNA regions with an average of at least 15 

counts per position, spanning the sequence of (a) 25 A/C nucleotides (5000 randomly 

selected regions are shown) or (b) 100A/C nucleotides. Shown are regions spanning 

validated secondary structures (red dots) and regions from the 18S rRNA (green dots). 
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Extended Data Figure 3 | Agreement of DMS-seq with validated structures in 

mammalian K562 cells. Raw DMS counts were normalized to the most reactive 

nucleotide in the given region. A and C bases were normalized separately. The DMS 

signal is color coded proportional to intensity and plotted onto the secondary structure 

model of (a) MSRB1 selenocysteine insertion element, nucleotide 1 corresponds to 

nucleotide 966 of the transcript, (b) TPRC iron recognision element, nucleotide 1 

corresponds to nucleotide 3901 of the transcript, (c) XBP1 conserved non cannonical 

intron recognized by Ire1, nucleotide 1 corresponds to nucleotide 520 of the transcript. 
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Extended Data Figure 4 | Global mRNA analysis of human foreskin fibroblast cells. 

Scatter plots of Gini Index verses r values for in vivo or in vitro samples relative to 

denatured sample for mRNA regions spanning the sequence of 50 A/C nucleotides. 
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Extended Data Figure 5 | Functional verification of novel 5’UTR structures in vivo.  

a, Putative 5’UTR stems were manipulated in the context of a Venus reporter in vivo. b, 

PMA1 5’UTR structure was mutated and compensated twice with Venus reporter, 

differing in number and character of bases mutated. Mutation location shown in red on 

schematic. Reported p-values relative to wildtype Venus levels, calculated by two-sided 

t-test (p < .01, .001, and .0001 represent *, **, and *** respectively). For all graphs, 

Venus signal normalized to cell size before calculating fold change and data presented is 

from two biological and two technical replicates. Error bars represent SEM. c, Secondary 
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structure of functional PMA1 5’UTR stem, with compensatory mutations (arrows) found 

in S. paradoxus, S. mikatae, S. kudriavzevii, and S. bayanus. Raw DMS signal shown 

below (position 1 = chrVII:482745). d, SFT2 5’UTR structure was mutated and 

compensated three times in Venus reporter system, differing in number, character, and 

location of bases mutated. Mutation location shown in red on schematic. Stem stability as 

predicated by mfold. Reported p-values relative to wild type Venus levels, also by two-

sided t -test (p < .01, .001, and .0001 represent *, **, and ***  respectively). Error bars 

represent standard deviation c, Secondary structure of functional SFT2 5’UTR stem. 

Position 1 = chrII:24023. 
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Extended Data Figure 6 | Functional verification of novel PRC1 3’UTR structure in 

vivo. a, Putative 3’UTR stems were manipulated in the context of a Venus reporter in 

vivo, followed by Venus quantitation with flow cytometry. b, PRC1 3’UTR structure was 

mutated and compensated in Venus reporter system. For all data, reported p-values 

relative to wildtype Venus levels, calculated by two-sided t-test (p < .01, .001, and 

.0001represent *, **, and *** respectively). Venus signal was normalized to cell size 

with fold change reported relative to Venus levels seen with the wild type stem. All 
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results shown are derived from four measurements: two biological and two technical 

replicates. Error bars show standard deviation. c, Secondary structure of functional PRC1 

3’UTR stem, shown with raw DMS signal for in vivo and denatured samples. Position 1 

= chrXIII:863554. d,Weakly structured 3’UTRs in vivo were tested for function as in (b) 

but reveal little effectwhen mutated and no evidence for compensation. 

 

 

Extended Data Figure 7 | Global analysis of mRNA structure. a, In vitro DMS-seq on 

RNA re-folded in  different  Mg+2 concentrations. b, Metagene plot of the average DMS 

signal (normalized to denatured control) over 5’UTR, coding, and 3’UTR regions. c, 

Scatter plot  of Gini Index (calculated over the first 100 A/C bases) of in vivo messages 

(relative to denatured) verses translation efficiency. 



! 46!

 

 

Extended Data Figure 8 | In vivo structures forming in ATP depleted conditions. 

Raw DMS counts were normalized to the most reactive nucleotide in a given region. The 

DMS signal is color coded proportional to intensity and plotted onto the mfold predicted 

secondary structure model of (a) CBF5, nucleotide 1 corresponds to chrXII position 

506,479 (b) TCP1, nucleotide 1 corresponds to chrIV position 887,991. 
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Extended Data Figure 9 | Analysis of mRNA structure at 10ºC. a, Histogram of gini 

index difference (calculated over 100A or Cs) between 10ºC and wt (30ºC) samples. b, 

Scatter plot of the gini index differences in ATP depleted or 10ºC yeast relative to wt 

yeast calculated over 50 As or Cs. 
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CHAPTER 3 

Operon mRNAs are organized into ORF-centric structures that specify translation 

efficiency 

 

 

 

 

 

 

 

 

 

 

 

 

 



! 49!

Operon mRNAs are organized into ORF-centric structures that 

specify translation efficiency 

 

David H. Burkhardt1,2,5*, Silvi Rouskin4-6*, Gene-Wei Li4-6†, Jonathan S. Weissman4-6†, 

Carol A. Gross2,3,5† 

1Graduate Group in Biophysics,  

2Department of Microbiology and Immunology,  

3Department of Cell and Tissue Biology,  

4Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, 

5California Institute of Quantitative Biology,  

6Center for RNA Systems Biology,  

University of California, San Francisco, CA 94158, USA. 

*These authors contributed equally to this work. 

† To whom correspondence should be addressed. E-mail: gene-wei.li@ucsf.edu, 

weissman@cmp.ucsf.edu, cgrossucsf@gmail.com 

 

 

 

 

 



! 50!

Summary 

Prokaryotic mRNAs are organized into operons consisting of discrete open reading 

frames (ORFs) that are differentially translated by as much as 100-fold.  To 

understand the mRNA features instructing these differing translation efficiencies, 

we monitored the relationship between mRNA structure and translation on 

endogenous messages genome-wide in vivo. We find that operon mRNAs are 

organized into structural domains divided by ORF boundaries.  This modular 

mRNA structure, rather than Shine-Dalgarno strength, specifies ORF translation 

efficiency. Upon cold shock, mRNA structure increases and translation decreases, 

but both are restored by massive induction of the Cold Shock Proteins (Csps). Csps 

modulate global mRNA structure and autoregulate their expression via an RNA 

element cued to the cellular environment, enabling mRNA structure surveillance 

both at cold and normal growth temperatures. Operons and Csps are present in all 

bacteria, suggesting that the organization of operonic mRNA structure and its 

surveillance system we describe are universally used to set and maintain translation. 
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Introduction 

Protein synthesis is the most energetically costly process in bacteria, consuming ~ 

50% of cellular energy (Russell and Cook, 1995).  To optimize cellular efficiency, the 

rate of synthesis of each protein is carefully controlled. The bacterial strategy to achieve 

this control entails organizing open reading frames (ORFs) into operons so that mRNA 

level for genes with related functions are co-regulated (Jacob and Monod, 1961). Fine-

grained control of protein synthesis rate is then achieved by tuning translation efficiency 

(TE) of each ORF, with efficiency of adjacent ORFs varying by as much as 100-fold (Li 

et al., 2014). Thus, optimal energy utilization depends on the ability to reliably drive 

ORF-specific translation efficiencies. Understanding the rules that govern how mRNA 

sequence features drive these specific translation efficiencies is important for decoding 

genomes and for designing synthetic ORFs. 

The role of cis elements proximal to the ribosome-binding site in setting and 

maintaining translation efficiencies on E. coli ORFs has been extensively studied. 

Translation initiation minimally requires an accessible Shine-Dalgarno (SD) sequence 

upstream from the initiation codon (Steitz and Jakes, 1975).  Consequently, highly stable 

structures in direct proximity to the initiation codon diminish translation efficiency (de 

Smit and van Duin, 1990; Hall et al., 1982; Lodish, 1970).  Rare codons that disfavor 

structure are enriched in positions immediately following the translation start site 

(Bentele et al., 2013; Eyre-Walker and Bulmer, 1993; Scharff et al., 2011), and 

mutational analysis of these early codons in synthetic reporters has shown that changes in 

protein expression can be explained by changes to predicted RNA structure at the 

translation start (Goodman et al., 2013; Kudla et al., 2009; Salis et al., 2009). However, 
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biophysical models based on structural prediction around the start codon are only weakly 

predictive of relative translation efficiencies of messages that differ in sequence beyond 

the early coding region (Kosuri et al., 2013) or on endogenous messages (Li et al., 2014).  

mRNA structural elements extending past the ribosome binding site into ORF 

bodies (Wikström et al., 1992) or into 5’ untranslated leaders (Borujeni et al., 2013; 

Marzi et al., 2007) can both inhibit and enable translation initiation, raising the possibility 

that cis features in mRNA sequence beyond the ribosome binding site may play a role in 

setting the translational efficiency of each ORF. Using recently developed global 

technologies (Ingolia et al., 2009; Li et al., 2014; Oh et al., 2011; Rouskin et al., 2014), 

we simultaneously probed the in vivo structure and translation of endogenous messages in 

E. coli.  We find that mRNA structure of operons is organized around open reading 

frames, and is strongly correlated with translation efficiency.  

We then used cold temperature stress, anticipated to drive an increase in RNA 

structure, to determine whether E. coli can sense and repair changes to mRNA structure.  

We find that cold shock drives a global increase in mRNA structure with concomitant 

defects in translation initiation and that the immediate cold recovery program alters the 

structure of each mRNA in a gene-specific manner. We find that this program is 

dependent on induction of the Csp RNA binding proteins (Goldstein et al., 1990; Jiang et 

al., 1997) to modulate mRNA structure globally, and RNase R to degrade stabilized 

mRNA. Finally, Csps autoregulate their expression by modulating their 5' UTRs 

structure, and this structural transition is cued to the global structure in the cell, enabling 

appropriate transcript structure in all conditions. 



! 53!

Results 
 

Development of global structure determination in E. coli  

 New genomic technologies enable the determination of RNA structure in vivo on 

a global scale (Ding et al., 2014; Rouskin et al., 2014; Wan et al., 2014). We monitored 

global in vivo RNA structure with DMS (dimethyl sulfate)-seq (Rouskin et al., 2014), 

which uses next generation sequencing to determine chemical accessibility of RNA to 

DMS, a reagent that reacts with unpaired adenosine and cytosine nucleotides (Inoue and 

Cech, 1985) (Figure 1A). DMS-seq, adapted here to E. coli, is highly reproducible 

(Figure S1A) and in strong agreement both with the E. coli ribosome crystal structure 

(Figure 1B), and a mutationally-verified E. coli mRNA structure (Figure 1C) (Wikström 

et al., 1992).  We quantified the degree of secondary structure on each open reading 

frame using the Gini index metric, which measures the variability in reactivity of residues 

in the region being examined (Rouskin et al., 2014). A low Gini index indicates an even 

distribution of DMS-seq reads, and occurs when a region of the mRNA is unstructured. A 

high Gini index occurs when a subset of residues is strongly protected from DMS 

reactivity, and indicates a high degree of structure (Figure S1B-D).  We found that the 

degree of RNA secondary structure varied greatly between ORFs: some are nearly as 

structured as rRNA, whereas some are close to the denatured state (Figure 1D).  

 

mRNA structure is organized around open reading frames and specifies TE 

Despite the variability in the degree of secondary structure among ORFs, the 

degree of structure within a given ORF is well correlated (Figure 2A). This relationship 

holds even when controlling for GC content (Figure S2A).  Structural correlation does 
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not extend to adjacent ORFs on the same mRNA (Figure 2B), suggesting that the 

structures are a property of the ORFs rather than of the polycistronic transcript. 

We next asked whether structure is correlated with translation efficiency, which 

we quantified by combining ribosome density obtained from ribosome profiling with 

total mRNA measured by mRNAseq (Ingolia et al., 2009; Li et al., 2014; Oh et al., 2011).  

Indeed, better-translated ORFs have lower structure, and the difference in the degree of 

folding between adjacent ORFs is highly predictive of their relative levels of translation 

(Figure 2B, S1D).  Notably, ORF pairs with overlapping stop and start codons show as 

much variability in their relative translation as non-overlapping ORF pairs (Figure 2C).  

We next expanded our analysis beyond operons to all ORFs, and found that structure is 

strongly correlated to TE on all endogenous open reading frames (ρ = 0.76, Figure 2E). 

These results indicate that ORF-specific RNA structure specifies differential translation 

between genes in the same operon. 

  Bacterial operons are densely packed with ORFs, and the majority of adjacent 

ORFs (62%) are separated by only 25nt or less (Figure 2D).   It is therefore important to 

examine how structure changes at ORF boundaries. At translational start sites, the local 

degree of folding correlates with the TE only downstream from the start site and rapidly 

diminishes upstream of the start site, whereas structure upstream of the start site is 

correlated with the TE of the upstream ORF (Figure 2F). Thus, structure undergoes a 

sharp transition at ORF boundaries and polycistronic mRNAs consist of distinct 

structural domains.  
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mRNA sequence drives the organization of mRNA structure around open reading 

frames 

 We evaluated whether the ORF-centric structures of mRNAs in vivo arises as an 

intrinsic property of sequence by using DMS-seq to determine the structure of mRNAs 

refolded in vitro at 37°C. In vitro RNA structure was correlated with in vivo TE (ρ = 

0.48, Figure 2G, S2B-C), whereas control samples without DMS modification was not 

correlated (ρ  = .05, Figure S2D).  This correlation persists through windows that do not 

include the translation start site (Figure 2H).  The correlation between in vivo TE and 

structure was also maintained after addition of the translation initiation inhibitor 

kasugamycin at 10°C, where longer mRNA half-life permits this measurement (see 

below). Importantly, in vitro refolded mRNAs possess a sharp structural boundary 

between adjacent ORFs similar to that observed on in vivo mRNA (Figure 2H).  

Computationally predicted ORF-length structures also retained a strong correlation to 

translation efficiency (ρ  = 0.48, Fig S2E-F).  As the correlation of in vivo mRNA 

structures with TE is stronger than the correlation to structures determined in vitro or 

computationally, the contribution of the ribosome to mRNA folding, as well as 

differences in folding environment (e.g. salt, molecular crowding) and pathway (lack of 

vectorial folding) contribute to the eventual in vivo structure.  Notably, the strength of the 

Shine-Dalgarno sequence does not have predictive power on TE, even after controlling 

for structure as measured by Gini (Figure S2G).  In toto, these analyses indicate that the 

linear sequences of bacterial mRNAs encode not only open reading frames, but also the 

blueprint for ORF-wide secondary structures that specifies levels of translation. 
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 Whereas ORFs are marked by start and stop codons, the signatures that define 

structural domains have remained elusive. To understand how structural boundaries 

might be set up by the linear sequence, we computationally predicted the structure of 

mRNA extending -250 to +250 nt from the translation start at the boundary of adjacent 

ORF pairs. Because folding algorithms often predict a large ensemble of possible folds 

for a long stretch of RNA, we used the DMS-seq data (both in vivo and in vitro) to 

constrain the predictions by forcing positions that were highly DMS-modified to be 

unpaired in the predicted structures.  We then examined the propensity for each position 

to interact with each other position.  Consistent with previous studies, we found a lack of 

structure in the immediate vicinity of the start sites for most ORFs (Figure S2H). 

Downstream from this structure-free zone (25-50 nt), endogenous mRNA has a high 

propensity to base pair with regions further downstream, i.e. pairing within the same ORF 

(Figure 2I). Conversely, nucleotides located 25-50nt upstream of the start site have a 

strong preference to interact with regions further upstream in the preceding ORF (Figure 

2I). Importantly, these results are similar for both in vivo and in vitro probed RNA.  

Therefore, a sequence-driven sharp transition in the directionality of pairing around start 

sites can provide a mechanism for organizing structure around ORFs. 

 

Cold shock increases mRNA structure and drives a global ribosome run-off  

 Given the importance of structure in setting translational efficiency, we asked 

whether the cell is able to monitor and repair the structure of its mRNAs.  Cold shock 

(shift to 10˚C) is expected to increase mRNA structure, and therefore provides an avenue 

to determine whether such a system exists.   
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 Upon shift to cold, protein synthesis dramatically decreases and cell growth stops, 

resuming after a ~6 hr lag (Friedman et al., 1971; Ng et al., 1962). Existing evidence 

suggested that cold shock inhibits translation initiation, as polysomes decrease and 

monosomes increase (Friedman et al., 1969; Jones and Inouye, 1996). Additionally, at 

5°C, a temperature at which ribosomes dissociate, it was observed in vivo that ribosomes 

on a specific RNA phage-encoded transcript complete one round of translation following 

cold shock but do not initiate new rounds (Friedman et al., 1971). 

 With ribosome profiling experiments, we identified an immediate global 

reduction in translation initiation after shift to 10°C, as ribosome density is depleted from 

the 5' end of all genes (Figure 3A). Gradual run-off of ribosomes that had initiated 

translation at 37˚C is reflected in a gradual decrease in 35S-methionine incorporation, 

plateauing at 30 min after cold shock when the run-off observed by ribosome profiling is 

presumably complete. At that point, 35S-methionine incorporation indicates a 200-fold 

reduction in translation initiation (Figure 3B).  Concomitant DMS-seq measurements 

indicated a large, gene-specific increase in mRNA structure across the transcriptome 

relative to 37°C (Figure 3C), with structure remaining correlated with TE (Figure S3A).  

Similar to 37°C, the mRNA structure probed in vitro is correlated with TE in vivo at 10°C 

(Figure S3D). Furthermore, we removed the contribution of translation on structure in 

vivo by treating cells with the translation initiation inhibitor kasugamycin, and observed 

the same trend (Figure S3C). Taken together, these results indicate that cold shock 

induces a global and sequence-dependent increase in mRNA structure that leads to 

reduction in protein synthesis. 
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 After the initial shock, total protein synthesis increases ~4-fold during cold 

recovery prior to resumption of growth (Figure 3B). We tested whether remodeling 

mRNA structures drives this increase by comparing global mRNA structure and TE at 6 

hr vs. 30 min after cold shock.  Notably, this enabled comparison of TE and structure for 

the same set of mRNAs in the same environmental condition, revealing the effect of 

internal changes within the cell. Structure and TE remain correlated (Figure S3B), and 

their dramatic global changes are also correlated (Figure 3D).  This result indicates a 

recovery program that drives a decrease in the mRNA structure of specific genes to 

permit their TE to increase.  

