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Abstract

Pseudospectra of matrices and Pointspectra of infinite graphs

by

Satyaki Mukherjee

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor James W. Pitman, Co-chair

Associate Professor Nikhil Srivastava, Co-chair

In this thesis we look at various tools to analyse eigenvalues and eigenvectors and use them
to prove the following main results.

1. We show that given any matrix A, there is a small perturbation of the matrix such
that post perturbation, the matrix is almost normal. In particular there exists E,
with ||E|| ≤ δ||A|| such that A + E is diagonalizable and its eigenvector matrix has
polynomially (in 1/δ and n) bounded condition number.

2. We prove a necessary and sufficient condition for any local periodic operator on the
universal cover of a finite graph to have a point spectrum. In particular we show that
for λ to be in the point spectrum, the base graph must admit an induced forest with
a very specific combinatorial structure and that the induced operator on it must also
have λ as an eigenvalue.

To prove the first result we study the volume of the pseudospectrum with the help of some
tools from stochastic calculus. Along the way we also see why it implies a conjecture by
Sankar, Spielman and Teng on the optimal constant for smoothed analysis of condition
numbers.

For the second result we show that a condition conjectured by Aomoto to be necessary and
sufficient for the existence of point spectrum of certain operators on periodic trees is indeed
so. Aomoto had already shown why the condition was necessary. We give a more intuitive
proof of it and along the way also show sufficiency.
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Chapter 1

A brief overview

1.1 Davies’ Conjecture

Matrices are used in representing all sorts of objects in mathematics. Among the various
classes of matrices, one important subclass is that of the normal matrices. The principle
reason for this is the following fundamental theorem.

Theorem 1.1.1. Given any n × n normal matrix M , there exists an orthonormal basis
v1, ..., vn such that

M =
n∑
i=1

diviv
∗
i = V DV ∗,

where V is the unitary matrix whose columns are the eigenvectors vi, and D is a diagonal
matrix with entries as the eigenvalues di.

This property is useful for a variety of numerical and algebraic reasons. For instance
this allows for fast computations of various matrix functions. Lets quickly look at a simple
numerical example.

Example 1.1.2. Given a diagonalizable matrix M compute Mn.
The text-book answer to this is to write M = V DV −1. Then

Mn = V DnV −1.

In practice however one issue crops up. What if V is almost singular? Then V −1 would
contain very large entries, and would be numerically infeasible and unstable to compute.

Now imagine that the matrix were to be normal. Then we could write M = V DV ∗, and
Mn = V DnV ∗. Here we would only need to find V , i.e. the eigenvectors, there would be no
issue with computing V ∗

Unfortunately however a lot of matrices that one encounters are non-normal. Thus a
natural question to ask is given a matrix M is there always a normal matrix somewhat close
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to it? Unfortunately no. However as Mathematicians often do we rearrange the words to
end up in a meaningful statement. Given a matrix M there is a somewhat normal matrix
close to it. To make things rigorous we now need to make sense of the idea of somewhat
normal.

As the set of matrices with all distinct eigenvalues is dense, we can simply restrict our
definitions to such matrices. As noted the principle property of normality we are interested
in is the fact that the matrix of its eigenvectors form an orthonormal matrix. By stipulating
that any eigenvector we choose must have norm 1, and by restricting our matrices to those
with distinct eigenvalues, we now get a unique (upto permutation) matrix V of eigenvectors
associated to an arbitrary given matrix M . The question of how normal M is thus has now
been outsourced to the question of how orthonormal V is.

To build such a yardstick, we remind ourselves that each orthonormal matrix1 defines an
isometry i.e. all of its singular values are 1. Thus one measure of how far a matrix is from
being an isometry would be to look at the range of its singular values. A very large singular
value or a very small singular value would suggest that the matrix is highly non-isometric.
This idea is rigorised by the quantity called condition number :

κ(V ) =
σmax
σmin

= ||V ||2||V −1||2,

where σmax and σmin are the largest and smallest singular values of V respectively.
Armed with such notions E.B.Davies proved in 2007 the following theorem

Theorem 1.1.3. Suppose A ∈ Cn×n and δ ∈ (0, 1). Then there exists an E ∈ Cn×n such
that ||E|| ≤ δ||A|| and

κV (A+ E) ≤
(n
δ

)(n−1)/2

.

Here κV (M) is the condition number of the eigenvector matrix of M .

This bound however is exponential. Thus a natural follow up question, one that Davies
posited is whether there is an E such that the eigenvector condition number of A + E is
bounded polynomially in δ

In Chapter 2 we give a positive answer to such a question in the form of the following
theorem.

Theorem 1.1.4. Suppose A ∈ Cn×n and δ ∈ (0, 1). Then there exists an E ∈ Cn×n such
that ||E|| ≤ δ||A|| and

κV (A+ E) ≤ 4n3/2

(
1 +

1

δ

)
.

Here κV (M) is the condition number of the eigenvector matrix of M .

1also known as orthogonal matrix
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We also show in proposition 2.4.1 that this inequality is tight in δ. To do this we study
the volume of the ε−pseudospectrum of a matrix M , defined for ε > 0 as:

Λε(M) , {z ∈ C : z ∈ Λ(M + E) for some ‖E‖ < ε} .

We use results from the theory of epsilon− pseudospectrum to turn our original question
into one about the tail distribution of singular values of a matrix with a complex Ginibre
perturbation. Lastly to complete the proof we use the following theorem of Śniady[Śni02].
It allows us to compare the singular values of two matrices performing Brownian motion as
long as they are coupled in a very particular way.

Theorem 1.1.5 (Śniady). Let A1 and A2 be n × n complex matrices such that σi(A1) ≤
σi(A2) for all 1 ≤ i ≤ n. Assume further that σi(A1) 6= σj(A1) and σi(A2) 6= σj(A2) for
all i 6= j. Then for every t ≥ 0, there exists a joint distribution on pairs of n × n complex
matrices (G1, G2) such that

(i) the marginals G1 and G2 are distributed as (normalized) complex Ginibre matrices Gn,
and

(ii) almost surely σi(A1 +
√
tG1) ≤ σi(A2 +

√
tG2) for every i.

This also allows us to prove the real version of a conjecture by Sankar, Spielman and
Teng stated as Conjecture 1 in [SST06]. In particular we prove :

Proposition 1.1.6. Let G be an n× n matrix with i.i.d. real N(0, 1) entries, and A be any
n× n matrix with real entries. Then

P [σn(A+G) < ε] ≤ ε
√
n.

1.2 Point spectrum of the universal cover

Given a graph G with vertex set V (G) and edge set E(G), its adjacency matrix A is a
|V (G)| × |V (G)| matrix whose rows and columns are indexed by V (G) such that Au,v = 1
iff (u, v) ∈ E(G) and 0 otherwise.

A graph H is a lift of a graph G if there exists a covering map from H to G under the
standard graph topology. Using standard theory from topology, one can consider an object
called the universal cover, TG. This is an infinite graph such that whenever any H is a lift
of G, TG is a lift of H.

It might be worthwhile for the discussion of lifts on graphs to look at a definition with
less jargon. For simplicity let us restrict our attention to simple graphs only. In this case
the idea is that H is a lift of G if there exists a surjective map φ : H → G such that for any
vertex u, φ is a bijection from the neighbours of u to those of φ(u).

To give a simple definition of the universal cover we need to first define a non-backtracking
walk. A non-backtracking walk v0, v1, ...., vk on a (simple)graph G is a walk such that for
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any i, vi 6= vi+2. The universal cover of G is then the infinite tree TG constructed in the
following fashion:

Fix any vertex v0 in G. Then vertex set of TG is the collection of all non-backtracking
walks in G starting from v0. We then draw an edge between two walks, p1 and p2 if p2 is p1

followed by another vertex.
Let us look at an example. Consider a d-regular graph G. Then its universal cover is

the infinite d-ary tree. But why is this useful? Principally the idea is that many asymptotic
properties of a graph come solely from its local structure. Thus such properties can often
be derived by studying the universal cover. The universal cover by its very definition after
all is the “biggest” graph with a given local structure. Consider the following famous result
commonly called as the Alon-Boppana bound[Nil91] :

Theorem 1.2.1. Let G1, G2, ... be a sequence of connected d-regular simple graphs with
number of vertices vn going to infinity. Let λ2,n be the second largest eigenvalue in modulus
of the Adjacency operator of Gn. Then limn→∞ |λ2,n| ≥ 2

√
d− 1

A standard proof sketch of this goes as follows :

Proof. Since every walk in the Universal Covering tree, T gives a walk in any base graph Gn

(via the covering map), we note that the number of closed walks in Gn is atleast as many as
those in the d-ary tree T . Let An be the adjacency matrix of Gn. Given any walk on the T
write a sequence of +1 and −1, where you write +1 if in the i’th step of the walk you move
away from the starting vertex and −1 otherwise. Since all the partial sums of this sequence
are non-negative and there are always atleast d− 1 ways of moving away from the starting
vertex, it is not hard to see that the number of closed walks of length 2k on the tree starting
from a given vertex is atleast Ck(d − 1)k, where Ck is the k’th Catalan number. Thus we
have the following inequality for any k and n:

d2k + (vn − 1)|λ2,n|2k ≥ tr(A2k
n ) ≥ vnCk(d− 1)k

=⇒ |λ2,n| ≥ 2k

√
vn

vn − 1
Ck(d− 1)k − d2k

vn − 1

=⇒ lim
n→∞

|λ2,n| ≥ 2k
√
Ck(d− 1)k.

Here the last line follows by using the assumption that the number of vertices vn goes to∞.
Finally we send k to ∞ and use that in limit 2k

√
Ck goes to 2 to complete the proof.

In this proof we already see why studying the universal cover might shed light on prop-
erties of the base graph. But there is an alternate proof that couples the two even better.
To do so let us first define the spectrum of an infinite operator. Given a infinite operator X,
define its spectrum as the set Spec(X) such that

λ ∈ Spec(X) ⇐⇒ X − λIis not invertible.
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It is well known that for the infinite d-ary tree, the spectrum of the adjacency matrix of
the universal cover is [−2

√
d− 1, 2

√
d− 1] ([Kes59], [McK81]). The spectral radius i.e. the

maximum absolute value in the the spectrum of the regular d-ary tree is thus 2
√
d− 1. We

can now couple this fact with a theorem by Greenberg :

Theorem 1.2.2. Let T be an infinite connected graph with finite maximum degree and
spectral radius ρ(T ). Then given any ε > 0, there exists a constant c = c(T , ε) such that for
any G which is covered by T , atleast cV (G) many eigenvalues of AG are greater in modulus
than ρ(T )− ε.

The full statement and a proof of this can be found in this paper by S.M.Cioabă [Cio06].
With this discussion we see how it might be of considerable interest to study infinite trees
or universal covers in general and the spectra of their adjacency operators in particular.
Unfortunately not much is known about this spectrum when the graph, and hence its cover,
is irregular.

In 1991 Aomoto came up with a result [Aom91] which sheds some light on this mysterious
animal. To discuss the result let us first define the point spectrum of an infinite operator.
We say λ is in the point spectrum of an infinite operator X, if there is a vector v, with
finite L2 norm, such that Xv = λv. Aomoto derived a set of necessary conditions for the
presence of point spectrum of AT and used it to show that the d-ary tree has no point
spectrum. Given any λ in the point spectrum and the base graph G, Aomoto shows the
existence of a particular subset of the set of vertices of G whose induced graph is acyclic. We
call this the Aomoto set Xλ(G). Intuitively this set is sort of the support of the eigenvector
corresponding to λ. It was also conjectured that these acyclic structures should not only be
necessary but also sufficient for the existence of point spectrum. We show precisely that in
Theorem 3.3.3. We also give a simplified and more combinatorial proof of Aomoto’s original
result in Theorem 3.3.1. The principle idea here that we exploit is a relation between the
number of connected components of the set Xλ(G) and the number of vertices outside of it
which are still neighbours to atleast one vertex in Xλ. Essentially the former being greater
than the latter allows us to construct an eigenvector of AT with eigenvalue λ.

This in addition to completely classifying the point spectrum of an irregular tree also
gives us a finite time algorithm to determine whether any given λ is in the point spectrum
of adjacency operator. Also of interest is the fact that our results are true not just for the
adjacency operator but for the more general class of “local periodic” operators, which we
define in chapter 3 when discussing our results.

1.3 Other short stories

We end by discussing a grab bag of various small problems involving covers. We saw in
the previous section that an “increasing” sequence of d regular graphs has the property
that their second largest eigenvalue in modulus is asymptotically greater than or equal to
2
√
d− 1. This poses a natural question. Can we get a sequence of d-regular graphs whose
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second largest eigenvalue is never greater than 2
√
d− 1 and thus in limit is 2

√
d− 1? It

was shown by Marcus, Spielman and Srivastava in [MSS14] that you can indeed get such a
sequence of bipartite graphs. In particular they proved the following theorem :

Theorem 1.3.1. A d-regular graph G is called Ramanujan if all the eigenvalues of its adja-
cency matrix except one lies in the interval [−2

√
d− 1, 2

√
d− 1]. Then if d > 2 there exists

a sequence of connected ramanujan bipartite graphs with increasing vertex size.

One interesting way to show this is via [MSS15]. Here they show that for any d-regular
graph G (with d > 2), there exists a connected 2-lift H i.e. H is a lift of G with exactly twice
the number of vertices such that if G is ramanujan then so is H. In reality if the adjacency
matrix of G and H are AG and AH respectively, then it turns out that all the eigenvalues
of AG are also eigenvalues of AH . So all one would need to show that there is a connected
2-lift whose “new” eigenvalues are in the interval [−2

√
d− 1, 2

√
d− 1].

One might then wonder if there is anything special about 2-lift. And indeed, in [HPS18],
it is shown that given a simple graph G the above theorem generalizes to arbitrary r-lifts.
In particular they show the following theorem :

Theorem 1.3.2. Every connected, loopless d-regular graph has a one-sided Ramanujan r-
covering. If the graph is bipartite then there is a a two-sided Ramanujan r-covering.

There is one small hiccup however. They need the graph to be loopless. To remedy
this they make the following conjecture in their paper which would extend the result to any
connected d-regular graph. We see in Chapter 4 why this small result about real rooted-ness
is true:

Theorem 1.3.3. Let A1, . . . , An be any real matrices, then the following polynomial is real
rooted

EPi,Qiχ(
∑
i

PiAiQ
T
i +QiA

T
i P

T
i )

where Pi, Qi is any distribution of permutations realized by swaps.

The proof of this result largely follows the techniques in [MSS15] with some suitable
changes. This gives us a new family of real rooted polynomials.

Surprisingly enough, these techniques of real rooted-ness can sometimes be used to get
seemingly unrelated results in functional analysis. Consider the following theorem proved
by Françoise Lust-Piquard in 1997 [LP97]

Theorem 1.3.4. For every matrix A = (aij) such that A and A∗ are bounded in l∞(l2)
norm, there exists a matrix B = (bij) defining a bounded operator: l2(C)→ l2(C) such that

(i) |B|2→2 ≤ Kmax{|A|l∞(l2), |A∗|l∞(l2)}
(ii) ∀i, j ∈ N , |bij| ≥ |aij|,
where K is an absolute constant and |A|l∞(l2) := maxj

√∑
i a

2
ij .
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For real matrices using the Heilman-Lieb theorem [HL72] not only can we prove this very
easily, we also get 2 as K which is a large improvement over the constant listed in previous
paper. This is a special case of the following more general conjecture :

Conjecture 1.3.5. Given any n× n symmetric matrices A1, ..., An, there exists ε1, ..., εn ∈
{1,−1} such that

||
∑
i

εiAi|| ≤ K

√
||
∑
i

A2
i ||,

where K is an absolute constant.

The above conjecture in turn is related to the Khintchine-Kahane inequality :

Theorem 1.3.6. Let A1, ..., An be d×d symmetric matrices. Let ε1, ..., εn be random variable
taking values 1 or −1 with equal probability. Then there exists a constants K and K ′ such
that

K

√
||
∑
i

A2
i || ≤ E[||

∑
i

εiAi||] ≤ K ′
√

log d

√
||
∑
i

A2
i ||.

Thus while the Khintchine-Kahane inequality gives information about the expected norm,
the conjecture asks if we can lose

√
log d by moving from expectation to mere existence.

1.4 Bibliographic note

Many of the results presented in this dissertation have been published or submitted for
publication and a lot of the presentation is joint work. Chapter 2 is joint work with Ar-
chit Kulkarni, Jess Banks and Nikhil Srivastava and have been submitted for publication.
Chapter 3 is joint work with Jess Banks and Jorge Garza Vargas and have been submitted
for publication. A part of chapter 4, namely 4.2 is joint work with Nick Ryder and Nikhil
Srivastava
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Chapter 2

Davies’ Conjecture

2.1 Introduction

A matrix A ∈ Cn×n is diagonalizable if it can be written as A = V DV −1, where D is diagonal
and V is a matrix consisting of linearly independent eigenvectors of A. Further, A is normal
if and only if V −1 = V ∗, or in other words if the eigenvectors can be chosen to be orthogonal.
A fundamental quantity capturing the nonnormality of a matrix is the eigenvector condition
number

κV (A) , inf
V :A=V DV −1

‖V ‖‖V −1‖,

which ranges between 1 and ∞ when A is normal and nondiagonalizable respectively, where
‖·‖ denotes the operator norm. Matrices with small κV enjoy many of the desirable properties
of normal matrices, such as stability of the spectrum under small perturbations (this is the
content of the Bauer-Fike theorem [BF60]). In this paper we study the following question
posed by E. B. Davies in [Dav07]:

How well can an arbitrary matrix be approximated by one with a small eigenvector
condition number?

Our main theorem is as follows.

Theorem 2.1.1. Suppose A ∈ Cn×n and δ ∈ (0, 1). Then there is a matrix E ∈ Cn×n such
that ‖E‖ ≤ δ‖A‖ and

κV (A+ E) ≤ 4n3/2

(
1 +

1

δ

)
.

