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Abstract

Modeling and Control of Large Scale Neural Systems

by

Brian Mitchell

The control of large scale neural systems promises to usher in a new era of technologies

for use in treating disease, answering scientific questions, and improving human perfor-

mance. Unlike other systems amenable to modern control and reinforcement learning

(e.g. robots), we have many examples of high-functioning brains being used by healthy

individuals. Combined with the fact that exploratory perturbations of the brain are

extremely expensive relative to observation of healthy brains, this suggests that an ap-

propriate workflow for constructing a controller should begin with inverse methods. We

present a number of results showing how inverse schemes can be used to both model

human behavior and neural dynamics. We show how these methods can be used to facil-

itate interactions between human beings and artificial agents. We conclude by suggesting

that with further refinement, such schemes can be used to directly guide perturbation of

the brain.
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Chapter 1

Introduction and Background

The success of technologies like Trans-Cranial Direct Current Stimulation (TDCS) and

Trans-Cranial Magnetic Stimulation (TMS) has marked the beginning of a new era in

neuroscience. The ability to safely perturb the brain and induce predictable behavioral

change has and will continue to change the way we think about the relationship between

the brain, behavior, and technology. The use of such tools is still in its infancy though.

In particular, these technologies are known to have global effects on neural activity de-

spite the fact that they are applied to small, focal areas of the brain. The selection of

these stimulation sites is largely based on work relating the activity of individual brain

regions to behavior. In addition, the longitudinal effects of these technologies is largely

unknown. We argue in this thesis that new methods are required to make better use of

these technologies: these methods should relate changes in global activity to behavior

over time. We are not the first to argue for this need, but we believe that current ap-

proaches can be augmented in two primary ways:

1. There is a need for data-driven, dynamical models of neural activity. The literature

on large-scale neural systems contains many works with state-of-the-art statistics, but
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Introduction and Background Chapter 1

there has been far less work on modeling systems in a manner amenable to control.

2. Global models of neural activity must be consistent with state-of-the-art approaches

to the control of artificial systems. In order to facilitate the interaction of the brain with

external devices which also must be controlled (e.g. prosthetics or virtual environments),

it is important to think of neural modeling and control within the same frameworks used

for these devices.

In this thesis, we propose to approach the problem of large-scale neural control using

modern reinforcement learning. This approach has a number of advantages, but presents

one major difficulty, namely the design of an appropriate optimization objective. The

rest of this thesis presents a number of ways in which this problem can be overcome. We

extend methods from inverse reinforcement and imitation learning to show how the ob-

jectives optimized by the human brain can be recovered and studied. Consistent with our

two objectives above, these approaches yield new, data-driven, global models of neural

activity. Further, we show that the optimization objectives recovered can also be used

to train artificial agents to reproduce human behavior.

In the rest of this section, we give the background necessary to understand the results

presented in subsequent sections. We conclude this thesis by discussing a number of

directions in which our methods might be used and extended.

1.1 Large-Scale Neural Control

Past approaches to neural control have focused on dynamical systems-based formulations

of the control problem, where methods have been designed to control a single model of

2



Introduction and Background Chapter 1

neural dynamics [1, 2, 3, 4, 5, 6, 7, 8]. Specifically, in [7] a method is developed for directly

optimizing oscillator coupling strength to impose synchronization on the system. While

an interesting approach, this method is unlikely to directly lead to algorithms that can

be implemented on real neural systems because the coupling weights between oscillators

can be difficult to perturb. The authors of [5, 6] assume that a common forcing input is

applied to all oscillators, limiting its applicability to systems where multiple, independent

actuators are present. In addition, these control models are open-loop strategies: the au-

thors give a number of motivations for this approach, stating that system dynamics and

network connectivity is difficult to estimate and state information may be unavailable.

For large scale neural systems, while the dynamics are largely unknown, high spatial res-

olution state observations can be obtained using functional Magnetic Resonance Imaging

(fMRI), and detailed network connectivity can be obtained using Diffusion Tensor MRI

(DT-MRI). More importantly though, while their results show that this forcing term

can lower the minimum coupling strength at which synchronization occurs, there is still

a lower-bound below which synchronization no longer occurs, even in the presence of

forcing.

Other dynamical systems approaches include [1, 2, 3, 4, 8], where the authors employ

phase reduction methods to models of neural oscillations to better understand how one

might desynchronize [1, 2, 3, 4] or synchronize [8] the oscillators (though in [8], the

problem of control was mentioned as a potential application, but not studied). These

methods involve a search for a reduced set of phases (often a single scalar), whose dy-

namics well-characterize the oscillatory behavior of each oscillator in the network. The

study of the movement of oscillators towards (synchronization) or away from (desynchro-

nization) limit cycles is the focus of these papers. These methods are different from ours,

not only in the fact that they are model-based, but also because they work primarily

3



Introduction and Background Chapter 1

with low-dimensional dynamics. In particular, it is not clear how these methods would

apply to similar control problems where the dynamics are high-dimensional.

Statistical approaches to control have been explored, with both model-based [9, 10] and

model-free variants [11, 12] having been attempted. In particular, the authors of [10]

show how a controller based on a Generalized Linear Model (GLM) can be used to pro-

duce target spike sequences in an underactuated setting. While impressive, it is not clear

how these results extend to the ability to generate or manipulate biologically meaning-

ful states. Relying on correlated activity between neurons, in Chapter 2 we show how

principal component trajectories can be induced in an underactuated setting. Principal

Component Analysis (PCA) has been used in a number of experiments attempting to

reduce neural dynamics to a lower dimensional manifold [13, 14, 15, 16]. The dynamics in

the phase space defined by a few principal components has been related to simple behav-

iors. For example, reaching a specific point in space results in a characteristic trajectory

of the primary motor cortex in the phase space of its first three principal components.

And while the authors of [11, 12] also employ model-free reinforcement learning for neu-

ral control, they attempt to solve a different problem from the ones we consider in this

thesis: that of the desynchronization of a network of synchronized, coupled oscillators.

The advancements of deep reinforcement learning since the publication of these methods

suggest that model-free reinforcement learning might be applied to more difficult, poorly

understood problems.

4



Introduction and Background Chapter 1

1.2 Reinforcement Learning

Reinforcement learning problems are often defined within the framework of a Markov

Decision Process (MDP). We similarly adopt this framework in this work. An MDP is

defined by the tuple (S,A, p, r, γ, ρ0, H). Here S is the state space, A is the action space,

p(s
′ |s, a) is the environment dynamics, r : S × A → R is a reward function, ρ0 is the

initial state distribution, γ ∈ R is a discount factor, and H ∈ R is the horizon.

1.2.1 Policy Optimization in Reinforcement Learning

One of the problems that can be solved using RL in a MDP is policy optimization, where

a policy, πθ(a|s), is a function parameterized by θ which accepts a state and outputs an

action. The parameters of π can be fit by solving the optimization problem

max
θ

Eτ [L(τ |θ)], (1.1)

where τ = {(st′ , at′), . . . , (st′+T , at′+T )} is a trajectory of state-action pairs, T is a time

horizon, and Eτ is the expectation operator over trajectories generated from πθ(a|s) and

p(s′|s, a). L is an objective function characterizing the performance of the policy over a

trajectory. Here, we use the sum of future rewards to define L(τ |θ) =
∑t′+T

t=t′ r(st, at). A

common strategy to solving the optimization problem in Equation 1.1 is using gradient

descent:

θk+1 = θk + α∇θEτ [L(τ |θk)]

,

5
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where α ∈ R is a step size parameter. The update can be rewritten more generally as

θk+1 = θk + wψ(∇θE[L(τ |θ)]), (1.2)

where wψ is the update function parameterized by ψ. Various ways of defining w as well

as fitting ψ have been used in the meta-learning literature [17, 18, 19]. Approaches have

been developed to deal with non-stationary environments with single reward functions

or multi-task environments [18, 20]. In these cases, models are sought that are able to

quickly update an existing policy to new tasks or a changing environment, or to initialize

a naive policy such that it learns a new task quickly. The success of a meta-learner is

based on its ability to produce good performance on an arbitrary new task characterized

by a scalar reward function. In this thesis, we use expert demonstrations to ensure good

performance on a single multi-objective problem, rather than fast learning of new single-

objective problems. Our work is similar to these approaches though, in the sense that

we make use of the same kind of general gradient-based update used in meta-learning

methods.

1.2.2 Deep Q-Learning

The goal of Q-learning is to estimate an action-value function (i.e. a Q-function) which is

a measure of the expected future rewards, given a fixed policy, µ(at|st). This Q-function

may then be used for policy optimization. One of the particularly attractive features

of Q-learning is that it is a model-free control strategy. This means that no explicit

model of the state-transition dynamics is estimated during computation of the policy.

Thus for Q-learning, particular importance is placed on finding a good estimator of the

Q-function. In Deep Q-Learning, a deep neural network is used to approximate Q.

6



Introduction and Background Chapter 1

The MDP framework allows for a convenient representation of the Q-function. The

Q-function can be written as

Qµ(at, st) = Eri≥t,st>t,ai>t∼µ[rt|at, st], (1.3)

where rt =
∑T

i=t γ
i−tr(si, ai), γ ∈ R is the discounting factor, and a ∼ µ indicates the

sampling of an action from the policy. Under an MDP, it may be written as

Qµ(at, st) = Ert,st+1 [r(st, at) + γEat+1∼µ[Qµ(at+1, st+1)]], (1.4)

where this equation is known as the Bellman equation. A common approach to estimat-

ing the optimal policy from the Bellman equation is to estimate µ in a greedy fashion

by computing µ(at|st) = arg max
at

Qµ(at, st). This is the approach taken in [21], where a

deep convolutional network is used to approximate the Q-function.

While this approach has been extremely successful on a number of different problems,

it is impractical for large, continuous action spaces. Lillicrap et al. [22] proposed to

modify this approach by incorporating a Deterministic Policy Gradient (DPG) (graphical

description in Figure 2.1) [23]. In this case, µ is assumed to be a deterministic function

and the parameters of the policy are updated along the following gradient

∇θµJ ≈ Est∼ρβ [∇θµQ
µ(a, s|θQ)|s=st,a=µ(st|θµ)], (1.5)

∇θµJ ≈ Est∼ρβ [∇aQ
µ(a, s|θQ)|s=st,a=µ(st|θµ)∇θµµ(s|θµ)s=st ], (1.6)

where ρβ is a behavior policy potentially distinct from µ, and θµ and θQ are the parameters

of the policy and the value function respectively. The utility of an off-policy algorithm in

7
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the context of neural control (and biological control in general) is significant. For the sys-

tems considered in this thesis, being able to estimate the policy gradient in an off-policy

fashion allows us to avoid resampling states with every step of the gradient optimization

and to reuse past samples (this is known as experience replay). In the setting of general

biological control, sampling from a policy could involve a procedure with a deleterious

cumulative effect (e.g. stimulating a collection of neurons as in deep brain stimulation)

and the ability to minimize the number of times this is performed could be quite valuable.

The parameters θQ are updated along the gradient of a separate loss function

L(θQ) = Est∼ρβ ,at∼β[(Qµ(at, st|θQ)− yt)2], (1.7)

where yt is given by

yt = r(st, at) + γQµ(at+1, st+1|θQ). (1.8)

The loss function L(θQ) is known as the temporal difference error (TD-error) and there

is a long literature about its properties and potential applications [24]. The gradients,

∇θµJ and ∇θQL, are used to alternately perform updates of θµ and θQ respectively.

This approach is termed an actor-critic method, where the actor, µ(at|st, θµ), is used to

propose actions and the critic, Qµ(at, st|θQ), declares the value of those actions. In this

thesis, we directly use DDPG to control simulated large-scale neural systems. We also

use a distributional form of Q-Learning to model the optimization objective of large-scale

neural systemss.

8
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1.2.3 Multi-Objective Optimization

Multi-objective optimization addresses problems where multiple objectives must be si-

multaneously optimized. If these objectives are independent, this problem can be ad-

dressed straightforwardly by optimizing the objectives in sequence. Unfortunately, this

is rarely the case in practice. The existing literature focuses on exploiting various kinds

of correlation structure across the objectives to achieve an acceptable compromise across

them. For example, one popular approach is known as reward sharing, where a collection

of reward functions are all highly correlated with a single reward function [25, 19, 20],

and this single reward is fit using a latent variable model. If this reward function can

be found and a map can be found from the multi-objective space to the single reward

space, then the multi-objective problem can be effectively reduced to a conventional RL

problem. A related approach is reward scalarization, which involves mapping the multi-

ple rewards to a single reward [26, 27, 28]. In this work, we don’t assume the ability to

perform dimensionality reduction or scalarization, but rather attempt to learn to move

optimally through the multivariate objective space.

More formally, we assume that we have n performance objectives to use in updating

our policy, E[L1], . . . ,E[Ln]. The notion of optimality of a policy in the presence of n

objectives can be defined in terms of a Pareto set of policy parameters. Specifically,

the Pareto set P can be defined as the set of non-dominated policy parameters, where

θ∗ dominates θ if E[Li(τ |θ∗)] ≥ E[Li(τ |θ)], for all 1 ≤ i ≤ n and there exists at least

one i for which E[Li(τ |θ∗)] > E[Li(τ |θ)]. Computation of P is slightly different than

optimization in the single objective setting. Specifically, a primary goal of Equation 1.1

is to find θ such that the necessary optimality condition, ∇θE[L(τ |θ)] = 0, where 0 is

a vector of zeros, is approximately satisfied. This is not necessarily possible in the case

9



where negative correlations exist across multiple objectives. Instead, a different necessary

condition for optimality is used. In particular, we note that if θ∗ is an element of P , then

∑
i

αi∇θE[Li(τ |θ∗)] = 0, (1.9)

where α1, . . . , αn ∈ R are all non-negative and
∑

i αi = 1. To find a vector α =

(α1, . . . , αn) that satisfies Equation 1.9, it is sufficient to explicitly minimize

||
∑

i αi∇θE[Li(τ |θ∗)]||22 with respect to α. In fact, if α∗ is a solution to this optimiza-

tion problem, then −
∑

i α
∗
i∇θE[Li(τ |θ∗)] is a valid descent direction on the objectives

E[L1], . . . ,E[Ln]. Interestingly, this convex combination of the gradients of our objectives

is simply a particular choice of wψ in the multiobjective setting. This connection allows

us to rewrite Equation 1.2 as

θk+1 = θk + wψ(∇θE[L1(τ |θk)], . . . ,∇θE[Ln(τ |θk)]). (1.10)

Equation 1.10 is a generic gradient-based update in the multiobjective setting. The opti-

mal θ, given by θ∗, is determined by both ψ and the different objectives, E[L1], . . . ,E[Ln].

We use this information in this thesis to formulate the problem of Multi-Objective In-

verse Reinforcement Learning (MOIRL) and then to devise an algorithm to solve it.

10



Chapter 2

Deep Reinforcement Learning and

Neural Control

With the advent of deep learning and deep neural networks, reinforcement learning has

rapidly advanced beyond methods in classical neuro-dynamic programming by the pub-

lication of the Deep Q-Network (DQN) [21]. This approach to Q-learning relies on

convolutional neural network approximations of both the policy as well as the value (Q)

function and was used to allow a computer to better learn to play Atari games. Since

its publication, deep Q-learning has been applied to a number of different physical prob-

lems. Particularly relevant to neural control is the extension of DQN to problems with

continuous state and action spaces by the Deep Deterministic Policy Gradient (DDPG)

method [22].

In this chapter, we describe the first application of deep reinforcement learning for con-

trol of biological systems [29]. There are many reasons why this has not been attempted

before the work in [29], but perhaps the most important and serious hurdle involves

the difficulty in constructing accurate models of complex biological systems amenable to

11



control. This is not to say that good models don’t exist: in fact, a number of approaches

have been tried including dynamical systems [1, 2, 3, 4, 5, 6, 7, 8] and statistical ap-

proaches using a point-process model of past inputs and spikes [9, 10, 11, 12, 16]. It is

certainly possible to incorporate a deep neural network into these existing approaches

(e.g. using a deep neural network to fit the rate of the point process, as in [30]). From

either a dynamical systems or a statistical perspective though, networks of neurons are

difficult to model in that the modeling process requires significant interdisciplinary in-

sight. In addition to the non-linearity and stochasticity of these systems, there is the

added difficulty of selecting the scale at which to model these systems. Behavior can be

strongly influenced by single protein dynamics as well as small and large neural popu-

lation dynamics and the selection of the scale at which to model these systems can be

non-trivial. Moreover, the construction of a model for a single scale is typically useless

when trying to model events at other scales.

Due to the current complexities and limitations of models of actual neural systems, we

have chosen to pursue a control strategy that is model-free (i.e. DDPG). This frame-

work frees us from the need to model the state transition dynamics at all. Such an

approach may be useful for fields including translational research whose goal is to gen-

erate medical therapies: in these areas, understanding the dynamics of the pathological

system is often thought of as a prerequisite for developing a therapy. We argue that our

results indicate that this may not always be necessary. These results would also allow

researchers to easily adapt our control system to changes in system dynamics. While

these advantages are significant, there are additional challenges posed by a model-free

strategy that are not present in a model-based control strategy. For example, many have

criticized model-free methods for their poor sample complexity [31], claiming that this

limits their applicability to real systems [32]. We observe that for the synthetic neural

12



systems used in this chapter, a Kuramoto Model (KM) of synchronized oscillators and a

network of Stochastic, Leaky Integrate and Fire (SLIF) neurons, the sample complexity

was reasonable given proper definition of the reward function.

This point raises another of the difficulties involved in model-free control, namely the

proper design of a reward function. The reward function must be precisely designed so

as to inform the policy as to the goals of the problem, but the state-action space with

non-zero reward must be reachable in a reasonable amount of time from the initial con-

ditions. This relationship requires proper coordination between the design of the reward

function, the definition of the state space, and the use of exploration during fitting of the

policy and value functions. For SLIF control (both fully- and under-actuated problems),

we find that simple rewards are sufficient to achieve good performance. Though for con-

trol of the Kuramoto Model, we make use of shaped rewards. These reward functions

allow for the decomposition of complex tasks into simpler ones with smaller rewards being

given for partial solutions of the full objective. In this case, the full objective we consider

is the synchronization of a network of weakly coupled oscillators with the intermediate

objective of synchronization of each oscillator in the network with a reference oscillator

(i.e. entrainment of the network). In addition, we make use of an Ornstein-Uhlenbeck

process for the exploration of the state-action space. This choice was motivated both by

the previous use of this process with DDPG as well as the neurological significance of

this process. For example, under certain conditions it is thought that the evolution of

synaptic spine strength follows an Ornstein-Uhlenbeck process [33, 34]. Since the con-

nection strength between two cells is roughly proportional to the sizes of the spines on

the synapes between them, exploration of the space of spine sizes can be interpreted as

exporing the space of possible Extra-cellular Post-Synaptic Potentials that may be gen-

erated by a given pre-synaptic cell. Further, Ornstein-Uhlenbeck noise has also recently

13



been used as a model of large-scale neural dynamics [35] during a decision making task.

We claim that DDPG, and deep reinforcement learning in general, has considerable

promise for general purpose neural control. We describe the models that are the ob-

ject of the control and the manner in which the problem is formulated for each model

system. For each system, the objective is slightly different, the analysis must be slightly

different. In general, we show empirically that we are able to achieve a wide array of

different objectives on each system in a sample efficient and scalable manner.

