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Mixture of Linear Mixed Models Using Multivariate

t Distribution

Xiuqin Bai, ∗ Kun Chen,† Weixin Yao, ‡

Abstract

Linear mixed models are widely used when multiple correlated measurements

are made on each unit of interest. In many applications, the units may form several

distinct clusters, and such heterogeneity can be more appropriately modeled by a

finite mixture linear mixed model. The classical estimation approach, in which both

the random effects and the error parts are assumed to follow normal distribution,

is sensitive to outliers, and failure to accommodate outliers may greatly jeopar-

dize the model estimation and inference. We propose a new mixture linear mixed

model using multivariate t distribution. For each mixture component, we assume

the response and the random effects jointly follow a multivariate t distribution, to

conveniently robustify the estimation procedure. An efficient ECM algorithm is

developed for conducting maximum likelihood estimation. The degrees of freedom

parameters of the t distributions are chosen data adaptively, for achieving flexible

tradeoff between estimation robustness and efficiency. Simulation studies and an

application on analyzing lung growth longitudinal data showcase the efficacy of the

proposed approach.
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1 Introduction

The classical linear mixed model can be expressed as

y = Xβ +Ub+ ϵ (1.1)

where y is a N ×1 response vector, X is a N ×p design matrix for the fixed effects, β is a

p× 1 vector of fixed-effect coefficients, U is a N × q design matrix for the random effects,

b ∼ Nq(0,Ψ) is a q × 1 vector of random effect coefficients, and ϵ is a N × 1 vector of

errors for observations and assumed to have multivariate normal distribution with mean

zero and covariance matrix Λ. Based on the above model setup, Xβ models the fixed

effects and Ub models the random effects. It follows that y has a multivariate normal

distribution with mean E(y) = Xβ and covariance matrix V = cov(y) = UΨUT +

Λ. The main goal here is still to model the relationship between response variable and

predictor variables. Linear mixed models are thus considered important extensions of the

conventional linear regression models for handling dependent data, which arise in various

problems, e.g., when the observations are taken on groups of related individuals, or when

repeated measurements are made over time on the same set of individuals.For clarity and

without loss of generality, in the sequel we shall mainly refer to the repeated measurement

setup when presenting our proposed methodology, similar to Celeux et al. (2005).

In many applications, however, the underlying assumption that the regression rela-

tionship is homogeneous across all the subjects could be violated. Of particular interest

here is the situation that the subjects may form several distinct clusters, indicating mixed

regression relationships. Such heterogeneity can be modeled by a finite mixture of linear

mixed regression models, consisting of, say, m homogeneous groups/components (Celeux

et al., 2005; Yau et al., 2002; Ng et al., 2006). Suppose there are I subjects under study,
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and ni repeated measurements are gathered on the ith subjects, for i = 1, . . . I. We

consider a mixture linear mixed model setup as follows. For each i = 1, . . . I, let Zi be

a latent variable with P (Zi = j) = πj, j = 1, . . .m. Given Zi = j, we assume that the

response yi ∈ Rni follows a linear mixed model, i.e.,

yi = Xiβj +Uibij + eij (1.2)

where Xi ∈ Rni×p is the fixed-effect covariate matrix, βj ∈ Rp a fixed-effect coefficient

vector, Ui ∈ Rni×q the random-effect covariate matrix, bij the random-effect coefficient

vector which is thought as random, and eij the random error vector. Following the

conventional formulations of the normal mixture model and the mixed model, it is natural

to assume that

bij ∼ Nq(0,Ψj), eij ∼ Nni
(0,Λij),

and all bijs, eijs, for i = 1, . . . , I and j = 1, . . . ,m are independent. Usually each error

covariance matrix Λij is assumed to be dependent on i only through its dimension, e.g.,

an AR(1) correlation structure with some correlation parameter ρ so that Λij = Λ(ρ, i).

The correlation structure among each ni observations on subject i is induced and modeled

by the random component Uibij. Conditional on Zi = j, the joint distribution of (yi,bij)

is yi

bij

∣∣∣Zi = j ∼ Nni+q

(Xiβj

0

 ,

UiΨjU
T
i +Λij UiΨj

ΨjU
T
i Ψj

), (1.3)

and the mixture distribution of yi itself, without observing Zi, is

yi ∼
m∑
j=1

πjNni
(Xiβj,UiΨjU

T
i +Λij). (1.4)

Although the above normal mixture linear mixed model is quite appealing in modeling

the regression relationship with the aforementioned hierarchically clustered data, one
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drawback of the model is that it can be very sensitive to outliers, an undesirable property

inherited from the normal mixture model.

Motivated by Lange et al. (1989), Welsh and Richardson (1997), and Pinheiro et al.

(2001), we propose a new mixture linear mixed model by replacing the normal distribution

with the multivariate t distribution. For each mixture component, we assume the response

and the random effects jointly follow a multivariate t distribution, in a similar fashion as

(1.3), to conveniently robustify the estimation procedure. An efficient ECM algorithm

is developed for conducting maximum likelihood estimation. The degrees of freedom

parameters of the t distributions are chosen data adaptively for achieving flexible tradeoff

between estimation robustness and efficiency. We demonstrate via simulation study that

the proposed approach is indeed robust and can be much more efficient than the traditional

normal mixture model when outliers are present in the data, and in the absence of outliers

the proposed approach leads to comparable performance to that of the normal mixture

model. An application on lung growth of children further showcases the efficacy of the

proposed approach.

::::
The

::::
rest

:::
of

:::::
this

:::::::
paper

:::
is

::::::::::
organized

:::
as

:::::::::
follows.

::::
In

::::::::
Section

:::
2,

::::
we

:::::::::::
introduce

::::
our

:::::
new

::::::::
method

::
of

::::::
using

::::
the

::::::::::::::
multivariate

:
t
:::::::::::::
distribution

:::
in

::::::::
mixture

:::
of

::::::
linear

:::::::::::::::
mixed-effects

::::::::
models.