In other words, every matrix is at most inverse polynomially close to a matrix whose
eigenvectors have condition number at most polynomial in the dimension. The previously
best known general bound in such a result was [Dav07, Theorem 3.8]:

κV (A+ E) ≤
(n
δ

)(n−1)/2

, (2.1)
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so our theorem constitutes an exponential improvement in the dependence on both δ and n.
We show in Proposition 2.4.1 that the 1/δ-dependence in Theorem 2.1.1 cannot be improved
beyond 1/δ1−1/n, so our bound is essentially optimal in δ for large n.

Davies’ Conjecture

Theorem 2.1.1 implies a positive resolution to a conjecture of Davies [Dav07].

Conjecture 2.1.2. For every positive integer n there is a constant cn such that for every
A ∈ Cn×n with ‖A‖ ≤ 1 and ε ∈ (0, 1):

inf
E∈Cn×n

(κV (A+ E)ε+ ‖E‖) ≤ cn
√
ε. (2.2)

Proof of Conjecture 2.1.2. Given ε > 0, set δ = dn
√
ε for some dn > 0 and apply Theorem

2.1.1. This yields cn = 4n3/2 + 4n3/2/dn + dn. This is minimized at dn = 2n3/4, which yields
cn = 4n3/2 + 4n3/4 ≤ 8n3/2.

The phrasing of Conjecture 2.1.2 is motivated by a particular application in numerical
analysis. Suppose one wants to evaluate analytic functions f(A) of a given matrix A, which
may be nonnormal. If A is diagonalizable, one can use the formula f(A) = V f(D)V −1,
where f(D) means the function is applied to the scalar diagonal entries of D. However,
this may be numerically infeasible if κV (A) is very large: if all computations are carried to
precision ε, the result may be off by an error of κV (A)ε. Davies’ idea was to replace A by
a perturbation A + E with a much smaller κV (A + E), and compute f(A + E) instead. In
[Dav07, Theorem 2.4], he showed that the net error incurred by this scheme for a given ε > 0
and sufficiently regular f is controlled by:

κV (A+ E)ε+ ‖E‖,

which is the quantity appearing in (2.2). The key desirable feature of (2.2) is the dimension-
independent fractional power of ε on the right-hand side, which shows that the total error
scales slowly.

Davies proved his conjecture in the special case of upper triangular Toeplitz matrices,
in dimension n = 3 with the constant cn = 2, as well as in the general case with the
weaker dimension-dependent and nonconstructive bound (n + 1)ε2/(n+1). This last result
corresponds to (2.1) above. He also speculated that a random regularizing perturbation E
suffices to prove Conjecture 2.1.2, and presented empirical evidence to that effect. Our proof
of Theorem 2.1.1 below indeed follows this strategy.

Gaussian Regularization

Theorem 2.1.1 follows from a probabilistic result concerning complex Gaussian perturbations
of a given matrix A. To state our result, we recall two standard notions.
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Definition 2.1.3. A complex Ginibre matrix is an n×n random matrix Gn = (gij) with i.i.d
complex Gaussian entries gij ∼ N(0, 1C/n), by which we mean Egij = 0 and E|gij|2 = 1/n.
Equivalently the real and imaginary parts of each gij are independent N(0, 1/2n) random
variables.

Definition 2.1.4. Let M ∈ Cn×n have distinct eigenvalues λ1, . . . , λn, and spectral expansion

M =
n∑
i=1

λiviw
∗
i = V DV −1,

where the right and left eigenvectors vi and w∗i are the columns and rows of V and V −1,
respectively, normalized so that w∗i vi = 1. The eigenvalue condition number of λi is defined
as:

κ(λi) , ‖viw∗i ‖ = ‖vi‖‖wi‖.

The κ(λi)’s are called condition numbers because they determine the sensitivity of the λi
to perturbations of the matrix. We show that adding a small Ginibre perturbation regularizes
the eigenvalue condition numbers of any matrix in the following averaged sense.

Theorem 2.1.5. Suppose A ∈ Cn×n with ‖A‖ ≤ 1 and δ ∈ (0, 1). Let Gn be a complex
Ginibre matrix, and let λ1, . . . , λn ∈ C be the (random) eigenvalues of A + δGn. Then for
every measurable open set B ⊂ C,

E
∑
λi∈B

κ(λi)
2 ≤ n2

πδ2
vol(B).

Note that the κ(λi) appearing above are well-defined because A+δGn has distinct eigenvalues
with probability one.

Related Work

Random Matrix Theory. There have been numerous studies of the eigenvalue condition
numbers κ(λi)

2, sometimes called eigenvector overlaps in the random matrix theory and
mathematical physics literature, for non-Hermitian random matrix models of type A+ δGn.
In the centered case A = 0 and δ = 1 of a standard complex Ginibre matrix, the seminal work
of Chalker and Mehlig [CM98] calculated the large-n limit of the conditional expectations

E[κ(λ)2|λ = z] ∼
n→∞

n(1− |z|2),

whenever |z| < 1. Recent works by Bourgade and Dubach [BD18] and Fyodorov [Fyo18]
improved on this substantially by giving exact nonasymptotic formulas for the distribution
of κ(λ)2 conditional on the location of the eigenvalue λ, as well as concise descriptions of
the scaling limits for these formulas. The paper [BGZ18] proved (in the more general setup
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of invariant ensembles) that the angles between the right eigenvectors (v∗i vj)/‖vi‖‖vj‖ have
subgaussian tails, which has some bearing on κV (for instance, a small angle between unit
eigenvectors causes ‖V −1‖ and therefore κV to blow up.)

In the non-centered case, Davies and Hager [DH09] showed that if A is a Jordan block
and δ = n−α for some appropriate α, then almost all of the eigenvalues of A + δGn lie near
a circle of radius δ1/n with probability 1 − on(1). Basak, Paquette, and Zeitouni [BPZ18,
BPZ19] showed that for a sequence of banded Toeplitz matrices An with a finite symbol, the
spectral measures of An+n−αGn converge weakly in probability, as n→∞, to a predictable
density determined by the symbol. Both of the above results were recently and substantially
improved by Sjöstrand and Vogel [SV19a, SV19b] who proved that for any Toeplitz A, almost
all of the eigenvalues of A + n−αGn are close to the symbol curve of A with exponentially
good probability in n. Note that none of the results mentioned in this paragraph explicitly
discuss the κ(λi); however, they do deal qualitatively with related phenomena surrounding
spectral instability of non-Hermitian matrices.

The idea of managing spectral instability by adding a random perturbation can be traced
back to the influential papers of Haagerup and Larsen [HL00] and Śniady [Śni02] (see also
[GWZ14, FPZ14]), who used it to study convergence of the eigenvalues of certain non-
Hermitian random matrices to a limiting Brown measure, in the context of free probability
theory.

There are three notable differences between Theorem 2.1.5 and the results mentioned
above:

1. Our result is much coarser, and only guarantees an upper bound on the Eκ(λi)
2, rather

than a precise description of any distribution, limiting or not.

2. It applies to any A ∈ Cn×n and δ ∈ (0, 1).

3. It is completely nonasymptotic and does not require n→∞ or even sufficiently large
n.

Numerical Analysis. In the numerical linear algebra literature, several works have ana-
lyzed the condition numbers of Gaussian matrices (notably the seminal results of Demmel
[Dem83] and Edelman [Ede88]) as well as perturbations of arbitrary matrices by Gaussian
matrices (beginning with [SST06]) in the nonasymptotic regime. In contrast, this paper stud-
ies the condition numbers of the eigenvectors of such matrices, rather than of the matrices
themselves.

The idea of approximating matrix functions by adding a regularizing perturbation was
introduced in [Dav07] and has since appeared in several works regarding numerical computa-
tion of the matrix logarithm, sine, cosine, and related functions [AMHR13, HL13, AMHR15,
NH18, DIP+19].
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Figure 2.1: T is a sample of an upper triangular 10× 10 Toeplitz matrix with zeros on the
diagonal and independent (modulo the Toeplitz structure) standard real Gaussian entries
above the diagonal. Pictured is the boundary of the ε-pseudospectrum of T (left) and
T + 10−6G (right) for ε = 10−5, ε = 10−5.5, and ε = 10−6, along with the spectra. These
plots were generated with the MATLAB package EigTool [WT02].

Techniques and Organization

The proofs of Theorems 2.1.1 and 2.1.5 are quite simple and rely on an interplay between
various notions of spectral stability. In addition to κV and the κ(λi), we will heavily use the
notion of the ε−pseudospectrum of a matrix M , defined for ε > 0 as:

Λε(M) , {z ∈ C : z ∈ Λ(M + E) for some ‖E‖ < ε} (2.3)

=
{
z ∈ C : ‖(zI −M)−1‖ > 1/ε

}
(2.4)

= {z ∈ C : σn(zI −M) < ε} , (2.5)

where Λ(M) denotes the spectrum M . For a proof of the equivalence of these three sets
and a comprehensive treatment of pseudospectra, see the beautiful book by Trefethen and
Embree [TE05]. Note that for a normal matrix, we have

Λε(M) = Λ(M) +
⋃
i

D(λi, ε),

whereas for a nonnormal matrix such as a Jordan block, Λε can be much larger. Figure
1 illustrates the regularizing effect of a small complex Gaussian perturbation on the pseu-
dospectrum of a nondiagonalizable matrix, which is the key phenomenon underlying our
results.

To analyze this phenomenon, we first collect some tools from random matrix theory in
Section 2.2, along the way proving a conjecture of Sankar, Spielman, and Teng [SST06]
regarding the optimal constant in their smoothed analysis of condition numbers of matrices
under real Gaussian perturbations in Section 2.2. Section 2.3 contains the proofs of our main
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results, Theorems 2.1.1 and 2.1.5. In Section 2.4, we prove optimality of the 1/δ-dependence
in Theorem 2.1.1 as discussed above, and show that Theorem 2.1.5 is sharp up to a small
constant factor. We conclude with a discussion of some open problems in Section 2.5.

Notation

We denote the singular values of an n × n matrix by σ1(M) ≥ . . . ≥ σn(M), its operator
and Frobenius (Hilbert-Schmidt) norms by ‖M‖ and ‖M‖F , and its condition number by
κ(M) , σ1(M)/σn(M). Open disks in the complex plane will be written as D(z0, r) ,
{z ∈ C : |z − z0| < r}. We will often write G for a standard complex Gaussian matrix with
N(0, 1C) entries, and Gn = n−1/2G for a (normalized) Ginibre matrix.

2.2 Tools from Random Matrix Theory

Nonasymptotic Extreme Singular Value Estimates

Let us record some standard non-asymptotic estimates for the extreme singular values of
complex Ginibre matrices. The lower tail behavior of the smallest singular value of a Ginibre
matrix was worked out by Edelman in the unnormalized scaling of i.i.d. N(0, 1C) entries
[Ede88, Chapter 5], and in our setting it translates to:

Theorem 2.2.1. For a complex Ginibre matrix Gn,

P[σn(Gn) < ε] = 1− e−ε2n2 ≤ ε2n2.

We will also require a cruder tail estimate on the largest singular value. We believe the
lemma holds with a constant 2 instead of 2

√
2, but did not find a reference to a nonasymptotic

result to this effect; since the difference is not very consequential in this context, we reduce
to the real case.

Lemma 2.2.2. For a complex Ginibre matrix Gn,

P[σ1(Gn) > 2
√

2 + t] ≤ 2 exp(−nt2).

Proof. We can write Gn = 1√
2
(X + iY ) where X and Y are independent with i.i.d. real

N(0, 1/n) entries. It is well-known (e.g. [DS01, Theorem II.11]) that:

Eσ1(Gn) ≤ 2√
2
E‖X‖ ≤ 2

√
2.

Lipschitz concentration of functions of real Gaussian random variables yields the result.
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Śniady’s Comparison Theorem

To bound the least singular value of noncentered Gaussian matrices, we will lean on a
remarkable theorem of Śniady [Śni02].

Theorem 2.2.3 (Śniady). Let A1 and A2 be n × n complex matrices such that σi(A1) ≤
σi(A2) for all 1 ≤ i ≤ n. Assume further that σi(A1) 6= σj(A1) and σi(A2) 6= σj(A2) for
all i 6= j. Then for every t ≥ 0, there exists a joint distribution on pairs of n × n complex
matrices (G1, G2) such that

(i) the marginals G1 and G2 are distributed as (normalized) complex Ginibre matrices Gn,
and

(ii) almost surely σi(A1 +
√
tG1) ≤ σi(A2 +

√
tG2) for every i.

We will briefly sketch the proof of this theorem for the reader’s benefit, since it is quite
beautiful and we will need to perform a slight modification to prove the conjecture of Sankar-
Spielman-Teng in the next subsection.

Sketch of proof. The key insight of the proof is that it is possible to couple the distributions
of G1 and G2 through their singular values. To do so, one first derives a stochastic differential
equation satisfied by the singular values s1, ..., sn of a matrix Brownian motion (i.e., a matrix
whose entries are independent complex Brownian motions):

dsi =
1√
2n
dBi +

dt

2si

(
1− 1

2n
+
∑
j 6=i

s2
i + s2

j

n(s2
i − s2

j)

)
, (2.6)

where the Bi are independent standard real Brownian motions. Next, one uses a sin-
gle n-tuple of real Brownian motions B1, ..., Bn to drive two processes (s

(1)
1 , . . . , s

(1)
n ) and

(s
(2)
1 , . . . , s

(2)
n ) according to (2.6), with initial conditions s

(1)
i (0) = σi(A1) and s

(2)
i (0) = σi(A2)

for all i. (To do this rigorously, one needs existence and uniqueness of strong solutions to
the above SDE; this is shown in [KO+01] under the hypothesis si(0) 6= sj(0) for all i 6= j.)

Things have been arranged so that the joint distribution of (s
(j)
1 , . . . , s

(j)
n ) at time t

matches the joint distribution of the singular values of Aj +
√
tGj for each j = 1, 2. One

can then sample unitaries Uj and Vj from the distribution arising from the singular value

decomposition Aj +
√
tGj = UjDjV

∗
j , conditioned on Dj = diag(s

(j)
1 , . . . , s

(j)
n ). Thus each Gj

is separately Ginibre-distributed. However, A1 +
√
tG1 and A2 +

√
tG2 are coupled through

the shared randomness driving the evolution of their singular values. In particular, since
the same Bi were used for both processes, from (2.6) one can verify that the n differences

s
(2)
i − s

(1)
i are C1 in t. By taking derivatives, one can then show the desired monotonicity

property: if s
(2)
i − s

(1)
i ≥ 0 holds for all i at t = 0, it must hold for all t ≥ 0.
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Sankar-Spielman-Teng Conjecture

The proof technique of Śniady can be adapted to prove a counterpart of Theorem 2.2.3 for
real Ginibre perturbations (by this we mean matrices with i.i.d. real N(0, 1/n) entries).
Because a rigorous proof requires some stochastic analysis, we defer the proof and discussion
of the following theorem to the appendix.

Theorem 2.2.4. Let A1 and A2 be n × n real matrices such that σi(A1) ≤ σi(A2) for all
1 ≤ i ≤ n. Assume further that σi(A1) 6= σj(A1) and σi(A2) 6= σj(A2) for all i 6= j. Then
for every t ≥ 0, there exists a joint distribution on pairs of real n×n matrices (G1, G2) such
that

(i) the marginals G1 and G2 are distributed as real Ginibre matrices (with i.i.d. N(0, 1/n)
entries), and

(ii) almost surely σi(A1 +
√
tG1) ≤ σi(A2 +

√
tG2) for every i.

This resolves Conjecture 1 in [SST06], which we restate below as a proposition:

Proposition 2.2.5. Let G be an n× n matrix with i.i.d. real N(0, 1) entries, and A be any
n× n matrix with real entries. Then

P [σn(A+G) < ε] ≤ ε
√
n.

Proof. The case A = 0 is a result of Edelman [Ede88]. The proposition for general A would
then follow from Theorem 2.2.4 with A1 = 0 and A2 = A if not for the hypothesis σi(A1) 6=
σj(A1) and σi(A2) 6= σj(A2) for all i 6= j. So we approach 0 and A by matrices satisfying this
hypothesis, apply Theorem 2.2.4, and take limits, using the continuous mapping theorem
and continuity of σn(·).

2.3 Proof of Theorems 2.1.1 and 2.1.5

We begin with a lemma relating the eigenvector and eigenvalue condition numbers. For
related results, including an extension of this lemma to the more general context of block
diagonalization, see the thesis of Demmel [Dem83, Equation 3.6].

Lemma 2.3.1. Let M be an n×n matrix with distinct eigenvalues, and let V be the matrix
whose columns are the eigenvectors of M normalized to have unit norm. Then

κ(V ) ≤

√√√√n
n∑
i=1

κ(λi)2.
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Proof. Note that the left eigenvectors wi are the rows of V −1. Then ‖V ‖2
F = n and ‖V −1‖2

F =∑n
i=1 ‖wi‖2 =

∑n
i=1 κ(λi)

2, so

κ(V ) = ‖V ‖‖V −1‖ ≤ ‖V ‖F‖V −1‖F =

√√√√n
n∑
i=1

κ(λi)2.

We can now prove the main theorem.

Proof of Theorem 2.1.1 given Theorem 2.1.5. Let λ1, . . . , λn be the eigenvalues of the ran-
dom matrix A+ δGn, and t > 2

√
2 and s > 1 be parameters to be optimized later. Davies’

original bound (2.1) implies our bound for n ≤ 3, so assume n ≥ 4. Then Lemma 2.2.2 tells
us that

P[‖δGn‖ ≥ tδ] ≤ 2e−4(t−2
√

2)2 . (2.7)

Letting B = D(0, ‖A‖+ tδ), we have

P

[∑
λi∈B

κ(λi)
2 6=

∑
i≤n

κ(λi)
2

]
≤ P[‖δGn‖ ≥ tδ] ≤ 2e−4(t−2

√
2)2 (2.8)

since maxi≤n |λi| ≤ ‖A‖ + ‖δGn‖. On the other hand, by Theorem 2.1.5 applied to B and
Markov’s inequality:

P

[∑
λi∈B

κ(λi)
2 ≥ s

n2vol(B)

δ2π

]
≤ 1

s
. (2.9)

By the union bound, if we choose s and t such that

2e−4(t−2
√

2)2 +
1

s
< 1 (2.10)

then there exists a choice of Gn such that neither of the events (2.8), (2.9) occurs. Letting
E = δGn for this choice, we have

n∑
i=1

κ(λi)
2 =

∑
i∈B

κ(λi)
2 ≤ s

n2vol(B)

πδ2
.

