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ABSTRACT OF THE DISSERTATION

Holistic Health Monitoring and Personalized Intervention for Well-being Promotion

By

Milad Asgari Mehrabadi

Doctor of Philosophy in Electrical Engineering and Computer Science

University of California, Irvine, 2022

Professor Nikil Dutt, Chair

Well-being is a crucial factor in human lives and society insofar as it is an indicator of

satisfaction. Within the pillars of well-being, we favor sleep, physical activity, and mental

health because these can represent body health. Furthermore, the entire world has been

affected widely by a global virus pandemic which could significantly impact societies with

vulnerable factors of well-being. Hence, we have investigated the effect of COVID-19 as one of

the representatives of threats to social well-being. Parties interested in illness prevention and

health promotion may find it helpful to measure, monitor, and promote well-being. Through

the advancement of the Internet of the Things (IoT), it is now possible to monitor health

outcomes and biomarkers in everyday free-living conditions without needing to proceed to

labs or clinical settings. Taking the above into consideration, we can organize the main

contribution of this dissertation into two components.

First, we examine the trends and patterns of sleep and mental health disorders at a popula-

tion level. To do so, we evaluate the sleep parameters of the Oura ring and the Samsung Gear

Sport watch compared with a medically approved actigraphy device in a midterm everyday

setting, where users engage in their daily routines. We used home-based sleep monitoring to

examine the sleep characteristics of 45 healthy people (23 women and 22 men) for 7 days.

Then we investigate the sleep trends of 38 pregnant women during the COVID-19 lock-
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down in Finland. The subjects used the Samsung Gear Sport smartwatch, and their sleep

data was recorded. Subjective sleep reports were obtained using a smartphone app designed

specifically for this study. Later, we analyze different mental health disorder reports before

and during the pandemic and discuss the most vulnerable population. The benefit of such

investigations is that capturing real-time information and public attitudes would facilitate

policymakers to monitor public health and social wellness.

In the second part, we focus on individual-level analyses. We use Machine Learning and Deep

Learning techniques to monitor, reconstruct, evaluate, and forecast various tasks utilizing in-

dividuals’ data and biomarkers. We begin by reconstructing the blood pressure signal. Con-

tinuous blood pressure (BP) monitoring can help individuals manage their chronic diseases

such as hypertension, requiring non-invasive measurement methods in free-living conditions.

Recent approaches fuse Photoplethysmograph (PPG) and electrocardiographic (ECG) sig-

nals using different machine and deep learning approaches to estimate BP non-invasively;

however, they fail to reconstruct the complete signal, leading to less accurate models. We

propose a cycle generative adversarial network (CycleGAN) based approach to extract a BP

signal known as ambulatory blood pressure (ABP) from a clean PPG signal. Our approach

uses a cycle generative adversarial network that extends the GAN architecture for domain

translation and outperforms state-of-the-art methods by up to 2x in BP estimation.

Next, we focus on patients diagnosed with acute respiratory distress syndrome (ARDS) who

are in more life-threatening circumstances when it comes to COVID-19, resulting in severe

respiratory system failure. We investigate the behavior of COVID19 on ARDS patients by

utilizing simple vital signs. We analyze the long-term daily logs of blood pressure (BP), and

heart rate (HR) associated with 150 ARDS patients admitted to five University of California

academic health centers to distinguish subjects with COVID-19 positive and negative test

results. In addition to the statistical analysis, we develop a deep neural network model to ex-

tract features from the longitudinal data. Our deep learning model achieved 0.81 area under
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the curve (AUC) to classify the vital signs of ARDS patients infected with COVID19 versus

other ARDS diagnosed patients. Finally, we designed and developed a study to recommend

personalized exercises to non-pregnant subjects to increase their physical activity level. We

developed smartphone and smartwatch applications to collect, monitor, and suggest exer-

cises using a contextual multi-arm bandit framework. This study includes constructing and

developing a personalized model that predicts or recommends different actions depending on

individual user biofeedback.
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Chapter 1

Introduction

Well-being is a crucial factor in human lives and society as it indicates that people believe

their lives are going satisfactorily. Satisfactory living conditions (e.g., job) are essential

to happiness and monitoring these situations is critical for public policy [11]. Although

there is no unique definition for well-being, the Centers for disease control and prevention

(CDC) defines some minimal characteristics, including the presence of positive emotions

and moods (e.g., happiness), the absence of negative emotions (e.g., anxiety), emotional

well-being (mental health), physical well-being (body health), and social well-being [11].

In this dissertation, we focus on physical health, mental health, and social health as these are

explicitly mentioned in the World Health Organization (WHO) Constitution [45]: “Health

is a state of complete physical, mental, and social well-being and not merely the absence of

disease and infirmity.”

The well-being domains, as mentioned earlier, are strongly interconnected, and it is chal-

lenging to separate them. However, we favor mental health, sleep, and physical activity, as

the main pillars of well-being, since these can be the indicators of body health. In addition,

the entire world has been affected significantly by a global virus pandemic. The first case of
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this virus, known as SARS-CoV-2, was reported in China in December 2019, and the first

case outside China was discovered in January 2020 [2]. In February, the World Health Orga-

nization called this virus COVID-19 [57]. In this dissertation, we have also investigated the

effect of COVID-19 as one of the representatives of social well-being, which was introduced

above as one of the main pillars.

In addition, our preliminary analysis on SurvivorCorps data [9] supported that COVID-

19 was impactful on these aforementioned pillars. SurvivorCorps is a COVID-19-related

organization dedicated to supporting COVID-19 survivors and researches in the filed. It

consists of a Facebook group containing over 170,000 users as of October 1st, 2021. People

use this group to share their experiences and feelings about this virus. These data captures

experiences which cannot be detected using Electronic Health Records (EHR). We used

Relatio [23] to extract narratives for Facebook posts. Hence, we only focused on only

entities and their corresponding relation. Fig. 1.1a illustrates the extracted narratives. As

Fig. 1.1b shows, anxiety and sleep related topics has been widely discussed in this dataset.

In addition, we performed a topic modeling using DocScan algorithm [128]. We found some

clusters regarding anxiety and stress which were supporting the impact of COVID-19 (Fig.

1.2).

Monitoring and quantifying such pillars would be the next challenge. Many parties inter-

ested in illness prevention and health promotion may find it helpful to measure, monitor, and

promote well-being. Empowering people to gain more control over and improve their health

is known as health promotion [11]. Thanks to the Internet of the Things (IoT) advances, it is

now possible to monitor health outcomes and biomarkers in everyday free-living conditions

without needing to proceed to labs or clinical settings [92, 21, 94, 67, 20]. Therefore, there

is enormous growth in the number of consumer-grade medical devices for physical and psy-

chological health, emotional awareness, and sleep quality [108, 121]. Of these devices, only

5% have been formally validated, and around 10% are well-supported, which means they are
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Figure 1.1: Top 100 low-dimension narratives extracted from Facebook posts (a) and sleep
and anxiety sub-graph (b).
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Figure 1.2: Topics related to anxiety and stress.

being used in research [108].

Consequently, the accuracy and validation of these non-invasive, consumer-grade devices

play an essential role. In this dissertation, we first evaluated the accuracy of a commercial

smart ring and smartwatch in sleep [92], then we used these devices for the rest of the

studies. These devices have been validated in other aspects by our colleagues in our group
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for physical activity [106] and heart rate and heart rate variability [34].

The main contribution of this dissertation can be organized into two components. The first

two chapters examine the validity and accuracy of consumer-grade sleep trackers as well as

trends and patterns of sleep and mental health disorders at a population level. The benefit

of such investigations is that capturing reliable real-time information and public attitudes

would facilitate policymakers to monitor public health and social wellness. The second part

of this dissertation which encloses the last two chapters, focuses on individual level analyses.

We employ Machine Learning and Deep learning approaches to monitor, reconstruct, analyze

and predict different tasks using signals and biomarkers of individual subjects. These two

chapters concentrate on designing and developing a personalized model which can predict or

recommend different tasks based on the biofeedback of individual users.

The rest of this dissertation is organized as follows. In Chapter 2, we focus on the validity

of the Oura smart ring [7] and Samsung smartwatch [6] in measuring sleep features and

quality [92]. Then we investigate the effect of COVID-19 on sleep quality measurements

of pregnant women which is collected by these devices [105]. In Chapter 3, we analyze

the trend of mental health disorder reports before and during the COVID-19 pandemic

to investigate the social well-being and endangered population. In Chapter 4, we focus

on advanced Machine Learning and Deep Learning methods for bio-signal synthesis and

processing. First, we propose a model to synthesize the entire ambulatory blood pressure

(ABP) signal from a photoplethysmograph (PPG) signal using a cycle generative adversarial

network (CycleGAN) framework [91]. Then we proposed a deep learning method leveraging

convolutional neural networks (CNN) and long short-term memory (LSTM) to investigate

the behavior of COVID-19 in patients with acute respiratory distress syndrome (ARDS) [94].

Finally, in Chapter 5, we present an exercise recommendation system based on reinforcement

learning that uses biomarkers and the user’s context to recommend a personalized walking

exercise that enhances the user’s aerobic capacity.
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Chapter 2

Sleep Monitoring

Assessment of sleep quality is essential to address poor sleep quality and understand changes.

Owing to the advances in the Internet of Things and wearable technologies, sleep moni-

toring under free-living conditions has become feasible and practicable. Smart rings and

smartwatches can be employed to perform mid- or long-term home-based sleep monitoring.

However, the validity of such wearables should be investigated in terms of sleep parameters.

Sleep validation studies are mostly limited to short-term laboratory tests; there is a need for

a study to assess the sleep attributes of wearables in everyday settings, where users engage

in their daily routines.

The first part of this chapter aims to evaluate the sleep parameters of the Oura ring along

with the Samsung Gear Sport watch in comparison with a medically approved Actigraphy

device in a midterm everyday setting, where users engage in their daily routines.

In the second part of this chapter, we were interested in monitoring sleep behavior of pregnant

women after evaluating the effectiveness of Internet of Things–based devices and smart-

watches technology for monitoring sleep. The purpose of this study was to look at daily

characteristics of well-being in pregnant women before and during the national stay-at-home

5



restrictions imposed in Finland due to the COVID-19 pandemic.

2.1 Background

Sleep is a multifaceted and dynamic phenomenon that indicates individuals’ overall health

and well-being and is affected by a variety of factors such as behavioral habits, stress, and

disorders [69, 58]. Sleep disturbances are common across different population groups (e.g.,

older people and pregnant women) and negatively impact body functions, including the

cardiovascular and immune system and hormonal release [28, 135]. Such sleep problems

need to be investigated thoroughly to reduce the associated health risks and complications.

Monitoring sleep quality is a vital step in this regard when the individuals’ sleep parameters

are tracked [109].

Sleep quality assessment methods have been conventionally performed in clinical settings by

monitoring users’ biological signals and body movements. Polysomnography (PSG), the gold

standard method used for sleep analysis, is enabled by the continuous monitoring of different

cardiorespiratory and neurophysiological indicators [27]. Owing to PSG’s complex and mul-

tichannel data collection, this method is limited to short-term hospital or laboratory-based

monitoring. Actigraphy is another well-established method enabled by a 3D accelerometer

that captures the movements of a limb to monitor sleep [18]. This method has been shown to

be accurate enough compared with PSG in a healthy subject population [115, 88, 117, 119],

although the results might be inaccurate when the subjects are individuals with sleep disor-

ders [18, 119, 136]. In addition, other studies conducted with large populations have shown

an agreement between actigraphy and PSG in total sleep time (TST), wake after sleep onset

(WASO), and sleep efficiency (SE) parameters [119, 89]. On the other hand, some studies

have considered the validity of actigraphy’s sleep onset latency (SOL) compared with PSG

[119, 124] and showed that actigraphy consistently underestimated SOL in comparison with
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PSG. This method is more convenient than PSG because it allows users to wear actigraphy

in everyday settings (i.e., days to weeks), although conventional medical-grade actigraphy

devices are still infeasible for long-term studies (i.e., months to years) because of their size,

design, and battery life issues.

Advancements in consumer wearable technology provide opportunities to extend sleep mon-

itoring to mid- or long-term home-based health care applications using low-power, minia-

turized, and fashionable wearables [74, 110, 25]. Wearable electronics and the Internet of

Things–based systems are growing dramatically and are expected to revolutionize health care

delivery and outcomes [56, 97]. In particular, smart rings will most likely become popular

in sleep studies. Longer battery life, elegant design, and sophisticated embedded sensors in

such rings have enabled them to be used not only in clinical trials (instead of medical-grade

actigraphy) but also in different population-based studies [72, 78]. Such devices offer con-

tinuous data collection of body movements and vital signs in everyday settings. The data

can be utilized to continuously monitor the sleep disturbances of individuals for an extended

period [24].

Sleep monitoring using consumer wearables such as wrist-worn activity trackers, smart-

watches, and smart rings necessitate valid sleep data collection and data analysis to provide

accurate sleep parameters. Various studies have investigated wrist bands in terms of sleep

monitoring accuracy across different population groups. For example, the validation of sleep

data of 7 different commercial activity trackers was assessed by conducting data collection

for 2 days on healthy adults [48]. In other studies, the sleep estimation of Fitbit devices

[42, 102, 59], Jawbone [41, 43, 38], and physical activity monitors [127] has been investigated

against actigraphy, PSG, or both in overnight tests on healthy adolescents and individuals

with obstructive sleep apnea. These studies focused on the sleep quality assessment of wear-

ables by tracking a set of non-staging sleep parameters, including TST, SOL, WASO, and

SE [95, 101, 71, 37]. Regarding smart ring validation, there is one study that has validated
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the Oura smart ring against PSG in an overnight laboratory setup [44]; however, there is

no previous research in the literature validating a smart ring against actigraphy in the mid-

or long-term. Furthermore, these earlier validation studies are limited to laboratory set-

tings and/or overnight (i.e., single night) data collection. The effect of home-based health

monitoring, where the users might be involved in different conditions and environments, is

ignored in these validation studies. Therefore, the results obtained could be inaccurate for

long-term and remote monitoring.

2.2 Instrument Validation Study

2.2.1 Background

In this study, we aim to assess the validity of sleep data acquired by a smart ring, Oura,

in comparison with a medically approved actigraphy device. We utilize the Oura ring as a

compact and relatively small device with a user-friendly design. In addition, we assessed the

Samsung Gear Sport smartwatch against actigraphy to compare the accuracy of Oura ring in

the detection of different sleep attributes. In general, because watches and rings are worn in

different parts of the subject’s hand, they respond differently to signal logging disturbances,

such as motion artifacts. The devices were tested in a 7-day monitoring study, approved by

the ethical committee, where the sleep data of 45 healthy individuals were monitored. Par-

ticipants were asked to use the devices 24 hours for 7 days and carry out their daily routines

as usual. We compared TST, SOL, WASO, and SE obtained from the Oura ring, Samsung

watch, and ActiGraph. The parameters obtained by the 2 consumer-grade wearables (i.e.,

the ring and the watch) were evaluated with the sleep parameters extracted from actigraphy

using paired t-tests, Bland-Altman [30] plots, and Pearson correlation. The parameters were

investigated considering the gender of the participants as a dependent variable. Finally, we
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conclude the section with a discussion of our obtained results and the validity of sleep data

of the wearables in everyday settings.

2.2.2 Methods

Participants and Recruitment Recruitment was performed in southern Finland from

July to August 2019. In earlier validation studies of commercial devices, the sample sizes

varied between 20 and 40. Therefore, we aimed at a target sample of 40 people. The

recruitment started with convenience sampling by personally contacting a few students and

staff members of the University of Turku. Afterward, snowball sampling was used until the

target sample size was reached; 6 additional participants were enrolled because of expected

missing data. We aimed for variation among participants by age, weight, physical activity,

education, and lifestyle as related to sleep and stress levels.

