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Abstract

Applications of non-linear algebra to biology

by

Dustin Alexander Cartwright

Doctor of Philosophy in Mathematics
and the Designated Emphasis in Computational and Genomic Biology

University of California, Berkeley

Professor Bernd Sturmfels, Chair

We present two applications of non-linear algebra to biology. Our first application is to the
analysis of gene expression data from Arabidoposis roots. In Chapter 2, we present a method
for computing non-negative roots to certain systems of polynomials. This algorithm is based
on a generalization of the Expectation-Maximization and Iterative Proportional Fitting from
statistics. In Chapter 3, this method is applied to a model for gene expression coming from
roots of the Arabidopsis plant. Variation in gene expression is one method in which different
tissue types develop different functional characteristics. Our model for gene expression in
these roots is non-linear and so we apply the method from Chapter 2.

Our second application is the use of secant varieties to study mixture models for the
distribution of single-nucleotide polymorphisms in genes. In Chapter 4, we give generators
for the defining ideal of the first 5 secant varieties of P2 × Pn−1 embedded by O(1, 2). Our
equations come from a generalization of the flattening of a tensor, which we call an exterior
flattening. The study of secant varieties is a classical subject in algebraic geometry, which
has recently been connected to applications in algebraic statistics. In Chapter 5, this con-
nection is used in order to understand how single-nucleotide polymorphisms occur within
human genes. Because genes perform important functions, there is selective pressure against
mutations which affect the gene’s behavior. As we show, these selective pressures are closely
tied to the nature by which genetic sequence codes for the constituent amino acids of a
protein.
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Chapter 1

Introduction

In this dissertation, we present two applications of non-linear algebra to biology. Our use
of non-linear algebra includes both polynomial algebra, in which linear equations are replaced
by polynomials, and multi-linear algebra, in which a single linear dependence, represented by
a matrix, is replaced by multiple linear dependences, represented by a tensor. While linear
algebra is widely applied across many fields, the applications of non-linear algebra are not as
prevalent. Non-linearity presents additional computational and interpretational challenges,
some of which are addressed in this dissertation.

Because of the non-linearity, algebraic geometry becomes a key tool in our analysis.
Algebraic geometry is the study of solutions to polynomial equations. Traditionally, the
solutions are taken to be in an algebraically closed field, such as the complex numbers, and
the strongest results still only hold in that context. For example, in Chapter 2, we study the
problem of finding only non-negative real solutions to polynomial equations. A number of
methods exist for finding all complex solutions, from which the non-negative real solutions
can be selected. However, in cases when the number of complex solutions is vastly larger, it
is more efficient to directly find just the non-negative real solutions, but few methods exist
in this situation. Our method for doing so is specifically built for real non-negative solutions.

Our first biological application is inferring expression patterns in Arabidoposis roots,
which is presented in Chapter 3. Variation in gene expression level is a key factor in the
differentiation of cell functionality, and thus essential to understanding the developmental
process. We describe a model for expression levels in the root of the Arabidopsis plant. Our
model is parametrized by bilinear polynomials. In order to solve these equations, we adapt
the methods of Expectation-Maximization and Iterative Proportional Fitting from statistics.
These adaptations are described in Chapter 2.

In our second application, we look at the distribution of single-nucleotide polymorphisms
(SNPs) in genes. Since genes code for proteins, whose functions are essential to the growth
and reproduction of the organism in which they occur, there are selective pressures on the
mutations which can occur within a gene. In Chapter 5, we organize the occurrence of SNPs
within human genes into a 3 × 4 × 4 semi-symmetric contingency table. This contingency
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table is tested against a mixture model with various numbers of hidden states in order to
understand the interaction between phase within a codon and selective pressure. Our method
for testing mixture models is based on having a determinantal representation for the secant
varieties of P2 × P3 embedded by the ample line bundle O(1, 2).

Chapter 4 is devoted to the secant varieties of P2 × Pn−1 embedded by O(1, 2). In
particular, we give equations for the first 5 secant varieties of this Segre-Veronese variety,
in a determinantal representation. This determinantal representation, together with the use
of singular value decomposition, is what allows us to robustly test these conditions allowing
them to be the basis of a statistical test in Chapter 5.

1.1 Algebraic statistics

Algebraic statistics involves the application of algebraic geometry techniques to statistical
problems [19]. We start with the definition of probabilistic model of an event on a discrete
state space of n events as a function f : Ω → ∆n−1, where ∆n−1 is the (n − 1)-dimensional
simplex, considered as the set of points in Rn

≥0 whose sum is 1, and Ω is a parameter space. In
algebraic statistics, we define the function f by polynomials. Likewise, Ω is a semi-algebraic
set in Rn, such as a product of simplices. One of the standard problems in algebraic statistics
is to find the ideal I of all polynomials vanishing on the image of f . One case of this problem
is taken up in Chapter 4.

One application of knowing these equations is to provide a way to test whether a prob-
ability distribution belongs to the image of the statistical model. Given data which comes
from the model f , the counts of the different events can be normalized to give an empirical
distribution which is close to being in the image of f . Consequently, the values polynomials
in I will be close to zero when evaluated at this point. However, the converse isn’t true:
the set of probability distributions for which all polynomials in I vanish is, by definition
the Zariski closure of the image of f , and the Zariski closure may be larger than the image.
Over the complex numbers, the image of a polynomial map contains a dense open subset
of its Zariski closure, which is thus equal to the closure in the usual Euclidean topology.
However, over the real numbers, the image of f may not be dense in its Zariski closure in
the Euclidean topology. In summary, the vanishing of the polynomials in I on a particular
distribution means that there exist complex parameters for which this distribution can be
approximated arbitrarily closely, but it may not be possible to choose these parameters to
be real.

Another difficulty with using the vanishing of polynomials to test membership in a sta-
tistical model is the necessity of being robust to the presence of noise. The empirical dis-
tribution calculated from a series of observations is unlikely to exactly reflect the actual
probability distribution. Therefore, using polynomial equations to test membership in a
statistical model requires some way of doing it robustly. In Chapter 5, instead of using the
equations of Theorem 4.4.3 directly, we leverage their origins as determinants and Pfaffians
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of certain matrices. The robust estimation of the rank of a matrix can be performed using
singular value decomposition, as will be described in Section 5.1. In essence, we have reduced
a multi-linear problem to a linear one.

In Chapter 2, the need for robustness comes from a non-statistical model, but statistical
methods are used to find an approximate solution. More specifically, we have a system
of real algebraic equations and we want to find parameters for which these equations are
approximately satisfied as closely as possible. Usual tools for solving polynomial equations,
such as Gröbner bases or numerical homotopies, work over the complex numbers. While
these methods have been developed to be numerically robust, they do not allow robustness
in the sense of relaxing equality constraints to approximate equality. Thus, in Chapter 2, we
develop a method in polynomial algebra which builds on statistical techniques for maximum
likelihood estimation.

1.2 Maximum likelihood estimation

Maximum likelihood estimation is a method of approximately inverting the parametric
model f in a statistically rigorous way. In order to do so, we suppose that we have a number
of observations of the event. We can summarize these as a vector of event counts u ∈ Zn

≥0.
The likelihood of such a vector is a function of the parameter x ∈ Ω defined by

L(x) =
n∏
i=1

fi(x)ui .

The maximum likelihood parameter is, by definition, the point x ∈ Ω at which L(x) achieves
its maximum. Equivalent to maximizing the likelihood is maximizing the log-likelihood:

`(x) = logL(x) =
n∑
i=1

ui log fi(x).

This formulation is the basis for the notion of Kullback-Leibler divergence, which is gen-
eralized in (2.2). Two computational methods for maximum likelihood estimation are
Expectation-Maximization (EM) and Iterative Proportional Fitting (IPF), which will to-
gether be generalized in Chapter 2 to the situation when the probability distributions are
replaced by non-negative real numbers and the fi are polynomials with non-negative coeffi-
cients.

Expectation-Maximization is an algorithm for computing maximum likelihood parame-
ters for models which can be written in terms of some hidden state. We assume that the
model f can be described in terms of first producing, as a pair, the observed state 1 ≤ i ≤ n
and a hidden state 1 ≤ j ≤ m. In other words, f the composition of a model g : Ω→ Rn×m,
followed by a summation, so that fi(x) = gi1 + · · · + gim. The idea of EM is to alternate
between using a guess of the parameters x to compute the expected distribution over the
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hidden states (the E step), and using this distribution to compute the maximum likelihood
parameters for the hidden model (the M step). Thus, the M step requires a method for
solving the maximum likelihood problem for the hidden model. This algorithm is explicitly
spelled out in Section 2.1, where IPF is used for the M step. The EM algorithm is also
applied in Section 5.1, in which the hidden model is an independence model, and likelihood
maximization can be trivially done in closed form. Note that EM is essentially a local search,
it will converge to a local maximum, but not necessarily a global maximum.

Iterative Proportional Fitting finds maximum likelihood parameters for toric statistical
models, also called log-linear models. These are where the probabilities fi(x) are products
of powers of the parameters, i.e. fi(x) = xα1

1 · · ·x
αk
k . Thus, the logarithm of the probability

is linear in the logarithms of the parameters, explaining the name “log-linear.” As its name
implies, IPF is an iterative algorithm for finding maximum likelihood parameters for such a
model. Note that a toric model is guaranteed to have a unique maximum likelihood solution,
to which IPF will always converge [45, Thm. 1.10].
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Chapter 2

Non-negative solutions to positive
systems of polynomial equations

This chapter is based on the paper “An algorithm for finding positive solutions to poly-
nomial equations” [10]. We present an iterative numerical method for finding non-negative
solutions and approximate solutions to systems of polynomial equations. We require two
assumptions about our system of equations. First, for each equation, all the coefficients
other than the constant term must be non-negative. Second, there is a technical assumption
on the exponents, described at the beginning of Section 2.1, which, for example, is satisfied
if all non-constant terms have the same total degree. In Section 2.3, there is a discussion of
the range of possible systems which can arise under these hypotheses.

Because of the assumption on signs, we can write our system of equations as∑
α∈S

aiαx
α = bi for i = 1, . . . , `, (2.1)

where the coefficients aiα are non-negative and the bi are positive, and S ⊂ Rn
≥0 is a finite

set of possibly non-integer multi-indices. Our algorithm works by iteratively decreasing the
generalized Kullback-Leibler divergence of the left-hand side and right-hand side of (2.1).
The generalized Kullback-Leibler divergence of two positive vectors a and b is defined to be

D (a ‖b) :=
∑
i

(
ai log

(
ai
bi

)
− ai + bi

)
. (2.2)

The standard Kullback-Leibler consists only of the first term and is defined only for proba-
bility distributions, i.e. when the sum of each vector is 1. The last two terms are necessary
so that the generalized divergence has, for arbitrary positive vectors a and b, the property
of being non-negative and zero exactly when a and b are equal (Proposition 2.1.4).

Our algorithm converges to local minima of the Kullback-Leibler divergence, including
exact solutions to the system (2.1). We will refer to local minima which are not exact
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solutions as a approximate solutions, because in these cases, the equations (2.1) hold only
approximately. In order to find multiple local minima, we can repeat the algorithm for
randomly chosen starting points. For finding approximate solutions, this may be sufficient.
However, there are no guarantees of completeness for the exact solutions obtained in this
way. Nonetheless, we hope that in certain situations, our algorithm will find applications
both for finding exact and approximate solutions.

Lee and Seung applied the EM algorithm to the problem of non-negative matrix factor-
ization [38]. They introduced the generalized Kullback-Leibler divergence in (2.2) and used
it to find approximate non-negative matrix factorizations. Since the product of two matrices
can be expressed by polynomials in the entries of the matrices, matrix-factorization is a
special case of the equations in (2.1).

For finding exact solutions to arbitrary systems of polynomials, there are a variety of
approaches which find all complex or all real solutions. Homotopy continuation methods find
all complex roots of a system of equations [51]. Even to find only positive roots, these two
methods finds all complex or all real solutions, respectively. Lasserre, Laurent, and Rostalski
have applied semidefinite programming to find all real solutions to a system of equations and a
slight modification of their algorithm will find all positive real solutions [36, 37]. Nonetheless,
neither of these methods has any notion of approximate solutions.

For directly finding only positive real solutions, Bates and Sottile have proposed an
algorithm based on fewnomials bounds on the number of real solutions [2]. However, their
method is only effective when the number of monomials (the set S in our notation) is slightly
more than the number of variables. Our method only makes weak assumptions on the set of
monomials, but stronger assumptions on the coefficients.

Our inspiration comes from tools for maximum likelihood estimation in statistics. Param-
eters which maximize the likelihood are exactly the parameters such that the model proba-
bilities are closest to the empirical probabilities, in the sense of minimizing Kullback-Leibler
divergence. Expectation-Maximization [45, Sec. 1.3] and Iterative Proportional Fitting [17]
are well-known iterative methods for maximum likelihood estimation. We re-interpret these
algorithms in the somewhat more general setting of finding approximate solutions to poly-
nomial equations.

The impetus behind the work in this chapter was the need to find approximate positive
solutions to systems of bilinear equations which will appear in Chapter 3. In that application
the variables will represent expression levels, which only made sense as positive parameters.
Moreover, in order to accommodate noise in the data, there are more equations than vari-
ables, so it is necessary to find approximate solutions. Thus, the algorithm described in this
chapter incorporates both the positivity and the robustness.

An implementation of our algorithm in the C programming language is freely available
at http://math.berkeley.edu/~dustin/pos/.

In Section 2.1, we describe the algorithm and the connection to maximum likelihood
estimation. In Section 2.2, we prove the necessary convergence for our algorithm. Finally,
in Section 2.3, we show that even with our restrictions on the form of the equations, there
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can be exponentially many positive real solutions.

2.1 Algorithm

In addition to the assumption on the non-negativity of the coefficients, we make a further
assumption on the exponent set. We assume that we have an s × n non-negative matrix
g, with no column identically zero, and positive real numbers dj for 1 ≤ j ≤ s such that
for each α ∈ S and each j ≤ s, the sum

∑n
i=1 gjiαi is either 0 or dj. For example, if all

the monomials xα have the same total degree d1, we can take s = 1 and g1i = 1 for all i.
Also of particular interest are multilinear systems of equations, in which each αi is at most
one. In these systems, the variables can be partitioned into sets such that the equations are
linear in each set of variables, so we can take dj = 1 for all j. Note that because dj is in the
denominator in (2.4), convergence is fastest when the dj are small, such as in the multilinear
case. We also note that, for an arbitrary set of exponents S, there may not exist such a
matrix g.

The algorithm begins with a randomly chosen starting vector and iteratively improves it
through two nested iterations:

• Initialize x = (x1, x2, . . . , xn) with n randomly chosen positive real numbers.

• Loop until the vector x stabilizes:

• For all α ∈ S, compute

wα :=
∑̀
i=1

bi
aiαx

α∑
β aiβx

β
. (2.3)

• Loop until the vector x stabilizes:

• Loop for j from 1 to s:

• Simultaneously update all entries of x:

xi ← xi

( ∑
α αigjiwα∑
α αigjiaαx

α

)gji/dj
where aα =

∑̀
i=1

aiα. (2.4)

Because there is no subtraction, it is clear that the entries of x remain positive throughout
this algorithm.

Since our algorithm is iterative, it is dependent on stopping criteria to determine when
to stop the iterations. For the inner loop, we terminate when the relative change in the
components of the vector x is less than the square of the relative change in the last iteration of
the outer loop. In this way, the threshold becomes more stringent as the algorithm converges.
For the outer loop, we use the quadratic Taylor expansion of the divergence (2.2) to estimate
the distance between the current value of x and the local minimum of the divergence. When
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Inner loop iterations x y
5 0.6944381615 0.9327435254
4 0.6339861529 0.9862879982
3 0.6217014340 0.9968624369
5 0.6187745905 0.9993672667
6 0.6181817273 0.9998738089
8 0.6180632943 0.9999749698
9 0.6180397990 0.9999950375

11 0.6180351404 0.9999990163

Table 2.1: Eight iterations of the outer loop applied to the system of equations in (2.5).

the estimated distance is less than a given threshold, the loop terminates. This criterion was
chosen over more straightforward ones, which proved to be unreliable in practice.

Note that each iteration is quite fast. The computation in (2.3) is equivalent to a single
evaluation of the system of polynomials, plus a division for each term. On the other hand,
each update (2.4) is potentially faster than a single evaluation of the system of polynomials,
especially if dj = 1, because the iteration is only over S, the set of exponent vectors, regardless
of the number of equations in which a term with that exponent occurs. Finally to gain
additional speed, in our implementation, when the algorithm gets close to an actual solution,
we use Newton’s algorithm to quickly refine it.

Our method is inspired by interpreting the equations in (2.1) as a maximum likeli-
hood problem for a statistical model and applying the well-known methods of Expectation-
Maximization (EM) and Iterative Proportional Fitting (IPF). For simplicity, let us assume
that all the monomials xα have the same total degree. Our statistical model is that a hidden
process generates an integer i ≤ ` and an exponent vector α with joint probability aiαx

α.
The vector x contains n positive parameters for the model, restricted such that the total
probability

∑
i,α aiαx

α is 1. The empirical data consists of repeated observations of the inte-
ger i, but not the exponent α, and bi is the proportion of observations of i. In this situation,
the vector x which minimizes the divergence of (2.1) is the maximum likelihood parameter
for the empirical distribution bi. The inner loop of the algorithm consists of using IPF to
solve the log-linear hidden model and the outer loop consists of using EM to estimate the
distribution on the hidden states.

We give a simple example of our algorithm in action.

Example 2.1.1. The (reciprocal of the) golden ratio is the unique positive root of the equation

x2 + x− 1 = 0.

The coefficients have the correct signs, but doesn’t satisfy the condition on the exponent
vectors. We can fix this by adding a dummy variable y, which will be forced to be equal
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to 1:

x2 + xy = 1

y2 = 1.
(2.5)

A sample run took 8 iterations of the outer loop and a total of 51 iterations of the inner loop
to converge to 5 digits of accuracy, as detailed in Table 2.1.

Example 2.1.2. Next we give an example of a system with only approximate solutions. One
can check that the system of equations

x2 + y2 = 1

x2 + 2xy + y2 = 4

has no real solutions. On this system, our algorithm converges to the approximate solution
(x, y) = (

√
5/6,

√
5/6) ≈ (0.91287, 0.91287). With these values, x2 + y2 = 5/3, which is

somewhat greater than 1, and x2 + 2xy + y2 = 10/3, which is somewhat less than 4.

Although the Kullback-Leibler divergence is rarely used outside probability and statistics,
it can be approximated as a weighted L2-distance. In order to make this statement precise,
we define the function C(t) to be 1 if t ≤ 1 and to be log(t)/(t− 1) if t > 1. Note that C(t)
is approximately equal to 1 in a neighborhood of t = 1, i.e., when comparing vectors which
are close to each other.