Taking a square root and applying Lemma 2.3.1, we have

κV (A+ E) ≤
√
sn3/2

δ
(‖A‖+ tδ) ≤

√
sn3/2‖A‖

δ
+ t
√
sn3/2.

Because ‖E‖ ≤ tδ and not δ, replacing δ by δ/t yields the bound

κV (A+ E) ≤ t
√
sn3/2‖A‖
δ

+ t
√
sn3/2.
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To get the best bound, we must minimize t
√
s subject to the constraints (2.10), t > 2

√
2

and s > 1. Solving for s this becomes a univariate optimization problem, and one can
check numerically that the optimum is achieved at t ≈ 3.7487 and t

√
s ≈ 3.8822 < 4, as

advertised.

We begin the proof of Theorem 2.1.5 by relating the eigenvalue condition numbers of a
matrix to the rate at which its pseudospectrum Λε shrinks as a function of the parameter
ε > 0. The following proposition is not new; the proof essentially appears for example in
Section 3.6 of [BD18], but we include it for completeness since it is critical to our argument.

Lemma 2.3.2 (Limiting Area of the Pseudospectrum). Let M be an n × n matrix with n
distinct eigenvalues λ1, . . . , λn and let B ⊂ C be a measurable open set. Then

lim
ε→0

vol(Λε(M) ∩B)

ε2
= π

n∑
λi∈B

κ(λi)
2.

Proof. Write the spectral decomposition

(zI −M)−1 =
n∑
i=1

viw
∗
i

z − λi
,

where the vi and w∗i are right and left eigenvectors of M , respectively. Since the λi are
distinct, we may choose ε0 > 0 sufficiently small to guarantee that there exists a constant
C > 0 satisfying (1) the disks D(λi, ε0) are disjoint; (2) for every λi ∈ B the disk D(λi, ε0)
is contained in B; and (3) whenever z ∈ D(λi, ε0) for some i,

‖(zI −M)−1‖ ≥ ‖viw
∗
i ‖

|z − λi|
− C =

κ(λi)

|z − λi|
− C. (2.11)

Using the definition of the ε-pseudospectrum in (2.4), we rearrange (2.11) to obtain

Λε(M) ∩B ⊃
{
z : |z − λi| ≤ min

{
ε0,

κ(λi)ε

1 + εC

}
, for some λi ∈ B

}
.

Thus, taking ε small enough, we have

lim inf
ε→0

vol(Λε(M) ∩B)

ε2
≥ π

n∑
i=1

κ(λi)
2.

For the opposite inequality, Theorem 52.1 of [TE05] states that the ε-pseudospectrum is
contained in disks around the eigenvalues λi of radii εκ(λi)+O(ε2). Choosing ε small enough
so that for λi ∈ B these disks are entirely contained in B:

vol(Λε ∩B) ≤
∑
λi∈B

π(εκ(λi) +O(ε2))2 ⇒ lim sup
ε→0

vol(Λε ∩B)

ε2
≤
∑
λi∈B

πκ(λi)
2.
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Next, we show that for fixed ε > 0, any particular point z ∈ C is unlikely to be in
Λε(A + δGn). This is based on the following singular value estimate, which generalizes
Theorem 2.2.1.

Lemma 2.3.3 (Small Ball Estimate for σn). Let M be an n×n matrix with complex entries,
and G be drawn from the Ginibre ensemble. Then for all δ > 0 and ε > 0

P [σn(M + δGn) < ε] ≤ n2 ε
2

δ2
.

Proof. Repeat the proof of Proposition 2.2.5 using instead Theorems 2.2.1 and 2.2.3.

Remark 2.3.4. If one is willing to lose a small constant factor in the bound, Lemma 2.3.3
has an elementary geometric proof (which avoids stochastic calculus), essentially identical
to the proof of Sankar-Spielman-Teng [SST06, Theorem 3.1] in the case of real Ginibre
perturbations. Note however that it is crucial to use a complex Gaussian for our purposes.
A real Gaussian would yield a small ball estimate of order ε (see Proposition 2.2.5) rather
than ε2, which is not good enough to take the limit below.

Proof of Theorem 2.1.5. For every z ∈ C we have the upper bound

P[z ∈ Λε(A+ δGn)] = P[σn(zI − (A+ δGn)) < ε] ≤ n2 ε
2

δ2
, (2.12)

by applying Lemma 2.3.3 to M = zI − A and noting that G and −G have the same distri-
bution.

Fix a measurable open set B ⊂ C. Then

E vol(Λε(A+ δGn) ∩B) = E
∫
B

1{z∈Λε(A+δGn)} dz

=

∫
B

E{z ∈ Λε(A+ δGn)} dz by Fubini

≤
∫
B

n2 ε
2

δ2
dz by (2.12)

= n2 ε
2

δ2
vol(B) (2.13)

where the integrals are with respect to Lebesgue measure on C. Finally, taking a limit as
ε→ 0 yields the desired bound:

E
∑
λi∈B

κ(λ2
i ) = E lim inf

ε→0

vol(Λε(A+ δGn) ∩B)

πε2
by Lemma 2.3.2

≤ lim inf
ε→0

E
vol(Λε(A+ δGn) ∩B)

πε2
by Fatou’s Lemma

≤ n2vol(B)

πδ2
by (2.13).
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2.4 Optimality of the Bounds

We first show that Theorem 2.1.1 has essentially the optimal dependence on δ for n large.
The example which requires this dependence is simply a Jordan block J , for which Davies
[Dav07] established the upper bound κV (J + δE) ≤ 2/δ1−1/n, for some E with ||E|| < 1.

Proposition 2.4.1. Fix n > 0 and let J ∈ Cn×n be the upper triangular Jordan block with
ones on the superdiagonal and zeros everywhere else. Then there exist cn > 0 and δn > 0
such that for all E ∈ Cn×n with ‖E‖ ≤ 1 and all δ < δn, we have

κV (J + δE) ≥ cn
δ1−1/n

.

Proof. As a warm-up, we’ll need the following bound on the pseudospectrum of J . Let λ
be an eigenvalue of J + δE, with v its associated right eigenvector; then (J + δE)nv = λnv
and, accordingly, |λ|n ≤ ‖(J + δE)n‖. Expanding, using nilpotence of J , ‖J‖ = 1, and
submultiplicativity of the operator norm, we get

|λ|n ≤ ‖(J + δE)n‖ ≤ (1 + δ)n − 1 = O(δ) (2.14)

where the big-O refers to the limit δ → 0 (recall n is fixed).
Writing J+δE = V −1DV , we want to lower bound the condition number of V . As above,

let λ be an eigenvalue of J + δE, now writing w∗ and v for its left and right eigenvectors.
We’ll use the lower bound

κ(V ) = ‖V −1‖‖V ‖ ≥ ‖w
∗‖‖v‖
|w∗v|

= κ(λ).

Since the formula above is agnostic to the scaling of the left and right eigenvectors, we’ll
assume that both have unit length and show that |w∗v| is small.

Let 0 ≤ k ≤ n. Then ‖(J + δE)kv‖ = |λ|k, and analogously to (2.14),

‖(J + δE)k − Jk‖ ≤ (1 + δ)k − 1 = O(δ).

Since J acts on the left as a left shift,(
n∑

i=k+1

|vi|2
)1/2

= ‖Jkv‖

≤ ‖(J + δE)kv‖+ ‖(Jk − (J + δE)k)v‖
≤ |λ|k +O(δ)

= O(δk/n),

where the final line follows from (2.14). Similarly,(
n−k∑
i=1

|wi|2
)1/2

= ‖w∗Jk‖ = O(δk/n).
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Finally, we have κ(V )−1 = |w∗v| ≤
n∑
j=1

|wj||vj|, which in turn is at most

n∑
j=1

(
j∑
i=1

|wi|2
)1/2( n∑

i=j

|vi|2
)1/2

= O(δ(n−j)/nδ(j−1)/n) = O(δ1−1/n).

We end by showing that the dependence on n in Theorem 2.1.5 cannot be improved.

Proposition 2.4.2. There exists c > 0 such that for all n,

E
∑
i∈[n]

κ2 (λi(Gn)) ≥ cn2.

Proof. Bourgade and Dubach [BD18, Theorem 1.1, Equation 1.8] show that eigenvalue con-
dition numbers in the bulk of the spectrum of complex Ginibre matrices are of order

√
n.

Precisely,

lim
n→∞

E[κ(λi)
2|λi = z]

n
= 1− |z|2

uniformly for (say) z ∈ D(0, r) for any r < 1. The classical circular law for the limiting
spectral distribution of Ginibre matrices ensures that

lim
n→∞

E|Λ(Gn) ∩D(0, r)|
n

=
vol(D(0, r))

vol(D(0, 1))
= r2.

Thus,

lim inf
n→∞

E
∑

i∈[n] κ (λi(Gn))2

n2
≥ r2(1− r2) > 0.

2.5 Conclusion and Discussion

A key theme in our work is the interplay between the related notions of eigenvector condition
number κV , eigenvalue condition number κ(λi) and pseudospectrum Λε. Equally important
is the fact that global objects such as κV and Λε can be controlled by local quantities,
specifically the least singular values of shifts σn(zI −M) for each z ∈ C. The proof also
heavily exploits the left and right unitary invariance of the Ginibre ensemble (via Theorem
2.2.3, due to Śniady) as well as anticoncentration of the complex Gaussian.

One natural question is whether similar results hold if one replaces Gaussian pertur-
bations with a different class of random perturbations G′. To apply the approach in this
paper, the key difficulty would be obtaining suitable bounds for the least singular value of
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z − A − δG′. Davies [Dav07] presents experimental evidence that Theorem 2.1.1 holds for
random real rank-one perturbations and random real Gaussian perturbations, but a proof
(or disproof) remains to be found. See Remark 2.3.4 for a discussion of why our proof does
not extend to the case of real Gaussian perturbations.

One may also ask if Theorem 2.1.1 can be derandomized; that is, if the regularizing
perturbation E can be chosen by a deterministic algorithm given A as input. One natural
choice would be to perturb in the direction of the nearest normal matrix in either operator
or Frobenius norm, the latter of which can be written as a certain optimization problem over
unitary matrices [Ruh87].

Proposition 2.4.1 shows that the upper bound in Theorem 2.1.1 is tight in the pertur-
bation size δ. Now, let cn be the smallest constant such that Theorem 2.1.1 holds with an
upper bound of cn/δ. Theorem 2.1.1 implies that cn ≤ 8n3/2, and since κV = ‖V ‖‖V −1‖ ≥ 1
for any matrix, we have cn ≥ 1. It would be interesting to determine the correct asymptotic
behavior of cn. Davidson, Herrero, and Salinas asked in 1989 [DHS89] whether the state-
ment of Theorem 2.1.1 is possible with κV (A + E) depending only on δ and not on n. In
the present context, we can ask the more refined question: does Theorem 2.1.1 hold with
bounded cn, or must cn go to infinity with n?

2.6 Appendix : Proof of Theorem 2.2.4

The goal of this appendix is to adapt Śniady’s [Śni02] proof of Theorem 2.2.3, as outlined
below the statement of Theorem 2.2.3, to the case of real matrices with real Ginibre pertur-
bations.

The stochastic differential equation satisfied by the squared singular values of a real
matrix Brownian motion was derived by Bru in her work on Wishart processes [Bru89, Bru91]
and independently by Le in her work on shape theory [Le94, Le99]. The equation reads as
follows:

dλi =
2
√
λi
n

dBi +

(
1 +

∑
j 6=i

λi + λj
λi − λj

)
dt, 1 ≤ i ≤ n. (2.15)

The proof strategy of Śniady crucially relies on the existence and uniqueness of strong
solutions to the singular value SDE. This is needed in order to obtain two solutions driven
by the same Brownian motion, and to assert that the law of each solution indeed matches
the law of the singular values of a noncentered Ginibre matrix. See [AGZ10] for a definition
of strong solution and a rigorous proof of existence and uniqueness of strong solutions for
Dyson Brownian motion, the Hermitian analogue of the Ginibre singular values process.

Fortunately, such results are known for the SDE (2.15). Let Λ denote the domain

Λ ∈ Rn := {λ : 0 ≤ λn < · · · < λ1}.



CHAPTER 2. DAVIES’ CONJECTURE 22

For any initial data λ(0) lying in the closure Λ, it is known that strong solutions to (2.15)
exist, are unique, and lie in Λ for all t > 0, almost surely [GM14, Corollary 6.5]. Combining
this with [Bru89, Theorem 1], we have that for initial data λ(0) lying in Λ, the law of the
strong solutions to (2.15) matches the law of the squared singular values process of A+M/

√
n,

where M is a matrix of i.i.d. standard real Brownian motions and A has squared singular
values λ(0). (It should be possible to extend this last statement for initial data in Λ, but the
proof may be somewhat involved—cf. [AGZ10], which contains a proof of the corresponding
extension for Dyson Brownian motion.)

Let ai(λ) = 1 +
∑

j 6=i
λi+λj
λi−λj denote the drift coefficient in (2.15). As in Śniady’s proof for

the complex Ginibre case (Theorem 2.2.3), the key property of a allowing for the comparison
theorem is the so-called quasi-monotonicity (see [DW98]) or Kamke–Ważewski condition
[MPF91, §XI.13] from differential inequalities, which is simply that

for all i, ai(λ
(1)) ≤ ai(λ

(2)) whenever λ
(1)
i = λ

(2)
i and λ

(1)
j ≤ λ

(2)
j for all j 6= i. (2.16)

One easily checks that a satisfies this condition on the domain Λ.
The nonconstant (indeed, non-Lipschitz) diffusion coefficient 2

√
λi/n in (2.15) is a tech-

nical obstacle which does not appear in the SDE (2.6) for the complex case. Consequently,
the final step of Śniady’s proof as sketched below Theorem 2.2.3 cannot be repeated naively,
because taking the difference of two solutions no longer cancels out the diffusion terms. For-
tunately, theory has been developed to handle Hölder-1/2 diffusion coefficients; see [RY99,
§IX.3] for exposition of the one-dimensional case and see [Kra10] for a survey of comparison
theorems for SDEs in general.

Quasi-monotonicity and the one-dimensional Hölder-1/2 comparison theory are combined
in a rather general multidimensional comparison theorem of Geiß and Manthey [GM94,
Theorem 1.2]. Applied to the SDE (2.15), this theorem provides exactly the right conclusion
to replace the final step of Śniady’s proof. We state the relevant special case of their theorem
below:

Theorem 2.6.1 (Geiß-Manthey). Consider the SDE

dXi = σi(X) dBi + ai(X) dt, 1 ≤ i ≤ n,

where the Bi are independent standard real Brownian motions, and σi, ai : Rn → R are
continuous. Suppose the following conditions are satisfied:

1. the drift coefficient a satisfies the quasi-monotonicity condition (2.16)

2. there exists ρ : R+ → R+ increasing with
∫ ε

0
ρ−2(u) du = ∞ for some ε > 0, such that

|σi(x)− σi(y)| ≤ ρ(|xi − yi|) for all i and all x, y ∈ Rn

3. strong solutions for the SDE exist for all time and are unique.

Suppose initial conditions X(1)(0) and X(2)(0) satisfy the inequality X
(1)
i (0) ≤ X

(2)
i (0) for all

i. Then almost surely, X
(1)
i (t) ≤ X

(2)
i (t) for all i and for all t > 0.
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Setting ρ(u) :=
√
u, the SDE (2.15) satisfies the conditions of the Geiß-Manthey theorem,

except that our domain for both ai and σi is Λ, not Rn. We address these two coefficients
in turn.

First we deal with the drift coefficient ai, using a standard localization argument already
implicit in the proof of Geiß and Manthey. They (implicitly) define the stopping time ϑN
to be the first time ‖X(1)‖ ≥ N or ‖X(2)‖ ≥ N , and use the fact that a is Lipschitz on the
restricted domain ‖X‖ ≤ N to show that

P
[
X

(1)
i (t) ≤ X

(2)
i (t) for all 0 ≤ t ≤ ϑN

]
= 1.

Since strong solutions exist for all time, we have ϑN → ∞ as N → ∞ almost surely, which
proves the theorem. We modify this strategy for our SDE (2.15) in the standard way: Define
the stopping time τ1/m to be the first time either λ(1) or λ(2) leaves the set

Λ1/m := {λ ∈ Λ : |λi − λi+1| > 1/m for all 1 ≤ i ≤ n− 1.}.

Since strong solutions starting in Λ stay in Λ for all t ≥ 0 and are continuous, we have
τ1/m →∞ as m→∞ almost surely. Since our a is Lipschitz on Λ1/m, the proof of Theorem
2.6.1 shows that

P
[
λ

(1)
i (t) ≤ λ

(2)
i (t) for all 0 ≤ t ≤ τ1/m

]
= 1

for all m. Taking m→∞, the result follows.
Finally, we address the diffusion coefficient σi(λ) = 2

√
λi/n. The standard fix is to first

modify the SDE to have diffusion coefficients 2
√
|λi|/n for all i, so that the domain of σi

is enlarged to Rn and Theorem 2.6.1 may be applied. For this modified SDE, note that
the constant zero function λ(1)(t) = 0 is a strong solution. Now let λ(2) be any solution

with λ
(2)
i (0) ≥ 0 for all i. Applying Theorem 2.6.1 to λ(1) and λ(2), we conclude that in

fact, λ(2)(t) ≥ 0 for all t ≥ 0. Thus, the absolute value bars in the modified SDE can be
removed a posteriori. This argument is used, for example, when setting up the SDE for
the so-called Bessel process, which shares this square-root diffusion coefficient—see [RY99,
§XI.1] for details.
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Chapter 3

Point Spectrum of the Universal
Cover

3.1 Introduction

Consider a finite graph G = (V,E) and its universal cover T = (V , E), together with a
covering map Ξ : T → G. The purpose of this paper is to relate the point spectrum of
certain local, periodic, self-adjoint operators on `2(V) to the combinatorial structure of G.