A sample of healthy individuals between 18 and 55 years of age was enrolled. Potential

participants were excluded if they had (1) a diagnosed cardiovascular disease, (2) restric-

tions regarding physical activity, (3) symptoms of an illness at the time of recruitment (i.e.,

flu symptoms including sore throat, runny nose, cough, and fever), or (4) any restrictions

on using the devices at work. In a face-to-face meeting with the interested individuals, re-

searchers described the purpose of the study and the wearable devices. They were asked to

wear the Gear Sport smartwatch, Oura ring, and ActiGraph wristband for 1 week in their

normal daily life. Each participant provided written informed consent. Altogether, 46 par-

ticipants, including 23 women and 23 men, participated in the study. A participant (male)

was excluded from the analysis because he did not wear the actigraphy device. Therefore,

the final sample size was 45 (23 women, 22 men). Table 2.1 shows the participants’ back-

ground information. The table includes 42 participants, as the background information of

the 3 participants is missing.
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Table 2.1: Participants’ background information.

Characteristics Value
Age (years), mean (SD)

Women 31.5 (6.6)
Men 33 (6)

BMI, mean (SD)
Women 24.4 (5.6)
Men 25.5 (2.9)

Expected sleep (daily hours), mean (SD)
Women 7.35 (1.0)
Men 7.17 (1.05)

Physical activity, n (%)
Almost daily 12 (27)
Once a week 9 (20)

> Once a week 21 (47)
Working status, n (%)

Working 32 (71)
Unemployed 1 (2)
Student 8 (18)
Other 1 (1)

Ethics The study was conducted according to the ethical principles based on the Declaration

of Helsinki and the Finnish Medical Research Act (#488/1999). The study protocol received

a favorable statement from the ethics committee (University of Turku, Ethics committee for

Human Sciences, Statement #44/2019). The participants were informed about the study,

both orally and in writing, before obtaining their consent. Participation was voluntary, and

all participants had the right to withdraw from the study at any time and without giving

any reason. To compensate for the time used for the study, each participant received a €20

($23) gift card to the grocery store at the end of the monitoring period when returning the

devices.

Data Collection Our data collection for 1 week included 4 approaches for monitoring

participants’ sleep. We utilized 3 devices (i.e., 2 wearable and 1 actigraphy device) to

continuously capture sleep data and a self-report form by which subjective measures were

collected. Samsung Gear and ActiGraph were worn in the wrist, and the Oura ring was worn
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in one of the fingers of the nondominant hand; thus, all 3 devices were on the same hand.

The participants completed a short background questionnaire at the meetings. They were

also asked to report their sleep times, such as bedtime, waking up time, and naps, during the

7-day study period via a structured self-report (i.e., daily log) form. They were also asked

to report other events during the study, such as device removal from the wrist or if specific

events occurred (e.g., visiting a hospital because of a disease). The self-report data were

used to interpret the actigraphy data and mitigate possible errors; such a correction was

necessary for this study because the actigraphy was selected as the baseline sleep monitoring

method. In addition to the verbal instructions, participants were given a written guideline

for using the devices.

The Oura ring [7] was the first wearable device investigated in this study. The Oura ring is

a commercial sleep tracker device that uses acceleration and gyroscope data, photoplethys-

mogram (PPG) signal, and body temperature to estimate sleep parameters, heart rate vari-

ability, respiratory rate, and intensity of physical activity. The ring is lightweight (4-6 g)

and easy to use. It also has an acceptable battery life, that is, the battery lasts up to 1 week

in regular use. The ring is connected to the Android or iOS Oura mobile app via Bluetooth.

The data are automatically sent to the mobile app and transferred to the cloud server. The

data can be accessed from the mobile app or the cloud server. In this study, we extracted

the sleep data of participants from the Oura cloud.

In addition to the Oura ring, we used the Samsung Gear Sport watch [6], which is an open-

source smartwatch that enables remote health monitoring. The watch includes a PPG sensor

and an inertial measurement unit through which PPG signal, acceleration, and gyroscope

data can be collected continuously. The data are processed to extract various variables,

including heart rate, sleep duration, and step counts. The Gear Sport watch runs open-source

Tizen operating system, enabling customized data collection. In this study, we programmed

the watch to collect sleep parameters, PPG data, and hand movement data during the
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monitoring. The PPG and hand movement data were utilized to validate the sleep events

(detailed in the Data Analysis section). Moreover, we also developed an app for the watch

to send the collected data to our server via Wi-Fi.

For actigraphy, we used the wGT3X-BT device by ActiGraph. The wGT3X is a noncommer-

cial triaxial accelerometer that measures the wrist’s acceleration in 3 orthogonal axes at 80

Hz. This device is waterproof, and its battery life is approximately 3 weeks. The device does

not provide any feedback to the participants about their activity or sleep. The acceleration

data collected by the device were utilized to obtain the estimates of sleep parameters.

Data Analysis

Data analysis included the sleep parameter extraction from the collected data and the sta-

tistical analysis leveraged to evaluate the ring and watch.

Actigraphy Raw data from the actigraphy device were downloaded to a computer and

converted into 60-second epochs using the ActiLife software (version 6.13) [12] provided by

the manufacturer (ActiGraph). We used the Cole-Kripke algorithm [36] to define each epoch

as sleep or wake. This algorithm was selected because it has been validated in the adult

population using wrist-worn accelerometers. The ActiGraph algorithm that is available in

the ActiLife software was then used to detect the sleep periods and estimate sleep attributes.

Using the Troiano wear time validation algorithm [137], the auto sleep period detection

algorithm detects nonwear bouts, ignores nonwear periods greater than a day, and nonwear

periods that have almost all zeros (5 or more epochs of nonzeros). The nonwear periods that

remain are defined as sleep time. Sleep data were systematically checked, cleaned, and sleep

periods that did not represent true sleep times were deleted. These deletions included sleep

periods with nonwear time during evenings or mornings that the algorithm had incorrectly

scored as sleep, daytime sleep periods, and sleep periods outside the actual measurement
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week.

Wearables We used the application programming interface provided by the Oura ring and

the Samsung watch to extract different semistructured data for our analyses. The Oura ring

provides JavaScript Object Notation files, including the sleep parameters per night. The 3

main types of sleep parameters provided by the ring are (1) parameters related to different

levels of sleep and nonstaging sleep, including the start and end of sleep, the number of

awakenings, total awakening time, and sleep onset, (2) scores to measure the quality of sleep

in different stages, and (3) average heart rate for every 5 min during sleep. In this study, we

only investigated the nonstaging sleep parameters because of the limitation of the baseline

actigraphy method.

In contrast, the Gear Sport watch provides a data record when the user’s status changes;

for example, the status changes from wake to sleep. We used these records to extract sleep

events per night and validated the sleep events using the heart rate and hand movement

data collected by the watch. Validation was performed to prevent the misdetection of sleep

events owing to not wearing the device. For example, the watch was not used (no move-

ment) for 1 hour, but a sleep event was detected by mistake. In this regard, we recorded a

window of 30-second PPG signal when a sleep event started and ended. The sleep event was

considered valid if valid heart rate values were detected from the PPG signals. In addition,

we considered the hand movement magnitude for validation if the PPG signal was invalid

because of practical issues. Finally, we cross-checked the sleep events with the step count

data (reported by the watch) and corrected or discarded the sleep events if there was no

match between the data. Fig. 2.1 shows an example of manual cross check we did to detect

different sleep parameters using sleep events, steps and heart rate data.

It should be noted that the watch could not detect a few sleep events because of technical

and practical issues during the monitoring. For example, the sleep event was missed because

the watch’s turn-off button was pressed accidentally during the night. This issue mostly

13



SOL TST WASO TST

Figure 2.1: Sleep extraction multi-modal cross checking.

occurred during the monitoring, as the watch and actigraphy were worn on the same hand

close to each other. As the watch could not record the sleep events, we removed 21 nights

of data out of 181 (11.6%) of the watch for the sake of an unbiased comparison between the

actigraphy and watch.

Using the actual valid sleep events, we calculated WASO, TST (in minutes), and SE (%) per

night. Since the watch does not provide SOL explicitly, we calculate such a feature based on

the difference between the start of the actual sleep and the last time the subject had steps.

A summary of the processing pipeline is illustrated in Fig. 2.2.

Figure 2.2: Watch data processing pipeline.
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Statistical Analysis

We report the mean, SD, and 95% CI of the sleep parameters collected by the Oura ring,

Samsung watch, and ActiGraph. The difference between the ring (or the watch) and the

ActiGraph was also computed using two-tailed paired t tests to test the null hypothesis.

In our context, the null hypothesis is that the true mean difference between the two mea-

surements is 0 [142]. Due to the interest in observing the paired differences between values

reported by ring (or the watch) and ActiGraph (baseline), the paired t test was utilized. In

addition, we used the Bland-Altman plot to illustrate and estimate the agreement between

the devices. These methods provided mean differences (bias) and SD of the differences be-

tween the ring (or the watch) and the actigraphy, lower and upper agreement limits, and

95% CI of the mean differences.

The sign of mean differences indicates underestimation or overestimation of the ring (or the

watch) compared with the actigraphy: a negative bias shows an overestimation, whereas a

positive bias indicates an underestimation.

The satisfactory difference between the ring (or the watch) and the actigraphy data was

selected as ≤ 30 min for TST and WASO and < 5% for SE, similar to other studies in

the literature [41, 44, 96]. We investigated the ratio of the samples within these satisfactory

ranges. Moreover, we also investigated gender as a dependent variable in the validity of sleep

parameters using t tests, considering the mean differences between the ring (or the watch)

and the actigraphy.

Finally, to analyze the linear relationship between actigraphy and the ring (or the watch)

corresponding sleep measurements, we performed Pearson correlation tests on pairwise sleep

attributes of the actigraphy and the ring (or the watch).
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2.2.3 Results

A total of 45 subjects (23 women and 22 men) participated in this study. The subjects were

33.1 years old, on average, with an SD of 6.4 years. In total, we recorded 284 valid available

days by actigraphy; however, after matching the corresponding available days of the ring (or

the watch), we had fewer valid days for the analysis. As discussed in the Methods section, in

this study, we exploited 4 different sleep attributes. Although the results regarding SOL are

not conclusive (because SOL of the actigraphy is unreliable [124]), for the sake of comparison,

we report such results in addition to the other sleep parameters in this section.

Comparisons Between Ring and Equivalent Actigraphy Sleep Measures

To validate the Oura ring against actigraphy, we matched the available dates of the ring

with the corresponding dates of actigraphy. In total, for all the participants, sleep data of

266 days (i.e., 5.91, SD 1.32 days per subject) were included in the analysis.

The mean, SD, and 95% CI of the extracted sleep parameters are presented in Table 2.2.

The table also shows the paired t test values of these parameters with their corresponding P

values. Bland-Altman plots were used to show the agreements between the 2 measures. Fig.

2.3 depicts the agreement between the ring and actigraphy for the TST, WASO, and SE.

The bias and lower and upper agreement limits for these parameters are also summarized in

Table 2.3.

As shown in Table 2.2, the ring significantly overestimated the actigraphy (t265=-6.26; P <

.001) in the estimation of TST. On the basis of 2.3, this overestimation in TST is, on average,

15.27 (SD 39.68) min (95% CI -20.07 to -10.47). Of 266 total samples, 14 fell outside the

agreement range (lower limit -93.04 min, upper limit 62.50 min). The mean difference of

TST between the actigraphy and ring fell within the satisfactory range, and 65.03% of the
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Table 2.2: Mean, SD, 95% CI, and paired t test results for the actigraphy and the Oura ring
sleep parameters in a sample of 45 healthy adults.

Parameter Mean (SD) 95% CI t-value (df) P value
Total sleep time (min)

t-test N/A N/A -6.26 (265) < .001
Actigraphy 419.04 (78.31) 409.59-428.5 N/A N/A
Oura ring 434.31 (72.14) 425.6-443.02 N/A N/A

Sleep efficiency (%)
t-test N/A N/A 3.69 (265) < .001

Actigraphy 90.47 (5.1) 89.86-91.09 N/A N/A
Oura ring 89.13 (6.28) 88.38-89.89 N/A N/A

Wake after sleep onset (min)
t-test N/A N/A 10.03 (265) < .001

Actigraphy 43.57 (27.28) 40.28-46.86 N/A N/A
Oura ring 26.17 (24.98) 23.15-29.18 N/A N/A

Figure 2.3: Bland-Altman plots for total sleep time, sleep efficiency, and wake after sleep
onset gathered by the Oura ring and the actigraphy device. Subjects’ actigraphy minus
Oura ring discrepancies on sleep parameters (y-axis) are plotted compared with actigraphy
(x-axis). Biases, upper, and lower agreement limits are marked. In addition, the satisfactory
ranges are plotted as the dashed lines. SE: sleep efficiency; TST: total sleep time; WASO:
wake after sleep onset.
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Table 2.3: Bias and agreement limits based on Bland-Altman plots for the actigraphy and
the Oura ring.

Parameter Mean difference (SD) Lower and upper agreement limits
Total sleep time (min) -15.27 (39.68) -93.04, 62.5
Sleep efficiency (%) 1.34 (5.91) -10.24, 12.93

Wake after sleep onset (min) 17.41 (28.24) -37.94, 72.75

data samples followed the satisfactory range condition.

On the other hand, in terms of WASO, the Oura ring significantly underestimated (t265=10.03;

P < .001) the actigraphy by, on average, 17.41 min (95% CI 13.99 to 20.82). Out of 266

samples, 17 fell outside the agreement limits (lower limit -37.94 min, upper limit 72.75 min).

In terms of the satisfactory range, the mean difference fell within the range and covered

69.92% of the total samples.

In addition, the Oura ring underestimated SE compared with the actigraphy by 1.34% on

average (95% CI 0.63 to 2.06). This underestimation was significant, as shown in Table 2.2

(t265=3.69; P < .001). The mean difference in SE between the Oura ring and the actigraphy

fell within the satisfactory range (< 5%), along with 65.78% of samples (including 44 out of

45 subjects). Moreover, 18 samples fell outside the agreement limits (lower limit -10.24%,

upper limit 12.93%).

Comparisons Between Watch and Equivalent Actigraphy Sleep Measures

Similar to the ring validation, we considered the available dates for the actigraphy with

corresponding data collected by the Samsung watch. As mentioned in the Wearables section,

we removed the technically invalid watch data that occurred because of practical issues

during the monitoring. Therefore, there were fewer sleep data from the watch than the other

devices. After the matching procedure and invalid data removal, the number of subjects for

the watch validation was 35 (19 men and 16 women), with 134 data samples (3.82, SD 1.50

days per subject). Table 2.4 summarizes the mean, SD, and 95% CI of the Samsung watch
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and the actigraphy with the corresponding available dates for different sleep parameters.

Table 2.4: Mean, SD, 95% CI, and paired t test results for the actigraphy and the Samsung
watch sleep parameters in a sample of 35 healthy adults.

Parameter Mean (SD) 95% CI t-value (df) P value
Total sleep time (min)

t-test N/A N/A -3.54 (133) < .001
Actigraphy 409.29 (81.43) 395.38-423.21 N/A N/A

Samsung watch 431.81 (82.21) 417.76-445.85 N/A N/A
Sleep efficiency (%)

t-test N/A N/A -6.49 (133) < .001
Actigraphy 90.40 (5.05) 89.54-91.26 N/A N/A

Samsung watch 94.84 (7.03) 93.64-96.04 N/A N/A
Wake after sleep onset (min)

t-test N/A N/A 10.26 (133) < .001
Actigraphy 42.23 (23.43) 38.23-46.24 N/A N/A

Samsung watch 10.96 (30.46) 5.76-16.17 N/A N/A

In addition, we performed paired t tests for the sleep parameters of the 2 devices. The

results are shown in Table 2.4. As shown in this table, the t test values for all considered

sleep parameters were statistically significant (P < .001). The positive and negative sign

of the t value denotes the underestimation and overestimation of actigraphy by the watch,

respectively. Bland-Altman plots showing TST, WASO, and SE agreements between the

actigraphy and the watch are also illustrated in Fig. 2.4. Moreover, bias and lower and

upper agreement limits of sleep parameter outcomes by the actigraphy and the watch are

summarized in Table 2.5.

Table 2.5: Bias and agreement limits based on Bland-Altman plots for the actigraphy and
the Samsung watch.

