
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Translating C to Safe Rust: Reasoning about Pointer Types and Lifetimes

Permalink
https://escholarship.org/uc/item/2dk6c918

Author
Emre, Mehmet

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2dk6c918
https://escholarship.org
http://www.cdlib.org/

University of California

Santa Barbara

Translating C to Safe Rust: Reasoning about Pointer

Types and Lifetimes

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Mehmet Emre

Committee in charge:

Professor Ben Hardekopf, Chair

Professor Chandra Krintz

Professor Yu Feng

September 2022

The Dissertation of Mehmet Emre is approved.

Professor Chandra Krintz

Professor Yu Feng

Professor Ben Hardekopf, Committee Chair

July 2022

Acknowledgements

The Ph.D. program has been a long, winded, and satisfying journey for me. There

has been many unexpected turns, and hurdles to overcome. There are many people

I am thankful to for helping me throughout this process (I am bound to miss some

names, and I apologize for that):

Ben Hardekopf, for teaching me how to do research, pointing me in the right

direction while giving me the necessary freedom, and making me keep a healthy

balance between research and recreation.

Chandra Krintz and Yu Feng, for helpingme not lose the sight of the bigger picture,

and present my work in a more holistic way.

Kyle Dewey, for treading and clearing the path before me, and being a tremendous

resource of good advice. I am grateful for your guidance on teaching and research as

well as you sharing your earnest outlook on life.

LawtonNichols, for being a great labmate, being there to bounce ideas, and getting

me started to dance. You have been a great inspiration of tenacity and curiosity during

the time I worked next to you.

Michael Christensen for being a great partner in the projects we have taken on

together, and for sharing the experience of going through the program at the same

time. Project Neptune lives!

Miroslav Gavrilov for remindingme that we do the Ph.D. program because it is fun

and interesting, also for poking through all weird corners of programming languages.

I could not survive Salinas without you.

Zach Sisco for making the lab environment much less solitary and saner during

the pandemic, and for being a person to talk about my research problems. It was a

pleasure working in the lab together especially in the past year.

iii

Harlan Kringen for making me revisit the fundamentals of my knowledge of pro-

gramming languageswith better understanding countless times. Your questionspierce

through the veneer and all the complexity of so many ideas.

Ryan Schroeder for being a great person to work with, and showingmemany great

techniques to use. You are one of the most brilliant engineers I have met.

Peter Boyland, Aesha Parekh, Ben Darnell, and other members of the PL Lab that

made it a great place to work.

İsmet BurakKadron for being a great friend that’s always there forme, and as some-

one I could discuss both technical and non-technical matters. I could not persevere

through this without a friend like you.

My parents and siblings for their constant support and encouragement through

the most difficult parts of this journey.

GürkanGür for gettingme interested in research, and applying to a Ph.D. program.

iv

Curriculum Vitæ

Mehmet Emre

Education

2022 Ph.D. in Computer Science (Expected), University of California,

Santa Barbara.

2021 M.S. in Computer Science, University of California, Santa Barbara.

2015 B.S. in Computer Engineering, Bogazici University.

Publications

Mehmet Emre, Peter Boyland, Kyle Dewey, and Ben Hardekopf. Taming the Spread

of Unsafe Pointers in Rust Programs. Under submission, 2022.
Mehmet Emre, Peter Boyland, Aesha Parekh, Ryan Schroeder, Kyle Dewey, and Ben

Hardekopf. Aliasing Limits on Translating C to Safe Rust. Under review, 2022.

Mehmet Emre, Ryan Schroeder, Kyle Dewey, and Ben Hardekopf. Translating C to

Safer Rust. Proc. ACM Program. Lang., 5(OOPSLA), October 2021. doi: 10.1145/

3485498. URL https://doi.org/10.1145/3485498.

LawtonNichols, Kyle Dewey,Mehmet Emre, Sitao Chen, and BenHardekopf. Syntax-

based Improvements to Plagiarism Detectors and Their Evaluations. In Proceedings
of the 2019 ACM Conference on Innovation and Technology in Computer Science Education,
pages 555–561. ACM, 2019.

Lawton Nichols,Mehmet Emre, and Ben Hardekopf. Fixpoint Reuse for Incremental

JavaScript Analysis. In Proceedings of the 8th ACM SIGPLAN International Workshop on
State Of the Art in Program Analysis, pages 2–7. ACM, 2019.

Lawton Nichols, Mehmet Emre, and Ben Hardekopf. Structural and Nominal Cross-

language Clone Detection. In International Conference on Fundamental Approaches to
Software Engineering, pages 247–263. Springer, 2019.
Mehmet Emre, Gürkan Gür, Suzan Bayhan, and Fatih Alagöz. Cooperativeq: Energy-

Efficient Channel Access Based on Cooperative Reinforcement Learning. In 2015 IEEE
International Conference on Communication Workshop (ICCW), pages 2799–2805. IEEE,

2015.

v

https://doi.org/10.1145/3485498

Abstract

Translating C to Safe Rust: Reasoning about Pointer Types and Lifetimes

by

Mehmet Emre

Infrastructure software is written in low-level programming languages like C to

allow precise control of resources. However, C lacks safety features to ensure memory

and thread safety. These safety issues result in serious security vulnerabilities or

unreliable behavior. Rust is a programming language that provides the same fine-

grained control with automatically-checked safety measures. Rust is being adopted by

some large C and C++ code bases such as Linux, Firefox, and Chromium. However,

proving a program’s safety to the Rust compiler requires non-local reasoning about

ownership and lifetimes of objects in the program so translating C programs to safe

Rust programs is nontrivial.

This thesis presents the challenges in translating C programs to safe Rust programs,

along with a categorization of different classes of unsafety. To kick-start automated

translation from C to safe Rust, I present a novel method to infer object lifetimes and

ownership using the compiler as an oracle. I then develop an evaluation methodology

tomeasure the potential impact of thismethod independent of other causes of unsafety

in the program. With this methodology, I show that the efficacy of this method (along

with any potential method to discover existing safe uses of objects in the program) is

limited by the precision of the type system when propagating unsafety information.

Then, I investigate the impact of more sensitive data flow analyses to curb the spread

of unsafety, and show that they can be encoded by transforming the program without

changing the type system. Overall, the findings of this thesis are that (1) the causes of

vi

unsafety are intertwinend, (2) using the compiler errors to derive lifetime information

is effective for discovering existing safe uses of objects, (3) imprecision of the type

system leads to excessive spread of unsafety (as lack of provable safety according to

the compiler), and (4) this can be mitigated by transforming the program to make the

results of a more precise analysis available to the type checker.

vii

Contents

Curriculum Vitae v

Abstract vi

1 Introduction 1

1.1 Permissions and Attributions . 12

2 Background and Related Work 13

2.1 Rust’s Ownership System . 13

2.2 Translating C to Rust . 19

2.3 Referring to Memory in Rust . 20

2.4 Characterizing Unsafe Code in Rust . 20

2.5 Reasoning about Rust’s Type and Ownership Systems 21

2.6 Pointer Analysis . 21

2.7 Inferring Pointer Safety in C . 24

3 Classifying and Understanding Unsafety 25

3.1 C Program Corpus . 26

3.2 Provenance of Unsafety . 29

3.3 Underlying Causes of Unsafety . 34

3.4 Observations and Discussion . 46

4 Deriving Lifetime and Ownership Using the Compiler as an Oracle 50

4.1 Connecting Function and Data Structure Definitions across Modules . . 53

4.2 Computing Lifetime Information Iteratively 57

4.3 Evaluation . 80

4.4 Conclusion . 86

5 Type Equality and Unsafety 91

5.1 Introducing Pseudo-Safety . 93

5.2 Evaluating Laertes in the Limit . 101

5.3 Type Equality as a Vector for Unsafety . 105

viii

5.4 Investigating Analysis Precision . 107

5.5 Curbing the Spread of Unsafety . 116

5.6 Conclusions . 120

6 Directionality to Tame Unsafety 122

6.1 Representing Directional Flow using Casts 123

6.2 A Type-safe Directional Data Flow Analysis 125

6.3 Pointer–Reference Aliasing Woes . 128

6.4 Evaluation . 130

6.5 Conclusions . 134

7 Conclusion and Future Work 136

ix

Chapter 1

Introduction

[C has] the power of assembly language and the convenience of ... assembly language.

– Attributed to Dennis Ritchie [33]

Rust is a programming language is intended to address the safety issues of C,

without compromising onC’s advantages. Like C, Rust is designed forwriting efficient

low-level software with precise control of memory. However, unlike C, Rust provides

strong static guarantees about memory and thread safety through a more elaborate

type and ownership system. However, not all usage patterns (such as shared mutable

data, and cyclic data structures) are expressible in pure safe Rust. So, Rust also contains

an unsafe fragment that allows expressing arbitrary data access patterns where the

programmer can control how objects are accessed. This fragment of language is gated

behind the unsafe keyword, and the programmer has to maintain the invariants the

Rust compiler expects when using unsafe Rust. As such, programmers should avoid

unsafe as much as possible, as Rust can degenerate into C with excessive unsafe

usage. Rust has been used for building operating systems, web browsers, and garbage

collectors [5, 28, 29] and it is being adopted into complex software projects with large

C/C++ code-bases such as Firefox [10], the Linux kernel [17, 30], and Android [42].

1

Introduction Chapter 1

So, Rust provides a safer alternative to C, as well as a gradual path to adopt

it through unsafe. There are also extensions to C with safety guarantees (such as

CCured [35] and Checked C [18]) that may seem attractive as safer alternatives to C,

given that their type systems build on top of C’s type system. However, they do not

guarantee memory and thread safety at the language level, and they do not prevent

use-after-free errors at compile time. Thus, we focus on Rust as a language that can give

compile-time memory safety guarantees as well as precise control of resources needed

in systems software.

A large amount of critical systems software predates Rust, and is written in low-

level languages without language-level memory safety guarantees such as C and C++

because of requiring explicit and fine-grained control of resources such as memory.

Lack of memory and thread safety has led to numerous critical bugs and security

flaws [1, 2, 16] costing both money and human lives [16, 27]. In light of Rust’s recent

development andpromise of safety, a natural question arises about thepossible benefits

of porting software from these unsafe languages to Rust, eliminating a large class of

potential errors. In fact, there has been some informal investigation into the question

of how effective Rust would be at fixing critical errors in existing C code (after all, not

all bugs and security flaws are due tomemory or thread unsafety). An anecdotal study

done on cURL, a popular data transfer utility written in C, conservatively estimates

that using Rust would eliminate 53 of the 95 known cURL security flaws as of 2021 [21].

Porting existing software to Rust requires a lot of effort, as all such code rewrites

do. Moreover, this problem is exacerbated by the impedance mismatch between the

sophisticated type system of Rust and that of C when it comes to reasoning about

thread and memory safety. Automated translation and refactoring tools would make

such a porting effort feasible. Such an automated translation tool would need to

analyze the relevant properties of C code and reason about potential concurrent uses

2

Introduction Chapter 1

of objects, then create a suitablewell-typedRust program that correctly expresses those

properties. Moreover, the original C program may not be completely “safe” (in the Rust

sense), as the C programmer most likely did not take into Rust’s notion of safety when

authoring the program.

Although push-button translation from C to safe Rust is an open problem, there are

existing tools that translate C code to unsafe Rust code as a first step (e.g., C2Rust [22],

Citrus [11], Corrode [40]). These translations are purely syntactic in nature, and they

preserve the semantics at a very low-level in order to emit Rust code that emulates

the original C code using unsafe constructs. As a result, the translated Rust programs

heavily use unsafe, hence these programs may have memory- or thread-safety issues

that would not exist in an idiomatic, safe Rust program. The expectation in these

tools’ workflow is for the programmer to iteratively refactor and rewrite the resulting

Rust program to arrive at a safe, idiomatic Rust program. The state of the art among

these translation tools, C2Rust, also comes with a refactoring tool to help automate

this process.

There are seven interleaving causes of unsafety that need to be disentangled and

resolved in order to automatically translate as much of the program to safe Rust as

possible, and that is beyond a single dissertation. So, in this dissertation, we (1) analyze

unsafety in Rust programs that mimic C programs, and (2) focus on a core cause of

unsafety tied to the difference between the type systems of C and Rust.

Rust’s memory and thread safety guarantees are based on the soundness of its type

system, specifically its reasoning about types and lifetimes to check for use-after-free

and data races at compile-time if possible, and inserting run time checks for things

that are not feasible to be verified at compile-time (array bounds). So, on a conceptual

level, unsafe features are manifestations of:

3

Introduction Chapter 1

1. Using objects without any lifetime, aliasing, or ownership information for the

compiler to check,

2. Deliberately circumventing the type system (via casts, unions, forging invalid

pointers via pointer arithmetic), and

3. Calling into code that the compiler does not have access to (e.g., inline assembly,

external function calls).

Only the first reason to need unsafety relates to what Rust’s type system brings,

whereas the remaining two relate to how the type system’s soundness can be compro-

mised. Also, all three of these causes ultimately stem from lack of information in the

original C program that the Rust compiler needs to prove safety. So, we focus on using

the safety features in the type system correctly, rather than patching various ways that

the programs circumvent the type system.

The core mechanism Rust’s type system provides to verify memory safety is the

borrow checker, which uses lifetime, borrowing, and ownership information in the

program to verify memory safety. So, we need to infer lifetime and ownership infor-

mation in order to make these programs1 safe. Thus, the aim of this dissertation is to

answer the following question:

Thesis question: What are the limits of automatically inferring lifetime and ownership

information for pointers that are already used safely?

Although investigating this question does not sufficiently give a way to automati-

cally translate C to safe Rust, it is a necessary problem because we need to understand

how the core language construct Rust brings to solve the memory safety issues, and

how the programs translated from C can be transformed to incorporate this language

1
Rust programs translated from C.

4

Introduction Chapter 1

construct. Besides addressing this problem, we also quantitatively and qualitatively

investigate how other causes of unsafety are used in programs translated from C in

order to inform future research projects that would complement this work.

Also, our goal is discovering existing safe usage of memory, and exposing it to the Rust

compiler rather than rewriting the programs at a high-level (as in, not preserving

statement-level semantics) in order to make them safe. Expressing complex memory

usage patterns in safe Rust may require introducing memory allocation abstractions

(such as arenas), opt-in run-time support for some of the objects (such as reference

collection), or novel data structureswith internallyunsafe implementations. The choice

of the most appropriate representation in is highly application-specific with different

design trade-offs (for example, edges in a graph data structure can be represented

with reference counted, run-time borrow-checked pointers, or by integer indices into

an arena of graph nodes; and each representation has its own trade-offs). Rather

than delving into application-specific workarounds for these cases, we focus on a

general approach to discovering lifetime and ownership information that can be used

at compile time to guarantee safety.

Overall, inferring lifetimes and ownership is an important first step because:

1. All other safe reference type in the language require reasoning about this infor-

mation.

2. It frees the programmer from the general case of reasoning about lifetimes, and

lets them focus on code that is likely to require application-specific workarounds

or higher-level changes to the algorithms and data structures used. Such cases

are likely to arise andmay point to actual safety bugs (as observed by Bryant [10]

when rewriting part of Firefox in Rust).

3. Finally, such a method can help isolate memory usage patterns encountered in

5

Introduction Chapter 1

practice yet not deemed safe by Rust to inform future language or library design

to support these use cases.

As we are interested in the potential for inferring lifetimes (and ownership) in

the limit, we need to quantify how much of the program is unsafe because of lack

of lifetime information, as well as how much of it is unsafe only because of lack of

lifetime information. We perform such a limit study. In this study, we precisely

define unsafe language features that appear programs translated from C, and analyze

their uses. Although there are similar studies in literature for Rust programs as a

whole [8, 20, 38], we perform a study to inform the process of translation from C to

Rust with the following differences: (1) we quantify unsafety in programs translated

fromC, and (2)we trackuses of unsafe features through function calls tounderstand the

spread of unsafety in this context. Overall, we find that there is a large overlap between

uses of different language features, that is functions tend to use more than one unsafe

language feature. We also come up with an overall ordering to tackle these features

that correlates with how often they appear in programs. The two most common

features we list (unsafe pointers, and mutable global variables) are unsafe because

they can violate the lifetime and aliasing model of Rust. Global variables cause this

because of concurrent mutable access to same value (so, they can be guarded behind

synchronization mechanisms to ensure safe concurrent access). Unsafe pointers (a.k.a.

raw pointers) as they are unsafe because of lack of lifetime information. Note that we

are using “unsafe” to mean “not provably safe from the compiler’s perspective”, the

actual usage patterns may be safe in practice. We further investigate how each unsafe

language feature is used. We observe that unsafe pointers are involved in a multitude

of unsafe behaviors, although lack of lifetimes is the underlying cause that needs to be

resolved for all pointers.

6

Introduction Chapter 1

We then approach inferring lifetime and ownership using the compiler as an oracle.

The key insight of our approach here is that we can start from an optimistic program

and send the program to the compiler, get the compiler errors, and derive the necessary

lifetime and ownership information from these errors, and repeat this process until we

reach an error-free program. In some cases, the program uses pointers in an manner

where the derived lifetime information shows a safety issue. For example, twomutable

references to an object may be alive at the same time, which can potentially cause a

data race (and Rust programs have to be thread-safe), so it is unsafe. In such cases, our

method promotes the relevant pointers to be unsafe, as there is no safe behavior we

can infer. We implement this method as a tool called Laertes. Overall, Laertes makes

87% of the eligible pointers (pointers that are unsafe only because of lack of lifetime

information) in our benchmarks. So, this is a promising first step to solve the lifetime

inference.

Although Laertes is effective on eligible pointers, only 11% of the pointers are

eligible—the remaining 89% of the pointers are unsafe because of other causes as well.

So, the evaluation of this method is subject to sampling bias. We are interested in its

efficacy in the limit, so that we can understand whether pointers are used in a different

way when other unsafe uses of pointers are also involved. As we are interested in

measuring the effectiveness of lifetime inference in isolation (without any interference

from other unsafe uses of pointers) for the whole program, we cannot use any partially

effective method to handle other uses of unsafe pointers (as not all pointers would be

eligible). We introduce an evaluation methodology dubbed pseudo-safety to make all

pointers in the program eligible for lifetime inference. The core idea behind pseudo-

safety is replacing causes of unsafety that are irrelevant to lifetime inference with

counterparts that preserve lifetime and ownership information. We carefully generate

these counterparts to mimic a local rewrite that would replace only the uses of these

7

Introduction Chapter 1

language featureswhile leaving the rest of the program intact. For example, we replace

all declarations of the same external function with a single stub that serves to connect

all call sites as calling the same function hence ensuring that the lifetime, ownership,

and safety information of the arguments in all call sites match. This stub represents as

an ideal replacement of the external function. We don’t need to fill in this stub because

we preserve only the compile-time behavior related to safe pointer use, but not the

run-time behavior, hence the name pseudo-safety. With pseudo-safety all pointers in

the program are eligible for lifetime inference, and Laertes is effective on only a small

number of pointers (only 12%) in this case. The naïve conclusion is that pointers used

unsafely inmore than oneway potentially have a very different lifetime and ownership

behavior. However, we empirically show that the underlying issue here is type equality

(more specifically, the lack of precision in the type system): the type system spreads

unsafe pointers (just like any other type) through an imprecise (equality-based, field-

based, context- and flow-insensitive) data flow analysis (e.g., whenever we have an

assignment like x = y;, we need to make sure that x and y have the same type, so we

end up with an equality-based analysis). Under this data flow analysis, for each of our

benchmarks, making 4 pointers unsafe is enough for unsafety to spread to half of the

pointers.

So, we find that unsafety of pointers in the program depends not only on specific

unsafe uses, but also how the unsafety “taint” spreads via the type system. This spread

puts a hard limit on our approach of incrementally inferring lifetimes, as a large part

of the pointers become unsafe as a result of imprecision of the type system. We define

two notions of unsafe pointers: if a pointer is unsafe because it is directly involved in

an unsafe use (e.g., its use is not valid according to the borrow checker rules), then

we call it an instigator; if a pointer p is unsafe only because there is a data flow from

an instigating pointer to p, then we call p an affected pointer. This terminology allows

8

Introduction Chapter 1

us to discuss how unsafety spreads from instigators to affected pointers. We can now

investigate two questions to understand and solve the spread of unsafety:

1. If we can use a more precise analysis to calculate the spread of unsafety, would

that reduce the number of affected pointers in the program?

2. Can we use the results of a more precise analysis without changing Rust’s type

system?

In order to answer the first question, we build data flow analyses of increasing

levels of precision along different axes (adding field-sensitivity, context-sensitivity,

and subset-based analysis), and measure the pointers affected for each pointer in the

program. Our findings show that adding context-sensitivity and switching to subset-

based analysis are effective for eliminating a lot of spurious data flowbetween pointers.

The second question is crucial for building a method without proposing changes

to Rust, as our ultimate goal is to translate programs from C to Rust, and any feature

proposals that complicate reasoning about unsafety are not likely to be adopted. We

approach the second question by proposing ways to transform the program to encode

the results of a more precise analysis in each dimension we evaluated:

• Emulating field-sensitivity by duplicating type definitions (so each typewill have

multiple versions with safe and unsafe pointers for each field).

• Emulating context-sensitivity using a similar trick: duplicating function defini-

tions for different signatures they may have (e.g., the first argument may be a

safe reference or an unsafe pointer), and applying defunctionalization to allow

using function pointers in this setting.

• Emulating a subset-based analysis by explicitly inserting casts from references to

pointers (so that unsafety taint does not flow against the direction data flow).

9

Introduction Chapter 1

The first two cases create a tension between safety and maintainability, as cloning all

type definitions or all functions would not be feasible for generating a program that

is going to be maintained. We leave the problem of identifying crucial types and

functions that need to be cloned to future work.

Finally, we implement our suggestion of inserting casts to emulate a subset-based

analysis, and evaluate it using pseudo-safety in order to show that the result a more

precise analysis can be encoded into the program to curb the spread of unsafety.

Although this transformation seems straightforward at a first look (just inserting a call

to .as_ptr() whenever we have a reference but a pointer is expected), we show that

one needs to be careful to ensure soundness of such a transformation:

• The original reference and the result of the cast alias, and using them both at the

same time is undefined behavior (UB) that did not exist in the original program.

• We consider only casts at a top-level, and a subset-based analysis not sound for

computing the correct types in the presence of nested pointers, and function

types.

In order to solve the first problem, we piggyback on Rust’s type system, and force

casts to consume the original object (the pointee) so no object can be access through

both safe and unsafe pointers. We fall back to an equality-based analysis for function

types and inner pointer types in nested pointers. Even with these limitations, we see

an 75% increase (from 12% to 21% of pointers) in the effectiveness of Laertes when

we introduce casts. So, increasing analysis precision is a way to contain the spread of

unsafe pointers and make lifetime inference handle a larger part of the program, and

just introducing casts is not enough to tame unsafety, and encoding results of more

precise analyses is needed.

In summary, we answer the question of discovering the limits of lifetime inference

10

Introduction Chapter 1

with the following research contributions: We identify and quantify the prevalence of

differentunsafe language features, andhowdifferent causes ofunsafepointers co-occur

to understand the potential of lifetime inference by itself. Then, we build an iterative

method to discover lifetime and ownership constraints from compiler errors, and show

that this method is effective on pointers that do not contain causes of unsafety besides

lack of lifetime information. Next, we build an evaluation methodology that hides

other causes of unsafety while maintaining the lifetime constraints we care about,

and evaluate the effectiveness of lifetime inference on all pointers in the program.

This evaluation shows that lifetime inference does not scale well when considering all

pointers, and we show that the underlying cause here is the spread of “accidental”

unsafety through the type system. We then conduct a limit study evaluating potential

impact of making the type system more precise (by keeping track of data flows more

precisely), and we propose methods to encode the results of a more precise analysis

by program transformation. Finally, we implement one of our proposals to show that

such an encoding is feasible and it can double the effectiveness of lifetime inference.

The remainder of this dissertation is structured as follows:

• A short background in Rust’s ownership system and related work (Chapter 2).

• A categorization of sources of unsafety that occur in programs translated from

C, and a qualitative and quantitative evaluation of these sources of unsafety to

chart which sub-problems about safety to focus on (Chapter 3).

• A method to derive lifetime, ownership, and aliasing information using the

compiler as an oracle, and an evaluation of this method (Chapter 4).

• An evaluation methodology based on automatically transforming the programs

to ignore certain classes of unsafety, to allow focusing on a single cause of un-

11

Introduction Chapter 1

safety, and to evaluate methods that work on a single cause independent of other

causes, and an investigation into the sensitivity of the data flow analysis induced

by the Rust type checker to show that the lack of precision in type checking causes

unsafety to spread like wildfire (Chapter 5).

• A method for inserting data flow barriers to the program in order to encode the

directionality of data flow, and to improve on the effective sensitivity of the Rust

type checker without changing the type checker (Chapter 6).

• Finally, concluding remarks along with suggestions for future work to comple-

ment and continue this research (Chapter 7).

1.1 Permissions and Attributions

1. The contents of Chapters 3 and 4 are the result of a collaboration with Ryan

Schroeder, Kyle Dewey and Ben Hardekopf, and has previously appeared as our

OOPSLA2021paper [19]. It is reproducedherewithupdates andamore in-depth

analysis, abiding by the license of that work (Creative Commons Attribution 4.0

International).

2. The contents of Section 2.1 is the result of a collaboration with Ryan Schroeder,

Kyle Dewey and Ben Hardekopf, and has previously appeared as part of the the

supplementary material for our OOPSLA 2021 paper [19]. It is reproduced here

with updates and a more in-depth analysis, abiding by the license of that work

(Creative Commons Attribution 4.0 International).

12

Chapter 2

Background and Related Work

2.1 Rust’s Ownership System

This section serves a short primer to how Rust handles ownership and borrowing.

Both of these features are central to Rust’s memory model, and enable it to statically

ensure memory safety in safe code without resorting to garbage collection at runtime.

Given that our work must work with Rust’s memory model closely, it is necessary

to have some understanding of Rust’s memory model in order to understand the

significance of our own work. That said, this section is intended only as a quick

introduction; readers curious for more details are directed to the online Rust book for

basics [26], as well as as a more formal alias-based formulation at [32].

2.1.1 Motivation

Rust’s memory model ensures memory safety statically, without resorting to po-

tentially expensive runtime memory management techniques like garbage collection.

In Rust, well-typed programs are memory-safe by construction. As with a garbage

collected language, users explicitly perform memory allocation, but do not explicitly

13

Background and Related Work Chapter 2

perform deallocation. Unlike with garbage collection, the Rust compiler statically in-

serts routines to deallocate heap-allocated memory when it is no longer needed. The

type system of Rust is designed in such a manner that the compiler statically knows

exactly where these memory deallocations need to be performed. This knowledge of

when to perform deallocation is based around ownership.

2.1.2 Ownership

By default, data is said to be owned in Rust. For example, consider the following

function definition f, which uses type Vec from the Rust standard library (representing

a vector):

1 fn f(v: Vec<i32>) {}

f is said to take ownership of v. This is indicated by the fact that v is directly of

type Vec<i32>. Whoever owns the data is ultimately responsible for deallocating any

heap-allocated data held. Deallocation implicitly occurs whenever the variable bound

to the data falls out of scope. With this in mind, any heap-allocated data held in v is

deallocated immediately after the call to f, as vwill no longer be accessible.

Within a scope, ownership can be transferred from one variable to another. For

example, consider the following code snippet:

1 fn example() {

2 let v1 = vec![1, 2, 3]; // creates a vector holding 1, 2,

3

3 let v2 = v1;

4 }

In this case, v1 initially holds the underlying vector. Ownership is then transferred

to variable v2. Because ownership is never transferred away from v2, v2 will have all

14

Background and Related Work Chapter 2

heap-allocatedmemory deallocated at example’s termination. Because ownershipwas

transferred away from v1, there is no similar deallocation performed for v1, beyond

typical stack deallocation of v1.