Precise definitions, notation and assumptions will be discussed below in Section 3.2, but
for now we give a high-level overview of the problem setting. By endowing G with edge
weights and a potential on its vertex set, we obtain a natural self-adjoint operator AG on
`2(V ). This framework encompasses Schrödinger operators on graphs, weighted adjacency
matrices, graph Laplacians and transition matrices for random walks, and the correspond-
ing pull-back of the weights and potential to T induces an analogous periodic, self-adjoint
operator AT on `2(V).

The class of operators AT obtained in this way contains, but is richer than, the periodic
Schrödinger operators in one dimension, which are of great relevance to spectral theory and
the theory of orthogonal polynomials. The spectra of these AT are additionally crucial to
the study of relative expanders [F+03] and, as shown in [BC19], control in a strong sense
the spectra of large random lifts of a fixed base graph. However, despite the many advances
in functional analysis, operator algebras and operator theory, many natural questions re-
garding the spectral properties of AT remain unanswered and seem inaccessible with current
techniques. We direct the reader to [ABS20] for a survey of both periodic Jacobi matrices
and the difficulty in generalizing to the more generic case considered here.

In this paper we will be concerned with the spectrum of AT , which we denote by SpecAT ,
the density of states µ (a natural and canonical measure on SpecAT ), and most importantly
those λ ∈ SpecAT for which there exists a corresponding `2 eigenvector—in other words,
the point spectrum SpecpAT .

Our main result is a set of necessary and sufficient condition on G (including its edge
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weights and potential) for SpecpAT to be non-empty. This gives a finite algorithm to com-
pute SpecpAT from G, and extends the work of Aomoto, who has already shown the neces-
sary half of our result in [Aom91]. However, our new and elementary argument is essentially
different from his, and we build on it to show, surprisingly, that SpecpAT ⊂ SpecAG, and to
give a lower bound for the multiplicity of each eigenvalue of AG arising in this way. Finally,
we prove that the set of edge weights and potentials for which AT has point spectrum is a
closed semialgebraic set of large codimension, which in particular implies that the set has
Lebesgue measure zero. This may be regarded as a spectral delocalization result of the kind
long-studied in mathematical physics [Ana18]; see [AISW20] for recent and analogous work
in the context of quantum graphs. In particular, our result implies that even when SpecpAT
has an isolated point, there are arbitrarily small perturbations of AT with no point spectrum
at all. In view of the Kato-Rellich theorem on stability of the discrete point spectrum, this
is a strong manifestation of the fact that the eigenspaces of AT are infinite-dimensional.

Related Work

The operators AT defined here have been studied by several authors with different mo-
tivations and levels of generality, and are variously referred to as operators of nearest-
neighbor type [Aom91], connected, local, pull-back operators [AFH15] or periodic Jacobi op-
erators [ABS20]; we will use the latter terminology. When G is an unweighted d-regular
graph (making AG is its adjacency matrix), classical work of Kesten in the context of Cay-
ley graphs [Kes59], and McKay in the context of random graphs [McK81], proved that
SpecAT = [−2

√
d− 1, 2

√
d− 1] and that µ follows what is now called the Kesten-Mackay

distribution with parameter d. When G is an unweighted (c, d)-bireguar bipartite graph with
c < d, Godsil and Mohar showed that SpecAT = {0} ∪ {λ ∈ R :

√
d− 1 −

√
c− 1 ≤ |λ| ≤√

c− 1 +
√
d− 1} and that µ{0} = d−c

d+c
[GM88]. These results imply that in the unweighted

case, when G is d-regular AT has no point spectrum, while when G is (c, d)-biregular and
bipartite, SpecpAT = {0}.

Subsequent work focused on the properties of SpecAT and µ, and their relation to AG,
without making any assumptions on G; see [A+88, Aom91, Sun92, SS92] as well the more
recent [AFH15, BC19, ABS20, GVK19]. Of relevance for the current paper is a result
of Avni, Breuer and Simon in [ABS20], which states that for any G, any edge weights,
and any potential, the operator AT has no singular continuous spectrum. As a corollary
one can deduce that the continuous part of SpecAT always consists of a finite union of
closed non-degenerate intervals, and its singular part is the finite set of eigenvalues SpecpAT .
Equivalently, µ can be decomposed into a measure that is absolutely continuous with respect
to the Lebesgue measure on R and a finite sum of atomic measures.

The most noteworthy prior result regarding the point spectrum of AT is the aforemen-
tioned work of Aomoto, who in addition to deriving necessary conditions for the presence
of point spectrum of AT deduced a remarkable formula relating µ{λ} to the combinatorial
structure of G for every λ ∈ SpecpAT . He then used these results to show that when G is
a d-regular graph, regardless of the edge weights and potential, AT has no point spectrum.
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This generalizes the case when G is a cycle, which was established by different authors in
the mathematical physics literature; see Section 2 of [ABS20] for a discussion and survey.
In a different context, Keller, Lenz and Warzel [KLW13] showed that adjacency matrices of
certain trees have no point spectrum and that this property is stable under small pertur-
bations of the potential. For our setting, their results imply that if G has a loop at every
vertex and AG is the adjacency matrix of G, then AT has no point spectrum.

Our results, stated in Section 3.3 after the preliminary material in Section 3.2, recover
many of the ones above and provide a pleasant unification and generalization of the literature
on point spectra.

3.2 Preliminaries

Graphs and Covers

We will work in the general setting of weighted graphs with self-loops and multi-edges. In
this setup we will regard a graph as a tuple G = (V,E, a, b), consisting of vertices, edges,
edge-weights a : E → C and a potential b : V → C. When it is not clear from the context,
we will write V (G) and E(G) to emphasize that we are referring to the set of vertices and
edges of G. It will be convenient to regard E as a set of directed edges, equipped with a
direction-reversing involution e 7→ ě with no fixed points, as well as source and terminal
maps σ, τ : E → V so that σ(e) = τ(ě) for every e ∈ E. An edge for which σ(e) = τ(e)
and e = ě is a self-loop, and we refer to the remainder as proper edges.1 We will also abuse
notation and write σ(u) and τ(u) for the sets of directed edges whose source and terminal,
respectively, are the vertex u ∈ V .

We say that a graph H covers G if there exists a covering map ξ : H → G, namely a
map of vertices and edges which is compatible with the source and terminal maps, preserves
potential and edge weights, and is an isomorphism on σ(u) and τ(u) for each vertex u. If
both are finite, then |V (G)| necessarily divides |V (H)|, and we call their ratio n the degree
of the cover; equivalently we say that H is an n-lift of G. Each n-lift H may be expressed
explicitly by an assignment of permutations to edges π : E → Sn, with the property that
π−1
e = πě for each edge e ∈ E. Then V (H) = V (G)× [n]—throughout the paper we will use

the notation [n] = {1, ..., n}—and for every e ∈ E(G) and each i ∈ [n], we include an edge
ẽ ∈ E(H) with σ(ẽ) = (σ(e), i) and τ(ẽ) = (τ(e), πe(i)).

The universal cover of a connected graph G is the unique (up to isomorphism) infinite
tree T = (V , E ,a, b) that covers every other cover of G. It can be constructed directly in
terms of non-backtracking walks on G, which are sequences of edges e1, e2, ...e` such that, for
every s ∈ [` − 1], τ(es) = σ(es+1) and es 6= ěs+1. If we choose a root vertex u ∈ V , then
we may set the vertex set V of T to be the set of non-backtracking walks on G starting at
u, with directed edges E whenever one walk is an immediate prefix or suffix of another, and

1 Some authors additionally include so-called half-loops, which are edges e with σ(e) = τ(e) and e = ě;
see [Fri93]. Our results easily extend to this case, but for simplicity we will not consider it here.
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edge weights and potential inherited from the final edge and vertex of the walk, respectively.
Up to isomorphism T is independent of the root choice, and is manifestly a cover of G; we
will call the covering map Ξ. Finally, we note that T is finite if and only if G is acyclic—that
is, if it does not contain a closed non-backtracking walk. In this case G = T .

Given G and a universal cover T , the latter is endowed with a set of symmetries which
act transitively on V by simultaneously permuting the fibres over every vertex.

Jacobi Operators, Spectra, and the Density of States

Following the convention introduced in [ABS20], the Jacobi operator associated to G =
(V,E, a, b) acts on η ∈ `2(V ) ' C|V | as:

(AGη)(u) = buη(u) +
∑
e∈τ(u)

aeη(σ(e)). (3.1)

Throughout the paper, we will assume that the edge weights satisfy a conjugate symmetry
condition ae = aě and that the potential b is real—these ensure that AG is Hermitian, and
we will accordingly call such edge weights and potential Hermitian as well.

When H is an n-lift of G, we will always think of AH as acting on `2(V )⊗Cn, regarded
as the set of Cn-valued functions on V . A standard result characterizes the spectrum of AH .
Let π : E → Sn be the set of permutations which define H, and overload notation to write
πe as well for the unitary operator which acts by accordingly permuting the coordinates of
Cn. Then AH acts on η ∈ `2(V )⊗ Cn as

(AHη)(u) = buη(u) +
∑
e∈τ(u)

aeπeη(σ(e)) ∈ Cn.

By writing Cn = Cn
1⊕Cn

0 , where Cn
1 ' C is the span of the all-ones vector and Cn

0 ' Cn−1

is its orthogonal complement, we can simultaneously decompose every edge permutation as
πe = 1 ⊕ ρ(πe); the latter unitary operator on Cn

0 is the regular representation of πe. Thus
we may write

AH = AG ⊕ AH/G, (3.2)

where the second acts on η ∈ `2(V )⊗ Cn
0 in the natural way:

(AH/Gη)(u) = buη(u) +
∑
e∈τ(u)

aeρ(πe)η(σ(e)) ∈ Cn
0 . (3.3)

In other words,
SpecAH = SpecAG t SpecAH/G, (3.4)

and we refer to SpecAH/G as the new eigenvalues of H.
Once again writing T = (V , E ,a, b) for the universal cover of G, we will call the analogous

operator on `2(V) the periodic Jacobi operator of T . Since the edge weights a and potential
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b are related to those of G by aẽ = aΞ(ẽ) for every ẽ ∈ E and bṽ = bΞ(ṽ) for every v ∈ V ,
finiteness of G, a, and b ensure that AT belongs to the set B(`2(V)) of bounded operators
on `2(V), and the inherited conjugate symmetry condition ae = aě guarantees that it is
Hermitian. We use SpecAT to denote the spectrum of the periodic Jacobi operator, that is

SpecAT =
{
λ ∈ R : (λ− AT )−1 /∈ B(`2(V))

}
. (3.5)

We remind the reader that, unlike in the finite dimensional case, λ ∈ SpecAT does not
guarantee an `2 eigenvector for λ. The subset of the spectrum with this additional property—
the point spectrum—will be our primary concern in this work. We will return to it below.

For any u ∈ V (G), the quantities 〈δũ, A`T δũ〉 for ` ∈ N are real and constant over all ũ in
the fibre over u, and a routine application of the Riesz representation theorem guarantees
an accompanying spectral measure µu on SpecAT associated to each u, satisfying

〈δũ, f(AT )δũ〉 =

∫
SpecAT

f(x) dµu(x) ∀ũ ∈ Ξ−1(u) (3.6)

for every bounded measurable function f : SpecAT → C, where f(AT ) is defined via the
Borel functional calculus. The density of states of AT is the unique measure obtained by
averaging these spectral measures over u ∈ V (G):

µ =
1

|V (G)|
∑

u∈V (G)

µu. (3.7)

It is typical in the literature to work with real positive edge weights instead of Hermitian
ones. The latter choice will make some of our proofs more convenient, but from the perspec-
tive of SpecAT it does not add any generality. In particular, AT is gauge invariant in the
following sense.

Lemma 3.2.1. Let G = (V,E, a, b) be a graph with Hermitian edge weights and real potential,
and let G′ = (V,E, a′, b), where a′e = |ae|; write T and T ′ for their respective covers. Then
AT = U∗AT ′U , where U is a diagonal unitary operator.

One may prove Lemma 3.2.1 by choosing a root r for T and letting Uv,v be the product of
edge weight arguments along the unique shortest path connecting r and v. An immediate
corollary is that the spectrum and density of states of AT depend only on the moduli of the
edge weights. In the case b ≡ 0, note that the above implies that AT and −AT are unitarily
equivalent, which has the following consequence.

Lemma 3.2.2. Let G be a finite graph, T its universal cover. If bv = 0 for all v ∈ V (G)
then the spectrum and density of states of AT are symmetric about zero.

On several occasions we will use the following well-known facts to relate the empirical
spectral measures of finite graphs G to the densities of states of their universal covers.

Lemma 3.2.3. Let G be a finite graph, T its universal cover, and µ the density of states of
AT . There exists a sequence of covers Gn of G whose girth2 diverges as n goes to infinity.

2The girth of a graph is the length of its shortest cycle.



CHAPTER 3. POINT SPECTRUM OF THE UNIVERSAL COVER 29

Moreover, for this sequence, the empirical spectral measures µn of AGn converges weakly to
µ.

This lemma follows directly from results stated in [ABS20, Section 4] whose proofs will
appear in [ABKSon]; their approach is to construct the sequence of lifts from a tower of
normal subgroups of the group of deck transformations of T . For completeness, below we
provide a purely combinatorial proof.

Proof of Lemma 3.2.3. By induction, it suffices to show that for every finite graph H =
(V,E) with girth(H) = p and |E| = 2m, there exists a finite lift L of H whose girth is
strictly larger (the weights and potential are irrelevant here, and we will suppress them). We
will construct L as a 2m+1-lift of H, with the following set of permutations π : E → S2m+1.
Group the edges in to pairs (e, ě) consisting of an edge and its reversal, and order these
(e1, ě1), ..., (em, ěm). Now let πei be the permutation that maps j 7→ j + 2i( mod 2m+1) for
every j ∈ [2m+1], and let πěi = π−1

ei
as required.

Since girthL > girthH, we need only to show that L contains no cycle of length p.
Seeking contradiction, assume instead that ei1 , ..., eip is a sequence of p directed edges forming
a cycle in L. Writing ξ : L→ H for the covering map, the edges ξ(ei1), ..., ξ(eip) form a cycle
in H with length p, and since girthH = p, they are distinct. The vertices of L are V × [2m+1],
which we regard as a set of 2m+1 ‘layers;’ assume σ(ei1) is in the tth one. Because of how we
have arranged the permutations, τ(eip) is in layer t±2i1±· · ·±2ip 6= t( mod 2m+1), because
the i1, ..., ip are distinct and smaller than m+ 1. Thus τ(eip) 6= σ(ei1), a contradiction.

We finally show that, given such a sequenceGn with diverging girth, the empirical spectral
measures µn converge weakly to µ. For every fixed positive integer k and each vertex u of
Gn, the quantity 〈δu, AkGnδu〉 is a weighted count of length-k closed walks in Gn starting
and ending at u. Since the Gn have diverging girth, for n sufficiently large the depth-k
neighborhood of u in Gn is identical to that of every ũ ∈ Ξ−1(u), and thus this count is
eventually constant and equal to 〈δũ, AkT δũ〉. Finally, as the kth moments of the empirical
spectral measures µn are given by normalized traces of AkGn , the method of moments gives
us weak convergence to the density of states.

Substantially stronger versions of this result are known but will not be necessary for us;
we direct the reader for instance to the recent work of Bordenave and Collins [BC19].

Point Spectrum and the Aomoto Sets

We will denote the point spectrum of AT as

SpecpAT = {λ ∈ R : Ker(λ− AT ) 6= {0}} . (3.8)

The following proposition collates several equivalent characterizations of SpecpAT .

Proposition 3.2.4. Let G be a finite graph with at least one cycle, T its universal cover.
Then λ ∈ SpecpAT if and only if any of the following hold:
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(i) dim Ker(λ− AT ) =∞

(ii) λ is an atom of µ

(iii) For some u ∈ V (G), λ is an atom of µu.

(iv) For some u ∈ V (G), the Cauchy transform

Su(z) =

∫
SpecAT

(z − x)−1 dµu(x)

has a pole at λ.

(v) For some u ∈ V (G), and every ũ ∈ Ξ−1(u), there exists ζ ∈ Ker(λ−AT ) with ζ(ũ) 6= 0.

Moreover, the vertices satisfying (iii),(iv), and (v) coincide.

Proof. In Section 8 of [ABS20] it is proven that λ ∈ SpecpAT implies (i). Intuitively, if
ξ ∈ Ker(λ − AT ), then precomposing ξ with deck transformations of T gives rise to many
linearly independent eigenvectors of AT for λ.

The rest of the claims are standard and hold for general bounded, self-adjoint operators.
Equivalence of λ ∈ SpecpAT , (ii), (iii), and (v) follows directly from the definition of µ and
the forthcoming Lemma 3.2.7. On the other hand (iii) and (iv) are clearly equivalent.

By way of a complicated set of coupled equations satisfied by the Cauchy transforms Su,
Aomoto identified a set of vertices of G whose combinatorial structure is instrumental in
understanding SpecpAT and will be the focus of much of this paper.

Definition 3.2.5 (The Aomoto set). Let G be a finite graph and assume that λ ∈ SpecpAT .
The Aomoto set of G associated to λ consists of those vertices in V (G) that satisfy the
equivalent conditions (iii-v) in Proposition 3.2.4. This set will be denoted by Xλ(G).3

Example 3.2.6. In Figure 3.2, G is a finite graph with ae ≡ 1 and bv ≡ 0 for every
e ∈ E(G) and v ∈ V (G). By the symmetries in G, the spectral measures correspond-
ing to the vertices u1, u2, u4 and u5 are equal. Hence, AT has only two distinct spectral
measures associated to the vertices of G, sketched in Figure 3.2. These sketches were gen-
erated by taking a random lift of G of degree 1200 and by plotting the weighted histogram
for the corresponding discrete spectral measures. As the figures show, the spectral measures
corresponding to u1, u2, u4 and u5 have atoms at −1 and 1, while the spectral measure corre-
sponding to u3 is absolutely continuous with respect to the Lebesgue measure on R. Hence,
X−1(G) = X1(G) = {u1, u2, u4, u5}. Note that the subgraph induced by X1(G) consists of
two disconnected trees; later in Theorem 3.3.1 we will show that this a general property of
Aomoto sets.