Parameter Mean difference (SD) Lower and upper agreement limits
Total sleep time (min) -22.51 (73.24) -166.07, 121.04
Sleep efficiency (%) -4.44 (7.88) -19.89, 11.01

Wake after sleep onset (min) 31.27 (35.15) -37.62, 100.15

As shown in Fig. 2.4, the watch overestimated the actigraphy in TST, on average, by 22.51

min (95% CI -35.08 to -9.95). Among the 134 samples, 9 were beyond the agreement limits

(lower limit -166.07 min, upper limit 121.04 min). The mean difference of the actigraphy’s

and the watch’s TST was within the satisfactory range; however, less than 50% (52/134,

38.8%) of the samples were within this satisfactory range.
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Figure 2.4: Bland-Altman plots for total sleep time, sleep efficiency, and wake after sleep
onset gathered by the Samsung watch and the actigraphy device. Subjects’ actigraphy
minus Samsung watch discrepancies on sleep parameters (y-axis) are plotted compared with
actigraphy (x-axis). Biases, upper, and lower agreement limits are marked. In addition, the
satisfactory ranges are plotted as the dashed lines. SE: sleep efficiency; TST: total sleep
time; WASO: wake after sleep onset.

In addition to TST, the Samsung watch overestimated SE by 4.44% (95% CI -5.79 to -

3.09) compared with the actigraphy; 8 samples fell outside the agreement limits (lower limit

-19.89%, upper limit 11.01%), with 42.53% of the samples within the satisfactory range.

On the other hand, the watch underestimated WASO by 31.27 min on average (95% CI 25.24

to 37.3). Only 9 samples were outside of the agreement limits (lower limit -37.62 min, upper

limit 100.15 min), and 45.52% of the samples were within the satisfactory range.
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Gender-Dependent Changes in the Mean Differences Between the Actigraphy

and the Ring (or the Watch)

We also considered the gender of the participants to determine if the mean difference in sleep

parameters differed between female and male groups. Table 2.6 shows the mean and SD of

each sleep attribute of the actigraphy and the ring and the difference between these devices

for male and female groups, separately.

The average of the mean difference between the TST of the actigraphy and the Oura ring

did not differ between the male and female groups (t530=0.99; P = .32). However, the mean

differences of the other sleep parameters (i.e., SE and WASO) were significant between female

and male participants (P < .001 and P = 0.004).

Table 2.6: Mean, SD, and average mean differences (the actigraphy minus the Oura ring)
for 23 women (141 samples) and 22 men (125 samples).

Parameter Mean (SD) t-value (df) P value
Actigraphy Oura ring Differences

Total sleep time (min)
t-test N/A N/A N/A 0.99 (530) .32
Women 429.67 (70.25) 442.66 (64.67) -12.98 (37.94) N/A N/A
Men 407.05 (85.21) 424.89 (78.94) -17.84 (41.39) N/A N/A

Sleep efficiency (%)
t-test N/A N/A N/A -4.33 (530) < .001
Women 90.64 (4.93) 90.73 (5.16) -0.09 (5.86) N/A N/A
Men 90.29 (5.31) 87.33 (6.9) 2.96 (5.55) N/A N/A

Wake after sleep onset (min)
t-test N/A N/A N/A 2.86 (530) .004
Women 44.9 (30.08) 22.87 (20.7) 22.03 (29.19) N/A N/A
Men 42.07 (23.75) 29.88 (28.69) 12.19 (26.16) N/A N/A

Similarly, we compared the mean differences of the sleep parameters between the actigraphy

and the watch for the male and female groups. Table 2.7 summarizes such differences for

each sleep parameter. As shown in Table 2.7, there was a significant difference between the

mean differences of the male and female groups for TST (P < .001), SE (P = .01), and

WASO (P = .01).
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Table 2.7: Mean, SD, and average mean differences (the actigraphy minus the Samsung
watch) for 16 women (65 samples) and 19 men (69 samples).

Parameter Mean (SD) t-value (df) P value
Actigraphy Samsung watch Differences

Total sleep time (min)
t-test N/A N/A N/A 3.48 (266) < .001
Women 427.08 (73.76) 427.67 (74.76) -0.59 (65.67) N/A N/A
Men 392.54 (85.22) 435.7 (89.04) -43.16 (74.01) N/A N/A

Sleep efficiency (%)
t-test N/A N/A N/A 2.39 (266) .01
Women 90.82 (4.88) 93.6 (7.92) -2.78 (8.04) N/A N/A
Men 90.0 (5.2) 96.01 (5.9) -6.0 (7.4) N/A N/A

Wake after sleep onset (min)
t-test N/A N/A N/A -2.40 (266) .01
Women 42.49 (24.33) 18.64 (39.75) 23.85 (42.54) N/A N/A
Men 41.99 (22.73) 3.73 (14.76) 38.26 (24.36) N/A N/A

Correlations

We also investigated the possible linear relationship between the actigraphy and the ring (or

the watch) data, using the Pearson correlation test. The correlation value (r) ranges from

-1 to 1, where ∓1 implies an exact linear relationship. The correlation values and their P

values are shown in Table 2.8. We considered P < .01 to be significant for the correlation

values between the sleep parameters of the actigraphy and the ring (or the watch).

Table 2.8: Pearson correlation between the actigraphy, ring, and smartwatch with the cor-
responding P values for the considered sleep attributes. TST: total sleep time, SE: sleep
efficiency and WASO: wake after sleep onset.

Devices Pearson correlation with the actigraphy, r
TST P -value SE P -value WASO P -value

Oura ring 0.86 < .001 0.47 < .001 0.41 < .001
Samsung watch 0.59 < .001 0.17 .04 0.16 .06

As shown in Table 2.8, comparing TST of actigraphy with TST of the ring and TST of

the watch, we found a significantly high correlation between the actigraphy and the ring

(r = 0.86; P < .001). In contrast, the correlation between the actigraphy and the watch was

r = 0.59 (P < .001).

With regard to SE, there was a correlation between actigraphy and the ring (r = 0.47;

P < .001). In addition, the correlation between the actigraphy and the watch was acceptable
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(r = 0.17; P = .04), but not as high as that of the ring.

For the WASO validation, there was a significant correlation between the actigraphy and

the ring (r = 0.41; P < .001). However, our analysis showed a nonsignificant correlation

between WASO of the actigraphy and WASO of the watch (r = 0.16; P = .06).

SOL Comparison Across Devices

As previously mentioned, SOL results were not conclusive since SOL of actigraphy is un-

reliable. We report SOL separately in the following: mean, SD, 95% CI, and paired t test

results of the SOL for comparison between the actigraphy and the Oura ring (or Samsung

watch) are presented in Tables 2.9 and 2.10. Bland-Altman plots showing the SOL agree-

ments between the actigraphy and the ring (or the watch) are illustrated in Fig. 2.5 and

Fig. 2.6. Details of these plots are summarized in Tables 2.11 and 2.12.

Table 2.9: Mean, SD, 95% CI, and paired t test results for the actigraphy versus Oura ring
estimates of sleep onset latency.

Parameter Mean (SD) 95% CI t-value (df) P value
Total sleep time (min)

t-test N/A N/A -13.01 (265) < .001
Actigraphy 0.91 (1.37) 0.75-1.08 N/A N/A
Oura ring 12.84 (14.92) 11.04-14.65 N/A N/A

Table 2.10: Mean, SD, 95% CI, and paired t test results for the actigraphy versus Samsung
watch estimates of sleep onset latency.

Parameter Mean (SD) 95% CI t-value (df) P value
Total sleep time (min)

t-test N/A N/A -10.08 (133) < .001
Actigraphy 0.99 (1.38) 0.75-1.22 N/A N/A

Samsung watch 13.79 (14.86) 11.25-16.33 N/A N/A

Table 2.11: Bias and agreement limits based on Bland-Altman plot of the sleep onset latency
for the actigraphy and the Oura ring.

Parameter Mean difference (SD) Lower and upper agreement limits
Sleep onset latency (min) -11.93 (14.92) -41.18, 17.32
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Figure 2.5: Bland-Altman plot for sleep onset latency estimated by the Oura ring. SOL:
sleep onset latency.

Table 2.12: Bias and agreement limits based on Bland-Altman plot of sleep onset latency
for the actigraphy and Samsung watch.

Parameter Mean difference (SD) Lower and upper agreement limits
Sleep onset latency (min) -12.81 (14.65) -41.52, 15.91

The Oura ring overestimated the SOL, on average, by 11.93 min (95% C: -13.74 to -10.13)

compared with the actigraphy. Out of 266 samples, 14 fell outside the agreement limits (lower

limit -41.18 min, upper limit 17.32 min). Table 2.9 shows that the overestimation of the SOL

by the ring was significant (t265=-13.01; P < .001). Similarly, the watch overestimated the

SOL, on average, by 12.81 min (95% CI -15.32 to -10.29). Most of the samples (all except

2) were within the agreement limits (lower limit -41.52 min, upper limit 15.91 min).
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Figure 2.6: Bland-Altman plot for sleep onset latency estimated by the Samsung watch.
SOL: sleep onset latency.

2.2.4 Discussion

Principal Findings

To the best of our knowledge, this is the first sleep validation study of the Oura ring and

the Samsung watch performed under free-living conditions in comparison with an actigraphy

method. The free-living condition allows participants to engage in their daily routines as

usual during the monitoring. If commercial devices are used in trials under such free-living

conditions, subjective evaluations and self-reports are insufficient to measure the validity of

these devices [52, 79, 77]. It is important to test these devices against research devices in

order to investigate their error margins and to standardize their software versions, minimizing
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controllable measurement differences. In contrast to related work, this study investigated

wearables in a 1-week home-based monitoring, providing a higher confidence level on the

validity of sleep parameters reported by these wearables. We discuss the results obtained

and compare them with the related sleep validation studies, most of which are limited to the

laboratory settings and compared with PSG.

Our findings showed that the mean differences of TST, WASO, and SE between the actig-

raphy device and the Oura ring were within the satisfactory range (i.e., ≤ 30 min for TST

and WASO and < 5% for SE). Within the 266 valid total nights of sleep, only 14 TST, 17

WASO, and 18 SE fell outside the agreement limits. Our results also indicated significant

correlations between the TST, WASO, and SE of the ring and the actigraphy. These findings

are in accordance with a previous validation study of the Oura ring carried out in a single

laboratory overnight study [44].

On the other hand, we found significant differences between the means of TST, WASO, and

SE of the ring and the actigraphy. In our study, the Oura ring overestimated the TST (15.27

min) and underestimated the WASO (17.41 min) and SE (1.34%). Although the differences

were within the satisfactory range, our results showed more overestimation and underestima-

tion of the Oura ring than the lab-based sleep validation study [44]. This might be explained

by the difference between the studies’ samples and setups. Our study included more sleep

data (i.e., 225 more nights) and was performed in the house. Therefore, our results should

be more accurate and have higher confidence levels in real-world applications. Unfortu-

nately, these inaccuracies in sleep measurements in commercial devices might decrease their

feasibility for clinical trials [55].

In accordance, the results showed biases in the sleep parameters provided by the Oura ring.

However, the mean differences were within the satisfactory range, and only a few samples

were outside the agreement limits. Therefore, the Oura ring can be acceptable for monitoring

nonstaging sleep parameters under free-living conditions.

26



Moreover, our results indicated that the mean differences of the TST, WASO, and SE between

the Samsung watch and the actigraphy were higher than the Oura ring’s mean difference.

The TST and SE mean differences of the watch were higher but still within the satisfactory

range. However, the WASO mean difference (i.e., 31.27 min) was negligibly higher than

the range. Within the 134 valid total nights of sleep detection by the watch, 9 TST, 9

WASO, and 8 SE fell outside the agreement limit. Similarly, the correlation of the watch

and actigraphy was lower than the ring, as the Pearson r values of the 3 parameters were

closer to 0. Consequently, the sleep parameters of the watch had acceptable mean differences

and indicated significant correlations with the actigraphy, but the Oura ring outperforms the

Samsung watch in terms of the nonstaging sleep parameters.

Comparison With Prior Work

In previous studies, wrist activity trackers such as Fitbit Charge HR and Jawbone UP were

compared with the PSG in lab tests on healthy adults [42, 41, 127]. The devices showed

good agreement with the PSG in terms of TST, WASO, and SE. This is in accordance with

our results for both the Oura ring and the Samsung watch. However, the overestimations or

underestimations in our findings were higher than those in previous studies. The biases are

particularly significant for the Samsung watch. For example, de Zambotti et al. [42] indicated

that the Fitbit Charge HR overestimates TST by 8 min and SE by 1.8% and underestimates

WASO by 5.6 min. These low biases might be because of their limited setups and data

collection, that is, an overnight laboratory sleep test on 32 healthy individuals.

There are a few studies performed under free-living conditions to evaluate activity trackers

such as the Misfit Shine, Jawbone UP, and different models of Fitbit on healthy adults [48,

82]. Our results regarding the Oura ring highlighted the high correlations obtained by these

studies. For instance, Liang et al. [82] indicated that there were high Pearson correlations

between Fitbit Charge 2 and their baseline (a single-channel electroencephalogram-based
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device) in terms of TST (r = 0.94), WASO (r = 0.25), and SE (r = 0.50). Ferguson et al.

[48] considered the TST correlations between 4 activity tracker devices and a research-grade

accelerometer/multi-sensor device (BodyMedia SenseWear). The authors showed that the

correlations were higher than 0.82 for the devices. On the other hand, our smartwatch results

showed moderate correlations for TST, WASO, and SE.

Furthermore, we considered gender as a dependent variable to evaluate whether there was a

mean difference in sleep parameter changes between male and female groups. Considering the

Oura ring, our results showed a nonsignificant difference between female and male groups

in TST, which is similar to the findings of de Zambotti et al. [41]. Moreover, Carter et

al. [35] evaluated the objective estimation of sleep parameters compared with subjective

assessments. In comparison with this study, we obtained similar results in terms of objective

TST. However, the watch in our study showed a significant difference in TST. Besides, both

the ring and the watch indicated significant differences between female and male groups in

WASO and SE (P < .05), which disagrees with de Zambotti et al. [41] but confirms the

findings of Carter et al. [35].

Limitations

We considered using an actigraphy device as the baseline method, which is one of the limita-

tions of this study. Our analysis was limited to TST, WASO, and SE parameters. Although

we collected the SOL of the Oura ring and the Samsung watch, we could not evaluate the

values, as the SOL measure of the actigraphy is unreliable [124]. The actigraphy methods

are insufficient for evaluation of sleep stages (e.g., deep sleep). Therefore, future work should

investigate the sleep stages provided by the ring and watch, considering a feasible PSG or

electroencephalogram-based method designed for home-based monitoring.

Another limitation of this study is that only healthy participants were included in the anal-
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ysis. However, other studies have shown that the accuracy of the wearables might differ for

different population groups [38, 37]. This issue may limit the generalizability of the find-

ings. This study’s future directions are to perform a home-based sleep validation study to

assess the accuracy of wearables for population groups of different ages (e.g., adolescents

and older people) and sleep disorders (e.g., obstructive sleep apnea). Besides, bed-based

and ballistocardiograph-based sensors [118] can be used to mitigate user errors during data

collection.
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2.3 Pregnant women’s sleep patterns before and dur-

ing the COVID-19 pandemic

2.3.1 Background

In another study [105], we examined the sleep patterns of pregnant mothers in Finland during

the COVID-19 pandemic. It is possible to continuously monitor and track an individual’s

sleep parameter data during pregnancy thanks to modern verified technologies [105]. It is

crucial to figure out how pregnant women sleep on a daily basis since these patterns could

be signs of how well they are doing during their pregnancy [75]. In light of the disruption to

normal daily life patterns caused by the COVID-19 pandemic, health care organizations and

clinical practicians have embraced the use of wearable devices and mobile applications to

collect personal health parameters. The goal of this study was to examine everyday patterns

of well-being (such as sleep) in pregnant women before and during Finland’s COVID-19

pandemic-related stay-at-home restrictions.

2.3.2 Data collection

This study included two cohorts of pregnant women. Pregnant women with histories of

preterm births (gestational weeks 22–36) or late miscarriages (gestational weeks 12–21) were

recruited in the first wave between January and December 2019, and pregnant women with

histories of full-term births (gestational weeks 37–42) and no pregnancy losses were recruited

in the second wave between October 2019 and March 2020. This study’s final sample size

was 38 pregnant women [105]. Each participant received a Samsung Gear Sport smartwatch,

which has demonstrated acceptable validity in everyday settings when it comes to sleep [92]

(Section 2.2).

