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Abstract

Of Fish and Fishermen: Using Human Behavior to Improve Marine Resource

Management

by

Daniel Andrés Ovando

People around the world depend on the ocean for their livelihoods and cultural iden-

tity. Properly done, marine resource management can help communities balance their

extractive needs with the importance of maintaining healthy ecosystems. But, limited

data and understanding often inhibits our ability to effectively manage our interactions

with the sea, threatening both food security and ecological integrity. My research uses

simulation modeling and quantitative methods to demonstrate how integrating data and

theories of human behavior with ecological information can improve our understanding

and management of marine ecosystems. For my first project, I ask whether we can use

satellite data on the behavior of fishermen provided by Global Fishing Watch to predict

the abundance of fish. We show that while a reasonably strong predictive model can

be made from the effort data, environmental data is a better predictor, and neither is

reliable in new times or locations. My next line of research shows that the region-wide

conservation and fishery effects of Marine Protected Areas may be smaller, more variable,

and harder to detect than we thought, and demonstrate an empirical approach for esti-

mating these regional MPA effects in the Channel Islands National Marine Sanctuary.

Lastly, I present a novel approach for using local historic economic information, together

with biological data, to improve the ability of communities to estimate the health of

their fishery. We show that integration of bio-economic theory, along with data on costs,
viii



prices, and profitability, can in many cases improve the ability of our model to provide

accurate estimates of fishing mortality rates.
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Chapter 1

Introduction

My research uses modern data science tools to integrate economics and fisheries science

to improve the management of natural marine resources. The research in this dissertation

presents three broadly different projects all related by this common thread. Each of these

chapters mixes data and theories of human economic behavior with fisheries science

though quantitative methods, including machine learning and Bayesian inference, to

demonstrate how integration of human behavior can (or cannot) help us understand and

manage fisheries.

My first chapter asks, can we use fine-scale data on fishing effort to gain understanding

of the abundance of fishes in space and time? To accomplish this, we pair novel data

provided by Global Fishing Watch (described in Kroodsma et al. 2018) detailing the

date, location, and nature of fishing effort of (mostly) large-scale fishing opperations all

around the globe, with data from fishery independent research surveys to determine if

these effort data can predict fish abundance. We find that while effort data can be used

to predict fish abundance, environmental data such as water temperature can do the

same thing better, and that models fitted to one location are not easily exportable to a
1
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new location. All materials needed to replicate this analysis can be found here

The second chapter turns to the use of Marine Protected Areas (MPAs) in providing con-

servation and fishery benefits. MPAs have a long history in marine resource management,

and increasingly are looked to to provide benefits not only inside their borders but also

to the waters surrounding them. There is a large amount of general theory addressing

the question of when and how much we should expect MPAs to provide regional-scale

conservation and fishery benefits, along with a broad literature of modeling designed to

test a few theories at a time or support planning in a specific place. We created a simula-

tion tool that integrates across the critical components of this literature to provide a new

and comprehensive view of the expected regional-scale conservation and fishery impacts

of MPAs. Our results demonstrate that even while controlling for critical drivers such as

the size of the MPA network and the pre-MPA depletion of the fishery, the region-wide

effects of MPAs are highly variable, and in many cases relatively small. We show that

human behavior is one of the most critical drivers of the expected regional effects of

MPAs. This has important implications for MPA monitoring programs. To demonstrate

this, we pair the simulation analysis with an empirical assessment of the regional effects

of a network of MPAs placed in the Channel Islands National Marine Sanctuary in 2003.

Our results both present a strategy for estimating regional effects of MPAs in the real

world, and match closely with the expectations generated by our simulation analysis. All

materials needed to replicate this analysis can be found here

The third and final chapter integrates economic theory and data into the fisheries stock

assessment process. Stock assessments are statistical models that estimate critical popu-

lation parameters such as fishing mortality rates using data such as catch-per-unit-effort

and/or the distribution of fish lengths observed in samples from fishery catches. We

demonstrate how using economic data and theory such as open-access dynamics along
2
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with data on profit per unit effort, prices, cost, labor, and technology, can improve the

ability of stock assessment models to provide accurate estimates of fishing mortality rates

in a data-limited context. We also present a simulation testing tool for examining model

performance and helping users decide which model to use under what circumstances.

Our results both open a new field of data for stock assessment and improve the ability of

local stakeholders to include their historic knowledge of a fishery’s economic development

into the assessment process. All materials needed to replicate this analysis can be found

here

This dissertation makes use of a number of computing packages without which the results

would be much poorer and much delayed. All analyses were based in the R programming

language (R Core Team 2018). However, while data processing and plotting were in done

in R, this dissertation also depends on Stan (Carpenter et al. 2017), interfaced with using

the rstan, rstanarm, and brms packages, for Bayesian inference, along with Template

Model Builder for maximum likelihood estimation (TMB, Kristensen et al. 2016). Code

throughout the project makes extensive use of the tidyverse suite of packages which

made life exponentially easier (thank you dplyr and ggplot2!), and the caret package

(Kuhn 2008) as an interface for machine learning tools. This dissertation was written

in bookdown, adapted to match the UC Santa Barbara dissertation template through

my package gauchodown, which was made possible by numerous contributors but in

particular the original work of thesisdown and huskydown. The appearance of all plots

are based on the excellent “opinionated” themes presented in hrbrthemes.

3
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Chapter 2

Estimating Fish Abundance from

the Behavior of Fishing Fleets

Introduction

Successful fisheries management rests in part on the ability to provide accurate and

timely assessments of the status (generally in the form of biomass levels and/or fishing

mortality rates relative to some reference point) of fish stocks. Fisheries science has

developed an expansive and often effective toolbox for providing this knowledge, but

the data-intensive nature of many of these tools has prevented their use in all but the

most knowledge and resource rich parts of the world. In recent years, this problem has

led to an rapid expansion of “data-limited assessments” (DLAs), that seek to provide

stock status estimates using fewer data (but more assumptions) for fisheries that do not

have for formal stock assessments in place (such as those encompassed by the RAM

Legacy Stock Assessment Database, Ricard et al. 2012). While length-based DLAs are

commonly used at the more local level (e.g. Hordyk et al. 2014; Rudd and Thorson
4
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2017), at larger spatial scales catch-based methods, that try to explain stock status as

a function of trends in the amount of fish caught from a population, have become the

standard method (e.g. Costello et al. 2012, 2016; Rosenberg et al. 2017).

This prevalence of catch-based methods is based largely out of necessity rather than

performance; catch statistics, such as those provided by the Food and Agriculture Orga-

nization of the United Nations (FAO; FAO (2018)), have been to date the only globally

available source of fishery statistics. While these catch-based methods have been shown

to be effective in some circumstances (Anderson et al. 2017; Rosenberg et al. 2017), catch

statistics alone can be misleading in understanding stock status (Pauly et al. 2013). The

need for expanded tools to rapidly understand and manage data-limited fisheries is in-

creasingly critical as populations grow and the climate changes. Global Fishing Watch,

presented by Kroodsma et al. (2018), presents a new global database of fishing effort, up-

dated in near real time. Can these new data be used to improve our ability to understand

the status of fisheries around the world?

Why might we think that data on the dynamics of fishing effort might be useful for

fisheries stock assessment? Regardless of their scale, from large industrial operations to

small artisanal activity, fisheries share a common underlying incentive structure: fish-

ermen desire some utility derived from capturing fish (e.g. some combination of food,

income, and cultural activity) and tune their fishing activities in order to try and maxi-

mize that utility, subject to the constraints of the world. As time goes on, these fishing

actions affect fish stocks, for example through reductions in abundance or mean length,

causing the behavior of the fishermen to be updated. In short then, fishing and fish are

part of a dynamic system, in which the behavior of each affects the behavior the other.

These dynamic links between fishing fleets and fish populations are a critical part of

fisheries management. Gordon (1954) predicted that in the absence of property rights
5
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or access restrictions, these bio-economic dynamics would result in the fishery reach-

ing an open-access equilibrium at which net profits in the fishery are driven to zero,

often resulting in biological overfishing of the stock. This thinking was central to the

bleak predictions of the “tragedy of the commons” (Hardin 1968). While Ostrom (1990)

demonstrated that the evolution of natural resource systems such as fisheries are driven

by a more complete and complex set of drivers than pure profitability, the critical link

between the dynamics of fish populations and fishing communities remains in the form

of social-ecological systems (Ostrom 2009).

Understanding the dynamics of these social-ecological systems is critical to effective fish-

eries management. Bio-economic theory and empirical evidence helps us design and

implement policies that best achieve societal objectives, by allowing us to model what

the potential impacts of policy choices may be. This process has underpinned the recent

expansion in the use of rights-based fisheries management (Grafton 1996; Cancino et al.

2007; Deacon and Costello 2007; e.g. Costello and Polasky 2008; Kaffine and Costello

2008; Wilen et al. 2012; Grainger and Costello 2016; Costello et al. 2016; Squires et

al. 2016), and increasingly is used in the management-strategy-evaluation process (MSE,

Butterworth 2007; Punt et al. 2016). Nielsen et al. (2017) provides a thorough re-

view of models currently utilizing bio-economic modeling to model and guide the policy

implementation process.

These works demonstrate a rich history of thinking about how fishing fleets respond to

incentives and population dynamics. However, the vast majority of the literature in this

field is focused on predicting fishing effort as a function of fish populations; relatively

little research has reversed this question and asked, what do the dynamics of fishing effort

suggest about the state of fish populations? If fisheries are indeed a coupled bio-economic

system, then just as we believe the dynamics of fishing effort should be predictable from
6
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fish abundance, fish abundance should be predictable from fishing effort (Sugihara et

al. 2012). Prince and Hilborn (1998) and Hilborn and Kennedy (1992) both provide

empirical evidence for this relationship, by demonstrating how the economics of fishing

interact with spatio-temporal population dynamics. Their results show that as a fishery

nears equilibrium, the spatial distribution of effort should reflect the spatial distribution

of abundance. However, while these results demonstrate a predictable link between

effort and abundance, we know of few examples in the stock assessment literature of

attempting to use effort alone to estimate abundance. This is likely partly due simply to

the history of stock assessment as a biological science (Smith 1994), and partly due to data

realities. Historically, most fisheries with say accurate and complete records of fishing

effort would also have records of more directly useful (from the perspective of traditional

stock assessment) indices such as catches and catch-per-unit-effort. In these cases the

catch data, combined with catch-per-unit-effort (CPUE) data, can in theory provide a

clearer signal of the state of a fish stock (with the catch data providing information on

the scale of abundance and CPUE data on trends) than the effort data.

While effort dynamics have not been historically used to understand fish populations, it

is reasonable to believe that given sufficient data, it should be possible to infer something

about the state of a fish population as a function of the behavior of fishing fleets. This

idea is in many ways analogous to earlier research linking the behavior of sea birds

and the location of their prey (Furness and Camphuysen 1997). While this general link

between effort and abundance is grounded in sound theory, the actual form of link between

fishing effort and fish abundance is far from clear. High levels of fishing effort could

reflect high abundance of fish in the earlier years of a fishing ground, or could reflect a

relatively depleted but easily accessible region. In addition, the rate at which fishing effort

responds to abundance may depend critically on the availability of alternative fishing or
7
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employment opportunities. We hypothesize that all else equal, fishermen would like to

maximize their utility from fishing, but the varied and complex nature of these individual

utility functions, combined with the shifting and uncertain nature of the natural world,

make the structure of the link between fishing behavior and fish abundance a complicated

question.

Empirical evidence and theory suggest that a) there is a link between effort and abun-

dance but that b) the dynamics of those linkages can be complicated. This project tests

the ability of different models to untangle these dynamics and use effort data from Global

Fishing Watch to make accurate predictions of both the spatial distributions and relative

trends of fish abundance. We do this by pairing these effort data with fishery-independent

research surveys compiled by the FishData (as described in Thorson et al. 2015) package

in R (R Core Team 2018) to ask, can GFW derived effort data be used to predict the

abundance of fish?

We break this assessment into a series of phases.

• We assess the relationships between total effort and biomass indices in order to see

if, simply put, more more fishing is associated with more or less fish

• We assess whether total effort can be paired with regional catch data to create

an index of catch-per-unit-effort which in turn provides a reasonable index of fish

abundance over time

• We consider the ability of a series of structural economic models, based on bio-

economic theory, to predict fish abundance as a function of fishing behavior

• We compare the predictive performance of the structural models to a suite of

machine-learning models that utilize the same GFW data, and available covari-

ates if desired, to predict fish abundance
8
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• Lastly, we consider the predictive value of GFW derived information relative to

other globally available indices (e.g. sea surface temperature and chlorophyll)

Methods

Picking Models for Prediction

Assuming that methods such as the fishery independent research surveys used in this

study represent our best estimates of biomass of fish in an area (i.e. that metrics such

as effort do not somehow provide better estimates of status than the surveys, which

seems a safe assumption), the ability of effort to predict abundance is useful only if we

have reasonable belief that it will work in places that have effort data but do not have

research surveys. For example, we could envision using this proposed effort-based model

in locations that are covered by Global Fishing Watch but not by research surveys (which

would represent most of the globe), or in between survey years for non-annual research

surveys (e.g. those in the Aleutian Islands or the Gulf of Alaska).

We need then some method for judging which candidate models are likely to be the best

at out-of-sample prediction. We did this by following the framework laid out in Kuhn and

Johnson (2013). We first took our merged database of fishing effort and fish abundance

and created a series of training and testing splits. These training splits were then used

for all model fitting and judging. The testing splits were held aside until model selection

based on the training data was complete, at which time we tested the ability of the

tuned models to predict the density of fishes reported in the testing data. This specific

step is critical to selecting the model with highest chance of providing good out-of-sample

prediction. Even if the testing splits are not used in the fitting directly, repeatedly fitting
9
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the models to the training data and inspecting the performance against the testing data

introduces an element of bias where the selected model may be the one that happens to

do best for that specific test-training split, and as such is not truly independently tuned

for out-of-sample prediction.

We created a large number of candidate test and training splits, in order to compare

the sensitivity of the model selection process during the training phase to the specific

splitting.

• random

– The data were split using stratified random sampling from within the survey

regions (to ensure that all regions were proportionally covered)

• california

– We split the data into a training set of data off of the coasts of the states

of Washington and Oregon, and used data off of California for the testing

split. This split helps us evaluate whether a model fit to one region can be

extrapolated to another region, albeit a roughly similar one in some areas.

• future

– We split the data into a training set composed of data from 2012:2013, and

held out all data from the years 2014:2017 for the testing split. This gives an

estimate of the model performance in time periods not covered by the training

data.

For the sake of clearer results, we only present our diagnostics of the model fitting to

the training data using the random split, but we return to the california, and future

splits when we confront the selected models to the testing splits.
10
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The broad steps of this project are

1. Create a merged database of fishing effort and fish abundance, along with relevant

covariates

2. Fit a series of candidate models across a variety of spatial resolutions and data

splits

3. Evaluate the overall fit of each of the models and select those with highest change

of performing well out of sample

4. Examine the value of information of effort data relative to environmental data (for

predicting abundance)

5. Assess the predictive performance, both in space and time, of selected models

Data

GFW provides data on the amount and location of fishing effort, along with available

observed or estimated covariates such as vessel size, distance from shore/port, and engine

power. Estimates of fish abundance (measured as density or biomass) in space and time

were obtained from their relevant surveys through the FishData package. The following

two data sections provide summaries of the data as well as descriptions of relevant data

processing steps taken.

Trawl Survey Data

FishData provides access to numerous fishery independent research surveys throughout

the world. We use the bottom trawl surveys conducted along the west coast of North

America by the National Marine Fisheries Service (Fig.2.1)
11
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Figure 2.1: Spatial coverage of fishery independent research surveys used in this study.
Names represent abbreviated survey regions

• Eastern Bering Sea Bottom Trawl Survey (ebsbts)

• Aleutian Islands Bottom Trawl Survey (aibts)

• Gulf of Alaska Bottom Trawl Survey (goabts)

• West Coast Groundfish Bottom Trawl Survey (wcgbts)

Each of the surveys contains data on a wide variety of different species, including highly

abundant fished species such as Arrowtooth Flounder (Atheresthes stomias) and Alaska

Pollock (Gadus chalcogrammus), as well as unfished species such as miscellaneous sea

anemones (order Actiniaria). The selected surveys utilize bottom trawl gear, and as

such primarily contain bottom-associated species (Fig.2.2). Surveys are conducted in

summer months (July-August for the Alaska surveys and May-October for the West

Coast Bottom Trawl Survey). Survey data are provided by FishData in their “raw”

form (biomass by species per unit of survey effort at a given sampling event). The

data therefore require standardization to account for differences in vessel characteristics,

spatio-temporal correlation structures, and the presence of zeros in the haul data. This
12
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Figure 2.2: Number of positive encounters for the top-10 most observed species in each
research survey
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Figure 2.3: VAST estimates of density (tons/km2) of species observed in bottom trawl
surveys for the Alaska region - NOTE seems like problem in reported units of trawl
survey of AIBTS

standardization was performed using the VAST package (Thorson et al. 2016), which

implements a spatial delta-generalized linear mixed model to provide a standardized

spatio-temporal index of abundance for each species in the data. While versions of VAST

allow for accounting of both within and across species correlations, we chose to run

the standardization process separately for each species for the sake of convergence time

(tests of this choice on smaller subsets of the data indicate the differences between the

two approaches are not substantial).

The result of VAST is a network of “knots” that define polygons of equal density for

each species, where the density of each species is measured in units of metric tons/km2

(Fig.2.3). Surveyed species vary substantially in their economic importance. We mark

species encountered in the surveys as “fished” if their name, or a synonym for their name
14
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Figure 2.4: Approximate fishing revenue density ($/km2)

identified through the taxize package, was found within the global catch records of the

Food and Agriculture Organization of the United Nations (FAO 2018). For each species,

we also obtained price estimates using the data provided by Melnychuk et al. (2016).

Together, these data provide estimated density for fished species encountered by the US

west coast bottom trawl survey program over space and time, along with the associated

value of these species. This allows us to examine both the density of species, and the

“revenue density” available for fishing in different locations (Fig.2.4).

Fishing Effort Data

Fishing effort data were obtained using the bigrquery package in R from Global Fishing

Watch. Data were aggregated to the resolution of year and nearest 0.2 degree latitude and

longitude, and for each vessel at this a given location we calculated the total fishing hours
15
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Figure 2.5: Total hours of fishing activity reported by Global Fishing Watch in the
Eastern Bering Sea, Aluetian Islands, Gulf of Alaska, and US West Coast regions

spent there, average distance from shore, average distance from port, and whether that

location is inside an MPA (and if so whether the MPA was no-take or restricted-use). We

also collected relevant data for that vessel such as its engine power, length, tonnage, and

vessel type (trawler, purse-seine, fixed-gear, etc). Together, these data provide fishing

effort-related data covering the regions surveyed in our fishery-independent data (2.5).

Global Fishing Watch uses a neural-net to classify observed behavior as fishing or not

fishing (Kroodsma et al. 2018) From there, we filtered out the classified fishing behavior

to entries that were more than 500m offshore, were moving faster than 0.01 knots and

slower than 20 knots, to remove likely erroneous fishing entries.
16
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Environmental Covariates

We augmented the effort and abundance data with globally accessible environmental

covariates of

• Chlorophyll

• Sea surface temperature

• Bathymetry

All data were obtained from NOAA ERDDAP portal, and aggregated as needed to match

the resolution of the GFW data (annual and 0.2 degree lat/long resolution). Other

environmental data were explored (e.g. wave and wind), but did not have sufficient near-

shore coverage for inclusion in the model.

Creating Merged Database

Having pulled together data on fish abundance, fishing effort, and environmental covari-

ates, we then merged these data together into a comprehensive database. Effort data and

environmental data were first merged together by matching year and location (as mea-

sured by latitude and longitude). The combined data were then clipped to only include

observations that fall within the boundaries of the polygons defined by each trawl survey

(Fig.2.1). From there, we snapped each effort-environment observation to the nearest (in

terms of latitude and longitude distance) knot of fish abundance as defined by the VAST

standardization process. Since the survey data are generally at a courser resolution than

the effort data, this means that multiple effort observations are often associated with any

one knot at any one time.

We then performed a series of filtering steps on this merged database. Since all surveys

are geared towards bottom dwelling species, only bottom-associated gears are included
17
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from the effort data. In this case that means vessels identified by Global Fishing Watch

as trawlers, pots and traps, and set gears (bottom longline and gillnet). We also only

included species that were observed 10 or more times during each year of the survey to

improve model convergence. To account for potential seasonal shifts in abundance, we

also filtered the data down to months in which the relevant research trawl surveys were

conducted.

This final merged database provides effort data at the resolution of effort per 0.2 degree2

per year, and abundance at the resolution of “knot” per year, where the exact area of

each knot varies. Each observation of effort is then paired to the spatially nearest knot

of abundance estimates This leaves open a question of at what resolution do we wish

to fit the models? At the temporal scale, we can only fit to annual data, since that is

the temporal resolution of the abundance estimates. On the spatial scale though, at the

finest resolution we can use a 0.2 degree2 spatial resolution, or we could aggregate all

the data up to a total abundance estimate each year. The challenge here is a trade-off

between decreasing noise but also decreasing degrees of freedom. Since we only have at

most six years of data (and some regions less), aggregating all data together to the annual

scale would leave us with only six datapoints. While we explore some visual assessments

of this idea, six datapoints do not leave us much room for model fitting. At the other end

of the scale, using the finest resolution data gives us a very large sample size, but also

means we are trying to predict abundances at a very fine spatial scale. So, even if the

goal of the model is to predict time trends, we still fit the model using finer resolution

spatial data, and then aggregate predictions together if we wish to examine time trends.

Candidate Predictive Models

We evaluated three classes of candidate models for linking fishing effort to fish abundance:
18
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1. Linear models

• These simply link abundance to effort through linear models.

2. Structural economic models

• These assume a non-linear functional form to the allocation of fishing effort,

the parameters of which are tuned to available data conditional on these struc-

tural assumptions.