::
In

::::::::
Section

::
3,

::::
we

::::::::
provide

::
a

:::::::::::
simulation

::::::
study

:::
to

:::::::::
compare

::::
our

::::
new

::::::::
method

::::::
with

:::
the

::::::::::::
traditional

:::::::
normal

:::::::
based

:::::::::::
estimation

::::::::::
method.

:::
In

:::::::::
Section

::
4,

::::
An

:::::::::::::
application

::
of

::::
the

:::::
new

:::::::::
method

:::
to

::
a

::::
real

:::::
data

::::
set

::
is

::::::::::
provided.

:::::
We

:::::::::
conclude

:::::
this

:::::::
paper

:::::
with

::::::
some

:::::::::::
discussion

:::
in

::::::::
Section

::
5.

2 Robust t-Mixture Linear Mixed Models

2.1 The t-Mixture of Linear Mixed Models

In practice, outliers and anomalies are bounded to occur, and failure to accommodate

outliers may put both the model estimation and inference in jeopardy. This motivates

us to construct a robust t-mixture of linear mixed model. Given Zi = j, we start by
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assuming that the joint distribution of (yi,bij) isyi

bij

 | Zi = j ∼ tni+q

(Xiβj

0

 ,

UiΨjU
T
i +Λij UiΨj

ΨjU
T
i Ψj

 , νj

)
, (2.1)

where we use tn(µ,Σ, ν) to denotes a n-dimensional multivariate t distribution with mean

vector µ, scale matrix Σ and degrees of freedom ν; in the sequel we also use tn(·;µ,Σ, ν)

to denote its probability density function. Throughout, the error covariance matrices are

assumed to take the form Λij = σ2
jRi, for i = 1, . . . , I, j = 1, . . . ,m, where Ri are known

matrices taken to be the identity matrix, unless otherwisely
::::::::::
otherwise noted.

The proposed approach essentially assumes that yi follows a mixture distribution,

yi ∼
m∑
j=1

πjtni
(Xiβj,UiΨjU

T
i +Λij, νj), (2.2)

and given the observed data for i = 1, . . . , I, the log-likelihood function is

I∑
i=1

ln

{
m∑
j=1

πjtni
(yi;Xiβj,UiΨjU

T
i +Λij, νj)

}
. (2.3)

Comparing to model (1.4), we have used the multivariate t distribution to replace the

multivariate normal distribution, following similar idea in Lange et al. (1989). This

extension allows us to carry out the mixture mixed effect model analysis for any data

involving errors with longer-than-normal tails. The degrees of freedom parameters of the

t distributed components are unknown and estimated from the data, and this provides

a convenient way for achieving flexible tradeoff between robustness and efficiency, i.e., in

the special case ν = 1, the distribution becomes a multivariate Cauchy distribution, and

as ν → ∞, the distribution rolls back to the multivariate normal. Also note that in the

above model we have directly specified the distribution of yi as the multivariate t, instead

of separately specifying the distributions of the random effects and the error terms, as the

latter is unnecessary and may lead to untractable or inconvenient marginal distribution
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of yi.

To understand better about model (2.2), we shall discuss several of its alternative

representations, which may ultimately facilitate the maximum likelihood estimation to

be elaborated in the next section. It is known that the multivariate t distribution can

be written as a normal scale mixture distribution, i.e., its probability density function

t(x;µ,Σ, ν) can be expressed as

t(x;µ,Σ, ν) =

∫ ∞

0

f(x;µ,Σ/u)g(u;
ν

2
,
ν

2
)du,

where f denotes the normal density and g the Gamma density. In light of the above

characterization, it is convenient to express model (2.2) as a hierarchical model,

yi | bij, τij, j = 1, . . . ,m ∼
m∑
j=1

πjN(Xiβj +Uibij,
1

τij
Λij),

bij | τij ∼ N(0,
1

τij
Ψj), for j = 1, . . . ,m, (2.4)

τij ∼ Gamma(
νj
2
,
νj
2
), for j = 1, . . . ,m.

Model (2.2) could also be written in a conventional linear mixed model form. Given

Zi = j,

yi = Xiβj +Uibij + eij, i = 1, . . . , I,

where bij ∼ tq(0,Ψj, νj), and eij ∼ tni
(0,Λij, νj). Condition on τij, bij is independent

of eij, which means that in general bij and eij are uncorrelated but not independent, for

any νj <∞ (Pinheiro et al., 2001). It is now clear that in our proposed method, both bij

and eij follow multivariate t distribution, and thus the method is robust against potential

outliers in both the random effects or the within-subject random errors.
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By integrating out bij, the hierarchical model can be equivalently expressed as

yi | τij, j = 1, . . . ,m ∼
m∑
j=1

πjN(Xiβj,
1

τij
(UiΨjU

T
i +Λij)),

τij ∼ Gamma(
νj
2
,
νj
2
), for j = 1, . . . ,m.

The conditional distribution of τij can then be readily derived,

τij | yi, Zi = j ∼ Gamma

(
νj + ni

2
,
νj + δ2ij(βj,Ψj, σ

2
j )

2

)
,

where

δ2ij(βj,Ψj, σ
2
j ) = (yi −Xiβj)

T (UiΨjU
T
i +Λij)

−1(yi −Xiβj). (2.5)

Therefore,

E(τij | yi, Zi = j) =
νj + ni

νj + δ2ij(βj,Ψj, σ2
j )
. (2.6)

The above results will be useful in the proposed ECM algorithm in next section.

2.2 An Efficient ECM Algorithm For Maximum Likelihood Es-

timation

We propose to conduct maximum likelihood estimation and inference of the proposed

robust t-mixture linear mixed model. Direct maximization of the log-likelihood function

(2.3) constructed from mixture multivariate t distributions is quite difficult. In this sec-

tion, we derive an efficient ECM algorithm to solve the problem, extending the works

by Lange et al. (1989) and Pinheiro et al. (2001) in a more general context of mixture

model. The EM algorithm is commonly applied in problems with missing or incomplete

data, which is particularly suitable here, in view of the alternative hierarchical model

representation of the t-mixture model in (2.4).
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Let y = {y1, . . . ,yI},b = {bij; i = 1, . . . , I, j = 1, . . . ,m}, and τ = {τij; i =

1, . . . , I, j = 1, . . . ,m}. Let

Zij =

1 if the ith subject is from the jth mixture component,

0 otherwise,

and Z = {Zij; i = 1, . . . , I, j = 1, . . . ,m}. Similarly, let π = {πj; j = 1, . . . ,m}, β =

{βj; j = 1, . . . ,m}, Ψ = {Ψj; j = 1, . . . ,m}, σ2 = {σ2
j ; j = 1, . . . ,m}, and ν = {νj; j =

1, . . . ,m}.

