
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
User Assessment of Debugging Using a Software Visualization Tool Compared with
Traditional Debugging Methods

Permalink
https://escholarship.org/uc/item/2df3z2m9

Author
Rall, Christina Lauren

Publication Date
2014

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial-ShareAlike License, availalbe at https://creativecommons.org/licenses/by-
nc-sa/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2df3z2m9
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://escholarship.org
http://www.cdlib.org/

 i

UNIVERSITY OF CALIFORNIA,
IRVINE

User Assessment of Debugging Using a Software Visualization Tool Compared with
Traditional Debugging Methods

THESIS

submitted in partial satisfaction of the requirements
for the degree of

MASTER OF SCIENCES

in Software Engineering

by

Christina Lauren Rall

 Thesis Committee:
 Assistant Professor James A. Jones, Chair

 Professor André van der Hoek
 Professor Debra Richardson

2014

© 2014 Christina Lauren Rall

 ii

Table of Contents

Page

LIST OF FIGURES .. iv

LIST OF TABLES ... v

ACKNOWLEDGEMENTS .. vi

ABSTRACT OF THE THESIS ... vii

MOTIVATION AND RELATED WORKS ... 1

OVERVIEW ... 1

ANALYSIS OF RELATED WORKS ... 2

THIS THESIS ... 7

EMPIRICAL STUDY .. 8

PARTICIPANTS .. 8

TASK OVERVIEW .. 9

Debugging Instructions ... 11

EXPERIMENTAL CONDITIONS .. 14

Programs to Debug ... 14

Bugs .. 15

Versions ... 17

Visualizations .. 18

IMPLEMENTATION .. 22

Difference between the Final Implementation and the Preliminary Trial Run 22

INDEPENDENT AND DEPENDENT VARIABLES .. 24

Independent ... 24

 iii

Dependent ... 24

RESULTS AND DISCUSSION ... 25

QUANTITATIVE RESULTS ... 25

Fix or Not .. 25

Time-to-Fix for Each Bug ... 25

Finding the File but not a Fix .. 27

Find-to-Fix Times .. 28

QUALITATIVE RESULTS ... 29

DISCUSSION .. 34

THREATS TO VALIDITY ... 41

CONSTRUCT VALIDITY .. 41

INTERNAL VALIDITY ... 41

EXTERNAL VALIDITY .. 42

FUTURE WORK ... 43

CONCLUSION ... 45

REFERENCES .. 47

 iv

List of Figures

 Page

Figure 1 ……………………………………………………………………………………. 9

Figure 2 ……………………………………………………………………………………. 10

Figure 3 ……………………………………………………………………………………. 13

Figure 4 ……………………………………………………………………………………. 13

Figure 5 ……………………………………………………………………………………. 15

Figure 6 ……………………………………………………………………………………. 19

Figure 7 ……………………………………………………………………………………. 20

Figure 8 ……………………………………………………………………………………. 20

Figure 9 ……………………………………………………………………………………. 21

Figure

10

……………………………………………………………………………………. 21

Figure 11 …………………………………………………………………………………… 30

Figure 13 …………………………………………………………………………………… 31

Figure 12 …………………………………………………………………………………… 31

Figure 14 …………………………………………………………………………………… 32

Figure 15 …………………………………………………………………………………… 32

Figure 16 …………………………………………………………………………………… 34

 v

List of Tables

 Page

Table 1 ……………………………………………………………………………………... 8

Table 2 …………………………………………………………………………………….. 16

Table 3 …………………………………………………………………………………….. 18

Table 4 …………………………………………………………………………………….. 25

Table 5 …………………………………………………………………………………….. 27

Table 6 …………………………………………………………………………………….. 28

 vi

Acknowledgements

I would like to express my sincere appreciation for the time and guidance provided to me by
my committee chair and academic advisor, Professor Jim Jones. Thank you for believing in
me even when it seemed like I wasn’t going to pull this off and thank you for all of your
guidance and encouragement.

I would also like to thank my committee members Professor André van der Hoek and
Professor Debra Richardson for their time and support. I would especially like to thank
Debra for encouraging me to study Software Engineering at UCI and to take an interest in
on-campus research.

 vii

Abstract of the Thesis

User Assessment of Debugging Using a Software Visualization Tool Compared with

Traditional Debugging Methods

By

Christina Laruen Rall

Master of Science in Software Engineering

 University of California, Irvine, 2014

Assistant Professor James A. Jones, Chair

Debugging is time and energy intensive. Many tools have been developed to help solve the

problems associated with debugging, but programmers still rely on editing their code using

traditional, manual techniques. One reason behind this is that many techniques succumb to

the Isolation Flaw, where they isolate suspicious code to the point that it loses necessary

context. Additionally, traditional debugging relies on the ways in which humans rely on the

creation, testing and modification of hypotheses. An ideal tool will both avoid the Isolation

Flaw while assisting the developers in their hypothesis cycle. This thesis consists of an

empirical study that evaluates how debugging changes between traditional debugging and

debugging with visualization assistance. The visualization chosen is based on the Tarantula

fault localization tool. Each participant is given one program with the visualization and one

without it to debug. Results imply that debug times using the tool to debug the programs in

this study sometimes resulted in faster debugging, but usually was not significantly different

from traditional debugging. The visualization decreased the average time between locating

the file that the bug was in and fixing the bug for all bugs, implying that participants who

 viii

reached that file did so on a more accurate hypothesis about the cause of the bug. While the

tool may not consistently improve the speed of debugging for programs of this size and bugs

of this complexity, it offers promising results regarding the context-dependent learning that

is missing from debugging tools that contain the Isolation Flaw.

 1

Motivation and Related Works

Overview

The underlying motivation behind all software visualization work is summed up well by the

overview of Stasko et al.’s book on Software Visualization[1]. High quality interfaces are

becoming more advanced and standardized; “yet the overwhelming majority of

programmers edit their code using a single font within a single window and view code

execution via the hand insertion of print statements.” Software visualization uses visual

representations to enhance the understanding of various aspects of a software system[2].

This thesis investigates software visualization used particularly in the field of fault

localization and debugging, an area of particular importance given estimations such as that

of the National Insititute of Standards and Tehcnology that testing and debugging constitute

30-90% of software development costs and that an average error can take 17.4 hours to

locate and fix[3].

This thesis was originally intended simply as a user study for Tarantula[4], a test

information visualization tool created by Jones, Harrold, and Stasko. It sought to evaluate

the tool in comparison with traditional debugging methods, since these traditional methods

are the bread and butter of debugging in practice. However, when considering the existing

literature, it became clear that the scope of the project extended beyond a simple user study;

it could also be used to better understand how and whether having visualization assistance

helps participants to locate and fix faults.

 2

In this study, we used an experimental design to compare debugging results with and

without a visualization. This included an analysis of whether or not the participant was able

to find and fix the bug, as well as the time it took for participants to locate each of the

following: the correct file, the correct method, and the correct fix. These measures were

chosen in order to look at debugging by its process, not just by its results.

Analysis of Related Works

The paper that is most pertinent to this thesis is Parnin and Orso’s investigation of whether

automated debugging techniques actually help programmers[5]. They claim that the main

flaw with existing automated tools is a natural consequence of attempting to reduce the

number of statements developers need to examine. For the sake of this paper this issue will

be referred to as the Isolation Flaw, which is defined as the mistaken belief that isolated

statements provide enough contextual information for developers to understand and fix

bugs.