 

RNase R and Csps mediate initial recovery by restoring mRNA degradation and 

structure  

 A number of proteins are induced by cold shock (Goldstein et al., 1990; Jones et 

al., 1987), including most prominently 4 of the 9 structurally homologous Cold shock 

proteins (CspA-I) (Wang et al., 1999) that have been implicated in modulating mRNA 

structure (Jiang et al., 1997; Phadtare et al., 2004).  However, there was limited 

understanding of which factors drive recovery of protein synthesis during the 6 hrs 

following cold shock. We identified actuators of the recovery circuit by examining gene 

deletion phenotypes of the 53 proteins whose measured synthesis rates indicate a copy 

number increase of ≥ 2-fold during the 6 hr recovery period (Extended Data Table 1). 

Only single gene deletions of rnr (RNase R), an exonuclease that degrades damaged 

rRNA (Basturea et al., 2011; Cheng and Deutscher, 2003) and processes tmRNA (Awano 

et al., 2010; Cairrão et al., 2003), and cspA reduced protein synthesis during recovery 



! 59!

(Figure 4A). Together, Csps and RNase R constitute 40% of total protein synthesis at 3 

hours after cold shock (Figure 4B), supporting their dominant role in initial recovery.  

 We determined the RNA targets of RNase R by sequencing total RNA 

immediately prior to and 2hr after addition of the transcriptional inhibitor rifampicin at 

10°C in WT and ∆rnr strains. In a WT strain, mRNA decreases from 5.2% to 2.3% of 

total RNA during this 2hr window, indicating a half-life of ~2 hr at 10°C (Figure 4C) but 

a ∆rnr strain exhibits a minimal decrease in mRNA level.  Moreover, mRNA 

accumulates to 9.8% of total RNA at 8hr after cold shock in ∆rnr cells, whereas WT cells 

maintain mRNA as 4.2% of total RNA (Figure 4D).  Thus, mRNA degradation requires 

RNase R during cold recovery. 

  We next examined the role of CspA and its homologues in early recovery.  Csps 

promote read-through of a transcriptional terminator in the metY-rpsO operon through its 

nucleic acid binding activity (Bae et al., 2000; Phadtare, 2002), and a quadruple deletion 

Csp strain (cspA and its homologues cspB, cspG, and cspE) is unable to grow at low 

temperature (Xia et al., 2001).  However, the role of Csps in facilitating growth at cold 

temperature has remained elusive. We found that the quadruple Csp mutant (∆cspABEG) 

did not recover protein synthesis during the 6-hr immediate recovery period (Figure 4A).  

Because Csps bind and melt nucleic acid structures in vitro (Jiang et al., 1997; Phadtare 

and Severinov, 2005), we tested whether they promote translation recovery via direct, 

genome-wide modulation of mRNA structure. Indeed, ∆cspABEG cells remained trapped 

in the state observed immediately following cold shock in which all mRNAs were highly-

structured and poorly-translated (Figure S4A). The most structured mRNAs in a 

∆cspABEG strain had the greatest defect in recovery of TE relative to their TE’s in the 
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WT strain (Figure 4E, S4), indicating that Csps drive the alteration of mRNA secondary 

structure and translation efficiency that accompanies cold recovery.  

 The Csps are well-expressed at 37°C (Brandi et al., 1999; Li et al., 2014; 

Taniguchi et al., 2010), and we therefore tested whether they also play a role in 

maintaining TE at normal growth temperature. A quintuple ∆cspABCEG strain 

(additionally deleted for cspC, the homologue that is well-expressed at 37°C), has a 10% 

growth defect at 37°C indicating that Csps are required for optimal growth. TE 

measurements in the ∆cspABCEG strain indicate that the TEs of the best-translated ORFs 

in WT (≥ top 10%), which requires less structure, exhibited an ~10% decrease in TE 

without Csps, whereas the remainder are only marginally influenced (Figure 4F).  Thus, 

Csp expression is crucial for achieving high TEs at 37˚C, just as it is at 10˚C. 

 

Cold recovery is regulated by Csp autoregulation of their own mRNA structures  

 Csp expression increases dramatically upon cold shock, and then declines during 

cold recovery. Cold induction is known to involve csp message stabilization, with cspA 

mRNA shifting from a rapidly degraded state at 37°C (T½= 10-20”) (Fang et al., 1997) to 

a stable state at 10°C (Giuliodori et al., 2010; Hankins et al., 2007; Yamanaka et al., 

1999).  CspA message stability is regulated through its long 5’UTR, a thermosensor that 

was shown to undergo a change in structural conformation when shifted from 37˚C to 

10˚C (Giuliodori et al., 2010).  A conserved element at the 5’ end of the cspA UTR, the 

"cold box," is especially critical to regulation of message stability (Xia et al., 2002).  At 

37°C, the cold box forms a helix at the 5' end of the message, whereas at 10°C it pairs 

with a downstream region within the UTR, an interaction that presumably stabilizes the 
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message (Giuliodori et al., 2010). Using a standard minimal free energy structural 

prediction constrained by DMS-seq data (Hofacker, 2003) to model the structure changes 

upon cold shock, we validated that cold box interactions are altered on cspA upon cold 

shock in vivo (Figure S5). 

 During cold recovery, csp message is destabilized in a process dependent on Csp 

protein activity (Bae et al., 1997).  The mechanistic basis for this destabilization was not 

known.  We found that the long 5’ UTRs of Csps were among the most dramatically 

changing mRNA structures during recovery (Figure S6A-B), suggesting that changes in 

the UTR structure might be responsible for the csp message destabilization.  Indeed, 

during recovery, the 5' UTR shifts to a structure in which the cold box is in a helix with 

the 5' end of the message, similar to the structure observed for the 37˚C state, as 

illustrated for cspB (Figure 5A-B). The ability of the Csp transcript structure to shift as a 

function of time at 10°C indicates that the Csp UTR structure senses the state of the cell 

in addition to sensing temperature.  Importantly, these structural transitions do not occur 

in a ∆cspABEG strain, which lacks the Csp ORFs but retains their 5’UTRs (Figure 5C-

D), but the CspB 5'UTR does change structure in a ∆cspBG strain, where the CspB ORF 

is deleted and recovery is driven by CspA expression (Figure S6C). These results indicate 

that the structural change of the 5’UTR during recovery is not dependent on the sequence 

of the ORF but requires Csp protein expression at cold temperature. Since the Csps are 

known to interact with their 5' UTRs (Jiang et al., 1997), we propose that Csps remodel 

their own 5' UTRs, thereby tying their own regulation to their role of structure 

surveillance in the cell. 

  



! 62!

Discussion   
  

By determining the relationship between mRNA structure and translation 

efficiency at a genome scale, we discovered that operons are comprised of ORF-centric 

mRNA structures that contribute to translation efficiency both under steady state 

conditions and following perturbation.  We consider the implications of these findings for 

operon function (Figure 6A) and then discuss the self-regulating structure surveillance 

system that maintains appropriate mRNA structure (Figure 6B).  

 Operons are the fundamental unit of bacterial gene expression.  They enable 

common transcriptional control of genes with related functions while achieving 

appropriate protein expression by regulating translational efficiency. We show here that 

bacteria regulate TE with ORF–centric structures that both drive and insulate the TE of 

each protein.  A blueprint for ORF-centric mRNA structures is encoded in the mRNA 

sequence itself, including the propensity for in-ORF basepairing, but is likely reinforced 

by the activity of ribosomes and Csps. 

 The necessity for achieving discrete TEs for close-packed ORFs may have driven 

the evolution of this strategy.  The translation termination codon of most ORFs is 

separated by less than 25nt of untranslated mRNA from the start site of the downstream 

ORF, yet the TE’s of these adjacent ORFs can vary as much as 100-fold.  If an mRNA 

structure were to span the boundary between a highly translated and a poorly translated 

ORF, the abundant ribosomes of the highly translated ORF would have potential to 

transiently open the structure of the poorly-translated ORF and increase the accessibility 

of its start site. ORF-centric mRNA structures with predominantly intra-ORF base pairing 

may prevent the upstream ORF from influencing the downstream ORF's structure and 
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translation efficiency, effectively insulating each ORF from its neighbors. RNA 

polymerase pausing is enriched at translation start sites (Larson et al., 2014) and may 

reinforce ORF-centric structural insulation by allowing ORFs to fold independently. For 

~15% of operonic ORFs, this insulation is broken as the stop codon of the upstream ORF 

overlaps the downstream ORF.  These ORFs have been hypothesized to be 

“translationally coupled” through diffusion of the upstream ribosome to the downstream 

start site (Aksoy et al., 1984; Oppenheim and Yanofsky, 1980; Schümperli et al., 1982; 

Yates and Nomura, 1981).  As the TE’s of such ORF pairs vary as much as other ORF 

pairs, overlap does not cause all ribosomes to reinitiate on the downstream ORF, but may 

enable upstream ribosomes to influence downstream ORF translation by unwinding 

mRNA structure.  

 We find Shine-Dalgarno (SD) strength to be unpredictive of translation 

efficiency, even after removing the contribution of mRNA structure to TE. This 

observation is in contrast with the common belief that a stronger SD site indicates 

stronger translation. Although the presence of SD sites is critical for translation initiation 

in E. coli (Steitz and Jakes, 1975), the role of their quantitative strength for endogenous 

transcripts has not been defined prior to this work. Large-scale studies using synthetic 

libraries noted the difficulty in predicting TE from SD strength, which can be mitigated 

by actively reducing RNA structures (Mutalik et al., 2013). Our results suggest that cells 

face the same challenge and rely on RNA structure rather than SD sites to tune the level 

of translation. This conclusion favors the 'standby model' of translation initiation in which 

the 30S subunit quickly binds to regions near the initiation site and waits for the opening 

of the SD and start codon (Adhin and van Duin, 1990; de Smit and van Duin, 2003). In 
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this scenario, the major role of the SD is to capture ribosomes diffusing from standby 

sites and to ensure that the correct start codon is selected rather than to set translation 

efficiency. 

  The length-scale of the relationship between mRNA structure and TE is also in 

line with the standby model of translation initiation. High translation efficiency may 

require an open structure over long distances to capture a large pool of non-specifically 

bound ribosomes, whereas the stable structures of poorly translated ORFs may form 

inhibitory structures that prevent this binding over a large region thereby inhibiting 

translation.  Poorly-translated ORF structures may additionally be necessary to protect 

the ORFs from premature endonucleolytic cleavage on the frequent occasions when they 

are bare of ribosomes.      

 When the cell is subjected to cold shock, mRNA structure increases with a 

concomitant decrease in translation initiation. Cold recovery consists of a highly 

correlated ORF-specific decrease in mRNA structure and recovery of translation. Only 

the Csps and RNaseR are necessary for this recovery. Notably, other proteins important 

for long term growth at 10˚C (e.g. DeaD [alias CsdA] (Jones et al., 1996), RbfA (Jones 

and Inouye, 1996) and PNPase (Luttinger et al., 1996)), do not affect initial recovery of 

protein synthesis.  Thus, the cell has an initial emergency system to restore mRNA 

structure and degradation, comprised of only two proteins, and a long-term program to 

sustain growth in the cold. 

 Our data, together with existing data, support a model in which Csps perform 

mRNA structure surveillance (Figure 6B).  The Csps are RNA binding proteins that also 

bind their own 5’UTRs (Jiang et al., 1997). Their peak abundance is estimated at  ~ 2 * 
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106/cell, (Xia et al., 2001),  which is consistent with Csp-mRNA interaction over the 

entire length of open reading frames (~107 nt of total mRNA / cell).  We suggest that at 

early times, after cold shock, Csps are predominantly engaged in interacting with cellular 

mRNA, and do not perturb the long range pairing of the cold box element in the Csp 

5’UTR triggered by cold temperature.  As recovery proceeds and Csp concentration 

increases, Csps bind their 5’UTRs, triggering the switch in pairing of the cold box 

element to the 5’ helix and promoting message degradation.  In this circuit, the cell sets 

Csp expression by monitoring the free level of Csps, determined by the extent to which 

Csps are required to globally remodel mRNA structure. This circuit explains why RNase 

R deletion, which increases the amount of mRNA to be remodeled, delays recovery as 

more Csps must be produced to attain the appropriate Csp/mRNA level required for 

resumption of the 10˚C translational program.  This regulatory system closely resembles 

that of the bacteriophage T4 Gene32 protein (gp-32) autoregulatory circuit.  Gp-32 is a 

single-strand DNA binding protein, and its production is translationally controlled to 

maintain a constant amount of free gp-32 in the face of changing amounts of ss-DNA 

(von Hippel et al., 1982; McPheeters et al., 1988; Shamoo et al., 1993). 

The Csp RNA surveillance system is likely utilized in a wide variety of conditions 

and in most bacteria. We show here that Csps are important for growth and proper TE at 

37˚C. Other perturbations, including stationary phase and sublethal antibiotic exposure 

modulate Csp expression (Brandi et al., 1999; VanBogelen and Neidhardt, 1990), 

suggesting that many environmental changes drive changes in mRNA structure and hence 

Csp expression. Csps span the gram-negative/positive divide, and Csps in B. subtilis 

exhibit strikingly similar properties to those in E. coli—high abundance during normal 
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growth (Eymann et al., 2004) and induction during cold shock (Willimsky et al., 1992).  

Thus, it is likely that the Csp RNA surveillance system arose early in evolution and was 

then maintained throughout the bacterial world.  Csp orthologues have been identified in 

all domains (Graumann et al., 1997; Karlson et al., 2002), and ectopic expression of 

bacterial Csps in maize enhances growth at cold and in water-limited conditions 

(Castiglioni et al., 2008), indicating that the mechanism through which they modulate 

protein synthesis is likely broadly relevant. 

 The relationship between structure and translation efficiency that we identify is a 

constraint on mRNA sequence beyond codon adaptation (Sharp and Li, 1987).  Further 

work will identify the relative contributions of these considerations to codon choice, but 

there are immediate implications for synthetic construct design, as optimal codon 

selection must reflect both message abundance and translation efficiency. This presents 

both a challenge and an opportunity to efforts to synthesize synthetic operons: synthetic 

designs must be carried out with cognizance of the entire open reading frame sequence.   

However, design approaches that incorporate appropriate mRNA structures should have 

the potential to produce finely- tuned synthesis rates as are observed on natural operons. 

 

Experimental Procedures 

E. coli K-12 MG1655 was used as the wild-type strain.  All culture experiments were 

performed in MOPS complete medium with all amino acids except methionine.  All 

samples were captured at OD420 = 0.4.  Multiple deletion strains were generated by 

transduction of FRT-flanked deletion alleles from the Keio collection followed by marker 

excision by Flp recombinase. Ribosome profiling, mRNAseq, and DMS-seq were 
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performed as previously described (Ingolia et al., 2009; Li et al., 2014; Rouskin et al., 

2014).  Gini indices were calculated on all A and C residues for the designated windows.  

For all Gini index calculations, analysis was limited to genes with greater than an average 

of 15 reads per nucleotide across the gene body.  Mean ribosome and mRNA densities, 

used to compute translation efficiencies, were calculated as described (Li et al., 2014).  

Adjacent ORFs within operons were identified by analyzing mRNA-seq data: pairs of 

adjacent ORFs with constant mRNA-seq signal were considered to be in the same 

operon.  Secondary structure models were constructed using a minimum free energy 

prediction generated by the RNAfold function of ViennaRNA (Hofacker, 2003). These 

RNA structure predictions were constrained with DMS-seq measurements where 

indicated.  Ribosome run-off was determined as described (Ingolia et al., 2011).   
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Figure Legends 

Figure 1: DMS-seq effectively probes RNA structures in E. coli 

(A) Schematic for obtaining mRNA structures and translation efficiency using DMS-seq, 

mRNA-seq, and ribosome profiling. 

(B) ROC curve on the DMS signal for A and C bases in the 16S rRNA from in vivo 

ribosomes using the E.coli ribosome crystal structure  (Zhang et al., 2009) as a 

model. True positives are defined as bases that are both unpaired and solvent-

accessible, and true negatives are bases that are paired. The total number of 

evaluated bases is 438 As or Cs.  Signal threshold of 0.2 has 90% agreement with 

the crystal structure. 

(C) Structural prediction for rimM. The predicted rimM structure is based on a minimum 

free energy prediction constrained by our DMS-seq measurements, using the 

same 0.2 threshold used for the 16S rRNA in (B).  The DMS signal across rimM 

is shown below the structure.  The color bar indicates the intensity of the DMS-

seq signal at each position. 

(D) Histogram of Gini indices on E. coli open reading frames from DMS-seq data 

obtained in vivo at 37°C.  Gini index calculated on 16S rRNA and mean of Gini 

indices calculated on mRNAs heat-denatured at 95°C are indicated. 

 

Figure 2: mRNA structure is organized around open reading frames 

(A) Plot of Gini index calculated on the first half of ORF body vs. the Gini index 

calculated on the second half of ORF body.  Spearman's rank order correlation (ρ) 

of Gini indices is indicated. 



! 81!

(B) Plot of Gini index calculated on adjacent ORFs in operons.  ρ indicates the 

correlation between Gini indices of adjacent ORFs. Coloring indicates ratio of the 

translation efficiency (TE, ribosome footprint density / mRNA-seq density) of the 

adjacent ORFs.  Correlation of Gini and TE is indicated by clustering of red 

(lower) and blue (upper) dots. 

(C) Histogram of TE ratios for overlapping and non-overlapping open reading frames.  

Overlapping ORFs are ORF pairs for which the annotated stop codon of the 

upstream ORF overlaps or is 3’ of the start codon of the downstream ORF. 