3. Machine learning models

• These models make no explicit structural assumptions, but rather find the

combination of predictor variables that maximize the out-of-sample predictive

power of the model

The choice of evaluating both structural and machine learning models is important to

discuss for a moment. Substantial amounts of empirical evidence and bio-economic the-

ory exists hypothesizing how fishing effort and fish abundance might be related, from

relatively classical ideal-free distributions (e.g. Miller and Deacon 2016) to more com-

plex agent-based approaches (e.g. Vermard et al. 2008). These structural models have

the advantage of interpretability, but leave us open to errors in model specification. In

contrast, machine learning models lose interpretability but are less sensitive to speci-

fication errors. While different in their mechanics, all the candidate machine learning

models are black-box models whose sole objective is to maximize the predictive power

of the model (as defined by the user). The user specifies some model options, but the

model decides which data are important and how those data relate to each other. This

allows these algorithms to fit highly non-linear models (if the data demand it), without

the need to specify an exact statistical or structural form for how variables such as costs,

safety, and fish abundance interact to affect fishing behavior.
19
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As a result, machine learning models can serve as an effective benchmark for the best

possible ability of GFW data to predict fish abundance. The disadvantage is that, while

new techniques are emerging for interpreting machine learning model fits, they are in-

herently black boxes and as such do not permit us to really interpret the meaning of

specific coefficients. The lack of a structural theory behind the model may also hamper

the ability of these models to predict radically out of sample data (e.g. a machine learning

model trained in Alaska may perform terribly in Africa). By fitting both structural and

machine learning models, we can compare the machine learning and structural approach

and see how much the interpretability of the structural model “costs” us in terms of

predictive power, relative to the benchmark of the machine learning model.

Linear Models

We include the linear models purely for data exploration (though if they happen to work

well they could be used). The linear models include simple linear regressions between

metrics of effort and metrics of abundance (e.g. total engine hours against total biomass).

We also consider CPUE trends as a class of linear model (since it is just a linear trans-

formation of the effort data), where we now ask is, is a Global Fishing Watch index of

CPUE proportional to abundance? We tested one slightly more involved linear model,

of the form

(Ey,k) ∼ Gamma(costy,k + B̂y,k, shape, scale)

B̂y,k ∼ normal( ¯Bsurvey, σsurvey)

20
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Where Ey,k is the observed total effort in year y for knot (location) k, cost is our linear

cost function, and B̂ is a estimate of the effect for each knot, drawn from a distribution

within each survey with mean ¯Bsurvey. In order for B̂ to in fact be representative of fish

biomass at a location, the assumption is that all of the other attributes that affect the

decision of how much effort to allocate at a given site are captured by the estimated cost

coefficient, which we assume is a linear function of the distance of a knot k from port,

the distance from shore, the depth at that location, and the mean vessel size used at that

observation. We used a Bayesian hierarchical model implemented through the rstanarm

package to estimate this linear model. We then extracted the estimated B̂ coefficients,

and compared them to the fish biomass estimated at that location by the relevant fishery

independent survey.

Structural Models

Our structural models are constructed in the same manner as Miller and Deacon (2016).

The key of this model is the assumption that for a given spatio-temporal resolution,

fishermen distribute themselves such that marginal profits are equal in space.

Following Miller and Deacon (2016), we consider marginal profits Π per unit effort as

being

Πy,k = pqBy,ke
−qEy,k − cy,k

where for year y at knot k, p is price (drawn from Melnychuk et al. 2016), B is our index

of abundance (from the trawl surveys and VAST), q is catchability, E is effort (supplied

by Global Fishing Watch), and c are variable costs).This leaves q and c as the unknowns

in this equation.
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Miller and Deacon (2016) were primarily interested in estimating quota price aspects of

c, taking as data p, CPUE, E, and other components of c (fuel, labor, ice, etc.). We

are instead interested in estimating CPUE as a function of other variable, and so we can

rearrange this equation to construct a model of the form

log(By,k) ∼ normal(
Πy,k + cy,k
pqe−qEy,k

, σB)

Similar to Miller and Deacon (2016) we assume for now that Πy,k is zero, though this is

clearly not accurate given that many of the fisheries encompased by the data are highly

regulated and in some cases rationalized (however, changing Πy,k to positive values had

little effect on the fit of the model during trial runs). That leaves q and c as unknown

parameters. While we do not have the high resolution logbook data available to Miller

and Deacon (2016), we could certainly obtain data on fuel and labor prices for this model.

However, at this time, we simply assume that cy,k is a linear function of the distance of a

knot k from port, the distance from shore, the depth at that location, and the mean vessel

size used at that observation. We fit this model, estimating q and the cost coefficients

and σB using maximum likelihood with the Laplace approximation implemented with

Template Model Builder (TMB, Kristensen et al. (2016)) in R.

This form of the model assumes the goal is to estimate B directly. Use of this model

for prediction in new locations would require assuming that the fitted q and cost values

are applicable to a new location. An alternative approach is to estimate a vector of

latent variables B̂ that, together with the cost and q estimates explain the observed

effort distribution.

Ey,k ∼ Gamma(
1

q
log(

pqB̂y,k

cy,k +Πy,k

), shape, scale)
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B̂y,k ∼ normal( ¯Bsurvey, σsurvey)

This form of the model can be custom fit to any new region, but requires the assumption

that all of the non-biomass related reasons for fishing at a given site are captured by the

fitted cost coefficients, leaving the “biomass” effect to be captured by the latent variables.

If there are other site specific factors that affect the amount of fishing effort and are not

included in the model though, these factors will get soaked up by B̂y,k, confounding the

interpretation of these fitted latent values as biomass indicators. We fit this model as a

Bayesian hierarchichal model using the brms (Bürkner 2017) interface to Stan (Carpenter

et al. 2017) in R.

Machine Learning

We implemented four machine learning algorithms:

• random forests (implemented through the ranger package in R)

• generalized boosted regression modeling (gbm)

• boosted multivariate adaptive regression splines (bmars)

• multivariate adaptive regression splines (mars)

An important feature across all the machine learning approaches is that they all adap-

tively push back against predictive overfitting. Within the training data split, the ma-

chine learning approaches then split the training data into numerous new testing and

training splits (typically now called assessment and analysis splits). The coefficients of

the model are then in part fit by repeatedly searching subsets of parameters that minimize

the predictive error of the model trained on the analysis split. Tuning parameters can
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be selected by comparison of predictive error of fitted models applied to the assessment

splits. This process is repeated thousands of times the algorithms search for coefficients

that while fitted on one set of data still provide reasonable predictive power on a held

out set of data.

A random forest works by fitting a series of regression trees. Each regression tree takes a

sub-sample of the training data, and a sub sample of the independent variables provided

for model fitting. The algorithm then determines the variable and variable split (e.g. ves-

sel size and vessel size above 30ft) that provides the greatest explanatory power for the

sampled data, and creates that as the first node. The next two nodes are selected in the

same process, and so on and so forth, down to a specified tree depth tuned through the

caret package. Each tree provides a high-variance, low bias estimator of densities. The

random forest then averages over hundreds of trees to reduce this variance and provide

an improved estimate of density as a function of provided covariates. The advantage

of this approach is that it makes no assumptions about error distributions or linearity

of parameters, and the process of randomly sampling both data and predictors actively

pushes back against overfitting (Breiman 2001). Despite the starkly different name, a

GBM is more or less a modification of a random forest that helps the model target and

improve the fit of parts of the data that the model struggles with. It does this by for

each split, calculating the residuals, and then adapting the model fit to target parts of

the data with large residuals.

Multivariate adaptive regression splines (MARS) models exploit similar assessment-

analysis tools as random forest, but rather than working by splitting the data into a

series of discrete bins that form a tree, the model breaks the data and variables into

an ensemble of linear regressions. For example, consider a process f that takes an

independent variable x and a dependent variable y, that can be modeled by two linear
24



RESULTS

models: when x is 1:10 y ~ f(0.1x), and when x is 11:20 y ~ f(0.5x). A properly tuned

MARS model will search through the data, notice the split, and fit two different linear

regressions to each component of the data. Similarly to the random forest model, the

MARS model considers subsets of available variables and possible levels of interaction

among these variables. The “boosted” version of this model targets hard-to-fit parts of

the model in the same was as the GBM model.

Unlike more classic fitting procedures, for example considering a GAM vs a GLM, there

is little a priori reason to consider one type of machine learning models over another.

They all have been shown to work well under different circumstances, and so the selection

process often simply comes down to selecting some reasonable candidates, fitting them,

and then selecting the best model from the fits to the training data based on the user’s

criteria.

Results

Linear Models

Before heading down the statistical rabbit hole, we can simply examine how well linear

transformations of effort predict abundance. This has an intuitive aspect to it; we can

hypothesize that the reason that more fishing occurs in the challenging waters off Alaska

than Santa Barbara is that there are higher volumes of valuable fish in that area. How-

ever, we could also imagine a scenario where fishing effort is concentrated in overfished

but inexpensive grounds, leaving higher fish abundance in more remote areas that are

not economical to fish.

Looking at the effort and abundance indices, we see some evidence of a “more fishing
25



CHAPTER 2. USING EFFORT TO PREDICT FISH

100

1,000 100,000 10,000,000

100

1,000

10,000

100,000

Engine Hours

Fi
sh

ab
le

 B
io

m
as

s 
(M

T)

Survey Region

aibts

ebsbts

goabts

wcgbts

Note log−10 scale of axes

Figure 2.6: Total fishing hours plotted against biomass of commercially exploited fishes.
Each point represents a 100km2 area

where there are more fish” hypothesis. Across each of the survey regions, aggregating

up to a 100 km2 area, there is a positive correlation between the total engine hours

of applicable fishing observed by GFW in that area and the total estimated fishable

biomass available in that area (estimated by the sum of the density per knot times the

area of that knot). However, the relationship is far from clear, with substantial variation

around the mean slope for each region. In addition, we see if all one knew was the

total amount of fishing hours, the magnitude of the fishing opportunity that those hours

might correspond to varies substantially (Fig.2.6). This coarse data analysis suggests

that there may be a relationship between total fishing effort and the value of the fishing

opportunity within a region, but certainly not a clear enough relationship to serve as a

reliable predictor of fishable biomass. That effort levels alone are not clearly informative

is not very surprising. What though do we learn by pairing effort data with locally
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available catch data to construct a CPUE index? CPUE can, under the appropriate

circumstances, serve as an index of relative abundance (Maunder et al. 2006), though it

can also fail badly at this task if key assumptions are violated (Hilborn and Kennedy 1992;

Harley et al. 2001; Walters 2003). Ignoring complications in interpretation of CPUE for

now, to create a GFW derived CPUE index, we pulled catch data for the relevant regions

and species from three different databases: the RAM Legacy Stock Assessment Database

(Ricard et al. 2012), the NMFS commercial landings database, and the FAO’s capture

production database (FAO 2018). Pairing these catch data with the the GFW effort

data gives us a timeseries of aggregate CPUE for a given region. We then compared

these CPUE trends to trends in biomass provided by the RAM database and from the

processed trawl survey used throughout this study. In the Eastern Bering Sea region, if

you squint there appears to be some a shared downward trend since 2014 between the

CPUE indices and the independent abundance indices (Fig.2.7). But, the GFW derived

CPUE indices tell the exact opposite story as the independent abundance indices along

the US West Coast (Fig.2.8). Turning to the latent variables approach for the linear

models, We find no correspondence between the estimated space effects B̂ and the fish

biomass estimated from the trawl surveys. This does not mean that such an approach

might not work given sufficient data, but with the available covariates either omit too

many other important factors besides biomass are being absorbed into the B̂ coefficients,

or the survey biomass is a small component of the decision making process for a given

fishing location (Fig.2.9).

Structural Models

Since raw effort and effort derived CPUE indices do not appear to be valid methods for

estimating abundance, we now turn to more detailed modeling approaches to utilize effort
27
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Figure 2.10: Observed vs predicted biomass for the fitted structural model. Red dashed
line shows 1:1 relationship, blue line a fitted linear model to the observed and predicted
values

data to predict abundance. Our structural modeling approach follows a standard bio-

economic framework, as laid out in Miller and Deacon (2016). Miller and Deacon (2016)

used a structural modeling approach in part to estimate the quota prices in the US West

Coast groundfish trawl fishery individual fishing quota (IFQ) program, using data on

logbook reported CPUE, prices, and variable and fixed costs (labor, fuel, etc.). Making

the assumption that for an appropriate fleet unit and time period marginal profits are

equal in space, Miller and Deacon (2016) then estimate quota prices for different species

that, given their other data, rationalize the observed distribution of effort in the fishery.

We applie this same theory to our data, but rearranging the equation so that the model

now estimates biomass rather than effort. This biomass-predicting structural model

shows limited predictive ability within the training set, with R2 within the training data

less of 0.13. We can also inverted this idea in the same manner as we did with the
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Figure 2.11: Scaled latent biomass coefficients plotted against paired scaled biomass
estimates. Red dashed line shows 1:1 relationship, blue line a fitted linear model to the
observed and predicted values

linear model, and rather than estimating cost coefficients that explain the observed fish

abundance, given observed efforts, estimate cost coefficients and latent spatial parameters

representing abundance that explain the observed effort. We estimated this model using a

Bayesian hierarchical model implemented in brms (rather than rstanarm since the model

is no longer linear). Similarly to the linear model exercise, we found no relationship

between the estimated latent spatial abundance coefficients and the estimates of fish

abundance provided by the trawl surveys (Fig.2.11).

Machine Learning Models

Linear and structural models demonstrate little ability to accurately predicting fish abun-

dance using effort data. We turned to machine learning as a final strategy for predicting
31
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fish abundance using fishing effort. We tested four different machine learning approaches:

random forests (ranger, Breiman 2001), gradient boosted machines (gbm), and multivari-

ate adaptive regression splines (bagged MARS and MARS models). Each of these ma-

chine learning models is designed to make use of supplied data to maximize out-of-sample

predictive power. However, each model also contains a number of tuning parameters that

can only be reliably selected by cross-validation. To that end, we used the caret pack-

age in R (Kuhn 2008) to perform two repeats of ten fold cross validation across factorial

combinations of candidate tuning parameters, and selected the set of tuning parameters

that minimized the out-of-sample root mean squared error (RMSE).

With those tuning parameters in hand, we then utilized the cross-validation routines from

those selected tuning parameters to quantitatively compare each of the tuned machine

learning models in terms of their out-of-sample predictive power. For each model, we

have twenty out-of-sample RMSE estimates. We used the tidyposterior package to fit a

Bayesian hierarchical model that, controlling for split effects, estimates the relative effect

of each candidate model on out-of-sample RMSE. Based on this analysis, the random

forest model (as implemented by the ranger package) has the lowest estimated out-of-

sample RMSE. As such, we use the random forest, as implemented by the ranger, as our

candidate machine learning model for the remainder of this paper. The other decision

to be made within the model fitting process is what resolution of data to use within the

fitting process. The finest scale effort data pulled from Global Fishing Watch provides the

largest sample size, but also potentially increases the noise in the data. Aggregating the

data at coarser spatial aggregations decreases sample size but also may decrease noise.

We tested the models at three different spatial resolutions, raw, at 25km2 resolution,

and 100km2 resolution. The 100km2 resolution had the highest R2 for the training data,

and so we will use that as our default resolution for this analysis (Fig.2.13). Using the
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Figure 2.12: Posterior densities of out-of-sample RMSE predicted by tidyposterior

100km2 resolution data, the random forest has substantially greater predictive ability

within the training data split than any of the linear or structural approaches, with a

median R2 across the training splits of over 0.5 (though the model also appears to be

positively biased, Fig.2.14). We can repeat this same resolution procedure to perform

one final performance comparison between the random forest and structural models.

For each model, we fit the model using the finest resolution data, and then aggregated

predictions up to coarser resolutions (Fig.2.15-A), and refit the model itself using coarser

resolution data (Fig.2.15-B). Using coarser resolution data in the model fitting process

improves the predictive power of the structural models somewhat, but the random forest

still outperformed the structural approach across all spatial resolutions. This analysis

confirms that a spatial resolution of 100-200km2 appears to be ideal in terms of balancing

noise reduction with sample size.
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Figure 2.13: Training data R2 for the random forest (ranger) model at three evaluated
spatial resolutions of the data
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Figure 2.14: Observed vs predicted biomass for the fitted random forest models across
different evaluated data splits. Red dashed lines indicates 1:1 fit, blue line a fitted linear
model to the observed and predicted values
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Figure 2.15: Training set R2 from aggregating results of model fit on finest resolution
(A) and fitting the model at coarser resolutions (B)

Value of Information

So far, the model with the greatest predictive power, as measured by the R2 of the model

within the training data, is a random forest model trained on a random subset of the

available data aggregated at a 100km2 resolution. Under those conditions, we see training

set R2 in the vicinity of 0.5. Is this good? Models such as Costello et al. (2012) report

R2 values near 0.4, so 0.5 would appear to be a respectable value. However, the explicit

purpose of this analysis is to determine the value of the effort data supplied by Global

Fishing Watch for estimating fish biomass To get at this, we can compare the predictive

power of the Global Fishing Watch based model to an alternative model for estimating

fish abundance using different sources of information. There are clear theoretical reasons

to believe that fishing effort should respond to and affect fish biomass. However, the
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environment also plays a substantial role in driving fish dynamics, both in abundance

and spatio-temporal distribution (Szuwalski and Hollowed 2016; Munch et al. 2018). A

model of fish abundance based solely on environmental drivers makes at least as much

conceptual sense as a model based on effort and fleet characteristics then.

Based on this idea, we pulled globally estimates of chlorophyll concentrations (a measure

of primary productivity), along with sea surface temperature, and bathymetry, from the

National Oceanic and Atmospheric Administration ERDDAP platform. We paired these

data with non-effort based data pulled from Global Fishing Watch (distance from shore,

MPA status), since these data are not part of the novel effort data provided by Global

Fishing Watch. We then refit the machine learning models (since the structural models

require effort data) using only the environmental data, and using both the environmental

data and effort data (following identical fitting procedures across all runs). This allows

us to assess the change in predictive power (as measured by R2 of the training data) that

including effort data provides.

Comparing effort data alone vs environmental data alone, we see that the relative value

of information of the effort data is in fact negative. Meaning, the environment-alone

model substantially outperformed, in terms of training data R2, the effort-alone model.

If the effort data by themselves are not as predicatively useful as environmental drivers,

are the effort and environmental data together worth more than the sum of their parts?

Our results suggest that in fact they are not; combining the effort data with the environ-

mental data provides nearly identical performance to using just the environmental data

(Fig.2.16).
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Figure 2.16: Differences in R2 of tuned random forest model with effort data relative to R2

obtained from only using environmental (env) data (negative implies worse performance
than environmental data only)

38



RESULTS

Confrontation with Testing Data

The preceding steps have determined that the best model, in terms of training data

R2, is a random forest fitted with data aggregated at the 100km2 resolution, using both

environmental and effort data. The end goal of this model though is not to predict data

within the training set; instead, we would hope to use this model to help us understand

fish abundance in situations outside of the data used to train the model, either in space

(i.e. new locations) or time (periods not covered by the trawl surveys). As discussed

earlier, the decision of what model to use must be made by examining the training data

(and splits of the training data) alone. Now that we have used the training data to

select a model that the evidence suggests will have the highest chance of performing well

out of sample (remember that even within the training data, the random forest looks

to avoid overfitting), we can now confront our selected model with the held out testing

data. We also include the structural models in this comparison to see if the structural

assumptions of these models provide an advantage in out-of-sample prediction, though

we have not provided the structural model with the same built-in resistance to overfitting

to the training data that the machine learning models benefit from.

The predictive performance of our candidate models against the testing data indicate that

the decisions based on the training data were well founded. Inclusion of the effort data

did not improve the performance of the models on the testing data, and across nearly all

cases the machine learning approaches still outperformed the structural models. Looking

at just the random test-training splits then, our results would seem to show that a

random forest based largely on environmental drivers is a good out-of-sample predictor

of fish abundance. Before we start replacing stock assessments with remote sensing of

environmental drivers though, we should look at the out-of-sample performance of the
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Figure 2.17: R2 for testing and training splits across candidate variables and models.
Columns represent the ranger (random forest) and structural models, rows are test-
training splits, where row name indicates the dataset that was held out for testing

models trained on other data splits (Fig.2.17).

Under the “historic” data split, the training split consists of observations from 2012-

2013 and the testing split from 2014-2017. Under this split the performance from the

training to the testing split drops off much more dramatically than under the random

split, showing that predicting new years is a much more challenging task for the model

than filling in gaps within a year. Similarly, we see that a model trained on data off of

the Washington/Oregon coast alone is almost completely useless as a predictor of fish

biomass off of California. Our analyses so far have focused on R2 values as a measure

of predictive accuracy. These R2 values represent the fraction of the variation in spatio-

temporal fish abundance explained by each of our models. A model with an R2 of say

0.9 would then likely be very good at both replicating both a map of abundance and
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a plot of abundance over time (made up of aggregating each of the individual location

estimates over time). However, it is entirely possible that a model with a poor predictive

R2, while unlikely to do a good job of capturing the spatial distribution of abundance,

may still provide a reasonable index of the trend in abundance (if each point is off but

all on average reflect a common trend).

To explore this idea, we can examine the “future” testing case more carefully. In this

data split, we trained all models on data from 2012-2013, and used the fitted coefficients

from this period to predict data from 2014-onward. Using this model, we then summed

the total biomass predictions across space to create a total estimate of biomass within a

survey region and a given year. Examining the results, we see that all of the models show

evidence of capturing aspects of the trend in the 2014-onward period. In the Eastern

Bering Sea region in fact, the random forest model using only Global Fishing Watch data

appears to do a slightly better job of representing the trend in the observed abundance

trends, though with only four data points it is not wise to make any definitive statements

about this, especially since this pattern is reversed in the West Coast data, where use of

the environmental data provides better projected predictions (Fig.2.18).

Discussion

The goal of this project was to determine the value of the effort data provided by Global

Fishing Watch in estimating fish abundance in space and time. We accomplished this by

first determining through a set of fitting routines (models, tuning parameters, resolution)

the model that, given the training data, appeared to provide the highest likelihood of

performing well, in terms of predictive ability, both in and out of sample. This process

found a random forest tuned on 100km2 spatial resolution data to be the “best” model.
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From there, we were able to estimate the value of information of the effort data by

comparing the predictive power of the selected model using effort data, as compared to

the same selected model using only non-effort based data. This analysis showed that the

effort data provides little predictive power beyond that provided by the non-effort data

alone.