In our problem, y is the observed response vector, while (b, τ ,Z) can be viewed as

the missing data. Based on the hierarchical model formulation in (2.4), the likelihood of

the complete data (y,b, τ ,Z) given the covariates (Xi,Ui) is,

I∏
i=1

m∏
j=1

{
πjf(yi;Xiβj +Uibij,

1

τij
Λij)f(bij;0,

1

τij
Ψj)g(τij;

νj
2
,
νj
2
)

}Zij

.

It follows that the complete log-likelihood function is

ℓ(π,β,Ψ,σ2,ν | y,b, τ ,Z)

=
I∑

i=1

m∑
j=1

Zij ln(πj)

+
I∑

i=1

m∑
j=1

Zij

{
−1

2
ln | 1

τij
σ2
jRi| −

1

2
ET

ij

(
1

τij
σ2
jRi

)−1

Eij + const

}

+
I∑

i=1

m∑
j=1

Zij

{
−1

2
ln | 1

τij
Ψj| −

1

2
(bij)

T

[
1

τij
Ψj

]−1

bij + const

}

+
I∑

i=1

m∑
j=1

Zij

{(
νj
2
− 1

)
ln(τij)−

τij
2
νj − ln

(
Γ
(νj
2

))
+
νj
2
ln

(
νj
2

)}
,

where Eij = yi −Xiβj −Uibij, and we have adopted the setting that Λij = σ2
jRi. Based

on the idea of ECM algorithm, we shall separate the above log-likelihood function into
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four parts, based on the parameters involved, i.e., let

ℓ(π,β,Ψ,σ2,ν | y,b, τ ,Z) =ℓ0(π | y,b, τ ,Z) + ℓ1(β,σ
2 | y,b, τ ,Z)

+ ℓ2(Ψ | y,b, τ ,Z) + ℓ3(ν | y,b, τ ,Z),

where

ℓ0(π | y,b, τ ,Z) =
I∑

i=1

m∑
j=1

Zij ln(πj),

ℓ1(β,σ
2 | y,b, τ ,Z) =

I∑
i=1

m∑
j=1

Zij

({
−ni

2
lnσ2

j −
τij
2σ2

j

ET
ijR

−1
i Eij

})

=−
I∑

i=1

m∑
j=1

Zij
ni

2
lnσ2

j

−
I∑

i=1

m∑
j=1

Zij

[
τij
2σ2

j

tr

{
R−1

i (yi −Uibij)(yi −Uibij)
T

}]

+
I∑

i=1

m∑
j=1

Zij

{
τij
σ2
j

βT
j X

T
i R

−1
i (yi −Uibij)

}

−
I∑

i=1

m∑
j=1

Zij

(
τij
2σ2

j

βT
j X

T
i R

−1
i Xiβj

)
,

ℓ2(Ψ | y,b, τ ,Z) =
I∑

i=1

m∑
j=1

Zij

(
− 1

2
ln |Ψj|

)
− 1

2

I∑
i=1

m∑
j=1

Zij

(
τijb

T
ijΨ

−1
j bij

)

=− 1

2

I∑
i=1

m∑
j=1

Zij ln |Ψj| −
1

2
tr

(
Ψ−1

j

I∑
i=1

m∑
j=1

Zijτijbijb
T
ij

)
,

and

ℓ3(ν | y,b, τ ,Z) =
I∑

i=1

m∑
j=1

Zij

[{
νj
2

(
ln(

νj
2
) + ln(τij)− τij

)
− ln(τij)− ln

(
Γ(
νj
2
)

)}]
.

Let θ = (π,β,Ψ,σ2,ν), collecting all the unknown parameters. Given θ = θ̂, we now

derive the expected complete data log-likelihood, E{ℓ(θ | y,b, τ ,Z) | y, θ̂}, with respect
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to the missing data (b, τ ,Z) and conditional on the observed data y. This simplifies to

the calculations of the following quantities,

pij = E(Zij = 1 | θ = θ̂,y),

τ̂ij = E(τij | θ = θ̂,y, Zij = 1),

b̂ij = E(bij | θ = θ̂,y, Zij = 1, τij),

Ω̂ij = τijcov(bij | θ = θ̂,y, Zij = 1, τij).

From (2.2), it is easy to show that

pij =
πjtni

(yi;Xiβ̂j,UiΨ̂jU
T
i , ν̂j)∑m

j=1 πjtni
(yi;Xiβ̂j,UiΨ̂jUT

i , ν̂j)
. (2.7)

By (2.6) we have

τ̂ij =
ν̂j + ni

ν̂j + δ2ij(βj, Ψ̂j, σ̂2
j )
, (2.8)

where δ2ij(βj, Ψ̂j, σ̂
2
j ) is defined as in (2.5). Next, based on the assumed multivariate t

model (2.1) and the normal scale mixture representation,

bij | yi, Zij = 1, τij ∼ Nq

(
A(yi −Xiβj),

1

τij
(Ψj −AUiΨj)

)
,

where A = ΨjU
T
i (UiΨjU

T
i + σ2

jRi)
−1. It follows that

b̂ij = Ψ̂jU
T
i

(
UiΨ̂jU

T
i + σ̂2

jRi

)−1

(yi −Xiβ̂j)

=

(
Ψ̂−1

j +
1

σ̂2
j

UT
i R

−1
i Ui

)−1
1

σ̂2
j

UT
i R

−1
i (yi −Xiβ̂j), (2.9)
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and

Ω̂ij = Ψ̂j − Ψ̂jU
T
i (UiΨ̂jU

T
i + σ̂2

jRi)
−1UiΨ̂j =

(
Ψ̂−1

j +
1

σ̂2
j

UT
i R

−1
i Ui

)−1

. (2.10)