Ownership can also be transferred between scopes. For example, consider the

following:

1 fn identity(v: Vec<i32>) -> Vec<i32> { return v; }

In this case, like the prior f example, identity takes ownership over v. However,

because identity later returns v, it transfers ownership to identity’s caller. Any

heap-allocated memory bound to v then becomes the concern of identity’s caller.

2.1.3 Borrowing and Lifetimes

While the ownership model unambiguously allows the compiler to safely statically

deallocate all heap-allocated memory, it is nonetheless very restrictive. For example, if

you wanted to define a function that merely printed the contents of a vector, it would

need to transfer ownership back to the caller. This would mean having an unintuitive

type signature like:

1 fn print_all(v: Vec<i32>) -> Vec<i32> { ... }

With this in mind, the more data a function needs to do its job, the more data the

very same function needs to return. There are also negative performance implications

of ownership transfer, since barring compiler optimizations, it entails copying any

stack-allocated memory behind a variable.

To address these issues aroundownership transfer, Rust alsohas a concept knownas

borrowing. As the name suggests, data can be temporarily borrowed without changing

ownership. Data is borrowed through a reference, which bear similarity to references

in other languages. Borroweddata can be used like owneddata, with some restrictions.

15

Background and Related Work Chapter 2

One important restriction is that borrowed data cannot outlive the actual data being

borrowed. Using C/C++ terminology, Rust must ensure that there are no dangling

pointers to any allocated data.

To ensure that the underlying data being borrowed is always valid, Rust introduces

the concept of a lifetime. Lifetimes are type-level variables which abstractly define how

long the underlying data being borrowed will be in memory. For example, consider

the following code:

1 fn has_lifetime <’a>(v: &’a Vec<i32>) { ... }

Instead of having ownership of v transferred to has_lifetime, this instead borrows the

underlying Vec<i32> for lifetime ’a. Rust will ensure that the underlying Vec<i32> is

inmemory for the duration of the call to has_lifetime. Because has_lifetimemerely

borrows the Vec<i32>, there is nomemory deallocation of v performed; has_lifetime

does not own the vector, and so it is not has_lifetime’s responsibility to deallocate

the vector.

Like regular type variables, data structure definitions themselves can take lifetimes,

as with:

1 struct SomeData<’a, ’b> {

2 first: &’a i32,

3 second: &’b i32

4 }

With the above code inmind, Rustwillmake sure that no allocated instance of SomeData

will outlive anything it borrows. That is, the data referred to by first and secondwill

always be in memory at least as long as the SomeData data structure itself.

To show this in practice, consider the following example, which is rejected by the

Rust compiler:

16

Background and Related Work Chapter 2

1 fn rejected() {

2 let the_data;

3 let first_int = 1;

4 {

5 let second_int = 2;

6 the_data = SomeData { first: &first_int , second: &

second_int };

7 }

8 print!("{}’’, *the_data.second);

9 }

The above code is rejected by the Rust compiler, with an error message stating that

second_int does not live long enough. To understand why, first understand that each

block in Rust corresponds to a separate lifetime variable. That is, an enclosing scope

maps directly to object lifetimes. For speaking purposes, the outer scope of rejected

will be called ’a, and the inner scope (where second_int is declared) will be called ’b.

With this in mind, the_data has type SomeData<’a, ’b>, and it itself has lifetime ’a.

However, ’b does not live as long as ’a. As such, we have attempted to create a data

structure with a lifetime longer than its constituents, which is not permitted. As such,

Rust rejects the program. Thinking in terms of C/C++, this rejection makes sense -

second_int is allocated on the stack and subsequently deallocated after the_data is

initialized, so the_data.secondwould be a dangling pointer.

2.1.3.1 Restrictions

All borrows seen so far are immutable borrows, meaning that the underlying object

cannot be changed through these borrows. Furthermore, the underlying object may

17

Background and Related Work Chapter 2

not be changed at all while any immutable borrows are active. Similarly, Rust disallows

ownership transfers while any borrows are active. This can be statically checked at

compile time, as shown in the code below:

1 struct MyStruct {

2 first: i32

3 }

4

5 fn involves_borrows <’a>(datum: &’a MyStruct) -> &’a

MyStruct {

6 return datum;

7 }

8 fn performs_transfer(x: MyStruct) {}

9

10 fn main() {

11 let x = MyStruct { first: 42 };

12 let r = involves_borrows(&x);

13 performs_transfer(x);

14 print!("{}", r.first)

15 }

The above code fails to compile, as the the transfer performed by performs_transfer

is disallowed because reference r still refers to the same data structure. Specifically,

Rust tracks that x has an active borrow at the call to performs_transfer, disallowing

the call. As an aside, the subsequent use of r.first is required to get this code to

compile, as this forces the compiler to internally keep the borrow of x around after

the call to performs_transfer; effectively, Rust will permit the existence of a dangling

18

Background and Related Work Chapter 2

pointer, but not the access of a dangling pointer.

2.1.3.2 Immutable and Mutable Borrows

All prior borrow examples are based on immutable borrows, meaning the underly-

ing object cannot be changed through the borrow. Rust also supportsmutable borrows,

which use the mut reserved word, like so:

&’a mut Vec<i32>

The above snippet refers to a mutable borrow of a Vec<i32>, where the underlying

vector is in memory for at least ’a lifetime.

Mutable borrows work similarly to mutable borrows, with the following twists.

With immutable borrows, the same data may be borrowed multiple times in the

same context, as none of the borrows can change the underlying object. However,

with mutable borrows, only one such mutable borrow may be active at any time.

Furthermore, if a mutable borrow is active, all mutation must be done through the

mutable borrow, and no immutable borrows or ownership transfers are permitted.

While restrictive, these requirements prevent data races from occurring - all mutation

is very carefully tracked and made explicit in the types; it is not possible for data to be

modified “out from under you”, as it is in most languages.

2.2 Translating C to Rust

Citrus [11], Corrode [40], and C2Rust [22] all translate C code to Rust, albeit with

frequent usage of unsafe. C2Rust lacks any formal translation guarantees, so it is

additionally packaged with a cross-check tool, which compares the execution trace of

the original C program with the translated Rust program under the same input. The

cross-check tool is intended to test whether or not the translator produced a truly

19

Background and Related Work Chapter 2

equivalent Rust program. We [19] use the output of C2Rust, as well as some semantic

rules fromOxide [46], in order to generate Rust codewhich uses unsafe less frequently

than C2Rust alone. As a result, our work is also dependent on C2Rust’s cross-check

tool to ensure the correctness of the translation.

2.3 Referring to Memory in Rust

Rust supports two mechanisms to refer to memory: references and raw pointers.

References are carefully restricted so that their dereference is guaranteed safe. In

contrast, raw pointers are far less restrictive, but they can only be dereferenced within

codemarked unsafe. Rawpointers semantically correspond to C pointers, andC2Rust

unconditionally translates C pointers to raw pointers. Our work, in contrast, translates

C pointers to Rust references, where possible.

2.4 Characterizing Unsafe Code in Rust

We [19] classify and quantify unsafety in Rust programs translated from C by

C2Rust on a program corpus. They find that raw pointer dereferences account for

most uses of unsafe. They divide raw pointers into four overlapping categories: 1.)

pointers used in pointer arithmetic; 2.) void pointers; 3.) pointers used in external

APIs; and 4.) single-object pointers not involved in the other categories. They find

that most pointers fall into the fourth category, and so they focus on translating these

pointers into safe references. However, they do not safely handle pointer arithmetic,

whichwas the second-largest category of unsafe pointers. Handling pointer arithmetic

safely is the focus of our work.

Besides Rust programs translated from C, there have been several studies of un-

20

Background and Related Work Chapter 2

safety in the Rust ecosystem at large (e.g., [8, 20, 38]). The next most common causes

of unsafety according to both Evans et al. [20] and Astrauskas et al. [8] are raw pointer

dereferences and global mutable variable usage. Qin et al. [8] also report that the

most common (42%) purpose of unsafe usage is to reuse existing C code withminimal

modification, including code that performs pointer arithmetic or calls into external

libraries.

2.5 Reasoning about Rust’s Type and Ownership Sys-

tems

There are several Rust formalizations in the literature (e.g., [9, 25, 39, 46]). Among

these, theRustBelt project [25] describes amechanized formal semantics for Rust’smid-

level intermediate representation (MIR) called λRust . λRust has been used to derive the

verification conditions for safety of widely-used standard library abstractions using

unsafe, and to formally prove that the API they expose is a safe extension of the

language. λRust includes a complete Rust specification.

Prusti [7] is a verification tool built on top of Viper verification framework [34]. It

allows the user to specify verification conditions as annotations in Rust, and leverages

Rust’s type system to simplify the verification process.

MIRAI [12] is an industry-backed abstract interpreter for MIR that tries to verify

absence of panics, and custom verification conditions in an annotated Rust program.

2.6 Pointer Analysis

Pointer analysis is a static program analysis that determines the information about

which pointers may point to which objects, as well as whether certain pointers may

21

Background and Related Work Chapter 2

alias (point to the same object). It is a core program analysis used by many data flow

analyses including ours to reason about pointer values, building a call graph in the

presence of function pointers, etc. In our work, we use pointer analyses to determine

how unsafety spreads across the program, specifically to handle the whole program

at once with function pointers, and to derive unsafety signatures for nested pointers.

There has been a plethora of work in pointer analysis. Thework that is most related

to this dissertation is some of the seminal work on flow-insensitive pointer analysis,

along with specific improvements.

Andersen [4] presents a reduction from subset-based (also called directional in this

dissertation) flow-insensitive points-to analysis to an iterative fixpoint problem based

on transitive closure on a graph. Under Andersen’s analysis, the points-to set of a

pointer p subsumes the poins-to sets of all values assigned to p, without regard to the

control flow of the program, hence it is flow-insensitive. Andersen’s pointer analysis

runs in O(n3) time in terms of number of pointers in the program with standard

optimizations.

Steensgaard [41] presents a faster (in almost linear time) but imprecise pointer

analysis based on type equality. Under Steensgaard’s analysis, an assignment p :=

q in the program is interpreted as an equality constraint ptsto(p) = ptsto(q) where

ptsto denotes a mapping from pointers to their points-to sets, so it is equality-based.

As mathematical equality does not have a direction, Steensgaard’s analysis interprets

p := q and q := p as the same constraint whereas Andersen’s analysis distinguishes

between these two by deriving ptsto(p) ⊆ ptsto(q) for the former and the flipped

version of it for the latter.

Both of these analyses have been extended to be context-sensitive to reason about

the context (the call sites) a pointer occurs in, rather than . However, context-sensitive

whole program points-to analysis is not feasible in practice for large programs as it

22

Background and Related Work Chapter 2

slows down exponentially in terms of the length of the context.

Another parameter of interest for pointer analysis is field-sensitivity: whether

fields of a struct should be distinguished from each other. There are three levels of

field-sensitivity releveant to this work, in the order of increasing analysis sensitivity:

1. Field-based analysis: Under this mode, all accesses to the same struct field fld (e.g.

x.fld, (*y[0]).fld, ...) are mapped to a single variable for the purposes of

program analysis. In this mode, different fields of the same struct (or different

structs) are distinguished from each other but the same field of different object

are indistinguishable. This is the sensitivitymode induced byRust’s type system.

2. Field-insensitive analysis: Under this mode, objects are merged with their fields

(so, x and x.fld are indistinguishable), but field accesses to different objects are

distinguished. In a sense, this sensitivity level is the opposite of the sensitivity

level above. This sensitivity level is a common optimization in pointer analyses

as the next level can be too expensive, and the previous level is too imprecise.

However, field-insensitive analysis usually needs some refining in order to be

useful as it mixes pointers of different types as it merges fields.

3. Field-sensitive analysis: Under this sensitivity level, an object of a structure type is

distinguished both from its fields and all other structures in the program. Under

subset constraint-based systems, this is achieved through a constructor encoding

similar to the encoding presented below [3].

Pearce et al. [36] present a way to encode function arguments and parameters

in a subset constraint system that can express Andersen-style and Steensgaard-style

analyses. In Pearce et al.’s encoding, an n-ary function f is represented with a con-

structor λ(p1, . . . , pn, r) ⊇ f where the variables p1, . . . , pn denote the parameters of

23

Background and Related Work Chapter 2

the function hence are contravariant, and r denotes the return value of the function

hence is covariant. Each call site r = f(a1, ..., an) also corresponds to a construc-

tor λ(a1, . . . , an, r) ⊆ f where a1, . . . , an are the arguments at the call site, and r is

the location for the return value at the call site. Pearce et al. also discuss existing

work using this framework to encode precise field-sensitivity within this framework

by representing each struct value with a constructor.

2.7 Inferring Pointer Safety in C

CCured [35] is an extension of C with run time-checked (run time-safe) pointers. It

uses a undirectional (equality-based) analysis to classify pointers as checked vs. wild.

For checked pointers, it inserts dynamic nullability checks as well as bounds checks

for pointers involved in pointer arithmetic. Checked C [18] introduces casts backed

by possible runtime checks, where the casts assert related information like nullability

or array bounding. Machiry et al. [31] improve on CCured’s type inference algorithm

by identifying equality-based analysis as the cause for the spread of unsafety and

introducing casts at call sites to enforce boundaries between safe and unsafe pointers.

These casts are either enforced at run time, or manually verified by the programmer

to eliminate the runtime overhead. They implement their method on top of Checked

C. These works do not enforce complete memory safety and are not ownership-based

(so their safety guarantee is limited to only nullability and array bounds checking at

runtime), thus they are not directly applicable to the goal of translating C to safe Rust.

24

Chapter 3

Classifying and Understanding

Unsafety

[In] The Celestial Emporium of Benevolent Knowledge [...] the animals are divided into:

(a) belonging to the Emperor, (b) embalmed, (c) trained, (d) piglets, (e) sirens, (f) fabulous,

(g) stray dogs, (h) included in this classification, (i) trembling like crazy, (j) innumerables,

(k) drawn with a very fine camelhair brush, (l) et cetera, (m) just broke the vase, (n) from

a distance look like flies.

– Jorge Luis Borges, “The Analytical Language of John Wilkins”

Before tackling the challenge of translating C programs to safe Rust programs, we

need to define a notion of unsafety, understand what kind of unsafe behaviors Rust

programs translated from C, why the programmers use the unsafe language features,

their prevalence in the program, and finally what information we need to derive to

resolve each unsafe behavior. In this chapter, we investigate the various sources of

unsafety in Rust programs that have been translated from C using C2Rust.

In order to define unsafety in the context of translation from C, we fix a corpus of

C programs to analyze in Section 3.1. Then, we concretize our notion unsafety, and

25

Classifying and Understanding Unsafety Chapter 3

investigate the prevalence of each cause of unsafety, along with why they are used

in Section 3.2. Our categorization of unsafety follows the Rust language specification

while incorporating possible behavior in programs translated from C. Finally, we sum

up our discussions in this chapter in Section 3.4.

Our overall findings indicate that there is a large overlap between different causes

of unsafety, and we suggest the following order for tackling unsafety based on their

prevalence in our corpus: unsafe pointers, memory allocation (manual memory man-

agement), mutable global variables, external functions, unsafe casts, untagged unions,

and inline assembly. We postulate that unsafe pointers are a good starting point

because they are common, they don’t involve any non-Rust code (unlike external func-

tions), and reasoning about them would also build up to reasoning about allocations

(the second item we suggest).

While there are existing studies of unsafe code in the native Rust ecosystem [8,

38] our investigation is specifically about automatically translated Rust programs,

which may have a different distribution of unsafe code than Rust programs written by

developers.

3.1 C Program Corpus

Previous studies of unsafe Rust code have taken advantage of large repositories of

native Rust programs such as crates.io. There does not exist a large repository of

Rust code that has been translated from C, and so we must create our own corpus of C

programs. While there are many existing C programs to choose from, each translation

requires a fair amount of manual labor to correctly insert C2Rust in that C program’s

particular build process, and also C2Rust itself does not work on all C programs and

build environments.

26

Classifying and Understanding Unsafety Chapter 3

Table 3.1: The corpus of C programs, ordered by Rust lines of code. Programs coming

from the C2Rust manual are marked with bold. LoC = lines of code, not counting

comments or blank lines. The tulipindicators and robotfindskitten are abbreviated as

TI and RFK, respectively.

Program Domain C LoC Rust LoC Functions unsafe Functions
qsort Algorithms 27 39 3 3

libcsv Text I/O 1,035 951 23 23

grabc GUI Tool 224 994 7 6

urlparser Parsing 440 1,114 22 21

RFK Video games 838 1,415 18 17

genann Neural nets 642 2,119 32 27

xzoom GUI tool 776 2,409 11 10

lil Interpreters 3,555 5,367 160 159

snudown Markdown parser 5,002 6,088 92 92

json-c Parsing 6,933 8,430 178 178

libzahl Big integers 5,743 10,896 230 230

bzip2 Compression 5,831 14,011 128 126

TI Time series 4,643 19,910 234 229

tinycc Compilers 46,878 62,569 662 625

optipng Image processing 87,768 93,194 576 572

tmux Terminal I/O 41,425 191,964 1,371 1,370

libxml2 Parsing 201,695 430,243 3,029 3,009

Total — 413,428 851,674 6,773 6,694

27

Classifying and Understanding Unsafety Chapter 3

We have collected 17 open source C programs of various sizes and application

domains, as shown in Table 3.1. 11 of the programs came from the C2Rust manual [23]

(marked with bold in the table); the remaining six came from GitHub. We picked

programs from a variety of application domains, as described in the table. Table 3.1

shows that, on average, the translated Rust programs are 1.8× larger than their C

counterparts. Decreases in translated LoC arise because C2Rust removes obviously

dead or unreachable code. Increases in translated LoC come from macro expansion,

adding function declarations for functions included from the headers, translation

of increment and decrement operators1, and annotations such as #[no_mangle] and

#[repr(C)] to make the Rust code compatible with the C ecosystem.

Table 3.1 also shows that the vast majority of functions in the translated code

are marked unsafe. Specifically, all translated functions directly from the original C

program are marked unsafe, and only auxiliary functions generated and introduced

during the translation itself are marked safe. Although all functions directly coming

from C are conservatively marked unsafe by the translation, we observe that some do

not actually require the unsafe tag. In Section 3.2 we quantify how many functions

are unnecessarily marked unsafe by the translation. Furthermore, we characterize

different sources of unsafe and quantify how prevalent they are in the program.

3.1.0.1 Threats to Validity

Our corpus of C programs is limited in number because of the manual effort re-

quired to: (1) convert each C program to a corresponding Rust programwith necessary

adjustments to their respective build processes; and (2) reorganize the code (such as

unit tests) in a way that Cargo, the de-facto standard build system for Rust, can build

1
Rust does not have increment-and-return operators like ++x and assignments do not return the

left-hand side, so these operators are translated into multiple statements in Rust.

28

Classifying and Understanding Unsafety Chapter 3

the resulting Rust project reliably. The size of the corpus means that the percentages

we report may not reflect the percentages of a larger pool of C programs. We have

selected different C programs from a variety of domains to help increase the validity

of our corpus and to try to generalize results.

3.2 Provenance of Unsafety

The Rust Reference [45] defines the following sources of unsafety:

1. Dereferencing a raw pointer

2. Reading from or writing to a mutable global (i.e., static) or external variable

3. Reading from a field of a C-style untagged union

4. Calling a function marked unsafe (including external functions and compiler

intrinsics)

5. Implementing a trait that is marked unsafe

These categories are too coarse-grained for our purposes. In particular, Category 4

includes almost all calls to the other functions in the program, as nearly all functions

in the program are initially marked unsafe. Category 4 also includes the use of inline

assembly and unsafe casting, which we would like to separate from other sources of

unsafety for our study.

Wehave refined theofficial categories above intodistinct features, where each feature

reflects a particular unsafe feature in Rust. These features give us a clearer picture of

programs translated from C. Since none of the programs in our corpus implement any

unsafe traits (they only implement traits that can be derived by the compiler, which are

all safe), we do not consider Category 5 further. Programs in our corpus call external

29

Classifying and Understanding Unsafety Chapter 3

functions extensively (e.g., malloc), making external function calls (Category 4) a

major source of unsafe function calls. We count calls to malloc and free separately

from other external function calls, as we conjecture that most of the allocation-related

external calls can be converted to safe memory allocation mechanisms in Rust such

as Box::new. In our corpus, the only unsafe Rust standard library function called

is std::mem::transmute, used for reinterpreting/casting a value. We exclude calls

to std::mem::transmute when it is used for casting byte arrays to C-style character

arrays (which is safe under the assumption made by C2Rust that a character is 8 bits).

The resulting features that we measure for our corpus are as follows, where the text in

bold indicates the column names in our tables:

• RawDeref: dereferencing a raw pointer;

• Global: reading from, writing to, or making a reference to a mutable global

(static) or external variable;

• Union: reading from a field of a C-style untagged union;

• Allocation: direct external function calls to malloc and free;

• Extern: calling an external function other than a function defined in another

module in the same program,2 malloc, or free; or making an indirect call via a

function pointer;3

• Cast: unsafe casting using std::mem::transmute;

• InlineAsm: using inline assembly.

2
C2Rust uses extern declarations to import functions from other modules in the same program.

These functions can be imported directly as non-external functions after the changes described in

Section 4.1, so we do not count these functions as external functions in our study.

3
An indirect call could be calling an external function, and just like an extern call the compiler can

only see the function signature of the callee but not the body.

30

Classifying and Understanding Unsafety Chapter 3

We collect our data on a function-level because (1) C2Rust marks functions unsafe

rather than inserting unsafe blocks,4 and (2) existing work on quantifying unsafe

behavior of Rust programs in general [8] aggregates the relevant information on a

function level because different developers may prefer to use different granularities

for unsafe blocks.

An important omission in our categories of unsafety is that of direct calls to unsafe

functions (i.e., the original Category 4 above). As previously mentioned, this category

is not useful for our translated corpus because almost all function calls are to unsafe

functions, andwhatwe are interested in iswhy the functions are unsafe. For this reason,

we count sources of unsafety differently from any existingwork: a function is unsafe in

relation to some category above not only if it directly contains unsafe code relevant to

that category, but also if it directly or transitively calls a function that is unsafe due to

that category. In other words, we count a function as unsafe for a category if executing

that function can exhibit unsafe behavior relevant to that category. To calculate this,

we build a call graph and propagate unsafe behavior from callees to their transitive set

of callers. We use a transitivemetric since our ultime goal is to see howmany functions

the compiler could prove safe if a specific cause of unsafety is fixed.

For each unsafe feature, we collect the following information for our study: 1. How

many unsafe functions in the program use the unsafe feature, directly or transitively

(i.e., how many functions need the unsafe feature), 2. How many unsafe functions

in the program use only this unsafe feature, 3. How many times a use of the unsafe

feature appears in the program text, and 4. The total size (in lines of code) of unsafe

functions that directly or transitively use the unsafe feature

To get the feature counts for item 3 in the above list, we first convert the translated

4
Except when generating shims for the main function, which cannot be marked unsafe. These shims

extract the program arguments then immediately call the main function from the C program.

31

Classifying and Understanding Unsafety Chapter 3

Rust programs to Rust High-level IR (HIR)5, an AST-based representation. From there,

we count individual features in the HIR in the following ways: for pointer derefer-

ences, we count the number of raw pointer dereference nodes6; for inline assembly, we

count the number of inline assembly nodes; for interaction with mutable or external

globals, we count how many times these variables are used (read from, written to, or

taken a reference of) in the source code.; for reading from a union, we count each field

access involving a union, unless it is immediately on the left-hand side of an assign-

ment; and for memory allocation, external functions, and unsafe casting, we count the

number of static call sites to the relevant functions.

Table 3.2 lists how many times each source of unsafety statically appears for each

program in our corpus. We observe that there are two sources which do not appear

across many programs, namely C-style unions (which appear only in larger programs)

and inline assembly (which is only used in one program). Table 3.2 shows that themost

common source of unsafety is raw pointer dereferencing, which is eight times more

common than the next most common source (globals), followed closely by external

function calls. The number of direct calls to malloc and free (Alloc) was occasionally

surprisingly low, as with libxml2; upon observation of libxml2’s codebase, it uses

custommemory allocation functions almost everywhere, limiting the number of static

allocation sites our analysis could find.

Table 3.3, in contrast to Table 3.2, takes a function-level approach, counting the

number of functions directly or transitively affected by each category of unsafety. We

record functions that are uniquely affected by a single category of unsafety (under the

5
HIR is used internally in the Rust compiler, and is close to initial AST obtained after expanding

macros, type checking, and normalizing loops and conditionals. We chose to use HIR because it

provides type information needed by our analyses and it is close to the source code.

6
At theminimum, a static analysismust consider all dereferences to ensure the safety of rawpointers.

As such, analysis cost is expected to increase with the number of dereference nodes, making this an

interesting feature to track.

32

Classifying and Understanding Unsafety Chapter 3

Table 3.2: How many times different categories of unsafety appear in each corpus

program. The meaning of each column is explained in Section 3.2.

Benchmark Union Global InlineAsm Extern RawDeref Cast Alloc

qsort 0 0 0 0 10 0 0

grabc 6 15 0 31 21 0 0

libcsv 0 2 0 35 174 4 0

RFK 0 127 0 87 24 0 2

urlparser 0 1 0 122 60 43 55

genann 0 164 0 188 339 3 5

xzoom 15 455 0 76 172 0 2

lil 0 10 0 149 1668 11 62

snudown 0 19 0 104 842 0 9

json-c 101 93 0 208 1843 17 30

bzip2 0 700 0 424 3764 1 14

TI 0 108 0 352 1847 84 9

libzahl 0 430 29 63 2457 0 43

tinycc 613 2552 0 465 5632 31 2

optipng 82 1361 0 816 6062 37 43

tmux 74 769 0 2707 21658 161 599

libxml2 499 3571 0 4593 52546 15 15

Total 1390 10377 29 10420 99119 407 890

33

Classifying and Understanding Unsafety Chapter 3

∃! columns) and those that are affected by multiple categories of unsafety including

this one (under the ∃≥2 columns). The ∃≥2 columns will count a function multiple

times, once for each category it is affected by. Functions which weremarked unsafe by

the translation but nonetheless are devoid of unsafe behavior are totalled in the false

positives (FP) column; weobserve that 6%of functions fall into this category. Tables 3.2,

and3.3 showRawDeref, Global, andExtern to be the biggest sources of unsafe behavior,

typically in that order. However, while RawDeref is heavily overrepresented in terms

of sheer usage (Table 3.2), at the function level it comparesmuchmore closely to Global

and Extern (Table 3.3). From the standpoint of trying to make more functions safe,

this is an important observation to make, as it shows that RawDeref is not much more

important than Global or Extern.

3.3 Underlying Causes of Unsafety

We now investigate the behaviors in the original C programs that lead to each

category of unsafety. Some categories of causes are obvious and uninteresting: mu-

table globals (Global) and dynamic memory allocation (Allocation) are needed in C

programs for creating long-lived objects that are accessible from different parts of the

program; inline assembly (InlineAsm) is used in only one of the programs in our

corpus (libzahl) for architecture-specific optimizations. We examine the remaining

categories in more detail below.

3.3.1 Raw Pointers

We inspected the translated corpus programs and how they use raw pointers in

detail. We recognize five distinct reasons that a program might have for using a raw

pointer:

34

Classifying and Understanding Unsafety Chapter 3

Table 3.3: Number of functions affected by each category of unsafety (a functionmay be

counted multiple times if affected by multiple categories). FP denotes false positives:

functions that do not contain any unsafe behavior but are marked unsafe by C2Rust.

The column labels are explained in Section 3.2.

