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Abstract

Online Optimization and Learning for Sustainable Cyber-Human-Physical Systems

by

Nathaniel Surman Tucker

Due to the increasing connectivity of modern technology and extensive data avail-

ability, large-scale societal systems have massive potential to improve reliability, reduce

operational costs, ensure safety, and decrease their carbon footprint. However, the in-

creasing complexity of these systems also brings forth new challenges that traditional

engineering fields are not well equipped to handle. Rather, interdisciplinary solutions

from many fields including optimization, control theory, communications, signal process-

ing, economics, power engineering, and transportation engineering are required. Specifi-

cally, my research has focused on the upcoming Cyber-Human-Physical-Systems (CHPS)

within this domain (e.g., transportation systems, power grids, and smart cities with co-

operative building communities). A Cyber-Human-Physical System is any real-world

system that involves physical components that are controlled by both algorithms and

human input. For example, these systems operate by way of physical components and

infrastructure, utilize algorithms for the control and optimization of the infrastructure,

and rely on human input. Additionally, these societal systems seek to maximize profit or

social welfare while operating subject to constraints and subject to inherently stochastic

environments.

This thesis is focused on developing optimization frameworks and machine

learning strategies to improve the operation of these complex modern societal infras-

tructure systems in uncertain environments. Namely, 1) leveraging recent advancements

in online optimization for system scheduling with applications to electric vehicle (EV)

ix



charging and community energy storage (CES) management, 2) using the machine learn-

ing framework called Thompson Sampling for the design of effective price signals for

an electricity aggregator passively learning customers’ price sensitivities while running a

load shaping program and providing theoretical safety guarantees on critical infrastruc-

ture constraints, and 3) optimizing real-world workplace EV charging in an online fashion

and scheduling the charging/routing of a real electric bus fleet to minimize operational

costs.
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Chapter 1

Introduction

Across the world, societies are individually and collectively shifting away from traditional

operating strategies to ones that prioritize sustainability. Two critical components of this

paradigm shift are the electrification of the transportation sector and the modernization

of the power grid.

In the transportation sector, there is currently a strong push to replace traditional

internal-combustion-engine vehicles (ICEVs) with electric vehicles (EVs). The switch to

EVs reduces the distributed CO2 emissions of ICEVs and allows for the usage of clean

renewable energy. EVs have seen a drastic increase in their popularity and sales over

the last 10 years. In 2012, there were a total of 120,000 EVs sold worldwide. In 2021,

there were over 120,000 EVs sold each week1. While this increase is generally seen as

a positive, there are new challenges arising from this large EV population. Specifically,

the infrastructure needed to recharge these EVs must grow alongside the EV population

and these charging infrastructure systems must be managed in order to maximize their

benefits. For example, residential EV charging systems or large-scale EV fleet facilities

must be optimized to maximize their effectiveness.

1Global EV Outlook, 2022, International Energy Agency (IEA)
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Introduction Chapter 1

Alongside the electrification of the transportation sector, power grid modernization

is playing a key role in many societies’ sustainable development goals. Traditionally, the

power grid was set up as a one-way system, with remote generation plants providing power

to our communities. However, recently there has been much development in distributed

energy resources (DERs) that are in close proximity to loads and provide clean, renewable

energy (e.g., solar and wind). While DERs are commonly seen as positive additions to

the grid, the inherently stochastic nature of renewable energy sources brings forth new

challenges. Currently, in order to mitigate the issues arising from intermittent renewable

generation, energy storage systems are increasing in popularity to store clean energy to

be used at a later time. Additionally, demand response (DR) programs are being used

to shape how customers use electricity and increase the usage of renewable generation.

As these sustainable efforts continue to grow, so does the need for management strate-

gies to make smart decisions to maximize the effectiveness of these systems. The goal of

this thesis is to design, analyze, and test novel management strategies for these systems.

Specifically, this thesis is focused on developing, analyzing, and testing optimization

frameworks and machine learning strategies that aid in the electrification of the trans-

portation sector and modernization of the power grid.

1.1 Motivations of this Thesis

Online (Real-Time) Optimization for System Scheduling

Many people rely on societal infrastructure systems in their day-to-day lives and can

experience immense inconveniences due to poor management of these systems (e.g., los-

ing air conditioning on a hot day because of a blackout, experiencing excessively long

wait times for a ride-share because the vehicles in-service were routed poorly, or losing

the opportunity to charge an electric vehicle (EV) at a workplace parking lot because all

2



Introduction Chapter 1

the chargers were occupied). Because these societal systems are such a critical part of

our modern world, designing effective management and scheduling algorithms for these

large-scale systems is a difficult interdisciplinary endeavor. Modern large-scale societal

infrastructure systems exist within our inherently stochastic world and must be managed

in real-time; that is, they are subject to large amounts of uncertainty in their usage

patterns as well as from exogenous factors that affect their operation. As such, the

management algorithms of these systems must operate in real-time without knowledge

of future events. This thesis considers several problem settings where real-time (online)

optimization frameworks are required to design effective management and scheduling

systems (e.g., scheduling and routing in ride-sharing/mobility-on-demand, strategic ad-

mission control and energy dispatch in electric vehicle charging equipped parking lots,

and scheduling multiple users’ charging and discharging profiles in a community energy

storage system). Moreover, this thesis presents novel online scheduling systems in each

of the aforementioned problem settings that make immediate decisions when new events

occur, readily handle the inherent stochasticity of the users of the system, and always

yield total welfare that is bound with respect to the offline optimal (i.e., bounding the

total welfare of a schedule generated from the online management system to that of an

omniscient offline schedule).

Safe Learning for Cyber-Human-Physical-Systems

The addition of humans into the control loop for large-scale societal systems yields

many benefits but also results in numerous additional hurdles for reliable operation. As

we know, day-to-day human activity is inherently stochastic; humans’ responses to system

signals can vary from day-to-day or even minute-to-minute, without any reason. This

unknown and time-varying human response can lead to economic uncertainty for a system

operator as well as reliability concerns for the system itself. Furthermore, the problem

3
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of communicating with the users involved in these large-scale systems is a challenging

one. Communication requires a framework and consistent user interaction; the framework

could be costly and the user interaction could be unreliable. Moreover, many users might

not be able to characterize their responses, and even if they could, they might not be

willing to share this private information. With this in mind, it is evident that many

large-scale societal systems with humans in the control loop require advanced methods

to passively learn human responses only from historical data of past interactions. To this

end, this thesis presents a novel machine learning strategy to learn electricity customers’

preferences through a pricing mechanism designed to shape customers’ electricity demand

while upholding critical infrastructure constraints throughout the learning procedure.

Real-World Implementations

Additionally, this thesis presents several implementations of various optimization and

control strategies for real-world systems. Specifically, the focus of the latter half of this

thesis is on the following implementations:

• Real-Time (Online) Charge Scheduling via Model Predictive Control (MPC) for

EVs at Google Campuses

• Route and Schedule Optimization via Mixed Integer Linear Programming (MILP)

for Stanford’s Marguerite Electric Shuttle System

1.2 Chapter Overviews

Chapter 1

Chapter 1 presents the motivation for this work, summary of main contributions, and

chapter overviews.

4
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Chapter 2

Chapter 2 presents results on online primal-dual optimization for electric vehicle smart

charging.

Section 2.1 presents an online reservation system that allows electric vehicles (EVs)

to park and charge at parking facilities equipped with electric vehicle supply equipment

(EVSEs). We consider the case where EVs arrive in an online fashion and the facility

coordinator must immediately make an admission or rejection decision as well as assign

a specific irrevocable parking spot to each admitted EV. By means of strategic user

admittance and smart charging, the objective of the facility coordinator is to maximize

total user utility minus the operational costs of the facilities. We discuss an online pricing

mechanism based on primal-dual methods for combinatorial auctions that functions as

both an admission controller and a distributor of the facilities’ limited charging resources.

We analyze the online pricing mechanism’s performance compared to the optimal offline

solution and provide numerical results that validate the mechanism’s performance for

various test cases.

Section 2.2 presents an online charge scheduling strategy for fleets of autonomous-

mobility-on-demand electric vehicles (AMoD EVs). We consider the case where vehicles

complete trips and then enter a between-ride state throughout the day, with their infor-

mation becoming available to the fleet operator in an online fashion. In the between-ride

state, the vehicles must be scheduled for charging and then routed to their next passenger

pick-up locations. Additionally, due to the unknown daily sequences of ride requests, the

problem cannot be solved by any offline approach. As such, we study an online welfare

maximization heuristic based on primal-dual methods that allocates limited fleet charg-

ing resources and rebalances the vehicles while avoiding congestion at charging facilities

and pick-up locations. We discuss a competitive ratio result comparing the performance

5
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of our online solution to the clairvoyant offline solution and provide numerical results

highlighting the performance of our heuristic.

Chapter 3

Chapter 3 presents an online scheduling heuristic for Community Energy Storage

(CES) systems. Specifically, a community energy storage (CES) system is studied that

is shared by various electricity consumers who want to charge and discharge the CES

throughout a given time span. We study the problem facing the manager of such a CES

who must schedule the charging, discharging, and capacity reservations for numerous

users. Moreover, we consider the case where requests to charge/discharge the CES arrive

in an online fashion and the CES manager must immediately allocate charging power

and energy capacity to fulfill the request or reject the request altogether. The objective

of the CES manager is to maximize the total value gained by all of the users of the CES

while accounting for the operational constraints of the CES. We discuss an algorithm

titled CommunityEnergyScheduling that acts as a pricing mechanism based on on-

line primal-dual optimization as a solution to the CES manager’s problem. The online

algorithm estimates the dual variables (prices) in real-time to allow for requests to be

allocated or rejected immediately as they arrive. Furthermore, the proposed method pro-

motes charging and discharging cancellations to reduce the CES’s usage at popular times

and is able to handle the inherent stochastic nature of the requests to charge/discharge

stemming from randomness in users’ net load patterns and weather uncertainties. Ad-

ditionally, we are able to show that the algorithm is able to handle any adversarially

chosen request sequence and will always yield total welfare within a factor of 1
α

of the

offline optimal welfare.

6
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Chapter 4

Chapter 4 presents a safe learning framework for an electricity aggregator running a

load shaping program. Specifically, the problem of an electricity aggregator attempting

to learn customers’ electricity usage models while implementing a load shaping program

by means of broadcasting dispatch signals in real-time is studied. We adopt a multi-

armed bandit problem formulation to account for the stochastic and unknown nature

of customers’ responses to dispatch signals. We propose a constrained Thompson sam-

pling heuristic, Con-TS-RTP, as a solution to the load shaping problem of the electricity

aggregator attempting to influence customers’ usage to match various desired demand

profiles (i.e., to reduce demand at peak hours, integrate more intermittent renewable

generation, track a desired daily load profile, etc). The proposed Con-TS-RTP heuristic

accounts for day-varying target load profiles (i.e., multiple target load profiles reflecting

renewable forecasts and desired demand patterns) and takes into account the operational

constraints of a distribution system to ensure that customers receive adequate service and

to avoid potential grid failures. We provide a discussion on the regret bounds for our

algorithm as well as a discussion on the operational reliability of the distribution system’s

constraints being upheld throughout the learning process.

Chapter 5

Chapter 5 presents work done to implement real-time optimization algorithms for EV

smart charging at workplaces as well as routing/recharging for electric bus fleets.

Section 5.1 in Chapter 5 studies the joint route assignment and charge scheduling

problem of a transit system dispatcher operating a fleet of electric buses in order to

maximize solar energy integration and reduce energy costs. Specifically, we consider

a complex bus transit system with preexisting routes, limited charging infrastructure,

7
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limited number of electric buses, and time-varying electricity rates. We present a mixed

integer linear program (MILP) that yields the minimal cost daily operation strategy

for the fleet (i.e., route assignments and charging schedules using daily solar forecasts).

We present numerical results from a real-world case study with Stanford University’s

Marguerite Shuttle (a large-scale electric bus fleet) to demonstrate the validity of our

solution and highlight the significant cost savings compared to the status quo.

Section 5.2 in Chapter 5 presents a real-time smart charging algorithm for electric

vehicles (EVs) at a workplace parking lot in order to minimize electricity cost from time-

of-use electricity rates and demand charges while ensuring that the owners of the EVs

receive adequate levels of charge. Notably, due to real-world constraints, our algorithm is

agnostic to both the state-of-charge and the departure time of the EVs and uses scenario

generation to account for each EV’s unknown future departure time as well as certainty

equivalent control to account for the unknown EV arrivals in the future. Real-world

charging data from a Google campus in California allows us to build realistic models of

charging demand for each day of the week. We then compare various results from our

smart charging algorithm to the status quo for a two week period at a Google parking

location.

Chapter 6

Chapter 6 presents conclusions of this thesis and future directions.

8



Chapter 2

Online Optimization for Electric

Vehicle Smart Charging

2.1 Online Admission Control for Electric Vehicles

at Large-Scale Facilities

2.1.1 Introduction

As of October 2018, one million plug-in electric vehicles (PEVs) have been sold in

the United States [12]. Furthermore, sales have exceeded 20,000 units per month since

May 2018 and these numbers are expected to continue trending upward beyond 2020

[12]. As such, coordinated charging strategies and charging infrastructure planning are

paramount for ensuring the growing charging demand is satisfied in an environmentally

responsible manner.

There has been a growing number of related papers that study EV smart charging

This work was supported in part by NSF under Grant 1847096, and in part by the California Energy
Commission through SLAC. Solicitation: GFO-16-303. Agreement: EPC-16-057.
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methods as well as infrastructure planning and investment analysis to encourage renew-

able energy usage in vehicle fleets, aggregate groupings, and parking facilities. For an

overview, [13, 14, 15] provide in-depth reviews of smart charging technologies as well as

societal and grid impacts. Investigations on the interactions between EV aggregations

and the grid can be found in [16, 17]. Because smart charging has proven to benefit soci-

ety, infrastructure investments must be made to support future charging implementations

[18, 19, 20, 21, 22, 23]. Papers [23, 22, 20] study where to locate charging stations as well

as how to effectively size the facilities. In [18], the authors study a planning framework

for charging stations from the perspective of a social planner. Likewise, the authors in

[19] study the design criteria for Fast Charging Stations (FCSs) based on mobility be-

haviors and paper [21] studies a planning scheme to maximize FCS usage and minimize

infrastructure costs.

A critical but less studied problem is that coordinated charging at infrastructures

can be heavily stunted if usage of the EVSEs is left uncontrolled [24]. Without EV

routing within parking facilities, EVSEs at preferred locations (e.g., near an elevator)

can become congested while other EVSEs are left empty. This limits the smart charging

benefits as congested EVSEs are forced to charge one EV after another to satisfy charging

demand. Similarly, without admission control the limited charging resources at facilities

could be allocated to low priority users, (e.g., users with small charging demands, users

with long sojourn times, or users who are willing to park elsewhere) therefore, occluding

high priority users that arrive later in the day. As such, the focus of this chapter is to

jointly perform admission control and smart charging, complementing previous work on

coordinated charging and infrastructure planning.

Prior work in this area includes [25] where the authors investigate both First-Come-

First-Serve (FCFS) and State-of-Charge (SoC) threshold policies for discerning which

EVs are granted permission to use the EV charging infrastructure. Paper [26] studies an
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online mechanism for the allocation of electricity to a population of EVs that have non-

increasing marginal value for energy. Their setting allows for cancellation of reservations,

which in our case is not allowed. In [27], an online algorithm for scheduling deferrable

charging requests to balance the total value of vehicle owners and the total cost for

providing charging service is studied, but they also allow for revocation of previously

allocated resources. Paper [28] investigates an online auction that allows EV users to

submit bids on their charging demand to the charging station and then the mechanism

makes corresponding electricity allocation and pricing decisions. In this approach, users

are expected to update their bids while parked at the charging station instead of only

submitting one initial bid. Additionally, [29] studied a consensus approach for an online

setting where selfish EVs compete for a limited amount of energy. An intelligent parking

lot energy management system is studied in [30] to manage the scheduling of EVs to

maximize charging for all EVs. Moreover, paper [31] formulates and analyzes a market

model for deadline-differentiated pricing of deferrable electric power services; however,

it does not focus on high levels of congestion or adversarial user valuations. Paper

[32] presents a menu-based pricing scheme for allocating charge time within a facility

and can lead to an efficient alternative approach to the EVSE reservation problem. The

mechanism we present in this chapter focuses more on the congestion within facilities due

to limited number of EVSEs and high demand with the objective of admitting highest

priority users.

In most previous work, charging facilities are assumed to have traditional Single-

Output-Single-Cable (SOSC) EVSEs. Recently, a more versatile charger has been gain-

ing popularity: the Single-Output-Multiple-Cable (SOMC) EVSE which allows multiple

EVs to be connected to the same charger, but only one EV receives charge at a time

[33]. SOMC EVSEs can improve facility operations by allowing more flexibility in charge

scheduling and decreasing idle plug-in time from traditional SOSC chargers. Further-
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more, SOMC chargers eliminate the need for users to remove their vehicles once their

charging session is complete. In any SOMC facility charging strategy, these idle EVs

need to be accounted for; if not, the revenue of the facility will be reduced (our solution

accounts for the times when EVs are charging and when they are idle). Utilizing SOMC

EVSES, the authors of [33] study infrastructure investments, the authors of [24] study

centralized online assignment methods such as Next-Fit and Worst-Fit for arriving EVs

at a parking facility, and the authors of [10] study multiple online pricing heuristics for

EV to EVSE allocation to increase smart charging capabilities.

In this work, we present an online pricing mechanism that functions as both an

admission controller for parking facility access and a resource manager that optimizes

smart charging strategies for vehicles admitted to the facility. The work presented in

this section complements existing literature in the area and the main contributions are

as follows:

1. The online mechanism readily accommodates multiple locations, multiple limited

resources, operational costs, and renewable generation integration.

2. The online mechanism does not rely on fractional allocations or rounding methods

to produce integer allocations in a computationally feasible manner and it never

revokes previously made reservations.

3. The online mechanism readily handles the inherent stochasticity of the EVSE reser-

vation problem including unknown sojourn times, unknown energy requests, and

unknown user valuation functions.

4. The online mechanism is robust to adversarially chosen arrival sequences and always

yields social welfare within a factor of 1
α

of the offline optimal.

12
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2.1.2 System Model

System Structure and User Characteristics

In this section, we describe our model for the EVSE reservation problem and user

characteristics. We consider an EVSE reservation system that controls L dispersed park-

ing facilities. Each parking facility l ∈ L is equipped with Ml SOMC EVSEs each with

Cl cables (i.e., each facility can park MlCl EVs at any given time t = 1, . . . , T but only

charge Ml). In addition to the cable constraints, each EVSE has a maximum power

output constraint denoted by El that limits the amount of energy the EVSE can deliver

in one time slot. To supply the EVSEs with electricity, each parking facility can procure

energy from two sources: a rooftop solar generation system or the local distribution grid.

We denote the available solar energy at facility l at time t with the variable sl(t) ∈ [0, Sl]

where Sl is the maximum rating for facility l’s rooftop system. Additionally, we denote

πl(t) as the per unit price of electricity from the grid. Due to physical limits of the local

transformer, we constrain facility l to procure no more than Gl(t) units of energy from

the grid at each time slot.

Each day, N EV owners submit requests to park and charge at various facilities.

Each EV owner (user) is characterized by a set of attributes. Suppose user n wants

to park and charge her EV. When she submits her reservation request at time tn, she

commits to arrive at one of her desired parking facilities {ln} at time t−n and to depart at

t+n . Furthermore, user n receives value {vnl} if her EV receives hn units of energy from

facility l, meaning users have preferences for different facilities. With the aforementioned

nomenclature, each arrival can be characterized by user ‘type’:

θn = {t−n , t+n , hn, {ln}, {vnl}} ∈ Θ, (2.1)

13
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Figure 2.1: Example reservation schedule.

where Θ is the type space of all possible users. Fig. 2.1 presents an example allocation

sequence with 4 arrivals and 2 EVSEs. Specifically, Fig. 2.1 showcases the fact that there

are limited charging resources within the parking facility that need to be allocated to

the arrivals. Each arriving EV needs an EVSE cable, an EVSE energy schedule, and the

facility needs an energy procurement schedule from i) behind-the-meter solar, ii) the local

distribution grid, or iii) a combination of solar and grid energy. The arriving vehicles

enter the facility one-by-one and utilize the limited resources during their stay, affecting

how future arrivals are allocated as seen in Fig. 2.1.

Offline Problem Formulation

To request a reservation, user n submits her user type θn to the EVSE reservation

system. The EVSE reservation system creates a set of possible schedules that will ful-

fill user n’s requirements. Namely, each possible schedule, or option, contains a cable

reservation for the entire parking duration and the charge schedules that sum up to her

desired charge amount. The reservation system generates these options for each facility

within user n’s desired facility set and then the option that yields the highest utility to

14
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the user is selected.

We denote the set of options (potential schedules) as On. Each option o ∈ On

corresponds to a facility ln, a cable reservation cmlno (t), and a charge schedule emlno (t). The

cable reservation cmlno (t) takes values 0 or 1 depending if user n is assigned a cable from

EVSE m at facility l at time t in option o. Similarly, emlno (t) takes values from a discrete

set corresponding to the energy delivered to user n’s EV. Through emlno (t), the EVSE

reservation system is able to customize when each EV will receive charge and when it

will be idle as well as the rate of charge. The set of feasible options for user n can be

written as:

{t−n , t+n , {cmlno (t)}, {emlno (t)}, {ln}, {vnl}}. (2.2)

When deciding whether or not to admit user n and which option to allocate, the

reservation system sets the binary variable xmlno to 1 if option o is chosen at EVSE m at

facility l. Additionally, the reservation system computes payments p̂mlno for each option

that the user pays if accepted. If a user is not admitted into any parking facilities, she

receives zero value and parks in an auxiliary lot without EVSEs.

The EVSE reservation system keeps track of the allocated resources throughout the

day. The variables ymlc (t) and ymle (t) correspond to the allocated cables and energy,

respectively, at EVSE m, facility l, at time t. Each facility also has to procure the

energy needed by all the EVSEs within; therefore, the total energy needed by facility l

at time t is denoted as ylg(t). Equations (2.23)-(2.25) detail how each resource demand
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is calculated:

ymlc (t) =
∑
N ,On

cmlno (t)xmlno , (2.3)

ymle (t) =
∑
N ,On

emlno (t)xmlno , (2.4)

ylg(t) =
∑

N ,On,Ml

emlno (t)xmlno . (2.5)

The energy procurement, ylg(t), determines the operational cost of facility l:

f lg(y
l
g(t)) =


0 ylg(t) ∈ [0, sl(t)

)
πl(t)(y

l
g(t)− sl(t)) ylg(t) ∈ [sl(t), sl(t) +Gl(t)]

+∞ ylg(t) > sl(t) +Gl(t).

(2.6)

The operational cost of the facility is zero while solar energy is available. Once the

demand, ylg(t), exceeds the available solar, energy is purchased from the grid. Once the

demand exceeds the sum of available behind-the-meter solar energy and the transformer

limit, no more energy can be procured.

With the system variables and equations defined, we can write the offline social welfare
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maximization problem (assuming all users’ information is known beforehand):

max
x

∑
N ,On,L,Ml

vnlx
ml
no −

∑
T ,L

f lg(y
l
g(t)) (2.7a)

subject to:∑
On,L,Ml

xmlno ≤ 1, ∀ n (2.7b)

xmlno ∈ {0, 1}, ∀ n, o, l,m (2.7c)

ymlc (t) ≤ Cl, ∀ l,m, t (2.7d)

ymle (t) ≤ El, ∀ l,m, t (2.7e)

and (2.23), (2.24), (2.25).

Moreover, the objective (3.5a) is to maximize the total social welfare of the system. This

includes the utility gained by arrivals using the system minus the operational costs of

the facilities (we note that users who are not admitted receive utility equal to zero).

Constraints (2.30b)-(2.30e) respectively ensure at most one option is selected per user,

the assignment variable is an integer, the cable demand does not exceed capacity, and

the energy demand does not exceed capacity. Equations (2.23)-(2.25) sum the resource

demands.

Temporarily relaxing the integrality constraint (2.30c) on xmlno allows us to find the

Fenchel dual problem with dual variables un, pmlc (t), pmle (t), and plg(t) [34]. In the follow-

ing, the Fenchel conjugate of a function is given as:

f ∗(p(t)) = sup
y(t)≥0

{
p(t)y(t)− f(y(t))

}
. (2.8)
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Accordingly, the Fenchel dual of (3.5a)-(2.30e) can be written:

min
u,p

∑
N

un +
∑
T ,L

f l∗g (plg(t)) +
∑
T ,L,Ml

(
fml∗c (pmlc (t)) + fml∗e (pmle (t))

)
(2.9a)

subject to:

un ≥ vnl −
∑
T

(
cmlno (t)pmlc (t) + emlno (t)

(
pmle (t) + plg(t)

))
∀ n, o, l,m (2.9b)

un ≥ 0, ∀ n (2.9c)

pmlc (t), pmle (t), plg(t) ≥ 0, ∀ l,m, t, (2.9d)

where f ∗(p(t)) is the Fenchel conjugate for the limited resources’ dual variables. The

Fenchel conjugates for the capacity constraints can be written as:

fml∗c (pmlc (t)) = pmlc (t)Cl, pmlc (t) ≥ 0 (2.10)

fml∗e (pmle (t)) = pmle (t)El, pmle (t) ≥ 0. (2.11)

Additionally, the Fenchel conjugate for the energy procurement operational cost function

can be written as:

f l∗g (plg(t)) =


sl(t)p

l
g(t), plg(t) < πl(t)

(sl(t) +Gl(t))p
l
g(t)−Gl(t)πl(t) plg(t) ≥ πl(t).

(2.12)
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Admittance, Rejection, and Allocation Decisions

To determine how the EVSE reservation system decides whether or not to admit

a user as well as which option to select if admitted, we make use of the Fenchel dual

(2.32a)-(2.32d). Specifically, we examine the KKT conditions for constraint (2.32b). If

a user is denied in the offline problem, un will be 0; otherwise, if a user is admitted, un

will be positive. As such, the EVSE reservation system solves the following equation to

determine user n’s acceptance and her resource allocation:

un = max
{

0, max
On,L,Ml

{
vnl −

∑
t∈[t−n ,t

+
n ]

(
cmlno (t)pmlc (t) + emlno (t)(pmle (t) + plg(t))

)}}
. (2.13)

We note that un corresponds to user n’s utility from the EVSE reservation system. If

admitted, the cable reservation and charge schedule chosen for user n correspond to the

option o, EVSE m, and facility l that maximize the second term in equation (2.38).

Furthermore, the dual variables pmlc (t), pmle (t), and plg(t) correspond to prices that users

must pay for cables, energy, and energy procurement. As such, the total payments

corresponding to user n’s different options are calculated as:

p̂mlno =
∑
T

(
cmlno (t)pmlc (t) + emlno (t)(pmle (t) + plg(t))

)
. (2.14)

The EVSE reservation system is allocating options that maximize each user’s utility

with respect to the current marginal prices. Additionally, users receive non-negative

utility for participating in the EVSE reservation system; therefore, we satisfy individual

rationality constraints.

We would like to note that our proposed mechanism can also be used without any

actual payments if users do not have the option of choosing their type (i.e., their types

are preassigned). In a company, if users are assigned valuations (e.g., CEO has a high
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value and regular employee has lower value, or someone with high charge level has lower

value), then the prices do not have to be economic incentives. Rather they are used as

dual variables that guide each user’s allocation without any monetary transfer (i.e., each

employee does not actually have to pay to use the infrastructure, but different employees

have different valuations and the “shadow prices” allow for quick allocations).

The optimization problems presented in (3.5a)-(2.30e) and (2.32a)-(2.32d) assume

complete knowledge of the arrivals beforehand. In practice, this is not the case; rather,

users arrive and depart throughout the day. As such, the solution needs to be an online

mechanism that can immediately allocate an arrival without knowledge of the future

sequence of arrivals. Additionally, once a user has parked her car within a charging

facility, she should not be asked to prematurely move her EV before her departure time.

As such, the online mechanism should never revoke previous allocations. In the following,

we discuss an online allocation mechanism that solves the EVSE reservation problem and

meets the aforementioned design goals.

2.1.3 Online Allocation Mechanism

Online Marginal Prices

It is evident that the EVSE reservation problem requires an online solution. In many

online problems, approximate dynamic programming (ADP) heuristics have good per-

formance given accurate statistics even with large state-spaces [35, 36, 37, 38]. However,

performance guarantees can be very hard to obtain for multi-stage decision making prob-

lems with complex action spaces over long time periods, and in our case, nonstationary

arrival patterns and variable forecasts prohibit many traditional ADP techniques. As

such, we present an online pricing mechanism that calculates the marginal prices on

EVSE cables, energy, and generation based on a pricing heuristic, for which we provide
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performance guarantees. Specifically, our EVSE reservation system updates the prices

p(t) heuristically as the amounts of allocated resources y(t) evolve, but only based on

past observations. The pricing scheme has two major goals: (1) to make sure that the

marginal gain in welfare from an allocation is greater than the operational cost incurred

to serve the allocation, and (2) to filter out low value users early to ensure there are

adequate resources for higher value users later on. The structure of the marginal price

functions we use is similar to that of [39], where the authors present a pricing framework

for cloud-computing systems utilizing data centers with limited computation resources

and server costs under an adversarial setting. For the limited number of cables at each

EVSE, the proposed marginal payment function is given by:

pmlc (ymlc (t)) =
( Lc

2
∑
LMl(Cl + El + 1

Ml
)

)(2
∑
LMl(Cl + El + 1

Ml
)Uc

Lc

) ymlc (t)

Cl , (2.15)

where ymlc (t) is the current demand for the cables at EVSE m at location l at time t.