Figure 2.1: Diagram of the DDPG algorithm. The core components of this algorithm
are the actor network (i.e. the policy), the critic network (i.e. the value function), and
the environment (in this work, either the SLIF or Kuramoto model). The environment
accepts inputs from the actor network and produces a state transition. The new state
and action used to generate it are passed to the reward function. The reward function
passes an update to the critic network, which estimates the value of the state-action
pair at the current timestep. The parameters of the actor network are updated using
the new policy gradient and the parameters of the critic network are updated using
the new TD-error.
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2.1 Network of Stochastic, Leaky Integrate and Fire

Neurons

A great deal has been published about simulated networks of single neurons, making this

class of models an important benchmark for our system. We chose the Stochastic, Leaky

Integrate and Fire (SLIF) model for the validation of our system, and connected these

neurons in a random, directed network. The SLIF model is given by

dVi(t)

dt
=
−1

τv
Vi(t) +

1

C

(
buj(t) +

∑
j

Ai,jIsyn,j(t)

)
+ ηei(t), (2.1)

Isyn,j(t) = −gsyn,j(t) (Vi(t)− Esyn) , (2.2)

gsyn,j(t) = ḡ
t− ts
τs

exp(
−(t− ts)

τs
), (2.3)

where τv is the membrane time constant, C is the membrane capacitance, ei(t) is the

standard Gaussian white noise of the i’th cell, η denotes the standard deviation of this

noise, ui(t) ∈ RS is the extrinsic control input to the i’th cell, b ∈ R1×S denotes the in-

fluence of the input on the neuron, Isyn,j(t) is the synaptic current coming from the j’th

neuron firing an action potential at time ts, Ai,j is the weight of the connection between

the i’th and j’th cells, Esyn is the reversal potential of the synapse, ḡ models the constant

synaptic conductance, and τs determines the decay of the synaptic current as time elapses

from the incoming spike at ts. For these experiments, we assume the existence of only a

single type of cell, that is, a generic excitatory cell. All values of model parameters used

to generate the results shown in this chapter are given in the Experimental Details section.
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2.1.1 Fully-Actuated Network Control

For the first application of DDPG, we solve the toy problem of inducing an arbitrary

spike train in each neuron of the network, where each target spike train is drawn at

random from a Poisson distribution. A model-free controller of this system must learn a

number of key tasks: to depolarize each neuron at the appropriate times, to hyperpolarize

the neuron at other times, and to generate inputs to each cell sufficient to wash out the

effects of neighboring neurons. The simple reward function

r(si,t, ai,t, si,t+1) =


1, if si,t+1 = hi,t+1, si,t+1 6= 0

−1, if si,t+1 6= hi,t+1

0, otherwise

, (2.4)

was sufficient to achieve our objective of controlling cells to generate random, indepen-

dent spike trains. Here, si,t is the state of the i’th cell at time t and hi,t+1 is the target

activity of the i’th cell at time t + 1. In order to achieve control of the i’th cell us-

ing DDPG, we generate a separate policy and value function for each cell, resulting in

N policies and value functions being estimated. This approach of controlling each cell

individually with a separate policy and value function is reasonable for some modern

optogenetic and implanted electrode systems where stimulation is capable of overriding

the influence of neighboring inputs and the targeting of single cells is possible.

We ran an experiment on a fully-actuated network of 20 SLIF cells where after a 500

episodes, the controller obtains perfect accuracy in inducing target spike trains in each

cell in the network. Details regarding the initialization and parameters of this network

are presented in the Experimental Details section. One would expect the accuracy of

this approach to hold for larger networks if the assumption that stimulation can always
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override neighboring inputs holds. Thus in this simulated setting, if not for the larger

computational cost incurred by fitting and storing additional policies, controlling a small

network is not more difficult than controlling a large network. Unfortunately, there are

many other practical issues that make controlling a larger network much more difficult

than controlling a smaller network. For example, the field of view through which neurons

can be accessed in a live organism typically restricts the amount of hardware that can be

used, and thus, the number of neurons that can be simultaneously simulated. One way

to incorporate this limitation into our simulation involves the relaxation of the objective

of inducing an independent spike train for each cell. We show in the next section how

this relaxation can still lead to the induction of biologically significant states in an SLIF

network.

2.1.2 Under-Actuated Network Control

In general, it is impossible to induce distinct spike trains in n independent neurons with

arbitrarily high accuracy using fewer than n policies. Fortunately, in vivo neurons in a

network often display highly correlated activity patterns, suggesting that full actuation

is not necessary to control many biologically meaningful states. A common model for the

correlated behaviors of neurons in a network (and one compatible with the SLIF model)

is based on a linear mixture model where the membrane potential of neuron k at time t

is given by

Vk(t) =
∑
i

ypre,i(t)wi(t) + bk(t), (2.5)

where ypre,i(t) is the post-synaptic potential delivered from neuron i, wi is the synaptic

weight between neurons i and k, and bk is the change in Vk induced by neuron k itself

(accounts for the term −1
τv
Vk(t) + ηek(t) in the SLIF equation) [36]. For example, corre-
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lated behaviors arise in this model system in the case of fully-connected networks of cells.

In this case, if one cell in the cluster generates an action potential, then the change in

the membrane potential at a subsequent timestep of all the other members of the cluster

will be correlated. The situation where a network is composed of a collection of highly

connected communities with sparse inter-community connections results in a covariance

matrix that is approximately block-diagonal.

The study of such covariance matrices has a strong literature in the computational neuro-

science community, if only indirectly, because of the popularity of methods such as Prin-

cipal Component Analysis (PCA). For example, the dynamics of many large populations

of neurons are known to oscillate on a low-dimensional (e.g. two or three dimensional)

manifold (e.g. as shown in [30]). Results demonstrating the low-dimensional structure

of the activity of large collections of neurons have been produced for a number of differ-

ent model systems and conditions [13, 14, 15]. It is known that PCA achieves perfect

accuracy in the recovery of communities of neurons interacting via a linear mixture in

the case of a covariance matrix with perfect block-diagonal structure [37]. Though, to

the best of our knowledge, no previous work exists on controlling principal component

trajectories in neural systems. Some recent work exists on spectral control in large scale

neural systems [16], but it isn’t clear how this work might be applied to neural systems

at different scales. We show how an underactuated system can be controlled to induce

an arbitrarily structured oscillation in the phase space defined by a small number of

principal components.

To do this, we construct an adjacency matrix of network connectivity with an approxi-

mate block-diagonal structure and assume recovery of the correct low-dimensional man-

ifold (in general, this is not possible with PCA, but methods like the Treelet Transform
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[37] allow the recovery of the correct manifold without requiring perfect block-diagonal

structure). Examples of an adjacency matrix with two dimensional dynamics as well as

the associated principal components are shown in Figure 2.2. Within each community, we

pick a neuron at random to receive input from a distinct policy. We then construct one

and two dimensional target oscillations and attempt to reconstruct these oscillations in

the phase space defined by the first one or two principal components of the neural activity.

Figure 2.2: Left: example of an adjacency matrix with approximate block-diagonal
structure. Assuming a linear mixture model of neuronal interactions, this network
structure will induce an approximately block diagonal covariance of similar structure.
Right: the principal components associated with the adjacency matrix on the left.

The reward function we use for accomplishing this is

r(φtarg(t), φcntrl(t)) =


1, if d(φtarg(t), φcntrl(t)) < ε

−1, otherwise

, (2.6)

where φcntrl(t) is the phase of the controlled oscillation, φtarg(t) is the phase of the target

oscillation, d(·, ·) is a distance function, and ε is a scalar. We define d(·, ·) to be 0

when φcntrl(t) is in the correct half of the unit circle at time t and infinity otherwise.

To accomplish this, we discretize the unit circle into two halves, [0, π) and [π, 2π); the

reward function attempts to force φcntrl to be in the same half as φtarg at time t. We use

the binary vector of action potentials at time t over all cells in the network to estimate

19



φcntrl by first projecting it onto the first one or two principal components, then estimating

the phase angle. Results from these experiments are shown in Figures 2.3 and 2.4.

Figure 2.3: Results of the experiment controlling oscillation in the phase space defined
by a single principal component. The first plot from the top is a plot of the input
into the actuated cell over time; the second plot from the top is a plot of the spikes
of the entire network, where different colors correspond to different cells; the third
plot from the top corresponds to the membrane potential of each cell over time; the
fourth from the top plot shows the target oscillation; the bottom plot shows the
observed oscillation. The policy, despite delivering input to only a single cell, is able
to approximately induce the target oscillation in the observed phase space.

Figure 2.4: In this plot, a two-dimensional oscillation is induced in the phase-space
defined by the first two principal components of the network. Left: the target oscil-
lation. Right: the observed oscillation.
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We can see from these results that in the underactuated setting, while the objective is

not quite as ambitious as in the fully-actuated setting (i.e. we are not able to induce an

arbitrary spike-train in each cell), we can still induce physiologically meaningful states

in a reasonably accurate way.

2.2 Kuramoto Model

The Kuramoto Model (KM) characterizes the dynamics of a network of oscillators. These

oscillators interact with each other over the network, and the phase of a single oscillator

changes in relation to the phases of its neighboring oscillators. The KM is given by

dφi
dt

= ωi +
K

N

N∑
j=1

Ai,jρ(φj − φi), (2.7)

where N is the number of oscillators, K is the coupling strength, Ai,j is the edge weight

between the i’th and j’th oscillators, φi is the phase of the i’th oscillator, ωi is the natural

frequency of the i’th oscillator, and ρ is a non-linear function characterizing the influence

of neighboring oscillators on the i’th oscillator. In the original KM model, sin(·) was used

as the non-linearity. All values of model parameters used to generate the results shown

in this chapter are given in the section on Experimental Details.

We adopt a recent control strategy for this model which was originally introduced for

disrupting the synchronizing effects of the rightmost term in the KM (e.g. [38, 39]). It is

known that for large K, the network of oscillators synchronize over time. An analytical

solution for desynchronization of the oscillators is developed in [38]. That framework
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takes the form

dφi
dt

= ωi +
K

N

N∑
j=1

Ai,jρ(φj − φi) +
dφctrl

i

dt
, (2.8)

where φctrl
i is an additive control term. With DDPG, rather than focusing on the popular

problem of desynchronizing oscillators bound to synchronize, we address the problem of

inducing synchrony in networks that will not synchronize on their own (i.e. with small

K). To relate the controlled KM presented above with the DRL framework, consider a

forward Euler discretization of the above ODE:

φi,t − φi,t−1
∆t

= ωi +
K

N

N∑
j=1

Ai,jρ(φj,t−1 − φi,t−1) +
φctrl
i,t − φctrl

i,t−1

∆t
. (2.9)

where φctrl
i,t is the input helping induce the transition to φi,t+1. Solving for φctrl

i,t , we obtain

φctrl
i,t = −∆t

(
ωi +

K

N

N∑
j=1

Ai,jρ(φj,t−1 − φi,t−1)

)
+ φctrl

i,t−1 + φi,t − φi,t−1. (2.10)

Here φctrl
i,t can be considered a policy, µi(a

i
t|st), where the state, st, is

(φi,t, φ
ctrl
i,t−1, φ1,t−1, . . . , φN,t−1). Using DDPG, we can extend this idea so that µi(a

i
t|st, θµi)

can be defined using a deep neural network with parameters θµi .

We apply this approach to the problem of synchronizing a network of weakly coupled

oscillators by entrainment to a reference oscillator. This problem has recently been con-

sidered in [5, 6]. An important result from this work is that the bound on the coupling

strength below which synchronization no longer occurs, Kunf
c , is lowered by forcing in-

put to Kc. If p(ω) is the distribution from which the natural frequencies are drawn

and it is unimodal and symmetric about 0, then Kunf
c = 2

πp(0)
as N → ∞. In contrast,
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in the presence of forcing, the minimum coupling strength required for synchronization

is reduced to Kc = 2
π
. Below this coupling strength, while entrainment imposes the

reference frequency on each oscillator in a network, the phases achieve nominal synchro-

nization (between 0.0 and 0.2) [5]. To demonstrate the utility of DDPG for model-free

control of the Kuramoto model, we pick a coupling strength below Kc (K = 0.1) and

show that the synchronization achieved is significantly higher than this (about what one

would expect for a coupling strength of slightly greater than 2
π

using the method in [5, 6]).

We define the state space to be the set of phases of all oscillators over a 40 timestep history,

along with the adjacency matrix of the network. The reward function was defined to be

ri(st, a
i
t) =

q + εq′i + η||ait||1
2 + ε

, (2.11)

where ε, η ∈ [0, 1] and q and q′i are defined to be the order of synchronization. This

quantity is given by

qeiψ =
1

N

N∑
j=1

eiφj , (2.12)

where ψ corresponds to the average phase of the oscillators. The difference between q

and q′ is that q corresponds to the synchronization of all N oscillators, while q′i is defined

to be the synchronization of the i’th oscillator with respect to a reference oscillator. It

was observed that without this term in the reward function, the policy regularly failed to

induce global synchronization. To stabilize the controller, one oscillator in the network

was chosen at random to be the reference, though an external oscillator might also be

used. Regularization by the norm of the action was also included, to encourage more

reliable exploration of the state-action space. Specifically, without this regularization,

the controller would favor large actions, even though these actions were rarely optimal.
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This regularization was thus included to encourage more thorough exploration of the

state-action space.

It can be seen from Figures 2.5 and 2.6 that the network eventually synchronizes. To

understand this result, it may help to view the reward function as a shaped reward. This

interpretation follows from the fact that synchronization of each oscillator in the network

with a single reference oscillator is far easier than inducing global synchronization of the

entire network. This point is emphasized by Figure 2.6 which shows that almost all oscil-

lators in the network achieve very high synchronization with the reference oscillator, and

in general, the average synchronization with the reference is much higher than the global

synchronization of the entire network. That first synchronizing with the reference makes

global synchronization easier to obtain follows from the fact that the size of the state

space to be explored is reduced. So, rather than having to tune frequencies and phases

of the oscillators in the network, synchronization with the reference frequency-locks all

oscillators and thus, global synchrony can be induced by adjusting their respective phases.
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Figure 2.5: Examples demonstrating induction of synchronization by controller for
weakly coupled oscillators. For all plots, the vertical axis is the phase and the hori-
zontal axis is timestep. For both sections a and b, five plots are included generated
from five randomly selected oscillators from the network of 20 oscillators. a: phases
for oscillators before global synchronization has been induced by the controller. b:
phases for oscillators after global synchronization has been induced by the controller.
This level of synchronization can be observed after a few hundred training episodes
have been observed.
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Figure 2.6: Summary results of 10 synchronization experiments. a depicts the mean
and standard deviation of the global synchronization, (i.e. q from equation 16), against
the number of training periods of the controller. b shows histograms demonstrating
the synchronization level of all network oscillators with the reference oscillator (i.e. qi
from equation 16). That is, a point on either the blue or green curves demonstrates
the probability of having a given value for qi. The blue histogram shows counts
before training while the green histogram shows counts after training. The average
synchronization with the reference, qi, is much higher than global synchronization,
q, which is explained by the fact that synchronization with the reference is easier to
induce than global synchronization.

26



2.3 Discussion

The model-free approaches to control of neural systems presented here suggest that deep

reinforcement learning has potential for application to this area. We show how the engi-

neering problem is transformed from one that focuses on the design of appropriate system

dynamics and the control of these models, to the design of good reward functions that

allow for accurate and tractable optimization of the respective objectives. In the case of

inducing target spike trains or latent trajectories in the SLIF model, the rewards were

able to directly represent these objectives. The problem of inducing synchronization in

a weakly coupled network of oscillators required the introduction of a shaped reward to

allow for robust synchronization of the network. The problem of designing appropriately

shaped rewards is a significant problem, not just in the application of DDPG (e.g. as in

[40]), but for model-free reinforcement learning in general [41]. In this work, we manually

design the reward functions used to estimate optimal policies.

Arguably, this is not the most efficient way to find an optimal policy and in fact, several

methods exist for combining model-free reinforcement learning with inverse reinforcement

learning (IRL) algorithms, which are used to infer a reward function given state-action

pairs sampled from an optimal policy [42, 43, 44, 45]. And indeed, this is a interesting

direction that we explore throughout the rest of this thesis. We attempted with this work

to find a compromise between automating the discovery of good policies and allowing for

interpretability of the actions of the learner. IRL presents a powerful set of tools with

which policies can be learned to perform complex objectives, but for the first application

of deep reinforcement learning to biological systems, we felt it best to ensure that the

problems being solved had clear, interpretable control objectives.
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Ideally, we would be able to take an optimal policy and deduce either an analytical form

or empirical results explaining its performance. In fact, developing methods to allow

deep neural networks to ”explain themselves” is an active area of research in the machine

learning and statistics communities. These methods are being proposed in response to

the classical notion put forth famously by Richard Feynman who said, ”What I can-

not create, I do not understand”. This philosophy would suggest to replace mysterious,

poorly understood parts of deep reinforcement learning with manually constructed mod-

els (e.g. in a similar vein as what is done to improve the sample-complexity of model-free

methods by incorporating manually designed components [32]). Alternatively, attempts

have been made to leave a black-box machine learning algorithm intact and attempt

to better understand it. For example, a method using influence functions was recently

developed to yield insight into how deep neural networks work when used for supervised

learning [46]; extending methods like that in [46] for problems in reinforcement learn-

ing is another interesting direction for future work. Further extensions to alternating

IRL/policy optimization solvers (e.g. as in [45]) is an even longer term goal.

There are other factors to consider in the application of deep reinforcement learning al-

gorithms to biological systems in addition to the ability of humans to understand them.

For example, our work assumes full observability of the system state. Relaxing this as-

sumption to partial observability is required in some applications (requiring the use of

methods such as [47]): the manner in which the uncertainty induced by partial observ-

ability interacts with modeling uncertainty is an important problem for applications to

biology. The off-policy nature of DDPG allows for a reduced number of samples from

the policy during learning and thus, the use of experience replay during learning. This

can reduce the number of times a controller would need to interact with an actual brain

in order to fit a policy. Another approach for improving the efficiency of exploration was
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proposed in [40], where the authors show that data generation and resampling efficiency

can be improved relative to the number of parameter updates. For complex objectives,

it may be helpful to initialize the search for an optimal policy from states that have

achieved a partial reward. Both methods help to accelerate discovery of optimal policies

for complex control objectives.