Program Union Global InlineAsm Extern RawDeref Cast Alloc FP

∃! ∃≥2 ∃! ∃≥2 ∃! ∃≥2 ∃! ∃≥2 ∃! ∃≥2 ∃! ∃≥2 ∃! ∃≥2

qsort 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0

grabc 0 3 1 4 0 0 0 4 1 5 0 0 0 0 0

libcsv 0 0 1 1 0 0 0 9 13 22 0 4 0 0 0

urlparser 0 0 0 14 0 0 0 20 0 17 0 1 0 19 0

RFK 0 0 0 15 0 0 1 15 0 7 0 0 0 2 1

genann 0 0 0 14 0 0 1 24 0 21 0 13 1 18 2

xzoom 0 1 1 10 0 0 0 9 0 8 0 0 0 4 0

lil 0 0 2 73 0 0 1 134 14 148 0 52 1 100 2

snudown 0 0 1 37 0 0 0 63 19 90 0 0 0 34 1

json-c 0 62 10 49 0 0 4 114 24 144 0 49 1 51 11

bzip2 0 0 3 79 0 0 7 85 23 82 0 3 2 26 6

libzahl 0 0 0 115 0 111 0 114 90 230 0 0 0 110 0

TI 0 0 0 13 0 0 1 104 74 175 0 73 1 16 49

tinycc 0 286 5 492 0 0 8 498 54 577 0 244 1 358 30

optipng 0 57 4 297 0 0 14 371 126 487 0 57 7 141 29

tmux 0 569 9 710 0 0 9 1030 244 1328 0 489 1 653 5

libxml2 0 198 28 2220 0 0 39 2359 369 2740 0 1156 0 1268 183

Total 0 1176 65 4143 0 111 85 4953 1054 6081 0 2141 15 2800 319

35

Classifying and Understanding Unsafety Chapter 3

• The raw pointer appears as part of the public signature of an API implemented

by the program. This is a common occurrence in the programs in our corpus

becausemost of them (except lil and RFK) are either libraries or contain libraries.

• The raw pointer is obtained via custom memory allocation (i.e., calling malloc).

These raw pointers could be converted to safe references if we replace malloc

with Rust’s safe memory allocation and compute suitable lifetime information

for them.

• The raw pointer is obtained via a cast to or from void*. In all cases this rea-

son turns out to be the result of an idiomatic C method for overcoming C’s

lack of generics and implementing polymorphism. These raw pointers could

be converted to safe references by introducing generics or traits to implement

polymorphism.

• The raw pointer is passed as an argument to, or returned from, an external

function call. These raw pointers can only be converted into safe references by

replacing the external call.

• The raw pointer is used in pointer arithmetic. Because arrays in C decay to

pointers, this reason captures most array accesses (unless the array has a fixed

size known at compile time). Rust does not allow pointer arithmetic on safe

references, but these raw pointers could be converted to safe references if we can

convert the pointer arithmetic into safe array slices.

In our data collection we group the first two categories above into a single category

named Lifetime because converting these raw pointers into safe references requires

computing the same information for both categories and does not involve much in-

vasive code transformation beyond changing the pointer declarations and inserting

36

Classifying and Understanding Unsafety Chapter 3

lifetime information. Note that deriving the lifetime information is needed for making

pointers safe in all categories, so Lifetime specifically denotes pointers that do not

fall into any other category. The remaining categories are named VoidPtr, ExternPtr,

and PtrArith respectively. For each category of raw pointer we collect the following

information, using the same methodology as for Section 3.2:

1. Number of declared pointers involved in that category (Table 3.4);

2. Number of dereferences of pointers in that category that appear in the code

(Table 3.5);

3. Number of unsafe functions that use pointers from that category (Table 3.6).

A pointer may be contained in multiple categories (e.g., a pointer returned by

malloc that undergoes pointer arithmetic and is then passed to an external function).

As in Table 3.3, we split our counts into pointers that uniquely belong to a particular

category (∃!) and those that belong to that category but also others (∃≥2). A raw pointer

may be involved in multiple overlapping causes, so the sum of the other columns is

greater than the Total column for all three table. Because the Lifetime category

contains only pointers not involved in other categories we only give the ∃! column for

it. For counting the number of unsafe functions in Table 3.6 we only consider those

functions for which raw pointers are the only reason for their unsafety; that is, we do

not consider functions that use global variables, unsafe cast, inline assembly, or read

from a C-style union. “Using” a pointer means any one of declaring (as a parameter

or in the function body) or dereferencing the pointer. As a reminder, we consider a

function to use a pointer either if the function does so directly, or calls (directly or

transitively) a function that uses the pointer.

To determine how the pointers are being used we implemented and executed a

flow-insensitive, field-based taint analysis based on Steensgaard-style pointer analysis

37

Classifying and Understanding Unsafety Chapter 3

Table 3.4: Raw pointer declarations, grouped by category. ∃! and ∃≥2 are explained in

Section 3.2. Lifetime category contains only unique (∃!) causes by definition.

Program VoidPtr PtrArith ExternPtr Lifetime Total

∃! ∃≥2 ∃! ∃≥2 ∃! ∃≥2 ∃!
qsort 0 0 2 0 0 0 2 4

grabc 0 0 1 0 5 0 7 13

libcsv 7 10 0 7 2 3 18 37

urlparser 0 70 0 70 4 70 5 79

RFK 0 0 1 0 1 0 0 2

genann 0 61 0 62 6 62 5 73

xzoom 0 24 1 25 3 25 0 29

lil 1 314 60 316 10 317 50 438

snudown 0 159 2 161 47 156 31 244

json-c 13 227 1 227 9 211 41 297

bzip2 43 89 47 70 9 89 37 227

libzahl 9 324 114 322 3 319 7 457

TI 15 41 724 41 4 41 82 866

tinycc 18 1,100 16 1,094 24 1,084 191 1,352

optipng 12 1,016 121 987 51 1,013 207 1,407

tmux 265 3,550 17 3,311 177 3,554 622 4,645

libxml2 451 8,332 171 7,729 152 8,336 839 9,950

Total 834 15,317 1,276 14,422 507 15,280 2,142 20,116

[41] and Rust’s type system [45]. We chose a flow-insensitive, equality-based analysis

because all values that flow into a variable and from the variable are necessarily of

the same type, and if any one of those values is used for a reason on our list then that

reason forces that variable and all of the places its value flows to be a raw pointer. We

consider a pointer to belong to a particular category (Lifetime, VoidPtr, ExternPtr,

or PtrArith) if the pointer may contain a value that is potentially obtained from a

source relevant to that category (e.g., the result of a pointer arithmetic operation, the

return value of an external call, a value of type * const void or * mut void) or if

its value may flow into a sink relevant to that category (e.g., pointer arithmetic, or an

argument to an external call, or a value that is cast to a void pointer).

Tables 3.4 to 3.6 contain the results of our analysis. Tables 3.4 and 3.5 can be used

38

Classifying and Understanding Unsafety Chapter 3

Table 3.5: Raw pointer dereferences, grouped by category. ∃! and ∃≥2 are explained in

Section 3.2. Lifetime category contains only unique (∃!) causes by definition.

Program VoidPtr PtrArith ExternPtr Lifetime Total

∃! ∃≥2 ∃! ∃≥2 ∃! ∃≥2 ∃!
qsort 0 0 6 0 0 0 4 10

grabc 0 0 2 0 4 0 15 21

libcsv 0 26 0 26 0 17 148 174

urlparser 0 2 0 2 0 2 58 60

RFK 0 0 24 0 0 0 0 24

genann 0 312 22 313 4 313 0 339

xzoom 0 37 23 114 12 105 23 172

lil 0 895 127 897 8 897 636 1,668

snudown 0 489 35 493 185 474 129 842

json-c 9 1,639 39 1,646 56 1,433 93 1,843

bzip2 1,704 1,192 173 627 11 1,195 679 3,764

libzahl 1 1,220 1,183 1,220 22 1,191 31 2,457

TI 426 184 1,237 184 0 184 0 1,847

tinycc 28 4,525 122 4,522 9 4,491 946 5,632

optipng 5 5,212 203 5,043 36 5,208 606 6,062

tmux 1,002 17,687 131 16,449 345 17,694 2,486 21,658

libxml2 986 45,764 372 41,475 235 45,771 5,175 52,546

Total 4,161 79,184 3,693 73,011 927 78,975 11,025 99,109

39

Classifying and Understanding Unsafety Chapter 3

Table 3.6: Functions using raw pointers in a given category. ∃! and ∃≥2 are explained

in Section 3.2. Lifetime category contains only unique (∃!) causes by definition.

Program VoidPtr PtrArith ExternPtr Lifetime Total

∃! ∃≥2 ∃! ∃≥2 ∃! ∃≥2 ∃!
qsort 0 0 2 0 0 0 1 3

grabc 0 0 0 0 1 0 1 2

libcsv 1 5 0 3 0 4 12 18

urlparser 0 5 0 5 0 5 2 7

robotfindskitten 0 0 0 0 0 0 2 2

genann 0 6 0 6 0 6 3 9

xzoom 0 9 0 5 0 8 0 9

lil 1 62 9 61 0 62 6 78

snudown 0 47 0 47 2 47 6 55

json-c 6 50 0 50 1 47 20 77

bzip2 7 28 2 19 0 28 4 41

libzahl 0 79 9 79 0 79 2 90

tulipindicators 2 3 96 3 0 3 45 146

tinycc 3 76 5 75 0 65 35 119

optipng 4 175 12 171 5 177 62 260

tmux 26 483 2 467 7 482 31 549

libxml2 20 532 6 492 7 535 210 779

Total 70 1,560 141 1483 23 1,548 441 2,241

40

Classifying and Understanding Unsafety Chapter 3

to show that 77% of raw pointer declarations, and 80% of raw pointer dereferences use

pointers that are (sometimes indirectly) involved inmultiple causes (these percentages

are obtained by subtracting all unique causes from the total in each table). The highest

unique cause of raw pointer declarations and dereferences is the Lifetime category

(9.5% and 10.0% respectively). However, the most prominent cause may depend on

the program. For example, the highest contributing categories (in all 3 metrics) are

VoidPtr in bzip2 which uses void * for polymorphism in order to share code between

encoding and decoding stages, and PtrArith in TI which is a time series analysis

library using and passing around dynamically allocated arrays. Finally, 70% of the

functions use raw pointers for more than one reason, and 20% of these functions use

pointers stemming from only Lifetime.

3.3.2 External Function Calls

We break this investigation down into two questions: (1) How prevalent are calls

to specific external functions? (2) Which external functions have the highest impact on

safety? To answer these questions, we focus on the external functions and the internal

functions that are, directly or transitively, made unsafe due to calls to those external

functions. These internal functions may be unsafe for other reasons as well, but for

this investigation we ignore other causes of unsafety.

3.3.2.1 How prevalent are the external functions across benchmarks?

It would be useful to know if there are a small set of external functions that ap-

pear across many benchmarks, making them an attractive target for replacement.

There were 409 external functions used in total across all of our benchmarks. We

observe that 73% of the external functions are unique to a particular benchmark,

41

Classifying and Understanding Unsafety Chapter 3

Number of benchmarks an external function is used

To
ta

l s
ta

tic
 c

al
l s

ite
s

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 9

Figure 3.1: Number of calls to external functions based on howmany benchmarks use

them

and that no external function is used by more than 9 (out of 12) of our benchmarks.

Only 11 functions (namely fprintf, strcmp, memset, printf, strlen, strncmp,

exit, memcpy, realloc, fopen, and fclose) are used inmore than half of the pro-

grams. These 11 functions account for 43% of all external function calls, indicating

that looking at the functions used across many programs might be a useful heuristic

for picking which functions to replace with safe alternatives first.

Most of these functions deal with stringmanipulation or I/O. Figure 3.1 divides the

external calls into bins based on howmany benchmarks use them, then counts for each

bin how many static call sites to a function in that bin appear across the benchmarks.

For example, the column labeled ’2’ shows that there were 245 static call sites to an

external function that appears in exactly two benchmarks. The total calls to functions

used in exactly 8 benchmarks is much higher due to fprintf, which is called from 858

places across the benchmarks. We can see that the external functions listed above as

common across 7 or more benchmarks account for 43% of all external function calls.

42

Classifying and Understanding Unsafety Chapter 3

3.3.2.2 What are the external functions with the highest impact on unsafety?

Another useful statistic for prioritizing external functions is their relative impact

on unsafety. In order to measure this factor, we investigate:

• The number of static call sites for each external function

• In how many functions an external function is called (directly or transitively)

Figure 3.2a shows an optimal ordering of external functions that maximizes cu-

mulative static call sites. Overall, only seven external functions need to be replaced

by safe alternatives to eliminate more than half (52%) of the external function calls.

The most common functions in this ordering are similar to the most common func-

tions reported above. The ten most commonly called functions we encounter in order

are: fprintf, strcmp, memset, printf, memcpy, strlen, snprintf, __assert_rtn,

__ctype_toupper_loc. Here, __assert_rtn is the C library function used in imple-

menting the assert macro which can be replaced by Rust’s safe assert! macro, and

__ctype_toupper_loc is an implementation detail of the toupper function in Cwhich

has a safe counterpart in the Rust standard library.

The other statistic we focus on is the external functions that make the highest

number of functions unsafe (that is, the external functions that are called from themost

functions, directly or transitively). Figure 3.2b shows howmany transitive callers each

external function has, both as absolute value and percentage. The ten extern functions

that have most transitive callers in our benchmarks in order are: memset, memcpy,

__xmlRaiseError, strlen, snprintf, pthread_mutex_lock, pthread_mutex_unlock,

pthread_mutex_init. Each of these functions contribute to the unsafety of 32.5–54.6%

of the extern-calling functions. Here, __xmlRaiseError and the pthreads-related

functions are used only by our largest benchmark, libxml2. __xmlRaiseError is

43

Classifying and Understanding Unsafety Chapter 3

an external function because of how libxml2 is linked: some features such as error

reporting are linked from support modules that are compiled separately from the

main program. This fact shows that an effort to make the whole benchmark project

link in an idiomatic way for a Rust program can reduce pervasive external calls.

Some of the most-called external functions above are specific to a single bench-

mark. To assess the impact of external functions that are not specific to one bench-

mark, we applied the same analysis restricted to external functions used in more than

one benchmark. Figure 3.2c shows how many transitive callers each external function

used in more than one benchmark has. The 10 most called external functions with

this restriction in order are: memset, memcpy, strlen, snprintf, fprintf, memmove,

__errno_location, memcmp, strchr, strcmp. These functions contribute to the un-

safety of 19.9–54.6% of the functions. Each function in this list is called in at least 4

benchmarks, except __errno_location, which is called in 3 benchmarks and it comes

from accessing the errno variable in the C standard library. This list is similar to the

previous list for the prevalence question in that it consists mainly of string manipula-

tion, copying/initializing arrays in memory, and I/O.

3.3.3 C-style Unions

We manually inspected all C-style unions declared in the programs in our corpus.

Most of these were defined by the C developers with accompanying tag data in order

to manually implement a tagged union. In some programs, the tag information was

not stored with the union data but rather inferred from invariants that hold at a given

program point. libxml2 contains declarations for pthreads-related unions used in

external calls; however, these unions are used only by pthreads functions and never

read directly by the Rust program so they do not contribute to unsafety. Apart from

44

Classifying and Understanding Unsafety Chapter 3

Number of external functions

S
ta

tic
 c

al
l s

ite
s

(c
um

ul
at

iv
e

%
)

0%

20%

40%

60%

80%

100%

50 100 150 200

(a) Cumulative number of calls in program

text for external functions, x-axis is or-

dered from the functions with most call

sites to least

Extern functions

N
um

be
r o

f t
ra

ns
iti

ve
 c

al
le

rs

0

500

1000

1500

2000

2500

0%

20%

40%

60%

50 100 150 200

(b)Number of transitive callers each extern

function has, ordered by most to least.

Extern functions (used by more than 1 benchmark)

N
um

be
r o

f t
ra

ns
iti

ve
 c

al
le

rs

0

500

1000

1500

2000

2500

0%

20%

40%

60%

25 50 75 100 125 150 175

(c) Number of transitive callers each extern

function used by more than one bench-

mark has, ordered by most to least.

Figure 3.2: Impact of external function calls on unsafety.

45

Classifying and Understanding Unsafety Chapter 3

these, none of the unions in our programs are passed to or obtained from external

functions, and we conjecture that they can be replaced with safe tagged unions (Rust

enums) to reduce theuseofC-styleunions in theprogram. However, this transformation

would yield highly un-idiomatic Rust code which would check the type of the union

twice in the cases where there is an explicit tag that the C program checks.

3.3.4 Unsafe Casting

We inspected the calls to mem::transmute generated byC2Rust. There are two uses

of unsafe casting in the translated corpus programs: (1) converting 8-bit byte arrays

to C character arrays (different from Rust strings) which corresponds to 79% (456 out

of 576) instances of unsafe casting, and (2) converting between function pointers7 and

void * which corresponds to the remaining 21% (120) unsafe casts. The first option

is safe on architectures using 8-bit unsigned characters (most modern architectures),

and can be put behind a wrapper function.

3.4 Observations and Discussion

FromTable 3.3, we can see thatmost functions are affected bymultiple categories of

unsafety: for each category, the number of functions uniquely affected by that category

is 0–1% of the total number of functions affected by that category, with RawDeref being

an outlier at 16%. Unions, inline assembly, and casts never appear by themselves at all.

These numbers indicate that making translated Rust programs safer is a multi-faceted

problem, in that fixing a single category of unsafetywill notmake a large impact on the

number of unsafe functions. Only by fixing multiple categories can we hope to make a

7
Function pointers are represented in Rust as optional references rather than raw pointers, so casting

them directly to and from raw pointers is unsafe.

46

Classifying and Understanding Unsafety Chapter 3

significant difference. It is also possible that division into finer categories would yield

a categorization which is less inter-dependent, though we believe these categories are

sound, given that they are rooted in the sources of unsafety defined directly by the

Rust developers.

Because an effective method for making translated Rust programs safe needs to

handle multiple categories of unsafety, an interesting question is how to prioritize

which categories to handle. To answer this question, we graph the cumulative impact

of fixing categories highest-to-lowest according to the following heuristic order of

impact: raw pointer dereference, memory allocation, extern calls, access to globals, unsafe

casts, access to unions, inline assembly. This ordering was selected by searching through

all possible orderings and finding the one where each added cause had the highest

added impact in terms of the cumulative number of functions made safe. We then

adjusted this ordering bymoving allocations to the second place from the fourth place,

as allocations are a source of raw pointers with a simple fix (i.e., rewriting them to

create a new Vec or Box).

To assess the potential of solving these problems in this order, we calculate the

cumulative impact of how many unsafe functions become safe as each of these cate-

gories of unsafety are eliminated. Figure 3.3 shows the results of this calculation. We

include both the results for all functions in the programs in our corpus, and the result

for the four largest programs in order to demonstrate the variability of the results. In

this graph we include the functions unnecessarily marked unsafe. The results on the

graph indicate that, in order to make more than half of the functions safe, we need

to handle the four most common sources in our list. Also, the the graph (along with

the tables) shows that the impact of unsafe casts and C-style unions vary considerably

depending on the program.

An important issue for translating C to safer Rust is how the translation can derive

47

Classifying and Understanding Unsafety Chapter 3

Source of unsafety

%
 o

f F
un

ct
io

ns
 m

ad
e

sa
fe

0.00

0.25

0.50

0.75

1.00

RawDeref Alloc Extern Global Cast Union InlineAsm

Total optipng tinycc libxml2 tmux

Figure 3.3: Cumulative percentage of functions made safe by fixing the given unsafety

category. The “Total” line shows this number for all functions across all programs.

the necessary information required to produce verifiably safe code. Ultimately, un-

safety stems from the fact that the compiler does not have enough information about a

piece of code (e.g., the underlying types in the case of void pointers, or the code being

executed in the case of external functions). While some unsafety is likely unavoidable

(e.g., unsafety needed to implement amemory allocator), other unsafety is rooted inC’s

lack of language features. For example, C’s untagged unions could be safety replaced

with tagged unions, and certain uses of void pointers could be safety replaced with

generics. In all cases except external functions and internal assembly, the translator

would have access to the code being executed and thus at least in theory could use

static analysis to derive the information required to make the translated program safe.

However, someCprogramswould require a fairly deep analysis and rewriting strategy

that operates at a higher level than just translating the direct operational semantics of

the program.

For example, a C program that uses a pointer-based graph data structure cannot

be trivially translated to Rust because Rust’s affine type system cannot represent such

48

Classifying and Understanding Unsafety Chapter 3

a data structure. Rust does have mechanisms for representing graphs like this (using

alternative data structures or using hand-verified unsafe code in the Rust standard

libraries), but translating the C program to use those mechanisms requires a more

holistic view of the code. Similarly, we have to account for the different abstractions

that the two languages use. Idiomatic safe Rust code and safe Rust code translated

directly from C can look very different because of the abstractions that Rust and the

Rust standard library provide. For example, safe code translated fromCmayuse while

loops and indexing to go over arrays and other data structures whereas an idiomatic

Rust programwould use mutable and immutable iterators and higher-order functions

such as map for the same purpose.

So, “low-level” translation approaches may leave some of the program unsafe

because the original program may contain inherently unsafe parts, as it is not written

with Rust’s notion of safety in mind. So, another interesting research direction is

exploring how unsafety spreads throughout the program in general (as opposed to

focusing on specific causes of unsafety as we did here) to also answer questions about

effectiveness of such incomplete methods. We are going to investigate this problem

later in Chapter 5.

Nevertheless, translating C to safer Rust is a worthwhile goal and, we believe, a

reasonable endeavour to undertake. We show in Chapter 4 a first attempt at doing

so that targets one particular source of unsafety with good success. Addressing the

remaining sources of unsafety, and the issues discussed above, will provide a rich vein

of research problems for some time to come.

49

Chapter 4

Deriving Lifetime and Ownership

Using the Compiler as an Oracle

In this chapter we describe a first attempt to automatically translate a C program into

a safer Rust program, building on top of the C2Rust syntactic translation from C to

completely unsafe Rust. While our study in Chapter 3 shows that addressing only

a single category of unsafety is insufficient for removing the majority of unsafety in

translated programs, we nonetheless need a starting point. Since we observe that raw

pointer dereferences are the biggest sole contributor to unsafety, and furthermore that

rewriting raw pointers to safe references requires resolving ownership and lifetime

information, we decided to start with addressing the Lifetime category. Lifetime

will have an immediate impact on some programs, and provide much-needed lifetime

information to reason about other forms of unsafety. Thus, our goal is to translate a

subset of the raw pointers in the Lifetime category to safe references.

A raw pointer can be converted into a safe reference if, in the resulting rewritten

program, the Rust compiler can prove that the reference guarantees a single owner and

can also derive the appropriate lifetime for the object being referred to. One possible

50

Deriving Lifetime and Ownership Using the Compiler as an Oracle Chapter 4

approach would be to implement a static analysis for either the original C program

or the translated unsafe Rust program to compute this information; however, the

drawbacks of such anapproach are: (1) designing and implementing an efficient, useful

analysis that can reason about aliasing and lifetime information in conformance with

Rust’s sophisticated type system is highly non-trivial; and (2) even if the implemented

analysis can prove safety, that doesn’t matter unless the Rust compiler can also prove

safety, i.e., the analysis must be tuned to be no more precise than the Rust compiler.

Our key insight is that we can piggy-back on top of the Rust compiler and allow it to

derive the information we need to infer which Lifetime raw pointers can be made

safe. To do so, we first optimistically rewrite the unsafe Rust program to convert all

of the relevant raw pointers into safe references, making optimistic assumptions about

mutability, aliasing, and lifetimes. This optimistic version is very unlikely to compile—

but the errors that the Rust compiler derives while attempting to compile it allow us

to refine our initial optimistic program into a more realistic version. By iterating this

process in a loop, we essentially use the Rust compiler as an oracle to continually

refine the program until it passes the compiler. For this first attempt we do not try to

introduce any additional memory management mechanisms (e.g., reference counting)

that might allowmore raw pointers to become safe, focusing purely on converting raw

pointers into safe references with the same memory representation and performance

characteristics; future work will investigate these other possibilities.

During our translation, we assume that any pointers passed to an API are valid

pointers (null or a valid reference to an object) if the program dereferences them,

because dereferencing an invalid pointer would result in undefined behavior in both C

and Rust. Therefore, these raw pointers could be converted to safe references without

changing the defined program behavior, if their use does not invalidate Rust’s borrow

checker rules.

51

Deriving Lifetime and Ownership Using the Compiler as an Oracle Chapter 4

Our method consists of two stages after the C2Rust translation of the original C

program:

1. ResolveImports. Connect the definitions and uses of types and functions across

modules, and remove unnecessary unsafety andmutabilitymarkers (Section 4.1).

This stage effectively emulates what a C linker does to merge definitions, and

remove unnecessary externdeclarations. C2Rust also provides a similarmethod

based on its knowledge of C header files to merge all declarations that come from

the same header to a module.

2. ResolveLifetimes Determine initial lifetimes to convert unsafe raw pointers into

safe references then iteratively rewrite the program to resolve lifetime inference

and borrow checking errors (Section 4.2). This stage uses our key insight of using

the Rust compiler as an oracle to discover lifetime and ownership constraints.

In the rest of this chapter, we use a running example to demonstrate each step of

our technique. Figure 4.1 shows the initial C program which implements a binary

search tree. Figure 4.2 shows the result of running C2Rust on the C program. Our

technique uses this translated Rust program as an input.

The rest of this chapter is structured as follows:

• We give a description of ResolveImports along with the aforementioned running

example in Section 4.1.

• We give a description of ResolveLifetimes along with the same running example,

and the formal rewrite rules we use in Section 4.1.

• We evaluate these methods on the same set of benchmarks we used in Chapter 3

in Section 4.3.

52

Deriving Lifetime and Ownership Using the Compiler as an Oracle Chapter 4

• Finally, we conclude with a summary of our evaluation results and potential

directions and challenges for future work in Section 4.4

4.1 Connecting Function and Data Structure Definitions

across Modules

The original C program may consist of multiple compilation units (e.g., Figure 4.1

has two: bst.c and main.c). C2Rust translates each compilation unit separately into

its own Rust module (e.g., Figure 4.2 has bst.rs and main.rs). However, unlike C,

all Rust modules in a program are compiled together in the same compilation unit.

Because C2Rust translates each C compilation unit separately, the translated modules

contain (1) duplicate data structure declarations from shared header files; and (2)

functions declared as extern because they are defined in a different module, even

though the definitions are actually available during compilation. In Figure 4.2, note

that main.rs contains a duplicate declaration of node_t and declares both find and

insert as extern functions. All calls to declared extern functions must be marked

unsafe, regardless of the fact that the functions are not truly extern. The result is

that, even if we manage to make find and insert safe in the bst.rs module, main_0

must remain unsafe because it contains calls to those functions and they were declared

extern in the main.rsmodule.