Additionally, Lc and Uc are the lower and upper bounds on users’ valuation per cable

per unit of time, respectively:

Lc = min
N ,On,L,Ml

vnl∑
LMl(Cl + El + 1

Ml
)
∑

t∈[t−n ,t
+
n ] c

ml
no (t)

, (2.16a)

Uc = max
N ,On,L,Ml,T

vnl
cmlno (t)

, cmlno (t) 6= 0. (2.16b)

The pricing function for the EVSE energy units is the same as (2.39) with the exponent

changed to El instead of Cl. Likewise, calculate Le and Ue using enlno(t) in (2.41a) and

(2.41b). Additionally, for the energy procurement resource, Lg and Ug are the same as

Le and Ue, respectively.

To explain this pricing function, set ymlc (t) = 0 and (2.39) outputs a price low enough

that any user will be accepted (subject to Lc). Moreover, the pricing function (2.39)
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yields low initial values to allow reservations early on. As more arrivals are admitted

into the reservation system, congestion begins to affect the shared resources. To combat

congestion and filter our low value arrivals, as ymlc (t) increases, the prices from (2.39)

increase exponentially. When ymlc (t) is equal to the capacity of the limited resource, the

marginal price is set high enough to reject all future arrivals to ensure that no resource

will ever be overallocated (we assume Lc and Uc are known).

Designing a pricing function for energy procurement at each facility is more com-

plicated than the cable pricing. Here, the cost to procure energy is piecewise linear

and depends on the current solar generation and the transformer capacity. As such, we

propose the pricing function:

plg(y
l
g(t)) =


(
Lg
2R

)(
2Rπl(t)
Lg

) ylg(t)

sl(t) , ylg(t) < sl(t),(
Lg−πl(t)

2R

)(
2R(Ug−πl(t))
Lg−πl(t)

) ylg(t)

sl(t)+Gl(t) + πl(t), ylg(t) ≥ sl(t),

(2.17)

where R =
∑
L

Ml(Cl + El +
1

Ml

).

Equation (2.43) is similar to the pricing function for the EVSE cables and energy; how-

ever, because procuring energy from the grid has non-zero cost, we need to ensure each

user’s payment is greater than the electricity cost needed to charge their vehicle. Ad-

ditionally, when a facility’s energy demand is less than the available solar, the marginal

energy procurement price is reduced below the cost of electricity πl(t) to promote solar

consumption.

Proposed Algorithm and Performance Guarantees

The admittance, allocation, and price update procedure for the EVSE reservation

system is presented in Algorithm OnlineParkNCharge. When arrival n submits her
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Figure 2.2: Pricing function for energy procurement. Shaded area: increase in users’
utilities from updated pricing function.

request, the system generates the feasible options On that fulfill her demands. Then,

the system accepts or rejects user n depending on her potential utility gain due to her

valuation and the current resource prices (line 7). We note that line 9 requires solving

an integer constrained maximization problem. This is not computationally burdensome

as the optimization is solved for each individual vehicle at the time of arrival, with

the potential utilities for each option can be calculated quickly via multiplication and

addition. Then, any sorting method can be used to find the highest utility option. The

algorithm updates the primal variables xmlno after each acceptance and rejection. The total

resource demands are updated in line 11 if user n is accepted into the system. Similarly,

the marginal resource prices are updated accordingly in line 12.

Next, we compare the total social welfare resulting from the online solution to the

optimal offline solution. Specifically, an online mechanism is said to be α-competitive

when the ratio of social welfare from the optimal offline solution to the social welfare

from the mechanism is bounded by α ≥ 1. We extend a competitive ratio performance

guarantee from [39] in Proposition 2.1.1. In the following, to ensure no user purchases

too large of a fraction of the total available resource, we assume each user’s resource

demands are much smaller than the capacity limits.
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Algorithm 1 OnlineParkNCharge
Input: L,Ml, Cl, El, Gl, Sl, πl, Lc,e,g, Uc,e,g
Output: x, p

1: Define f lg(y
l
g(t)) according to (2.28).

2: Define the pricing functions p(y(t)) according to (2.39) and (2.43) for cables, energy, and
generation.

3: Initialize xmlno = 0, yml(t) = 0, un = 0.
4: Initialize prices p(0) according to (2.39) and (2.43).
5: Repeat for all N users:
6: User n submits θn, generate feasible charging options.
7: Update dual variable un according to (2.38).
8: if un > 0 then
9: (o?,m?, l?) = arg maxL,Ml,On

{
vnl −

∑
t∈[t−n ,t

+
n ]

(
cmlno (t)pmlc (t) +emlno (t)(pmle (t) + plg(t))

)}
10: p̂m

?l?
no? =

∑
t∈[t−n ,t

+
n ]

(
cm

?l?
no? (t)pm

?l?
c (t) +em

?l?
no? (t)(pm

?l?
e (t) + pl

?

g (t))
)

11: xm
?l?

no? = 1 and xmlno = 0 for all (o, l,m) 6= (o?, l?,m?)
12: Update total demand y(t) for cables, energy, and generation according to (2.23)-(2.25).
13: Update marginal prices p(t) according to (2.39) and (2.43).
14: else
15: xmlno = 0, ∀ L, Ml and On.
16: end if
17: if ∃o?,m?, l? and xm

?l?
no? = 1 then

18: Accept user n and allocate cables and energy in parking location l? at EVSE m?.
19: Charge user n at p̂m

?l?
no? .

20: else
21: Send user n to auxiliary parking.
22: end if
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Proposition 2.1.1 The marginal pricing function (2.43) is α1-competitive in social wel-

fare when selling limited resources with the piecewise linear operational cost in (2.28)

where

α1 = 2 max
L,T

{
ln
(2
∑
LMl(Cl + El + 1

Ml
)(Ug − πl(t))

Lg − πl(t)

)}

with the assumption
∑
LMl(Cl + El + 1

Ml
) ≥ d eLg

2 maxL,T πl(t)
e.

Proof. The proof is in Appendix A.1.

Corollary 2.1.1 If the final demand for energy procurement ylg(t) for a given day is less

than the available solar sl(t), the marginal pricing function (2.43) is α2-competitive (α2 <

α1) in social welfare when selling limited resources with the piecewise linear operational

cost in (2.28) where

α2 = 2 max
L,T

{
ln
(2
∑
LMl(Cl + El + 1

Ml
)(πl(t))

Lg

)}
.

In the previous proposition, the pricing function (2.43) relies on complete knowledge

of the solar generation sl(t). If the system has inaccurate solar irradiation forecasts,

the solar generation could be overestimated and resources are over-allocated resulting

in infeasible solutions, which our online solution should avoid at all costs; or solar gen-

eration is underestimated and prices are set too high and the system rejects users that

should otherwise be accepted. We analyze the case where we have a forecast of the so-

lar generation each day in terms of a confidence interval. We do not assume a specific

solar irradiance forecasting method; rather, we make use of a confidence interval for the

potential solar each day as yearly solar irradiance recordings can provide minimum and

maximum bounds for any given day. Additionally, our method assumes that these confi-

dence regions are tightening as the day progresses. In this work, we assume that the solar
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forecast for a future time t increases in accuracy as the current time tcurrent approaches

t. Specifically, the solar forecast takes the following form:

sl(t) ∈ [sl(t, tcurrent), sl(t, tcurrent)], (2.18)

for t = 1, . . . , T and 1 ≤ tcurrent ≤ t. Here, sl(t) is the actual solar generation at

time t and the terms sl(t, tcurrent) and sl(t, tcurrent) are lower and upper bounds given

by the forecast, respectively, at an earlier time tcurrent. We assume that the forecast is

improving, specifically sl(t, tcurrent) is non-increasing and sl(t, tcurrent) is non-decreasing

as tcurrent approaches t.

To account for the dependence of the solar forecast on the current time, the marginal

pricing function (2.43) is now written as plg(y
l
g(t), tcurrent). To avoid possible infeasible

allocations associated with overestimation of solar availability, we analyze the perfor-

mance of pricing function (2.43) that conservatively uses the underestimate of the solar

generation, sl(t, tcurrent), in Proposition 2.1.2. Fig. 2.3 shows how the pricing function

(2.43) changes as the solar forecast improves.

Figure 2.3: Pricing function with solar forecast sl(t, tcurrent).

Proposition 2.1.2 The marginal pricing function (2.43) with an underestimate of solar
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generation, sl(t, tcurrent), is α3 = 2 maxL,T
{
αlg(t)

}
competitive in social welfare when

selling limited resources with the operational cost in (2.28) where

αlg(t) =


max

{
sl(t,1)
sl(t,1)

ln(2Rπl(t)
Lg

), sl(t,1)+Gl(t)
sl(t,1)+Gl(t)

ln(2R(Ug−πl(t))
Lg−πl(t)

)

}
, sl(t, 1) 6= 0,

sl(t,1)+Gl(t)
Gl(t)

ln(2R(Ug−πl(t))
Lg−πl(t)

), sl(t, 1) = 0,

(2.19)

with the assumption R ≥ d eLg
2 maxL,T πl(t)

e.

Proof. The proof is in Appendix A.2.

We would like to note the significance of Proposition 1 and Proposition 2 in the

following. Namely, our competitive ratio results ensure the social welfare generated by

the approximate online solution (that runs in real-time) cannot deviate too far from

the social welfare generated by the oracle offline solution. The results in Proposition

1 and Proposition 2 ensure the online system, which acts without knowledge of future

arrivals, performs within a constant factor of the offline/oracle system. Furthermore, the

competitive ratios are worst case bounds on performance. That is, if this pricing scheme

is used in a real scenario, even the social welfare generated with respect to an adversarially

chosen arrival sequence is within the constant α of the optimal oracle solution.

2.1.4 Experimental Evaluation

The Case of Variable Arrival Patterns

In this section, we present a comparison of our online pricing mechanism against an

online certainty equivalent controller (CEC) for a downtown parking facility to show the

performance our mechanism under different arrival statistics. CEC is an approximate

dynamic programming (ADP) technique that replaces all future uncertain quantities

with some typical values, more specifically, the expected values. In this case, we assume
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that the facility has arrival patterns following the distributions in Figure 2.4. In this

Figure 2.4: Top Left: Energy requests. Top Right: User valuations. Bottom Left:
Arrival times (blue) and departure times (red). Bottom Right: Length of stay.

example, there is 1 parking facility with 5 EVSEs and 4 cables per EVSE (i.e., there are

20 parking slots available in each time period). The facility can purchase energy from

the Los Angeles grid at a cost of $0.127/kWh. Lastly, the facility has a 32 kW rooftop

solar generation system that follows a production curve from an LA location in January

2018 [40]. We assume standard crystalline silicon panels with 14% system loss due to

shading, wiring, connections, mismatch, and degradation. We simulated the CEC and

pricing mechanism for 2 different arrival count distributions (as shown in Fig. 2.5). To

demonstrate the value of adverserial solutions like ours in situations when the future is

hard to predict, the distribution exhibits a larger variance under the second scenario.

From our results in Figure 2.5, it is evident that in the case of higher variance arrival

patterns, our pricing mechanism outperforms a controller that is dependant on expected

statistics. If a parking facility does not have consistent arrival statistics each day, our

pricing mechanism performs better because it accounts for worst-case arrival patterns.

Additionally, in the unimodal and bimodal arrival count cases, the minimum daily social

welfare achieved by our pricing mechanism is significantly higher than the minimum of
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Figure 2.5: Top: Social welfare for facility with unimodal arrival count distribution.
Bottom: Social welfare for facility with bimodal arrival count distribution.

the CEC ADP.

Comparison with First-Come-First-Serve Strategy

In this section, we present a comparison of our online pricing mechanism against

the first-come-first-serve (FCFS) strategy that is commonplace in many EVSE equipped

charging facilities. Specifically, we highlight the performance of our mechanism over

varying demand levels to show the effectiveness of our mechanism when the infrastructure

becomes congested. In the FCFS strategy, an arriving EV selects the closest available

parking spot and begins charging immediately (without any controller directing them).

In this test case, we assume the arrivals’ energy requests, valuations, and durations follow

the same statistics as in Fig. 2.4; however, in this simulation, we directly control the

number of arrivals each day (to highlight different demand levels) and we limit the arrival

times to 8:00am-10:00am and limit the departure times to after 10:00am (thus showcasing

the performance of FCFS and our mechanism when large quantities of vehicles arrive in

a short time period each morning). We assume the parking infrastructure has 15 EVSEs
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Figure 2.6: Top Left: FCFS’s total user utility vs. number of daily arrivals (50
scenarios simulated). Top Right: Our online heuristic’s total user utility vs. number
of daily arrivals (50 scenarios simulated). Bottom Left: FCFS’s number of admitted
EVs vs. demand level (identical result for all 50 scenarios). Bottom Right: Our online
heuristic’s number of admitted EVs vs. demand level (50 scenarios simulated).

with 4 cables each, yielding 60 parking spots total.

We compare the total user utility yielded from the FCFS strategy to our online

heuristic with demand increasing from 1 to 120 arrivals each day. As shown in Fig.

2.6, the total user utility increases steadily as the number of EVs entering the system

increases. However, when the demand for the EVSEs is high, our online mechanism is

able to filter out low value arrivals to admit higher value arrivals instead, and yield higher

total utility. It is worth noting that the FCFS strategy yields similar total utility if the

demand for charging is low; this is because FCFS admits all arrivals as long as there are

open parking spots.

Additionally, in Fig. 2.7, we show the fraction of behind-the-meter solar used by our

mechanism and FCFS for a day when there are 100 arriving EVs. From the plot, it is

evident that our online mechanism is able to utilize significantly more solar energy, thus

eliminating the need to send large amounts of excess energy back to the distribution
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Figure 2.7: Comparison of behind-the-meter solar energy usage for a day with 100 arrivals.

grid. Specifically, our mechanism is able to schedule charging to time slots when there

is available solar, while FCFS is not able to schedule charging times. The results in

this section show that our mechanism outperforms the commonplace FCFS strategy in

congested facilities in addition to better utilizing behind-the-meter solar.

Multi-Facility Test Case

In this section, we present a multi-facility example located in downtown Los Angeles.

Specifically, we look at 6 parking facilities with varying rooftop generation amounts. We

assume standard crystalline silicon panels with 14% system loss. Facility 6 has a 75kW

solar generation system, facility 5 has 60kW, facility 4 has 45kW, facility 3 has 30kW,

facility 2 has 15kW, and facility 1 does not have any solar generation. We examined a

20 day period with 600 arrivals each day. Each arrival has valuation in [$1, $10], energy

request in [1, 20] kWh, and stay length in [1, 8] hours. Each of the 6 facilities has 8 SOMC

EVSEs each equipped with 4 cables. Furthermore, each facility purchases electricity from

the Los Angeles grid at $0.127/kWh. We examine the performance of the system with

transformer capacity limits of 75kVA.

Figure 2.8 shows the total user utility, social welfare, and electricity cost for 20 days.

An observation worth noting is the total user utility from our updated pricing function

is always larger than that of a solar agnostic pricing framework. This is due to setting

31



Online Optimization for Electric Vehicle Smart Charging Chapter 2

lower prices on the electricity generation resource when there is solar available as seen in

Figure 2.2 (our previous work was agnostic to the free solar generation). Moreover, over

the 20 day period, our updated pricing mechanism admits 387 arrivals on average while

our previous work only admits 369 arrivals on average. As such, our updated mechanism

is favorable for users of the system as prices are lower and more users are admitted.

Additionally, our improved mechanism is able to utilize more solar, reducing reliance on

the local grid.

Figure 2.8: Multi-facility example. Red: solar aware pricing. Blue: solar agnostic pricing.

Importance of Accurate Departure Times

In this section, we discuss the effect of inaccurate departure time reporting. For ex-

ample, consider the case when a user reports that she will exit the system by 4:00pm;

however, she gets delayed and cannot remove her EV until 5:00pm or later. This af-

fects the reservation system because there might be a reservation for the EVSE at that

timeslot. To avoid these reservation collisions due to delayed departures, we analyze

the performance of the system with extra hours added to each arrival’s stay length as a
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“buffer” to prevent double-allocations. We examined the same test case as Section 2.1.4

with buffer sizes of 1 and 2 hours added to each arrival’s stay length. Adding 1 and 2 hour

departure buffers yielded average social welfare losses of 16% and 29%, respectively.

Infrastructure Recommendation

In this section, we demonstrate the importance of infrastructure planning in order to

maximize the smart charging capabilities of a parking facility. A facility with too few

EVSEs will limit the users’ utilities as well as the smart charging potential. Conversely,

installing too many EVSEs results in idle chargers. As such, we perform a cost-benefit

analysis to determine the number of cables at each SOMC EVSE as well as the num-

ber of EVSEs that should be installed at a facility in order to maximize social welfare

over an extended period. Specifically, we are simulating the same system as described in

Sections 2.1.4 and 2.1.4; however, we have increased the duration to 2 years (730 days).

Furthermore, we are including initial and recurring costs relating to a parking structure

equipped with SOMC EVSEs. These costs include EVSE unit costs, installation costs,

electricity consumption, maintenance, and networking costs. In the following, we are

looking to choose the constraint variables Cl and Ml (number of cables per EVSE and

number of EVSEs, respectively) that maximize users’ utilities minus the aforementioned

investment and operational costs. We use IC to denote the EVSE unit investment per

cable and IM to denote the installation cost per SOMC EVSE. Additionally, Im,n rep-

resents a recurring infrastructure maintenance and networking cost per EVSE. As such,

the infrastructure investment cost can be written as:

∑
L

(
ICCl + IM

)
Ml + T

∑
L

Im,nMl. (2.20)

In (2.20), the first term is the initial investment cost for the SOMC EVSE hardware and
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Figure 2.9: Cost-benefit analysis over 2 years.

installation and the second term represents the recurring maintenance and networking

cost. In the following, we assumed each EVSE was a pedestal mounted unit with an

installation cost of $3, 308 [41]. Additionally, each extra cable for each SOMC increased

the cost of the EVSE by $3, 343 [41]. Last, the recurring networking and maintenance

fee was assumed to be $75 per month [41]. Figure 2.9 shows the comparison of total

social welfare generated across the entire time period for various levels of infrastructure

investments. For this test case, the best result occurred when each location had 7 SOMC

EVSEs each equipped with 6 cables. With this level of infrastructure, the system did not

yield positive social welfare until the second year of operation. As seen in Fig. 2.9, it is

clear that sizing a facility for the given use case is critical. Smart charging strategies re-

quire a sufficient number of EVSEs to yield maximal benefits; however, welfare decreases

if extra EVSEs are purchased and underutilized.

2.1.5 Conclusion

In this work, we presented an online pricing mechanism as a solution to the EVSE

reservation problem. The online mechanism functions as both an admission controller

and a distributor of the facilities’ limited charging resources. The work presented in

this section complements existing literature in the area and the important characteristics
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are as follows. First, the mechanism readily accommodates multiple locations, multiple

limited resources, operational costs, and variable arrival patterns. The mechanism does

not rely on fractional allocations or rounding methods to produce integer allocations in

a computationally feasible manner and it never revokes previously made reservations.

Moreover, our online mechanism readily handles the inherent stochasticity of the EVSE

reservation problem including unknown sojourn times, unknown energy requests, and

unknown user valuation functions. The online mechanism can handle adversarially chosen

arrival sequences and still generate social welfare within a factor of 1
α

of the offline optimal.

We discussed a competitive ratio as a performance guarantee for the online mechanism

compared to the oracle offline solution and provided numerical results showing the efficacy

of the mechanism.
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2.2 Online Scheduling for Charging and Routing in

Electric Vehicle Fleets

2.2.1 Introduction

Three developing technologies in the transportation sector have the potential to rev-

olutionize the paradigm of personal urban mobility : autonomous vehicles (self-driving or

driverless vehicles), mobility-on-demand (car-sharing or ride-sharing), and plug-in electric

vehicles [42, 43]. These technologies have independently garnered much research and ex-

perimentation; however, literature addressing the potential synergies is still emerging [44].

Consequently, we consider the welfare maximization problem for a fleet dispatcher who

operates a large number of Autonomous-Mobility-on-Demand Electric Vehicles (AMoD

EVs). Because of the real-time requirements of AMoD systems, we propose a novel online

solution for optimizing the charging and rebalancing processes of a fleet of AMoD EVs.

Regarding AMoD fleets, much work has been done focusing on matching riders with

vehicles, routing vehicles to destinations, and rebalancing the vehicles throughout a set

of pick-up/drop-off locations [45, 46, 47, 48, 49, 7]. There is also work in the area of

coordinated charging for fleets of AMoD EVs. Paper [50] gives an overview of managing

AMoD fleets and energy services in future smart cities. The authors of [51] utilize a

model predictive approach to optimize charge scheduling and routing in an AMoD system.

Paper [52] presents a study of the operations of a AMoD fleet including the implications of

vehicle and charging infrastructure decisions. Furthermore, [53] studies the implications

of pricing schemes on an AMoD fleet. Work has also been done in congestion aware [54]

and model predictive routing methods [55] for AMoD systems. Additionally, [56, 57]

study interactions between AMoD systems with the power grid and public transit.

Regarding charging strategies for large populations of EVs, papers [13, 14, 15] provide
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in-depth reviews and studies of smart charging technologies. An important but less

studied issue is that the benefits of smart charging can be severely limited if usage of

the shared Electric Vehicle Supply Equipment (EVSEs) is uncontrolled [24]. Moreover,

without access control and allocation strategies within charging facilities, EVSEs can

become congested while other EVSEs are left empty. This limits the smart charging

benefits as congested EVSEs are forced to charge one EV after another to satisfy demand.

To address this issue, papers including [26, 28, 31, 32] have studied smart charging,

admission control, and resource allocation for facilities equipped with EVSEs.

In this section, we aim to complement both the recent work in smart charging and

AMoD fleet routing with the objective of optimizing AMoD fleet charging and rebalancing

processes in an online fashion. Specifically, we study an online heuristic that schedules

fleet charging, allocates limited fleet resources, and rebalances the vehicles while avoiding

congestion at charging facilities and pick-up locations. Moreover, our methodology does

not rely on statistics of the daily sessions (unlike model predictive approaches). The work

presented here complements existing literature on smart charging and fleet management

and the main contributions are as follows:

• The online heuristic makes decisions for multiple charging facilities, multiple pick-

up/drop-off regions, constrained fleet charging resources, operational costs, renew-

able generation integration, and rebalancing.

• The online heuristic does not rely on fractional allocations or rounding methods to

produce integer assignments in a computationally feasible manner.

• The online heuristic readily handles the inherent stochasticity of the fleet scheduling

problem without requiring statistics on the future inputs of the system.

• The online heuristic accounts for worst case (i.e., adversarially chosen between-ride
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sequences) and always yields welfare within a factor of 1
α

of the optimal offline.

Organization: Section 2.2.2 describes the AMoD EV fleet charge scheduling problem and

system model. Section 2.1.3 presents the online heuristic that updates the dual variables

when solving the online problem and discusses the online heuristic’s properties and per-

formance guarantees. Section 2.1.4 discusses numerical results showing the performance

of our heuristic.

2.2.2 Preliminaries

Fleet Objective

In this section, we describe the charge scheduling problem for a fleet of AMoD EVs

that are servicing customers within a city. The objective of the fleet dispatcher is to

maximize profit by optimizing the between-ride schedules of the EVs to exploit cheaper

time-of-use electricity rates and behind-the-meter solar generation in addition to effi-

ciently distributing the vehicles throughout the area.

We consider an area of operation consisting of a set of regions D = {1, . . . , D} where

each region d ∈ D can be viewed as a destination for a vehicle to pick up its next customer.

Each region d has a maximum capacity Ωd(t) that limits the number of AMoD vehicles

in the area (e.g., due to municipal restrictions, congestion mitigation, or ride demand

forecasts). Within this area of operation, we consider J consecutive between-ride sessions

occurring within a time span t = 1, . . . , T . Each between-ride session j ∈ J begins at

time t−j when a vehicle in the fleet completes a previous ride. Information for the jth

between-ride session could be revealed earlier when the EV picks up the passenger rather

than at drop-off; however, due to unknown traffic conditions and travel times, the session

information is not available until t−j (drop-off). At this time, the fleet dispatcher must

decide what the vehicle should do next. Namely, a schedule must be created for the
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Figure 2.10: Example between-ride schedules for 3 vehicles.

between-ride session that includes a charging facility, a desired charge amount, and the

next customer pickup destination (if the EV has sufficient battery level, the schedule may

skip charging altogether). A simple example for three vehicles’ between-ride schedules is

portrayed in Fig. 2.10.

Charging Model

There is a set of regions F ⊆ D that have charging facilities with Electric-Vehicle-

Supply-Equipment (EVSEs) where the EVs can replenish their batteries. Each charging

facility f ∈ F is equipped with Mf Single-Output-Multiple-Cable (SOMC) EVSEs each

with Cf output cables meaning each facility can fit up to MfCf EVs simultaneously

(but only charge Mf simultaneously) [33, 10, 9, 4]. Additionally, due to power delivery

limitations of the EVSE hardware, each EVSE can deliver up to Ef units of energy in

one time slot. Each facility can procure energy from two sources: 1) an on-site solar

generation system and 2) the local power distribution grid. The available solar energy at

facility f at time t is denoted as δf (t) ∈ [0,∆f ] where ∆f is the maximum power rating of

the on-site system at facility f . Energy can also be purchased from the local distribution

grid at price πf (t) per unit. Due to the local transformer’s operational limits, facility f

is constrained to purchase less than µf (t) units of energy from the grid in each time slot.
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Operational Cost Model

Since we are solely focused on optimizing a given number of between-ride sessions

and are not explicitly modeling the rest of the AMoD system operation problem, we

need to penalize vehicles for remaining out-of-service (i.e., charging or traveling without

customers) for extended periods of time. This is also essential to compare the quality

of our online solution to that of the clairvoyant offline solution. As such, we assume

the fleet dispatcher incurs a virtual cost, φ(t), per out-of-service vehicle at each time t.

Moreover, φ(t) is permitted to be time-varying to give the fleet dispatcher control over

the quantity of active fleet vehicles throughout a given day. A large φ(t) could be used

to ensure that less vehicles are out-of-service during peak demand periods.

Offline and Online Problem

In this work, we first formulate the charge scheduling problem as an offline optimiza-

tion and then relate the offline problem to the online problem. In the offline case, we

assume the fleet dispatcher is clairvoyant and knows the entire sequence of J events over

the time span t = 1, . . . , T . As such, the offline fleet dispatcher can create the optimal

schedules for the between-ride sessions and can achieve maximal profit. However, the re-

ality is that the dispatcher does not know the customers’ desired destinations, pick-up to

drop-off travel times, traffic conditions, or electricity grid conditions in advance. Instead,

the between-ride sessions are revealed one-by-one throughout the time span meaning

that an online solution method is required for real world implementation. Moreover,

the charge scheduling problem presents challenges not easily overcome in many online

solutions; namely, the lack of accurate statistics on the between-ride sessions as there

are many exogenous factors that directly affect when and where between-ride sessions

begin. These factors include ride demand, road congestion, weather, popular events, and
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construction delays, to name a few. As such, we present an online solution that can

account for adversarially chosen sequences of between-ride sessions and still yield profit

that is within a constant factor of the clairvoyant offline solution.

Between-Ride Schedules

In this section, we describe the parameters associated with each between-ride sched-

ule. Each between-ride session j ∈ J begins at time t−j when an AMoD EV drops off a

passenger. At this time, a set of feasible between-ride schedules is generated based on the

vehicle’s current battery level and location. We denote the set of feasible between-ride

schedules for session j as Sj. Each schedule s ∈ Sj consists of the following components:

1) t−j : time when all between-ride schedules start for session j; 2) d−j : start location of

all schedules; 3) t+js: end time for schedule s; 4) d+
js(t): binary (0,1) indicator function

for when the EV reaches its end destination d+
js in schedule s of session j; 5) ojs(t):

out-of-service indicator that is set to 1 for t ∈ [t−j , t
+
js] and 0 otherwise; 6) vjs: value of

schedule s to the fleet dispatcher given by

vjs = Vd(SoC
+
js) + vdjs . (2.21)

Here, SoC+
js represents the State of Charge of the EV when it reaches its next pickup

location. The function Vd(·) calculates the fleet dispatcher’s valuation of the final energy

level of the EV in schedule s at location d (maintaining sufficient energy levels in the EVs

is critical to provide uninterrupted rides to customers). We note that the fleet dispatcher

is free to choose Vd(·) for their desired operational objectives. The variable vdjs represents

the profit that the fleet dispatcher receives for picking up a customer at destination djs.

The destinations present different values to the fleet dispatcher due to exogenous factors

such as ride demand, location, weather, etc; 7) cmfjs (t): binary (0,1) cable reservation
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variable that is set to 1 if the EV in session j will use a charging cable from EVSE m at

facility f during time step t in schedule s; 8) emfjs (t): energy delivered to EV at time t in

session j at EVSE m at facility f in schedule s. Through emfjs (t), the fleet dispatcher is

able to customize when the EV will receive charge, when it will be idle, and the rate of

charge (from a discrete set). This effectively allows the fleet dispatcher to smart charge

the EVs (e.g., exploit cheaper time-of-use electricity rates or behind-the-meter solar).

The feasible schedules for between-ride session j can be written as:

{t−j , {ojs(t)}, {c
mf
js (t)}, {emfjs (t)}, d−j , {d+

js(t)}, t+js, {vjs}}. (2.22)

Furthermore, the fleet dispatcher sets the variable xjs to 1 if schedule s is selected and

0 otherwise. If no schedule is desirable, the dispatcher routes the vehicle to the central

depot where the vehicle will wait to be assigned later on.