Proposition 2.1.3. With a and b two positive real vectors, and C(t) as defined above, then
D (a ‖b) is bounded below by the square of the weighted L2-distance

n∑
i=1

C(ai/bi)

2bi
(ai − bi)2 (2.6)

Proposition 2.1.3 implies that, at least for nearby vectors, the major difference between
divergence and Euclidean distance is that divergence places more weight on components
whose values are closer to zero.

Proof of Proposition 2.1.3. Note that D (a ‖b) =
∑n

i=1D (ai ‖bi ) and thus, it suffices to
prove the statement when a and b are scalars. We let t = a/b, and then,

D (a ‖b) = a log
(a
b

)
− a+ b = b(t log t− t+ 1) = b

∫ t

1

log s ds.

Now we bound the integral using a linear approximation of the logarithm. For s ≤ 1,
log s ≤ s− 1. On the other hand, for 1 ≤ s ≤ t, log s ≥ (s− 1) log(t)/(t− 1), since log is a
convex function. Therefore, regardless of whether t ≤ 1 or t ≥ 1, we have∫ t

1

log s ds ≥ C(t)

∫ t

1

(s− 1) ds.
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Combining this inequality with (2.1),

D (a ‖b) ≥ C(t)b

∫ t

1

(s− 1) ds =
C(a/b)b

2

(a
b
− 1
)2

=
C(a/b)

2b
(a− b)2,

which is the desired result.

As a corollary, we get:

Proposition 2.1.4. For vectors a and b of positive real numbers, the divergence D (a ‖b) is
always non-negative with D (a ‖b) = 0 if and only if a = b.

Proof. Since the quantity C(ai/bi) from Proposition 2.1.3 is always positive, each term of
the summation in (2.6) is non-negative and it is zero if and only ai = bi.

2.2 Proof of convergence

In this section we prove our main theorem:

Theorem 2.2.1. The Kullback-Leibler divergence

∑̀
i=1

D

(
bi

∥∥∥∥∥∑
α∈S

aiαx
α

)
. (2.7)

is weakly decreasing during the algorithm in Section 2.1. Moreover, assuming that the set S
contains a multiple of each unit vector ei, i.e. some power of each xi appears in the system of
equations, then the vector x converges to a critical point of the function (2.7) or the boundary
of the positive orthant.

Remark 2.2.2. The condition that S contains a pure power of each variable xi is in order
to ensure that the vector x remains bounded during the algorithm.

We begin by establishing several basic properties of the generalized Kullback-Leibler di-
vergence in Lemmas 2.2.3 and 2.2.4. The proof of Theorem 2.2.1 itself is divided into two
parts, corresponding to the two nested iterative loops. The first step is to prove that the up-
dates (2.4) in the inner loop converge a local minimum of the divergence D (wα ‖aαxα ). The
second step is to show that this implies that the outer loop strictly decreases the divergence
function (2.7), with equality only at a critical point.

Lemma 2.2.3. Suppose that a and b are vectors of n positive real numbers. Let t be any
positive real number, and then

D (a ‖tb) = D (a ‖b) + (t− 1)
m∑
i=1

bi −
m∑
i=1

ai log t
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Proof. As in the proof of Proposition 2.1.3, we can assume that a and b are scalars. In this
case, it becomes a straightforward computation.

Lemma 2.2.4. If a and b are vectors of m positive real numbers, then we can relate their
divergence to the divergence of their sums by

D (a ‖b) = D (
∑m

i=1 ai ‖
∑m

i=1 bi ) +D

(
a

∥∥∥∥∑m
i=1 ai∑m
i=1 bi

b

)
.

Proof. We let A =
∑m

i=1 ai and B =
∑m

i=1 bi, and apply Lemma 2.2.3 to the last term:

D

(
a

∥∥∥∥ABb
)

= D (a ‖b) +

(
A

B
− 1

)
B − A log

A

B

= D (a ‖b)− A log
A

B
+ A−B = D (a ‖b)−D (A ‖B ) .

After rearranging, we get the desired expression.

Lemma 2.2.5. The update rule (2.4) weakly decreases the divergence. If

x′i = xi

( ∑
α αigjiwα∑
α αigjiaαx

α

)gji/dj
,

for any j ≤ s, then

∑
α

D (wα ‖aα(x′)α ) ≤
∑
α

D (wα ‖aαxα )− 1

dj

n∑
i=1

D

(∑
α

αigjiwα

∥∥∥∥∥∑
α

αigjiaαx
α

)
. (2.8)

Proof. First, since the statement only depends on the jth row of the matrix g, we can assume
that g is a row vector and we drop j from future subscripts. Second, we can assume that
d = 1 by replacing gi with gi/d.

Third, we reduce to the case when gi = 1 for all i. We define a new set of exponents α̃
and coefficients ãα̃ by α̃i = giαi and ãα = aα

∏
xi, where the product is taken over all indices

i such that gi = 0. We take x̃ to be a vector indexed by those i such that gi 6= 0. Then, under
the change of coordinates x̃i = x

1/gi
i , we have aαx

α = ãαx̃
α̃ and the update rule in (2.4) is

the same for the new system with coefficients ãα̃ and exponents α̃. Furthermore, if all entries
of α̃ are zero, then x̃α̃ = 1 for all vectors x and so we can drop α̃ from our exponent set.
Therefore, for the rest of the proof, we drop the tildes, and assume that

∑
i αi = 1 for all

α ∈ S and gi = 1 for all i, in which case g drops out of the equations.
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To prove the desired inequality, we substitute the updated assignment x′ into the defini-
tion of Kullback-Leibler divergence:

D (wα ‖aα(x′)α ) = wα log

 wα

aαxα
∏n

i=1

( P
β wβP

β βiaβx
β

)αi
− wα + aα(x′)α

= wα log
wα
aαxα

−
n∑
i=1

αiwα log

∑
β βiwβ∑
β βiaβx

β
− wα + aα(x′)α

= D (wα ‖aαxα )−
n∑
i=1

αiwα log

∑
β βiwβ∑
β βiaβx

β
− aαxα + aα(x′)α. (2.9)

On the other hand, let C denote the last term of (2.8), which we can expand as,

C =
n∑
i=1

D

(∑
α

αiwα

∥∥∥∥∥∑
α

αiaαx
α

)

=
n∑
i=1

((∑
α

αiwα

)
log

∑
α αiwα∑
α αiaαx

α
−
∑
α

αiwα +
∑
α

αiaαx
α

)

=
n∑
i=1

∑
α

(
αiwα log

∑
β βiwβ∑
β βiaβx

β
− αiwα + αiaαx

α

)

=
∑
α

(
n∑
i=1

αiwα log

∑
β βiwβ∑
β βiaβx

β

)
− wα + aαx

α, (2.10)

where the last step follows from the assumption that that
∑

i αi = 1 for all α ∈ S. We take
the sum of (2.9) over all α ∈ S and add it to (2.10) to get,∑

α

D (wα ‖aα(x′)α ) + C =
∑
α

D (wα ‖aαxα )−
∑
α

bα +
∑
α

aα(x′)α. (2.11)

Finally, we expand the last term of (2.10) using the definition of x′ and apply the
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arithmetic-geometric mean inequality,∑
α

aα(x′)α =
∑
α

aαx
α

n∏
i=1

( ∑
β βibβ∑

β βiaβx
β

)αi

≤
∑
α

aαx
α

n∑
i=1

αi

∑
β βibβ∑

β βiaβx
β

=
n∑
i=1

(∑
α

αiaαx
α

) ∑
β βibβ∑

β βiaβx
β

=
n∑
i=1

∑
β

βibβ =
∑
β

bβ.

Together with (2.11), this gives the desired inequality.

Proposition 2.2.6. A positive vector x is a fixed point of the update rule (2.4) for all
1 ≤ j ≤ s if and only if x is a critical point of the divergence function

∑
αD (wα ‖aαxα ).

Proof. For the update rule to be constant means that the numerator and denominator in
(2.4) are equal, i.e. ∑

α

αigjiaαx
α =

∑
α

αigjiwα for all i and j. (2.12)

By our assumption on g, for each i, some gji is non-zero, so (2.12) is equivalent to∑
α

αiaαx
α =

∑
α

αiwα for all i. (2.13)

On the other hand, we compute the partial derivative

∂

∂xi

∑
α

D (wα ‖aαxα ) =
∑
α

−wα
αi
xi

+ αiaα
xα

xi
.

Since each xi is assumed to be non-zero, it is clear that all partial derivatives being zero is
equivalent to (2.13).

Lemma 2.2.7. If we define wα as in (2.3), then

n∑
i=1

D

(
bi

∥∥∥∥∥∑
α

aiα(x′)α

)
−

n∑
i=1

D

(
bi

∥∥∥∥∥∑
α

aiαx
α

)
≤
∑
α

D (wα ‖aα(x′)α )−
∑
α

D (wα ‖aαxα ) .

Moreover, a positive vector x is a fixed point of the update rule if and only if x is a critical
point for the divergence function.
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Proof. We consider ∑
i,α

D (wiα ‖aiα(x′)α ) where wiα =
biaiαx

α∑
β aiβx

β
, (2.14)

and apply Lemma 2.2.4 in two different ways. First, by applying Lemma 2.2.4 to each group
of (2.14) with fixed α, we get

∑
i,α

D (wiα ‖aiα(x′)α ) =
∑
α

D (wα ‖aα(x′)α ) +
∑
i,α

D

(
wiα

∥∥∥∥∥
∑

j wjα∑
j aα(x′)α

aiα(x′)α

)
.

In the last term, the monomials (x′)α cancel and so it is a constant independent of x′ which
we denote E. On the other hand, we can apply Lemma 2.2.4 to each group in (2.14) with
fixed i,

∑
i,α

D (wiα ‖aiα(x′)α ) =
∑
i

D

(
bi

∥∥∥∥∥∑
α

aiα(x′)α

)
+
∑
i,α

D

(
wiα

∥∥∥∥∥ biaiα(x′)α∑
β aiβ(x′)β

)
.

We can combine these equations to get

∑
i

D

(
bi

∥∥∥∥∥∑
α

aiα(x′)α

)
=
∑
α

D (wiα ‖aα(x′)α ) +E−
∑
i,α

D

(
wiα

∥∥∥∥∥ biaiα(x′)α∑
β aiβ(x′)β

)
. (2.15)

By Proposition 2.1.4, the last term of (2.15) is non-negative, and by the definition of wiα, it
is zero for x′ = x. Therefore, any value of x′ which decreases the first term compared to x
will also decrease the left hand side by at least as much, which is the desired inequality.

In order to prove the statement about the derivative, we consider the derivative of (2.15)
at x′ = x. Because the last term is minimized at x′ = x, its derivative is zero, so

∂

∂x′j

∣∣∣∣
x′=x

∑
i

D

(
bi

∥∥∥∥∥∑
α

aiα(x′)α

)
=

∂

∂x′j

∣∣∣∣
x′=x

∑
i,α

D (wiα ‖aiα(x′)α ) .

By Proposition 2.2.6, a positive vector x is a fixed point of the inner loop if and only if these
partial derivatives on the right are zero for all indices j, which is the definition of a critical
point.

Proof of Theorem 2.2.1. The Kullback-Leibler divergence
∑

αD (wα ‖aαxα ) decreases at each
step of the inner loop by Lemma 2.2.5. Thus, by Lemma 2.2.7, the divergence

n∑
i=1

D

(
bi

∥∥∥∥∥∑
α

aiαx
α

)
(2.16)
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decreases at least as much. However, the divergence (2.16) is non-negative according to
Proposition 2.1.4. Therefore, the magnitude of the decreases in divergence must approach
zero over the course of the algorithm. By Lemma 2.2.5, this means that the quantity C in
that theorem must approach zero. By Proposition 2.1.4, this means that the quantities in
that divergence approach each other. However, up to a power, these are the numerator and
denominator of the factor in the update rule (2.4), so the difference between consecutive
vectors x approaches zero.

Thus, we just need to show that x remains bounded. However, since some power of each
variable xi occurs in some equation, as xi gets large, the divergence for that equation also
gets arbitrarily large. Therefore, each xi must remain bounded, so the vector x must have a
limit as the algorithm is iterated. If this limit is in the interior of the positive orthant, then
it must be a fixed point. By Lemma 2.2.7 and Proposition 2.2.6, this fixed point must be a
critical point of the divergence (2.7).

2.3 Universality

Although the restriction on the exponents and especially the positivity of the coefficients
seem like strong conditions, such systems can nonetheless be quite complex. In this section,
we investigate the breadth of such equations.

Proposition 2.3.1. For any system of ` real polynomial equations in n variables, there
exists a system of ` + 1 polynomial equations in n + 1 variables, in the form (2.1), such
that the positive solutions (x1, . . . , xn) to the former system are in bijection with the positive
solutions (x′1, . . . , x

′
n+1) of the latter, with x′i = xi/xn+1.

Proof. We write our system of equations as
∑

α∈S aiαx
α = 0 for 1 ≤ i ≤ `, where S ⊂ Nn

is an arbitrary finite set of exponents and aiα are any real numbers. We let d be the
maximum degree of any monomial xα for α ∈ S. We homogenize the equations with a new
variable xn+1. Explicitly, define S ′ ⊂ Nn+1 to consist of α′ = (α, d−

∑
i αi) for all α in S and

we also set aiα′ = aiα. We add a new equation with coefficients a`+1,α = 1 for all α ∈ S ′ and
b`+1 = 1. For this system, we can clearly take g1i = 1 and d1 = d to satisfy the condition
on exponents. Furthermore, for any positive solution (x1, . . . , xn) to the original system of

equations, (x′1, . . . , x
′
n+1) with x′i = xi/

(∑
α x

α
)1/d

and x′n+1 = 1/
(∑

α x
α
)1/d

is a solution
to the homogenized system of equations.

Next, we add a multiple of the last equation to each of the others in order to make
all the coefficients positive. For each 1 ≤ i ≤ `, choose a positive bi > −minα{aiα |
α ∈ S ′}, and define a′iα = aiα + bi. By construction, the resulting system has all positive
coefficients, and since the equations are formed from the previous equations by elementary
linear transformations, the set of solutions are the same.

The practical use of the construction in the proof of Proposition 2.3.1 is mixed. The first
step, of homogenizing to deal with arbitrary sets of exponents, is a straightforward way of
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guaranteeing the existence of the matrix g. However, for large systems, the second step tends
to produce an ill-conditioned coefficient matrix. In these cases, our algorithm converges very
slowly. Nonetheless, Proposition 2.3.1 shows that, in the worst case, systems satisfying our
hypotheses can be as complicated as arbitrary polynomial systems.

Proposition 2.3.2. There exist bilinear equations in 2m variables with
(
2m−2
m−1

)
positive real

solutions.

Proof. We use a variation on the technique used to prove Proposition 2.3.1.
First, we pick 2m− 2 generic homogeneous linear functions b1, . . . , b2m−2 on m variables.

By generic, we mean for any m of the bk, the only simultaneous solution of all m linear
equations is the trivial one. This genericity implies that any m− 1 of the bk define a point
in Pm−1 By taking a linear changes of coordinates in each set of variables, we can assume
that all of these points are positive, i.e. have a representative consisting of all positive real
numbers.

Then we consider the system of equations

bk(x1, . . . , xm) · bk(xm+1, . . . , xn) = 0, for 1 ≤ k ≤ 2m− 2 (2.17)

(x1 + . . .+ xm)(xm+1 + . . .+ x2m) = 1 (2.18)

x1 + . . .+ xm = 1. (2.19)

The equations (2.17) are bihomogeneous and so we can think of their solutions in Pm−1 ×
Pm−1. There are exactly

(
2m−2
m−1

)
positive real solutions, corresponding to the subsets A ⊂

[2m − 2] of size m − 1. For any such A, there is a unique, distinct solution satisfying
bk(x1, . . . , xm) = 0 for all k in A and bk(xm+1, . . . , x2m) = 0 for all k not in A. By as-
sumption, for each solution, all the coordinates can be chosen to be positive. The last two
equations (2.18) and (2.19) dehomogenize the system in a way such that there are

(
2m−2
m−1

)
positive real solutions. Finally, as in the last paragraph of the proof of Proposition 2.3.1,
we can add multiples of (2.18) to the equations (2.17) in order to make all the coefficients
positive.

Example 2.3.3. We illustrate the construction in Proposition 2.3.2 in the simplest case,
when m = 2, and n = 2m = 4. We take the two homogenous functions b1 = x1 − x2 and
b2 = x1− 2x2, which each have a positive real solution, as desired. Following (2.17), we have
the bilinear equations equations:

(x1 − x2)(x3 − x4) = x1x3 − x1x4 − x2x3 + x2x4 = 0

(x1 − 2x2)(x3 − 2x4) = x1x3 − 2x1x4 − 2x2x3 + 4x2x4 = 0

We add appropriate multiples of (x1 + x2)(x3 + x4) = 1 to these two equations, to get the
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system with non-negative coefficients:

2x1x3 + 2x2x4 = 1

3x1x3 + 6x2x4 = 2

x1x3 + x1x4 + x2x3 + x2x4 = 1

x1 + x2 = 1.

The two solutions to these equations are (1/2, 1/2, 2/3, 1/3) and (1/3, 2/3, 1/2, 1/2). Because
of the symmetry, our algorithm will converge to each half of the time.
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Chapter 3

Gene expression in Arabidopsis roots

This chapter is based on the paper “Reconstructing spatiotemporal gene expression data
from partial observations,” which was jointly authored with Siobhan M. Brady, David A.
Orlando, Bernd Sturmfels, and Philip N. Benfey [12].

Transcriptional regulation plays an important role in orchestrating a host of biological
processes, particularly during development (reviewed in [27, 40]). Advances in microarray
and sequencing technologies have allowed biologists to capture genome-wide gene expression
data; the output of this transcriptional regulation. This expression data can then be used
to identify genes whose expression is correlated with a particular biological process, and to
identify transcriptional regulators that coordinate the expression of groups of genes that are
important for the same biological process.

The identification of such genes and transcriptional regulators is complicated by the
complex heterogeneous mixture of cell types and developmental stages that comprise each
organ of an organism. Expression patterns that are found only in a subset of cell types within
an organ will be diluted and may not be detectable in the collection of expression patterns
obtained from RNA isolated from samples of an entire organ. Therefore techniques have
been developed to enrich samples for specific cell types or developmental stages, especially
for studies in plants [9]. In the model plant, Arabidopsis thaliana, several features of the root
organ reduce its developmental complexity and facilitate analysis. Specifically, most root cell
types are found within concentric cylinders moving from the outside of the root to the inside
of the root (Figure 3.1). These cell type layers display rotational symmetry thus simplifying
the spatial features of development. This feature has been exploited in the development
of a cell type enrichment method. This enrichment method uses green fluorescent protein
(GFP)-marked transgenic lines and fluorescently-activated cell sorting (FACS) to collect cell
type enriched samples and has allowed for the identification of cell type-specific expression
patterns [4, 5]. Using this technique, high resolution expression data have been obtained for
nearly all cell types in the Arabidopsis root (herein called the marker-line dataset) [7, 28].