The immediate solution is to remove the extern declarations and replace themwith

imports from themodules inwhich those functions are defined. However, doing so can

cause a type error if the functions use a data structure that has been duplicated across

modules. Rust’s type system is nominal, and these duplicated definitions are treated

as separate types. In Figure 4.2 the type bst::node_t and the type main::node_t are

53

Deriving Lifetime and Ownership Using the Compiler as an Oracle Chapter 4

1 // bst.h: BST node definition
2 typedef struct Node {
3 Node* left;
4 Node* right;
5 int value;
6 };
7

8 Node* find(int value, Node* node);
9 void insert(int value, Node* node);

10

11 // bst.c: BST implementation
12 #include "bst.h"
13

14 Node* find(int value, Node* node) {
15 if (value < node->value && node->left) {
16 return find(value, node->left);
17 } else if (value > node->value && node->right) {
18 return find(value, node->right);
19 } else if (value == node->value) {
20 return node;
21 }
22 return NULL;
23 }
24

25 void insert(int value, *Node n) {
26 // Implementation omitted for brevity.
27 }
28

29 // main.c: program entry point
30 #include "bst.h"
31

32 int main() {
33 Node* tree = malloc(sizeof(Node));
34 tree->value = malloc(sizeof(int));
35 *(tree->value) = 3;
36 insert(1, tree);
37 insert(2, tree);
38 *(find(3, tree)->value) = 4;
39 return 0;
40 }

Figure 4.1: A C program implementing a binary search tree. We omit the implemen-

tation of insert for brevity.

two different types; because the formerly extern functions are now imported and use

the duplicated type, there is now a type error in the example program. In order to fix

this issue, we need to detect and deduplicate these data structure declarations. After

54

Deriving Lifetime and Ownership Using the Compiler as an Oracle Chapter 4

1 // bst.rs
2 use std::os::raw::c_int;
3

4 #[derive(Copy,Clone)]
5 pub struct Node {
6 pub left: *mut Node,
7 pub right: *mut Node,
8 pub value: c_int,
9 }

10

11 pub unsafe fn find(mut value: c_int, mut node:
12 *mut Node) -> *mut Node {
13 /* ... */
14 }
15

16 pub unsafe fn insert(mut value: c_int, mut node:
17 *mut Node) { /* ... */ }
18

19 // main.rs
20 use std::os::raw::c_int;
21 extern "C" {
22 fn find(mut value: c_int, mut node:
23 *mut Node) -> *mut Node;
24 fn insert(mut value: c_int, mut node:
25 *mut Node);
26 }
27

28 // duplicate definition of Node
29 #[derive(Copy,Clone)]
30 pub struct Node {
31 pub left: *mut Node,
32 pub right: *mut Node,
33 pub value: c_int,
34 }
35

36 pub unsafe fn main_0() -> int { /* ... */ }

Figure 4.2: The Rust program produced from Figure 4.1. Function bodies, main, and
main_0 are omitted for brevity, as are compiler directives for C compatibility (e.g. for

disabling name mangling, ensuring C ABI, and structure field alignment).

this step, we remove unnecessary mutmarkers and unsafemarkers. For our example,

the only unnecessary mut markers are in the arguments of find and insert. All the

unsafemarkers in the example code are still necessary due to rawpointer dereferences.

Figure 4.3 shows our example after this process.

55

Deriving Lifetime and Ownership Using the Compiler as an Oracle Chapter 4

1 // bst.rs
2 use std::os::raw::c_int;
3

4 #[derive(Copy,Clone)]
5 pub struct Node {
6 pub left: *mut Node,
7 pub right: *mut Node,
8 pub value: c_int,
9 }

10

11 pub unsafe fn find(value: c_int, node: *mut Node) -> *mut Node {
12 if value < (*node).value && !(*node).left.is_null() {
13 return find(value, (*node).left)
14 } else {
15 if value > (*node).value && !(*node).right.is_null() {
16 return find(value, (*node).right)
17 } else if value == (*node).value {
18 return node
19 }
20 }
21 return 0 as *mut Node;
22 }
23 pub unsafe fn insert(value: c_int, node: *mut Node) { /*...*/ }
24

25 // main.rs
26 use std::os::raw::c_int;
27 use bst::{Node, insert, find};
28

29 pub unsafe fn main_0() -> int {
30 let mut tree = malloc(::std::mem::size_of::<Node>()) as * mut Node;
31 (*tree).value = malloc(::std::mem::size_of::<c_int >()) as * mut

c_int;
32 *(*tree).value = 3;
33 insert(1, tree);
34 insert(2, tree);
35 *(*find(3, tree)).value = 4;
36 return 0;
37 }

Figure 4.3: The Rust program from Figure 4.2 after deduplicating struct definitions

and converting extern functions to imports. The unnecessary mutability annotations

have been removed from the function arguments.

56

Deriving Lifetime and Ownership Using the Compiler as an Oracle Chapter 4

cfg ← ⊥
ComputeTaintAnalysis(cfg)
ComputeStructLifetimes(cfg)
loop

RewriteProgram(cfg)
errors ← RunRustCompiler()
if errors = ∅ then Halt.

fixes ← ResolveErrors(errors)
cfg ← cfg t fixes
if fixes promotes a location to owned or raw then

ComputeTaintAnalysis(cfg)
ComputeStructLifetimes(cfg)

Figure 4.4: Our algorithm for ResolveLifetimes, the parts of our method after merging

struct definitions and resolving extern functions.

4.2 Computing Lifetime Information Iteratively

The core idea behind how we discover lifetime constraints in ResolveLifetimes

(Figure 4.4) is starting with an optimistic version of the program, and discovering the

lifetime constraints iteratively. The core data structure we use to represent the infor-

mation gained from the compiler errors is configurations. We discuss configurations

at the beginning of this section, then we are going to explain how we generate the

initial program (Section 4.2.2); demonstrate how we iteratively resolve the compiler

errors and realize the changes in configurations as rewrites (4.2.3); and finally analyze

the complexity of our algorithm, give a termination guarantee, and discuss potential

optimizations 4.2.4.

Our algorithm uses the lattice of configurations described in Figure 4.5. A configu-

ration is a mapping from program locations to the kinds of pointers they are converted

to (borrowed, owned, or raw), along with corresponding lifetime constraints. A con-

figuration maps program locations (i.e., variables, parameters, return values, struct

fields, and expressions) to the kinds of pointers they should have. In our representa-

57

Deriving Lifetime and Ownership Using the Compiler as an Oracle Chapter 4

Configuration = (Location→ PtrKind)× (Function× LifetimeVar→ P (LifetimeVar))
PtrKind = {borrowed, owned, raw}where borrowed @ owned @ raw
Location ::= x | e | param f n | return f | access tfld

f ∈ Function, t ∈ TypeName, n ∈ N, x ∈ Variable, e ∈ Expr

Figure 4.5: The lattice of configurations representing the fixes we apply based on

compiler errors. LifetimeVar denotes lifetime variables. Variable and Expr denote the

variables and the expressions in the program. TypeName represents a struct name,

and access tfld denotes the field-based location for accessing the field fld of values of

type t. P is the powerset operation.

tion of locations, we use HIR IDs used by the Rust compiler to represent expressions

(the set Expr) using unique identifiers. This allows us to keep track of any arbitrary

expression involved in a borrow conflict, and promote its pointer kind to owned or raw

in a lightweight manner. The lattice of configurations are ordered lexicographically

(first, according to how theymap locations to pointer kinds, then if that mapping is the

same, according to the set of lifetime constraints they have). Each of the maps in the

configurations are defined in the structurally in the classical way: f @ g if f(x) @ g(x)

for all elements x in the domain of f and g. We use the subset lattice when ordering

sets of lifetime variables. Because there are finitely many locations, pointer kinds, and

lifetime variables in a given program, the lattice of configurations is finite.

Using the locations described in Figure 4.5, we implement field-based, context-

insensitive taint analyses. The data flow constraints for our taint analyses are derived

from the typing, type equivalence and subtyping constraints inOxide (Figures 4, 5, and

6 in [46]). We use the type equivalence constraints to propagate which locations in the

program should have a raw pointer using a Steensgaard-style alias analysis [41], and

use the subtyping constraints to propagate which locations should be owned using an

Andersen-style analysis [4].

58

Deriving Lifetime and Ownership Using the Compiler as an Oracle Chapter 4

We implement the initial optimistic rewrite (Section 4.2.2), and the iterative rewrite

(Section 4.2.3) as a single algorithm, known as ResolveLifetimes (Figure 4.4). The

subprocedure ComputeTaintAnalysis computes the taint analysis from Section 3.3.1

and a subset-based variant of it. The rest of the functions in the algorithm are described

in Sections 4.1, 4.2.2 and 4.2.3. ⊥ is used as the initial configuration, wherein all

locations are mapped to borrowed pointers, and there are no lifetime constraints.

Then, based on the current configuration and analysis results, we rewrite the program

using the information on which pointers are borrowed, owned, or raw, and similarly

add any inferred lifetime constraints to function signatures. This rewrite process is

described further in Sections 4.2.2 and 4.2.3, and we give the precise rewrite rules in

Section 4.2.3.2. We then run the compiler on the rewritten program. If there are any

compiler errors, we compute a set of fixes (represented as a configuration) based on

found borrow conflicts and unproven constraints. We then update our configuration,

re-run the analyses if anypointer kinds have changed, and iteratively repeat the process

until no compiler errors result. As an optimization, if no pointerwas promoted thenwe

re-use the old analysis results because we do not need to propagate any new rawness

or ownership information.

4.2.1 Computing Fixes from Compiler Errors

We get three kinds of errors from the compiler: (1) lifetime constraints that could

not be derived, (2) object references which outlive the object they reference (use after

move), and (3) concurrent access involving mutable borrows (borrow conflicts). The

compiler infers types and lifetimes locally in the type checking stage, and if it can

successfully infer the lifetimes (there are no errors of the first kind) then it runs the

borrow checker which reports errors of the latter two kinds. The specific errors we get,

59

Deriving Lifetime and Ownership Using the Compiler as an Oracle Chapter 4

and the fixes we apply, are detailed in this section. We apply the fixes by adding them

to the new configuration we compute (called fixes in Figure 4.4). The error numbers

refer to the ones in Rust Compiler Error Index [13].

The following list details the casewhere the compiler cannot infer or prove a lifetime

constraint. We resolve these errors by adding the constraint in question to the new

configuration.

• Lifetimes inside two types mismatch (E0308). The compiler tries to type check

τ1 <: τ2 but it cannot prove the constraint because some lifetimes in τ1 and τ2

need to have an outlives relationship. The specific missing outlives relationships

are reported as lifetime constraints of the form ’a: ’b.

• Compiler cannot infer an appropriate lifetime because of unsatisfied constraints

(E0495). This is similar to E0308, where the lifetime ’a of an object does not

match the expected lifetime ’b. So, we resolve it by adding ’a: ’b.

• Lifetime mismatch (E0623). Similar to E0308, but the compiler reports it when

comparing lifetimes during borrow checking instead of comparing two types

during type checking.

• Given value needs to live as long as ’static (E0759). We add ’a: ’static for

each lifetime ’a that appears in the type.

The following errors indicate that a reference outlives the object it borrows. In

these cases, we mark the reference as owned.

• A reference to a local variable is returned (E0515). Herewemake the return value

of the associated function an owned pointer.

• A reference is used after the referred variable is dropped (E0716), i.e. use-after-

free. We make the reference an owned object so that the referred value is moved

60

Deriving Lifetime and Ownership Using the Compiler as an Oracle Chapter 4

and lives long enough.

The following errors indicate borrow conflicts. To address them, we promote the

relevant reference to be a raw pointer.

• Two mutable references to an object are alive at the same time (E0499).

• A mutable and an immutable reference to an object are alive at the same time

(E0502).

In the cases E0716, E0499, E0502 above,wefind theHIR Id of the relevant expression

e, and add e 7→ raw or e 7→ owned to fixes, depending on the error.

4.2.2 Initial Optimistic Rewrite

The next stage is to rewrite the program into a version with no unsafe annotations

due to Lifetime raw pointers (unsafe annotations due to other categories of unsafety

will remain). Henceforth wewill just refer to “raw pointers”; this term should be taken

as Lifetime raw pointers. The rewriting process is optimistic in the sense that it will

likely result in a non-compilable program. The first step of this stage is to rewrite raw

pointer declarations (e.g., data structure fields and function parameters) into reference

declarations. Specifically, we convert the raw pointers into optional references in order

to account for null pointer values: Option<&T>, Option<&mut T> and Option<Box<T>>

represent immutably borrowed, mutably borrowed, and owner pointers, respectively.

We assume for this stage that all declarations are borrowed; the third, iterative stage

may later convert them into owners instead.

When declaring a reference in function signatures or data type definitions, we

must provide its lifetime information. This information includes the lifetime of the

reference itself and also the information for any referenced types that are themselves

61

Deriving Lifetime and Ownership Using the Compiler as an Oracle Chapter 4

parameterized by lifetime. Our goal for this stage is to generate lifetime information

that minimally constrains the declarations, in order to start with the most optimistic

lifetime assumptions.

For each raw pointer data structure field we provide a lifetime based on its type,

using adifferent lifetimevariable for each type.1 Wealsofill in lifetime typeparameters,

using the same lifetime variables for all instances of the same type. Mutably borrowed

references are not copyable or cloneable, so we remove the #[derive(Copy,Clone)]

annotation from any affected data structures. For our example program, the end result

of rewriting the node_t data structure is:

1 pub struct Node<’a1, ’a2> {

2 pub left: Option <&’a1 mut Node<’a1, ’a2>>,

3 pub right: Option <&’a1 mut Node<’a1, ’a2>>,

4 pub value: Option <&’a2 mut c_int>,

5 }

One case this example does not show is propagating the parameters of field types

to the struct itself (e.g., if we had a struct Tree { inner: Node }, then Tree would

also need two lifetime parameters in order to represent the rewritten version of Node.

However, this creates a problem for recursive types: if we continuously derived new

lifetimes for the instances of Node inside Node, we would get an infinite list of lifetimes,

we detect self-referential loops and generate only one lifetime for each self-referential

loop. We discuss rewriting struct definitions in away that handles recursive data types

in Section 4.2.2.1.

Once the data structures are rewritten, we rewrite the function signatures in accor-

dance with the new declarations, again making all raw pointers into borrows. Unlike

data structure fields, for function signatures we use a unique lifetime for each param-

1
We could also give each field a unique lifetime, but this type-based heuristic works well empirically

and makes it easy to handle recursive type declarations.

62

Deriving Lifetime and Ownership Using the Compiler as an Oracle Chapter 4

eter. For our example, the rewritten function signatures for find and insert are:

1 fn find<’a1, ’a2, ’a3, ’a4, ’a5, ’a6>(value: c_int, mut node: Option <&’

a1 mut Node<’a2, ’a3>>) ->

2 Option <&’a4 mut Node<’a5, ’a6>>;

3 fn insert<’a1, ’a2, ’a3>(value: c_int, mut node: Option<&’a1 mut Node<’

a2, ’a3>>);

The signature of main_0 does not change, since it does not involve any pointers.

Next we rewrite function bodies, which entails four types of rewrites:

1. We rewrite any call to malloc that allocates a single object (as opposed to an array)

into a call to Box::new, a standard Rust function for safe heap allocation. We

determine which malloc calls to rewrite by checking for calls that are translated

from malloc(sizeof(T)) in the C program.

2. We delete any call to free if we can replace all pointers that are freed at that call

site with safe references. If we cannot replace all such pointers, then we need to

keep the call to free so we roll back any pointers reaching this free that were

previously rewritten.

3. We rewrite any equality comparisons between references, which by default are

value equality checks in Rust (i.e., checking equality of the objects being ref-

erenced), into a reference equality check (i.e., checking whether two references

refer to the same object). This rewrite preserves the intended semantics of the

original program.

4. Dereferences must be rewritten to unwrap the optional part of the reference

(recall that we replaced the raw pointer with an optional reference). Unwrap-

ping the option consumes the original Option object because Option<T>, unlike

raw pointers, is not automatically copyable. Therefore, we do the following to

63

Deriving Lifetime and Ownership Using the Compiler as an Oracle Chapter 4

1 pub fn borrow<’b, ’a: ’b, T>(p: &’b Option<&’a mut T>) -> Option<&’b T>
{

2 p.as_ref().map(|x| &**x)
3 }
4 pub fn borrow_mut <’b, ’a: ’b, T>(p: &’b mut Option<&’a mut T>)
5 -> Option<&’b mut T> {
6 p.as_mut().map(|x| &mut **x)
7 }

Figure 4.6: Helper functions which assist in rewriting pointers to references. They

allow borrowing an optional reference for a shorter lifetime, where ’a is the original

object’s lifetime and ’b is the borrowed object’s lifetime.

avoid consuming the original object in the contexts that it is not assigned to or

deliberately consumed:

• When using an immutable reference, we clone it so the original object is not

destroyed.2

• When using a mutable reference, we make a mutable or immutable borrow

depending on the context it is used in. We describe how we create these

borrows below.

To help with re-borrowing mutable references, we use the helper functions borrow

and borrow_mut defined in Figure 4.6. For each pointer p in the original program that

we converted to a mutable reference, we perform the following rewrites:

• If p is passed to a mutable context (a context requiring a &mut T), we rewrite p to

borrow_mut(p).

• if p is passed to an immutable context (a context requiring a &T), we rewrite p to

borrow(p).

2
We could immutably borrow the reference. However, cloning an immutable reference is a trivial

operation (as Option<&T> implements Copy), and the resulting reference has the same lifetime. Cloning

avoids needing more helpers like borrow.

64

Deriving Lifetime and Ownership Using the Compiler as an Oracle Chapter 4

• if p is dereferenced, we rewrite *p as **p.as_mut().unwrap() to get a mutable

reference and immediately dereference it. If it is dereferenced in an immutable

context, we use as_ref instead of as_mut. Note that unwrap, as_mut, and as_ref

all come from the Rust standard library.

We rewrite null pointers into None, i.e., the Option value that does not contain

anything. We similarly rewrite the null pointer check p.is_null() into p.is_none().

Figure 4.7 shows our example program after all of these transformations.

4.2.2.1 Rewriting struct definitions: field lifetimes and default values

When generating an initial set of lifetimes for a data structure definition, our goal is

to make the data structure be as unconstrained as possible. As such, we initially start

with all references being mutably borrowed instead of owned. We may convert them

on a per-field basis inwhen fixing the errors fromRust’s borrow checker (Section 4.2.3).

Each field is generally given a distinct lifetime. However, we observe that fields of the

same type in the same struct generally come from the same source, and therefore we

heuristically give these the same lifetime.

Another place where we need to introduce lifetime variables in a struct body is the

lifetime parameters of other structs in the definition. For example, consider these two

structs:

1 struct Foo {

2 value: * const i32, // 32-bit signed integer

3 };

4

5 struct Bar {

6 foo: * const Foo,

7 };

65

Deriving Lifetime and Ownership Using the Compiler as an Oracle Chapter 4

1 // bst.rs
2 use std::os::raw::c_int;
3

4 pub struct Node<’a1, ’a2> {
5 pub left: Option <&’a1 mut Node<’a1, ’a2>>,
6 pub right: Option <&’a1 mut Node<’a1, ’a2>>,
7 pub value: Option <&’a2 mut c_int>,
8 }
9 impl<’a1, ’a2> std::default::Default for Node<’a1, ’a2> { /* ... */ }

10 pub fn insert<’a1, ’a2, ’a3>(mut value: c_int,
11 mut n: Option <&’a1 mut Node<’a2, ’a3>>) {

/* ... */ }
12

13 pub fn find<’a1, ’a2, ’a3, ’a4, ’a5, ’a6>(mut value: c_int, mut node:
Option <&’a1 mut Node<’a2, ’a3>>)

14 -> Option<&’a4 mut Node<’a5, ’a6>> {
15 if value < **(**node.as_ref().unwrap()).value.as_ref().unwrap() &&

!(**node.as_ref().unwrap()).left.is_none() {
16 return find(value, borrow_mut(&mut (*node.unwrap()).left))
17 } else {
18 if value > **(**node.as_ref().unwrap()).value.as_ref().unwrap()

&& !(**node.as_ref().unwrap()).right.is_none() {
19 return find(value, borrow_mut(&mut (*node.unwrap()).right))

20 } else { if value == **(**node.as_mut().unwrap()).value.as_mut
().unwrap() { return node } }

21 }
22 return None;
23 }
24

25 // main.rs
26 use std::os::raw::c_int;
27 use bst::{Node, insert, find};
28

29 pub fn main_0() -> int {
30 let mut tree = Some(Box::new(Node::default()).as_mut());
31 **(**tree.as_mut().unwrap()).value.as_mut().unwrap() = 3;
32 insert(1, borrow_mut(&mut tree));
33 insert(2, borrow_mut(&mut tree));
34 **(**find(3, borrow_mut(&mut tree)).as_mut().unwrap()).value.as_mut

().unwrap() = 4;
35 return 0;
36 }

Figure 4.7: The Rust program from Figure 4.3 after converting raw pointers into

references.

66

Deriving Lifetime and Ownership Using the Compiler as an Oracle Chapter 4

When rewriting the struct Foo, we introduce a lifetime parameter for it, we also

need an extra lifetime parameter in Bar to pass to Foo:

1 struct Foo<’a> {

2 value: & ’a i32,

3 };

4

5 struct Bar<’a, ’b> {

6 foo: & ’b Foo<’a>,

7 };

A naive approach to handle this case is to just add extra lifetime parameters for

each struct in the definition that takes lifetime parameters. However, this would not

work for recursive data types such as Node from our running example (Figure 4.2).

We propose a general algorithm to generate lifetimes for arbitrary mutually recursive

definitions with the following constraints on the generated lifetimes:

• All fields of the same type (or more generally, all fields of the types involved

in the same mutually recursive type definition) in a definition share the same

lifetime variable.

• All instances of the same struct in a definition share the same lifetime parameters.

For example, in the definition of node_t, both instances of node_t for the left and

the right subtree use the same lifetime parameters ’a1 and ’a2.

• All references in a nested pointer are assigned the same lifetime. For example,

* const * const T is converted to Option<&’a Option<&’a T>>.

Our algorithm is shown in Figure 4.8. The first step we take is building a points-to

graph of all structs in the program and to label the edges with fields. A struct Foo

points to another struct Bar if it has a (possibly nested) pointer field that points to a

67

Deriving Lifetime and Ownership Using the Compiler as an Oracle Chapter 4

Foo object. In our algorithm, once we compute the strongly-connected components

(SCCs), Each SCC corresponds to a set of mutually recursive struct definitions. After

building the SCC points-to graph, we aggregate the labels from the original graph,

and also add the source nodes for each label. For each struct definition, we collect the

lifetime names on all edges reachable from that struct’s SCC to determine its lifetime

parameters. When rewriting a field f of a struct S to a borrowing reference, we use

the assigned lifetime name from the edge that contains the label S.f .

Build a points-to graph of all structs in the program.

Label all edges in this graph with their fields.

Compute the SCCs of this graph.

Build the points-to graph between SCCs.

for all edge SCC 1 → SCC 2 in the SCC graph do

Let S1, S2, . . . ∈ SCC 1 be the structs that point to SCC 2.

Let f1, f2, . . . be the fields of S1, §2, . . . that point to a struct in SCC 2.

Label the edge with (S1.f1, S2.f2, . . .).
Assign a unique lifetime variable to each edge in the SCC graph that correspond to

a borrowing reference.

Figure 4.8: Our algorithm for computing lifetime parameters of structs as part of

ResolveLifetimes.

When allocating a struct on the heap (i.e., when we rewrite a malloc call), Rust

requires initializing it with a default value to prevent reading from uninitializedmem-

ory. All fields (rather than the data they point to) in the structs we rewrite fall into

one of these categories: raw pointers, optional references, primitive types, or other

structs. We implement the Default trait for all of our structs, and the Default trait

is implemented for Option and the primitive types so we use Default::default to

generate the default values for the fields of these types. We initialize all raw pointers

inside a struct (that is all the fields that are not converted to safe references) with null

pointers.

68

Deriving Lifetime and Ownership Using the Compiler as an Oracle Chapter 4

We do not rewrite a struct’s definition in the following cases:

• The struct is contained in (directly or through pointers) a type that is part of

an external API. In this case, we cannot have lifetime guarantees because the

external API may hold references to the value, keep a copy of it, or be responsible

for its allocation/deallocation.

• The struct contains (not points to, but immediately contains) a (C-style) union.

In this case, we cannot generate a default value for the struct, because there are

not any well-defined default values for unions. One may opt into picking one of

the variants and generating the default value for that field. In general, we keep

unions out of the scope of our method, and this is an orthogonal issue.

In both cases, we mark the pointer-typed fields in the struct as raw pointers. We cover

how this marking works in Section 4.2.

We do not rewrite unions, as they are out of the scope of our method; getting a

value from a union is unsafe behavior, and it may allow forging invalid references.

The Rust programs translated from C do not use Rust enums (sum types), and the

C-style enums are just integers which do not contain any references, so the only flavor

of algebraic data type we need to handle is structs. Our technique in this section can

be extended to enums by considering the points-to edges from all possible variants.

4.2.3 Iteratively Rewriting the Program until It Compiles

The initial, optimistic rewrite may have resulted in a non-compilable program, i.e.,

one for which the Rust compiler cannot prove safety. The last stage of our technique

iteratively attempts to compile the program with the Rust compiler; for each failed at-

temptwe take information from the compiler errors to selectively rewrite our optimistic

69

Deriving Lifetime and Ownership Using the Compiler as an Oracle Chapter 4

changes until we reach a version that compiles. These rewrites in some cases provide

the compiler with more refined lifetime information or modify reference types, while

in other cases we are forced to walk back on the changes and leave some raw pointers

as unsafe. When a version of the program fails to compile, we track the following

information:

• Any additional lifetime constraints the compiler reports. For example, when

compiling the program in Figure 4.7 the compiler reports that for find there is

an additional constraint ’a1 : ’a2, meaning ’a1 needs to outlive ’a2 because

of the return statement on line 20. For the next iteration we rewrite the program

to explicitly include this constraint and any additional constraints learned from

similar errors.

• The references involved when a reference outlives an object. If the original object

is on the heap, we promote the reference to an owned object on the heap and

move the object instead of borrowing it, i.e., converting from Option<&T> to

Option<Box<T>>. If the original object was on the stack, then we demote these

references to raw pointers.

• If any rewritten malloc and free calls were involved in the failure. Rewritten

calls can fail to compile when the original C program uses magic numbers or a

custom allocation pattern. In subsequent iterations we do not attempt to rewrite

any values that come from these particular calls to malloc, or that flow into these

particular calls to free.

• The references involved in either use-after-move errors or multiple mutable bor-

row errors. We rewrite these references back to raw pointers.

When we demote a reference back to a raw pointer, we need to make all other

70

Deriving Lifetime and Ownership Using the Compiler as an Oracle Chapter 4

references that interact with that demoted reference into raw pointers as well. We

use the taint analysis from Section 3.3.1 to propagate the required information about

any references we decide to convert back to raw pointers because of borrow errors.

Similarly, if we decide to make a reference owned, all the values that flow into it must

also be owned. We propagate these facts by performing a subset-based version of the

taint analysis we used in Section 3.3.1 and marking the references promoted to owned

references as sinks.

Wedemonstrate these steps on the example program in Figure 4.7. For this example

we do not encounter issues involving the last two cases above.

The first compilation attempt fails with a compiler error stating that the following

lifetime constraints are not satisfied: ’a1 : ’a4, ’a5 : ’a2, and ’a6 : ’a3. All

of these constraints come from the return node; statement on line 20, and they are all

rooted in the fact that the reference find returns cannot outlive its argument. Specif-

ically, ’a1 : ’a4 comes directly from the references, and the other two constraints

come from the fact that the data structures are covariant on their lifetime arguments

and the functions are contravariant on their lifetime arguments. To resolve the errors

we add these constraints to the signature of find and continue iterating.

The second compilation attempt also fails, this time with a compiler error stating

that recursive calls to find require the additional constraints ’a2 : ’a5 and ’a3 :

’a6. We add these constraints as well, and continue iterating.

The third compilation attempt fails again, with a compiler error stating that we

return a value that cannot outlive borrowing node in lines 16 and 19. To resolve the

error we rewrite the borrows in these dereferences **node.as_mut().unwrap() as

*node.unwrap(), ultimately consuming the reference node. This heuristic works for

many of the cases in our corpus programs, but it might create use-after-move errors

later on, in which case we would walk the rewrites back and make the node parameter

71

Deriving Lifetime and Ownership Using the Compiler as an Oracle Chapter 4

of find a raw pointer again. In addition we get another lifetime error indicating

that the variable tree in main function outlives the object it references (line 30), the

temporary boxed object. To fix this error we we convert tree to be an owned object

(Option<Box<Node>>).3 Now that tree is an owned reference, we rewrite the places

it is borrowed as tree.as_mut().map(|b| b.as_mut()) to get a mutable reference

inside the Option without consuming tree. We need to propagate the fact that tree

is now an owned reference to all the values that flow into tree. After using our taint

analysis to propagate this fact, we discover that the box at line 30 should be an owning

reference, so we make that expression own the allocated object by removing the call to

as_mut() on that line.