Cost Model and Offline Scheduling Problem

In order to facilitate charge scheduling and vehicle routing, the fleet dispatcher main-

tains a total count for each shared resource across all assigned schedules. The variables

ymfc (t) and ymfe (t) correspond to the total allocated cables and energy, respectively, at

facility f at EVSE m at time t. Additionally, each facility has to procure the energy

needed by all the EVSEs within. The total energy procurement at facility f at time t is

denoted as yfg (t). The resource demands at charging facilities are calculated in equations
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(2.23)-(2.25):

ymfc (t) =
∑
J ,Sj

cmfjs (t)xjs, (2.23)

ymfe (t) =
∑
J ,Sj

emfjs (t)xjs, (2.24)

yfg (t) =
∑

J ,Sj ,Mf

emfjs (t)xjs. (2.25)

Similarly, the fleet dispatcher counts the vehicles in the between-ride state and the number

of vehicles committed to destinations in the variables yo(t) and yd(t), respectively:

yo(t) =
∑
J ,Sj

ojs(t)xjs, (2.26)

yd(t) =
∑
J ,Sj

d+
js(t)xjs. (2.27)

Due to the number of vehicles allocated to each resource, the fleet dispatcher incurs vari-

ous costs to serve the between-ride schedules. The energy procurement, yfg (t), determines

the generation cost of facility f :

Gf (y
f
g (t)) =


0 yfg (t) ∈ [0, δf (t)]

πf (t)(y
f
g (t)− δf (t)) yfg (t) ∈

(
δf (t), δf (t) + µf (t)]

+∞ yfg (t) > δf (t) + µf (t).

(2.28)

Namely, electricity is free while solar is available, else the facility purchases from the grid

at a rate of πf (t) per unit.

Additionally, vehicles that are charging and traveling to their next pickup destination

are not able to serve customers. As described in Section 2.2.2, the fleet dispatcher incurs
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a penalty proportional to the number of out-of-service vehicles:

O(yo(t)) =


φ(t)yo(t), yo(t) ≤ I(t)

+∞ yo(t) > I(t),

(2.29)

where I(t) is the maximum number of out-of-service vehicles that the fleet dispatcher

allows at time t. If the AMoD fleet dispatcher has full knowledge of all between-ride

sessions j ∈ J over the entire time span t = 1, . . . , T , the primal offline optimization is

as follows:

max
x

∑
J ,Sj

vjsxjs −
∑
T ,F

Gf (y
f
g (t))−

∑
T

O(yo(t)) (2.30a)

subject to:∑
Sj

xjs ≤ 1, ∀ j (2.30b)

xjs ∈ {0, 1}, ∀ j, s (2.30c)

ymfc (t) ≤ Cf , ∀ f,m, t (2.30d)

ymfe (t) ≤ Ef , ∀ f,m, t (2.30e)

yd(t) ≤ Ωd(t), ∀ d, t (2.30f)

and (2.23), (2.24), (2.25), (2.26), (2.27).

In (3.5a), the objective maximizes fleet dispatcher’s utility by distributing the AMoD

EVs throughout all regions d ∈ D while minimizing the operational costs due to charging

facilities and out-of-service vehicles. Specifically, the last term of (3.5a) limits the dura-

tion of the between-ride sessions to increase earnings and decrease the need to use extra

vehicles. Constraint (2.30b) ensures only one schedule is chosen per between-ride session,

(2.30c) is an integral constraint on the decision variable, (2.30d) ensures the cable limit
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is not exceeded at each EVSE, (2.30e) ensures the EVSE energy limits are not exceeded,

and (2.30f) enforces the vehicle limit in each region. By temporarily relaxing the integral

constraint (2.30c), the problem can be examined in the dual domain (however, we note

that our competitive ratio results are with respect to integer allocations). Specifically,

we make use of Fenchel duality with dual variables uj, p
mf
c (t), pmfe (t), pfg (t), pd(t), and

po(t) [34]. In the following, the Fenchel conjugate of a function f(y(t)) is given as:

f ∗(p(t)) = sup
y(t)≥0

{
p(t)y(t)− f(y(t))

}
. (2.31)

As such, the offline Fenchel dual of (3.5a)-(2.30f) is as follows:

min
u,p

∑
J

uj +
∑
T ,D

R∗d(pd(t)) (2.32a)

+
∑
T ,F

G∗f (p
f
g (t)) +

∑
T

O∗(po(t))

+
∑
T ,F ,Mf

(
Kmf∗
c (pmfc (t)) +Kmf∗

e (pmfe (t))
)

subject to:

uj ≥ vjs − d+
js(t

+
js)pd(t

+
js)−

∑
T

(
cmfjs (t)pmfc (t) (2.32b)

+ emfjs (t)
[
pmfe (t) + pfg (t)

]
+ ojs(t)po(t)

)
∀ j, s, f,m, d

uj ≥ 0, ∀ j (2.32c)

pmfc (t), pmfe (t), pfg (t), pd(t), po(t) ≥ 0, (2.32d)

∀ f,m, d, t,
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where R∗d(pd(t)), G
∗
f (p

f
g (t)), O

∗(po(t)), K
mf∗
c (pmfc (t)), and Kmf∗

e (pmfe (t)) are the Fenchel

conjugates for the regional vehicle limit, the facility generation cost, the out-of-service

cost, the EVSE cable constraint, and the EVSE energy constraint, respectively. The

Fenchel conjugates for the cable and energy constraints, respectively, are as follows:

Kmf∗
c (pmfc (t)) = pmfc (t)Cf , pmfc (t) ≥ 0, (2.33)

Kmf∗
e (pmfe (t)) = pmfe (t)Ef , pmfe (t) ≥ 0. (2.34)

The Fenchel conjugate for the energy procurement cost function at each facility can be

written as:

G∗f (p
f
g (t)) =


δf (t)p

f
g (t), pfg (t) < πf (t)

(δf (t) + µf (t))p
f
g (t)− µf (t)πf (t) pfg (t) ≥ πf (t).

(2.35)

The Fenchel conjugate for the regional vehicle limit is:

R∗d(pd(t)) = pd(t)Ωd(t), pd(t) ≥ 0. (2.36)

Lastly, the Fenchel conjugate for the penalty for the out-of-service vehicles is as follows:

O∗(po(t)) =


0, po(t) < φ(t)

(po(t)− φ(t))I(t), po(t) ≥ φ(t).

(2.37)

Scheduling Decisions

In the offline case, let us examine the Fenchel dual (2.32a)-(2.32d) when choosing

charging schedules for the between-ride sessions. Specifically, examining the KKT con-
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ditions for constraint (2.32b) reveals the optimal scheduling decisions. If a between-ride

session yields uj ≤ 0, then the AMoD EV is not needed to serve customers at that time

or electricity prices are too high; therefore, uj is set to 0 and the vehicle is routed to the

central depot. Alternatively, when the fleet dispatcher wants vehicles to charge and serve

customers, uj will be positive. If uj > 0, the optimal schedule for session j can be found

by finding the schedule s ∈ Sj that results in the maximal uj:

uj = max
s∈Sj

{
vjs − pd(t+js)d+

js(t
+
js)−

∑
t∈[t−j ,t

+
js]

(
ojs(t)po(t)

+ cmfjs (t)pmfc (t) + emfjs (t)
[
pmfe (t) + pfg (t)

])}
. (2.38)

We note that uj corresponds to the utility gained from between-ride session j for the

fleet dispatcher. Furthermore, the optimization problems in (3.5a)-(2.30f) and (2.32a)-

(2.32d) require full knowledge of the between-ride sessions beforehand. As discussed

in Section 2.2.2, the fleet dispatcher must utilize an online solution that can schedule

vehicles without any knowledge of the future (i.e., without knowledge of the optimal

dual variables). In the following, we discuss such an online heuristic for the between-ride

charge scheduling problem.

2.2.3 Online Scheduling Heuristic

Online Scheduling

Because the between-ride sessions are revealed throughout the time span, it is ap-

parent that an online solution method is required. We consider a heuristic that updates

the dual variables in an online fashion as between-ride sessions are revealed and then

solves equation (2.38) for each session. The online scheduling heuristic updates the dual

variables for each resource based only on the amount of resource that has been allocated
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up to the current time (i.e., only utilizing the resource allocation counts). The online

heuristic serves two main purposes: 1) it ensures that each between-ride schedule yields

more value to the fleet dispatcher than the operational cost pertaining to the schedule,

and 2) if the demand for rides is low enough or electricity prices are high enough such

that no schedule nets positive utility, vehicles are sent back to the central depot. This

eliminates further costs from vehicles circulating without serving riders. The underlying

framework for the heuristic we use is akin to that of [39], where the authors present

an auction for allocating computing resource bundles at data centers for the purpose of

cloud computing and virtual machine provisioning.

In our online scheduling heuristic, we make use of specialized functions proposed in

[39] that approximate the optimal dual variables throughout the time span. These dual

variable update functions increase slowly at first, but then increase rapidly as the number

of allocated resources approach the capacity limits. Furthermore, when the amount of

allocated resource is at the capacity limit, the update functions output dual variables

high enough such that no schedule will yield positive utility in (2.38), thus enforcing the

hard capacity limits. The updating function for the dual variable associated with the

SOMC EVSE cables at charging facilities is written as follows:

pmfc (ymfc (t)) =
( Lc

2Ψ

)(2ΨUc
Lc

) ymfc (t)
Cf , (2.39)

where Ψ is the total number of shared resources within the fleet system:

Ψ = 2
∑
F

Mf +D + F + 1. (2.40)

Furthermore, Lc and Uc correspond to the minimum and maximum value per cable per

time unit, respectively. The online scheduling heuristic requires knowledge of Lc and Uc
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beforehand to set the initial values and to ensure capacity limits are not breached:

Lc = min
J ,Sj ,F ,Mf

vjs

Ψ
∑

t∈[t−j ,t
+
js]
cmfjs (t)

, (2.41a)

Uc = max
J ,Sj ,F ,Mf ,T

vjs

cmfjs (t)
, cmfjs (t) 6= 0. (2.41b)

The EVSE charging power, facility generation, out-of-service cost, and destination vehicle

limit require similar lower and upper bounds on valuations: Le, Ue, Lg, Ug, Lo, Uo, Ld,

and Ud, respectively. These are calculated as in equations (2.41a) and (2.41b) with the

corresponding variables to replace cmfjs (t).

The dual variable update function for the dual variable associated with the SOMC

EVSE energy limitations at charging facilities is as follows:

pmfe (ymfe (t)) =
( Le

2Ψ

)(2ΨUe
Le

) ymfe (t)
Ef . (2.42)

The update function of the dual variable for the piecewise linear generation cost at each

charging facility is more complex than (2.39) and (2.42). It has to account for the free

solar generation as well as the linear price to procure energy from the local distribution

grid. As such, we propose the following dual variable update function:

pfg (y
f
g (t)) =


(
Lg
2Ψ

)(
2Ψπf (t)

Lg

) yfg (t)

δf (t)
, yfg (t) < δf (t),(

Lg−πf (t)

2Ψ

)(
2Ψ(Ug−πf (t))

Lg−πf (t)

) y
f
g (t)

δf (t)+µf (t)
+ πf (t), yfg (t) ≥ δf (t).

(2.43)

The heuristic dual variable update function for the vehicle limits at region d can be

written as follows:

pd(yd(t)) =
(Ld

2Ψ

)(2ΨUd
Ld

) yd(t)

Ωd(t)
. (2.44)
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Last, the penalty from vehicles in the out-of-service state also requires a heuristic update

function for the dual variable po(yo(t)) which can be written as:

po(yo(t)) =
(Lo − φ(t)

2Ψ

)(2Ψ(Uo − φ(t))

Lo − φ(t)

) yo(t)
I(t)

+ φ(t). (2.45)

With the 5 aforementioned dual variable update functions (2.39), (2.42), (2.43), (2.44),

and (2.45), we now have surrogate functions to use in place of the optimal dual variables

in order to solve equation (2.38) in an online fashion (i.e., at the inception of each

between-ride session).

Procedure and Performance Guarantees

The step-by-step procedure for scheduling between-ride sessions for a fleet of AMoD

EVs is outlined in Algorithm onlineAMoDscheduling. Namely, at the inception of

between-ride session j, the fleet dispatcher generates feasible schedules Sj and then the

best schedule, s∗, is chosen in line 8 which makes use of the heuristically updated dual

variables. After every between-ride schedule selection, the fleet dispatcher updates the

dual variables accounting for the total amounts of allocated resources. We can compare

the total welfare generated from our online solution to that of the clairvoyant offline solu-

tion in the form of a competitive ratio. An online heuristic is described as α-competitive

when the ratio of welfare from the clairvoyant offline solution to the welfare from the

online heuristic is bounded by α ≥ 1. For the between-ride charge scheduling problem,

we extend a previous competitive ratio result from [39]. In this work, we assume that

each between-ride session utilizes only a small amount of the available resources, thus

ensuring that the allocation of one schedule does not adversely affect too many future

sessions.
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Algorithm 2 onlineAMoDscheduling
Input: I, J,F ,Mf , Cf , Ef , µf , δf , πf ,

D,Ωd, φ,Ψ, {L,U}c,e,g,d,o
Output: x, p

1: Define Gf (·) and O(·) according to (2.28) and (2.29).
2: Define and initialize the dual update functions (2.39), (2.42), (2.43), (2.44), and (2.45).
3: Initialize xjs = 0, y(t) = 0, uj = 0.
4: At the inception of between-ride session j:
5: Generate feasible charging/pickup schedules Sj .
6: Update dual variable uj according to (2.38).
7: if uj > 0 then

8: s? = arg maxSj
{
vjs − pd(t

+
js)d

+
js(t

+
js) −

∑
t∈[t−j ,t

+
js]

[
ojs(t)po(t) + cmfjs (t)pmfc (t)

+emfjs (t)[pmfe (t) + pfg (t)]
]}

9: xjs? = 1 and xjs = 0 for all s 6= s?

10: Update demand y(t) for cables, energy, generation, destination, and out-of-service ac-
cording to (2.23)-(2.27).

11: Update dual variables p(t) according to (2.39), (2.42), (2.43), (2.44), and (2.45).
12: else
13: Send the AMoD EV to central depot to re-enter system later and set xjs = 0, ∀ s ∈ Sj .
14: end if

Theorem 2.2.1 The online heuristic onlineAMoDscheduling in Algorithm 2 is α-

competitive in welfare across all fleet resources for the fleet dispatcher over J between-ride

sessions where α = max
{
α1, α2, α3, α4, α5

}
.

Proof: From the Lemmas (in online Appendix [8]), we have welfare guarantees

α1, . . . , α5 for each of the shared resources. To find the α ≥ 1 for the entire system, we

take the maximum over α1, . . . , α5 to yield the bound that accounts for all resources.

2.2.4 Numerical Results

In this section, we discuss numerical results showing the performance of our online

heuristic. In the following simulation, electricity prices and solar generation data were

sourced from actual California ISO data in the Bay Area from 2018 [58],[59]. We sim-

ulated for a fleet operating in San Jose, CA with D = 46 regions and F = 8 charging
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Figure 2.11: San Jose, CA ride demand split into D = 46 regions. Ride demand
high to low: Red, Yellow, Green. Purple Outline: Charging facility available. Gray
Regions: No demand. Also Shown: Most popular between-ride routes for 5 different
starting points. Circle: Between-ride session start location. Square: Charging session
at facility. Cross: Between-ride end location.

facilities. Each charging facility is identical with Mf = 10 and Cf = 4. Each of the 8

facilities has on-site solar with a maximum generation of 256 kWh. Likewise, each facility

can purchase energy from the grid up to 256 kWh per time step. We set the penalty for

out-of-service vehicles equal to 2× the highest grid electricity price to penalize lengthy

between-ride durations. Valuations for each of the regions were either $15, $10, or $5 (red,

yellow, green, in Fig. 2.11, respectively) based on daily ride demand [60]. The regions

have AMoD vehicle limits set to 40 (separate from facility capacity if there is a facility in

the region). Each vehicle entered the system with either 25%, 50%, or 75% battery level

(50 kWh batteries) and were allowed make charge requests in increments of 12.5 kWh.

The EVSEs at the charging facilities were limited to deliver either 0 kWh per time slot

or 5 kWh per time slot. Furthermore, V (100%) = $10, V (75%) = $7.5, V (50%) = $5,

and V (25%) = $2.5. We also included a linear penalty ($2 per region traveled) to the

schedule valuations to devalue long between-ride routes.
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Figure 2.12: Fleet dispatcher welfare across 100 days.

In Figure 2.11 we show the most popular between-ride routes for vehicles starting at

5 of the regions (randomly chosen). In Figure 2.12, we compare the welfare generated by

our online heuristic to 3 conservative online methods and an upper bound on the optimal

solution. Specifically, we compare our heuristic to 3 threshold policies where each EV

automatically charges if it is below 75%, 50%, or 25% at the nearest facility and then

routes itself to the closest high value destination that is not at the AMoD vehicle limit.

As seen in Figure 2.12, our heuristic is able to consistently outperform these threshold

strategies. This is primarily due to shifting charging to time slots when there is available

solar or cheaper time-of-use electricity rates (the threshold strategies charge once the

vehicle is plugged in and do not stop until fully charged). Because the state-space of any

system such as this grows exponentially to intractable sizes, we instead present an upper

bound on the optimal offline solution. Accordingly, we calculated the upper bound by

relaxing the capacity limits at each facility and destination to allow for all sessions to

select their utility maximizing schedule without being constrained by capacity limits.

2.2.5 Conclusion

In this section, we studied an online heuristic that provides an approximate solution
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to the AMoD fleet charge scheduling problem. The online heuristic makes fleet decisions

for multiple regions, constrained resources, operational costs, renewable generation in-

tegration, and rebalancing. The online heuristic does not rely on fractional allocations

or rounding methods to produce integer assignments in a computationally feasible man-

ner. Additionally, online heuristic readily handles the inherent stochasticity of the fleet

charge scheduling problem including unknown start locations, unknown energy levels,

and unknown ride length/destination statistics. Last, the online heuristic accounts for

worst case scenarios (i.e., adversarially chosen between-ride sequences) and always yields

welfare within a factor of 1
α

of the offline optimal. We discussed a competitive ratio

(with proofs in the online Appendix) and presented simulation results highlighting the

performance of the heuristic.
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Chapter 3

Online Scheduling for a Community

Energy Storage System

3.1 Introduction

Due to the increasing integration of distributed renewable generation in modern power

grids, there is growing interest towards implementing distributed energy storage (ES)

systems in close proximity to energy consumers [61, 62, 63]. Implementing ES near

consumers enables various positive outcomes stemming from increased opportunities in

demand-side management, e.g., CO2 emission reduction from peak load shaving, increas-

ing the amount of locally-consumed energy from nearby renewable distributed genera-

tion, or electricity cost reduction from shifting electricity purchases to off-peak hours

[64]. Additionally, the concept of energy communities is on the rise. Specifically, these

are groups of residential and commercial consumers/prosumers that cooperate and take

advantage of shared resources (e.g., energy storage systems [65, 11]) and make use of

This work was supported in part by NSF under Grant 1847096 and in part by the UCSB Institute
for Energy Efficiency (IEE).
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each others’ excess renewable generation. Recently, energy communities have garnered

much research interest in various areas, including, but not limited to, peer-to-peer energy

trading [66],[67], blockchain based energy transactions [68],[69], real-time optimization

for energy management [70], [10], and game-theoretic market designs [71].

To maximize the utility gained from distributed ES implementations and energy com-

munities, the concept of community energy storage (CES) is increasing in popularity

[72, 73]. Specifically, a CES is a modular ES implemented within an energy consump-

tion area (e.g., neighborhood, shopping center, etc.) in combination with renewable

distributed generation in the area. CES systems are larger than single-consumer ES sys-

tems and have larger technical and economic benefits than single-consumer systems due

to diversity in load profiles, removing the need for personal investments by individual

consumers, as well as economies of scale [72, 74, 75]. Recently, there has been much

work focusing on optimizing the design [76] and the basic operation [77, 78] of CES. A

comprehensive review of different aspects of modern CES can be found in [79].

While it is evident that CES has great potential to positively impact energy con-

sumers, the effectiveness of a CES system can be severely limited if it is not operated

well. Namely, because there are multiple users who want to take advantage of a CES,

there must be a smart management system in place to schedule the users’ charging and

discharging of the CES. If there is no smart management system in place, the CES might

be underutilized or overutilized at various times. For example, all the users of the CES

might choose to charge and discharge at similar times, (i.e., charging the CES with excess

solar generation midday and discharging in the early evening) which limits the number

of users who are able to make use of the CES and potentially leaves the CES under-

utilized at all other time periods. Additionally, any CES management system also has

to deal with large amounts of uncertainty. Currently, one of the major technical chal-

lenges for future CES implementations is the requirement to handle uncertainty [80] in
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the charging, discharging, and storage demands of the users. The users of a CES have

inherently stochastic electricity demand and their desired usage of the CES is unknown

and time-varying as users’ net load patterns can vary significantly from day to day and

weather can affect distributed renewable generation. With this in mind, it is clear that

future CES implementations require advanced scheduling algorithms in order to operate

effectively (i.e., maximize value gained by the system) under uncertain usage patterns.

Main Contributions

The work presented in this chapter considers the problem of a CES manager attempt-

ing to schedule the charging and discharging of a CES for a group of users. Our proposed

solution allows for the users to request temporal charging and discharging profiles from

the CES in real-time (as they learn about their needs) and the CES manager is able

to immediately accept or deny a request and, if accepted, select the profile that maxi-

mizes the users utility. Additionally, due to the fact that our solution handles charging

and discharging profiles instead of pure capacity requests, our heuristic is able to pro-

mote diverse charging and discharging patterns via dynamically updated prices to ex-

ploit charging/discharging cancellations and increase the CES’s utilization. For example,

a charge/discharge cancellation occurs when user A commits to charging the CES at a

given time and user B commits to discharging the CES at the same time, thus effectively

cancelling each other’s power usage of the CES at that time and allowing other users

access to charge/discharge at that time slot. Furthermore, we present a theoretical guar-

antee on the performance of our heuristic which operates in real-time without knowledge

of future requests (i.e., our algorithm does not require a forecast of future requests). We

are able to bound the worst case performance of our online solution in relation to the

offline optimal solution (i.e., if the CES manager had known the entire sequence of CES

requests beforehand) in the form of a competitive ratio. We note that this is a worst case
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performance guarantee that holds for any adversarially chosen CES request sequence.

The main contributions of this work are as follows:

• Temporal User Flexibility: The proposed online heuristic allows users to submit

requests for temporal charging and discharging profiles from the CES in real-time

instead of committing to long-term capacity reservations far in advance. Further-

more, the CES scheduling heuristic will immediately accept or deny the request.

• Charging and Discharging Cancellation: As stated previously, the proposed schedul-

ing heuristic deals with temporal charging and discharging profiles instead of ca-

pacity reservations. This allows for the heuristic’s dynamically updated prices to

promote diverse charging and discharging schedules of the users to take advantage

of concurrent charging and discharging requests cancelling each other out, hence

increasing efficiency.

• Upholding CES Constraints: The proposed online heuristic makes use of dynam-

ically updated prices that are designed to ensure that the CES constraints (e.g.,

maximum charging power, maximum discharging power, maximum capacity) are

met at all times.

• Unknown Nature of Future Requests: The proposed online heuristic readily handles

the inherent uncertainty of the CES scheduling problem including unknown request

times, unknown charging/capacity requests, and unknown valuations without the

need of a future model. Specifically, we develop an online primal-dual optimization

framework (an overview of primal-dual approaches for solving large-scale optimiza-

tion problems can be found in [81]) that is able to provide a worst-case performance

guarantee for any future request sequence (even adversarially selected sequences).

The developed online optimization framework is akin to algorithmic posted pricing
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mechanisms for online combinatorial auctions.

• Theoretical Worst Case Performance Guarantee: The online heuristic is robust to

adversarially chosen request sequences and always yields social welfare within a

factor of 1
α

of the offline optimal (i.e., if the CES manager had known the entire

sequence of CES requests beforehand).

Related Works

A number of recent studies have proposed methodologies for optimizing shared ES

at the end-user side. Specifically, [82] presents a game-theoretic approach to managing

a shared ES where users are competing for limited capacity and [83] presents a coali-

tion game formulation for the sizing, operation, and cost allocation of a shared ES with

multiple investors. Additionally, [84] presents a Nash bargaining based benefits sharing

model for energy cooperation between users and a CES and is focused on the presence

of ‘cheaters’ within the system, attempting to gain additional benefits by providing dis-

honest information. Centralized control of such a shared ES is studied in [85], but the

solution method does not scale with the number of participants and is approximated

instead. The authors of [86] present a reinforcement learning approach to manage the

operation of an ES under uncertain conditions stemming from wind generation. In [87],

a stochastic optimization is formulated to manage the operation of multiple shared ES

systems and the performance of their proposed control policy is compared to the de-

terministic optimal solution via numerical experiments; however, there is no theoretical

performance guarantee (i.e., bounding the gap between the cost of the deterministic op-

timal solution and the cost of the proposed policy). Papers [88] and [89] also study

shared ES strategies, and both make use of models that disallow users to increase or

decrease their allotted capacity in real-time. Similarly, [90] presents a business model for
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a shared ES that promotes diverse charging/discharging schedules, but the users’ capac-

ity reservations are constrained to remain constant across days, thus limiting flexibility.

Additionally, [91] studies a posted price mechanism for energy customers arriving in an

arbitrary manner and choosing to either purchase a certain amount of energy based on

the posted price, or leave without buying. The mechanism has similarities to the one

in this chapter; however, [91] focuses on the case of transactive electric vehicle charging

rather than scheduling the charging/discharging of a CES.

There are two papers closest to our work. First, [92] presents a distributed combi-

natorial auction approach to schedule capacity, charging, and discharging power for a

shared ES. In this work, the solution method is allowed to violate the ES’s total capac-

ity limit and the over-capacity energy must be purchased from the local grid. Second,

[93] presents a pricing mechanism to sell ‘virtualized’ portions of a shared ES each day.

In this work, the prices are selected to be constant for each optimization period, which

is simple to implement but limits the ability to promote diverse charging/discharging

patterns from the users in real-time. Different from [92] and [93], our goal is to present

a scheduling heuristic that never violates CES constraints (i.e., does not allocate more

capacity than the CES has available and then purchase the over capacity power from

the local grid) and makes use of dynamically updated prices that increase and decrease

depending on the current utilization of the CES (i.e., dynamically increases prices at

times when utilization is high to discourage usage and decreases prices at times when

utilization is low to promote usage).
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3.2 System Model

CES Manager’s Objective

In this section, we describe the problem facing the manager of a community energy

storage (CES) system attempting to optimize the energy storage (charging and discharg-

ing) schedules for a group of diverse users. Specifically, the objective of the CES manager

is to maximize the total value gained by all of the users by optimizing the usage of the sys-

tem and incentivizing diverse user schedules in order to maximize the benefits delivered

by the capacity-limited CES.

In the following, we consider a singular CES that is co-located with potential users of

the system in a neighborhood, shopping center, or business park (we note that this work

can be readily extended to account for numerous energy storage systems throughout a

given area). We assume that each user of the CES has the physical infrastructure in place

to charge and discharge the CES at any time and each user may or may not be equipped

with behind-the-meter renewable generation. Additionally, we assume that each user

has the ability to communicate with the CES manager to submit requests to charge and

discharge.

Over the time span t = 1, . . . , T , the CES manager receives n = 1, . . . , N requests

to use the shared energy storage system. We note that N is a priori unknown to the

CES manager as the CES users are inherently stochastic agents and the CES manager

does not know how many requests will be submitted in the time span. In this work, each

request n to use the CES is in the form of a temporal charging and discharging profile.

Specifically, users submit potential schedules for charging the CES, storing the charged

power for a duration, and then discharging the CES at a future time as described in

Section 3.2.

The job of the CES manager is to either accept and allocate storage capacity to each
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Figure 3.1: Left: System interactions for CES users (buildings and homes). Right:
System interactions for the CES Manager.

request n, or to deny the request. Furthermore, due to the stochastic nature of distributed

renewable generation and unknown factors affecting users’ power consumption, we assume

that the users cannot submit their charging/discharging requests far in advance and the

CES manager cannot create the usage schedule ahead of time. Rather, users submit

charging/discharging requests to the CES manager at random times throughout the time

span and the CES manager must make the scheduling decisions immediately, so the users

can begin charging and discharging the CES. This means that the allocation algorithm

must work in real-time and without knowledge of future requests.

Charging and Discharging Schedules

Each CES request begins when a user would like to store some energy (e.g., from

cheap electricity rates or from excess renewable generation) and make use of it at a

later time. A user submitting a storage request may benefit from multiple possible
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charging/discharging schedules, each providing a different value to the user. The user

provides the CES manager with the list of such schedules and the value she associated to

each of them. In the end, only a single schedule may be accepted for the user’s charging

and discharging of the CES. For example, if a user has excess solar generation available

from 1:00pm-2:00pm and wants to charge the CES, then they could potentially benefit

from discharging the power at numerous time periods later in the day, e.g., discharging

5:00pm-6:00pm, 5:30pm-6:30pm, or 6:00pm-7:00pm, etc., each providing different value

to the user. Let us define the mathematical notation associated with each request. At

time t−n , when the user submits a CES usage request, a set of potential charging and

discharging schedules, Sn, is created for request n. Each potential charge/discharge

schedule s ∈ Sn has the following parameters:

1. t−n : The start time for all potential charge/discharge schedules for request n.

2. t+ns: The end time for charge/discharge schedule s for request n (Note that the

potential charge/discharge schedules need not share an end time).

3. insc(t): The CES charging power profile for request n in feasible schedule s at

time t. Positive values of insc(t) denote that the user is charging the CES and

negative values of insc(t) denote that the user is discharging from the CES. Note

that insc(t)|t=1,...,T describes the complete power profile across the entire time span

that is to be charged into and discharged from the CES by user n in schedule s.

4. inse(t)|t=1,...,T : The CES capacity that must be reserved for request n in feasible

schedule s across the time span in order to serve the schedule’s charging profile.

5. vns: The value of potential schedule s to the user who submitted request n. This

value is described in detail at the end of this subsection.
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Example: Consider the following simple example with a user submitting a request to

charge the CES in the time period 8:00am-9:00am at 5kW and then discharge from the

CES in the time period 10:00am-11:00am at 5kW and values this schedule at $0.50.