With all the above results, we have

E
(
ℓ0(π | y,b, τ ,Z) | y, θ̂

)
=

I∑
i=1

m∑
j=1

pij ln(πj), (2.11)

E
(
ℓ1(β,σ

2 | y,b, τ ,Z) | y, θ̂
)

=−
I∑

i=1

m∑
j=1

pij
ni

2
lnσ2

j −
I∑

i=1

m∑
j=1

pij
1

2σ2
j

tr

[
R−1

i

{
UiΩ̂ijU

T
i + τ̂ij(yi −Uib̂ij)(yi −Uib̂ij)

T
}]

+
I∑

i=1

m∑
j=1

pij
1

σ2
j

τ̂ijβ
T
j X

T
i R

−1
i (yi −Uib̂ij)−

I∑
i=1

m∑
j=1

pij
1

2σ2
j

τ̂ijβ
T
j X

T
i R

−1
i Xiβj, (2.12)

E
(
ℓ2(Ψ | y,b, τ ,Z) | y, θ̂

)
=− 1

2

I∑
i=1

m∑
j=1

pij ln |Ψj| −
1

2
tr

{
Ψ−1

j

I∑
i=1

m∑
j=1

pij(τ̂ijb̂ijb̂
T
ij + Ω̂ij)

}
, (2.13)

and

E
(
ℓ3(ν | y,b, τ ,Z) | y, θ̂

)
=

I∑
i=1

m∑
j=1

pij

[
νj
2

{
ln(

νj
2
) + E[ln(τij) | y, θ̂, Zij = 1]− τ̂ij

}
−E[ln(τij) | y, θ̂, Zij = 1]− ln{Γ(νj

2
)}
]
. (2.14)

Following Khodabina and Alireza (2010) and based on properties of generalized Gamma

distribution,

E
(
ln(τij) | y, θ̂, Zij = 1

)
= ln τ̂ij +

{
ψ

(
νj + ni

2

)
− ln

(
νj + ni

2

)}
,

where

ψ

(
νj + ni

2

)
=
∂Γ(

νj+ni

2
)

∂(
νj+ni

2
)
/Γ(

νj + ni

2
).

11



Now we are ready to fully describe our proposed ECM algorithm
::::::
(Meng

:::::
and

:::::::
Rubin

::::::
1993)for conducting maximum likelihood estimation.

Initialization: Set k = 0; obtain some initial estimates of the parameters θ(0), including

π
(0)
j , β

(0)
j , Ψ

(0)
j , ν

(0)
j , and σ

2(0)
j , for j = 1, . . . ,m.

:::::::::::::::
Initial values:

:::::::
There

::::
are

::::::
many

::::::
ways

::
to

:::::
find

:::
the

:::::::
initial

:::::::
values

:::
for

::::::
{π(0)

j ,
:::::
β

(0)
j ,

::::::::::::::::::::
σ(0), j = 1, . . . ,m}.

::::
One

:::::::::
method

::
is

:::
to

::::
use

::::::::::
trimmed

:::::::::::
likelihood

::::::::::
estimates

::::::::
(TLE)

::::::::::
(Neykov,

:::
et

:::
al.

::::::::
2007).

::::::
Note

::::
that

:::::
the

:::::
TLE

:::
is

::::::::
robust

:::
to

::::::
both

::::
low

::::::::::
leverage

::::
and

::::::
high

:::::::::
leverage

:::::::::
outliers

:::::::
under

::::::::
certain

:::::::
general

::::::::::::
conditions

::::::::::
(Neykov,

::::
et

:::
al.

:::::::::
2007).

::::::::::
Another

::::::::::
possible

:::::::::
method

::
is
::::::
that

::::
we

:::::
first

::::::::::
randomly

::::::::::
partition

::::
the

:::::
data

:::
or

::
a
::::::::
subset

::
of

::::
the

::::::
data

:::::
into

:::
m

::::::::
groups.

:::::
For

:::::
each

:::::::
group,

::::
we

:::
use

::::::
some

::::::::
robust

::::::::::
regression

::::::::::
method,

:::::
such

:::
as

::::
the

::::::::::::::
MM-estimate

:::::::::
(Yohai,

:::::::
1987),

:::
to

:::::::::
estimate

:::
the

::::::::::::
component

:::::::::::
regression

:::::::::::::
parameters.

::::::::
Similar

::::::::::
partition

::::::
ideas

:::::
have

::::::
been

:::::
used

:::
to

:::::
find

::::
the

::::::
initial

:::::::
values

::::
for

::::::
finite

:::::::::
mixture

::::::::
models

::::::::::::
(McLachlan

:::::
and

::::::
Peel,

:::::::
2000).

:::
In

::::::::::
addition,

::::
we

::::
can

::::
also

:::::::
apply

::::
the

::::::::
robust

::::::
linear

:::::::::::
clustering

:::::::::
method

:::
to

:::::
find

::::
the

:::::::
initial

::::::::::::
regression

:::::::::::
parameter

:::::::
values.

:::::
See,

::::
for

::::::::::
example,

::::::::
Hennig

:::::::
(2002,

:::::::
2003),

::::
and

:::::::::::::::::::
Garćıa-Escudero,

::
et

::::
al.

::::::::
(2009).

::::::
Note

::::
that

:::::::::
though,

::::::::::::
technically,

::::
the

::::::::
robust

::::::
linear

:::::::::::
clustering

::::::::::
methods

:::
do

::::
not

:::::::::
produce

:::::::::::
consistent

::::::::::
regression

::::::::::::
component

::::::::::::
estimators.

::::::
But

:::
in

::::::
many

:::::::
cases,

:::::
they

:::::
are

:::::
close

:::::::::
enough

:::
to

::::::::
provide

:::::
good

:::::::
initial

::::::::
values,

:::::
since

:::::
the

::::::::::
proposed

::::::::::
algorithm

:::::::::
doesn’t

::::::::
require

::::
the

:::::::
initial

:::::::
values

:::
to

:::
be

:::::::::::
consistent.