After these rewrites, theprogramcompiles andall rawpointers havebeen converted

into safe references. Note thatweomitted the implementationofinsert in this example

to keep the number of steps shorter. Figure 4.9 shows the final fixed program.

Rather than relying on only a taint analysis and compiler errors, we could augment

our method also by region inference, however the final program still needs to be

verifiable by the compiler. To guarantee this, we use the compiler as an oracle to direct

the choices our algorithm makes. From this perspective, we use the taint analysis as

an optimization: technically we could do away with the taint analysis and let type

errors guide us in regards to which other types to rewrite, e.g., when a raw pointer

flows into a borrowed pointer. This would result in many more calls to the compiler

(an intractable number in practice). To reduce the number of calls and to simplify the

part of the method that processes compiler errors, we use the taint analysis. Also,

we are interested in investigating how much we can do using only the compiler and

simple analyses rather thanmore sophisticated and complicated custom-implemented

3
We could potentially make it a Box<Node> without the Option part because it is never assigned to

a value containing None, however we apply the same strategy independent of the position (including

struct fields) and we need the optional types when creating default values for struct fields.

72

Deriving Lifetime and Ownership Using the Compiler as an Oracle Chapter 4

1 // bst.rs
2 use std::os::raw::c_int;
3 // BST node
4 pub struct Node<’a1, ’a2> {
5 pub left: Option <&’a1 mut Node<’a1, ’a2>>,
6 pub right: Option <&’a1 mut Node<’a1, ’a2>>,
7 pub value: Option <&’a2 mut c_int>,
8 }
9 impl<’a1, ’a2> std::default::Default for Node<’a1, ’a2> {

10 // ...
11 }
12 pub fn insert<’a1, ’a2, ’a3>(mut value: c_int,
13 mut n: Option <&’a1 mut Node<’a2, ’a3>>) {

/* ... */ }
14 pub fn find<’a1, ’a2, ’a3, ’a4, ’a5, ’a6>(mut value: c_int, mut node:

Option <&’a1 mut Node<’a2, ’a3>>)
15 -> Option<&’a4 mut Node<’a5, ’a6>>
16 where ’a1: ’a4, ’a5: ’a2, ’a6: ’a3, ’a3: ’a6, ’a2: ’a5
17 {
18 if value < **(**node.as_ref().unwrap()).value.as_ref().unwrap() &&

!(**node.as_ref().unwrap()).left.is_none() {
19 return find(value, borrow_mut(&mut (*node.unwrap()).left))
20 } else {
21 if value > **(**node.as_ref().unwrap()).value.as_ref().unwrap()

&& !(**node.as_ref().unwrap()).right.is_none() {
22 return find(value, borrow_mut(&mut (*node.unwrap()).right))
23 } else { if value == **(**node.as_mut().unwrap()).value.as_mut

().unwrap() { return node } }
24 }
25 return None;
26 }
27 // main.rs
28 use std::os::raw::c_int;
29 use bst::{Node, insert, find};
30 pub fn main_0() -> int {
31 let mut tree = Some(Box::new(crate::Node::default()));
32 **(**tree.as_mut().unwrap()).value.as_mut().unwrap() = 3;
33 insert(1, tree.as_mut().map(|b| b.as_mut()));
34 insert(2, tree.as_mut().map(|b| b.as_mut()));
35 **(**find(3, tree.as_mut().map(|b| b.as_mut())).as_mut().unwrap()).

value.as_mut().unwrap() = 4;
36 return 0;
37 }

Figure 4.9: The safe Rust program with no raw pointers after applying all steps of our

method.

73

Deriving Lifetime and Ownership Using the Compiler as an Oracle Chapter 4

analyses. Basing our initial method on simple analyses lets us gauge if andwhenmore

complicated analyses would be necessary.

4.2.3.1 Propagating the Information in the Derived Configuration

Section 4.2.3 shows howwe propagate the information in the derived configuration

on an example. There are two steps in this process: (1) propagating the information in

the derived configuration, and (2) using this information to apply the rewrite rules in

Section 4.2.3.2.

In the first step, we propagate pointer kinds using the two variants of the analysis

discussed in Section 3.3.1. Specifically, we need to maintain the distinction between

reference and pointer types in the output program to produce a well-typed program.

So, we use two flow-insensitive, field-based data flow analyses to propagate the infor-

mation in the configurations:

• We use an equality-based analysis to propagate raw pointers (pointers whose

locations are marked as Raw in the configuration). As we need to guarantee type

equality in every use site, we cannot mix reference and pointer types without

unsafe casts or creating cases with unsafe aliasing between a pointer and an

active reference4 (which is not allowed under most memory models for Rust), so

we need this analysis.

• We use a subset-based analysis to propagate ownership information (pointers

whose locations are marked as Owned in the configuration). We need to do this

for ownership because all values flowing into an owned value need to be owned.

Also, a subset-based analysis works here because we can borrow an owned

4
By an active reference, we mean a reference that can be used and is not already borrowed by another

reference.

74

Deriving Lifetime and Ownership Using the Compiler as an Oracle Chapter 4

reference to create a borrowing reference, and get it checked by the borrow

checker.

4.2.3.2 The Rewrite Rules used by Lifetime Derivation

In this section, we present the detailed rewrite rules used by the lifetime derivation

algorithm described in Chapter 4.

For the sake of presentation, we consider a core language based on Rust HIR

shown in Figure 4.10, and we rewrite other constructs like unary/binary operations

and method calls to function calls. We similarly rewrite fused assignment operators

(e.g., +=) to equivalent unfused code. The notation
−→a denotes a sequence of as. For

example, a function call contains a sequence of expressions representing arguments.

eguard denotes the guard expression in patternmatches. Similar toOxide, wemaintain a

context denotingwhether an expression is used in a placewhere it is borrowedmutably

or immutably, or owned; these contexts are defined in Figure 4.11. The context assignee

denotes that the expression is on the left-hand side of an assignment-like expression or

being borrowed mutably. move denotes that the expression’s value should be moved,

as it is used in a context that should own its value. The notation c[d 7→ e] is used for

conditionally updating the context: if c = d then c[d 7→ e] produces e, otherwise it

produces c. AdjustedType is a function provided by the Rust compiler that gives the

type of the expression in the context it is used (after coercions, and converting &mut to

& if necessary).

RewriteProgram adds lifetimes to each struct according to Section 4.2.2, and assigns

unique lifetimes to each lifetime variable needed in a function signature. It adds the

lifetime constraints to each function signature directly from the configuration. The

function bodies are rewritten using the rewrite rules given in Figures 4.12 to 4.14. The

helper κ returns the kind (owned, borrowed, raw) of an expression as computed by

75

Deriving Lifetime and Ownership Using the Compiler as an Oracle Chapter 4

the taint analyses from the current configuration. Other helper functions are defined

in Figure 4.15. The rewrite rule c ` e1 → e2 denotes that e1 is rewritten into e2 under

mutability context c. Similarly, c ` s1 → s2 denotes that the statement s1 is rewritten

into the statement s2 under the context c as described in Figure 4.14. After rewriting an

expression according to the rules given in Figures 4.12 and 4.13, we check the context

of the expression and the pointer kind to decide whether to re-borrow the expression

according to Section 4.2.2 . Let c be the current context, p = κ(e), and c ` e→ e′. Then,

if e has a pointer type, we choose whether to re-borrow e′ according to the following

conditionally-applied rules (attempted from first to last):

• p = owned and c 6= move. We borrow the box by rewriting e′ to e′.as_ref().

map(|x| x.as_ref()) (we use as_mut instead of as_ref if the current context is

mut).

• p = owned and c = move. We do not re-borrow the expression’s value, as it should

be moved.

• p = raw. We do not perform any re-borrowing, as p is a raw pointer.

• p = borrowed and c = mut. We rewrite e′ into borrow_mut(&mut e′).

• p = borrowed, c = not, and e has a mutable pointer type. We rewrite e′ into

borrow(& e′).

• p = borrowed, c = not, and e has an immutable pointer type. We rewrite e′ into

e′.clone().

• Otherwise, we do not re-borrow the value of the expression.

76

Deriving Lifetime and Ownership Using the Compiler as an Oracle Chapter 4

e ∈ Expression ::= [−→e] array literals

e ∈ Expression ::=T{
−−−→fld : e} | struct construction

f(−→e) | function call

(−→e) | tuples

&µ e | address-of operator

∗ e | dereference

l ∈ Literal |
e as τ |
x ∈ V ariable |
loop e |
match escrutinee

−−−−−−−→peguard ⇒ e | pattern matching

e1 = e2 | assignment

e.fld | field access

e1[e2] | array access

−→s e | blocks

break | continue | return e control flow redirection

s ∈ Statement ::= let µx = e1; e2 | e;
µ ∈Mutability ::=mut |not

τ ∈ Type ::= ∗ µτ | raw pointers

&µτ | borrowing references

Option < Box < τ >> | owned references

T ∈ StructName | structs

. . . other types

p ∈ Pattern

Figure 4.10: Abstract syntax for the fragment of Rust HIR that is relevant to our rewrite

rules for expressions. Because we rely on the compiler for lifetime inference, the

lifetimes inside types are elided.

4.2.4 Algorithmic Complexity

We analyze the complexity of our algorithm in terms of the number of iterations

it performs, as well as the number of times the taint analysis for propagating inferred

77

Deriving Lifetime and Ownership Using the Compiler as an Oracle Chapter 4

c ∈ UseCtx ::= mut | not |move | assignee

Figure 4.11: The contexts for determining how a variable is used.

pointer kinds is invoked. The initial step of resolving external types and functions

(ResolveImports) has only one iteration, and uses only a call graph analysis so we do

not count it in the analysis here. The algorithm described in Figure 4.4 climbs the

configuration lattice in each iteration, and it reinvokes the analysis when the pointer

kinds in the configuration change. In the worst case, each location would be promoted

in a separate iteration. The Steensgaard-style taint analysis propagates rawness to all

locations in the same equivalence class according to type equality, so there can be at

most c iterations that promote a pointer to be raw, where c is the number of equivalence

classes. However, each borrowed location may be promoted separately to an owned

pointer in the worst case, so there can be at most l iterations that promote a reference

to be owned. So, in the worst case, we climb the lattice inO(c+ l) iterations that invoke

the analysis.

Between two iterations that promote a pointer, wemay infer lifetime constraints. In

theworst case, wewould infer each lifetime constraint separately. Let r = |f1|+. . .+|fn|

be the total number of lifetime variables that appear in function signatures, and |f |

denote the number of lifetime variables that occur in the signature of a function f ,

where f1, . . . , fn are the functions in the program. Each lifetime may be bounded

by other lifetimes defined in the same function5 or ’static. As such, there are

|f1|2+|f2|2+. . .+|fn|2 ≤ (|f1|+|f2|+. . .+|fn|) maxi |fi| = rmaxi |fi| lifetime constraints

we may add. Here, maxi |fi| is the largest number of lifetime variables that occurs in

a function signature. Because, we use t to merge the configurations, and because

5
We do not process lifetimes in nested functions

78

Deriving Lifetime and Ownership Using the Compiler as an Oracle Chapter 4

the lattice is lexicographically ordered, we discard all lifetime constraints when we

promote a pointer; in total ResolveLifetimes may have O ((c+ l)rmaxi |fi|) iterations

in the worst case. Note that l is the number locations that we may initially assign to a

lifetime, so it is the number of locations that are raw-pointer-typed because of Lifetime.

Empirically, the number of iterations is much lower in our benchmarks, except for the

case of libxml2 which contains large structs with many distinct lifetime parameters

which in turn makes the maxi |fi| term large.

4.2.4.1 Potential Optimizations

There are several optimizations to our algorithm that can reduce the number of

iterations. In our prototype, we generate fresh names for lifetimes, and we use t to

merge configurations so we discard the lifetime constraints when promoting a pointer

kind, even if the pointer kind is irrelevant. A potential improvement is choosing

a naming scheme for lifetime parameters that is stable under promoting pointers,

and keeping the inferred lifetime constraints if the references involving them are not

promoted (this can be checked by querying the taint analysis for the relevant function

parameter, points-to set, or access location). This would allow inferring each lifetime

constraint only once, hence climing the lattice faster. In turn, this would reduce the

number of iterations toO (c+ l + rmaxi |fi|). We are planning to investigate the effects

of this optimization empirically in the future.

A potential optimization is reducing maxi |fi| and r by using fewer lifetime vari-

ables. One option that may miss data structures with complex lifetime constraints is

using only one lifetime variable for all fields of a struct, hence having at most one life-

time parameter in a struct (rather than our current heuristic of generating one lifetime

parameter per type). This would reduce the number of lifetime variables in a function

signature to be bounded by the sum of the number of references and the number of

79

Deriving Lifetime and Ownership Using the Compiler as an Oracle Chapter 4

structs in the function signature. We investigate the impact of this optimization in

terms of efficacy and performance in Section 4.3.3.

4.2.4.2 Termination Guarantee

At each stage, either there are no compiler errors (the algorithm terminates), or

the compiler reports one of the errors listed in Section 4.2, meaning the next iteration

will use a larger configuration. There are finitely many configurations, so termination

is guaranteed: it will either yield a safer Rust program, or the original Rust program

(wherein all references are marked raw).

4.3 Evaluation

We implement our tool on top of the nightly-2020-10-15 nightly Rust compiler

build version because the compiler API for Rust is not stable. We ran C2Rust using

an even older version of the compiler (the newest version that the C2Rust supports

due to the compiler API instability) nightly-2019-12-05. We run our experiments

on a computer with a 4 GHz Intel Core i7-4790 CPU, with 4 physical cores (8 hyper-

threaded). The computer has 32 GB RAM and runs Ubuntu 18.04.

4.3.1 Evaluation Setup

We evaluate the two stages of our method (ResolveImports and ResolveLifetimes)

separately. A quick summary of these two stages is as follows:

• ResolveImports: This is the first step of our technique, described in Section 4.1,

which resolves externally declared types and functions and removes unnecessary

unsafe and mutability markers. Note that this step can make functions marked

80

Deriving Lifetime and Ownership Using the Compiler as an Oracle Chapter 4

unsafe into safe functions even though it does not convert any raw pointers into

safe references; this effect comes from removing unsafe annotations that C2Rust

adds naively when it did not need to.

• ResolveLifetimes: This is the remainder of our technique, described in Sec-

tion 4.2, which converts Lifetime raw pointers (as described in Section 3.3.1)

into safe references. As we did in Section 4.2, wewill use the term “raw pointers”

throughout to mean specifically Lifetime raw pointers.

We collect the following statistics, similar to Section 3.3.1, to measure the impact of

our method: the number of unsafe functions that use raw pointers; the number of raw

pointer declarations; and the number of raw pointer dereferences.

4.3.2 Results

Table 4.1 shows the change in the number of unsafe functions in the scope of our

method, i.e., those that are unsafe due solely to the use of Lifetime raw pointers as

described in Section 3.3.1. Our method makes 76% of these functions safe over all of

the corpus programs.

We see that ResolveImports reduces the number of unsafe functions using raw

pointers by 54% even though it does not remove any raw pointers. Some of these

functions did not have any underlying cause of unsafety because they use raw pointers

as values (e.g., assigning them to certain fields of a struct in an initializer), which is

not unsafe behavior. These cases were categorized as false positives by our definition,

but making them safe requires resolving imports. ResolveLifetimes makes 63% of the

remaining functions safe. The functions that are not made safe by either method were

involved in the following behavior (directly or indirectly):

• Calling free on raw pointers that our method could not rewrite.

81

Deriving Lifetime and Ownership Using the Compiler as an Oracle Chapter 4

Table 4.1: Number of unsafe functions due uniquely to using raw pointers. Re-

solveImports and ResolveLifetimes are the two phases of our method explained in

Section 4.3.1; the corresponding columns show how many formerly unsafe functions

were made safe by each phase (remembering that ResolveLifetimes is executed on the

result of ResolveImports).

Program Orig. ResolveImports ResolveLifetimes Remaining Made safe (%)

qsort 1 0 1 0 100%

grabc 1 0 0 1 0%

libcsv 12 0 11 1 92%

RFK 2 1 0 1 50%

urlparser 2 0 2 0 100%

genann 3 2 0 1 67%

xzoom 0 0 0 0 –

lil 6 2 1 3 50%

snudown 6 1 1 4 33%

json-c 20 9 8 3 85%

bzip2 8 4 4 0 100%

libzahl 2 0 2 0 100%

TI 45 44 0 1 98%

optipng 62 29 27 6 90%

tinycc 35 28 3 4 89%

tmux 31 7 9 15 52%

libxml2 210 174 30 6 97%

Total 236 127 69 40 83%

82

Deriving Lifetime and Ownership Using the Compiler as an Oracle Chapter 4

Table 4.2: Number of raw pointer declarations and dereferences. Orig. = The num-

ber from the original program. Fixed = The number of raw pointer declarations or

dereferences removed by our method.

Program Raw Ptr. Declarations Raw Ptr. Dereferences

Orig. Remaining Fixed (%) Orig. Remaining Fixed (%)

qsort 2 0 2 100% 4 0 4 100%

grabc 7 2 5 71% 15 6 9 60%

libcsv 18 0 18 100% 148 0 148 100%

RFK 0 0 0 – 0 0 0 –

urlparser 5 0 5 100% 58 0 58 100%

genann 5 5 0 0% 0 0 0 –

xzoom 0 0 0 – 23 23 0 0%

lil 50 27 23 46% 636 22 614 97%

snudown 31 8 23 74% 129 36 93 72%

json-c 41 11 30 73% 93 24 69 74%

bzip2 37 0 37 100% 679 0 679 100%

libzahl 7 0 7 100% 31 0 31 100%

tinycc 191 4 187 98% 946 79 867 92%

optipng 207 9 198 96% 606 10 596 98%

tmux 622 210 412 66% 2486 633 1853 75%

TI 82 82 0 0% 0 0 0 –

libxml2 839 156 683 81% 5175 565 4610 89%

Total 2144 514 1630 76% 11029 1398 9631 87%

• Dereferencing raw pointers that our method could not rewrite.

The impact of ResolveLifetimes on making functions completely safe is limited be-

cause to mark a function as safe we must convert all dereferences of raw pointers

contained in the function into dereferences of safe references. However, making half

of the relevant functions safe is a good step in the right direction.

Table 4.2 shows the change in the declarations and dereferences of raw pointers.

Overall, our method removes 76% and 89% of Lifetime raw pointer declarations

and dereferences, respectively, over all the corpus programs. These declarations and

dereferences make up 8.1% and 9.7% of the total number of raw pointer declarations

and dereferences including all categories of unsafety, because of the multi-faceted

83

Deriving Lifetime and Ownership Using the Compiler as an Oracle Chapter 4

nature of how raw pointers are used. Three of our programs (RFK, genann, and TI)

do not dereference any Lifetime raw pointers, so they do not get much improvement

from our method. We investigated the declarations and dereferences that our method

fails to remove. They fall under the following categories:

• The pointer is not used safely according to the borrow checker rules. This is the

case for the pointers in libxml2, optipng, and bzip2 that we fail to remove, and

one declaration in json-c and tmux. An example of this in bzip2 is where a

pointer is borrowed mutably as a field of a struct, then used mutably while this

borrow is alive.

• The pointer is used in the signature of a function that is used as a function pointer.

This is the case for the pointers in json-c (on all but one declaration we failed to

remove), lil, and TI that we fail to remove.

The other reason for failing to convert some raw pointers is a limitation of our

method in that we do not rewrite function pointer types, so we cannot change the

signature of the functions passed as function pointers. We also inspected the interme-

diate steps of our tool to look into the root causes related to the pointers that remain

raw due to borrow checker violations. In the bzip2 and optipng programs, violating

the borrow checker for one pointer (in bzip2) and two pointers (in optipng) are the

reason for all of the raw pointers that remain after our technique; in both programs,

the pointer value with illegal borrowing flows into a struct field, so any use of that

struct field also becomes a raw pointer.

4.3.2.1 Limitations of ResolveImports

The core assumption of our heuristics for ResolveImports is that the structs with

the same name and the same fields represent the same data type, so their definitions

84

Deriving Lifetime and Ownership Using the Compiler as an Oracle Chapter 4

can be merged to allow importing functions from other modules in the same pro-

gram. This assumption is violated in tinycc for four anonymous structs, because

the C2Rust-generated names of those structs did not match across modules because

of how C2Rust generates names for anonymous structs. Because of this problem we

get an error from the Rust compiler after the ResolveImports phase, and fixing the

issue involved importing the four structs from where they are defined, removing the

duplicate definition, and changing the four lines of code that use them. The fix was a

38-line patch, and it took one of the authors 10 minutes to investigate and fix the issue.

If the anonymous structs are renamed appropriately before ResolveImports then this

limitation no longer exists. Doing such a renaming reliably requires reasoning about

the source of the anonymous structs (so being done at the time of translation from C

to Rust).

4.3.3 Performance

Running our method is a one-time effort when translating the C program to a Rust

program. In all of our corpus programs except libxml2 and optipng our method

finishes under a minute. In all programs, ResolveLifetimes takes the majority of

the time (harmonic mean: 71%). In all programs except libxml2 ResolveLifetimes

takes at most 3 iterations to resolve all borrow checker conflicts, and our method

terminates under 2 minutes. On libxml2, our method takes 125 minutes to finish, and

ResolveLifetimes takes 81 iterations. Although our method takes a long time to run

on a code base with 400k LoC, it needs to be run only once in the software evolution

lifecycle, when translating the code base from C to Rust. 63% of this time is due to the

taint analyses we perform to propagate the information on which locations need to be

owned references or raw pointers as described in Section 4.2.3; 78 of the 81 iterations

85

Deriving Lifetime and Ownership Using the Compiler as an Oracle Chapter 4

are due to discovering lifetime constraints. libxml2 contains lifetime constraints to

discover because it defines structs with as many as 31 pointers.

We implemented one of the optimizations suggested in Section 4.2.4: using only

one lifetime parameter per struct, and tested it on libxml2. It reduced the total number

of iterations to 25, and the total runtime to 49 minutes. Also, this optimization did

not miss making any pointers the original method also makes safe. So, this is a viable

optimization in practice, as it creates programs with fewer lifetime variables (hence

making them easier to reason about), and it is faster. However, we did not restrict our

original method to support potential complex lifetime relationships between fields of

structs.

4.4 Conclusion

As our analysis in Chapter 3 has shown earlier, there is a relatively small set

of well-defined categories for these causes; however, the majority of unsafety in a

translated program is caused by more than one category. This means that fixing any

one category will have only a small impact, and that fixing a majority of unsafety will

require addressing multiple categories.

Here, we have described and evaluated a novel technique for automatically re-

moving a particular category of unsafety: the Lifetime raw pointers. Our technique

piggy-backs on the Rust compiler, and our evaluation shows that it removes 87% of

Lifetime raw pointer declarations and 89% of raw pointer dereferences of this cate-

gory. Overall, we show that pointers that are not involved in any other unsafe behavior

are rather well-behaving in that most of them can be made safe.

The method presented here focuses on removing specific instances of unnecessary

unsafe behavior to make parts of the program safe. In Chapter 5, we are going to

86

Deriving Lifetime and Ownership Using the Compiler as an Oracle Chapter 4

investigate the dual problem of understanding and containing the spread of unsafety

from sources a method such as ResolveLifetimes cannot fix.

We expect future reseatch to address other causes of unsafety in a similar way

to ours, and extend our analysis beyond single-threaded C programs to cover more

ground in widely-used software that performs unchecked resource management.

87

Deriving Lifetime and Ownership Using the Compiler as an Oracle Chapter 4

c ` x→ x
Var

c ` l→ l
Lit

c ` break→ break
Break

c ` continue→ continue
Cont

c ` ei → e′i

c ` [−→ei]→ [
−→
e′i]

Array

c ` ei → e′i

c ` T{
−−−−−→
fldi : ei} → T{

−−−−−→
fldi : e′i}

Struct

c ` ei → e′i

c ` (−→ei)→ (
−→
e′i)

Tuple

assignee ` e→ e′

c ` return e→ return e′
Return

not ` e→ e′

c ` loop e→ loop e′
Loop

Ctx(escrutinee) ` escrutinee → e′scrutinee not ` eguard → e′guard c ` e→ e′

c ` match escrutinee
−−−−−−−→peguard ⇒ e→ match e′scrutinee

−−−−−−−−→
pe′guard ⇒ e′

Match

(f 6= malloc ∨ κ(f(−→ei)) = raw) move ` ei → e′i κ(param f i) = owned
c ` f(−→ei)→ f(

−→
e′i)

Call-Mv

(f 6= malloc ∨ κ(f(−→ei)) = raw) Ctx(ei) ` ei → e′i κ(param f i) 6= owned
c ` f(−→ei)→ f(

−→
e′i)

Call-Br

κ(malloc(l)) 6= raw
c ` malloc(l) as ∗ µT → Box::new(T::default()) Malloc

c′ = c[assignee 7→ mut] κ(e) = raw c′ ` e→ e′

c ` ∗e→ ∗e′ Deref-Raw

c′ = c[assignee 7→ mut] κ(e) 6= raw c′ ` e→ e′

c ` ∗e→ ∗(e′.unwrap()) Deref-Safe

κ(e) = raw c ` e→ e′ τ 7→{e} τ ′

c ` e as τ → e′ as τ ′
Cast1

κ(e) 6= raw c ` e→ e′

c ` e as ∗ µτ → e′
Cast2

κ(e) = raw not ` e→ e′

c ` ¬ e→ ¬ e′
&-Raw

κ(e) = borrowed not ` e→ e′

c ` &e→ Some(¬ e′) &-Safe

κ(e) = raw mut ` e→ e′

c ` &mut e→ mutµe′
&Mut-Raw

κ(e) = borrowed assignee ` e→ e′

c ` &mute→ Some(&mut e′) &Mut-Safe

Figure 4.12: Rules for rewriting expressions, part I.

88

Deriving Lifetime and Ownership Using the Compiler as an Oracle Chapter 4

c ` e→ e′

c ` e.fld→ e′.f ld
Field

c ` e1 → e′1 not ` e2 → e′2
c ` e1[e2]→ e′1[e′2] Index

c ` e→ e′ not ` s→ s′

c ` −→s e→
−→
s′ e′

Block

assignee ` e1 → e′1 κ(x) = owned move ` e2 → e′2
c ` e1 = e2 → e′1 = e′2

Assign-Move

assignee ` e1 → e′1 κ(x) 6= owned AdjustedType(e1) 6= ∗mut τ
not ` e2 → e′2

c ` e1 = e2 → e′1 = e′2
Assign-Not

assignee ` e1 → e′1 κ(x) 6= owned AdjustedType(e1) = ∗mut τ
mut ` e2 → e′2

c ` e1 = e2 → e′1 = e′2
Assign-Mut

Figure 4.13: Rules for rewriting expressions, part II.

c ` e2 → e′2 κ(x) = owned move ` e1 → e′1
c ` let µx = e1; e2 → let x = e′1; e′2

S-Let-Move

c ` e2 → e′2 κ(x) 6= owned mut ` e1 → e′1
c ` let mutx = e1; e2 → let x = e′1; e′2

S-Let-Mut

c ` e2 → e′2 κ(x) 6= owned not ` e1 → e′1
c ` let notx = e1; e2 → let x = e′1; e′2

S-Let-Not

not ` e→ e′

c ` e;→ e′; S-Semicolon

Figure 4.14: Rules for rewriting statements.