Furthermore, let us assume that t = 0 corresponds to 8:00am, t = 1 corresponds to

9:00am, t = 2 corresponds to 10:00am, and t = 3 corresponds to 11:00am (Note that 1

hour intervals are for simplicity of the example and an implementation would use smaller

intervals, 1min, 5min, etc.). As such, the requested schedule’s parameters are as follows:

1. Start time: t−n = 0

2. End time: t+n = 3

3. Charging profile (kW): inc(t)|t=0,1,2,3 = 5, 0,−5, 0

4. CES capacity profile (kWh): ine(t)|t=0,1,2,3 = 5, 5, 5, 0

5. User valuation ($): vn = 0.50

As we will see, by exploiting of the CES capacity profile inse(t)|t=1,...,T and the charging

power profile insc(t)|t=1,...,T , our algorithm allows the CES manager to optimize the usage

of the CES to avoid overutilization at popular times, underutilization at unpopular times,

and to incentivize diverse charge/discharge patterns such that users’ requests cancel one

another. Additionally, we note that there is no restriction on how many requests per

day that a user can submit. If a user submits a request at 8:00am, they can submit

multiple other different requests later in the day that would be independent of their

earlier requests.

Before we move on, let us discuss how the valuations vns can potentially be assigned

by the users. As stated previously, there are various potential strategies for energy

consumers to make use of CES. For example, users can employ the CES to shift their
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electricity purchases to take advantage of inexpensive electricity rates during off-peak

hours, or users can employ the CES to store locally generated renewable energy and use

it at a later time. In all cases, in order for a user to choose to make use of the CES instead

of defaulting to purchasing electricity from the grid, there must be an incentive to do

so. In this work, we assume that the users are incentivized via cost savings; specifically,

a user will only request a charge/discharge profile from the CES if the total cost that

the user must pay to the CES manager is less than the cost of purchasing the same

energy from the grid. The value vns is equal to the the magnitude of such cost savings

as discussed next.

The proposed CES scheduling heuristic requires the users’ submissions of their val-

uations of each potential CES schedule (potential charge/discharge schedule parameter

5 listed previously). For the purposes of this work, we assume the users’ motivation to

use the CES is to store excess solar energy (that was generated on-site at no cost) to

use during later time periods or to charge the CES using inexpensive grid energy and

discharge from the CES later in the day to avoid expensive electricity rates. For on-site

solar usage, a user’s valuation of potential schedule s is equivalent to the cost of electricity

from the grid that is replaced by the stored solar:

vns = −
∑
t

pgrid(t)insc(t)|insc(t)<0 (3.1)

where pgrid(t) is the price of electricity from the grid at time t and the negative values

of insc(t) are the discharging power from the CES. If the user wanted to charge the

CES during cheap electricity rates and discharge during expensive electricity rates, the
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valuation (e.g., cost savings) of such a CES schedule would be calculated as:

vns = −
∑
t

pgrid(t)insc(t)|insc(t)<0 −
∑
t

pgrid(t)insc(t)|insc(t)>0. (3.2)

Consider the following example where a user would like to store 5 kWh of locally

generated solar energy in the CES from 3:00pm to 5:00pm and then discharge 5 kW from

5:00pm to 6:00pm. Furthermore, assume the local grid’s electricity rate from 5:00pm to

6:00pm is 0.11 ($/kWh). As such, in order for the user to prefer the CES instead of

purchasing the electricity from the grid, the total cost for utilizing the CES must be less

than 5 kW × 1 hour × 0.11 $/kWh = $ 0.55. In other terms, we can say that the user

values that specific CES charge/discharge profile at $0.55.

CES Constraints

The community energy storage system has three parameters that constrain its oper-

ation1: 1) the CES can store up to Ê kWh at any given time, 2) the CES’s maximum

charging power P̂c kW, and 3) the CES’s maximum discharging power P̂d kW. At any

given time, the total stored energy, total charging power, and total discharging power of

all the users combined must be less than the aforementioned parameters.

Charging and Discharging Cancellation

One important characteristic of the energy storage scheduling problem is that different

users’ requests to charge and discharge the CES can occur during the same time period,

thus resulting in charge/discharge cancellations. As mentioned in the introduction, a

1We note that we do not include a battery model nor degradation in this work; however, this could
easily be added to the framework. Any battery model limitations would reduce the number of feasible
charging schedules s ∈ Sn and degradation costs could be included in the users’ payment calculation
(i.e., an extra term could be added to the payment p̃ns∗ calculated in line 9 of Algorithm 1 to account
for degradation costs).
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charge/discharge cancellation occurs when user A commits to charging the CES at a

given time and user B commits to discharging the CES at the same time, thus effectively

cancelling each other’s power usage of the CES at that time and allowing other users

access to charge/discharge at that time slot.

The importance of charging and discharging cancellations is twofold. First, the oc-

currence of a charging and discharging cancellation decreases the total power being

charged/discharged from the CES (recall the CES has a maximum power constraint);

therefore, allowing other users access to that time slot. Second, a charge/discharge can-

cellation eliminates the usage of the CES altogether and instead users within the com-

munity are providing power to one another directly. That is, locally generated renewable

power that would have been injected into the grid or stored in the CES is instead being

used immediately by another user within the community.

Offline and Online Problem

In the body of this work, we first formulate the energy storage scheduling problem

as an offline optimization and then use the offline problem to aid the design of a heuris-

tic to solve the online problem. In the offline case, we assume the CES manager is

clairvoyant and knows the entire sequence of N energy storage requests over the time

span t = 1, . . . , T . As such, the offline CES manager can create the optimal schedules

for the energy storage requests and can achieve maximal value. However, the reality is

that the CES manager does not know the users’ desired charging and discharging times

and storage capacity needs in advance. Instead, the energy storage requests are revealed

one-by-one throughout the time span meaning that an online solution method is required

for real world implementation. Additionally, the energy storage scheduling problem has

obstacles that are not easily overcome in many online heuristics; namely, the lack of

accurate statistics for the users’ energy storage requests as there are many exogenous
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factors that directly affect the time and capacity of such requests (e.g., stochastic renew-

able generation and weather affect the time and capacity of energy storage requests and

random human behavior affects desired discharging times). As such, in the following we

present an online solution that can account for adversarially chosen sequences of energy

storage requests and still yield utility that is within a constant factor of the clairvoyant

offline solution. Let us first state the offline problem.

Offline Problem Formulation

The state of the CES at any time t can be fully described by the following two

variables: ye(t) the total energy capacity that is reserved at time t summed across all

requests and yc(t) the total charging power that is scheduled for time t. In order to

calculate ye(t) and yc(t), we introduce the decision variable xns. Specifically, when request

n to use the CES is received, the CES manager must select one of the potential schedules

s ∈ Sn or deny the request altogether. As such, the CES manager sets the variable xns

equal to 1 if schedule s is selected for request n and 0 otherwise. If no CES schedule is

selected, the request is denied and xns = 0, ∀s.

The total demands for energy capacity and charging power, ye(t) and yc(t) respec-

tively, are calculated as follows:

ye(t) =
∑
N ,Sn

inse(t)xns, (3.3)

yc(t) =
∑
N ,Sn

insc(t)xns. (3.4)

As stated in Section 3.2, if the CES manager has full knowledge of the sequence

of CES requests, the optimal schedules can be found by solving the following offline
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optimization:

max
x

∑
N ,Sn

vnsxns (3.5a)

subject to:

xns ∈ {0, 1}, ∀n ∈ N , s ∈ Sn (3.5b)∑
Sn

xns ≤ 1, ∀n ∈ N (3.5c)

ye(t) ≤ Ê, ∀t ∈ T (3.5d)

yc(t) ≤ P̂c, ∀t ∈ T (3.5e)

yc(t) ≥ −P̂d, ∀t ∈ T . (3.5f)

In (3.5a), the objective is to maximize the total value of CES schedules across all

requests. Constraint (3.5b) is an integer constraint on the decision variable. Constraint

(3.5c) ensures that only one CES usage schedule can be selected per request. Constraints

(3.5d), (3.5e), and (3.5f) enforce the energy capacity limit, charging power limit, and

discharging power limit of the CES, respectively.

Furthermore, to gain insight into how to formulate an online pricing heuristic for the

CES problem, the offline optimization can be examined in the dual domain2. Specifically,

we make use of Fenchel Duality and use the dual variables un, pe(t), pc(t), and pd(t) [34].

The dual variable un corresponds to the utility gained by the user who submitted request

n. That is, their valuation of their assigned energy storage schedule minus the price of

that schedule that they pay to the CES manager. We note that each user’s utility should

be positive if they are using the CES and 0 if their request is denied. Additionally, the

2We note that the integer constraint (3.5b) must be temporarily relaxed in order to formulate the
offline dual. However, we also note that our competitive ratio results for our online pricing mechanism
are for integer allocations.

69



Online Scheduling for a Community Energy Storage System Chapter 3

dual variables pe(t), pc(t), pd(t) are associated with the total energy capacity constraint,

total charging power constraint, and total discharging power constraint, respectively.

Moreover, they can be viewed as the marginal prices that the users must pay for utilizing

the limited storage, charging power, and discharging power of the CES. Additionally, in

the remainder of the section, the Fenchel conjugate of a function f(y(t)) is defined as:

f ∗(p(t)) = sup
y(t)≥0

{
p(t)y(t)− f(y(t))

}
. (3.6)

In this work and many other online combinatorial problems, making use of Fenchel

conjugate functions yields a generalized dual problem that can be used to design online

solution algorithms (e.g., online packing/covering [94], online paging/caching [95], online

matching [96], etc.). Namely, the conjugate functions f ∗(p(t)) that appear in the Fenchel

dual problem’s objective function could account for various convex cost functions due to

increasing usage of limited resources3 or scaling penalties. Furthermore, we note that the

Lagrange dual is a special case of the more general Fenchel dual problem; moreover, the

Fenchel dual can be derived from the Lagrange dual problem and the conjugate definition

(shown in [97]). We note that Lagrangian duality is used in similar primal-dual works

[98, 99, 100]; however, in general, the Fenchel dual typically presents a better structure

for the design and analysis of online primal-dual algorithms that attempt to approximate

solutions for NP-hard combinatorial problems such as the one we study in this work.

We refer the reader to [81, 34, 101, 39, 97] for further reading on Fenchel duality in this

setting and primal-dual methods.

The dual reformulation is needed for three major reasons:

1. The primal problem is NP-Hard and cannot be solved in reasonable time even for

3In this work, we do not explicitly make use of cost functions for utilizing limited resources (capacity
and power); however, the capacity and power constraints’ costs could be viewed as zero-infinite step
functions, which would yield the same Fenchel conjugates as (3.8)-(3.10).
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moderately sized systems.

2. The primal problem cannot be solved without knowledge of the future energy stor-

age requests. Thus, an online optimization that works without knowledge of the

future is required.

3. To take advantage of the dual variables for the energy capacity, charging power,

and discharging power constraints of the problem which can be viewed as ‘marginal

prices’ for these limited resources. Our proposed heuristic functions then estimate

these dual variables in an online fashion (without knowledge of the future) and in

the Theorem and the Appendix, are shown to ensure a level of welfare that is within

a ratio of the optimal offline solution. This is in the form of the “competitive ratio”

discussed in the Theorem and the Appendix.

With the aforementioned dual variables and Fenchel conjugate definition, the offline

Fenchel dual of (3.5a)-(3.5f) is as follows:

min
u,p

∑
N

un +
∑
T

[
f ∗e (pe(t)) + f ∗c (pc(t)) + f ∗d (pd(t))

]
(3.7a)

subject to:

un ≥ vns −
∑
T

[
inse(t)pe(t) + insc(t)pc(t)− insc(t)pd(t)

]
, ∀s ∈ Sn, n ∈ N (3.7b)

un ≥ 0, ∀n ∈ N (3.7c)

pe(t), pc(t), pd(t) ≥ 0, ∀t ∈ T . (3.7d)

We note that f ∗e (pe(t)), f
∗
c (pc(t)), and f ∗d (pd(t)) are the Fenchel conjugates for the energy

capacity limit, charging power limit, and discharging power limit, respectively. Recall

from Section 3.2, 1) the CES can store up to Ê kWh at any given time, 2) the CES’s

maximum charging power P̂c kW, and 3) the CES’s maximum discharging power P̂d kW.
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With these variables and the dual variables pe(t), pc(t), and pd(t), the Fenchel conjugates

can be written as follows:

f ∗e (pe(t)) = Ê pe(t), (3.8)

f ∗c (pc(t)) = P̂c pc(t), (3.9)

f ∗d (pd(t)) = P̂d pd(t). (3.10)

Insight on Scheduling Decisions

In order to learn how to make scheduling decisions in the online case, let us first

examine the offline Fenchel dual (3.7a)-(3.7d). The constraint (3.7b) gives insight into

the optimal scheduling decisions for each request n. Specifically, if the utility gained

un from request n is negative across all potential schedules, then the request to utilize

the CES is denied and un is set equal to 0. However, when un > 0 then the request

is accepted and the charging/discharging/storage schedule s ∈ Sn to be selected is the

one that returns the maximal un. With this in mind, we can instead use the following

equation to calculate the utility of request n:

un = max

{
0,max
Sn

{
vns −

∑
T

[
inse(t)pe(t) + insc(t)pc(t)− insc(t)pd(t)

]}}
. (3.11)

Equation (3.11) is derived from examining the KKT conditions for the primal (described

in detail in Appendix A.3). Specifically, for any request n to use the CES, there is a
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dual variable un ≥ 0 from constraint (3.7b) which corresponds to the utility of request

n. Moreover, we know that in the offline primal and dual solutions, no schedule can

be selected unless constraint (3.7b) is active for a specific schedule. As such, we can

set the utility equal to the maximum of 0 (corresponding to no schedule being selected

due to negative utility gain) and the RHS of (3.7b) (corresponding to utility maximizing

schedule being selected). In summary, if the dual variables (CES resource prices) pe(t),

pc(t), and pd(t) are known or estimated, then equation (3.11) can be used to determine

which schedule gets allocated for request n or if request n is denied altogether and un

is set to 0 (we note that in Section 3.3 we present our methodology to estimate the

dual variables/CES resource prices in real-time so that (3.11) can be solved in an online

fashion).

We note that in order to solve for the utility gained un from the offline dual (3.7a)-

(3.7d) (and the offline primal (3.5a)-(3.5f)), this requires full knowledge of the requests to

use the CES beforehand. However, as discussed previously in Section 3.2, the manager of

the CES does not know the sequence of requests beforehand and must make scheduling

decisions as they arrive without knowledge of future requests. Moreover, as we show in

the remainder of the section, we never have to solve the offline dual problem as presented

in (3.7a)-(3.7d), as this would require knowledge of the entire sequence of usage requests,

which the CES manager does not have. Instead, we make use of dual variable update

functions (3.12), (3.15), (3.16) to estimate the dual variables in real-time. Then, these

dual variables are used as ‘prices’ for the limited resources and our algorithm selects

schedules w.r.t. these prices. We can show that our estimated dual variables will al-

ways yield feasible solutions to the primal problem. This is because the dual variable

update functions are carefully selected to yield values that increase as the usage of the

CES increases. Then, when a constraint is about to be violated, the dual variable update

functions will output values high enough such that no energy storage schedule yields pos-
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itive utility, meaning that requests will be denied if constraints are going to be violated.

The gap in the objective value from the original (unrelaxed) primal problem (3.5a)-(3.5f)

and our online heuristic is bounded in Theorem 3.3.1.

3.3 Online CES Scheduling Heuristic

Online Scheduling via Dual Variable Updates

In the following, we present a scheduling heuristic for optimizing usage of the CES

that updates the dual variables pe(t), pc(t), and pd(t) in an online fashion as requests are

revealed. Then, with the estimated dual variables, the algorithm solves equation (3.11)

for each request to select the utility maximizing charging/discharging/storage schedule.

Moreover, the online scheduling heuristic updates the dual variables for charging, dis-

charging, and storage based only on ye(t) and yc(t) (the total energy capacity reserved

at time t and the total charging power scheduled at time t, respectively).

The online scheduling procedure for the usage of the CES is outlined in Algorithm

CommunityEnergyScheduling. When a CES usage request is received, the CES

manager generates a set of feasible schedules Sn and then the best schedule, s∗, is chosen

in line 8. We note that our algorithm is equivalent to a posted price mechanism where

all the options are enumerated with corresponding prices for each. Users simply examine

their valuations for each feasible schedule, subtract the current cost of each schedule

(p̃ns), and choose the utility maximizing schedule (i.e., no complex optimization needed,

they simply choose the highest value option). We note that the total price that the

customer pays for their allocated schedule is calculated in line 9 of Algorithm 2 and is

denoted as p̃ns∗ After each request is scheduled or denied, the CES manager updates the

dual variables with the new values for charging and discharging power as well as energy

capacity (lines 11-12).
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Algorithm 3 CommunityEnergyScheduling

Input: Ê, P̂c, P̂d, Le,c,d, Ue,c,d
Output: x, p

1: Define the update functions p(y(t)) according to (3.12) - (3.16) for energy capacity, charging,
and discharging.

2: Initialize xns = 0, ye,c(t) = 0, un = 0.
3: Initialize prices p(0) according to (3.12) - (3.16).
4: Repeat for all N CES requests:
5: Request n is received, generate feasible charging/discharging schedules Sn
6: Update dual variable un according to (3.11).
7: if un > 0 then
8: (s?) = arg maxSn

{
vns −

∑
t∈[t−ns,t

+
ns]

(
inse(t)pe(t)+insc(t)pc(t)− insc(t)pd(t)

)}
9: p̃ns? =

∑
T

[
inse(t)pe(t) + insc(t)pc(t)− insc(t)pd(t)

]
10: xns? = 1 and xns = 0 for all s 6= s?

11: Update total demand y(t) for energy capacity and charging power according to (3.3)-
(3.4).

12: Update dual variables p(y(t)) for energy capacity, charging, and discharging according to
(3.12) - (3.16).

13: else
14: xns = 0, ∀ s ∈ Sn.
15: end if
16: if ∃s? and xns? = 1 then
17: Allocate request n the energy capacity, charging power, and discharging power from

schedule s∗.
18: Request n is fulfilled by schedule s∗ for the price of p̃ns? to the requester.
19: else
20: Deny request n from using the CES.
21: end if
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The three main benefits are as follows: 1) the online scheduling heuristic ensures

that the utility gained from each scheduled request is positive for the user, 2) the online

scheduling heuristic filters out low value charging and discharging requests in order to

prevent the CES from being overused, and 3) the online scheduling heuristic promotes

diverse charging and discharging schedules to take advantage of charge/discharge can-

cellations as mentioned in Section 3.2. The underlying framework of the dual variable

update heuristic is similar to that of [39], in which the authors present an auction mecha-

nism for optimizing the usage of computer hardware at data centers for cloud computing.

In our online CES scheduling heuristic, we expand upon the specialized functions

proposed in [39] that approximate the optimal dual variables in an online fashion. These

dual variable functions depend on the amount of energy capacity, charging power, and

discharging power that is reserved at a future time t. The update functions increase

slowly at first then increase rapidly as the CES power and capacity limits are approached.

Additionally, when the power and capacity limits are met, the dual variable update

functions ensure that no more schedules will be allocated by outputting dual variables

high enough to ensure no schedule yields positive utility, thus enforcing the hard capacity

and power limits. The specialized function to update the dual variable associated with

the energy capacity of the CES is as follows:

pe(t) =
(Le

6

)(6Ue
Le

) ye(t)

Ê
, ye(t) ∈ [0, Ê], (3.12)

where Ue and Le correspond to the maximum and minimum value per kWh of energy

capacity per time unit, respectively, across all requests. We note that the CES manager

does require knowledge of Ue and Le beforehand to calculate initial values for the dual

variables and to ensure limits are not breached. The maximum and minimum valuations
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are calculated as follows:

Le = min
n∈N ,s∈Sn

vns
3
∑

t∈[t−s ,t
+
s ] inse(t)

, (3.13)

Ue = max
n∈N ,s∈Sn,t∈T

vns
inse(t)

, inse(t) > 0. (3.14)

In addition to the energy capacity’s dual variable update function in (3.12), the dual

variables for the charging and discharging power of the CES also require update functions:

pc(t) =
(Lc

6

)(6Uc
Lc

) yc(t)
P̂c , yc(t) ∈ [−P̂d, P̂c], (3.15)

pd(t) =
(Ld

6

)(6Ud
Ld

)−yc(t)
P̂d , yc(t) ∈ [−P̂d, P̂c]. (3.16)

We note that the dual variable update functions for charging and discharging power,

(3.15) and (3.16), are similar to the energy capacity dual variable function (3.12) ex-

cept for the domain. The energy capacity function’s input values, ye(t), are nonnegative

and less than Ê. The charging and discharging functions’ input values can be negative

and are within the range yc(t) ∈ [−P̂d, P̂c]. With the 3 dual variable update functions

(3.12), (3.15), and (3.16), we now have the means to calculate estimates for the optimal

dual variables in order to solve (3.11) in an online fashion (i.e., at the reception of each

request to use the CES). The full procedure can be seen in Algorithm 2 CommunityEn-

ergyScheduling.

The heuristic presented in CommunityEnergyScheduling attempts to solve an

online scheduling problem without full knowledge of the sequence of requests. As stated
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before, we are able to compare the total welfare generated from our online heuristic

to the total welfare generated by an omniscient offline CES manager. The comparison

that we make is in the form of a competitive ratio. An online heuristic is said to be

α-competitive when the ratio of welfare generated by the omniscient offline solution to

the welfare generated by the online heuristic is bounded by α ≥ 1. The competitive

ratio, α, is defined as OPT/ALGworstcase ≥ 1, where OPT is the welfare generated

by the offline optimal solution and ALGworstcase is the worst-case welfare generated by

the online algorithm. A value of 1 means the algorithm performs optimally and higher

values of α indicate worse performance. In this work, we build upon results from [39] (and

previous work [9, 8, 4]) and present a competitive ratio that accounts for the cancellation

of complimentary resources (e.g., charging and discharging power, which previous works

could not account for). For the following results, we assume that each CES request

utilizes a small amount of the charging/discharging power and energy capacity of the

CES to ensure that one schedule cannot prohibit numerous future schedules and that the

ratios of users’ maximum valuation to minimum valuation for charging and discharging

power are equal, i.e., Uc
Lc

= Ud
Ld

=
Uc,d
Lc,d

(to yield a singular αc,d for both the charging and

discharging of the CES).

Theorem 3.3.1 The community energy storage system’s schedules generated by Com-

munityEnergyScheduling in Algorithm 1 are α-competitive in welfare over N usage

requests where α = max{αe, αc,d} and αe and αc,d are defined as follows:

αe = 2 ln
(6Ue
Le

)
,

αc,d = 2 ln
(6Uc,d
Lc,d

)
.

Proof. The full proof can be found in Appendix A.4.
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Figure 3.2: Simple example system with 10 user requests to use a 5kWh shared battery
system. Each column corresponds to a different arrival sequence of user valuations.

3.4 Numerical Results

In the following, we present two different numerical results to showcase our heuristic.

First, we describe an example system in Section 3.4 which explicitly details the CES re-

quests’ valuations and compares the social welfare generated from our proposed heuristic

to the optimal offline case as the users submit requests to use the shared battery. We then

present a larger case study for a shared battery system serving commercial customers in

California in Section 3.4.
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Intuitive Example

In order to showcase the details of our heuristic, we make use of a specific example

setup. Namely, we consider a shared battery system that has a maximum charging rate of

5kW, maximum storage of 5kWh, and a maximum discharging rate of 5kW. Furthermore,

we consider 10 unique users who want to purchase the exact same charging, storage, and

discharging schedule and are interested in no other schedules (the specific schedule of

interest is to charge 1kW from 8-9am, store 1kWh from 9-10am, and discharge 1kW from

10-11am). These 10 unique users arrive sequentially one after another and submit their

bids to purchase the charging, storage, and discharging schedule (the specific times that

each user submits their request are irrelevant as long as they are submitted sequentially

and all before 8am). For this example, we assume the users’ valuations are within $1 and

$10. Due to the constraints of the shared battery system, it is clear that only 5 of the 10

users will be able to use the battery for that specific charging, storage, and discharging

schedule. In the offline case, the optimal solution yielding maximal social welfare will

select the 5 users with the highest valuations to use the shared battery. However, since

the users submit their bids sequentially and their valuations are unknown a priori, our

heuristic attempts to emulate the offline solution via dynamic prices that increase as the

battery usage increases, thus filtering out users with low valuations.

In Figure 5.7, we present the results of 4 different user valuation sequences (each

column corresponds to a different sequence of user valuations). Row 1 presents the so-

cial welfare results of our heuristic and the optimal offline solution. Row 2 presents the

users’ valuations (in order). Row 3 presents the competitive ratio upper bound from our

theoretical results in addition to the actual competitive ratio for that column’s request

sequence. From left to right: Column 1 portrays the worst case user valuation sequence.

This is because each user’s valuation was carefully selected to equal the current price
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of the schedule generated by our heuristic (i.e., each of the first 5 users have the min-

imum valuations that our pricing heuristic will accept while the last 5 users have the

maximum valuation, thus leading to the worst possible competitive ratio). Note that the

actual competitive ratio in this case is still below the theoretical upper bound. Column

2 portrays one of the many valuation sequences where the heuristic matches the offline

optimal solution (i.e., competitive ratio = 1). Columns 3 and 4 present randomly gen-

erated valuation sequences (i.e., user valuations were drawn from a uniform distribution

between $1 and $10) to showcase that our heuristic often yields competitive ratios close

to 1.

Additionally, we compare each of the 4 arrival sequences in Fig. 5.7 to a First-Come-

First-Serve (FCFS) heuristic that is the status quo scheduling method for any new CES

implementation. Table 3.1 presents the percentage of the offline optimal welfare that is

generated by both our Algorithm 1 and a FCFS heuristic.

Sequence 1 Sequence 2 Sequence 3 Sequence 4

ALG1 24% 100% 73% 87%
FCFS 24% 100% 57% 66%

Table 3.1: Percentage of offline optimal welfare generated by Algorithm 1 and First–
Come-First-Serve.

California Case Study

In this section we present results from a community energy storage system in Califor-

nia. Specifically, there are 10 loads (presented in Fig. 3.3.A) sourced from a commercial

building load dataset [102]. The publicly accessible dataset [102] contains hourly load

profile data for commercial building types and residential buildings in all TMY3 loca-

tions in the United States. The Typical Meteorological Year 3 (TMY3) provides one year

of hourly data that best represents median weather conditions over a multiyear period
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for a particular location. Across the 10 day time span, January 1st - January 10th, we

also assume that each load is equipped with behind-the-meter solar generation that they

would like to charge and discharge the CES with. The normalized solar generation for

the California location [40] is presented in Fig. 3.3.B. We assume that each building is

equipped with solar generation capacity to fulfill 80% of their peak load at maximum

rating. Fig. 3.3.D presents the 10 loads once the solar generation is subtracted. Note

that negative power means that the location is producing more power than is being con-

sumed. We assume that all 10 buildings are able to use a 2500 kWh community energy

storage system with maximum charge and discharge rates of 500 kW. Furthermore, we

assume that the 10 buildings are connected to the local grid and pay time-of-use electric-

ity rates [103] for energy that is not provided by their solar generation. The electricity

rate used is the PG&E E-19 structure for buildings <1000 kW max demand and is shown

in Fig. 3.3.C. For the purposes of this work, we do not consider net energy metering for

the locations injecting excess solar generation back into the local grid as sending excess

energy to the CES is preferred.

As noted in Section 3.2, the incentive for the buildings to use the CES comes from

storing excess solar generation and using it at a later time. As such, whenever a building

detects that it is producing more power than it needs, it submits a request to store that

excess power in the CES. Specifically, on an hour-by-hour basis, each location submits

requests to store their excess energy in the CES. In order to accomodate this, the CES

manager limits the number of feasible charging/storage/discharging schedules to 96 for

each request. Namely, all the excess generation that the building wants to inject into

the CES during hour t must be discharged at the same rate during a future hour in the

range [t, t + 96] (i.e., in the next 4 days). The valuation for each of the 96 schedules is

calculated via equation (3.1) (i.e., the predicted cost savings from using stored energy

versus purchasing energy from the grid). As portrayed in Fig. 3.3.E, the total load
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Figure 3.3: Simulation Results for California Test Case.

of all 10 buildings is greatly affected by the CES usage. Specifically, the cumulative

load no longer goes negative (the red curve in 2.E), meaning that the buildings are not

injecting solar back into the local grid. Instead, they are storing that power and using

it to reduce peak demands at later times. This helps reduce electricity costs for the

buildings in addition to reducing the stress on the load grid from injecting the excess

solar generation. Last, in Fig. 3.3.G, we present the charging, discharging, and total

energy stored in the CES throughout the 10 days.

Additional Case Study

In Figure 3.4, we present results for the same energy community as in Section 3.4;

however, we include a large hospital as one of the loads (hospital also from dataset
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[102]). As seen in plots A) and B) of Figure 3.4, the load (A) and net load (B) of the

hospital are significantly larger than the other 10 loads. While it is possible that the

large hospital might dominate usage of the CES, due to the fact that valuations are

bounded per time slot for all users and users only purchase CES schedules if they are

cheaper than the current grid electricity prices, all users end up with a fair chance at

CES usage. Additionally, the smaller users have slightly different load patterns than

the large hospital yielding many charge/discharge cancellations. Moreover, if the smaller

users submit their CES requests before the hospital, they could exclude the hospital’s

large charge/discharge requests due to the capacity and power constraints. Last, we

note that our results can begin to degrade if the size of the CES is not large enough to

adequately supply all of the users. Specifically, in the case of the 10 small users and the

large hospital, we assume that any CES manager would install a large enough battery

to give all users a fair chance at usage. In plot C) of Figure 3.4, we show the total net

load of all 11 users with no CES, with a 2500kWh battery (same as in Section 3.4) and

a 5000kWh battery. We note that the 2500kWh battery was not large enough to store

all of the excess solar generation; however, the 5000kWh battery nearly stored all excess

solar generation.