Another feature that makes the Arabidopsis root a tractable developmental model is that
cell types are constrained in files along the root’s longitudinal axis, and most of these cells
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Figure 3.1: Regions and cell types in the structure of the Arabidopsis root.
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are produced from a stem cell population found at the apex of the root. This feature allows
a cell’s developmental timeline to be represented by its position along the length of the root.
To obtain a developmental time-series expression dataset individual Arabidopsis roots were
sectioned into thirteen pieces, each piece representing a developmental time point (herein
called the longitudinal dataset) [7]. Each of these sections, however, contains a mixture of
cell types, and the microarray expression values obtained are therefore the average of the
expression levels over multiple cell types present at these specific developmental time points.

While the 19 fluorescently marked lines in [7] cover expression in nearly all cell types,
they do not comprehensively mark all developmental stages of these cell types. Also, the
procambium cell type was not measured, as a fluorescent marker-line that marks that cell
type did not exist at the time. However, expression from the longitudinal dataset, does
contain averaged expression of all cell types, and may be used to infer the missing cell type
data.

Previous studies have looked at separating expression data from the heterogeneous cell
populations that make up tumors into the contributions of their constituent cell types [25, 50].
However, in that context, the difficulty comes from the fact that the mixture of cell types
in each sample is unknown, whereas within our experimental context, the cell type mixture
of each sample is known. Two computational methods have been developed to combine the
Arabidopsis longitudinal and marker-line datasets as experimentally resolving this expression
with marker lines is nearly impossible [7, 14]. However, neither method takes all data
into account when reconstructing expression. In [7], only high relative gene expression is
considered, and in [14], no attempt is made to infer expression for cells not covered by any
marker-line.

In this work we formulate a model for expression levels in Arabidopsis roots in which cell
type and developmental stage are independent sources of variation. The microarray data
specifying overall expression levels for certain mixtures of cells lead to an overconstrained
system of bilinear equations. Moreover, due to the nature of the problem, we are exclusively
interested in positive real solutions. We present a new method for finding non-negative
real approximate solutions to bilinear equations, based on the techniques of expectation
maximization (EM) [45, Sec. 1.3] and iterative proportional fitting (IPF) [17] from likelihood
maximization in statistics. Earlier work has used expectation maximization to find non-
negative matrix factorizations [38], and our method is a generalization of that work.

We applied our method to estimate spatiotemporal subregion expression patterns for
20,872 Arabidopsis transcripts. These patterns have identified gene expression in cell types
and developmental stages which were previously unknown. Visualizations of these patterns
on a schematic Arabidopsis root are available at http://www.arexdb.org/.



21

Cell type Marker-lines
Quiescent center AGL42, RM1000, SCR5
Columella PET111
Lateral root cap LRC
Hair cell COBL9 (8-13)
Non-hair cell GL2
Cortex J0571, CORTEX (7-13)
Endodermis J0571, SCR5
Xylem pole pericycle WOL (2-9), JO121 (9-13), J2661 (13)
Phloem pole pericycle WOL (2-9), S17 (8-13), J2661 (13)
Phloem S32, WOL (2-9)
Phloem companion cells SUC2 (10-19), WOL (2-9)
Xylem S4 (2-7), S18 (8-13), WOL (2-9)
Lateral root primordia RM1000
Procambium WOL (2-9)

Table 3.1: The 14 cell types in the Arabidopsis root and the 17 marker-lines which mark
them [7]. For markers that only mark the cell type in some of the sections, these sections
are indicated by the range in parenthesis.

3.1 Methods

Expression data

Our method uses the normalized expression data collected in [7]. Expression levels were
measured across 13 longitudinal sections in a single root (longitudinal dataset) and across
19 different markers (marker-line dataset). For simplicity, the J2501 line was removed from
further analysis as it is redundant with the WOODEN-LEG marker-line. The APL marker-
line was also removed, as it contains domains of expression marked by both the S32 and the
SUC2 marker-lines and adds no extra information. The remaining 17 markers covering 14
cell types are listed in the second column of Table 3.1.

Due to computational constraints, the original normalization of this data was performed
for the longitudinal and the marker-line datasets independently [7]. In order to account for
differences caused by these separate normalization procedures, we adjusted the marker-line
data by a global factor of 0.92. This factor was calculated by comparing the expression
values of ubiquitous, evenly expressed probe sets between the two datasets. We assume
that by comparing these probe sets, any true expression differences due to cell type and
longitudinal section specificity should be minimal and thus any differences in expression
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level is a byproduct of the separate normalization procedures. A set of 43 probesets were
identified which were expressed ubiquitously (above a normalized value of 1.0 in all samples)
and whose expression did not vary significantly among samples within a dataset (ratio of
min/max expression within a dataset is at most 0.5). The scaling factor necessary to make
the mean expression within the marker-line dataset equal to the mean expression within the
longitudinal dataset was calculated for each probe set in this set. The median value of these
43 scaling factors was 0.92, which was used as the global adjustment factor.

Model

To model the transcript expression level of an individual cell we assume that the effects
of its cell type and its section on its expression level are independent of each other. More
precisely, we assume that the transcript expression level of a cell of type j in section i is
equal to the product xi ·yj, where xi depends only on the section and yj depends only on the
cell type. In other words, for each transcript, there is an idealized profile of expression over
different cell types, and an idealized profile of expression over different sections. Within a
given section, our assumption is that the transcript expression level varies proportionally to
its cell type profile, and within a given cell type, proportionally to its longitudinal profile.

Although our model’s assumption of independence between cell type and longitudinal
section is a simplification, we believe it is appropriate for two reasons. First, we expect that
in most cases, a transcript controlling development will have a single temporal pattern in
the cell type or cell types in which it is active and have negligible expression elsewhere. This
profile is consistent with our model by taking yj to be either high or almost zero depending
on whether or not the transcript is expressed in that cell type. Second, the input longitudinal
and marker-line data sets correspond roughly to independent measurements of the temporal
and cell type profiles of expression level. Thus, fitting independent temporal and cell type
profiles is less speculative than a more complicated model would be in the absence of more
detailed data.

Each microarray sample in the two datasets (described in the above section titled “Expres-
sion data”) is composed of a distinct mixture of cell types and sections. Within each sample,
the measured transcript expression level is a convex linear combination of the expression
levels of its constituent cells. Under the above independence assumption, the longitudinal
measurements give us a system of 13 equations,

14∑
j=1

a′kjxkyj = bk for k = 1, . . . , 13, (3.1)

where xk and yj are the model parameters for the 13 sections and 14 cell types respectively,
a′kj is the proportion of the jth cell type in the kth section, and bk is the measured expression
level in the kth longitudinal section. The coefficients a′kj form a 13 × 14 matrix, where the
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0 24 51 0 0 0 0 0 0 0 0 0 0 0
4 12 152 24 48 12 12 12 22 0 0 12 0 28
0 0 280 40 80 40 40 20 45 20 20 25 0 80
0 0 210 40 80 40 40 20 45 20 20 25 0 80
0 0 210 40 80 40 40 20 45 20 20 25 0 80
0 0 210 40 80 40 40 20 45 20 20 25 0 80
0 0 0 40 80 40 40 20 45 20 20 25 0 80
0 0 0 40 80 40 40 20 45 20 20 25 0 80
0 0 0 40 80 40 40 20 45 20 20 25 0 80
0 0 0 40 80 40 40 20 45 20 20 25 0 80
0 0 0 40 80 40 40 20 45 20 20 25 0 80
4 0 0 40 80 40 40 20 45 20 20 25 130 80
0 0 0 40 80 40 40 20 45 20 20 25 0 80


Table 3.2: The cell count matrix gives the number of cells in each spatiotemporal subregion.
The 13 rows correspond to longitudinal sections 1 through 13. From left to right, the 14
columns correspond to the following spatiotemporal subregions: quiescent center, columella,
lateral root cap, hair cell, non-hair cell, cortex, endodermis, xylem pole pericycle, phloem pole
pericycle, phloem, phloem companion cells, xylem, lateral root primordia, and procambium.

kth row is proportional to the kth row of the cell-count matrix (Table 3.2), but rescaled to
sum to 1.

In addition, the 17 marker-line measurements give the additional equations,

13∑
i=1

14∑
j=1

aijkxiyj = bk for k = 14, . . . , 30, (3.2)

where the bk are the measured expression level of the 17 markers, indexed with k from 14
through 30, and aijk is the proportion of the cells in the kth marker-line which come from
the ith section and the jth cell type. For each marker-line k, we denote by a∗∗k the matrix
which has aijk in the ith row and jth column. The matrix a∗∗k is zero except for those
spatiotemporal subregions marked by that marker as indicated in Table 3.1. The non-zero
entries of a∗∗k are proportional to the corresponding entries of the cell matrix, but rescaled
to sum to 1.

In order to combine (3.1) and (3.2) in a uniform system of equations, we define we define
akjk = a′kj for k ≤ 13 and aijk = 0 for i 6= k ≤ 13. Then (3.1) and (3.2) together give

13∑
i=1

14∑
j=1

aijkxiyj = bk for k = 1, . . . , 30 (3.3)
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Cell matrix

As described in the previous section, the coefficients aijk in our model depend on the
number of cells in each spatiotemporal subregion. These cell number estimates were gen-
erated by visual inspection of successive optical cross-sections of Arabidopsis roots along
the longitudinal axis using confocal laser scanning microscopy. For the xylem, phloem and
procambium cell types, cell counts were obtained from earlier experiments [6, 42]. What
follows is a detailed description of this visual and literature analysis. These results are also
summarized in Table 3.2.

Longitudinal section 1 encompasses two tiers of 12 columella cells, and three tiers of
lateral root cap cells (15, 18 and 18 moving up from the tip).

Longitudinal section 2 contains one tier of 12 columella cells and six tiers of lateral root
cap cells (20, 20, 28, 28, 28 and 28 moving up from the tip). For all other cell types in longi-
tudinal section 2, three tiers of cells are present. Eight trichoblast (hair cell precursor) cells
and 16 atrichoblast (non-hair cell precursor) cells are present circumferentially throughout
the root, resulting in 24 and 48 cells respectively in the hair cell and non-hair cell precursor
files in longitudinal section 2. Throughout the root, eight cortex and eight endodermis cells
are present circumferentially. However in longitudinal section 2, the cortex/endodermis ini-
tial is undergoing asymmetric periclinal divisions to produce the cortex and endodermis cell
files, so we consider there to be approximately 0.5 cells of the cortex and endodermis type,
resulting in 12 cells of each type in longitudinal section 2. When the Arabidopsis root is
seven days old, each longitudinal section from 3–13 contains approximately five cells of each
type along the root’s longitudinal axis.

In longitudinal section 2, the tangential and periclinal divisions that give rise to phloem
cell files do not occur, but do occur in longitudinal section 3 [6]. Three cells are present in
the main xylem axis in the first tier of cells, four cells in the second tier, and five cells in the
third tier [42]. Eight procambial cells are present in the first cell tier, 12 procambial cells in
the second tier, and 18 cells in the third tier resulting in 28 procambial cells in longitudinal
section 2 [42]. For all sections xylem pole pericycle cells are the two cells that flank the xylem
axis on either end, and phloem pole pericycle cells are considered the intervening cells. Four
pericycle cells can be identified as flanking xylem cells in all three tiers of cells present in
longitudinal section 2 [42]. Seven intervening phloem pole pericycle cells can be found in
tier one, and eight intervening cells can be identified in the third tier [42], resulting in 22
procambial cells in longitudinal section 2.

In a seven day old root, each of the longitudinal sections 3–13 contains approximately
five tiers of cells. In longitudinal section 3, columella cells can no longer be identified, and
10 tiers of lateral root cap cells exist containing 28 cells each. In sections 4–6, a lateral
root cap cell is twice the length and half the width of an epidermal cell. Eighty-four cells
were identified in each tier, and two and a half tiers of cells exist each for longitudinal
sections 4–6 resulting in 210 cells for each longitudinal section. All other cell types have
undergone the appropriate tangential and periclinal divisions to establish their respective
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cell files by longitudinal section 3. Two protophloem cells, two metaphloem cells and four
accompanying companion cells are present in the phloem tissue [6]. With the combination
of protophloem and metaphloem cells, 20 phloem cells and 20 companion cells exist in each
longitudinal section. Approximately 40 procambial cells exist in each longitudinal section.
Secondary cell growth does not occur in the developmental stages sampled, therefore, this
number remains fixed throughout all developmental stages. In longitudinal section 12, a non-
emerged lateral root is hypothesized to be present based on microarray expression data [7].
This lateral root is estimated to be approximately 130 cells, or one tier of cells in longitudinal
section 2.

In our modelling the distinct vasculature, protophloem and metaphloem cell types were
treated as a single cell type, as no marker-line was specific enough to differentiate clearly
between these cell types. Also, the metaxylem and protoxylem were considered as a single
cell type by the same rationale.

Solving bilinear equations

In this section, we show how the bilinear equations given by (3.3) can be solved using
the algorithm in Section 2.1. The equations (3.3) have the form of equation (2.1) with
n = 13 + 14 = 27 and ` = 30 + 1 = 31. The extra equation beyond the 30 in (2.1) comes
because we add a normalization condition, that

∑13
i=1 xi = 1. We can take the matrix g to

have s = 2 rows and have columns
(
1 0

)T
for the x variables and

(
0 1

)T
for the y variables.

Then, the system satisfies the condition the beginning of Section 2.1 with d1 = d2 = 1.
For completeness, we write out the iteration steps (2.3) and (2.4) in this situation. At

each iteration, the expectation step (2.3) computes the quantities:

w
(s)
ijk := bk

aijkx
(s)
i y

(s)
j∑n

i′=1

∑m
j′=1 ai′j′kx

(s)
i′ y

(s)
j′

(3.4)

for all i, j, and k. This quantity w
(s)
ijk is an estimate of the contribution of the (i, j) term in

the kth equation in (3.3). We break the maximization step into first computing the analogues
of the sufficient statistics:

X
(s)
i =

m∑
j=1

∑̀
k=1

w
(s)
ijk

Y
(s)
j =

n∑
i=1

∑̀
k=1

w
(s)
ijk.

Then we perform an iteration beginning with x
(s,0)
i = x

(s)
i and y

(s,0)
j = y

(s)
j and the update
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rules

x
(s,t+1)
i := x

(s,t)
i

X
(s)
i∑m

j=1

∑`
k=1 aijkx

(s,t)
i y

(s,t)
j

y
(s,t+1)
j := y

(s,t)
j

Y
(s)
j∑n

i=1

∑`
k=1 aijkx

(s,t+1)
i y

(s,t)
j

until the parameters converge. Note that we are ignoring the normalization equation
∑
xi =

1. Instead, we incorporate that condition right before the next EM step by re-normalizing:

x
(s+1)
i :=

x
(s,t)
i∑n

i′=1 x
(s,t)
i′

y
(s+1)
j := y

(s,t)
j

m∑
i′=1

x
(s,t)
i′ .

Since these are just local searches which may converge only to local minima, for each
transcript, we ran our algorithm 20 different times starting from 20 different randomly chosen
starting points. For every transcript in our data, all 20 runs of the algorithm converged to
the same solution, up to a small tolerance. We therefore believe that in almost all cases
we have found a global, and not merely local, minimum to the modified Kullback-Leibler
divergence. Most likely, this consistency is a consequence of the particular coefficients of our
equations, and in general there may be multiple local minima.

Computational validation methodology

In order to validate our method, we simulated expression profiles according to various
models and tested our method’s ability to reconstruct the underlying parameters. First,
we simulated data according to the same independence model defined in the Model section.
The underlying spatiotemporal subregion expression levels were sampled from a log-normal
distribution with standard deviation 0.5. The simulated measurements bk were computed
from these subregion levels according to our model of the Arabidopsis root in (3.3). Finally,
multiplicative error was added, distributed according to a log-normal distribution with stan-
dard deviation 0.03 to simulate measurement noise. This procedure created expression data
with varying but comparable expression levels, which we will call the “uniform” dataset.
However, since we are particularly interested in genes for which the expression levels are
not uniform, we also produced simulations with the expression level for a given section or
cell type raised by a factor of 10, which we will call the “elevated” dataset. In this dataset,
we only measured the error for the same section or cell type which was elevated. These
simulations measure our ability to detect a dominant expression pattern.
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In addition, we designed simulations that test the robustness of the algorithm to failures
of the bilinear model for root expression levels. For each section and cell type, we simulated
data in which the expression levels for cells in that section or cell type did not follow the
bilinear model, and call these the “section” and “cell type” datasets respectively. Instead,
the expression levels in the given section or cell type were chosen independently according to
a log-normal distribution with standard deviation 0.5

√
2. The factor of

√
2 was introduced

because the product of two log-normally distributed numbers with standard deviation 0.5 is
distributed log-normally with standard deviation 0.5

√
2.

The predictions were compared to the true expression levels across the spatiotemporal
subregions within each section and each cell type. For each section and each cell type, the
expression levels in its spatiotemporal subregions were averaged, ignoring those combinations
which are not physically present in the root, (i.e. those whose entry in Table 3.2 is 0). The
difference between the predicted and true average expressions was computed as a proportion
of the true average expression. We then computed the root mean square of the proportional
error over 500 simulations.

Visualization of predicted expression patterns

Predicted expression values were colored according to an Arabidopsis root template (Fig-
ure 3.1). The green channel of each cell was set according to a linear mapping between
the expression range shown in the template [1, 10] or [1, 5] to the range [0, 255]. Expression
values above or below that range are given values of 255 or 0 respectively. The mapping is
also shown to the right of the false color image in the form of a gradient key. Phloem cells
by longitudinal section are visualized separately on the right hand side of the root as they
are physically occluded by other cells in the left hand side representation. The minimum
and maximum range of expression value visualized can also be adjusted by the user.

In vivo validation methodology

To validate predicted expression values, we used transgenic Arabidopsis thaliana lines
containing transcriptional GFP fusions in the Columbia ecotype [39]. For each gene being
validated, six plants from at least two insertion lines previously described as expressing
GFP were characterized. All plants were grown vertically on 1X Murashige and Skoog salt
mixture, 1% sucrose and 2.3 mM 2-(N -morpholino)ethanesulfonic acid (pH 5.7) in 1% agar.
Seedlings were prepared for microscopy at 5 days of age. Confocal images were obtained using
a 25x water-immersion lens on a Zeiss LSM-510 confocal laser-scanning microscope using the
488-nm laser for excitation. Roots were stained with 10 µg/mL propidium iodide for 0.5 to
2 minutes and mounted in water. GFP was rendered in green and propidium iodide in
red. Images were saved in TIFF format. Images were manually stitched together in Adobe
Photoshop CS2 using the Photomerge command. The black background surrounding the



28

root was modified to ensure uniformity across figures. No other image enhancement was
performed.

3.2 Results

Computational validation

The root mean square percentage errors in the reconstruction of each parameter are
shown in Table 3.3. In the first two columns, where the data were generated according to the
bilinear model, the error rate is generally no greater than the simulated measurement error.
In most cases, elevated expression led to a lower error rate. In particular, reconstruction of
expression in procambium was much more accurate in the elevated dataset.