89

Deriving Lifetime and Ownership Using the Compiler as an Oracle Chapter 4

Ctx(e) = Mutability(AdjustedType(e))

Mutability(τ) =
{

mut τ = ∗mutτ ′

not otherwise

τ 6= ∗µτ ′′
τ 7→loc τ

′ T-NonPtr

τ 7→
PtsTo(loc) τ

′ κ(loc) = raw

∗µτ 7→loc ∗µτ ′
T-RawPtr

τ 7→
PtsTo(loc) τ

′ κ(loc) = owned

∗µτ 7→loc Option<Box<τ
′>>

T-OwnedPtr

τ 7→
PtsTo(loc) τ

′ κ(loc) = borrowed

∗µτ 7→loc Option<&µτ ′>
T-RawPtr

Figure 4.15: Helper functions for rewriting expressions and nested types. τ 7→loc τ
′

rewrites a type that is associated with the set of locations loc. PtsTo returns the

points-to set of given set of locations.

90

Chapter 5

Type Equality and Unsafety

The purpose of computing is insight, not numbers.

– Richard Hamming

Existing C to Rust translators (e.g., C2Rust [22]) depend entirely on Rust’s unsafe

annotation that disables the compiler’s safety checks: all of the translated code is

marked unsafe. To increase verified safety, at least some of the translated code should

be deemed safe by the Rust compiler. Fully automated translation to completely safe

Rust is difficult, if not impossible: Rust enforces safety using an ownership-based type

system, and C programs are not usually written with ownership-based semantics. The

realistic goal, then, is (1) tomaximize the amount of safe Rust code that is automatically

translated from C and (2) to provide developers insight into the reasons that the

remaining code is marked unsafe, so that they can manually rewrite those unsafe

parts.

In this chapter we build on prior work in C to Rust translation by focusing specif-

ically on pointers: our goal is to understand the current limitations in inferring

ownership and lifetime information for automatically translating unsafe raw point-

ers into verifiably safe references. Weoffer new insights into the (lack of) effectiveness

91

Type Equality and Unsafety Chapter 5

of existing techniques, explain that lack of effectiveness with empirical evidence, and

based on that evidence offer suggestions for how these limitations could be overcome.

In Section 5.1 we introduce a new technique called pseudo-safety that makes this

entire study possible. The obstacle for previous studies is that pointers may bemarked

as unsafe for multiple reasons that have nothing to do with ownership and lifetime,

such as pointer arithmetic, unsafe casts, etc. These confounding factors limit previous

studies to only the small percentage of pointers that are not influenced by those

factors. Pseudo-safety transforms Rust programs (translated from C) containing these

confounding unsafe behaviors into Rust programs that do not, while preserving the

static aliasing and lifetime relationships relevant to ownership and lifetime inference

(thoughnot thedynamic behavior of the original program). This transformation allows

us to answer questions about the effectiveness of ownership and lifetime inference

independently from these other factors.

In Section 5.2, we conduct a study on the effectiveness of ownership and lifetime

inference onpseudo-safeRust programs translated fromC, basedonourpreviouswork

ondescribed inChapter 4 [19]. Our results show that, contrary to previous conclusions,

the vast majority of raw pointers cannot be automatically made into safe references.

This insight was possible because, unlike that previous work, pseudo-safety allows us

to extend our study to include pointers involved in other unsafe behaviors. This result

shows that examining only a subset of program pointers (as done in Chapter 4, which

looks at pointers that have no unsafety issues besides lack of lifetime information)

provides misleading results, and that our pseudo-safety transformation is necessary

to get a complete picture.

In Section 5.3 we look deeper into the reasons behind our results, and show that

type equality, andmore specifically the imprecision of the Rust typechecking algorithm,

is responsible: many pointers are put into type equivalence classes, which means that

92

Type Equality and Unsafety Chapter 5

if any one pointer cannot be made safe then no other pointer in its equivalence class

can be made safe either. For example, in our largest benchmark (tmux) having only

29 pointers marked as unsafe is sufficient to taint the safety of over 4,600 pointers. We

also see that having only 4 pointers marked as unsafe is sufficient to taint the safety of

more than half of the pointers in each of our benchmarks.

In Section 5.4 we investigate whether (and what kinds of) more precise pointer

analyses feeding into the Rust typechecker can mitigate the type equality problem.

We study the effects of equality-based (the baseline), subset-based, field-sensitive, and

context-sensitive pointer analyses on type equality. We show that field sensitivity does

not substantially improve over the baseline, however both subset-based analysis and

context-sensitive analysis each individually improve over the baseline by an order of

magnitude.

In Section 5.5 we discuss possible strategies for incorporating our findings into an

improved C to Rust translation. Rather than modifying the Rust compiler to be more

precise,whichhas obvious shortcomings, ourproposedmethods are basedonprogram

transformations and thus compiler-agnostic. Future work involves implementing and

evaluating these methods to determine their effectiveness.

5.1 Introducing Pseudo-Safety

Rust supports two mechanisms to refer to memory: safe references and unsafe raw

pointers. All C pointers are translated to raw pointers by C2Rust, and raw pointers

can only be dereferenced in unsafe code. We had an initial attempt to infer ownership

and lifetimes with Laertes (Chapter 4). However, Laertes is inherently restricted to

those raw pointers that are not marked unsafe for any reasons other than the lack of

ownership and lifetime information, which turns out to be only a small percentage of

93

Type Equality and Unsafety Chapter 5

the total number of raw pointers (an average of 11%). It is important to note that those

pointers marked unsafe for other reasons are also unsafe due to lack of ownership and

lifetime information, that is, even if those other factors are removed these raw pointers

would still need something like Laertes to be transformed into safe references. It is

an open question how well ownership and lifetime information can be inferred for all

raw pointers rather than just the small subset that Laertes can handle.

In order to answer this questionwe have developed a technique called pseudo-safety.

The idea is to rewrite a Rust program (translated from C via C2Rust) to replace unsafe

pointer behaviorswith substitutes that preserve the static pointer relationships relevant

to Rust’s type and borrow checkers, but not the runtime behavior of the program itself.

In other words, we simulate fixing all other causes of pointer unsafety in order to focus

on the question of inferring ownership and lifetimes. In the rest of this section we

detail the program properties that we preserve and describe the rewrites that handle

each extraneous cause of unsafety. All rewrites in this section are implemented with

C2Rust’s refactoring tools.

5.1.1 Properties to Preserve

Rust’s safety checks hinge on object lifetimes and aliasing, and our rewrites pre-

serve the data flow information of three related program properties: (1) existing

aliasing relationships, from Rust’s borrow checker’s perspective (e.g., whether two

pointers may alias); (2) the lifetime of each object as specified in the original program;

and (3) the provenance of each pointer, i.e., where it originates from. Our rewrites

remove unsafety related to pointers but not necessarily other causes of unsafety (e.g.,

global mutable variable access), in order to keep our rewrites minimal. These rewrites

preserve the number of unsafe pointer declarations and dereferences, and so they do

94

Type Equality and Unsafety Chapter 5

not fundamentally change the program from the perspective of pointer use.

5.1.2 Rewriting Pointer Arithmetic

Any pointer subjected to pointer arithmetic must necessarily be raw. Pointer arith-

metic is performed by arr.offset(i), which is equivalent to the C expression arr

+ i. To preserve the properties in Section 5.1.1, we translate the unsafe expression

arr.offset(i) to the safe block of expressions {i; arr} (i.e., compute i then com-

pute arr, returning the value of arr). While the dynamic semantics are different, this

block still performs the computation of both arr and i so their original static lifetimes

are preserved. Similarly, the result of this expression still depends on arr, so aliasing

and origin point information is preserved.

We also consider the related expressions of pointer difference and array-to-pointer

conversion. Pointer difference is performed by a.offset_from(b), equivalent to C’s

a - b. We rewrite this as the expression block {a; b; 0}, which maintains that both

a and b are used and must be alive. We use 0 as a substitute for the actual difference

between the two pointers, because the value does not affect any compile-time lifetime

properties. We do not encode any type equality requirement between a and b, though

it could be encoded with a slightly different rewrite like {let mut fresh = a; fresh

= b; 0}). We rewrite array-to-pointer conversion as returning a pointer to the first

element of the array. For example, arr.as_mut_ptr() (which returns a pointer to

arr) is rewritten as (&mut arr[0] as * mut T), where T is the element type of the

array. While this rewrite loses precision for array index-sensitive analyses, array index-

insensitive analyses (including the ones we use here) maintain their precision.

95

Type Equality and Unsafety Chapter 5

5.1.3 Stubs for External Functions

TheRust compiler cannot reason about external functiondefinitions, hence pointers

passed to and returned from such functions give problems for ownership and lifetime

inference. We replace each external function with a function implemented in Rust. Per

the behavior of the C linker, we want to preserve having a single function definition

for all external functions with the same name. As such, we generate an empty stub for

each uniquely-named external function declaration. The body of the stub contains an

infinite loop, which has the bottom type in Rust—this fact allows us to accommodate

any return type. For example, we generate the following stub for C’s memcpy function:

pub unsafe extern "C" fn memcpy(* mut c_void,

* mut c_void,

size_t) -> * mut c_void {

loop {}

}

Asno code in the body links the parameters to the return type, the stub can be rewritten

by Laertes to use references in a manner consistent with all of the function’s uses. This

scheme gives us the most optimistic possible rewrites for unsafe pointers interacting

with external functions.

5.1.4 Rewriting Casts with Lifetime-Preserving Substitutes

Raw pointers can be freely cast between different types. However, Rust does

not permit casting between references. Removing casts altogether would alter the

provenance of some pointers, since casts establish new pointers. To simulate casts in

safe code, we rewrite casts between unrelated types into calls to a function pseudocast

that we define as:

96

Type Equality and Unsafety Chapter 5

pub fn pseudocast <’a,’b:’a,T:’b,U:’a>(_:T) -> U { loop {} }

The lifetime annotations of pseudocast specify that the lifetime of the function

output is contained within the lifetime of the function input, thereby preserving the

relevant properties we care about. As a caveat, if there is a cast from a non-pointer to a

pointer we rewrite the cast but do not track the provenance of the non-pointer leading

into the cast.

As an example of our transformation, consider the snippet foo(x as * mut

c_void), which casts x as a void pointer. Assuming x is of type *mut i32, we rewrite

this as foo(pseudocast<&mut i32, &mut c_void>(x)) by extending Laertes. Here,

our definition of cast enforces that the casted x does not outlive the original x, and the

provenance of the casted expression x is preserved. Here, our definition of pseudocast

makes the compiler enforce that the result of the cast does not outlive x (the compiler

automatically computes the necessary lifetimes for ’a and ’b), so it allows us to present

the lifetime information as well as existing borrows to the compiler. So, the technique

for using the compiler as an oracle works in the presence of casts, and the changes to

Laertes to support this are minimal.

Overall, we changeLaertes to rewrite casts as calls to pseudocast to take ownership

and taint information into account, such that there are no casts that explicitly switch

between borrowing, raw, or owned pointers. For example, consider the cast expression

x as * const i32 in the program, where x has the type * mut i8. This cast will be

rewritten as follows:

• If x is borrowed (that is, if x is going to be rewritten as as value of type &mut i8),

then the expression will be rewritten as pseudocast::<&mut i8, &const i32>(

x).

• If x is owned (that is, if x is going to be rewritten as as value of type Box<i8>), then

97

Type Equality and Unsafety Chapter 5

the expression will be rewritten as pseudocast::<Box<i8>, Box<i32>>(x).

• if x is raw (it is marked as unsafe) then the expression will be rewritten as

pseudocast::<*mut i8, *const i32>(x). We support this last case to rewrite

casts from/to nested pointers correctly according to the current configuration of

Laertes (Section 4.2).

Here, our changes are part of Laertes, so we determine the pointer kind of x and

do a single rewrite to add the call to pseudocast with the correct types. Also note

that x cannot be a vector or slice, as all pointer arithmetic has been removed from the

program before this step.

5.1.5 Rewriting Global Variable Initializers

Safe Rust code does not permit global variable initializers to create heap-allocated

values. We rewrite unsafe global initializers into global assignments contained in

newly created public functions that are never called (which does not affect the flow-

insensitive analyses performed by the rewrite tools and the compiler) and instead

initialize global variableswithdefault values (all of the types in theprograms translated

from C can be default-initialized). This scheme is similar to rewriting global variables

to be initialized with commonly used APIs such as lazy_static [14] or OnceCell

[15], which perform thread-safe lazy initialization. We generate new public functions

instead of using these APIs in order to generate code that is simpler and easier to

analyze.

5.1.6 Rewriting Unions to Structs

C-style unions allow type punning in an unsafe manner and also lose pointer

provenance for their members. We rewrite C-style unsafe unions into structs, and

98

Type Equality and Unsafety Chapter 5

rewrite each union initializer to initialize the other struct members to default values.

This rewrite breaks the expected runtime behavior of programs that use unions for

type punning or physical subtyping, but it preserves the properties outlined above.

For example, consider the following code, which allows for treating the same 16

bits as either a single integer or as two bytes:

union Bits { word: u16, bytes: [u8; 2] }

let a = Bits { word: 8 };

We rewrite the union to a struct, and add the default initializers to the missing fields

to each initialization of a Bits object (bytes is default-initialized):

struct Bits { word: u16, bytes: [u8; 2] }

let a = Bits { word: 8, bytes: [u8; 2]::default() };

Other alternatives we considered are (1) extending Laertes’ semantics to support

unions, and (2) converting unions into Rust enums (sum types) and adding support for

enums in Laertes. The first alternative would have preserved the program’s semantics

in terms of reinterpreting bits across fields, and the second alternative would detect

writing to a field then reading from another field, whichmight cause undefined behav-

ior [45]. We chose our approach as it does not require any additional modifications

to Laertes, and we deliberately choose to ignore any provenance information that

would be carried between union fields as Rust does not reason about any data flow

relationship between them.

5.1.7 Inline Assembly

C programmers use inline assembly code to implement low-level optimizations or

to access hardware capabilities. In order to simulate a translation of inline assembly to

safe code, we treat inline assembly regions as unique functions that take all associated

99

Type Equality and Unsafety Chapter 5

variables by reference. For example, if we have an inline assembly region llvm_asm!

(... : "r" a, : "=r" b) that has a as an input and b as an output, we create a

new function fn f(&mut a:A, &mut b:B) {} where A and B are the types of a and b

respectively, then we rewrite the inline assembly region into the function call f(&mut

a, &mut b). This rewrite allows us to preserve the constraint that these variables need

to be accessed mutably at this point of the program while not constraining the exact

semantics of the inline assembly code.

5.1.8 Limitations

Pseudo-safety emulates only low-level rewrites that do not change data flow facts

between pointers in the program. It does not account for potential translation schemes

that might perform higher-level transformation (e.g. creating shims for functions, us-

ing a different API for external functions, or eliminating global variables). Specifically,

we do not consider (1) using Rust libraries with different conventions to replace exter-

nal functions; (2) introducing locks or synchronization mechanisms to guard global

variables; or (3) reorganizing the program to abide by the lifetime restrictions that C

programmers do not care about (e.g., using a variable after moving its value to another

variable).

Ourmethodalsohas limitations aroundhandling functionpointers that holdvalues

coming from sources with different lifetime parameters. We extend Laertes to use

lambda constructors [36] in its pointer analyses in order to support function pointers.

Function pointer types in Rust do not encode lifetime constraints; e.g. we cannot have

a function type with where, such as in fn<’a, ’b>(&’a i8) -> &’b i8 where ’a

: ’b. As a result, our method does not handle cases where functions with different

lifetime constraints flow into the same function pointer. We encountered this problem

100

Type Equality and Unsafety Chapter 5

in 2 of the benchmarks we have previously used in Chapter 3 (optipng and snudown),

and so we exclude them in our evaluation of pseudo-safety.

5.2 Evaluating Laertes in the Limit

In this section we evaluate Laertes on a set of Rust programs that have been

translated fromCviaC2Rust and then had our pseudo-safety transformations applied.

Laertes attempts to automatically transform raw pointers into references for those

raw pointers whose unsafety depends solely on the lack of ownership and lifetime

information; it is the most advanced method for doing so in the current state of the

art. Since pseudo-safety guarantees that these are the only possible reasons for pointer

unsafety, Laertes can theoretically handle all raw pointers in our benchmarks (unlike

the original study we conducted earlier in Section 4.3 that could only handle a small

percentage of raw pointers). Our research question is: RQ1: How many pointers can

Laertes make safe when all raw pointers are made eligible via pseudo-safety?

5.2.1 Experiment Setup

We use 14 of the 17 programs we previously used for evaluation in [19] in our

evaluation, as shown in Table 5.1. We omit programs optipng and snudown because

of the limitation outlined in Section 5.1, and we omit libxml2 because Laertes times

out on libxml2when handling all pointers.

We apply the transformations described in Section 5.1 after the ResolveImports1

step of Laertes. We use the result of this phase as our baseline. Then, we run the

1
ResolveImports step merges duplicate struct and external function declarations in the Rust code

that result from the same header being included in separate translation units in the original C code. See

Section 4.1.

101

Type Equality and Unsafety Chapter 5

main step of Laertes (called ResolveLifetimes in Chapter 4) that uses the compiler as

an oracle to derive ownership and lifetime information.

5.2.2 Experiment Results

Table 5.1 shows the number of eligible raw pointer declarations (i.e., those that

Laertes can handle) and the number of raw pointer declarations that Laertes trans-

forms into safe references, both before and after our pseudo-safety transformations.

We also used number of raw pointer dereferences as ametric, but the trends are similar

to those for raw pointer declarations and we omit the dereference metric for space.

We reported earlier in Section 4.3 that eligible raw pointers (those with ownership and

lifetime as the only cause of unsafety) are only 11% of the total raw pointers, and we

confirm this result with our own experiment (we report a slightly different figure of

9.5% because of using only a subset of the benchmarks). Using pseudo-safety to make

all raw pointers eligible increases the number of eligible raw pointer declarations by an

average of 10.5×. We also see that while 93% of eligible raw pointer declarations can be

made safe before pseudo-safety is applied, only 9% of eligible raw pointer declarations

can be made safe afterwards.2 That is, the vast majority of raw pointer declarations

that were previously rendered ineligible by other unsafety factors cannot have their

ownership and lifetimes inferred by Laertes after those other factors are removed. In

the next section we investigate the reasons behind this result.

2
Thefindings before ourmodifications are consistentwith the resultswe report in [19] andSection 4.3.

The overall percentage of pointers made safe is higher because we consider a subset of benchmarks, and

we have applied bugfixes and improvements to the tool by fine-tuning how Laertes handles compiler

errors since that paper.

102

Type Equality and Unsafety Chapter 5

Table 5.1: Benchmark programs ordered by Rust lines of code along with raw pointer

declarations both before and after our transformations. We report both the number of

eligible pointer declarations, and the declarations made safe by the ResolveLifetimes

pass of Laertes (the Fixed column).

Program Lines of code Before pseudo-safety After pseudo-safety

C Rust Eligible Fixed % Eligible Fixed %

qsort 27 39 2 2 100% 4 2 50%

libcsv 1,035 951 18 18 100% 37 25 68%

grabc 224 994 5 5 100% 13 8 62%

urlparser 440 1,114 5 5 100% 79 9 11%

RFK 838 1,415 0 0 – 2 2 100%

genann 642 2,119 0 0 – 73 12 16%

xzoom 776 2,409 0 0 – 29 3 10%

lil 3,555 5,367 23 23 100% 438 34 8%

json-c 6,933 8,430 29 28 97% 297 42 14%

libzahl 5,743 10,896 7 7 100% 457 64 14%

bzip2 5,831 14,011 37 29 78% 227 84 37%

TI 4,643 19,910 166 160 96% 866 18 2%

tinycc 46,878 62,569 187 146 78% 1,352 177 13%

tmux 41,425 191,964 331 329 99% 4,635 470 10%

Total 118,990 322,188 810 752 93% 8,509 773 9%

103

Type Equality and Unsafety Chapter 5

5.2.2.1 How Pseudo-safety Affects Number of Lifetime Errors Found

As discussed in Section 4.2,when Laertes encounters a compiler error, it stores each

pointer (specifically, each program location) that needs to be raw because of that error

in a configuration. As a follow-up to our previous result, we are also interested in

whether the increase in the number of pointers Laertes could not make safe correlates

with the increase in the number of pointers it derived as necessarily unsafe (as a direct

result of a compiler error). In other words, we want to see whether the cause of the

increase in pointers that cannot be made unsafe is (1) because they are reported to be

used unsafely directly by the compiler, or (2) they are derived to be unsafe from the

initial configuration through the analysis in Section 4.2.3.1.

In order to answer this follow-up question, we compare the total number of such

inherently unsafe pointers stored in the configuration by Laertes before and after

our pseudo-safety transformations. Pseudo-safety enables finding 134 pointers that

are inherently unsafe as opposed to 11 inherently unsafe pointers before applying

it. The number of issues found increases to 12.2× (similarly to the increase to 10.5×

in declared pointers we reported earlier in Section 5.2) however the total number of

pointers that cannot be made safe has increased 130× (derived by comparing the

difference between the eligible and fixed columns in Table 5.1). So, the increase in the

number of inherently unsafe pointers alone does not explain why many more pointers

are still unsafe: 134 pointers are inherently unsafe but over 7,000 additional pointers

are still unsafe because they interact with inherently unsafe pointers. In Section 5.3,

we investigate this increase in the ratio of pointers that are unsafe because of other

pointers.

104

Type Equality and Unsafety Chapter 5

5.3 Type Equality as a Vector for Unsafety

In Section 5.2 we have shown that the efficacy of Laertes drops a lot when consid-

ering pointers that used to have other causes of unsafety. In this section we investigate

why Laertes is unable to transform a significant number of raw pointers into safe

references. The Rust typechecker is equality-based (as discussed in Section 4.2.3.1),

meaning that raw pointers are placed into type equivalence classes—if any raw pointer

in a given equivalence class is marked unsafe (e.g., because ownership and/or lifetime

cannot be inferred for it), all raw pointers in the same classmust also bemarked unsafe

even if Laertes can infer ownership and lifetime information for them. We conjecture

that this unsafety tainting effect is the culprit behind Laertes’ lack of success. To test

this conjecture, we measure statistics for the raw pointer equivalence classes in our

pseudo-safe benchmarks.

Figure 5.1 shows the relative sizes of the equivalence classes in each benchmark:

each column is a benchmark, a column contains one mark for each raw pointer type

equivalence class, and the placement of a mark on the y-axis indicates the percentage

of raw pointers that are in that type equivalence class. Hence, low marks are small

type equivalence classes and high marks are large type equivalence classes. Having

large type equivalence classes means that the unsafety of one raw pointer can easily

spread to many other raw pointers.

We observe that in all benchmarks except grabc and xzoom there is a single equiv-

alence class that affects more than 45% of the raw pointers. Moreover, the four largest

equivalence classes account for 90% of the raw pointers in all benchmarks; this means

that having only four necessarily unsafe raw pointers is enough to poison 90% of the

total raw pointers in the worst case. Moreover, all benchmarks have at most 29 equiv-

alence classes. From these measurements we see that the underlying issue is type

105

Type Equality and Unsafety Chapter 5

Benchmark

E
qu

iv
al

en
ce

 c
la

ss
 s

iz
es

 (%
)

0

25

50

75

100

qs
or

t
gr

ab
c

R
FK

lib
cs

v
ur

lp
ar

s
xz

oo
m

ge
na

nn
sn

ud
ow

js
on

-c
bz

ip
2

lib
za

hl lil TI
op

tip
ng

tin
yc

c
tm

ux

Figure 5.1: Size of each equivalence class of declared variables as a percentage of

the sum of the sizes of equivalence classes for each benchmark. The benchmarks are

ordered in terms of total number of variables.

equality, or more precisely, the imprecision of the Rust typechecker.

In the rest of this chapter, we investigate the effects of applying more precision

for the typechecker. However, this means going beyond equality-based analysis and

therefore means that raw pointers will no longer be grouped into equivalence classes.

We need a metric for measuring the impact of “unsafety tainting” that is independent

of equivalence classes. The metric we will use is a histogram that conveys how easily

unsafety taint can be spread among raw pointers. For each raw pointer pwe count the

number of other raw pointers whose safety depends on that of p (i.e., the number of

raw pointers that will necessarily be marked unsafe if p is marked unsafe); call p the

instigating raw pointer and call the raw pointers whose safety is dependent on p the

affected raw pointers. We then plot a histogram where the x-axis indicated number of

affected raw pointers and the y-axis indicates howmany instigating raw pointers affect

that many other raw pointers. Note that “instigating” vs “affected” are just terms of

convenience: the metric looks at every raw pointer as a potential instigator and any

106

Type Equality and Unsafety Chapter 5

Figure 5.2: Histogram of pointers in tmux (our largest benchmark). The x axis denotes

the number of pointers affected, and the y axis denotes the normalized ratio of pointers

in the program in the bin.

raw pointer may be affected by some other raw pointer.

Figure 5.2 demonstrates this new metric on our largest benchmark, tmux. We see

that, for example, over 90% of instigating raw pointers affect more than 6,000 other

raw pointers. That is, if any of those 90% of raw pointers are marked unsafe, then

necessarily at least 6,000 other raw pointers will also be marked unsafe.

5.4 Investigating Analysis Precision

In the previous section we showed that imprecision in the Rust typechecker is

responsible for allowing necessarily unsafe raw pointers to spread their “unsafety

taintedness” to many other raw pointers. In this section we perform a limits study to

investigate the effects of adding different kinds of precision in order to determine what

kinds of analysis, if any, can mitigate this problem.

107

Type Equality and Unsafety Chapter 5

The baseline Rust typechecking analysis is equivalent to an equality-based (i.e.,

Steensgaard-style [41]), field-based, context-insensitive pointer analysis. We explore

three dimensions of precision to make the analysis more precise: context sensitivity,

field sensitivity, and directionality (i.e., going from an equality-based analysis to a

subset-based analysis). To implement these analyses we build on the SVF [43] frame-

work and its various pointer analyses. SVF analyzes LLVM bitcode, so we first compile

the Rust programs to LLVM bitcode with all optimizations and overflow checks dis-

abled to get a program that is as close as possible to the high-level Rust IR (HIR)

that Laertes analyzes. However, there are three important differences between LLVM

bitcode and Rust HIR code:

• LLVM bitcode is in static single assignment (SSA) form, which causes flow-

insensitive analyses to effectively have strong updates for local variables a la

flow-sensitive analysis. However, SSA form can be applied to Rust HIR if needed

so the results still apply.

• LLVM bitcode uses offsets instead of field names when accessing struct fields,

which can cause precision loss for field-based and field-sensitive analyses. We

use the type information and the field index information computed by SVF to

restore some of the missing type information in order to remedy this problem.

• HIR code is polymorphic but LLVM code is monomorphized. This is not an issue

in our experiments, as the code translated from C does not use generics.

We implement a flow-insensitive dataflow analysis client that uses SVF to build

a dataflow graph containing all top-level pointers (i.e., each global and local pointer

variable). We build four versions of this graph using different levels of sensitivity (each

building on top of the previous):

108

Type Equality and Unsafety Chapter 5

P1 A field-based, equality-based, context-insensitive analysis reflecting the baseline

Rust typechecker. We build an undirected data flow graph and merge all nodes

that access the same field (by analyzing GetElementPointer instructions), even

on different objects.

P2 A field-sensitive, equality-based, context-insensitive analysis. This is similar to the

prior analysis, but does not merge field access nodes.

P3 A field-sensitive, subset-based, context-insensitive analysis. This adds a directional

data flow graph to the prior level of precision.

P4 A field-sensitive, subset-based, context-sensitive analysis. We do the same analysis as

the prior level, but we use pairs of call contexts and program locations as nodes

in the data flow graph.

We use four levels of pointer analyses from SVF to build P1–P4 client analyses.