Fault localization tools aim to walk a careful line between showing the developer too much

and showing the developer too little. On one hand, showing the developer too much is an

obvious problem. If a tool were to show every line of the source code as suspicious, then the

developer is not any closer to finding the fault. Unfortunately, even dramatically reducing

the amount shown is not always enough. A tool that cuts code down to 1% of its original

size would still leave five thousand lines for a developer to inspect on a 500,000 line

program. This is certainly a more manageable size, but may still not save the developer

enough time or energy. On the other hand, code reduction comes with potential

 3

consequences as well. Based on my interpretation of related work, the Isolation Flaw is one

potential result of over-pruning, but it is not the only issue. There is also the very real risk

that the tool could eliminate the actual bug in the process of pruning (causing the developer

to expend even more time and effort than they would without the tool). More simply put,

too much output makes the bug difficult to find and too little makes it difficult to fix.

The goal of a fault localization tool is thus to reduce the information the developer must

inspect while creating as few consequences as possible. Visualizations allow these tools to

do more than just reduce the problem space, by providing a means of adding meaningful

information, while still walking the balance between providing too little and overwhelming

the user.

Three popular ways to account for the scope of the information the developer must inspect

are (1) Slicing, (2) Delta Debugging, and (3) Differentiating Techniques. While not always

present, visualizations and user interfaces have been created based on all three of these

techniques and will be referenced within the category they fall under.

(1) Slicing

The Isolation Flaw is common in program slicing tools, which have been around since

Weiser developed the technique over 30 years ago[6] [7]. Slicing creates useful, but

ultimately overly large[8], sets. In order to reduce sets to a manageable size, research has

been conducted to investigate various slicing techniques that produce smaller data sets [9]

[10] [11]. These smaller data sets remove large amounts of information, opening the door

 4

for the Isolation Flaw to manifest. Additionally, even despite these efforts, they are often still

too large to be used in practice.

(2) Delta Debugging

Delta debugging, similar to slicing, works to reduce the problem space[12]. It works by

doing a binary search to minimize input that causes failures and to minimize the body of

code affected by the failures. There are multiple delta debugging techniques, but all seek to

eliminate something: line of code, suspicious inputs, etc.

(3) Differentiating Techniques

Another group of automation techniques relies on differentiating between the characteristics

of passing and failing test cases such as path profiles[13], model checking[14] [15], statement

coverage[4][16][17], predicate values[18][19], and various clustering techniques based on

these characteristics[20][21][22][23]. Tarantula falls into this category; it is a visualization

tool that bases suspiciousness on statement coverage. Differentiating techniques also run

into the Isolation Flaw because they reduce the number of statements developers need to look

at.

Given that the point of automated debugging is to reduce the amount of code a developer

needs to inspect, the question starts to emerge of whether it is even possible to have a fault

localization tool that does not run into this Isolation Flaw. In order to answer this, two other

questions must first be answered: (1) What about traditional debugging better allows

developers to access the understanding of the problem that they need in order to find and fix

 5

the bugs? and (2) How can the benefits of traditional debugging be leveraged so that the

developer has a reduced number of statements to evaluate, without losing the necessary

contextual information?

The first question asks about human understanding of the debugging problem they are

facing. Traditional debugging obviously does not fall victim to the Isolation Flaw because

there is no isolation — all of the code is present. However, this can be a double-edged

sword; since all of the code is present, developers are almost inevitably dealing with more

information than can be handled at a single time, unless they are debugging an extremely

small program. This suggests that while debugging traditionally, developers must be using

some heuristic for reducing the problem space.

The research behind the Whyline debugging tool, a visualization tool based on slicing,

discusses the logical process humans use to debug traditionally. Failures produce some

“observable symptom of failure” and developers debug by guessing about the cause of that

symptom and then testing their hypothesis until they find a solution[24] [25]. This specifies

that the heuristic that developers use is a hypothesis heuristic to reduce the problem space.

The intuition behind delta debugging is also based on this hypothesis model: programmers

debug by creating a hypothesis: “this or that?”, testing their hypothesis, and then narrowing

down their hypothesis until they find the minimal element causing the error.

 6

Winslow’s research on the differences between novice and expert programmers, while not

specific to debugging, can also provide insight. He found that novices approach

programming “line by line” rather than at the level of meaningful program chunks or

structures[26]. It seems reasonable to assume that this difference in approach would hold

true between novice and expert debuggers as well. This ties in well with the Isolation Flaw —

if programs are debugged line-by-line, then the context of the meaningful chunks is lost. The

more global approach used by expert debuggers prevents context loss.

Together, this means that programmers using traditional methods are able to heuristically

reduce the problem space using hypotheses and are able to mentally retain the context to fix

the bug by processing programs as meaningful chunks or structures. Based on this

conclusion, a useful automated debugging tool should:

• Reduce the problem space without actually removing any code. (This can be

achieved by directing the user’s focus, reducing the amount seen, or adding

information. Meaningful supplementary information can be helpful as long as it is

added in a way that is not overwhelming.)

• Maintain the structural integrity of the program (rather than resorting to something

like sorting lines by suspiciousness, which dramatically reduces context and makes it

more difficult to understand how pieces fit together)

• The tool should either explicitly or implicitly help developers to create hypotheses

• The tool should help developers to confirm or reject hypotheses they form

 7

This Thesis

As stated in the overview, we compare debugging results with and without visualization

assistance in order to better understand how the presence of a visualization tool changes the

ways in which people debug. Tarantula presents the entire code of the program with every

line color coded according to the suspiciousness of the code. It was a good tool for this

study based on the conclusions of the analysis of related work because it does not remove

code or change the structure of the program and the suspiciousness values were intended to

help participants create and evaluate their hypotheses.

 8

Empirical Study

This thesis attempts to evaluate whether and in what way software visualizations can assist

in fault localization and debugging. This section will discuss the participants, design, and

implementation of the empirical study.

Participants

We recruited undergraduate students enrolled in a Software Testing class at UCIrvine as

well as master’s students enrolled in Software Engineering because these students should

have enough understanding of programming and software testing to successfully debug

code. It also provided a larger sample size, providing more generalizable results. There were

20 participants in the preliminary run and 94 participants in the actual study. It is unclear

why, but there were 97 responses to the survey during the actual study despite there only

being 94 participants. It is possible that some participants did not turn in their data at the

end of the session. Only

data that was collected

was analyzed.

Information regarding

programming experience,

obtained from a pre-questionnaire, is shown in Table 1. Years of programming ranged from

6 months to 25 years with an average of 4.3 years experience. Professional programming

experience ranged from not at all to 15 years, with an average of just over one year’s

experience. Since the debugging tasks given in this study were coded in Java, participants

Table 1

Programming experience in years for overall, professional and
java

	 	
Years	
programming	

Professional	
programming	

Java	
experience	

mean	 4.3077	 1.0970	 2.2959	
max	 25	 15	 7	
min	 0.5	 0	 0	

 9

were also specifically asked about their level of experience programming in Java. This

ranged from no experience to 7 years of experience with an average of 2.3 years.

Since the visualization provided relies on unit tests, participants were also asked about their

experience with unit testing. The results of this are shown in Figure 1. Most participants had

at least some hands on experience using unit tests (76%). A remaining 22% had ‘slight’

experience with unit testing, indicating that they had heard of it but not used it themselves

and the remaining 2% had no experience with unit testing what so ever.