3This set was referred to as X
(1)
λ (G) in [Aom91] and [ABS20]; we have dropped the superscript to lighten

notation, and because we will not consider the sets X
(α)
λ (G) for α 6= 1 which appear in that work.
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Figure 3.1: On the left, a finite graph G, where the vertices in X1(G) = X−1(G) are colored
in red. In the middle and on the right, we show the two distinct spectral measures of AT
associated to the vertices of G, the center one having atoms at ±1.

We will use repeatedly an equivalent form of Proposition 3.2.4 (v) above: if u /∈ Xλ(G),
then any eigenvector η ∈ Ker(λ − AT ) is identically zero on the fibre over u. We will also
require a standard identity expressing the mass assigned to λ ∈ SpecpAT by the spectral
measure µu.

Lemma 3.2.7. Let G be a finite graph, T its universal cover, and λ ∈ SpecpAT . Then if
B is any orthonormal basis for Ker(λ− AT ), for any u ∈ V and ũ ∈ Ξ−1(u),

µu{λ} =
∑
η∈B

|η(ũ)|2. (3.9)

Equation (3.9) follows from a standard application of the Borel functional calculus, where
the key observation is that if fλ : SpecAT → R is the indicator function of the singleton {λ}
then fλ(AT ) is the orthogonal projection onto ker(λ− AT ).

3.3 Main Results

Our first contribution is to strengthen a result of Aomoto [Aom91], by way of a new and
more conceptual proof. This result characterizes the induced subgraph on Xλ(G) for any λ ∈
SpecpAT , and relate the mass µ{λ} to the local structure of this subgraph and neighboring
vertices. Let us write ∂Xλ(G) for the set of vertices outside the Aomoto set but connected
to it by an edge, ccXλ(G) for the number of connected components of the subgraph induced
by Xλ(G), and define the index of λ as

Iλ(G) = ccXλ(G)− |∂Xλ(G)|. (3.10)

Recall that for us a graph G = (V,E, a, b) contains vertices V , directed edges E, Hermitian
edge weights a : E → C satisfying ae = aě and real potential b : V → R.

Theorem 3.3.1. Let G be a finite graph, T its universal cover, and λ ∈ SpecpAT . Then:
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(i) The subgraph induced by Xλ(G) is acyclic,

(ii) λ is an eigenvalue, with multiplicity one, of the induced Jacobi operator of each con-
nected component of this subgraph, and

(iii) The density of states of AT satisfies

µ{λ} =
Iλ(G)

|V (G)|
(3.11)

Assertion (i), claimed without proof in [ABS20], clarifies an ambiguity in Aomoto’s result,
which did not rule out self-loops or multi-edges in the subgraph induced by Xλ(G); (ii) is
a new observation, and (iii) is due to Aomoto. Our new proof is combinatorial and linear
algebraic, using properties of eigenvectors of Jacobi operators on finite and infinite trees; the
question of finding an alternative to Aomoto’s original proof explaining the significance of
the quantity Iλ(G), was posed in [ABS20, Problem 8.1]. The proofs of (i) and (ii) may be
found in Section 3.4, and that of (iii) in Section 3.5.

We then build on the proof of Theorem 3.3.1 to prove a number of novel results. First,
we show that for any graph G, the point spectrum of the periodic Jacobi operator on its
unversal cover is contained in SpecAG—with multiplicity bounded in terms of the index
Iλ(G). In fact, we can further refine this result for the Jacobi operator of any cover H of G.

Theorem 3.3.2. Let G be a finite graph, H an n-lift of G, and T their common universal
cover. If λ ∈ SpecpAT , then

(i) λ ∈ SpecAG with multiplicity at least |V (G)| · µ{λ}, and

(ii) λ ∈ SpecAH/G with multiplicity at least (n− 1)|V (G)| · µ{λ},

so that the multiplicity of λ ∈ SpecAH is at least n|V (G)| · µ{λ}.

We will show at the end of Section 3.3 that these lower bounds on multiplicity need not be
tight.

Additionally, we prove a converse to Theorem 3.3.1, namely that if a graph has a set
replicating the structure of the Aomoto set for some λ, then its universal cover has λ in
its point spectrum. To be precise, let us extend the notation ∂ and cc to apply to any
X ⊂ V (G). For each λ ∈ R, let Aλ(G) be the set of all subsets X ⊂ V (G) inducing an
acyclic subgraph, each connected component of which has λ in the spectrum of its induced
Jacobi operator and such that cc(X)− |∂X| > 0.

Theorem 3.3.3. Let G be a finite graph, and T its universal cover. For any λ ∈ R and
X ∈ Aλ(G),

(i) λ ∈ SpecAG, with multiplicity at least cc(X)− |∂X|.

(ii) λ ∈ SpecpAT , and |V (G)| · µ{λ} ≥ cc(X)− |∂X|.
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The lower bounds in (i) and (ii) need not be tight. For (i), this is shown at the end of Section
3.3; for (ii), when Iλ(G) > 1, one may choose X to contain only a subset of the trees in the
true Aomoto set for some λ ∈ SpecpAT . Furtheremore, there are cases where the inequality
in (ii) is strict for elements of Aλ(G) that are not subsets of the Aomoto set.

The proofs of both Theorem 3.3.2 and Theorem 3.3.3 follow from a generalization of the
latter, Theorem 3.6.1, which we state and verify in Section 3.6. The argument proceeds,
roughly, by patching together and extending the λ-eigenvectors on each component of the
Aomoto set promised by Theorem 3.3.1 to global eigenvectors of AG and AH/G. This has the
interesting consequence that if λ ∈ SpecpAT and G1, G2, . . . is a sequence of lifts of G, there
is a constant fraction of |V (Gn)| of λ-eigenvectors of AGn that are localized. In contrast,
under some technical assumptions, quantum ergodicity results [AS19] imply that if λ is in
the absolutely continuous part of the spectrum of AT , the number of localized λ-eigenvectors
of AGn is sublinear in and |V (Gn)| as n→∞.

Combining Theorems 3.3.2 and 3.3.3, we find the following corollary. Note that since
there are finitely many induced subgraphs, in finite time we can find every λ ∈ R for which
Aλ(G) is nonempty.

Corollary 3.3.4. Let G be a finite graph, T it’s universal cover. Then for each λ ∈ R,

µ{λ} =
1

|V (G)|
max

X∈Aλ(G)

(
cc(X)− |∂(X)|

)
. (3.12)

Moreover, SpecpAT may be computed from G in finite time.

Although Theorem 3.3.1 implies that the Aomoto set Xλ(G) is an element in Aλ(G) max-
imizing the quantity on the right side of (3.12), it can happen that there is not a unique
maximizer. Figure 3.2 gives such an example.

Figure 3.2: Two distinct sets of vertices (in red and blue respectively) of a graph G are
shown. If a ≡ 1 and b ≡ 0, it is easy to show from Corollary 3.3.4 that I0(G) = 1. Then
both the red and the blue vertex set belong to A0(G). It will follow from Observation 3.4.1
below that X0(G) is precisely the set indicated by the red vertices.

Finally, we use Theorem 3.3.1 and Theorem 3.3.3 to argue that point spectrum is rare in a
certain sense. To make this precise fix G = (V,E) and think of the set of possible Hermitian
edge weights a = (ae)e∈E and vertex potentials b = (bv)v∈V as C|E|/2 ⊕ R|V | ∼= R|E|+|V |.
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Theorem 3.3.5. Let G = (V,E) be a finite graph with at least one cycle and T be its
universal cover. Assume that every vertex in G has at least dmin distinct neighborhs. Leaving
V and E fixed, let P ⊂ R|E|+|V | be the set of Hermitian edge weights and potentials for which
SpecpAT 6= ∅. Then, P is a semialgebraic closed set of codimension at least max{dmin −
1, 1}.4

Remark 3.3.6. Even if the bound codim(P) ≥ max{dmin−1, 1} is tight in general, for many
specific instances a stronger bound can be obtained. We refer the reader to the discussion in
Section 3.7 for a stronger bound that depends in a more complicated way on the combinatorial
structure of G.

Theorem 3.3.5 will be proved in Section 3.7 and resolves [Aom91, Question 2], which specu-
lated that the existence of point spectrum was dependent on the combinatorial structure of
G and not on the edge weights and potential. Results in a similar direction were obtained
in [KLW12] and [KLW13]. Their results are less general in the sense that they require G to
have edge weights a ≡ 1 and a loop at every vertex. However, they allow for more general
potentials on the more general class of trees with finite cone type.

Theorem 3.3.5 implies in particular that Pc is an open dense set and hence that the
point spectrum of AT can be destroyed by adding arbitrarily small perturbations, even
when AT has isolated eigenvalues. This is surprising, given a result of Kato (see [RS78,
Section XII.2]) that if H is a bounded self-adjoint operator and λ ∈ SpecpH is isolated with
dim ker(λ −H) < ∞, then every sufficiently small perturbation of H has non-empty point
spectrum. Of course, this does not contradict our result, since Proposition 3.2.4 ensures that
every λ ∈ SpecpAT has an infinite-dimensional eigenspace. However, it is not the case that
infinite-dimensional eigenspaces are unstable in general, and in many cases the phenomenon
implied by Kato’s result is still present.

Furthermore, it is an immediate consequence of Theorem 3.3.5 that P has Lebesgue
measure zero. This can interpreted as an almost sure spectral delocalization result, since
it implies that under a random absolutely continuous perturbation (with respect to the
Lebesgue measure) of the edge weights and potential of G, the spectrum of AT becomes
purely absolutely continuous.

We conclude this section by giving some applications of the results presented above.

Point Spectrum of Biregular Trees

Let G be the complete bipartite graph Kc,d for some integers d > c, and denote by Vc and
Vd the vertex components of G having c and d vertices respectively. We will first analyze
the case when b ≡ 0 and a is any Hermitian edge weighting. It is easy to see that Vd is a
set satisfying the conditions of Theorem 3.3.3 for λ = 0, and hence that µ{0} ≥ d−c

d+c
. Then

4In a previous version of this paper we only proved that P is a closed set of Lebesgue measure 0 by
showing that P was contained in an algebraic set of codimension 1. We thank Barry Simon for pointing out
this stronger version of the theorem and suggesting a sketch of the proof.



CHAPTER 3. POINT SPECTRUM OF THE UNIVERSAL COVER 35

by Theorem 3.3.1, X0(G) 6= ∅ and moreover I0(G) ≥ d− c. In the forthcoming Observation
3.4.1, we will show that that when b ≡ 0 (regardless of the structure of G) the set X0(G) is
an independent set in G, which together with the previous observations implies that in fact
X0(G) = Vd. So by Theorem 3.3.1, when b ≡ 0, µ{0} = d−c

d+c
and the vectors in ker(AT ) are

supported on the fibre of Vd, which extends a result of Godsil and Mohar [GM88].
In the case of arbitrary real potential b, the existence and location of eigenvalues of AT

depend on the particular choice of b, and moreover by Theorem 3.3.5 we know that one may
choose b such that AT has no point spectrum. This discussion resolves Problems 8.6 and
8.7 posed in [ABS20]. Finally, we note in passing that in this case, when b ≡ 0 we have
I0(G) = d−c but the multiplicity of zero in SpecAG is d+c−2. This shows that the bounds
on the multiplicity given in Theorems 3.3.2 and 3.3.3 may not be tight.

Non-isolated Point Spectrum

Let G be a finite graph and let n = |V (G)|. Sunada’s gap labeling theorem (see[ABS20,
Theorem 5.1] or [GVK19, Theorem 1.8]) states that SpecAT is a disjoint union of at most
n (possibly degenerate) closed intervals typically called bands, and that if B is one of these
bands then µ(B) = j/n for some j ∈ [n]. If λ ∈ SpecpAT is isolated then {λ} is a
(degenerate) band of SpecAT . This is the case, for example, when λ = 0, G is a bipartite
biregular graph with components of different sizes, a ≡ 1 and b ≡ 0. Here we will show that
it is possible for 0 ∈ SpecpAT to lie inside a non-degenerate band of SpecAT . Our argument
is similar in spirit to the one used at the end of Section 5 of [ABS20] for an unrelated purpose.

Set b ≡ 0, noting that µ is symmetric about zero from Lemma 3.2.2, and assume that
0 ∈ SpecpAT and that n − I0(G) is an odd number. Figure 3.3 shows two instances where
these conditions are met. If {0} is an isolated point of SpecAT then any band in SpecAT
is either disjoint from (0,∞) or fully contained in this infinite interval. Hence, by Sunada’s
gap labeling theorem µ(0,∞) = j/n for some integer j ∈ [n]. On the other hand, since µ is
symmetric, µ(−∞, 0) = j/n. Finally, by Theorem 3.3.1 µ{0} = I0(G)/n. Putting all these

observations together we get 1 = µ(R) = 2j+I0(G)
n

, which contradicts the assumption that
n− I0(G) is odd.

3.4 Acyclic Nature of Aomoto Sets

In this section we will prove the first two assertions of Theorem 3.3.1, namely that if λ ∈
SpecpAT , then the Aomoto set Xλ(G) is acyclic, and λ is an eigenvalue of the induced Jacobi
operator on each of its connected components. We begin by generalizing to the infinite case
a result of Fielder regarding eigenvectors of finite trees [Fie75, Proposition 1].

Lemma 3.4.1. Let T be a locally finite tree with Hermitian edge weights a, potential b, and
Jacobi operator AT . If η ∈ Ker(λ − At) and η(v) 6= 0 for every vertex v ∈ V (T ), then
dim Ker(λ− AT ) = 1.
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Figure 3.3: As in Section 3.3, for each graph above, a combination of Observation 3.4.1 and
Theorem 3.3.3 reveals the red vertices as the Aomoto set associated to 0. In both cases
I0(G) = 1 while |V (G)| is even.

Proof. Choose a root r for T , and for each vertex v, write p(v) for its unique parent, Tv the
infinite sub-tree emanating from v away from its parent and η≥v for the restriction of η to
the subtree Tv. As T is acyclic, it has no multi-edges or self-loops, and there is no ambiguity
in writing av←u for the weight of the unique edge with source u and terminal v. Since η≥v
is identically zero on vertices above v, and locally satisfies the eigenvector equation at each
vertex below v, we find that

(λ− AT )η≥v =
∑

u∈V (Tv)

λη(u)δu −
∑

u∈V (Tv)\{v}

(ATη)(u)δu

−

bvη(v) +
∑

x:p(x)=v

av←xη(x)

 δv − ap(v)←vη(v)δp(v)

= λη(v)δv −
(
(ATη)(v)− av←p(v)η(p(v))

)
δv − ap(v)←v)η(v)δp(v)

= av←p(v)η(p(v))δv − ap(v)←vη(v)δp(v)

for any v 6= r, where δv as usual denotes the function which is one at v and zero elsewhere.
Now, let ζ ∈ Ker(λ− AT ). As AT is self-adjoint and λ real,

0 = 〈ζ, (λ− AT )η≥v〉 = av←p(v)η(p(v))ζ(v)− ap(v)←vη(v)ζ(p(v)),

which implies
ζ(v)

ζ(p(v))
=
ap(v)←v

av←p(v)

η(v)

η(p(v))
.

This identity holds for every ζ ∈ Ker(λ− AT ), including η itself, so we obtain

ζ(v)

ζ(p(v))
=
ap(v)←v

av←p(v)

η(v)

η(p(v))
=
ap(v)←v

av←p(v)

ap(v)←v

av←p(v)

η(v)

η(p(v))
=
|ap(v)←v|2

|av←p(v)|2
η(v)

η(p(v))
=

η(v)

η(p(v))
;

in the final equality we have used conjugate symmetry of the edge weights. Since η|≥r = η ∈
Ker(λ−AT ), ζ is unconstrained at the root, and the above equation propagates a condition
down the tree that ζ = η · ζ(r)/η(r).
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We now prove that the subgraph of G induced by Xλ(G) is a forest, and that λ is an
eigenvalue, with multiplicity one, of the induced Jacobi operator of each of its connected
components.

Proof of Theorem 3.3.1(i-ii). Assume λ is in the point spectrum of AT , and let G′ be a
connected component of the subgraph induced by Xλ(G). Let T ′ be the universal cover of
G′. If we view T ′ as a subgraph of T then any vector in Ker(λ−AT ) vanishes on the boundary
of T ′ in T , and thus restricts to a λ-eigenvector of T ′. Hence Xλ(G

′) = V (G′) by Proposition
3.2.4(v). In this case, it is a consequence of Zorn’s lemma that there exists η ∈ Ker(λ−AT ′)
satisfying η(u) 6= 0 for every u ∈ V (T ); this fact appeared as [Nyl98, Lemma 7]. Combining
this fact with Lemma 3.4.1, we conclude finally that dim Ker(λ − AT ′) = 1, and thus, by
Proposition 3.2.4(i), that G′ is acyclic. This further implies that T ′ = G′, which proves the
second assertion.

In the course of the proof above we showed the following fact, which will be of repeated
use throughout the paper.

Lemma 3.4.2. Let G be a finite graph with Hermitian edge weights and potential, with
λ ∈ SpecpAT and T1, . . . , Tp the Aomoto trees of G associated to λ. Then, for every i ∈ [p]
there is a unique (up to phase) unit vector ζi ∈ Ker(λ − ATi) satisfying ζ(u) 6= 0 for every
u ∈ V (Ti).

For use in the next section, we record one consequence of the above lemma.

Observation 3.4.1. Let G be a graph with b ≡ 0, T its universal cover, and assume
0 ∈ SpecpAT . Then X0(G) is an independent set in G.5

Proof. By Lemma 3.4.2, each Aomoto tree of G must have a unique, everywhere nonzero
eigenvector in the kernel of its Jacobi operator. On the other hand, a vector in the kernel
of a Jacobi operator for a tree with potential zero cannot be nonzero at the parent of a leaf.
Thus every Aomoto tree of G is an isolated vertex as desired.