30



2.3.3 Data preprocessing

TST and WASO were calculated as the sleep parameters for each night using the pipeline

introduced in Section 2.2. TST is the total amount of time the subject slept during the

night. WASO is the amount of time spent awake after falling asleep but before waking up.

We visualized various sources of data, including the steps and hand movements reported by

the watch, to validate sleep intervals for such sleep events. We were able to retrieve actual

sleep intervals by manually inspecting the data using such visualizations.

2.3.4 Statistical analysis

To examine trends in between-person and within-person changes in the dependent variable

of interest, hierarchical linear mixed models were used. We used the notation defined by

Raudenbush-Bryk, as well as Bolger-Laurenceau’s recommendations [31, 112]. We examined

daily values for four weeks before and four weeks during the COVID-19 pandemic (56 days),

with 38 subjects in each interval. Time (day) was the single within-subject independent

variable in the model, and the pandemic group (before or during the pandemic) and education

level were the between-subject independent binary variables (university level or lower level

education). Furthermore, to detect potential differences between the groups, the study group

(high-risk or low-risk pregnancy) was used as a between-subject independent variable in the

models.

To account for the outliers in the sleep measurements, we transformed the values to z-score

and kept measurements within 3 (3σ 99.73% of the data). Furthermore, to test subjective

data before and after the pandemic we used the paired t-test. A zero mean difference between

the variables of interest was the null hypothesis. We used the complementary cumulative

distribution function (CCDF) plot to show the difference between before and during the

pandemic.
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2.3.5 Results

The TST of pregnant women was not associated with pandemic-related restrictions (P =

.266). TST, on the other hand, decreased as the pregnancy progressed (P = .021). The

duration of WASO was not significantly associated with pandemic-related restrictions (P =

.065).

Compared to the weeks preceding the virus outbreak, participants awoke 15 minutes later

on average during the pandemic-related restrictions (P = .007). They fell asleep about 10

minutes later; however, the difference was not statistically significant (P = .0504). The

participants’ sleep quality did not change based on their weekly evaluations (Figs. 2.7 and

2.8).

Figure 2.7: Trends in sleep. The daily mean with 95% confidence intervals of daily total
sleep time (TST) and wake after sleep onset (WASO) (n = 22–32) during the eight-week
data collection period (56 days). These figures are obtained from [105].

2.4 Conclusions

Sleep monitoring in free-living conditions becomes feasible and practicable using commercial

devices such as smart rings and smartwatches. Notwithstanding the advances and feasibility

of these wearables, their validity in terms of sleep parameters was not thoroughly investi-
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Figure 2.8: Subjective evaluations of sleep. Participants’ (n = 23) subjectively assessed
quality of sleep before and during the pandemic-related restrictions in a scale from 0 to 100
the higher value indicating a better quality of sleep. These figures are obtained from [105].

gated, especially for mid- to long-term studies in everyday settings. This study assessed

the Oura ring and the Samsung Gear Sport watch by examining their TST, WASO, and

SE under free-living conditions. The wearable devices were tested in home-based monitor-

ing, where the sleep parameters of 45 healthy participants were tracked for 7 days. The

assessment was performed in comparison with an actigraphy device, leveraging the paired

t tests, Bland-Altman plots, and Pearson correlations. Sleep parameters were investigated

considering the gender of the participants as a dependent variable. Our results showed that

despite the statistically significant differences in the sleep parameters (i.e., TST, WASO, and

SE) of both the Oura ring and the Samsung watch compared with the actigraphy device, the

mean differences were within the satisfactory ranges. The sleep parameters also indicated

significant correlations with actigraphy. Besides, we showed that there was no significant

difference in the validation of TST between male and female groups in the Oura ring; how-

ever, both the Oura ring and the Samsung watch indicated significant differences between
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the female and male groups in the estimation of WASO and SE.

Similarly, in a population sample of healthy adults, both the Oura ring and the Samsung

watch had acceptable mean differences and indicated significant correlations with the actig-

raphy. However, the biases of the ring were considerably lower than the biases of the watch.

Further validation is required to assess the validity of the sleep stages provided by the ring

and the watch under free-living conditions. Moreover, future work should include the assess-

ment of the devices for other population groups, such as individuals with sleep disorders.

Furthermore, by means of using these validated devices, we found that the COVID-19 pan-

demic did not appear to have a significant impact on the daily routines of Finnish pregnant

women. TST decreased as the pregnancy progressed, but the pandemic-related restrictions

were not associated with sleep. However, the participants’ daily rhythms changed as they

began to sleep later and wake up later. Working from home made it their sleep pattern more

flexible since the women in the study were highly educated [100, 105].
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Chapter 3

Mental health

The entire world is currently being significantly affected by a global virus pandemic. The

first case of this virus, SARS-CoV-2, was reported in China in December 2019, and the first

case outside China was discovered in January 2020 [93, 1]. In February, the World Health

Organization named the disease caused by this virus COVID-19 [57].

Worldwide, as of July 19, 2020, there had been approximately 14,400,000 confirmed cases of

COVID-19, with 604,000 deaths [4]. The United States of America, with 3,830,000 confirmed

cases and 143,000 deaths, was the most affected country in the world. In some states, such

as California, the numbers are still increasing, while in some other states, such as New York,

the peak has passed and the average number of daily new cases is decreasing [93].

Due to the rapid spread of SARS-CoV-2, finding effective reasons for its spread can play a

significant role in prevention policies. Using data mining and time series analysis methods,

it is possible to investigate the impact of different phenomena on time series data [93]. For

example, in economics, different studies have modeled the temporal relationships of two or

more time series (e.g., the relationship between oil and gold prices) using these methods

[93, 3]. Wang et al. [140] used the same causality inference methods to determine whether
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a relationship exists between the main air pollutants and the mortality rate of respiratory

diseases.

It is well-known that the widespread pandemic has had psychological impact on our entire

society. Various population groups such as child/adolescents and elderly may experience

different mental health disorder trends and it is essential to focus on more vulnerable popu-

lations (e.g., pregnant women) [130].

In this chapter, we investigate the effect of Covid-19 on mental health disorders.

3.1 The Effect of COVID-19 and Lockdown on Mental

Health in California

3.1.1 Background

There have been more than 9 million cases, equating to over 90,000 deaths, of severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in California since December

of 2019 when the virus was detected. In an effort to prevent viral transmission, California

was the first state to strictly implement a statewide lockdown and protective public health

measures. It is well-documented that the the pandemic itself, coupled with social isolation,

economic concerns, grief, fear and the loss of loved ones, have contributed to an increase in

mental health problems. However, it is unclear if the pandemic and the public health mea-

sures used to mitigate its spread affected the rate of new diagnoses of mental health disorders

such as anxiety, bipolar disorder, post traumatic stress disorder, depression, self-harm, sui-

cide, psychosis among others. While the public health measures were designed to protect

the publicly from physical illness of SARS-Co-V-2, it likely had unintended consequences

for mental health. It is well-documented the environment can be protective or harmful to
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one’s mental health. While mental health problems are prevalent across the lifespan, there

is well-known that stage of develop and environment interaction and influence the chance

for psychiatric disease. In other words, the public health measures likely did not affect age

groups uniformly.

The purpose of this study was to examine the influence of COVID-19 pandemic on mental

health disorders across the lifespan. This retrospective review subjected data from the

University of California COVID Research DataSet (UC-CORDS) collected before and after

the pandemic to determine the frequency of mental health issues across the lifespan.

3.1.2 Method

Sample. Data were extracted from the UC-CORDS data set at two time periods: prior

to (March-October of 2019) and during the pandemic (March-October 2020). Data were

examined to between the two time periods to determine any difference in new diagnoses of

mental health problems across the lifespan. This data set contains comprehensive, structured

information on patients admitted to the hospitals at the University of California Health’s five

academic health centers (i.e., UC Davis Health, UC San Diego Health, UC Irvine Health,

UCLA Health, and UCSF Health). This data set provides a wide range of information,

including COVID-19 test results, and weekly values of new mental health disorders diagnosed

by UC-Health hospitals. It does not necessarily contain unique subjects since one subject

that developed anxiety and bipolar is recorded twice – one for anxiety and one for bipolar.

Weekly values of new diagnoses of mental health disorders were extracted from UC-CORDS

and further classified based on age (less than 19 (< 19), between 19 and 25 (19-25), 26-35,

36-45, 46-55, 56-65, 66-75, 76-85 and above 85 (> 85) years old).

The UC-CORDS data set contains different diagnoses coded using SNOMED vocabulary

[8]. For analysis purposes, we have categorized various mental health disorders into 12 bins

37



(Table A.1). Bipolar, post-traumatic stress disorder (PTSD), depression, mood, psychosis,

self-harm, suicide, personality, and anxiety are straightforward. Child/adolescent behavioral

contains disorders related to adolescents, such as hyperactivity disorder. Substance-induced

mental health consist of the disorders developed due to the use of substances of abuse or

medications (e.g., delusional disorders); however, the disorders in usage are categorized as

Substance use.

Analysis. Statistical analyses were performed using R (version 4.0.3). Paired t-tests were

performed to test differences in the occurrence of each mental health disorder for each age

group. A two way ANOVA was performed to assess for between group differences. A P

value of < 0.05 was considered significant.

3.1.3 Results

The occurrence of new diagnoses of mental health disorders for 2019 and 2020 based on

age are reported in Table 3.1. Changes in the occurrence of mental health diagnoses were

observed for those < 19, 19-25, 26-35, 56-65, and 76-85 years old. The 26-35 age group had

the largest increase in new diagnoses, See Fig. 3.2a.

In addition, the two-way ANOVA test for 2019 and 2020 showed the significant effect of

different age groups over time ( P < .001 and P = .004 respectively), justifying different age

groups with different intercepts and slopes in both 2019 and 2020.

Due to the nature of the UCCORDS data set, each subject could be diagnosed with more

than one type of mental health disorder. We performed a Pearson correlation to compare

the occurrence of weekly report with respect to the disorder category for 2020. Fig. 3.1

shows the heatmap of such correlations.

Since the most significant changes happened for age groups 26-35, the rest of the analysis
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Figure 3.1: Pearson correlation of mental health disorders in 2020.

focuses on this group. Similarly, a paired t-test has been performed for each disorder group.

Anxiety (P < .001), bipolar (P = .02), depression (P < .001), mood (P = .03), psychosis

(P = .002) had significant changes in 2020 compared to 2019 (Fig.3.2b).

Likewise, to see if all diagnoses behave the same as the time changes (longitudinally), we

have used a two-way ANOVA test for 2019 and 2020 separately. For 2019 and 2020, all the

P -values are significant, meaning different diagnoses will have different intercepts and slopes

for 2019 and 2020 (P < .001).
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3.1.4 Discussion

Herein we report changes in clinician diagnosed mental health disorders across age groups.

Our findings are consistent with others who report an increase in mental health issues during

the COVID-19 pandemic, especially anxiety and depression [113, 138, 39]. Specifically, we

report an increase in anxiety, depression, bipolar disorder, mood disorder, and psychosis

among individuals aged 26-35 during the lockdown phase of the COVID-19 pandemic in

California.

The strength of our observations includes clinician diagnosis that is recorded in the electronic

health record and as such did not rely on self-report measures of symptoms. We also observed

a reduction in many mental health disorders, especially among adults older than 55. The

reason for this is unclear, but may be due to not seeking health care for fear of becoming

infected with SARS-CoV-2, as it was widely publicized that advancing age and the presence

of cardiovascular commodities increased rick of serious illness. California was the first to

initiate a lockdown and as such would be the first to experience any sequelae from those

safety measures–in short, those living in California would not have the benefit of learning

from another state about the impact of a lockdown.

Those ages 26-35 demonstrated the greatest increase in seeking care for a mental health

disorder during the lockdown phase of the pandemic. There may be several explanations

for this, including caring for and financial supporting a younger family, as well as stress and

worry about loss of older family members such as parents and grandparents. Financial issues

brought on by inability to work, change in employment status or cut backs from corporations

or personal businesses may have contributed to the increase in anxiety and depression. The

mental health disorders may have been further propelled by the increase in substance use

observed in this age group, including an increase in self-harm behaviors and suicide.

Although our study utilized clinician diagnosis of mental health disorders there are limi-
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tations associated with the use of electronic health records. Primarily that all diagnoses

were recorded and captured accurately, and that the data reported in the record only reflect

that of individuals who have sought care. Furthermore, the UC-CORDs data set consists of

record solely from academic health science centers which may not reflect trends in smaller

communities or in areas where there are no academic health science centers.

Our observations demonstrate the impact of the lockdown and COVID-19 pandemic on

mental health disorders in California. The use of public health measures, including the lock

down, and the availability of vaccines has resulted in California having a COVID-19 death

rate of 228 per 100,000, making it one of the lowest in the United States. However, we are

just beginning to understand the impact of the totality of the pandemic and the measures

instituted to stop the spread on mental and physical health. More studies are desperately

needed to understand the factors that contribute to these issues so that interventions and

policies can be instituted when another global pandemic emerges.
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Chapter 4

Cardiovascular Biomarkers

Monitoring

Continuous monitoring of blood pressure (BP) can help individuals manage their chronic

diseases such as hypertension, requiring non-invasive measurement methods in free-living

conditions. Recent approaches fuse Photoplethysmograph (PPG) and electrocardiographic

(ECG) signals using different machine and deep learning approaches to non-invasively es-

timate BP; however, they fail to reconstruct the complete signal, leading to less accurate

models. In the first part of this chapter, we propose a cycle generative adversarial network

(CycleGAN) based approach to extract a BP signal known as ambulatory blood pressure

(ABP) from a clean PPG signal. Our approach uses a cycle generative adversarial network

that extends the GAN architecture for domain translation, and outperforms state-of-the-art

approaches by up to 2× in BP estimation.

To further investigate the importance of BP and heart rate, we leverage the importance of

such biomarkers in COVID-19 context. In the second part of this chapter, we show the

power of BP and HR in COVID-19 detection. The world has been affected by COVID-19
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coronavirus. At the time of this study, the number of infected people in the United States

is the highest globally (31.2 million infections). Within the infected population, patients

diagnosed with acute respiratory distress syndrome (ARDS) are in more life-threatening

circumstances, resulting in severe respiratory system failure.

Various studies have investigated the infections to COVID-19 and ARDS by monitoring

laboratory metrics and symptoms. Unfortunately, these methods are merely limited to

clinical settings, and symptom-based methods are shown to be ineffective. In contrast, vital

signs (e.g., heart rate) have been utilized to early-detect different respiratory diseases in

ubiquitous health monitoring. We posit that such biomarkers are informative in identifying

ARDS patients infected with COVID-19.

In this study, we investigate the behavior of COVID-19 on ARDS patients by utilizing simple

vital signs. We analyze the long-term daily logs of blood pressure (BP) and heart rate (HR)

associated with 150 ARDS patients admitted to five University of California academic health

centers (containing 77,972 samples for each vital sign) to distinguish subjects with COVID-

19 positive and negative test results. In addition to the statistical analysis, we develop a

deep neural network model to extract features from the longitudinal data. Our deep learning

model is able to achieve 0.81 area under the curve (AUC) to classify the vital signs of ARDS

patients infected with COVID-19 versus other ARDS diagnosed patients. Since our proposed

model uses only the BP and HR, it would be possible to review data prior to the first reported

cases in the U.S. to validate the presence or absence of COVID-19 in our communities prior

to January 2020. In addition, by utilizing wearable devices, and monitoring vital signs

of subjects in everyday settings it is possible to early-detect COVID-19 without visiting a

hospital or a care site.
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4.1 Blood PressureWaveform Reconstruction from PPG

using Cycle Generative Adversarial Networks

4.1.1 Background

Blood pressure (BP) monitoring is critical for early detection of cardiovascular and respi-

ratory diseases [46, 22]. High blood pressure can be the source of mortality and morbidity

for the aging population [32]. Hence, continuous monitoring of BP – via the bio-markers

systolic (SBP) and diastolic blood pressure (DBP) – can help diagnose chronic severe condi-

tions. Currently the established method for measuring SBP and DBP (usually in mmHg) is

to use a medical-grade cuff-based instrument, which is neither comfortable nor feasible for

continuous BP monitoring in everyday settings.