Task Overview

Each participant had to complete four tasks: two debugging tasks bookended by two quick

questionnaires. Participants were allowed to move on to the next debugging task if they

spent more than 30 minutes on a task. Most participants did this, although some chose to

spend a few minutes extra if they felt they were close to a solution.

Figure 1

 10

The tasks were entirely self-guided. Participants were given a printed sheet (shown in Figure

2) that contained a link to a Google Drive folder and the following instructions:

Download theCorrectFileForYourSession.zip

Unzip the file and read DebuggingPracticumInstructions.pdf completely before

starting. Raise your hand if you have any questions.

There were eight possible zip files, which are discussed further in the next section. The

instructions enumerated the four tasks: Pre-Questionnaire, Debugging with Visualization

Assistance, Traditional Debugging and the Post-Questionnaire, and provided instructions

for each which are discussed in more detail in the following subsection

Figure 2

This handout was given to all participants. There were 8 versions of this handout each with a
different zip file listed at the top for participants to download.

 11

Debugging Instructions

The following instructions were provided for both debugging tasks to guide participants

through the debugging

1. Import projectToDebug into Eclipse

2. Record the time you started on the hand out given to you. You have UP TO 30

MINUTES to try to locate the bug using whatever method(s) you want.

a. You can run pacman by right clicking src/main/java > Run As > Java

application

b. You can run the full suite of unit tests by right clicking src/test/java > Run

As > JUnit Test

3. Every time you have an idea what method the bug is in, fill it in on your handout

and write the current time.

4. Once you think you’ve found a bug, try to fix it.

5. If you find a solution, record it. If you decide you were wrong about the bug’s

location, keep looking and go back to step 4.

6. Repeat until you find the bug or 30 minutes has elapsed since you started then go on

to the next task.

7. You are given the following bug report: “Bug Report”

The projectToDebug and Bug Reports referred to above are described in the next section. For

the task with Visualization Assistance, the participants were given this step prior to the

import instructions:

 12

1. Read the one-page explanation of the visualization provided in

VisualizationAssistance.pdf then scroll down to view the visualization.

Details on the different visualizations is discussed in the Visualizations subsection of the next

section. The instructions on the first page of the Visualization Assistant document is as

follows:

Figure 3 shows code on the left with corresponding unit tests on the right. The values

entered for the unit tests are at the top and the P or F at the bottom indicates which

unit tests passed and which failed. While these 13 lines of code are fairly simple to

debug, the mass of black makes it more difficult to distinguish the effects of a unit

test. Colors are used to make it easier to view the unit test results at a glance. If a

statement is only executed during failed executions, it is colored red; if a statement is

only executed during passed executions it is colored green; statements that are not

executed are not given a color. If a statement passes some of the time and fails at

other times it will appear somewhere on the spectrum between green and red: yellow

or orange (Figure 4). The color value is calculated by looking at:

%passed(s) — the ratio of passed test cases that executed line s to the total number of

passed test cases

%failed(s) — the ratio of failed test cases that executed line s to the total number of

failed test cases

 13

The bug is not necessarily in the reddest statement. Sometimes a bug earlier in the

code can cascade, causing later lines of code to result in test failures. Any line that is

not completely green is at least somewhat suspicious. Zoom the PDF out to view

more of the code at once.

Figure 3

Unit tests

Figure 4

Unit tests with line coloring

 14

Experimental Conditions

Programs to Debug

Two programs were chosen for debugging: pacman and tetris. Each participant performed

one debugging task in each program. While using a single program for both tasks would

allow for a direct comparison between debugging times, this option would have produced

too many sources of error. Most prominently, participants might have been able to just

compare files to see where they differed. Even assuming this would not occur, participants

would likely debug the second task faster due purely to increased familiarity with the code.

With two different programs, these problems are avoided. Additionally, it provides more

diverse data due to the differences between the programs themselves.

The version of pacman used was the jpacman-framework created by Arie van Deursen,

which was created with the intention of being used for teaching software testing[27]. The

code is broken into 31 class files and includes interfaces and abstract classes. Not including

the interfaces and abstract classes there are roughly 3,000 lines of code. Additionally,

participants were given 69 unit tests written in JUnit.

The version of tetris used is from Per Cederberg and is available under the GNU General

Public license[28]. The code has 6 class files and roughly 2,400 lines of code. The

programming style of the game did not lend itself well to unit tests, so instead a list of 20

manual tests was given. These test cases included items like:

test 5: start the program, start the game, push <L,R,U,D>

test 9: start the program, start the game, get a tetris (use left, right, space, down, up)”.

 15

The participants were told that “getting a tetris” refers to filling in an entire horizontal row

with blocks, which, in code without bugs, triggers the entire line to clear. These test cases

were given in a PDF with all test cases listed. Next to each test case is either a green P or a

red F which indicates whether the test passed or failed. This was to simulate having a JUnit

test suite with the JUnit output describing which test cases passed or failed. One sample of

this is shown in Figure 5. This allows participants to see the results without having to iterate

through every

manual test and still

provides the list of

manual tests so that

participants can

perform them if

desired.

Bugs

There were a total of

four different

possible bugs in the

study, two

possibilities for each

program (though rach participant was only given a single bug per program.). This was done

for two reasons: 1) to reduce the odds of cheating from adjacent participants and 2) to

Figure 5

Example test suite result sheet for tetris

 16

provide more diverse bugs to increase generalizability of the results. They are named as

follows: Pacman1, Pacman2, Tetris1, and Tetris2 (also referred to as P1, P2, T1, T2).

Each of the four bugs altered a small portion of a single line of code. The four bugs can be

seen in Table 2. Each of the bugs causes a visible change to the UI. In order to help

participants to locate the bugs in the brief time allotted without giving the error away,

participants are given vague error messages. This was added after some participants in the

preliminary trial run attempted to debug things like “the level does not increment” which

was not a feature of the code to begin with. It is a realistic assumption that anyone in a real

world setting would have some vague inclination of the nature of the bug when debugging.

While every bug has an intended fix, for Pacman1 participants rarely found it. Instead of

editing the method in tileAtDirection, participants tended to go to the Direction class and

change the values stored in the enums, swapping all the x and y values. In a work setting,

Table 2

The bug report, class, method, bug, fix, and detailed result explanation for each bug
 Pacman1 Pacman2 Tetris1 Tetris2
Bug
Report

Arrow keys are not
behaving as
expected

Pacman can move in ways
that are not expected

Full rows are not
behaving as expected

Down arrow is not
behaving as expected

Class Board Game SquareBoard Figure
Method tileAtDirection movePlayer removeLine moveAllWayDown
Bug return tileAtOffset(t,

dir.getDy(),
dir.getDx());

if
(tileCanBeOccupied(target)
|| thePlayer.isAlive()) {

for (int x = 1; x <
width; x++)

yPos++

Fix return tileAtOffset(t,
dir.getDx(),
dir.getDy());

if (tileCanBeOccupied(targe
t) && thePlayer.isAlive()) {

for (int x = 0 x <
width; x++)

y++

Detailed
Result

All direction keys
trigger swapped
coordinates (x,y).
For example, the
right key (0,1) now
does (1,0) so hitting
the right key makes
pacman move down

The player can now move
into a tile if it can be
occupied OR if the player is
alive. This means that the
player can always move
through tiles. Pacman can
walk through walls

Line removal starts
counting at the second
square in the row, so
when a row clears, all
elements clear except
the leftmost square.

On tetris, hitting the
down arrow is
supposed to move the
piece to the bottom of
the screen. This bug
makes the change to
a temporary value so
the piece does not
move.