(D) Plot of Gini index of in vivo DMS-modified mRNA calculated across the entire ORF 

body against in vivo TE for well-expressed ORFs.  TEs are plotted on a log scale. 

(E) Correlation (Spearman's ρ) between in vivo mRNA structure quantified by Gini index 

and in vivo TE of well-expressed ORFs.  Gini index was calculated for 300 nt 

windows that scan gene bodies, using genes that extend through the 300 nt 

window being examined. The correlation to TE is plotted at the center of each 

300nt window. 

(F) Plot of Gini index of in vitro DMS-modified mRNA calculated across the entire ORF 

body against in vivo TE for well-expressed ORFs. 

(G) Correlation (Spearman's ρ) between in vitro mRNA structure quantified by Gini 

index and in vivo TE of well-expressed ORFs, as in (E).   

(H) Cumulative distribution of spacing between ORFs within operons. 

(I) Plot of directionality of RNA interactions.  mRNA structure at each operonic ORF 

boundary was predicted by calculating either the in vivo or the in vitro DMS-

constrained minimum free energy structure for a region extending from -250 nt to 



! 82!

+250 nt relative to translation start site. At each position, the probability of 

interaction with each other position was calculated for each ORF examined.  The 

average sum probability of interacting with any nucleotide in a 100 nt window 

upstream and in a 100 nt downstream was calculated.  The ratio of the 

downstream interaction probability to the upstream interaction probability is 

plotted at each position. 

 

Figure 3: Cold induces a defect in translation instigated by an increase in mRNA 

structure 

(A) Meta-gene analysis of ribosome run-off after cold shock.  Ribosome read density at 

each position in the gene was averaged across well-expressed genes for samples 

prepared at the indicated times. Analysis at each position is limited to ORFs that 

are at least of that length. 

(B) Total translation during cold recovery.  Total translation was measured by pulse-

labeling with 35S-methionine at 37°C and at timepoints following cold shock.  

(C) Histogram of change in Gini index following cold shock.  mRNA was probed with 

DMS at 37°C and 25 min after shift to 10°C.  Gini index was calculated for all 

genes that were well-expressed in both conditions. The difference in the Gini 

index of each gene at 10°C vs. its Gini index at 37°C is plotted.   

(D) Plot of the change in Gini index between 30min and 8hr following cold shock  

against change in translation efficiency during this same time window.  

Histograms above each axis indicate the distribution of changes in structure and 

translation efficiency.  During recovery, the large majority of genes fall in the 
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upper left quadrant, indicating that their structure is decreasing while their 

translation efficiency is increasing.  

 

Figure 4: RNase R and Csps facilitate cold recovery 

(A) Deleting RNase R and the Csps inhibit cold recovery. Ratio of total translation (35S-

methionine pulse labeling) at 8 hrs versus 30 min following cold shock for WT 

cells, ∆rnr and single or multiple csp deletion strains. 

(B) Fraction of ribosome footprint reads that map to cold-induced genes during cold 

recovery.   

(C) RNA content of cells prior to and following rifampicin treatment at 10°C. Total RNA 

was purified and sequenced immediately prior to and 2hr after rifampicin 

treatment of WT and ∆rnr cells.  The fraction of all sequencing reads that map to 

mRNA are plotted. 

(D) RNA content of cells following cold shock.  Total RNA was purified at the indicated 

timepoints following shock to 10°C in WT and in ∆rnr cells.  The fraction of all 

sequencing reads that map to mRNA at each timepoint are plotted. 

(E) Comparison of the change in Gini index and translation efficiency of well-expressed 

mRNAs in a cold recovery-inhibited strain (∆cspABEG) vs. a WT strain at 6 hr 

following recovery.  Histograms above each axis indicate the distribution of 

changes in structure and translation efficiency.  The large majority of genes fall in 

the lower right quadrant, indicating that mRNA structure is higher and translation 

efficiency lower in the csp deletion strain relative to the WT strain.   
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(F) Distribution of change in translation efficiency in ∆cspABCEG at 37˚C.  Genes were 

binned into 9 groups based on the TE in WT cells, and the distribution of changes 

in TE in the ∆cspABCEG strain was calculated for each bin.  For each bin, box 

center and limits indicate the median change and the 25th and 75th percentile 

changes. 

 

Figure 5: Csp expression is controlled by an auto-regulatory feedback loop 

Change in structure of the cspB 5’ UTR during cold recovery.  The predicted structure of 

the cspB 5’ UTR was generated by constraining a minimum free-energy 

prediction with our DMS-seq measurements in WT (A, B) and ∆cspABEG (C, D) 

strains at 30 min and 8hr after cold shock. The cold box element is highlighted in 

the blue box and the long range interaction regions is highlighted in a green box. 

A color bar indicates the intensity of the DMS-seq signal at each position. DMS 

reactive bases (based on the ribosomal ROC derived threshold) are in yellow to 

red. 

 

Figure 6: Model of operon structural organization and surveillance 

(A) Operon mRNAs are organized into ORF-centric structures that specify translation 

efficiency of each ORF. 

(B) Cold shock induces a genome-wide increase in mRNA structures and reduction in 

translation efficiency.  A recovery system consisting of Csps and RNase R 

facilitate recovery by unstructuring and degrading structured mRNAs. 
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Supplementary Figures 

Figure S1 
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Figure S2 
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Figure S3 

 

 

Figure S4 
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Figure S5 
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Figure S6 
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Supplementary Figures Legends 

Figure S1: DMS-seq effectively probes RNA structures in E. coli, related to Figure 1 

(A) DMS signal at all positions within well-expressed mRNAs in two biological 

replicates. 

(B) Schematic representation of the Gini index calculation 

(C) Lorenz curve of DMS-seq data of each gene in the operon represented in D 

(D) mRNA-seq, ribosome profiling, and DMS-seq data for a single operon. 

 

Figure S2: mRNA structure is organized around open reading frames, related to 

Figure 2 

(A) Plot of in vivo Gini index calculated on the first half of ORF body against the in vivo 

Gini index calculated on the second half of ORF body restricted to genes with GC 

content between 50% - 53.5%. 

(B) Plot of Gini index calculated on the first half of ORF body against the Gini index 

calculated on the second half of ORF body for samples modified with DMS in 

vitro.   

(C) Plot of Gini index calculated on adjacent ORFs in operons, calculated from mRNA 

refolded and modified with DMS in vitro.  Coloring indicates ratio in Translation 

Efficiency. 

(D) Plot of Gini index of unmodified mRNA calculated across the entire ORF body 

against in vivo translation efficiency for well-expressed ORFs. 

(E) Plot of predicted ∆G of computationally folded mRNA calculated across the entire 

ORF body against in vivo translation efficiency for well-expressed ORFs. 
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(F) in vivo Correlation (Spearman's ρ) between computationally predicted mRNA 

structure of the ORF, quantified by predicted ∆G of minimum free energy 

structure, and the translation efficiency of the ORF. ∆G index was calculated for 

300 nt windows that scan gene bodies, using genes that extend through the 300 nt 

window being examined, and is plotted at the center of each window. 

(G) Plot of predicted Shine-Dalgarno strength (Salis et al., 2009) against measured 

translation efficiency.  Genes with Gini indices in a tight range (.5 - .52) are 

indicated in cyan. 

(H) Plot of mean predicted interaction probability across all well-expressed open reading 

frames. 

 

Figure S3: Structure and translation efficiency remain correlated at 10°C, related to 

Figure 3 

(A) Plot of Gini index of in vivo DMS-modified mRNA calculated across the entire ORF 

body against in vivo translation efficiency for well-expressed ORFs, measured 30 

min following cold shock to 10°C. 

(B) Plot of Gini index of in vivo DMS-modified mRNA calculated across the entire ORF 

body against in vivo translation efficiency for well-expressed ORFs, measured 6hr 

following cold shock to 10°C. 

(C) Plot of Gini index of in vivo DMS-modified mRNA following addition of the 

translation initiation inhibitor against in vivo translation efficiency for well-

expressed ORFs.  TE was measured 8hr following cold shock, while structure was 

measured 40 min later following addition of kasugamycin. 
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(D) Plot of Gini index of in vitro DMS-modified mRNA calculated across the entire ORF 

body against in vivo translation efficiency for well-expressed ORFs.  Translation 

efficiency was measured 30 min following cold shock to 10°C. 

 

Figure S4: Csp deletion increases mRNA structure and reduces translation 

efficiencies, related to Figure 4 

Plot of Gini index of in vivo DMS-modified mRNA calculated across the entire ORF 

body against in vivo translation efficiency for well-expressed ORFs, measured in 

a ∆cspABEG strain at 6 hr following cold shock. 

 

Fig S5: CspB UTR structure is modulated by cold shock, related to Figure 5 

Change in structure of the cspA 5’ UTR upon cold shock.  The predicted structure of the 

cspA 5’ UTR was generated by constraining a minimum free-energy prediction 

with our DMS-seq measurements taken at 37°C (A) and immediately after shock 

to 10°C (B). The cold box element is highlighted in the blue box and the long 

range interaction regions is highlighted in a green box.  Start codon is indicated 

by a red box.  A color bar indicates the intensity of the DMS-seq signal at each 

position. DMS reactive bases (based on the ribosomal ROC derived threshold) are 

in yellow to red. 

  

Fig S6: CspB UTR structure is modulated during cold recovery, related to Figure 5 

(A) Histogram showing change in structure on Csp UTRs during cold recovery relative to 

other mRNAs.  Gini index was calculated for 150 nt windows tiling all expressed 
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mRNAs 6 hr vs 30 min after cold shock.  The difference in Gini index between 

timepoints for each window was calculated. 

(B) Plot of raw DMS signal at early and late times after cold shock, scaled relative to the 

most reactive position in the 5’UTR of cspB. Position 1 corresponds to nucleotide 

1,639,739 in E. coli genome. Regions with large change in DMS signal between 

timepoints are boxed. 

(C) Structure of cspB UTR 8hr after cold shock in ∆cspBG, presented as in Figure 5.  

Change in structure of the cspA 5’ UTR upon cold shock. 

 

Extended Experimental Procedures: 

Strains and growth conditions  E. coli K-12 MG1655 was used as the wild-type strain.  

All culture experiments were performed in MOPS medium supplemented with 0.2% 

glucose, all amino acids except methionine, vitamins, bases and micronutrients 

(Teknova).   Cells were grown in an overnight liquid culture at 37˚C, diluted to an OD420 

= .001 in fresh medium and grown  until OD420 reached 0.4 where samples were 

collected.  For 10°C samples, cultures were grown to OD420 = 1.1 at 37˚C and cold shock 

was performed by mixing 70mL of 37°C culture with 130mL of 0°C media, with 

continued growth of the culture in a 10°C shaker. Multiple deletion strains were 

generated by transduction of FRT-flanked deletion alleles from the Keio collection (Baba 

et al., 2006) followed by marker excision by Flp recombinase (Cherepanov and 

Wackernagel, 1995). 

Ribosome profiling sample capture  The protocol for bacterial ribosome profiling with 
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flash freezing was described (Li et al., 2014). Briefly, 200 mLs of cell culture were 

filtered rapidly and the resulting cell pellet was flash-frozen in liquid nitrogen and 

combined with 650 µl of frozen lysis buffer (10 mM MgCl2, 100 mM NH4Cl, 20 mM 

Tris-HCl pH 8.0, 0.1% Nonidet P40, 0.4% Triton X-100, 100 U ml-1 DNase I (Roche), 1 

mM chloramphenicol).  Cells were pulverized in 10-ml canisters pre-chilled in liquid 

nitrogen. Lysate containing 0.5 mg of RNA was digested for 1 h with 750 U of 

micrococcal nuclease (Roche) at 25°C. The ribosome-protected RNA fragments were 

isolated using a sucrose gradient followed by hot acid phenol extraction.  Library 

generation was performed using the previously described strategy (Li et al., 2014) 

detailed below. 

Total mRNA sample capture For experiments performed in parallel with ribosome 

profiling, total RNA was phenol extracted from the same lysate that was used for 

ribosome footprinting.  For experiments performed independently of ribosome profilng 

experiments, and for total mRNA used for in vitro DMS-seq experiments, 4mL of OD420 

= 0.4 culture was added to 500µL of ice-cold stop solution (475 µL of 100% EtOH and 

25µL acid phenol), vortexed, and spun for 2 min at 8000rpm.  Supernatant was poured 

off, and the cell pellet was flash frozen in liquid nitrogen. Total RNA was then hot acid 

phenol extracted.  For mRNA-seq experiments, ribosomal RNA and small RNA were 

removed from the total RNA with MICROBExpress (Ambion) or Ribozero (Epicenter) 

and MEGAclear (Ambion), respectively, following the manufacturers' protocols. mRNA 

was randomly fragmented as described (Ingolia et al., 2009).  For total RNA sequencing 

experiments, these subtractions were not performed.  The fragmented mRNA sample was 

converted to a complementary DNA library with the same strategy as for ribosome 
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footprints. 

mRNA-seq following rifampicin addition Rifampicin was added to a final 

concentration of 250 µg/mL at the designated time.  Total RNA-seq samples were 

prepared as described for mRNA-seq samples, except that tRNA and rRNA subtraction 

was not performed. 

Library generation for ribosome profiling and mRNA seq samples The footprints and 

mRNA fragments were ligated to miRNA cloning linker-1 (IDT) 

5rApp/CTGTAGGCACCATCAAT/3ddC/, using a recombinantly expressed truncated 

T4 RNA ligase 2 K227Q produced in our laboratory. The ligated RNA fragments were 

reverse transcribed using the primer 

5'/5Phos/GATCGTCGGACTGTAGAACTCTGAACCTGTCGGTGGTCGCC 

GTATCATT/iSp18/CACTCA/iSp18/CAAGCAGAAGACGGCATACGAATTGATGGT

GCCTACAG 3'. The resulting cDNA was circularized with CircLigase (Epicentre) and 

PCR amplification was done as described previously (Ingolia et al., 2009). 

DMS modification For in vivo DMS modification, 15 ml of exponentially growing E. 

coli were incubated with 750 µl DMS.  Incubation was performed for 2 min at 37°C, and 

for 45 min at 10°C.  For kasugamycin experiments, kasugamycin was added to a final 

concentration of 10 mg/mL after 8 hr at 10°C for 40 min prior to DMS modification.  

DMS was quenched by adding 30 ml 0°C stop solution (30% ß-mercaptoethanol, 25% 

isoamyl alcohol) after which cells were quickly put on ice, collected by centrifugation at 

8,000g and 4 °C for 2 min, and washed with 8 ml 30% BME solution. Cell were then 

resuspended in 450 µL total RNA lysis buffer (10 mM EDTA, 50 mM sodium acetate pH 
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5.5), and total RNA was purified with hot acid phenol (Ambion).  For in vitro DMS 

modifications, mRNA was collected in the same way as described above but from E. coli 

that were not treated with DMS. 2µg of mRNA was denatured at 95 °C for 2 min, cooled 

on ice and refolded in 90 µL RNA folding buffer (10 mM Tris pH 8.0, 100 mM NaCl, 6 

mM MgCl2) at 37°C or 10°C for 30 min then incubated in either .2% (95°C) or 4% 

(37°C and 10°C) DMS for 1 min (95°C), 5 min (37°C) or 40 min (10°C). The DMS 

reaction was quenched using 30% BME, 0.3 M sodium acetate pH 5.5, 2 µl GlycoBlue 

solution and precipitated with 1X volume of 100% isopropanol.  

Library generation for DMS-seq samples  Sequencing libraries were prepared as 

described (Rouskin et al., 2014). Specifically, DMS treated mRNA samples were 

denatured for 2 min at 95 °C and fragmented at 95 °C for 2 min in 1x RNA fragmentation 

buffer (Zn2+ based, Ambion). The reaction was stopped by adding 1/10 volume of 10X 

Stop solution (Ambion) and quickly placed on ice. The fragmented RNA was run on a 

10% TBU (Tris borate urea) gel for 60 min. Fragments of 60–70 nucleotides in size were 

visualized by blue light (Invitrogen) and excised.  Reverse transcription was performed in 

a 20 µl volume at 52 °C using Superscript III (Invitrogen), and truncated reverse 

transcription products of 25–45 nucleotides (above the size of the reverse transcription 

primer) were extracted by gel purification. 

Measurement of total protein synthesis 1µC of Perkin Elmer EasyTag 35S labeled 

methionine (Product # NEG709A) was mixed with 5µL 288 µmol unlabeled methionine 

and 24 µL media.  At the time of capture, 900 µL of culture was added to methionine 

mix, and was labeled on a shaker for the time of capture, 1 min at 37°C and 5min at 
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10°C.  After labeling, 100 µL of 50% trichloracetic acid on ice was added to the sample, 

which was vortexed and placed on ice.  Samples were left on ice for at least 20 min to 

allow precipitation.  Samples were then counted by running 100µL of sample through a 

25mm APFC glass fiber filter (Millipore APFC02500) pre-wetted with 750 µL of 5% 

TCA on a vacuum stand, and washing three times with 750 µL 5% TCA and three times 

with 750 µL 100% ethanol.  Filters were then placed in MP Ecolume scintillation fluid 

and counted. 

Sequencing Sequencing was performed on an Illumina HiSeq 2000 system. Sequence 

alignment with Bowtie v. 0.12.0 mapped the footprint data to the reference genomes 

NC_000913.fna obtained from the NCBI Reference Sequence Bank. Sequencing data 

from mutated strains were aligned to appropriately modifed versions of the 

NC_000913.fna genome. For ribosome footprint and mRNA-seq samples, the center 

residues that were at least 12 nucleotides from either end were given a score of 1/N in 

which N equals the number of positions leftover after discarding the 5' and 3' ends.. For 

DMS-seq samples, read counts were assigned to the base immediately 5' of the 5' end of 

each read, which is the base that was DMS-modified. 

Computational prediction of RNA structures For identification of unpaired bases, raw 

DMS-seq data was normalized to the most highly reactive residue after removing outliers 

by 95% Winsorisation (all data above the 95th percentile is set to the 95th percentile).  