Thanks to recent advances in Internet-of-Things (IoT), it is now possible to record vital signs

in everyday settings. For instance, smartwatches can record heart rate and blood oxygen

using photoplethysmograph (PPG) and electrocardiogram (ECG) sensors. PPG sensors

emit and reflect light into/from blood vessels, whose measurement form a signal that is

proportional to continuous blood volume in the unit of time. This signal has been shown to

correlate strongly with BP [80] as shown in Fig. 4.1.

State-of-the-art approaches have investigated different methods ranging from feature-based

statistical estimations [62, 134, 80] to deep learning-based [132, 133] approaches to estimate

BP (i.e., SBP and DBP). The former approaches are limited to a pre-defined set of features

that can diminish the information of the entire input signal. Furthermore, this needs an

expert to define such features. However, the second approach utilizes convolutional layers to

embed the segmented signal and absorb more information into a training model. Although

these approaches accurately estimate SBP and DBP values, they fail to reconstruct the

entire ambulatory blood pressure (ABP) signal. It has been shown that the waveform itself
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Figure 4.1: Correlation between BP and PPG signal.

contains a rich set of information on the underlying causes of cardiovascular diseases [76, 139].

Moreover, to measure other cardiovascular features, such as cardiac volume, there is a need

for the ABP waveform [104].

In this section, we propose a deep learning method based on cycle generative adversarial

network (CycleGAN) [147] to reconstruct the entire ABP waveform using a PPG signal. Cy-

cleGAN has been widely used in unsupervised learning for domain transformation. We train

and test our model on Multi-parameter Intelligent Monitoring in Intensive Care (MIMIC)

II online waveform database [53] using 5-fold cross-validation with more than 90 subjects.

In addition, since state-of-the-art approaches train and test on the same subjects’ data, we

perform a similar mechanism to compare our proposed model against the related work in

the literature. On cross-subject evaluation, our proposed model achieves prediction error

(MAE ± σ) of 2.89 ± 4.52 mmHg and 3.22 ± 4.67 mmHg for SBP and DBP, respectively.

Furthermore, per-subject evaluation outperforms the results of the state-of-the-art methods

(2.29± 0.88 mmHg for SBP and 1.93± 2.61 mmHg for DBP). In summary, our CycleGAN

method outperforms the state-of-the-art approaches for ABP waveform construction, as well

as SBP and DBP estimations improving the estimation accuracy by up to 2×.
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4.1.2 Related Work

Blood pressure estimation has been investigated in prior work [62, 132, 116, 80]. The majority

of the related works attempt to extract SBP and DBP using ECG and/or PPG signals

[133, 132]. Recent methods mainly rely on machine learning and deep learning by extracting

features from the input signals [103]. The limitation of such studies would be the the under-

utilization of the information in the signal. On the other hand, thanks to the progress in

deep learning methods, researchers have focused on building deep neural networks that can

generate embeddings of a given signal [133] to address the limitation of feature engineering.

On the other hand, synthesizing the entire ABP signal instead of extracting numerical SBP

and DBP values can lead to a valuable source of information. There exists a few studies

on BP waveform reconstruction. The state-of-the-art uses statistical methods as well as a

wavelet neural network to reconstruct the ABP signal [80, 76]. While these studies minimally

fulfill the standards, we show the estimation accuracy can be significantly enhanced (up to

2×) by proposing a CycleGAN-based model that reconstructs the ABP signals.

4.1.3 Material and Methods

4.1.4 Dataset

We employed the MIMIC-II online waveform database [53], which contains different bio-

signals of thousands of subjects hospitalized between 2001 and 2012. This dataset contains

PPG and corresponding ABP signal with the sampling frequency of fs = 125Hz. We use

5 minutes of recording for 92 randomly selected subjects to evaluate our model. For this

dataset, we randomly select 75 subjects for training and 17 subjects for testing. We repeat

this procedure using 5-fold cross-validation while keeping each subject’s data in only one
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fold. Furthermore, to compare our results with literature, we randomly select 20 subjects to

train and test for each subject separate from others (the first 80% for training and the rest

for testing).

Pre-processing

The obtained signals had minor noises; hence, we apply the traditional Fourier Transform

(FFT) approach to eliminate unwanted information. We use a band-pass filter with cutoff

frequencies of 0.1 and 8Hz to remove noises from the PPG signal. On the contrary, we

utilize a low-pass filter with a cutoff frequency of 5Hz to clean the ABP signal. For both

PPG and ABP, we normalize the values of the signals for each subject. Afterward, each

signal is divided into windows of 256 samples with 25% overlap for the downstream learning

task using CycleGAN.

Evaluation metrics

We utilize the mean absolute error (MAE), and root mean square error (RMSE) to evaluate

the performance of ABP construction for both SBP and DBP. These metrics have been widely

used in the literature and show the difference between predicted and the true value. MAE

and RMSE can be calculated as follows:

MAES/DBP =
1

N

N∑
i=1

|T i
S/DBP − P i

S/DBP | (4.1)

RMSES/DBP =

√√√√ 1

N

N∑
i=1

(T i
S/DBP − P i

S/DBP )
2 (4.2)
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As these formulas show, MAE and RMSE are proportional to the averages of absolute and

square differences between true (T ) and predicted (P ) values of all samples (N).

In addition, we compare our results with British Hypertension Society (BHS) [107] guide-

lines. This guideline divides the accuracy of blood pressure measurement into three groups

based on the different ranges of estimations. Table 4.1 summarizes these ranges with their

corresponding fraction of data.

Furthermore, Bland-Altman plots have been utilized to illustrate the agreement between the

true and predicted values. The X-axis of this plot shows the mean, and the Y-axis repre-

sents the differences between the estimated and the true value and provides 95% confidence

intervals.
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Table 4.1: BHS standard ranges.

Percentage Error
≤ 5 mmHg ≤ 10 mmHg ≤ 15 mmHg

Grade A 60% 85% 95%
Grade B 50% 75% 90%
Grade C 40% 65% 85%

PPG to ABP Translator (PAT)

In this work, we use the Cycle Generative Adversarial Networks (CycleGAN) to reconstruct

ABP signals from raw PPG signals. Recent studies have already shown that the CycleGAN

can be employed as one of the most powerful tools for signal-to-signal translation [19, 145].

The CycleGAN proposed by Jun-Yan Zhu et al. [148] is an extension of the GAN architec-

ture. The GANs are composed of a generator network and a discriminator network. The

generator network is trained to learn the real data distribution. It starts from a latent space

as input and attempts to generate new data similar to the original domain. The discrimi-

nator network aims to take the generated data as an input and predict whether it is from

the dataset (real) or the generated one (fake). After each epoch, the generator is updated

to better fool the discriminator, while the discriminator is updated to accurately detect the

generator’s fake data.

The CycleGAN consists of two generators and two discriminator networks working in pairs.

The idea behind the CycleGAN is to take data from the first domain as an input and

generate data for the second domain as an output, and vice versa. In the PAT module,

the goal of CycleGAN is to learn the mapping between PPG signals (domain X ) and ABP

signals (domain Y ).

Each domain contains a set of training samples {xi}Ni=1 ∈ X and {yi}Ni=1 ∈ Y used directly

from MIMIC-II dataset. There are two generators in this module with mapping functions as

G : X → Y and F : Y → X. The two discriminators are named DX and DY . DX aims to
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distinguish between the real PPG signals (xi) and the generated PPG signals (F (y)), while

DY aims to discriminate between the real ABP signals (yi) and the generated ABP signals

(G(x)).

The adversarial losses [54] are used to match the distribution of the synthetic signals to

the data distribution of the original signals. They are applied to both mapping functions

(G : X → Y and F : Y → X). The objective of the mapping function G as a generator

and its discriminator DY is expressed as below: (We indicate the distributions of our data

as x ∼ pdata(x) and y ∼ pdata(y).)

LGAN(G,DY , X, Y ) = Ey∼pdata(y)[logDY (y)]

+Ex∼pdata(x)[log(1−DY (G(x)))]

(4.3)

where G attempts to generate ABP signals (G(x)) that look similar to original ABP collected

from MIMIC-II dataset (domain Y), while DY aims to discriminate between generated ABP

signals (G(x)) and real samples (y). Similarly, adversarial loss for the mapping function F

is expressed as LGAN(F,DX , Y,X).

The adversarial losses as the final objective loss function are not sufficient enough to guar-

antee that the learned functions can translate an individual input from the first domain into

a desired output in the second domain. Therefore, cycle consistency losses are added to the

final objective loss function. The cycle consistency losses guarantee the mapping from an

individual input (xi) to a desired output (yi) by considering learned mapping functions to be

cycle consistent. Cycle consistency means for each PPG signal x from domain X we must have

x → G(x) → F (G(x)) ≈ x while for each ABP signals y we have y → F (y) → G(F (y)) ≈ y.

The cycle consistency behavior is indicated as:
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Lcyc(G,F ) = Ex∼pdata(x)[||F (G(x))− x||1]

+Ey∼pdata(y)[||G(F (y))− y||1]
(4.4)

The final objective is the weighted sum of the above loss functions:

L(G,F,DX , DY ) = LGAN(G,DY , X, Y )

+LGAN(F,DX , Y,X)

+λLcyc(G,F )

(4.5)

where λ controls the relative importance of the two objective functions and is set to 10 in

our work.

G aims to minimize the objective while an adversary D attempts to maximize it. Therefore,

our model aims to solve:

G∗, F ∗ = argmin
G,F

max
DX ,DY

L(G,F,DX , DY ) (4.6)

The overview of CycleGAN is shown in Fig. 4.3 which is directly from [148].

Figure 4.3: CycleGAN overview from [148].

We use the CycleGAN architecture proposed by [148] in our work. The architecture of

generative networks contains two stride-2 convolutions, nine residual blocks [61], and two

fractionally-strided convolutions with stride 0.5. This network is adopted from Johnson et al.
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[68]: c7s1-64,d128,d256,R256,R256,R256,R256,R256,R256,R256,R256,R256,u128,u64,c7s1-3

Fig. 4.4 shows an overview of the generator network in CycleGAN.
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Figure 4.4: Generator network of CycleGAN.

The discriminator networks use 70×70 PathGANs [65] aiming to classify whether the signals

are fake or real. The discriminator architecture is as follows: C64-C128-C256-C512

Fig. 4.5 shows an overview of the discriminator network in CycleGAN.
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Figure 4.5: Discriminator network of CycleGAN.

To put everything together, Fig. 4.6 shows the entire system for PPG to ABP conversion.

This model aims to convert PPG to ABP and ABP to PPG at the same time. To be able

to perform such a conversion, we transformed our signals to a 256×256 image but copying

the entire signal window 256 times. Fig. 4.7 displays such images.
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Figure 4.6: PPG to ABP overview using CycleGAN.

Table 4.2: Average performance of our proposed model.

MAE RMSE µ σ r P
SBP 2.89 5.18 0.67 4.52 0.97 < .001
DBP 3.22 4.82 1.78 4.67 0.94 < .001

4.1.5 Experimental Results

After transforming back the signal values to the original range (due to normalization), we

extract SBP and DBP and compare them with the actual ABP signal. State-of-the-art

approaches split each subject’s data into train and test and build a separate model for each

user. Hence, it is challenging to generalize their proposed models. Our study trains the entire

CycleGAN on one set of subjects and tests it on new subjects given their corresponding PPG

signal.

Contrary to the conventional methods, we perform 5-fold cross-validation on the entire data

such that each subject will be categorized to be either in the training subset or the testing

subset. Table 4.2 summarizes the results for the MIMIC-II. r shows Pearson correlation

with the corresponding P -value. µ and σ represent the mean and standard deviation of the

estimation error, respectively. Fig. 4.8 illustrates the prediction error distribution of SBP
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(a) (b)

(c) (d)

Figure 4.7: Transformed PPG signal (a) and ABP signal (b) to 256 by 256 images for a
sample user and their corresponding reconstructed images using CycleGAN (c) and (d).

and DBP, respectively. Table 4.3 summarizes our results with regards to the BHS standard.

Our method passes the Grade A requirements for all the criteria. In addition, to show how

the error is distributed across different values of blood pressure, Bland-Altman plots have

been utilized for both SBP and DBP (Fig. 4.9). In addition, the distribution of the true
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Figure 4.8: SBP (a) and DBP (b) prediction error.
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Figure 4.9: SBP (a) and DBP (b) Bland-Altman plots.

Table 4.3: Our results in regards to BHS standard ranges.

Percentage Error
≤ 5 mmHg ≤ 10 mmHg ≤ 15 mmHg

SBP 85% (A) 95% (A) 98% (A)
DBP 81% (A) 94% (A) 98% (A)

values and the reconstructed values as well as their corresponding mean values is illustrated

in Figs. 4.10a and 4.10b for SBP and DBP, respectively.

To be able to compare our results against the related work in the literature, we perform
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Figure 4.10: SBP (a) and DBP (b) distributions and their corresponding mean values.

Table 4.4: Comparison of our CycleGAN-based model performance with prior works.

SBP DBP
MAE RMSE µ σ MAE RMSE µ σ

W
a
v
ef
o
rm Our work 2.29 3.22 0.88 2.99 1.93 2.61 0.91 2.32

[76] 5.9 - 0.9 5 3.5 - 0.9 3.5
[80] - - 2.32 2.91 - - 1.92 2.47

S
B
P
-

D
B
P

es
ti
m
a
ti
o
n

[64] 6.32 8.78 0.69 8.75 3.89 5.48 1.23 5.34
[103] 3.97 8.9 0.050 7.99 2.43 4.18 0.187 3.37
[133] 3.70 - 0.21 6.27 2.02 - 0.24 3.40
[84] 3.42 5.42 0.06 4.19 2.21 3.29 0.18 2.65
[116] 3.36 - - 4.48 5.59 - - 7.25
[73] 3.8 - - 3.46 2.21 - - 2.09

per-subject train and test procedures for a fair comparison. For this purpose, we select 20

random subjects from the MIMIC-II database whose ABP and PPG signals are retained.

Table 4.4 shows the results of our proposed model as well as the recent related work for

per-subject evaluation. Our model outperforms the studies with waveform reconstruction

as well as those with only SBP-DBP values estimation. Moreover, Fig. 4.11 presents the

Bland-Altman plots for these subjects (the colors show individuals) within the agreement

limits (95% confidence intervals).

Furthermore, to show how the reconstruction performs for the whole signal, we randomly

selected 2 subjects and plotted the estimated signal as well as the original one. These training
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Figure 4.11: SBP (a) and DBP (b) per-subject Bland-Altman plots.

are based on per-subject evaluation. Fig. 4.12 visualizes these two signals.
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Figure 4.12: True and reconstructed (fake) ABP signal for 2 subjects.
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4.2 Detection of COVID-19 Using Heart Rate and Blood

Pressure: Lessons Learned from Patients with ARDS

4.2.1 Background

Acute respiratory distress syndrome (ARDS) is a potential life-threatening consequence of

infection with SARS-CoV-2, the novel coronavirus that causes COVID-19 [81]. ARDS is

characterized by an overwhelming immune response and non-cardiogenic pulmonary edema

that compromise gas exchange, resulting in severe respiratory failure. ARDS mortality

ranges from 40%-60%; however, it is unclear if the mortality rate is substantially higher if

associated with COVID-19 infection, as it varies from 28.8%-62% [81, 131]. Currently, more

than 136 million people worldwide have been infected with SARS-CoV-2 [5]. In the United

States, 31.2 million people have been infected with over 562,000 deaths [5]. The impact

of the COVID-19 pandemic is considerable and efforts to mitigate its spread through early

detection cannot be over-emphasized.

Infections to COVID-19 have been conventionally investigated in clinical settings by mon-

itoring laboratory metrics and symptoms [66, 33]. These studies have focused on a large

amount of subjective questionnaires and invasive laboratory test results. For example, Jehi

et al. [66] use a large number of features extracted from demographics, comorbidities, immu-

nization history, symptoms, travel history, laboratory vairables, and medications to predict

the infection with COVID-19. Li et al. [81] show that the oxygenation index and respiratory

system compliance could be leveraged to study ARDS patients infected with COVID-19.