2.4 Experimental Details

2.4.1 Deep Neural Network Parameters

For the approximation of the Q-function as well as the policy and target networks, deep

networks with two hidden layers were used. For the network of SLIF neurons, the first

hidden layer had 400 units and the second had 300 units, while for the KM, the first

hidden layer had 1200 units and the second had 1000. A value of τ = 0.001 was used in

the exponential moving average between updated network parameters and past network

parameters. ADAM [48] was used for stochastic gradient descent to perform parameter

updates. The same learning rate was used for fitting the actor and critic networks for both

model systems. For control of the network of SLIF neurons, a learning rate of 0.01 was

used, while for control of the KM, a learning rate of 0.0001 was used. These learning rates

were chosen based on the rates used in the original DDPG paper (KM control) or slightly

modifying these values (SLIF control). The learning rate was increased for SLIF control

because it was observed that if this rate were too low, the optimal stimulation strength

was never reached and reliable spiking behavior wasn’t induced in any of the cells. Mini-

batch stochastic gradient descent was performed with a batch size of 32 4-tuples, where

each 4-tuple contained (st, at, r(st, at), st+1), for some time t. The discounted rate of

future returns used was γ = 0.99.
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2.4.2 SLIF Parameters

We used C = 10.0, τv = 15.0, a resting membrane potential of −70.0, a depolarization

threshold of −50.0, a refractory period of length 0., τs = 1.0, ∆t = 1.0, ḡ = 0.01, η =
√

2,

and Esyn = 70.0 [9, 10]. All simulations were begun with cells at the resting membrane

potential. Before the controller delivered input into the system in both training and

testing instances, the network was reinitialized to resting membrane potential. For the

fully-actuated example, network adjacency matrices were initialized with directed edges

whose weights were drawn from a uniform distribution over [0, 1]. This matrix was made

symmetric for the under-actuated example. Simulations were run on networks as large

as 40 cells for the fully-actuated example; 4 neuron networks were used for the 1-D

under-actuated example and 32 neuron networks were used for the 2-D under-actuated

example. For the fully-actuated example, the state consisted of a 10 timestep spike

history concatenated with a 10 timestep lookahead into the target spike train. Similarly,

for the under-actuated example, a 10 timestep spike history was concatenated with a 10

timestep lookahead to construct the state. Since the projection of the binary vector of all

neuron spikes onto a principal component effectively gives an instantaneous firing rate of

all neurons in a given community, the lookahead in this case consisted of sampled spiking

activity of the controlled cell at the target rate.

2.4.3 KM Parameters

The controller was tested on a network of 20 oscillators, each initialized to a phase

(φi) drawn uniformly at random from [0, 2π], with natural frequencies (ωi) drawn from

N(0, 10), and edge weights (Ai,j) drawn from a uniform distribution over [0, 1]. For our

experiments, we chose K = 0.1. ε, η were 0.1 and 1.0 respectively.
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Chapter 3

Minimum Free Energy Optimization

and Motor Learning

Motor learning in biological systems is defined as a change in the capacity to behave,

based on experience and practice. The change in behavioral capacity is typically described

in terms of improved performance. However, it has become increasingly apparent that an

additional important property of movement is persistent performance variability despite

extensive training. Indeed, there exists an extensive number of motor control studies

of birdsong, locomotion, and limb control demonstrating the extent to which movement

variability influences and is influenced by performance and learning [49, 50, 51, 52, 53].

An important theme throughout this work is that even in learned, highly stereo-typed

behaviors, there exists variability in the expression of these behaviors both within and

across subjects. The presence of systematic variability in behaviors that have been heav-

ily trained poses a problem for understanding how these systems learn. Even in the case

where the behavior is generated by a stochastic system, the learning objective cannot

simply be a single performance variable such as error minimization (accuracy) or max-

imal speed: this would result in behavior with zero variability. This suggests that a
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more general framework for characterizing learning objectives is necessary to explain a

putative aspect of motor learning.

To address this need, we present an approach that tracks dynamic changes of perfor-

mance (in our study, movement time) while also capturing performance variability in

terms of a free energy functional of density dynamics. At the same time, we characterize

the evolving dynamics of neural activity, whose variability is also described as a property

of a density function. Neural activity is based on fMRI BOLD measurements recorded as

subjects learn a set of finger sequences practiced at different training intensities. The goal

of this work is to determine how the joint brain-behavior densities evolve as a function

of the amount of training.

We show that the dynamics of the density over global (all brain regions) as well as local-

ized (the task-active regions) brain-behavior pairs follow a Fokker-Planck Partial Differ-

ential Equation (FPE)(the term density is used as short-hand for the probability density

function in this section). The FPE is a fundamental aspect of the physical sciences, both

for classical and quantum mechanics [54, 55, 56]. With respect to the neurosciences, the

FPE is the population-level version of the Drift-Diffusion equation often used to model

decision making [57, 58] and has also been used to model stochastic neuronal dynamics

[59]. The advantage of this joint brain-behavior density framework is that it offers a

potential explanation of the nature of behavioral variability and how it is tuned during

learning. A strength of this explanation is that it is grounded in the dynamics of the

underlying neural activity. To the best of our knowledge, the combined modeling of neu-

ral activity and behavior is a novel extension of past work on motor variability [49, 50, 51].

The introduction of this joint brain-behavior framework provides a precise formulation
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of the learning objective that gives rise to the observed variability. Specifically, we show

that the optimization of a popular objective in the Reinforcement Learning and Opti-

mal Control literature [60] also yields dynamics that follow the FPE. This objective is

so named because it contains two terms: expected performance of the brain-behavior

density and its entropy. We refer to this framework as Minimum Free Energy Learning

(MFEL). The consequences of this finding are twofold: first, it suggests an appropriate

definition of behavioral variability as the entropy of the brain-behavior density. Next, it

suggests a way to recover the parameters of the MFEL objective to infer the performance

objective optimized as well as the manner in which variability is tuned during learning.

Using a novel variant of inverse reinforcement learning 1, we retrieve the cost function

optimized during motor learning, as well as the parameter tuning the entropy of the brain-

behavior density (see Figure 3.1). This allows us to relate the population-level analysis

performed to infer these objects to learning on the individual level. In particular, we

show that the MFEL framework is appropriate to characterize individual learning by

showing that individuals optimize the same objective as the population of subjects.

1The appeal to reinforcement learning is meant to highlight the connection between our method and
the control of neural systems. In fact, the method presented in the Supplement is a generic approach to
parameter estimation for density dynamics following the Fokker-Planck equation.
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Figure 3.1: Overview of the findings of this work. Previous experience is embodied
in the initial brain-behavior density before any learning. Based on the form of the
dynamics of this density (red lines, [1]), this density is modeled as a Gibb’s distribution
([3]). The eventual target of these dynamics is largely influenced by the temperature
parameter, β. This coefficient tunes the entropy of the brain-behavior density, as
shown by the Minimum Free Energy Objective (3.3).

3.1 Data Collection

3.1.1 Experimental Design

The motor sequence training protocol occurred over a 6-week period with 4 MRI scanning

sessions spaced 2 weeks apart on Day 1, Day 14, Day 28, and Day 42 (Figure 3.2). On

Day 1 of the experimental protocol, the participants completed their first MRI session,
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Scan 1, and the experimenter installed the training module on the participant’s personal

laptop and taught them how to use it for at-home training sessions. Behavioral measure-

ments were taken during these at-home training sessions and interspersed throughout

this training regimen, neuronal measurements were taken using fMRI BOLD. Partici-

pants were required to do the training for a minimum of 10 out of the 14 days in each

2-week period between the subsequent scanning sessions. All participants completed the

full training regimen; none completed less than 10 full training sessions.
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Figure 3.2: A: Schematic summarizing the DSP task as well as the experimental
design. B: Example movement times for a single subject in the EXT condition. Each
scanning session consists of 100 trials, and each point gives the performance on a single
trial. Movement time variability persists even with the highest training intensity and
duration. C,D,E: Evolution of movement time densities for EXT (E), MOD (D), and
MIN (C) conditions with INIT shown in gray.

In their at-home training sessions, participants practiced a set of 10-element sequences

using their right hand. Sequences were presented using a horizontal array of 5 square

stimuli, and the key responses were mapped from left to right, such that the thumb cor-

responded to the leftmost stimulus and the pinky finger corresponded to the rightmost

stimulus (Figure 3.2). A square highlighted in red served as the target stimulus, and the

next square in the sequence was highlighted immediately after each correct key press. If
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an incorrect key was pressed, the sequence was paused at the error and restarted upon

the appropriate key press. Participants had an unlimited amount of time to respond and

complete each trial.

Each practice trial began with the presentation of a sequence-identity cue that identified

1 of 6 sequences. These 6 sequences were presented with 3 different levels of exposure,

in order to acquire data over a larger range of learning stages while controlling for the

effect of scanning day. The 2 extensively trained (EXT) sequences were identified with

a colored circle (cyan for sequence A and magenta for B), and they were each practiced

for 64 trials during every at-home training session. The 2 moderately trained (MOD)

sequences were identified by triangles (red for sequence C and green for D) and each

practiced for 10 trials in every session. The 2 minimally trained (MIN) sequences were

identified by black outlined stars (filled with orange for sequence E and white for F) and

only practiced for 1 trial each during the at-home training sessions. Participants were

given feedback every 10 trials that reported the number of error-free sequences and the

mean time required to complete them.

3.1.2 Data Collection

Twenty-two right-handed participants (13 females and 9 males; mean age, 24 years) vol-

unteered and provided informed consent in writing in accordance with the guidelines of

the Institutional Review Board of the University of California, Santa Barbara. All had

normal or corrected vision and no history of neurological disease or psychiatric disorders.

We excluded 2 participants because 1 participant failed to complete the experiment and

the other exhibited excessive head motion (persistent head motion greater than 5 mm

during the MRI scanning).
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During each of the 4 MRI scanning sessions, we collected functional echo planar imaging

data while participants performed 300 trials of the self-paced motor sequence task. Un-

like the at-home practice sessions, participants completed an equal number of trials for

each of the three exposure types. The 50 trials for each sequence type were grouped in

blocks of 10 trials of the same sequence type (10 MIN, 10 MOD, 10 EXT), and the blocks

were randomly ordered across the 5 BOLD runs. After each block of 10, participants

received feedback about the number of error-free sequences and mean reaction time to

complete the sequences.

Because sequence production was self-paced, the number of scanned TRs varied between

subject and session. In order to collect event-related fMRI data, the inter-trial interval

ranged between 0 and 6 s (average of 5 s). The number of sequence trials performed

during each scan session was the same for all subjects with the exception of 2 abbreviated

sessions due to technical problems. In each of these 2 cases, the scanning protocol was

stopped short, so that 4 out of the normally acquired 5 runs were completed. Data from

these sessions are included in the presented analysis.

3.1.3 fMRI Data Analysis

Functional imaging data processing and analysis was performed using Statistical Para-

metric Mapping (SPM8, Wellcome Department of Cognitive Neurology). Raw functional

data were realigned, co-registered to the native T1 (using the first mean image as the

base image for all functional scans), normalized to the MNI-152 template with a re-sliced

resolution of 3 × 3 × 3 mm, and then smoothed with a kernel of 8 mm full-width at

half-maximum.
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BOLD response was modeled for each subject using a single design matrix with parame-

ters estimated using a general linear model (GLM). An event-related design was used to

model sequence-specific activity patterns. Trial onset is signaled by the presentation of

the sequence identity cue and is presented 2 s prior to the initial DSP target stimulus.

Neural activity in this case reflects both the preparation and production of learned se-

quences. The design matrix for each subject was constructed using separate factors for

each scan session (pre-training, training sessions 1-3), exposure condition (MIN, MOD,

and EXT), and repetition (new or repeated trial). A trial is coded as a repeated event if

the previous trial was the exact same sequence and the previous trial had been performed

correctly. Error trials and repeated trials that followed error trials were modeled using

a separate column in the design matrix. Blocking variables were used to account for

non-specific session effects for each scan run.

The full-factorial design option in SPM was used to perform higher-level mixed-effects

group analysis. Skill-specific longitudinal effects were modeled using a single factor (12

levels: one for each exposure condition and session). Training intensity, that is, the cumu-

lative amount of training trials performed were used for model factor levels: pre-training

(MIN/MOD/EXT), MIN during training scans 1-3, MOD during training scans 1-3, and

EXT during training scans 1-3. We were primarily interested in analyzing BOLD dynam-

ics with respect to training intensity. To do this, a contrast was developed at the group

level where the main effect of training intensity, over all sequences, scanning sessions,

and types of training intensity, was calculated using a one-sample t-test and corrected

for multiple comparisons using family-wise error (FWE) correction (P < 0.05).

Based on the previous literature on motor learning, we focused our analysis on 9 senso-
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rimotor regions including the postcentral gyrus, supplementary motor area, and lateral

occipital cortices [61]. To investigate neural activation within these areas during the task,

we constructed a mask image which represented the intersection of each brain region as

indicated by the Harvard-Oxford atlas and the group level contrast of training intensity

that was FWE-corrected. This ensured that we analyzed the task-active voxels within

the sensorimotor regions that were common across the group, and then we extracted an

average timeseries for each individual from each region for each training intensity. This

provided a matrix that was 24 (subjects) x 9 (sensorimotor regions) x 3 (training inten-

sity MIN, MOD, and EXT).

The estimated beta weights reflect a group-level GLM contrast that reflects the main

effect of training intensity across all sequences, scanning, sessions, and types of training

intensity. This map was the result from a one-sample t-test corrected for multiple com-

parisons using a family-wise-error (FWE) correction using a p-value threshold of 0.05.

The higher-level group mixed-effects model was estimated using all but one subject, and

from this, the identified local optima were used to extract mean beta weights from the

remaining subject. Mean beta weights were extracted using a spherical ROI (6 mm ra-

dius) centered on each local optimum. We performed this procedure for each of the 20

subjects, so that the displayed amplitudes correspond to the overall mean of the left out

subjects’ beta weights.

The brain regions outside the sensorimotor system were defined based on task active

voxels in the group level contrast reflecting the main effect of training intensity across

al sequences, scanning sessions, and types of training intensity. A mask image was

constructed which represented the intersection of each Harvard-Oxford anatomical region

and the group level task activation image, and then the mask was applied to each subject’s
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image. For each subject, the mean of the extracted, non-zero voxels within each region

for each subject and each condition was computed.

3.2 Behavioral Variability Persists During Motor

Learning

First, we examine behavioral performance during a motor learning task as a function

of training intensity. Across all participants and all training intensity conditions, there

was a reduction in movement time during the motor learning task (see Fig 3.2C-E). A

significant decrease in average movement time across all training intensity conditions rel-

ative to the initial training session was observed (see Fig 3.2C; MIN vs INIT, M= 1.88,

SD= 0.63, t(df)=139.83, p<0.0001; MOD vs INIT, M= 2.49, SD=0.75, t(df)=96.86,

p<0.0001); EXT vs INIT, M=3.04, SD=0.71, t(df)=74.65, p<0.0001), with average per-

formance on sequences in the EXT condition showing the greatest reduction in movement

times relative to initial training. In fact, alternative hypotheses were rejected using T-

tests when all pairs of the four conditions were compared with each other, rather than

just comparing MIN, MOD, and EXT conditions with INIT (p-values were less than

0.0001). This demonstrates that the exposure of individuals to more intense training will

improve their performance as defined by the average movement time.

In addition to improved average performance, motor learning is characterized by the

persistence of behavioral variability. We refer to this variability as the entropy of the

behavioral density. This definition is formally justified in Section C. The experimental

data (Figure 3.2B) suggests that analyzing the dynamics of the density over movement

times, and its entropy in particular, may help to explain the origin of this variability and
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allow us to understand its evolution over time.

To this point, the evolution of the movement time densities as a function of training

intensity is shown in Figures 3.2C, 3.2D, and 3.2E. Notably, the entropy in the movement

time density does not decrease to zero with increased training intensity. We relate this

result to past work where even highly trained, stereotyped behaviors retain a certain

amount of variability when executed [49, 50, 51, 52, 53]. The fact that the entropy

of the movement time density after high training intensity is non-zero suggests that

learning has at least two objectives: one is improved average performance and the other

is tuning the entropy of the density. This follows from the fact that simply optimizing

for average performance would result in deterministic behavior (i.e. a movement time

density with zero entropy). This is not to say that behavioral variability is intentionally

preserved by the brain, but it may be that there is a minimum amount of noise in

the execution of movements that cannot be further refined. Yet, even in this case, in

order to accurately model motor learning, this persistent noise must be mathematically

formulated and incorporated into the model.

3.3 Motor Learning Follows Fokker-Planck Dynam-

ics

To examine the dynamics of the neural substrates of motor learning across all regions

involved in sequence production, BOLD beta values from task-dependent brain regions

were extracted using the Harvard-Oxford atlas. In Figure 3.3, the densities of BOLD

beta values are plotted to demonstrate the changes in global brain dynamics across the

different training intensity conditions. There was a decrease in the entropy of the BOLD
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density relative to initial training, but similar to behavioral performance results, this en-

tropy remains non-zero at the highest training intensity (see Figure 3.3B; INIT, M=0.19,

SD=2.78; MIN vs INIT, M=0.007, SD=2.16, Levene=6.47, p=0.012; MOD vs INIT,

M=0.0168, SD=2.05, Levene=8.50, p=0.004); EXT vs INIT, M=0.086, SD=1.81, Lev-

ene=15.14, p=0.0001).

Figure 3.3: A: Global task-active beta coefficients illustrated on axial, sagittal, and
coronal slices (FWE < 0.05). B: Global density of beta coefficients (left) and the
variances of the densities for each training intensity. C: Sensorimotor (SM) brain
regions (red) and all other brain regions (blue). D: Change in beta coefficient with
training intensity plotted against initial beta coefficient for SM regions (red) and all
other task-active regions (blue).

Importantly, brain regions that are implicated in sensorimotor function are more sensitive

to these dynamics than other task-relevant brain areas. This is shown in 3.3D, where the

change in the beta coefficient with increased training intensity is plotted against the ini-

tial beta coefficient, and a 2-Dimensional Kolmogorov-Smirnov Test distinguishes these

two groups of brain regions with p-value of 0.00031. This result also holds at the indi-

43



vidual level for all but four subjects (with p-values of 0.05926, 0.11123, 0.18631, 0.11049

respectively).

Naively, this decreasing entropy seen at the global scale might be explained by a min-

imization of extraneous and error-prone movements and a refinement of movements to

more efficiently execute each sequence. But the dynamics of the movement time density

in Figures 3.2C, 3.2D, and 3.2E suggest that the influence of training intensity is more

subtle. Simply optimizing for performance (movement time) would result in determinis-

tic behavior. The fact that even expert behavior on EXT sequences is probabilistically

distributed suggests that a different model of learning is required.

To better visualize the relationship between neural activity and movement time, we plot

the brain-behavior density as it evolves with increased training intensity in Figure 3.4.

A Partial Differential Equation (PDE) that captures the dynamics shown is the Fokker-

Planck equation (FPE), which is given by

dρ(b)

dI
− β∆ρ(b)−∇ · (ρ(b)∇c(b)) = 0, (3.1)

where b is the 2-tuple containing the random variables for neural activity and behavior,

ρ(b) is the probability density over brain-behavior pairs, ∆ is the Laplacian operator, ∇·

is the divergence operator, c(b) is a cost function, β is the diffusion coefficient, and I is

the training intensity. This equation can be understood as shifting an initial value of ρ(b)

(corresponding to the INIT condition) in the direction specified by ∇c(b) while producing

diffusion, the direction and rate of which is specified by β (we relate the diffusion of ρ(b)

to entropy in the next section). We have defined the evolution of the density with respect

to training intensity, though the FPE is typically used to characterize the evolution of a
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density with respect to time. Since we have also defined training intensity as the number

of exposures of a subject to a sequence, assuming each exposure takes a fixed amount of

time, these two approaches can be seen as equivalent.
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Figure 3.4: A: Evolution of the brain-behavior densities with increased training inten-
sity. B: The cost function optimized during MFEL as derived from population level
analysis.