That the machine learning models outperformed the liner and structural models comes

as no surprise: machine learning models are designed explicitly for prediction and should

be expected to do well at the task. However, they have two central weaknesses that made

the evaluation of alternative predictive models important. The first is that they lack any

structural assumptions, and therefore are relatively un-interpretable. Structural mod-

els, such as the bio-economic approach taken here, require assumptions about specific

functional forms, but as a result provide a means for rationalizing results, e.g. by provid-

ing parameter estimates that can be evaluated and interpreted using statistical methods

and theoretical knowledge (e.g. the meaning of a cost coefficient can be understood and

our confidence in the value of that coefficient estimated). All else being equal, we would

clearly prefer to have an interpretable model than a black box. To that end, when predic-

tion is the objective, we can estimate the “cost” of that interpretability by comparing the

predictive ability of a machine learning approach that maximizes predictability of at the

expense of interpretability to a structural model that seeks to maximize the likelihood of

the data conditional on its assumptions. While, during the training phase, the structural

model is unlikely to outperform the machine learning approach, if it comes close, the

price in predictability may be well worth the gain in interpretation. In our case though,

the machine learning approach so outperformed the structural approach that they cannot

be outweighed by the interpretability of the structural approach. This does not mean

that the broad concept of the ideal-free distribution that is at the core of the structural
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model is inherently incorrect, but that that particular model as implemented here is not

suitable for the aggregation of the data as they stand. It is entirely possible that finer

resolution effort and abundance data (e.g. the logbook data utilized in Miller and Deacon

(2016)) would produce better performance from the structural model. But, our results

show that a structural bio-economic modeling approach is not appropriate for using the

effort data supplied by Global Fishing Watch to estimate fish abundance.

Vastly out-of-sample prediction is a second major problem with machine learning models,

and the random forest model selected through this process in particular. A properly

specified and estimated structural model provides a clear process for predicting outcomes

in situations that are far outside of the scale of the training data. Suppose for example

that the structural model is a simple linear regression with a slope and intercept, trained

on one independent variable on the range one to twenty. If we then confront our fitted

model with a new independent datapoint with value of 1,000, our estimated slope and

intercept allows us to easily provide a prediction for this new data point (though of course

the accuracy of this prediction will depend on the accuracy of our model). A random

forest is able to do this process as well, but lacks a clear mechanism for doing so. A

random forest works by fitting a forest of regression trees, each of which, in the case of

continuous predictors, break the predictors into a series of bins. Therefore, the predicted

outcome for a dependent variable 100 times greater than any value used in the training

value will be more or less the same as the prediction for the largest value of the dependent

value in the training data (i.e. the new data point will fall into the “greater than some

cutoff” bin). If there is some continuous relationship between the dependent variable and

the outcome, this prediction may be severely biased. Because of that, machine learning

models such as random forests are best at “filling in the gaps” for data fitting within a

defined parameter space, and can struggle when fit on one parameter space and applied
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to a vastly different parameter space.

We checked for the possibility of this problem by, post selection of the random forest

model, examining the predictive ability of that model on both the testing data and the

held out training data. Our results show that this flaw of random forests is indeed a

problem here: the model does very well at predicting “out of sample” points that are

simply random omissions from the complete database. A model trained on the years 2012-

2014 and used to predict 2015-2017 (the “future” training-test split) performs worse than

the random split, and a model trained on Washington/Oregon data and used to predict

California losses roughly half of its predictive power. However, the structural model was

still not able to outperform the machine learning approach in these out-of-sample cases.

These results show that there are predictable relationships between fish biomass and

environmental, and to a lesser extent effort, data, but that these relationships do not

easily export to new time periods or locations.

What should we make of the relative lack of predictive value of the effort data, as com-

pared to the environmental data? It is critical to note that this is not to say that the

effort data alone does not have predictive power, at least within the rough survey region

and time period on which the models are trained. R2 values for a random forest using

only GFW data trained on a random subset of the data to predict fish biomass were near

0.5, both for the training and testing splits; the effort data alone are capable predictors.

But, if the question is what additional predictive power do these effort data provide us

that we could not have obtained from other data streams, such as environmental data,

the answer is not much. We do see closer performance of the effort based and envi-

ronment based models when comparing their ability to predict trends in abundance, as

opposed to overall fit (Fig.2.18). This may suggest that effort data supplied by GFW

may be more indicative of overall trends in abundance than the exact spatial distribu-
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tion of abundance However, given the very short time-span over which both effort and

abundance data are available, we cannot draw definitive conclusions about the ability of

these models to predict trends at this time.

While the effort data’s lack of value in predicting fish is not the result that we hoped

for, it is not surprising for two reasons. The first is that this is simply an indication of

the long-understood challenges of using effort data alone to make meaningful inferences

on the status of fish stocks: more fishing might mean abundant fishing grounds or over-

exploited locations where the fishing is cheap. While machine learning approaches may

be able to disentangle some of these factors within a region, a relationship between fish-

ing and effort fitted in one region is unlikely to export to a new region or time. A second

and more interesting reason though may lie in the nature of the information used by

fishermen to make their decisions. While many bio-economic modeling exercises assume

perfect knowledge of the location and amount of fish stocks for simplifying reasons, in re-

ality of course the choice of where and how much to fish is an uncertain and complicated

process, based on objectives, risk tolerance, past experience and shared knowledge. Part

of that decision making process is directly related to observing and reacting to the precise

type of environmental drivers included in this analysis. Fishermen understand the pre-

ferred depth and temperature contours of their target species, and areas of substantial

upwelling, often marked by increased chlorophyll concentrations, have long been known

to be productive fishing grounds. So, while the model hypothesized that combinations of

environmental and effort data might provide a signal worth more than the sum of their

parts, our results suggest in fact with regards to predicting biomass, the effort data are

a noisier reflection of the environmental data, but further muddied by the myriad other

factors affecting fishing decisions, including costs, regulations, experience, and safety.

The effort data provided by Global Fishing Watch present a novel and massive influx of
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information that shed light on a variety of different factor affecting our oceans, including

the footprint of global fishing (Kroodsma et al. 2018) to the estimates of the profitability

of different fishing regions (Sala et al. 2018). This project evaluated the extent to

which these data could be used to improve fisheries management by helping estimate fish

abundances associated with different effort patterns. We found that these effort data can

be used for predicting fish biomass, but that a) the manner in which effort is related to

abundance, at least at these aggregated resolutions of multiple gears and multiple species,

is poorly described by classical bio-economic models, and that b) while machine learning

models were able to provide much greater predictive power, the effort data provided little

additional predictive value over other globally available environmental datasets. Further

work utilizing effort data derived from Global Fishing Watch in stock assessment will

need to find ways of more closely matching effort data with their targeted species, or

shift attention from using effort as an indicator of biomass towards using it as a prior on

the evolution of fishing mortality rates.
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Chapter 3

Predicting and Detecting the

Regional-Scale Conservation and

Fishery Impacts of Marine

Protected Areas

Introduction

Marine Protected Areas (MPAs, which we will define here as spatial regions in the ocean

in which fishing for species of interest is prohibited, acknowledging that other regulatory

definitions of MPAs exist) have a long history in the management of marine resources.

Traditional cultures in Oceania utilized (often temporary) MPAs as a sort of “fish bank”

for times of need (Johannes 1978). In more recent times, MPAs were first put in place

primarily as conservation areas, analogs to terrestrial reserves deigned to protect iconic

landscapes such as Yellowstone or Kruger National Parks. However, over time our goals
48



INTRODUCTION

and expectations for MPAs have evolved; we now frequently consider the use of MPAs

to both protect marine ecosystems within their boundaries and bolster fish populations

and fishing opportunities in their surrounding waters (Gaines et al. 2010).

We have clear and compelling evidence that well enforced MPAs can provide conservation

benefits within their borders (Halpern and Warner 2003; Lester et al. 2009; Edgar et al.

2014). As conservation benefits accrue inside an MPA, the MPA can affect the waters

beyond their borders through adult or larval spillover, meaning the export of either adult

or larval fish from within an MPA’s borders to surrounding waters. Several studies have

documented empirical evidence for the existence of adult or larval spillover affecting both

abundance and fisheries (Russ and Alcala 1996; McClanahan and Mangi 2000; Stobart

et al. 2009; Halpern et al. 2009; e.g. Goni et al. 2010; Kay et al. 2012; Thompson et al.

2017). Given the lack of attention paid by most fish and their larvae to lines on a map,

there is no doubt that some degree of spillover occurs from MPAs. The more complex

question then is not whether spillover occurs, but what the net effect of spillover is. From

a fishery perspective, are spillover benefits sufficient to offset losses in fishing grounds?

From a conservation perspective, how much does the buildup of adults inside an MPA

increase abundance outside, or does concentration of fishing outside the reserve result in

a net loss in regional abundance?

As stakeholders around the world increasingly seek to use MPAs in the marine resource

management portfolios, it is critically important that we develop a better understanding

of the magnitude and drivers of regional-scale MPA effects. To address this gap, this study

examines two critical questions: 1) What do we expect the regional-scale conservation

effects of MPAs to be and 2) When (and how) can we expect to detect these effects? We

address these questions using a simulation analysis framework to frame the theoretical

regional conservation and fishery impacts of MPAs, from which we then develop an
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empirical assessment of the evidence for regional-level effects of MPAs resulting from a

network of closures put in place in the Channel Islands, California, in 2003.

What Does Theory Tell Us?

Before we start, we should define “regional-scale MPA effects” for the purposes of this

paper. We define regional-scale conservation MPA effects as the change in total biomass

of fish (summing inside and outside of MPAs) relative to the total biomass fish that

would have occurred without the MPA In clearer words, how many more or less fish are

there throughout the study region as a result of one or more MPAs? Note that this is

different from questions such as do MPAs cause an increase of fish inside their borders, or

do connected networks of MPAs provide greater benefits than isolated MPAs with equal

coverage (Grorud-Colvert et al. 2014). From the fisheries perspective, we define regional

MPA effects as the difference in fishery catches following implementation of an MPA,

relative to what the fishery would have caught in the absence of the MPA. Defining

“regional” is not a clear-cut exercise. Regional could be defined as a bio-geographic

area (e.g. the Channel Islands), or as the range of a interbreeding population (in line

with a fisheries definition of a “stock”), or through the range of connectivity of a species

through movement. For brevity’s sake, for the remainder of this paper we will refer to the

“regional-scale conservation MPA effects” as conservation effects. While the definition

of an appropriate region will vary from place to place, the key point here is that we are

considering the net effect of MPAs both within and outside of their borders, within a

spatial area on which they are capable of having an impact (see Fig.3.1 for an illustration

of the regional conservation MPA effect). For the empirical portion of this study, we define

“regional” as encompassing the central islands of the Channel Islands National Marine

Sanctuary: Anacapa, Santa Cruz, Santa Rosa, and San Miguel. With that definition in
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Figure 3.1: Example trajectories of biomass with and without MPAs under a range of
MPA sizes (A), and resulting MPA conservation effect (B)

mind, what does basic theory suggest should be the magnitude of these regional effects?

On one hand, if we imagine a region that has driven its fish populations to near extinction

that then places 100% of its waters inside a no-take MPA, we would expect the regional-

scale conservation effects to be massive, and in fact to approach infinity (in terms of

percentage increase) the closer the “pre MPA” populations approach zero (assuming

that the populations are not so depleted as to prevent recovery). On the other hand,

If we implement an MPA in place for a lightly fished sedentary species, and in doing so

displace a large amount of fishing effort to the waters outside the MPA, it is actually

possible to create a net conservation loss. So, this exercise tells us that regardless of

almost any other factor, the range of possible regional effects (on a percentage scale)

spans the range of of some negative number to positive infinity.

However, within these extremely broad bounds, numerous other factors can act to affect
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the regional effects of MPAs. These include, but are certainly not limited to, the scale of

adult and larval dispersal relative to the size of the MPAs (Gaines et al. 2003; Botsford

et al. 2008; Di Franco et al. 2018), the strength and timing of density dependence

in the population (e.g. pre or post settlement), how overfished the population was pre-

MPA, and how fishing activity responds to the implementation of the MPAs (Hilborn

and Walters 1992; Gerber et al. 2003, 2005; Hastings and Botsford 2003; Hilborn et al.

2004a,b; Walters and Martell 2004; Gaines et al. 2010). In addition, even for the same

total area of MPAs, the location and spacing of the MPAs can have a profound influence

on their cumulative impact through habitat and network effects (Costello et al. 2010;

Gaines et al. 2010). Broadly, a wide range of theory and modeling exercises indicate

that the expected effects of MPAs can vary widely and are extremely context- dependent

(Fulton et al. 2015).

At the most “conservation friendly” side of things, we could imagine a group of heavily

fished species with limited home ranges as adults, broadcast larvae throughout the region,

have post-settlement density dependence, and have a fishing fleet that exits the fishery

in proportion to the area protected inside MPAs (e.g. a grouper fishery in which fishing

was dependent on a large spawning aggregation). Under these circumstances, the MPAs

can be expected to provide a substantial influx of new recruits to the overfished areas

outside of the reserve, even as the reserve fills in with adults. At the other end, consider a

complex of lightly fished species with relative high adult mobility, pre-settlement density

dependence (e.g. at the spawning level, for example a species with specific space and

habitat requirements for breeding), and a fishing fleet that concentrates into the remain-

ing fished areas. Under these circumstances, it will be much more challenging for the

MPA to provide substantial conservation benefits. Theory then helps us think about the

likely regional effects of a given MPA, but outside of these simple cases the cumulative
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effect of interacting drivers means that the expected regional effects are not analytically

solvable or obviously predictable.

What Empirical Evidence Do We Have?

We focus here on evidence of effects of MPAs beyond their borders, see Lester et al.

(2009) for a thorough review of within-MPA effects. Many of the studies that explore

the effects of MPAs outside of their borders focus on studying gradients of abundance,

commonly measured through catch-per-unit-effort (CPUE) or estimated densities along a

distance gradient from MPA borders. Presence of negative gradients (decreasing CPUE

with distance from MPA border) is taken as evidence of “spillover”, or the export of

(generally) biomass from MPAs to their surrounding fished areas

Halpern et al. (2009) conducted a rigorous meta-analysis of empirical evidence for

spillover from MPAs. They find that frequent evidence for spillover from MPAs, but at

relatively small spatial scales (on average up to 800m from reserve boundaries), though

since these studies are in fished system, it is unclear if this distance is reflective of the

biological range of spillover, or the intensity of fishing pressure along the border of an

MPA. Gell and Roberts (2003) surveyed empirical evidence for adult and larval spillover

from MPAs. They documented numerous examples of studies showing decreases in CPUE

of adult biomass with distance from MPA borders, commonly attributed to buildup of

density inside MPAs and subsequent export of fish biomass, though they also note that

evidence for larval spillover is less reported, likely since it is much more difficult to mea-

sure than adult biomass (as opposed to an alternative explanation which is that larval

spillover happens less than adult spillover).

Russ and Alcala (1996) documents changes in densities or large predatory fish inside and

outside of a small marine reserve on Apo Island, Philippines (0.45km long at the time).
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They report a positive correlation between years of MPA existence and fish densities, but

note that up to 8 years of protections were required to detect a significant gradient in fish

densities radiating from the reserve borders. Russ et al. (2003) presents a similar study

focused on the surgeonfish Naso vlamingii, in which they find dramatic density increases

within the reserve, as well as a strong correlational relationship showing catch-per-unit

effort of Naso vlamingii decreasing with distance from the reserve boundary.

Similarly, Harmelin-Vivien et al. (2008) assessed gradients in fish density at increasing

distances from cores of MPAs as evidence of spillover in the Mediterranean. They report

evidence of decreases in biomass densities with distance from MPA borders, though these

effects largely dissipated within 100s of meters of MPA boundaries. Vandeperre et al.

(2011) conducted a meta-analysis of spillover effects (again measured as CPUE along

distance-from-MPA gradients over time) around MPA in Southern Europe. They also

document some evidence of declines in CPUE with distance from MPA border, as well

as a 2-4% increase in CPUE per year in the fished area following MPA implementation.

Guidetti and Sala (2007) finds similar results in the region.

McClanahan and Mangi (2000) measured spillover effects around the Mombasa Marine

Park in Kenya. They also provide evidence of negative CPUE gradients with distance

from MPA border, but note that these effects are highly affected by habitat, environ-

mental, and management variables. They document the largest effects for moderately

mobile species (e.g. surgeonfish)

Several studies have explored the spillover effects of MPAs along the California coast.

Starr et al. (2015) and Caselle et al. (2015) both document rapid but variable changes

in fish densities related to marine reserve networks in the Channel Islands and along the

central California coast. Starr et al. (2015) found evidence that densities inside MPAs

had increased on average, but effects were variable, and found little substantial changes in
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densities in control sites outside the reserves. Caselle et al. (2015) found similar results,

documenting faster increases of densities of targeted species inside reserves than outside,

but little change in densities in reference sites. Both of these studies then suggest that

spillover benefits may be slow (~10 years) to accrue. Kay et al. (2012) reports strong

evidence of spillover of adult lobster from MPAs in the Channel Islands. Thompson

et al. (2017) reports increases in abundance of the larvae of targeted rockfish species,

relative to comparable trends of larval abundance for non-targeted species, following

implementation of rockfish-specific MPAs along the California coast.

Taken together, while a large body of literature has examined the theory for regional-

scale MPA effects, very little empirical evidence directly tackles the questions “do MPA

cause a net change in regional fish biomass, and if so how much”? Nearly all of the

empirical evidence of which we are aware measures spillover, which is often equated with

regional-scale effects, by quantifying measures such as CPUE along distance gradients

from MPA borders. These studies by and large conclude that spillover effects (measured

in this manner) are detectable, but a) can be confounded by environmental and man-

agement variables and b) often dissipate at distances greater than 1km from a reserve

border. While these studies are extremely important contributions to our understand-

ing of regional MPA effects, and regardless of additional challenges with interpretation

of CPUE/density gradients as spillover, even properly measured they do not directly

address the question of total regional effects of MPAs.

How Can We Detect Regional MPA Effects?

Given that we know that the regional level conservation effects of MPAs can vary dramat-

ically, how can we go about detecting these effects in real systems? Under our definition,

the conservation effect reflects the change in abundance resulting from the MPA relative
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to what would have happened without the MPA. This is a nice definition, but unfortu-

nately is effectively impossible for us to truly observe in nature. For the case of assessing

the conservation effects MPAs inside their borders, the gold-standard tends to be before-

after-control-impact studies (BACI, as described in Osenberg et al. 2011, analogous to

what is commonly referred to as a difference-in-difference analysis in econometrics, as

introduced by Snow (1855)). In BACI studies, ideally a set of appropriately matched

control and “impact” sites are selected, where the “impact” refers to the eventual im-

plementation of MPAs. Measures of species abundance in the control and impact sites

are monitored for some period of time pre and post MPA, and the effect of the MPA on

the impact sites (i.e. inside the MPAs) is the difference in the trends in the control and

impact sites. So, if abundances at both control and impact sites are trending up, but the

impact sites are trending up faster than the control sites, this is evidence that the MPA

is “working” inside its borders.

While well designed BACI studies are clearly difficult to successfully implement, and

subject to their own set of caveats and assumptions, properly implemented they are an

effective strategy for robustly estimating within-border MPA conservation effects (as-

suming critically that the “control” sites are adequately selected, and that for example

MPA sites are not systemically more productive than control sites). A review of existing

BACI studies in MPAs did not find clear evidence for this type of bias in site selec-

tion (and therefore estimated within-MPA effects, Halpern et al. 2004). However, at

the regional scale the task of estimating MPA effects becomes much more complicated.

Take for example the Channel Islands region off the coast of California (Fig.3.2). The

Channel Islands is an ecologically diverse region that supports a range of fisheries. A

network of MPAs was implemented in the Channel Islands in 2003, with the express

goal of both providing conservation and fishery benefits throughout the region. Fifteen
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location of MPAs. Points represent sampling locations, and color indicates the number
of observations recorded at a given point

years after their implementation, how can we tell if they successfully caused an increase

in fish abundance throughout the Islands? Following the BACI example above, ideally

we would like a carbon copy of the Channel Islands that could be kept MPA-free and

monitored pre and post MPA implementation in the “treated” Channel Islands. This

is of course impossible; we could perhaps envision utilizing nearby regions as controls,

e.g. the mainland coastal waters of the Santa Barbara Channel, but this region is quite

different than the Channel Islands, and substantial pre-MPA monitoring is lacking for

most sites along the Santa Barbara mainland (though see Grorud-Colvert et al. 2014 for

an example of using different regions as treatment and controls for testing the effect of

networks vs disconnected MPAs). As we seek to understand the regional scale effects of

MPAs, and as the size of those regions increases, the harder it becomes to find a practi-
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cal control for the treated region. As a result, it becomes challenging to determine what

post-MPA changes throughout the region are attributable to the MPAs and which to

other factors. If abundance continues to trend downwards post-MPA, without a control

we cannot truly know whether it might have trended down faster without the MPAs.

Or, if abundances are trending up, we cannot reliably say that the upward trend is not

due to some environmental driver. Regression analysis can help (e.g. statistically con-

trolling for El Niño), but depends on “selection on observables”, meaning that in order

to interpret the MPA coefficients as causal, we have to assume that we have included all

the correct covariates that might also be correlated with the outcome of interest (in this

case abundance of fish). Failure to account for some important variable in our regression

can bias results.