Force et al. [49] propose that ARDS caused by factors rather than COVID-19 results in re-

duced lung compliance. However, reduced lung compliance in ARDS is typical of the disease

[81].

Such diagnostics are the gold standard methods to investigate COVID-19 and ARDS pa-
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tients; however, they are limited to hospitals and clinical settings. Moreover, subjective

symptom-based analyses were shown to be an ineffective strategy to qualify an individual’s

likelihood of contracting COVID-19 [33]. In contrast, various studies showed that vital signs

such as heart rate and blood pressure could be exploited for early detection of infections and

respiratory diseases [125, 90, 51]. We posit that such biomarkers are informative in identify-

ing ARDS patients infected with COVID-19. These biomarkers can be collected continuously

and remotely due to the recent advancements in wearable electronics and Internet-of-Things-

based devices (e.g., Omron® HeartGuide wrist-band [10]). Therefore, the effectiveness of

these biomarkers in early COVID-19 detection extends the monitoring services to remote

settings.

Recognition of COVID-19 infections using big sensory data necessitates novel modeling and

analysis techniques. The state-of-the-art studies often use traditional statistical models to

predict COVID-19 infections. These studies have mostly studied the linear statistical re-

lationship and association between the health parameters or extracted features from the

subject’s demographics, symptoms, laboratory tests, and medications [66, 33]. For example,

a full multi-variate logistic model is constructed in [66] to predict COVID-19 using extracted

features. However, such data with complex intensive longitudinal structure and temporal

characteristics need to be investigated using nonlinear and advanced methods. Machine

learning algorithms, including Artificial Neural Networks, can be tailored in this regard to

extract linear/nonlinear correlations in the data throughout the health monitoring. In this

study, we investigate the behavior of COVID-19 on ARDS patients by proposing a deep

neural network (DNN) model which utilizes three longitudinal features from the University

of California COVID Research Data Set (UC-CORDS) [14]: systolic and diastolic blood

pressure and heart rate. We compare individuals who developed ARDS with and without

COVID-19 to assess potential markers that could be used in early detection and preven-

tion strategies. Moreover, we utilize statistical features and neural networks to distinguish

between ARDS caused by COVID-19 and other factors.
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Table 4.5: Age distribution of subject with different COVID-19 test results.

Number of Participants Number of Samples
Age range Negative Positive Negative Positive

20 - 40 10 10 5724 5291
41 - 60 27 30 13955 16068
61 - 80 27 24 16395 15020
80 - 100 11 11 2096 3423

4.2.2 Methods

Data Set

UC-CORDS data set provides comprehensive, structured information of patients admitted

to the hospital at the University of California’s five academic health centers (i.e., UC Davis

Health, UC San Diego Health, UC Irvine Health, UCLA Health, and UCSF Health). This

data set provides a wide range of information, including different observations, measurements

and COVID-19 test results of patients.

Notably, the vital signs, including heart rate, systolic and diastolic blood pressure, are

recorded continuously every 30 minute. Since the data set is fully anonymized, it is not

possible to access actual dates. However, we only considered hospitalized patients who were

diagnosed with ARDS (IDs 4195694 and 4191650 from SNOMED vocabulary [8]) and we

included data after their first COVID-19 test. Since the number of observations with neg-

ative COVID-19 test results is more than positives, we randomly selected fewer patients

with negative test results based on the age distribution. This re-sampling resulted in a more

balanced data set (i.e., 39,802 data points for each feature in the positive group and 38,170

samples in the negative group). As of April 1st 2021, this led to 150 participants for the

positive and negative test groups (i.e., 75 participants for each group). Table 4.5 shows the

age distribution of the patients per each COVID-19 test result.

In addition, another valuable aspect of this data set is the longitudinal monitoring of the

62



vital signs. The data set contains, on average, 136.6 and 57.4 days for the negative and

positive test groups, respectively.

Ethics

The data was jointly reviewed by the Institutional Review Boards of all UC Health campuses

and was determined to be non-human subjects research. Moreover, UC-CORDS does not

contain any patient identifier such as name and phone number. As such, UC-CORDS is a

HIPAA limited data set.

Statistical Analyses

To show the correlation of features (i.e., blood pressures and heart rates) and COVID-19 test

results, statistical features have been extracted. We measure basic features, including mean,

minimum (min), maximum (max), and standard deviation (std) of DBP, SBP, and HR for

each subject. Besides, we utilize the Point Biserial correlation between the proposed features

and COVID-19 test results. This correlation, which is similar to Pearson’s correlation, is

used when one of the variables is binary, and the other variable is a continuous number [126].

In other words, this measurement indicates the difference between the categorical groups’

distribution.

Neural Networks

In this study, we are interested in the COVID-19 detection using longitudinal heart rate

and blood pressure monitoring. To perform the detection, we propose a DNN architecture

combining convolutional neural network (CNN), and a long short-term memory (LSTM).

Such a model is utilized to leverage the embedded structure of longitudinal data. We have
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Table 4.6: The architecture of the proposed neural network.

Layer Output Shape
1D CNN (None, 4, 14, 64)

MaxPooling (None, 4, 7, 64)
1D CNN (None, 4, 5, 32)

MaxPooling (None, 4, 2, 32)
Flatten (None, 4, 64)
LSTM (None, 64)
Flatten (None, 64)
Dense (None, 100)
Dense (None, 1)

considered three channels of vital signs, i.e., heart rate (HR), systolic and diastolic blood

pressure (SBP and DBP), as the inputs and the COVID-19 test result for the network’s

output. Table 4.6 summarizes the detailed structure of the proposed network. It consists

of CNNs (capturing the spatial information), followed by a max-pooling layer, a LSTM

layer (capturing the order in time series data) [63], and finally two fully connected layers

(extracting the embeddings). We use grid search to tune the hyperparameters (e.g., number

of filters and neurons) of the DNN. We randomly select 75% (112) of patients as train, the

rest as the test data, and accuracy, f1 score and AUC metrics were chosen for the performance

evaluation.

We label positive COVID-19 test results with ‘1’ (26,984 samples in the train, 46.66%, and

8,018 samples in the test data, 75.97%) and the negative ones with ‘0’. For the learning

task, TensorFlow package has been utilized.

Besides, to assess the detection’s effectiveness, we test our model on different time intervals

on test subjects. In other words, we are interested in the possibility of COVID-19 test result

detection by only using a limited number of samples (in days). We evaluate the model with

different interval sizes, which is extracted including N days (N ∈ {2, 4, ..., 60}) of subject’s

data. This evaluates the model’s performance by looking only at a limited number of days.

Finally, for visualization purposes, the t-SNE method [86] was used over the dense layer’s
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Table 4.7: Point Biserial correlation of statistical features and COVID-19 test results (*
shows significant correlation).

Correlation P-value

HR

mean 0.20 .012*
std 0.21 .009*
min -0.10 .22
max 0.18 .020*

DBP

mean -0.19 .015*
std -0.19 .016*
min -0.10 .20
max -0.14 .075

SBP

mean -0.15 .063
std 0.08 .32
min -0.17 .031*
max 0.13 .10

Age -0.05 0.51

Table 4.8: 95% confidence intervals of HR, DBP and SBP for each COVID-19 test result
group.

Biomarker 95% CI (Positive) 95% CI (Negative)
HR 95.97-96.35 84.87-85.24
DBP 64.95-65.20 70.83-71.13
SBP 117.66-118.09 127.20-127.72

output to reduce the feature space’s dimension to two.

4.2.3 Results

Statistical Observations

We measure basic statistical features of BP and HR and compare them with COVID-19

test results. Table 4.7 shows the Point Biserial correlation between these features and age

with COVID-19 test results, and Table 4.8 represents 95% confidence interval (CI) of these

biomarkers for each COVID-19 test group.

Table 4.7 shows significant positive correlations between the mean of HR/DBP, std of
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Figure 4.13: The distribution comparison of average HR between the positive and negative
test results for each age group. The dashed lines represent the quartiles.

HR/DBP, maximum value of HR, minimum value of SBP and COVID-19 test results. Fig.

4.13 illustrates the difference in the distribution of average HR (mean hr) between each age

group for the positive and negative test results. Although (mean hr) shows a significant

correlation with COVID-19 test results, there is an overlap in the distribution of such a

feature between positive and negative results. This visualization further supports the fact

that using only statistical features to detect people infected with COVID-19 is challenging.

Deep Learning

Due to the longitudinal aspect of the data, we consider a DNN architecture to detect COVID-

19 test results by only looking at BP and HR. The accuracy of this model reached as high

as 0.79, 0.87 precision, 0.84 recall, 0.85 f1 score and 0.81 area under the curve (AUC) for the

entire test data. Besides, Fig. 4.14a shows the accuracy of our model with respect to the first

60 days of data. Fig. 4.14b illustrates the corresponding area under the curve (AUC) with
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(a) (b)

(c)

Figure 4.14: The performance of the model in terms of accuracy (a), AUC (b) and f1 score
(c) using test data with respect to the number of included days.

given days while Fig. 4.14c shows the f1 score. Fig. 4.14a shows an increase in the model’s

accuracy at the beginning, starting from 0.52 and reaching as high as 0.78% on day 12th.

The small drop in the measurements after day 12th is because of the increase in the number

of false negatives compared to true positives. By observing more data for both groups, the

performance of the model constantly increases (day 20th).

To visualize the extracted features using DNN, we used t-SNE method [86] to reduce the

feature space dimension to two. We performed this method on the output of the dense layer

with 100 neurons. Fig. 4.15 shows that using extracted features by the DNN, the positive

and negative cases are almost separated.
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Figure 4.15: The 2-dimensional representation of test data using t-SNE considering the entire
test data.

4.2.4 Discussion

A few of our observations warrant additional discussion. First, monitoring of blood pressure

and heart rate may provide a useful strategy for individuals living in collective communities,

such as nursing homes or rehabilitation facilities, as well as for healthy community-dwelling

adults. The potential impact could be to mitigate the spread of COVID-19, as well as

allowing early detection of complications associated with infection, such as those at greater

risk for ARDS.

Second, we assessed for the presence of comorbidities in COVID-19 positive patient with

68



ARDS, and reported that comorbid diagnoses such as type 2 Diabetes Mellitus, hyper-

glycemia, chronic obstructive pulmonary disease, elevated transaminase, and lactic acid de-

hydrogenase, bradycardia, acute ST segment elevation myocardial infarction, and metabolic

derangements were more prevalent (data not shown). This observation is in-line with other

reports [81, 131, 143] demonstrating increased vulnerability among those with chronic health

conditions, as well as reported metabolic derangements observed with COVID-19 infection,

especially among adults over 60 years of age.

Third, there are other potential applications in modeling COVID-19. Specifically, there has

been a discussion of how early COVID-19 arrived in the United States; the first cases were

reported in California. It would be possible to review data prior to the first reported cases

in the U.S. to validate the presence or absence of COVID-19 in our communities prior to

January 2020. This is of importance as the viral genome sequence was confirmed in late

January 2020, which allowed for the use of polymerase chain reaction to detect viral genetic

material [15]. Antibody testing, which has been shown to be inconsistent, was used in the

preceding months, raising the question of how early was COVID-19 in the United States.

Moreover, the related works focus on laboratory measurements and symptoms to detect

the infected patients or severe positive cases of COVID-19 using statistical methods [66,

33]. In contrast, we considered two easily accessible features as well as utilizing a deep

learning method to capture the short- and long-term dependencies in the time series data.

There is a correlation between the simple statistical features and COVID-19 test results.

However, simple logistic regression models are insufficient due to the overlap in the feature

space. Leveraging the nonlinear features extracted from our proposed neural network, we

distinguished negative and positive COVID-19 test results with the AUC as high as 0.81 by

using only blood pressure and heart rate values.

Although our findings are only based on ARDS population, these achievements could poten-

tially lead future directions of our research to investigate the aforementioned vital signs for
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COVID-19 detection tasks with other populations.

4.3 Conclusion

Monitoring blood pressure is essential for early detection and treatment of cardiovascular

disease. Conventional methods utilize statistical and machine learning models to estimate

SBP and DBP using PPG, a low-cost and straightforward signal; however, they fail to

generate the entire signal or synthesize an accurate waveform. In this work, we leveraged

the cycle generative adversarial network (CycleGAN) for the first time in the blood pressure

estimation domain, and our model achieved MAE of 2.89 mmHg and 3.22 mmHg for SBP

and DBP in a cross-subject setting. The per-subject evaluation’s performance was 2.29

mmHg for SBP and 1.93 mmHg for DBP, outperforming state-of-the-art approaches by up

to 2× for improving the BP estimation accuracy.

In addition, we proposed a DNN-based model to investigate the non-linear patterns in simple

vital signs, namely, blood pressure and heart rate, which can be easily and reliably measured

without the need for skilled medical professionals, in ARDS patients with positive and neg-

ative COVID-19 test results. Our proposed model achieved 0.79 accuracy, 0.85 f1 score and

0.81 AUC. Using wearable devices, it is possible to monitor vital signs of subjects in everyday

settings without visiting a hospital or a care site. Utilizing the proposed model allows early

detection of COVID-19 cases in free-living conditions.
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Chapter 5

Physical Activity Recommendation

5.1 Background

Physical activity (PA) has undeniable health advantages. The World Health Organization

(WHO) and a growing number of national governments worldwide have developed public

health-oriented PA recommendations in response to the relevance of physical inactivity as a

risk factor for chronic illnesses and early death [50].

The Internet of Things (IoT) and mobile health (mHealth) have made it feasible to link users’

physiological data and daily exercise information with their fitness demands by collecting

and visualizing individual exercise activities via wearable trackers [47].

Despite the great potential of mHealth services in free-living conditions, the evaluation of

exercise recommendations and optimization is challenging. The majority of these mHealth

services suffer from non-personalization and having fixed activity suggestions for all the users,

which may result in fixed physical activity [146]. Such an inefficiency might have different

underlying causes, as described by [47].
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Several systematic studies [16, 98, 141] investigated the effectiveness of mHealth in physical

fitness and interventions, as well as the need for mHealth technology to promote physical

health. Just-in-time adaptive models [47, 17], reinforcement learning-based model [144, 120,

83], neural network-based models [87] are such instances of mHealth designs. Although

these studies claim personalization, they suffer from the inability to monitoring real-time

heart rate as well as the intensity during the exercise.

Machine learning models can be practical for extracting the patterns of entire data sets, and

they work best when there is enough data; however, in a real-time system at the beginning

of the studies, the sparsity of the data makes the prediction task challenging (cold start

problem). Therefore, Reinforcement Learning (RL) gained enormous attention as they learn

the policies by observing the rewards of different user actions. These RL algorithms have

been applied in a wide range of healthcare applications [144, 111, 120].

In this study, we designed the first end-to-end closed-loop physical activity recommendation

system in the wild using personalized real-time HR monitoring with a proof-of-concept im-

plementation. We designed and implemented a contextual bandit framework as an adaptive

(active) learning approach to recommend exercises based on personalized biofeedbacks, exer-

cise intensity, and overcome the cold start problem at the beginning of the study. Our result

showed an increase in daily exercise duration (P < .001) and walking and recommendation

system components had average satisfaction scores of 4.31 (0.60) and 3.69 (0.95), respec-

tively, on a scale of 1 to 5. In addition, participants’ confidence in their capacity to do the

suggested walking exercises safely and the study’s ability to satisfy their needs for physical

activity both received average scores of over 4.

To summarize, our main contributions include:

1. We designed and implemented a closed-loop mHealth system with personalized exercise

recommendations. The users can interact with different interfaces using smartphone
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and smartwatch applications.

2. The system leverages the user’s real-time heart rate and exercise intensity as inputs

for the system.

3. We conducted a 12-week study with 12 active participants as a proof of concept to

demonstrate the functionality and effectiveness of the system.

5.2 Methods

5.2.1 Participant recruitment

Twenty female college participants were recruited for the study between Nov. 2021 and

Feb. 2022 via flyers. Participants were eligible to enroll in the study based on the following

criteria: at least 18 years old, registered UCI undergraduate and graduate students, in

general, good physical health, and without any medical conditions preventing them from

engaging in exercise. They also used a smartphone (iPhone or Android compatible with our

app), spoke English, agreed to wear the smart devices as well as complete the recommended

exercise activities and submit surveys related to their experiences.