In the case of the DSP task presented in this work, the cost function is the mathematical
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representation of the motivation each subject has to improve his respective performance

on the task. Put simply, ρ(b) performs steepest descent on c(b) to improve performance

and change the shape of ρ(b), while the diffusion term tunes the entropy of ρ(b). The

incorporation of this function into the FPE framework not only gives insight as to the

dynamics of the brain-behavior densities (goodness of fit tests are provided in the Sup-

plement), but also the rate at which the brain-behavior densities converge to an expert

state during learning. In the Supplement, we show that the solution of the FPE converges

to steady-state exponentially fast, explaining the exponential improvement seen in the

behavioral performance of the subjects.

Previous work in neuroscience and physics has demonstrated that the use of Fokker-

Planck dynamics is a biologically appropriate model for explaining stochastic neuronal

dynamics [59]. While a majority of prior work has primarily focused on using the FPE

to model stochastic changes in neuronal networks, the present study extends this line

of research to explain the neurobehavioral dynamics of motor learning through training.

Specifically, we extend the use of the FPE to show that it applies to jointly model the

BOLD response and behavior of subjects, a result that doesn’t necessarily follow from

past work on neuronal dynamics. In the context of motor learning, the FPE provides

a mathematical framework to precisely define the source of and mechanism for tuning

behavioral variability: both derive from diffusion of the brain-behavior density.
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3.4 Fokker-Planck Dynamics are Generated via Free

Energy Optimization

While the FPE may capture the dynamics of the brain-behavior density during learning,

it is not clear how these dynamics relate to the problem solved by the subjects. In fact,

the FPE suggests a popular framework as a model for the learning problem solved by the

subjects. To proceed further though, we require a model of the brain-behavior density.

The steady-state distribution of the Fokker-Planck equation is the Gibbs distribution

ρ(b) =
1

Z
e−βc(b), (3.2)

where Z is a normalizing constant and β is a temperature parameter. This distribution

also appears in the literature under another name, the ”Maximum Entropy Distribution”.

There are many ways to interpret this name, but perhaps the most direct is to begin with

an optimization problem. Consider the objective

FMFEL = Eρ[c]− βH[ρ], (3.3)

where H is the entropy of ρ, Eρ is the expectation operator with respect to the brain-

behavior density ρ, and c is the cost as defined in the previous section. Equation 3.3

is actually a specific example of a more general expression [62, 63]. In particular, c

may be redefined as a generic ”potential” or ”energy”, φ. In its current form with φ

interpreted as a cost, this equation is commonly used for policy optimization methods in

reinforcement learning and control engineering [64, 65, 66] and can be related to models

of neural systems as optimizing prediction errors [67]. By setting φ to be the negative

log-likelihood of the data, Equation 3.3 can also be used to derive the Evidence Lower

Bound (ELBO), used for variational inference. This objective can be incorporated into
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the following optimization problem

minimize
ρ

FMFEL. (3.4)

If a brain-behavior density is found by optimizing this expression in a particular way, then

its dynamics follow the Fokker-Planck equation (see Supplement for derivation). Because

the dynamics of the brain-behavior density follow a Fokker-Planck equation during motor

learning, Equation 3.4 is also a good model of the optimization problem that accounts

for the neural changes during learning. This connection formalizes the intuition given in

the previous section: motor learning proceeds via simultaneous optimization of expected

cost and the brain-behavior density. We refer to this model as Minimum Free Energy

Learning (MFEL) throughout the rest of this chapter.

The MFEL model implies that behavioral variability is tuned by adjusting the entropy

of the brain-behavior density (i.e. tuning β). For example, if the entropy of the brain-

behavior density is increased along the behavioral coordinate, then samples from this

density are going to be more variable. Given empirical examples of the evolution of

the brain-behavior density though, it is not immediately clear how to estimate the cost

function, c(b), or the temperature parameter, β. These objects are retrieved in the next

section (the methods for doing so are presented in the Supplement) and the use of the

MFEL framework as a model for motor learning is further validated.

3.5 Each Subject Learns the Same Optimal Behavior

The objective given in equation 3.4 represents a rule governing how the population of

subjects learns. But when analyzing the learning procedure of individual subjects, both
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the structure of the brain-behavior density and its dynamics might seem quite different

from those presented in Figure 3.4. In order to validate the utility of the population-level

analysis for modeling learning within individual subjects, we first inferred the structure

of the cost function optimized during motor learning. To do this, we developed a novel

approach to Inverse Reinforcement Learning (IRL) in order to compute an explicit rep-

resentation of the cost function. One class of IRL methods, called Maximum Entropy

IRL (MEIRL), attempt to infer c(b) given samples from p∗(b), assuming that p∗(b) has

the form of the Gibb’s distribution. One strategy for finding c(b) in this case is to use a

gradient-based method to optimize the negative log-likelihood of the samples (e.g. [45]).

This approach is not ideal in the case of the data presented here because the optimiza-

tion scheme does not necessarily preserve the Fokker-Planck dynamics observed during

learning. Instead, we would like to develop a method which not only retrieves c(b), but

does so in a way that is consistent with the dynamics of neural learning.

The method we develop relies on the modification of a popular method used to simulate

the FPE. Briefly, this method simulates the FPE by solving a sequence of optimal trans-

port problems. That is, one can simulate the FPE by, at every timestep t, evolving pt(b)

to pt+1(b) by finding the pt+1(b) that is as close as possible to pt(b), while still reducing

the value of equation 3.3. Since, for our data, pt+1(b) is known (i.e. it is either the

empirical densities for the MIN, MOD, or EXT conditions), we simply need to solve the

optimal transport problem between pt(b) and pt+1(b). The cost function optimized in

moving from pt(b) to pt+1(b) can be retrieved from the solutiom of these optimal trans-

port problems (see Supplement for full derivation).

The cost function returned by our method is shown in Figure 3.4. The cost function

is approximately convex, and this result implies, given the MFEL model, that the opti-
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mal brain-behavior density is always achieved and this density is unique. With respect to

tuning behavioral variability, this theoretical guarantee indicates that there is an optimal

level of variability (i.e. an optimal value for the entropy of the brain-behavior density).

This follows from the fact that this cost function includes β from equation 3.2. So, in

effect, it includes information on the cost function being optimized as well as the target

variability.

Finally, we present evidence demonstrating that each subject optimizes a similar objec-

tive in Figure 3.5. Using the cost function derived from the population-level analysis (i.e.

shown in the bottom plot of Figure 3.4) in the objective in equation 3.4, we computed

this objective using the brain-behavior densities for each individual subject. The curves

presented in Figure 3.5 demonstrate that there is exponential improvement in this objec-

tive with increased training intensity. Moreover, we note that nearly every single subject

demonstrated strictly monotonic improvement in this objective with increased training

intensity. These results suggest that the estimate of the objective given in equation 3.4

is not only a good representation of population-level learning, but also of learning that

takes place within the individual.
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Figure 3.5: The value of the population-level objective for each subject plotted against
training intensity (green) compared with a null model (blue). The null model was
generated by shuffling data across conditions, within each subjects dataset. The
brain-behavior density for each subject is evaluated using the MFEL objective, where
the cost function is derived from a population-level analysis. This plot demonstrates
that individual subjects optimize the population-level objective.

3.6 Discussion

In this work, we presented a Minimum Free Energy model of motor learning. We have

taken a popular objective from the engineering and statistics community, Equation 3.4,

and shown that it has a strong biological foundation. This connection between biology

and engineering follows from the evolution of the empirical brain-behavior density ac-

cording to a Fokker-Planck equation. We show how learning is characterized as evolving

with training intensity and analyze the full density of observed responses (behavioral

52



and neuronal) to justify this perspective. In doing so, we are able to connect a number

of seemingly disparate schools of thought: the brain as a controller, inference engine,

and dynamical system [68, 69, 70]. Optimization of Equation 3.4 is commonly used

to perform policy optimization for control systems. This problem is equivalent to the

one solved during Variational Bayesian Inference, where the cost (c) is interpreted as a

negative log-likelihood and a KL-Divergence is minimized between estimated and actual

posterior densities. And we show that if Equation 3.4 is solved in a particular manner,

the dynamics follow the FPE. The ability of the MFEL to act as a unifying principle

across these three schools of thought allows us to lend support to the theory of learning

in the brain as performing Bayesian inference. The brain-behavior densities for a given

training intensity can be interpreted as posterior densities where responses are sampled

from these densities. The fact that this kind of inference is performed by optimizing the

entropy of Bayesian beliefs about responses speaks to the close connection between the

Minimum Free Energy and Occam’s principles.

The fundamental finding that motor learning can be modeled with an FPE explains why

it proceeds exponentially fast, as well as suggests a new approach towards solving the IRL

problem. Many different approaches towards IRL have been taken, but it is not clear how

any of them relate to the dynamics of learning. This raises issues related to the accuracy

of the cost function retrieved, especially in the case where the solution is not unique.

Our approach, based on optimal transport, is both novel and has a clear connection with

the biology of learning. While optimal transport has been used for Bayesian inference, it

hasn’t been used for IRL [71]. More importantly, we are able to use the population-level

inferences and show that individual subjects also optimize the population-level objective.

We thus are able to give both theoretical and empirical support for the use of our variant

of IRL.
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Another conclusion following from the observed learning dynamics is that samples from

the brain-behavior density become less variable with increased training intensity. This

can be interpreted as a kind of inflexibility, a concept which has been studied from a

number of different perspectives previously, including a network scientific perspective

[72, 73, 74, 75], aging [76], and neural systems at the cellular and circuit levels [77]. With

respect to artificial controllers fit using the MFEL objective, this inflexibility manifests

as an inability of learned policies to handle non-stationary environments (i.e. a cost

function that changes with time) [29]. It is not clear though that inflexibility in organic

neural controllers fit using the MFEL objective would be a direct consequence of exposing

subjects to increased training intensity.

One complication that might arise involves the ability of organic neural systems to main-

tain multiple skills at once, though it is currently an open problem to train artificial

neural network controllers to do the same [78]. Inflexibility is not necessarily problem-

atic in the case of a stationary environment. Inflexibility must thus take into account

the size of the space of skills a neural controller has learned and the probability of the

environment to transition away from this space. Further work is required to combine

these ideas with the models of MFEL presented here.

The study of individual differences with respect to the MFEL model presented in this

chapter is another interesting avenue for future research. We showed in Figure 3.5 that

individual subjects largely demonstrate exponential improvement in the population-level

objective with increased training intensity. Within this population of subjects though,

there is a non-zero variance over the learning rate (i.e. the value λ, if the value of the

objective over intensity decays like e−λI). From the models presented in this chapter, it is
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not immediately clear how to relate MFEL models of individual learning to MFEL models

at the population level. A Bayesian approach may be fruitful, where brain-behavior

densities of individual subjects are assumed to belong to a family of densities with a

common prior. In this case, one would expect to be able to analyze the population-level

cost function to provide insight into learning of the entire task and learning dynamics

in general, as has been done in this work. Further insight could be drawn based on the

structure of individual cost functions though. For example, such insight would include a

better understanding of why some individuals tend to have more variable behaviors than

others.
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Chapter 4

Distributional Temporal Difference

Models

The human brain is capable of controlling movement to achieve adaptation to a changing

environment extremely quickly. This adaptation is much faster and more flexible than

controllers engineered by humans can achieve, in part because our understanding of how

human motor control works is incomplete. We argue that methods that can be applied

to both biological and artificial systems are necessary in order to bridge this gap [79].

In particular, one of the gaps is the lack of models relating the behavioral errors opti-

mized during adaptation with neural activity. Specifically, even after a large amount of

training, behavior is stochastic and the variability of this behavior has been correlated

with performance [49, 50, 51, 52, 53]. Because of the persistent variability of behav-

ior, feedback rewards and errors, which are functions of behavior, are probabilistically

distributed. Motor learning would then best be framed in terms of the optimization of

a distribution of rewards or errors. And yet, to the best of our knowledge, there are

no known approaches for modeling distributions of rewards during motor learning and

relating their optimization to neural activity.
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One common approach is to reduce the probabilistic nature of observed rewards to a

deterministic function by looking at the expected reward [80, 81, 82, 83, 84]. We ar-

gue in this work that such approaches are not a complete representation of the learning

process. For example, some neural systems have been shown to optimize the expected

future reward, but others may have different, independent objectives: these may include

variance reduction or risk-averse learning which involves optimizing the size of the tail(s)

of the distribution over future rewards. Moreover, there is a growing body of work that

shows that the brain optimizes a Minimum Free Energy (MFE) objective during learning

[67, 66, 70, 69, 68, 64, 63, 62, 65, 60, 85]. This objective is equivalent to optimizing

the KL-Divergence between error and ideal probability distributions. We contribute re-

sults to the body of work on MFE theory by modeling rewards as random variables and

proposing that the brain is adapting by minimizing deviations between error and ideal

distributions of rewards.

We present behavioral and fMRI BOLD data generated from analysis of 16 subjects,

each instructed to minimize the rotation of an unbalanced object at and following its

lift. At regular intervals, the center of mass of this object is rotated 180 degrees along

its vertical plane, forcing the subjects to adapt their strategy to lift the object while

minimizing its roll. In this work, we study adaptation to a changing environment over

a series of trials (i.e. a series of attempted lifts). We define the state of the system to

be the maximum magnitude of the roll of the object for each trial. Our goal is to model

the learning objective that is driving the system to the zero state (the target state). A

recent extension of Temporal Difference Learning, called the Temporal Difference Model

(TDM) framework, suggests a way to incorporate ”closeness” between the current and

a target state into a value function [86]. Specifically, if the negative distance from the

current to the target state is used as the reward, then the value function quantifies the
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expected future proximity to the target state. Stochasticity of the reward function can be

modeled using Distributional Reinforcement Learning (DRL), where the reward is mod-

eled as a random variable. We combine the DRL and TDM approaches in this work and

refer to the complete model as a Distributional Temporal Difference Model (DTDM).

DTDM requires the estimation of a value distribution, rather than a value function,

which intuitively corresponds to the distribution over future distances from the target.

To fit this distribution, temporal differences between an updated value distribution and

a past estimate of the value distribution are used; this is in contrast to classic Temporal

Difference Learning which relies on comparisons between value functions. Distributional

temporal differences can be interpreted as error signals and we show in this work that

the optimization of these errors serves as a good model of motor adaptation.

We treat our experimental set up as a short-time horizon problem where the value distri-

bution models distances between the current and target states at the next trial. We show

that the value distribution becomes significantly distorted after a change in the center of

mass of the object, a distortion which is quickly corrected after a few trials. This correc-

tion involves a shift in the mean of the value distribution, in addition to other changes

in the structure of the distribution, including a reduction in variance and a shrinking of

the size of its tails. To find a neural basis for all of these different characteristics and

potential objectives, we look at the global neural activity. We show that the magnitude

of the distortion of the value distribution varies continuously with the average deviation

in global neural activity, suggesting that the brain is optimizing the distortion in the

value distribution during motor adaptation. Further, we show that deviations in global

neural activity are directly proportional to those of sensorimotor activity, justifying our

choice of representation.
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We further validate the utility of the distributional temporal difference by using it to

train a robot to perform a similar task, that is, to lift an object with minimal roll and do

so while adapting to changes in its center of mass. We use the DTDM to update a model

of system dynamics for use in Model Predictive Control (MPC), and as seen in human

subjects, our optimization scheme results in exponential improvement of the model, both

during initial training and during updating. We show that with this prediction error, the

robot is able to quickly update its model and minimize the roll of the object.

4.1 Data Collection

4.1.1 Summary

In our study of motor adaptation, participants (N=16) performed an object lifting task

during fMRI scans that required them to minimize the rotation of the object at and

during lift. Subjects had to adapt their strategy to the changing of the object’s center

of mass at regular intervals. Participants performed 7 runs of 40 trials, where each trial

required them to use their thumb and index finger to vertically lift an inverted T-shaped

object with an unbalanced center of mass while minimizing its roll at lift onset. Each trial

required the subjects to lift the object 5 cm from a flat surface and subjects were notified

when the magnitude of the roll of the object exceeded 5 Every 10 trials, the object was

rotated by 180 degrees, requiring the subjects to change their digit positioning, digit

load force, or some combination of the two to achieve task success. For each of the

7 unconstrained runs, subjects were free to change the positioning of their thumb and

index finger at will. The position of the thumb, index finger and object (and its roll)

was tracked during the course of each trial using a 3-camera motion tracking system.

Performance was measured by the absolute maximum magnitude roll generated within

59



250ms following lift onset (when the object was lifted 1mm from the table). To allow

the subjects to familiarize themselves with the experiment, the first run of 40 trials

was allocated for practice and no BOLD activity was measured. For the final 6 runs,

BOLD activity was collected for all subjects during all trials. Whole-brain analysis was

conducted to identify brain regions activated during 17 time bins, each being 400 ms

long, beginning 1.2 s before lift onset. For each block of 20 trials, blocks of contiguous

trials were averaged to yield 7 conditions: pre-rotation conditions containing trials 2-

4, 5-7, and 8-10; a rotation condition containing trial 11; and post-rotation conditions

containing trials 12-14, 15-17, and 18-20. This was done to smooth over short-time

variation between trials. Beta values from whole brain analysis were extracted using the

Juelich atlas. The vector of all beta values is what we refer to as ”global neural activity”

in this work.

4.1.2 Participants

Twenty healthy subjects participated in this study (median age: 22 years; range: 18 –

32; 11 women). They were right-handed and had normal or correct to normal vision.

We excluded four subjects as a result of equipment failure (n = 3) and not finishing the

experiment (n = 1). Subjects gave written informed consent and all study procedures

were approved by the Human Subjects Committee, Office of Research, University of

California–Santa Barbara.

4.1.3 Materials, Design, and Procedure

Subjects were in supine position in the scanner. Excessive head and body motion was

minimized with firm cushion padding of the head, neck, and shoulders. Sandbags under

the upper right arm minimized upper limb movement. T1 and T2*-weighted scans were
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collected followed by BOLD measurements while subjects manipulated a symmetrically-

shaped object with a hidden asymmetric mass distribution with the aim of preventing

object roll.

Specifications of the custom-made inverted T-shaped object with constrained and uncon-

strained grasp surfaces along its vertical axis can be found in [87]. In short, the object

had a horizontal base and a vertical Plexiglass column. On either side of the vertical

column were grip surfaces that were either circular (for constrained contact points) or

rectangular (for unconstrained contact points) in shape. A brass block, concealed by cov-

ers, was positioned on the horizontal base on either side of the vertical column, creating

an asymmetric mass distribution (object torque = 180 Newton millimeter (Nmm)). The

total mass of the object was 610g.

The object was placed at arm’s length on a table that was placed over the hips of the

subject. The object start position was rotated in a counterclockwise direction at a 30◦

offset from the edge of the table. This position minimized biomechanical constraints that

influence object roll (the wrist would be stiffened more when picking up the object when

facing forward rather than angled; the former would minimize the object rolling in a

clockwise direction). Subjects were asked to press a button that was in a fixed position

toward the right of the object between trials. A mirror attached to the head coil gave

continuous viewing of the object and the subject’s hand.