The last two columns show that the algorithm is robust to violations of the bilinear
model. Also, the predicted expression level in each cell type is generally not greatly affected
by the failure of the model in other cell types, and similarly with sections.

In vivo validation

To determine whether our algorithm can accurately resolve spatiotemporal subregion-
level transcript expression values, it would be ideal to compare the predictions to measured
microarray expression values of the same spatiotemporal subregion. However, due to techni-
cal constraints, it is not possible to measure mRNA expression to such a degree of specificity
and thus we cannot validate the estimates directly. Instead, we validated the method by visu-
ally comparing the predicted pattern of expression to patterns obtained from transcriptional
GFP fusions using laser scanning confocal microscopy, as described in [39].

For each gene validated, a false-colored root image was generated by coloring each spa-
tiotemporal subregion of an annotated Arabidopsis root template (Figure 3.1) according
to the expression level in that subregion as predicted by our method. This false-colored
image was then visually compared against the actual pattern of fluorescence observed in
plants expressing a transcriptional GFP fusion specific for the promoter of that gene. These
transcriptional GFP fusions contain up to 3 kb of regulatory sequence upstream of the
translational start site of the respective gene. In many cases, this sequence is sufficient to
recapitulate endogenous mRNA expression patterns as defined by cell type resolution mi-
croarray data [39]. This comparative method of validation allows us to assess the accuracy of
spatiotemporal subregion expression predictions in an efficient and technically feasible way.

As a benchmark validation test, a set of three transcriptional fusions which were used to
obtain some of the marker-line dataset were examined: S18(AT5G12870 ), S4(AT3G25710 ),
and S32(AT2G18380 ). These fusions were originally selected for use in profiling because they
exhibited enriched cell type expression as observed by laser scanning confocal microscopy
and subsequently confirmed in the microarray expression data. The expression predictions
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Figure 3.2: (A) Expression of AT2G18380 in all developmental stages of the phloem was
predicted by our method and visualized in a representation of the Arabidopsis root. Phloem
cells are shown external to the root. (B) GFP expression in the longitudinal axis and (C)
expression in cross-section of expression driven by the AT2G18380 promoter validate the
prediction.
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Error rate
Variable uniform elevated cell type section
Section 1 2.7 2.4 3.3 3.6
Section 2 3.4 3.0 5.7 7.5
Section 3 3.3 2.7 5.8 7.2
Section 4 3.2 2.8 5.3 6.5
Section 5 3.1 2.7 5.3 6.5
Section 6 3.3 2.7 5.3 6.5
Section 7 3.1 2.5 3.7 5.0
Section 8 3.0 2.3 3.6 4.9
Section 9 3.0 2.2 3.6 4.8
Section 10 2.7 2.1 3.5 4.5
Section 11 2.9 2.2 3.4 4.6
Section 12 3.3 2.2 4.4 5.3
Section 13 2.4 2.1 3.6 5.3
Quiescent center 3.0 3.1 3.0 3.1
Columella 3.1 3.8 4.9 4.1
Lateral root cap 2.6 1.6 3.6 3.1
Hair cell 3.4 2.8 9.1 4.3
Non-hair cell 3.0 2.1 3.1 3.0
Cortex 2.9 2.1 6.9 3.6
Endodermis 2.8 2.2 3.5 3.2
Xylem pole pericycle 3.3 3.1 10.8 4.9
Phloem pole pericycle 3.0 2.9 9.4 4.9
Phloem 3.0 2.9 3.0 3.0
Phloem ccs 3.3 3.4 11.7 4.9
Xylem 2.2 2.1 2.5 2.2
Lateral root primordia 3.5 3.0 3.4 3.3
Procambium 8.3 1.8 12.7 12.7

Table 3.3: Root mean square percentage error rates in the reconstruction of simulated data.
The first column is under a model of comparable but varying expression levels across all
sections and cell types. The second type is the error rate when that section or cell type
has its expression level raised by a factor of 10. The third and fourth columns show models
in which the bilinear assumption is violated in one of the sections or one of the cell types
respectively. In all cases, 3% measurement error has been added to the expression levels.

from our method accurately recapitulated the observed pattern of all three benchmark genes
(Figure 3.2 and data not shown).

To assess the novel predictive ability of our method to reconstruct in vivo expression pat-
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Figure 3.3: (A) Our method correctly predicts specific expression of AT4G37940 in a cell
type, procambium, that is only covered by a general tissue marker, WOL. Expression con-
ferred by the AT4G37940 promoter fused to GFP as a reporter was visualized in the col-
umella (B) and in the procambium by a longitudinal section (B) and a cross section (C).
The label X indicates the xylem axis. The expression also validates a maximal peak in the
meristematic zone.
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terns given missing data, we selected transcriptional fusions for genes for which our method
predicts expression in cell types or in spatiotemporal subregions that were not marked by
fluorescent marker-lines in the original dataset. At least two lines per transcriptional fu-
sion were monitored. With respect to an unmarked cell type, our method predicted that
AT4G37940 was highly expressed in the columella and developing procambium. Imaging of
a transcriptional fusion of this gene confirmed this expression (Figure 3.3).

To determine if our method could correctly differentiate expression in a specific develop-
mental stage of a cell type, we selected AT5G43040 for further analysis. The collection of
marker-lines used to generate the original dataset included a marker for all developmental
stages of non-hair cells, composed of their precursors (atrichoblasts) and fully developed
non-hair cells. However, the marker-line used for hair cells only marks mature hair cells, and
not their precursors (trichoblasts). Our method predicts AT5G43040 expression throughout
the epidermis—in mature hair cell, trichoblast, mature non-hair cell and atrichoblast cell
files—with higher expression predicted in non-hair cells than in hair cells. This differen-
tial expression was validated using the AT5G43040 transcriptional fusion (Supplementary
Figure 2) demonstrating that our method is not only able to identify expression in a devel-
opmental stage of a cell type not marked by the marker-line data, but also to accurately
differentiate relative levels of a transcript. However, it should be noted that expression in the
transcriptional fusion did not fully corroborate the expression predicted by our algorithm—
specifically, expression was found in the lateral root cap which was not predicted by our
algorithm.

Examination of the raw microarray expression data revealed that expression was not
elevated in the lateral root cap in the input microarray data. Most likely, the presence of
GFP is not indicative of erroneous reconstruction of AT5G43040 expression in this case.
Instead, the transcriptional fusion does not contain sufficient regulatory elements to direct
the appropriate expression as described in [39], perhaps within downstream sequences. For
this reason, a comparison of the ratio between raw marker line and section expression data
can be obtained as a link for each gene so that the user can simultaneously assess raw
expression data with the reconstructed expression patterns.

3.3 Discussion

We have shown that spatiotemporal patterns of gene expression in the Arabidopsis root
can be reconstructed using information from the marker-line and longitudinal datasets. Cur-
rent experimental techniques are limited in their ability to rapidly and accurately microdis-
sect organs into all component cell types at all developmental stages. Our computational
technique helps to overcome these limitations. We fully integrate the marker-line and longi-
tudinal data sets into a comprehensive expression pattern, across both space and time. In
particular, this method has enabled the identification of Arabidopsis root procambium and
trichoblast-specific genes, which have been previously experimentally intractable cell types.
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Our high-resolution expression patterns will allow us to better understand the regulatory
logic that controls developmental processes of the Arabidopsis root. These transcriptional
regulatory networks are key to understanding developmental processes and environmental
responses. With only a portion of these genes and fewer cell types, high-resolution spa-
tiotemporal data has been used to identify transcriptional regulatory modules [7]. Our more
accurate and complete dataset will allow a more comprehensive discovery of regulatory net-
works across additional cell types.

Moreover, we expect that our algorithm and the model which underlies it are applicable to
time course experiments on other heterogeneous cell mixtures. Measurements in multicellular
organisms are taken from complex cell mixtures of organs, tissues, heterogeneous cell lines, or
cancerous samples. When precise histological characterization of these samples can estimate
underlying cell type composition, our method can be used to reconstruct the underlying cell
type-specific gene expression patterns or any other type of quantitative data, such as high-
throughput protein abundance measurements. Theoretically, this algorithm can be applied
to identify missing data in any experimental system that captures data in two or more
dimensions which are assumed to be independent of one another.
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Chapter 4

Semi-symmetric tensor ranks

This chapter is based on this paper “Secant varieties of P2 × Pn embedded by O(1, 2),”
which was jointly authored with Daniel Erman and Luke Oeding [11].

Let U , V , and W be complex vector spaces of dimension m, n, and k respectively, and let
x be an element in the tensor product of of their duals, U∗⊗V ∗⊗W ∗. The border rank of x is
the minimal r such that the corresponding point [x] ∈ P(U∗⊗V ∗⊗W ∗) lies in the rth secant
variety of the Segre variety of P(U∗) × P(V ∗) × P(W ∗). Similarly, for a symmetric tensor
x ∈ S3U∗ or a partially symmetric tensor x ∈ U∗⊗S2V ∗, the symmetric border rank and the
partially symmetric border rank are the smallest r such that [x] is in the rth secant variety of
the Veronese or the Segre-Veronese variety, respectively. Developing effective techniques for
computing and characterizing the border rank of tensors is an active area of research which
spans classical algebraic geometry and representation theory [30, 31, 32, 33, 34, 43].

In the partially symmetric case, the secant varieties of P1 × Pn−1 embedded by the line
bundle O(1, 2) are closely related to standard results about pencils of symmetric matrices.
Moreover, the non-symmetric analogue is P1 × Pn−1 × Pk−1 embedded by O(1, 1, 1), and
the defining equations of all of its secant varieties are known by work of Landsberg and
Weyman [34, Thm. 1.1]. We record the partially symmetric analogue in Proposition 4.4.2.

The main result of this chapter is Theorem 4.4.3, which focuses on the next case: secant
varieties of P2×Pn−1 embedded by O(1, 2). We give two explicit matrices, and we prove that,
when r ≤ 5, their minors and Pfaffians, respectively, generate the defining ideal for these
secant varieties. To illustrate, fix a basis {e1, e2, e3} of U∗. We may then express any point
x ∈ P(U∗⊗S2V ∗) as x = e1⊗A1+e2⊗A2+e3⊗A3 where each Ai ∈ S2V ∗ can be represented
by an n × n symmetric matrix. With the ordered triplet of matrices (A1, A2, A3) serving
as coordinates on P(U∗ ⊗ S2V ∗), our main result is the following, which is a restatement of
Theorem 4.4.3:

Theorem 4.0.1. Let Y be the image of P2×Pn−1 in P3(n+1
2 )−1 ∼= P(U∗⊗S2V ∗) embedded by

O(1, 2). For any r ≤ 5, the rth secant variety of Y is defined by the prime ideal generated
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by the (r + 1)× (r + 1) minors of the n× 3n block matrix(
A1 A2 A3

)
(4.1)

and by the (2r + 2)× (2r + 2) principal Pfaffians of the 3n× 3n block matrix 0 A3 −A2

−A3 0 A1

A2 −A1 0

 . (4.2)

The matrices which appear in the statement of the above theorem are examples of what we
call the “exterior flattenings” of a 3-tensor (see §4.1), and the construction of these matrices
is motivated by the κ-invariant of a 3-tensor, as introduced in [22, §1.1]. The minors of
the exterior flattenings of a 3-tensor impose necessary equations on a wide array of secant
varieties of Segre-Veronese embeddings of products of projective spaces. The minors of these
exterior flattenings simultaneously generalize both the minors obtained from flattenings of
a 3-tensor and the determinantal equations of [47, Lem. 4.4] and [43, Thm. 3.2].

Under the hypotheses of Theorem 4.0.1, the minors and Pfaffians of these exterior flat-
tenings are insufficient to generate the ideal of the rth secant variety for r ≥ 7. In other
words, Theorem 4.0.1 is false if r ≥ 7, and we do not know if Theorem 4.0.1 holds when
r = 6. See Example 4.4.12 for more details. Note that by [1, Cor. 1.4(ii)], these secant
varieties have the expected dimension except when n is odd and r = n+ (n+ 1)/2.

The proof of our main result uses a mix of representation theory and geometric techniques
for studying determinantal varieties. We first introduce the relevant determinantal ideals and
we use their equivariance properties to relate these ideals as the size of the tensor varies.
Next, we apply this relation in order to understand the defining ideals of certain auxiliary
varieties known as the subspace varieties Subm′,n′ (see Definition 4.3.1). We then prove our
main result in the special case that n = r, by relating the secant variety with the variety
of commuting symmetric n × n matrices. A similar idea has appeared in several instances
previously [3, 43, 47]. This step requires r ≤ 5. Finally, we prove our main result by blending
our results about subspace varieties with our knowledge about the case n = r.

Partially symmetric 3-tensors are closely related to the study of vector spaces of quadrics,
which arise naturally in algebraic geometry. For instance, in the study of Hilbert schemes of
points, border rank is connected to the smoothability of zero dimensional schemes [13, 22].
As another example, [43, Prop. 6.3] relates the border rank of a partially symmetric tensor
x ∈ C3 ⊗ S2(Cn) with properties of the corresponding degree n determinantal curve in P2.

Questions about the border rank of partially symmetric tensors also arise in algebraic
statistics [24, §7]. For instance, the situation of Theorem 4.4.3 corresponds to a mixture of
random processes, each independently sampling from a distribution with 3 states and sam-
pling twice from a distribution with n states. The border rank of the observed distribution
corresponds to the number of processes in the mixture. This connection will be taken up in
Chapter 5
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In signal processing, a partially symmetric tensor in U∗⊗S2V ∗ can be constructed as the
second derivative of the cumulant generating function taken at m points [46]. The matrix
equations in Theorem 4.4.3 can be used to study small border ranks of such tensors when
m = 3.

The defining ideal of the rth secant variety of P2 × Pn−1 was previously known in the
case when this secant variety is a hypersurface. This occurs when n ≥ 4 is even, and
r = 3n−2

2
, and this result follows from an analogue to Strassen’s argument [47, § 4], as shown

by Ottaviani in the remark following Theorem 4.1 in [43]. For historical interest, we note
that the hypersurface case n = 4 and r = 5 dates to Emil Toeplitz [48].

Theorem 4.4.3 thus provides a new family of examples where we can effectively compute
the border rank of a partially symmetric tensor. Our main result also provides evidence for a
partially symmetric analogue of Comon’s Conjecture, which posits that the symmetric rank
of a tensor equals the rank [15, §5], as discussed in Remark 4.4.5 below.

This chapter is organized as follows. In §4.1, we define a vector κ as an invariant of
a 3-tensor. We use this κ-invariant to produce explicit matrix equations which vanish on
the secant varieties of Segre-Veronese embeddings of projective spaces. To provide a more
invariant perspective, and to connect with previous literature [30, 31, 34, 35], we also provide
Schur module decompositions for our matrix equations. In §4.2, we restrict to the κ-invariant
of a partially symmetric tensor. Here we also provide Schur module decompositions in the
partially symmetric case. In §4.3, we show that the κ0 equations define subspace varieties.
We prove our main result, Theorem 4.4.3, in §4.4.

Remark 4.0.2. The results giving equations vanishing on the Segre and Segre-Veronese va-
rieties (Propositions 4.1.5 and 4.2.3) hold in arbitrary characteristic. However, our proof of
Theorem 4.4.3 does not extend to arbitrary characteristic because it relies on Lemmas 4.3.4
and 4.4.9 and [8, Thm. 3.1], all of which require characteristic 0.

4.1 The κ-invariant of a 3-tensor

From a tensor in U∗ ⊗ V ∗ ⊗W ∗, we will construct a series of linear maps, whose ranks
we define to be the κ-invariants of the tensor. The κ-invariants give inequalities on the rank
of the tensor, and thus, determinantal equations which vanish on the secant variety.

There is a natural map U∗ ⊗
∧jU∗ → ∧j+1U∗ defined by sending u⊗ u′ 7→ u∧ u′ for any

0 ≤ j ≤ m− 1. This induces an inclusion U∗ ⊆
∧jU ⊗∧j+1U∗. By tensoring on both sides

by V ∗⊗W ∗, we get an inclusion U∗⊗V ∗⊗W ∗ ⊆ (V ⊗
∧jU∗)∗⊗ (W ∗⊗

∧j+1U∗). An element
of the tensor product on the right-hand side may be interpreted as a linear homomorphism,
meaning that for any x ∈ U∗ ⊗ V ∗ ⊗W ∗ we have a homomorphism

ψj,x : V ⊗
∧jU∗ → W ∗ ⊗

∧j+1U∗,

and ψj,x depends linearly on x. We call ψj,x an exterior flattening of x, as it generalizes the
flattening of a tensor, as discussed below.
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Definition 4.1.1. Following [22, Defn. 1.1], we define κj(x) to be the rank of ψj,x, and we
let κ(x) denote the vector of κ-invariants (κ0(x), . . . , κm−1(x)).

More concretely, by choosing bases for the vector spaces, we can represent ψj,x as a matrix.
If e1, . . . , em is a basis for U∗, then a basis for

∧jU∗ is given by the set of all ei1 ∧ . . .∧ eij for

1 ≤ i1 < · · · < ij ≤ m, and analogously for
∧j+1U∗. For a fixed u =

∑m
k=1 ukek in U∗, the

map
∧jU∗ → ∧j+1U∗ defined by u′ 7→ u∧u′ will send ei1∧ . . .∧eij to

∑
k uk ek∧ei1∧ . . .∧eij .

Thus, this map will be represented in the above bases by a matrix whose entries are either
0 or ±ui. The matrix for ψj,x is the block matrix formed by replacing the scalar ui with the
matrix Ai where Ai ∈ V ∗ ⊗W ∗ are the matrices such that x =

∑m
i=1 ei ⊗ Ai.

For example, if m = 4, then ψj,x are represented by the following matrices (in the
coordinates described above):

ψ0,x : V ⊗
∧0U∗

0@A1
A2
A3
A4

1A
−−−−→ W ∗ ⊗

∧1U∗,

ψ1,x : V ⊗
∧1U∗

0BBB@
0 A3 −A2 0
−A3 0 A1 0
A2 −A1 0 0
A4 0 0 −A1
0 A4 0 −A2
0 0 A4 −A3

1CCCA
−−−−−−−−−−−−−−→ W ∗ ⊗

∧2U∗,

ψ2,x : V ⊗
∧2U∗

0@−A4 0 0 0 A3 −A2
0 −A4 0 −A3 0 A1
0 0 −A4 A2 −A1 0
A1 A2 A3 0 0 0

1A
−−−−−−−−−−−−−−−−−−−−→ W ∗ ⊗

∧3U∗

ψ3,x : V ⊗
∧3U∗

(A1 A2 A3 A4 )−−−−−−−−−→W ∗ ⊗
∧4U∗.

The entries of these matrices are linear forms on P(U∗ ⊗ V ∗ ⊗W ∗), and the minors of these
matrices ψj,x are the “explicit matrix equations” alluded to in the introduction.