3.5 Conclusion

We presented a solution to the problem facing the manager of a community energy

storage system attempting to schedule the charging/discharging/energy storage of the

system. We presented an online heuristic that updates dual variables in real-time as a

solution to the problem. The heuristic acts as a pricing mechanism to ensure the CES

yields positive utility and promotes charge and discharge cancellations to reduce the

CES’s usage at popular times. The heuristic is able to handle the inherently stochastic
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Figure 3.4: Load profiles for energy community and a large hospital.

nature of the requests to charge and discharge from the CES (stemming from weather

uncertanties and randomness in users’ electricity usage patterns). The heuristic can

handle adversarially chosen request sequences and will always yield total welfare within a

factor of 1
α

of the offline optimal welfare. An intuitive example was presented to showcase

the heuristics performance for various request sequences and a larger case study was

presented for 10 commercial buildings sharing a CES. The proposed algorithm performs

well if the CES is sized large enough to adequately serve the users of the system. The

results in Fig. 3.4 demonstrate the issues that arise when the CES’s capacity is sized

incorrectly and the effectiveness of the CES is limited.

85



Chapter 4

Safe Learning for Real-Time

Electricity Pricing with Grid

Constraints

4.1 Introduction

In order to integrate the increasing volume of intermittent renewable generation in

modern power grids, aggregators are exploring various methods to manipulate both res-

idential and commercial loads in real-time. As a result, various demand response (DR)

frameworks are gaining popularity because of their ability to shape electricity demand

by broadcasting time-varying signals to customers; however, most aggregators have not

implemented complex DR programs beyond peak shaving and emergency load reduction

initiatives. One reason for this is the customers’ unknown and time-varying responses to

dispatch signals, which can lead to economic uncertainty for the aggregator and reliability

concerns for the grid [104]. The aggregator could explicitly request price sensitivity infor-

This work was supported by NSF grants #1847096 and #1737565 and UCOP Grant LFR-18-548175.
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mation from its customers; however, this two-way negotiation has a large communication

overhead and most customers cannot readily characterize their price sensitivities, and

even if they could, they might not be willing to share this private information. As such,

aggregators prefer the 1-way passive approach because it does not require any real-time

feedback from the customer and it does not require new communication infrastructure

for reporting preferences (e.g., a web portal, phone application, etc.). With this in mind,

future load shaping initiatives for renewable integration (i.e., more complex objectives

than peak shaving) need to be able to passively learn customers’ response to dispatch

signals only from historical data of past interactions [105].

Recently, much work has been done for aggregators attempting to learn customers’

price responses whilst implementing peak shaving DR programs. The authors of [106]

present a data-driven strategy to estimate customers’ demands and develop prices for

DR. In [107], the authors use linear regression models to derive estimations of customers’

responses to DR signals. Similarly, [108] develops a joint online learning and pricing

algorithm based on linear regression. In [109], the authors present a contract-based DR

strategy to learn customer behavior while broadcasting DR signals. The authors of [110]

present an online learning approach based on piecewise linear stochastic approximation

for an aggregator to sequentially adjust its DR prices based on the behavior of the

customers in the past. In [111], the authors develop a risk-averse learning approach for

aggregators operating DR programs. In [112], a learning algorithm for customers’ utility

functions is developed and it is assumed that the aggregator acts within a two-stage

(day-ahead and real-time) electricity market. Additionally, the authors of [113] present

a learning framework for forecasting individual loads and DR capabilities and find that

users with more variable consumption patterns are more effective DR participants. Using

a similar framework as in this work, a multi-armed bandit (MAB) formulation is used in

[114, 115] to determine which customers to target in DR programs.
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In addition to learning how customers respond to DR signals, an aggregator must also

consider power system constraints to ensure reliable operation (e.g., nodal voltage, trans-

former capacities, and line flow limits). In real distribution systems, it is critical that

these constraints are satisfied at every time step to ensure customers receive adequate

service and to avoid potential grid failures even without sufficient knowledge about how

customers respond to price signals (i.e., in early learning stages) [116, 117]. One paper

similar to ours that considers these realistic constraints, [118], presents a least-square

estimator approach to learn customer sensitivities and implements DR in a distribution

network. The authors of [118] show that their least-square algorithm’s parameter esti-

mation error converges to zero over time, thus the algorithm’s regret is sublinear while

also accounting for the distribution network’s constraints.

Similar to the aforementioned papers, the work presented in this chapter considers

the problem of an aggregator passively learning the customers’ price sensitivities while

running a load shaping program. However, our approach permits more complex load

shaping objectives (e.g., tracking a daily target load profile) and varies in terms of both

load modeling and learning approach from all the above papers. Specifically, we present

a multi-armed bandit (MAB) heuristic akin to Thompson sampling (TS) to tackle the

trade-off between exploration of untested price signals and exploitation of well-performing

price signals while ensuring grid reliability. It is important to note that the standard TS

heuristic cannot guarantee that grid reliability constraints are upheld during the learning

process. As such, we present two modified versions of TS while retaining the fundamental

principles TS is based on. Furthermore, we provide discussion on how the constraints

are upheld (i.e., operational reliability) for the modified heuristics, discussion on the

performance of the heuristics compared to a clairvoyant solution, and simulation results

highlighting the strengths of the method.

In our work, we make use of a load clustering technique in order to exploit the known
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physical structure of the problem and make use of our prior knowledge of how flexible

electric appliances behave to lower the problem dimensionality. We note that grouping

(clustering) loads for dimensional reduction is common in DR literature [119]. Some

pertinent examples include [120] where the authors aggregate heterogeneous thermostat-

ically controlled loads (TCLs) using an LTI “bin” model, [121] where the authors group

EVs into “classes” depending on their charging availability, [122] where the authors

present a load profile clustering method for load data classification based on information

entropy, piecewise aggregate approximation, and spectral clustering, [123] where the au-

thors present aggregate models for classes of TCLs that include statistical information of

the population, systematically deal with heterogeneity, and account for a second-order

effects, [124] where the authors propose a clustering technique for determining natural

segmentation of customers and identification of temporal consumption patterns in the

smart grid domain, and [125] where the authors develop cohorts, or groups of consumers

with similar consumption patterns, from correlations between daily loads.

The main contributions of this work are as follows:

• We use the multi-armed bandit (MAB) framework to model the stochastic and

unknown nature of customers’ daily aggregate response to electricity prices.

• We make use of an appliance clustering methodology to provide a mesoscopic model

of the price responsive demand of a large population of flexible appliances and

reduce the dimensionality of the learning problem.

• Our learning framework can account for daily variabilities and realistic grid relia-

bility constraints that are critical for daily operation in spite of uncertainty about

customers’ price response.

• We present two modified heuristics based on Thompson sampling (TS) as solutions
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to the constrained learning and pricing problem.

• We provide a performance guarantee in the form of a regret bound and discussion

on the reliability guarantees of the approach as well as a distribution system case

study demonstrating the efficacy of the approach.

The remainder of Chapter 4 is organized as follows: Section 4.2 presents the aggre-

gator’s daily objective as well as the customers’ load model. Section 4.3 describes the

multi-armed bandit formulation for the electricity pricing problem, presents the modified

TS heuristic, and discusses its performance and reliability. Section 4.4 presents simula-

tion results that showcase the efficacy of the approach. The online appendix [3] contains

a table of notation and proofs.

4.2 Problem Formulation

The Aggregator’s Objective

The aggregator’s main goal is to select dispatch signals to manipulate customer de-

mand according to a given optimization objective that varies daily. Specifically, we

consider the case where the aggregator broadcasts a dispatch signal pτ = [p(t)]t=1,...,T

to the population of customers each day (we use t = 1, . . . , T to index time of day and

τ = 1, . . . , T to index days). The set of dispatch signals available for use by the aggrega-

tor is denoted as P . In this chapter, without a loss of generality, we will assume that the

dispatch signal sent to customers for load shaping purposes is a real-time pricing (RTP)

signal1.

1The reader should note that this choice is not fundamental to the development of the modified
learning heuristics we present in this chapter. It only allows us to provide a concrete characterization of
the response to dispatch signals by mathematically modeling the customers as cost-minimizing agents
equipped with home energy management systems in Section 4.2.
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The aggregator’s cost function could cover a broad range of goals including (but not

limited to) manipulating the population’s load to match a target profile, minimizing the

distribution grid’s electricity cost from the regional retailer, or solving for the dispatch

of multiple generators, if a market is operated at the distribution system level.

In this work, on each day τ , we assume the aggregator’s cost function is a fixed and

known nonlinear function f(Dτ (pτ ),Vτ ) that depends on the load profile Dτ (pτ ) of the

population in response to the daily broadcasted price pτ and a random exogenous pa-

rameter vector Vτ
2. The population’s load profile on day τ , Dτ (pτ ), is a T × 1 vector

with the tth element corresponding to the population’s power demand during time pe-

riod t. The exogenous and given T × 1 vector Vτ varies daily and can correspond to

a daily target profile reflecting renewable generation forecasts, weather predictions, and

grid conditions. We consider the exogenous vectors to be i.i.d. drawn from a distribution

defined on a finite sample space V , with each outcome drawn with a nonzero probability.

We would like the reader to note that this assumption is only made for convenience for

our theoretical regret performance guarantee in Theorem 4.3.1. In a real-world imple-

mentation, the daily exogenous parameters could be correlated across days (e.g., due

to weather, seasons, weekday/weekend, etc.). However, this correlation does not affect

the safety guarantees of our algorithm or its applicability (i.e., it only affects our formal

regret results).

The aggregator must ensure that the broadcasted price signals do not result in load

profiles that violate distribution system reliability constraints (e.g., nodal voltage, trans-

former capacities, or line flow limits). As such, if the aggregator had full information

about how the population responds to price signals (i.e., full knowledge of Dτ (pτ )), the

2We note that the function f need not have a closed form representation and thus can represent the
solution of an economic dispatch problem with multiple generators, which can still be handled through
our framework. However, without loss of generality and purely for brevity of notation, here we focus on
common distribution systems which usually lack two-sided markets, and thus we focus on load profile
manipulation for renewable integration and distribution system protection.
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aggregator can solve the following optimization problem on day τ to select the optimal

price p?τ :

p?τ = arg min
pτ∈P

f
(
Dτ (pτ ),Vτ

)
(4.1)

s.t. gj
(
Dτ (pτ )

)
≤ 0, ∀j = 1, . . . , J (4.2)

where gj(·)j=1,...,J is used to represent the reliability constraints for the distribution sys-

tem. We note that these general constraints need not be linear for the proposed Thomp-

son sampling approach.

However, as explained in the introduction, knowledge of customers’ price response is

unavailable to the aggregator. Recall, 1) the aggregator does not want to directly query

customers for their price sensitivities, 2) most customers cannot readily characterize their

price sensitivities, and 3) customers might not be willing to share this private information.

Accordingly, the aggregator needs a method to sequentially choose daily price signals to

simultaneously 1) control their daily incurred cost; 2) learn the customers’ price response

models; and 3) ensure the distribution system constraints are not violated at any time.

Distribution System Operational Constraints

As stated previously, there are various operational constraints within a distribution

system that should be met in order to ensure adequate service for customers and to pre-

vent grid failures. In the aggregator’s daily optimization in Section 4.2, the constraints

are formulated as general functions gj(·)j=1,...,J . Specifically, these general functions repre-

sent distribution system parameters (i.e., the nodal voltage uτ (t) and power flow through
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distribution lines fτ (t)) that should obey the following constraints:

uτ (t) ≥ umin, ∀t, τ, (4.3)

uτ (t) ≤ umax, ∀t, τ, (4.4)

fτ (t) ≤ Smax, ∀t, τ, (4.5)

where umin, umax, and Smax correspond to the lower voltage limit, upper voltage limit,

and power flow limit, respectively, for the population’s connection to the distribution

grid. We note that uτ (t) and fτ (t) can be easily derived from the population’s load

profile Dτ (pτ ) (See Section 4.4). Now that we have described the aggregator’s objective

and the distribution system’s constraints, we next describe the customers’ load model as

well as their price response model.

Load Flexibility Model

It is hard to approach the problem of learning the response of a population of cus-

tomers to complex dispatch signals such as RTP as a complete “black box problem”, i.e.,

by just observing the broadcasted price and the load response. There are many reasons

for this, including 1) the existence of random or exogenous parameters which lead to vari-

ability in the temporal and geographical behavior of electricity demand; 2) the variability

of the control objective on a daily basis (e.g., due to randomness in renewable generation

outputs, market conditions, or baseload); and 3) the small size of the set of observations

that one can gather compared to the high dimensional structure of the load (there are

only 365 days in a year, so only 365 sets of prices can be posted). Hence, in this chapter,

we will be exploiting the known physical structure of the problem and making use of our

statistical prior knowledge of how the load behaves to lower the problem dimensionality.

Specifically, to lower the dimensionality for the learning problem, we explore the fact
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that flexible loads only show limited number of “load signatures” (justified due to the au-

tomated nature of load response through home energy management systems, the limited

types of flexible appliances, and the common electricity usage patterns that emerge from

electricity customers as shown in [113, 126]). Let us assume that electric appliances can

belong to a finite number of clusters c ∈ C. For each cluster c, we denote Dc as the set of

feasible daily power consumption schedules that satisfy the energy requirements of the

corresponding appliances. Any power consumption schedule, [dc(t)]t=1,...,T = Dc ∈ Dc,

would satisfy the daily power needs of an appliance in cluster c. For example, consider

a cluster that represents plug-in electric vehicles (EVs) that require Ec kWh in the time

interval [t1, t2] with a maximum charging rate of ρc kW. Accordingly, the set Dc of daily

feasible power consumption schedules is given by:

Dc =
{

Dc|
t2∑
t=t1

dc(t) = Ec; 0 ≤ dc(t) ≤ ρc

}
. (4.6)

Another specific cluster example is that of electric appliances that are uninterruptible

but can perform load shifting (e.g., a dishwasher cannot be interrupted once it is turned

on but the start time of the cycle can be shifted). Let Πc(·) denote the load profile of

uninterruptible cluster c appliances once they are turned on. For example, Πc(·) could

be a rectangular pulse function that outputs the rated power of the appliance, ρc for the

duration of the appliance’s cycle and 0 otherwise. To relay their load flexibility, cluster

c users can specify a time interval [tc,1, tc,2] within which the appliance cycle must start

(e.g., a user wants the dishwasher to be finished before dinner). Thus the home energy

management system can calculate the best values for the time shift, denoted by tc, as

long as it lies within the interval [tc,1, tc,2]. The set Dc of daily feasible power consumption
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schedules for appliances in this cluster is given by:

Dc =
{

Dc|dc(t) = Πc(t− tc); tc ∈ [tc,1, tc,2]
}
. (4.7)

For discussion on characterizing the sets for other flexible appliances, including interrupt-

ible (Section III.B in [127], non-interruptible (Section III.D in [127]), and thermostatically

controlled loads (Section III.C in [127]), we refer the reader to reference [127].

By adopting this model, the total power consumption flexibility of a population of

customers can be characterized as a function of how many appliances belong to each

cluster within the population. Let us denote ac as the number of appliances in cluster c

(note that this will vary on a day by day basis as described in the next section). With

this notation, we can write the set of feasible daily power consumption profiles for the

population, D:

D =
∑
c∈C

acDc, (4.8)

where the summation and scalar multiplication operations are defined in the sense of

Minkowski addition3.

We would like to note that choosing the number of clusters in the model is a control

knob that can be tuned by the aggregator as shown in [128]. Using a higher number of

potential appliance clusters will increase the accuracy of the load model (i.e., reduce the

quantization error in the reproduction of the individual load profiles) and yield better

performance in the daily optimization once the true parameters have been sufficiently

learned by the aggregator. However, increasing the number of load clusters increases the

size of the problem space and increases the randomness in the customers’ daily loads

3For two sets A and B defined on a finite dimensional Euclidean space, the Minkowski sum is defined
as A+B = {a + b | a ∈ A,b ∈ B}.
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thus slowing down the learning rate of the algorithm. The number of clusters will vary

depending on the system being analyzed as well as the aggregator’s preferences.

Price Response Model

In this section, we discuss how the total population responds to dynamic electricity

prices given the load flexibility model in (4.8) and how clustering is used to reduce the

dimensionality of the problem. There are two main ways dynamic pricing affects the

power consumption: 1) Automated per cluster response: Within each load cluster c (i.e.,

given pre-specified preferences such as EV charging deadlines or AC temperature set

points), we assume that the customer chooses the power consumption profile Dc ∈ Dc

that minimizes their electricity cost dependent on the daily broadcasted price pτ . For

appliances in cluster c on day τ , we assume all will choose the same minimum cost power

consumption profile:

D̃c,τ (pτ ) = arg min
Dc∈Dc

T∑
t=1

p(t)dc(t). (4.9)

We assume that each appliance will always choose the cost minimizing power consump-

tion profile out of the available profile set to combat the fact that the available profile

sets Dc for each cluster can be infinitely large. Thus, we have effectively reduced the

dimensionality of the problem as we know a priori how each cluster will respond to each

price signal (i.e., each cluster will always select its cost minimizing profile). Due to the

automated nature of home energy management systems, each cluster selecting its cost

minimizing profile is a reasonable assumption once the customers have defined their flex-

ibility preferences, e.g., the desired charge amounts and deadlines for EVs [129, 130]. 2)

Preference Adjustment : We also consider the fact that customers may respond to price

signals by adjusting their preferences. Consider the following example: two customers
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(Customer-A and Customer-B) live in the same neighborhood but have different sensitiv-

ities to electricity prices. If electricity prices are high on a hot summer day, Customer-A

might shutdown their air conditioner to avoid a large electricity bill; however, Customer-

B prioritizes comfort over cost-savings, and leaves their air conditioner on, no matter the

cost. As shown in the previous example, the number of appliances in each cluster, i.e.,

ac in (4.8), also depends on the daily posted price vector pτ , and are now denoted as

ac(pτ ).

Combining the automated per cluster response and preference adjustment, we can

define the population’s load on day τ in response to the posted price pτ as follows:

D?
τ (pτ ) =

∑
c∈C

ac(pτ )D̃c,τ (pτ ). (4.10)

As stated before, if the aggregator has full knowledge of the customers’ price responses,

which reduces to having full knowledge of the preference adjustments ac(pτ ), then the

aggregator can pick the daily price vector p?τ in order to shape the population’s power

consumption according to (4.1). However, as we cannot assume this, we model the

ac(pτ )’s as random variables with parameterized distributions, φc, based on the posted

price signal pτ and an unknown but constant parameter vector θ?. Here, θ? represents

the true model for the customers’ sensitivity to the price signals. This allows for the

complex response of the customer population to be represented as a single vector, thus

reducing the dimensionality of the problem. We note that while ac(pτ ) may only take

integer values in reality, we believe it is justified to relax this integrality constraint and

allow it to take continuous values with large enough appliance population size. With this

in mind, we would like to highlight three properties of the price response model:

1. The preference adjustment models ac(pτ ) are stochastic and their distributions φc

are parameterized by pτ and θ?. This is due to exogenous factors outside of the
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aggregator’s scope that influence customers’ power consumption profiles resulting

in a level of stochasticity in the responses to prices (i.e., customers will not respond

to prices in the same fashion each day).

2. The probability distributions of ac(pτ ) (i.e., φc) are unknown to the aggregator,

i.e., the aggregator does not know the true parameter θ? of the stochastic model.

3. The realizations of ac(pτ ) are not directly observable by the aggregator. The aggre-

gator can only monitor the population’s total consumption profile Dτ and cannot

observe the decomposed response of each cluster ac(pτ )D̃c,τ (pτ ) independently.

Because we have introduced stochasticity to customers’ price response models, we

appropriately alter the aggregator’s optimization problem for selecting the price signal

on day τ to account for the distributions φc:

p?τ = arg min
pτ∈P

E{φc}c∈C
[
f
(
Dτ (pτ ),Vτ

)]
(4.11)

s.t. P{φc}c∈C
[
gj
(
Dτ (pτ )

)
≤ 0
]
≥ 1− µ, ∀j (4.12)

where µ is the aggregator’s desired reliability metric for the distribution system con-

straints. In (4.11), the aggregator now considers minimizing an expected cost and is

subject to probabilistic reliability constraints in (4.12) that depend on the distributions

φc of the preference adjustment models ac(pτ ).

We note that the formulated chance constraints are enforced with respect to uncer-

tainty in the clusters’ price sensitivity parameters, not to the exogenous context vector

Vτ . In this work, we assume the daily exogenous vector is fully known each day and does

not add uncertainty to the problem. However, uncertainties in the exogenous vector are

important to real-world systems such as the power grid and can be accommodated by

our approach by adding external noise to these vectors in the same fashion as noise being
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added to the population’s load. This, of course, would further slow down the learning

rate of the algorithm due to the added noise reducing the effectiveness of each posterior

update.

Clearly, the aggregator needs to learn the underlying parameters of the stochastic

models φc of how customers respond to price signals in order to select price signals for

load shaping initiatives (i.e., the aggregator needs to learn θ?). Our proposed learning

approach and pricing strategy for an electricity aggregator is detailed in the next section.

4.3 Real-Time Pricing via Multi-Armed Bandit

Multi-Armed Bandit Overview

We utilize the multi-armed bandit (MAB) framework to model the iterative decision

making procedure of an aggregator implementing a daily load shaping program [131,

132, 133]. The MAB problem can be described as a decision making problem where an

agent has a set of available actions but can only take one action per round. After an

action is taken, the agent experiences a cost that is dependent on the action taken. The

agent can only learn about the distribution of costs from each action by experimenting.

Throughout this iterative procedure, the agent faces the core dilemma: should the agent

exploit actions that have yielded small costs, or explore actions that have not been tested

thoroughly? The goal in a MAB problem is to develop a strategy for selecting actions

that balance this trade-off and minimize the cumulative cost over a given time span.

More thorough explanation and background of the MAB problem can be found in [134].

For the electricity pricing problem, the MAB framework exemplifies the exploration-

exploitation trade-off dilemma faced by an aggregator each day. Namely, should the

aggregator choose to broadcast untested prices (i.e., explore) to learn more information

about the customers? Or should the aggregator choose to broadcast well-performing
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prices (i.e., exploit) to manipulate the daily electricity demand?

To evaluate the performance of an algorithm that aims to tackle the exploration-

exploitation trade-off, one commonly examines the algorithm’s regret. Formally, regret is

defined as the cumulative difference in cost incurred over T days between a clairvoyant

algorithm (i.e., the optimal strategy that is aware of the customers’ price responses) and

any proposed algorithm that does not know the customers’ price responses:

RT =
T∑
τ=1

f(Dτ (pτ ),Vτ )− f(Dτ (p
?),Vτ ). (4.13)

Instead of considering the cumulative difference in objective function value, an alter-

native metric for regret is to count the number of times that suboptimal price signals are

selected over the T days. For this, we introduce the following notation: let pVτ ,? denote

the optimal price signal for the true model of the population’s price response θ? when

the daily exogenous parameter Vτ is observed on day τ . Any price signal pτ 6= pVτ ,? is

considered a suboptimal price. Moreover, we denote Nτ (p,V) as the number of times

up to day τ that the algorithm simultaneously observes the exogenous parameter V and

selects the price signal p. As such, the total number of times that suboptimal price

signals are selected over T days is:

∑
V∈V

∑
p∈{P\pV,?}

NT (p,V) =
T∑
τ=1

1
{pτ 6=pVτ ,?}, (4.14)

where 1
{·} is the indicator function that is set equal to one if the criteria is met and

zero otherwise. Subsequently, in an iterative decision making problem such as this, the

question arises: how can an aggregator learn to price electricity with bounded regret, and

what are the regret bounds we can provide for a proposed algorithm given dynamically

changing grid conditions and reliability constraints? In the following sections, we present
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a modified Thompson sampling heuristic for the electricity pricing problem to simulta-

neously learn the true model θ? for the population, select the daily price signals, ensure

grid reliability, and provide a regret guarantee.

Thompson Sampling

Thompson sampling (TS) is a well-known MAB heuristic for choosing actions in

an iterative decision making problem with the exploration-exploitation dilemma [134,

135, 136]. Two other well-studied frameworks, greedy algorithms and upper-confidence

bound (UCB) algorithms, have shown promise in this problem area. However, greedy

algorithms are inferior to Thompson sampling in regret performance and UCB algorithms

are restricted to simpler linear optimizations [137, 138, 139], whereas Thompson sampling

can readily handle more general objective functions such as those adopted in our work

[140]. Additionally, a novel aspect of our work is that we have shown how to modify

the Thompson sampling heuristic to account for reliability constraints with a theoretical

guarantee (Proposition 1). There are no other bandit optimization approaches known to

be able to handle general objective functions with safety constraints. Relevant works here

include the analysis of the performance of the UCB algorithm in the linear MAB setting

with linear safety-constraints [141], and well as linear TS with linear constraints [142].

In the latter work, it is shown that in the linear case, the presence of linear constraints

do not negatively affect the regret performance of TS, which is remarkable and could be

a preliminary justification as to why TS performs well in our work in the presence of

general (non-linear) cost and constraint functions.

Simply put, the integral characteristic of Thompson sampling is that the algorithm’s

knowledge on day τ of the unknown parameter θ? is represented by the prior distribution

πτ−1. Each day the algorithm samples θ̃τ from the prior distribution, and selects an action

assuming that the sampled parameter is the true parameter. The algorithm then makes
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an observation dependent on the chosen action and the hidden parameter and performs

a Bayesian update on the parameter’s distribution πτ based on the new observation.

Because TS samples parameters from the prior distribution, the algorithm has a chance

to explore (i.e., draw new parameters) and can exploit (i.e., draw parameters that are

likely to be the true parameter) through out the run of the algorithm.

Constrained Thompson Sampling

In this section, we present the MAB heuristic titled Con-TS-RTP adopted to the

electricity pricing problem. Con-TS-RTP is a modified Thompson sampling algorithm

where the daily optimization problem is subject to constraints (standard TS algorithms

do not have constraints)[143].

When initializing π0, the initial distribution on the customers’ unknown parameter

can be selected by the aggregator. If the aggregator has access to prior information

regarding the true parameter, then they could initialize the prior as a distribution of

their choice. However, if the aggregator has no prior knowledge, a uniform distribution

among all available parameters may be used to model the lack of knowledge of the

aggregator.

Each day, the algorithm observes the daily target profile Vτ , draws a parameter

θ̃τ from the prior distribution, broadcasts a price signal to the customers, observes the

load profile of the population in response to the broadcasted price, and then performs a

Bayesian update on the parameter’s distribution πτ based on the new observation. We

note that there are no restrictions on the class of optimization problem to be solved each

day; however, in order for our regret guarantee to hold, the aggregator must be able to

find the globally optimal solution and can use any desired solution method to do so. In

our experimental examples, we assume that θ’s and pτ ’s are chosen from discrete sets in

order to be able to guarantee that an enumeration method could solve for the globally
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optimal price signals each day in spite of non-convexities that arise.

The observation on day τ is denoted as Yτ = D?
τ (pτ ) and we assume that each

Yτ comes from the observation space Y that is known a priori. When performing the

Bayesian update, the algorithm makes use of the following likelihood function: `(Yτ ; p,θ) =

Pθ(D?
τ (pτ ) = Yτ |pτ = p). This function calculates the likelihood of observing a specific

load profile when broadcasting price p and the true parameter is θ. The pseudocode

for Con-TS-RTP applied to the constrained electricity pricing problem is presented in

Algorithm 4.

Discussion on Regret Performance of Con-TS-RTP

The regret analysis of Con-TS-RTP is inspired by the results in [140] for TS with

nonlinear cost functions. The authors in [144] extended the regret results from [140] by

analyzing the effects of an objective function that is dependent on exogenous parameters

such as Vτ . The analysis in the aforementioned papers provides bounds on the total

number of times that suboptimal price signals selected by the algorithm over T days as

specified in equation (4.14). The regret guarantee we provide in this work extends the

result further, allowing for constraints in the daily optimization that are dependent on

the sampled θ̃τ . As such, our regret guarantee applies to the Con-TS-RTP algorithm

with constraints as formulated in Constraint Set A in Algorithm 4. We refer the reader to

the online appendix [3] as well as [144] and [140] for further discussion on the derivation

of Theorem 4.3.1.

Assumption 4.3.1 (Finitely many price signals, observations). |P|, |Y| <∞.

Assumption 4.3.2 (Finite Prior,“Grain of truth”) The prior distribution π is supported

over finitely many particles: |Θ| < ∞. The true parameter exists within the parameter

space: θ? ∈ Θ. The initial distribution π0 has non-zero mass on the true parameter θ?
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Algorithm 4 Con-TS-RTP

Input: Parameter set Θ; Price set P ; Observation set Y ; Voltage constraints
umin, umax; Power flow constraint Smax, Reliability metrics µ, ν
Initialize π0 based on aggregator’s available prior knowledge of customer sensitivity.

1: for Day index τ = 1...T do
2: Sample the daily hidden parameter θ̃τ ∈ Θ from the aggregator’s prior distribution

πτ−1.
3: Observe the daily exogenous parameter Vτ .
4: Broadcast the daily price signal:

p̂τ = arg min
P

E{φc}c∈C
[
f(Dτ (pτ ),Vτ )|θ = θ̃τ

]
Subject to:

Constraint Set A:
A.1: P{φc}c∈C [uτ (t) ≥ umin|θ = θ̃τ ] ≥ 1− µ, ∀t
A.2: P{φc}c∈C [uτ (t) ≤ umax|θ = θ̃τ ] ≥ 1− µ, ∀t
A.3: P{φc}c∈C [fτ (t) ≤ Smax|θ = θ̃τ ] ≥ 1− µ, ∀t

Constraint Set B :
B.1: P{φc}c∈C [uτ (t) ≥ umin|θ ∼ πτ−1] ≥ 1− ν, ∀t
B.2: P{φc}c∈C [uτ (t) ≤ umax|θ ∼ πτ−1] ≥ 1− ν, ∀t
B.3: P{φc}c∈C [fτ (t) ≤ Smax|θ ∼ πτ−1] ≥ 1− ν, ∀t

5: Observe the population’s load response to price pτ : Yτ = D?
τ (pτ ).