Anatomical and fMRI data were collected using a Siemens 3T Magnetom Prisma Fit (64-

channel phased-array head coil). High-resolution 0.94 mm isotropic T1-weighted (TR =

2500ms, TE = 2.22 ms, FA = 7, FOV = 241 mm) and T2∗-weighted (TR = 3200 ms,

TE = 566 ms, FOV = 241 mm) whole-brain sagital sequence images were taken. Dur-
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ing object manipulation, BOLD contrast was measured with a multi-band T2∗-weighted

echoplanar gradient-echo imaging sequence (TR = 400 ms, TE = 35 ms, FA = 52, FOV

= 192 mm, multi-band factor 8). A functional image contained 48 slices acquired parallel

to the AC–PC plane (3 mm thick; 3 × 3 mm in-plane resolution).

The position and roll of the object were measured using three motion tracking cameras

that were radiofrequency-shielded (Precision Point Tracking System, Worldviz; see [87]

for the in-scanner setup). With this system, we recorded positions with six degrees of

freedom using near-infrared LEDs (frame rate: 150 Hz; camera resolution: 640 × 480

VGA; at the focal distance, the spatial accuracy is sub-millimeter). An individual LED

marker was positioned on either side of the T-shaped object on the outer tip of the

aluminum rods (to measure object roll).

4.1.4 Experimental Design and Procedure

The experimental task consisted of four conditions: manipulating the left- and right-

weighted object at constrained and unconstrained contact points. Before scanning, sub-

jects completed 40 practice trials to familiarize them with the audio cues instructing

when and how to lift the object on a given trial. The 40 trials consisted of 10 blocked

trials for each of the 4 conditions (20 trials at unconstrained and 20 trials at constrained

grasp contact points). We focus on the data generated from the unconstrained trials in

this work.

Each trial began with the subject’s hand relaxed on the button. An audio cue instructed

subjects to release the button and to reach, grasp, and lift the object to a height marker

(5cm) until the next audio cue (4s after button-release time) that instructed them to
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return the object and hand to their respective start positions. The start cue of the first

trial was aligned with a functional image. An error cue was given after trial completion if

the object roll exceeded 5◦ at any time during the trial. Stimulus timings for each block

of trials were controlled by a custom script (Vizard Virtual Reality Software Toolkit,

version 4.0, Worldviz), and the inter-trial interval was randomly chosen to be between

2- 6 s, with a rest period between each of the four blocks of trials. Trial order within a

given block was counterbalanced across runs and subjects.

Following practice, BOLD contrast was measured as subjects completed 40 trials in each

of 6 functional runs (for a total of 240 trials). For each run’s fMRI analyses, we parsed

these trials in the following way, giving 7 conditions of interest for unconstrained and

constrained conditions, respectively:

1. early pre-rotation trials 2-4

2. mid pre-rotation trials 5-7

3. late pre-rotation trials 8-10

4. rotation trial 11

5. early post-rotation trials 12-14

6. mid post-rotation trials 15-17

7. late post-rotation trials 18-20.

4.1.5 Kinematic Data Processing

Kinematic data were filtered using a fourth-order Butterworth filter (cutoff frequency =

5 Hz). We defined object roll as the angle of the object in the frontal plane, with peak

object roll extracted shortly after lift onset ( 250 ms) before somatosensory feedback

resulted in corrective responses to counter object roll. Trials with object roll > 5◦ were
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classified as errors. Lift onset was defined as the timepoint when the object was lifted

1mm and remained above this value for at least 20 samples.

4.1.6 MRI Data Preprocessing

MRI data were pre-processed and analyzed in SPM12 (Wellcome Trust Center for Neu-

roimaging, London, UK). Specifically, functional images across all runs were spatially

realigned to a mean functional image using 2nd degree B-spline interpolation, which

were then co-registered to each subject’s structural T1 image. Between-subject spatial

normalization steps were conducted with SPM’s normalize function aligning each sub-

ject’s T1 and its co-registered functional images into standard ICBM/MNI-152 atlas

space (interpolation: 4th degree B-spline; voxel size: 3x3x3 mm).

We used a deconvolution-based general linear model (GLM) approach to model BOLD

activity, with a finite impulse response (FIR) function selected as a basis function (win-

dow length: 6.8 s; order: 400 ms), yielding 17 400 ms time bins. Bins 0 and 1 relate to

neural activity present before lift onset; lift onset occurs at the start of bin 3. As de-

scribed above, for each run, we modeled 7 conditions for unconstrained and constrained

trials, respectively, with three pre-rotation conditions containing trials 2-4, 5-7, and 8-

10; a rotation condition containing trial 11; and three post-rotation conditions containing

trials 12-14, 15-17, and 18-20.

Finally, we used the RobustWLS Toolbox in SPM [88] to account for movement arti-

fact by an unbiased estimation of noise variance of each imaging and down-weighting of

images with high variance. Nevertheless, head motion mean rotations and translations

(with minimum and maximum values in parentheses) were minimal: x: -.02 mm (-.38,
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.34); y: -.29 mm (-.86, .29); z: .76 mm (-.42, 1.72); pitch: -.008o (-.02, .008); roll: -.001o

(-.009, .006); yaw: .002 o (-.005, .01).

Before use in estimating the neural deviation, the BOLD values across different ROI’s

were aggregated into vectors. Given that the task under consideration was a sensorimotor

task, it would be natural to restrict the regions under consideration to sensorimotor

regions. We show in Figure 4.1 that this is unnecessary, as the deviations generated

by sensorimotor regions (vertical axis) are directly proportional to those generated by

global activity (horizontal axis). The red lines demonstrate approximate equivalence:

the sample deviations cluster about this line for all conditions. The sensorimotor ROI’s

selected here were the bilateral anterior intraparietal sulcus (AIPS), the Cerebellum,

Insula, motor 4a, motor 4p, parietal operculum, primary somatosensoty cortex, and

superior parietal lobule (SPL). Before deviations were computed, the BOLD vectors were

mapped to a lower dimensional space (the space used was ten dimensional). A basis for

this space was computed using the Treelet Transform [?] because of its ability to capture

sparse, hierarchical structure in covariance matrices.
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Figure 4.1: All plots are of sensorimotor deviations (vertical axis) against global
deviations (horizontal axis). The red line gives perfect equality and the samples
cluster about this line.

4.1.7 Robotic Simulation Details

The OpenAI Gym Pick and Place environment was modified to replicate the experimen-

tal task described in this chapter. Specifically, the block to be moved was extended along

a single axis to allow for shifting of the center of mass of the block along this extended

axis. Adapting to lift this unbalanced weight with minimal roll along the extended axis

would then test the ability of the robot to perform a similar task to that accomplished

by the human subjects. Two prior policies were trained using Deep Deterministic Pol-

icy Gradients (DDPG) and Hindsight Experience Replay (HER) to lift the block with

minimal roll when its center of mass is centered and uncentered, respectively [89]. The

parameters used for training were the defaults given in [89]. A single frame taken of the

simulation is shown in Figure 4.2.
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Figure 4.2: A still frame taken from the robotic simulation.

The dynamics model used for Model Predictive Control (MPC) was a deep neural network

with 3 layers and 256 neurons per layer. This network was trained using ADAM with

learning rate 0.001 and batch size 256 [48]. Mini-batches were sampled from a uniform

distribution over elements of the replay buffer, which had a maximum size of 1e6 elements.

A zero’th order policy optimization scheme was used within the MPC framework. For

this optimization scheme, 500 rollouts were used, each of length 15 timesteps.

4.2 Errors During Motor Learning are Probabilisti-

cally Distributed

First, we examine behavioral performance during the adaptation task. Across all par-

ticipants, trials and conditions, the maximum magnitude roll over the course of a trial,
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averaged over all subjects and runs, was observed to be low for pre-rotation conditions,

high for rotation conditions, and low again for post-rotation conditions. This point is

illustrated in Figure 4.3, where we show the distributions over states for all conditions.

These plots not only make clear the presence of errors and the fact that they are quickly

corrected, but also that the distributions over states contain meaningful information that

would be lost by considering only the mean. For example, the distribution generated by

the rotation condition has a different shape from any of those generated from the pre-

/post-rotation conditions (pre/post vs rot, A2=89.21431, p<0.01; throughout this work,

pre/post refers to the combination of pre-rotation and post-rotation samples and rot

refers to rotation samples). This result holds after bootstrap resampling of samples to

correct for sample-size differences between pre-rotation/post-rotation conditions and the

rotation condition. Plots of the resampled histograms are shown in the second row of

Figure 4.3. The resampled histograms were generated by resampling pre-rotation and

post-rotation samples uniformly at random to generate sample sizes equal to that of the

rotation condition.
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Figure 4.3: Top: state distributions. The rotation condition results in a state distri-
bution that has both higher mean and an entirely different shape. Bottom: bootstrap
resampling of histograms to yield balanced sample sizes across pre-rotation, rotation,
and post-rotation conditions results. The difference in the rotation histogram com-
pared with the pre-rotation and post-rotation histograms is preserved even in the case
of bootstrap resampling.
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Analysis of these results requires a representation of the error that takes into account the

observed distributional information. We observed that these distributions over distances

follow a Weibull distribution

p(dp; γ, β) =
γ

β
(
dp
β

)γ−1e−(
dp
β
)γ ,

where dp is the Lp distance and γ and β are parameters. This provides a convenient,

closed-form mathematical representation for errors that we revisit throughout this work.

To validate that our distances are indeed Weibull distributed, consider first the necessary

and sufficient conditions for distances between feature vectors to be Weibull distributed.

Given feature vectors X = [X1, . . . , Xn] ∈ Rn and Y = [Y1, . . . , Yn] ∈ Rn, the Lp distance

between X and Y is Weibull distributed if |Xi − Yi|p are non-identical, correlated, and

upper bounded, for all 1 ≤ i ≤ n. Rather than construct a mathematical proof that

these assumptions hold for human movement, we instead demonstrate that Weibull dis-

tributions can be successfully fit to our data.

In Figure 4.4 we show that the empirical distributions over distances resulting from

comparing pre/post samples with rotation samples (called rotation or rot) differ sig-

nificantly from the empirical distributions generated by comparing pre/post samples

with other pre/post samples (pre/post-rot vs pre/post-pre/post, A2=60.66115, p<0.01).

Moreover, fitting Weibull distributions to these empirical distributions using Maximum

Likelihood Estimation (MLE), we are able to generate accurate fits, suggesting that the

Weibull is indeed a good model for these data (pre/post empirical vs pre/post Weibull,

β=2.047, γ=1.062, A2=1.184024, p>0.2; rot empirical vs rot Weibull, β=4.947, γ=1.504,

A2=1.72791, p>0.2). We call the pre/post-rot Weibull the error Weibull (We) and we

call the pre/post-pre/post Weibull the ideal Weibull (Wi). As subjects adapt and We is
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transformed back to Wi, a number of characteristics of We change: its mean shifts to-

wards 0, its long tail becomes reduced in size, its variance shrinks, and its skew decreases.

From this, it seems as if some notion of the deviation between We and Wi would have to

be used as feedback to a controller in order to incorporate all of this information.
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Figure 4.4: The empirical density estimates are presented as histograms and the
Weibull fits are superimposed and given by the blue dots. Left: distances are be-
tween pre-/post-rotation conditions. Right: distances are between rotation and
pre-/post-rotation conditions.

72



4.3 A Distributional Model for Prediction Errors

A model of learning that relies on the deviation between We and Wi can be derived from

a Temporal Difference Model (TDM) [86], which can in turn be derived from a Temporal

Difference Learning (TDL) update. TDL is a recursive scheme to maximize expected

future rewards and requires the definition of a value function, V (st|π), where st is the

state at time t and π is a policy. The value function can be defined as

V (st|π) = Ep(st+1|st,at),π[rt + γrt+1 + γ2rt+2 + . . .],

V (st|π) = Ep(st+1|st,at),π[rt + γV (st+1|π)],

where γ ∈ [0, 1) is a discount factor, p(st+1|st, at) is a model of the system dynamics,

E[·] is the expectation operator, and rt is the reward at time t. Perhaps the simplest

approach to fitting V (st|π) using TDL, called TD(0), relies on computing an estimator

V̂ (st|π) using the update equation

V̂ (st|π) = V̂ (st|π) + α[rt + γV̂ (st+1|π)− V̂ (st|π)],

where α ∈ R is the learning rate. This update involves a comparison between rt +

γV̂ (st+1|π) and V̂ (st|π). The intuition for this update is, since the former has slightly

more information from the environment than V̂ (st|π), V̂ (st|π) should be updated to be

closer to it. TDMs define a reward function using the notion of a goal state, sg, where

rt = r(st, at, st+1, sg) = −dp(st+1, sg) and dp is the Lp distance. This reward results in

a value function that quantifies the expected future proximity of the system to the goal

state. As applied to our experimental system, if we let t and t+ 1 be trial numbers, since

the goal state is a roll of zero, V (st|π) would then indicate the expected magnitude of
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the roll over future trials.

TDMs rely on a kind of reward prediction error to update the value function, and can

also act as a bridge between state prediction and reward prediction errors. To be clear,

state prediction error is the error in predicting the next state given the current state,

and reward prediction error is the ability to predict the future reward given the current

state. These errors, when applied to our system, quantify the ability to predict future

rolls in expectation. This is shown in the Supplement, where we give conditions for the

equivalence of state and reward prediction in the TDM framework. In our experimental

system, we are not simply interested in defining V using an expectation over p(st+1|st, at)

and π. We would like to be able to use all of the information contained in the distribution

over rewards. To this end, we incorporate TDMs into the Distributional RL framework

Z(st, at, sg)
D
= R(st, at, st+1, sg) + γZ(st+1, at+1, sg),

where Z and R are the value and reward distributions, respectively, and
D
= indicates

equality in distribution [90]. Similar to TD(0), Distributional RL updates an estimator

of the value distribution, Ẑ(st, at, sg), by comparing R(st, at, st+1, sg) + γẐ(st+1, at+1, sg)

with Ẑ(st, at, sg). Because these are probability distributions, Ẑ(st, at, sg) is updated to

minimize

DKL(R(st, at, st+1, sg) + γẐ(st+1, at+1, sg)||Ẑ(st, at, sg)),

where DKL(·||·) is the KL-divergence. This update is analogous to the temporal dif-

ference learning update, generalized to the setting where rewards are probabilistically

distributed. This distributional objective, with R(st, at, st+1, sg) defined as the dis-

tribution over −dp(st+1, sg), is relevant in the context of the results presented thus

74



far. Specifically, in the case of short-time horizon problems, those where γ = 0, then

Z(st, at, sg)
D
= R(st, at, st+1, sg) follows a Weibull distribution.

Keeping with the notation of the previous section, we can think of Ẑ(st, at, sg) as be-

ing equivalent to Wi during the pre-rotation conditions. When the center of mass

changes, Z(st, at, sg) is actually We, though Ẑ(st, at, sg) is still Wh. The deviation be-

tween Ẑ(st, at, sg) and Z(st, at, sg), that is, We and Wi, is optimized during adaptation.

For the experimental system studied in this work, there are a number of potential ex-

planations for this deviation, from errors in the model of system dynamics to errors in

the behavioral policy. The identification of the precise source of the deviation between

Ẑ(st, at, sg) and Z(st, at, sg) is beyond the scope of this work. Our goal is to present a

framework for modeling learning with stochastic rewards in a manner amenable to both

biological modeling and robotic control. With this in mind, we note that Ẑ(st, at, sg) may

be parameterized by θ, which includes parameters for every component of the controller

used to solve the unbalanced lifting task. We can now propose a model for motor learn-

ing, specifically, a model for learning to dynamically update a controller to lift an object

in response to its changing physical properties. Our model is that the brain attempts to

solve the following optimization problem

minimize
θ

DKL(Wi||We), (4.1)

This is a special case of the full DTDM optimization, but throughout the rest of the

chapter, when we refer to the DTDM problem, we are referring to Equation 4.1.
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4.4 Global Neural Activity Optimizes the Distribu-

tional Temporal Difference Objective

We have already shown that behavior is updated to optimize the deviation between We

and Wi, that is, behavior is updated according to Equation 4.1. To see the effect of the

object rotation condition on global neural activity, we first processed brain activity in

consecutive time intervals using finite impulse response (FIR) modeling. We then se-

lected FIR time bins that are likely encoding information about the lift of the apparatus.

Details of the method used to select the ”lift” FIR bins are given in the Supplement.

Briefly, we first identify ”pre-lift” FIR bins as those before lift onset: this occurs at FIR

bin 3. We then interpret the hemodynamic response as a stochastic process and note that

there are two distinct stimuli within each trial: the pre-lift and lift stimuli. Given that

these stimuli are separated in time, their respective hemodynamic responses will peak at

different times. This allows for the segmentation of the FIR bins as most likely gener-

ated from either the pre-lift or the lift process. Those most likely generated from the lift

process (bins 15-16) are called ”lift” bins and are used to estimate the deviation of global

neural activity resulting from lift. These bins are identified using a hard threshold based

upon a model of the hemodynamic response (i.e. the Canonical Hemodynamic Response

Function, CHRF) [91]. We interpret the CHRF as a mixture of Gamma Distributions.

Using two CHRF’s (one corresponding to pre-lift and one corresponding to post-lift), we

are able to segment the FIR bins as most likely exhibiting BOLD activity from pre-lift

or post-lift. Further details on this method are given in the Supplement.

These results are shown in Figure 4.5. For each condition (pre-rotation early/mid/late,

rotation, post-rotation early/mid/late), Weibull distributions were generated by compar-

ing the betas generated during that condition with the betas generated during all others.
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Example Weibull distributions generated during FIR bin 0 and FIR bin 15 are shown in

the left and right columns of the top two rows of Figure 4.5. The distribution generated

using the rotation condition exhibits a significant deviation from the others at FIR bin 15

but not FIR bin 0. Because pre/post-pre/post and pre/post-rot Weibull distributions are

statistically different for lift bins but not pre-lift bins (pre/post-rot vs pre/post-pre/post

for pre-lift bins, t(df)=-1.572965, p>0.2; pre/post-rot vs pre/post-pre/post for lift bins,

t(df)=-8.73572, p<0.01), this suggests that global neural activity is perturbed by the ro-

tation condition, and then moves back to become indistinguishable from the pre-rotation

state. Thus we call the pre/post-pre/post Weibulls ”ideal beta Weibull distributions” or

W b
i and the pre/post-rot Weibull the ”error beta Weibull” or W b

e .
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Figure 4.5: The top row contains the fits generated using FIR bins 0 and 15. W b
h

becomes distinguishable from W b
e around FIR bin 15. This point is illustrated in the

bottom row. This row contains the estimates of the means of the Weibull distribution
for each condition against the FIR bin index. The significant deviation of W b

h from
W b
e for late FIR bins is captured by these plots.