E-step: At (k + 1)th iteration, given θ = θ(k), compute p
(k+1)
ij ,b

(k+1)
ij , τ

(k+1)
ij and Ω

(k+1)
ij

based on (2.7), (2.9), (2.8) and (2.10), respectively, for i = 1, . . . , I and j = 1, . . . ,m. Sub-

sequently, the four components of the expected complete log-likelihood can be constructed

from (2.11), (2.12), (2.13), and (2.14), respectively.

::
CM-step:

M-0: Obtain π
(k+1)
j , j = 1, . . . ,m, by maximizing E

(
ℓ0(π | y,b, τ ,Z) | y,θ(k)

)
, with

respect to π,

π
(k+1)
j =

1

I

I∑
i=1

p
(k+1)
ij .
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M-1: Given σ2
j = σ

2(k)
j , j = 1, . . . ,m, obtain β

(k+1)
j , j = 1, . . . ,m, by maximizing

E
(
ℓ1(β,σ

2(k) | y,b, τ ,Z) | y,θ(k)
)
with respect to β,

β
(k+1)
j =

{
I∑

i=1

p
(k+1)
ij

τ
(k+1)
ij

σ
2(k)
j

XT
i R

−1
i Xi

}−1{ I∑
i=1

p
(k+1)
ij

τ
(k+1)
ij

σ
2(k)
j

XT
i R

−1
i (yi −Uib

(k+1)
ij )

}
.

M-2: Given βj = β
(k+1)
j , j = 1, . . . ,m, obtain σ

2(k+1)
j , j = 1, . . . ,m, by maximizing

E
(
ℓ1(β

(k+1),σ2 | y,b, τ ,Z) | y,θ(k)
)
with respect to σ2,

σ
2(k+1)
j =

∑I
i=1 p

(k+1)
ij

{
τ
(k+1)
ij ET

ijR
−1
i Eij + tr(Ω

(k+1)
ij UT

i R
−1
i Ui)

}
∑I

i=1 p
(k+1)
ij ni

,

M-3: ObtainΨ
(k+1)
j , j = 1, . . . ,m, by maximizing E

(
ℓ2(Ψ | y,b, τ ,Z) | y,θ(k)

)
with

respect to Ψ,

Ψ
(k+1)
j =

∑I
i=1 p

(k+1)
ij (τ

(k+1)
ij b

(k+1)
ij (b

(k+1)
ij )T +Ω

(k+1)
ij )∑I

i=1 p
(k+1)
ij

.

M-4: Obtain ν
(k+1)
j , j = 1, . . . ,m, by maximizing E

(
ℓ3(ν | y,b, τ ,Z) | y,θ(k)

)
with

respect to ν.

ν
(k+1)
j = argmax

νj

[
I∑

i=1

p
(k+1)
ij

νj
2

{
ln(

νj
2
) + E[ln(τij) | y,θ(k), Zij = 1]− τ

(k+1)
ij

}
− ln{Γ(νj

2
)}

]
.

The problem is separable in each νj. Although these one-dimensional problems do not

admit explicit solutions, they can be solved by numerical optimization methods, e.g.,

the Newton-Raphson algorithm or the secant method. However, we find that the above

approach may not be always stable, partly due to the high nonlinearity of the objective

function. Alternatively, we can replace M-4 by carrying out constrained estimation of the

actual log-likelihood (2.3) with respect to the unknown degrees of freedom parameters,

with all the other parameters held fixed at their currently updated values (Pinheiro et al.,

13



2001).

M-4*: Obtain ν
(k+1)
j , j = 1, . . . ,m, by maximizing (2.3) with respect to ν, with

π = π(k+1), β = β(k+1), Ψ = Ψ(k+1), and σ2 = σ2(k+1).

In the case that νj = ν, j = 1, . . . ,m, it is convenient to use a profile likelihood

approach to avoid either M-4 or M-4* step entirely in the ECM algorithm, i.e., conduct

maximum likelihood estimation with ν held fixed, for a grid of ν values, say, ν = 1, . . . , 20,

and then the final estimate of the degrees of freedom is selected as the one that gives the

largest log-likelihood.

In the M-step, we do not aim to fully maximize the expected log-likelihood, as it

requires iteratively solving M-1 and M-2, which may be computationally inefficient. Nev-

ertheless, solving each of the five subproblems once in the M-step monotonically increases

the expected log-likelihood, which implies that the stable monotone convergence property

of the ECM algorithm is preserved. The E-step and M-step are carried out alternatingly,

until convergence is reached, i.e., the log-likelihood function (2.3) stops increasing up to

a small tolerance value. Based on our limited experience, the proposed algorithm works

well in terms of both computational stability and efficiency.

3 Simulation Study

We generate data from the following model

yi =

 Xiβ1 +Uibi1 + ei1, if Zi = 1;

Xiβ2 +Uibi2 + ei2, if Zi = 2,

where i = 1, . . . , I, β1 = (1, 1, 0, 0)T , β2 = (0, 0, 1, 1)T , and π1 = P (Zi = 1) = 0.4. The

rows of the covariates Xi ∈ Rni×4 are independently generated from N4(0, I). The rows

of Ui ∈ Rni×2 are independently generated from N2(0, I).

We consider the following three types of random effects and error distributions.

1. t distribution: eij ∼ tni
(0,Λij, ν), bij ∼ tq(0,Ψj, ν), and given τij, bij and eij

14



are conditionally independent. That is, bij | τij ∼ N(0, 1
τij
Ψj) and eij | τij ∼

N(0, 1
τij
Λij). We set Λij as an identity matrix and Ψj as a diagonal matrix with

diagonal elements 1 and off-diagonal elements 0.5. We consider three degrees of

freedom values, i.e., ν ∈ {1, 3, 5}.

2. Normal distribution: eij ∼ Nni
(0,Λij) and bij ∼ Nq(0,Ψj), where we set Λij

as an identity matrix and Ψj as a diagonal matrix with diagonal elements 1 and

off-diagonal elements 0.5.

3. Contaminated normal distribution: eij ∼ 0.95Nni
(0, I) + 0.05Nni

(0, 25I) and bij ∼

0.95Nq(0, I) + 0.05Nq(0, 25I).