Note that for j = 0, the map ψ0 : V ⊗
∧0U∗ ∼= V → W ∗ ⊗ U∗ is the homomorphism

corresponding to x in the identification U∗ ⊗ V ∗ ⊗ W ∗ ∼= Hom(V, U∗ ⊗ W ∗). In the lit-
erature, the matrix for ψ0 is referred to as a “flattening” of x by grouping W ∗ and U∗.
Similarly, ψm−1,x : V ⊗

∧m−1U∗ → W ∗ is the flattening formed by grouping U∗ and V ∗,
because

∧m−1U∗ ∼= U .
If [x] ∈ P(U∗ ⊗ V ∗ ⊗W ∗) is a tensor, then the rank of [x] is the number r in a minimal

expression x = u1⊗v1⊗w1+· · ·+ur⊗vr⊗wr, where ui ∈ U , vi ∈ V , and wi ∈ W for 1 ≤ i ≤ r.
The set of rank-one tensors is closed and equals the Segre variety Seg(PU∗ × PV ∗ × PW ∗).
More generally, the Zariski closure of the set of tensors [x] ∈ P(U∗ ⊗ V ∗ ⊗W ∗) having rank
at most r is the rth secant variety of the Segre product, denoted σr(Seg(PU∗×PV ∗×PW ∗)).

Definition 4.1.2. The border rank of [x] ∈ P(U∗ ⊗ V ∗ ⊗W ∗) is the minimal r such that
[x] is in σr(Seg(PU∗ × PV ∗ × PW ∗)).
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The following lemma generalizes the well-known fact that the ranks of the flattenings are
bounded above by the tensor rank, and extends a result of Ottaviani [43, Thm. 3.2(i)].

Lemma 4.1.3. If x ∈ U∗ ⊗ V ∗ ⊗W ∗ has border rank at most r, then κj(x) ≤ r
(
m−1
j

)
.

Proof. Since κj is defined in terms of a matrix rank, an upper bound on κj is a closed
condition on the set of tensors. It thus suffices to prove the statement with border rank
replaced by rank. As observed above, ψj,x depends linearly on x, so it is sufficient to assume
that x is an indecomposable tensor, and then show that κj(x) ≤

(
m−1
j

)
. We can choose

coordinates such that x = e1⊗A, and A is a matrix with only one non-zero entry. The non-
zero rows of the matrix for ψj,x will correspond to those basis elements ei1 ∧ · · · ∧ eij ∈

∧jU∗
such that 2 ≤ i1 < · · · < ij ≤ n, each of which is sent to a multiple of e1 ∧ ei1 ∧ · · · ∧ eij .
Since there are

(
m−1
j

)
such basis elements, the rank of ψj,x is equal to

(
m−1
j

)
.

The above lemma illustrates that the minors of the exterior flattenings provide equations
which vanish on the secant variety of a Segre triple product. We write S•(U ⊗ V ⊗W ) to
denote the polynomial ring on the affine space U∗ ⊗ V ∗ ⊗W ∗.

Definition 4.1.4. Let c = (c0, . . . , cm−1) be a vector of positive integers. We define Iκi≤ci to
be the ideal generated by the (ci + 1)× (ci + 1)-minors of ψj,x. Similarly, we use the notation
Iκ≤c for the ideal generated by Iκi≤ci for all 0 ≤ i ≤ m − 1. Finally, we define Σκi≤ci and
Σκ≤c to be the subschemes of P(U∗⊗V ∗⊗W ∗) given by the ideals Iκi≤ci and Iκ≤c respectively.

Proposition 4.1.5. Fix r ≥ 1. If c is the vector defined by cj = r
(
m−1
j

)
for 0 ≤ j ≤ m− 1,

then
σr(Seg(PU∗ × PV ∗ × PW ∗)) ⊆ Σκ≤c.

Remark 4.1.6. Fundamental in the construction of the exterior flattening ψj,x was the in-
clusion of U∗ into

∧jU ⊗ ∧j+1U∗. More generally, any natural inclusion of U∗ into the
tensor product of two representations would yield an analogue of ψj,x as well as ana-
logues of Lemma 4.1.3 and Proposition 4.1.5. For instance, from the inclusion U∗ ⊆
S(2,1)(U)⊗ S(2,1,1)(U

∗), we may associate to a tensor x a homomorphism:

V ⊗ S(2,1)(U
∗)→ W ∗ ⊗ S(2,1,1)(U

∗),

whose rank is at most 5 times the border rank of x. We restrict our attention to the
κ-invariants because these seem to provide particularly useful inequalities in our cases of
interest. However, an example of this generalized construction was introduced and applied
in [44, Thm. 1.1] and has been further developed under the name of Young flattening in [32].

Example 4.1.7. If m = 2, then as stated above, κ0 and κ1 are the ranks of the flattenings
formed by grouping W ∗ with U∗ and V ∗ with U∗, respectively. The ideal of the rth secant
variety is Iκ≤(r,r) [34, Theorem 1.1].
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Example 4.1.8. Let m = 3 and suppose that n = k is odd. Denote by X the Segre product
Seg(PU∗ × PV ∗ × PW ∗) in P(U∗ ⊗ V ∗ ⊗W ∗). Then Iκ1≤3n−1 is a principal ideal generated
by the determinant of ψ1,x, which defines the secant variety σ 3n−1

2
(X) [47, Lem. 4.4] (see

also [43, Rmk. 3.3]).

Example 4.1.9. The exterior flattening ψ1,x has also arisen in the study of totally symmetric
tensors. For instance, when n = 3, the secant variety σ3(ν3(P2)) ⊆ P9 is a hypersurface
defined by the Aronhold invariant. Ottaviani has shown that this hypersurface is defined by
any of the 8×8 Pfaffians of the matrix representing ψ1,x specialized to symmetric tensors [44,
Thm. 1.2].

However, the ideals Iκ≤c do not equal the defining ideals of secant varieties even in
relatively simple cases.

Example 4.1.10. Let n = m = k = 3 and let Y be the image of P2×P2×P2 ⊆ P26 embedded
by O(1, 1, 1). By Proposition 4.1.5, we know that Iκ≤(3,6,3) vanishes on σ3(Y ), but we claim
that it is not the defining ideal. Observe that the conditions κ0 ≤ 3 and κ2 ≤ 3 are trivial,
and hence Iκ≤(3,6,3) = Iκ1≤6. By definition, the ideal Iκ1≤6 is generated by the 7 × 7 minors
of ψ1,x. However, [34, Thm. 1.3] produces degree 4 equations which vanish on σ3(Y ), and
since Iκ1≤6 is generated in degree 7, we see that it does not equal the defining ideal of
σ3(Y ).

We now study our matrix equations from the perspective of representation theory, which
connects them to previous work on secant varieties of Segre-Veronese varieties. The repre-
sentation theory of our ideals Iκi≤ci will also be necessary in the proof of Lemma 4.3.4.

Since the ideals Iκi≤ci are invariant under the natural action of GL(U)×GL(V )×GL(W ),
their generators can be decomposed as direct sums of irreducible representations of that
group. Each polynomial representation of GL(U)× GL(V )× GL(W ) is of the form SµU ⊗
SνV ⊗ SωW where SµU , SνV , and SωW are the Schur modules indexed by partitions µ, ν,
and ω with at most m, n, and k parts, respectively, where if π = (π1, . . . , πs) is a partition
with π1 ≥ π2 ≥ · · · ≥ πs > 0, then we say that s is the number of parts of π. For the
summands of the degree d part of Iκi≤ci ⊂ Sd(U ⊗ V ⊗W ), the partitions will always be
partitions of d. For general background on Schur modules see [23].

Lemma 4.1.11. For each j and cj, there is a GL(U)×GL(V )×GL(W )-equivariant map

Φj :
∧cj+1

(
V ⊗

∧jU∗)⊗∧cj+1
(
W ⊗

∧j+1U
)
→ Scj+1 (U ⊗ V ⊗W ) ,

whose image equals the vector space of generators of Iκj≤cj . In particular, every irreducible
representation arising in the Schur module decomposition of the generators of Iκj≤cj must be
a submodule of both the source and target of Φj.

Proof. Consider the map

ψj,x : V ⊗
∧jU∗ → W ∗ ⊗

∧j+1U∗.



40

After choosing bases of U , V , and W , we may think of ψj,x as a matrix of linear forms in
S•(U ⊗ V ⊗W ). Taking the (cj + 1)× (cj + 1)-minors of ψj,x then determines the map Φj.
More concretely, our choice of bases for U , V , and W determines a natural basis for the
source of Φj consisting of indecomposable tensors; we define the map Φj by sending a basis
element to the corresponding minor of the matrix ψj,x. Since the ideal Iκj≤cj is defined as
the ideal generated by the image of Φj, the lemma follows from Schur’s Lemma.

When j = 0, it is straightforward to compute the Schur module decomposition of Iκ0≤c0 ,
as illustrated by the following example.

Example 4.1.12. The map
ψ0,x : V ⊗

∧0U∗ → W ∗ ⊗
∧1U∗

is a flattening of the tensor x by grouping U∗ and W ∗. As representations, the minors of
ψ0,x decompose into irreducibles using the skew Cauchy formula [23, p. 80]

∧c0+1V ⊗
∧c0+1(W ⊗ U) =

∧c0+1V ⊗

 ⊕
|λ|=c0+1

SλW ⊗ Sλ′U

 ,

where λ ranges over all partitions of c0 + 1 and λ′ is the conjugate partition.
For instance, let n = m = k = 3 and consider the generators of Iκ0≤2. This is a vector

space of cubic polynomials, and by Lemma 4.1.11, it must be the module∧3V ⊗
(
(S3W ⊗ S1,1,1U)⊕ (S2,1W ⊗ S2,1U)⊕ (S1,1,1 ⊗ S3U)

)
.

After distributing, each irreducible module is the tensor product of three Schur functors
applied to U , V , and W respectively, and we can thus drop the vector spaces and the tensor
products from our notation, replacing SµU⊗SνV ⊗SωW with SµSνSω without any ambiguity.
Thus, we rewrite this module as:

S1,1,1S1,1,1S3 ⊕ S2,1S1,1,1S2,1 ⊕ S3S1,1,1S1,1,1.

The dimension of this space is 10+64+10 = 84, which equals the number of maximal minors
of the 3× 9 matrix ψ0,x.

When j > 0, the existence of the dual vector space U∗ in the source of ψj,x makes
finding the Schur module decomposition of Iκi≤ci more subtle. In Proposition 4.1.14 below,
we provide an upper bound for the Schur module decomposition of Iκ1≤c1 in the case that
dimU = 3. To state the formula precisely, we first recall some notation.

For any vector space A, the Littlewood-Richardson formula is

SλA⊗ SµA =
⊕

|π|=|λ|+|µ|

SπA
⊕cπλ,µ , (4.3)
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where the multiplicities cπλ,µ are the Littlewood-Richardson numbers. For two vectors spaces
A and B, we use the outer plethysm formula

Sπ(A⊗B) =
⊕

|λ|+|µ|=|π|

(SλA⊗ SµB)⊕Kπ,λ,µ (4.4)

to define the Kronecker coefficients Kπ,λ,µ.

Remark 4.1.13. In Propositions 4.1.14, 4.2.5 and 4.2.8, we will use the fact that as GL(U)
modules, SπU

∗ ⊗ (
∧mU)l ∼= Slm−πU , where lm denotes the partition (l, . . . , l). We caution

that the entries in lm − π = (l − πm, . . . , l − π1) are reversed.

Proposition 4.1.14. Let dim(U) = 3. For any Schur module SπU ⊗ SλV ⊗ SµW , let
λ′ and µ′ denote the conjugate partitions of λ and µ respectively, and let (3)c0+1 − π be
the difference as in Remark 4.1.13. If SπU ⊗ SλV ⊗ SµW occurs in the decomposition of
(Iκ1≤c1)c1+1 from Definition 4.1.4, then π, λ′, and µ′ have at most 3 parts, and the multiplicity

of SπU ⊗ SλV ⊗ SµW is at most the minimum of c
(3)c0+1−π
λ′,µ′ and Kπ,λ,µ.

Computations with the software package LiE [49] suggest that the decomposition of
(Iκ1≤c1)c1+1 may equal the upper bound of Proposition 4.1.14, as in Example 4.1.15.

Proof of Proposition 4.1.14. Using Lemma 4.1.11, the (c1+1)×(c1+1)-minors of ψ1,x belong
to the common submodules of the polynomials Sc1+1(U ⊗ V ⊗W ) and the domain of Φj,
which we can rewrite using the Cauchy skew formula: ⊕

|λ|=c1+1

SλV ⊗ Sλ′U∗
⊗

 ⊕
|µ|=c1+1

SµW ⊗ Sµ′
(∧2U

) . (4.5)

Here we note that λ′ and µ′ must have no more than 3 parts or else the summand is zero.
We focus on the U factor and compute

Sλ′U
∗ ⊗ Sµ′(

∧2U) ∼= Sλ′U
∗ ⊗ Sµ′(U∗)⊗ (

∧3U)c0+1 because dimU = 3

∼=
⊕

|ν|=2(c0+1)

(SνU
∗)
⊕cν

λ′,µ′ ⊗ (
∧3U)c0+1 by (4.3)

∼=
⊕

|ν|=2(c0+1)

(S(c0+1)3−ν U)
⊕cν

λ′,µ′ by Remark 4.1.13

∼=
⊕

|π|=c0+1

(SπU)
⊕c(c0+1)3−π

λ′,µ′ by taking π = (c0 + 1)3 − ν.

Therefore expression (4.5) becomes⊕
|λ|=|µ|=|π|=c0+1

SπU ⊗ SλV ⊗ SµW⊕c(c0+1)3−π
λ′,µ′ .
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(Iκ1≤1)2 = (S3 ·S1,1S1,1S2)⊕ S2S2S2

(Iκ1≤2)3 = (S3 ·S1,1,1S2,1S2,1)⊕ S2,1S2,1S2,1 ⊕ (S3 ·S2,1S2,1S3)⊕ S3S1,1,1S1,1,1

(Iκ1≤3)4 = S2,2S2,2S2,2 ⊕ (S3 ·S2,2S2,1,1S2,1,1)⊕ (S3 ·S2,2S2,1,1S3,1)⊕ (S3 ·S2,2S3,1S3,1)
⊕ S2,1,1S2,1,1S2,1,1 ⊕ (S3 ·S2,1,1S3,1S3,1)⊕ S3,1S2,1,1S2,1,1 ⊕ S4S2,2S2,2

⊕ S4S2,1,1S2,1,1

(Iκ1≤4)5 = S2,2,1S2,2,1S2,2,1 ⊕ (S3 ·S2,2,1S2,2,1S3,1,1)⊕ (S3 ·S2,2,1S3,2S3,2)⊕ (S3 ·S2,2,1S3,2S3,1,1)
⊕ (S3 ·S3,2S3,2S3,1,1)⊕ S3,2S2,2,1S2,2,1 ⊕ S3,2S3,1,1S3,1,1 ⊕ S3,1,1(S2 ·S2,2,1S3,1,1)
⊕ S3,1,1S3,1,1S3,1,1 ⊕ S4,1S2,2,1S2,2,1 ⊕ S4,1(S2 ·S2,2,1S3,2)⊕ S4,1(S2 ·S2,2,1S3,1,1)
⊕ S5S2,2,1S2,2,1

(Iκ1≤5)6 = S2,2,2S3,3S3,3 ⊕ (S3 ·S2,2,2S3,2,1S3,2,1)⊕ (S3 ·S3,3S3,2,1S3,2,1)⊕ (S3,2,1S3,2,1S3,2,1)
⊕2

⊕ S4,2S2,2,2S2,2,2 ⊕ S4,2(S2 ·S2,2,2S3,2,1)⊕ S4,2S3,2,1S3,2,1 ⊕ S4,1,1(S2 ·S2,2,2S3,3)
⊕ S4,1,1(S2 ·S2,2,2S3,2,1)⊕ S4,1,1S3,2,1S3,2,1 ⊕ S5,1(S2 ·S2,2,2S3,2,1)⊕ S6S2,2,2S2,2,2

(Iκ1≤6)7 = S3,3,1S3,3,1S3,3,1 ⊕ (S3 ·S3,3,1S3,2,2S3,2,2)⊕ S3,2,2S3,3,1S3,3,1 ⊕ S4,2,1(S2 ·S3,3,1S3,2,2)
⊕ S4,2,1S3,2,2S3,2,2 ⊕ S5,1,1S3,2,2S3,2,2

(Iκ1≤7)8 = S3,3,2S3,3,2S3,3,2 ⊕ S4,2,2S3,3,2S3,3,2

(Iκ1≤8)9 = S3,3,3S3,3,3S3,3,3

Figure 4.1: The Schur module decompositions of (Iκ1≤c1)c1+1 in the O(1, 1, 1) case when

k = m = n = 3.

Now we must decide which irreducible modules occur as a submodule of Sc1+1(U⊗V ⊗W ).
For this, we decompose the space of polynomials using the Cauchy formula and the outer
plethysm formula (4.4):

Sc1+1(U ⊗ V ⊗W ) ∼=
⊕

|π|=c1+1

SπU ⊗ Sπ(V ⊗W ) ∼=
⊕

|π|=|λ|=|µ|=c0+1

(SπU ⊗ SλV ⊗ SµW )⊕Kπ,λ,µ .

The proposition statement follows by Lemma 4.1.11.

Example 4.1.15. Let n = m = k = 3. Using LiE [49], we computed every decomposition
of (Iκ1≤c1)c1+1 using Proposition 4.1.14. These decompositions appear in Figure 4.1. To
save space we omit the notation of vector spaces and tensor products, as in Example 4.1.12.
Further, we use the notation Ss to indicate the direct sum over the (non-redundant) per-
mutations of the subsequent s Schur modules. The dimensions of the modules found in
Figure 4.1 are Since these dimensions match the dimensions of the space of minors of ψ1,x,
as computed in Macaulay2 [26], all of the modules must be in the space of minors.

For c1 = 6, we have dim (Iκ1≤6)7 = 1296 =
(
9
7

)2
, and hence we see that all 7 × 7-minors

of ψ1,x are linearly independent. By contrast, if c1 = 5, the fact that dimC(Iκ1≤5)6 = 7011 <
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7056 =
(
9
6

)2
tells us that the 6 × 6 minors of ψ1,x are not all linearly independent. For

example, the upper right and lower left 6× 6 minors of

ψ1,x =

 0 A3 −A2

−A3 0 A1

A2 −A1 0


are both equal to det(A1) · det(A3).

In the next section we impose partial symmetry on our 3-tensors. We remark that we
could impose other types of symmetry and this would lead to different investigations. For
instance, we could restrict attention to 3-tensors in any of the following cases: S3(U∗),
U∗ ⊗

∧2V ∗,
∧3V ∗, or S2,1U

∗. In these cases, it would be straightforward to prove analogues
of Lemma 4.1.3 and Proposition 4.1.5. However, if we hope to produce the ideal defining
the appropriate secant varieties, then it is less obvious how to generalize Definition 4.1.4.
It might be interesting to investigate the secant varieties of these other special types of
3-tensors.