Our results suggest that the brain may be sensitive to DKL(Wi||We). In Figure 4.6

(bottom row) we show that the difference in the means of W b
i and W b

e (using lift FIR

bins) is directly proportional to the deviation between Wi and We (i.e. DKL(Wh||We);

R2 = 0.55). We show in Figure 4.6 (left, middle row) that global neural activity is

also directly proportional to the TDM error, that is, errors in expected future reward

(R2 = 0.44). To understand this result, we present histograms estimating Wi and We
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from two representative subjects. The transport of We to Wi involves more than just a

shift in the mean for both subjects, but for both (and for all other subjects as well), the

mean is indeed shifted during adaptation.
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Figure 4.6: The top row contains histograms of pre-/post-rotation and
pre-/post-rotation with rotation state distances generated from two subjects. Mod-
eling the movement of the mean of the rotation distribution is not sufficient to com-
pletely characterize the learning objective. The middle row relates TDM and CVAR
errors with the mean beta deviation, where each point is a subject. The bottom plot
illustrates the relationship between the DTDM error and the mean beta deviation.
Lines of best fit are shown in red and are generated using the RANSAC algorithm
because of its robustness to outliers. Arguably, the mean neural deviation is encoding
both TDM and CVAR errors (as well as other relationships between Wh and We).
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It is important to note that TDM does not contain a complete description of the er-

rors. To see this quantitatively, we use a Conditional Value at Risk (CVAR) model [92].

CVAR models offer a means of taking advantage of the information contained in the

value distribution, beyond its mean. These models involve optimizing the expected value

in the tails of the value distribution. For example, minimizing lower tail values results

in controllers that are risk averse. Risk aversion in our experimental system would in-

volve minimizing the use of actions leading to outcomes in the tail of Wi. For example,

suppose that subjects initially used lifting strategies that sometimes led to states near

zero (extremely successful outcomes), but also often led to the apparatus being dropped,

resulting in high roll. A risk averse learning process would avoid this strategy, leading

to fewer observations in the tail of Wi. Interestingly, because this may also reduce the

observation of as many low roll states, the mean of We may be unaffected by risk averse

learning. We show in Figure 4.6 that the CVAR error (i.e. the expected lower-tail value)

is also proportional to mean neural deviation (R2 = 0.46). Because CVAR error is a

characteristic of the value distribution and is independent of the means of Wi and We,

this suggests that the global neural deviation is, in fact, also encoding more than just

the expected future reward.

The error DKL(Wi||We) can be interpreted in a number of ways since different aspects of

neural activity could contribute to this shift. Sensory activity as well as error signaling

could contribute to such a shift. In addition, compensatory behaviors were also observed

during the course of a lift. When a subject perceived a tilt, they would often attempt

to change the forces and torques used during the course of the lift, often resulting in

reduced roll. We hypothesize that there exists a coordinated, global response to errors

that incorporates all of this information and that it is proportional to DKL(Wi||We). To

show that the global shift in neural activity can be directly used as a feedback error
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signal, we use DKL(Wi||We) to fit a robotic controller.

4.5 Robots Can Optimize the Distributional Tempo-

ral Difference Objective

Conveniently, the optimization problem in Equation 4.1 leads to a form that can be

optimized by an artificial agent. To see this, we consider an optimization problem similar

to those used to update models of system dynamics for use in Model-Based RL. A popular

objective for fitting a model of system dynamics is

minimize
θ

||s∗t+1 − fθ(st, at)||22, (4.2)

where fθ is a model parameterized by θ, s∗t+1 is the true state at time t+1, and fθ(st, at) is

the predicted state at t+1. On its face, it may not be obvious how Equation 4.2 is related

to Equation 4.1. The latter involves fitting We, which is a distribution over distances

between the current and target states, while the former involves comparing predicted and

actual states at time t+ 1. To see the connection, consider the fact that if fθ is a prob-

abilistic model, even if its performance is optimized via Equation 4.2 (with some steps

taken to preserve non-zero variance), the distances ||s∗t+1 − fθ(st, at)||2 will be Weibull

distributed. We can think of this Weibull as Wi. In the case where the environment

changes and the state at time t+ 1 is no longer s∗t+1 but instead s
′
t+1, the performance of

fθ is no longer measured by ||s∗t+1−fθ(st, at)||2. Instead, ||s′t+1−fθ(st, at)||2 is used. The

distribution over these new distances is no longer Wi, and we call this new Weibull We.

Updating the dynamics model using Equation 4.1 would then amount to bringing the

predictions of fθ(st, at) as close to s
′
t+1 as they had been to s∗t+1 before the environment

82



changed. We incorporate Equation 4.1 into a model-based RL approach. We use this

model-based framework to allow a simulated robotic arm to learn to lift a block when

the location of its center of mass is periodically shifted.

The controller we use assumes the existence of two stochastic policies: one that is ca-

pable of lifting an object with a centered center of mass and another that is capable of

lifting an object with an unbalanced center of mass. We make this assumption because

in learning to adapt to a shifting center of mass, the human subjects in our experiment

already know how to lift the object in both orientations. The task is assessing their

ability to adapt, thus this is the focus of our robotic experiment as well. At time t of

the simulation, R possible actions are sampled from the policies. Rollouts from these

actions are simulated forward in time to t+ T using a dynamics model and the policies.

This results in R state-action trajectories of length T . These trajectories are compared

using the cumulative reward over all T timesteps,
∑t+T

h=t c(s
i
h, a

i
h), where i ∈ {1, . . . , R}

and c(sih, a
i
h) is the absolute value of the roll of the object at time h. The action at time

t yielding the lowest cost trajectory is the one selected and this process is repeated for

each timestep.

The results of this experiment are shown in Figure 4.7. The top plot shows the error

generated by the dynamics model with respect to the trial number. Shortly after trial

400, the center of mass is switched, causing a spike in the error. Within about 50 trials,

the model has adapted and its performance has improved to be better than it was before

the switch. The bottom plot shows the performance of the controller as measured by the

absolute value of the roll over the course of the trial. The results show that the robot is

able to adapt quickly to the changing center of mass, albeit not as quickly as a human.

The robot is able to adapt in a little over 100 trials, while the human is able to adapt
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within 1-2 trials.
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Figure 4.7: Top: Error of the dynamics model against the number of iterations
of training algorithm. Training was performed using mini-batch sampling, which
explains the saw-tooth improvement in the error. The center of mass is switched
half-way through training, resulting in a jump in the error. This jump is corrected
during subsequent updating. Bottom: The red curves are generated by the controller
fit using a centered weight with dynamics trained on a centered weight, the green
curves are generated using an uncentered weight with a dynamics model trained on
a centered weight and not updated, and the blue curves are generated using an
uncentered weight with an updated model. The updated model is able to outperform
the controller without a model update.
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There are many possible sources of inefficiency for the robotic controller that could explain

this performance gap. First, the dynamics model is updated using random batch sampling

from past experience. Arguably, humans don’t randomly sample from all past experiences

with the object when faced with sub-optimal performance. They are able to draw from

past experience based upon hypotheses as to the cause of the errors. Next, the dynamics

model is relatively simple and contains no prior knowledge before training about how

such objects behave. The human mind contains an enormous amount of past experience

to draw on to generate hypotheses explaining errors. The representation of the object

in the human mind is also much higher dimensional than the representation used by the

robot, containing tactile, visual, and auditory information. Yet, while the performance

of the robotic controller is not at the level of the human, these experiments demonstrate

that the DTDM objective can actually be used to solve a control problem that is similar

to the one solved by humans.

4.6 Discussion

We have proposed a distributional learning objective for use during motor control and

used this representation to construct a model of motor learning. To so do, we extended

Temporal Difference Models to Distributional Temporal Difference Models. We have

shown that behavior appears to optimize this distributional objective and that devia-

tions in global neural activity are proportional to the magnitude of the distortion of the

value distribution. DTDM is not simply useful as a model of motor learning. We have

shown that it can be incorporated into a robotic controller and used for engineering ap-

plications. The strong connection implied between neural and robotic systems suggests

that improved understanding of the brain can be directly used to improve robotic engi-

neering. Our work also suggests that work exploring the converse claim may be successful
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as well. This claim is often made indirectly, for example, by citing the neuroscientific

origins of machine learning, though there is currently no formal framework for extracting

neuroscientific principles for the purpose of engineering AI [79]. We hope that this work

will be a step in this direction.

Our results also contribute to the accumulating body of evidence in support of the Min-

imum Free Energy (MFE) theory of neural learning [67, 66, 70, 69, 68, 64, 63, 62, 65,

60, 85]. This theory posits that learning proceeds through the optimization of a free

energy of the form Eρ[V ] + H[ρ], where V is a potential function, E[·] is the expectation

operator, and ρ is a probability measure. Interestingly, optimization of this free energy

is equivalent to optimization of DKL(ρ||e−V ) [85]. In this work, we have not explored the

extent to which Wi can be approximated by a measure of the form e−V : this information

would allow for Equation 4.1 to be directly related to a free energy functional. This may

be an interesting direction for future work. In developing a model as well as a controller

using the idea of KL-control, we have contributed another set of results that strengthen

the claims of the MFE theory.

We have proposed a distributional framework for motor learning, but haven’t explored in

depth how different aspects of the value distribution could be used during motor adap-

tation. In Figure 4.4, we show that We has a much longer tail than Wi in addition to

having a higher mean, and that these tail values are also optimized during adaptation.

Using the difference in the means of We and Wi obscures this information, despite the

fact that it is useful in a number of different settings. Certainly, there are situations

in which risk-averse behavior is best and situations where it results in overly cautious

behavior. By maintaining a representation of the value distribution, the brain is able to

generate policies by optimizing different aspects of the distribution. These policies can
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be selected from, to produce behavior that is appropriately cautious for a given situation.

The issue of selecting from amongst a population of possible actions is interesting in the

context of DTDM for other reasons as well. Often, the representation of errors used

in control problems and in modeling neural controllers is subordinate to the type of

controller used, for example, either model-based or model-free. This work suggests that

from both a neurological and an engineering standpoint, this manner of thinking may be

reversed. Specifically, it may be better to develop a representation of errors that can be

used for either model-free or model-based control, and then develop a controller that can

best optimize this error in the system of interest. In the context of neurological systems,

this suggests the existence of a generic error encoding that are independent of the class of

controller. The utility of such a generic error representation would facilitate, for example,

action selection in the setting where a number of candidate actions must be selected from

and the candidate actions are generated from both model-free and model-based systems

[93, 94, 95, 96, 97]. In this setting, a generic representation of error would allow for a

universal way of comparing the performance of controllers and selecting actions.
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Chapter 5

Human Learning and

Multi-Objective Reinforcement

Learning

Development of reinforcement learning methods for complex tasks requires selection of

a suitable reward function, inference on the structure of this reward function, or some

combination of these two approaches. Inverse methods which allow for reward func-

tions to be inferred from optimal demonstration data are often an effective alternative to

manual engineering because of the difficulty of defining an unambiguous reward function

over large state-action spaces. Existing Inverse Reinforcement Learning (IRL) methods

assume that rewards are scalars, an assumption which is arguably inappropriate for com-

plex tasks which are often characterized by many distinct, correlated reward functions.

We call this the Multi-Objective IRL (MOIRL) problem in this work (as opposed to

existing Scalar IRL (SIRL)), and describe a novel approach for solving it.

The problem of solving RL problems for complex tasks has been studied in many dif-
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ferent ways. One solution, in the case where rewards need to be manually engineered,

is reward shaping [98, 99, 29]. Reward shaping involves augmenting a complex reward

function with simpler ones. These simple rewards are more easily optimized and, intu-

itively, may correspond to components of complex tasks (e.g. grasping a block before

attempting to lift it). Hierarchical RL takes a similar approach, where complex tasks

are decomposed into simpler tasks by helping an agent to navigate between goal states

on the way to performing the complete task [100, 101]. An agent is motivated to move

between goal states using auxiliary reward functions which are easier to optimize than

the reward for the complete task. These approaches are useful but their generalization

to the multi-objective setting or application to the problem of MOIRL is not clear. Our

approach solves an inverse problem on the full multivariate reward space, using optimal

behavior to avoid the work of manual engineering or fitting of a hierarchical policy.

The use of inverse methods for multiple objectives presents a number of complications

over the use of SIRL. In the case where rewards are in the interval [−1, 1], we would like

to find a policy which achieves an average reward as close to 1 as possible. In the case

of n correlated rewards, finding a policy that is close to the vector of n 1’s on average

is not possible. To address this problem, there have been a number of attempts to use

multi-objective methods in Bayesian optimization [102, 103, 104, 105] as well as rein-

forcement learning [26, 106, 27, 28, 107]. Existing approaches to multi-objective RL rely

largely on linear reward scalarization, which involves projecting the multiple rewards to a

single reward function. This may be done with a linear projector that is fixed a priori or

one that is learned dynamically from interactions with the environment. We argue that

linear scalarization is not necessarily appropriate in the setting of IRL. For example, one

of the limitations of linear scalarization is that it is impossible to map each point of the

multi-objective space to a scalar reward in a one-to-one fashion. Thus, in the setting of
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IRL, even if the SIRL problem can be solved, it will be impossible to recover an estimate

of the multi-objective reward in general. Because of these complications, the utility of

linear scalarization for MOIRL is unclear.

To approach the MOIRL problem, we define optimality (of the demonstration data) in

terms of a Pareto set of policy parameters. That is, if the policy that generated our

behavior belongs to a Pareto set, then it satisfies a particular necessary condition for

optimality. Specifically, members of the Pareto set induce a linear combination of the n

objective gradients to sum to 0 (rather than requiring the single objective gradient to sum

to 0, as in SIRL) [108, 109]. In addition, this implies the existence of a gradient-based

descent direction for the satisfaction of this optimality condition [108, 109]. We show

that at steady-state of the policy optimization process, these descent directions each

index a different trajectory through the space of multiple objectives. That is, Pareto

optimality induces a particular target region of the multi-objective space as well as the

dynamics towards this region over the course of a trial. This is distinct from SIRL, where

at optimality there is only one reward trajectory and it is completely specified by the

reward function. The goal of SIRL is primarily to fit the scalar reward, which allows for

policy optimization of this reward. In contrast, MOIRL requires both knowledge of the

multiple rewards as well as the descent direction taken during the policy optimization

procedure used to generate the optimal demonstrations.

The preceding requirements present a problem in the case where we don’t have access to

the optimal parameters and to the gradients of the multiple objectives with respect to

these parameters. When the optimal demonstrations are human behaviors, this informa-

tion will generally be unavailable. This makes the use of existing methods for inverting

multi-objective optimization impossible [108]. We address this issue by instead assum-
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ing that our optimal demonstrations consist of a dataset of optimal state-action-reward

trajectories. With this information, we are able to compute a policy that belongs to the

extended Pareto set without explicit knowledge of the objective gradients. To accomplish

this, we fit a model of the dynamics through the multivariate reward space during each

trial. We fit this model of multiple rewards using a deep neural network regressor and

show that it has good performance across a sample of human subjects performing a novel

visually guided motor planning task with multiple rewards. This suggests that there is

a consistent notion of optimality across the population of subjects, and that policy opti-

mization to reproduce the multivariate reward dynamics should be successful. We then

apply this approach to an artificial agent, where we can show that with this reward model,

we are able to perform model-based policy optimization which imitates the reward tra-

jectories generated by the model. Our results show that the inferred policy of the agent

is able to perform comparably to an average human on the planning task, demonstrating

the success of our method in inverting human behavior in the multi-objective case.

5.1 Multi-Objective Inverse Reinforcement Learning

5.1.1 Problem Statement

In IRL, the problem of SIRL can be formalized as follows:

max
φ

Eτ∼Do [L(τ |φ)], (5.1)

where Do is a dataset of optimal state-action trajectories, {τ 1o , . . . , τno }, and L(τ |φ) =∑t+T
t=t′ rφ(st, at), where the reward function rφ is parameterized by φ. Solving the opti-

mization problem in Equation 5.1 yields φ∗. Then policy optimization can be performed

directly on E[L(τ |φ∗)], yielding θ∗. A consequence of this is that, for a fixed Do and
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optimization algorithm, the reward trajectories generated by θ∗ for a single trial are

completely determined by φ∗.

The situation is more complex when there are multiple objectives. Specifically, suppose

we have the following policy parameter update during learning

θk+1 = θk + wψ(G(τ, k)), (5.2)

where G(τ, k) is given by

G(τ, k) = (∇θE[L1(τ |θk)], . . . ,∇θE[Ln(τ |θk)]),

and ψ are the parameters which ultimately lead to Equation 1.9 being satisfied. Now,

suppose that θ∗(k) is a solution to the dynamics in Equation 5.2. At time k, θ∗(k)

generates the trajectory τ , resulting in the following point in the multivariate objective

space:

L(τ, k) = (E[L1(τ |θ∗(k))], . . . ,E[Ln(τ |θ∗(k))]).

Simulating an entire trial using θ∗(k) yields the sequence of trajectories [τ 1k , . . . , τ
T
k ],

resulting in the following path through the multivariate objective space:

L(k) = [L(τ 1k , k), . . . ,L(τTk , k)].
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At time k + 1, L(τ tk+1, k + 1) is given by

L(τ tk+1, k+1) = (E[L1(τ
t
k+1|θ∗(k)+wψ(G(τ tk, k)))], . . . ,E[Ln(τ tk+1|θ∗(k)+wψ(G(τ tk, k)))]).

(5.3)

From Equation 5.3, we can see that at a given time, the different paths through the

multivariate objective space are indexed by ψ. In the case where we have demonstrations

from θ∗(k) in the form of state-action trajectories, there are many possible corresponding

L(k), each indexed by a different ψ. Knowledge of the parameters of the reward function

φ is not sufficient for policy optimization: we must also account for the effect of different

ψ’s. This is distinct from the problem of SIRL, where knowledge of φ is sufficient to

perform policy optimization. Here, for a given φ there are multiple paths through multi-

objective space which may be Pareto optimal. The problem of MOIRL thus requires

that we account for the influence of φ and ψ when performing policy optimization over

multiple, correlated objectives. In order to formalize the MOIRL problem, we require

that the dataset Do be generated after θ∗(k) has converged to its steady state: we refer

to this time as ks. In this case, the MOIRL problem can be written as

max
φ,ψ

L(τ, ks|φ) (5.4)

s.t.wψ(∇θ∗L(τ, ks|φ)) = 0,

where τ ∼ Do. Solving this problem requires knowledge of θ∗ or∇θ∗L(τ, ks|φ), in addition

to Do. Often, we only have access to the samples in Do generated using θ∗: this is the

case when we only have access to demonstrations from human subjects. In the next

section, we propose a way to solve the MOIRL problem given only demonstrations of

near-optimal behavior.
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5.1.2 Proposed Solution

To address the optimization problem in Equation 5.4, we note that if we have samples

along the path L(ks), then by assumption, wψ(∇θ∗L(τ, ks|φ)) = 0 at these points, sat-

isfying the necessary optimality condition. That is, imitation of samples from L(ks) is

necessary for a policy θ to belong to the Pareto set, but not sufficient. Policies that satisfy

the necessary condition are said to belong to the extended Pareto set (this is also known

as the Pareto Critical Set or the Substationary Set) [108, 109]. We introduce a method

that imitates the paths L(ks) by first building a model of these paths, and then during

policy optimization attempts to produce reward trajectories close to those generated by

the model.

First, we consider the problem of finding a map that follows L(τ, ks) in expectation, given

a state-action trajectory τ as input. Thus the problem becomes

min
ξ

Eτ∼Do [||L(τ |ξ)− L(τ)||2], (5.5)

where L(τ) is given by

L(τ) = (L1(τ), . . . ,Ln(τ)),

and where ξ are the parameters of the reward model. In order to fit this model, we require

that the dataset, Do be augmented to consist of state-action-reward trajectories. Here

each trajectory is given by τ = {(st′ , at′ , r1t′ , . . . , rnt′), . . . , (st′+T , at′+T , r1t′+T , . . . , rnt′+T )}.