We have then two broad options for estimating the regional effect of MPAs in a place

like the Channel Islands: We can depend on selection on observables through regression

analysis, or we can find an identification strategy. Given the shortcomings of the first ap-

proach, we propose an identification strategy building off of Caselle et al. (2015), in which

we consider relatively non-targeted species such as Garibaldi (Hypsypops rubicundus) to

be “controls” for targeted species such as Kelp Bass (Paralabrax clathratus). Under this

strategy, our assumption is that non-targeted species are more or less unaffected by the

implementation of MPAs (unlike the targeted species), but that both species are poten-

tially affected by regional environmental trends. In this way, the non-targeted species

can serve as our control for environmentally driven shifts in abundance that are not ex-

plicitly controlled for in the model (as opposed to a selection on observables approach),

allowing us to attempt to better isolate changes in abundance driven by MPAs from

changes caused by environmental conditions.
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Methods

Simulation Model

The simulation model used in this analysis is roughly the same as the one described in

Ovando et al. (2016). It is an age structured, spatially explicit, bio-economic model. Re-

cruitment is assumed to have Beverton-Holt dynamics on average, though auto-correlated

log-normal recruitment deviates can be specified. The timing of density dependence can

be one of five forms presented in Babcock and MacCall (2011), ranging from independent

density dependence in each patch to density dependence in a shared larval stage across

patches. The model allows for both adult and larval movement, where larval movement

is assumed to follow a Gaussian dispersal kernel based on the distance of each patch to

the source patch. Adult movement is also modeled using a Gaussian dispersal kernel,

but with the added option of density dependent movement as well. In the adult density

dependent movement scenario we calculate the density gradient between each patch and

every other patch, where the density gradient is calculated as

gi,j =
bi
b0i

− bj
b0j

+ 1

Where i is the source patch and j is a sink patch, and b0 is the unfished biomass in a given

patch. The density gradient gi,j is used as a multiplicative modifier for the distance-based

Gaussian dispersal kernel d, so that the net movement m of individuals from patch i to

patches 1:J is

mi,j =
di,jgi,j∑
1:J di,jgi,j
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Fishing activity is controlled by a fleet model that can take one of four forms: con-

stant catch, constant effort, and open-access. For the constant effort and constant catch

scenarios, a specified effort or catch level is set to achieve a target level of pre-MPA de-

pletion, and that effort or catch is held constant post-MPA. For the open-access scenario,

we model effort through a profit-response function, where profits are calculated per

profitst ∼ ptqtEtB
c
t − ctE

β
t

And then effort is modeled as

effortt = effortt−1 + effortmsy(θ
profitst−1

profitsmsy

)

The operating model allows for time-varying and auto-correlated deviations in prices p,

cost c, and catchability q. For all fleet model scenarios, effort is distributed in space

in one of two manners: divided equally among all fish-able patches, and distributed in

proportion to historic profits in each patch.

MPAs are implemented in the operating model by setting a specified percentage of the

patches to be placed in a no-take MPA. Patches are then assigned to an MPA either

in a linear fashion (left to right) or assigned at random throughout the patches. In all

scenarios MPAs are implemented halfway through the simulated time series (allowing the

pre-MPA fishing mortality to deplete the population to a desired level beforehand).

Using this operating model, we simulated MPA effects across 20,000 fisheries, where the

regional effect is modeled by running the exact same fishery simulation with and without

MPAs, and then calculating the difference in biomass in each year between the two

scenarios (setting identical seeds for each simulation). The range of evaluated scenarios
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Figure 3.3: Histrogram of continuos variable levels across simulated fisheries

is presented in Fig.3.3 and Fig.3.4.

Regression Analysis

The regression analysis uses a mixed-effects hierarchical model. The raw data are es-

timated length compositions by fish species along a transect at a site. Lengths are

converted to biomass per allometric relationships supplied by PISCO and supplemented

by the FishLife (Thorson et al. 2017) package in R where needed. We performed some

minimal data filtering to reduce noise in the data. We only include species that were

observed at least twice in each year of the dataset (2000-2017) somewhere in the core

Channel Islands (Anacapa, Santa Cruz, Santa Rosa, San Miguel). While some data are

available from 1999, per consultation with PISCO we omit those data due to changes in

survey protocols. We assign species to targeted and non-targeted groups per the PISCO
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Figure 3.4: Counts of categorical variable levels across simulated fisheries

classifications. This filtering process results in 11 non-targeted species and 12 targeted

species remaining in the analysis.

The first stage of the regression is a log-normal delta model. The model estimates two

regressions, the first is a binomial generalized linear model (GLM) with a logit link

estimating the probability of observing a given fish species at a observation i (transect

at time t). The probability that a given species was observed o at a given observation is

distributed

os,i ∼ binomial(
1

1 + e−βoX
)

where βo are the estimated coefficients for the observation model and X is a matrix of

covariates that include random effects for each year in the data (2000 to 2017).

The expected density d of positive observations is modeled per a log-normal distribution
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log(ds,i) ∼ normal(βdX, σs)

where βd are the estimated coefficients for the expected density model and X is the same

matrix of covariates as used in the observation portion of the model and σs allows for

each species s to have different standard deviations.

Our covariate matrix X contains both fixed and random effects. Fixed effects include

the depth level of the transect, the sampling site, the month of the observation, the

estimated surge at the transect, visibility, the depth of the transect, and the experience

(and experience squared) of the diver conducting the transect. We classify each species

into one of two clusters based on the mean longitude the species was encountered at,

breaking the species into two groups: those primarily found in the western end of the

Channel Islands those found more in the eastern end. We then estimate random effects

for each island for each cluster

βisland,cluster ∼ normal(0, σcluster)

This allows the mean effect of each island to differ for each cluster, e.g. allowing the San

Miguel, the eastern most island, to have a higher mean density for eastern species than

for more western species (if the data suggest it).

The second critical component of the covariate matrix X are random effects for each year

for each species

βyear,species ∼ normal(0, σspecies)

These βyear,species represent our “standardized” estimate of observed abundance of each
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species in each time step, controlling for the included covariates.

However, we still need to account for changes in the probability of detection over time.

For that, we create a standard matrix of with rows equal to the number of years and

columns corresponding to each of the columns in X, holding everything fixed at mean

(or most frequently observed level for factors) levels for all variables in X except for

the year and species interaction indices. Calling this standardized matrix Xstandard, the

probability of observing a given species in year y is then

ps,y = (
1

1 + e−βoXstandard )

In the same manner as described by Punt et al. (2000), The standardized index of

abundance for species s in year y then is

Ispecies,year = pspecies,yeare
βspecies,year

The next phase of the model requires us to estimate the mean abundance of targeted and

non-targeted species over time. The concept here is that each Ispecies,year can be modeled

by a regression that contains random effects for each year for targeted and non-targeted

fishes, the assumption then being that there is a mean density for targeted and non-target

species, and Ispecies,year represent deviations from that mean.

log(Ispecies,year) ∼ normal(βeffectXeffect, σI)

Xeffect contains both fixed and random effects. The fixed effects include an intercept

and the temperature deviation for a given species in a year, where temperature deviation

is
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ts,y = (tprefs − t̄y)
2

where tpref is the preferred temperature for species s (drawn form FishLife, Thorson et

al. (2017)), and t̄y is the mean temperature encountered by that species in year y. We

also include as variables in the model the mean kelp cover experienced by a given species

in a given year, as well as the total fishery catches reported in the previous year for that

species in the Santa Barbara region [drawn from the California Department of Fish and

Wildlife database]. We also include random intercepts for each species in Xeffect. The

most important random effects are year effects for targeted and non-targeted species

βyear,targeted ∼ normal(0, σtargeted)

βyear,targeted is the mean log density of targeted species in year y, controlling for included

covariates. Therefore, the final step in the model, the divergence in the standardized

abundance trends of targeted and non-targeted species is

divergenceyear = βyear,targeted=1 − βyear,targeted=0

The model is fit in TMB to integrate the uncertainty across all levels of the model,

with standard errors for each coefficient in the model estimated through the Laplace

approximation.

Figures 3.5:3.7 present estimated effects for covariates included in the model, along with

the raw estimated mean trends of the targeted and non-targeted species (while the dif-

ference between these trends is presented in our main results Fig.3.21).
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Figure 3.5: Estimated coefficients for non-spatial fixed effects in observation model (see-
ing) and observed model (seen)
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Figure 3.6: Estimated coefficients for spatial random effects in observation model (seeing)
and observed model (seen)
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Figure 3.7: Trends in standardized mean abundance of targeted and non-targeted species

Results

Predicting Regional Effects of MPAs

We used a bio-economic model to simulate the regional effects of MPAs across 20,000

simulated fisheries spanning a wide range of plausible states of nature, including degrees

of larval and adult movement, density dependence, fleet dynamics, life history, and pre-

MPA exploitation levels, each simulation representing a different state of nature. For

simplicity, at this point we focus on single species outcomes, though since we do not

model species interactions, fisheries could be together to provide multi-species MPA

effects. It is critical to note that we have no current way of assigning probabilities to

any of these states of nature, though we have tried to constrain the parameter space
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to plausible states. Therefore, the results of our simulations suggest simply the number

of simulated ways that a given outcome could happen; we do not have any knowledge

though if in reality some of these simulated outcomes are individually much more or less

likely than others. But, if we assume that the simulated parameter space is a reasonable

representation of a range of plausible states of nature, these results provide an indication

of the general magnitude of effects that we might expect.

Across this range of scenarios, we see that the median simulated equilibrium regional

effect (percentage change in total biomass) was 15%, with a min of -95% and a max

of over 200%. We also see that while large percentage increases in biomass can accrue

relatively rapidly under some circumstances, increases of over 10% took approximately

10 years to achieve for 50% of the simulated fisheries (Fig.3.8). It is also clear from

the simulations that even constrained by reasonable states of nature, a vast array of

regional conservation MPA effects are possible. The exact expected regional effect for

a given fishery will depend on a complex set of interactions among fishery variables.

However, two of the most critical factors affecting the direction and magnitude of the

regional effect are the degree of overfishing (displayed in plots as pre-MPA depletion, with

greater overfishing resulting in higher depletion) present before (and continuing after)

MPA implementation, and the size of the MPA, and so we focus on the effects of these

two variables on regional MPA effects 15 years after MPA implementation (to mimic the

time since implementation of the Channel Islands MPAs at the time of this publication).

Across our simulated fisheries, the median 15 year simulated regional effect was 4%. For

cases where “small” MPAs (smaller than 25%) were implemented in relatively unexploited

fisheries (depletion < 50%), the median regional effect was 0%. For moderate depletion

(50% to 75%), MPA sizes from 1% to 50% produced median MPA effects of 3%, while for

depletion above 75% the median regional effect from was 80% (Fig.3.9-A). The median
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Figure 3.8: Distribution (and median, black line) of simulated regional MPA conservation
effects over time (A), and at equilibrium (B). Color indicates number of simulations at a
binned effect size at a given time (note log-10 scale of color fill for visual clarity).

regional effect increased with both MPA size and depletion, but it is important to note

that the ranges around these median values are extremely wide (Fig.3.9-B). Broadly, the

simulation results show that integrating across a broad set of states of nature defined by

theoretical drivers of MPA effects, under most simulations the MPAs produced positive

effects, though smaller effects were much more likely than large effects. In some instances

though, MPAs actually resulted in net regional conservation losses. While factors such

as MPA size and pre-MPA depletion are critical drivers, we also show that controlling

for these a wide range of outcomes are still possible (Fig.3.9). The percentage change

in biomass with and without MPAs is most analogous to the effects that can (in theory)

be estimated by our identification strategy (the percentage difference in the density of

targeted species relative to the non-targeted species pre and post MPA). However, the
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Figure 3.9: Median (A) and range of (B) regional MPA conservation effect after 15 years
of protection across a range of pre-MPA depletions and MPA sizes

70



RESULTS

percentage change in biomass is a somewhat misleading metric from the perspective of

meaningful conservation outcomes. Take for example an extremely depleted scenario

where without MPAs a fishery is left with only 2 kg of fish. Suppose then that an MPA

brings us up to 6 kg of fish, and that the unfished biomass in this fishery is 1,000kg.

While the MPA has produced a 200% increase in fish biomass, this increase is relatively

inconsequential given the scale of the population (we have only recovered 0.4% of the

unfished biomass), and likely to be very challenging to detect in a real ecological system.

To reflect this, we can repeat the analyses in Fig.3.8-3.9, but now expressing the change

in biomass with and without MPAs as a percentage of unfished biomass for that fishery.

Through this metric, we see median equilibrium effect sizes of 2% (Fig. 3.10). Over the 15

year time horizon, our simulations find that MPAs less than 25% produced a median effect

of near 0% (Fig. 3.11-A), but again with a wide range around the simulated outcomes

outcomes, from -20% to 100% (Fig. 3.11-B). Readers may be especially interested in the

simulated scenarios that produced negative MPA effects. The constant-catch fleet model

was one of the most important drivers of extremely negative MPA effects, especially

when both depletion and MPA size were in the 25-50% range (Fig.3.12). A decision tree

analysis conducted using the rpart package through caret confirms that the primary

drivers of negative population outcomes are constant-catch dynamics interacting with the

size of the MPAs (Fig.3.13). As the name implies, under the constant-catch fleet model

fishing communities seek to catch the same amount regardless of the presence of an MPA.

While a constant catch greater than MSY is not possible over the long-term under the

confines of this simulation framework (the population would crash), over the short-term

a constant-catch scenario is not a particularly outlandish idea. Subsistence fisheries may

conform to a constant-catch style policy over the short-term, as they seek to ensure the

nutritional needs of their community. More industrial fisheries may have pre-arranged
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Figure 3.10: Distribution (and median, black line) of simulated regional MPA conserva-
tion effects (expressed as percent of unfished biomass) over time (A), and at equilibrium
(B)
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Figure 3.12: Binned density plot of regional MPA conservation effects by fleet model

purchase orders for levels of catch. Quota managed fisheries may maintain relatively

static quota levels until new stock assessments can be completed. The key outcome of

these results is that the regional conservation effects of an MPA are critically dependent

on fisheries management institutions outside the protected areas; an MPA that would

provide large benefits under open-access dynamics may actually harm conservation in a

constant-catch scenario.

Fishery Effects of MPAs

While the emphasis of this particular research project is on predicting and detecting the

regional conservation effects of MPAs, the simulation framework that we have constructed

also allows us to consider the fishery effects of MPAs, as defined by the percentage gain or

loss in total fishery catches following the implementation of MPAs, relative to what the
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Figure 3.13: Classification tree of positive MPA conservation effects as a function of
simulation traits. TRUE indicates that the model predicts there to be a positive regional
MPA effect, FALSE a negative effect. Decimal numbers show predicted probability of
positive conservation effects, percentages the percent of observations at a given level that
fall in that node. Intensity of color is proportional to confidence in prediction (decimal
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(simulated) fishery would have caught in that scenario without the MPAs. We omit the

constant-catch fleet model from this assessment, since by definition (in the short-term

at least), catches are the same with or without MPAs (though effort required to obtain

those catches, and therefore profits, could be quite different). Similar to the conservation

effects, we examined both the median and range of effects as a function of pre-MPA

depletion and MPA size. Expressed as a percentage difference in catches with and without

MPAs, across our simulated fisheries the median fishery effect for MPA sizes less than

25% and for depletion’s less than 75% (~ B/Bmsy > than 0.6, Assuming Bmsy/K of 0.4)

was near 0%. The median fishery effect when depletion was above 80% was commonly

near 100%. However, for MPA sizes greater than 25% and for depletion’s less than

75%, the median MPA effect on fishery catches was negative. Pre-MPA depletion was

the clearest driver of the magnitude and direction of MPA fishery effects. Meaningful

numbers of simulations experienced positive fishery effects only once depletion’s exceeded

50%, with a substantial ramp-up of positive effects after 75%. While both substantial

positive and negative effects were possible over a range of MPA sizes, as MPA size passes

50% most simulations start to produce negative fishery effects (Fig.3.14). Many of the

large percentage changes in this analysis can be attributed to very small catches in the

absence of MPAs. Catches are generally quite low once a fishery has been collapsed, and

so when depletion was near 100%, catches were small, and so a relatively small change in

absolute catch following MPA implementation can produce large percentage changes. To

address this, we also scaled the differences in fishery catches with and without MPAs by

the maximum sustainable yield for that simulated fishery. The fishery effect now reflects

the percentage of MSY gained or lost as a result of MPA implementation. The overall

trends are similar to the relative change in catch results, but the 15 year effects are more

muted, with peak positive effects near 25% and negative effects near -75% (Fig.3.15).
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Figure 3.14: Median (A) and range (B) of MPA fishery effect, expressed as the difference
in catch with and without MPAs as a proportion of MSY, after 15 years of protection
across a range of pre-MPA depletions and MPA sizes
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Figure 3.15: Median (A) and range (B) MPA fishery effects, expressed as the difference
in catch with and without MPAs as a proportion of MSY, after 15 years of protection
across a range of pre-MPA depletions and MPA sizes
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Detecting Regional MPA Effects

Theory and simulation testing indicate then that while the regional effects of MPAs can

range from strongly negative to highly positive, with the bulk of scenarios producing

0-10% regional conservation effects after fifteen years of protection (though much more

negative and much more positive outcomes are certainly possible). Given this, our ex-

pectation is that the “true” regional effect will likely be challenging to isolate from the

variation of natural systems in and the observation error inherent to any MPA monitor-

ing program. We use data from the Partnership for Interdisciplinary Studies of Coastal

Oceans (PISCO) monitoring of the Channel Islands National Marine Sanctuary to test

our ability to detect the regional effect of MPAs in a real world context. PISCO conducts

visual underwater SCUBA surveys at a variety of rocky-reef and kelp forest sites inside

and outside of MPAs throughout the Channel Islands. At the rawest level, the data are

counts of finfish in 2cm length bins along a 30m x 2m transect at various sites and depths.

These length bins are converted to biomass, and then biomass densities, by converting

length to weights using available allometric data and dividing by the transect area. Our

goal then is to estimate the effect of the MPAs on these densities of fish throughout the

Channel Islands.

Our identification strategy for this case study is to use non-targeted species as our control

for unaccounted for environmental trends before and after MPA implementation (which

occurred in 2003). The model estimates the difference in the trends between targeted

and non-targeted species pre- and post-MPA. We hypothesize that there should be no

difference in pre-MPA trends. We fit this model using a hierarchical mixed-effect frame-

work using Template Model Builder (TMB, Kristensen et al. 2016) in R (R Core Team

2018). The model consists broadly of three levels, the first (starting from the “bottom”)
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being transect-level densities of fish species observed by PISCO, which are standardized

into a unit-less index of biomass abundance (which we will refer to as an abundance index

from now now), accounting for both probability of detection and expected density as a

result of changes in both abundance and covariates such as observer skill (see Maunder

and Punt 2004). For the second stage, we break the abundance indices into targeted

and non-targeted species (per the classifications in the PISCO data), and estimate the

mean trend of each group (targeted and non-targeted) over time. In the third step, we

estimate the difference in the mean trend between the targeted and non-targeted fishes,

which under the right set of circumstances should reflect the causal effect of the MPAs

on the outcome of interest (in this case regional biomass density of targeted fishes). It is

important to stress that all three of these steps are integrated into the same estimation

model, in order to propagate uncertainty through the model correctly.

We tested this estimation model against simulated data to ensure that, if our assump-

tions are satisfied, our identification strategy works correctly. For the simulation study,

we attempted to replicate the key characteristics of the PISCO data (omitting the prob-

ability of detection portion of the model due to logistical complexity). Using the same

species that we include in the true analysis, we simulate divers of varying and evolv-

ing skill conducting visual transect surveys to obtain estimates of length composition,

which are then converted into biomass. Using the measured temperature trends in the

Channel Islands over the time period of the study, simulated recruitment deviates of

northern species are negatively affected by warmer water, southern species positively

affected. Unfished species are unaffected by MPAs. We then fit our estimation model to

these simulated data to test our identification strategy, and we found that our proposed

estimation strategy is able to recover the true mean simulated MPA effect (Fig.3.16).

Since we have evidence that our estimation model functions if its assumptions are satis-
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Figure 3.16: Simulation testing of identification strategy. Colored lines show true MPA
conservation effect for simulated targeted species. Black points represent mean estiamted
regional MPA conservation effect over 5-year blocks (range indicate 95% confidence in-
terval)
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fied, we then turned to estimating the regional MPA effect from the PISCO data. While

individual species in the survey have their own abundance trends, the model assumes

that abundance of targeted and non-targeted species each come from a common distri-

bution. Assuming parallel pre-treatment trends, which visual (Fig.3.20) and statistical

(Fig.3.21) assessment do not rule out, the trend in the underlying mean abundance index

of non-targeted species post MPA serves as our control for unobserved environmental

variables that could also affect the trends in the mean density of targeted species. So,

by this logic, we should see no significant divergence between the targeted and non-

targeted abundance trends pre “treatment” (implementation of the MPAs), and then

some divergence between the treated group (targeted species) and the non-treated group

(non-targeted) post treatment (if the treatment has an effect).

Under these idealized circumstances, the magnitude of this divergence between the

treated (targeted) and non-treated (non-targeted) groups post treatment is an estimate

of the causal effect of the treatment (the implementation of MPAs). It is important to

consider what exactly this model controls for (and what it does not). Under the parallel

trends assumption, we assume that both the targeted and non-targeted fishes respond

the same way to non-modeled environmental drivers. For example, the Channel Islands

region experienced a major El Niño event from 2014 to 2016. While we include variables

such as deviations from each specie’s preferred thermal niche, along with kelp cover, in

our model, these are clearly not the only factors affected by El Niño. However, if the

parallel trends assumption is correct, the El Niño effects that are not explicitly included

in the model are controlled for by the trend of the non-targeted fishes.

However, this clearly does not control for differences in responses to non-modeled vari-

ables between the treated and non-treated groups. For example, the model only pre-MPA

data from 2000 through 2002. The parallel trends assumption appears plausible over that
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time period (Fig.3.21). But, this pre-treatment period does not include an El Niño, while

the post-treatment period does. Therefore, while the parallel trends assumption looks

plausible from the pre-treatment data, it is possible that targeted and non-targeted fishes

respond in a systematically different manner to El Niño, therefore violating the parallel

trends assumption and invalidating the “causal” interpretation of the model. Similarly,

the model cannot account for additional shocks to the targeted species beyond the MPAs.

For example, while we control for total landings of each targeted species in the Santa

Barbara region, it is possible that within that region fishing effort became increasingly

concentrated around the Islands, driving down local densities of fished species. The

model cannot control for this unless the appropriate data are correctly incorporated into

the model explicitly (and these data were not available at the time of this study).

The model also assumes that the targeted and non-targeted fishes do not directly or

indirectly affect each other. This assumption is clearly violated on some level: all the

fishes in this analysis are part of the same ecosystem and therefore interact to some

degree. For example, if the protection of targeted predatory fishes results in increased

mortality of non-targeted fishes, the model would attribute that as an increased regional

effect (greater divergence between the abundance of targeted and non-targeted species).

Given the time scale of analysis (15 years of protection), we do not feel that massive

trophic cascades are likely to have developed yet, given both the pace and complexity of

trophic cascade development (Babcock et al. 2010; Pershing et al. 2015). A complete

assessment of evidence for trophic cascades in the Channel Islands is beyond the scope of

this study, but to address this question somewhat we utilized convergent cross mapping

sensu Sugihara et al. (2012) to test for a significant causal signal between different broad

trophic groups in the data, implemented in the rEDM package in R.