Bases with DMS-seq signal greater that 20% of the signal on the most highly reactive 

residue (after Winsorisation) were called "unpaired".  For determination of rimM mRNA 

structures constrained by DMS-seq data, A Viennafold (Hofacker, 2003) minimum free 

energy model of the indicated region was generated, constrained by bases experimentally 
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determined to be unpaired in the indicated dataset.  For csp structure predictions, a 

conservative model was made in which the 20% of bases with highest DMS modification 

in the window were constrained to be unpaired.  Color coding by DMS signal was done 

using VARNA (http://varna.lri.fr/). 

Computing the agreement with ribosomal RNA  The secondary structure models for 

E. coli ribosomal RNAs were downloaded from Comparative RNA Website and Project 

database (http://www.rna.icmb.utexas.edu/DAT/3C/Structure/index.php). The crystal 

structure model was downloaded from Protein Data Bank (http://www.pdb.org, PDB 

entries 3I1M, 3I1N, 3I1O, and 3I1P). The solvent-accessible surface area was calculated 

in PyMOL, and DMS was modeled as a sphere with 2.5 A ̊ radius (representing a 

conservative estimate for accessibility because DMS is a flat molecule). Accessible 

residues were defined as residues with solvent accessibility area of greater than 2 A ̊ 2.  

Unpaired residues in DMS-seq data were identified as described above.  True positive 

bases were defined as bases that are both unpaired in the secondary structure model and 

solvent-accessible in the crystal structure model. True negative bases were defined as 

bases than are paired (A-U or C-G specifically) in the secondary structure model. 

Accuracy was calculated as the number of true positive bases plus the number of true 

negative bases divided by all tested bases. 

Translation efficiency calculation Data analysis was performed with custom scripts 

written for R version 2.15.2 and Python 2.6.6.  Mean ribosome density was calculated as 

described (Li et al., 2014). mRNA density was calculated by calculating the mean density 

of mRNA reads following a Winsorization applied to trim the top and bottom 5% of 
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reads.  For comparisons of translation efficiency between timepoints and between strains 

at 10°C, relative translation efficiencies were normalized by relative total protein 

synthesis, quantified through 35S-methionine incorporation as described above. 

Metagene analysis of ribosome run-off and DMS structure  Metagene analysis of 

ribosome run-off was perfomed as done previously (Ingolia et al., 2011).  Codons 600-

800, which appeared undepleted in all timepoints measured, were used to normalize 

timepoints. 

Calculation of Gini index on DMS-seq data All Gini indices were calculated using the 

R package "ineq" to calculate Gini over As and Cs in the region specified for each 

experiement.  For each DMS-seq sample, Gini indices were calculated only for genes that 

had greater than an average of 15 reads per nucleotide (A or C) across the gene body. 

Genes for which mRNA-seq data was discontinuous (due to an early termination event or 

an internal promoter, 1% of genes) were excluded from the analysis.  Specifically, Gini 

indices were calculated on mRNA-seq data, and a cut-off was created based on two 

standard deviations from the mean. 

Identification of adjacent open reading frames on operons Adjacent open reading 

frames in annotated operons often have differing levels of mRNA-seq reads, suggesting 

that they are not always on the same mRNA molecule.  To identify adjacent ORFs 

expressed as a single operon, we assessed mRNA-seq data for equivalent mean message 

level, and for signal continuity, as described below.  Equivalent mean message level was 

assessed by first determining the variability in mean mRNA-seq read density within 

individual ORFs.  There is a single transcript that extends over the entire body of the 
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large majority of ORFs, and so the variability in mean read density level in the first half 

of each ORF was compared to mean read density in the second half of each ORF, and the 

variability in this distribution was used to define a cut-off for ORFs on a single message. 

Adjacent ORFs that fell within a 2σ cut-off in mean level (calculated to be a 1.5-fold 

difference in mRNA level) were determined to have equivalent mRNA level, and were 

then assessed for signal continuity.  Signal continuity was assessed by first determining 

the distribution of read density in windows within messages.  Gini index of mRNA signal 

were calculated for all 50nt windows within ORF bodies, and the variability in this 

distribution was again used to define a cut-off for continuous mRNA regions.  Gini index 

were then calculated for 50nt windows tiling the region between adjacent open reading 

frames.  Gene pairs that fell within a 2σ cut-off defined by the intra-ORF distribution, 

were considered to be a pair of adjacent ORFs on a single message. 

Directionality of interaction predictions For the determination of directionality of 

interaction at ORF boundaries, sequence from -250 to +250 nt relative to the translation 

start site was extracted for each adjacent pair of ORFs.  A Viennafold (Hofacker, 2003) 

minimum free energy model of each 500nt sequence was then generated, constrained by 

DMS-seq dataset indicated, using DMS constraints as described above.  The predicted 

probability of each base interacting with each other base in each mRNA structure model 

was then extracted from the Viennafold output.  The mean probability of each position 

interacting with each other position across all analyzed messages was then calculated, 

generating a square matrix of interaction probability between all positions in the analyzed 

region.  For each position between -150 to +150 nt relative to the translation start site, the 

summed probability of that position interacting with any of the previous 100 upstream 
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positions was then calculated.  The same calculation was performed for the 100 

downstream positions.  The ratio between sum upstream interaction and sum downstream 

interaction probability was then calculated for each position. 

Identification of cold-induced open reading frames Cold-induced ORFs were 

identified by calculating synthesis rates through integrating ribosome profiling with 35S-

methionine total protein synthesis measurements.  At 37°C and at all timepoints 

following cold shock, the relative synthesis rate of each ORF was determined by 

multiplying total protein synthesis, measured by 35S-methionine total incorporation (see 

above) by the fraction of ribosome footprints mapping to that open reading frame.  To 

calculate 37°C synthesis, the 37°C doubling time (26 min) was multiplied by 37°C 

synthesis rate.  To calculate 10°C synthesis, the accumulated protein at each timepoint 

was multiplied by the window between that and the subsequent timepoint to estimate 

total synthesis within each window between timepoints.  The total synthesis during all 

windows spanning the growth arrest period was then summed, and the ratio of 10°C 

synthesis to 37°C synthesis was calculated.  For the large majority of genes, this ratio was 

<< 1, as the absolute total protein synthesis rate was down > 100-fold relative to 37°C. 

SD strength calculation For each open reading frame, SD strength was determined using 

the model established by (Salis et al., 2009).  We used the RBS Calculator established by 

Salis et al downloaded from http://www.github.com/hsalis/Ribosome-Binding-Site-

Calculator-v1.0.  
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CHAPTER 4 

Causal signals between codon bias, mRNA structure, and efficiency of elongation and 
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Causal signals between codon bias, mRNA structure, and 
efficiency of elongation and translation 

 
Cristina Pop1, Silvi Rouskin2, Nicholas T. Ingolia3, Lu Han1, Eric M. Phizicky4, Jonathan 

S. Weissman2, Daphne Koller1 

 
 
Abstract: Ribosome profiling data reports on the distribution of translating ribosomes, at 

steady-state, with codon-level resolution. We present a robust method to extract codon 

translation rates and protein synthesis rates from these data, and identify causal features 

associated with elongation and translation efficiency in physiological conditions in yeast. 

We show that neither elongation rate nor translational efficiency is improved by 

experimental manipulation of the abundance or body sequence of the rare AGG tRNA. 

Deletion of three of the four copies of the heavily used ACA tRNA shows a modest 

efficiency decrease that could be explained by other rate-reducing signals at gene start. 

This suggests that correlation between codon bias and efficiency arises as selection for 

codons to utilize translation machinery efficiently in highly translated genes. We also 

show a correlation between efficiency and RNA structure calculated both 

computationally and from recent structure probing data, as well as the Kozac initiation 

motif, which may comprise a mechanism to regulate initiation. 
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Introduction 

The translation of RNA into protein is the nexus of decoding genetic information into 

functional polypeptides and also a central biosynthetic process consuming a substantial 

fraction of the cell’s resources. Although apparently redundant nucleotide sequences 

encode each protein, usage of different synonymous codons is highly biased (Plotkin & 

Kudla, 2011). These preferences are strongest in highly-expressed genes throughout 

diverse organisms (Man & Pilpel, 2007; Hershberg & Petrov, 2008), suggesting selective 

pressure for the efficient use of the translational apparatus during the synthesis of 

abundant proteins. At the same time, less common codons may be used in order to 

modulate translation, or may arise due to competing sequence constraints such as mRNA 

secondary structure. While the evolutionary signature of codon bias is clear, its 

biochemical basis remains unsettled. 

 

Ribosome profiling (Ingolia et al, 2009) is an emerging technique for profiling translation 

in vivo that is well suited to provide insights into the factors controlling the speed of 

translation as well as the amounts of each protein produced by the cell. Ribosome 

profiling data comprise a set of ribosome-protected fragments (footprints) marking 

ribosome density along mRNA transcripts with codon resolution. We can therefore 

extract from these data both the yield of each protein (protein synthesis rate) and the rate 

at which each codon is translated (codon translation rate or elongation rate). However, 

estimation of these two quantities is nontrivial, and ad-hoc approaches disregard 

differences in elongation rates between genes or exclude mRNAs with sparse footprint 
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coverage. A number of studies with different analysis approaches present varying 

hypotheses for the mechanisms underlying variation in elongation and translation 

efficiency in yeast and other organisms (Tuller et al, 2010a; Tuller et al, 2010b; Ingolia et 

al, 2011; Tuller et al, 2011; Stadler & Fire, 2011; Qian et al, 2012; Charneski & Hurst, 

2013; Shah et al, 2013; Woolstenhulme et al, 2013; Lareau et al, 2014; Gardin et al, 

2014). These include codon effects mediated by tRNA abundance or wobble base pairing, 

as well as effects of mRNA structure and the nascent peptide on the ribosome. 

 

Here, we present a rigorous statistical method that estimates, from ribosome profiling 

data, both elongation rates and protein synthesis levels on individual transcripts; as a 

byproduct, it also estimates translation efficiency (TE), the propensity of a transcript to 

generate complete protein, defined as the total amount of protein produced from an 

mRNA message, and calculated here as our model-derived protein synthesis rates divided 

by the mRNA levels. We use our robust modeling framework in conjunction with new 

high-resolution data from wild-type yeast, along with three tRNA mutants, to explore 

some of the conflicting views on the causality between codon usage and elongation rate, 

as well as between codon usage and TE, in physiological conditions at a genome-wide 

level. 

 

We first apply our model to examine biological factors contributing to local translation 

kinetics. Due to differences in tRNA levels that correlate with synonymous codon bias, 

variability in codon translation rates observed per gene is commonly thought to be 

governed by the abundance of cognate tRNAs (Varenne et al, 1984; Sorensen et al, 
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1989). However, codon bias does not correlate with indirect measures of decoding speed, 

at least in bacteria (Bonekamp et al, 1989; Curran and Yarus, 1989). Similar to other 

observations in ribosome profiling datasets (Li et al, 2012; Qian et al, 2012; Charneski & 

Hurst, 2013), we find that codon usage bias is a poor predictor of elongation rate. We 

further test for causal influence and illustrate that experimentally manipulating tRNA 

abundance or body similarly does not affect the elongation rate when decoding with the 

manipulated tRNA. In addition, our model identifies positions where elongation is slower 

than expected based on codon identity and suggests that such pauses commonly occur 

closer to the 5’ end but are unrelated to codon bias. 

 

Finally, we use our model to disentangle the factors underlying message-specific 

differences in translational efficiency. In physiological conditions, initiation rather than 

elongation may largely determine overall protein production; initiation predominates 

when it is slow relative to the time needed to elongate through the width of one ribosome 

(~10 codons), so that translating ribosomes rarely interfere with each other, and when 

elongation is highly processive, so that most initiation events result in a protein 

(Andersson & Kurland, 1990; Bulmer, 1991; Arava et al, 2003; Lackner & Bahler, 2008). 

Analysis of our tRNA-perturbed mutant experiments shows that efficiency is not causally 

affected by improving tRNA levels, leading us to focus on initiation signals in 

understanding variation in translational efficiency across different messages. Several 

causes for slow initiation have been proposed: codon bias at the 5’ end (Tuller et al, 

2010a; Tuller et al, 2011), secondary structure (Kudla et al, 2009; Gu et al, 2010; Kertesz 

et al, 2010; Tuller et al, 2011; Keller et al, 2012; Zur & Tuller, 2012), and gene length 
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(Arava et al, 2005; Lackner et al, 2007; Ding et al, 2012). We find that a Kozak-like 

initiation motif (Kozak, 1981) and lack of structure around the start codon are predictors 

of TE. Overall, our experimental and analytical results provide support to a previously 

proposed model in which initiation is rate-limiting in physiological conditions (Bulmer, 

1991), in which initiation rate is affected largely by mRNA sequence features, and where 

translational efficiency is not significantly affected by codon usage (Andersson & 

Kurland, 1990; Bulmer, 1991). In contrast with experiments in non-physiological 

conditions, our results endorse the resulting explanation that, in endogenous conditions, 

perhaps in combination with other pressures, selection for efficient use of ribosomes and 

associated factors in the synthesis of highly-translated proteins is a potential driver of the 

observed codon usage biases. 

 

Results 

Queuing Model for Elongation Process 

To extract high-quality estimates of protein synthesis rates and codon translation rates 

from the ribosome footprint data, we model the process of ribosome flow, using gene- 

and codon-dependent parameters, and the physical sampling that occurs in the 

experimental protocol from which these data are derived. Our design choices are 

motivated by potential biases in the data including sparse footprint counts for low 

abundance genes, biases due to the position along the mRNA, and biases due to the 

identity of the mRNA. 
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Our model inputs are the set of ribosome footprint counts d at each codon in the genome, 

sparsely sampled (due to sequencing depth) from an (unobserved) steady-state 

distribution π . In particular, dmk is the observed footprint count at position k in mRNA 

message m and πmk encodes the fraction of ribosomes at (m,k). Consequently, the 

distribution must satisfy flow conservation constraints: if ribosomes do not fall off the 

message, then due to conservation of matter, the protein synthesis rate Jm for message m 

(the ribosome flow out of the stop codon) must be the same as the flow Jmk from any 

position k on m. If we define µmk as the dwell time of the ribosome at (m,k), flow 

conservation also implies that rapidly translating positions (small µmk) are occupied for a 

smaller fraction of time (small πmk) than positions that are slow to translate. The dwell 

time µmk is the inverse of the rate at which the ribosome elongates off of position (m,k) 

and so intuitively depends on the amount of time the ribosome requires to perform one 

elongation step (recruit tRNA, form the peptide bond, and translocate). Thus, at steady-

state, flow Jmk is proportional (up to a constant encoding the number of ribosomes in the 

system) to πmk / µmk, where we use dmk throughout as our observed proxy for πmk. Figure 1 

shows the relationship between the variables.  

 

We use the counts d to estimate the quantities {µmk} and {Jm} in a novel probabilistic 

regression accounting for flow conservation and assuming steady-state and no ribosome 

fall-off. Briefly, we optimize over two terms: 

 

max
!!! ,!!

!"# !!! !!" !! exp −!!! − !!! log !!! − log !! !

!,!!,!
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The first term is a standard likelihood term for the data, using a model encoding flow 

conservation. Since a single ribosome profiling dataset does not contain enough data to 

robustly infer a separate µmk for each (m,k), we use the same dwell time µm
c for every 

occurrence of the same codon c within message m, making µm
c an expected dwell time 

for codon c on message m. The second term additionally softly constrains µm
c to be 

similar to a global codon dwell µc, based on the intuition that the same codon behaves 

similarly throughout the cell. To optimize the objective, we (1) estimate the dwell times 

µm
c and µc with flow Jm fixed and (2) set flow Jm to be the average of the flows Jmk 

(namely, the dwell-corrected footprint counts dmk / µmk) across each message: Jm = Σk in m 

(dmk / µmk) / Lm (see Materials and Methods for details). 

 

We ran our model on a ribosome profiling dataset gathered for Saccharomyces cerevisiae 

in rich medium, using a flash-freezing technique as described before (Ingolia et al, 2012) 

(see Materials and Methods). To verify the validity of our estimated parameters, we 

compared our protein synthesis rate Jm to two external measures of protein abundance – 

mass-spectrometry-based levels from de Godoy (2008) and GFP-based levels from 

Newman et al (2006) – and obtained strong correlations (Pearson r = 0.787 and 0.682, 

respectively, p = 0). These improve on the protein abundance estimates from Ingolia et al 

(2009), computed as the simple average of (uncorrected) footprint counts per message 

(Figure E1). While correlation with these standard estimates of protein abundance is 

reassuring, these methods have general limitations such as ascertainment bias for less 

abundant proteins as well as technical limitations such as the impact of fusion tags on 
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protein levels. In addition, ribosome profiling measures translation and protein synthesis, 

but steady-state protein abundance is also affected by rates of protein degradation. 

 

While the protein synthesis flux is perhaps the most obvious interesting quantity that can 

be extracted from profiling data, we can also derive other quantities of interest from our 

learned model parameters. We compute translation efficiency TEm of a given mRNA 

molecule m by dividing protein synthesis rate Jm by mRNA transcript levels Mm, derived 

from mRNA fragment data collected separately in the ribosome footprinting experiment. 

We can identify codon-dependent effects on translation from differences in µc. By 

looking at footprint count deviation from expected dwell time at each (m,k), we can also 

examine differences among codons on the same message. In the following sections, using 

the parameters estimated under our robust probabilistic framework, we perform a 

comprehensive analysis of the biological factors influencing local and global dynamics of 

translation. 