3.5 Aomoto’s Index Formula

In this section we complete the proof of Theorem 3.3.1 by verifying the formula in equation
(3.11): if λ ∈ SpecpAT , then

|V (G)| · µ{λ} = Iλ(G).

Our strategy will be to reduce the problem to the proof of an analogous result on an auxiliary
bipartite graph G′.

5By an independent set in G we mean a set X ⊂ V (G) which induces a subgraph with no edges.
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Figure 3.4: On the left an example of a graph G with Aomoto trees in red. On the right
its auxiliary graph G′, where each tree Ti has been contracted into a vertex ti and the blue
edges have been removed.

Constructing the Auxilliary Graph

Let T1, . . . , Tp be the Aomoto trees of G = (V,E, a, b) associated to λ, write Fi for the set
of disjoint copies of Ti in T = (V , E ,a, b) obtained by lifting Ti, and let F =

⋃p
i=1Fi. Note

that F is a subforest of T and all of its subtrees are isomorphic to some Aomoto tree of G.
By Lemma 3.4.2, for each Ti there is a unique (up to phase) vector ζi ∈ Ker(λ−ATi) with

unit norm and nonzero entries. Take any η ∈ Ker(λ− AT ). For every S ∈ F , by definition
of the Aomoto set it holds that η is zero on all vertices in ∂V (S). Hence, the restriction of
η to any S ∈ Fi induces an eigenvector of ATi . This implies that η can be decomposed as

η =
∑
S∈F

αSζS, (3.13)

where αS ∈ C are coefficients and the ζS ∈ `2(V (T )) are inclusions of the λ-eigenvectors of
each Aomoto tree:

ζS(v) =

{
ζi(Ξ(v)) if v ∈ V (S) and S ∈ Fi
0 otherwise

.

We now construct the auxiliary graph G′ = (V ′, E ′, a′, b′); the process is summarized in
Figure 3.4. First, V ′ is obtained from V by deleting every vertex outside Xλ(G) ∪ ∂Xλ(G),
and contracting each Aomoto tree Ti to a single vertex ti. Write {t1, ..., tp} = U ⊂ V ′, and
identify ∂Xλ(G) with ∂U . Now, for each v ∈ ∂U = ∂Xλ(G) and each edge e ∈ τ(v) ⊂ E
whose source is in a tree Ti, include an edge e′ ∈ E ′ with τ(e′) = v and σ(e′) = ti, and set
its weight as

a′e′ = aeζi(σ(e)). (3.14)

This process is mirrored to construct an edge f ′ ∈ E ′ from any f ∈ σ(v) ⊂ E whose terminal
is in Ti; no other edges are included. Finally, the potential b′ is identically zero.
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We have arranged things so that G′ is bipartite, with connected components G′1, ..., G
′
m,

whose respective covers we will denote T ′1 , ..., T ′m. We may also construct a new infinite
graph T ′ = (V ′, E ′,a′, b′) from T analogously to the construction of G′ from G: by deleting
the fibres over any vertex outside Xλ(G) ∪ ∂Xλ(G), contracting each tree S ∈ F ⊂ T into
a single vertex uS, including for each e ∈ E with ends in Ξ−1(Xλ(G)) and Ξ−1(∂Xλ(G)) a
corresponding edge e′ ∈ E ′ with ends in the contraction if Ξ−1(Xλ(G)) and its boundary,
and reweighting any such edge according to (3.14). This T ′ consists of countably many
copies of each T ′j , and is a cover of G′ via a map Ξ′; note that (Ξ′)−1(U) = {uS : S ∈ F},
the contraction of Ξ−1(Xλ(G)). With this setup and the decomposition in (3.13), any η ∈
Ker(λ− AT ) gives rise to a vector η′ ∈ `2(V (T ′)) in a natural way:

η =
∑
S∈F

αSζS 7→ η′ =
∑
S∈F

αSδuS . (3.15)

Observation 3.5.1. The map η 7→ η′ is an isometric inclusion of Ker(λ− AT ) in KerAT ′ .

Proof. Preservation of norm is immediate since ζS is a unit vector, and since the map is an
isometry it is injective; it remains only to show that Ker(λ − AT ) is mapped to KerAT ′ .
The vector η′ is identically zero on the fibre over ∂U and thus (AT ′η

′)(u) = 0 for any
u ∈ (Ξ′)−1(U). It remains only to consider v ∈ (Ξ′)−1(∂U), which as above we may identify
with Ξ−1(∂Xλ(G)) ⊂ V . For each edge e ∈ τ(v) ⊂ E write Se for the tree in F to which
σ(e) belongs, so that the reweighting in (3.14) gives a′e′ = aeζSe(σ(e)). As the potential b′

is identically zero and η and η′ vanish outside the fibres over Xλ(G) and U respectively, we
have

(AT ′η
′)(v′) = bv′η

′(v′) +
∑

e′∈τ(v′)⊂E ′
a′e′η

′(σ(e′))

=
∑

e∈τ(v)⊂E:
σ(e)∈Ξ−1(Xλ(G))

aeζSe(σ(e))αSe

= bvη(v) +
∑

e∈τ(v)⊂E

aeη(σ(e))

= (AT η)(v)

= λη(v) = 0.

In the third line, note that some edges in τ(v) ⊂ E have a source outside of the fibre over
Xλ(G), but that η is identically zero there.

Immediately from this observation, we can conclude that 0 ∈ SpecpAT ′ . Moreover, as
T ′ is comprised of disjoint copies of the T ′j ’s, AT ′ restricts to AT ′j on each one, and thus

0 ∈ SpecpAT ′j for at least one T ′j . Our next observation characterizes the associated Aomoto

set on G′j. Recall that G′ is bipartite with vertex classes U and ∂U , and let us write Uj and
∂Uj for the corresponding classes of vertices in each connected component G′j.
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Observation 3.5.2. X0(G′j) = Uj.

Proof. By Proposition 3.2.4, the definition of the map η 7→ η′, and Observation 3.5.1, we
immediately have the inclusion Uj ⊂ X0(G′j), since any η ∈ Ker(λ−AT ) maps to η′ supported
only on the fibre over Uj. On the other hand, from Lemma 3.4.1, we know that X0(G′j) is
an independent set, and Uj is a maximal independent set in G′j by definition of ∂Uj.

We can now strengthen Observation 3.5.1

Observation 3.5.3. The map η 7→ η′ gives an isomorphism between Ker(λ − AT ) and
KerAT ′ .

Proof. We noted above that AT ′ decomposes as a direct sum of the Jacobi operators on
the copies of T ′j comprising T ′. By applying Observation 3.5.2 separately to each copy, any
θ ∈ KerAT ′ is supported only on (Ξ′)−1(U). Thus the adjoint of the map η 7→ η′ takes any
vector θ ∈ KerAT ′ to one in `2(V (T )):

θ =
∑
S∈F

αSδuS 7→
∑
S∈F

αSζS.

Once again this is clearly injective and norm-preserving, and a parallel argument to Obser-
vation 3.5.1 shows that it takes KerAT ′ into Ker(λ− AT ).

Finally, we relate the spectral measures of AT to the density of states of AT ′j .

Observation 3.5.4. Let T be an Aomoto tree in G, and t ∈ V (G′j) its contraction in a
component G′j of G′. Writing µ′t for the spectral measure of t in AT ′j , and for µv for the

spectral measure of AT for each v ∈ V (T ) ⊂ V (G), we have∑
v∈V (T )

µv{λ} = µ′t{0}.

Proof. Choose a copy T̃ of T in its fibre in T , and let t̃ be the contraction of T̃ in T ′j ⊂ T ′.
By construction, for each η ∈ ker(λ− AT ),

η′(t̃)2 =
∑

ṽ∈V (T̃ )

η(ṽ)2.

Now, let B′j be an orthonormal basis of KerAT ′j . By Observation 3.5.3 this is the image

of some orthonormal set Bj in Ker(λ − AT ). In particular, recalling our construction of
T ′ from T by deleting vertices and contracting Aomoto trees, our chosen copy of T ′j in T ′

pulls back to a subtree Tj of T containing T̃ . Moreover, Bj is an orthonormal basis for the
orthogonal projection of Ker(λ− AT ) to the subspace of `2(V) supported on the vertices of
Tj, and we can therefore augment Bj to an orthonormal basis B of Ker(λ − AT ), whose
additional vectors vanish on Tj.
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We now use Lemma 3.2.7 to compute∑
v∈V (T )

µv{λ} =
∑

ṽ∈V (T̃ )

∑
η∈B

η(ṽ)2 =
∑

ṽ∈V (T̃ )

∑
η∈Bj

η(ṽ)2 =
∑
η∈Bj

η′(t̃)2 =
∑
η′∈B′j

η′(t̃)2 = µ′t{0}.

Analyzing the Auxiliary Graph

This section is devoted to the final observation of our proof:

Observation 3.5.5. Fix j ∈ [m] and assume that 0 ∈ SpecpAT ′j . Then∑
t∈Uj

µ′t{0} = I0(G′j).

This will finish the proof, as combining Observations 3.5.4 and 3.5.5 and recalling the con-
struction of G′ gives

|V (G)| · µ{λ} =
∑

u∈Xλ(G)

µu{λ} =
∑
t∈U

µ′t{0}

=
∑
j∈[m]

I0(G′j) =
∑
j∈[m]

|Uj| − |∂Uj|

= |U | − |∂U | = ccXλ(G)− |∂Xλ(G)|
= Iλ(G).

Proof of Observation 3.5.5. Let µ′ be the density of states of AT ′j . Let L1, L2, . . . be a

sequence of finite lifts of G′j with covering maps ξn : Ln → G′j. By Lemma 3.2.3 we may
choose the Ln with girth going to infinity. Since G′j is bipartite with zero potential, the
Jacobi matrices ALn and AT ′j have the following block structure

ALn =

(
0 ZT

n

Zn 0

)
and AT ′j =

(
0 ZT

∞
Z∞ 0

)
,

where for n ∈ N ∪ {∞} the domain and range of Zn are supported on the fibres over ∂Uj
and Uj respectively. Note that A2

Ln
= ZT

nZn ⊕ ZnZT
n and A2

T ′j
= ZT

∞Z∞ ⊕ Z∞ZT
∞.

Let µZnZTn and µZTn Zn be the empirical spectral distributions of ZnZ
T
n and ZT

nZn respec-
tively. Fix a positive integer k and note that, since Ln is bipartite, the terms in tr(ZT

nZn)k

are in one-to-one correspondence with the closed walks of length 2k in Ln that start and
end at the same vertex in ξ−1

n (∂Uj). Moreover, by the girth assumption, for large enough n
it holds that the value of the diagonal entries of A2k

Ln
are constant on each fibre ξ−1

n (v) for
every v ∈ V (G′j) and coincide with the respective diagonal entries of A2k

T ′j
. Hence, if we write
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νv for the spectral measure of u for the operator A2
T ′j

, then by the method of moments µZTn Zn
and µZnZTn converge weakly to

ν∂Uj =
1

|∂Uj|
∑
v∈∂Uj

νv and νUj =
1

|Uj|
∑
v∈Uj

νv. (3.16)

Since X0(G′j) = Uj, equation (3.16) implies ν∂Uj{0} = 0. If it were the case that |∂Uj| >
|Uj|, we would have by standard properties of matrices that the spectrum of ZT

nZn is equal
to that of ZnZ

T
n , plus an eigenvalue at zero with multiplicity at least |∂Uj| − |Uj|, and thus

that
|∂Uj| − |Uj|
|∂Uj|

≤ lim sup
n→∞

µZnZTn {0} ≤ ν∂Uj{0} = 0,

a contradiction. Therefore I0(G′j) ≥ 0. Applying the same matrix property a second time,
we have

µZnZTn =

(
1−

I0(G′j)

|Uj|

)
µZTn Zn +

I0(G′j)

|Uj|
δ0,

where by δ0 we mean an atomic measure at 0. By weak convergence, and as compact
measures are determined by their moments,

νUj =

(
1−

I0(G′j)

|Uj|

)
ν∂Uj +

I0(G′j)

|Uj|
δ0,

and thus∑
t∈Uj

µ′t{0} = |Uj|νUj{0} =
(
|Uj| − I0(G′j)

)
ν∂Uj{0}+ I0(G′j)δ0{0} = I0(G′j).

3.6 A Generalized Converse to Aomoto’s Theorem

In this section we will prove the following generalization of Theorem 3.3.3, and use it to prove
Theorem 3.3.2. Recall that we defined the set A(G) to contain those subsets X ⊂ V (G)
with cc(X)−|∂X| > 0, and which induce acyclic subgraphs of G, each of whose components
has λ as an eigenvalue of its induced Jacobi operator.

Theorem 3.6.1. Let G be a fintite graph, T its universal cover, U : E(G) → U(n) a
set of unitary-valued edge weights satisfying U∗e = Uě for every e ∈ E(G), and AG,U the
unitary-weighted Jacobi operator acting on η ∈ `2(V (G))⊗ Cn as

(AG,Uη)(v) = bvη(v) +
∑
e∈τ(v)

aeUeη(σ(e)) ∈ Cn.

For every X ∈ A(G), λ ∈ SpecAG,U with multiplicity at least n(cc(X)− |∂X|).
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We begin with a lemma regarding unitary-weighted Jacobi operators of finite trees.

Lemma 3.6.2. Let T = (V,E, a, b) be a finite tree, U : E(T )→ U(n) a set of unitary-valued
edge weights satisfying U∗e = Uě for every e ∈ E(T ), and AT,U the associated unitary-weighted
Jacobi operator. If λ ∈ SpecAT , then λ ∈ SpecAT,U with multiplicity at least n.

Proof. As in the proof of Lemma 3.4.1, we will choose a root r of T , for each vertex v write
p(v) for its unique parent and c(v) for its set of children, and, since T is acyclic, write v ← u
for the unique edge with source u and terminal v. By absorbing λ into the potential, it
suffices to study the case when λ = 0. So, let η ∈ KerAT ; we will produce a subspace of
dimension n contained in KerAT,U .

Fix a vector ζ0 ∈ Cn and set ζ(r) = ζ0. For each vertex v ∈ V (T ), letting γv denote the
directed edges in the unique shortest path from v to r, set

ζ(v) =
∏
e∈γv

U∗e · η(v) · ζ0

We claim that ζ ∈ KerAT,U ; since ζ0 was arbitrary, this will complete the proof.
At the root, we have

(AT,Uζ)(r) = brη(r)ζ0 +
∑
u∈c(r)

ar←uUr←uUu←rη(u)ζ0 =

brη(r) +
∑
u∈c(r)

ar←uη(u)

 ζ0 = 0,

since Ur←uUu←r = 1 and η ∈ KerAT . Similarly, for any other vertex v ∈ V (T ), conjugate
symmetry of the unitary weights gives us

(AT,Uζ)(v) = bv
∏
e∈γv

U∗e η(v)ζ0 + av←p(v)Uv←p(v)

∏
e∈γp(v)

U∗e η(p(v))ζ0 +
∑
u∈c(v)

av←uUv←u
∏
e∈γu

U∗e η(u)ζ0

=

bv + av←p(v)η(p(v)) +
∑
u∈c(v)

av←uη(u)

∏
e∈γv

U∗e ζ0

= 0.

We can now proceed with the proof.

Proof of Theorem 3.6.1. For any Aomoto tree T of G, the induced Jacobi operator AT has
λ in its spectrum. By Lemma 3.6.2, the induced unitary-weighted Jacobi operator AT,U thus
satisfies dim Ker(λ− AT,U) ≥ n, and therefore the space⊕

T⊂Xλ(G)

Ker(λ− AT,U) ⊂ `2(Xλ(G))⊗ Cn ⊂ `2(V )⊗ Cn
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has dimension n ccXλ(G). We will show that it contains a subspace of dimension nIλ(G)
which is itself contained in Ker(λ− AGU).

For each v ∈ Xλ(G), let Πv : `2(V ) ⊗ Cn → `2(v) ' Cn be the orthogonal projection to
the Cn-valued functions in `2(V ) ⊗ Cn supported on v. For each u ∈ ∂Xλ(G), there is an
operator

φu =
∑
e∈τ(u)

σ(e)∈Xλ(G)

aeUeΠσ(e) :
⊕

T⊂Xλ(G)

Ker(λ− AT,U)→ `2(v) ' Cn

and we define

φ =
⊕

u∈∂Xλ(G)

φu :
⊕

T⊂Xλ(G)

Ker(λ− AT,U)→ `2(∂Xλ(G)) ' Cn|∂Xλ(G)|.

Counting dimensions, dim Kerφ ≥ nIλ(G), and we will show that Kerφ ⊂ Ker(λ− AG,U).
Let ζ ∈ Kerφ; since the latter is a subspace of `2(Xλ(G)) ⊗ Cn ⊂ `2(V ) ⊗ Cn, we have

ζ(u) = 0 for every u /∈ Xλ(G). This immediately gives ((λ− AG,U)ζ) (u) = 0 for any u
outside the Aomoto set and its boundary, as ζ is identically zero on u and its neighbors.
On the other hand, if u belongs to some tree T in the Aomoto set, then because Kerφ ⊂⊕

T⊂Xλ(G) Ker(λ− AT,U) and ζ vanishes on ∂Xλ(G), we have(
(λ− AG,U)ζ

)
(u) = λζ(u)− buζ(u)−

∑
e∈τ(u)

aeUeζ(σ(e))

= λζ(u)− buζ(u)−
∑
e∈τ(u)
σ(e)∈T

aeUeζ(σ(e)) =
(
(λ− AT,U)ζ

)
(u) = 0

It remains to check that ((λ − AG,U)ζ)(u) = 0 when u ∈ ∂Xλ(G), which will follow from
ζ ∈ Kerφ. In particular, using a final time that ζ is supported only on the Aomoto set, if
u ∈ ∂Xλ(G) we have(

(λ− AG,U)ζ
)
(u) = λζ(u)− buζ(u)−

∑
e∈τ(u)

aeUeζ(σ(e))

= −
∑
e∈τ(u)

σ(e)∈Xλ(G)

aeUeζ(σ(e)) = −
(
φζ
)
(u) = 0.

Theorems 3.3.2 and 3.3.3 now follow easily.