 17

this would not be an optimal fix, as it is essentially debugging code by adding a second bug

that cancels out the first. That being said, this alternative bug fix did cause all unit tests to

pass. Participants were told they could move on to the next task once they fixed the bug;

thus, a participant who saw all passing unit tests would have no reason to keep debugging

and to realize that her solution was not optimal. Additionally, only 15% of those who were

given P1 found the true solution, where 43% found the enum solution. Given these factors, I

made the decision to accept this fix as correct.

The bugs were always given in matched pairs. Participants were given either P1 and T1 or

P2 and T2. The combinations chosen were arbitrary. The choice to pair bugs was made to

reduce the number of different zip files and thus to reduce both the overhead of saving and

checking double the number of zips and to reduce the potential for accidentally saving files

incorrectly.

Versions

There were a total of eight versions. Four of these were a combination of the two bug sets

and the two independent variables (with and without the visualization assistance). The

remaining four were the counterbalanced alternatives to the original four. This was to

reducing priming and fatigue effects. Priming effects could result in participants doing better

on the second debugging task because they were already ‘warmed up.’ Fatigue effects would

have the opposite result, where participants do worse on the second debugging task because

they are tired or frustrated after the first. Alternating which task came first means that the

data should not reflect these effects even if they are present because each task was the

second task half of the time.

 18

The conditions can be seen in

Table 3. Every version has a

unique combination of task order,

the program that has the associated

visualization, and the bug number.

The bug number refers to the

numbers used in the previous

section. This means that following this table A1 had pacman first followed by tetris, pacman

had a visualization with it and Tetris did not, and the participant was given the bugs

Pacman1 and Tetris1.

Visualizations

The visualizations were different for each of the four bugs. They were computed in the same

way described in the Task Overview section of this paper. Actual computations were done

using Excel formulas. Both programs were filled with print statements that contained the

class name and the line number for each line of executable code. These print traces were

saved to text files for each unit test (pacman) or manual test (tetris). The pass/fail ratios for

each bug were used to compute the correct color values. The number calculated using this

formula:

was then given an actual color by using Excel’s built in conditional formatting tool, the

Graded Color Scale. This method is shown from a zoomed-out view in Figure 6.

Table 3

The eight condition versions
Version
Name

First Task Visualization
Task

Bug
Number

A1 Pacman Pacman 1
A2 Pacman Pacman 2
B1 Tetris Pacman 1
B2 Tetris Pacman 2
C1 Tetris Tetris 1
C2 Tetris Tetris 2
D1 Pacman Tetris 1
D2 Pacman Tetris 2

 19

The visualizations themselves were different for every bug. Figure 7-Figure 10 show

zoomed out views of the visualization assistant pdfs for each of the four bugs. The blue

rectangle surrounds the line of code where the fault is located. As is shown in the figures,

the

Figure 6

The graded color scale used in excel based on the calculated color values.

 20

Figure 7

Trace of the Pacman1 bug. The actual bug is surrounded by a blue box.

Figure 8

Trace of the Pacman1 bug. The actual bug is surrounded by a blue box.

 21

Figure 9

Trace of the Tetris1 bug. The actual bug is surrounded by a blue box.

Figure 10

Trace of the Tetris2 bug. The actual bug is surrounded by a blue box.

 22

suspiciousness level was different for different bugs. Specifically, the two pacman bugs

ranged from yellow to orange, where the tetris bugs both appeared in the brightest shade of

red. The bugs were chosen prior to seeing the color traces. The selection process based

purely on the criteria that the bugs chosen must cause some, but not all, of the unit tests to

fail.

The color distribution for every program trace ranged from pure green to pure red. The color

differences in the actual bugs was incidentally fortunate, because it provided both the ‘ideal

case’ in which the bug itself was labeled as completely suspicious (red) and the less ideal

case where the bug is colored as partially suspicious (yellow/orange).

Implementation

There were two separate versions of the study run. The first was the preliminary trial run,

which involved 20 participants and acted as a test of the methods. The second was the final

implementation, which was essentially the same as the preliminary trial run but with a few

changes made based on results and feedback from the trial.

Difference between the Final Implementation and the Preliminary Trial Run

The preliminary trial run revealed several flaws with the original design. This lead to the

addition of the following in the final implementation: bug reports, expected results for key

presses, emphasis on recording start times, and recording participant numbers.

Bug reports were added because less than a third of participants in the trial were able to fix

bugs they identified, and because their comments and solutions indicated that they were

attempting to fix bugs that did not exist. For example, multiple participants tried to fix the

 23

fact that levels did not increment in tetris rather than the bug they were given. In order to

help guide the participants without giving away details about the bug, they were given vague

bug reports that can be seen back in Table 2.

Participants in the trial were also unclear on what the buttons were supposed to do. To solve

this, the expected results of the most used key presses: (up, down, left, right, and spacebar)

were written on a whiteboard at the front of the computer lab in the final implementation so

that participants had enough familiarity with the code to recognize bugs.

We also observed that participants did not do a good job of documenting start times despite

the fact that this was listed in their instructions. In the final implementation, this was

emphasized verbally at the beginning of the study. Unfortunately, many participants still did

not document start times. This was problematic because it reduced the number of data-

points that could be used in a comparison of the amount of time spent to find the bugs.

The last addition was to record participant numbers in the questionnaires and on the

handouts so that analysis could be conducted comparing factors such as debugging

techniques or programming experience on the results. However, due to the issues with

documented start time, there were not enough participants who generated correct fixes for

further subdivision to reveal useful trends. Additionally, this issue was not found in the

pilot; it was found at the end of the first day of sessions so it could only be applied to the

second day of sessions.

 24

Independent and Dependent Variables

Independent

The independent variable is the debugging style. The two conditions of this variable are

visualization assisted and traditional debugging. This independent variable is considered

separately for each of the four possible bugs.

Dependent

The four dependent variables are three recorded times and number fixed. The time

dependent variables are calculated separately at each of these points: when the participant

locates the correct file, when the participant locates the correct method, and when the

participant correctly fixes the bug. The number fixed is a discrete variable with two options:

fixed or not fixed. As discussed in the Bugs subsection earlier in this section, each bug had

one correct fix with the exception of P1, which had two correct fixes.

 25

Results and Discussion

Quantitative Results

Fix or Not

The first comparison

looked at whether or not

participants were able to

fix the bug for each of the

four different bugs. The numbers are shown in Table 4. For both pacman bugs, a larger

percentage of participants were able to find the bugs, 64% compared to 56% for P1 and 41%

compared to 30% for P2. For tetris, the opposite was true with a larger percentage of people

in the visualization condition finding the bug, 45% to 41% for T1 and 68% to 48% for T2.

These percentages are out of a relatively small number of people since there were 22-27

people in each category.

Time-to-Fix for Each Bug

Differences between conditions were computed separately for each of the four bugs using an

unpaired t-test. We chose to use and unpaired test because each participant was given two

different bugs. Paired data would imply that the same participant was given the same bug

twice, once with visualization and once without. The t-test determines whether the two

groups (visualization assisted and traditional) are significantly different from one another. A

Table 4

Numbers of participants who were able to fix the bugs compared with the
total number of participants assigned to that bug based on condition.
	 	 P1	 P2	 T1	 T2	
Fixed	
	 	

visualization	 15	 7	 10	 15	
traditional	 14	 9	 11	 11	

Total	
	 	

visualization	 27	 23	 22	 22	
traditional	 22	 22	 27	 23	

Percent	
	 	

visualization	 55.56%	 30.43%	 45.45%	 68.18%	
traditional	 63.64%	 40.91%	 40.74%	 47.83%	

 26

difference is considered significant as long as p<.05; in other words, less than a 5% chance

that the differences between the two groups were due purely to chance.