 

Codon translation is not affected by tRNA abundance or body sequence 

A number of studies in Escherichia coli initially identified codon usage and the 

availability of tRNA as the dominant force for codon translation rate (Varenne et al, 

1984; Sorensen et al, 1989). Later studies found no correlation between measured rates 

and tRNA abundance or codon frequency (Bonekamp et al, 1989; Curran & Yarus, 1989; 

Sorensen & Pedersen, 1991). However, all of these studies measured translation speed 

indirectly, on individual and potentially idiosyncratic reporter systems. We explore these 

competing hypotheses in the physiological conditions of our yeast data set. If tRNA 
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abundance were rate-limiting for elongation, we would expect a positive correlation 

between codon translation rate and tRNA abundance. However, as shown in Figure 2, the 

correlation is insignificant (Spearman r = 0.135, p = 0.413 for Cy5 and r = 0.125, p = 

0.448 for Cy3 from microarray tRNA measurements (Dittmar et al, 2004)). A similar 

result (r = 0.220, p = 0.088) is also obtained when comparing to tAI, a measure of codon 

bias based on tRNA gene copy number relative to the overall collection of isoacceptor 

tRNAs (dos Reis et al, 2004). If we restrict the analysis to the slowest synonymous codon 

(in terms of tAI), to the fastest, or to the average per amino acid, the correlation to tAI 

does not improve: r = - 0.11 (p = 0.64), r = -0.26 (p = 0.27), and r = -0.36 (p = 0.12), 

respectively. Finally, the same insignificant correlation exists in the raw footprint data (r 

= 0.109, p = 0.401; baseline method for rate described in Materials and Methods) and 

was also observed in another analysis of the yeast data set from Ingolia et al (2009), in 

which codon dwell time was estimated as the ratio of observed codon frequencies in the 

footprint data relative to expected codon frequencies in the mRNA fragment data (Qian et 

al, 2013). 

 

Our analysis of elongation rates on endogenous mRNAs in the context of the co-adapted 

cellular tRNA pool addresses the effects of codon usage in natural physiology, but may 

be confounded by this co-adaptation and cannot directly test the causal links between 

various correlated mRNA features. To measure the effect of tRNA abundance on codon 

translation rate directly, we created three mutant yeast species to test whether (1) tRNA 

over-expression speeds up translation, (2) the tRNA body itself causes the tRNA-

dependent rate effect observed in other studies, or (3) depletion of tRNA slows down 
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ribosomes. In our first mutant, AGG-OE, the tRNA recognizing AGG (namely, 

tRNAArg(CCU)) was over-expressed on a high-copy plasmid; in mutant AGG-QC, the body 

sequence of the tRNA recognizing AGG was swapped with the body of a more preferred 

tRNA (as measured by tAI); and in mutant ACA-K, 3 out of 4 copies of the tRNA 

recognizing ACA were deleted from the genome. The AGG mutants had a URA marker 

and were compared against a wild-type sample with a URA plasmid (see Materials and 

Methods). For ACA-K, we checked that the abundance of the tRNA for ACA (namely, 

tRNAThr(UGU)) did decrease to about 30% of wild-type (Table E1). In the AGG-OE 

mutant, we measured the amount of total and aminoacylated tRNA for tRNAArg(CCU) (see 

Materials and Methods) and verified that the tRNA was over-expressed by 13.8-fold 

(+/- 0.4), based on an analysis of two independently derived RNA samples, and remained 

charged at a level similar to wild-type (87%) (Figure E2). For the AGG-QC mutant, we 

similarly verified that the amount of charged tRNAArg(CCU) was similar to wild-type 

(Figure E2). We generated ribosome profiling data and ran our model on these mutants to 

test whether AGG codons are translated faster in AGG-OE and AGG-QC and whether 

ACA codons are translated slower in ACA-K. We observe no significant change in the 

elongation rates of the affected codon in any of the three mutants compared to wild-type 

(Figure 3, E3); the overall correlation between ACA-K and wild-type is not as tight as for 

other mutants, but this is due to changes affecting all codons, not only ACA. We verified 

the result by inspecting the footprint counts at the perturbed codon relative to adjacent 

counts in the mutants compared to wild-type and saw no unusual increase or decrease 

(Figure E4). One prevailing hypothesis (Welch et al, 2009) is that the amount of charged 

as opposed to total tRNA is the true predictor of codon elongation; our measurements of 
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aminoacylated tRNA suggest that these levels were manipulated as expected and that this 

is not a confounding factor in the mutant samples. Hence, our results suggest that several-

fold changes in tRNA abundance do not affect ribosome dwell time.  

 

Translation efficiency is mildly affected by tRNA knockdown but not by 

overexpression 

One of the major goals of codon optimization in biotechnology is an increase in protein 

yield. Studies done on transgenes expressed at a large fraction of cellular mRNA 

abundance report increased protein abundance when the mRNA was optimized for codon 

bias (Gustafsson et al, 2004; Lavner & Kotlar, 2005; Burgess-Brown et al, 2008), 

suggesting that codon usage contributes to efficiency (Supek & Smuc, 2010; Tuller et al, 

2010b). However, other studies observed that optimizing codon adaptation of a reporter 

does not significantly improve TE or protein yield (Wu et al, 2004; Kudla et al, 2009; 

Welch et al. 2009; Hense et al, 2010; Letzring et al, 2010; Shah et al, 2013). Our 

experiments likewise provide support for the view that the TE of endogenous mRNAs is 

unchanged by effective codon optimization achieved by changes in the tRNA pool 

(Figure 4). We find that increasing tRNA abundance or replacing the tRNA body 

sequence by one with higher tAI does not improve efficiency: most genes remain 

unchanged in TE between the wild-type and mutant samples (Pearson r = 0.96 for AGG-

OE and r = 0.95 for AGG-QC). Further, the top 200 genes that do deviate most in TE 

relative to the wild-type sample have mutant TE that is both lower (reduced TE genes) 

and higher (increased TE genes) compared to wild-type, with bias towards reduced TE 

genes (134 reduced vs 66 increased for AGG-OE and 141 vs 59 for AGG-QC). In AGG-



! 115!

OE, we observe no correlation between the fraction of AGG codons per message and the 

change between mutant and wild-type TE (Spearman r = -0.0057, p = 0.6775); we would 

expect a positive correlation if increasing tRNA abundance increased TE. Further, despite 

the many-fold overexpression of tRNA, the correlation between TE and fraction of codon 

per message for AGG is not higher than the correlation for any of the other codons 

(Figure 4). AGG-QC behaves similarly, such that manipulating the tRNA to be “faster” 

does not lead to a scenario where AGG outperforms other codons in affecting translation 

efficiency. Finally, these observations also hold if we look at protein synthesis rates 

instead of TE (Figure E5). 

 

While improving codon optimization by changes in tRNA structure or abundance does 

not seem to causally affect TE, we do see evidence for a modest impact from tRNA 

depletion (Figure 4). Mutant and wild-type TEs are generally correlated in the ACA-K 

mutant (Pearson r = 0.95). Although there are more reduced TE genes than increased TE 

genes (107 versus 93), this difference is not significant via a permutation test (see 

Materials and Methods). However, we find a negative correlation, the lowest of all 

codons, between the fraction of ACA codons per message and the change in TE between 

mutant and wild-type (Spearman r = -0.066, p < 10-5), as we would expect if decreasing 

tRNA abundance decreases TE through a direct effect on its cognate codon. One 

explanation is that tRNA reduction could compromise TE if the demand is higher than 

the supply – the number of ACA occurrences in the genome is about the average number 

of occurrences over all codons, but we reduced its levels below those of any other tRNA. 

However, if protein synthesis and thus TE are controlled by initiation, this implies some 



! 116!

feedback from slowed elongation on initiation, whereby affected ACA codons might 

stack ribosomes. In particular, reduced TE genes compared to increased TE genes have 

slower-than-expected codons, including ACA, closer to the 5’ end and stronger pausing 

in the first 100 codons (Figure E6; significant under Kolmogorov-Smirnov test; see next 

section for definition of slower-than-expected codons as “outliers”). These confounding 

factors might contribute to the decrease in TE for ACA-heavy genes. Alternatively, 

ribosome stacking at ACA codons could induce fall-off and reduced processivity that 

manifests as decreased TE. 

 

To situate our results in the context of many previous studies on codon bias and tRNA 

abundance, we note that our observation focuses on endogenous messages with 

physiological or near-physiological tRNA levels. When the tRNA pool is limited 

compared to the number of free ribosomes, as in strong overexpression of transgenes, 

simulations indeed show that large demand for tRNAs can be rate-limiting (Chu et al, 

2011; Chu & von der Haar, 2012; Shah et al, 2013). Experiments showing rate-limiting 

effects of tRNA abundance likely operated in this non-physiological regime. In addition, 

manipulation of codon usage rather than the tRNA abundance can perturb mRNA 

structure and other non-coding sequence features; our experiment is less susceptible to 

those issues. 

 

Factors for elongation efficiency 

The notably modest effect of dramatic changes to the tRNA pool motivates the question: 

what signals do affect elongation efficiency and translation efficiency? We first take 
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advantage of the ribosome profiling data to understand elongation efficiency – the time 

for a ribosome to finish translating a transcript once initiated – by studying rate-limiting 

elongation signals via inspection of outliers in the footprint counts. Based on the 

observed footprint counts and our model parameters for expected codon dwell time, we 

define slow outliers and fast outliers at each position k along a message m as positions 

where ribosomes are stalled more or less than expected, respectively. We denote their 

deviation from expected dwell time as outlier strength Δmk (see Materials and 

Methods). We considered a broad array of potential correlates of Δmk, based on literature 

hypothesizing their association with variation in codon translation rate or pausing, 

classified into eight categories (Table E2): position on message, structure in downstream 

windows, protein folding, wobble basepairs, reuse of tRNAs from nearby codons, 

downstream RNA binding protein motifs, nascent peptide effects, and global features. 

Table E3 shows these correlations, which include significant features in the position, 

structure, wobble, and nascent peptide categories. We discuss these below and in Note 

E1. 

 

The strongest correlation to outlier strength for slow outliers is proximity to the 5’ end, 

with larger pauses occurring closer to the beginning of a message, even relative to gene 

length or even when aligned by stop codon as opposed to start codon (position from 5’ 

correlates to Δmk with Spearman r = -0.038; position from 5’ per length with r = -0.136; 

and position from 3’ end with r = 0.118, p ≈ 0 for all). Similar observations of increased 

ribosome occupancy at the 5’ end have produced various hypotheses for the causal basis. 

In the “ramp” model (Tuller et al, 2010a), the presence of more slow codons (low tAI) at 
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the beginning of a message is thought to separate ribosomes early to avoid the wasteful 

expenditure of resources on stacked, idling ribosomes. However, we observe a correlation 

between position from 5’ end and slow outlier strength even when conditioning on the 

codon (Figure 5), and thereby controlling for differences in codon usage at different 

positions within the gene, suggesting that there is an initial low translation speed, 

regardless of codon usage, which gradually increases as translation proceeds. 

Additionally, our model helps account for length, position, and abundance biases when 

calculating outliers in a particular message in two ways: first, we include message-

specific codon dwell times, and, second, we exclude the first 100 codons from each gene 

during model learning (see Materials and Methods) to avoid inflating or otherwise 

biasing the expected rates µm
c and µc. Our analysis indicates that pausing occurs at the 5’ 

end, even after accounting for major factors such as codon bias and gene length. 

 

Other explanatory signals have been suggested for pausing in ribosome profiling datasets 

(Stadler & Fire, 2011; Li et al, 2012; Charneski & Hurst, 2013). Our analysis shows a 

(mild) correlation between pausing and computationally-predicted downstream mRNA 

secondary structure (Spearman r = 0.021, p ≈ 0 with structure measured by the density of 

stems). This correlation is reproduced when considering experimentally derived in vivo 

structure data from high-throughput DMS probing of unpaired A and C bases (Rouskin et 

al, 2013) (r = -0.017). It is also maintained when we restrict our analysis to slow outliers 

in the first 100 codons (r = 0.016 for density of stems, though only r = -0.007 for in vivo 

energy, potentially due to genes with short UTRs and the decreased reliability of DMS 

structure probing data at ~20nt or less from the 5’ end), and so the effect is not 
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necessarily caused by structure elsewhere on the strand. Single molecule experiments 

with bacterial ribosomes (Chen et al, 2013) found that some hairpin and pseudoknot 

constructs at varying distances downstream of the active codon can slow down the 

ribosome; structural energy could therefore potentially contribute to the excess ribosome 

density at the 5’ end. We also see a positive correlation on that same order of magnitude 

between slow outliers and the number of proline codons in the two sites upstream of the 

active codon (r = 0.078, p ≈ 0), as observed in other organisms (Ingolia et al, 2011; 

Woolstenhulme et al, 2013). Two correlations that we observed are not expected on the 

basis of previous studies. A study showing pausing specifically at CGA (Letzring et al, 

2010) suggests slower elongation on wobble base pairs, whereas we observe the opposite 

correlation; this discrepancy might arise because the wobble effect is limited to a few 

specific codons, or to repeated wobble codons, or because of an incomplete 

characterization of codon / anticodon pairings which limits our assignment of wobble 

decoding. The correlation to charge observed by Charneski & Hurst (2013) holds only 

when considering the number of Arg and Lys residues in a window upstream of the 

active codon, although this result was later attributed to technical artifacts relating to the 

strand orientation (Charneski & Hurst, 2014). 

 

Factors correlating with translation efficiency 

While elongation efficiency measures time required to synthesize a new protein, 

translation efficiency measures the throughput of protein synthesis. Besides codon 

adaptation, which we find to play little or no causal role in improving efficiency, other 
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significant correlates to TE include structural features and the sequence motif around the 

start codon (Figure E7). 

 

Structure is reduced near the translation start site in many organisms (Gu et al, 2010; 

Zhou & Wilke, 2011) and, in combination with specific structural motifs downstream, 

can promote or halt initiation (Kozak, 1990; Kochetov et al, 2007; Robins-Pianka et al, 

2010). We performed a sliding window analysis (see Materials and Methods and Figure 

6) to correlate TE with RNA secondary structure in 40nt windows along the gene, for 

both experimental in vitro and in vivo structural energy (Rouskin et al, 2013). The 

window near the start codon is most significant, as reported previously for computational 

and in vitro structure measurements (Kudla et al, 2009; Kertesz et al, 2010; Tuller et al, 

2010b; Keller et al, 2012); the positive correlation indicates that increased TE 

corresponds to loose structure in this region. Indeed, this is also the window with highest 

energy, corresponding to the lowest structure, as averaged over all genes (first red line in 

Figure 6). Interestingly, the correlation to TE for in vivo structure is less pronounced and 

the window is shifted 3 codons downstream. We call this Window A. 

 

Our attention was also drawn to the window downstream of the start codon at ~60nt in 

vitro and ~80nt in vivo (second red line in Figure 6) with the lowest energy (more 

structure) compared to neighboring positions. We call this Window B. The most likely 

role for this energy barrier seems to be a stalling mechanism. Ribosome density is high 

nearby: at 135nt (approximately two to three ribosome footprints downstream), our 

model-estimated ribosome density has a notable peak that is reduced when we exclude 
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outliers, which capture positions where sufficient pausing could stack ribosomes (Figure 

E8). Although properly placed downstream structure can improve the efficiency of 

initiation by stalling the scanning pre-initiation complex (Robins-Pianka et al, 2010), or 

might be selected for heavy structure in order to prevent other regions (namely, around 

the start codon) from being paired, the lack of significant correlation to TE for Window B 

suggests that ribosome flow control here optimizes other aspects of translation besides 

throughput. 

 

In addition to low structure at the start codon, initiation may be assisted by recognition of 

a 12-mer motif around the start codon called the Kozak sequence in eukaryotes (Kozak, 

1981), derived in yeast based on a sequence consensus from highly expressed genes by 

Hamilton et al (1987). As expected, due to a tight correlation between mRNA abundance 

and TE (Figure E7), similarity to the Kozak motif correlates strongly to TE (Spearman r 

= -0.21, p < 10-45) (measuring similarity by Kullback-Leibler divergence to the position-

weight matrix where 0 divergence means a closer match). The 3rd nucleotide preceding 

AUG is the most significant (Spearman r = -0.16, p < 10-25), consistent with experimental 

measures of initiation efficiency after modifying positions in the Kozak site (Yun et al, 

1996; Looman & Kuivenhoven, 1993). Using a linear regression model for predicting TE 

based on a set of correlates suggested in literature (see Materials and Methods), we 

learn a refined Kozak motif to reflect highly efficient genes (Figure 7). Our learned 

Kozak motif reduces the error of our regression model predictions relative to an 

equivalent model using the original motif (from 0.83 to 0.75, averaged over 100 test sets 

selected randomly, compared to a null model error of 0.96) (Table E4). This indicates 
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that our refined motif better corresponds to highly translated genes, likely because it was 

trained directly on translation efficiency measurements rather than on a proxy such as 

mRNA abundance. 