Following methods laid out in Clark et al. (2015), we pool the abundance of each broad
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Figure 3.17: Centered and scaled densities by broad trophic group and island over time

trophic group by region (Fig.3.17. This uses the data from the islands as “replicates”,

requiring the assumption that the islands are all part of the same dynamic system,

but allowing us to take advantage of the extra information provided by each island

to further resolve the reconstructed manifolds. Using these aggregations, we then test

whether the variables can be properly embedded, i.e., if they have predictable manifold

dynamics. We do this through a simplex forecasting test, using an individual timeseries’

own lags to build a manifold. For each timeseries, the “best embedding dimension” is an

approximation of the dimensionality of the dynamic system, in other words, the number

of dimensions that define and predict the evolving states of the timeseries. This analysis

shows that only the carnivore and herbivore groups show evidence of predictability within

the timeseries (skill approaching zero within the tested embedding dimensions, Fig.3.18).

Focusing on just these two groups then, we can test for a causal relationship through

Takens theorem using convergent cross mapping. Generalizations of Takens’ theorem
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Figure 3.18: Predictive skill as a function of embedding dimensions

indicate that if two variables (in our case, species or physical variables) are part of

the same dynamic system, their individual dynamics should reflect their relative causal

influence. In other words, if one variable is causally forced by another, that forcing

should leave a signature on the first time series. Convergent cross mapping (CCM) tests

for causation by using the attractor/manifold built from the time series of one variable

to predict another (hence the “cross-mapping”). In simple terms, the causal effect of A

on B is determined by how well B cross-maps A.

There are two criteria for CCM to establish causality: First, and most obviously, pre-

dictive cross-map skill using all available data should be significantly greater than zero.

Second, that predictability should be convergent. Convergence means that cross-mapped

estimates improve with library length (the number of state-space vectors used to build

the attractor), because the attractor is more fully resolved and therefore estimation error

should decline. Convergence is key to distinguishing causation from simple or spurious
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Figure 3.19: Cross mapping of effect of herbivores on carnivores (A) and carnivores on
herbivores (B) in the PISCO data from 2000 to 2017. Shaded region show 95% confidence
interval

correlation. If two variables are spuriously correlated and not causally linked, CCM

should fail to satisfy this second criterion. Based on these criteria, there is some slight

evidence that herbivores may be driving carnivore densities, but no evidence that carni-

vores drive herbivores (Fig.3.19). This analysis provides evidence that trophic cascades

are unlikely to be a significant driver of our results. It is important to note though that

this analysis does not mean that trophic cascades could not evolve, rather that we do

not detect them with these data at this time. The proposed identification strategy serves

to control for some unobserved factors influencing densities of targeted and non-targeted

species, but is unlikely to account for all of them. Before examining regression results,

we can graphically examine the trends in mean densities for targeted and non-targeted

species over time. We centered and scaled the mean annual densities for each species
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Figure 3.20: Centered and scaled mean annual density of included species (faded lines)
and smoothed means of targeted and non-targeted groups, and mean (darker lines) and
95% confidence interval of the mean (ribbon) over time

included in the analysis in order to compare the trends across species groups. Grouping

the species by targeted and non-targeted status, we see evidence of pre-treatment parallel

trends in the abundance indices, and of a divergence post MPA implementation. Begin-

ning in around 2007 abundances of targeted species appear to start increasing faster than

non-targeted species. However, from 2012 onward abundances of targeted species appear

to be declining relative to the trend in the non-targeted species. Not controlling for any

other factors that may affect fish abundances, the data suggests a possible increase in

targeted species abundance (relative to the “control” trend of the non-targeted species)

at first, followed by a decrease in the most recent years (Fig.3.20). We confronted these

visual trends with our statistical analysis to estimate the divergence in the abundance

trends of targeted and non-targeted fishes, controlling for factors such as observer effects,
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Figure 3.21: Estimated divergence in biomass densities of targeted and non-targeted
fishes throughout the Channel Islands (i.e. integrated across inside and outside of MPAs).
MPAs are implemented in 2003 (red dashed line). Estimates are from a regression on
log(abundance index), so estimated effects roughly correspond to percentage changes

kelp and temperature, and unobserved environmental drivers through the parallel trends

assumption. Using this analysis, we do not detect a significant change in the density of

targeted fishes relative to the density of non-targeted fishes following the implementation

of MPAs in the Channel Islands in 2003 (Fig.3.21). The mean estimated post MPA im-

plementation divergence between the trends of targeted and non-targeted species was 0,

indicating a roughly 0% divergence. However, it is important to note that just because

we cannot a reject a hypothesis of zero divergence between the targeted and non-targeted

groups does not mean that we have precisely estimated the effect size to be zero. Post

implementation, the upper limit of the estimated 95% confidence intervals was 0.75 , and

the lower limit was -0.79., suggesting the data have support for up to a 75% positive effect

or a negative 75% effect. As a robustness check to these results, we repeated our analysis
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Figure 3.22: Estimated divergence in biomass densities of targeted and non-targeted
fishes in the Channel Islands (i.e. integrated across inside and outside of MPAs) using
the KFM data . MPAs are implemented in 2003 (red dashed line). Estimates are from
a regression on log(abundance index), and so estimated effects roughly correspond to
percentage changes

utilizing data provided by the Kelp Forest Monitoring Program (KFM) conducted in the

Channel Islands. Despite have similar but different methods and survey locations, we

find almost identical estimated trends in divergences between targeted and non-targeted

species using the KFM data (Fig.3.22).

Regional Inside vs Outside MPA Effects

Given trends in mean densities observed in Fig.3.20, the “regional conservation effect”

estimated by our model, defined as the divergence in trends between the targeted and

non-targeted species across the Channel Islands region, is not surprising; By jumping

through countless statistical hoops we reach a similar conclusion that we would just

by looking at the divergences in the mean trends. The integration of data from inside
89
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and outside of MPAs is a possible explanation for this lack of a clear regional effect. If

spillover is limited or has simply not developed yet, especially relative to the effect of

fishing outside of MPAs, then it is possible that there is a clear positive effect inside the

MPAs, a clear negative effect outside, and when we look across both types of sites we

get an unclear average of the two.

To address this, we can first repeat some exploratory data analysis of trends in densities

inside and outside the MPAs for targeted and non-targeted species. Caselle et al. (2015)

provides a thorough look at this question of differences inside and outside of MPAs,

we update the analysis here to account for our specific questions of trend divergence,

potential differences in filtering methods, to include data up through 2017, and to utilize

our estimation method on just the inside-MPA data. For all exploratory analyses, we

consider the same top 23 consistently observed species. Looking first at simple trends

in total mean biomass density across these species inside and outside of MPAs, we find

evidence that biomass densities inside the MPAs is increasing faster (and is higher inside)

than outside (Fig.3.23). Our proposed identification strategy here though is not that total

biomass density should be different inside and outside, but that the non-targeted species

should serve as the control to the targeted. If we believe that the MPA effects are greater

inside the MPA, then we would expect to see stronger divergences in biomass densities

between these two targeted and non-targeted fishes inside the MPAs than outside Here

we see a different picture. While there is some visual evidence that the targeted species

were diverging from the non-targeted faster inside the MPAs than outside, both inside

and outside we see that the trend in total biomass density of targeted species is trending

downward, relative to the trend in the non-targeted species in recent years. This analysis

is of total biomass density However, our model estimates the mean difference in targeted

and non-targeted species. Both have their advantages, but we chose the mean to reflect a
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Figure 3.23: Annual mean aggregate biomass density (summed across all fishes) inside
and outside of eventual MPA locations over time. Red dashed line indicates MPA imple-
mentation year
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Figure 3.24: Trends in total biomass density inside and outside of eventual MPAs for
targeted and non-targeted fishes. Red dashed line indicates MPA implementation year

hypothesis that the MPAs would provide positive benefits across all targeted species. The

total biomass density could be strongly affected by a sharp increase or decrease in one

or two species, even if the mean trend is different. Examining the mean trends though,

we see the same results (Fig.3.25). Lastly, we can examine both the mean and individual

trend to check clear species-by-species outliers in the overall biomass density trends.

This analysis shows noise, but overall the targeted and non-targeted species seem to be

following similar trends within their respective groups These visual assessments suggest

that similar to our results looking both inside and outside of MPAs, we would expect

that our estimation model fitted only on data from inside eventual MPAs would reach

similar conclusions as our results fitted to data from both inside and outside MPAs. To

test this, we re-ran our analysis, but only using data from sites that are eventually placed

inside MPAs. Our results reflect the same trends as displayed in the raw data and the
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Figure 3.25: Trends in mean total biomass density inside and outside of eventual MPAs
for targeted and non-targeted fishes. Red dashed line indicates MPA implementation
year

93



CHAPTER 3. EFFECTS OF MPAS

Non−MPA MPA

2000 2005 2010 2015 2000 2005 2010 2015
−2

0

2

4

Year

C
en

te
re

d 
an

d 
Sc

al
ed

 M
ea

n 
D

en
si

ty

Non−Targeted

Targeted

Figure 3.26: Centered and scaled biomass density trends for each fish grouped by targeted
and non targeted (pale lines) and fitted LOESS smoother (with 95% confidence intervals
around mean) and mean by targeted and non-targeted groups, inside and outside od
MPAs. Red dashed line indicates MPA implementation year
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Figure 3.27: Estimated divergence in biomass densities of targeted and non-targeted
fishes inside eventual Channel Islands MPAs. MPAs are implement in 2003 (red dashed
line). Estimates are from a regression on log(abundance index), and so estimated effects
roughly correspond to percentage changes

statistical region-wide analysis, providing robust statistical support to the conclusions

we would reach from visually examining the raw data (Fig. 3.27).

Discussion

MPAs are playing a growing role in the management of marine resources around the

world. While the primary purpose of MPAs is often to protect species and habitats within

their borders, they are also looked to to provide spillover benefits to the ecosystems and

fisheries surrounding them. The existence and magnitude of these spillover benefits has

been a source of substantial debate for a some time, with the bulk of the conversation

centered around qualitative or theoretical examinations of particular drivers of spillover
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(Hilborn and Walters 1992; Gaines et al. 2003, 2010; Gerber et al. 2003, 2005; Hastings

and Botsford 2003; Hilborn et al. 2004a,b; Walters and Martell 2004; Botsford et al.

2008), or in detecting empirical evidence of the existence of spillover (Russ and Alcala

1996; e.g. Halpern et al. 2009), but not the net regional effects of MPAs. As many of the

MPA networks around the world become mature enough for analysis, it is critical that

we take a step to consider what evidence we can expect to observe, and what we have in

fact seen in natural systems.

While a large body of literature has discussed the factors affecting the regional-scale con-

servation outcomes of MPAs, we know of no other study that has synthesized much of the

key theoretical predictions of the literature into a comprehensive simulation framework

to address the cumulative impact of these drivers on the regional effects of MPAs. Our

results present several important insights for understanding what we might expect the

effects of MPAs outside their borders to be. First, we see that incorporating a broad, but

still limited, set of life history, MPA, and fishery characteristics produces a vast array of

potential regional conservation effects, from actual net conservation losses (in cases for

example of short-term constant-catch, moderate pre-MPA depletion, and smaller MPA

sizes), to massive conservation and fishery gains (e.g large MPAs in a very depleted

fishery). These wide ranges of outcomes persisted even in extreme cases; small effects

were possible in very depleted fisheries, and larger effects were possible in cases of mod-

erate depletion. One important result of this analysis is that looking across the range

of “smaller” MPAs (covering 25% or less of the region), the median regional effect size

was relatively small, both in percentage gains relative to the without-MPA scenario, and

in percentage of unfished biomass recovered, up until the fishery was strongly depleted

(Fig.3.9-3.11).

This has important implications for our ability to empirically detect these effects in
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natural systems. Marine environments are complex and noisy systems, subject to both

large amounts of natural variation and measurement error. Our simulation results suggest

then that it will be relatively difficult to detect the regional-scale effects of MPAs in many

cases of smaller MPAs and moderately depleted fisheries; separating out say the median

simulated population effect of a 0.0035711% of unfished biomass is a difficult task even in

a carefully studied environment. With that in mind then, we should not be surprised that

our analysis was unable to determine a clear regional divergence between the densities of

targeted and non-targeted species throughout the Channel Islands in the 15 years since

the newest set of MPAs were implemented in that region.

What can we infer about the regional effects of the Channel Island MPAs based on the

available data and our analysis? At the simplest level, we cannot detect a significant

divergence in densities of targeted and non-targeted fishes over the 15 years since the

implementation of MPAs in the Channel Islands. However, it is important to note that

we also cannot say that there has been no divergence. The 95% confidence intervals

surrounding our year-to-year estimates of the divergences have a mean range of 1, and

cross zero in nearly every year (indicating that both positive and negative divergences

have support from the data). Since the regression model is a log-linear model (predict-

ing log density indices), we can interpret the the “divergence” coefficients roughly as

percentage differences in the densities of targeted and non-targeted. The upper end of

of our estimated confidence intervals corresponds to a roughly 50% increase in densities

of targeted species relative to non-targeted, while at the lower end a 50% decrease is

possible. Within these ranges though, the mean effect size was 1%, which corresponds

closely with the median MPA effects predicted by our simulation analysis for moderately

exploited species protected by a reserve network covering ~25% of the region’s area.

Do these estimated divergences represent the regional effect of the MPAs? There are clear
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reasons why we might think not: differences in responses to environmental drivers such

as El Niño between targeted and non-targeted species, as well as non-MPA related fishery

changes, are both plausible and capable of distorting our results. Trophic interactions

could also positively (if increases in targeted predators drive down densities of herbivorous

non-targeted species for example) or negatively (if MPA mediated trophic cascades result

in increases in both targeted and non-targeted densities) bias our results. However, while

these concerns are important, they are not sufficient cause to dismiss our strategy for

estimating the regional conservation effects of MPAs outright.

First, the assumptions of our identification strategy and operating models (e.g. no trophic

interactions) reflect the underlying assumptions of much of the theoretical and simulation

based literature on MPA effects used to motivate much of modern MPA design (Gaines

et al. 2010; and fisheries management more broadly, Fulton et al. 2015). This of course

does not mean that these assumptions are correct, but dismissing our results purely

on the basis of for example the potential for trophic interactions requires then that we

also rethink much of the work on which MPA design is based (we can’t use single species

models to predict MPA effects but dismiss a single species model to estimate their effect).

All else being equal, most standard models of MPA effects would predict faster and more

substantial changes in densities of targeted fishes post MPA implementation than for

non-targeted species, which is exactly what our model is designed to detect. If trophic

feedbacks in the form of decreases in non-targeted prey as targeted predators rebound do

exist, this would actually serve to positively bias our estimate of regional conservation

MPA effects. Our cross-mapping analysis does not suggest that trophic interactions are

playing a substantial role in our results.

Second, our identification strategy is an improvement over the alternatives that are likely

to be available in most cases. We could simply compare regional densities of fish before
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and after MPA implementation. Doing so in the case of the Channel Islands suggests

that, controlling for observable covariates, densities of targeted species have declined

substantially post-MPA [Fig.3.35]. The reason we are skeptical of this conclusion though

is of course that other non-MPA factors for which we do not have adequate data to

include in the model could be driving that decline. The relatively parallel pre-MPA

trends in densities of targeted and non-targeted species suggests that this is indeed the

case. We would of course prefer some form of control group rather than simply before-

after comparisons. However, for all but the most specialized of cases we are unlikely to

ever have effective spatio-temporal controls for MPAs (e.g. an MPA-less carbon-copy of

the Channel Islands, though see Grorud-Colvert et al. (2014) for an example of using

different regions as attempted controls). Given these constraints then, measuring the

regional divergence in targeted and non-targeted species is likely to be among the best

available options for empirically estimating the region-wide conservation effects of MPAs

given the kinds of data that are often collected in conjunction with MPAs (transect

surveys inside and outside of reserves).

Along with the identification strategy, there are clear fundamental challenges to accu-

rately estimating densities of different species across a large marine region. Dive condi-

tions can greatly impact the ability of divers to make accurate counts. Density estimates

of highly mobile species can be positively biased [Ward-Paige2010]. Funding constraints

limit the ability to consistently monitor all important sites throughout a region. This

analysis also only considers finfish; invertebrate targeted species such as urchin and lob-

ster that often have small home ranges in their adult stages may demonstrate clearer

MPA effects (e.g. Kay et al. 2012).

One potential alternative to a regression-based identification strategy would be structural

modeling of MPAs within a stock assessment process (Field et al. 2006). Conditional on
99



CHAPTER 3. EFFECTS OF MPAS

having high quality data, the key problem in the regression based approach we present

here is isolating MPA spillover effects, fleet responses, and environmental shocks from

each other. Integrated stock assessments (as described in Hilborn and Walters 1992)

provide a potential way to estimate these effects. The ability of larval spillover to pro-

vide conservation gains assumes a relationship between spawning stock biomass and

recruitment. Therefore, within a stock assessment the relative importance of estimated

recruitment deviates to estimated population trajectories could provide an index of how

much increases in spawning stock biomass resulting from an MPA are contributing to

recruitment vs the effect of environmental drivers. Similarly, spatial estimates of fishing

mortality and biomass can help answer whether total mortality and biomass have gone

up or down following MPA implementation. Such an analysis though would require in-

tegrating data from inside and outside of MPAs (which fishery dependent data cannot

do) and research programs such as PISCO provide a natural platform for this type of

analysis to build off of.

Our estimated regional divergences in the densities of targeted and non-targeted fishes

present an imperfect but improved (relative to alternative options) window into the

regional effects of the Channel Islands MPAs. Our results leverage the evidence of parallel

trends between the targeted and non-targeted fishes to refute the conclusion of post-MPA

declines in densities we would reach if we simply looked at pre-and-post MPA densities

of targeted species. But, we also do not find clear evidence for substantial increases in

densities of targeted species, relative to the trend we would expect given the densities of

the non-targeted species. We do see some evidence for an increasing trend in targeted

densities from 2003 to 2014, but this period is followed by signs of decreases from 2015

onward. The magnitude and direction of both of these changes are plausible effects of

MPAs, according to our simulation analysis. The early upward trend could certainly be
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attributable to larval or adult spillover from the MPAs, as well as biomass buildup inside

the MPAs themselves. The later decline could be due to concentrated fishing pressure

outside the reserves.

It is also possible though that factors exogenous to the MPAs themselves are driving the

apparent recent decline in the trends of targeted species relative to the non-targeted. For

example, an increase in fishing effort resulting from market forces could explain the recent

downturn, but we would not want to attribute that as a regional conservation effect of the

MPAs themselves (though including estimates of commercial landings for species in our

analysis did not change our results, suggesting that this downtown cannot be explained

by total catch alone). The presence of a downward trend in the estimated regional when

we look just inside the MPAs suggests that environmental drivers may be the culprit

here. If we assume that the MPAs are indeed well enforced and large enough to provide

some substantial protection from fishing for at least some of the targeted species, which

we have every reason to believe (Caselle et al. 2015), then if the cause of the recent

downturn estimated by our model were increased fishing, we would expect to see that

effect masked or at least dampened in the within-MPA data and analysis. That we still

see the decline in the within-MPA data provides evidence that a broader environmental

event is depressing the trend in the targeted species, such as the large El Niño events of

2009-10 and 2014-2016. This is supported by the clear warming signal in measured sea

surface temperatures throughout the Channel Islands in recent years (Fig.3.28). While

our simulation analysis focused on the structural characteristics of a fishery system that

could make it more or less able to provide regional scale conservation benefits, these

results highlight the critical importance of environmental drivers in the actual year-to-

year effects of marine conservation policy. Despite the vast amount of rigorous data

collection before and after, our identification strategy was unable to identify a clear
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Figure 3.28: Mean temperature over time at each of the Channel Islands included in this
study

signal of the effect of MPAs on the regional densities of targeted species. Our simulation

analysis indicates though that we should not be surprised by this. The Channel Islands

MPAs cover approximately 21% of the waters in the Channel Islands, and while formal

stock assessments are not available for many of the targeted species in our analysis what

evidence we have does not suggest they as a group they are heavily overfished. Our

simulation analysis would suggest then that the percentage difference in densities of

targeted species with and without MPAs should be on the smaller end (10% or less), and

therefore be challenging to detect given the natural variation of marine ecosystems and

the error inherent in visual survey programs such as those the PISCO data used here.

What then does this suggest for the design and monitoring of MPAs?

Real world-policy making is inherently an exercise in utilizing best available theory, ex-

perience, and modeling to make decisions that are often difficult or practically impossible
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to empirically test. Despite our best efforts we are unlikely to ever truly “know” the effect

of our efforts to mitigate climate change, but must instead rely on comparisons to best

available modeling outcomes to understand how effective our policies have been. Simi-

larly, given the complexities of marine systems much of our decisions on MPA design will

have to be based on effective modeling. While we are hardly the first to point out that

bio-economic models are a critical tool for MPA design, our results help indicate a min-

imum floor of model complexity to provide candid assessments of regional MPA effects.

While factors such as MPA size and degree of depletion are especially strong drivers, for

all but the most extreme cases of each a wide array of effects, from negative to highly

positive, are possible based on the complex interaction of factors such as fleet dynamics,

movement rates, and recruitment timing. Confronting these interactions by considering

the likely parameter space for a given region is a critical step then in understanding what

likely regional effects of MPAs are. While models such as ours do require large numbers

of parameters that may be challenging to obtain, our results show that working with

communities to confront these uncertainties is preferable to sweeping them under the

rug in favor of simpler models that are easier to parameterize but miss details that our

results show can have dramatic effect on expected outcomes. Modeling effort such as

this can then provide stakeholders with some idea of the range of regional effect sizes

that might be expected for a given MPA network design, and in doing so design mon-

itoring programs targeted at the species and fleets that modeling suggests may provide

the clearest indication of MPA mediated effects. For cases where bio-economic modeling

suggests small potential for MPA driven regional density effects, monitoring efforts can

be targeted around detecting potential negative effects should they arise, i.e. evidence

that the model is wrong, rather than exerting massive amounts of effort on what theory

and modeling suggest may be a small effect size.
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We focus mostly on regional conservation gains in this paper. However, fisheries spillover

is often another important factor to consider (i.e. are fisheries better off with the MPAs

than they would have been without them). The fishery benefits of MPAs are just as (and

likely more) intensely debated than the regional conservation outcomes (Roberts et al.