Looking only at participants who were at least able to find the correct file, Table 5 shows the

number of participants per group, the average time to find the correct file, method, and fix,

and the computed p-values. The only statistically significant difference between groups was

on the Pacman1 bug (p=.04), where the average total time to locate and fix the bug was 19.3

minutes without the visualization and 11.7 minutes with the visualization. The remaining

three bugs did not show significant differences as far as fix time is concerned. There were no

statistically significant differences between visualization and traditional debugging for the

other three bugs (p>0.4 meaning that there is at least a 40% chance that differences between

groups are not caused by the study variables). This indicates that for these three bugs there

are no relevant differences in time-to-fix based on the presence or lack of visualization

assistance.

 27

Finding the File but not a Fix

There were a total of 10 participants were able to find the first file within the half hour time

limit but were not able to find the correct solution. Of these, 6 were using traditional

debugging and 4 were using the visualization. There is insufficient data present to do a

Table 5

For participants who are able to locate the correct file, the number of participants (N), the mean, the
standard deviation (STDEV), and the standard error (SE) are calculated for both traditional
debugging and debugging with visualization. These values are calculated for the times in minutes
from the start time until the location of the correct file, from the start time to the location of the
correct method, and from the start time to the location of the correct fix.

Pacman1	
Correct	
File	

Correct	
Method	

Correct	
Fix	

W
ith

	
Vi
su
al
iz
at
io
n	 N	 10	 9	 9	

Mean	 11.4	 11.5556	 11.6667	

STDEV	 8.2892	 8.7765	 8.6603	

SE	 2.6213	 2.9255	 2.8868	

Tr
ad

iti
on

al
	 N	 11	 11	 11	

Mean	 17.0909	 19.0909	 19.2727	

STDEV	 6.8477	 6.8184	 6.7837	

SE	 2.0647	 2.0558	 2.0454	

	 p-‐values	 0.1014	 0.0442	 0.0407	

	 	 	 	 	
Pacman2	

Correct	
File	

Correct	
Method	

Correct	
Fix	

W
ith

	
Vi
su
al
iz
at
io
n	

N	 4	 4	 4	

Mean	 16	 16	 16	

STDEV	 8.9815	 8.9815	 8.9815	

SE	 4.4907	 4.4907	 4.4907	

Tr
ad

iti
on

al
	

N	 11	 10	 8	

Mean	 14.0909	 14	 14.375	

STDEV	 10.1139	 9.1409	 9.5160	

SE	 3.0495	 2.8906	 3.3644	

	 p-‐values	 0.7456	 0.7168	 0.7825	

Tetris2	
Correct	

File	
Correct	
Method	

Correct	
Fix	

W
ith

	
Vi
su
al
iz
at
io
n	

N	 10	 10	 8	

Mean	 18.1	 18.1	 18.75	

STDEV	 7.8944	 7.8944	 9.0040	

SE	 2.4964	 2.4964	 3.1834	

Tr
ad

iti
on

al
	

N	 7	 7	 7	

Mean	 13.4286	 14	 15.1429	

STDEV	 7.1381	 6.9761	 7.4258	

SE	 2.6979	 2.6367	 2.8067	

	 p-‐values	 0.2315	 0.2873	 0.4169	

	 	 	 	 	
Tetris2	

Correct	
File	

Correct	
Method	

Correct	
Fix	

W
ith

	
Vi
su
al
iz
at
io
n	

N	 13	 13	 12	

Mean	 14.3077	 15.3077	 16.5833	

STDEV	 6.3821	 5.4065	 6.4450	

SE	 1.7701	 1.4995	 1.8605	

Tr
ad

iti
on

al
	

N	 10	 9	 7	

Mean	 12	 11.7778	 19.7143	

STDEV	 7.0396	 5.9325	 9.6560	

SE	 2.2261	 1.9775	 3.6496	

	 p-‐values	 0.4201	 0.1632	 0.4064	

 28

statistical analysis of this, but at least in this instance, fewer participants who were using the

visualization were unable to fix the bug after locating the correct file than with traditional

debugging.

Find-to-Fix Times

For all four bugs, the average time between locating the correct file and correctly fixing the

bug is shorter for participants who used the visualization than for those who did not as

shown in Table 6. This finding was only marginally significant with p=.10; p-values between

.05 and .10 can be considered marginally significant for small data sets. There were only 34

participants total in

each condition

(traditional versus

visualization) across

all bugs. With such a

sample size, that it is

likely that it would

likely be significant

given a larger sample.

Of the 34 participants who fixed bugs using traditional debugging, 6 had a gap that was

larger than 5 minutes between the time they located the correct file and the time they fixed

the bug. Of the 34 participants who fixed bugs using the visualization assistance, 2 had more

than a 5-minute gap between the time they located the correct file and the time they fixed

Table 6

The differences between the average time to locate the correct file and the
average time to find the correct fix for all 4 bugs with and without
visualizations
	 	
	 	

Time	 to	 Find	
Correct	 File	

Time	 to	 Find	
Correct	 Fix	 Difference	

P1	
	 	

Visualization	 11.4	 11.6667	 0.2667	
Traditional	 17.0909	 19.2727	 2.1818	

P2	
	 	

Visualization	 16	 16	 0.0000	
Traditional	 14.0909	 14.375	 0.2841	

T1	
	 	

Visualization	 18.1	 18.75	 0.6500	
Traditional	 13.4286	 15.1429	 1.7143	

T2	
	 	

Visualization	 14.3077	 16.5833	 2.2756	
Traditional	 12	 19.7143	 7.7143	

 29

the bug. Across all bugs, traditional debugging took an average of 2.9 minutes from file-to-

fix and the visualization condition took an average of 1.2 minutes from file to fix.

If the three outliers (participants who took 20+ minutes to fix the bug after locating the

correct file) are removed, the values are statistically significant (p=.03). In this case, the

average time from file-to-fix for traditional is 1.6 minutes and for visualization it is 0.4

minutes. Outliers affect datasets less with a larger participant pool, so the significant result

without outliers supports the notion that the difference between conditions would be

significant.

Qualitative Results

Qualitative results are computed from the results of the post questionnaire. The

questionnaire asked about debugging techniques that were used for each of the trials and

then asked participants to supply a value from 1 to 5 for questions like “Finding the fault

was easier with” and answers ranging from “1 Visualization Assisted” to “5 Traditional”.

This set up was done to help prevent bias due to question phrasing.

 30

Debugging techniques for traditional and visualization assisted from the 112 survey

respondents are shown side by side in Figure 11. Print statements, break points, and

stepping through the code were used more during traditional debugging than with the

visualization assistance: 25 to 14, 29 to 14, and 43 to 37 respectively. Close inspection of the

Figure 11

Participant responses when asked what techniques they used while debugging.

Traditionally

Print statements 25 22%

Break points 29 26%

Close inspection of code (reading for bugs) 65 58%

Manually testing input 59 53%

Existing unit tests 43 38%

Writing your own unit tests 7 6%

Stepping through the code 43 38%

Other 3 3%

With Visualization Assistance

Print statements

14

13%

Break points 14 13%

Close inspection of code (reading for bugs) 64 57%

Manually testing input 38 34%

Existing unit tests 34 30%

Writing your own unit tests 0 0%

Stepping through the code 37 33%

Scrolling through the Visualization pdf 54 48%

Searching (ctrl-f) the Visualization pdf 33 29%

Zooming out on the Visualization pdf 25 22%

Other

 31

code was consistent for both groups with 64-65 people stating that they used this technique.