4.2 The κ-invariant for partially symmetric 3-tensors

For the rest of the chapter, we take W = V and focus on partially symmetric 3-tensors
x ∈ U∗ ⊗ S2V ∗ ⊂ U∗ ⊗ V ∗ ⊗ V ∗. By this latter inclusion, we may extend the definition
of κj(x) to partially symmetric tensors. Not only does the κ-invariant provide a bound for
the rank of x, but also for the partially symmetric rank, which is defined as the minimal
r such that x =

∑r
i=1 ui ⊗ vi ⊗ vi, for some ui ∈ U∗ and vi ∈ V ∗. The set of rank-one

partially symmetric tensors is known as the Segre-Veronese variety of PU∗×PV ∗ embedded
by O(1, 2). Therefore, the Zariski closure of the set of partially symmetric tensors of rank
at most r is the rth secant variety of the Segre-Veronese variety. We have the following
analogue of Definition 4.1.2.

Definition 4.2.1. The partially symmetric border rank of [x] ∈ P(U∗⊗S2V ∗) is the minimal
r such that [x] is in σr(Seg(PU∗ × v2(PV ∗))).

Providing an analogue of the equations from Definition 4.1.4 is a bit more subtle when
restricted to partially symmetric 3-tensors. In fact, it is necessary to refine the equations
if we hope to produce ideals which are radical. To see this, consider the case where x is a
partially symmetric 3 × n × n tensor. For such an x, the matrix representing ψ1,x has the
form

ψ1,x =

 0 A3 −A2

−A3 0 A1

A2 −A1 0


where the Ai are symmetric n × n-matrices. Since ψ1,x is a skew-symmetric matrix, all of
the principal minors in Iκ1≤c1 are squares.
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More generally, if m = 4j + 3, then ψ2j+1,x : V ⊗
∧2j+1U∗ → V ∗⊗

∧2j+2U∗ is represented
by a skew-symmetric matrix in appropriate coordinates. Thus, the condition that ψ2j+1,x

has rank at most an even integer c2j+1 is defined algebraically by the principal (c2j+1 +
2) × (c2j+1 + 2)-Pfaffians of ψ2j+1,x. These Pfaffians have degree c2j+1/2 + 1, whereas the
(c2j+1 + 1)× (c2j+1 + 1)-minors have degree c2j+1 + 1.

To encode this skew-symmetry into our matrix equations in the case of partially sym-
metric tensors, we introduce the following analogue of Definition 4.1.4.

Definition 4.2.2. Let Iκj≤cj in S•(U ⊗ S2V ) denote the ideal generated by the (cj + 2) ×
(cj + 2)-Pfaffians of ψj,x, if j = (m − 1)/2, j is an odd integer, and cj is even. Otherwise,
Iκj≤cj denotes the specialization of the ideal in Definition 4.1.4. As in Definition 4.1.4, for a
vector c, Iκ≤c is defined to be the ideal generated by the Iκj≤cj for all j, and Σκi≤ci and Σκ≤c
are the subschemes of P(U∗ ⊗ S2V ∗) defined by Iκi≤ci and Iκ≤c respectively.

Note that for partially symmetric tensors x, we have κj(x) = κm−1−j(x) and likewise
Iκj(x)≤cj = Iκm−1−j≤cj for all j. With notation in Definition 4.2.2, we also obtain the following
analogue of Proposition 4.1.5.

Proposition 4.2.3. Fix r ≥ 1. Let X be the Segre-Veronese variety of P(U∗) × P(V ∗) in
P(U∗ ⊗ S2V ∗) and let c be the vector defined by cj = r

(
m−1
j

)
for 0 ≤ j ≤ m − 1. Then

σr(X) ⊆ Σκ≤c.

Remark 4.2.4. Although the rest of this chapter concerns partially symmetric 3×n×n tensors,
we note that the equations given in Definition 4.2.2 would be insufficient to generate the ideal
of the secant varieties for m ≥ 4. For example, consider the space of partially symmetric
4× n× n tensors. If x is such a tensor, then the matrix representing ψ2,x has the form

ψ2,x =


−A4 0 0 0 A3 −A2

0 −A4 0 −A3 0 A1

0 0 −A4 A2 −A1 0
A1 A2 A3 0 0 0


where each Ai is an n × n symmetric matrix. If x has border rank at most r, then ψ1,x

will have rank at most 3r by Proposition 4.2.3. However, the bold submatrix in the upper
right will have rank at most 2r. Moreover, since the bold submatrix is skew-symmetric, the
condition that it has rank at most 2r is given by the vanishing of its (2r + 2) × (2r + 2)-
principal Pfaffians. Thus, the defining ideal of the rth secant variety must contain these
Pfaffians, as well as 3 other sets of Pfaffians which arise by symmetry. Since the Pfaffians
have degree r + 1, they can not be in the ideal of the (3r + 1)× (3r + 1)-minors.

In effect, these Pfaffians amount to the generators of Iκ1≤2r applied to a 3 × n × n
subtensor. In the literature on tensors, this process for producing equations on larger tensors
by applying known equations to all subtensors is known as inheritance. See [31, §2.1] for a
precise definition in the language of representation theory. The above analysis shows how the
inheritance of κ-equations can produce new equations beyond the κ-equations themselves.



45

Proposition 4.2.5. As a Schur module, we have the following decomposition of the gener-
ators Iκ0≤r into irreducible representations of GL(U)×GL(V )

(Iκ0≤r)r+1 =
⊕
|π|=r+1

SπU ⊗ Sπ′+1r+1V,

where π′ is the conjugate partition to π, and 1r+1 = (1, . . . , 1) is the partition with r + 1
parts.

In the proof, we will need the following observation.

Lemma 4.2.6. Suppose π is a partition of d and suppose A is a vector space. If SλA is a
module occurring in the decomposition of Sπ(S2A) then λ has at most d parts.

Proof. Since π is a partition of d, we have an inclusion Sπ(S2A) ⊂ (S2A)⊗d. By inductively
applying the Pieri formula to (S2A)⊗d = (S2A)⊗d−1 ⊗ S2A, we see that every module in the
decomposition of (S2A)⊗d can have at most d parts.

Proof of Proposition 4.2.5. After choosing bases of U and V , we may view the map ψ0,x as
a matrix of linear forms in S•(U ⊗ S2V ). By Lemma 4.1.11, (Iκ0≤r)r+1 is the image of the
GL(U)×GL(V )-equivariant morphism

Φ0 :
∧r+1V ⊗

∧r+1 (U ⊗ V )→ Sr+1(U ⊗ S2(V )),

which sends an indecomposable basis element in the source to the corresponding minor in the
polynomial ring. The first step of our proof is to show that only those representations of the
form SπU⊗Sπ′+1r+1V appear in both the source and target of Φ0. By Schur’s Lemma, this will
provide a necessary condition on the representations which can appear in the decomposition
of (Iκ0≤r)r+1. The second step of our proof is to show that each such representation actually
arises; for this, we produce an explicit nonzero minor of ψ0,x that is in the image of Φ0

restricted to SπU ⊗ Sπ′+1r+1V , so that Φ0 restricted to SπU ⊗ Sπ′+1r+1V is nonzero.
For the first step, suppose that SπU⊗SλV is a module in Sr+1(U⊗S2V ). If we apply the

Cauchy decomposition formula to Sd(U⊗S2V ), and consider the resulting modules as GL(U)-
representations, then we must have SπU ⊗ SλV contained in the summand SπU ⊗ Sπ(S2V ).
In particular we must have SλV ⊂ Sπ(S2V ). Therefore, by Lemma 4.2.6, λ has at most r+1
parts.

On the other hand, we can use the skew Cauchy formula to decompose∧r+1V ⊗
∧r+1(U ⊗ V ) =

∧r+1V ⊗
⊕
|π|=r+1

SπU ⊗ Sπ′V.

Applying the Pieri rule to
∧r+1V ⊗ Sπ′V , we see that all of the summands have more than

r + 1 parts except for Sπ′+1r+1V . Therefore, the decomposition of Iκ0≤r must consist only
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of the modules SπU ⊗ Sπ′+1r+1V , where π is a partition of r + 1, and each such module can
occur with multiplicity at most one.

For the second step, fix a partition π of r+1. Suppose that u1, . . . , um is our ordered basis
of U and v1, . . . , vn is our ordered basis of V . Consider the indecomposable basis element

zπ = (v1 ∧ · · · ∧ vr+1)⊗
(
(u1 ⊗ v1) ∧ · · · ∧ (u1 ⊗ vπ1) ∧ (u2 ⊗ v1) ∧ · · · ∧ (u2 ⊗ vπ2)

∧ · · · ∧ (um ⊗ v1) ∧ · · · ∧ (um ⊗ vπm)
)

in
∧r+1V ⊗

∧r+1 (U ⊗ V ). We claim that zπ is in SπU ⊗ Sπ′+1r+1V , and, in fact is a non-
zero highest weight vector in that representation. The vector zπ is non-zero because zπ
is the tensor product of two tensors, each constructed as an exterior product of linearly
independent tensors and hence non-zero. It is clear that zπ has weights π and π′ + 1r+1 in
U and V respectively, with respect to our chosen bases. Moreover, replacing vi by vj or ui
by uj, with j < i in either case, would result in a repeated term in the exterior product, and
thus any raising operator would send zπ to zero, so zπ is a highest weight vector.

Let Mπ be the submatrix of the block matrix ψT0,x =
(
A1 · · · Am

)
defined by selecting

the first r+1 rows and the first πi columns of the ith block for each i ≤ n. Then the map Φ0

sends zπ to the determinant of Mπ. For appropriate choices for Ai, we can make Mπ equal
the identity matrix, and therefore Φ(zπ) = det(Mπ) is nonzero.

When dim(U) = 3, we similarly produce a formula for the decomposition of the modules
generating Iκ1≤2r in Proposition 4.2.8.

Remark 4.2.7. Taken together, Propositions 4.2.5 and 4.4.2 provide a complete Schur module
description of the generators of the ideal of any secant variety of the P1 × Pn−1 embedded
by O(1, 2). Similarly, Propositions 4.2.5 and 4.2.8, together with Theorem 4.4.3, provide a
complete Schur module description of the generators of the ideal of the rth secant variety of
P2 × Pn−1 embedded by O(1, 2) for r at most 5.

Proposition 4.2.8. Suppose that dim(U) is 3. As a Schur module, we have the following
decomposition of the generators Iκ1≤2r into irreducible representations of GL(U)×GL(V )

(Iκ1≤2r)r+1 =
⊕
|π|=r+1

SπU ⊗ S(3)r+1−π′V,

where π′ is the conjugate partition to π. In order for the summand to be non-zero, π must
have at most 3 parts, and π3 must be at least m− r + 1 (if the latter is positive).

Proof. We consider the Pfaffians of a matrix representing the map ψ1,x : V ⊗U∗ → V ∗⊗
∧2U∗.

In order to view ψ1,x as a skew-symmetric transformation, we identify
∧2U∗ in the target

with U⊗
∧3U∗. Then, we can view ψ1,x as a skew-symmetric form on V ⊗U∗, taking values in∧3U∗. Equivalently, a choice of a nonzero element in

∧3U gives a C-valued skew-symmetric
form.
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The remainder of our proof essentially follows the same two steps as the proof of Propo-
sition 4.2.5. The space of (2r + 2)× (2r + 2)-Pfaffians of a skew-symmetric form on V ⊗ U∗
is isomorphic to

∧2r+2(V ⊗U∗). Therefore, similar to Lemma 4.1.11, (Iκ1≤2r)r+1 is the image
of the map

Φ1 :
∧2r+2 (V ⊗ U∗)⊗ (

∧3U)r+1 → Sr+1
(
U ⊗ S2(V )

)
,

which sends an indecomposable basis element to the corresponding Pfaffian. Note that the
exponent of r + 1 in (

∧3U)r+1 corresponds to the Pfaffian having degree r + 1. First, we
show that only modules of the form SπU ⊗ S(3)r+1−π′V can arise as a representation in both
the source and target of Φ1. Second, we consider Φ1 restricted to SπU ⊗ S(3)r+1−π′V and
we produce a Pfaffian in the image and explicitly show that it is non-zero. By Schur’s
Lemma, this will show that every such representation actually arises in the decomposition
of (Iκ1≤2r)r+1.

For the first step, we use the skew Cauchy formula to decompose the source of Φ1 as∧2r+2(U∗ ⊗ V )⊗ (
∧3U)r+1 =

⊕
|λ|=2r+2

SλU
∗ ⊗ Sλ′V ⊗ (

∧3U)r+1 =
⊕

|λ|=2r+2

S(r+1)3−λU ⊗ Sλ′V,

where we have used the duality formula from Remark 4.1.13 for the second equality. Every
module in the source of Φ1 is thus of the form S(r+1)3−λU ⊗ Sλ′V , where λ is a partition
of 2r + 2. We make the substitution λ = (r + 1)3 − π to arrive at the expression in the
statement of the proposition.

For the second step, we explicitly produce a non-zero Pfaffian of ψ1,x in the image of Φ1

restricted to Sπ′U ⊗ S(r+1)3−πV , and thus confirm that every module of the form Sπ′U ⊗
S(r+1)3−πV (for appropriate π) occurs in the decomposition of (Iκ1≤2r)r+1. Suppose that
u1, u2, u3 is our ordered basis for U and v1, . . . , vn is our ordered basis for V . Let π =
(π1, π2, π3) be a a partition of r+1 with no more than three parts, and let λ = (r+1)3−π =
(r + 1− π3, r + 1− π2, r + 1− π1), as before. Consider the element

zπ =
(
(u∗1⊗ v1)∧ . . .∧ (u∗1⊗ vλ3)∧ (u∗2⊗ v1)∧ . . .∧ (u∗2⊗ vλ2)∧ (u∗3⊗ v1)∧ . . .∧ (u∗3⊗ vλ1)

)
⊗ (u1 ∧ u2 ∧ u3)

⊗r+1

in
∧2r+2(U∗ ⊗ V ) ⊗ (

∧3U)r+1, where the u∗i form the dual basis to the ui. Note that zπ is
non-zero since the vectors in each exterior product are linearly independent. Now, we will
show that zπ is a highest weight vector in SπU ⊗ Sλ′V .

First, we claim that zπ has weight (π, λ′). By counting the occurrences of vi in zπ, it is
clear that the weight in the V -factor is λ′. For the U factor, we note that the weight of u∗i
is the negative of that of ui, so that zπ has weight (r + 1− λ3, r + 1− λ2, r + 1− λ1), which
is equal to π.

Second, we must show that any raising operator will send zπ to zero, which will imply
that zπ is a highest weight vector. In the V factor, sending vi to vj with j < i would force a
repeated vector in the exterior product. Likewise, a raising operator applied to the U factor
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would send u∗i to u∗j with j > i, which would, again, create a repeated factor in the exterior
product.

Finally, we check that Φ1(zπ) 6= 0. Let Mπ be the principal submatrix obtained from ψ1,x

by selecting the rows and columns with indices {1, . . . , λ3, n+1, . . . , n+λ2, 2n+1, . . . , 2n+λ1}.
Then Φ1(zπ) equals the Pfaffian of Mπ. To check that the Pfaffian of Mπ is nonzero, it suffices
to produce a specialization of Mπ which has full rank. Note that if Bi is the appropriate
submatrix from the upper-left corner of Ai, then Mπ has the following shape

Mπ =


λ3 λ2 λ1

λ3 0 B3 −B2

λ2 −Bt
3 0 B1

λ1 Bt
2 −Bt

1 0

.
We have λ1 = π1 + π2, λ2 = π1 + π3, λ3 = π2 + π3. If we specialize the Ai such that the Bi

are as follows

B1 =

(π2 π1

π1 0 Idπ1

π3 0 0

)
, B2 =

( π2 π1

π3 0 0
π2 −Idπ2 0

)
, and B3 =

(π1 π3

π3 0 Idπ3

π2 0 0

)
,

then the specialization of Mπ has full rank, since it is the standard block skew-symmetric
matrix.

Example 4.2.9. Consider the case n = 4 and c1 = 10. Since ψ1,x is a skew-symmetric 12× 12
matrix, we expect the ideal Iκ1≤10 to be a principal ideal, generated by a polynomial in
S6(U ⊗ S2(V )). Applying Proposition 4.2.8, we must have a sum over partitions π of 6
such that (3)6 − π′ has at most 4 parts. This forces π′ to equal (3, 3), and thus π =
(2, 2, 2). The generators of Iκ1≤10 are therefore equal to the 1-dimensional representation
S2,2,2(U)⊗ S3,3,3,3(V ), corresponding to the Pfaffian of ψ1,x.

Example 4.2.10. Consider the case n = 4 and c = (3, 6, 3), which we revisit in Example 4.4.4.
Propositions 4.2.5 and 4.2.8 give us the decompositions:

(Iκ0≤3)4 = S2,2S3,3,1,1 ⊕ S2,1,1S4,2,1,1 ⊕ S3,1S3,2,2,1 ⊕ S4S2,2,2,2,

(Iκ1≤6)4 = S2,2S3,3,1,1 ⊕ S2,1,1S3,3,2 ⊕ S3,1S3,2,2,1 ⊕ S4S2,2,2,2.

Both modules are 495-dimensional and consist of quartic polynomials. The ideal Iκ≤(3,6,3),
which equals Iκ6≤6+Iκ0≤3 by definition, is generated by the 630-dimensional space of quartics
obtained by taking the sum of the above decompositions. Notice that, due to the highlighted
modules in the above decompositions, neither Iκ0≤3 nor Iκ1≤6 belongs to the other. In
particular, the 4 × 4-minor formed by taking columns 1, 2, 5, and 9 from the flattening
ψ0,x, which is the transpose of (4.1), is not in the ideal of Pfaffians. On the other hand, the
Pfaffian formed by taking the rows and columns of (4.2) with indices 1, 2, 5, 6, 7, 9, 10,
and 11 is not contained in the ideal of the minors.

Notice that the formulas in Propositions 4.2.5 and 4.2.8 are multiplicity free, unlike, for
example, the ideal generators computed in Example 4.1.15.
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4.3 Subspace varieties of partially symmetric tensors

We next give a geometric interpretation for the varieties Σκ0≤r. These are the partially
symmetric analogues of the subspace varieties defined in [34, Defn. 1]; Proposition 4.3.3
forms an analogue to [34, Thm. 3.1].

Definition 4.3.1. The subspace variety Subm′,n′ is the variety of tensors x ∈ (U∗ ⊗ S2V ∗)

such that there exist vector spaces Ũ∗ ⊂ U∗ and Ṽ ∗ ⊂ V ∗ of dimensions m′ and n′ respectively
with x ∈ (Ũ∗ ⊗ S2Ṽ ∗) ⊂ (U∗ ⊗ S2V ∗).