We have experimented with various sample sizes and numbers of replicates per sample.

In particular, the following four cases are considered herein,

Case 1: ni = 8, I = 100.

Case 2: ni = 8, I = 200.

Case 3: ni = 4, I = 200.

Case 4: ni = 4, I = 400.

The simulation is replicated 500 times under each setting.

We mainly compare our proposed robust t-mixture method to the normal mixture

mixed effect approach. Our implemented EM algorithm can be readily modified to fit

the normal mixture model; a more straightforward approach is to use our t-mixture EM

algorithm with the degrees of freedom parameters held fixed at large number values,

say, 1000, so that the t distribution becomes very close to normal. Similar to Bordes

et al. (2007) and Hunter and Young (2012), we use the true parameter values as the

initial values to start the EM algorithm, in order to avoid the possible bias introduced by

different starting values among replications or label switching issues (Celeux, et al., 2000;

Stephens, 2000; Yao and Lindsay, 2009), so as to compare the “best-case” results of the
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various estimation methods. The degrees of freedom estimates in the t-mixture model is

determined based on the aforementioned profile likelihood approach.

In Table 1, we report the average degrees of freedom estimates using the t-mixture

model under the aforementioned five mixed effect and error structures. As the tail of

the assumed mixed effect and error distribution becomes heavier, the estimated degrees

of freedom becomes smaller on average as expected. Therefore, the proposed approach

captures the tail behavior of the mixed effect and error distributions quite well.

In Tables 2–5, we report the median squared errors (MedSE) for parameter estimates

and the relative efficiencies of our proposed t-mixture method as compared to the con-

ventional normal mixture model. In Figures 1–2, we also show the MedSE for some of

parameter estimates for cases 1 and 2. Our t-mixture approach works very well and

consistently outperforms the normal mixture model when the random effects and error

distributions are of heavy tail or are contaminated by outliers. Even when the random

effects and the error terms follow normal distribution, the performance of the t-mixture

model is comparable to that of the normal mixture model. This is essentially because the

latter method can be treated as a special case of our proposed robust t-mixture model,

and thus the efficiency loss is minimal when no outlier presents in the data. When the

true model has t-distributed random effects and errors, the relative efficiency estimates

may be very high. This is because the normal mixture model may fail miserably when

applied to heavy-tailed Cauchy or close-to-Cauchy distributions.

4 Lung Growth Data Analysis

We consider a longitudinal dataset on lung growth of girls, from a study of air pollution

and health in six cities across the U.S.; see Dockery et al. (1983) for the details of the

study. Here we focus on the records gathered from Topeka, Kansas. The lung growth

status of 300 girls in Topeka were tracked. Most of them were enrolled in the first or

second grade and between the ages of six and seven, and measurements of participants
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were obtained annually until graduation from high school or loss to follow-up (Dockery

et al., 1983). We have omitted the subjects with only one record, and now the number of

observations gathered on each of the remaining 252 subjects over time ranges from 2 to

12.

We use the logarithmic forced expiratory volume in one second (fev1) as the response

variable. Specially, this variable measures the volume of air that can be forcibly exhaled

from the lungs in the first second of a forced expiratory maneuver, and it is critically

important in the diagnosis of obstructive and restrictive diseases and is a commonly-

used measure of lung function from the pulmonary function tests. We are interested in

modeling the lung growth pattern over time, and thus the age variable is used as both

the fixed-effect covariate and the random-effect covariate. It is also of great interest

to investigate whether the subjects form several distinct clusters or groups that exhibit

different behaviors on lung growth. We thus fit the data based on the traditional normal

mixture of linear mixed models and the proposed robust t-mixture of linear mixed models.

Following Heinzl et al. (2013), a three-component mixture model is used.

Table 6 shows the estimated parameters.
:::::
β̂0i’s:::::

and
:::::
β̂1i’s::::

are
::::::::
relative

:::::::::::
intercepts

:::::
and

::::::
slopes

:::
in

::::
the

:::::::::
mixture

:::
of

:::::::
linear

:::::::
mixed

:::::::
model

::::::
with

:::::::::
response

::::::::
“fev1”

::::
and

:::::::::::
predictor

:::::::
“age”.

::::::::::
Following

::::
the

:::::
three

:::::::::::::
components

:::
in

::::
the

::::::::
original

:::::::
paper,

:::
we

::::
got

::::
β̂0i,::::

β̂1i,:::::::
where

:::::::::::
i = 1, 2, 3.

::::
and

::::
two

:::::::::::::
probabilities

:::̂
π,

:::::::
where

::::::::::::::::::
π̂3 = 1− π̂1 − π̂2:. Based on the profile likelihood approach,

the degrees of freedom of the t-mixture model is estimated to be ν̂ = 28, which is quite

large. This result suggests that the random effects and the errors may be approximately

normally distributed in this application. To test our robust estimation approach, however,

we add some artificial outliers for some arbitrarily selected subjects in the dataset and

refit the t-mixture model. Using contaminated datasets with outliers in one subject
:::::
(add

::
10

:::
to

::::
the

:::::::::
response

:::::::
(fev1)

:::::::
values

::
in

::::
1st

:::::::::
subject.), the estimated degrees of freedom is ν = 9,

and using the contaminated datasets with outliers in two subjects
:::::
(add

:::
10

:::
to

::::
the

:::::::::
response

::::::
(fev1)

:::::::
values

:::
in

::::
1st

::::
and

:::::
2nd

::::::::::
subjects.), the estimate becomes ν = 6. The decrease in the

estimated degrees of freedom as the number of outliers increases clearly demonstrates
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the robustness of the proposed approach. In addition, compared to the estimates of the

traditional normal mixture of linear mixed models, the parameter estimates for the new

method does not change much when the outliers are added into the data set.