Unit test were also relied on more in traditional debugging, 43 to 34 for existing test and 7 to

0 for writing their own tests. For those who answered “Other”, the items listed were

“common sense,” “exploratory testing,” and “using the tetris test spec document.”

Still in Figure 11, the results specific to the visualization assistance showed that 54

participants scrolled through the visualization, 33 conducted a direct search, and 25 zoomed

out the view.

The remaining four Likert-style questions had the following results. As shown in Figure 13,

Figure 13

Survey results (ranked 1 to 5) for “Finding
the fault was easier with:”

 Number of participants

1 Visualization Assisted 27 24%

2 23 21%

3 They were the same 39 35%

4 3 3%

5 Traditional 19 17%

Figure 12

Survey results (ranked 1 to 5) for “The
visualizations were:”

 Number of participants

1 Helpful 32 29%

2 30 27%

3 Neither helpful nor unhelpful 31 28%

4 7 6%

5 Unhelpful 10 9%

 32

45% of participants felt that finding the fault was easier with visualization assistance, 20%

thought it was easier traditionally and 35% though that they were the same. As shown in

Figure 12, 56% said that the visualizations were helpful, and 28% said they were neither

helpful nor unhelpful. As shown in Figure 14, 30% of participants thought that the

visualizations were difficult to understand, 34% said that they were easy to understand, and

36% were in the middle. As shown in Figure 15, 44% of participants said they would choose

to use the visualization assistance again, 16% said they would not choose to use the

visualization assistance again, and 38% stated that they would maybe choose to use it again.

Subjective feedback was collected explicitly via the “Do you have any other comments to

Figure 14

Survey results (ranked 1 to 5) for “The
visualizations were:”

 Number of participants

1 Difficult to understand 10 9%

2 23 21%

3 Neither difficult nor easy to understand 40 36%

4 15 13%

5 Easy to understand 23 21%

Figure 15

Survey results for “I would ________ to use
the visualizations again:”

 Number of participants

1 Choose 33 29%

2 17 15%

3 Maybe choose 43 38%

4 6 5%

5 Not choose 12 11%

 33

add?” free answer question at the end of the survey and implicitly from comments

participants made in person as they returned their handout.

It included a range of positive and negative comments about the visualization including the

following excerpts:

• “I only used the visualization assistance a couple times because I was mostly lazy to

search through each folder and find the specific method I wanted to inspect.”

• “The visualization did help more even though I found the pacman bug quicker.

Maybe the pacman bug was simpler or I got lucky finding it.”

• “Visual assistance helps no doubt. But more than that a unit test suite helps”

• “Surprisingly useful. If this is a real program, I'll gladly use it in the future.”

• “Two cases were not similar in the size and also style of coding”

• “I was able to find the error through executing the code. Utilizing the pdf file would

have been effective had the bug been more profound in nature.”

• “Visualizations helped to narrow down where the problem area was with a big code

base. Traditional methods worked for Tetris since the issue was clear and only a few

methods were involved. My only reservation with the visualization was that to some

degree the colors drew attention to areas that the bug wasn't actually in. By this I

mean the bug was in a "green" area, and my first instinct was to carefully examine all

red code. But examining the red code led me to find the relevant green code block,

which allowed me to find the bug.”

• “The visualization didn't add anything. It felt like extraneous info.”

 34

• “[The visualization’s] main use for me was to confirm problem areas when I found

them via other methods.”

and some more general comments such as:

• Tetris was hard to debug because they were not good enough at playing to find the

bug

• They have only ever debugged their own code and found debugging unfamiliar code

to be strange or challenging

• Ran out of time

• Did not like how long it took to set up the workspace

• Would prefer that the visualization tool were a plugin

• Did not have enough experience coding to debug

Discussion

Starting with the quantitative results, a larger percentage of participants were successful at

debugging pacman traditionally and at debugging tetris with the visualization assistance. This

could be due to a number of factors. First, the suspiciousness colors for tetris bugs were

completely red, whereas the suspiciousness colors for the pacman bugs were yellow and light

orange as shown in Figure 16. It would make sense that more

people would be able to find the bug with a visualization that

pointed directly to the bug. Participants who were given

visualizations for pacman might have used up more of their

time investigating red lines of code that did not contain the

Figure 16

Suspiciousness color
assigned for each bug
at the line of the bug

P1	 P2	 T1	 T2	

	 	 	 	 	 	 	 	

 35

bug. Since participants were given up to 30 minutes to find and fix the bugs, it is possible

that they would have found the bug if given more time.

A larger percentage of participants who had the visualizations with tetris were able to fix the

bug than those using the visualization with pacman. This might imply that redder bugs are

easier to find with the visualization. However, when considering how long it took to fix the

bug, the only bug with significant differences between fix times for visualization versus

tradition was P1, which is the yellowest bug, as shown in Figure 16. For the yellowest bug,

participants were able to fix the bug on average 7.6 minutes faster with the help of the

visualization. This was also the bug with the alternative solution of swapping the x,y values

in the Direction enum. The enum itself showed up in white on the visualization, since

enums are not shown in the trace. It is possible that by looking over the red blocks of code,

participants could quickly see that references to the direction enum were associated with

failures, thus allowing participants to hypothesize that the enum was the cause.

For the remaining three bugs, no significant differences were found. This implies that while

the visualization will not significantly increase the time spent debugging, it will only

sometimes make debugging faster. It is hard to extrapolate from null results. It is possible

that the visualization does not actually improve debugging time except in very specific

circumstances. However, it is also possible that these numbers could completely change if

participants were asked to work until they found a solution rather than stopping after 30

minutes. Since only 30-68% of participants were able to fix bugs within the half hour limit

 36

(depending on condition and bug), the results could change fairly dramatically with that

design.

The most consistent difference between the visualization and the traditional conditions was

the find-to-fix trend — the difference in the time it took from finding the correct file to

finding the correct fix. Though there were not significant differences in overall fix times for

most of the bugs, for all four of the bugs, those in the visualization condition spent less time

on average between finding the file and fixing the bug. It is reasonable to assume that this

difference in time indicates that participants had a greater understanding of the fault and its

location by the time they located the correct class file and were thus able to fix the fault

more quickly once they reached this point. This might indicate that the real benefit of the

visualization is not so much faster fault localization, but greater understanding of the fault.

In more complex code (or code with more complex bugs than were presented in this study),

it is possible that having a better understanding of the fault would have a greater impact on

how quickly participants were able to fix the bug.

This would make sense, since using the visualization involves starting in the reddest areas,

then moving back if it seems as though bug earlier in the code can cascade, causing later

lines of code to result in test failures. By the time participants reach the correct method, they

have seen a larger amount of code that is either directly or indirectly relevant to the bug.

This experience would lead to an increased understanding of how the bug influences the

code and would likely improve the transition from finding its general location to actually

fixing it.

 37

As far as the qualitative results are concerned, participants showed the expected affinity

towards traditional debugging techniques such as close inspection of the code, manually

testing input, and stepping through the code. Yet, in all cases (except close inspection of the

code) fewer participants used these techniques when using the visualization assistance.