The SVF equality-based pointer analysis is Steensgaard-style, the SVF subset-based

pointer analysis is Andersen-style, and the SVF context-sensitive pointer analysis is

actually a demand-driven flow- and context-sensitive analysis (SVF does not allow for

a flow-insensitive, context-sensitive pointer analysis; note that the P4 client analysis

built on top of SVF is still flow-insensitive). The context-sensitivity strategy uses the

immediate caller of the current function being analyzed as the context. As most of our

benchmarks are libraries, we pick all externally visible functions (all functions marked

pub in the Rust code) as program entry points.

Experiment Setup We analyze 16 out of 17 benchmarks we used in Section 4.3. We

do not use the libxml2 benchmark because the context-sensitive analysis times out

after 48 hours. All of our experiments are run on a Intel i7-6600k processor with 32

109

Type Equality and Unsafety Chapter 5

GiB of memory running Void Linux. We used GNU Parallel [44] to run the analyses in

parallel. The context sensitive analysis on tmux used 27 GiB of memory and took 25

hours; the same analysis for tinycc used 2.8 GiB of memory and took 10 minutes. All

other experiments used < 2 GiB of memory and took less than 5 minutes.

Results To answer how analysis precision impacts the spread of unsafety, we use the

metric described in Section 5.2 that looks at each raw pointer as a potential instigator of

unsafety and howmany other raw pointers it would force to be unsafe if the instigator

ismarkedunsafe. The smaller the average size of the affected rawpointers per potential

instigator, the better the analysis curbs the spread of unsafety. We pose two research

questions:

1. RQ2: How many raw pointers are “well-contained”? Specifically, we are in-

terested in the number of raw pointers that, when considered as potential in-

stigators, do not affect many other pointers in the program. For this study we

define well-contained pointers as those that affect at most 1% of the program’s

raw pointers.

2. RQ3: How does the overall distribution of affected pointers change with

analysis precision? As RQ2’s 1% threshold is arbitrary, we also investigate the

overall distribution of affected pointers. To answer RQ3 we collect summary

statistics (mean and standard deviation) for each benchmark and precision level.

We also graphically display the distribution of raw pointers in terms of how

many other raw pointers in the program they affect.

The context-sensitive level of precision raises a difficulty with the metric we’re

using: namely, how to count pointers that are duplicated due to being in different

110

Type Equality and Unsafety Chapter 5

contexts. In order to leverage the additional precision of context-sensitive analysis

we consider potential intigating raw pointers to be (pointer, context) pairs, that is, if a

pointer appears in n contexts then we consider it as a potential instigator pointer n

different times. However, in order to meaningfully compare the sizes of the affected

pointer sets across different precisions we count affected pointers only once no matter

how many contexts they appear in. This raises the additional question of how to

count affected pointers that may appear in the instigator’s affected set in some contexts

but not in others: counting it as affected may be too conservative, but counting it

as not affected may be too optimistic. We compute the metric twice, once under the

conservative assumption and once under the optimistic assumption, and report both

results.

RQ2: Howmany pointers are “well-contained”? Table 5.2 presents the total number

and percentage of instigator raw pointers that affect less than 1% of the raw pointers

in the program for each level of analysis precision. We observe that adding field

sensitivity to an equality-based analysis does not significantly improve precision: the

highest increase observed is 4% (in optipng). However, adding directionality causes

a sudden jump in precision, with the subset-based analysis having more than 90% of

the pointers affect less than 1% of the pointers in 12 out of 16 benchmarks. qsort is

the outlier because it has only 12 pointers, and the analysis can prove the same fact for

>80% of the pointers for the remaining three benchmarks. Adding context sensitivity

shows that 94% (97% excluding qsort) of the instigator raw pointers affect less than

1% of the total raw pointers on average (geometric mean). We also observe that if an

unsafe pointer can affect one clone of another pointer, the unsafe pointer can likely

affect all clones of it. This shows that an analysis that incorporates all three aspects of

precision is crucial for taming unsafety, and that such analyses can also help identify

111

Type Equality and Unsafety Chapter 5

Table 5.2: Number of total pointers, and percentage of pointers affecting ≤ 1% of

pointers. ptrs is the number of pointer-typed variables in the dataflow graph, cptrs is

the total number of clones of all raw pointers in all contexts. The remaining columns

refer to instigator pointers affecting≤ 1%pointers under each analysis precision. P4:all

counts a pointer as affected only if it is affected under all call contexts. P4:some counts

a pointer as affected only if it is affected under at least one call context. Results > 90%
are marked in bold.

Benchmark ptrs cptrs # of pointers affecting <1% of the pointers (%)

P1 P2 P3 P4:some P4:all

qsort 16 109 0.00% 0.00% 37.50% 55.05% 55.96%

grabc 108 112 52.78% 52.78% 91.67% 91.07% 98.21%

libcsv 429 1,048 15.15% 17.25% 81.82% 95.91% 96.96%

urlparser 1,079 2,293 2.41% 2.59% 83.60% 96.21% 96.42%

xzoom 2,465 1,808 31.32% 34.32% 92.33% 96.46% 96.57%

RFK 3,095 2,438 26.20% 28.72% 95.32% 97.70% 100.00%

snudown 3,728 8,467 17.95% 19.21% 98.85% 99.22% 99.99%

genann 4,108 23,298 25.46% 27.14% 93.65% 98.09% 98.31%

libzahl 5,441 34,092 4.43% 4.52% 94.16% 95.20% 95.40%

json 5,598 19,671 10.29% 11.97% 92.69% 96.12% 96.25%

lil 6,144 21,465 14.71% 16.03% 91.78% 96.03% 96.62%

TI 8,376 20,859 13.98% 14.77% 93.04% 99.85% 100.00%

bzip2 11,909 36,905 17.03% 17.65% 96.84% 98.52% 98.54%

optipng 21,984 76,709 20.37% 24.46% 96.77% 99.61% 99.63%

tinycc 28,830 257,853 14.09% 17.97% 93.54% 95.03% 98.35%

tmux 75,869 246,398 6.90% 8.07% 89.00% 93.14% 93.14%

the remaining “lynchpin” pointers that spread unsafety even after drastic automatic

program transformations. Such an analysis can similarly help in identifying the cases

when some automatic transformations will not control unsafety, which can be useful

for building interactive methods for making programs safe.

RQ3: How does the overall distribution of affected pointers change with analy-

sis precision? Our evaluation for RQ2 requires defining an arbitrary threshold for

“well-contained”. To get a complete picture, we also look at overall changes in the dis-

tributions of affected raw pointers. We present statistics for the distribution of affected

pointers in Table 5.3. The average affected pointer set size increases as the total number

112

Type Equality and Unsafety Chapter 5

of pointers increases, as there could be several lynchpin pointers flowing into pointers

from different parts of the program. We observe that both the mean and the standard

deviation of this metric shrink as sensitivity increases. Once we add directionality

the mean shrinks by an order of magnitude, though the standard deviation shrinks

only by half on average (geo. mean). This means that although directionality reduces

affected pointer set sizes for most of the program, there are still many pointers with

large affected pointer sets. Finally we consider a best-case scenario, i.e., an analysis

with full precision, and assuming that another pointer is not reachable unless it is

reachable in all contexts. In such a scenario, we observe that a random pointer does

not affect more than 179 other pointers, or merely 20 when excluding tmux. Similar

to the analysis of Table 5.2, we observe that having only field-sensitivity added to an

equality-based analysis improves the mean only by a small amount.

While summary statistics give a general understanding of the distribution theymay

be misleading, as many differently-shaped distributions can have the same summary

statistics [6]. So, we also investigate the change in the shape of this distribution

graphically. Figure 5.3 presents this distribution for each precision level on tmux. For

space reasonswe present only the results for our largest benchmark; other benchmarks

have similar distributions. Ideally, we would like to see all pointers binned on the

leftmost column, indicating that instigator pointers generally do not affect many other

pointers. As the precision increases, we see a trend towards the left. At one extreme,

≈ 90% of the pointers can affect almost all pointers under P1. With P3 only 10% of

the pointers can affect more than 80% of the pointers. Finally, with P4 only 2% of the

pointers can affect more than half of the pointers.

113

Type Equality and Unsafety Chapter 5

Table 5.3: Summary statistics for number of affected pointers for each instigator pointer

(rounded to the nearest integer for space concerns), classified by benchmark and

analysis precision. µ is the mean and σ is the standard deviation. P4:all is counting a

pointer as affected only if it is affected under all call contexts; P4:some is counting a

pointer as affected only if it is affected under at least one call context.

Program P1 P2 P3 P4:some P4:all

µ σ µ σ µ σ µ σ µ σ
qsort 7 4 7 4 2 3 1 1 1 1

grabc 5 7 5 7 1 1 1 1 0 0

libcsv 64 50 55 44 3 5 1 2 1 2

urlparser 1028 161 1023 167 8 17 2 5 2 3

xzoom 996 749 900 720 10 38 2 7 2 6

RFK 1642 1001 613 440 8 35 2 14 0 2

snudown 2497 1270 2049 1192 4 37 2 11 1 2

genann 2286 1332 1871 1275 17 86 9 54 4 20

libzahl 5150 1108 4959 1078 126 652 77 343 6 20

json 3389 1669 3030 1646 96 425 32 158 8 34

lil 4355 1889 4062 1940 155 616 29 140 4 14

TI 5560 2629 5247 2677 37 190 2 19 1 3

bzip2 7989 3754 7661 3799 159 1006 76 629 9 71

optipng 16372 8268 12194 7120 67 603 12 142 5 43

tinycc 21998 8904 19402 9071 913 3553 173 997 20 123

tmux 68091 18541 64113 18997 5391 15936 2441 8986 179 652

114

Type Equality and Unsafety Chapter 5

Figure 5.3: Histogram of pointers in tmux. The x axis denotes the number of pointers

affected, and the y axis denotes the normalized ratio of pointers in the program in the

bin. We report two separate figures for context-sensitive analysis: some-ctx counts a

pointer as affected if it is affected in at least one context; all-ctx counts a pointer as

affected only if it is affected in all contexts.

115

Type Equality and Unsafety Chapter 5

5.5 Curbing the Spread of Unsafety

We have shown that more precise analysis can curb the spread of unsafety when

attempting to transform raw pointers into safe references. However, it is not feasible

to make substantial changes to the Rust typechecker in order to support translating C

programs into safe Rust. To put our insights into practice, we must develop methods

to gain the benefits of more precise analysis without modifying the Rust compiler. We

suggest several program transformations that would allow for more precise reasoning

by the Rust typechecker without any compiler modification; these transformations

mimic the effects of field-sensitive analysis, directional (subset-based) analysis, and

context-sensitive analysis. We implement the transformations for directionality in

Chapter 6. Implementing and evaluating the remaining transformations is left for

future work.

An axis for pointer analysis precision that we do not focus on is control flow

sensitivity. The result of a flow-sensitive analysis could be different for each program

point because of strong updates, so there is no straightforward rewrite to achieve flow-

sensitivity overall without changing the underlying type system. However, at least for

stack objects, flow sensitivity can be gained by renaming variables to be in SSA form.

5.5.1 Duplicating Struct Definitions for Field Sensitivity

Rust’s type system is field-based, with a single assigned type for each field of each

struct type; thus it merges the types of different instances of the same field into a single

type. For example, the snippet on the left in Section 5.5.1 shows that although there is

no actual data flow between x and y, any unsafety in x would also force y to become

unsafe because of field-based analysis: x flows into z1.bar so if x is unsafe, it makes

the bar field of Foo unsafe, which causes z2.bar to be unsafe hence it makes y unsafe.

116

Type Equality and Unsafety Chapter 5

1 struct Foo<’a>{bar: &’a i8;}
2

3 let z1 : Foo = ...;
4 let z2 : Foo = ...;
5 z1.bar = x;
6 y = z2.bar;

1 struct Foo<’a>{bar: &’a i8;}
2 struct Foo2{bar: * const i8;}
3 let z1 : Foo2 = ...;
4 let z2 : Foo = ...;
5 z1.bar = x;
6 y = z2.bar;

Figure 5.4: A code snippet before and after duplicating Foo to emulate field sensitivity.

A field-sensitive analysis could distinguish between z1.bar and z2.bar. To get the

effect of a field-sensitive analysis while still using a field-based analysis, we can define

separate struct types for each object or each combination of struct fields’ safety. The

code snippet on the right of Section 5.5.1 shows the result of such a transformation.

The important change is that z1 and z2 now have different types, so the compiler can

reason that z1.bar and z2.bar are unrelated.

5.5.2 Casting References to Pointers to Introduce Directionality

Rust’s type checker performs an equality-based analysis, which means that infor-

mation flows not just from the right-hand side of an assignment to the left-hand side,

but also vice-versa—effectively, information is propagated backwards as well as for-

wards. This imprecision forces values with no shared data flow to have the same type.

In Section 5.5.2, x and y are aliased because they both flow into z, though there is no

data flow between x and y:

Suppose x must become a raw pointer due to some unsafe usage not shown. Due

to the assignments between x, y, and z, variables y and z are transitively forced to

become raw pointers, as they must all share the same type.

A directional (i.e., subset-based) analysis distinguishes between information flow-

ing into a value and flowing from that value. We can mimic this feature of a directional

analysis using an equality-based analysis by looking for places where a raw pointer

117

Type Equality and Unsafety Chapter 5

1 let x : & i8 = ...;
2 let y : & i8 = ...;
3 let z : & i8;
4 // ...
5 z = y;
6 // ...
7 z = x;

1 let x : * const i8 = ...;
2 let y : & i8 = ...;
3 let z : * const i8;
4 // ...
5 z = y.as_ptr();
6 // ...
7 z = x;

Figure 5.5: A code snippet before and after inserting a reference-to-pointer conversion

to emulate directionality.

that otherwise could be made safe flows into a raw pointer that is marked unsafe and

breaking the backwards flow (that forces the first raw pointer to also be made unsafe)

by introducing a cast from a safe references to a raw pointer at that point, and turning

the raw pointer flowing into an unsafe raw pointer into references while keeping the

raw pointers flowing from an unsafe pointer intact.

In the example above, we can cast y to a raw pointer only in the assignment to z,

keeping y as a safe reference as there is no unsafe pointer that flows into y. Thus, by

allowing references to decay into pointers, we can make z unsafe but still leave y safe.

As shown, one can insert casts when appropriate to make pointer unsafety spread

only in the direction of the data-flow, in order to communicate the results of a di-

rectional (Andersen-style) analysis to the Rust compiler. However, we cannot apply

this arbitrarily in the program, as mixing references and pointers can cause undefined

behavior in Rust. For example, the object may not live long enough for the pointers

referring to it to access it, or the compiler may assume that an object pointed to by an

alive immutable reference cannot be modified, even when there is a mutable pointer

to that object. The undefined behavior is introduced here because the compiler can

assume that the object pointed to by an alive reference cannot be changed by another

reference or pointer (the borrow checker already checks this for references), and the

programmer (or, in this case the translation tool) is responsible for using unsafe point-

118

Type Equality and Unsafety Chapter 5

ers while maintaining this invariant. We investigate methods to enforce these aliasing

constraints for the pointers we handle by leveraging the Rust type system in Chapter 6.

In that chapter, we also implement and evaluate the method described here.

5.5.3 Duplicating Functions to Introduce Context Sensitivity

If a single call to a given function uses a raw pointer argument, then all calls must

use a raw pointer argument, potentially spreading unsafety to other call sites. The

most direct way to solve this problem is function cloning, i.e., introduce a different

version of the same function for each call site, each specialized for its particular use

(mimicking a context-sensitive analysis). However, there are several observations and

challenges for implementing such an idea that a future implementation would need to

take into account:

• We do not need to duplicate a function for each call site, but rather for each

combination of pointer, box, and reference arguments.

• To keep program size manageable only a small number of functions should be

duplicated, but in a way that maximizes how much of the program is safe. This

requires introducing heuristics on which functions to duplicate.

• Programs with function pointers require additional bookkeeping, which is ex-

acerbated by additional complexity from the prior item. This creates another

tension between maintainability and safety.

Potentially, one can inspect the call graph to find functions with many call sites,

and inspect the context-sensitive points-to graph to discover if any of those functions

take unsafe arguments at only some call sites. However, this approach would require

computing a full context-sensitive analysis to discover candidate functions. Future

119

Type Equality and Unsafety Chapter 5

research is needed to investigate function duplication heuristics without such expense,

perhaps via demand-driven context-sensitive analyses.

Another challenge left for future work is cloning function pointers for different

function signatures. One possible representation is to convert function pointers to

structs with one member for each possible function signature. Upon an update to a

new function, all members of the struct would be updated appropriately. Upon calls,

the relevant member of the struct would be accessed and called. Another possible

approach is to perform defunctionalization, and to maintain separate maps for each

function signature.

5.6 Conclusions

In this chapter we have conducted a series of limit studies on the effectiveness of

ownership and lifetime inference for unsafe raw pointers in Rust programs translated

from C. Our first limit study uses a new technique called pseudo-safety that extends

the study to all raw pointers rather than the small subset used in previous studies,

and contradicts previous studies by showing that the majority of raw pointers cannot

be translated to safe references using existing techniques. We show empirically that

type equality is the culprit, causing the unsafety of only a few raw pointers to taint the

safety of many others. We then show that more precise pointer analysis can mitigate

this problem by analyzing pointer analysis precision in three axes: field-sensitivity,

context-sensitivity, and directionality (using a subset-based analysis rather than an

equality-based analysis). We finally suggest several program transformations that

could potentially mimic the effect of more precise pointer analysis without requiring

any Rust compilermodifications. We implement and evaluate one of these suggestions

(encoding the results of a subset-based analysis) in Chapter 6.The remaining sugges-

120

Type Equality and Unsafety Chapter 5

tions require resolving the tension between maintainability and safety in automatic

transformations Implementing and evaluating them are left for future work.

121

Chapter 6

Directionality to Tame Unsafety

About the use of language: it is impossible to sharpen a pencil with a blunt axe. It is

equally vain to try to do it with ten blunt axes instead.

– Edsger W. Dĳkstra (EWD498)

In Section 5.5 we have shown that the imprecise analysis done by the type checker

causes unsafety to spread in the program like wildfire, and showed that encoding the

results of a more precise analysis is a viable way forward for reducing the impact of

an average pointer in the program. Machiry et al. [31] also make a similar observation

about the spread of unsafety by an equality-based analysis in the context of keeping

track of nullability and array indexing in Checked C programs, and they propose a

solution around containing unsafety at function call boundaries by adding run-time

checks (which would potentially be validated by the programmer). In this chapter, we

develop a set of methods to encode the results of a subset-based analysis throughout

the program, explore how such a rewrite interacts with the aliasing rules in Rust, and

evaluate the efficacy of these methods in terms of how well they contain unsafety, and

what borrow errors they enable discovering to help the programmer make the rest of

the program safe.

122

Directionality to Tame Unsafety Chapter 6

Similar toChapter 5, weuse the term directionality to describe thedifference between

a subset-based (directional) data flow analysis, and an equality-based (undirectional)

one. The only program transformation we perform is inserting casts from references

to pointers, as described in Section 6.1.

The pointer-to-reference casts regard only making the outermost pointer type safe,

so they cannot be used for conversion between inner pointer types (e.g., they do not

convert from * mut & mut T to * mut * mut T). Thus, we do not use directionality

for inner pointers. Moreover, we cannot safely cast between types of functions that

accept a reference vs. a parameter, sowe use an undirectional (equality-based) analysis

to reason about function pointers. Section 6.2 describes the specifics of the data flow

analysis we use to compute where to insert casts to reduce the spread of unsafety.

As brieflymentioned in Section 5.5.2, inserting casts everywhere possible can cause

undefined behavior because of aliasing an alive reference (a reference that can be used

according to the borrow checker), and a pointer. We prevent this by invalidating

references during a cast, and we use the Rust type checker to enforce this restriction.

Section 6.3 explains this undefined behavior in detail as well as how we solve it.

We then evaluate this method (along with the version that can cause undefined

behavior) using pseudo-safety in Section 6.4 and discuss the impact of the method’s

limitations empirically.

Finally, we conclude in Section 6.5 and discuss potential complementary methods

for future work to overcome the limitations of the method we present in this chapter.

6.1 Representing Directional Flow using Casts

In this section, we are going to demonstrate the issue with undirectional analysis.

Then, we show how we solve this by inserting casts as well as how we compute where

123

Directionality to Tame Unsafety Chapter 6

to insert casts based on the results of a directional data flow analysis.

The example we used in Section 5.5.2, along with the data flow graph computed

by an undirectional analysis1 is reproduced in Figure 6.1. The nodes marked 1 and 2

correspond to the expressions (not variables) y and x on lines marked with (1) and (2)

respectively. Note that the graph is undirected, so unsafety computed from this graph

can flow both in the direction of data flow (from x to z), and against it (from z to y). In

this example, we consider x to be inherently unsafe (it is directly used unsafely), so all

other pointers are marked unsafe as a result of the data flow analysis.

1 let x : * const i8 = ...;
2 let y : * const i8 = ...;
3 let z : * const i8;
4 // ...
5 z = y; // (1)
6 // ...
7 z = x; // (2)

(1)

z

(2)

x y

Figure 6.1: A short code snippet with the associated data flow graph computed . The

red nodes are marked unsafe. We assume that x is used unsafely, so it is the instigator

for all other unsafe pointers in this snippet.

Figure 6.2 shows thedataflowgraph (DFG) computedbyadirectional analysis (note

that the graph is now directed). We observe that the location (node) corresponding

to expression y on the line marked (1) is safe, but it immediately flows into an unsafe

location (namely, z). So, we insert a cast around the expression (1) to encode the results

of the directional analysis to obtain the code snippet in the same figure. As a result,

we can now use y as a safe reference up until it is passed to z.

So, we i when rewriting the current expression e with associated location l, we

check if thre is a data flow edge l → l′ in the original data flow graph such that l is not

1
We use flow-insensitive, context-insensitive, and field-based analyses throughout this chapter, as

they mimic the type checker’s behavior modulo directionality.

124

Directionality to Tame Unsafety Chapter 6

1 let x : * const i8 = ...;
2 let y : & i8 = ...;
3 let z : * const i8;
4 // ...
5 z = y.as_ptr(); // (1)
6 // ...
7 z = x; // (2)

(1)

z

(2)

x y

Figure 6.2: The code snippet after inserting a reference-to-pointer conversion to em-

ulate directionality. The graph on the right is the DFG computed by the directional

analysis. The nodes in red are marked unsafe, whereas the ones in blue are safe.

poisoned but l′ is poisoned (where the poisons are computed by the analysis described

in Section 6.2). If there is such an edge, then we insert a cast surrounding the current

expression, because e represents a reference that is going to be used as a raw pointer

immediately. We implement this logic in the part of Laertes that inserts borrows and

re-borrows. Also, note that we use the DFG before transitive closure in our analysis

(otherwise, we would insert the cast immediately to every source that may eventually

flow to an unsafe location).

One issue that arises is that “What happens if e immediately flows into more than one

place?”, as one of the uses of emight be safe while another use is not. We construct the

DFG such that this does not happen. The next section outlines how we construct the

DFG, and how we propagate information through the DFG.

6.2 A Type-safe Directional Data Flow Analysis

Figure 6.3 shows the program locations (i.e., nodes in the data flow graph) in

our analysis besides the ones already used in Figure 4.5. This is mostly a fairly

standard representation for a field-based, context- and control flow-insensitive data

flowanalysis. The locations represent actual program locations (or fresh logic variables

125

Directionality to Tame Unsafety Chapter 6

needed to fill in the inputs/outputs of public APIs), and constructors are constructors

in the sense of set constraint-based program analysis [3].

The fresh locations f are used to create a structure that mimics type structure for

function and nested pointer types are used as APIs for client programs to use. There

are no a actual uses of these APIs and we use fresh locations to create dummy sources

for the pointers in these APIs.

Pseudo-locations are not necessary for the analysis per se, but they allow us to

structure the graph such that every node that is derived from an expression has a

single successor in the data flow graph before transitive closure. For example, consider

an assignment *p = q. In a classical subset-based data flow analysis, this assignment

would generate a constraint of the form ref (q, q̄) ⊆ p. There are no edges from q to any

location until the constraint system is solved. And, by the time the constraint system

is solved, we would get nodes that transitive successors of q. This is a situation want

to avoid as it would make the analysis degrade to an equality-based one because we

would insert a cast right after creating a source if it eventually flows into an unsafe

node. We resolve this conundrum by introducing pseudo-locations that are not used

for propagating unsafety, but used to resolve caseswhere a nodemayflow immediately

into an indeterminate number of locations. In the example with the points-to set, we

add the edge q → pointsto p to the data flow graph, so q has a single successor in the

original data flow graph. When determining whether pointsto p is unsafe, we check if

any of the nodes in the points-to set of p is unsafe. The other case where an expression

may flow into multiple locations immediately is function calls (in cases where the

callee is unknown) where an argument may flow into parameters of many functions,

and the return value of a function may flow into many call sites. We, similarly, create

pseudo-locations to denote the parameters and the return value of the functions that

flow into a location.

126

Directionality to Tame Unsafety Chapter 6

Overall, the data flow analysis we perform is the subset-based data flow analysis

with function pointers described by Pearce et al. [36] with the followingmodifications:

1. We unify all pointees of a pointer, effectively switching to an equality-based

analysis for inner pointer types because our method inserts casts only at the top

level (e.g., we do not insert a cast from the type * mut & mut T to * mut * mut

T).

2. We create a dummy node to connect the two sides of a comparison operation to

guarantee that type equality is maintained when two pointers are compared.

3. We reason about all function pointers using an equality-based analysis, again

because we cannot support casts between function types soundly. We also create

dummy nodes in the DFG for each variable, field, and parameter to forward taint

information to cases where a function pointer is never explicitly initialized but

used in calls where its parameters need to become raw. This case arises when

rewriting higher-order functions libraryAPIs that take a callback but the callback

is never used in the program itself.

4. We insert special nodes to represent (1) function parameters, (2) points-to sets,

and (3) declared variables to act as intermediaries to guarantee that each DFG

node that corresponds to an AST node has only one successor in the DFG. The

declared variable nodes were already in Laertes, so it is not an addition wemade

with pseudo-locations.

Once we perform the data flow analysis, we propagate the unsafety information

along the data flow edges, so that all uses of an unsafe pointer also become unsafe.

We then use this unsafety information when querying unsafety of the nodes in the

original graph (including pseudo-locations).

127

Directionality to Tame Unsafety Chapter 6

l ∈ Location ::= . . . | | f ∈ Free Free location variables

p ∈ PseudoLocation ::= ptsto l Points-to sets

| param l i Parameters

| ret l Return values

Figure 6.3: Pseudo-locations and additional locations used in our data flow analysis.

Location also includes the locations described in Figure 4.5

6.3 Pointer–Reference Aliasing Woes

At the beginning of this chapter, we alluded to emergence of undefined behavior

due to pointer-reference aliasing. Figure 6.4 shows a code snippet that exhibits this

behavior. Without any optimizations, this code snippet would return 2. A mutable

reference in Rust is assumed to not alias with any other mutator, so the compiler can

assume that *y can only be modified through ywhile y is not borrowed. So, a constant

propagation pass may rewrite return *y; to return 1; because y is not borrowed

between the assignment *y = 1; and the return statement. As a result, this program

has undefined behavior. If the program used unsafe pointers everywhere, then this

unsafe behavior would not occur (because there are no aliasing guarantees among

pointers). So, this undefined behavior is introduced by adding casts, and it does not

exist in the original unsafe Rust program.