 

Finally, we tested the correlation between translation efficiency and other mRNA features 

often discussed in literature (Figure E7). We find a negative correlation to evolutionary 

rate that is suggestive of the intuitive fact that more conserved genes are more highly 

translated. The positive correlation we find with mRNA abundance suggests a model of 

co-expression where the need for high protein abundance drives high translation of 

abundant transcripts. Consistent with previous studies (Ingolia et al, 2009), we observe a 

negative correlation to length, but it is not significant. We also find a positive correlation 

(although weaker than that for tAI) to the codon translation rates geometrically averaged 

over the codons within a gene. Lastly, RNA-binding proteins (RBPs) have recently 

received attention for their roles in post-transcription regulation, and we also see high 

Spearman correlations between RBP occupancy and TE. When looking at enrichment of 

15 proteins, we find the expected correlation to translation efficiency (as suggested by 

literature) in eight of ten cases. One of the two “unexpected” proteins, scp160, was 

recently reported to be required for translational efficiency of particular mRNAs in yeast 

(Hirschmann et al, 2014), even though it correlates negatively to ribosome occupancy in 

Hogan et al (2008); our analysis encouragingly suggests the former correlation. Note E1 

has further discussion. 
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Discussion 

In this paper we present a statistical model to extract codon translation rates and protein 

synthesis levels from ribosome profiling data. This robust framework allows us to shed 

new light on causality in regulation of translation and characterize the features associated 

with efficient elongation and translation. Although codon usage is a strong correlate to 

TE (Figure E7), our mutant experiments suggest (via the correlation between codon bias 

and tRNA abundance) that codon usage may not causally influence efficiency. The direct 

impact of codon usage on efficiency and the basis of the selective force underlying codon 

bias has remained a topic of controversy for decades. Some authors have proposed that 

codon optimization serves directly to enhance the translational efficiency of specific 

genes, perhaps by speeding elongation on their mRNAs. Our work provides direct 

experimental evidence against this view. Rather, our work is consistent with an 

alternative model, aligned with previous results for Escherichia coli (Kudla et al, 2009), 

in which codon bias in highly translated genes results from selection to optimize 

utilization of the translational machinery, whose abundance and production represents a 

major limitation on cell growth (Andersson & Kurland, 1990; Bulmer, 1991; Kudla et al, 

2009); this selection induces a correlation without implying that increasing codon bias 

optimizes efficiency on individual genes (Welch et al, 2009). In this view, initiation is 

rate-limiting and thereby determines translational efficiency. When the demand-supply 

balance for a tRNA is not compromised by extremely high expression of a transgene not 

adapted to the host organism, we propose that selective forces beyond the TEs of 

individual messages guide the distribution of codons. The positive correlation between 

elongation rate and TE suggests that one contributor could be selection for efficient use 
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of ribosomes and translation factors and that this selective force is strongest for high-

expression, high-TE genes. Such selection pressure is consistent with studies of overall 

cell growth and protein synthesis, which indicate that the translational apparatus is rate-

limiting for cell growth and that reduction in the amount of ribosome time devoted to 

producing an abundant protein can speed cell growth (Andersson & Kurland, 1990; 

Arava et al, 2003; Kudla et al, 2009; Mitarai & Pedersen, 2013). As elongation rate is not 

the strongest correlate to TE, other mechanisms also deserve further study. For example, 

there may be selective pressures on the mRNA sequence itself (e.g., to induce certain 

secondary structures), which in turn create pressure in the cell to ensure a sufficient 

supply of tRNAs for efficient translation of the highly translated messages. Our results 

are also consistent with the prevalent view that initiation is typically the rate-limiting step 

in protein synthesis, which does not provide a clear mechanism for codon usage in the 

body of a gene to affect its efficiency, and particularly not through increased elongation 

rates. Instead, tRNA levels are likely forced to match the lack of disfavored codons by 

selection against the cost of tRNA production or against poor decoding accuracy. 

 

Our model is designed to account for the complexities of ribosome profiling data while 

keeping parameter estimation tractable. Although average footprint density on a gene is 

well correlated to protein abundance, outliers can pull the estimate provided by the mean 

away from the true level, especially when ribosome stacking is common. Thus, properly 

accounting for differential elongation rates can improve inference of protein synthesis 

levels from this data. We maintain a simple translation model (for example, we do not 

explicitly include a rate of ribosome falloff or an analytical treatment of codons being 
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processed in series), but our design choices trade-off for model simplicity, algorithmic 

stability, and smoothing of noisy data. Using one model parameter for all codon instances 

in a gene, as opposed to an individual dwell per position, has several advantages: it 

averages out sequence biases in footprint fragments, makes the optimization algorithm 

less susceptible to local minima and hence robust to parameter initialization, and allows 

us to infer parameters even for low abundance genes by offsetting the lack of data with 

soft prior constraints. We reassuringly find qualitatively similar results when we replace 

our refined protein synthesis rates with a simple average of the footprints per gene, while 

obtaining better quantitative estimates compared to existing protein abundance datasets. 

More physics-based or simulation models (Zhang et al, 1994; Reuveni et al, 2011; Tuller 

et al, 2011) require knowledge of the kinetic parameters of translation, can necessitate 

grossly simplifying assumptions such as a single codon translation rate per gene, base 

certain model quantities on a limited set of features, or directly assume that codon rate is 

correlated to codon adaptation. In comparison, our method reduces the number of 

assumptions made by directly modeling the experimental processing and fitting the 

model parameters to the data under the single concept of flow conservation. On the other 

hand, methods that aggregate the data directly (Qian et al, 2012; Charneski & Hurst, 

2013; Gardin et al, 2014), similar to our baseline method for calculating codon translation 

rates, do not readily lend themselves to computing other quantities. For example, because 

we have an underlying model, detection of outlier codon positions follows easily within 

our framework, whereas other works rely on choosing an adjacent window of appropriate 

size to compare counts. Similarly, we can easily study other potentially interesting 

effects, such as codon translation rate variance within genes and among genes. Finally, 



! 126!

our method would particularly be useful in situations where ribosomal profiling data is 

scarce or noisy. By using a probabilistic model, we infer rates of interest from the 

observed, noisy data without needing to exclude genes with sparse information. With the 

growing usage of ribosome profiling, a robust framework for studying rates of elongation 

and synthesis is essential. 

 

Our resulting analyses address the contributions of initiation versus elongation to 

efficiency (Arava et al, 2003; Lackner & Bahler, 2008; Shah et al, 2013). While efficient 

usage of ribosomes and elongation factors influence the overall amount of protein 

produced from the whole genome, initiation may dictate differences between genes 

(Firczuk et al, 2013). We characterize two initiation signals that could play a role in 

translation regulation via a two-stage metering-light model: reduced structure around the 

start codon and favorable sequence context to promote ribosome binding, followed by an 

increase in structure that could, in turn, serve to reduce misfolding of the emergent 

polypeptide by allowing sufficient time for recruitment of chaperones to the ribosome 

exit tunnel (Fredrick & Ibba, 2010). This barrier could reflect the observed universal per-

gene effect, independent of codon identity, whereby the strengths of slow outlier 

positions correlate to 5’ end proximity. Since translation is resource-heavy, requiring 

tRNAs, mRNAs, and ribosomes, with the latter being especially costly to produce, we 

intuit that the cell must balance use of these finite resources while at the same time 

producing functional protein products. Structure around the 5’ end could be one of the 

key mechanisms through which the cell regulates translation so as to avoid wasting 

resources.  
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The region of slow elongation at the 5’ end certainly merits further exploration. In 

contrast to the slow-codon ramp proposed in Tuller et al (2010a), our model shows that 

while there may be an abundance of low tAI codons near the 5’ end, these codons do not 

cause slow elongation (Figure E9). We find (mild) correlations between pausing and 

downstream structure, between tAI and downstream structure over the first 50 codons of 

all genes (Spearman r = 0.007, p = 0.03 in vitro and r = 0.009, p = 0.003 in vivo), but not 

between codon usage and codon translation rate. A study performed over diverse 

bacteria, controlling for GC content, proposes that structure drives codon usage early at 

the 5’ end (Bentele et al, 2013); in yeast, there may be similar selection whereby 

structure-related constraints induce a low-tAI ramp.  

 

The impact of secondary structure on translation is complex. In addition to a role in 

initiation, high structure regions could also act by influencing elongation (Chen et al, 

2013). Outliers in the high-variance ribosome profiling data can differ from expected 

dwell times by a factor of 40, and are distributed throughout the message (Figure E10). 

One explanation is the presence of downstream structural features that create an energy 

barrier to elongation; these correlate (more weakly) to outlier strength when ignoring the 

first 100 codons (whole gene versus truncated gene has r = -0.017 versus r = -0.019 for 

downstream in vivo energy and r = 0.021 versus r = 0.009 for density of stems), 

precluding the possibility that high ribosome density (based on the 5’ end as a proxy) 

drives the effect. In addition, mRNA-binding factors can interact with structure (Dethoff 

et al, 2012), but whether structure performs any common genome-wide functions is not 
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yet established. One possibility is that secondary structure slows the ribosome during 

elongation to promote correct folding of the nascent protein during its vectorial synthesis 

by the ribosome.  

 

The significant but mild correlation to structure suggests that other factors also play 

important roles in pausing. Experiments suggest that the wobble base in the CGA codon 

causes significant pausing (Letzring et al, 2010; Stadler & Fire, 2011), clusters of slowly 

translated codons could stall ribosomes more than the sum of their individual decoding 

times (Zhang et al, 2009), and effects from the nascent peptide could stall elongation, for 

instance at prolines (Ingolia et al, 2011; Woolstenhulme et al, 2013). It is likely that a 

compendium of biological features interact to dictate elongation rate. Although our 

genome-wide outlier analysis shows promising correlations between pausing and 

features, the small magnitude of the correlation could be improved by looking at more 

restrictive or genetically meaningful sets of positions. The growing interest in ribosome 

profiling poses exciting directions for further investigation of the interactions between 

these features and the changes that may occur in different conditions. With this additional 

data and measurements from single-molecule experiments (Wen et al, 2008; Uemura et 

al, 2010), our model could be extended to include finer-grained parameters for codon 

translation rates, partitioned in various ways, in order to better understand how rate 

changes over a transcript. Further analysis is also needed into how structure and the 

sequence around the initiation site work together or against each other. For example, 

heavy structure can promote initiation in spite of weak initiation context, but the ways 

that they interact are still unknown.  
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In this paper, we present a method that provides a rigorous perspective for analyzing the 

increasing number of ribosome profiling data sets, and thereby addressing these 

important questions. We illustrate the use of the method in the context of one of these 

data sets to create a high-level view of the mechanisms involved in initiation and 

elongation, to study the factors affecting initiation as the rate-limiting step for translation, 

and to support a model in which the direction of causality goes from translation 

efficiency to codon usage rather than the opposite. 

 

Materials and Methods 

Ribosome profiling datasets 

All experiments were done on yeast strain 288C. Cells were collected for ribosome 

profiling by filtering ~250ml culture of OD= 0.6 and immediately flash freezing on liquid 

nitrogen. For all ribosome-profiling experiments, footprints were obtained as described 

before (Ingolia et al, 2012). Three out of four copies of Threonine tRNA (tT(UGU)G2, 

tT(UGU)H, tT(UGU)P), recognizing the ACA codon were knocked out using the 

standard technique of homologous recombination from a plasmid PCR product. The 

resulting strain was marked with nourseothricin, kanamycin, and hygromycin B 

resistance respectively. Successfully transformed yeast were identified by check PCR. 

tRNA arginine (tR(CCU)J) recognizing the AGG codon was overexpressed by cloning 

into a URA marked 2micron plasmid (pRS426) and transforming wild-type yeast using –

URA selection. For the tRNA body swap, tRNA sequence from tR(UCU)B was mutated 

in the anticodon to CCU using QuikChange site-directed mutagenesis kit (Stratagene) in 
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order for the tRNA product from tR(UCU)B to recognize the AGG codon. The mutated 

tRNA was then cloned in the 2micron plasmid pRS426 and transformed into 288C. 

 

Ribosome-protected fragments were aligned against Saccharomyces cerevisiae assembly 

R63 from the Saccharomyces Genome Database (SGD, http://www.yeastgenome.org) 

and we kept uniquely mapped reads with no more than 2 mismatches and lengths 

between 28 and 31. To identify the active codon for ribosome-protected fragments, we let 

0 be the first nucleotide of the read and if the read begins on the first/last/middle 

nucleotide of a codon, the active codon starts at nucleotide 15/16/17, respectively. An 

mRNA fragment was mapped to a gene if it begins less than 16nt upstream of the start 

codon and more than 16nt upstream of the stop codon. Genes were ignored if they did not 

have an AUG start codon, had internal stop codons, had less than 50% of positions on the 

coding sequence with at least one mapped mRNA count, or if all the footprint counts 

were 0 over the gene length used in the translation model (see below), leaving around 

5000 genes in each sample. When comparing mutants to wild-type samples, we used the 

intersection of the valid genes in each sample. The AGG mutants were compared against 

the wild-type sample with a URA plasmid. 

 

Analysis of tRNA charging and relative RNA levels 

For analysis of charging levels of tRNAs, duplicate samples of each strain were grown 

under conditions used for ribosome profiling, followed by harvesting of ~4 OD-ml of 

cells. Then, bulk RNA was prepared from each pellet under acidic conditions (pH 4.5) 

using glass beads, and RNA was resolved on a 6.5% acrylamide gel at pH 5 for 15 h at 
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4°C, transferred to Hybond N+ membrane, and hybridized with appropriate 5'-labeled 

oligonucleotide probes, as described (Alexandrov et al, 2006). Charging levels were 

visualized on a Typhoon PhosphorImager (GE Healthcare) and quantified using 

Imagequant, and relative levels of tRNAArg(CCU) were measured by normalization to 

levels of tRNALeu(CAA) in the corresponding lane. 

 

Feature calculations 

Gene copy numbers for tRNA were obtained from the tRNAscan-SE database (Lowe et 

al, 1997). To measure codon usage bias, we use tAI, which ranges from 0 to 1 for more 

preferred codons, calculated as in dos Reis et al (2004) with refined weights described in 

Tuller et al (2010a). 

 

Experimentally derived structure data from DMS probing (Rouskin et al, 2013) was 

normalized in windows of size 150nt by the minimum count in the top 5% of A and C 

nucleotides, and the top 5% of counts were set to 1. Windows with less than ten A and C 

nucleotides in the top 5%, windows with a zero normalization constant, genes without 

data, and genes without a characterized UTR (Nagalakshmi et al, 2008) were ignored in 

analyses. In the sliding window energy analysis, energy windows were normalized per 

gene by the mean over windows on each gene. In the energy profile, normalized windows 

were then averaged across positions without missing data, aligned by start codon. In the 

energy-TE correlation profile, we applied a conservative Bonferroni correction by 

multiplying the p-values by the number of windows (30 upstream of the start codon and 

250 downstream, since this span covered the maximum number of genes). To calculate 
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the location of the dip in the energy profile, we identified global minimums within spans 

of 90nt and took the first minimum. 

 

The correlation between tAI and downstream energy is for tAI over windows of 3 codons 

in the first 50 codons of all genes and the associated average of the 40nt energy windows 

15nt downstream from each nucleotide in the tAI window. Energy windows are 

calculated as above using DMS in vitro and in vivo energy. 

 

Translation model 

As discussed in the main text, we optimize our objective over the parameters µm
c and µc 

and solve for Jm. Since individual footprint counts can be noisy and sparse, we smooth 

the data in three ways. First, we use a single µm
c for every copy of codon c on message m. 

These dwells softly agree with the global µc in a weighted geometric average with weight 

wm
c, the number of codons c on gene m normalized by the number of codons c over all 

genes. Hence, genes with more copies of codon c get a larger vote in the average 

estimating µc. Second, we add a pseudo-count of 1 to all footprint counts and use the 

logarithm of normalized counts in the Poisson term (similar to a more robust geometric 

average as opposed to an arithmetic average that is easily skewed by outliers), first 

scaling the flow-normalized counts by a single factor over all (m,k) so that the lowest one 

is 1. Third, during model training, we ignore the first 100 codons (or the first 25% for 

genes shorter than 100 codons) since this region may have unusual flow conservation 

properties. If it doesn’t, excluding these codons should not affect the learned rates. The 

second term in the objective function is multiplied by a constant C = 100 so as to not be 
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greatly outweighed by the data term. Altogether, we solve the following optimization 

problem (where k’ is restricted and d’ are scaled as described above): 

max
!!! ,!!

!"# !!! !"# !!"
! !! exp −!!! − ! !!! log !!! − log !! !

!,!!,!!
 

We verified that the constant C did not affect our results by running the main analyses 

again – correlations for codon bias measures, protein abundance, and outliers – on several 

other values (1, 10, 1000, 10000, 100000). We note no significant change (Table E5), 

except for some outlier correlations for 100000: pos-from-end is now significant; multi-

down is not; is-in-domain is significant, suggesting slow outliers lie outside of protein 

domains; dist-prev-codon and dist-prev-trna are significant, suggesting that slow outliers 

are associated with nearby codons of the same type or using the same tRNA; pair-Pro-

down is now significant, suggesting that slow outliers are not associated with pair 

prolines downstream. Similar to taking the limit of the constant to infinity, we also 

considered a model with only µc parameters and no µm
c (and hence no second term in the 

objective function) (Table E5). Again, no extreme change exists in the correlation 

between codon translation rate and codon bias measures. Perhaps because we have 

removed a layer of parameters, we do see a slight decrease in correlation to protein 

abundance and some changes to outlier correlations: pos-from-end is now significant; 

hairpins-down, multi-down, stems-down15, stemsGC-down15 are no longer significant 

but still show a similar correlation strength; is-in-domain is significant, suggesting again 

that slow outliers lie outside of protein domains. 

 

The optimization algorithm is as follows: Jm is fixed to Dm = Σk in m dmk / Lm and µm
c and 

µc are initialized to dwells from the baseline method (see below), shifted in log space so 
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that the mean is log(6.8), plus a small random number. The value 6.8 is the mean over all 

(m,k) of the flow-normalized counts normalized and smoothed as described above for the 

wild-type sample. The appropriate mean value was replaced for each of the mutant 

samples. The parameters are estimated via coordinate descent by iterating through codons 

c and learning the associated µm
c and µc. Optimization per c used an L-BFGS method 

(Byrd et al, 1995; Matlab wrapper, http://www.cs.toronto.edu/~liam/software.shtml) with 

the following stopping criteria: max number of iterations 5000; gradient tolerance 1e-5; 

function tolerance 1e3. Coordinate descent was stopped when the difference in weights 

was less than 5e-5 or the difference in function value was less than 1e-5. Codons not 

appearing in a particular gene m did not have an associated µm
c and we also excluded the 

stop codons. We then compute Jm = Σk in m (dmk / µmk) / Lm = Σk in m (dmk / µm
c=codon(m.k)) / Lm. 

The optimization is not sensitive to initialization (Figure E11). 

 

Although less robust, we also optimized a model with a separate dwell time µmk for every 

(m,k) with the following initialization of weights: µmk = dmk / Dm, with 0 counts replaced 

by the mean of all non-zero counts, shifted in log space so that the mean is log(6.8); µc 

are dwells from the baseline method (see below) shifted in log space so that the mean is 

log(6.8); all weights perturbed by a small random value. The value 6.8 was chosen as 

above. L-BFGS settings were as above. Coordinate descent was stopped when the 

difference in weights was less than 1e-2 or the difference in function value was less than 

1e-1. The overall codon dwell times µc were well correlated to those in the original model 

(Pearson r = 0.99, p < 10-68), but analyses based on dwell times per (m,k) could be 

impacted, since these parameters are more sensitive to initialization. So we verified all 
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qualitative observations presented still hold. The correlation between codon translation 

rate and codon bias measures is insignificant (r = 0.171, p = 0.295 for Cy5; r = 0.158, p = 

0.336 for Cy3; r = 0.249, p = 0.053 for tAI). Protein abundance estimates correlate 

similarly to external measures (r = 0.787 for de Godoy (2008) data and r = 0.670 for 

Newman et al (2006) data, p = 0 for both). In the outlier analysis, all correlations still 

hold except position from 3’ end is now also significant, for the structure features only 

the density of stems 9nt downstream is significant but the others are on the same order of 

magnitude, and the protein domain feature is significant for bases inside a domain. 