6: Update the aggregator’s knowledge of the true parameter in the posterior:

∀S ⊆ Θ : πτ (S) =

∫
S
`(Yτ ; p̂τ ,θ)πτ−1(dθ)∫

Θ
`(Yτ ; p̂τ ,θ)πτ−1(dθ)

7: end for
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(i.e., Pπ0 [θ?] > 0).

Assumption 4.3.3 (Unique optimal price signal). There is a unique optimal price sig-

nal pV,? for each exogenous parameter V ∈ V.

Theorem 4.3.1 Under assumptions 4.3.1-4.3.3 and Constraint Set A in Algorithm 4,

for δ, ε ∈ (0, 1), there exists T ? ≥ 0 s.t. for all T ≥ T ?, with probability 1− δ:

∑
V∈V

∑
p∈{P\pV,?}

NT (p,V) ≤ B + C(log T ), (4.15)

where B ≡ B(δ, ε,P ,Y ,Θ) is a problem-dependent constant that does not depend on T ,

and C(log T ) depends on T , the sequence of selected price signals, and the Kullback-

Leibler divergence properties of the bandit problem (i.e., the marginal Kullback-Leibler

divergences of the observation distributions KL
[
`(Y; p,θ?), `(Y; p,θ)

]
(The complete de-

scription of the C(log T ) term is left to the online appendix).

Proof. The proof is in the online appendix [3].

Con-TS-RTP with Improved Reliability Constraints

In order for the aggregator to ensure safe operation of the distribution grid while

running the Con-TS-RTP algorithm, the reliability constraints need to hold for the true

price response model θ? each day. However, with the constraints formulated as in Algo-

rithm 4’s Constraint Set A, the distribution system constraints are only enforced for the

sampled θ̃τ and not necessarily the true parameter θ?. This entails that the distribu-

tions {φc}c∈C are parameterized by the sampled θ̃τ ; therefore, they are inaccurate if any

parameter θ̃τ 6= θ? is sampled. This could potentially lead to many constraint violations
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throughout the run of the algorithm resulting in inadequate service for the customers

and grid failures.

Due to the importance of reliable operation of the distribution system, we present a

modification to the Con-TS-RTP algorithm (i.e., replacing Constraint Set A with Con-

straint Set B in Algorithm 4) to increase the reliability of the selected prices and resulting

load profiles with respect to the grid constraints. Specifically, we propose alternate con-

straints that depend on the algorithm’s current knowledge of the true parameter, instead

of the sampled parameter. In other words, instead of depending on θ̃τ , the proposed

alternate constraints depend on the prior distributions πτ−1 as follows:

P{φc}c∈C [uτ (t) ≥ umin|θ ∼ πτ−1] ≥ 1− ν, ∀t (4.16)

P{φc}c∈C [uτ (t) ≤ umax|θ ∼ πτ−1] ≥ 1− ν, ∀t (4.17)

P{φc}c∈C [fτ (t) ≤ Smax|θ ∼ πτ−1] ≥ 1− ν, ∀t (4.18)

where ν is a small constant (detailed in Proposition 4.3.1). When considering constraints

(4.16)-(4.18) in the Con-TS-RTP algorithm, the algorithm will select more conservative

price signals each day that can guarantee the distribution system’s constraints are met

with high probability by using the information in the updated prior distributions. Before

analyzing the modified algorithm’s reliability, we make the following assumption:

Assumption 4.3.4 There exists ξ? > 0 and λ ≥ 0, such that for all

θ 6= θ?, KL
[
`(Y; p,θ?), `(Y; p,θ)

]
≥ ξ?, where

ξ?θ,p = max
x∈Z>0

{
−λ
x
− 4√

x

√
log |Y||P|

δ
+

log x

2

∑
Y∈Y

∣∣∣ log
`(Y; p,θ?)

`(Y; p,θ)

∣∣∣} (4.19)

106



Safe Learning for Real-Time Electricity Pricing with Grid Constraints Chapter 4

and

ξ? = max
θ∈Θ,p∈P

ξ?θ,p.

Assumption 4.3.4 ensures that as the aggregator performs the steps in Algorithm 3, the

algorithm’s Bayesian updates of the prior distribution πτ will likely never decrease the

mass of the true parameter θ? below a certain threshold. Specifically, with Assumption

4.3.4, it can be shown (as in [140]) that with probability 1− δ
√

2 the following holds for

all τ ≥ 1:

πτ (θ
?) ≥ π0(θ?)e−λ|P|, (4.20)

where λ ≥ 0 is a chosen parameter (from Assumption 4.3.4) that dictates the minimum

reachable mass of the true parameter via Bayesian updating. With the modified con-

straints (4.16)-(4.18) and the minimum mass of the true parameter specified in (4.20),

the reliability of Con-TS-RTP can be characterized as follows:

Proposition 4.3.1 Under assumptions 4.3.1-4.3.4, with ν in equations (4.16)-(4.18)

chosen such that ν ≤ µπ0(θ?)e−λ|P|, with probability 1−δ
√

2, the Con-TS-RTP algorithm

with Constraint Set B will uphold the probabilistic distribution system constraints as

formulated in (4.12) for each day τ = 1, . . . , T .

Proof. The proof is in Appendix A.5.

Remark: The novelty of Con-TS-RTP is that we can ensure with high probability an

unsafe price signal is never selected. We can tune the safety parameter to determine

what level of risk is acceptable to the aggregator. We note that the selection of an

unsafe price signal has no effect on the learning capability of the algorithm. The Con-

TS-RTP algorithm will learn regardless of safe/unsafe price signals. The algorithm will
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never crash/stop prematurely due to the selection of an unsafe price signal; however,

the local distribution grid might surpass safety limits on transformers or line flow limits

due to an unsafe price selection on select very limited days, at which points protective

measures (e.g., relays) should be used to ensure physical grid safety. We note that this is

natural for any learning algorithm dealing with stochastic conditions and unknown system

parameters. Contingencies can never be avoided 100%, similar to other grid operation

paradigms that deal with uncertain conditions (e.g., wholesale market dispatch with

renewables or possible transmission system contingencies). They could only be avoided

with a certain high probability when making dispatch decisions. However, it is understood

that other protective measures should always be put in place to avoid physical system

damage in case of contingencies.

4.4 Experimental Evaluation

Test Setup: Radial Distribution System

In this section we describe the power distribution system and the corresponding net-

work parameters for the test case. We consider an actual radial distribution system from

the ComEd service territory in Illinois, USA (adopted from [145] and shown in Fig. 4.1)

represented by the undirected graph G which includes a set of nodes (vertices) N and a

set of power lines (edges) L. In this work, we consider each node as one population with

its own daily load profile; however, each node could be an aggregation of smaller entities

downstream of the local distribution connection point. The undirected graph is organized

as a tree, with the root node representing the distribution system’s substation where it

is connected to the regional transmission system. We denote N as the total number of

nodes in the network excluding the root node. The nodes are indexed as i = 0, . . . , N ,

and the node corresponding to i = 0 (i.e., the root node) is the substation. The power
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Figure 4.1: Radial distribution system.

lines are indexed by i = 1, . . . , N where the i-th line is directly upstream of node i (i.e.,

line i feeds directly to node i). In the following, we denote the parent vertex of node i

as Ai and the set of children vertices of node i as Ki.

Furthermore, we assume the aggregator has access to measurement data at each

node’s local connection point. Specifically, the aggregator measures the active power

demands at each node i at time t on day τ denoted as dPi,τ (t). In order to ensure the

delivered power is suitable for the electricity customers, the aggregator also monitors node

i’s local voltage at time t on day τ denoted as vi,τ (t). In the following, we denote the active

power daily load profile of node i on day τ as DP
i,τ = [dPi,τ (t)]t=1,...,T . Additionally, the

aggregator records the active power flows fPi,τ (t) on each line i ∈ L. We note that reactive

power should also be monitored in distribution systems, even though it is generally not

priced and customers do not consider it in determining their optimal load response to

prices. As such, we use the superscript Q for the reactive power at a node, dQi,τ (t), and

for reactive power flow on a line, fQi,τ (t). Each line in the distribution system has its own

internal resistance denoted as Ri, reactance denoted as Xi, and power limit denoted as

Smaxi . The parameters for the distribution system are listed in Table 4.1.
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Line R X Smax Line R X Smax

(10−3Ω) (10−3Ω) (KVA) (10−3Ω) (10−3Ω) (KVA)

1 24.2 48.2 54 20 129.5 30.9 10.8
2 227.3 743.5 84 21 15.1 5.4 14.4
3 76.3 18.2 10.8 22 50.8 12.1 10.8
4 43.6 142.7 84 23 69.1 16.5 10.8
5 25.8 84.4 84 24 31.6 11.2 14.4
6 10.5 10.7 40.2 25 96.3 23 10.8
7 23.2 23.6 40.2 26 110.7 112.6 40.2
8 75.1 26.7 14.4 27 2.1 0.7 14.4
9 114.4 27.3 10.8 28 242.1 86.2 14.4
10 110.8.3 67.7 14.4 29 27.3 27.8 40.2
11 63.7 22.7 14.4 30 174.6 62.1 16.2
12 278.7 99.2 14.4 31 43 15.3 10.8
13 254.2 10.8.5 14.4 32 207.8 74 10.8
14 21.8 5.2 10.8 33 109.4 38.9 14.4
15 57.3 20.4 14.4 34 50.5 18 14.4
16 126.7 45.1 14.4 35 165.2 58.8 14.4
17 48.6 11.6 10.8 36 49.5 17.6 14.4
18 95.1 22.7 10.8 37 5.8 2.1 14.4
19 137.3 32.8 10.8

Table 4.1: Distribution system parameters.

Power Flow Model

In order to solve for the power flow and nodal voltages of the power distribution

system, we make use of the LinDistFlow model[146], which is a linear approximation for

the AC power flow model4. The LinDistFlow model has been extensively studied and

verified to be competitive to the nonlinear AC flow model on many realistic feeder topolo-

gies including radial [148, 149, 150, 151]. The LinDistFlow model reduces computational

4The reader should note that the proposed learning approach is not limited to the LinDistFlow model.
There are other power flow models that can be utilized such as [147].
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complexity by making use of the following linear power flow and voltage equations:

dPi,τ (t) +
∑
j∈Ki

fPj,τ (t) = fPAi,τ (t); ∀t, τ, i, (4.21)

dQi,τ (t) +
∑
j∈Ki

fQj,τ (t) = fQAi,τ (t); ∀t, τ, i, (4.22)

uAi,τ (t)− 2
(
fPi,τ (t)Ri + fQi,τ (t)Xi

)
= ui,τ (t); ∀t, τ, i (4.23)

where (4.21) accounts for active power and (4.22) accounts for reactive power. In (4.23)

we make use of the operator ui,τ (t) =
(
vi,τ (t)

)2
to provide a linear voltage drop rela-

tionship across the distribution system. For the scope of this work, we assume that the

substation connection to the regional transmission system (node i = 0) is regulated and

has a fixed voltage v0,τ (t) = 12.5kV,∀t, τ .

Distribution System Operational Constraints

The nodal voltages and line flows calculated in (4.21)-(4.23) should obey the following

constraints for reliable operation:

ui,τ (t) ≥ umini , ∀t, τ, i ∈ N , (4.24)

ui,τ (t) ≤ umaxi , ∀t, τ, i ∈ N , (4.25)

fPi,τ (t)
2 + fQi,τ (t)

2 ≤ (Smaxi )2, ∀t, τ, i ∈ L, (4.26)

where (4.24)-(4.25) are the nodal voltage constraints and (4.26) corresponds to the power

constraints for each distribution line.
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Figure 4.2: The 5 plots above portray the evolution of the aggregator’s knowledge
of the population’s hidden parameter at node 10 throughout the learning procedure.
The true parameter is parameter 4. From left to right: Day 1 (initialized to uniform
distribution, i.e., no knowledge of the true parameter), Day 15 prior, Day 30 prior,
Day 90 prior, and Day 180 prior. At day 180, the aggregator is about 95% certain
that parameter 4 is the true parameter.

Load Model and Multi-armed Bandit Formulation

In this test case, we consider 6 time slots each day, each 4 hours long. We consider 10

unique target load profile vectors, with the daily target profile Vτ for day τ drawn from a

uniform distribution each morning. Each of the 10 target load profile vectors corresponds

to a desired load curve to accommodate different levels of forecasted renewable generation.

Furthermore, the aggregator transmits daily price signals pi,τ to each node within the

system. The aggregator has a high and low price for each of the 6 time slots resulting in

26 possible daily price signals. Since the aggregator is shaping the electricity demand at

each node within the distribution system, each node has its own cost f
(
Di,τ (pi,τ ),Vτ

)
that is dependent on the node’s daily demand and the target profile. In this test case, we

assume the cost function for each node is the squared deviation of the node’s electricity

demand from the target profile: f
(
Di,τ (pi,τ ),Vτ

)
= |Di,τ (pi,τ ) − Vτ |2, thus equally

penalizing over-usage and under-usage of electricity. We note that the units are KW2

and if the aggregator had a converting function for the squared deviation (KW2) to

$U.S.D., then we could calculate the monetary losses of the system. In our experimental

examples, we make use of discrete sets for the available θ’s and pτ ’s to guarantee that
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an enumeration-based method could solve for the globally optimal price signals each day

in spite of problem non-convexities.

We consider 20 unique load flexibility clusters in this test case. Each cluster’s param-

eters represent the varying start/stop times, total energy demands, and power limitations

common to EV loads in residential areas and are of the form presented in equation (4.6).

We note that we generated the population’s load price response directly using the same

clustering model (i.e., the actual load response in the simulation is at the level of 20 clus-

ters and can be well represented by the 20 clusters plus additive noise. For a discussion

on the effects of poor clustering, we refer the reader to Section 4.4). Each node in the

distribution system is comprised of these 20 load clusters with its own unique sensitivities

ai,c(pτ ) for each cluster. Each sensitivity parameter is selected as ai,c(pi,τ ) ∼ N ( βc
θ?i pi,τ

, σ2)

each day where βc is a cluster specific constant known by the aggregator (we note that βc

represents a priori knowledge of customers’ preferences and could come from behavioral

studies; however, our framework does not require this and βc can be completely omit-

ted in cases where prior information is unavailable). Each node’s price sensitivity, i.e.,

parameter to be learned, θ?i , is a vector of length 6 and the set of possible parameters,

Θ, contains 10 unique vectors. Unless noted, the reliability parameter chosen for the

Con-TS-RTP algorithm is ν = 0.1.

Note on reactive power : We note that reactive power is generally price insensitive;

however, reactive power is present in a distribution system and affects the constraints

of the system. Reactive power flows alter how the price sensitive loads are limited by

the operational constraints of the system (i.e., active and reactive flows on lines affect

the capacity available for the price responsive loads). Due to the lack of data as to how

much reactive power is present in the distribution system due to our appliance clusters

and otherwise, for our numerical examples, we omit the inclusion of reactive power to

only view the appliance clusters’ active load profiles within the distribution system. For
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further discussion on this, we refer the reader to papers that fully capture the effects of

reactive power in such problems such as [152] and [153] in which the authors showcase

techniques to handle distribution systems with chance constraints.

In the following sections, without loss of generality, we assume that reactive power is

not responsive to the pricing signals. We note that our proposed learning approach can

accommodate reactive power flows (LinDistFlow can as well); however, our goal was to

show proof of concept of our learning/pricing approach with active customer loads, thus

reactive power flow will be examined in future work.

Results

We simulated the Con-TS-RTP algorithm for 365 days for an aggregator attempting

to learn the sensitivities of the nodes in the system and shape their demands. In the

following, we highlight the results of the simulation at node 10 of the radial distribution

system. Figure 4.2 presents the evolution of the prior distribution for node 10’s hidden

parameter. On day 1, the prior was initialized to a uniform distribution among the

candidate parameters, and by day 180 the weight on the true parameter exceeded 0.95.

Figure 4.3 presents the regret performance of Con-TS-RTP at node 10. As seen

in Figure 4.3, the regret curve flattens after day 130 as the algorithm never chooses a

suboptimal price signal after this day.

Figure 4.4 presents node 10’s deviation from a specific daily target profile. On days 2,

3, 4, 53, and 365 the same target profile (i.e., V2 = V3 = V4 = V53 = V365) was drawn

and the aggregator selected different price signals to shape the node’s demand. As seen

in Fig. 4.4, the deviation from the target profile on day 365 is less than the deviation on

the other days as the algorithm has learned the true parameter and selects the optimal

price signal to shape the load.

In Figure 4.5, we present the distribution system constraint violations that were
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Figure 4.3: Regret performance of Con-TS-RTP at node 10 with ν = 0.1. Note that
the y-axis (left) units are KW2 for the squared load deviation from the target profile.

Figure 4.4: Deviation of node 10’s demand from a specific daily target profile.

avoided by using Con-TS-RTP instead of an unconstrained TS algorithm. Clearly, in the

early learning stages, the unconstrained TS algorithm does not have accurate knowledge

of the hidden parameters and violates the distribution system constraints often. Con-

TS-RTP is more conservative with its exploration of untested price signals and avoids

the constraint violations made by the unconstrained TS algorithm. Last, we note that

the simulation was implemented in Matlab and CVX on an i7 processor with 16gb of

RAM. The 365 day simulations were run in less than 5 minutes.
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Figure 4.5: Top: Distribution system constraint violations at node 10 avoided by
using Con-TS-RTP instead of an unconstrained TS. Bottom: Distribution system
constraint violations across the entire system avoided by using Con-TS-RTP instead
of an unconstrained TS.

Effects of Clustering

In this section, we portray the effects of selecting different numbers of clusters to rep-

resent a true load as well as the effects of selecting too few clusters on the performance

of our Con-TS-RTP algorithm. First, in Figure 4.6, we perform a simple demonstration.

We considered a population of 100 EVs with random charging requests and then con-

structed clusters to view the accuracy of the clustered load profiles versus the actual load

profile. As shown in Figure 4.6, using 1, 5, or 10 clusters to represent the EV population

results in load profiles quite different from the actual; however, with 20 clusters, the load

profile begins to match the actual profile.

Furthermore, in Figure 4.7 we show the effects of reducing the number of clusters in

the load model on the regret performance of our Con-TS-RTP algorithm. Specifically, we

focus on the same setup as Section 4.4 with the exception that we have the Con-TS-RTP

algorithm use a 10 cluster model instead of the 20 cluster model for the population to

see the effects of an inaccurate cluster model. As shown in Figure 4.7, the regret curve

for this case never flattens and the algorithm is never able to select the optimal price

signal. This is because the algorithm’s model of the load (i.e., the 10 clusters) is unable to
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Figure 4.6: Effects of changing the number of clusters to model an actual load. Specif-
ically, load profiles for 4 cluster models compared to the actual load profile for a
population of 100 charging EVs.

Figure 4.7: Effects of using too few clusters for the population’s load model. We
show the regret performance of Con-TS-RTP at node 10 with ν = 0.1 for a 10 cluster
model instead of the 20 cluster model as previously shown in Fig. 4.3. Due to the
inaccuracies of the 10 cluster model, the algorithm is never able to select the optimal
price signals.

accurately model the population’s response and causes the algorithm to select incorrect

prices every day.

Evolving Price Sensitivity

In this section, we show an example of what happens when customers’ sensitivities

change over time and how a Bayesian learning approach can naturally adapt and account

for these dynamic changes. Specifically, we simulated the same system as in Figure 4.3,

but on day 250, we altered the true θ?i parameter. As seen in Figure 4.8, the regret curves
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first flatten around day 125, then increase at day 250, and then flatten again near day

325. This shows that Con-TS-RTP was able to successfully learn the first and second

true parameter without any modifications to the algorithm. The algorithm naturally

shifts its belief about the true parameter as it observes outputs that do not match its

current belief.

Figure 4.8: Regret performance of Con-TS-RTP at node 10 with ν = 0.1. Note that
on day 250, the hidden parameter was altered.

Non-repeating Target Profiles

In the previous case study, we assumed a low number of target profiles (10 profiles)

to satisfy the assumptions we have made for our theoretical results. In this section, we

demonstrate how extending the number of target profiles to 365 does not negatively affect

the performance of the algorithm in practice. Furthermore, we ensure that once a target

profile has been viewed by the aggregator, it is never drawn again. Thus, each day the

aggregator is posting a price to shape the population’s load to match a target profile

that it has never seen before. As shown in Figure 4.9, enlarging the set of target profiles

does not slow down the learning process. Note that in Figure 4.9 the regret flattens near

trial 100 which matches the duration of the learning period seen in Figure 4.3 (i.e., in

simulation, the aggregator is still able to learn the true parameter when the number of

target profiles is increased from 10 to 365, resulting in similar regret curves).
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Figure 4.9: Regret performance of Con-TS-RTP at node 10 with ν = 0.1. Note that
on each day, the sampled Vτ has never been seen by the aggregator.

Effects of Varying the System Reliability Metric

In this section, we discuss the effects of varying the system reliability parameters in

the daily optimization’s constraints (i.e., altering the value of ν for the system constraints

formulated as in (4.16)-(4.18)). As described in Sections 4.2 and 4.3, the reliability metric

dictates the aggregator’s allowable probability of a constraint violation under its current

belief distribution about the unknown parameter. Decreasing ν is restricting the algo-

rithm to avoid violations and setting ν = 1 is equivalent to solving the daily optimization

without the constraints altogether. In Figure 4.10, we simulated the system with varying

reliability parameters. Specifically, each curve shown is the average regret at node 10

over 20 independent simulations. As shown in Figure 4.10, the regret increases as the

desired reliability increases (smaller ν). This is because the aggregator is forced to select

more conservative prices during the learning procedure to ensure that the constraints are

met with higher probability.

Comparison with Two-Stage Learning

In this section, we present a comparison of the Con-TS-RTP approach versus a 2-stage

“learn” and then “optimize” algorithm, where the first stage consists of pure exploration

and the second stage purely exploits the knowledge gained in the first stage. The sim-
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Figure 4.10: Regret curves for various system reliability metrics. Each curve is an
average of 20 independent simulations.

ulation setup is the same as the setup used in Section 4.4. A description of the 2-stage

algorithm used is as follows: The aggregator decides the duration of the learning stage

a priori, (in Figure 4.11, we present regret curves for learning stages with durations of

5, 15, and 25 days) and during this learning stage, the aggregator randomly selects price

signals from a predetermined safe set of prices (i.e., prices high enough such that con-

straints cannot be violated), observes the populations’ responses, and performs posterior

updates. Then, after the learning stage is complete, for the remainder of time the ag-

gregator broadcasts the best price signals with respect to the knowledge of the unknown

parameter at the end of the learning stage (the selected price signal will ensure safety

but might be potentially suboptimal depending on the duration of the learning stage).

Clearly, the two most significant shortcomings of the 2-stage approach are: 1) arbitrarily

bad performance during the learning stage due to random price selection; and 2) diffi-

culty selecting a sufficient duration of the learning stage. As seen in Figure 4.11, this

2-stage myopic algorithm results in linear regret in the 5 day and 15 day learning stage

curves. Due to an insufficient number of posterior updates, the aggregator is forced to
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post suboptimal price signals to ensure safety given its noisy knowledge of the unknown

parameter after the learning stage is over. On the other hand, the 25 day learning stage

is able to converge to the optimal price signals, but the performance during the learn-

ing stage causes fast growth of regret whereas Con-TS-RTP is able to avoid all of the

aforementioned shortcomings.

Figure 4.11: Regret performance of Con-TS-RTP and a 2-Stage algorithm at node
10 with ν = 0.1. Note that the 5 day (blue) and 15 day (red) learning algorithms
were unable to converge to the optimal price signals. The blue and red curves never
flatten because their learning stages were too brief to adequately learn the customers’
preferences and are unable to select the optimal price signals, resulting in a linearly
growing regret. However, the 25 day (yellow) learning stage algorithm is able to
adequately learn the population’s parameters and select optimal prices after that.

4.5 Conclusion

In this work, we presented a multi-armed bandit problem formulation for an electric-

ity aggregator attempting to run a real-time pricing program for load shaping (e.g., to

reduce demand at peak hours, integrate more intermittent renewables, track a desired

daily load profile, etc). We made use of a constrained Thompson sampling heuristic,

Con-TS-RTP, as a solution to the exploration/exploitation problem of an aggregator

passively learning customers’ price sensitivities while broadcasting price signals that in-

fluence customers to alter their demand to match a desired load profile. The proposed
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Con-TS-RTP algorithm permits day-varying target load profiles (i.e., multiple target

load profiles reflecting renewable forecasts and desired demand patterns) and takes into

account the actual operational constraints of a distribution system to ensure that the

customers receive adequate service and to avoid potential grid failures. Additionally,

our setup accounts for complex electricity usage patterns of the customers by classifying

different load clusters based on electricity demand and load flexibility. We discussed a re-

gret guarantee for the proposed Con-TS-RTP algorithm which bounds the total number

of suboptimal price signals broadcasted by the aggregator. Furthermore, we discussed an

operational reliability guarantee that ensures the power distribution system constraints

are upheld with high probability throughout the run of the Con-TS-RTP algorithm.

122



Chapter 5

Real-World Implementations

5.1 Mobility-Aware Smart Charging of Electric Bus

Fleets

5.1.1 Introduction

Due to the potential reduction in operational costs [154], elimination of tailpipe emis-

sions [155], and encouragement from government agencies [156], transit systems have

started to purchase electric buses over the traditional diesel or compressed natural gas

(CNG) buses. At surface level, replacing traditional buses with electric buses might seem

like a simple task; however, there are many obstacles preventing a transit system from

simply assigning electric buses to existing routes that were previously served by diesel

buses.

The two most fundamental obstacles are the restricted travel distance and lengthy

recharge time of electric buses. Even with recent advances in electric transportation

and battery technology, modern electric buses are commonly restricted to operate within

20%-95% state of charge (SOC) to prevent stressing the batteries and reducing lifespan
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[157]. Combining this SOC limitation with the high cost of large battery packs, most

electric buses are currently inferior to diesel/CNG buses in operational range. Second,

the recharging process of an electric bus takes significantly more time than the refueling

process of a diesel/CNG bus[157]. Additionally, due to the lengthy recharge time and

limited charging infrastructure, the transit system dispatcher must be mindful of how

the fleet’s recharging infrastructure is managed in order to provide adequate energy to

serve routes.

Despite the aforementioned challenges, the promise of eliminating large amounts of

greenhouse gas emissions from transit buses has enticed early adopters to operate fleets

of electric buses since the early 21st century [154]; however, it is likely that these electric

bus fleets are operating suboptimally in their recharging strategies and route assign-

ments [158]. Accordingly, there has been increasing interest in the optimal operation and

infrastructure planning of electric bus fleets.

The first category of work that studies optimized charging for electric bus fleets con-

siders the assignment of buses to routes as given, i.e., the times at which each bus is

parked and is available to recharge is predetermined. Specifically, the authors of [159]

present an optimization model for installing charging infrastructure and sizing batteries

for a cost-effective electric bus fleet. Similarly, the authors of [158] consider infrastruc-

ture planning as well as fleet composition and the recharging process, with the goal of

minimizing total cost of ownership (TOC) of the fleet. Moving away from infrastructure

planning, the authors of [160] present a method to minimize battery aging costs of an

electric bus fleet recharging at nighttime. The authors of [161] present the cost savings

from controlling the charging thresholds for a fleet of electric buses serving one route

continuously in Tallahassee, Florida. Similarly, the authors of [162] present a MILP

framework for scheduling bus charging and show the potential cost savings from an elec-

tric bus fleet in Davis, California. Furthermore, [163] presents a charging strategy for
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electric buses with fast charging infrastructure.

Considering both route assignment and charge scheduling (i.e., the mobility-aware

setting) the authors of [164] present a k-greedy solution method to maximize travel

distance of each electric bus within the fleet. A work similar to ours, [165], presents a

linear formulation for route assignment and charge scheduling; however, the aim is to

minimize the number of electric buses needed to replace an existing diesel fleet. Hence,

the variability of electricity costs are not considered.

Similar to the aforementioned papers, the work presented in this section considers

both the route assignment and charge scheduling problem of an electric bus fleet. How-

ever, the presented approach is able to improve upon previous mobility-aware work by

accounting for time-varying electricity prices, utilizing on-site solar energy generation,

and providing a minimal cost schedule for the fleet’s daily operation.

Organization: Section 5.1.2 describes the problem of a fleet dispatcher operating a

fleet of electric buses and proposes a mixed integer linear program (MILP) formulation

that solves for the minimal cost route assignments and recharging schedule. Section 5.1.3

presents the results of the MILP for the real-world example of Stanford’s Marguerite

Shuttle Transit System.

5.1.2 Problem Description

We consider a fleet dispatcher attempting to optimize an electric bus transit system.

Specifically, the fleet dispatcher aims to assign electric buses to serve the daily trips and

schedule the recharging of the buses to minimize electricity cost (e.g., recharging during

the inexpensive electricity rates of nighttime or when solar generation is abundant while

still fulfilling all required bus routes). In the following, we consider the case where

the physical infrastructure (e.g., buses, chargers, parking spots, etc.) and time-tables
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Figure 5.1: Primary service area for Stanford University’s Marguerite Shuttle. Trip
origins at Caltrain Palo Alto Transit Center (star). Full system map available at:
https://transportation.stanford.edu/marguerite

(e.g., routes, stops, start/end times, etc.) are already established within the transit

system, but not yet optimized for the aforementioned objective (as is the case for the

Stanford University Marguerite Shuttle, discussed in Section 5.1.3). Given the transit

system’s fixed time-table and electric bus infrastructure, the fleet dispatcher seeks to

answer questions such as the following:

1. Which electric bus should be assigned to each route at each time?

2. When should each electric bus be recharged?

3. Does the system need to utilize spare diesel buses to supplement the electric buses?

4. Would more infrastructure benefit the daily operation of the electric bus fleet?

5. What size of on-site solar generation system is needed to fully supply the fleet with

renewable energy?
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Let us consider the Stanford Marguerite Shuttle Transit System (Figure 5.1.1) which

consists of 38 electric buses, 23 diesel buses, 23 electric bus chargers, and total of 20 daily

routes. Currently, the assignment of buses to routes and their recharging strategy fol-

lows rules adopted by operators that work well in practice by ensuring sufficient charge

is available for service. However, as we demonstrate in our numerical case study, the

current assignment results in significant losses for the transit system in terms of daily

operational costs and can be improved upon through a joint charge and route assign-

ment policy. As such, in order to optimize the decision making problem of the fleet

dispatcher, we formulate a mixed-integer-linear-program (MILP) to solve for both the

optimal recharging schedules and route assignments for an electric bus transit system.