Instead, they scrolled through the visualization.

All questions in the survey were listed as optional, so not all participants answered

regarding the techniques they used, but of those that answered, only about 50% claimed to

have used the visualization PDF. Some participants claimed to only use a single debugging

technique (where most other participants used 3 or more techniques each) so it is possible

that not all participants realized that they were able to select multiple items for the question

and only cited the technique they relied most heavily upon (usually “close inspection of the

code”). However, some participants only listed scrolling through the visualization PDF.

With the data available, it is not possible to determine the reason that not all participants

used the visualization tool.

Searching the PDF and zooming out to see more of the code at once in the visualization

condition was used with similar frequency to print statements and break points in the

traditional condition, implying reasonable adoption of more profound feature use than just

scrolling.

 38

As far as the Likert questions are concerned, there was always a group of 9-17% who opted

for traditional debugging, found the visualizations to be unhelpful or difficult to understand,

or who would not choose to use the visualization again by selecting the most extreme value

(1 or 5 depending on the question). Otherwise, the overall skew seemed to indicate positive

feelings towards fault localization, its helpfulness, and choice to use the visualization again.

As far as the subjective comments provided by participants, it seems as though there were

some who found the visualization helpful and some who did not. It was interesting that

some people chose to explicitly mention that the visualization made debugging easier even

though it took them more time or that they would have used it more if they had a more

profound bug to solve. Some of the general feedback was related to issues like the fact it was

not a plugin or how long the workspace took to set up and were not necessarily related to

the results of the study itself. It also showed that perhaps a few of the participants were too

inexperienced with programming to be ideal participants for this exercise despite the fact

that they were all either Software Engineering Masters students or undergraduates enrolled

in a software testing course. While some participants clearly did not like the visualization,

others seemed to find it useful.

With these results in mind, we can analyze the Tarantula-based debugging technique

against the four key properties of a useful debugging tool that were discerned from related

works in the first section of this paper:

1. Reduce the problem space without actually removing any code

2. Maintain the structural integrity of the program

 39

3. The tool should either explicitly or implicitly help developers to create hypotheses

4. The tool should help developers to confirm or reject hypotheses they form

The first pair of properties is related to maintaining context in order to avoid the Isolation

Flaw. The second pair deals with the hypothesis heuristic that people use to debug code.

As already discussed in the first section, Tarantula’s visualization style takes into account

(1) and (2) by leaving the program completely intact and simply overlaying colors on the

existing code.

The greatest evidence for property 3 is the reduced time differences between locating the file

and fixing the bug when using the visualization because it implies that by the time

participants reached the correct file, they had a better understanding of the problem and

solution and were able to more quickly solve the problem at this point. This is further

supported by one participant who explicitly described using the visualization to assist in

backwards navigation of the code: “examining the red code led me to find the relevant green

code block, which allowed me to find the bug. It is likely that the mechanism by which

examining the red code was able to “lead” someone to green code was because the

contextual information it provided assisted in the creation hypotheses about what other

portions of code were causing those blocks to fail.

Property 4 is difficult to evaluate from the quantitative data. It could be interpreted based on

the number of hypotheses recorded by each participant, but almost all participants wrote

only one or two hypotheses. It is unclear whether this was because participants were able to

 40

locate the bug on a single hypothesis or if participants simply did not write down every idea

that occurred to them. I suspect the latter. One reason I believe this is based on personal

experience with programming interviews. For these interviews, one of the most commonly

reinforced pieces of advice is for interviewees to talk through their logic as they code. Given

how much this needs to be emphasized, I believe that accurately verbalizing or recording

every hypothesis does not come naturally and is mostly extracted through deliberate effort.

In that case, a better method for determining how useful the tool was for hypothesis

checking might be simply asking participants for their opinions on the matter. This was not

a question on the survey, so data is not available regarding how many participants felt that

the tool was useful for hypothesis checking. One participant made the following comment

regarding the visualization: “Its main use for me was to confirm problem areas when I

found them via other methods.” This feedback suggests that the Tarantula-style

visualization used in this study exhibits property 4, but more data would be needed to

generalize this.

 41

Threats to Validity

Construct Validity

The amount of time it took participants to fix the bugs as well as simply whether or not

people were able to find the bugs was used to measure whether or not the visualization

improved performance. This are fairly accurate measures of performance when the concern

is the amount of time it takes to debug and the ultimate goal of debugging. The limiting

factor here is the 30 minute time limit. These constructs might be more generalizable if

participants were asked to continue until they completed they task.

The independent variable looked at difference between debugging traditionally and

debugging with a visualization. Traditional debugging should be very generalizable since the

code was written in Java, a commonly used language, and debugging was done in Eclipse, a

common IDE. The visualization was specifically Tarantula-based and may not generalize to

other automated debugging techniques or to other visualizations.

Internal Validity

Potential subject bias may have occurred since students were obtained from classes taught

by my advisor. However, the free response questions seemed to show a range of positive

and negative feedback that seemed to indicate honest feedback. The study used

experimental design with counterbalancing to reduce error. Some potential sources of error

may have come from participants in the visualization condition choosing to ignore the

visualization or from the possibility that some participants were colorblind. Additionally,

one of the tasks did not load well on some of the school computers, requiring participants to

 42

import JAR files. This may have increased frustration of fatigue and may have affected the

results. Finally, there was the issue that not all participants recorded start times, resulting in

missing data about how long tasks took to complete. It is possible that results would be very

different with this additional data.

External Validity

The study included only students, limiting the generalizability. All students were from

graduate or upper-division undergraduate courses, which makes them only a year or two

estranged from being members of the workforce. Especially given that participants had an

average of 1 year of professional experience, it is likely that these results are generalizable to

the equivalent level of experience of those in entry-level job positions. However, this cannot

be determined with certainty unless a study on that population is conducted.

Furthermore, all tasks were under 5,000 lines of code, used java, and were games with

visual output, limiting the generalizability to only programs that meet these same

requirements. Since only two programs were evaluated, it is unknown whether the results

are fully representative, even for programs with these restrictions.

 43

Future Work

If this study were to be conducted again, it might be worthwhile to ask participants to keep

going until they find the bug. However, not everyone will necessarily be able to find the bug

and there are difficulties with incentivizing such a study. Additionally, improvements could

be made to try to increase the use of the visualization. Multiple monitors might encourage

use of the tool since code could be open on one side with the visualization open on the

other. Also, the PDF opened at full size. If there were a way for the visualization to open

fully zoomed out so that an overview of the code is visible, that would likely provide a better

overview of the system and allow participants to focus in more quickly than by scrolling.

Based on one comment that described the bug as “green”, future studies should also be

careful to either screen for color blindness or provide an option that will be visible for those

who have it.

Technical improvements to this study could implement the visualization as an Eclipse

plugin, as was suggested by a number of participants. It would be interesting to see how

(and if) results change if the visualization was presented in a plugin rather than a pdf. It

would likely reduce context switching and the time cost of alternating between views.

Future work should definitely consider the vast diversity of bug finding situations. This

study used programs with two to three thousand lines of code that participants were not

familiar with and which produced visual output (games). Future studies could compare

different code lengths, code with text output, code without output, or code written by the

users (for example a case study done in a work environment). Additionally, this study

 44

focused on a student population. Results might be different for more expert programmers.

Other areas of study might include the effect of multiple bugs.

More theoretical future work could investigate how different visualizations or automated

testing tools are able to deal specifically with the Isolation Flaw, and how they can best

accommodate the hypothesis model used in program testing. Another area of potential

investigation is better ways of quantifying properties that make a debugging tool genuinely

useful.