Our analysis
::::::
based

:::
on

::::::::
original

:::::
datareveals some interesting cluster structure. In Figure

3, three distinct groups can be clearly distinguished by the intercept and slope estimates

bases on the mixed effects. Girls assigned to different clusters are marked with different

colors and symbols. It appears that cluster 1 (blue, triangle) consists of the girls who had

initial low-level lung function and then experienced relatively fast lung growth to their

adulthood. In contrast, cluster 2 (red, circle) consists of the girls who had relatively high

level of initial lung development and then experienced relatively slow lung growth to their

adulthood. Cluster 3 (black, cross) is the smallest cluster of the three, which appears

to consist of the girls who had relatively low level of initial lung development and also

experienced relatively slow lung growth over time.

5 Discussion

In this article, we have proposed a robust mixture linear mixed model, using multivariate

t distribution to robustify the model estimation and inference. An ECM algorithm is

proposed to maximize the mixture likelihood. The simulation study and real data appli-

cation demonstrated that the proposed method has comparable performance to normal

based method when there are no outliers but has much better performance when the error

has heavy tail or there are outliers.

However, based on our limited empirical experience, the estimates of degrees of freedom

are not very accurate. Its consistency might require much larger sample size than we used

in our simulation study. Although Hennig (2004) and Yao et al. (2014) pointed out that

the mixture of t-distributio has a very small breakdown point, the breakdown occurs only

when the outliers are very extreme. Therefore, the t-distribution has been widely used to

provide a robust estimation for mixture models (Peel and McLachlan, 2000).
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It is of interest to extend the proposed model to other distributions that possess certain

robustness properties, e.g., mixture of Laplace distributed mixed effects and random er-

rors. Note that the proposed method can only handle moderate outliers in y direction and

is not robust to outliers in x direction. It is worthwhile to apply the trimmed-likelihood

idea to the mixture linear mixed model setups. The recently developed penalized esti-

mation approaches may also be adopted to directly capture and accommodate potential

outliers.
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#replicates #subjects Estimated degrees of freedom

t1 t3 t5 Normal Contaminated Normal

ni = 8
I = 100 1.605 5.665 6.716 12.46 4.839

I = 200 1.605 3.832 9.868 12.46 4.133

ni = 4
I = 200 2.575 6.149 7.199 10.65 5.665

I = 400 1.488 5.252 7.766 12.46 3.015

Table 1: Degrees of freedom estimation results, based on 500 simulation runs.

22



Estimator
Random Effects and Error Distribution

t1 t3 t5 Normal Contaminated N.

π̂1
MedSE(NMM) 0.196 0.014 0.014 0.009 0.014

MedSE(tMM) 0.064 0.010 0.014 0.009 0.009

Efficiency 3.063 1.400 1.000 1.000 1.556

β̂11
MedSE(NMM) 0.265 0.106 0.005 0.004 0.010

MedSE(tMM) 0.197 0.006 0.003 0.004 0.004

Efficiency 1.345 17.667 1.667 1.000 2.500

β̂21
MedSE(NMM) 0.279 0.110 0.005 0.004 0.012

MedSE(tMM) 0.216 0.007 0.004 0.004 0.004

Efficiency 1.292 15.714 1.250 1.000 3.000

β̂31
MedSE(NMM) 0.276 0.094 0.006 0.003 0.010

Median(tMM) 0.237 0.008 0.005 0.003 0.004

Efficiency 1.165 11.750 1.200 1.000 2.500

β̂41
MedSE(NMM) 0.265 0.118 0.005 0.004 0.012

Median(tMM) 0.192 0.008 0.004 0.004 0.004

Efficiency 1.380 14.750 1.250 1.000 3.000

β̂12
MedSE(NMM) 7.871 0.014 0.005 0.003 0.011

MedSE(tMM) 0.085 0.005 0.004 0.003 0.004

Efficiency 92.600 1.280 1.250 1.000 2.750

β̂22
MedSE(NMM) 7.516 0.015 0.006 0.003 0.012

MedSE(tMM) 0.078 0.004 0.004 0.003 0.004

Efficiency 92.600 3.750 1.500 1.000 3.000

β̂32
MedSE(NMM) 7.235 0.017 0.008 0.003 0.012

MedSE(tMM) 0.081 0.005 0.004 0.003 0.004

Efficiency 89.321 3.400 2.000 1.000 3.000

β̂42
MedSE(NMM) 5.869 0.017 0.006 0.003 0.012

MedSE(tMM) 0.081 0.005 0.005 0.003 0.004

Efficiency 72.457 3.400 1.200 1.000 3.000

Table 2: Simulation results for Case 1: ni = 8, I = 100.
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Estimator
Random Effects and Error Distribution

t1 t3 t5 Normal Contaminated N.

π̂1
MedSE(NMM) 0.211 0.010 0.011 0.012 0.014

MedSE(tMM) 0.054 0.010 0.011 0.012 0.011

Efficiency 3.907 1.000 1.000 1.000 1.273

β̂11
MedSE(NMM) 0.289 0.041 0.004 0.001 0.004

MedSE(tMM) 0.151 0.002 0.002 0.001 0.002

Efficiency 1.914 20.500 2.000 1.000 2.000

β̂21
MedSE(NMM) 0.270 0.040 0.003 0.001 0.005

MedSE(tMM) 0.139 0.002 0.002 0.002 0.002

Efficiency 1.942 20 1.500 0.500 2.500

β̂31
MedSE(NMM) 0.266 0.034 0.003 0.001 0.005

MedSE(tMM) 0.161 0.003 0.002 0.001 0.002

Efficiency 1.652 11.333 1.500 1.000 2.500

β̂41
MedSE(NMM) 0.271 0.040 0.004 0.002 0.004

MedSE(tMM) 0.155 0.002 0.002 0.002 0.002

Efficiency 1.748 20.000 2.000 1.000 2.000

β̂12
MedSE(NMM) 7.753 0.008 0.004 0.002 0.007

MedSE(tMM) 0.031 0.002 0.002 0.002 0.002

Efficiency 250.097 4.000 2.00 1.000 3.500

β̂22
MedSE(NMM) 5.797 0.008 0.004 0.001 0.008

MedSE(tMM) 0.028 0.002 0.002 0.001 0.002

Efficiency 207.036 4.000 2.000 1.000 4.000

β̂32
MedSE(NMM) 6.116 0.008 0.004 0.001 0.009

MedSE(tMM) 0.035 0.002 0.002 0.002 0.002

Efficiency 175.029 4.000 2.000 0.500 4.500

β̂42
MedSE(NMM) 6.783 0.009 0.003 0.002 0.008

MedSE(tMM) 0.033 0.002 0.002 0.002 0.002

Efficiency 204.545 4.500 1.500 1.000 4.000

Table 3: Simulation results for Case 2: ni = 8, I = 200.
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Estimator
Random Effects and Error Distribution

t1 t3 t5 Normal Contaminated N.