MILP Formulation

In the electric bus transit system, we consider one central transit center (i.e., bus

depot) from which all the buses start and finish their routes as well as recharge. The

buses are required to serve numerous routes throughout the service area, and each route

must be served multiple times each day (i.e., the electric bus fleet is required to fulfill

multiple trips for each route). We denote S as the set of scheduled trips across all routes

that need to be fulfilled. For each trip i ∈ S, let ai and bi denote the start and end time

of trip i. More specifically, these are the times that a bus leaves the depot and later

returns if serving trip i. If trip i is a one-way route that does not loop back to the depot,

we account for the extra duration for the bus to return to the depot in bi accordingly

(i.e., the trip end time bi accounts for “deadhead” travel). Similarly, if a route does not

start at the depot, we account for the deadhead travel time to the starting location in ai.

In order to capture the state of charge of each bus at any time t, we discretize the day

into T time steps (e.g., five minute intervals) and T is the set of time steps for an entire

day. Furthermore, let di be the energy consumption per time step for a bus serving trip i
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(while we assume that varying traffic conditions across different routes can affect energy

consumption rates, we assume that the buses are identical in their energy consumption

when they serve the same route). Let K be the set of electric buses and N be the set

of electric bus chargers installed at the central depot. For each charger n ∈ N , un is

the charging rate. Additionally, let p = [p(t)]t∈T be the vector of electricity prices for

an entire day. We denote as Ek
min and Ek

max the minimum and maximum energy levels

for bus k, respectively. The fleet dispatcher usually sets Ek
min > 0,∀k ∈ K for safety

precautions. Let g(t) be the available on-site solar generation at time t, which we assume

is known at the time of dispatch. Moreover, we assume that the electricity used from the

on-site solar generation is free for the operator. Last, we denote the initial energy level

of bus k as ek0.

Next, we describe the decision variables used in the MILP formulation. We set the

binary variable Xk
i (t) to 1 if bus k is serving trip i at time t and 0 otherwise. We set

the binary variable Zk(t) to 1 if bus k is charging at time t and 0 otherwise. We set the

binary variable Y k
n (t) to 1 if bus k is occupying charger n at time t and 0 otherwise. We

use the variable Ek(t) to track the energy level of bus k at time t. Lastly, let V (t) be the

total amount of electricity that the dispatcher purchases from the grid at time t, and S(t)

be the amount of electricity that buses obtain from the available on-site solar generation

at time t. With the necessary notation and decision variables, the joint charging and

routing MILP for the electric bus fleet can be formulated as follows:
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Minimize
∑
t∈T

p(t)V (t) (5.1a)

Subject to:

Zk(t) +
∑
i∈S

Xk
i (t) ≤ 1, ∀k ∈ K, t ∈ T (5.1b)

∑
k∈K

Xk
i (t) = 1, ∀i ∈ S, t ∈ [ai, bi] (5.1c)

Xk
i (t+ 1) = Xk

i (t), ∀i ∈ S, k ∈ K, t ∈ [ai, bi−1] (5.1d)∑
k∈K

Y k
n (t) ≤ 1, ∀n ∈ N , t ∈ T (5.1e)

∑
n∈N

Y k
n (t) = Zk(t), ∀k ∈ K, t ∈ T (5.1f)

Ek(t) = Ek(t− 1) +
∑
n∈N

unY
k
n (t)−

∑
i∈S

diX
k
i (t), ∀k ∈ K, t ∈ T (5.1g)∑

n∈N

∑
k∈K

Y k
n (t)un = V (t) + S(t), ∀t ∈ T (5.1h)

Ek
min ≤ Ek(t) ≤ Ek

max, ∀k ∈ K, t ∈ T (5.1i)

Xk
i (t) ∈ {0, 1}, ∀i ∈ S, k ∈ K, t ∈ T (5.1j)

Y k
n (t) ∈ {0, 1}, ∀n ∈ N , k ∈ K, t ∈ T (5.1k)

Zk(t) ∈ {0, 1}, ∀k ∈ K, t ∈ T (5.1l)

0 ≤ S(t) ≤ g(t), ∀t ∈ T (5.1m)

Ek(0) = ek0, ∀k ∈ K (5.1n)

Ek(T ) = ek0, ∀k ∈ K. (5.1o)

The objective in equation (5.1a) aims to minimize the daily electricity cost of recharging

the bus fleet. Constraint (5.1b) ensures that a bus is either charging, serving a trip, or

parked in the depot (without charging). Constraint (5.1c) ensures that all the required
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daily trips will be served by a bus. Constraint (5.1d) ensures that one unique bus will

serve each trip (i.e., a trip cannot be interrupted to switch buses). Constraint (5.1e)

ensures that a bus can only occupy one charger per time slot. Constraint (5.1f) guarantees

that if a bus is occupying a charger, then it is charging. Constraint (5.1g) calculates the

energy level of each bus in each time epoch. Specifically, the energy level at time t is

equal to the energy level at time t − 1 plus the charged energy if the bus was charging

or minus the spent energy if the bus was serving a trip. Constraint (5.1h) ensures that

buses obtain electricity from either the grid or on-site solar. Constraint (5.1i) ensures

that the buses operate above a desired minimum energy threshold. Constraints (5.1j)-

(5.1l) are binary constraints on the decision variables. Constraint (5.1m) ensures that

the solar energy used by the bus fleet is less than or equal to available solar generation

at time t. Lastly, constraint (5.1n) sets the initial energy of each bus and constraint

(5.1o) ensures that the energy level of the fleet returns to the initial value so the same

route assignments and charge schedule can be used for the next day.

Behind-the-Meter Solar Integration

To exploit free on-site solar energy and to avoid injecting excess power back into

the distribution grid, the fleet dispatcher prioritizes recharging the buses during periods

when solar generation is available. Only if there is not enough solar energy, then the

fleet dispatcher should purchase electricity from the grid. As stated in Section 5.1.2,

to accommodate behind-the-meter solar integration, the dispatcher’s MILP formulation

makes use of a daily solar forecast, g(t)|t=1,...,T . This can be estimated from forecast

models, including those that use weather forecasts, and previous years’ solar irradiance

data. We note that if the solar generation is over-estimated, then the fleet will have to

purchase more expensive grid energy potentially during peak times such as midday. As

such, a conservative estimate is preferred as cheaper electricity can be procured in the
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Table 5.1: PG&E E-20 Rate Structure
Time Interval Label Price

12:00am-8:30am Off-Peak $0.08422/kWh

8:30am-12:00pm Partial-Peak $0.11356/kWh

12:00pm-6:00pm Peak $0.16127/kWh

6:00pm-9:30pm Partial-Peak $0.11356/kWh

9:30pm-12:00am Off-Peak $0.08422/kWh

late night period. Future work could investigate moving-horizon solution methods to

account for stochastic solar generation and update the route and charge assignments in

real-time as solar energy data becomes available.

5.1.3 Case Study

As stated in the introduction, the motivation for the proposed MILP for electric bus

fleets is the real-world Stanford Marguerite Shuttle Transit System (Figure 5.1.1). The

Marguerite Shuttle System is free, open to the public, and operates seven days a week all

year traversing the Stanford campus and surrounding areas. More specific information

can be found at https://transportation.stanford.edu/marguerite.

Stanford Marguerite Shuttle System Information

Currently, the Marguerite fleet consists of 23 diesel buses and 38 electric buses from

BYD split into 10 K7 models with battery capacity of 197kWh, 10 K9 models and 18

K9M models, both with 324kWh battery capacity. Additionally, the central depot is

equipped with 23 double port electric bus chargers where each port can deliver up to

40kW. Each bus can be charged from one or two ports for a total power of 80kW. For

the electricity rates, we consider PG&E’s E-20 electricity rate structure for off-peak,

partial-peak, and peak hours. The electricity rates are given in Table 5.1. Furthermore,

the Marguerite Shuttle system serves up to 20 unique routes on any given day. Across
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Table 5.2: Stanford Marguerite Shuttle Route Information
Route Name Daily Trips Trip Miles

C Line 33 7.00

C Limited 11 4.60

MC Line (AM/PM) 46 3.00

MC Line (Mid Day) 11 5.10

P Line (AM/PM) 56 2.50

P Line (Mid Day) 11 4.00

Research Park (AM/PM) 24 10.40

X Express (AM) 12 1.20

X Line 44 4.60

X Limited (AM) 10 2.00

X Limited (PM) 10 1.50

Y Express (PM) 20 1.20

Y Line 44 4.60

Y Limited (AM) 10 2.40

Y Limited (PM) 10 2.00

Totals 352 trips/day 1431.50 miles/day

all 20 routes, 15 of them are mainly fulfilled by electric buses, meaning that the electric

bus fleet is required to make 352 trips per day, during weekdays. The specific routes and

mileages are listed in Table 5.2. For the purposes of this numerical example, the solar

forecast used was an average daily solar generation calculated from October 2019 with a

maximum generation of 1 MW. The solar forecast is displayed in Figure 5.2.

Simulation Results

The proposed MILP was implemented in Matlab making use of CVX and Mosek.

All numerical experiments were run on a laptop with 16 GB of RAM and 3.5 GHz

Intel i7 processor. This section reports on the charging schedule, route assignments, and

cost savings when comparing the proposed MILP solution with on-site solar generation,

without on-site solar generation, and the status quo (i.e., the status quo is the actual

operations of the Stanford Marguerite Fleet from 7-October-2019) which does not yet

exploit free on-site solar generation.
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Figure 5.2: Average daily solar generation for a 1 MW on-site installation. Data
averaged from CAISO renewable database in October 2019.

Figure 5.3: Left: Battery levels for each electric bus when considering a fleet without
available on-site solar. Right: Battery levels for each electric bus when optimizing
with available on-site solar generation.

Figure 5.3 presents the energy levels of each bus in the fleet during the day when the

dispatch is generated through our proposed MILP. Time on the x-axis begins at 5:00am,

as this is the start of the earliest route that must be fulfilled. The left plot shows the

energy levels of the buses when the MILP is not utilizing on-site solar generation. The

right plot shows the battery levels of the buses when the MILP accounts for on-site solar

generation. It will become more clear when examining Figure 5.4 that the buses charge

more during midday in the right plot than the left, to make use of the free on-site solar.

Figure 5.4 presents the total charging power of the fleet across the entire day. The red

curve presents the total charging power for the MILP solution that does not exploit on-site
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Figure 5.4: Total charging power of the fleet throughout the day. Blue: Solution
accounting for on-site solar generation. Red: Solution does not include on-site solar
generation.

solar generation. Conversely, the blue plot shows the fleet’s total charging power from the

MILP solution that does account for on-site solar generation. It is clear from this plot that

the solution that accounts for on-site solar (blue) is able to charge in the middle of the day

when solar is abundant; however, the solution that does not exploit solar (red) does not

charge during the midday as the electricity prices are highest at this time. Instead, the

fleet has a spike in charging power in the evening when electricity rates are decreased.

This large transient in the evening could be detrimental to grid stability, increase in

harmonics, accelerate aging of grid assets (i.e. transformers) and could potentially lead

to demand charges for the fleet dispatcher due to high power consumption. As such, the

solution making use of on-site solar generation with a forecasting method is preferable.

Last, Figure 5.5 presents the daily electricity costs for the three different test cases.

Case A: Status Quo. We had access to the data from the operations of the Stanford

Marguerite fleet on 7-October-2019 and calculated the cost of charging the fleet under

the E-20 rate structure. As such, under normal operation, the daily operational cost was
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Figure 5.5: Price Comparison for 3 difference regimes: Case 1: Status Quo, electric
bus charging data obtained from real-implementation (Stanford Marguerite Shuttle)
on 7-Oct-2019. Case 2: Mobility-Aware MILP solution for same routes and buses as
Case A, without on-site solar generation. Case 3: Mobility-Aware MILP solution for
same routes and buses as Case A, with on-site solar generation.

$715.10 USD. Case B corresponds to the solution of the proposed MILP with the same

routes, buses, and chargers as Case A; however, the mobility-aware solution reassigned

buses to new trips and rescheduled the charging of each bus. In Case B, the MILP

solution did not account for on-site solar and the daily cost was $267.90 USD. Last, Case

C was identical to Case B; however, the MILP accounted for the on-site solar generation

and had access to the daily solar forecast. As such, the daily cost was reduced to $61.89

USD. From these results, it is evident that the fleet dispatcher benefits from the MILP

formulation for routing and charging (55% decrease in cost in Case B).

5.1.4 Conclusion

In this work, we investigated the joint route assignment and charge scheduling prob-

lem of a transit system dispatcher operating a fleet of electric buses in order to maximize

solar energy integration and reduce energy costs. We considered a complex bus transit

system with preexisting routes, limited charging infrastructure, limited number of electric
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buses, and time-varying electricity rates. We presented a mixed integer linear program

(MILP) that yields route assignments and charging schedules using daily solar forecasts.

We presented numerical results from a real-world case study with Stanford University’s

Marguerite Shuttle to demonstrate the cost-saving benefits of our solution and highlight

the significant cost savings compared to the status quo.

Future work includes investigating a moving-horizon solution approach to account for

stochastic solar generation. Additionally, we would like to add traditional diesel routes

to the optimization to further minimize emissions and to expand the clean operation of

the electric bus fleet. Further future work can include performing field test experiments

with real buses during operational hours, determining the optimal solar capacity to fully

charge the electric bus fleet, and quantify the value and size of onsite solar and battery

combination for resiliency.

Acknowledgement: The authors would like to thank the Stanford Transportation team

for the support, discussions, and information about operations. This work was funded by
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5.2 Real-Time Electric Vehicle Smart Charging at

Workplaces

5.2.1 Introduction

Many large companies across the United States are installing Electric Vehicle Supply

Equipment (EVSEs) within their parking lots to allow for employees and visitors to

charge their Electric Vehicles (EVs) during their stay [166]. There are numerous benefits

that can come from workplace charging stemming from the highly flexible nature of

EV charging at workplaces [10, 167] (i.e., EVs are plugged in for long durations and

their charging can be shifted depending on other conditions including behind-the-meter

solar generation or electricity rates). For example, Google (who has installed EVSEs at

several of its Bay Area locations for employee EV charging) allows employees to leave

their EVs connected to the EVSE for long durations and does not force them to unplug

the EV after reaching full charge, whereas other workplaces might require employees to

move EVs after charging is complete. The approach of not enforcing EVs to be removed

once fully charged may require more investment in EVSEs to satisfy the needs of the

employees, but the investment would allow for greater flexibility that can be harnessed

by a smart charging algorithm to benefit the workplace (by providing financial savings)

and the utility (by enabling its customers to respond to price signals) [168, 4].

The Grid Integration, Systems, and Mobility (GISMo) group within the SLAC Na-

tional Accelerator Laboratory and the Smart Infrastrucuture Systems Lab (SISL) at

UCSB are working on a project to study the impacts of electric vehicles on the distribu-

tion system and designing tools and algorithms to be used by workplace charging station

operators to efficiently manage asset operations and minimize electricity charges. In col-

laboration with Google, the project has access to historical charging data from previous
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years at multiple Bay Area workplace parking locations for Google (within PG&E’s ser-

vice territory). The locations exhibit typical workplace charging behavior in that most

session start times occur around 8 to 9 A.M. and most session end times occur between 4

and 6 P.M. The dataset contains 15-minute interval data for over 10,000 charging sessions

and between 700 and 1000 sessions per month. The datasets include pertinent informa-

tion such as charging session start times, end times, 15 minute average power delivered,

total energy delivered, and many others.

Challenges: There are several key challenges to designing an algorithm to schedule

the charging profiles of numerous EVs. First and foremost, the algorithm must run in

real-time without knowledge of the future EV arrivals. The algorithm must adapt its

planned power schedules as more information is revealed (i.e., as more EVs arrive to

the parking lot). Second, contrary to most smart charging algorithms presented in the

literature, the algorithm must be able to function with limited information from each

EV [169], [170]. Specifically, when an EV plugs in, the algorithm does not get access to

the EV’s State of Charge (SoC) nor does it know the EV’s future departure time (most

level 2 chargers do not sense EV SoC nor do they request user input for future departure

times). As such, our smart charging algorithm must predict how much maximum charge

an EV may consume as well as the EV’s future departure time. Such challenges have

been acknowledged in past papers including [171, 172, 173, 174]. Third, all of the EV

charging schedules within a parking lot are coupled due to the local transformer capacity

constraint [175]. As such, the algorithm cannot over-allocate power at any given time;

therefore, the algorithm should make use of a model of the future EV arrivals to avoid

over allocating power due to unexpected arrivals.

Contribution: In this work, we present an EV smart charging algorithm for workplace

parking lots equipped with EVSEs that operates in real-time to minimize electricity cost

from time-of-use electricity rates and demand charges while ensuring that the owners of
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the EVs receive adequate levels of charge and the entire system safely operates within

the local transformer capacity constraint. Notably, our algorithm is SoC and departure

time agnostic and uses both scenario generation to account for each EV’s unknown future

departure time as well as certainty equivalent control to account for the unknown EV

arrivals in the future. We build models from the Google dataset for each day of the week

and our algorithm uses these models as the expected future when optimizing the EV

charging schedules.

5.2.2 Problem Description

Base Optimization

Before we discuss the smart charging algorithm that operates in real-time with a

predicted model of the future, let us consider the simpler problem of scheduling the

charging power to a single EV if we know the arrival time, departure time, and maximum

energy. Specifically, let us break one day into 15 minute segments (96 segments total)

and let us denote t = 1, . . . , T as the time steps each day and T = 96. Furthermore, let

x be a Tx1 indicator vector where the t-th element is 1 if the EV is plugged in at time

t and 0 if not. Additionally, let p be a Tx1 vector where the t-th element corresponds

to the electricity rate at time t from the local grid ($/kWh). Last, let us denote our

decision variable e as a Tx1 vector where the t-th element indicates how much energy

will be delivered to the EV in time epoch t. With this notation, we can formulate the
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charge scheduling optimization problem for the singular EV as follows:

max
e

w1 log(eTx+ 1)− w2p
T e (5.2a)

subject to:

0 ≤ e ≤ emax, (5.2b)

edel min ≤ eTx ≤ edel max. (5.2c)

The objective function (5.2a) has two weight coefficients, w1 and w2, for each of the two

terms. The first term corresponds to the utility that the owner of the EV receives for

the energy that their EV receives. The logarithmic utility term was chosen to model the

diminishing returns in user utility for EVs receiving excessive amounts of energy (e.g.,

the first 20kWh charged is more valuable to the EV owner than the second 20kWh). The

second term corresponds to the cost of the energy that is purchased from the local grid

(we will add demand charges in the next section). The weights, w1 and w2, let us adjust

the relative importance of user utility from receiving energy and energy cost. Constraint

(5.2b) ensures that the energy delivered at each time step is non-negative and not greater

than the energy emax that the EVSE can deliver in a single timestep. Constraint (5.2c)

ensures that the amount of energy the EV receives is greater than a minimum amount

edel min and less than a maximum amount edel max.

5.2.3 Real-Time Smart Charging Algorithm

In this section, we modify the base optimization presented in Section 5.1.2 that will

be solved at each 15 minute time step t = 1, . . . , 96 each day. Specifically, assume that

at an arbitrary time t, there are currenly I EVs plugged in at the location.

Departure time scenario generation: When an EV plugs in to an EVSE, we generateN
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potential departure times for that EV and create a scenario in our optimization problem

for each potential departure time and solve the optimization across all scenarios. As

time progresses, if a potential departure time is no longer feasible (i.e., the potential

departure time is the current time step and the EV has not yet departed), then that

scenario is removed from the optimization via dynamic scenario weights (let Cn be a

weight coefficient for each scenario that is set to 0 if the scenario is no longer feasible.).

Furthermore let xi,n be the Tx1 binary vector that indicates when EV i is available to

charge in scenario n.

Certainty equivalent control for future EV arrivals: We make use of our dataset to

generate a model for an average day that consists of estimated arrival times, departure

times, and energy requests for each day of the week. We then use these daily models in

the real-time optimization to account for the unknown future EV arrivals. Specifically,

at time t, let us assume that there are J EVs in the certainty equivalent daily model that

are expected to arrive in the future. Let xj be the Tx1 binary vector indicating when

EV j is available to charge. The decision variables that determine how much energy is

delivered at a given time t are Tx1 vectors labeled as e1, . . . , eI for the actual EVs plugged

in and eI+1, . . . , eI+J for the future EV arrivals from the model. Additionally, let pd be

the demand charge ($/kW) to be assessed on the monthly peak load. The optimization

141



Real-World Implementations Chapter 5

at time t can be written as:

max
e1,...,eI

eI+1,...,eI+J

I∑
i=1

N∑
n=1

1

Cn

[
w1 log(e Ti xi,n + 1)− w2p

T ei

]
(5.3a)

+
I+J∑
j=I+1

[
w1 log(e Tj xj + 1)− w2p

T ej

]
− w2pdêinc

subject to:

0 ≤ ek ≤ emax, ∀k = 1, . . . , I + J (5.3b)

e Ti xi,n ≥ edel min, ∀i = 1, . . . , I, (5.3c)

∀n = 1, . . . , N,

e Tj xj ≥ edel min, ∀j = I + 1, . . . , I + J, (5.3d)

I+J∑
k=1

ek(t) ≤ etrans, ∀t = 1, . . . , T, (5.3e)

êinc ≥
I+J∑
k=1

ek(t)− êold, ∀t = 1, . . . , T, (5.3f)

êinc ≥ 0. (5.3g)

The first term of the objective function (5.3a) accounts for all I EVs currently plugged

in and their N potential departure times each while the second term of the objective

function accounts for all J EVs in the future model. The third term (w2pdêinc) accounts

for the demand charge from increasing the current month’s peak demand (êold) by êinc.

Constraint (5.3b) ensures that the energy delivered is nonnegative and less than the EVSE

max emax. Constraint (5.3c) ensures a minimum amount of energy is delivered to each EV

currently plugged in, constraint (5.3d) ensures a minimum amount of energy is delivered

to each EV in the future model, and constraint (5.3e) ensures that the sum of all energy

delivered by the EVSEs at each time t does not exceed the transformer constraint etrans.
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Constraints (5.3f)-(5.3g) keep track of any increase to the current month’s peak load for

the demand charge. We note that êold corresponds to the previous peak energy demand

that has been observed during the month. The pseudocode for the daily algorithm can

be viewed in Algorithm 5 below.

Algorithm 5 Real-Time Smart Charging
1: for each day do
2: Update current parking lot state
3: for each 15 minute interval t do
4: if new departure from parking lot then
5: Update parking lot state
6: end if
7: if new arrival to parking lot then
8: Generate N potential departure times for new arrival
9: Update Parking lot state

10: end if
11: Formulate optimization for time t:
12: for each EV i plugged in at time t do
13: Add EV i to total objective function (5.3a)
14: Add EV i to active constraints (5.3b)-(5.3g)
15: end for
16: for each future EV j in daily model tmodel > t do
17: Add EV j to total objective function (5.3a)
18: Add EV j to active constraints (5.3b)-(5.3g)
19: end for
20: Solve optimization (5.3a)-(5.3g) for time t
21: Store planned energy schedule for each EV i
22: Set each EVSE’s output power for the current 15 minute interval
23: Update peak load êold for demand charge calculation (if a new peak load is observed)
24: end for
25: end for

5.2.4 Case Study Results

We examine a two week period from June 17 - June 29 in 2019 at a Bay Area workplace

from our Google EV dataset. The location has 57 level 2 EVSEs with 50-100 EVs arriving

each weekday and is under PG&E’s E-19 rate structure.

First, the EV charging session data was filtered by weekday and then filtered again

by arrival time. Namely, each charging session was put into one of 12 possible groups
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corresponding to 2-hour windows for the arrival times (e.g., an EV charging session that

started at 9:48am would be stored in the 8:00am-10:00am group). Once this was done,

daily arrival time histograms were generated and the average stay duration and average

energy consumption were calculated for each of the 12 groups. The average arrivals per

weekday, the average arrivals per 2 hour window, the groups’ average stay durations,

and the groups’ average energy consumption were then used to create the algorithm’s

future model each day and to generate potential departure times for each EV arrival.

The daily average arrival time histogram can been viewed in Figure 5.6. The 2 hour

groups’ average energy consumption and average stay duration can be viewed in Table

5.3. Last, we note that all of these simulations were done in Python with CVX and Mosek

on a Laptop with an i7 processor and 16gb of RAM. Solving the daily smart charging

optimization (5.3a)-(5.3g) at each 15 minute time step took less than a second, so the

algorithm is fit to run in real-time. Moreover, the optimization problem’s complexity is

not affected by the number of arriving EVs each day; rather, the problem size grows only

as the number of chargers increases. Additionally, for implementation, (2a)-(2g) has to

be solved every 15 minutes but for the 57 chargers in our case study, (2a)-(2g) was solved

in less than a second. Thus, the algorithm is scalable and there is significant extra time

for computation for a larger dataset (i.e., more chargers at the parking lot).

Example Day’s Charging Schedule Evolution

Figure 5.7 shows an example as to how the real-time optimization changes the planned

power output as time progresses and more EVs arrive. These plots correspond to a

Monday with 78 EVs arriving to 57 EVSEs with (w1, w2) = (2, 1) and a transformer

capacity constraint of 150kW. Starting with the Top Left: This plot shows the planned

charging schedule that is calculated at 12:00am on the given Monday for the entire

location. There are no actual EV arrivals at this early time in the morning so the entire
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Figure 5.6: Average arrival time histogram for weekdays in 2019, split into 2 hour
blocks, to be used for the daily model.

Arrival Time Block Avg Charge Amount (kWh) Avg Stay Duration

12:00am-2:00am 5.56 4 hrs 38 mins
2:00am-4:00am 4.00 2 hrs 02 mins
4:00am-6:00am 12.91 3 hrs 52 mins
6:00am-8:00am 14.63 5 hrs 29 mins
8:00am-10:00am 15.79 6 hrs 02 mins
10:00am-12:00pm 9.27 6 hrs 02 mins
12:00pm-2:00pm 7.41 11 hrs 15 mins
2:00pm-4:00pm 6.80 16 hrs 06 mins
4:00pm-6:00pm 7.14 16 hrs 27 mins
6:00pm-8:00pm 6.61 23 hrs 19 mins
8:00pm-10:00pm 6.78 25 hrs 54 mins
10:00pm-12:00am 7.74 10 hrs 01 mins

Table 5.3: Average charge amount (kwh) and average stay duration for different arrival
time blocks.

planned charging schedule is created by looking at the future model for the day (shaded

blue region). Top Right: This shows the planned charging power as of 10:45am in the

morning. Everything that is not in the shaded blue region corresponds to time-steps in

the past, meaning that the red plot in the white region corresponds to actual charging

power. However, everything in the blue region is still estimated via the future model.

Bottom Left: This plot shows the planned charging schedule as of 1:30pm. Bottom

Right Plot: This plot shows the charging schedule as of 11:30pm, when there are no
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Figure 5.7: Evolution of planned charging power. Top Left: At 12:00am the algorithm
is fully using the expected future as a model for what could happen that day. Top
Right: At 10:45am, many EVs have arrived and the power output has started to
deviate from the expected future. Bottom Left: Planned power output at 1:30pm.
Bottom Right: At 11:30pm, there are no more arrivals, Red curve shows the daily
power output of the 57 EVSEs. Additionally, the green circles indicate spikes in total
charging power in the evening due to the algorithm waiting for cheap electricity rates
to charge multiple EVs, discussed in Section 5.2.4.

more arrivals for that day. Additionally, the smart charging algorithm is able to ensure

that the actual charging schedule stays below the transformer capacity constraint.

Figure 5.8 presents a comparison of a weekday’s predicted daily charging schedule and

the actual daily charging power that ocurred that day. As seen in Figure 5.8 the daily

model does a good job predicting the future load for this location. Furthermore, note that

most of the power is scheduled to be delivered during the partial-peak electricity rates

during the mid-morning (8:30am-12:00pm) and the charging power decreases rapidly

during the peak electricity rates mid-day (12:00pm-6:00pm).

146



Real-World Implementations Chapter 5

Figure 5.8: A comparison of the model’s predicted daily charging schedule vs. the
actual daily charging power.