Correlations between TE and gene-level features are similar except length is now barely 

significant, experimental in vitro energy for the mRNA sequence is barely not significant, 

and Npl3 is significant (in the expected direction). The energy-TE correlation profile is 

the same except the window at 18nt for in vivo energy is barely not significant. The 

ribosome density graph has the same peak at 135nt and decreases when outliers are 

removed. The refined Kozak motif has the same dominant bases except position 6 in 

Figure 7 has A swapped with C and the non-dominant T at positions 2 and 3 are swapped 

with A. Finally, the error when replacing the learned Kozak motif with the original 

similarly drops from 0.77 to 0.68. 

 

Baseline method for codon translation rate 

To get dwell time per codon c from the raw data, we average over counts (m,k) for which 

codon(m,k) = c, normalized by the average per gene (Dm = Σk in m dmk / Lm). Rate is the 

reciprocal of dwell time. As above, we first add a pseudo-count of one to each dmk and 

ignore the first 100 codons (or the first 25% for genes shorter than 100). 
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Analysis of translation efficiency in mutants 

To test if the difference in the number of reduced TE genes versus increased TE genes 

(107 versus 93) in ACA-K is significant, we permuted the mutant TE values 1000 times 

and calculated the number of reduced TE versus increased TE genes for each 

permutation. There were 0 cases where the difference was less than the original 

difference, indicating the original difference is not statistically significant.  

 

Model for translation efficiency 

We used a regression model to predict TE of an mRNA message based on various 

features: 

 

min
!

!"! − !!!! !

!
+ !! !!

!
+ !! !!!

!
 

 

The first term fits an optimal set of weights w to the TE of a set of genes {m} using a 

linear combination of the set of features fm. The last two terms enforce sparsity (so that 

features that do not explain the data well receive a weight of 0) and shrinkage (so that 

weights are kept at a small scale). Under a standard machine learning framework, we 

divide the genes in our yeast dataset into a test set (size 400 genes) and a training set (the 

remaining genes). The hyperparameters λ1 and λ2 are learned via cross-validation: we 

further divide the training set into fifths, and evaluate the error for a grid of 

hyperparameter values on each fifth of the training set. The weights w are then learned on 
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the whole training set with the best hyperparameters (with lowest cross-validation error). 

Test set error is the squared norm difference between predicted and actual TE, averaged 

over all genes in the test set. For reference, we create a null model where the weights are 

learned from TEs randomly permuted among the genes. The final weights are the average 

over all training/test combinations. The features used are minimal in order to maximize 

the number of genes that have these characterized: tAI of gene; computationally predicted 

energy of 5’ UTR, 3’ UTR, mRNA, and window around the start codon with highest 

correlation to TE; length of coding sequence; mRNA abundance; identity of bases 

overlapping the Kozac site (genes without a characterized UTR (Nagalakshmi et al, 

2008) were excluded). 

 

To compute the weights for the refined Kozak site, we include a feature fk in f defined as 

fk = 1/(1 + exp(x*g)). The vector g has 36 indicators, 4 per each of the 9 positions in the 

Kozak site (excludes the start codon). The vector x has the corresponding weights for 

each indicator, is included in the shrinkage term, and is learned iteratively with w. The 

refined Kozak motif in Figure 7 is the average of the 100 values of x learned separately 

for each training set. To create a position-weight matrix from these weights, we shift the 

weights for each position so that the most negative value (if any) is 0 and normalize by 

the sum of the four weights at that position. The sequence logo was generated by 

seqLogo (Bembom O, seqLogo: Sequence logos for DNA sequence alignments, R 

package v1.28.0, http://bioconductor.org/packages/release/bioc/html/seqLogo.html). 
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To test whether the refined motif provides better TE predictions than the original Kozak 

motif, within each of 100 training sets, we fix fk for each sequence with x set to the 

original motif (scaling the weights so that the sum at each position matches the sum of 

the learned motif) and learn the remaining weights as before. We then compute accuracy 

on the corresponding test set. 

 

Outlier model 

The strength of an outlier Δmk at position (m,k) is defined as the difference between the 

observed count (dmk) and the expected count (Jmk * µm
c), divided by smk, a standard 

deviation representing the variance in that count due to the abundance of the gene and the 

codon it corresponds to. For smk, we divide the genes into 30 quantiles by abundance and 

compute the standard deviation of the counts in each bin per codon. Thirty was chosen as 

the maximum number that still gave at least three counts in each bin per codon and no 

zero-valued smk. This normalization helps distinguish true biological outliers from outliers 

arising due to differential mRNA sampling and abundance depths across genes. Counts 

are as in the optimization setup (dmk have a pseudo-count of 1 and Jmk are scaled by a 

single factor). A slow outlier is an (m,k) with Δmk > T for some threshold T. Non-outliers 

are (m,k) with -1 < Δmk < 1, excluding slow outliers. 

 

Since there is a small uncertainty in the position of the active codon within ribosome-

protected fragments of certain lengths, what we might see as a fast outlier (a position 

(m,k) where Δmk < -T and, for example, a wrongly-labeled count of 0) could actually have 

a fragment that was falsely associated with an adjacent slow position. The opposite is 
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much less likely; an observed slow outlier has many more counts than expected, making 

it unlikely that so many fragments were wrongly attributed and belong instead to an 

adjacent fast outlier. For that reason, we compare slow outliers only to non-outliers. 

 

When correlating features to outlier strength (Table E3), we call features significant only 

if they pass a stringent set of conditions: Pearson and Spearman correlations must have 

the same sign for all slow outlier thresholds (T = 0, 0.5, 1, 1.5, 2, 2.5) and be significant; 

the correlation when binned by codons must have at least 30 significant codons; the sign 

of the correlation must match the direction suggested by the comparison of means for 

slow versus non-outliers. When referring to significant features in Table E3, we cite the 

correlation for T = 0 since all thresholds are significant. For a more stringent set of 

outliers, we use T = 1 in analyses requiring a fixed T (Figure E6, E8, E10). 

 

Accession numbers 

Pending on GEO. 
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Figure2 
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Figure3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7
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Table E1 
Counts of tRNA in RPM (number of reads per million) in ACA-K and wild-type. The 
threonine tRNA recognizing the ACA codon (highlighted) is reduced to 1/3 of the wild-
type level. 
 
 

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

!
!
!

tRNA gene name 
(anticodon) RPM (ACA-K) RPM (wt) RPM (ACA-K) / 

RPM (wt) 
tK(UUU)D  78 80 0.98 
tY(GUA)F1  19 16 1.19 
tM(CAU)C  11 11 1.00 
tD(GUC)B  218 251 0.87 
tE(UUC)B  582 428 1.36 
tN(GUU)C  225 166 1.36 
tS(UGA)P  122 148 0.82 
tP(AGG)N  24 27 0.89 
tC(GCA)B  82 58 1.41 
tQ(UUG)B  103 106 0.97 
tW(CCA)G1  35 44 0.80 
tG(UCC)O  143 96 1.49 
tT(UGU)G1  25 75 0.33 
tR(UCU)E  138 172 0.80 
tA(AGC)D  72 42 1.71 
tT(CGU)K  9 9 1.00 
tV(AAC)E1  129 82 1.57 
tQ(CUG)M  166 138 1.20 
tA(UGC)Q  3 3 1.00 
tL(UAA)J  72 81 0.89 
tI(AAU)B  98 46 2.13 
tH(GUG)E1  328 266 1.23 
tT(AGU)B  152 141 1.08 
tF(GAA)B  124 115 1.08 
tK(CUU)C  1328 1914 0.69 

 

 



! 161!

Table E2 
Eight categories of potential correlates to outlier strength. 
 
 
Category Features 
Position Distance from 5’ end (pos) 

Distance from 5’ end per length (pos-per-len) 
Distance from 3’ end (pos-from-end) 

Structure in 25nt window 15nt 
downstream of active 
 
(unless indicated, features are 
derived from computationally-
predicted structure) 

Minimum free energy (energy-down)  
Experimentally-derived in vitro energy (vitroDMS-energy-
down) (Rouskin et al, 2013) 
Experimentally-derived in vivo energy (vivoDMS-energy-down) 
(Rouskin et al, 2013) 
Experimentally-derived in vitro inverse-energy (PARS-
invenergy-down) (Kertesz et al, 2010) 
Number of hairpins (hairpins-down) 
Number of internal loops (internal-down) 
Number of multi-loops (multi-down) 
Number of stems (stems-down15) 
Number of GC pairs in stems (stemsGC-down15) 
Number of stems 12nt downstream (stems-down12) 
Number of stems 9nt downstream (stems-down9) 

Protein folding Active site is inside a protein domain (is-in-domain) 
End of protein domain is 30 codons upstream of active (is-
end-domain-up-30) 

Wobble bases at P-site Is wobble base (is-wobble) 
Reuse of tRNAs Distance from same codon upstream (dist-prev-codon) 

Distance from codon with iso-accepting tRNA upstream (dist-
prev-trna) 
Is same codon in 10-codon window upstream (is-prev-codon-
close) 
Is codon with iso-accepting tRNA in 10-codon window 
upstream (is-prev-trna-close) 

KL divergence to RNA binding 
motifs (Brown et al. 2009) in 3-
codon window 5 codons 
downstream of active  

KL divergence over motifs and positions combined via mean 
(rbp-mean) 
KL divergence over motifs and positions combined via min 
(rbp-min) 

Nascent peptide  Charge of active codon (charge) 
Mean charge in 10-codon window ending upstream of active 
(cluster-charge-up-1) 
Fraction of Arg or Lys in 10-codon window ending upstream of 
active (cluster-ArgLys-up-1) 
Fraction of Pro in the P and E sites (pair-Pro-up) 
Fraction of Pro in two codons downstream of active (pair-Pro-
down) 

Global Length (len) 
Abundance (abund) 

!
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Feature Slow Outlier Correlation Correlation Mean of Std of Mean of Std of
Threshold (T) r-value p-value Slow Outliers Slow Outliers Non-Outliers Non-Outliers

Table E3. Correlation between outlier strength and features. Significant ones (see Materials and Methods) are highlighted. The first two rows per feature correspond to Pearson correlation; the last two are Spearman. (See Note E1 for more discussion of the correlations.)

pos 0 -0.038 0 359.626 377.546 421.248 411.324
2.5 -0.082 0 306.774 371.353 395.611 396.166
0 -0.044 0 359.626 377.546 421.248 411.324

2.5 -0.112 0 306.774 371.353 395.611 396.166
pos-per-len 0 -0.136 0 0.488 0.289 0.517 0.287

2.5 -0.119 0 0.377 0.294 0.513 0.286
0 -0.127 0 0.488 0.289 0.517 0.287

2.5 -0.119 0 0.377 0.294 0.513 0.286
pos-from-end 0 0.118 0 385.626 396.552 391.507 394.579

2.5 0.064 0 511.86 482.595 377.104 385.906
0 0.136 0 385.626 396.552 391.507 394.579

2.5 0.055 0 511.86 482.595 377.104 385.906

energy-down 0 0 0.659 -2.66 1.752 -2.621 1.728
2.5 -0.016 0 -2.668 1.759 -2.641 1.739
0 0.006 0 -2.66 1.752 -2.621 1.728

2.5 -0.013 0.001 -2.668 1.759 -2.641 1.739
vitroDMS-energy-down 0 -0.003 0.009 0.489 0.156 0.49 0.156

2.5 -0.006 0.13 0.486 0.156 0.489 0.156
0 0.004 0 0.489 0.156 0.49 0.156

2.5 -0.007 0.088 0.486 0.156 0.489 0.156
vivoDMS-energy-down 0 -0.017 0 0.512 0.176 0.51 0.176

2.5 -0.008 0.043 0.502 0.175 0.512 0.176
0 -0.012 0 0.512 0.176 0.51 0.176

2.5 -0.015 0 0.502 0.175 0.512 0.176
PARS-invenergy-down 0 -0.015 0 0.327 0.555 0.318 0.543

2.5 0.036 0 0.32 0.538 0.326 0.554
0 -0.029 0 0.327 0.555 0.318 0.543

2.5 0.019 0 0.32 0.538 0.326 0.554
hairpins-down 0 0.021 0 5.898 5.004 5.796 4.981

2.5 0.02 0 6.232 5.055 5.817 4.985
0 0.018 0 5.898 5.004 5.796 4.981

2.5 0.015 0 6.232 5.055 5.817 4.985
internal-down 0 0.014 0 1.128 1.331 1.108 1.324

2.5 0.014 0 1.187 1.344 1.113 1.326
0 0.013 0 1.128 1.331 1.108 1.324

2.5 0.011 0.004 1.187 1.344 1.113 1.326
multi-down 0 0.022 0 0.181 0.433 0.175 0.425

2.5 0.022 0 0.209 0.463 0.176 0.426
0 0.019 0 0.181 0.433 0.175 0.425

2.5 0.014 0 0.209 0.463 0.176 0.426
stems-down15 0 0.021 0 5.898 5.004 5.796 4.981

2.5 0.02 0 6.232 5.055 5.817 4.985
0 0.018 0 5.898 5.004 5.796 4.981

2.5 0.015 0 6.232 5.055 5.817 4.985
stemsGC-down15 0 0.019 0 2.321 2.286 2.276 2.267

2.5 0.016 0 2.456 2.316 2.286 2.273
0 0.018 0 2.321 2.286 2.276 2.267

2.5 0.014 0.001 2.456 2.316 2.286 2.273
stems-down12 0 0.023 0 5.915 5.008 5.791 4.977

2.5 0.02 0 6.262 5.054 5.821 4.986
0 0.02 0 5.915 5.008 5.791 4.977

2.5 0.017 0 6.262 5.054 5.821 4.986
stems-down9 0 0.024 0 5.933 5.013 5.786 4.972

2.5 0.02 0 6.303 5.07 5.824 4.984
0 0.021 0 5.933 5.013 5.786 4.972

2.5 0.017 0 6.303 5.07 5.824 4.984

is-in-domain 0 -0.012 0 0.721 0.449 0.728 0.445
2.5 -0.055 0 0.702 0.458 0.725 0.447
0 -0.003 0.001 0.721 0.449 0.728 0.445

2.5 -0.04 0 0.702 0.458 0.725 0.447
is-end-domain-up-30 0 -0.002 0.035 0.004 0.063 0.004 0.064

2.5 -0.002 0.484 0.003 0.058 0.004 0.063
0 -0.001 0.186 0.004 0.063 0.004 0.064

2.5 -0.001 0.872 0.003 0.058 0.004 0.063

is-wobble 0 -0.032 0 0.435 0.496 0.466 0.499
2.5 -0.017 0 0.395 0.489 0.456 0.498
0 -0.036 0 0.435 0.496 0.466 0.499

2.5 -0.01 0.005 0.395 0.489 0.456 0.498

dist-prev-codon 0 -0.047 0 46.003 62.322 44.91 59.684
2.5 -0.025 0 39.967 53.054 46.051 61.81
0 -0.052 0 46.003 62.322 44.91 59.684

2.5 -0.019 0 39.967 53.054 46.051 61.81
dist-prev-trna 0 -0.036 0 37.066 49.947 36.529 48.562

2.5 -0.022 0 33.118 43.671 37.167 49.809
0 -0.034 0 37.066 49.947 36.529 48.562

2.5 -0.017 0 33.118 43.671 37.167 49.809
is-prev-codon-close 0 0.021 0 0.255 0.436 0.259 0.438

2.5 0.025 0 0.276 0.447 0.255 0.436
0 0.024 0 0.255 0.436 0.259 0.438

2.5 0.016 0 0.276 0.447 0.255 0.436
is-prev-trna-close 0 0.015 0 0.295 0.456 0.299 0.458

2.5 0.025 0 0.311 0.463 0.296 0.456
0 0.016 0 0.295 0.456 0.299 0.458

2.5 0.016 0 0.311 0.463 0.296 0.456

rbp-mean 0 0.001 0.354 11.624 0.696 11.605 0.694
2.5 0.013 0.001 11.625 0.702 11.613 0.695
0 -0.002 0.105 11.624 0.696 11.605 0.694

2.5 0.009 0.023 11.625 0.702 11.613 0.695
rbp-min 0 -0.002 0.029 2.576 1.121 2.567 1.116

2.5 0.005 0.219 2.569 1.123 2.572 1.118
0 -0.003 0.001 2.576 1.121 2.567 1.116

2.5 0.005 0.208 2.569 1.123 2.572 1.118

charge 0 -0.017 0 0.02 0.519 0.008 0.512
2.5 0.014 0 0.004 0.52 0.016 0.514
0 -0.03 0 0.02 0.519 0.008 0.512

2.5 0.013 0 0.004 0.52 0.016 0.514
cluster-charge-up-1 0 0.01 0 0.014 0.18 0.013 0.176

2.5 0.018 0 0.022 0.186 0.013 0.177
0 0.001 0.483 0.014 0.18 0.013 0.176

2.5 0.012 0.001 0.022 0.186 0.013 0.177
cluster-ArgLys-up-1 0 0.03 0 0.121 0.113 0.115 0.109

2.5 0.027 0 0.131 0.12 0.117 0.11
0 0.023 0 0.121 0.113 0.115 0.109

2.5 0.014 0 0.131 0.12 0.117 0.11
pair-Pro-up 0 0.078 0 0.048 0.153 0.038 0.135

2.5 0.092 0 0.084 0.2 0.04 0.139
0 0.059 0 0.048 0.153 0.038 0.135

2.5 0.067 0 0.084 0.2 0.04 0.139
pair-Pro-down 0 -0.012 0 0.041 0.142 0.045 0.148

2.5 -0.008 0.029 0.037 0.134 0.044 0.146
0 -0.012 0 0.041 0.142 0.045 0.148

2.5 -0.008 0.019 0.037 0.134 0.044 0.146

len 0 0.059 0 744.251 550.922 811.755 576.513
2.5 0 0.913 817.634 588.888 771.715 562.054
0 0.096 0 744.251 550.922 811.755 576.513

2.5 -0.01 0.007 817.634 588.888 771.715 562.054
abund 0 0.034 0 8.939 50.735 7.36 42.142

2.5 0.097 0 14.138 100.135 7.995 42.14
0 0.006 0 8.939 50.735 7.36 42.142

2.5 -0.047 0 14.138 100.135 7.995 42.14

Global

Position

Structural Features 

Protein Folding

Wobble Codons

Reuse of tRNAs

Downstream Motifs

Nascent Peptide
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Table E4 
Performance of TE regression model (see Materials and Methods). Error (should be 
low) and correlation (should be high) between predicted and actual TE is measured on 
100 random test sets of genes not used during model training. Performance drops in a null 
model learned on randomized TE labels (last column). Performance also drops when 
using the original Kozak motif (middle column). Error on the training set is included to 
show that our model generalizes to genes not used in training (it is close to test set error). 
!
!
 Regression Regression (with 

original Kozak) 
Null Model 

 Mean Std Mean Std Mean Std 
Error 0.7458 0.059 0.8339 0.0573 0.9602 0.0614 
Error (Train) 0.7404 0.0073 0.8392 0.0071 0.9558 0.0076 
Spearman r 0.6722 0.0299 0.5265 0.0328 -0.0282 0.0397 
Spearman p 0 0 0 0 0.5156 0.2685 
Pearson r 0.6263 0.0337 0.5173 0.0373 -0.0098 0.0413 
Pearson p 0 0 0 0 0.5569 0.28 
!
!
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Table E5 
Summary of main results for model variations. The first five columns are models with 
different constants for the second term in the objective function and the last column is a 
model without µm

c parameters (see Materials and Methods). Rows 1-3 represent 
correlation between our parameters in our model and in the model variation. Rows 4-6 
represent correlation between codon translation rates in model variations and codon bias 
measures. Rows 7-8 represent correlation between protein synthesis rates in model 
variation and protein abundance measures. Results are similar to the ones reported for the 
model used throughout the paper (const = 100). 
 