Remark 4.3.2. The variety Subm′,n′ has a nice desingularization, analogous to that used to
prove the results in [34, §3]. Consider the product of Grassmannians Gr(m′, U∗)×Gr(n′, V ∗),
and let E be the total space of the vector bundle RU ⊗ S2RV , where RU and RV are
the tautological subbundles over Gr(m′, U∗) and Gr(n′, V ∗), respectively. Then there is a
natural map π : E → Subm′,n′ , which desingularizes Subm′,n′ . Moreover, one can verify
that Weyman’s geometric technique can be applied in this situation [52, §5]. In fact, a
straightforward adaptation of the argument in [34, Thm. 3.1] implies that Subm′,n′ is normal
with rational singularities.

We next directly calculate the generators of the ideal of the subspace variety when m′ =
m, which is the case we need.

Proposition 4.3.3. The defining ideal of Subm,n′ equals Iκ0≤n′.

The following lemma plays a crucial technical role in the proof of both Proposition 4.3.3
and Theorem 4.4.3, as it provides a criterion for determining the reducedness of some of the
ideals that we are studying.

Lemma 4.3.4. Let Z be a GL(U)×GL(V )-invariant reduced subscheme of the desingular-
ization E from Remark 4.3.2. Suppose that I is an invariant ideal in S•(U ⊗ S2V ), which
contains the ideal of Subm′,n′, and whose pullback to E defines Z. Then I is the ideal of π(Z).
In particular, I is a radical ideal.

Proof. Let J ⊆ S•(U ⊗S2V ) be the defining ideal of π(Z). Recall that q : E → Gr(m′, U∗×
Gr(n′, V ∗) is the total space of a vector bundle, as a defined in Remark 4.3.2. Our set-up is
the following commutative diagram:

Z
� � //

��

E

π
��

π(Z) � � // Subm′,n′
� � // (U∗ ⊗ S2V ∗) .

The hypothesis that the pullback of I defines Z in E guarantees I ⊆ J . We thus need to
show the reverse inclusion.
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A point P ∈ Gr(m′, U∗) × Gr(n′, V ∗) corresponds to vector subspaces Ũ∗ ⊂ U∗ and

Ṽ ∗ ⊂ V ∗, and this induces a surjection of rings φP : S•(U ⊗S2V )→ S•(Ũ ⊗S2Ṽ ). The fiber

q−1(P ) ⊆ E is isomorphic to the affine space (Ũ∗⊗ S2Ṽ ∗), and we define Z̃P := Z ∩ q−1(P ).
We claim that a polynomial f ∈ S•(U ⊗ S2V ) belongs to J if and only if φP (f) vanishes

on π(Z̃P ) for every choice of P . The “only if” direction of the claim is straightforward. For
the “if” direction, we first note that, since Z is assumed to be reduced, the condition f ∈ J
is equivalent to the condition that the pullback of f vanishes on every point y ∈ π(Z). This
is in turn equivalent to the condition f vanishes on each point of Z, which is implied by the
hypothesis that φP (f) vanishes on π(Z̃P ) for each P .

In fact, since GL(U)×GL(V ) acts transitively on Gr(m′, U∗)×Gr(n′, V ∗), we conclude

that f vanishes on π(Z) if and only if φP (g · f) vanishes on π(Z̃) for any fixed choice of P
and all g ∈ GL(U)×GL(V ). Therefore, J is the sum of all irreducible Schur submodules M

of S•(U ⊗ S2V ) such that φP (M) vanishes on Z̃P . For the rest of the proof we fix Ũ∗ and

Ṽ ∗ and denote the induced map φP by φ and Z̃P by Z̃.
To show that J ⊆ I, let M be an irreducible Schur submodule of the ideal J ; we want

to show that M is contained in our given ideal I. If M is isomorphic to SµU ⊗ SνV , then

the construction of Schur modules implies that φ(M) is isomorphic as a GL(Ũ) × GL(Ṽ )-

representation to SµŨ ⊗ SνṼ , which is either trivial or an irreducible representation. We

know that φ(M) vanishes on Z̃ and thus, since I pulls back to the defining ideal of Z, it
follows that φ(M) is contained in φ(I). There is thus an irreducible Schur submodule N ⊂ I
such that φ(N) = φ(M), and hence N is isomorphic to SµU ⊗SνV . If N equals M , then we
are done. Otherwise, φ sends the submodule N +M , spanned by two copies of SµU ⊗ SνV ,

to the submodule φ(M), which is a single copy of SµŨ ⊗SνṼ . Thus, some subrepresentation
L of N +M is sent to zero by φ. Since L is a representation in the kernel of φ, L belongs to
the ideal of Subm′,n′ , which is contained in I by assumption. It follows that I contains the
span of N and L, and hence I contains M . We conclude that I = J as desired.

Proof of Proposition 4.3.3. First, we prove the claim set-theoretically. The (n′+1)×(n′+1)
minors of ψ0,x vanish if and only if the map has rank at most n′. By linear algebra, this
is equivalent to the existence of a change of basis in which ψ0,x uses only the first n′ rows,
which is the definition of Subm,n′ .

Second, we show that Iκ0≤n′ is radical when n′ = n−1. Note that Subm,n−1 has dimension
m
(
n
2

)
+ n, and thus Subm,n−1 and Σκ0≤n−1 have codimension mn− n + 1. This is the same

as the codimension of the maximal minors of a generic n×mn matrix, so Iκ0≤n−1 is Cohen-
Macaulay by [20, Thm. 18.18], and it suffices to show that the affine cone over Σκ0≤n−1 is
reduced at some point. Consider a neighborhood of the point u1 ⊗ v2

1 + · · · + u1 ⊗ v2
n−1. In
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coordinates around this point, Iκ0≤n−1 consists of the maximal minors of the n×mn matrix:
1 + x1,1,1 · · · x1,1,n−1 x1,1,n x2,1,1 · · · x2,1,n · · · xm,1,n

...
. . .

...
...

...
... · · · ...

x1,1,n−1 · · · 1 + x1,n−1,n−1 x1,n−1,n
...

... · · · ...
x1,1,n · · · x1,n−1,n x1,n,n x2,1,n · · · x2,n,n · · · xm,n,n

 .
The mn−n+1 minors which use the first n−1 columns form part of a regular sequence, and
thus the affine cone over Σκ0≤n−1 is reduced in a neighborhood of this point. Since Iκ0≤n−1

is a Cohen-Macaulay ideal, it follows that Σκ0≤n−1 is everywhere reduced.
Third, we show that Iκ0≤n′ defines Subm,n′ for arbitrary n′. By reverse induction on n′,

we assume that Iκ0≤n′ equals the ideal of Subm,n′ , and we seek to show equality for n′ − 1.
We will apply Lemma 4.3.4, where E is the vector bundle over Gr(m,U∗) × Gr(n′, V ∗) =
Gr(n′, V ∗) desingularizing Subm,n′ as in Remark 4.3.2. Note that, by cofactor expansion,
Iκ0≤n′−1 contains Iκ0≤n′ , which is the ideal of Subm,n′ by the inductive hypothesis. We
describe Z, which is defined by the pullback of Iκ0≤n′−1, on a local trivialization (U∗ ⊗
S2Ṽ ∗) × Y of the vector bundle E, where Ṽ is n′-dimensional and Y is an open subset of
Gr(n′, V ∗). The pullbacks of the (n′− 1)× (n′− 1) minors of ψ0,x do not involve the base Y ,

and are the κ0 ≤ n′ − 1 equations applied to U∗ ⊗ S2Ṽ ∗. These are maximal minors of the
matrix ψ0,x for U∗⊗ S2Ṽ ∗, and hence they define a reduced subscheme of U∗⊗ S2Ṽ ∗ by the
previous paragraph. In the local trivialization, their scheme is the product of this reduced
scheme with Y , so the preimage of Σκ0≤n′ in E is reduced. We may thus apply Lemma 4.3.4
and conclude that Iκ0≤n′−1 is reduced.

Remark 4.3.5. When m′ < m, the ideal of Subm′,n′ is similarly generated by the sum of Iκ0≤n′

and the irreducible modules in
∧m′+1U ⊗

∧m′+1(S2V ). A decomposition of the latter space,
in somewhat different notation, can be found at [41, p. 47].

4.4 Secant varieties of P2 × Pn−1 embedded by O(1, 2)

In this section, we prove the main result of the chapter, which is to show that the
equations given in Definition 4.1.4 generate the defining ideal of the rth secant variety of
P2 × Pn−1 embedded by O(1, 2) when r ≤ 5.

We first consider a simpler case: the secant varieties of P1 × Pn−1 embedded by O(1, 2).
All such secant varieties are defined by κ-equations, which, in this case, are simply the minors
of flattenings. The analogous statement for non-symmetric matrices appears as Theorem 1.1
in [34]. However, we know of no proof in the literature for the case of partially symmetric
tensors, so we provide one below.

Definition 4.4.1. For a variety X ⊆ PN we denote the affine cone of X in AN+1 by X̂.



52

Proposition 4.4.2. Suppose m = 2, and let Y ⊆ P(U∗⊗S2V ∗) be the image of P(U∗)×P(V ∗)
under the embedding by O(1, 2). For any r > 1, and any n, the secant variety σr(Y ) is defined
ideal-theoretically by the ideal Iκ0≤r.

Proof. We have σ̂r(Y ) ⊆ Σ̂κ0≤r = Sub2,r, where the inclusion follows from Proposition 4.2.3
and the equality follows from Proposition 4.3.3. Since Sub2,r is integral, it suffices to prove
that σ̂r(Y ) and Sub2,r have the same dimension. By [1, Cor. 1.4(i)], the former has the
expected dimension rn+ r. From the definition of Sub2,r, we can compute its dimension to
be r(n− r) + 2

(
r+1
2

)
= rn+ r.

For the remainder of this section, we restrict to the case when dimU∗ = 3, which is the
next partially symmetric case. We let dimV ∗ = n, and we consider partially symmetric
tensors x ∈ U∗ ⊗ S2V ∗. We fix PN := P(U∗ ⊗ S2(V ∗)) and we let X ⊂ PN denote the
embedding of P(U∗) × P(V ∗) by O(1, 2). Let S := S•(U ⊗ S2(V )) be the homogeneous
coordinate ring of PN , which contains the ideals Iκj≤cj and Iκ≤c as in Definition 4.2.2.

Theorem 4.4.3. For r ≤ 5, the defining ideal of the variety σr(X) is Iκ≤(r,2r,r).

Our method of proof is as follows. When n equals r, we relate the ideal Iκ1≤2r to the
ideal of commuting symmetric matrices. This is a variant of an idea which has appeared in
several instances previously [47, 43, 3]. This relation only holds away from a certain closed
subvariety of PN , and in order to extend to all of PN , we need a bound on the dimension
of this variety. Such a bound is given in in [22, §5], and only holds for r ≤ 5. Finally, we
reduce the general case to the case of n = r, using Lemma 4.3.4.

Before the proof, we examine the secant varieties of P2 × P3 in more detail.

Example 4.4.4. Let X ⊆ P29 be the image of P2 × P3 embedded by O(1, 2). The defining
ideal of σ5(X) was previously known. The secant variety σ5(X) is deficient, and is in fact a
hypersurface in P29. This hypersurface is defined by the Pfaffian of ψ1,x [43, Thm. 4.1].

For non-symmetric tensors, [34, Thm. 1.1] illustrates that the defining ideal for the second
secant variety is generated by the 3×3 minors of the various flattenings. This suggests that a
similar result holds in the partially symmetric case, although we know of no explicit reference
for such a result. Nevertheless, in the situation of this example, a direct computation with [26]
confirms that the defining ideal of σ2(X) is indeed generated by the 3 × 3 minors of the
flattening ψ0,x and by the 3× 3 minors of the other flattening of x, i.e. by considering x in
Hom(U, S2V ∗). Theorem 4.4.3 provides an alternate description, illustrating that the 3× 3
minors of ψ0,x and the 6× 6 principal Pfaffians of ψ1,x also generate the ideal of σ2(X).

As far we are aware, the defining ideals for σ3(X) and σ4(X) were not previously known.
The defining ideal of σ4(X) is given by Iκ≤(4,8,4). Since the ideals Iκ0≤4 and Iκ2≤4 are trivial,
this equals the ideal Iκ1≤8. Thus, σ4(X) is defined by the 10× 10 principal Pfaffians of ψ1,x.

The case of σ3(X) is perhaps the most interesting, since it requires minors from both
ψ0,x and ψ1,x (and, unlike the case of σ2(X), the Pfaffians from ψ1,x do not arise from an
alternative flattening). Here σ3(X) is defined by the maximal minors of ψ0,x as well as the
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8 × 8 principal Pfaffians of ψ1,x. By Example 4.2.10, we see that neither Iκ0≤3 nor Iκ1≤6 is
sufficient to generate the ideal of σ3(X).

In fact, neither Iκ0≤3 nor Iκ1≤6 is sufficient to define σ3(X) even set-theoretically. For
Iκ0≤3, this follows from the fact that a generic element y ∈ Σκ0≤3 has κ1(y) = 8. On the
other hand, one may check that if

x :=
3∑
i=1

ui ⊗ (v1 ⊗ vi+1 + vi+1 ⊗ v1) ∈ U∗ ⊗ S2V ∗,

then κ(x) = (4, 6, 4), and hence [x] belongs to Σκ1≤6 but not to σ3(X).

Remark 4.4.5. Let x ∈ U∗⊗S2V ∗ and let r ≤ 5. Theorem 4.4.3 implies that the border rank
of x, considered as an element of U∗⊗V ∗⊗V ∗, equals the partially symmetric border rank of
x. This is because the ideal Iκ≤(r,2r,r) is (up to radical) the restriction to P(U∗⊗S2V ∗) of an
ideal on P(U∗⊗V ∗⊗V ∗) which vanishes on the rth secant variety of P(U∗)×P(V ∗)×P(V ∗)
(see Proposition 4.1.5 and Definition 4.2.2 above). This can thus be viewed as evidence for
a partially symmetric analogue of Comon’s Conjecture [15, §5].

Definition 4.4.6. If we write x = e1⊗A1 + e2⊗A2 + e3⊗A3 for e1, e2, e3 a basis of U and
the Ai symmetric matrices, then det(t1A1 +t2A2 +t3A3) is a polynomial in t1, t2, and t3. We
define P ⊂ AN+1 to be the subset of those x such that this polynomial vanishes identically.

Remark 4.4.7. Note that AN+1 − P is exactly the GL(U∗) × GL(V ∗)-orbit of the set {e1 ⊗
Id + e2 ⊗B + e3 ⊗ C | B,C ∈ S2V ∗}.

Lemma 4.4.8. Let n = r. Then Σ̂κ≤(r,2r,r) − P is an irreducible locus of codimension at
least

(
r
2

)
on AN+1 − P .

In fact, the codimension is exactly
(
r
2

)
, as will be shown in the proof of Lemma 4.4.10.

Proof. Since n = r, and κ0 = κ2 are always at most n, we have that Σκ1≤r = Σκ≤(r,2r,r). For

convenience, we denote this scheme Σ, and we seek to show that Σ̂−P is irreducible and of
codimension

(
r
2

)
.

We letW ⊆ AN+1 be the set {e1⊗Id+e2⊗B+e3⊗C | B,C ∈ S2V ∗} as in Remark 4.4.7,
and we identify points in W with pairs of symmetric matrices (B,C). Let Z ⊆ W be the
subscheme defined by the equations [B,C] = 0. By [8, Thm. 3.1], Z, known as the variety
of commuting symmetric matrices, is an integral subscheme of codimension

(
r
2

)
in W .

We claim that Σ̂ − P is irreducible. To see this, we note the following equivalence of
matrices under elementary row and column operations: 0 Id −B

−Id 0 C
B −C 0

 ∼
 0 Id 0
−Id 0 0

0 0 BC − CB

 .
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Therefore, the scheme-theoretic intersection of Σ̂ withW is exactly Z, the variety of commut-
ing symmetric matrices. By Remark 4.4.7 and the fact that κ1 is GL(U∗)×GL(V ∗)-invariant,

we see that Σ̂ − P is exactly the GL(U∗) × GL(V ∗) orbit of the irreducible variety Z, and
therefore irreducible.

Finally, since Z =W ∩ Σ̂, the codimension of Σ̂−P in AN+1 is at least the codimension
of Z in W , which is

(
r
2

)
.

The following result is contained in [22, Proof of Cor. 5.6].

Lemma 4.4.9. If n = r ≤ 5, then the codimension of P in AN+1 is strictly greater than
(
n
2

)
.

Lemma 4.4.10. Let n = r ≤ 5. Then σr(X) is defined scheme-theoretically by Iκ1≤2r =
Iκ≤(r,2r,r). Moreover, the ring S/Iκ1≤2r is Gorenstein, i.e. σr(X) is arithmetically Gorenstein.

Proof. The ideal of the principal (2r + 2) × (2r + 2)-Pfaffians of a generic skew-symmetric
matrix is a Gorenstein ideal of codimension

(
r
2

)
[29, Thm. 17]. Our ideal Iκ1≤2r is a linear

specialization of this ideal, and by Lemmas 4.4.8 and 4.4.9, it must be irreducible and have
the same codimension. Therefore, the linear specialization is defined by a regular sequence,
so Σκ1≤2r is also arithmetically Gorenstein and irreducible.

Hence, Σ̂κ1≤2r is either reduced or everywhere non-reduced. As in the proof of Lemma 4.4.8,
let W ⊆ AN+1 be the linear space defined by A1 = Id, and consider the scheme-theoretic
intersection Σ̂κ1≤2r∩W . Again, the codimension of Σ̂(r,2r,r)∩Z inW is

(
r
2

)
, so the generators

of the ideal of Z form a regular sequence on the local ring of any point of Σ̂(r,2r,r) contained
in W . The intersection is isomorphic to the variety of commuting symmetric matrices from
the proof of Lemma 4.4.8, which is reduced. This implies that Σ̂κ≤(r,2r,r) is reduced as well,
and thus that Σκ≤(r,2r,r) is reduced.

When r > 5 we have a partial result. Let JP ⊆ S•(U ⊗ S2(V )) be the ideal defining P .

Corollary 4.4.11. For any r, the variety σr(X) is defined by the prime ideal (Iκ≤(r,2r,r) :
J∞P ).

Note that computing the saturations as in Corollary 4.4.11 can be non-trivial.

Proof of Theorem 4.4.3. Lemma 4.4.10 proves the theorem when n = r and so we just need
to extend this result to the cases when n 6= r. We let N ′ = 3

(
r
2

)
− 1, so that PN ′ is the

projective space of partially symmetric 3× r × r tensors. We write X ′ ⊂ PN ′ for the image
of P2 × Pr−1 embedded by O(1, 2).

First, suppose that n < r. We pick an inclusion of V ∗ into Ar, and also a projection
from Ar back to V ∗. These define an inclusion PN → PN ′ and a rational map π : PN ′ → PN
respectively. Because the projection is linear, it commutes with taking secant varieties, so
σr(X) = π(σr(X

′)). Applying Lemma 4.4.10, we get the first equality of

π(σr(X
′)) = π(Σκ1≤2r) ⊃ π(Σκ1≤2r ∩ PN) = Σκ1≤2r ∩ PN ⊃ σr(X) = π(σr(X

′)).
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Note that the middle equality follows from the fact that π is the identity on PN . We conclude
that σr(X) is defined by Iκ1≤2r, which is the statement of the theorem, since the conditions
on κ0 and κ2 are trivial when n < r.