Test Case Comparisons

Furthermore, in Table 5.4, we present simulation results for several test cases. In these

tests, we vary (w1, w2) in the objective function between (2,1) and (10,1) to show how the

algorithm swaps priority from minimizing electricity cost to maximizing user utility for

receiving energy. Additionally, we varied the transformer constraint that couples all the

EVs together between 250kW and 100kW. In Table 5.4, we also show the total energy

delivered over the 2 week period and the total cost of purchasing that energy from the

grid from energy rates as well as the total cost due to demand charges (displayed as

percentages compared to the status quo values). The last 2 columns in Table 5.4 show

whether or not the test case included a constraint that forces the EVSEs to charge at

a certain rate for the first hour that a new EV is plugged in. The idea behind this

is to ensure that EVs will receive some minimum amount of energy, even if they are

only plugged in for a short duration, or if they arrive during peak electricity rates. We

experimented with forcing the EVs to charge for the first hour of a new session at their

maximum rate, half their maximum rate, a quarter of their maximum rate, and without

this constraint altogether. The second to last column indicates whether or not this

constraint was included, and the last column indicates the charge rate that was used

for this first hour (pmax = 6.6kW). The first row of this table shows the total energy

delivered and the total energy cost for the status quo (i.e., no algorithm in place, just the
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Test # w1 w2

Coupling
Constraint
(kW)

Energy
Delivered

Electricity
Purchase Cost

Demand
Charge Cost

Forced
Initial
Charge

Initial
Charge
Rate

Status Quo n/a n/a n/a 100% 100% 100% n/a n/a
01 2 1 250 50.13% 45.78% 64.50% Yes 1

2
pmax

02 2 1 150 50.01% 45.83% 88.76% Yes 1
2
pmax

03 2 1 125 50.68% 46.33% 73.96% Yes 1
2
pmax

04 2 1 110 50.44% 45.94% 65.09% Yes 1
2
pmax

05 2 1 110 44.20% 36.40% 65.09% No n/a
06 2 1 100 45.05% 37.45% 59.17% No n/a
07 10 1 100 81.93% 81.36% 59.17% No n/a
08 10 1 150 83.85% 81.03% 88.76% No n/a
09 10 1 250 84.21% 80.98% 89.94% No n/a
10 10 1 100 Infeasible Infeasible Infeasible Yes 1

2
pmax

11 10 1 110 81.76% 81.09% 65.09% Yes 1
2
pmax

12 10 1 150 83.49% 81.80% 88.76% Yes 1
2
pmax

13 10 1 150 Infeasible Infeasible Infeasible Yes pmax
13 10 1 250 87.25% 84.81% 97.63% Yes pmax

Table 5.4: Results for 13 different test cases.

energy consumed and cost for June 17-June 29, 2019). The (w1, w2) = (10, 1) results in

Tests 07-13 indicate that the smart charging algorithm was able to reduce energy costs

and demand charges while delivering adequate energy (greater than 80% of the status

quo energy) to the EVs.

Transformer Capacity Constraints

As shown in Table 5.4, we vary the transformer capacity constraint that couples the

charging power of all the EVs. In the status quo, there is no coupling constraint and

the total load peaks at 169 kW. However, with a smart charging algorithm in place,

we can constrain the total load. This would allow for the location to use a smaller

transformer capacity or increase their other non-EVs loads (e.g., the nearby offices can

safely use more power without worrying about exceeding the transformer capacity due

to the EVSEs). Figure 5.9 shows a 5 day comparison of the Test 08 load (see Table 5.4)

compared to the status quo load. As seen in this plot, the smart charging algorithm was

able to enforce a transformer capacity limit at 150kW without sacrificing much energy
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Figure 5.9: Comparison of the Monday-Friday weekday load for the status quo (i.e., no
algorithm in place) vs. the smart charging algorithm with parameters as listed in Test
08. Additionally, the smart charging algorithm enforces the transformer constraint
(green line).

delivered. Furthermore, the red curve (the smart charging profile) drops below the blue

curve (the status quo) during the middle of each day to avoid the peak electricity rates

from 12:00pm-6:00pm.

Infeasibilities Due to Transformer Capacities

Additionally, we would like to discuss the effects of removing the constraint forcing

the EVSEs to charge at a certain rate for the first hour an EV is plugged in. Recall, this

constraint was added to ensure that EVs are charged before they depart. If this constraint

is removed, the smart charging algorithm becomes overly optimistic about each EV’s

departure time. Specifically, the algorithm optimistically predicts that the EVs will stay

until the off-peak electricity rates in the evening and plans the daily charging schedule as

seen in Plots 3,4 of Figure 5.7 (circled in green). Including the constraint that forces the

EVSEs to charge a new arrival for the first hour removes the second peak that is seen in

Plots 3,4 of Figure 5.7.
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Figure 5.10: The feasible and infeasible regions of operation for various transformer
capacities and forced initial charge rates for new EV arrivals.

The constraint that forces EVSEs to charge new EV arrivals for the first hour of being

plugged in also affects whether or not the optimization is feasible each day. Namely, many

EVs arrive around the start of the workday at 8:00am and plug in to an EVSE. If many

EVSEs are forced to charge near their maximum rating at the same time, the total load

of the parking lot can exceed the transformer capacity. As such, in Figure 5.10 we show

the feasible and infeasible regions of operation for the smart charging algorithm with

w1=10 and w2=1.

5.2.5 Conclusion

In this section, we presented a smart charging algorithm for a workplace parking

lot equipped with EVSEs that operates in real-time to minimize electricity cost from

time-of-use electricity rates and demand charges while ensuring that the owners of the

EVs receive adequate levels of charge. Our algorithm uses both scenario generation to

account for each EV’s unknown future departure time as well as certainty equivalent

model predictive control to account for the unknown EV arrivals in the future. We

build models from our Google dataset for each day of the week and our algorithm uses
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these models as the expected future when optimizing the EVs charging schedules. In the

future, we have access to the meter data for loads other than the EVSEs for all locations

in our dataset as well as the single-line diagram specifications and we hope to include

more operational constraints and account for the non-EV loads in the smart charging

algorithm. Furthermore, some locations have energy storage and solar generation which

we hope to include into future algorithms. Finally, future work will deploy this framework

in real-time field operation.
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Conclusions

6.1 Review

In this thesis, we have presented several problems within the cyber-human-physical-

system space and proposed novel methodologies to improve the operation of said systems.

Namely, in Chapter 2, we leveraged recent advancements in online optimization for

system scheduling with application to electric vehicle (EV) admission control and smart-

charging at public parking facilities as well as scheduling for recharging and routing in

EV fleets. Furthermore, in Chapter 3 we extended this framework to account for coupled

resources (e.g., charging and discharging power) in order to schedule the operation of a

community energy storage (CES) system. Additionally, in Chapter 4 we modified the

machine learning framework called Thompson Sampling for the design of effective price

signals for an electricity aggregator passively learning customers’ price sensitivities while

running a load shaping program and providing theoretical safety guarantees on critical

infrastructure constraints. Last, in Chapter 5 we presented real-world implementation

methods and results for optimizing workplace EV charging (at SLAC and Google cam-

puses) in an online fashion and scheduling the charging/routing of a real electric bus fleet
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(the Stanford Marguerite Shuttle) to minimize operational costs.

6.2 Future Directions

There is no doubt that large-scale cyber-human-physical-systems will continue to in-

crease in usage, size/complexity, and impact within our societies. As such, optimizing

their operation will continue to be of paramount importance. Stemming from the prob-

lems that I have worked on over the last 5 years, I foresee the following areas as both

interesting problem settings and potentially fruitful areas to study.

Online Optimization in Modern Intermodal Transportation

To improve personal mobility in societal transportation, new mobility concepts and

technologies are on the rise. Specifically, mobility-on-demand services such as Lyft and

Uber have established themselves as a viable replacement to traditional vehicle ownership

and public transit (for some users). Taking this one step further, Autonomous-Mobility-

on-Demand (AMOD) system literature and test cases are on the rise as well. Here, we

have fleets of autonomous (electric) vehicles rotating throughout urban areas providing

ride-sharing services and charging at distributed charging stations (but with no driver).

Additionally, map services such as Google Maps provide multiple modes of transit when

directing a user from point A to point B (e.g., by foot, by bike, by car, by public transit, by

ride-share). While these technologies do enlarge the options for personal mobility, they do

not reduce total congestion or reduce emissions. Specifically, if these technologies operate

independently of one another, they might actually increase congestion at various locations

within an urban area and leave other modes of transportation underutilized (e.g., many

people are influenced to use an AMOD service resulting in high road congestion while

few are influenced to use existing public transportation). To this end, I believe a unified
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approach to personal urban mobility is required. Such a unified approach would take

advantage of all available modes of transportation to minimize congestion and emissions

while providing adequate service (i.e., users’ trips would consist of walking segments,

ride-share segments, and public transit segments). Such an intermodal system would

clearly require a scalable real-time (online) optimization framework in order to route and

schedule the multiple modes of transportation for large population areas.

Learning to Characterize User Preferences in Modern Systems

Today, the internet of things (IoT) allows for unprecendented levels of interaction

between people, their devices, and the cloud. That is, we are generating an increasing

amount of data from repeated human interactions with large-scale systems. This is occur-

ring in ‘sharing economies’ (think Uber and Lyft services), personal investing (countless

smartphone apps available for instant trading of traditional equities and commodities

and in upcoming spaces such as crypto and NFTs), social media, online advertising,

personal urban mobility (sensitivities to public transportation costs, unhappiness due

to inconvenient walking segments in routes, sensitivities to road tolls), electricity usage

(appliance usage and thermostat settings), and online content recommendation systems,

to name a few. In all of these settings, information about users’ preferences is incredibly

valuable to improve the operation and reliability of the systems involved; however, users

often do not want to share their preferences (due to personal information privacy con-

cerns) or they might be unable to characterize their preferences altogether (preferences

could be complex and time-varying). As such, it is advantageous if these systems can

passively learn user preferences from historical interactions and update them as needed.

This eliminates the need for direct communication with users about their preferences and

only takes advantage of the information that users are already willingly submitting to

the system.
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Open-Source Online (Real-Time) Optimization Software

During my Ph.D., I designed and tested numerous online optimization frameworks

for various settings. Throughout this time, I read and reviewed a multitude of papers

in the areas related to my work in online optimization and was exposed to various small

simulation projects. However, throughout this time span, I came across no open-source

online optimization software packages that were adaptable to various problem settings.

As such, I believe there is a huge opportunity for the development of an online optimiza-

tion software package. The package would be required to be modular to allow for users to

modify, remove, and add to the functionality. The package would include a diverse set of

online algorithms, various modifiable problem settings, and various models for future in-

formation. Moreover, tutorials for using, modifying, and expanding the framework would

be critical for its success. I envision this as a multi-year project with several contributors

designing and providing long-term support for the open-source software. The software

package itself and the results and examples (in various upcoming CHPS systems or other

online problems) from using the software would be interesting works on their own.
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Appendix A

Proofs for Selected Results

A.1 Proof for Proposition 2.1.1

Proof: For α-competitiveness, the authors of [39] show that marginal pricing func-

tions, operational cost functions, and Fenchel conjugates for the limited resources need

to satisfy the Differential Allocation-Payment Relationship given by:

(
plg(t)− f l

′

g (ylg(t))
)
dylg(t) ≥

1

αlg(t)
f l∗
′

g (plg(t))dp
l
g(t) (A.1)

for all l ∈ L, t = 1, . . . , T . For the energy-procurement operational cost in (2.28) and its

Fenchel conjugate (2.35) respectively, the following derivatives are:

f l
′

g (ylg(t)) =


0, ylg(t) ∈ [0, sl(t))

πl(t), ylg(t) ∈ [sl(t), sl(t) +Gl(t)]

(A.2)
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and

f l∗
′

g (plg(t)) =


sl(t), plg(t) ∈ [0, πl(t))

sl(t) +Gl(t), plg(t) ≥ πl(t).

(A.3)

The derivative of the proposed pricing function (2.43) is:

dplg(y
l
g(t)) =


(

Lg
2Rsl(t)

)(
2Rπl(t)
Lg

) ylg(t)

sl(t) ln
(

2Rπl(t)
Lg

)
dylg(t), ylg(t) < sl(t),(

Lg−πl(t)
2R(sl(t)+Gl(t))

)(
2R(Ug−πl(t))
Lg−πl(t)

) ylg(t)

sl(t)+Gl(t) ln
(

2R(Ug−πl(t))
Lg−πl(t)

)
dylg(t), y

l
g(t) ≥ sl(t),

(A.4)

where R =
∑
L

Ml(Cl + El +
1

Ml

).

When ylg(t) < sl(t), f
l′
g (ylg(t)) = 0 and f l∗

′
g (plg(t)) = sl(t). As such, after inserting

the derivative (A.4) in (A.7), we can show that the Differential Allocation-Payment

Relationship holds when α̂lg(t) ≥ ln
(

2Rπl(t)
Lg

)
as long asR ≥ d eLg

2 maxL,T πl(t)
e. The constraint

on R ensures α̂lg(t) ≥ 1.

Similarly, when ylg(t) ≥ sl(t), f
l′
g (ylg(t)) = πl(t) and f l∗

′
g (plg(t)) = sl(t) + Gl(t). As

such, after inserting the derivative (A.4) in (A.7), we can show that the Differential

Allocation-Payment Relationship holds when ˆ̂αlg(t) ≥ ln
(

2R(Ug−πl(t))
Lg−πl(t)

)
. Now, let αlg(t) =

max{α̂lg(t), ˆ̂αlg(t)} and because (A.7) holds for the pricing function, cost function, and

Fenchel conjugate, the remainder follows from Lemma 1 and Theorem 2 in [39].

A.2 Proof for Proposition 2.1.2

Proof: Similar to Proposition 2.1.1, we show the pricing function, operational

cost function, and Fenchel conjugate for the limited resource satisfy the Differential
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Allocation-Payment Relationship in (A.7) with underestimated solar generation amounts

sl(t, tcurrent). The derivatives of the energy-procurement operational cost in (2.28) and

its Fenchel conjugate (2.35) remain the same as in (A.2) and (A.3), respectively. The

derivative of the proposed pricing function (2.43) with underestimated solar sl(t, tcurrent)

is given by:

dplg(y
l
g(t), tcurrent) =



(
Lg

2Rsl(t,tcurrent)

)(
2Rπl(t)
Lg

) ylg(t)

sl(t,tcurrent)

× ln
(

2Rπl(t)
Lg

)
dylg(t), ylg(t) < sl(t, tcurrent),(

Lg−πl(t)
2R(sl(t,tcurrent)+Gl(t))

)(
2R(Ug−πl(t))
Lg−πl(t)

) ylg(t)

sl(t,tcurrent)+Gl(t)

× ln
(

2R(Ug−πl(t))
Lg−πl(t)

)
dylg(t), ylg(t) ≥ sl(t, tcurrent),

(A.5)

where R =
∑
L

Ml(Cl + El +
1

Ml

).

When ylg(t) < sl(t, tcurrent), f
l′
g (ylg(t)) = 0 and f l∗

′
g (plg(t)) = sl(t). As such, after insert-

ing the derivative (A.5) in (A.7), we can show that the Differential Allocation-Payment

Relationship holds when α̂lg(t) ≥
sl(t,tcurrent)
sl(t,tcurrent)

ln
(

2Rπl(t)
Lg

)
as long as R ≥ d eLg

2 maxL,T πl(t)
e.

However, since the upper forecast is nonincreasing and the lower forecast is nonde-

creasing, the worst case forecast will occur at tcurrent = 1. As such we can write

α̂lg(t) ≥
sl(t,1)
sl(t,1)

ln
(

2Rπl(t)
Lg

)
.

Similarly, when ylg(t) ≥ sl(t, tcurrent), Setting f l
′
g (ylg(t)) = πl(t) minimizes the LHS

of (A.7) and f l∗
′

g (plg(t)) = sl(t) + Gl(t) maximizes the RHS. As such, after inserting

the derivative (A.4) in (A.7), we can show that the Differential Allocation-Payment

Relationship holds when ˆ̂αlg(t) =
( sl(t,tcurrent)+Gl(t)
sl(t,tcurrent)+Gl(t)

)
ln
(

2R(Ug−πl(t))
Lg−πl(t)

)
. Again, because of

the properties of the forecast, we know the worst forecast occurs at tcurrent = 1 and

write: ˆ̂αlg(t) ≥
sl(t,1)+Gl(t)
sl(t,1)+Gl(t)

ln
(

2R(Ug−πl(t))
Lg−πl(t)

)
.

Now, we define αlg(t) as in (2.19) because if the lower bound solar forecast is zero,
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sl(t, 1) = 0, we know we are in the case where ylg(t) ≥ sl(t, tcurrent). When the solar

forecast is nonzero, sl(t, 1) 6= 0, we take the maximum of α̂lg(t) and ˆ̂αlg(t) to account for

the worst case ratio. With αlg(t) defined as in (2.19), equation (A.7) holds for the proposed

pricing function, operational cost function, and Fenchel conjugate, the remainder of the

proof follows from Lemma 1 and Theorem 2 in [39].

A.3 Notes on the Origin of Equation (3.11)

Notes on origin of Equation (3.11):

One of the necessary KKT conditions for x∗ns to be a critical point is the following:

x∗ns
∂h

∂xns
= 0, ∀s ∈ Sn, n ∈ N

where h(x, u, pz)|z=e,c,d is the Lagrangian function:

h(x, u, pz) =
∑
N ,Sn

vnsxns −
∑
N

un

[∑
Sn

xns − 1

]
−
∑
T

∑
z=e,c,d

pz(t)

[ ∑
N ,Sn

xnsinsz(t)− Ẑ
]

and ∂h
∂xns

is its derivative:

∂h

∂xns
= vns − un −

∑
T

∑
z=e,c,d

pz(t)insz(t), ∀s ∈ Sn, n ∈ N .

We know if x∗ns is nonzero (i.e., a schedule is allocated to user n) then ∂h
∂xns

must be 0.

Setting the ∂h
∂xns

= 0 leaves us with:

un = vns −
∑
T

[
inse(t)pe(t) + insc(t)pc(t)− insc(t)pd(t)

]
∀s ∈ Sn, n ∈ N . (A.6)

With this in mind, we can instead use equation (3.11) to calculate the utility of request
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n (as we know the maximal utility schedule will always be selected).

A.4 Proof for Theorem 3.3.1

The proof of Theorem 3.3.1 requires the following Definition and Lemmas.

Definition 1. (From [39]) The Differential Allocation-Payment Relationship for a given

parameter α ≥ 1 is:

(
p(t)− f ′(y(t))

)
dy(t) ≥ 1

α(t)
f ∗
′
(p(t))dp(t) (A.7)

for all t ∈ [0, T ] and for all shared resources (energy capacity, discharging power, and

charging power) where f ′(y(t)) is the derivative of an operational cost function and

f ∗
′
(p(t)) is the corresponding Fenchel conjugate’s derivative.

In the following, let insd(t) be the CES discharging power profile for request n in

feasible schedule s at time t. We note that the charging power profile insc(t)|t=1,...,T

and the discharging power profile insd(t)|t=1,...,T are negatives of one another. We add

this variable to separate the charging power dual variable updates from the discharging

power dual variable updates for ease of exposition. Specifically, let insd(t) = −insc(t),∀t.

Additonally, we add the variable yd(t) to denote the total discharging power at time t.

Specifically, let yd(t) = −yc(t),∀t. The variable yd(t) can be calculated similarly to yc(t)

in (3.4) as: yd(t) =
∑
N ,Sn insd(t)xns.

Lemma A.4.1 (From [39]) If the Differential Allocation-Payment Relationship holds for

α ≥ 1, then each energy storage request n and the chosen charge/discharge schedule s?n

satisfy the following:
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p̃ns? −
∑

t∈[t−ns,t
+
ns?

]

(
∆fe(ye(t))

(n,n−1) + ∆fc(yc(t))
(n,n−1) + ∆fd(yd(t))

(n,n−1)

)
≥ 1

α
(Dn −Dn−1 − un)

where

∆fe(ye(t))
(n,n−1) = fe(ye(t))

(n) − fe(ye(t))(n−1)

∆fc(yc(t))
(n,n−1) = fc(yc(t))

(n) − fc(yc(t))(n−1)

∆fd(yd(t))
(n,n−1) = fd(yd(t))

(n) − fd(yd(t))(n−1)

p̃ns? =
∑
T

[
inse(t)pe(t) + insc(t)pc(t) + insd(t)pd(t)

]
.

Proof of Lemma A.4.1: We expand out Dn −Dn−1 =

un +
∑

t∈[t−n ,t
+
ns?

]

(
∆f ∗e (pe(t))

(n,n−1) + ∆f ∗c (pc(t))
(n,n−1) + ∆f ∗d (pe(t))

(n,n−1)

)

where

∆f ∗e (ye(t))
(n,n−1) = f ∗e (ye(t))

(n) − f ∗e (ye(t))
(n−1)

∆f ∗c (yc(t))
(n,n−1) = f ∗c (yc(t))

(n) − f ∗c (yc(t))
(n−1)
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∆f ∗d (yd(t))
(n,n−1) = f ∗d (yd(t))

(n) − f ∗d (yd(t))
(n−1).

The lemma follows by summing the Differential Payment-Allocation Relationship over

all shared resources (energy capacity, discharge power, and charge power) and over the

entire time period. �

Lemma A.4.2 (From [39]) If the Differential Allocation-Payment Relationship holds for

α ≥ 1 then P n − P n−1 ≥ 1
α

(Dn −Dn−1) for all n.

Proof of Lemma A.4.2: If energy storage request n is denied for all schedules s ∈ Sn,

then P n − P n−1 = Dn −Dn−1 = 0. Otherwise, the change of the primal objective is:

P n − P n−1 = vns? −
∑

t∈[t−n ,t
+
ns?

]

(
∆fe(ye(t))

(n,n−1) + ∆fc(yc(t))
(n,n−1) + ∆fd(yd(t))

(n,n−1)
)

where vns? = un + p̃ns? . By Lemma A.4.1, we get that

P n − P n−1 ≥ un +
1

α
(Dn −Dn−1 − un).

With un ≥ 0 and α ≥ 1, then P n − P n ≥ 1
α

(Dn −Dn−1) ∀n ∈ N . �

Lemma A.4.3 (From [39]) If there is a constant α ≥ 1 such that the incremental

increase of the primal and dual objective values differ by at most an α factor, i.e.,

P n − P n−1 ≥ 1
α

(Dn − Dn−1), for every energy storage request n, then the heuristic is

2α-competitive.
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Proof of Lemma A.4.3: Summing up the inequality at each step n, we have

PN =
∑
n

(P n − P n−1)

≥ 1

α

∑
n

(Dn −Dn−1)

=
1

α
(DN −D0).

Now, we use the fact that the initial primal value is P 0 = 0 and by weak duality,

DN ≥ OPT . Next, we assume D0 ≤ 1
2
OPT , we have that PN ≥ 1

2α
OPT . Thus, the

online heuristic is 2α-competitive. �

Lemma A.4.4 The online pricing heuristic (3.12) is αe-competitive in welfare generated

from the scheduling of energy capacity in the shared battery where

αe = 2 ln
(6Ue
Le

)
.

Proof of Lemma A.4.4: We will show that the pricing heuristic in (3.12) satisfies the

Differential Payment-Allocation Relationship in equation (A.7) with parameter αe. Then

the rest of the Lemma follows from Lemmas A.4.1, A.4.2, and A.4.3.

The scheduled energy capacity of the shared battery has no cost to the battery man-

ager but cannot exceed the total capacity limit of the battery Ê (in other terms, the cost

function fe(ye(t)) for the energy capacity can be seen as a zero-infinite step function with

the step occurring right after Ê). Furthermore, the pricing function (3.12) never allows

ye(t) to exceed Ê so the derivative f ′e(ye(t)) = 0 while ye(t) ≤ Ê (and ye(t) ≤ Ê ∀t due

to (3.12) outputting prices too high for any user once the used battery capacity is at Ê).
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Next, the derivative of the Fenchel conjugate (3.8) for the energy capacity is as follows:

f ∗
′

e (pe(t)) = Ê. (A.8)

The derivative of the proposed pricing function (3.12) is

dpe(t) =
( Le

6Ê

)(6Ue
Le

) ye(t)

Ê
ln
(6Ue
Le

)
dye(t). (A.9)

After inserting f ′e(ye(t)), f
∗′
e (pe(t)), and dpe(t) in (A.7), we can show that the Differential

Allocation-Payment Relationship holds when choosing α = αe = ln
(

6Ue
Le

)
. Because (A.7)

holds for the dual variable update function, cost function, and Fenchel conjugate, the

remainder of the proof follows from Lemmas A.4.1, A.4.2, and A.4.3. �

Definition 2. The Generalized Differential Allocation-Payment Relationship for the

payment and remuneration of two coupled resources (resources a and b) for a given

parameter α ≥ 1 is:

[
pa(t)− f ′a(ya(t))

]
dya(t) +

[
pb(t)− f ′b(yb(t))

]
dyb(t)

≥ 1

α(t)

[
f ∗
′

a (pa(t))dpa(t) + f ∗
′

b (pb(t))dpb(t)
]

(A.10)

for all t ∈ [0, T ] where f ′(y(t)) is the derivative of an operational cost function and

f ∗
′
(p(t)) is the corresponding Fenchel conjugate’s derivative.

Lemma A.4.5 The online pricing heuristics (3.15) and (3.16) are αc,d-competitive in

welfare generated from the scheduling of charging and discharging power in the shared

battery where

αc,d = 2 ln
(6Uc,d
Lc,d

)
.
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Proof of Lemma A.4.5: We will show that the pricing heuristics in (3.15) and (3.16) satisfy

a Generalized Differential Payment-Allocation Relationship that handles both payments

and remunerations of coupled resources such as charging and discharging power with

parameter αc,d. Then the rest of the Lemma follows from Lemmas A.4.1, A.4.2, and

A.4.3.

The proof follows similarly to that of Lemma A.4.4. Both the charging power and

discharging power resources have zero-infinite step functions for their operational cost

functions with the step occurring at the max charging power P̂c and discharging power

P̂d, respectively. Furthermore, each of the pricing functions (3.15) and (3.16) never allow

yc(t) and yd(t) to exceed P̂c and P̂d, respectively. Thus, f ′c(yc(t)) = 0 and f ′c(yd(t)) = 0.

Next, the derivatives of the Fenchel conjugates are f ∗
′
c (pc(t)) = P̂c and f ∗

′

d (pd(t)) = P̂d.

The derivatives of the charging power pricing function (3.15) and the discharging power

pricing function (3.16) are as follows:

dpc(t) =
( Lc

6P̂c

)(6Uc
Lc

) yc(t)
P̂c ln

(6Uc
Lc

)
dyc(t),

dpd(t) =
( Ld

6P̂d

)(6Ud
Ld

) yd(t)

P̂d ln
(6Ud
Ld

)
dyd(t).

After inserting f ′c(yc(t)), f
∗′
c (pc(t)), f

′
d(yd(t)), f

∗′
d (pd(t)), dpc(t), and dpd(t) in (A.10), the

relationship is as follows:

(Lc
6

)(6Uc
Lc

) yc(t)
P̂c dyc(t) +

(Ld
6

)(6Ud
Ld

) yd(t)

P̂d dyd(t)

≥ 1

α(t)

[(Lc
6

)(6Uc
Lc

) yc(t)
P̂c ln

(6Uc
Lc

)
dyc(t) +

(Ld
6

)(6Ud
Ld

) yd(t)

P̂d ln
(6Ud
Ld

)
dyd(t)

]
.

Now, using the assumption that the ratios of users’ maximum valuation to minimum

valuation for charging and discharging are equal, i.e., Uc
Lc

= Ud
Ld

=
Uc,d
Lc,d

, the relationship
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can be simplified to:

[(Lc
6

)(6Uc,d
Lc,d

) yc(t)
P̂c dyc(t) +

(Ld
6

)(6Uc,d
Lc,d

) yd(t)

P̂d dyd(t)

]

≥
ln
(

6Uc,d
Lc,d

)
α(t)

[(Lc
6

)(6Uc,d
Lc,d

) yc(t)
P̂c dyc(t) +

(Lc
6

)(6Uc,d
Lc,d

) yd(t)

P̂d dyd(t)

]
.

The bracketed term that is shared on the LHS and the RHS represents the total payment

and remuneration for charging/discharging at a given time t. To simplify this relationship

further, there are 3 cases: 1) when the payment is greater than the remuneration and

the bracketed term is positive, 2) when the payment is less than the remuneration and

the bracketed term is negative, and 3) when the payment is equal to the remuneration

and the bracketed term is zero.

In case 1, the relationship simplifies to α ≥ ln
(

6Uc,d
Lc,d

)
. In case 2, the relationship

simplifies to α ≤ ln
(

6Uc,d
Lc,d

)
. In case 3, the payment and remuneration fully cancel each

other. As such, the Generalized Differential Allocation-Payment Relationship holds when

choosing α = αc,d = ln
(

6Uc,d
Lc,d

)
. Because (A.10) holds for the charging/discharging pric-

ing functions, cost functions, and Fenchel conjugates, the remainder of the proof follows

from Lemmas A.4.1, A.4.2, and A.4.3. �

A.5 Proof for Proposition 4.3.1

Proof: In [140], it is shown that with probability 1 − δ
√

2 the mass of the true

parameter never decreases below π0(θ?)e−λ|P| in the prior distribution during the entire

learning process. As such, the desired reliability metric on the RHS of the constraints

(4.16)-(4.18), i.e., 1 − ν, can be selected such that the constraints must hold for the
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true parameter. Let π?min = π0(θ?)e−λ|P| be the minimum reachable mass of the true

parameter in the prior distribution. Furthermore, we abuse notation and denote Psafej =

P{φc}c∈C
[
gj
(
Dτ (pτ )

)
≤ 0
]

as the probability that constraint j is upheld. Now, assuming

the aggregator only has knowledge of the true parameter given by the prior distribution

πτ on day τ , the aggregator can calculate the probability of satisfying the constraint:

∑
θ̂∈Θ

πτ (θ̂)(Psafej |θ = θ̂). (A.11)

This can be split into two terms for the true parameter θ? and all other parameters

θ 6= θ?:

πτ (θ
?)(Psafej |θ = θ?) + (1− πτ (θ?))(Psafej |θ 6= θ?). (A.12)

Now, we can rewrite the probability assuming that θ? has reached the minimum mass

π?min in the prior distribution:

π?min(Psafej |θ = θ?) + (1− π?min)(Psafej |θ 6= θ?). (A.13)

Recall, the aggregator wants constraint j to hold with probability at least 1 − µ for

the true parameter θ?, so we can replace (Psafej |θ = θ?) with 1 − µ. Furthermore,

(Psafej |θ 6= θ?) ≤ 1 and we replace it accordingly yielding:

π?min(1− µ) + (1− π?min). (A.14)
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Now, we want this probability to be the minimum allowable probability across the prior

π for constraint j to hold so we set it equal to the reliability metric:

π?min(1− µ) + (1− π?min) = 1− ν, (A.15)

which yields

ν = µπ?min. (A.16)

Moreover, by selecting ν ≤ µπ?min the aggregator ensures that constraint j will be upheld

with probability at least 1−µ for the true parameter θ?. (i.e., the total mass of the incor-

rect parameters θ 6= θ? in the prior distribution πτ can never be large enough to satisfy

the constraint’s inequality without the true parameter also satisfying the constraint).
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