 
Result 

 

const = 
1 

const = 
10 

const = 
1000 

const = 
10000 

const = 
100000 

No μm
c 

μc (const=100) r 1.000 1.000 1.000 1.000 1.000 1.000 
 p 1E-172 9E-176 5E-133 1E-98 1E-90 5E-92 
μm

c (const=100) r 1.000 1.000 1.000 0.981 0.832 NA 
 p 0 0 0 0 0 NA 
Jm (const=100) r 1.000 1.000 1.000 1.000 0.999 0.995 
 p 0 0 0 0 0 0 
tAI r 0.221 0.221 0.221 0.222 0.224 0.216 
 p 0.088 0.088 0.087 0.086 0.085 0.095 
tRNA abund (Cy5) r 0.135 0.135 0.131 0.134 0.134 0.128 
 p 0.413 0.413 0.424 0.415 0.415 0.436 
tRNA abund (Cy3) r 0.135 0.135 0.131 0.134 0.134 0.128 
 p 0.448 0.448 0.459 0.448 0.448 0.471 
PA (Newman et al) r 0.7875 0.7875 0.7876 0.7882 0.7889 0.7838 
PA (de Godoy et al) r 0.6822 0.6822 0.6822 0.6818 0.6787 0.6701 
!
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Figure E1 
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Figure E2 
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Figure E3 
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Figure E4 

 

 

 

 

 

 

0.6

0.8

1

1.2

1.4

1.6

1.8

2

m
ut

 A
CA

−K

AA
G

AT
T

G
AA

G
AC

G
G

C
G

TT
AG

T
CG

A
CG

G
CT

C
CT

G
CT

T
AA

A
AC

C
CA

C
G

CC TA
C

TC
C

AC
A

AG
G

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

m
ut

 A
G

G
−O

E

AA
G

AT
T

G
AA

G
AC

G
G

C
G

TT
AG

T
CG

A
CG

G
CT

C
CT

G
CT

T
AA

A
AC

C
CA

C
G

CC TA
C

TC
C

AC
A

AG
G

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

m
ut

 A
G

G
−Q

C

AA
G

AT
T

G
AA

G
AC

G
G

C
G

TT
AG

T
CG

A
CG

G
CT

C
CT

G
CT

T
AA

A
AC

C
CA

C
G

CC TA
C

TC
C

AC
A

AG
G

0.6

0.8

1

1.2

1.4

1.6

1.8

2

AA
G

AT
T

G
AA

G
AC

G
G

C
G

TT
AG

T
CG

A
CG

G
CT

C
CT

G
CT

T
AA

A
AC

C
CA

C
G

CC TA
C

TC
C

AC
A

AG
G

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

AA
G

AT
T

G
AA

G
AC

G
G

C
G

TT
AG

T
CG

A
CG

G
CT

C
CT

G
CT

T
AA

A
AC

C
CA

C
G

CC TA
C

TC
C

AC
A

AG
G

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

AA
G

AT
T

G
AA

G
AC

G
G

C
G

TT
AG

T
CG

A
CG

G
CT

C
CT

G
CT

T
AA

A
AC

C
CA

C
G

CC TA
C

TC
C

AC
A

AG
G

 

 
window before

window after

window around

high tAI

low tAI

mid tAI

of interest

Normalized footprint ratio for mut/wt averaged over occurances 1 to 5 of each codon



! 169!

Figure E5 
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Figure E6 
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Figure E7 
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Figure E8 
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Figure E9 
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Figure E10 
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Figure E11 
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Figure Legends 

Figure 1: Model of protein synthesis. 

Ribosomes initiate translation with a protein synthesis rate or flow (J) of ribosomes. This 

is conserved across the strand, so that at each residue (m,k) the flow depends on the dwell 

time of the ribosome (µ) and the ribosome occupancy (proportional to footprint count d). 

Slower positions, for example (m,2) compared to (m,1), can inflate the average footprint 

count per gene and must be accounted for when estimating flow. Dwell times and flow 

are correlated with local and global cis-features. 

 

Figure 2: Correlation between codon translation rates and measures of codon usage 

bias. 

Left: Insignificant Spearman correlation between estimated codon translation rates 

(scaled up by a factor of 1000) and tRNA abundance from microarray measurements 

using either fluorophore Cy3 or Cy5 (Dittmar et al, 2004) on 39 codons with measured 

levels. 

Right: The same correlation but to tAI is also not significant. 

 

Figure 3: Comparison between codon translation rates in wild-type and mutants. 

Correlation between estimated codon translation rates in wild-type versus mutant for the 

three mutant samples (the manipulated codon is highlighted in red). Rates are normalized 

by the minimum one in each sample. Pearson correlations are nearly exact, indicating that 

the mutant rates are generally unaffected. 
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Figure 4: Comparison between translation efficiency in wild-type and mutants. 

Left: Wild-type TE compared to mutant TE for the three mutant samples. Strong 

Spearman correlations shown suggest TE is generally unaffected by tRNA manipulation.  

Right: Spearman correlation, for each codon, between the ratio of mutant TE to wild-type 

TE and the percent of codon per gene. Significant correlations are shown as filled dots. 

For AGG mutants, the correlation is not higher for the manipulated codon (highlighted) 

than for other codons, indicating that optimizing codon usage does not affect TE. For 

ACA-K, the correlation is negative for the ACA codon, suggesting a mild effect. 

 

Figure 5: All codons show negative correlation between outlier strength and 

proximity to gene start. 

Correlation between slow outlier strength and position per length from 5’ end, 

conditioned by the codon, plotted against codon tAI. For each codon c, we calculate the 

Spearman correlation for outlier strength Δmk and position per length from 5’ end (k / Lm) 

but restricted to the (m,k) that satisfy codon(m,k) = c. All codons except one (hollow 

circle), which has the second lowest abundance in the genome, have a significant 

negative correlation. This indicates that 5’ end outliers are slower even independent of 

codon bias. 

 

Figure 6: RNA structure energy and its relationship to translation efficiency.  

Left: Energy averaged in sliding windows of 40nt (see Materials and Methods) across 

all genes for in vitro and in vivo measures of energy via DMS probing (Rouskin et al, 
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2013). The second red line corresponds to the first window with lowest energy (~60nt for 

in vitro and ~80nt in vivo). 

Right: Spearman correlation between the energy windows and TE. The first red line 

corresponds to the first window with significant correlation (9nt for in vitro and 18nt for 

in vivo). 

 

Figure 7: Estimated Kozak motif for efficient genes. 

Estimated TE-driven Kozak motif based on a regression model (see Materials and 

Methods). The original Kozak consensus for yeast (Hamilton et al, 1987) is 

WAMAMAATGTCY. 
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Expanded View Legends 

Figure E1 

Correlation between experimental measures of protein abundance – de Godoy et al 

(2008) and Newman et al (2006) – and estimated flow. As a baseline, we compare against 

protein abundance calculated as the average footprint count per gene. 

 

Figure E2 

Overexpression of tRNAArg(CCU) does not significantly alter amino acid charging levels. 

Bulk RNAs from strains as indicated were resolved at pH 5 by PAGE, transferred, and 

hybridized with oligonucleotide probes specific for tRNA species as indicated, and 

relative tRNAArg(CCU) levels and charging levels were evaluated as described in Materials 

and Methods. Solid arrows show deacylated tRNAs; dashed arrows show charged 

tRNAs; % charged refers to tRNAArg(CCU). 

 

Figure E3 

The ratio between estimated mutant and wild-type rates. The mean (solid black line) and 

standard deviation (dashed line) are shown. ACA-K has a larger spread, but the 

manipulated codon (shown in red) is not an outlier in any sample. Codons are grouped 

and sorted by amino acid. 

 

Figure E4 

The ratio of mutant to wild-type footprint count per codon, averaged over the first 5 

occurrences of the codon per gene over all genes, presented for the three mutant samples. 
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Counts are normalized by the average in the 15-codon window before (red line), after 

(green line), or around (blue line) the codon. We show a subset of the codons: the 5 with 

lowest tAI (dots), the 5 with highest tAI (squares), and the 6 with middle tAI (stars), in 

addition to the two codons ACA and AGG (diamonds). In each case, if the manipulated 

codon of interest induces a change in speed under the common hypothesis (lower for 

ACA-K and higher for AGG-OE and AGG-QC), we expect a corresponding peak or 

valley, respectively, in the presented ratio. However, the ratios at ACA and AGG are not 

significantly higher than 1-standard deviation (dotted line) or than the other 

representative codons. 

Left: Counts are raw footprint counts. 

Right: Counts are dwell-corrected footprint counts. 

 

Figure E5 

The analysis of Figure 4 repeated on flow instead of TE. As before, wild-type and mutant 

flows generally agree. Correlations between the ratio of mutant flow to wild-type flow 

and the percent of codon per gene are not higher for the manipulated codons compared to 

other codons, despite the dramatic change in tRNA abundance. 

 

Figure E6 

Distribution of three features among reduced TE genes and increased TE genes in ACA-

K. Distributions are skewed for reduced TE genes (with lower TE in mutant compared to 

wild-type) toward initiation signals that could confound the TE decrease. Slower-than-

expected codons with an excess number of ribosome counts are defined formally as 
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“outliers” (see Materials and Methods). Each feature distribution is calculated over all 

positions in the genes in the specified gene set (either reduced TE genes or increased TE 

genes) satisfying the specified criteria (a position that is a slow outlier, a position that is a 

slow outlier in the first 100 codons, or a position that is a slow outlier and an ACA 

codon). The feature distributions for reduced TE versus increased TE genes are distinct 

(p-values shown are significant under a Kolmogorov-Smirnov test). Outlier positions are 

calculated in the ACA-K mutant. 

 

Figure E7 

Correlation between log(TE) and gene-level features, including cis-features and RNA 

binding protein enrichment (see Materials and Methods). Significant threshold is p = 

0.05. (See Note E1 for how expected correlations for the RNA binding proteins were 

determined.) 

 

Figure E8 

Dwell-corrected footprint counts normalized by flow, geometrically averaged per 

position over all genes aligned by start codon (ignoring 0 footprint counts). Removing 

slow outliers (red curve) reduces the peak in density at ~45 codons (135 nt).  

 

Figure E9 

The tAI in sliding windows of 17-codons averaged across all the genes aligned by start 

codon (red curve). The same analysis with our estimated codon translation rates (scaled 
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up by 1000) (black curve) show that rates at the 5’ end are not lower compared to the rest 

of the gene. 

 

Figure E10 

Histograms of positions of slow outliers and non-outliers are similar. 

 

Figure E11 

Two different initializations of the parameters for the translation model yield estimated 

parameters that are nearly exact. This demonstrates the model is robust to initialization. 

 

Table E1 

Counts of tRNA in RPM (number of reads per million) in ACA-K and wild-type. The 

threonine tRNA recognizing the ACA codon (highlighted) is reduced to 1/3 of the wild-

type level. 

 

Table E2 

Eight categories of potential correlates to outlier strength. 

 

Table E3 

Correlation between outlier strength and features. Significant ones (see Materials and 

Methods) are highlighted. The first two rows per feature correspond to Pearson 

correlation; the last two are Spearman. (See Note E1 for more discussion of the 

correlations.) 
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Table E4 

Performance of TE regression model (see Materials and Methods). Error (should be 

low) and correlation (should be high) between predicted and actual TE is measured on 

100 random test sets of genes not used during model training. Performance drops in a null 

model learned on randomized TE labels (last column). Performance also drops when 

using the original Kozak motif (middle column). Error on the training set is included to 

show that our model generalizes to genes not used in training (it is close to test set error). 

Table E5 

Summary of main results for model variations. The first five columns are models with 

different constants for the second term in the objective function and the last column is a 

model without µm
c parameters (see Materials and Methods). Rows 1-3 represent 

correlation between our parameters in our model and in the model variation. Rows 4-6 

represent correlation between codon translation rates in model variations and codon bias 

measures. Rows 7-8 represent correlation between protein synthesis rates in model 

variation and protein abundance measures. Results are similar to the ones reported for the 

model used throughout the paper (const = 100). 
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DISCUSSION 

For a long time, the majority of our knowledge about RNA structure came from 

X-ray crystallography and nuclear magnetic resonance spectroscopy1. Although these 

methods are very precise and provide great detail of the exact nature of base pairing 

interactions, both X-day and NMR are limited to mostly short molecules with stable RNA 

structures that can form a homogeneous population. Yet the majority of cellular RNAs, 

such as mRNAs and long intervening non-coding RNAs (lincRNAs), are long and likely 

exist in multiple conformations2. Recent applications of chemical and enzymatic probing 

in a high throughput manner3,4 have allowed the identification of RNA structure within 

many long molecules on the order of thousands of bases. Nevertheless, we are still 

limited to obtaining a structural signature of a population average and are thus ignoring a 

major aspect of RNA:RNA interactions- their flexibility and sensitivity to the exact 

cellular environment. Indeed, RNAs can form more than one stable structure, and these 

distinct conformations often have different biological activities2,5. Thus, it is crucial 

going forward to bring high throughput chemical probing to the single molecule level. 

Here I will discuss improvements to the DMS-seq assay.  

Ideally, it would be best to read out all DMS modifications directly for every 

molecule in a given population. Interestingly, upon UV crosslinking of RNA protein 

interactions, the crosslinking sites can be detected in two ways - either as sites that block 

reverse transcription6 or as sites that induce errors during RNA to DNA synthesis7. 

Similarly, since DMS reacts with the Watson/Crick positions, thus preventing the correct 

paring of complementary nucleotides, there can be conditions under which the reverse 

transcriptase (RT) incorporates a mismatched nucleotide at the DMS modified position. 
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Indeed it was shown recently that using Mn2Cl instead of Mg2Cl causes SuperScript II (a 

viral-based RT) to be more error prone and read through the DMS modification by 

introducing mutations. Nevertheless, it is not clear what percent of the time a mutation is 

made when a DMS modification is present. It is important that most DMS modifications 

result in a mutation otherwise one would need to extensively modify the RNA and this 

can lead to RNA unfolding. Another drawback of using Mn2Cl is that the background 

error frequency of the RT also increases, which is less than ideal for a high throughput 

application.  

An alternative option is using a non-retroviral RT. Mobile group II introns encode 

RTs that function in intron mobility by a process that requires reverse transcription of a 

highly structured, >2kb intron RNA, and may be better suited to read through DMS 

modifications. Several years ago, two very thermostable (up to 70C) group II intron RTs 

were purified from T. elongates(Tel4c) and Geobacillus stearothermophilus(GsI-IIC)8. In 

addition, it was shown that sequencing human tRNAs with GsI-IIC RT results in a high 

frequency of mutation (conversion predominantly to T or G base) at an endogenous, 

DMS-like methylated A or C. Excitingly, preliminary results show that using GsI-IIC RT 

in a DMS-seq read-through single molecule strategy results in a better signal to noise 

ratio than the original Superscript II RT block assay [unpublished]. Moreover, this type 

of strategy is resistant to ligation, fragmentation and other sequencing library generation 

biases because it is internally controlled – the mutation signal is calculated by counting 

the number of mutations at each nucleotide divided by the number of times the correct 

nucleotide is present in the sequencing library.  

Finally, another in vivo RNA structure probing chemical was developed recently9. 
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This chemical is a derivative of NMIA (N-methylisotoic anhydride) used in the SHAPE 

(selective 2’OH acylation followed by primer extension) procedure and does not report 

on the Watson–Crick position directly, but interacts with the 2’OH group of the ribose in 

a conformation dependent matter10. It appears that the size and chemistry of NMIA 

derivatives make them very sensitive not only to RNA structure but also the presence of 

RNA binding proteins. Since DMS and NMIA report on overlapping yet distinct 

properties of RNA it would be very insightful to use both in a single molecule readout 

approach. Such techniques will allow the investigation of RNA dynamics and how it 

functions to affect major cellular processes.  
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