 45

Conclusion

This thesis investigated the differences between traditional and visually assisted debugging

sessions using an experimental design. The visualizations provided to participants were

based on the methods used for the Tarantula program [4] and consisted of assigning color-

coded suspiciousness values to every line of code executed by the unit tests.

The research sought to better understand how the presence of the visualization tool changes

the way that people debug. It was concerned specifically with the Isolation Flaw, a common

problem for debugging tools that isolate suspicious code to the point that they remove

necessary contextual information. Based on this flaw and other surrounding literature it was

determined that a useful debugging tool should have the following feature set:

1. Reduce the problem space without actually removing any code

2. Maintain the structural integrity of the program

3. The tool should either explicitly or implicitly help developers to create hypotheses

4. The tool should help developers to confirm or reject hypotheses they form

Both quantitative and qualitative data were collected. The quantitative data for each bug

included the number of participants who were able to fix it, the time it took to: find the

correct file, find the correct method, and correctly fix the bug, and the differences between

these times. The qualitative data was collected from pre and post questionnaires and

included descriptive statistics about the participants and participant opinions on traditional

and visually assisted debugging.

 46

The results showed that visually assisted debugging can sometimes increase the speed of

debugging, but that with most of the bugs it did not. From the results analyzed, there was

nowhere in the study that the visualization assistance decrease the speed of debugging

significantly, implying that it sometimes helps but did not hurt, at least as far as the bugs in

this study were concerned. Additionally, the time between finding the correct file and

finding the correct fix were shorter with visually assisted debugging than with traditional

debugging for all four bugs.

The results implied that, even though visualization did not always improve the speed of

debugging, it did a fairly good job of meeting the four requirements for a useful debugging

tool. For the first two points, the Tarantula style visualization did not remove any context or

structure from the original code. For the second two points, between qualitative participant

feedback and the quantitative results that revealed the shorter times between locating the

correct file and fixing the bugs, it seems as though the visualization tool helped participants

to gain a better understanding of the fault and to apply that knowledge to creating better

hypotheses while debugging.

 47

References

[1] Stasko, J.T., Brown, M.H., and Price, B.A. 1998. Software Visualization

Programming as a Multimedia Experience. Cambridge, Mass.: MIT Press/

[2] Ghanam, Y. and Carpendale, S. 2008. A survey paper on software architecture
visualization. Technical Report, University of Calgary, pages 1–10.

[3] Tassey G. 2002. The economic impacts of inadequate infrastructure for software testing.
National Institute of Standards and Technology, RTI Project Number 7007.011.

[4] Jones, J., Harrold, M.J., and Stasko, J. 2002. Visualization of test information to
assist fault localization. Proceedings of the International Conference on Software Engineering
(ICSE 02), pages 467–477.

[5] Parnin, C. and Orso, A. 2011. Are automated debugging techniques actually helping
programmers? Proceedings of the 2011 International Symposium on Software Testing and
Analysis. (ISSTA '11) Pages 199-209

[6] Weiser, M. 1981. Program slicing. Proceedings of the International Conference on
Software Engineering (ICSE 81), pages 439–449.

[7] Weiser, M. 1984. Program slicing. IEEE Transactions on Software Engineering,
10(4):352–357.

[8] Zhang X., Gupta, N. and Gupta, R. 2006. Pruning dynamic slices with confidence.
Proceedings of the Conference on Programming Language Design and Implementation (PLDI
06), pages 169–180.

[9] DeMillo, R.A., Pan, H. and Spafford, E.H. 1996. Critical slicing for software fault
localization. Proceedings of the International Symposium on Software Testing and Analysis
(ISSTA 96), pages 121–134.

[10] Gyimothy, T., Beszedes, A. and Forgacs, I. 1999. An efficient relevant slicing method
for debugging. Proceedings of the European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE 99), pages 303–321,

[11] Zhang, X., Gupta, R. and Zhang, Y. 2003. Precise dynamic slicing algorithms.
Proceedings of the International Conference on Software Engineering (ICSE 03), pages 319–
329.

[12] Zeller, A. 2009. Why Programs Fail: A Guide to Systematic Debugging. 2nd ed.
Burlington, Mass.: Morgan Kaufmann.

[13] Reps, T., Ball, T., Das, M. and Larus, J. 1997. The use of program profiling for
software maintenance with applications to the year 2000 problem. Proceedings of the
European Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE 97), pages 432–449.

 48

[14] Groce, A., Kroening, D., and Lerda, F. 2004. Understanding counterexamples with

explain. Proceedings of the International Conference on Computer-Aided Verification (CAV
04), pages 453–456.

[15] Ball, T. Naik, M. and Rajamani, S.K. 2003. From symptom to cause: localizing errors
in counterexample traces. Proceedings of the Symposium on Principles of Programming
Languages (POPL 03), pages 97–105.

[16] Chen, M.Y., Kiciman, E., Fratkin, E., Fox, A., Brewer, E., 2002. Pinpoint: problem
determination in large, dynamic internet services. Proceedings of DSN’02, Washington,
DC, USA, June 2002, IEEE Computer Society, pp. 595–604.

[17] Abreu, R. Zoeteweij, P., Golsteijn, R., and van Gemund, A.J.C.2009. A practical
evaluation of spectrum-based fault localization. The Journal of Systems and Software
82:1780–1792

[18] Liu, C., Yan, X., Fei, L., Han, J., and S. P. 2005. Midkiff. SOBER: Statistical model-
based bug localization. Proceedings of the European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE 05), pages 286–295.

[19] Liblit, B., Naik, M., Zheng, A.X., Aiken, A., and Jordan, M.I. 2005. Scalable
statistical bug isolation. Proceedings of the Conference on Programming Language Design
and Implementation (PLDI 2005).

[20] Hao, D., Pan, Y., Zhang, L., Zhao, W., Mei, H., and Sun, J. 2005. A similarity-
aware approach to testing based fault localization. Proceedings of the International
Conference on Automated Software Engineering (ASE 05), pages 291–294.

[21] Jones, J.A. Harrold, M.J. and Bowring, J.F. 2007. Debugging in parallel. In
Proceedings of the International Symposium on Software Testing and Analysis
(ISSTA 07), pages 16–26.

[22] Liu, C. and Han, J. 2006. Failure proximity: A fault localization-based approach.
Proceedings of the International Symposium on the Foundations of Software Engineering (FSE
06), pages 286–295.

[23] Renieris, M. and Reiss, S. 2003. Fault localization with nearest neighbor queries.
Proceedings of the International Conference on Automated Software Engineering (ASE 03),
pages 30–39.

[24] Ko A.J. & Myers B.A. 2004. Designing the Whyline: a debugging interface for asking
questions about program failures. ACM Conf. on Human Factors in Computing Systems
(CHI), 151-158.

[25] Ko, A., J., & Myers, B., A. (2009). Finding causes of program output with the Java
Whyline. In proc. of SIGCHI Conference on Human Factors in Computing Systems, pp.
1569-1578.

[26] Winslow, L. 1996. Programming pedagogy – a psychological overview. SIGCSE Bulletin
28, 17-22.

 49

[27] van Deursen, A. 2003. jpacman-framework. Retrieved from:

https://github.com/avandeursen/jpacman-framework-v5

[28] Cederberg, P. 1994. Tetris. Retrieved from:
http://www.percederberg.net/games/tetris/