Second, we want to prove the theorem when n > r, for which we use Lemma 4.3.4. We
consider the subspace variety Sub3,r ⊂ AN+1 and its desingularization π : E → Sub3,r. By

Proposition 4.3.3, Sub3,r is the affine cone over Σκ0≤r, which contains Σ̂κ≤(r,2r,r). We set

Z := π−1(Σ̂κ≤(r,2r,r)). Note that, along any fiber U∗ ⊗ S2Ṽ ∗ of q : E → Gr(r, V ∗), we have

that Z ∩ (U∗ ⊗ S2Ṽ ∗) is defined by the κ1 ≤ 2r equations applied to U∗ ⊗ S2Ṽ ∗. It follows

that Z ⊆ E is defined by the pullback of Iκ≤(r,2r,r). Since Ṽ ∗ is r-dimensional, Lemma 4.4.10

implies that Z ∩ (U ⊗ S2Ṽ ∗) is the cone over the rth secant variety of P(U∗) × P(Ṽ ∗) in

U∗ ⊗ S2Ṽ ∗. In particular, Z is reduced. We thus have the inclusions

π(Z) ⊂ σ̂r(X) ⊂ Σ̂κ≤(r,2r,r) = π(Z).

The first inclusion is clear, the second is by Proposition 4.2.3, and the equality follows from
Lemma 4.3.4. Therefore, these schemes must be equal, which is the desired statement.

We conclude by observing that Theorem 4.4.3 is false for r = 7. (We do not know whether
or not it holds for r = 6.)

Example 4.4.12. Set n = dimV ∗ = 6, in which case Σκ≤(7,14,7) = Σκ1≤14. Let X be the
Segre-Veronese variety of P2 × P5 embedded by O(1, 2) in P62. We use a simple dimension
count to show that the secant σ7(X) is properly contained in Σκ1≤14.

The secant variety σ7(X) is not defective [1, Corollary 1.4(ii)], so it has the expected
dimension, namely dimσ7(X) = 7 · dimX + 6 = 55. On the other hand, since Iκ1≤14 is a
Pfaffian ideal, its codimension is at most

(
4
2

)
. We thus have

dim Σκ1≤14 ≥ dim P62 −
(

4

2

)
= 62− 6 = 56.

Since 56 > 55, it follows that σ7(X) ( Σκ1≤14.
Note that dimV ∗ = 6 is the smallest dimension such that the 7th secant variety is

properly contained within PN .
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Chapter 5

How are SNPs distributed in genes?

In this chapter, we use the equations from Chapter 4 to study the distribution of single
nucleotide polymorphisms (SNPs) within the human genes. The occurrence of SNPs is
shaped by the functional constraints imposed by the fact that they code for amino acids
within proteins. As we will see, the equations of secant varieties will allow us to detect these
constraints from the data.

5.1 Testing mixture models

In this section, we introduce the notion of a mixture model for a m× n× n contingency
table, and develop a statistical test for membership in such a model. For more about mixture
models and secant varieties in algebraic statistics, see Chapter 4 of [19]. First, we define a
probabilistic model for producing triples of integers from the product [m]× [n]× [n].

Definition 5.1.1. A mixture model with r hidden states is described by a probability dis-
tribution ph on the hidden states {1, . . . , r}, together with, for each h ≤ r, a probability
distribution uhi on [m] and a probability distribution vhj on [n]. The triples are produced by
first choosing an integer h with probability ph and then choosing i, j, and k independently
with probabilities uhi, vij, and vik respectively. The three integers i, j, and k are output.

From this description, it follows immediately that the probability of a given triple is

P (i, j, k) =
r∑

h=1

phuhivhjvkj. (5.1)

We can incorporate the quantity ph into the values of uhi, in which case this equation
becomes the expression for the (i, j, k)-entry of a semi-symmetric tensor in the rth secant
variety of the Segre-Veronese variety. As in Chapter 4, we will represent a probability
distribution on [3]× [n]× [n] by a triple of symmetric matrices A, B, and C, which contain
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the probability distributions when the first variable is 1, 2, or 3 respectively. With this
notation, an immediate consequence of Theorem 4.4.3 is:

Proposition 5.1.2. If (A,B,C) symmetric matrices representing a probability distribution
coming from a mixture of r models, then the matrices

ψ0 =
(
A B C

)
and ψ1 =

 0 A −B
−A 0 C
B −C 0

 (5.2)

have ranks at most r and 2r respectively.

Note that the converse to Proposition 5.1.2 does not hold. The relatively minor reason is
the Zariski closure which enters into the definition of secant variety. A more significant reason
is that even if the entries of a tensor are real, the decomposition implied by Theorem 4.4.3
may require complex entries, whereas the probabilities in 5.1 are all real and non-negative.

Example 5.1.3. Consider the probability distribution given by:

A =
1

12


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 B = C =
1

48


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 .

The corresponding tensor e1 ⊗A+ e2 ⊗B + e3 ⊗C lies in the 4th secant variety. In fact, it
can be checked that this tensor can be written as the sum of 4 decomposable tensors with
real entries. However, it is not possible to choose a decomposition such that the entries are
all real and positive.

To see this, take a decomposition as in (5.1) with r = 4. The off-diagonal zeros in A mean
that for each h, either uh1 = 0 or there is at most one index i such that the vhi is non-zero.
However, since A has rank 4, uh1 must be non-zero for h = 1, . . . , 4, so for fixed h, there
can be only one index i such that vhi is non-zero. This implies that B and C are diagonal
matrices, which is a contradiction.

Despite the limitations exhibited by Example 5.1.3, we will build a statistical test based
on Proposition 5.1.2. In order to test membership robustly and efficiently, we don’t apply
the equations from Theorem 4.4.3 directly, but instead use the singular value decomposition
of the matrices from which the equations come. This idea has been used in phylogenetics by
Eriksson [21].

Recall that the singular value decomposition of a real matrix M is an expression M =
UΣV T , where U and V are orthogonal matrices and Σ is a (not necessarily square) matrix
whose non-zero entries are all on the diagonal. These entries are known as the singular
values of the matrix, and the number of non-zero singular values is exactly the rank of the
matrix M . More importantly, since U and V are required to be orthogonal, small changes
to M will have a relatively small effect on the singular values. More precisely,
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Theorem 5.1.4 (Theorem 3.3 from [18]). Let M be a matrix with singular values σ1 ≥ · · · ≥
σk. Then the minimum Frobenius distance between M and a rank r matrix is√√√√ k∑

i=r+1

σ2
i

Our procedure works as follows. We begin with a series of events, each of which is a
triple (i, j, k) with 1 ≤ i ≤ 3, 1 ≤ j ≤ n, and 1 ≤ k ≤ n. We form a 3 × n × n partially
symmetric tensor with slices A, B, and C as follows:

Ajk =

{
number of occurrences of (1, j, j) if j = k
1
2

number of occurrences of (1, j, k) or (1, k, j) if j 6= k

Bjk =

{
number of occurrences of (2, j, j) if j = k
1
2

number of occurrences of (2, j, k) or (2, k, j) if j 6= k

Cjk =

{
number of occurrences of (3, j, j) if j = k
1
2

number of occurrences of (3, j, k) or (3, k, j) if j 6= k

We compute the singular value decompositions of the corresponding matrices ψ0,x and ψ1,x

in (5.2), and let σ0,1 ≥ · · · ≥ σ0,n ≥ 0 and σ1,1 ≥ · · · ≥ σ1,3n ≥ 0 be their singular values
respectively. For each r < n, we define:

γr =

√√√√ n∑
i=r+1

σ2
0,i

and, similarly, for r < 3n,

δr =

√√√√ n∑
i=2r+1

σ2
1,i.

For convenience, we take γr and γr to be 0 if r ≥ n or r ≥ 3n/2 respectively. By Theo-
rem 5.1.4, γr and δr are the minimum Frobenius distances between ψ0 and ψ1 from Proposi-
tion 5.1.2 and matrices with rank r and 2r respectively. Therefore, γr and δr measures the
extent to which the matrix conditions in Proposition 5.1.2 fail to hold.

In order to obtain a useful interpretation of particular values of γr and δr, we need
to be able to compute p-values for them, which requires knowing the distribution of these
statistics, given that they are derived from a mixture model with r hidden states. This
distribution can be estimated computationally by sampling contingency tables according to
the mixture model. Beginning with an observed contingency table, we must first estimate the
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phase 1 phase 2 phase 3
A G C T A G C T A G C T

A 944 512 107 15 891 486 66 10 1345 1042 148 20
G 1868 23 92 1474 18 62 2614 45 144
C 1537 455 1494 389 2008 1172
T 719 790 1398

Table 5.1: Occurrence of bases at HapMap loci.

Phase 0 Phase 1 Phase 2
Homozygous 5068 4649 8165
Heterozygous 1204 1031 2571
Heterozygosity 19% 18% 24%

Table 5.2: Heterozygosity of HapMap loci by phase

mixture model parameters. This estimation can be done using expectation-maximization,
similar to the algorithm in Section 2.1 applied to the equations (5.1). However, in this
case the inner iteration (2.4) can be replaced by an exact computation of the maximum
likelihood parameters in terms of the estimated distribution on the hidden states. Second,
these parameters can be used to simulate contingency tables according to the mixture model
and their γr and δr statistics can be computed. The p-value of either statistic can be
computed by comparing the observed value to the distribution simulated in this way. If γr
is the observed statistic, and γ

(1)
r , . . . , γ

(N)
r are the simulated statistics, then the p-value is:

p =
#{i | γ(i)

r ≥ γr}+ 1

N + 1

5.2 The distribution of SNPs in human genes

A single-nucleotide polymorphism is a variation in a genome consisting of the substitution
of a single base for another. In this section, we will refer to SNPs between the two haplotypes
of a single individual. The HapMap project has collected occurrences of SNPs in many
individual humans [16]. We will focus on the first individual in the HapMap data set.
Table 5.1 shows the frequencies of all SNPs within a single individual.

In a gene, every triplet of bases, known as a codon, determines a single amino acid. Thus,
any base within a gene has a phase, defined as its position modulo 3. Table 5.1 counts the
occurrence of bases within the first HapMap individual, tabulated by phase.

There are three characteristics of the data in Table 5.1 that we record here. First, the loci
are more likely to be homozygous (have the same bases on both strands of the individual)
than heterozygous (have different bases). This is made explicit in Table 5.2, where it shows
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second third first base
base base A G C T

A A AAA: Lys GAA: Glu CAA: Gln TAA: stop
G AAG: Lys GAG: Glu CAG: Gln TAG: stop
C AAC: Asn GAC: Asp CAC: His TAC: Tyr
T AAT: Asn GAT: Asp CAT: His TAT: Tyr

G A AGA: Arg GGA: Gly CGA: Arg TGA: stop
G AGG: Arg GGG: Gly CGG: Arg TGG: Trp
C AGC: Ser GGC: Gly CGC: Arg TGC: Cys
T AGT: Ser GGT: Gly CGT: Arg TGT: Cys

C A ACA: Thr GCA: Ala CCA: Pro TCA: Ser
G ACG: Thr GCG: Ala CCG: Pro TCG: Ser
C ACC: Thr GCC: Ala CCC: Pro TCC: Ser
T ACT: Thr GCT: Ala CCT: Pro TCT: Ser

T A ATA: Ile GTA: Val CTA: Leu TTA: Leu
G ATG: Met GTG: Val CTG: Leu TTG: Leu
C ATC: Ile GTC: Val CTC: Leu TTC: Phe
T ATT: Ile GTT: Val CTT: Leu TTT: Phe

Table 5.3: Coding of bases by amino acid triplets.

A G C T
Phase 1 20.1% 34.8% 29.2% 15.9%
Phase 2 20.6% 30.9% 30.5% 18.0%
Phase 3 18.2% 30.1% 32.5% 19.2%

Table 5.4: Haplotype base frequencies by phase in polymorphic sites from the HapMap data.

that the proportion of heterozygous loci is less than a quarter, with the exact number varying
by phase.

Our second observation is that the final phase has significantly more polymorphic loci
than the others. As shown in Table 5.3, for many codons, changing the last base does
not change the corresponding amino acid. Since most changes to the amino acid sequence
will decrease fitness, selective pressure reduces the occurrence of mutations in the first two
phases.

Finally, we note that the heterozygous loci are more likely to be A-G or C-T than another
pair. The bases A and G, known as purines both consist of two cycles and thus are more
likely mutate into each other, whereas the pyrimidines, bases C and T consist of a single
chemical cycle [45, Sec. 4.1].

We now describe the first of two models for the occurrence of SNPs in the human genome.
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number of hidden states
2 3 4 5

p-value for γr ≤ 0.0001 ≤ 0.0001
p-value for δr ≤ 0.0001 ≤ 0.0001 0.142 0.002

Table 5.5: Probabilities of obtaining a γ statistic at least as large as that of the contingency
table in Table 5.1.

At each position, there is a particular base which occurred at that location in the most
recent common ancestor of the two haplotypes, and we suppose that the distribution of the
ancestral base depends on the phase. In our first model, we assume that the observed bases
in the present-day haplotypes have evolved from the ancestral base according to a general
Markov model, but one which doesn’t depend on the phase. Thus, while the occurrence of
polymorphic loci depends on the phase, their subsequent evolution does not. This model is a
mixture model as in Definition 5.1.1 with four hidden states, which are the 4 ancestral bases.
We will call this model the “uniform selection” model, because having identical transition
processes from the ancestral base to the present day is consistent with having identical
selection pressures on each phase.

Our second model is a generalization which incorporates the possibility of variable selec-
tive pressure in different phases. Having a distinct transition matrix for each phase would
be too general, and essentially lead to a separate analysis of the data within each phase.
Therefore, we introduce only a single parameter for the level of selective pressure at each
phase. We let T be the transition matrix under conditions of maximal selective pressure.
For each base, we suppose that there is a phase-dependent probability of evolving according
to T , and otherwise it follows the opposite extreme, of maximal mutation a fixed distribu-
tion, with no dependence on the ancestral base. Although this possibility seems extreme, by
allowing it to mix with the transition matrix T , we obtain a range of intermediate levels of
selective pressure. We’ll call this model “linear selection.”

The linear selection model can be re-interpreted as a mixture model with five hidden
states. The five hidden states correspond to the four possible ancestral bases plus one for
the accelerated mutation rate. Since the accelerated mutation rate doesn’t depend on the
ancestral base, we can treat it as a fifth hidden state, in addition to the four ancestral bases.
Therefore, we can test both this model and the original one using the tests from Section 5.1.

We applied the γ and δ tests from Section 5.1 to the SNP frequencies for the first HapMap
individual which were shown in Table 5.1. The p-values for these statistics are shown in
Table 5.5, each based on simulations of 10000 contingency tables (so that the minimum
possible p-value is 1/10001 ≈ 0.0001). Note that the δ statistic only applies to mixture
models with at most 4 hidden states. As expected, the p-values for the models with fewer
than 4 submodels are as small as possible, showing the strong effect of the 4 ancestral bases.

Finding 5.2.1. Although the test does not achieve significance to reject the uniform selection



62

2 Asn, Asp, Cys, Glu, Gln, His, Lys, Phe, Tyr
4 Val, Pro, Thr, Ala, Gly
6 Leu, Arg, Ser
others Ile, Met, Trp, stop

Table 5.6: Categorization of amino acids based on number of codons which code for that
amino acid.

number of hidden states
amino acid category 4 5

2 0.010 0.328
4 0.087 0.370
6 0.011 0.007

Table 5.7: Resulting p-values for the δ statistic applied to SNP distributions in each of the
amino acid categories from Table 5.6.

model, it does for the linear selection model.

What this tells us is that the uniform selection model fits moderately well, but the linear
selection model is not a good fit for compensating for the variation in selection levels.

One reason for the poor fit is that the selective pressure depends not just on the phase,
but also on the base being coded, as shown in Table 5.3. For example, the triplet GCT codes
for alanine, and the same would be true for the final base, T, replaced by any other base.
On the other hand, aspartic acid is only coded by the triplets GAT and GAC. Therefore, in
the case of alanine, the selective pressure on the final base is less, but in the case of aspartic
acid, the lower selective pressure only applies to mutations between T and C.

Therefore, in Table 5.6, we categorize the codons by their coding pattern. The first
category consists of the 2-codon amino acids which are each coded by 2 different triplets,
always differing by a transition in the last base. The 4-codon amino acids of those which
are determined by the only the first two bases of the triplet, independent of the final base.
Finally, there are three amino acids which can be coded by 6 possible triplets each. Note that
almost all of the codons fit into these three categories, but there are 3 amino acids, together
with the stop codons, which do not, and these will be excluded from our subsequent analysis.

We repeated our mixture model analysis of the SNP distribution, but restricted to SNPs
in each of the amino acid categories. By definition, a SNP involves different possible haplo-
types, so we base these categorizations on the amino acid in the reference sequence. Table 5.7
lists p-values for the δr statistics for when r is 4 or 5. For fewer than 4 hidden states, both
the γ and δ tests were significant at the limit of what was simulated, so these are not shown.
The p-values for the 5 hidden state model are only significant for the 6-codon amino acids.
From this, we conclude that the failure of the same model for the SNPs as a whole in Ta-
ble 5.5 is due to this class of amino acids. In these cases, the amino acid table allows for
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extra mutations in the final phase, but there is some selective pressure for transitions over
transversions in the second phase. On the other hand, for the 2- and 4-codon amino acids,
the linear selection model is sufficient.

We have shown that, as expected, the selective pressures on SNPs depend on the phase
within the codon. However, this dependence is not as simple as having a higher level of
polymorphism in the final phase. Instead, the existence of 6-codon amino acids means that
the selective pressures vary quantitatively as well as quantitatively. On the other hand, for
amino acids with simpler coding patterns, the SNPs can be effectively modeled by a simple
phase-dependent increase in the mutation rate.

We conclude that the study of tensors can be brought to bear on the analysis of genomic
data. We hope that further developments will lead to more applications of tensors and
algebraic statistics to computational biology.
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[48] Emil Toeplitz. Über ein Flächennetz zweiter Ordnung. Math. Ann., 11:434–463, 1877.

[49] M. A. A. van Leeuwen, A. M. Coehn, and B. Lisser. LiE, A Package for Lie Group
Computations. Computer Algebra Nederland, 1992.

[50] D. Venet, F. Pecasse, C. Maenhaut, and H. Bersini. Separation of samples into their
constituents using gene expression data. Bioinformatics, 17:S279–S287, 2001.

[51] Jan Verschelde. PHCPACK: A general-purpose solver for polynomial systems by ho-
motopy continuation.

[52] Jerzy Weyman. Cohomology of Vector Bundles and Syzygies, volume 149 of Cambridge
Tracts in Mathematics. Cambridge University Press, Cambridge, 2003.