2001; Hilborn et al. 2004b; Hilborn 2018; Sala and Giakoumi 2018). We only address

fisheries affects briefly in this study, but our results highlight important tradeoffs and

synergies between conservation and fishery spillover effects of MPAs. The good news

from a fisheries perspective is also fairly obvious: Both the regional conservation and

fishery benefits are expected to be greatest when the fished population is in an extremely

depleted state pre-MPA, even over a 15 year time horizon, even for larger MPAs (though

further work is needed to compare MPAs to alternative fisheries management strategies

in these cases). For cases where a valuable and formerly abundant species is overfished, a

large MPA may then provide large conservation and fishery gains for that species, while

potentially having smaller impacts on other less depleted species. Our simulation results

also do identify though a large parameter space where MPAs create tradeoffs between

moderate conservation gains and moderate fishing losses. This type of projection analysis

can help managers consider where in this space they may be. The most critical point

with regards to conservation and fishery effects from our simulation analysis is that

the conservation or fishery effects of MPAs cannot be reliably estimated without some

knowledge and consideration of the dynamics of the fishing fleet outside the MPAs: over

the short-term open access vs constant catch dynamics can make the difference between a

substantial conservation and fisheries win to a more depleted stock with more expensive

fishing.

MPAs are an important part of the marine resource management toolbox. Under ideal

circumstances they can protect both individual species and ecosystem linkages, safeguard
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crucial habitat, and support local economies through tourism and fishing opportunities.

However, our results show that the regional conservation and fishery benefits we should

expect from MPAs are highly variable, and while we cannot assign probabilities to our

simulated states of nature, we find that there are more opportunities for smaller effect

sizes than large, especially in the short-term. Most importantly, our results highlight the

critical importance of explicitly modeling the links between the biological effects of MPAs

and the ways that humans respond to them. Large-scale empirical evidence supports our

results that accurately predicting the effects of MPAs depends on understanding the

human context in which they find themselves (Cinner et al. 2018). While this is far from

the first effort at simulating MPAs, our model fills an important niche between more

focused theoretical models that address a few drivers of MPA performance at a time

but do not address complicated linkages between drivers, and more site-specific models

that provide best available local results but are challenging to scale to different systems.

This intermediate complexity model allows us to simulate tens of thousands of fisheries

containing most of the key drivers of MPA performance identified by theory.

This process provides a unique survey of the likely regional effects of MPAs to fisheries and

conservation, and places our empirical assessment of the regional effects of the Channel

Islands MPAs in context. The Channel Islands are an intensely studied system, and the

challenge of identifying a clear regional effect of the network of MPAs placed there in 2003

may seem surprising. However, our results show that in fact a smaller effect size, from the

perspective of regional conservation gains, is to be expected in this system, and therefore

the true effect will be very challenging to separate from environmental noise. The solution

then though is not to give up on detecting effects, but rather to shift focus from identifying

a specific effect size and instead use simulation analysis to appropriately set expectations

for conservation and fishing stakeholders, and design monitoring programs around the
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Figure 3.29: High level diagnostics for observed compontent of Delta-GLM: Observed vs
predicted log densities (A), predicted log density vs residuals (B), and a normal qq-plot
of the residuals (C)

species and situations that serve as effective indicators of the ability of an MPA network

to achieve its objectives.

Supplementary Materials

Regression Diagnostics

Dealing with “missing” observations is a critical challenge in any field observation study.

If no observations of a given fish species were recorded on a given transect, should the

density of that species on that transect be marked as zero, and influence the estimate of

the overall mean density accordingly? The obvious answer seems to be yes, but what if
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Figure 3.30: Binned mean predicted probability of detection provided by the first stage
of the hurdle model vs observed proportion of positive detections
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Figure 3.31: Mean density by island by year for each fish species included in the analysis
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that species simply does not live in the environment covered by a particular transect?

For our base runs, we assign a value of zero density on a given transect for any fish

species that has been observed at least once at a given site at any time in our data but

was not observed on that particular transect. If that species was never observed at that

site, we do not include a zero for that species. Our rationale for this is that given the

shifting nature of the sampled sites, and the intensity of sampling at those sites, we do

not want to skew density trends by changes in the amount of suitable habitat for a given

species sampled. However, this is clearly a strong assumption. For example, perhaps the

decreasing trend in mean densities from 2000 to 2004 is due to increased number of sites

(and therefore zeros) included in the data. To assess the potential importance of this

choice, we can compare the mean densities of targeted and non-targeted species over time

with the added zeros (Fig.3.20) to the mean densities using only positive observations

(i.e. not including any zeros in the data, (Fig.3.33). The trends in the raw densities,

and most importantly the mean trends of targeted and non-targeted fishes, are nearly

identical whether or not zeros are added, providing strong evidence that our choice of how

to incorporate missing observations into the data are not strongly influencing our overall

results. We include a variety of environmental, observation, and temporal indicators in

our model. Inclusion of highly co-linear variables in a model can inflate standard errors

and obscure “true” effects. To account for this we calculated the Pearson’s correlation

coefficients for all of the continuous data included in our model to ensure that none of the

included variables had correlation coefficients greater than 0.7, a general rule of thumb

for co-inclusion of variables. We did not find problematic levels of correlation among any

of our included continuous variables.
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Figure 3.33: Centered and scaled mean annual density, excluding zeros, of included fishes
(points) and smoothed means of targeted and non-targeted groups (line) over time

Selection on Observables

Our proposed identification strategy attempts to control for non-MPA (and not directly

modeled) related changes in abundances through the trend in the non-targeted species.

However, a simpler alternative would be to simply compare densities before-and-after

MPA implementation, while explicitly controlling for non-MPA related factors that we

believe may have some effect on densities (a “selection on observables” strategy). To

that end, we fit a mixed-effects regression that models log densities (of positive observa-

tions only for simplicity’s sake here) as a function of temperature deviations, kelp cover,

observer experience, random effects for species and region, and fixed effects for each year

in the data (omitting the year 2000).

Using this model, densities of targeted species appear to have been declining steadily
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Figure 3.34: Pearson correlation coefficients of continuos data included in the regression
model

since 2000, and appear to have plateaued off since the implementation of MPAs in 2003.

Without an identification strategy such as the one employed in this study then, all we

could conclude is that densities appear to be lower post-MPA, and have not increased

substantially over time (Fig.3.35).

Repeat basic analysis.

This analysis has a LOT of complicated moving parts. It’s worth taking a step back and

keeping it simple though: what does a simple classic difference in difference analysis say?

i.e. targeted + year + year:targeted, aggregating up the densities to take care of

the zeros. The results of this basic analysis do tell a different story than our complex

über model, indicating broad evidence for a positive regional MPA effect, as measured by
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the divergence between the targeted and non-targeted. However, we have several reasons

to be skeptical of this simplified assessment. First, the error bars are massive here, with

effect sizes reaching up to 400%, which our simulation analysis suggests should be unlikely.

Second, taking this simplified assessment at face value would suggest that the divergence

between the targeted and non-targeted was at near its highest level in 2013, the first year

the MPA went in place, suggesting a massive and immediate effect, if we were to take this

regression at face value. For these reasons, we do not feel that the simplified regression

represents a more accurate result than our mode complete and complex model. Rather,

if we simply examine the trend in the simple analysis, rather then the levels, the trend

matches our other results (flat, up, and then down). We hypothesize then that our full

model acts to 1) vastly reduce the span of the error bars around our estimated divergence

between targeted and non-targeted fishes, and 2) remove bias in the effect introduced by

covariates (Fig.3.36.
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Chapter 4

Improving Fisheries Stock

Assessment by Integrating Economic

Theory and Data

Introduction

Effective fisheries management requires that managers and stakeholders have some ability

to estimate and react to the abundance of fishes in the ocean in a timely manner. The

history of fisheries science has been largely concerned with developing and improving our

ability to accomplish this difficult task, starting from early models of growth overfishing

(as described in Smith 1994) and leading up to multi-species bio-economic models (e.g.

Plagányi et al. 2014). While the field has made dramatic advances in our ability to assess

the status of fisheries, by and large we have found two solutions to the problems of stock

assessment: Fit highly complex integrated statistical models to diverse data streams, or

utilize increasing levels of statistical wizardry to try and squeeze more information out of
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limited data (what has lately been termed Data Limited Stock Assessments, or DLAs).

The explosion of DLAs has been both promising and concerning. The majority of fisheries

in the world lack the resources for fully integrated stock assessments, and so depend on

this world of “data limited stock assessment”. While there has been tremendous growth

in this field, nearly all DLAs rely on the same streams of information that would have

been available to a fisheries scientist in the 1800s: lengths, captures, and catch per unit

effort, generally only one at a time. While these biological data can be highly informative,

economic data can also provide information as to the history and status of a fishery. We

present here a novel tool for combining historic economic information with traditional

fisheries data to improve fisheries stock assessment.

Why do we need a new line of evidence in stock assessment? One could certainly make the

case that statistical stock assessments are complicated enough as it is. But, while these

“gold standard” assessments (usually) perform well using solely biological data, data-

limited stock assessments, in which models are fit by trading in data for assumptions,

often struggle if the exact requirements of their assumptions are not satisfied. This can

present a major problem for communities and ecosystems that depend on the outcomes

of these DLAs to guide their management practices. While future work can examine the

usefulness of economic data in a data-rich context, our focus here is in demonstrating

how economic information augment biological data to improve the performance of data-

limited stock assessments.

What defines a data limited assessment? Dowling et al. (2015) provides a useful sum-

mary of what we mean by a data-limited fishery, but for now we can broadly consider

data-limited assessments as fisheries lacking sufficient quality information to perform a

“traditional” stock assessment, meaning at minimum total catch records and catch-per-

unit-effort, on up to a fully integrated statistical catch-at-age model requiring catch,
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CPUE, length compositions, growth and aging, tagging, etc. A common example of a

data-limited fishery would be a fishery for which only CPUE data is available, or for

which the only species-specific information are sampled length frequencies from the port

or market.

This paper builds off the length-based DLA literature, and so we focus our discussion on

the nature of these methods. See Carruthers et al. (2014) and Anderson et al. (2017) for

thorough summaries of catch-based DLAs. Length-based DLAs all use life history data

or assumptions of some kind to translate the distribution of observed lengths in a fished

population into some meaningful management metric. Catch-curves, perhaps the oldest

of the DLAs, dating back to at least Chapman and Robson (1960), use assumptions and

estimates of the age-at-length relationship to translate lengths into ages, and measure

the slope of the logarithm of the numbers at age to provide an estimate of total mor-

tality Z. Assumptions or estimates of natural mortality m can then be used to extract

fishing mortality f simply by f = Z − m. Recently, newer methods have evolved that

try and estimate fishing mortality rates, recruitment, and selectivity by examining the

overall shape of the length composition data (Hordyk et al. 2014; Rudd and Thorson

2017). These models use life history data (or assumptions) to simulate what the length

composition of a given population would be expected to be if it were left unfished. This

estimate of the unfished length composition is then compared to the observed length

composition, and estimates of fishing mortality, recruitment, and selectivity are made

that best explain the observed length composition, given the expectation provided by

life history data.
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What’s the Problem that Economic Data Could Fix?

These existing DLA methods have proven effective and useful in many circumstances, but

their reliance on length composition leaves them sensitive to relatively common features

in fisheries such as autocorrelated shifts in recruitment regimes. Given length data alone,

it is difficult to separate the signal of recruitment from fishing mortality if recruitment is

not relatively stable, since both manifest themselves as change in the relative proportions

of the observed length classes. The most straightforward solution to this problem is to

assume that the population is at equilibrium, and any deviations in expected recruitment

are on average zero during the time period of analysis. Year-to-year shifts in the length

composition are then attributed to fishing mortality. Given limited data, say only one

year of length composition data, this may be the only assumption possible.

Since recruitment regimes are likely to be more the rule than the exception though

(Szuwalski and Hollowed 2016; Munch et al. 2018), we would like to be able to relax this

key assumption of stable recruitment. Rudd and Thorson (2017) provided an important

extension to the equilibrium assumptions underpinning Hordyk et al. (2014) by relaxing

the equilibrium assumption and allowing the user to estimate a vector of recruitment

deviates and fishing mortality rates given a time series of length composition data. In

order to get around the confounded nature of recruitment and fishing mortality, given

only length data the LIME model presented in Rudd and Thorson (2017) requires a user

specified penalty constraining the amount that fishing mortality can vary year-to-year.

More importantly though, LIME provides a flexible tool for integrating multiple forms of

data that while still potentially less than what would go into a “traditional” assessment

are together still informative. LIME is an important tool for integrating multiple streams

of “limited data” together into a comprehensive assessment. However, the data types that
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can be incorporated into LIME are all components of the traditional fisheries toolbox:

lengths, catches, and CPUEs. While these data are important and useful, we present a

new model, scrooge, that builds on the foundation provided by LIME to expand the set

of possible assessment inputs to include economic theory and data.

Why should we expect economic theory and data to be useful? Fisheries are dynamic

bio-economic systems, in which the behavior of fishing fleets affect fish populations, and

changes in fished populations affect fishing behavior. This idea was first formalized by

Gordon (1954), which sought to explain the evolution of fishing fleets through an open-

access model of rent seeking, which results in a fishery reaching an open-access equilibrium

where total profits are zero. While this simple model has been vastly expanded on since

then, the core idea remains that we can construct models linking human incentives and

ecological dynamics to explain fishing behavior.

Bio-economic modeling has most commonly been utilized in the management strategy

evaluation (MSE) (summarized in Punt et al. 2016) phase of fisheries management.

Early design on management policy centered on identifying the best strategy to employ

(e.g. the right size limit or quota), under the assumption that once implemented the

policy would be gospel. However, the real world is not often so kind: fishermen respond

to incentives and regulations, and therefore what happens on the water is often not what

managers had in mind when a regulation was put in place (Salas and Gaertner 2004;

Branch et al. 2006; Fulton et al. 2011). As a result of this reality, a growing body of

work has sought to build the behavior of fishing fleets into the MSE process, in order to

estimate how a policy might actually play out once real people come into contact with it.

Nielsen et al. (2017) and van Putten et al. (2012) provide a useful summaries of the large

number of models that utilize some form of integrated economic-ecological modeling in

the evaluation of management strategies.
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Each of these models vary in the structure and complexity with which they model eco-

nomic behavior, but they share a common feature that they are all focused on the fore-

casting phase of management, leaving the task of understanding the status of the fishery

today to stock assessment models. Thorson et al. (2013) provides one of the only exam-

ples of which we are aware of that explicitly incorporates effort dynamics informed by

bio-economic theory into the stock assessment process through a state-space catch only

model (SSCOM) (though Hilborn and Kennedy 1992 demonstrates the linkages between

effort distributions and spatial population structure). Thorson et al. (2013) demon-

strates that incorporation of effort dynamics can improve the estimation of biomass from

catch data. The model functions by estimating open-access style parameters that serve

as aggregate indices of economic conditions in a fishery. However, these economic pa-

rameters are not directly informed by economic data; rather priors for these parameters

are develop by fitting to observed dynamics of biomass and effort, and these priors are

then updated through confrontation with catch data in SSCOM.

In summary, a large body of literature exists showing there exist predictable dynamics

between fishing effort and fished populations. Our proposed method builds off this liter-

ature in a similar manner to LIME and SSCOM, by hypothesizing that priors informed

by economic theory can improve the ability of an assessment model to make sense of

limited data. However, we extend this concept to utilize economic data to inform the

economic parameters in our model. Specifically, we demonstrate how data on changes

in prices, costs, technology, profits, and effort can be utilized to estimate bio-economic

parameters that improve the ability of a primarily length-based assessment method to

estimate fishing mortality rates.
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Methods

Overview:

• We utilize an age-structured bio-economic operating model to create a database of

simulated fisheries

• Fishing mortality rates from the simulated fishery are estimated using scrooge,

our bio-economic estimation model

• We assess the performance of different configurations of scrooge using a set of case

study fisheries

• We assess broader model performance using a Bayesian hierarchical model and

classification algorithms

Why A Bayesian Approach?

Bayesian methods play an important role in fisheries science. Informative priors can help

parameterize challenging functions such as the stock-recruitment relationship, and the

outcomes of Bayesian assessment provide estimates of posterior probability of states of

nature, greatly aiding the management strategy evaluation process (Punt and Hilborn

1997; Myers et al. 2002). While decisions about prior distributions can in some cases

dramatically affect assessment accuracy (Thorson and Cope 2017), properly implemented

Bayesian methods can provide improved estimates of uncertainty over maximum likeli-

hood approaches (Magnusson et al. 2013).

While there are statistical reasons to favor (and in some circumstances resist) a Bayesian

approach to fisheries assessment, our choice of a Bayesian method here is to provide a
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quantitative framework for bringing local knowledge into the fisheries stock assessment

process. To our knowledge, the use of informative priors in data-limited fisheries has

focused on biological traits such as growth rates (Jiao et al. 2011) or depletion (Cope

2013), and in general Bayesian processes that make strong use of informative priors

(i.e. aren’t just using Bayes for the MCMC) are rare in the data-limited assessment world.

We find this general fact somewhat surprising: Bayesian methods can be particularly

useful in ecological model fitting when “hard” local data are limited but prior knowledge

is available (Choy et al. 2009), as is often the case in data-limited fisheries. In other

words, a fishery can be data-limited but knowledge-rich, and a Bayesian process provides

a clear statistical framework for incorporating this prior knowledge into the model-fitting

process. In addition, it is very common in data-limited contexts to have noisy data that

do not paint a clear picture, even after careful statistical analysis. A Bayesian framework

allows us to express these uncertain results as posterior probabilities, making statements

such as “our model says there is a 75% chance that we are overfishing the population”

possible, which are not as feasible in a frequentist setting without approximation methods

such as bootstrapping or the delta method. The core hypothesis behind our model is

that economic data can inform stock status. While economic data in the form of official

government statistics maybe hard to come by, we believe that in these cases economic

histories can be elicited from stakeholders. We selected a Bayesian methodology then as

an explicit way of bringing this economic knowledge, whether qualitative or quantitative,

into the fisheries stock assessment process.

Simulation Model

We simulate different fisheries defined by their biological (e.g. fast vs. slow growing,

stochastic vs. deterministic recruitment) and economic (e.g. open-access vs. constant ef-
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fort) characteristics. Length composition and economic data are then collected from the

simulated fishery, and used in our assessment method. Outcomes of the assessment, in

this case estimated fishing mortality rates, can then be compared to the true fishing

mortality rate experienced by the fishery in that simulation. The simulation model itself

is a age-structured single-species bio-economic model, in the form described by Ovando

et al. (2016). A given simulation starts by selecting a species. Core life history data for

that species (growth, mortality, maturity) are then drawn from the FishLife package

in R (Thorson et al. 2017). However, the user can set a number of important specific

biological traits for that fishery. For example, the user can specify both the coefficient

of variation and autocorrelation of recruitment deviates, and the timing of density de-

pendence (e.g. pre-or-post settlement). On the economic side, for a given simulation the

user specifies an initial level of fishing mortality at the start of the fishery, from which

dynamics evolve. The effort dynamics are governed by a wide set of specifiable parame-

ters, such as prices, costs, and catchability, all of which can be supplied a coefficient of

variation, autocorrelation, and drift. Users also specify the length at 50% selectivity, and

the relative profitability of the fishery. The user specifies a fleet model, which can be one

of open-access (effort changes in proportion to profit per unit effort in the previous time

step), constant-effort (effort stays at the specified initial effort, though fishing mortality

rates resulting from this effort can shift if catchability changes over time), or random-

walk (effort follows a random walk process from year to year). Across all of these fleet

models, users can also specify a coefficient of variation and autocorrelation for deviations

from these effort dynamics.

While this operating model is still a large simplification of a real fishery, we incorporate

critical traints for evaluating the performance of our assessment model. First, we allow for

both recruitment and fishing mortality to shift over time, which will dramatically affect
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the ability of length-based assessments to perform. Second, we allow for economic data

to change over time (e.g. increasing prices), and for these changes to affect the evolution

of the fishery through the open-access dynamics model. Third, we can simulate scenarios

during which economic data change, but these changes do not translate into changes

in effort. In sum then, this operating model allows us to test scenarios that satisfy

the assumptions of a biological length-based DLA, that violate those assumptions but

satisfy economic assumptions, and that violate both. This provides an diverse sandbox

of simulations to test the performance of our proposed assessment method.

scrooge Model

Since our model assumes that fishing behavior is driven by profits, we for call our proposed

model scrooge (this probably won’t last in publication, but I like it for now). scrooge

can be run using a variety of different combinations of effort process models (e.g. random

walk vs open-access) and likelihood structures (e.g. length composition). We use the

form economic process model/likelihood components to denote a configuration. For

example a configuration of random-walk/lcomp means the model uses a random walk

effort process model and includes only length composition data in the likelihood. We

assess factorial combinations of process models and likelihoods, omitting combinations

that would double count data (e.g. using profit per unit effort data both in the likelihood).

See Table.4.1 for a summary of all of the configuration components. The estimating

model itself was coded in Stan (Carpenter et al. 2017) using the rstan package (Stan

Development Team 2018). The core internal operating model is an age structured model

identical in structure to the operating model used for the simulations. This means that

the model requires user-supplied estimates of life history data, specifically

• Von Bertalanffy growth parameters
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Table 4.1: Candidate economic process models and likelihood components of scrooge
Name Abbreviation Description

Economic Process Models
Random Walk random-walk Effort evolves as a random walk

independent of economics
Bio-economic model with profit

ingredients
ingredients Effort responds to profit per unit

effort built from data on price,
cost, q

Bio-economic model with
PPUE

ppue Effort responds to profit per unit
effort, PPUE data supplied

Effort Data effort Effort is adjusted by data on
proportional changes in effort

Likelihood Components
Lengths lcomp Length composition data are the

only part of the likelihood
Lengths + PPUE lcomp+ppue Likelihood composed of PPUE

and length composition data
Lengths + Porportional Effort lcomp+effort Likelihood composed of percent

changes in effort and length
composition data

Table 4.2: scrooge model parameters and prior distributions
Parameter Transformations Prior

Initial Fishing Mortality N/A f init ∼ halfnormal(0, 1)
Log Rec. Dev RecDev =

exp(σrLogRecDev − σ2
r/2)

LogRecDev ∼ normal(0, 1)

Log Effort Dev EffDev =
exp(σeLogEffDev − σ2

e/2)
LogEffDev ∼ normal(0, 1)

σr N/A σr ∼ halfnormal(0.4, 0.4)
σobs N/A σobs ∼

halfnormal(0, 2 ∗ sd(DATA))

σe N/A σe ∼ halfnormal(0.2, 0.2)
Max Percent Change Effort N/A MaxPercEffort ∼

halfnormal(0, 0.25)
Cost to Revenue Ratio N/A crRatio ∼ halfnormal(0.5, 1)
50perc sel as percent of linf N/A p50Sel ∼

halfnormal(UserGuess, 0.05)
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• Allometric weight and maturity at length/age equations

• An estimate of natural mortality

• An estimate of Beverton-Holt steepness

We constructed four candidate effort process models describing the effort dynamics of

the fishing fleet, and three candidate likelihood structures, each defined by different

structural assumptions and data availability. We then fit factorial combinations of each

effort process model with each likelihood structure, omitting combinations that would

have double counted some information as both a prior and data.