Proof of Theorem 3.3.2. By Theorem 3.3.1, the Aomoto set satisfies the hypotheses of The-
orem 3.6.1, and if H is an n-lift of G, both AG and AH/G are unitary-weighted Jacobi
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operators for G—the former with weights taking values in U(1) and the latter in U(n − 1)
by the discussion in Section 3.2. Thus λ ∈ SpecAG with multiplicity at least

cc(Xλ(G))− |∂Xλ(G)| = Iλ(G) = |V (G)| · µ{λ}

and similarly λ ∈ SpecAH/G with multiplicity at least (n− 1)|V (G)| · µ{λ}, as desired.

Proof of Theorem 3.3.3. Assertion (i) is a special case of Theorem 3.6.1. For (ii), let Gn be
the sequence of lifts of G promised in Lemma 3.2.3, whose empirical spectral measures µGn
converge weakly to the density of states µ. Applying Theorem 3.6.1 to each AGn , viewed
again as a unitary-weighted Jacobi operator on G, the empirical spectral measures µGn satisfy

µGn{λ} ≥
cc(X)−|∂X|

V (G)
. As these converge weakly to µ, we have

µ{λ} ≥ cc(X)− |∂X|
V (G)

.

3.7 Spectral Delocalization for AT

In this section we will prove Theorem 3.3.5. Let G = (V,E) be a fixed finite and unweighted
graph, for which we will vary the weights a and potential b. In what follows we will identify
C|E|/2 with R|E| so that the parameter space for the ae and the bv is a subset of R|E|+|V |, and
we will denote elements of R|E|+|V | by (a, b), where a = (ae)e∈E and b = (bv)v∈V . To ease
notation define m = |E|+ |V |. Theorem 3.3.5 asserts that the set P ⊂ R|E|+|V | of parameters
for which AT has point spectrum is closed, with large codimension. The former fact will
follow from Theorem 3.3.3, the latter from Theorem 3.3.1.

Let A(G) be the family of vertex sets X ⊂ V that induce an acyclic subgraph of G with
the property that cc(X)− |∂X| > 0. For X ∈ A(G) let PX ⊂ Rm be the set of parameters
for which all the Jacobi matrices of the trees induced by X have a common eigenvalue. Note
that Theorems 3.3.1 (ii) and 3.3.3 (ii) imply

P =
⋃

X∈A(G)

PX . (3.17)

To compute the dimension of P we will analyze each PX individually. This will require
basic techniques and concepts from real algebraic geometry, which we condense below. The
experienced reader may proceed directly to Section 3.7.

Real Algebraic Geometry Preliminaries

We will need some elementary facts about algebraic and semialgebraic sets, as well as ap-
propriate notions of dimension for each of these. A thorough introduction can be found, for
instance, in Sections 2 and 3 of [Cos00].
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An algebraic set (or, more formally, a real affine algebraic set) is a subset of Rn defined
as the zero set of a family of polynomials with real coefficients. It is easy to see from the
definition that any finite union or finite intersection of algebraic sets is still an algebraic set.
Similarly, a semialgebraic set is a subset of Rn defined by a family of polynomial inequalities.
Any algebraic set is semialgebraic, but the reverse need not be true.

An algebraic set X is irreducible if it cannot be expressed as a disjoint union of two
algebraic sets strictly contained in X . It well known [BCR13, Section 2.8] that any algebraic
set X admits a unique decomposition of the form X =

⋃k
i=1Xi where each Xi is an irreducible

algebraic set and such that for no i 6= j is Xi contained in Xj. If X is an irreducible algebraic
set we define the algebraic dimension of X , denoted dimX , as the maximum integer d
such that there exists a chain of the form X0 ⊂ X1 ⊂ · · · ⊂ Xd = X , where each Xi is
an irreducible algebraic set and each containment is strict. If X is any algebraic set and
X =

⋃k
i=1Xi is its decomposition into irreducible sets, we define the algebraic dimension of

X as dimX = maxi∈[k] dimXi. It follows from these definitions that if X and Y are two
algebraic sets, with X irreducible, and X is not contained in Y , then dimX ∩ Y < dimX .

The notion of algebraic dimension for algebraic sets can be extended to a notion of di-
mension for semialgebraic sets via the cylindrical algebraic decomposition, which we describe
here. Any semialgebraic set admits a decomposition of the form S =

⋃k
i=1 Ci, where the

Ci are disjoint semialgebraic subsets dieffeomorphic to the open hypercube (0, 1)di for some
nonnegative integer di [Cos00, Corollary 3.8]. With this setup we define the dimension of
S as dimS = maxi∈[k] di. We also remind the reader that the Hausdorff dimension of a
semialgebraic set coincides with the notion of dimension described here.

Finally, we will use a fundamental fact about projections of semialgebraic sets. If S ⊂
Rn+1 is semialgebraic and Π : Rn+1 → Rn is the projection onto the first n coordinates, then
ΠS is a semialgebraic subset of Rn [Cos00, Theorem 2.3], and moreover dim Π(S) ≤ dimS
[Cos00, Lemma 3.17].

The Dimension of P
We begin by proving the main technical result of this section.

Proposition 3.7.1. For any X ∈ A(G), PX is a semialgebraic set of dimension at most
m− ccX + 1.

Proof. Let p = ccX and T1, . . . , Tp be the trees induced by X. For any Hermitian edge
weights a : E → C, let x = <a and y = =a, that is, for every e ∈ E we write ae = xe + iye,
with xe, ye ∈ R. View the characteristic polynomials of the Ti as polynomials in the xe, ye, bv
and z, namely, define Pi(x, y, b, z) = det(z−ATi). We will first show that each Pi(x, y, b, z) is
a polynomial with real coefficients. Remember that =Pi(x, y, b, z) is a polynomial with real
coefficients in the aformentioned variables. Now, since ATi is Hermitian, for any choice of
x, y ∈ R|E|/2 and b ∈ R|V |, we have that det(z−ATi) ∈ R, so =Pi ≡ 0 on Rm+1 and hence =Pi
is the zero polynomial. It then follows that Pi = <Pi, which means that Pi ∈ R[x, y, b, z].
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Now, for i, r ∈ [p] define the algebraic sets

Xi = {(x, y, b, z) ∈ Rm+1 : Pi(x, y, b, z) = 0} and X≤r =
r⋂
i=1

Xi.

We will now show that X≤r has codimension at least r for all r ∈ [p], which implies in
particular that that X≤p has algebraic dimension at most m+ 1− p. For the base case note
that since P1 is not the zero polynomial, X1 is a proper algebraic subset of Rm+1, and since
Rm+1 is irreducible dim(X1) < dim(Rm+1) = m + 1. Now, for 1 ≤ r ≤ p − 1 assume that
dim(X≤r) ≤ m− r + 1, define the subspace

Wr =

{
(x, y, b, z) ∈ Rm+1 : bv = 0 for v ∈ V (G) \

r⋃
i=1

V (Ti)

}
,

and let Y = X≤r ∩Wr.
The set Y is itself algebraic. Moreover, since for each i ≤ r the set Pi depends only

on those bv’s with v ∈
⋃r
i=1 V (Ti), we have that X≤r = Y × W⊥

r . Let
⋃n1

i=1 Yi be the
decomposition of Y into irreducible components. Since Yi and W⊥

r are both irreducible
Yi ×W⊥

r is as well, and hence
⋃
i∈[n1](Yi ×W⊥

r ) is in fact the decomposition of X≤r into
irreducible components. On the other hand

X≤r+1 = X≤r ∩ Xr+1 =

n1⋃
i=1

(Yi ×W⊥
r ) ∩ Xr+1.

We will now show that, for every i ∈ [n1], Yi ×W⊥
r is not contained in Xr+1.

Indeed, fix (x, y, b, z) ∈ Yi ×W⊥
r . Adding a constant c ∈ R to the bv with v ∈ V (Tr+1)

has the effect of shifting the spectrum of ATr+1 by c. We can then find b′ ∈ R|V | with the
property that b′v = bv for all v ∈ V (G) \ V (Tr+1) and such that Pr+1(x, y, b′, z) 6= 0. By
construction we have (x, y, b′, z) ∈ Yi ∩W⊥

r and (x, y, b′, z) /∈ Xr+1 as we wanted to show.
This implies that (Yi ×W⊥

r ) ∩ Xr+1 is a proper subset of Yi ×W⊥
r , and since the latter is

irreducible we get

dim
(
(Yi ×W⊥

r ) ∩ Xr+1

)
< dim(Yi ×W⊥

r ) ≤ dim(X≤r) ≤ m+ 1− r,

concluding the inductive step. Finally, let Π : Rm+1 → Rm be the projection defined by
Π(x, y, b, z) = (x, y, b), and note that ΠX≤p = PX . From the results mentioned in Section
3.7, ΠX≤p is a semialgebraic set whose dimension is less or equal to that of X≤p, and in turn
dimX≤p ≤ m− p+ 1.

We are now ready to prove Theorem 3.3.5.

Proof of Theorem 3.3.5. By Proposition 3.7.1 and Equation (3.17), P is semialgebraic with

codimP ≥ min
X∈A(G)

ccX − 1 ≥ min
X∈A(G)

∂X,



CHAPTER 3. POINT SPECTRUM OF THE UNIVERSAL COVER 48

and we want to further lower bound the latter quantity. As G has at least one cycle, ∂X 6= ∅
for all X ∈ A(G), so P has codimension at least 1. Now, if dmin ≥ 2 take any tree T induced
by X. Any vertex v of T must be connected to at least dmin− 1 distinct vertices in ∂X, and
hence ccX − 1 ≥ ∂X ≥ dmin − 1. This proves the bound codimP ≥ max{dmin − 1, 1}.

We show finally that Pc is open. For every X ∈ A(G) denote the forest induced by X by
FX . Fix (a, b) ∈ Pc. By Theorem 3.3.3, for every X ∈ A(G) the Jacobi matrices of the trees
in FX (with weights and potentials given by a and b), do not have a common eigenvalue.
Now, define

S =
⋃

X∈A(G)

⋃
T∈FX

SpecAT .

As FX is finite for each of the finitely many X ∈ A(G), we may safely define ∆ > 0 to be
the smallest distance between two distinct points in S. We will show that if (a′, b′) ∈ Rm

satisfies ‖(a, b)− (a′, b′)‖2 < ∆/2 then (a′, b′) ∈ Pc.
Assume otherwise. Then there exists an X ∈ A(G) such that the Jacobi matrices with pa-

rameters in (a′, b′) of the trees in FX have a common eigenvalue λ. Let T1, . . . , Tp be the trees
in FX with parameters in (a, b) and let T ′1, . . . , T

′
p denote the same trees but with parameters

in (a′, b′). For every i let λi be the closest point in SpecATi to λ. Since (a, b) ∈ Pc we have
λi 6= λj for some i, j. On the other hand since ‖ATi−AT ′i‖ ≤ ‖ATi−AT ′i‖F ≤ ‖(a, b)‖2 < ∆/2
and similarly ‖ATj −AT ′j‖ < ∆/2, the triangle inequality and Weyl’s inequality together im-
ply

|λi − λj| ≤ |λi − λ|+ |λj − λ| < ∆/2 + ∆/2 = ∆,

contradicting the definition of ∆.
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Chapter 4

Other short stories

4.1 Introduction

In this chapter we will look at two problems which have both been solved using techniques
from geometry of polynomials. To begin let us first give a brief introduction to the subject
matter at hand.

A polynomial p : R → R with degree n is called real-rooted if all its n roots are
real. One way real-rooted polynomials appear naturally throughout graph theory is via the
characteristic polynomials of various symmetric matrices related to graphs. For instance
given a graph G with adjacency matrix A, its characteristic polynomial det(xI −A) is real-
rooted.

Next we define interlacing between two polynomials. Its is crucial to note that in this
definition interlacing has a direction and is not symmetric. One could have symmetric
versions of this definition, but the asymmetry of this definition is what often allows one to
tease out important information.

Definition 4.1.1. A monic real-rooted polynomial of degree n− 1, g =
∏n−1

i=1 (x− βi) is said
to interlace a monic real-rooted polynomial of degree n, f =

∏n
i=1(x− αi) if

α1 ≤ β1 ≤ α2 ≤ β2... ≤ βn−1 ≤ αn.

Definition 4.1.2. A set of real rooted monic polynomials f1, ..., fk have a common interlacing
if there exists a polynomial g such that g interlaces fi for every 1 ≤ i ≤ k.

Note that f1 and f2 have a common interlacing does not mean that they themselves
have alternating roots. This is where the asymmetry of our definition comes into play. Of
particular importance is the following theorem about polynomials with common interlacing.
This theorem which occurs in [Fel80] and [CS07] provides alternate characterizations of what
it means to have a common interlacing.
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Theorem 4.1.3. If f1, ..., fk are real-rooted monic polynomials of degree n then the following
are equivalent :

1. f1, ..., fk have a common interlacing.

2. There exists disjoint real intervals I1, ...In such that every polynomial fi , 1 ≤ i ≤ k
has exactly one root in every interval Ij, 1 ≤ j ≤ n.

3. There exists disjoint real intervals I1, ..., In such that every convex combination of the
polynomials

∑
i aifi ,

∑
i ai = 1; ai ≥ 0 has exactly one root in every interval Ij,

1 ≤ j ≤ n.

4. Every convex combination of the polynomials
∑

i aifi ,
∑

i ai = 1; ai ≥ 0 is real-rooted.

Additionally when any of the above statements are true, the same intervals I1, ..., In validate
each of the statements.

Typical proofs of this are largely a matter of carefully applying Lagrange Mean Value
Theorem and observing the signs of the polynomials after each root. We omit a proof of this
theorem here. One crucial corollary that would be remiss of me to not note is the following
:

Corollary 4.1.4. If f1, ..., fk is a set of polynomials with common interlacing and if all the
roots of all the polynomial

∑
i fi are bounded above by m then there exists a polynomial fj

such that all of its roots are bounded above by m.

Let us look at a couple of critical examples :

Example 4.1.5. Rank 1 updates have a common interlacing :
Let A be a real symmetric matrix. Then the polynomials det(xI−A) and det(xI−A−vvT )

have a common interlacing.

Proof. We will show the result by showing that every convex combination of the two poly-
nomials is real-rooted. To begin with let us use the matrix determinant lemma to get

det(xI − A− vvT ) = (1− vT (xI − A)−1v) det(xI − A).

Now consider any convex combination of the two polynomials,

p det(xI − A) + (1− p) det(xI − A− vvT ) = p det(xI − A) + (1− p)(1− vT (xI − A)−1v) det(xI − A)

= det(xI − A)− (1− p)(1− vT (xI − A)−1v) det(xI − A)

= det(xI − A− (1− p)vvT ),

where the last line is by reusing matrix determinant lemma. Thus as A + (1 − p)vvT is
symmetric, its characteristic polynomial is real-rooted.
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Example 4.1.6. Sometimes rank 2 updates also have a common interlacing :
Let A be a real symmetric matrix. Then the polynomials det(xI − A) and

det(xI − A− vvT + uuT ) have a common interlacing.

Proof. The crucial idea here is that both of the matrices A and A+vvT −uuT are “positive”
rank 1 updates of the same matrix, namely A − uuT . This means that the updates pushes
all the eigenvalues in the same “direction”. Thus it is enough to show that if B = A− uuT
is a symmetric matrix, then the two polynomials f = det(xI− (B+uuT )) and g = det(xI−
(B + vvT )) have a common interlacing. Since B is symmetric it admits an orthonormal
eigenbasis. Let us now write λ1, ..., λn as the eigenvalues and w1, ..., wn as the orthonormal
eigenvectors of B. Then we have that

(xI −B)−1 =
n∑
i=1

wiw
T
i

x− λi
.

As in the previous example we will show that every convex combination of the two polyno-
mials is real-rooted. To that end let p det(xI −B − uuT ) + (1− p)(det(xI −B − vvT ) be an
arbitrary convex combination. Then again using matrix determinant lemma gives us

p det(xI −B − uuT ) + (1− p)(det(xI −B − vvT )

= det(xI −B)− puT (xI −B)−1u− (1− p)vT (xI −B)−1v

= det(xI −B)−
n∑
i=1

p(u · wi)2 + (1− p)(v · wi)2

x− λi
.

Now note that as wi is an orthonormal basis and p(u.wi)
2+(1−p)(v.wi)2 is a positive quantity,

there exists a vector γp such that for every 1 ≤ i ≤ n, γp.wi =
√
p(u · wi)2 + (1− p)(v · wi)2.

Plugging this back into the equation gives us

p det(xI −B − uuT ) + (1− p)(det(xI −B − vvT )

= det(xI −B)−
n∑
i=1

(γp.wi)
2

x− λi
= det(xI −B)− γTp (xI −B)−1γp

= det(xI −B − γpγTp ).

Again as B + γpγ
T
p is symmetric, our polynomial is real-rooted.

Let us finally take a look at interlacing families.

Definition 4.1.7. Let S1, ..., Sm be finite indexing sets i.e. for every s1, ..., sm ∈ S1× ...×Sm
there is a monic real rooted polynomial of degree n fs1,...,sm. For any k < m and s1, ..., sk ∈
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S1 × ...× Skdefine

fs1,...,sk :=
∑

sk+1∈Sk+1

fs1,...,sk+1
=

∑
sk+1,...,sm∈Sk+1×...×Sm

fs1,...,sk+1,...,sm .

Define

f∅ =
∑

s1,...,sm∈S1×...×Sm

fs1,...,sm .

We say that the polynomials {fs1,...,sm : s1, ..., sm ∈ S1 × ... × Sm} form an interlacing
family if for every k ≤ m and every s1, ..., sk−1 ∈ S1 × ... × Sk−1 the set of polynomials
{fs1,...,sk : sk ∈ Sk} have a common interlacing.

Combining this definition with Corollary 4.1.4 and using induction, gives us the following
theorem.

Theorem 4.1.8. Let {fs1,...,sm : s1, ..., sm ∈ S1 × ...× Sm} be an interlacing family, so that
all roots of f∅ are smaller than m, then there exists a t1, ..., tk ∈ S1 × ... × Sm such that all
roots of ft1,...,tk are smaller than m.