π̂1
MedSE(NMM) 0.208 0.039 0.012 0.011 0.068

MedSE(tMM) 0.079 0.013 0.012 0.011 0.008

Efficiency 2.633 3.000 1.000 1.000 8.500

β̂11
MedSE(NMM) 0.253 0.181 0.007 0.004 0.095

MedSE(tMM) 0.253 0.008 0.006 0.002 0.005

Efficiency 1.000 2.130 1.167 2.000 19.000

β̂21
MedSE(NMM) 0.228 0.201 0.006 0.003 0.104

MedSE(tMM) 0.246 0.010 0.005 0.002 0.006

Efficiency 0.927 20.100 1.200 1.500 5.567

β̂31
MedSE(NMM) 0.251 0.194 0.007 0.003 0.106

MedSE(tMM) 0.250 0.009 0.005 0.002 0.005

Efficiency 1.008 21.556 1.400 1.500 21.200

β̂41
MedSE(NMM) 0.249 0.203 0.009 0.004 0.113

MedSE(tMM) 0.241 0.008 0.006 0.002 0.006

Efficiency 1.029 25.375 1.500 2.000 18.833

β̂12
MedSE(NMM) 11.846 0.335 0.007 0.004 0.043

MedSE(tMM) 0.405 0.011 0.005 0.002 0.004

Efficiency 29.249 30.455 1.400 2.000 10.750

β̂22
MedSE(NMM) 16.726 0.209 0.007 0.004 0.048

MedSE(tMM) 0.443 0.009 0.006 0.002 0.004

Efficiency 37.756 23.222 1.167 2.000 12.000

β̂32
MedSE(NMM) 15.735 0.270 0.007 0.004 0.045

MedSE(tMM) 0.337 0.009 0.005 0.002 0.004

Efficiency 46.691 30.000 1.400 2.000 11.250

β̂42
MedSE(NMM) 15.323 0.275 0.008 0.003 0.035

MedSE(tMM) 0.379 0.009 0.006 0.002 0.004

Efficiency 40.456 30.556 1.333 1.500 8.750

Table 4: Simulation results for Case 3: ni = 4, I = 200.
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Estimator
Random Effects and Error Distribution

t1 t3 t5 Normal Contaminated N.

π̂1
MedSE(NMM) 0.222 0.211 0.012 0.009 0.224

MedSE(tMM) 0.044 0.054 0.012 0.009 0.010

Efficiency 5.045 3.907 1.000 1.000 22.400

β̂11
MedSE(NMM) 0.275 0.289 0.007 0.002 0.177

MedSE(tMM) 0.083 0.151 0.006 0.002 0.002

Efficiency 3.313 1.914 1.167 1.000 88.500

β̂21
MedSE(NMM) 0.280 0.270 0.006 0.002 0.174

MedSE(tMM) 0.084 0.139 0.005 0.002 0.002

Efficiency 3.333 1.942 1.200 1.000 87.000

β̂31
MedSE(NMM) 0.279 0.266 0.007 0.002 0.181

MedSE(tMM) 0.079 0.161 0.005 0.002 0.002

Efficiency 3.532 1.652 1.400 1.000 90.500

β̂41
MedSE(NMM) 0.276 0.271 0.009 0.002 0.180

MedSE(tMM) 0.075 0.155 0.006 0.002 0.002

Efficiency 3.680 1.748 1.600 1.000 90.000

β̂12
MedSE(NMM) 14.856 7.753 0.007 0.002 0.042

MedSE(tMM) 0.024 0.031 0.005 0.002 0.002

Efficiency 619.000 250.097 1.400 1.000 21.000

β̂22
MedSE(NMM) 17.778 5.797 0.007 0.002 0.059

MedSE(tMM) 0.025 0.028 0.006 0.002 0.002

Efficiency 711.120 207.036 1.167 1.000 29.500

β̂32
MedSE(NMM) 12.837 6.116 0.007 0.002 0.043

MedSE(tMM) 0.030 0.035 0.005 0.002 0.002

Efficiency 427.900 175.029 1.400 1.000 21.500

β̂42
MedSE(NMM) 18.654 6.783 0.008 0.002 0.041

MedSE(tMM) 0.030 0.033 0.006 0.001 0.002

Efficiency 621.8 205.545 1.333 2.000 20.500

Table 5: Simulation results for Case 4: ni = 4, I = 400.
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Original With 1 outlier With 2 outliers

t28 Normal t9 Normal t6 Normal

π̂1 0.248 0.235 0.281 0.569 0.297 0.196

π̂2 0.688 0.704 0.652 0.402 0.630 0.765

β̂01 -0.010 -0.010 -0.041 -0.126 -0.056 -0.175

β̂11 0.074 0.074 0.074 0.083 0.075 0.083

β̂02 -0.350 -0.341 -0.361 -0.336 -0.368 -0.274

β̂12 0.092 0.091 0.093 0.090 0.093 0.087

β̂03 -0.307 -0.296 -0.293 -0.418 -0.279 -0.335

β̂13 0.074 0.073 0.074 0.090 0.075 0.088

Table 6: Estimation results for the Topeka girls lung function data analysis.
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Figure 1: The median squared errors of Case 1. Solid line is for the t-mixture method and
dashed line is for the normal mixture method. The five conditions refer to five scenarios
of the random effects and error distributions, i.e., t1, t3, t5, normal, and contaminated
normal, respectively.
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Figure 2: The median squared errors of Case 2. All the settings are the same as in Figure
1.
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Figure 3: Cluster patten revealed by the t-mixture model based on the estimated intercept
and slope parameters of the mixed effects.
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