The model has a number of parameters it must estimate, namely fishing mortality rates,

recruitment deviates, the length at 50% selectivity, and associated process and observa-

tion errors as required (see Table.4.2 for a complete description of all estimated parame-

ters and their prior distributions). The model is initialized at unfished biomass, and then

an estimate of initial fishing mortality is applied for 100 burn-in years, achieving a level

of depletion at the start of the data-period of the model. The data period of the model is

of length t, and defines the time-steps during which the model estimates dynamic param-

eters, though the model estimate t + age 50% selectivity recruitment deviates, to allow

the model to estimate recruitment pulses which start before the data-period but whose

signal can be observed during the early years of the data period. Length-composition

data must be available for 1 or more years of the data-period, but are not required in all

years. For example, the model can function if given ten years of economic information

and only one year of length composition data available at the end of the time period.

All estimation models share common components of recruitment deviates and length

composition data. Recruitment is assumed to on average have Beverton-Holt dynamics

(Beverton and Holt 1959), reparemeterized around steepness. Process error around this
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mean relationship is assumed to be log-normally distributed with a bias correction

rt = BH(SSBt−1, h)e
rdevt −σ2

r/2

rdevt = σrLogRecDevt

σr ∼ halfnormal(0.4, 0.4)

LogRecDevt ∼ normal(0, 1)

Length composition data are structured as discrete numbers of fish counted within one

cm length bins per year. While each estimation model differs in its methods for esti-

mating fishing mortality rates, for a given generated mortality rate, vector of estimated

recruitment events r, and estimated selectivity s50, the model produces a vector of prob-

ability of capture at length pcapture for each time step, given the structural population

equations of the model g().

pcapturet,l ∼ g(f, r, s50)

The observed numbers at length Nt,l are then assumed to be draws from a multinomial

distribution of the form

Nt,1:L ∼ multinomial(pcapturet,1:L )
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The key difference in the estimation models is how they estimate f and the data that

enter the likelihood. All estimation of f begins by estimating a parameter f init, which is

the fishing mortality rate that is held constant over a burn-in period to achieve a given

level of depletion by the time of the start of the data period of the model. The estimation

models diverge from there in that each specifies a different structural model for how f

evolves from f init.

Effort Process Models

All effort process model have an expected process and a process error component. The

process error, Edev, is estimated in the same manner across all the process models

Effort deviates Edev are assumed to be log-normally distributed

Edev
t = σELogEDevt

σE ∼ halfnormal(0.2, 0.2)

LogEDevt ∼ normal(0, 1)

The multiplicative effort deviate is then

eE
dev
t −σ2

e/2

Random Walk Model (random-walk) This estimation model is similar in flavor to

the penalty on deviations in fishing mortality used in LIME. The initial effort is calculated
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as

E1 =
f init

q
eE

dev
1 −σ2

E/2

f1 = qE1

Where q is a catchability coefficient, held at 1e-3.

For the remaining T time-steps, effort evolves as a random walk

Et = Et−1e
Edev

t

ft = qEt

Bioeconomic Model with Profit Ingredients (ingredients) We now turn to our

class of bio-economic effort models. Across all evaluated bio-economic models, we as-

sume open-access dynamics where fishermen respond to average not marginal profits,

per Gordon (1954), which we quantify as profits per unit effort, or PPUE. Under the

ingredients model, the user supplies some data on absolute or relative changes in prices

p, costs c, and technology (catchability) q, all of which can be thought of as ingredients of

profitability. For example, users could report a 25% increase in prices due to the arrival

of a new buyer with access to a lucrative foreign market, a 10% decrease in fishing costs

due to a government fuel subsidy, and/or a increase in catchability due to the introduc-

tion of fish-finder technology. These ingredients of profitability can be provided either as

qualitative information or hard data. Any ingredients for which no estimates of relative
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rates of change are available are assumed to remain constant over the time period of

the model. The key feature of this model is that it uses these ingredients to inform our

prior estimate of profit per unit effort, PPUE∗
t , in a given time step. Therefore, if costs

go down and prices go up in a given time step, our estimate of PPUE∗
t will increase

appropriately, subsequently increasing our prior on the amount of effort in the following

time-step.

Under this model, PPUE∗
t is calculated as

PPUE∗
t =

ptC(qt, Bt, Et, s
50)− ctE

2
t

Et

where C() represents that Baranov catch equation (Baranov 1918). The revenue part

of this profit model is relatively straightforward (price times catch), though it does not

allow for factors such as different prices for different size of fish, regardless of weight

(e.g. some fish become less valuable as they become larger and no longer fit on plates).

The cost equation implies that the “cheapest” units of effort are applied first (e.g. the

most skilled fishermen, or the cheapest fishing grounds), and marginal cost of fishing

effort increases as more units of effort are exerted (representing less skilled fishermen or

costlier fishing grounds). Papers such as Costello et al. (2016) use a cost exponent of

1.27, but in order to keep things simple (and help the simulated fisheries remain stable),

we use a value of 2 here. This cost exponent allows us to approximate heterogeneity in

fishing costs implicitly without actually modeling fleet components with differing skill.

Notice now that the components price (p), catchability (q), and cost (c) are allowed to

vary over time. This is because the model allows for user supplied information on the

evolution of these profit ingredients over time, either in the form of actual values (e.g. the

price in a given year), or in relative changes (prices are 10% higher than they were last
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year). For the relative change cases, user supplied inputs are converted to deviations

from a mean value and then multiplied by a default mean value set by the model. This is

the default for both q and c, since converting user knowledge into the appropriate units

is challenging. For a given value of PPUE∗
t , we calculate effort in the next time step per

Et+1 = (Et + θPPUE∗
t )e

Edev
t

where PPUE∗
t is the estimated profit per unit effort, and θ sets the responsiveness of effort

to PPUE∗
t . Note that the model includes the same effort process error as utilized in the

random-walk process model. So, the profit ingredients and the open-access assumptions

provide our prior on the effort in a given time step, but we estimate potential deviations

from this prior expectation. From there, the fishing mortality in a time step is calculated

as

ft = qtEt

One difficulty in this process is that the dynamics of the open access model are driven by

the relative profitability of the fishery, and as such largely to the relative scale of revenue

and costs. Therefore, getting the relative magnitude of prices and costs to be correct

is important. Unfortunately, while prices can be relatively easily determined, costs are

much more difficult to obtain, especially in units matching the exact effort units of the

operating model. To solve this problem, we estimate an additional parameter in this

estimation model, cmax. The cost in any time is then calculated as

ct = cmaxcrel
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where crel are the relative costs (scaled as deviations from a mean) over time t supplied by

users. cmax itself is tuned in a rather long process that results in much cleaner estimation

that can actually be provided with informative priors. Rather than estimating cmax

itself, we estimate a cost-to-revenue ratio at the start of the fishery. We first estimate a

guess of, given the simulated nature of the fishery, something close to maximum revenues

(assumed to come by fishing a bit harder than natural mortality when the population

is completely unfished). We then calculate the profits associated with these maximum

revenues given a prior estimate of the cost to revenue ratio CR.

PROFITSmax ∼ MAX(PRICE)CATCHB0(1− CR)

Given this estimate of PROFITSmax, we can then back out the cost coefficient cmax

that, given the other parameters, would produce those profits. Estimating the cost to

revenue ratio instead of the actual costs allows for informative priors to be set. A fishery

that at its heyday was incredible profitable will have a low cost to revenue ratio, while a

fishery that was scrapping by on its best day would have a high cost to revenue ratio.

While the prior can be informed from local stakeholders, we set a zero truncated normal

prior on the cost ratio of

CR ∼ halfnormal(0.5, 1)

The other challenging parameter in the open access equation is θ, the amount that effort

changes for a one unit change in PPUE. Similarly to estimating the cost to revenue

ratio instead of raw costs, rather than estimate theta directly, we estimate the maximum

percentage change in effort from one time step to the next. As part of the cost to revenue

tuning process, we estimated the maximum profits, and the effort that would produce
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those profits. Together that provides us with the maximum expected PPUE. For a given

max percentage change (∆max) in effort then, we calculate θ as

θ = (∆maxEMAX)/PPUEMAX

While θ has no intuitive sense for most stakeholders, the maximum percentage year-

to-year change in effort can be elicited from stakeholders. For now, we assume a zero

truncated normal prior on the max expansion

∆max ∼ halfnormal(0, 0.25)

The ingredients effort process model allows us to utilize provided ingredients of prof-

itability to drive our prior expectations of the dynamics of fishing effort. Importantly,

our translation of complex parameters such as cost coefficients or the marginal effect of

PPUE on effort into interpretable parameters such as cost to revenue ratios and maxi-

mum percent changes in effort greatly improves the ability of users to elicit informative

priors from stakeholders in real-world applications of this method (Choy et al. 2009).

Bioeconomic Model with PPUE Data (ppue) The ingredients model makes

use of individual components of profitability, under the theory that a) these data are

informative to the evolution of effort and b) these data may be easier to obtain than for

example actual mean profitability across the fishery. However, we can also consider an

effort process model in which PPUE is assumed to be known. While complete knowledge

of average PPUE in a fishery is unlikely, especially in a data-limited context, survey

methods could be constructed to collect estimates of PPUE, which being a central part

of a fisherman’s business, is not an unreasonable piece of information to think could be
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obtained, given the right questions and sufficient trust (acknowledging that PPUE will

likely have many and more of the challenges in interpretation as CPUE data; e.g. Walters

2003).

So, the the ppue model, rather than estimating PPUE∗
t as a function of its ingredients,

we simply take collected values of PPUE as data, and estimate effort per

Et+1 = (Et + θPPUEt)e
Edev

t

We estimate θ using the same methods described in the ingredients method (estimating

the maximum percent change in year-to-year effort instead of θ directly).

Since we no longer assume knowledge of technology changes over time, we assume a

static q. This assumption could be relaxed in future model runs to consider knowledge

of both PPUE and technology, but for now we make this assumption to make a cleaner

distinction between the ingredients model and the other models.

ft = qEt

Effort Data Model (effort) Both of the bio-economic process models (ingredients

and ppue) model the change in effort as a function of profit per unit effort. Their key

function, from the perspective of a model focused on estimating biological fishery metrics,

is to help inform estimates of time-step-to-time-step changes in fishing mortality. To

follow the old adage “keep it simple stupid”, we also build a model that assumes data

on the time-step-to-time-step proportional changes in fishing effort. While such data are

unlikely to be available for a fishery covering a large and diverse geographic range, for

more localized small-scale fisheries such knowledge is not unreasonable. For example,
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fishing cooperatives in Chile often maintain data on fishing effort.

Under the effort process model, we assume knowledge of the proportional changes in

effort over time ∆effort, where

∆effort = Etrue
t+1 /E

true
t

and

Et+1 = (Et∆
effort)eE

dev
t

and

ft = qEt

Likelihood Models

The effort process models represent alternative hypotheses as to the true operating model

driving the evolution of fishing effort, and partly by extension fishing mortality, in a

fishery. In other words, the economic process models inform our prior on the evolution of

effort. However, a central motivation of this research is to diversify both the data available

to our assessment operating models (as we have done with the use of economic data as

components of Bayesian priors), and the data with which we confront these models.

The traditional core pantheon of data with which we confront models in fisheries are

abundance indices (derived from either fishery dependent or independent sources) and

length/age composition data. We propose to add profit per unit effort and proportional

changes in effort to this group, at least as a starting point in the data-limited context of
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this study.

PPUE as an Index of Effort (lcomp+ppue) We consider catch-per-unit-effort to be

informative in fisheries (on a good day) through the relationship

CPUEt =
qtEtBt

Et

= qtBt

A constant or time-varying estimate of q then is our link between an observed CPUE

data and an unobserved state of nature, Bt that we wish to estimate.

We propose a similar use for profit per unit effort, but rather than PPUE informing an

index of abundance, it serves as an index in the rate of change in effort (and by extension

conditional on q), fishing mortality. If we assume that a standard open-access dynamics

model is true, then

Etrue
t+1 = Etrue

t + θPPUEt

Simply rearranging this equation, we can provide a link between PPUE and the change

in effort as

PPUEt =
Etrue

t+1 − Etrue
t

θtrue

We can therefore use PPUE as an index of the change in time-step-to-time-step effort.

In other words, given that our model estimates E through one of our process models,

PPUE∗
t =

Et+1 − Et

θ
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θ is estimated in the same manner as outlined in the economic process models, and from

there we can utilize PPUE in the likelihood per

PPUEt ∼ normal(PPUE∗
t , σobs)

Remember though that in our models we are estimating Et. The above likelihood is only

identifiable if we either provide a constraining prior on the evolution of Et (as all of our

effort process models do) and/or include other components to the likelihood, which we do

by fitting to the length composition data in all runs (otherwise the model could estimate a

vector of efforts that predict PPUE perfectly). In other words, when we include PPUEt

in the likelihood, the model estimates a vector of efforts that maximize the likelihood

of both the PPUE and length composition data, conditional on the prior probabilities

assigned to the evolution of effort by our effort process model.

It is also worth noting that by including PPUE in the likelihood, we are now including

both process error (quantified as σE in the estimated effort deviates) and observation error

(σobs), in a similar manner to the methods outlined in Thorson and Minto (2015), though

the Bayesian nature of our analysis makes it hierarchical rather than “mixed effect” in

nature, since all variables are random in a Bayesian setting (Gelman et al. 2013). Given

the data constraints, we are only able to identify both process and observation error by

providing constraining priors on our estimates of both.

Our prior for σobs is a zero-truncated normal distribution with a user-specified CV

σobs ∼ halfnormal(0, CV PPUE 1

T

∑
t=1:T

PPUEt)
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Index of Effort Changes (effort) Trying to keep it simple one last time, in our

effort process model, we assumed knowledge of the relative change in effort over time.

Rather then than fitting to an index of the change in effort, we can simply fit a model

to the change in effort data, assuming some observation error.

∆effort ∼ normal(
Et+1

Et

, σobs)

This likelihood model follows the same identification constraints as the PPUE model.

Simulation Testing

We simulation tested factorial combinations of these process models and likelihood forms

(omitting combinations that double count data, e.g. pairing the ppue process model with

the length+ppue likelihood model) using a single species age-structured bio-economic

operating model. For each run of the model, a species of fish, and its associated life history

data, was randomly selected from the database provided by Thorson et al. (2017). The

only stochastic process in the biological model are (potentially) autocorrelated a drifting

recruitment deviates. For that run, a fleet model is also chosen from one of three options

• open-access

– fishing effort responds to profit per unit effort, governed by chosen values and

dynamics of price, cost, q, the the change in effort per unit of PPUE

• constant-effort

– fishing effort is held constant at some initial value

• random-walk

– fishing effort evolves through a random walk behavior
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For all of these fleet models, the user specifies the degree of variation, autocorrelation,

and drift for prices, costs, and catchability. The selected parameters are used to simulate

a fishery over a 100 year period. For each time step, length composition data are sampled

from the fisheries catch using a multinomial distribution, assuming a CV of the length-

at-age key of 20%.

We simulated two case studies for this paper; an open access model which while containing

noise still conforms to the open-access dynamics central to much of the assessed models

assumptions, and a random-walk model in which while economic data are still collected,

change in effort are completely unrelated to changes in economic conditions. Along

with these case studies, we also simulated 200 fisheries, each with random draws of the

simulation parameters (e.g. species, fleet model, degree of variation and drift of economic

parameters).

For every simulated fishery, we then stipulated a range of the data to sample, and a

combination of a process model and a likelihood structure to fit scrooge to those data.

In this study, we sampled length composition and economic data for a period of up to 15

years during the middle of the simulated fishery’s evolution. Within this 15 year window,

we consider two cases, one where length composition data are available for all 15 years,

and another where while economic data are available for all 15 years, length composition

data are only available for the last four years of the time series. We then pass the

chosen model configuration, data and associated life-history parameters to scrooge to

fit the model. This results in 3800 simulations (20 model configurations of 200 simulated

fisheries, less 200 simulations that producsed nonsensical results (fishing mortality rates

consistently above 10 or below .01)).

For now, we focus on estimation of fishing mortality rates. As the model also estimates

selectivity, given assumptions about the spawning biomass at age, it is simple to also esti-
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mate and present common metrics such as the spawning potential ratio (SPR). However,

for brevity’s sake here, we focus on demonstrating the potential of the model to estimate

fishing mortality f. In addition, we do not consider observation error at this time. While

this is clearly not a remotely realistic choice, we made this decision due to the novel na-

ture of the the integrated use of economic data and dynamics into the stock assessment

process. If scrooge is unable to provide substantial improvements (or actually provides

worse estimates) than a standard lengths-only assessments model, in the form of Rudd

and Thorson (2017) or Hordyk et al. (2014), even with perfect information, then it is

unlikely to do well with imperfect knowledge. However, future testing will clearly need

to address this step, which our operating model is already capable of incorporating.

Model Comparison

We focused on two variables for model comparison: root median squared error (RMSE)

and bias in the (up to) most recent five years of the data. For every run of our model we

obtained i iterations of t estimates of fishing mortality rates from our HMC chain. For

each iteration i, we then calculated the RMSE and bias as

RMSEi = sqrt(median((predictedi,t − observedi,t)
2))

and bias as

biasi = median(predictedi,t − observedi,t)

There are many other potential metrics for use, but we focus on these since the units

are interpretable, since both the median and bias are in units of fishing mortality rates,
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which we can reasonably consider along a range of ~ 0 to 2. We could also compare

estimates such as median relative error, which expresses the median percentage error of a

given iteration. While this is useful, we felt that, given the potential low values of fishing

mortality this metric could be misleading at times. For example, suppose that the true

fishing mortality rate is 0.05, and we estimate a fishing mortality rate of 0.1. The MRE

for this case would be 100%. But, if the true fishing mortality is 0.5, and we estimate

0.55, our MRE would only be 10%. But, from a management perspective, the two are,

we would argue, equally accurate, which RMSE captures. By calculating RMSE and bias

in terms of absolute (rather than relative) deviations, we can provide managers with a

sense of whether the expected uncertainty for a given model spans a large or small range

of fishing mortality rates.

We use RMSE and bias to assess the performance of scrooge in our case studies. We also

used RMSE to provide a higher level summary of overall and context specific performance

of the candidate scrooge models. To judge overall performance, we fit a hierarchical

Bayesian model to our simulated fits, in which the dependent variable is RMSE, and the

independent variables include simulation characteristics such as the degree of recruitment

variation, the degree of variation in economic parameters, the life history of the species,

and hierarchical effects for each scrooge model. This model then provides posterior

probability estimates of the average effect of each candidate scrooge model on RMSE,

controlling for covariates.

This method provides estimates of overall model performance, but it is likely that dif-

ferent scrooge models will perform best under different circumstances. To examine this

possibility, we fit a decision tree model using the rpart function implemented in the

caret package, where the dependent variable is, for each simulated fishery, the best (in

terms of RMSE) scrooge model, and the independent data are the simulation charac-
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teristics. This method provides an algorithm for deciding on the best scrooge model

configuration given the characteristics of a fishery.

Lastly, we also used LIME to estimate fishing mortality for each of the 3800 simulated

assessments scenarios, and then for each scenario calculated the difference in RMSE

resulting from LIME and scrooge

Results

Case Studies

Each scrooge model configuration is defined by the economic process model and the

likelihood. We describe these in the text as economic process model/ likelihood

model. So, a model using the random-walk economic process model and just length

composition data would be random-walk/lcomp. A model using random-walk and length

composition and PPUE data in the likelihood would be random-walk/lcomp+ppue.

All case studies examine the performance of a scrooge model fit using the radom-walk

fleet model and only length composition data in the likelihood (random-walk/lcomps),

to a scrooge model with an open-access economic process model informed by data on

prices, costs, and technology, and a likelihood comprised of length composition data

and PPUE (ingredients/lcomp+ppue). We chose these two scrooge configurations to

illustrate the use of no-economic data vs. the use of both open-access dynamics, profit

ingredients, and PPUE data.

For the first case study, we consider a scenario where 15 years of length composition

and economic data are available, and the underlying dynamics contain stochastic-

ity and drift in recruitment and economic parameters, but satisfy the open-access
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Figure 4.1: Case Study 1 A) True fishing mortality (points) and estimated mean (line)
and 90% credible intervel (ribbon) of fishing mortality. Filled red points indicate that
length composition data were available during that time step. B) Posterior distribution
of RMSE and bias (colors map to ribbon colors in A)

assumptions of the scrooge model utilizing economic data. In this case, both the

random-walk/lcomps and ingredients/lcomp+ppue models estimate the rough magni-

tude of fishing mortality over the span of the data. However, the random-walk/lcomps

model misses the slow upward trend in fishing mortality in the most recent years.

The ingredients/lcomp+ppue model incorrectly estimates that a large upward spike

in fishing mortality occurred in year four, but captures the upward trend in fishing

mortality rates over the last five years of the data. RMSE and bias were both nearer

to zero for the ingredients/lcomp+ppue model over the last five years of the data

(Fig.4.1). This first case study is useful both in demonstrating the performance effects

of utilizing economic data in stock assessments, and in highlighting the challenge with

fitting to length composition data that addition of economic data can help overcome.
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The random-walk/lcomp and ingredients/lcomp+ppue models in (Fig.4.1) present

very different pictures of the history and state of this fishery: The random-walk/lcomp

only model presents a fishery in decline, while the ingredients/lcomp+ppue model

describes a fishery with an increasing trend in fishing mortality. However, the fits of

each of these models to the length composition data are nearly identical (Fig.4.2).

In other words, from the perspective of the length composition data alone, both of

these stories are almost exactly as equally likely, with the random-walk/lcomp model

utilizing recruitment deviates more than changes in effort to explain shifts in the length

composition data. The ingredients/lcomp+ppue model, in the form of data on prices,

costs, and q incoming our open-access process model and on the PPUE data used in the

likelihood, simply assigns greater posterior probability to a state of the world explaining

the recent length composition less through recruitment and more through changes in

fishing mortality. The second case study is identical to the first, except that now length

composition data are only available for the final three years of the evaluation period.