The following is a theorem from [MSS14]

Theorem 4.1.9. Let A be a real symmetric matrix and Si = {1,−1} for 1 ≤ i ≤ m =
n(n + 1)/2. Then we note that each element of S1 × ... × Sm corresponds to a symmetric
signed matrix Ss1,...,sm. Thus we can define the polynomial fs1,...,sm(x) = det(xI−A◦Ss1,...,sm).
Then fs1,...,sm(x) forms an interlacing family.

The crux of the proof is same as the ideas in Example 4.1.6. In short the idea is that
when we flip the signs of a symmetric matrix say at position 1, 2 and 2, 1, we essentially make
a rank two update, and this update has exactly one positive and one negative eigenvalue.
While in [MSS14], the matrix, A, is an adjacency matrix of graphs, we note that like in
Example 4.1.6, the matrix only needs to be a real symmetric one for the proof to hold. In
fact the ideas can be further generalised to the ideas of determinant-like polynomials which
we use later, developed in [MSS15]. For further reading it is recommended to read the
afore-mentioned papers.

4.2 Yet another class of real rooted polynomials

Given a matrix A, let us denote its characteristic polynomial by χ(A) = det(xI −A). Then
in [MSS15] the following expected polynomials are shown to be real-rooted.

Theorem 4.2.1. Given two symmetric matrices A and B, the following polynomials are real
rooted

1. EQχ(A+QBQT )
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2. EP,Qχ
(
(A+ PBQT )(A+ PBQT )T

)
,

where P,Q is any distribution of permutations realized by swaps. Here the second polynomial
is real rooted even if the matrices are not symmetric.

We look at a a different expected polynomial arising out of asymmetric matrices.

Theorem 4.2.2. Let A1, . . . , An be any matrices, then the following polynomial is real rooted

EPi,Qiχ(
∑
i

PiAiQ
T
i +QiA

T
i P

T
i )

where Pi, Qi is any distribution of permutations realized by swaps.

The motivation for this is found as a conjecture in [HPS18]. The motivation is that when
proved, this conjecture removes the loopless assumption of the following theorem that they
prove:

Theorem 4.2.3. Every connected, loopless d-regular graph has a one-sided Ramanujan r-
covering. If the graph is bipartite then there is a a two-sided Ramanujan r-covering.

The conjecture is also of independent interest as it can be viewed as another kind on
convolution of two characteristic polynomials, similar to symmetric and assymetric additive
convolutions.

Preliminaries and Notation

Let U be the set of vectors in R2n whose first n co-ordinates is same as its last n i.e.

U = {
[
x
x

]
} ⊂ R2n.

Let Π be a scalar multiple of the projection onto U . In particular

Π =
1√
2

[
I I
I I

]
.

Lastly Given a n× n matrix A define A./ =

[
0 A
AT 0

]
.

Given a linear map T : R2n → R2n which fixes U , T (U) ⊂ U we can consider the U
restriction of T, T |U : U → U . We abuse notation and define the U -determinant of T to be
det |U(T ) = det(T |U). We similarly define χ|U(T ) = det |U(xI − T ).

Proposition 4.2.4. χ|U(ΠA./Π) = χ(A+ AT )
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Proof.

ΠA./Π =
1

2

[
I I
I I

] [
0 A
AT 0

] [
I I
I I

]
=

1

2

[
A+ AT A+ AT

A+ AT A+ AT

]

If (A+ AT )x = λx we have ΠA./Π

[
x
x

]
= λ

[
x
x

]
. This shows the spectrum of the restriction

of ΠA./Π to U is the same as the spectrum as A+ AT , as desired.

It is important to notice how certain permutations act on A./

(P ⊕Q)A./(P ⊕Q)T =

[
P 0
0 Q

] [
0 A
AT 0

] [
P T 0
0 QT

]
=

[
0 PAQT

QATP T 0

]
= (PAQT )./

We follow the framework of [MSS15].

Lemma 4.2.5 (Interlacing IV, Lemma 3.5). If P,Q are uniformly random permutation then
the following is realizable by swaps: [

P 0
0 Q

]
[MSS15] introduces objects called determinant-like polynomials. A homogeneous polyno-

mial P (X1, ..., Xm) of degree d, with entries being m symmetric matrices is determinant-like
if it has the following properties.

� Hyperbolicity : The univariate restrictions q(t) = P (tI − A1, ...., tI − Am) are real
rooted for all symmetric A1, ..., Am.

� Rank one Linearity : For every vector v, index i ≤ m, and real number s, we have

P (X1, X2, ..., Xi + svvT , ..., Xm) = P (X1, ..., Xm) + sDi,vvTP (X1, ..., Xm)

with

Di,vvTP (X1, ..., Xm) = (
∂

∂s
P (X1, ..., Xi + svvT , ..., Xm))|s=0

is the directional derivative of P in the direction (0, ..., vvT , ..., 0), where vvT appears
in the ith position.

We proceed by showing the following polynomial (which takes as input 2n×2n symmetric
matrices) is determinant-like:

P (X1, . . . , Xn) = det |U(Π
∑

XiΠ)
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� Hyperbolicity: P (tI − X1, . . . , tI − Xn) = det |U(ΠtIΠ −
∑

ΠXiΠ). Note that the
linear transformation preserves U , and the restriction of any self adjoint map is self
adjoint, so we are guaranteed that

∑
ΠXiΠ|U is self adjoint. Since Π2 restricted to U

is 2I, we get a stretch by 2 of the characteristic polynomial of a self adjoint operator.
We conclude the polynomials are real rooted.

� Rank-one Linearity: P (X1, . . . , Xi + svvT , . . . , Xn) = det |U(Π
∑
XiΠ + sΠ(vvT )Π) =

det |U(Π
∑
XiΠ + sΠ(vvT )Π) = det |U(Π

∑
XiΠ + s(Πv)(Πv)T = det(Π

∑
XiΠ|U +

s(Πv)(Πv)T |U). The restriction of a rank one map is rank one, so the rank one linearity
argument proceeds as in [MSS15].

Completing the proof

Since determinant-like polynomials are closed under random swaps, we get P ((Pi⊕Qi)Xi(Pi⊕
Qi)

T ) is determinant-like. Namely it is hyperbolic in direction (I, . . . , I), and we can restrict
our inputs so the following is real rooted:

Proof.

P (
t

2m
I − (Pi ⊕Qi)A

./
i (Pi ⊕Qi)

T ) = P (
t

2m
I − (PiAiQ

T
i )./)

= det(Π
t

2
Π|U −

∑
((PiAiQ

T
i )./)|U)

= det(tI|U −
∑

((PiAiQ
T
i )./)|U)

= χ|U((
∑
i

PiAiQ
T
i )./)

= χ(
∑
i

(PiAiQ
T
i +QiA

T
i P

T
i ))

4.3 A special case of the existential version of the

Non Commutative Khintchine inequality

The following theorem found in [LO94],[Tro12] is known as the Non-commutative Khintchine
or Khintchine-Kahane inequality.

Theorem 4.3.1. Let A1, ..., An be d×d symmetric matrices. Let e1, ..., en be random variable
taking values 1 or −1 with equal probability. Then there exists constants K,K ′ such that

K

√
||
∑
i

A2
i || ≤ E[||

∑
i

eiAi||] ≤ K ′
√

log d

√
||
∑
i

A2
i ||.
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For further reading on this inequality we refer to the works of [BVH+16], [LvHY18].
To ask a sort of existential version of this question let us look at the following theorem by
Spencer [Spe85].

Theorem 4.3.2. Let L1, ..., Ln be linear functionals, Li(x1, ..., xn) =
∑

j aijxj. such that all
|aij| ≤ 1. Then there exists ε1, ..., εn ∈ {1,−1} such that for all 1 ≤ i ≤ n,

|L(ε1, ..., εn)| ≤ K
√
n,

where K is an absolute constant.

Thus we could ask if an existential version of these Khintchine inequality exists. In
particular we ask the following question.

Does there exist a constant, K independent of d, such that given A1, ..., An symmetric
d× d matrices, is it true that there exists a signing, as in a sequence of 1 and −1, ε1, ..., εn,
such that

||
∑
i

εiAi|| ≤ K

√
||
∑
i

A2
i ||?

Here we prove a special case of the above. Namely we consider the case when the matrices
A1, ..., An are linearly independent and have exactly one non-zero entry.

Theorem 4.3.3. Let A = {aij}i,j∈N be a bounded operator. Then there exists a signing of
A such that

||A ◦ S||2 < 2||A||l∞(l2),

where A ◦ S denotes the matrix generated by the entry-wise product of A and S.

A similar result was proved in 1997 by Françoise Lust-Piquard [LP97].

Theorem 4.3.4. For every matrix A = (aij) such that A and A∗ are bounded in l∞(l2)
norm, there exists a matrix B = (bij) defining a bounded operator: l2(C)→ l2(C) such that

(i) |B|2→2 ≤ Kmax{|A|l∞(l2), |A∗|l∞(l2)}
(ii) ∀i, j ∈ N , |bij| ≥ |aij|,
where K is an absolute constant and |A|l∞(l2) := maxj

√∑
i a

2
ij .

Our theorem is an improvement of this result in two ways. Firstly we show that there
exists a signing of the matrix A which satisfies the above theorem. (A signing is a matrix
B such that |bij| = |aij|). Secondly we get that the constant K as 2 suffices. In fact for the
restricted class of symmetric signings the constant 2 is tight as we show in Theorem 4.3.14.

Similar results but for different norms have been proved by Pisier [Pis77]. In particular
they prove that given a matrix A, there exists a signing, B such that

||B||∞→1 ≤ K||A||l1(l2).
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Notation and definitions

Given a n× n matrix A = {aij}, denote by

|A|2 = max
x∈Rn

||Ax||2
||x||2

.

And denote

|A|l∞(l2) = max
j

√∑
i

a2
ij.

Definition 4.3.5. Given two n × n matrices A = (aij) and B = (bij), define their Schur
product, A ◦B to be the matrix whose (i, j)’th entry is aijbij.

Definition 4.3.6. (Signings) A sign matrix is a n× n matrix, S all of whose entries are
1 or −1. A symmetric sign matrix is, as the name suggests, a symmetric matrix which is
also a sign matrix. Let S be the collection of all symmetric sign matrices of size n.

Given any matrix A and a sign matrix S, a signing of A by S is simply the matrix A ◦S.

Definition 4.3.7. A dimer arrangement D of size d on the set {1, 2, ..., n} is a set of tuples
{(i1, j1), ..., (id, jd)} such that all the the i’s and j’s are distinct from one another. The size
of the dimer arrangement D, denoted by |D| is the number of tuples, d. Let D be the set of
all dimer arrangements of size d.

The canonical weight of a dimer arrangement on a matrix A is defined to be WA(D) =
Π(i,j)∈Daij.

Again given a matrix A, define the dimer partition function as

Zd(A) =
∑
|D|=d

WA(D),

where the sum runs over all possible dimer arrangements of size d.

Definition 4.3.8. Finally given a n × n matrix A, the matching polynomial of A is then
defined to be

µA(x) =

n/2∑
i=0

(−1)dZd(A)xn−2d.

Preliminaries

The following is a trivial modification of theorem 3.6 in [MSS14].

Theorem 4.3.9. Let A be a symmetric matrix. As previously defined let S be the set of all
symmetric signing matrices. Let S be a random signing chosen uniformly from S. Then

ES[det(xI − A ◦ S)] = µA◦A(x).
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Proof. Let Sym(T ) denote the set of permutations of a set T . Let |σ| denote the entropy or
the number of inversions of a permutation σ. Then

ES[det(xI − A ◦ S)] = ES

 ∑
σ∈Sym([n])

(−1)|σ|
n∏
i=1

(xI − A ◦ S)i,σ(i)


= ES

 n∑
k=0

xn−k
∑

T⊂[n];|T |=k

∑
σ∈Sym(T )

(−1)|σ|
k∏
i=1

(−A ◦ S)i,σ(i)


=

n∑
k=0

xn−k
∑

T⊂[n];|T |=k

∑
σ∈Sym(T )

(−1)|σ|ES[
k∏
i=1

−ai,σ(i)si,σ(i)].

But the si,j are all independent excepting si,j = sj,i, with expectation, E(si,j) = 0. Thus
only even powers of si,j survive the expectation. So we may only consider permutations
which only have orbits of size 2. These are just the perfect matchings on S or alternatively
exactly all the dimer arrangements of size |S|. There are no such matchings when |S| is odd.
Otherwise its entropy is |S|/2. And since

E[(−ai,jsi,j)2] = a2
i,j,

we get

ES[det(xI − A ◦ S)] =

n/2∑
k=0

xn−2k
∑

|D|=k;D∈D

(−1)k
∏

(i,j)∈D

a2
i,j = µA◦A(x).

The next theorem is the famous Heilman-Leib theorem which proves that the match-
ing polynomial is real rooted and gives a bound for the maximum root of the matching
polynomial of a matrix. It can be found in [HL72] as theorem 4.2 and 4.3.

Theorem 4.3.10. Let A be a symmetric matrix with real positive entries. Let b be the
maximum row sum of A i.e. b = maxi∈[n]{

∑
j ai,j}. Then µA(x) is real rooted and any root

λ satisfies, λ < 2
√
b.

An immediate corollary of the above theorem is the following.

Corollary 4.3.11. Let A be any symmetric matrix. Let r1, ..., rn be the rows of A. Let ||ri||2
be the L2 norm of the vector ri. Let |A|l∞(l2) = maxi∈[n] ||ri||2 = max ||Ax||∞||Ax||2 .

Then every root λ of µA◦A(x) satisfies |λ| < 2|A|l∞(l2).
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Statement and Proof of main Theorem

Now we proceed to proving our main theorem.

Theorem 4.3.12. Let A be any n × n matrix. Then there exists a signing matrix not
necessarily symmetric such that

||A ◦ S||2 ≤ 2||A||l∞(l2).

Proof. Given A, define the dilation AD to be the 2n× 2n matrix,

AD =

[
0 A
AT 0

]
,

where AT denotes the transpose of A.
Note that AD is a symmetric matrix. Let S be the set of all 2n× 2n sign matrices. Let

S be a sign matrix chosen uniformly from S.
Then by Theorem 4.3.9,

ES[det(xI − AD ◦ S)] = µAD◦AD(x).

But by Theorem 4.1.9, the polynomials in the left hand side of the above equation form
an interlacing family. Therefore by Theorem 4.1.8, there exists some signing matrix S ′ such
that, the largest root of det(xI−AD◦S ′) is less than or equal to the largest root of µAD◦AD(x).

But using Corollary 4.3.11, every root of µAD◦AD(x) is in modulus smaller than 2|AD|l∞(l2).
Combining all this we have a 2n× 2n sign matrix S ′ such that the largest eigenvalue of

AD ◦ S ′ is less 2|AD|l∞(l2). Let S ′ =

[
S1 S2

ST2 S4

]
Then using Schur complements,

det(xI − AD ◦ S) = xn det(x− x−1(A ◦ S2)(AT ◦ ST2 )) = det(x2 − (A ◦ S2)(A ◦ S2)T ).

Thus the largest eigenvalue of AD ◦ S ′ is simply the largest singular value or the L2 norm of
A ◦ S2.

So we have a signing matrix S2, with

||A ◦ S2||2 < 2||A ◦ S2||l∞(l2) = ||A||l∞(l2).

Theorem 4.3.13. (Extension to infinite dimensions). Let A = {aij}i,j∈N be a bounded
infinite dimensional operator. Then there exists a signing of A such that

||A ◦ S||2 < 2||A ◦ S||l∞(l2).
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Proof. For any integer n, let An be the operator constructed from A by taking the upper
n× n part of A and filling everything else with 0. Then by our previous result, there exists
a signing Sn such that

||An ◦ Sn||2 < 2||An ◦ Sn||l∞(l2) = 2||An||l∞(l2) ≤ 2||A||l∞(l2).

Thus as the sequence {An◦Sn} is uniformly bounded, by using sequential Banach Alaoglu,
there is a subsequence kn such that Akn ◦Skn converges weakly to some matrix B. Note that
kn approaches infinity, thus eventually every i, j position of this subsequence is either aij or
−aij. Thus the weak limit is also a signing of A. Denote Bn = Akn ◦ Skn .

Thus B∗nBn also converges weakly to B∗B. Then for any x, we have that 〈x,B∗nBnx〉
converges to 〈x,B∗Bx〉 = ||Bx||2. Thus we have that for any x, such that ||x||2 = 1,

||Bx||2 < 2||A||2,∞.

Heuristics of tightness

Let us briefly see why 2 is the best possible constant at least if we restrict our matrices to
be chosen only from symmetric signings.

Theorem 4.3.14. Let K be any constant strictly less than 2. Then the following statement
is false : Let A be any symmetric n × n matrix. Then there exists a symmetric signing
matrix such that

||A ◦ S||2 ≤ K||A||l∞(l2).

Proof. We prove by contradiction. Suppose such a K exists. Then there exists a integer
d such that K

√
d < 2

√
d− 1. Now to construct a counterexample we first consider the d-

regular complete graph Kd+1. Let A1 be its adjacency matrix. We note that A1 has exactly
one eigenvalue at d and the rest at −1. Thus the second largest eigenvalue in modulus of A1

is smaller than K
√
d (by choosing a suitably large d.) Then by the assumption, there exists

a signing S1 of A1 such that

||A1 ◦ S1||2 ≤ K||A||l∞(l2) = K
√
d.

Note that as the largest eigenvalue of A1 is d, S1 is a non-trivial signing. As each non-trivial
signing gives a connected 2-lift of G, let G2 be the connected two lift whose adjacency matrix
A2 is similar to A1

⊕
(A1 ◦ S1). Thus we note that A2 preserves the property that its largest

eigenvalue is d and all other eigenvalues are smaller than K
√
d.

Now repeating the previous argument we can get a A3, A4 and so on with the properties
that each Ai is an adjacency matrix of a connected d-regular graph such that the second
largest eigenvalue in modulus is smaller than K

√
d. As we chose d large enough such that

K
√
d < 2

√
d− 1, this is impossible by Alon-Boppana.
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