5.2.2 Study Procedures

The study procedures were approved by the University Institutional Review Board. All

participants received a study information sheet, and completed baseline demographic and

exercise history questionnaires. Instructions on how to properly connect the wearable smart

devices to the phone were provided by our technical team. In addition, a virtual group

introductory session was held by a research staff/coordinator, who provided an overview/de-
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scription of the study, expectations, and anticipated timeline of activities, as well as answered

any questions participants had. Participants were first assigned to one of two exercise activ-

ity levels depending on their exercise history. Subsequently, participants completed weekly

walking activities based on the assigned frequency and duration determined by the recom-

mendation system and reported their experiences via our app surveys.

5.2.3 Exercise organization

Ideally, human subjects should get at least 150 minutes of moderate-intensity aerobic activity

every week. This moderate-intensity activity can be relative to an individual’s fitness level

[129]; such movements can raise the heart rate to a certain level. Aerobic activity includes

a large portion of muscle movement in a rhythmic way [60]. For this study, individuals were

assigned to two different levels based on their current level of physical activity (Level 1 for

subjects with low level of physical activity, and Level 2 for the individuals who had exercise

routines in their daily life).

Borg test, as well as talk test, are two classical methods for exercise intensity detection.

The Borg test contains a numbered list of values that a subject reports in response to the

intensity level of an exercise. The drawback of such tests could be generalizability. In

addition, such tests are subjective and cannot accurately capture an exercise’s intensity.

Similarly, as long as an individual can follow up on a conversation while exercising, she is

not in the moderate-intensity zone [129].

Another exercise intensity detection method relies on heart rate (HR) values during exercise

activity. This method is more objective and robust. Maximum heart rate (HRmax) is

commonly used to identify different HR zones. The exact value of HRmax can be identified

while performing a VO2max test for individuals; however, this method is not feasible in free-

living conditions and daily life [114, 122]. Hence, we used the most common equation for
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HRmax, which is 220 – age [114, 122]. Using HRmax, different guidelines suggest HR ranges

for moderate-intensity activity. We used the American College of Sports Medicine (ACSM)

recommendation for this study. According to ACSM, any physical activity that increases the

HR to 63% of the HRmax is labeled as light intensity exercise. Activities ranging from 64%

to 76% can be classified as moderate-intensity exercises, and anything above 77% would be

considered vigorous exercise [114, 122].

Literature shows that the absence of time is the main reason for not performing physical

activities [50]. Because one of the most significant limitations stated for not exercising PA

is a lack of time, studies indicate that even 30 minutes of movement per week can improve

health [50]. Hence, since we had a healthy younger population cohort, we chose 15 and 20

minutes as the baseline for Level 1 and 2 groups, respectively.

In addition, for inactive people, rather than meeting the physical activity guidelines (150

minutes of moderate-intensity), the global action plan is to start with a baseline and perform

small incremental increases in physical activity [40, 99]. Hence, we designed an incremental

plan for our exercise recommendation. Fig. 5.1 illustrates such a plan.

5.2.4 Recommendation System Design

The designed exercise recommendation system consist of different components. Fig. 5.2

summarizes the entire recommendation system design. Different data sources record the

subject’s data and constantly send it to the servers using Wifi/Bluetooth/Mobile network

connection. The ZotCare system manages the different modalities of data, and the recom-

mendation system pulls different data using its cloud interface. This system decides about

different alerts and/or updates on exercises. In the following sections, we will introduce

different components.
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Figure 5.1: Exercise duration setup.

Mobile and Samsung watch applications

For this study, we developed two sets of applications and services. The first group contained

the applications for users’ mobile devices (i.e., iPhone and Android platforms), which were

used to record questionnaires and show the recommendations. The second group consisted

of applications developed for the user’s smartwatch (i.e., Samsung active 2) to record the

user’s biomarkers and real-time activities. Fig. 5.3 shows an overview of the user interface

of these applications.
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Figure 5.2: The overview of the system.

ZotCare Dashboard

The ZotCare platform [13] has been developed by our group at the University of California

Irvine and can provide services for real-time data collection. This platform’s dashboard

is designed so study coordinators or health experts without programming knowledge can

create and manage study parameters, including questionnaires, mobile notifications, user

sensor data, and user profiles, in a privacy-preserved form. Fig. 5.4 demonstrates a sample

page of such a dashboard for our study.
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Figure 5.3: An overview of the developed applications for users’ cellphones and Samsung
smartwatches.

Contextual-bandit Problem

The multi-armed bandit (MAB) algorithms have recently become popular in different do-

mains, including healthcare and recommendation systems. These models are used to maxi-

mize the total payout of an agent who is interacting with an environment. At each timestamp

t, the model selects an action based on a policy, delivers that to the patient and monitors

the reward regardless of the user’s context [85].

In exercise recommendations, it is possible to provide a list of suggestions according to their

intensity and caloric benefit. Currently, these personalizations are provided only by human

health coaches. However, such a method does not capture each individual’s dynamic charac-

teristics, which can change person-to-person or/and over time. Furthermore, the limitation
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Figure 5.4: An example page of the ZotCare dashboard.

of the data makes it difficult to have perfect predictions, and the cold-start problem is a

challenge for such a task. In many applications, there is rich information regarding each

action, so having features for every (context, action) pair rather than features associated

only with context and shared across all actions would be the more profitable approach.

The Contextual multi-armed bandit can address the challenges mentioned earlier. In the

contextual multi-armed bandit (CMAB) problem, a learning model monitors the user’s cur-

rent context, recommends an action (i.e., exercise in our context), and observes the reward

of the recommended action. The objective of such a model is to minimize the cumulative

sum of losses with respect to the context. The benefit of the contextual bandit learner com-

pared to the regular multi-armed bandit is the context which makes CMAB personalized
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and an ideal alternative for dynamic environments. In healthcare, CMAB enables precision

medicine to leverage suitable actions for individuals instead of similar actions for multiple

patients [85].

There are different algorithms to explore the finite set of actions, and for this study, we used

the Epsilon-Greedy approach. In this approach, the model explores the arms (exercises)

with a probability of epsilon (0.05 in our case) and with a probability of 1-epsilon exploits

the known actions.

There are two main reasons for the exploration trade-off. First, to examine new actions, and

second, in mobile health setups, although interventions might tend to have positive feedback

on the selected action, they can have a negative impact on future rewards because of the

user’s habituation [83].

In the contextual bandit problem, the environment generates a pair (xt, lt) at time t such

that xt is a context vector and lt is the loss vector. The learner chooses an action at and

observes the loss of the corresponding action. The objective is to sustain a small cumulative

regret

Rt =
T∑
t=1

lt(at)−
T∑
t=1

lt(π
∗(xt))

over time [29]. In this equation, π∗ ∈ argminπ∈ϕE(x,l)[l(π(x))] is the optimal policy with ϕ

being the set of policies.

Optimization. There are different methods to solve the optimization problem. We used

the regression with importance weights wt > 0 introduced by [29].

argminf∈F

T∑
t=1

wt(f(xt, at)− yt)
2
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The goal is to find a f from a class of regressor functions F to predict a cost yt having the

context ct and action at.

There are different policy evaluation approaches. The direct method is the most straightfor-

ward approach, which maps context and actions to the rewards using a regression model [17].

Since most of the directed methods suffer from high bias, in this study, we used Importance

Weighted Regression to reduce the variance and bias of the estimator [29]. This method

optimizes a regressor f to find the optimal policy which has been used in off-policy learning

recommendation scenarios [123].

f̂ = argminf∈F

T∑
t=1

1

pt(at)
(f(xt, at)− lt(at))

2

π̂ = arminaf̂(x, a)

We considered user identifiers, weight, and the number of days from the beginning of the

study as the input features (i.e., context). We had access to the sleep features (e.g., total

sleep time, resting hr, sleep quality.) using the Oura ring; however, due to the manual sync

issue, we did not have access to the real-time features. Hence, for this study, we discarded

those features for real-time analysis and only performed offline analysis.

The duration of the exercises was considered as the actions for this study. In the case of

moderate-intensity duration, we increased the exercise frequency. We trained two different

models: one for Level 1 subjects and another for the Level 2 subjects.
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Feedback Policy (exercise intensity)

To model the intensity feedback of the exercise, we used the subject’s HR during each

exercise. Thanks to the ZotCare system, we were able to have semi-real-time data recorded

by Samsung Active 2 smartwatch. Since the smartwatch is prone to noises during recording

and data collection, we removed invalid values and used a 10-second moving average filter

over recorded non-zero HR data. Later on, the exercise reward for the subject s was defined

as below:

rs =
1

N

N∑
i=1

1

1 + eΩs(HR)−HRi
− 1

1 + eOs(HR)−HRi

The Ω and O in this equation represent 64% to 76% of HRmax (i.e., moderate-intensity

range) for each subject s. HRi reflects the ith HR during the exercise. This reward function

is convex which meets the requirement for the convexity of the cost function.

The intuition behind this reward function is that for HR values in the moderate-intensity

range, the inner part of the summation tends to be close to 1.0. For values outside this

range, this term will be close to 0. The average makes this reward function smoother as

well as by increasing the number of HR points in the moderate-intensity range, the reward

function increases, consequently. Fig. 5.5, depicts the reward function and the corresponding

moderate-intensity range for a sample user with Ω = 131.3 bpm and O = 151.5 bpm.

Safety module

To ensure that the exercises are safe, we designed an alert system notifying the nurse about

the outcome of the exercise. The alerts are generated in case of the subject’s HR exceeds
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Figure 5.5: Reward function with respect to the HRs during the exercise.

90% of the HRmax, she feels new discomfort during the exercise, and/or has soreness due to

the exercise. In case of any of the outcomes above, the recommendation system maintained

the same workout for one more session.

5.2.5 Statistical Analysis

Data Exclusion

During our study, one subject did not participate in any of the exercises, and two subjects

dropped out due to personal reasons. Out of the rest, we had four subjects who were experi-

encing technical difficulties and/or restarted their watch by mistake. Hence, we lost a large

portion of their data. Since we were programming the watches manually, the turnaround

time was causing us to lose data. In addition, a couple of these subjects submitted the

reports incorrectly, making it challenging to track their physical activities. Although these

subjects contributed to the reinforcement learning framework, we excluded them from the

offline analyses.
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Mixed-Effect Analysis

Hierarchical linear mixed (HLM) models (also known as mixed effect models) were exploited

to analyze the trends in between- and within-subject variances. We did this analysis using the

notation defined and recommended by Raudenbush-Bryk and Bolger-Laurenceau [31, 112].

The dependent variables of interest include duration in light/moderate intensity over time,

and exercise duration performed by the subjects.

5.3 Results

5.3.1 Improvement in performed exercise duration trends

During the course of 12 weeks of this study, we monitored subjects’ exercise behavior recorded

by our application. We only considered those exercises that the subject reported and had

HR data available.

Fig. 5.6 shows the average exercise duration with standard error bars for each group (i.e.,

Level 1 and Level 2) over the study period. In general, it shows an increasing trend through-

out the study. In addition, we utilized mixed effect models to illustrate the within- and

between-subject trends over time.

Fig. 5.7 illustrates the trends for each subject. The blue dots show the actual duration that

the subject did, and the red ones demonstrate the recommended duration. Tables 5.1 and

5.2 summarize the fixed and random effects of such a model. To overcome the exploding

gradients effect, we normalized the x-axis (time) before applying the mixed effect model.

The general trend for these subjects is significantly increasing (P < .001), with an initial

intercept of 15.52 minutes of exercise on average (P < .001). The correlation of fixed effects
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Figure 5.6: Average weekly duration of exercise for each group. The bars represent standard
error.

is rf = −0.81, and the correlation of random terms is rr = −0.84. This is not surprising

since subjects starting with a lower initial level tend to reach the goal faster than other

groups (i.e., Level 2 subjects). Fig. 5.8 illustrates the quantile-quantile plot (Q-Qplot) and

normality of the residuals.

Table 5.1: Summary of fixed effects of the HLM fitted to the exercise performed duration.

Estimates CI P
Fixed Effect

Intercept 15.52 10.96-20.07 ¡.001
Time 15.24 9.72-20.76 ¡.001

Table 5.2: Summary of random effects of the HLM fitted to the exercise performed duration.

Standard deviation
Random Effect

Residual 7.88
Intercept 6.98
Time 6.43
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Figure 5.7: Performed vs. recommended duration of exercise per each subject. The line
represents the fitted HLM model to each subject.

5.3.2 Minutes in light- and moderate-intensity

In addition to the exercise total duration, the HLM model was utilized to analyze the trend of

non-vigorous activity duration (duration in which the HR is below 77% of the HRmax). Figs.

5.9 and 5.10 illustrate per subject trend estimation and dot plot, respectively. Tables 5.3

and 5.4 show the fixed and random effect for light and moderate-intensity exercise duration.

The general trend significantly increases the corresponding duration (P < .001). The effect

correlations are rf = −0.84, and rr = −0.93. Fig. 5.11 shows the Q-Q plot for the residuals.

Subjects hh103 and hh112 have the highest and lowest increase, respectively.
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Figure 5.8: Normal Q-Q plot for normality of the residuals for exercise performed duration.

Table 5.3: Summary of fixed effects of the HLM fitted to the minutes in light/moderate-
intensity exercise.

Estimates CI P
Fixed Effect

Intercept 15.66 11.54-19.77 ¡.001
Time 10.01 5.44-14.57 ¡.001

Table 5.4: Summary of random effects of the HLM fitted to the minutes in light/moderate-
intensity exercise.

Standard deviation
Random Effect

Residual 8.17
Intercept 6.25
Time 4.92
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Figure 5.9: Trends in minutes in light and moderate-intensity exercise over time.

Figure 5.10: Dot plot visualization of between-subject variations compared to the mean
trend.
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Figure 5.11: Normal Q-Q plot for normality of the residuals for minutes in light/moderate-
intensity exercise.

5.3.3 Aggregated weekly performance

To investigate the weekly performance of the users and compare it with the standards and

guidelines, we aggregated the exercise execution of the subjects over each week of the study.

Fig. 5.12 shows the bar plot of weekly exercise duration for each user regardless of the

longitudinal notion of time. Each color represents the exercise minute ranges. Subjects

hh116 and hh102 were able to perform more than 150 minutes of weekly exercise.

Furthermore, we investigated the weekly exercise trends of the subjects by applying HLM

models to the weekly durations over time. Fig. 5.13 indicates such trends for each user,

and Tables 5.5 and 5.6 summarizes the fixed and random effects. The effect correlations

are rf = −0.86, and rr = −0.85. According to Figs. 5.7 (daily) and 5.13 (weekly), the
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non-aggregated daily results show an increasing trend for subjects; however, for some of the

weekly results, the trend is decreasing (e.g., subject hh102). The investigation showed that

these subjects tended to submit multiple walking exercises in one day towards the end of

the study. There may be several explanations for this behavior, including the decline in

user engagement throughout the study discussed by [70]. Since our recommendation system

runs daily, only the last exercise performed that day will be considered, which causes the

aforementioned issue in the exercise monitoring system.

Figure 5.12: Aggregated number of weekly exercise duration performed by the subjects.

Table 5.5: Summary of fixed effects of the HLM fitted to the weekly exercise duration.

Estimates CI P
Fixed Effect

Intercept 45.19 23.16-67.21 ¡.001
Time 22.57 -18.19-63.34 .27

Table 5.6: Summary of random effects of the HLM fitted to the weekly exercise duration.

Standard deviation
Random Effect

Residual 36.81
Intercept 30.15
Time 56.95
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Figure 5.13: Trends in weekly exercise duration.

5.3.4 Recommended exercises

Reward analysis

The average cumulative reward has been monitored to evaluate the recommendation system’s

performance. In the beginning, since the learner does not know about the subjects, the

reward is zero. However, the performance improves as the model explores/exploits different

actions given the current context. Figs. 5.15a and 5.15b show the average reward throughout

the exercises being done by each group (i.e., Levels 1 and 2). Since two different models were

used for the Level 1 group and the Level 2 group, we evaluated them separately. Although

the models differed, the overall cumulative average reward follows the same pattern for both

groups. Even though the patterns are the same and increasing, the model for Level 2 subjects
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Figure 5.14: Normal Q-Q plot for normality of the residuals for the weekly exercise duration.

performed better due to access to a more significant portion of data (about twice as Level

1 exercise data). Since the nature of our design is similar to active learning techniques,

providing more data increases the system’s performance.