The results are very similar to the first case study; the ingredients/lcomp+ppue

model is able to capture the recent upward trend in fishing mortality, while the

random-walk/lcomp cannot (Fig.4.3). The first two case studies demonstrate that

the ingredients/lcomp+ppue configuration is capable of outperforming, in terms of

RMSE and bias, the random-walk/lcomp configuration that does not leverage economic

information. This should be expected though: through the prior we are feeding the

model more information about the operating model, and since we do not incorporate

observation error at this time and since the dynamics of the simulation model in this

case match the dynamics of scrooge’s operating model, we would hope that more data

= better results. In an ideal world, we would want scrooge to perform better when its

assumptions are satisfied, and to not perform dramatically worse when its assumptions

are not.
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fits by scrooge configuration (B)
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Figure 4.3: Case Study 2 A) True fishing mortality (points) and estimated mean (line)
and 90% credible intervel (ribbon) of fishing mortality. Filled red points indicate that
length composition data were available during that time step. B) Posterior distribution
of RMSE and bias (colors map to ribbon colors in A)
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Figure 4.4: Case Study 3 A) True fishing mortality (points) and estimated mean (line)
and 90% credible intervel (ribbon) of fishing mortality. Filled red points indicate that
length composition data were available during that time step. B) Posterior distribution
of RMSE and bias (colors map to ribbon colors in A)

To address this, for the third case study we fit the same scrooge configurations to a

simulation in which effort is completely decoupled from profits (effort evolves through

a random walk), but data are still collected on economic components of profits (prices,

costs, technology, and PPUE). While the random-walk/lcomps model ignores these data,

the ingredients/lcomp+ppue model uses these data, and the associated assumption of

open-access dynamics, in its fitting procedure. In this case, the 90% credible interval

estimated by the random-walk/lcomps model now covers the upward trend in fishing

mortality, though the mean estimated trend is flat. Despite using incorrect assumptions,

the ingredients/lcomp+ppue model still manages to outperform the lengths only model

(Fig.4.4).
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Overall Model Performance

The case studies provide visual and quantitative evidence that the introduction of eco-

nomic data and theory through the scrooge model can improve estimates of fishing

mortality over utilizing length composition data alone. Those were three simple exam-

ples though, out of a vast array of possible states of nature a fishery might experience.

We used a Bayesian hierarchical modeling routine to provide an overall performance es-

timate for each of the scrooge configurations tested here (defining performance as the

effect of a given configuration on RMSE over the last five years of the data). This model

allows us to estimate, all else being equal, which model will reduce the RMSE of our

estimates of fishing mortality the most.

scrooge models incorporating data on the percentage change in effort in the process

model (effort), or the likelihood (lcomps + effort) provide the greatest expected

reduction in RMSE. Models utilizing profit ingredients (ingredients) (data on prices,

costs, technology) in the open-access operating model show some evidence of actually

on average increasing RMSE, while models utilizing PPUE in the process model or the

likelihood showed uncertain effects on RMSE (Fig.4.5) While this hierarchical analysis

gives evidence that some models may on average indeed perform better than others, for

any one simulated fishery different scrooge configurations may be best. To test this

idea, for each simulated fishery we chose the scrooge configuration that provided the

lowest RMSE over the last five years of the data, allowing us to see the frequency with

which different configurations were selected (Fig.4.6). As would be expected from the

mean expected model performance, the models utilizing data on the percentage change

in effort in the process model or likelihood were most frequently selected. A model

containing some form of economic data and/or theory (i.e. not random-walk/lcomps)
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Figure 4.6: Frequency of selection for each individual scrooge configuration (A), grouped
by utilization of economic data/theory (B)

was selected nearly in nearly 100% of model runs. Our results so far suggest that we

would overwhelmingly prefer to have access to data on the the relative change in effort

over time to include our data-limited assessment. This though should come as no surprise:

Trends in effort are directly proportional to trends in fishing mortality, unless catchability

changes substantially over the time period (or effort and catchability vary substantially

throughout the fleet). While we include trends and deviations in catchability in the

simulation models, under the rates of change of catchability simulated in our model,

effort is still a good proxy for the evolution of fishing mortality. So, feeding the model

data on effort should perform well.

While the inclusion of effort data is interesting to consider, it is likely to be impractical

in many data-limited fisheries. We do not consider observation error here, but unlike say

PPUE, in order to be useful the trend in the effort data is not a property of the mean
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effort but rather the total effort in a fishery. This means that we would need to be able to

obtain an estimate of the changes in total effort throughout the fishery, an unlikely task

in any but geographically small or relatively data-rich fisheries. Collection of a sample of

changes in effort could be strongly biased, in terms of its link to fishing mortality, if for

example a few large high-liners are not included in the data. In contrast, profits per unit

effort, and the ingredients of PPUE, are sample estimates, meaning that we care what

average PPUE is in the fishery, not total. So, even if we miss a few extremely profitably

(or unprofitable) fishermen, if we sample well we can get an estimate of the mean PPUE.

Given this, we re-ran our model selection process, but omitting any scrooge configura-

tions that utilize data on the percentage change in effort. Configurations utilizing PPUE

in the likelihood were the most frequently selected, but closely followed by models utiliz-

ing only length data, though models utilizing profit ingredients in the economic process

model were still selected some of the time. Overall, models incorporating some form of

economic data or theory were selected across approximately 75% of simulated fisheries.

These results show that while some scrooge configurations, i.e. process model types and

likelihood structures, are more commonly selected than others, nearly every evaluated

configuration was selected on occasion. For a user then, the selection of a scrooge config-

uration can be a daunting task. To facilitate model selection, we used our simulated data

to construct a decision tree algorithm for selecting the appropriate scrooge configuration.

For each simulated fishery, we identified which configuration minimized RMSE over the

last five years of the data. From there, we trained the decision tree to these selected

configurations to develop a decision tree do determine a scrooge configuration based on

the characteristics of the simulated fishery. For all of these runs we ignore configurations

using effort data, since our earlier results say that if you have it, use it.

While further work will need to be conducted to translate this tree into user-supplied
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Figure 4.7: Frequency of selection for each individual scrooge configuration, (A), grouping
by utilization of economic data/theory (B), omitting any scrooge configurations using
effort data.
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variables, our results show for example that if you know nothing about the fishery, the best

choice is to assume a random walk economic process model while utilizing PPUE in the

likelihood. But, if prices have been increasing substantially, then the model utilizing a bio-

economic model with profit ingredients as the process model and PPUE in the likelihood

may be best (ingredients/lcomp+ppue). Alternatively, if prices are not increasing and

recruitment is not highly autocorrelated, then it may be best to ignore economic data in

the assessment (Fig.4.8). This is an illustrative example of what would need to be a more

involved simulation test, but demonstrates the ability of simulation testing and machine

learning techniques to facilitate decision making. Importantly, the decision tree process

does provide some measure of confidence in a given node by pointing out the relative

proportion of the true decisions that fell into each bin. So for example, if the decision

tree says to use random-walk/lcomps, but examining the fit this was true 51% of the

time in the data, and ingredients/ppue was selected the other 49%, then this suggests

that we should not put a lot of weight in choosing one over the other in this case.

Comparisons with LIME

All of our analyses so far have been internal to the scrooge model. These results demon-

strate that scrooge is capable of using economic data to improve estimates of fishing

mortality. How does it compare though to other models that utilize length composition

data to estimate fishing mortality rates, such as LIME (Rudd and Thorson 2017)? As

a preliminary assessment of this question, we used LIME to estimate fishing mortality

rates from our 3800 simulations, using only the length composition data. In these cir-

cumstances, LIME does not estimate a process error around fishing mortality, but rather

estimates fishing mortality as a fixed effect, with a penalty on the year-to-year changes

on estimated fishing mortality. For consistencies sake, we set our prior on the process
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error for fishing mortality in scrooge to the same value as the penalty used in LIME

(0.2). Both models receive the exact same data.

Comparing the two models, we see that inclusion of economic information through

scrooge more frequently resulted in improved estimates of fishing mortality (as mea-

sured in reductions in root mean squared error) than those produced by LIME, though

LIME did outperform scrooge during many runs, especially in cases where scrooge uti-

lized profit ingredients in the open-access process model (Fig.4.10). Interestingly, the

scrooge configuration that utilizes length composition only in the likelihood and a ran-

dom walk for the economic process model (random-walk/lcomps) is more or less the

exact same model that LIME uses, and yet the scrooge version of this model provided

lower RMSE than LIME in approximately 80% of the simulations (Fig.4.10). Further

research is needed to determine if this is a result of the priors utilized in scrooge, or due

to some inherent performance trait of fitting through Hamiltonian Monte Carlo in Stan

vs through maximum likelihood with the Laplace approximation in TMB, or simply a

house effect of both the simulation model and scrooge being written by the same author.

Discussion

Fisheries management is a complicated task far a large and varied range of reasons, most

centrally the incentives of a common-pool resources, the challenges of placing individual

species in an ecosystem context, and the sheer logistical and statistical difficulties in

estimating the abundance and exploitation of fish populations whose adults and larvae

can cover vast distances while being subjected to a host of environmental drivers. The

aim of this study is to demonstrate how integration of economic data and theory can make
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this problem of estimating status less challenging under the right circumstances. We find

that while different kinds of economic information can be useful under different contexts,

across our simulated fisheries inclusion of economic data almost always improved our

ability to estimate fishing mortality. Our results provide a clear and novel path for the

integration of an underutilized form of information in fisheries stock assessment.

Looking narrowly at scrooge, the length-and-economics DLA proposed here, there are

several limitations that must be addressed. Most critically, we do not yet address obser-

vation error. We feel that this is justified given the novel nature of the concept proposed

here; as a first phase we have demonstrated that, given perfect information, economic

data can substantially improve the performance of a length-based data-limited assess-

ment. The critical next step will be to ask, how accurate does economic data utilized in

this assessment have to be to remain beneficial? Luckily, this modeling framework makes

this a simple task, the only barrier being resources for a much larger number of simu-

lated fisheries and assessments. Beyond that, and similar to most other DLAs, we do not

incorporate important but challenging factors such as time-varying and/or environmen-

tally driven growth and mortality, or multi-species interactions. Under a data-limited

context, these choices are likely to be inevitable, but the addition of more data in the

form of economics opens up potential spaces for identification of more parameters such

as these (or at least to assess the ramifications of ignoring these states of nature).

From the fleet perspective, we do not yet address the complexities of multiple fleets

or time-varying and/or dome-shaped shaped selectivity. We make this choice to make

presentation of our initial results tractable, but future investigations can relatively easily

incorporate these factors. Broadly, there are many challenges to consider in utilizing a

new source of data. Catch-per-unit-effort data at its face seems like an obvious indicator

of stock status, and yet a whole body of literature has evolved documenting when it is
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and is not a useful index (Hilborn and Kennedy 1992; Walters 2003; Maunder and Punt

2004). Similar efforts will need to be conducted if for example profit per unit effort is

to be broadly incorporated in data-limited assessments. But, economic theory combined

with our simulation tool can help with this process by examining when and how much

PPUE data helps or hurts under increasingly realistic scenarios.

Our results show that accurate data on the percentage changes in total fishing effort

are likely to provide the greatest reduction in root median squared error. If these data

are not reliably available though, we find that the choice of which model is “best” is

highly dependent on the characteristics of a specific fishery. Future work and theory may

identify an emergent set of cases where one particular model configuration is preferable.

As the number of assessment methods increases, and the range of fishery scenarios in

which we we want to run assessment diversify, relying on qualitative rules of thumb is

likely to become more challenging though, unless a small set of assessments emerge as

overwhelming favorites. We propose the pairing of large-scale simulation testing with

classification algorithms to help resolve this problem. On their own, this process allows

the data to inform us which models are likely to perform well under a particular set of

circumstances. Further work is needed to translate characteristics of simulated fisheries

into parameters that users could reliably understand. These methods could also serve

as the underpinning for ensemble assessment approaches, such as those presented by

Anderson et al. (2017), that rather than picking one model generate an aggregate output

based on predictions of each model weighted by their expected accuracy under given

circumstances. We recognize that this approach may seem as a “black box”, and we

would encourage users not blindly trust algorithm outputs. At a minimum, for such a

tool to be useful it would have to inform users as to how similar their particular fishery is

to the simulated library of fisheries on which the decision algorithm is based. But, we feel
160



DISCUSSION

that the use of theory and empirical approaches such as these can make the process of

deciding which model to use when easier and, properly done, more transparent, if paired

with an iterative process of careful consideration by users (why do we think the model is

picking a given assessment in this case)?

In a similar vein, comparisons between scrooge and other assessments such as LIME are

in no way intended to establish a “best” assessment. Our results show that, under the

very specific set of circumstances simulated here, inclusion of economic theory and data

through scrooge often outperformed, in terms root median squared error, estimation by

LIME using only length-composition data in the likelihood. However, we also found many

cases where LIME outperformed scrooge (Fig.4.10). Similar to the decision tree method

we used to for model selection within scrooge, we can also start using this simulation

testing method to develop decision tree across models. Two areas of particularly inter-

esting research will be a) how flawed economic data and/or assumptions can be before its

inclusion becomes useless or actively harmful and b) comparison of lengths + economic

data to for example lengths + CPUE, or lengths + CPUE + PPUE.

Looking more broadly, there are several important challenges to the integration of eco-

nomic knowledge in stock assessment that need to be addressed. Open-access dynamics

are central to all of the scrooge configurations except those that assume some knowledge

of the percentage changes in effort in the fishery over time. This clearly begs the question,

how would this model work in a quota managed, limited-entry, or rationalized fishery? If

effort is constrained by both regulation and profits, profits alone may not be informative.

While we do not test these scenarios here, we a) could incorporate them to the simulation

framework but more importantly b) can use this assessment as a foundation for thinking

about how to integrate economic knowledge from fisheries with different types of effort

dynamics and incentive structures into the assessment process. For example, in rational-
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ized fisheries, data on the price and dynamics of quota trading could be informative as

to fishery perceptions of stock status. While these are real concerns, as a starting place

though we feel that assuming open-access dynamics is a reasonable assumption for many

data-limited fisheries in which we would envision using the scrooge assessment model as

envisioned here. Similar to the evolution of economic behavior in the MSE process, we

begin with simple open-access models of effort dynamics to illustrate this process. These

simple models may indeed by accurate for some fisheries (perhaps especially those for

which we do not have sufficient data to identify these dynamics), but are certainly not

an appropriate model for many fisheries (Szuwalski and Thorson 2017). However, future

research can begin to incorporate more complex and realistic models of fishing behavior

from the wealth of studies examining the dynamics of fishing fleets (Vermard et al. 2008;

e.g. Marchal et al. 2013).

We also casually suggest that data such as trends in prices, costs, technology, effort,

or profit per unit effort be accurately collected and utilized in the assessment process.

Our results show that, in theory, collecting these data is likely to be worth it from

the perspective of assessment accuracy (though a full cost-benefit management strategy

evaluation would be needed to assess the tradeoffs in assessment accuracy with the costs

of data collection, as discussed by Dowling et al. 2016). Why do we feel that these data

may be obtainable in a data-limited contexts, where more traditional fisheries data such

as total removals are not? The first is that fishermen can talk while fish cannot. In our

experience, fishing stakeholders often have detailed knowledge on the economic history of

their fishery. While future work is needed to determine the best strategies for translating

this knowledge into the form required by scrooge, this is a surmountable challenge (Choy

et al. 2009). Second, governments or stakeholders that have not had the capacity or

interest in collecting historic fisheries data may still have official records on data related
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to the fishing industry, including fuel prices, government subsidies, export prices, and

changes in wages. We are under no illusion that obtaining the types of economic data

utilized by scrooge will be simple, but our results show that it is worth determining

how best to obtain and use these data. One fascinating area of future research will be

considering the relative value of information of each of the profit “ingredients”, e.g. how

valuable, from an assessment accuracy perspective, is price data relative to technology

data?

While Bayesian analysis has a strong tradition in fisheries science, informative priors

have rarely been used in data-limited fisheries assessment, with notable exceptions such

as Cope et al. (2015) and Jiao et al. (2011). Our analysis provides a quantitatively

rigorous method for integrating prior knowledge on the economic dynamics of a fishery

into the assessment. While we would argue that appropriate informative priors can

be useful in data-limited or data-rich contexts, in a data-limited context they can be

particularly useful, especially where they allow for local knowledge that does not fit

neatly into the traditional fisheries data bins to be included. An important feature of

our model is that nearly all of the priors utilized in our model are interpretable by users.

For example, rather than requiring users to provide a prior, in the appropriate units, for

the responsiveness of effort to a one-unit change in profit per unit of effort, we instead

allow users to provide a prior on the most that effort is likely to expand from one year

to the next. Priors for parameters such as the standard deviation of recruitment can be

drawn from appropriate literature. In addition, the Bayesian nature of our model allows

users to specify the degree of confidence that should be assigned to prior beliefs or data.

If for example estimates of profit per unit effort are believed to be highly questionable,

we can increase our prior on the magnitude of observation or process error in the model.

The simplest case for integrating economic data would be finding troves of actual unused
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data, for example data on historic ex-vessel prices. However, in many real world applica-

tions this will not be the case (e.g. a database of cost to revenue ratios is likely to be rare)

requiring elicitation of priors on these parameters from stakeholders. Properly eliciting

these priors from stakeholders will be challenging. However, a rich literature exists on

designing robust prior elicitation methods, and since our simulation results suggest that

economic priors can be a useful component of stock assessment, we can now consider

real-world practicalities of obtaining robust priors for model parameters (see Choy et al.

2009 for a thorough summary of this process in ecology).

The use of informative priors in fisheries stock assessment can be concerning for some

users. The stock assessment process is (ideally) directly tied to management outcomes,

and so the results of an assessment can be extremely important to different stakeholders,

from conservation interests to fishermen. A reasonable critique of using informative priors

then is that different groups could easily tip the results of an assessment in their favor by

providing priors that make their desired outcome more likely. While this is a real issue, we

feel that the relative benefits of including informative priors in data-limited assessment (in

this case through economic theory and data) outweigh these potential risks. Beyond the

general fact that non-Bayesian methods have just as many opportunities for “subjective”

decision making, the Bayesian process we propose here would require stakeholders to

translate their beliefs into quantifiable metrics that they would then have to defend. A

user desiring to manipulate an outcome by assigning a strong probability of no overfishing

even at open-access equilibrium would have to present and defend an extremely high cost

to revenue ratio in that fishery. This position would be difficult to defend if the fishery is

know to have been or currently be highly profitable to other stakeholders. This Bayesian

process can make outright gaming through unreasonable priors more transparent, not

less. In addition, in a real-world application, any priors included in the model would
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have to be elicited before any model fitting was done. This prevents scenarios such as

retroactively adjusting priors once the results of an assessment are known. This process

also allows for informative discussion post-model fitting. If results do not match prior

expectations, we can use this process to show users what attributes of the data are causing

this mismatch, allowing users to see that while their beliefs were incorporated, the data

have more support for another outcome. Broadly, incorporation of informative Bayesian

priors in data-limited assessment is a complicated process that can be solved (Choy et al.

2009), and we argue that in doing so we can produce more accurate assessment outcomes

and improve stakeholder relations by providing a clear mechanism for incorporating their

local knowledge into the statistical assessment.

The dynamics of fisheries are dictated in part by the interplay of economic incentives and

ecological constraints. Natural resource management, and fisheries in particular, have

gone a long way towards understanding these dynamics, from simple theories of open-

access dynamics to agent-based multi-species models. While we have increasingly used

this understanding to project the likely consequences of policy choices (as summarized

by Nielsen et al. 2017), we have yet to broadly utilize these dynamics in the assessment

phase of fisheries management. While methods such as SSCOM, described in Thorson et

al. (2013), utilize economic theory to help inform fisheries assessment, to our knowledge

this study is the first to incorporate this theory with data on the dynamics of economic

incentives to create an integrated bio-economic stock assessment model. We find that

integration of economic information can substantially improve the accuracy of fisheries

stock assessment, allowing in this case users from a data-limited context to utilize local

fishery knowledge to improve their ability to effectively manage their marine resources.

Our hope is that this research can serve as a foundation for a broader field of inquiry

linking economic behavior with biological knowledge to improve our knowledge of the
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Figure 4.11: Energy plot of Case Study 3. Delta energy histogram closely matches energy,
suggesting fat tails are not a problem

state of global fisheries.

Supplementary Materials

It is not feasible to provide in-depth fitting diagnostics for all 3800 simulated assessments.

However, we can broadly report that the percent of divergent draws across all simulations

was less low (generally less than 1%), as were the percentage of draws that exceeded the

maximum treedepth.

To provide some diagnostics of model fitting, we can examine key HMC diagnostics for

our third case study (the hardest of the case studies for scrooge to fit), to verify that

under these circumstances our model converges properly. Standard divergence, energy,

and treedepth diagnostic plots were created with the bayesplot package.
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Figure 4.12: Log posterior and acceptance stat as a function of divergence. No runs were
divergent
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Figure 4.13: Log posterior, acceptance stat, and counts of treedepth. Max treedepth was
set to 12, which no runs exceeded
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Figure 4.14: Rhat diagnostic for all estimated parameters. No parameteres exceeded
1.05, meaning there is not clear evidence of insufficient effective sample sizes for any
parameters
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Figure 4.15: 90% pospterior predictive distribution (shaded ribbon) of fitted length com-
position data (points). Nearly all observed points fall within the 90% bounds of the
posterior predictive distribution

170



SUPPLEMENTARY MATERIALS

year: 13 year: 14 year: 15

42.5 45.0 47.5 50.0 52.5 42.5 45.0 47.5 50.0 52.5 42.5 45.0 47.5 50.0 52.5

0.0

0.1

0.2

0.3

Length (cm)

Figure 4.16: 90% Posterior predictive credible intervals of mean length (distribution)
and observed mean length (red line) over time. True mean lengths all fell within posterior
predictive distribution

171



CHAPTER 4. ECONOMICS IN STOCK ASSESSMENT

−2

0

2

45 48 51 54

Year

P
P

U
E

Figure 4.17: 90% credible interval of posterior predictive draws of profit per unit effort
(ribbon), and observed profit per unit effort (points)
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Figure 4.18: 90% credible interval of posterior probability distribution of profit per unit
effort (ribbon), and observed profit per unit effort (points)
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