With these state-action-reward trajectories, we can compute the ground-truth reward

output, L(τ), and use the state-action pairs as input to our reward model. The objective
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that we optimize is then

min
ξ

1

m

m∑
i=1

||L(τ |ξ)− L(τ)||2, (5.6)

where m is the number of state-action-reward trajectories in Do. In this work, we refer to

this strategy as reward imitation. In the next section we describe a potential implemen-

tation of a reward model, show its success on a novel motor planning task, and describe

how it can be used in a model-based RL framework to generate human-level performance

on the motor planning task.

5.2 Experimental Validation

5.2.1 Motor Planning Task

The task developed was an extension of the classic grid-sail task [110, 111]. Subjects

were given the task of navigating a boat from an initial dock location to a target dock

location on a 2D computer screen. To perform this planning task, subjects were given a

four element action space: there were three cardinal directions of movement along with

the additional null action (no movement; see Figure 5.1 for an illustration). Movement

along each of the three cardinal directions could be achieved by pressing one of three

keys on a keyboard, while the null action could be achieved by doing nothing.

The task was initialized at the beginning of each trial with a random initial and target

dock location. For every trial, each boat was given a fixed amount of gas to be consumed

(360 units of gas). Each time an action was performed (excluding the null action) a unit

of gas was consumed. At the end of successful trials, subjects were informed of their

gas consumption and for unsuccessful trials, subjects were notified why that trial was a
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Figure 5.1: Left: Summary of boatdock task. On the left is an example of the
environment shown to subjects. The initial dock location is shown in white and the
target dock is shown in black. On the right is the boat with action space superimposed
(excluding the null action). Right: Schematic of the Pareto front in the case of two
rewards. This curve illustrates the tradeoff between two correlated rewards in a case
where both must be simultaneously optimized.

failure (e.g. they used all their gas before reaching the target). During the experiment,

subjects were given the choice between either of two action spaces: in the compatible

case the cardinal movement directions of the boat were spatially compatible with the

arrangement of the fingers on the keyboard. In the incompatible case the cardinal direc-

tions were not spatially compatible with the finger to keyboard mapping. For a given

trial, only one of the two action spaces offered an optimal trajectory. As a first step in

developing an RL method capable of learning optimal behavior in the multi-objective

setting, we expose only a single action space to the artificial agent.

Given that the initial and target dock locations were not necessarily collinear with one

of the cardinal movement directions, one of the challenges of the task was to move to the

target efficiently (i.e. to reach the target with a short path length). The task was made

more intricate by allowing for nonlinear acceleration of the boat. The speed in a single

cardinal direction of the boat was proportional to 0.667t3− t2 +1.82∗10−14t, where t was

the amount of time a single cardinal action was selected. t was chosen to be a continuous,

rather than discrete variable, and a single action selection resulted in a value of t equal
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to the inter-frame interval of the GUI software used. During timesteps where the null

action was selected, t would decay in chunks equal to the inter-frame interval. Because

of the non-linearity of acceleration, it was possible to move to the target dock with much

more efficient gas consumption by using actions in large consecutive presses, rather than

by ”pulsing” actions (i.e. repeatedly pressing and releasing a single action or switching

between cardinal directions). Successful subjects learned to compromise between short

path length and minimal gas consumption during the task.

To generate a dataset for our RL agent to similarly learn this compromise, we define our

multivariate reward space as the vector space over two dimensional vectors. Each vector

contains the negative distance to the target as well as the current gas level. The negative

distance to the target was used as a reward to motivate the artificial agent to make

progress towards the goal and the gas level was used to efficient progress. In addition, we

define the state space of the system to be the two dimensional coordinates of the boat at

a given time point. With this information, we are able to compile the human behavior

into a dataset of optimal state-action-reward trajectories that can be used by our RL

agent.

5.2.2 Multivariate Reward Dynamics Can be Effectively Mod-

eled

In Figure 5.2 we present a summary of the paths taken through the two-dimensional space

of rewards. This histogram was taken from a characteristic subject, and the performance

demonstrates a general trend from some position on the horizontal axis to some position

on the vertical axis over the course of a trial. With respect to the planning game, this

trend corresponds to initially starting the game a random distance from the dock, then
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over the course of a trial, moving towards the dock while consuming gas. The overall

performance in the game is based on the ability to make progress towards the dock while

using as little gas as possible. This is accomplished by taking advantage of the nonlinear

acceleration provided by the experimental setup: the speed increases nonlinearly with the

amount of time consecutive actions are taken in the same direction. Subjects learn during

the practice session that the most efficient way to move towards the target is to avoid

”pulsing” the throttle (i.e. repeatedly changing direction or accelerating in small bursts).

Even with this understanding, paths taken over individual trials were highly variable and

while Figure 5.2 suggests that these paths might be linear, Figure 5.4 demonstrates that

they are not. In Figure 5.4, the blue points are the observed rewards generated from

playing the motor planning game. These paths are highly nonlinear, suggesting the need

for a nonlinear function approximator for use as the reward model.

We parameterized the reward model L(τ |ξ) using a deep neural network regressor. Details

regarding the regressor and the model fitting procedure are given in the Supplement. We

demonstrate the modeling error over 20 different training sessions in Figure 5.3 (mean

curves are shown with error bars corresponding to the standard deviation of the error for

that iteration). The model converges to an average error of about 0.4, where the error

is defined using Equation 5.6. To demonstrate the quality of this fit, we provide a few

example reward trajectories in Figure 5.4 where the model does particularly poorly. The

predicted rewards are shown in orange, while the observed rewards are shown in blue.

There are some mistakes around non-smooth transitions (e.g. in the plot on the bottom,

left), but qualitatively, the model seems to capture the observed path. We present further

validation of the model in the next section, where we use it to design a model-based RL

agent.
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Figure 5.2: Example histogram demonstrating overall performance on the motor plan-
ning task from a single subject. This was generated by compiling all trials from a
characteristic subject. The general trend is from some position on the horizontal axis
to some position on the vertical axis, though paths generated over individual trials
were highly variable. This histogram illustrates the progress subjects make in our pro-
posed two-dimensional reward space, consisting of gas level and the negative distance
to the target. This suggests that an artificial agent may learn to behave similarly
from the subjects behavior in this reward space.

5.2.3 Model-Based Policy Optimization Generates

Human-Level Performance

We implemented a controller which makes use of our model of optimal human behavior

through the multivariate objective space. Specifically, we used a model-based reinforce-

ment learning framework to perform policy optimization. In this scheme, we use rollouts
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Figure 5.3: The model of optimal reward dynamics converges during training to an av-
erage deviation of 0.4. The error is measured by the L2 norm of the difference between
the reward predicted by the reward model and the observed reward. The average is
taken over a randomly sampled batch of 64 transitions. This plot demonstrates that
we are able to find a local optimum when solving Equation 5.6.

forward in time to select actions at the current timestep. This strategy involves simu-

lating forward in time the trajectory resulting from taking a given action at the current

timestep and is illustrated in Figure 5.5. Because the action space used consists of four

possible actions at time t, we are able to estimate the future cost of taking each possible

action, and pick the action that performs best. This strategy is a kind of 0’th order

shooting method for policy optimization [112]. The objective for estimating the future

cost of an action can be written as

min
at,...,aT

t′+T∑
t=t′

c(r∗t , r(st, at)), s.t. st ∼ p(st|st−1, at), (5.7)

where r∗t is an optimal multi-variate reward at timestep t, r(st, at) is the observed multi-

variate reward at timestep t, p(st+1|st, at) is the model of system dynamics, and c(·, ·)

is a cost function to be optimized. In this case, at, . . . , aT are found that approximately

solve this optimization problem and at is used by the agent at time t. This optimization
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Figure 5.4: Various representative ground truth reward trajectories (blue) and the cor-
responding predicted trajectories (orange). The largest errors are made by the reward
model around non-smooth movements through the reward space. These movements
correspoond to drastic changes in direction.

problem is then solved again at the next timestep for at+1, . . . , aT+1 and at+1 is then used

by the agent at time t+ 1. To generate r∗t , we use the model L(τ |ξ), whose performance

was described in the previous section. The cost function used is the L2 norm of the dif-

ference between r∗t and r(st, at). Similarly, the model of the system dynamics is trained

separately to optimize the L2 norm of the difference between st+1 and s∗t+1 where s∗t+1 is

the actual state at t+ 1 and st+1 is the predicted state at t+ 1.

Example state trajectories generated by the policy are shown in Figure 5.6. It can be

seen that the policy produces a small amount of pulsing, which appropriately balances

the goals of needing to make progress towards the dock vs. conserving gas. The success

of the model of system dynamics as well as the reward model enable this accomplishment.
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Figure 5.5: Illustration of the policy optimization scheme. Shown is the boat with
the four actions at time t superimposed on it and a possible target location (the black
square). The solid circle around the boat gives the boundary of the boats state at
t+ 1. The dotted lines illustrate simulated rollouts forward in time until time t+ T ,
from each possible action at t. These rollouts demonstrate that certain actions at t
are superior to others in that they allow for fewer turns (reduced gas consumption)
while making better progress towards the target.

The former is demonstrated by the blue curve, which is the predicted state trajectory,

while the red curve is the observed state trajectory. Qualitatively, the system dynamics

model appears to appropriately characterize the true dynamics. The success of the policy

is quantitatively validated in Figure 5.7, where we produce histograms comparing human

and machine performance using the remaining gas and path length over all trials. Ma-

chine performance is shown in blue, while human performance is shown in orange. These

histograms were generated using machine performance on 500 trials, the conditions for

which were randomly generated using the same process that was used to generate the

human trials. The policy produced using Equation 5.7 results in gas consumption and

efficient progress towards the dock comparable to that seen in the human subjects.

The plots shown in Figure 5.7 were generated using successful trials only. The failure rate,

17%, of the policy was slightly higher than that observed by human subjects, where the
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worst performing human subject failed about 15% of the trials. This can be attributed

to two causes: first, human subjects were at a slight advantage in that they were able

to choose between two different boats which had different action spaces. Depending on

the location of the dock relative to the starting location, the human subjects were able

to choose the boat that would allow them to move towards the dock most efficiently. We

gave the policy only one boat, thus it was forced to use a single action space for all trials.

Since most of the failures of the artificial policy resulted from running out of gas, having

access to a single boat was a significant handicap. A second likely cause of the increased

failure rate is the limited dataset of optimal trajectories. Because the reward model is

trained on observed, optimal reward trajectories and the initial and dock locations were

randomly generated for each trial, it is likely that most of the possible optimal reward

paths were not included in the dataset. Adapting the policy to account for this limitation

requires a transfer of skill from one domain of expertise to another, something that was

not accounted for in our policy optimization scheme. It may be an interesting direction

for future work to incorporate transfer learning into our MOIRL method.

Figure 5.6: Example paths through the state space generated by the MOIRL con-
troller. The green line is the shortest possible path between initial and target lo-
cations, the blue curve is the path predicted by the model of the system dynamics,
and the red curve is the observed path. It can be seen that the policy generates a
small amount of pulsing and as a result, balances the objectives of needing to take
the shortest possible path while conserving fuel.
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Figure 5.7: Performance of RL agent compared with human subjects. The perfor-
mance of the artificial agent is comparable to the human subjects on both gas con-
sumption and path length.
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Chapter 6

Network Minimum Free Energy

Learning

Human learning can be naturally described as an optimization problem. Many past mod-

els of learning have defined a performance objective and shown that the brain encodes

this objective and uses it to assess its own performance. For example, in the case of

tasks related to motor control, neural activity is often decomposed into regions encoding

a model of the actuators and regions encoding the relationship between those actuators

and the reward for successful task performance [80, 83, 84, 81, 82]. Learning objectives

can be formulated in this regime using state-prediction and reward-prediction errors, re-

spectively. The model of learning that results is based upon an assumption that modeling

of motor actuation and reward anticipation errors are segregated in the brain in some

manner.

A recent development in computational neuroscience allows us to model learning while

avoiding this assumption. The brain has been shown in a number of previous results to

optimize a free energy functional during learning [85, 70, 63, 67, 66, 69, 68, 64, 62]. We
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extend the use of free energy functionals to model human learning by defining a func-

tional over a network. This functional extends previous models applied to neural systems

in a number of ways [85]. First, it allows for the activity of a potentially large number

of brain regions to be explicitly modeled (we use 138 in this work). Next, it allows for

the modeling of the learning objectives of each brain region, independent of every other.

Since the brain regions considered in this work consist of many thousands of neurons

with their own local dynamics, it is essential that region specific objectives are used

to characterize the learning that takes place within brain regions, as well as across the

population of regions. Finally, interactions between brain regions over the network are

also explicitly modeled (via an interaction matrix ). The interpretation of this interaction

matrix is analogous to that of functional connectivity matrices [72, 73, 74, 75, 61]. It is

different from past work on functional connectivity in that we don’t explicitly define an

interaction function (eg., correlation or coherence). Instead, it is entirely inferred from

data.

We refer to the optimization of this functional as the Network Minimum Free Energy

Learning (NMFEL) model and show that this model can characterize human learning.

We accomplish this by first showing that a particular optimization scheme (a Wasserstein

Gradient Flow) over this functional generates a Fokker-Planck equation over a network

(NFPE). We fit this equation to a timeseries of fMRI BOLD activity generated during

the learning of a discrete sequence production (DSP) task. In doing so, we are able to

observe that human learning, from naive to expert ability, is nonlinear and requires an

NFPE with time-varying parameters. This result is explained, intuitively, by the fact

that humans utilize a number of distinct objectives during the course of learning a com-

plex motor sequencing task.
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The NFPE is a model of global neural dynamics, and we show that it can be used to

derive global changes from the activity of individual brain regions. We accomplish this

using a sensitivity analysis applied to the NFPE. The output of this analysis is a set of

sensitivities for each brain region: these indicate how ”sensitive” the full trajectory of

neural activity is to perturbations of individual brain regions. The results of this analysis

show that global neural dynamics are most strongly perturbed by the sensory, motor,

and visuospatial processing regions long known to be associated with motor learning.

With this method for explaining global dynamics in terms of local fluctuations, we show

how the cumulative performance of individual subjects over time can be explained using

isolated brain regions. We correlate regional sensitivities of individual subjects with their

respective cumulative performance. We find, in contrast to the first sensitivity analysis,

that the sensitivities of a number of brain regions thought to participate in higher level

cognition and meta-learning (prefrontal cortices and basal ganglia) are strongly corre-

lated with cumulative performance.

The DSP task requires subjects to simultaneously learn the association between a sym-

bolic cue and a 10 element motor sequence. Initially, subjects rely on visual guidance

to complete individual movements as they acquire knowledge of the different sequences.

After 200-400 trials, subjects have explicit knowledge of each sequence and can draw

on verbal overshadowing to internally guide their sequential movements. After several

thousand practice trials, the sequences are executed faster than verbal overshadowing

or other conscious strategies can sustain, suggesting that sequential memories have been

learned within motor actuation circuits. Thus, subjects are transitioning through differ-

ent objectives during learning and their strategies in what objectives to adopt be thought

of as a form of meta-learning [113]. We hypothesize that variable activity of this meta-
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learning network is capable of inducing different learning algorithms. We validate this

idea through a simulation study, where we show that perturbation of this meta-learning

network is capable of inducing a distribution over paths indistinguishable from that gen-

erated by the population of subjects. This lends support to the idea that optimization

of the activity of this meta-learning network can select from amongst a set of learning

algorithms.

Figure 6.1: Cartoon of NFPE model. Because neural activity is represented as a prob-
ability vector, the total amount of neural activity is fixed (equal to 1 in this chapter).
Neural dynamics then involve distributing this activity in a time-varying fashion. At
each timestep, activity is distributed, collected, and recycled to be redistributed at the
next timestep. The manner in which activity is distributed depends on the objectives
of the individual brain regions, their pairwise interactions, and smoothing the activity
over the brain by optimizing the entropy of the total distribution.

6.1 Data Collection

In our longitudinal study of motor learning, participants (N=20) performed a discrete

sequence production task for six weeks. We varied the amount of practice across a set

of six sequences [114]. Neural responses (BOLD activity) were recorded to obtain base-

line neural responses while the participants were first being exposed to the sequences

(INIT). Participants then completed at-home training sessions where two of the sequences
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were trained extensively (64 trials/session; EXT), two were trained moderately (10 tri-

als/session; MOD), and two minimally (1 trial/session; MIN). Performance was measured

by movement time to complete the sequence. Across the four imaging sessions (with two

weeks separation between each), whole-brain analysis was conducted to identify brain

regions activated during sequence production for each training intensity condition. We

denote these measurements as COND1, COND2, and COND3 (e.g. MIN1, MIN2, and

MIN3 for the MIN condition). Beta values (derived from modeling BOLD activity using

a GLM) from whole brain analysis were extracted using the Harvard-Oxford atlas.

6.2 Network Minimum Free Energy Learning

We represent neural activity as a probability vector, p = [p1, . . . , pB], where B is the

number of brain regions. The are two reasons for this: first, it allows us to extend exist-

ing results characterizing neural activity as a probability density [85]. In this past work

[85], global neural activity was modeled as a single random variable. In contrast, treating

neural activity as a probability vector allows us to directly model the activity of each

brain region. Next, since
∑

i pi = 1, it allows us to fix global neural activity as constant.

Because of this, we are able to model relative neural activities. This is advantageous in

our experimental setting: data was collected across a diverse population of subjects and

times, and absolute neural activities can vary significantly in response to stimuli outside

the experimental protocol. Moreover, it has been shown that absolute neural activity

can vary with training intensity [85]. It was essential for us to remove this effect to be

able to compare results across MIN, MOD, and EXT conditions.

We then define the free energy functional for p to be
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F(p) = Ep[V ] + Ep×p[W ]− H[p],

where E[·] is the expectation operator, V is a potential for individual brain regions, W

is an interaction potential between brain regions, and H[·] is the entropy. Because p is a

probability vector, F expands into

FNMFEL(p) =
∑
i

Vipi +
∑
i

∑
j

Wi,jpi,j +
∑
i

pilog(pi). (6.1)

Incorporation of FNMFEL into an optimization problem yields the following model

min
p
FNMFEL(p), (6.2)

which we refer to as the Network Minimum Free Energy Learning (NMFEL) model. The

term
∑

i Vipi quantifies the objective optimized by individual brain regions, indepen-

dent of all others. Since the brain regions we consider in this work are quite complex

and consist of many thousands of cells, they are also adapting to training. This effect

must be included in the model. Second, the term
∑

i

∑
jWi,jpi,j quantifies the interac-

tions between brain regions that is optimized during learning. It has been repeatedly

demonstrated that interactions between brain regions over a network change as a result

of learning [72, 74, 75, 61]. These approaches often require a priori knowledge of an

interaction function (e.g. the Pearson correlation has been used). The NMFEL objective

allows us to define a generic quadratic interaction potential and then recover its values

in a data-driven manner by fitting the NMFEL to neural activity. Finally, the entropy

term,
∑

i pilog(pi), results in smoothing of the neural activity during optimization. This

smoothing prevents the accumulation of probability mass by a small number of brain

regions during optimization of the NMFEL in simulation, an effect which is unlikely in
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healthy human beings. With the NMFEL objective in Equation 6.2, we are able to derive

a model of neural dynamics. By taking a 2-Wasserstein Gradient flow over Equation 6.1

(derivation shown in the Supplement), we are able to retrieve a Fokker-Planck equation

over a network. The dynamics for pi are given by

dpi
dt

=
∑
j∈N(i)

ωi,jθi,j(Vj − Vi + (Wp)j − (Wp)i)

+
∑

j∈N(i)

ωi,jθi,j(log(pj)− log(pi)), (6.3)

where N(i) is the set of neighbors of the i’th node, ωi,j is the edge-weight between the

i’th and j’th nodes, and θi,j =
pi+pj

2
defines the flux of probability mass over an edge.