(a) (b)

Figure 5.15: Average cumulative rewards for subjects in Level 1 and Level 2.

92



5.3.5 Participants feedback

At the end of the study, exit surveys were administered to participants to better understand

their user experiences in order to improve the design and implementation of future studies.

Sixteen participants completed the survey questionnaires. The average satisfaction scores of

the walking and recommendation system components of the study were 4.31 (0.60) and 3.69

(0.95), respectively, on a scale of 1 to 5. Moreover, an average score of above 4 was reported

in relation to the study’s ability to meet the physical activity needs of participants, as well

as participants’ confidence in their ability to safely engage in the recommended walking

exercises.

5.4 Discussion

5.4.1 Principal Results

To the best of our knowledge, this study is the first end-to-end closed-loop physical activity

recommendation system in the wild using personalized real-time HR monitoring with a proof-

of-concept data collection and recommendation. Our proposed model showed an increase in

the daily exercise duration of the users which can be useful in getting inactive individuals to

perform some physical activity with a comfortable intensity level.

5.4.2 Limitations

In this study, we had multiple apps designed to capture the data. Users had to manually

start the HR monitoring app on their smartwatch, which decreased the convenience of our

design. Due to this fact, some users forgot to record their physical activity; hence, retrieving
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such exercise data was challenging.

In addition, we implemented both the Bluetooth and wifi connection methods in our design.

Due to the lower bandwidth of the Bluetooth connection, we experienced some delays in

receiving the exercise data.

Moreover, our study had a cold-start problem which caused some initial uncertainty. A

pre-trained model over a baseline period could help make more satisfactory predictions.

Similarly, the prediction could drastically improve by increasing the duration of the study;

however, studies showed that the users’ engagement with the system decreases over time

[70].

5.4.3 Comparison with Prior Work

Different systematic reviews studied the effectiveness of mHealth in physical fitness and

interventions and the need for mHealth technologies to improve physical health [16, 98,

141]. Through mHealth technologies, it is now possible to implement just-in-time adaptive

interventions [47, 17]. Yom-Tov et al. [144] used a reinforcement learning approach on

patients with diabetes to motivate them to increase their physical activity using encouraging

messages. The results showed an improvement in the number of successful intervention

messages. Saponaro et al. [120] performed a similar study with healthy subjects, capturing

different contextual features to evaluate the effectiveness of nudges in free-living conditions.

Rabbi et al. [111] designed a recommendation system to generate health feedback based on

physical activity and the log of foods. Liao et al. [83] designed a reinforcement learning

algorithm to recommend a treatment policy (activity) to increase the step counts. Although

they evaluated their algorithm’s performance using different simulations, the algorithm was

not tested in the wild. Mahyari et al. [87] designed a model consisting of two inter-connected

recurrent neural networks (RNNs) to suggest a new exercise based on the historical sequence
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of performed exercises. They extracted features from the name of exercises using word2vec

and natural language processing techniques.

Furthermore, other studies used a contextual bandits recommender algorithm to improve

emotion regulation, demonstrating that context is essential for effective emotion regulation

[17, 26].

Despite the fact that these studies claim personalization, they suffer from monitoring real-

time heart rate during physical activity, as well as the intensity of the physical activity.

5.5 Conclusion

Advances in mHealth and Internet-of-Thing have created a new health monitoring and man-

agement system era. Nowadays, a general model cannot be used for interventions with differ-

ent populations, and there is a need for personalized policies and model buildings. Physical

activity needs attention since the human body functionally changes person-to-person and

over time. Personalization in physical activity recommendations could potentially improve

the user’s performance as well as his/her engagement. In this study, we proposed a reinforce-

ment learning-based exercise recommendation system that utilizes a person’s biomarkers and

a context to suggest a new walking exercise that maximizes the user’s aerobic capacity. We

showed that this system works in an active learning environment.

As a future direction, we are designing such a system for pregnant women, and the reward

module works with heart rate reserved since pregnant women’s HR norms changes during

pregnancy. In addition to the features mentioned in this study, we are utilizing other context

features such as sleep quality for the prediction task.
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Chapter 6

Summary and Conclusions

Insofar as it is a measure of pleasure, well-being is an essential aspect of our lives and society.

We prioritize sleep, physical activity, and mental health as well-being pillars because they

could signify body health. Furthermore, the entire world has been substantially affected by a

worldwide viral pandemic, which might have a significant impact on societies with sensitive

well-being characteristics. As a result, we evaluated the impact of COVID-19 as one of the

representations of social well-being threats. Measurement, monitoring, and promotion of

well-being may be beneficial to those engaged in disease prevention and health promotion.

The advent of the Internet of Things (IoT) has made it feasible to monitor health out-

comes and biomarkers in everyday free-living conditions without having to go to labs or

clinical settings. Taking the above into account, this dissertation focused on population and

individual-level analyses.

For population-level analysis, we validated two wearable devices with healthy subjects and

examined the sleep trends of pregnant women before and during the COVID-19 lockdown.

Later on, we investigated the rate of different mental health disorder reports during 2020

compared to 2019, and we showed a significant increase of disorders for the younger popula-
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tion.

In individual-level analysis, we first utilized deep learning and machine learning approaches

to estimate blood pressure signals from ppg signals collected using wearables; then, we used

such biomarkers (i.e., heart rate, systolic and diastolic blood pressure) to detect if COVID-19

or other factors caused ARDS. Finally, we designed and implemented a closed-loop exercise

recommendation system in the wild to maximize the user’s aerobic capacity.

The takeaway discussion would be the possibility of personalized interventions in the areas

that need attention. Using population-level trend analysis, we can observe the vulnerabilities

and try to facilitate the situation in well-being using personalized interventions. Furthermore,

it would be possible to adjust the general well-being trends by providing optimized and

personalized interventions/recommendations to individuals based on their daily needs.
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Appendix A

Mental health disorders

A.1 Different mental health disorders and their corre-

sponding categories.

Acute panic state due to acute stress reaction Anxiety

Acute post-trauma stress state Anxiety

Acute Stress disorder Anxiety

Adjustment disorder with mixed anxiety and depressed

mood

Anxiety

Anxiety disorder Anxiety

Anxiety disorder of childhood OR adolescence Anxiety

Anxiety State Anxiety

Dream anxiety disorder Anxiety

Generalized anxiety disorder Anxiety

Organic anxiety disorder Anxiety

Posttraumatic stress disorder Anxiety
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Stress Anxiety

Social phobia Anxiety

Obsessive-compulsive disorder Anxiety

Panic disorder with agoraphobia Anxiety

Agoraphobia without history of panic disorderwithout

limited symptom attacks

Anxiety

Adjustment disorder with anxious mood Anxiety

Panic disorder without agoraphobia Anxiety

Agoraphobia without history of panic disorder Anxiety

Phobia Anxiety

Claustrophobia Anxiety

Generalized social phobia Anxiety

Agoraphobia Anxiety

Bipolar affective disorder, current episode depression Bipolar

Bipolar affective disorder, current episode manic Bipolar

Bipolar affective disorder, current episode mixed Bipolar

Bipolar affective disorder, currently depressed, in full

remission

Bipolar

Bipolar affective disorder, currently depressed, mild Bipolar

Bipolar affective disorder, currently depressed, moder-

ate

Bipolar

Bipolar affective disorder, currently manic, in full re-

mission

Bipolar

Bipolar affective disorder, currently manic, moderate Bipolar

Bipolar affective disorder, currently manic, severe, with

psychosis

Bipolar
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Bipolar disorder Bipolar

Bipolar disorder in partial remission Bipolar

Bipolar disorder in remission Bipolar

Bipolar I disorder Bipolar

Bipolar I disorder, most recent episode hypomanic Bipolar

Bipolar I disorder, single manic episode Bipolar

Bipolar II disorder Bipolar

Depressed bipolar I disorder Bipolar

Depressed bipolar I disorder in full remission Bipolar

Depressed bipolar I disorder in partial remission Bipolar

manic bipolar I disorder in full remission Bipolar

Manic bipolar I disorder in partial remission Bipolar

mixed bipolar affective disorder, mild Bipolar

mixed bipolar affective disorder, moderate Bipolar

mixed bipolar I disorder Bipolar

mixed bipolar I disorder in partial remission Bipolar

moderate mixed bipolar I disorder Bipolar

Psychosis and severe depression co-occurrent and due

to bipolar affective disorder

Bipolar

severe bipolar I disorder, single manic episode with psy-

chotic features

Bipolar

severe bipolar II disorder, most recent episode major

depressive, in partial remission

Bipolar

severe depressed bipolar I disorder with psychotic fea-

tures

Bipolar
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severe depressed bipolar I disorder without psychotic

features

Bipolar

severe manic bipolar I disorder without psychotic fea-

tures

Bipolar

severe mixed bipolar I disorder without psychotic fea-

tures

Bipolar

Mixed bipolar affective disorder, severe, with psychosis Bipolar

Psychosis and severe depression co-occurrent and due

to bipolar affective disorder

Bipolar

Bipolar affective disorder, currently manic, severe, with

psychosis

Bipolar

Adjustment disorder with disturbance of conduct child/adolescent

Adjustment disorder with mixed disturbance of emo-

tions AND conduct

child/adolescent

Attention deficit hyperactivity disorder child/adolescent

Nonaggressive unsocial conduct disorder child/adolescent

Impulse control disorder child/adolescent

Physical aggression child/adolescent

Chronic motor tic disorder child/adolescent

Autism spectrum disorder child/adolescent

Attention deficit hyperactivity disorder, combined type child/adolescent

Conduct disorder, childhood-onset type child/adolescent

Transient tic disorder child/adolescent

Conduct disorder child/adolescent

Tic disorder child/adolescent

Conduct disorder, adolescent-onset type child/adolescent
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Disruptive mood dysregulation disorder child/adolescent

Aggressive unsocial conduct disorder child/adolescent

Attention deficit hyperactivity disorder, predominantly

hyperactive impulsive type

child/adolescent

Attention deficit hyperactivity disorder, predominantly

inattentive type

child/adolescent

Hperkinetic conduct disorder child/adolescent

Intermittent explosive disorder child/adolescent

Major depression single episode depression

Major depression single episode, in partial remission depression

Mild major depression, single episode depression

Mild recurrent major depression depression

Moderate major depression, single episode depression

Moderate recurrent major depression depression

Postpartum depression depression

Recurrent Major depression depression

Recurrent major depression in full remission depression

Recurrent major depression in partial remission depression

Recurrent major depression in remission depression

Severe major depression, single episode, with psychotic

features

depression

Severe major depression, single episode, without psy-

chotic features

depression

Severe recurrent major depression without psychotic

features

depression

Single episode of major depression in full remission depression
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recurrent depression depression

Adjustment disorder with depressed mood depression

Reactive depressive psychosis depression

Recurrent major depressive episodes, severe, with psy-

chosis

depression

dysthymia depression

Adjustment disorder with mixed anxiety and depressed

mood

mood

Mood disorder due to a general medical condition mood

Mood disorderwith manic features due to general med-

ical condition

mood

Mood disorder with mixed features due to general med-

ical condition

mood

Mood swings mood

Episodic mood disorder mood

Mood disorder with major depressive-like episode due

to general medical condition

mood

Mood disorderwith depressive features due to general

medical condition

mood

Mood disorder mood

Borderline personality disorder personality

schizoaffective disorder, bipolar type psychosis

Brief reactive psychosis psychosis

Psychotic disorder psychosis

Chronic disorganized schizophrenia psychosis

Chroniclatent schizophrenia psychosis
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Residual schizophrenia psychosis

Schizoaffective disorder, bipolar type psychosis

Schizophrenia in remission psychosis

Schizoaffective disorder, depressive type psychosis

Schizophrenia psychosis

Schizophreniform disorder psychosis

Acute exacerbation of chronic schizophrenia psychosis

Chronic paranoid schizophrenia psychosis

Delusional disorder psychosis

Latent schizophrenia psychosis

Paranoid schizophrenia psychosis

Schizoaffective disorder psychosis

Schizoaffective schizophrenia in remission psychosis

Chronic disorganized schizophrenia with acute exacer-

bation

psychosis

Subchronic schizoaffective schizophrenia psychosis

Subchronic schizophrenia psychosis

Chronic schizoaffective schizophrenia psychosis

Disor anized schizophrenia psychosis

Simple schizophrenia psychosis

Acute exacerbation of chronic catatonic schizophrenia psychosis

Catatonic schizophrenia psychosis

Chronic undifferentiated schizophrenia psychosis

Undifferentiated schizophrenia psychosis

Acute exacerbation of chronic schizoaffective

schizophrenia

psychosis
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Chronic residual schizophrenia psychosis

Organic delusional disorder psychosis

Chronic post-traumatic stress disorder PTSD

Psychoactive substance-induced withdrawal syndrome substance use

Psychoactive substance use disorder substance use

Alcohol amnestic disorder substance use

Alcohol-induced anxiety disorder substance-induced mental disorder

Cannabis-induced anxiety disorder substance-induced mental disorder

Psychoactive substance-induced organic anxiety disor-

der

substance-induced mental disorder

Psychoactive substance-induced organic intoxication substance-induced mental disorder

Cocaine-induced mood disorder substance-induced mental disorder

Alcohol-induced mood disorder substance-induced mental disorder

Drug-induced delusional disorder substance-induced mental disorder

Psychoactive substance abuse substance-induced mental disorder

Sedative, hypnoticAND/OR anxiolytic-induced mood

disorder

substance-induced mental disorder

Drug-induced mood disorder substance-induced mental disorder

Sedative, hypnotic AND/OR anxiolytic-induced psy-

chotic disorder with delusions

substance-induced mental disorder

Opioid-induced psychotic disorder with hallucinations substance-induced mental disorder

Psychoactive substance-induced organic anxiety disor-

der

substance-induced mental disorder

Cocaine-induced psychotic disorder with hallucinations substance-induced mental disorder

Opioid-induced psychotic disorder with delusions substance-induced mental disorder
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Psychoactive substance-induced organic delusional dis-

order

substance-induced mental disorder

Psychoactive substance-induced organic mental disor-

der

substance-induced mental disorder

Alcohol-induced psychotic disorder with delusions substance-induced mental disorder

Cannabis delusional disorder substance-induced mental disorder

Drug-induced psychosis substance-induced mental disorder

Induced psychotic disorder substance-induced mental disorder

Psychoactive substance-induced organic hallucinosis substance-induced mental disorder

Psychoactive substance-induced organic mood disorder substance-induced mental disorder

Alcohol-induced psychosis substance-induced mental disorder

Cannabis-induced psychotic disorder with hallucina-

tions

substance-induced mental disorder

Cocaine delusional disorder substance-induced mental disorder

Opioid-induced mood disorder substance-induced mental disorder

Psychoactive substance-induced organic amnestic dis-

order

substance-induced mental disorder

Psychoactive substance-induced organic delirium substance-induced mental disorder

Suicidal thoughts suicide

Table A.1
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Appendix B

Abbreviations
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ABP Ambulatory blood pressure
ACSM American College of Sports Medicine
ARDS Acute respiratory distress syndrome
AUC Area under the curve
BHS British Hypertension Society
BP Blood pressure
CMAB Contextual multi-armed bandit
CNN Convolutional neural network
CycleGAN Cycle generative adversarial network
DBP Diastolic blood pressure
ECG Electrocardiographic
GAN Generative adversarial network
HR Heart rate
HRV Heart rate variability
IoT Internet-of-Things
LSTM Long Short-Term Memory
MAE Mean absolute error
MIMIC Multi-parameter Intelligent Monitoring in Intensive Care
ML Machine learning
PPG Photoplethysmogram
PSG Polysomnography
PTSD Post-traumatic stress disorder
RL Reinforcement learning
RMSE Root mean square error
SBP Systolic blood pressure
SE Sleep efficiency
SOL Sleep onset latency
TST Total sleep time
WASO Wake after sleep onset
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