In order to resolve this problem, we need to make sure that a reference is never

used the pointer it is cast to is in use. One may approach encoding this using lifetime

constraints, however there are two issues with such an approach: (1) pointers can be

cloned, so we need to keep track of all clones of a pointer throughout the program, (2)

the reference cast to the pointer may be derived from another reference, so we need

to exclude the uses of all sources that flow to that reference. Lifetimes in Rust’s type

128

Directionality to Tame Unsafety Chapter 6

1 let x : * mut i8 = ...;
2 let y : &mut i8 = ...;
3 let z : * mut i8;
4 z = x;
5 // ...
6 *y = 1;
7 z = y.as_mut_ptr();
8 *z = 2;
9 return *y;

Figure 6.4: A program with pointer–reference aliasing causing undefined behavior.

system allow us to encode the second property. We can try encoding the first property

using phantom types (types, in our case lifetimes, that are used only for safety but not

associated with actual data types) as well, similar to how RefCellworks to lift aliasing

checks to run-time. However, such an encoding does not compose well with array and

field accesses, as we cannot overload these operations to generate raw pointers with

lifetime tracking. So, we are left to do the lifetime analysis outside the Rust borrow

checker, which loses the benefits of off-loading lifetime inference to the compiler.

We follow a different route to still use the Rust borrow checker: whenever a location

needs to become unsafe (i.e., its pointer kind is promoted to raw), we also mark that

location to be owned. This ownership requirement does not affect the location itself,

but it enforces that all safe references that flow into this location are also owned (i.e.,

they are of type Box<T> rather than & T). Now, we can consume the reference (i.e,

the Box) when inserting a cast, so the cast invalidates the incoming reference, and

the ownership requirement invalidates all previous references to the same object (as

it already does in Laertes). This change comes with a cost efficacy, as the ownership

requirement would invalidate some uses of pointers. We evaluate the impact of this

change quantitatively in Section 6.4.

129

Directionality to Tame Unsafety Chapter 6

6.4 Evaluation

In this section we evaluate Laertes with our modifications to measure the impact

of both the safe and the unsafe version of inserting casts. We are specifically interested

in the following questions:

• How effective is adding only top-level casts in terms ofmakingmore declarations

and dereferences safe?

• How much headroom is there between the safe transformation that introduces

ownership, and the unsafe one that may introduce undefined behavior?

6.4.1 Experiment Setup

We use pseudo-safety to evaluate our method in this section, so we use the same

experiment setup we used in Section 5.2, and use the same 14 benchmarks.

We run Laertes under the following configurations after the pseudo-safety trans-

formations:

• Equality-based: This is the version of Laertes we used in Chapter 5, and it does

not contain any of the transformations discussed in this chapter. It serves as a

baseline for our experiments.

• Subset-based (unsafe): This is the version of Laertes we used in Chapter 5 with

casts inserted everywhere possiblewithout guaranteeing lack of aliasing between

pointers and references.

• Subset-based (safe): This is the version of Laertes we used in Chapter 5 with

casts inserted while guaranteeing lack of aliasing between pointers and alive

references by consuming the references as described in Section 6.3.

130

Directionality to Tame Unsafety Chapter 6

6.4.2 Results

Tables 6.1 and 6.2 show the declarations and the dereferences in the program

(respectively), as well as how many declarations/dereferences are made safe by each

method. We see a similar overall picture between dereferences and declarations.

So, our analysis focuses on declarations. Inserting top-level casts safely increases the

effectiveness of lifetime inference by 75% (an increase from 12% to 21%), and a more

elaborate handling of the aliasing issues discussed in Section 6.3 may allow a further

25% increase (an increase from 12% to 24%). However, our method of offloading

aliasing constraints to the compiler using ownership is nevertheless an effective and

simple solution. Also, the overall number of pointers made safe is still low, indicating

that handling other causes of imprecision discussed in Section 5.5 is a worthwhile goal

for future work.

Introducing casts does not improve the efficacy of Laertes much relatively in four

benchmarks: grabc, xzoom, libcsv, and TI. The first two use an effectively global

pointer unsafely (as part of interaction with X graphics library), which results in

spread of unsafety to the rest of the program. The unsafety in libcsv is caused directly

by instigator pointers, so it is unsafety that needs to be fixed by the programmer (it

is outside the scope of lifetime inference). Finally, the unsafety in TI spreads through

function pointers, which limits the efficacy of our method. We discuss how the spread

of unsafety manifests in TI in the Limitations section in more detail.

6.4.3 Limitations

Themethod presented here handles function pointers in an equality-basedmanner,

and it does not implement a way to handle other ways to increase analysis precision

discussed in Section 5.5. In order to measure the potential effect of handling nested

131

Directionality to Tame Unsafety Chapter 6

Table 6.1: The pointer declarations, the Eligible column denotes the number of all

pointers in the program (because we use pseudo-safety). w/o casts = pointers made

safe by the baseline (equality-based) transformation. w/ casts (unsafe) = pointersmade

safe when introducing casts while allowing unsafe aliasing. w/ casts (safe) pointers

made safe when introducing casts and preventing unsafe aliasing by consuming the

original object in casts. All percentages are relative to the Eligible column.

Benchmark Eligible w/o casts w/ casts (unsafe) w/ casts (safe)

RFK 2 2 (100%) 2 (100%) 2 (100%)

qsort 4 2 (50%) 3 (75%) 2 (50%)

grabc 13 8 (62%) 8 (62%) 8 (62%)

xzoom 29 3 (10%) 3 (10%) 3 (10%)

libcsv 37 26 (70%) 27 (73%) 26 (70%)

genann 73 12 (16%) 18 (25%) 15 (21%)

urlparser 79 9 (11%) 61 (77%) 48 (61%)

bzip2 227 84 (37%) 139 (61%) 133 (59%)

json-c 325 70 (22%) 150 (46%) 115 (35%)

lil 438 35 (8%) 162 (37%) 156 (36%)

libzahl 457 64 (14%) 208 (46%) 83 (18%)

TI 866 18 (2%) 37 (4%) 35 (4%)

tinycc 1,352 207 (15%) 381 (28%) 387 (29%)

tmux 4,635 468 (10%) 836 (18%) 762 (16%)

TOTAL 8,537 1,008 (12%) 2,035 (24%) 1,775 (21%)

pointers in a directional manner, we conducted the following experiment:

1. Laertes computes a set of instigator pointers, i.e. the root causes of unsafety due

to lifetimes for each iteration of invoking the compiler. We record these for each

benchmark.

2. Then, we compute how many pointers are not made unsafe by these root causes

using both the analysis described in this chapter, and an analysis that still uses

directionality for nested pointers. The value calculated by the first analysis is the

number of pointers made safe, whereas the second number is an upper bound on

the number of pointers that could be made safe with more elaborate casts.

We observe that more elaborate casts couldmake at most 114more pointer declarations

132

Directionality to Tame Unsafety Chapter 6

Table 6.2: The pointer dereferences, the Eligible column denotes the number of all

pointer dereferences in the program (because we use pseudo-safety). w/o casts =

dereferences made safe by the baseline transformation. w/ casts (unsafe) = deref-

erences made safe when introducing casts while allowing unsafe aliasing. w/ casts

(safe) dereferences made safe when introducing casts and preventing unsafe aliasing

by consuming the original object in casts. All percentages are relative to the Eligible

column.

Benchmark Eligible w/o casts w/ casts (unsafe) w/ casts (safe)

qsort 10 4 (40%) 4 (40%) 4 (40%)

grabc 21 17 (81%) 17 (81%) 17 (81%)

RFK 24 24 (100%) 24 (100%) 24 (100%)

urlparser 60 58 (97%) 58 (97%) 58 (97%)

xzoom 132 81 (61%) 79 (60%) 79 (60%)

libcsv 174 51 (29%) 51 (29%) 51 (29%)

genann 339 5 (1%) 11 (3%) 6 (2%)

lil 1,668 634 (38%) 903 (54%) 880 (53%)

TI 1,778 85 (5%) 513 (29%) 510 (29%)

json-c 1,843 130 (7%) 702 (38%) 197 (11%)

libzahl 2,400 188 (8%) 516 (22%) 211 (9%)

bzip2 3,720 317 (9%) 730 (20%) 705 (19%)

tinycc 5,362 679 (13%) 1,388 (26%) 1,051 (20%)

tmux 21,608 1,869 (9%) 3,428 (16%) 3,116 (14%)

TOTAL 39,139 4,142 (11%) 8,424 (22%) 6,909 (18%)

safe. This is a small percentage (1.3%) of the total number of eligible pointers, so we

do not expect this limitation to have a large effect in the efficacy of Laertes. This

number is an upper bound because we may discover more root causes using a more

precise analysis, so some of the 114 pointers marked as affected by our analysis could

be instigators.

The limitations around function pointers affects the TI benchmark disproportion-

ately: TI is a time series analysis library that implements hundreds of analysis func-

tions, then the functions requested by the user are dispatched using a single global

array of function pointers. We see that only 4% of the pointers were made safe in

this benchmark even with directionality. We investigated how unsafety spreads for

133

Directionality to Tame Unsafety Chapter 6

this benchmark in detail by investigating the instigators and the affected pointers. We

observe that:

• There is an unsafe pointer that flows into the parameters of a function pointer

from this global array. This results in almost all function parameters in the

program to be unsafe. Function duplication as suggested in Section 5.5.3 can help

overcome this issue by maintaining safe and unsafe versions of these functions,

but ultimately this unsafety issue needs to be resolved by the programmer.

• Moreover, some of these data analysis functions use their parameters unsafely,

and the equality-based reasoning causes this unsafety to spread to other data

analysis functions through the global array.

6.5 Conclusions

In this chapter, we presented a method to encode the results of a subset-based

(directional) data flow analysis by introducing casts from references to pointers. We

considered inserting only top-level casts from pointer types. So, the analysis we used

is subset-based only for top-level pointers and it switches to an equality-based analysis

for function pointers and inner pointer types in nested pointers. We also show that just

inserting casts may cause undefined behavior by aliasing alive references and pointers.

Ourmethod overcomes this issue by consuming the original object (hence invalidating

all safe references to it) on a cast. We then evaluate this method using the evaluation

methodology in Section 5.2. Even with these limitations, we see an 75% increase (from

12% to 21% of pointers) in the effectiveness of Laertes when we introduce casts. We

also evaluate casts without consuming the original references (which may introduce

undefined behavior), and observe a further increase to 24% of the pointers, so there is

134

Directionality to Tame Unsafety Chapter 6

a small gain in using a more sophisticated solution than consuming the pointee object.

So, encoding results of a subset-based analysis helps contain the spread of unsafe

pointers and make lifetime inference handle a larger part of the program. We leave

investigating more elaborate program transformations that would also allow using

subset-based analysis for function types to future work. We also observe that other

methods of encoding analysis precision (such as function duplication) are needed to

further tame unsafety.

135

Chapter 7

Conclusion and Future Work

The end is never the end is never the end is never ...

– The loading screen in Stanley Parable

Translating C to safe Rust is a multifaceted open problem with sub-problems that

interact with each other. In this dissertation, we have shown that the causes of unsafety

in a Rust program translated from C are varied, and interleaved. We then focused on

the “core” cause of unsafety that is due to lack of information that the Rust compiler

needs to prove memory safety: lack of lifetime information in pointers. So, we built an

iterative method to discover lifetime and ownership constraints from compiler errors,

and showed that this method is effective on pointers that do not contain causes of

unsafety besides lack of lifetime information. However, evaluation of such a method

is incomplete because of interactions with other causes of unsafety (so, only 11% of

the pointers are eligible for this method). In order to get more accurate results, we

built an evaluationmethodology that hides other causes of unsafetywhilemaintaining

the lifetime constraints we care about, and we evaluated the effectiveness of lifetime

inference on all pointers in the program. This evaluation shows that lifetime inference

does not scale well when considering all pointers, and we show that the underlying

136

cause here is the spread of “accidental” unsafety through the type system. We then

conducted a limit study evaluating potential impact of making the type system more

precise (by keeping track of data flows more precisely), and we propose methods to

encode the results of a more precise analysis by program transformation. Finally, we

implemented one of our proposals to show that such an encoding is feasible and it can

double the effectiveness of lifetime inference.

Overall, we observe that lifetime inference has a potential to be effective to extract

safe uses from most of the program, however it is hindered by the imprecision of the

type system. Encoding the results of other more sensitive analysis using the methods

we proposed can improve on our solution in the future.

There are two avenues for futurework to explore to complement theworkpresented

in this dissertation:

• As we reach the limits of automatic lifetime inference, future work needs to

investigate (1) higher-level rewrites to transform unsafe uses of pointers to safe

uses, and (2) interactive methods to point to the programmer the “pain points”

where automatic translation falls short, alongwith potential impact of each point.

• Eventually, other causes of unsafety also need to be handled (semi-)automatically

to help scale the effort of translating C to safe Rust.

137

Bibliography

[1] NVD - CVE-2021-21148, 2021. URL https://nvd.nist.gov/vuln/detail/
CVE-2021-21148.

[2] NVD - CVE-2021-3156, 2021. URL https://nvd.nist.gov/vuln/detail/
CVE-2021-3156.

[3] Alexander Aiken. Introduction to set constraint-based program analysis. Science
of Computer Programming, 35(2):79–111, November 1999. ISSN 0167-6423. doi: 10.

1016/S0167-6423(99)00007-6. URL http://www.sciencedirect.com/science/
article/pii/S0167642399000076.

[4] Lars Ole Andersen. Program Analysis and Specialization for the C Programming

Language. Technical report, Dept. of Computer Science, University of Copen-

hagen, 1994.

[5] Brian Anderson, Lars Bergstrom, David Herman, Josh Matthews, Keegan McAl-

lister, Manish Goregaokar, Jack Moffitt, and Simon Sapin. Experience Report:

Developing the ServoWeb Browser Engine using Rust. arXiv:1505.07383 [cs], May

2015. URL http://arxiv.org/abs/1505.07383. arXiv: 1505.07383.

[6] F. J. Anscombe. Graphs in Statistical Analysis. The American Statistician, 27(1):17–
21, February 1973. ISSN 0003-1305. doi: 10.1080/00031305.1973.10478966. URL

https://www.tandfonline.com/doi/abs/10.1080/00031305.1973.10478966.

[7] V. Astrauskas, C. Matheja, P. Müller, F. Poli, and A. J. Summers. How do pro-

grammers use unsafe rust? In Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA), volume OOPSLA, New York, NY, USA, 2020. ACM.

doi: 10.1145/3428204.

[8] Vytautas Astrauskas, ChristophMatheja, Federico Poli, PeterMüller, and Alexan-

der J. Summers. How do programmers use unsafe rust? Proc. ACM Pro-
gram. Lang., 4(OOPSLA), November 2020. doi: 10.1145/3428204. URL https:
//doi.org/10.1145/3428204.

[9] Sergio Benitez. Short Paper: Rusty Types for Solid Safety. In Proceedings of the
2016 ACM Workshop on Programming Languages and Analysis for Security, PLAS

138

https://nvd.nist.gov/vuln/detail/CVE-2021-21148
https://nvd.nist.gov/vuln/detail/CVE-2021-21148
https://nvd.nist.gov/vuln/detail/CVE-2021-3156
https://nvd.nist.gov/vuln/detail/CVE-2021-3156
http://www.sciencedirect.com/science/article/pii/S0167642399000076
http://www.sciencedirect.com/science/article/pii/S0167642399000076
http://arxiv.org/abs/1505.07383
https://www.tandfonline.com/doi/abs/10.1080/00031305.1973.10478966
https://doi.org/10.1145/3428204
https://doi.org/10.1145/3428204

’16, pages 69–75, New York, NY, USA, October 2016. Association for Computing

Machinery. ISBN 978-1-4503-4574-3. doi: 10.1145/2993600.2993604. URL https:
//doi.org/10.1145/2993600.2993604.

[10] David Bryant. A Quantum Leap for the Web, October 2016. URL https://
medium.com/mozilla-tech/a-quantum-leap-for-the-web-a3b7174b3c12.

[11] Citrus Developers. Citrus / Citrus, 2018. URL https://gitlab.com/citrus-rs/
citrus.

[12] Mirai Contributors. facebookexperimental/MIRAI, July 2021. URL

https://github.com/facebookexperimental/MIRAI. original-date: 2018-11-

06T20:56:35Z.

[13] The Rust Project Developers. Rust compiler error index, 2021. URL https:
//doc.rust-lang.org/error-index.html.

[14] The Rust Project Developers. lazy-static.rs, May 2022. URL https://github.com/
rust-lang-nursery/lazy-static.rs. original-date: 2014-06-24T08:25:15Z.

[15] The Rust Project Developers. standard lazy types - Rust RFC #2788, 2022. URL

https://github.com/rust-lang/rfcs/pull/2788.

[16] Zakir Durumeric, Frank Li, James Kasten, Johanna Amann, Jethro Beekman,

Mathias Payer, Nicolas Weaver, David Adrian, Vern Paxson, Michael Bailey, and

J. Alex Halderman. TheMatter of Heartbleed. In Proceedings of the 2014 Conference
on Internet Measurement Conference, IMC ’14, pages 475–488, New York, NY, USA,

November 2014. Association for Computing Machinery. ISBN 978-1-4503-3213-

2. doi: 10.1145/2663716.2663755. URL https://doi.org/10.1145/2663716.
2663755.

[17] Nelson Elhage. Supporting linux kernel development in rust, 2020. URL https:
//lwn.net/Articles/829858/.

[18] Archibald Samuel Elliott, Andrew Ruef, Michael Hicks, and David Tarditi.

Checked C: Making C Safe by Extension. In 2018 IEEE Cybersecurity Develop-
ment (SecDev), pages 53–60, September 2018. doi: 10.1109/SecDev.2018.00015.

[19] Mehmet Emre, Ryan Schroeder, Kyle Dewey, and Ben Hardekopf. Translating c

to safer rust. Proc. ACM Program. Lang., 5(OOPSLA), October 2021. doi: 10.1145/

3485498. URL https://doi.org/10.1145/3485498.

[20] Ana Nora Evans, Bradford Campbell, and Mary Lou Soffa. Is rust used safely by

software developers? In 2020 IEEE/ACM 42nd International Conference on Software
Engineering (ICSE), pages 246–257, 2020.

139

https://doi.org/10.1145/2993600.2993604
https://doi.org/10.1145/2993600.2993604
https://medium.com/mozilla-tech/a-quantum-leap-for-the-web-a3b7174b3c12
https://medium.com/mozilla-tech/a-quantum-leap-for-the-web-a3b7174b3c12
https://gitlab.com/citrus-rs/citrus
https://gitlab.com/citrus-rs/citrus
https://github.com/facebookexperimental/MIRAI
https://doc.rust-lang.org/error-index.html
https://doc.rust-lang.org/error-index.html
https://github.com/rust-lang-nursery/lazy-static.rs
https://github.com/rust-lang-nursery/lazy-static.rs
https://github.com/rust-lang/rfcs/pull/2788
https://doi.org/10.1145/2663716.2663755
https://doi.org/10.1145/2663716.2663755
https://lwn.net/Articles/829858/
https://lwn.net/Articles/829858/
https://doi.org/10.1145/3485498

[21] Tim Hutt. Would Rust secure cURL?, January 2021. URL https://timmmm.
github.io/curl-vulnerabilities-rust/.

[22] Immunant inc. immunant/c2rust, February 2020. URL https://github.com/
immunant/c2rust. original-date: 2018-04-20T00:05:50Z.

[23] Immunant inc. c2rust manual examples, 2020. URL https://c2rust.com/
manual/examples/index.html.

[24] Trevor Jim, J GregoryMorrisett, Dan Grossman, Michael WHicks, James Cheney,

and Yanling Wang. Cyclone: a safe dialect of c. In USENIX Annual Technical
Conference, General Track, pages 275–288, 2002.

[25] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. Rustbelt:

Securing the foundations of the rust programming language. Proc. ACM Program.
Lang., 2(POPL), December 2017. doi: 10.1145/3158154. URL https://doi.org/
10.1145/3158154.

[26] S. Klabnik and C. Nichols. The Rust Programming Language. No Starch Press, 2018.

ISBN 978-1-59327-851-9. URL https://doc.rust-lang.org/book/.

[27] N.G. Leveson and C.S. Turner. An investigation of the therac-25 accidents. Com-
puter, 26(7):18–41, 1993. doi: 10.1109/MC.1993.274940.

[28] Amit Levy, Michael P. Andersen, Bradford Campbell, David Culler, Prabal Dutta,

Branden Ghena, Philip Levis, and Pat Pannuto. Ownership is theft: experiences

building an embeddedOS in rust. InProceedings of the 8thWorkshop onProgramming
Languages and Operating Systems, PLOS ’15, pages 21–26, New York, NY, USA, Oc-

tober 2015. Association for Computing Machinery. ISBN 978-1-4503-3942-1. doi:

10.1145/2818302.2818306. URL https://doi.org/10.1145/2818302.2818306.

[29] Yi Lin, Stephen M. Blackburn, Antony L. Hosking, and Michael Norrish. Rust as

a language for high performance GC implementation. In Proceedings of the 2016
ACM SIGPLAN International Symposium on Memory Management - ISMM 2016,
pages 89–98, Santa Barbara, CA, USA, 2016. ACM Press. ISBN 978-1-4503-4317-6.

doi: 10.1145/2926697.2926707. URL http://dl.acm.org/citation.cfm?doid=
2926697.2926707.

[30] Linux Weekly News. Rust support hits linux-next, 2021. URL https://lwn.net/
Articles/849849/.

[31] Aravind Machiry, John Kastner, Matt McCutchen, Aaron Eline, Kyle Headley,

and Michael Hicks. C to checked C by 3c. Proceedings of the ACM on Program-
ming Languages, 6(OOPSLA1):78:1–78:29, April 2022. doi: 10.1145/3527322. URL

https://doi.org/10.1145/3527322.

140

https://timmmm.github.io/curl-vulnerabilities-rust/
https://timmmm.github.io/curl-vulnerabilities-rust/
https://github.com/immunant/c2rust
https://github.com/immunant/c2rust
https://c2rust.com/manual/examples/index.html
https://c2rust.com/manual/examples/index.html
https://doi.org/10.1145/3158154
https://doi.org/10.1145/3158154
https://doc.rust-lang.org/book/
https://doi.org/10.1145/2818302.2818306
http://dl.acm.org/citation.cfm?doid=2926697.2926707
http://dl.acm.org/citation.cfm?doid=2926697.2926707
https://lwn.net/Articles/849849/
https://lwn.net/Articles/849849/
https://doi.org/10.1145/3527322

[32] Nicholas D Matsakis. An alias-based formulation of the borrow checker, April

2018. URL https://smallcultfollowing.com/babysteps/blog/2018/04/27/
an-alias-based-formulation-of-the-borrow-checker/.

[33] Cade Metz. Dennis Ritchie: The Shoulders Steve Jobs Stood On. Wired,
October 2011. ISSN 1059-1028. URL https://www.wired.com/2011/10/
thedennisritchieeffect/. Section: tags.

[34] P. Müller, M. Schwerhoff, and A. J. Summers. Viper: A verification infrastructure

for permission-based reasoning. In B. Jobstmann and K. R. M. Leino, editors,

Verification, Model Checking, and Abstract Interpretation (VMCAI), volume 9583 of

LNCS, pages 41–62. Springer-Verlag, 2016.

[35] George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley

Weimer. Ccured: Type-safe retrofitting of legacy software. ACM Trans. Program.
Lang. Syst., 27(3):477–526, May 2005. ISSN 0164-0925. doi: 10.1145/1065887.

1065892. URL https://doi.org/10.1145/1065887.1065892.

[36] David J. Pearce, Paul H.J. Kelly, and Chris Hankin. Efficient Field-sensitive Pointer

Analysis of C. ACM Trans. Program. Lang. Syst., 30(1), November 2007. ISSN

0164-0925. doi: 10.1145/1290520.1290524. URL http://doi.acm.org/10.1145/
1290520.1290524.

[37] Natalie Popescu, Ziyang Xu, Sotiris Apostolakis, David I. August, and Amit Levy.

Safer at any speed: Automatic context-aware safety enhancement for rust. Proc.
ACM Program. Lang., 5(OOPSLA), October 2021. doi: 10.1145/3485480. URL

https://doi.org/10.1145/3485480.

[38] Boqin Qin, Yilun Chen, Zeming Yu, Linhai Song, and Yiying Zhang. Un-

derstanding memory and thread safety practices and issues in real-world rust

programs. In Proceedings of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2020, page 763–779, New York, NY,

USA, 2020. Association for Computing Machinery. ISBN 9781450376136. doi:

10.1145/3385412.3386036. URL https://doi.org/10.1145/3385412.3386036.

[39] Eric Reed. Patina: A formalization of the Rust programming language. Master’s

thesis, University of Washington Department of Computer Science and Engineer-

ing, 2015.

[40] Jamey Sharp. jameysharp/corrode, February 2020. URL https://github.com/
jameysharp/corrode. original-date: 2016-05-05T21:12:52Z.

[41] Bjarne Steensgaard. Points-to Analysis in Almost Linear Time. In Proceedings of the
23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

141

https://smallcultfollowing.com/babysteps/blog/2018/04/27/an-alias-based-formulation-of-the-borrow-checker/
https://smallcultfollowing.com/babysteps/blog/2018/04/27/an-alias-based-formulation-of-the-borrow-checker/
https://www.wired.com/2011/10/thedennisritchieeffect/
https://www.wired.com/2011/10/thedennisritchieeffect/
https://doi.org/10.1145/1065887.1065892
http://doi.acm.org/10.1145/1290520.1290524
http://doi.acm.org/10.1145/1290520.1290524
https://doi.org/10.1145/3485480
https://doi.org/10.1145/3385412.3386036
https://github.com/jameysharp/corrode
https://github.com/jameysharp/corrode

POPL ’96, pages 32–41, New York, NY, USA, 1996. ACM. ISBN 978-0-89791-769-

8. doi: 10.1145/237721.237727. URL http://doi.acm.org/10.1145/237721.
237727.

[42] Jeff Vander Stoep and Stephen Hines. Rust in the Android plat-

form, April 2021. URL https://security.googleblog.com/2021/04/
rust-in-android-platform.html.

[43] Yulei Sui and Jingling Xue. Svf: interprocedural static value-flow analysis in

llvm. In Proceedings of the 25th international conference on compiler construction,
pages 265–266. ACM, 2016.

[44] Ole Tange. Gnu parallel 20220422, April 2021. URL https://doi.org/10.5281/
zenodo.6479152. GNU Parallel is a general parallelizer to run multiple serial

command line programs in parallel without changing them.

[45] The Rust developers. The Rust Reference, 2021. URL https://doc.rust-lang.
org/stable/reference/.

[46] Aaron Weiss, Daniel Patterson, Nicholas D Matsakis, and Amal Ahmed. Oxide:

The Essence of Rust, August 2020.

142

http://doi.acm.org/10.1145/237721.237727
http://doi.acm.org/10.1145/237721.237727
https://security.googleblog.com/2021/04/rust-in-android-platform.html
https://security.googleblog.com/2021/04/rust-in-android-platform.html
https://doi.org/10.5281/zenodo.6479152
https://doi.org/10.5281/zenodo.6479152
https://doc.rust-lang.org/stable/reference/
https://doc.rust-lang.org/stable/reference/

	Curriculum Vitae
	Abstract
	Introduction
	Permissions and Attributions

	Background and Related Work
	Rust's Ownership System
	Translating C to Rust
	Referring to Memory in Rust
	Characterizing Unsafe Code in Rust
	Reasoning about Rust's Type and Ownership Systems
	Pointer Analysis
	Inferring Pointer Safety in C

	Classifying and Understanding Unsafety
	C Program Corpus
	Provenance of Unsafety
	Underlying Causes of Unsafety
	Observations and Discussion

	Deriving Lifetime and Ownership Using the Compiler as an Oracle
	Connecting Function and Data Structure Definitions across Modules
	Computing Lifetime Information Iteratively
	Evaluation
	Conclusion

	Type Equality and Unsafety
	Introducing Pseudo-Safety
	Evaluating Laertes in the Limit
	Type Equality as a Vector for Unsafety
	Investigating Analysis Precision
	Curbing the Spread of Unsafety
	Conclusions

	Directionality to Tame Unsafety
	Representing Directional Flow using Casts
	A Type-safe Directional Data Flow Analysis
	Pointer–Reference Aliasing Woes
	Evaluation
	Conclusions

	Conclusion and Future Work