In this work, we assume the brain regions lie on a fully connected network with uniform

edge weights, though extensions to incorporate estimates of the structural connectivity

network are possible. We refer to Equation 3 as the Network Fokker-Planck equation

(NFPE). For the subsequent results, we directly solve the discretized version of the NFPE

in Equation 3 by solving the set of coupled ODE’s. A cartoon illustrating the NFPE is

shown in Figure 6.1, and details about its solution are given in the Supplement.

6.3 NMFEL Learning Paths

We validate the NMFEL model by fitting its parameters (V and W ) to the fMRI data

from the sequence production task. We take advantage of the fact that the Gibb’s

distribution is the steady-state of the NFPE and is given by

pi =
1

Z
eVi+(Wp)i .

We treat the final time evolution of each condition as the steady-state for that con-

dition (MIN3, MOD3, EXT3) and fit V and W for each condition using these distribu-
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tions. These parameters were optimized using a variant of stochastic gradient descent

over the average KL-Divergence between the estimated distribution and the probabil-

ity vectors generated from the population of subjects (details of these fits are given in

the Supplement). The resultant parameters were used to simulate the NFPE forward

in time to approximate the average probability vector for each condition: this process

resulted in small deviations in the total variation norm (MIN3: TVD(0.00118); MOD3:

TVD(0.00132); EXT3: TVD(0.00117)).

Ideally, in simulating the NFPE forward in time from the initial condition, the proba-

bility vector would pass through COND1 and COND2. But we found that this was not

possible, as forward simulation of the NFPE would yield a path close to a straight line be-

tween INIT and COND3. This issue is highlighted in Figure 6.3. For each condition, we

found that learning does not progress along a straight line, that is, COND1 and COND2

do not lie on the line between INIT and COND3. In fact, the total distance traversed

during each condition (estimated using the total variation norm) is much greater than a

straight line (MIN: Straight(0.00476) vs Observed(0.00996); MOD: Straight(0.00417) vs

Observed(0.01118); EXT: Straight(0.00392) vs Observed(0.01499)).
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Figure 6.2: Example output from parameter estimation characteristic of overall per-
formance. Top: optimization objective against iteration number. The optimization
appears to converge after about 100 iterations. Bottom: comparison of the fitted
(blue) with the observed distribution (orange) with the initial distribution given as
a reference (green). The predicted and observed distributions are indistinguishable
without increasing the resolution of the vertical axis by an order of magnitude.

Figure 6.3: Illustration of the observed learning path compared to the shortest path.
The shape of the observed paths don’t necessarily correspond to that in the illustra-
tion, the figure is meant to illustrate the difference between the observed and linear
paths. For all conditions, the observed paths are much longer than the linear path.

Distances Traversed During Learning
Condition MIN MOD EXT
INIT → COND1 0.00304 0.00349 0.00539
COND1 → COND2 0.00428 0.00361 0.00496
COND2 → COND3 0.00264 0.00408 0.00464
INIT → COND3 0.00477 0.00417 0.00392

Table 6.1: Distances traversed between time points for each condition. The metric used was

the total variation norm. For all conditions, the INIT → COND3 distance was not observed.
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One problem raised by the nonlinearity of learning paths is that the human brain isn’t

optimizing a set of time-invariant parameters of the NFPE model. From a psychologi-

cal perspective, the implication of this point is that there exist intermediate objectives

optimized by the brain at different points in the learning process. To capture this be-

havior, a slightly more sophisticated, time-varying NFPE model is required. To this

point, we fit Gibb’s distributions to each run (COND1, COND2, and COND3). We

then simulated the NFPE forward in time, switching the parameters after a time in-

terval of fixed length. In this way, we were able to obtain high-quality fits (estimated

using the total variation norm) for the entire timeseries of neural activity, for each condi-

tion (MIN: 1(0.00184), 2(0.00197), 3(0.00118); MOD: 1(0.00087), 2(0.00160), 3(0.00131);

EXT: 1(0.00147), 2(0.00155), 3(0.00116)).
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MIN Condition
Brain Region Sensitivity
L Lingual Gyrus -34.26
R Intracalcarine Cortex -27.50
L Superior Parietal Lobule -25.37
L Intracalcarine Cortex -25.06
R Lingual Gyrus -24.82
L Precentral Gyrus -24.71
L Cuneal Cortex -24.51
L Postcentral Gyrus -24.21
R Cuneal Cortex -23.76
R Supracalcarine Cortex -22.99
LR CB Vermis X 21.32

MOD Condition
Brain Region Name Sensitivity
L Supracalcarine Cortex -17.96
L Cuneal Cortex -17.70
L Intracalcarine Cortex -15.81
R Supracalcarine Cortex -15.61
L Lingual Gyrus -15.56
R Cuneal Cortex -14.72
R Lingual Gyrus -12.82
L Postcentral Gyrus -12.52
LR CB Vermis X 11.51
R Intracalcarine Cortex -11.25
L Superior Parietal Lobule -10.82

EXT Condition
Brain Region Name Sensitivity
R Intracalcarine Cortex -9.45
L Intracalcarine Cortex -8.88
L Lingual Gyrus -8.70
L Postcentral Gyrus -8.06
R Supracalcarine Cortex -7.05
R Planum Polare 6.79
R Lingual Gyrus -6.79
L Superior Parietal Lobule -6.36
LR CB Vermis X 6.01
L Supramarginal Gyrus -5.64
R Cuneal Cortex -5.58

Table 6.2: Output of the sensitivity analysis on population average global dynamics. The

regions that are returned are known to participate in processing of sensation (tactile and

visual) with motor control.
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6.4 Local Influence on Global Dynamics

The results discussed so far have concerned global neural dynamics and do not clarify how

these global dynamics relate to individual brain regions known to participate in motor

sequence learning. To address this issue, we perform a sensitivity analysis of the NFPE

dynamics to isolate individual brain regions that contribute strongly to the evolution of

our model of learning. To accomplish this, we take advantage of recent work involving

the automatic differentiation of continuous time neural networks [115]. We note that

the discretized NFPE presented in Equation 6.3 3 is a set of neural ordinary differential

equations, and we define a loss function as the L2 norm of the difference between the sim-

ulated neural activity at time t and the neural activity collected at the end of the current

phase (if the current phase will converge on COND2, we compare the simulated neural

activity with COND2). The neural activity used was the mean probability vector taken

over the entire population of subjects. We then ran an adjoint solver to backpropagate

this loss from the final time point to the initial time point, yielding a gradient of the loss

with respect to the neural activity at the initial time point. This gradient gives us a mea-

sure of the influence of each brain region on the overall learning process (i.e. the paths

taken by global neural activity). Details on the method used are given in the Supplement.

We present a summary of these results in Table 6.2, where the ten brain regions with

highest magnitude sensitivities are shown for each condition. The output of this analysis

includes regions generally known to participate in motor sequence learning. In partic-

ular, global dynamics are sensitive to regions involved in sensory reception and motor

execution (postcentral and precentral gyri, SMA) and the coordination of sensory recep-

tion with motor activity (superior parietal lobule, supramarginal gyrus, SMA, parietal

operculum). The signs of the sensitivities are particularly relevant, in addition to their
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magnitudes. For example, the cerebellar sensitivities are positive, indicating that in-

creased cerebellar activity leads to increased deviation of the simulated dynamics from

the observed dynamics. This is consistent with the understanding that the cerebellum

provides negative feedback during motor control: increased cerebellar activity indicates

the presence of errors in task execution. Large positive sensitivities can also be used

to identify regions that are not important for the task. The large positive sensitivity of

the planum polare in the EXT condition indicates that activation of this region is likely

counterproductive during task execution.

6.5 Learning Algorithm Selection

Sensitivity analysis can also be applied to the neural activity trajectories of individual

subjects. In particular, we explore the relationship between the sensitivities that produce

individual trajectories with the associated cumulative performance over time on the task.

To accomplish this, we define a loss function as the L2 norm of the difference between the

simulated neural activity at time t and the neural activity for a given subject on the cur-

rent phase of the learning process. The output of our adjoint method is then a collection

of sensitivities that indicate how the population mean model might be perturbed to yield

the observed neural activity for a given subject. We then correlate the sensitivities for

each brain region with the cumulative performance generated by the population of sub-

jects. The performance measure used was the function γ3mI + γ2m1 + γm2 +m3, where

mI is the average movement time on the INIT condition, m1 was the average movement

time on COND1, m2 was the average movement time on COND2, m3 was the average

movement time on COND3, and γ = 1.5 was used. γ was selected to identify regions

involved in selecting the paths taken by individual subjects, where early performance is

more important for this process than later performance. We used the Pearson correlation
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test with the null hypothesis that the sensitivities and performances are uncorrelated.

The results of this experiment are shown in Table 6.3, where a p-value threshold of 0.05

was applied. Outlier removal was performed on the sensitivities using a fixed threshold

of twice the standard deviation of the sensitivities. Example plots of cumulative perfor-

mance against the sensitivities are shown in figure 6.4 to demonstrate the effect of this

processing.

Pearson Correlation Between Cumulative Performance and Sensitivity
Brain Region Correlation p-value
R Amygala -0.73 0.0003
L Frontal Medial Cortex -0.64 0.0042
R Occipital Fusiform 0.62 0.0043
R Superior Parietal -0.60 0.0050
R Precentral Gyrus -0.62 0.0059
R Lingual Gyrus 0.62 0.0077
R Putamen -0.57 0.0106
R Frontal Medial Cortex -0.57 0.0110
L Inferior Temporal Gyrus 0.602 0.0134
L Frontal Operculum -0.532 0.0189
R Heschl’s Gyrus 0.519 0.0227
LR CB Vermis VIIb -0.548 0.0229
L Lingual Gyrus 0.53 0.0236
L Subcallosal Cortex -0.51 0.0256
R Angular Gyrus 0.50 0.0345
R Superior Temporal Gyrus 0.494 0.0373
R Cuneal Cortex 0.484 0.0490
R Pallidum -0.469 0.0499

Table 6.3: Results of Pearson Correlation Test between regional sensitivities and cumulative

task performance. Along with a collection of sensorimotor regions known to participate in

motor learning, we observe members of the pre-frontal cortex and basal ganglia with high–

magnitude correlations.

To facilitate interpretation of the results, we restrict this sensitivity analysis to the EXT

condition. This choice was made because the performance of most subjects in the MIN

and MOD conditions hadn’t plateaued by the end of the study, thus comparisons of per-
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formance across conditions would be of questionable value. This analysis again uncovers

a number of regions known to participate in motor control (precentral gyrus, lingual

gyrus, cerebellum) and visuospatial processing (cuneal cortex, inferior temporal gyrus,

superior parietal lobule) as well as regions likely uninvolved in motor sequence learning

(Heschl’s Gyrus). Unlike the earlier sensitivity analysis, a number of regions involved

in reward circuitry also emerge (putamen, pallidum, amygdala, frontal medial cortices).

These regions appear to be encoding cumulative performance based on their influence on

the paths taken by global neural activity (e.g. subjects that perform worse on the task

tend to have higher activity of these regions).

This result is related to recent theories that suggest that a Prefrontal Cortex/Basal

Galgia (PFC/BG) circuit is capable of selecting learning algorithms to tune for optimal

performance or adjust for a non-stationary task reward (meta-learning or learning-to-

learn) [116]. Motor sequence learning tasks can draw on multiple strategies to enhance

performance and the method for selecting amongst these strategies can be treated as a

form of meta-learning [113, 117, 118, 119]. With that in mind the population of subjects

induces a distribution over learning paths, each of which may be considered a distinct

learning algorithm (i.e. an instance of the NMFEL parameterized by a distinct set of

parameters). We hypothesize that the PFC/BG circuit is capable of generating this

distribution. To validate this hypothesis, we perform a simulated experiment where we

perturb the parameters of the NMFEL associated with the PFC/BG regions recovered by

the sensitivity analysis above (putamen, pallidum, frontal medial cortices) to demonstrate

the ability of these regions to induce a distribution over learning paths indistinguishable

from the one observed in our population of subjects. We accomplish this by fitting a

distribution over these parameters (a multivariate normal with diagonal covariance) using

maximum likelihood estimation. The likelihood function used was a normal distribution
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over path lengths, fit to the set of path lengths generated by all subjects. We generated

candidate batches of path lengths by repeatedly sampling sets of NMFEL parameters

and forward simulating the NFPE with these parameters. With this procedure and

using a 2-sample Kolmogorov-Smirnov test, we were able to generate sets of path lengths

statistically indistinguishable from the observed path lengths for each condition (MIN:

KS=0.1, p>0.5; MOD: KS=0.2, p>0.5; EXT: KS=0.199, p>0.5). This result lends

support to the idea that the PFC/BG circuit is capable of inducing meta-learning by

showing that variable activity of these regions is capable of inducing a set of learning

paths consistent with that observed in human learning.

Figure 6.4: Correlation analysis between EXT sensitivities of individual subjects
and their cumulative performance on the task. Regions involved in reward circuitry
(frontal medial cortices, basal ganglia, amygdala) are strongly correlated with cumu-
lative performance. These correlations are illustrated in the four plots shown, where
each point is a subject. Red points are included in the analysis and blue points are
excluded as outliers. These plots demonstrate strong linear trends.
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6.6 Discussion

We have shown in this work how the minimum free energy framework can be extended

to model systems supported on a network. This model allows the user to accurately

model global neural dynamics during learning as well as to derive those dynamics based

upon the activity of individual brain regions using sensitivity analysis. We have further

shown that sensitivity analysis can be used to illustrate how the variable performance of

individual subjects is encoded in the paths taken by their global neural activity. The dis-

tribution over learning paths induced by the population of subjects was explained using

the theory of meta-learning. These results lend support to the idea of minimum free en-

ergy learning acting as a unifying principle of neural learning in that the assumptions we

have made about the goals of human learning are far weaker than what is commonly used.

The use of free energy functionals as a model of the learning objective has a number of

advantages over past approaches. First, it allows us to explicitly quantify the uncertainty

in neural activity (e.g. as generated by a population of human subjects) by defining a

distribution over neural activity. Incorporation of Bayesian methods of validation is much

more straightforward in this setting than in non-probabilistic ones. We have shown how

variable PFC/BG activity can induce uncertainty in global neural trajectories. A more

general approach to uncertainty quantification is possible, for example one that attempts

to partition the uncertainty in the learning path chosen based on contributions from in-

dividual brain regions. Next, the free energy functional may have a number of different

interpretations, including but not limited to, state and reward prediction. For example,

a number of recent models of learning include objectives that do not fit neatly into either

state-prediction or reward-prediction categories: for example, competitive environments

that require prediction of an opponent’s behavior require error representations that are
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arguably difficult to categorize in this way [120, 121, 122]. Free energy functionals can

be seen as a generalization of these more specific reward objectives.

Further exploration of the relationship between NMFEL and meta-learning is also needed.

Meta-RL is thought to arise as an emergent property of the fact that the PFC exists in a

recurrent circuit that includes basal ganglia and thalamic regions. Because the PFC itself

is capable of RL, model-free tuning of PFC circuitry by the basal ganglia is postulated

to give rise to novel RL algorithms: the complete algorithm is referred to as Meta-RL.

The NFPE is itself a kind of RL algorithm and is often used in a reduced form for RL

methods in engineering (without the interaction potential, the NMFEL corresponds to

Maximum Entropy RL) [60]. In an engineering setting, meta-learning takes a number of

different forms, from intelligently selecting method initializations to fitting optimization

algorithms to fitting optimization objectives [18]. It is unclear if the PFC/BG circuit is

capable of doing any of these, or even if the categorization produced by the engineering

literature is appropriate for understanding neural systems. Further exploration of these

issues is necessary to better understand the mechanism of meta-learning in the human

brain.
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Chapter 7

Conclusion and Future Directions

In this thesis, we’ve described a number of ways reinforcement learning can be used to

both control and better understand large scale neural systems and human behavior. Since

all of these works were produced with a view towards eventually applying reinforcement

learning to living neural systems, we’ll conclude this thesis with a discussion of the cur-

rent limitations of the works discussed and a few ideas about how to overcome them.

The first and perhaps most concerning limitation of reinforcement learning relates to its

safety. Classically, reinforcement learning methods are split into model-free and model-

based methods, where the former generally require more experimentation with the system

to be controlled. One of the major considerations imposed on the user in selecting one

of these approaches involves managing the trade-off between the work required to fit

an accurate model and the need for safe exploration during policy optimization. We’ve

explored a unifying approach based on Temporal Difference Models: the Distributional

Temporal Difference Model, which is compatible with both model-free and model-based

reinforcement learning. It may be an interesting future direction to explore the extent

to which the trade-off between model-free and model-based reinforcement learning can
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be learned, rather than manually imposed on the algorithm. The approach used to ac-

complish this might be framed as a multi-objective optimization problem, where two of

the objectives are the safety of exploration and the performance of model-fitting. The

tradeoff between these two considerations could either be fit online or learned from an

agent known to be expert at achieving a good balance.

A completely different approach to safely fitting useful policies using reinforcement learn-

ing could be achieved with insight into the transfer of policies across related systems.

Fitting policies using reinforcement learning on laboratory animals, even methods which

require unsafe exploration, is much more realistic given current methods than doing so

on humans. But currently doing so would be unlikely to be particularly useful in gen-

erating policies that work on humans because of the poor understanding concerning the

transfer of policies. Unlike computer vision and natural language processing, fields where

transfer of deep neural networks have resulted in enormous advances, transfer learning

for reinforcement learning algorithms is still in its infancy [123, 124, 125]. The ability to

fit a policy in a low-risk setting and update it quickly and safely to a higher-risk setting

would be extremely valuable and potentially allow for more rapid adoption of reinforce-

ment learning algorithms for controlling biological systems.

Even in the case where a reinforcement learning algorithm could be shown to be perfor-

mant and safe in controlling a large-scale neural system, the black-box nature of deep

neural network function approximators would likely limit their use. The explanability and

interpretability of deep neural networks is of critical importance in producing widespread

adoption and use. Neural Ordinary and Partial Differential Equations present a path

forward in addressing these issues because of the vast literature on ordinary and partial

differential equations. The ability to derive a neural network from either an ODE or a
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PDE gives the user a valuable set of tools that can be used to justify predictions made

by the network in a quantitative, theoretically sound manner. Combined with the ability

to fit reinforcement learning algorithms in a safe manner, having explainable and inter-

pretable neural networks will significantly increase the confidence users have in applying

them towards systems that are as sensitive as our brains.
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