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Abstract

Queueing Systems with Customer Abandonments and Retrials

by

Song Deng

Doctor of Philosophy in Engineering - Industrial Engineering & Operations Research

University of California, Berkeley

Assistant Professor Ying-Ju Chen , Co-chair

Professor Zuo-Jun “Max” Shen , Co-chair

In queueing theory, the phenomenon that customers get impatient and renege from the
system when the waiting time exceeds their tolerance is called customer abandonments. For
those abandoning customers, they may go back to the service system after some time. This
is called customer retrials. In the modern design of service systems, the impact of customer
abandonments and retrials on the system performance and queueing dynamics has been
realized. In this thesis, we aim to characterize the stationary properties for queueing systems
with both customer abandonments and retrials. We also apply some of those properties in
a revenue management problem for queueing systems with customer abandonments.

First, we study a multi-server queueing system with both customer abandonments and
retrials. By using RTA (retrials see time average) approximation, we characterize the sta-
tionary properties of such a queueing system. We also justify the appropriateness of RTA
approximation in this model both theoretically and numerically.

Then, we extend the study to incorporate negative customers and unreliable servers.
Two different models are considered. One is a multi-server retrial queueing system with
both regular customers and negative customers. The other is a single-server retrial queue
with negative customers and server interruptions. Closed-form expressions of some relevant
performance measurements for both models are obtained.

For the last, we apply some of our findings in queues with abandonments and retrials
to a revenue management problem for a queueing system with customer abandonments. By
using a mechanism design framework, we identify the optimal price-lead time manus and
scheduling policies for different scenarios.
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Chapter 1

Introduction

In the modern design of call centers, a crucial issue is to investigate the impact of customer
abandonments and retrials on the queueing dynamics and system performance. In this thesis,
we first study a multi-server queueing system with both customer abandonments and retri-
als. By using RTA (retrials see time average) approximation, we characterize the stationary
properties of such a queueing system. In order to show the effectiveness of RTA approxima-
tion in our model, we analyze the difference between the average customer waiting time for
the original queueing system and that for the model based on RTA approximation. Also,
our numerical experiment and sensitivity analysis indicate that the model with this RTA
approximation preserve all the structural properties of the original model, thereby justifying
the appropriateness of our approach. Besides the case with homogeneous customers, we
further incorporate the possibilities of heterogeneous abandonment rates or heterogeneous
retrial rates; accordingly, customers may be given different priorities and effectively form
different queues. Invoking the level crossing theorem, we obtain the detailed distribution for
the virtual waiting time, based on which we derive some relevant performance measurements
of these multi-class queueing systems.

In the second part of this thesis, we extend the study to incorporate negative customers
and unreliable servers. we first study a multi-server queueing system with both regular
customers and negative customers (which are considered as deletion signals). Stationary
properties of such a queueing system is characterized by RTA approximation. We further
extend the model to incorporate unreliable servers, where two kinds of server interruptions
(server disasters and server vacations) are considered together. Using the methodology of
stochastic decomposition, we obtain a closed-form expression for some relevant performance
measurements by solving differential equations.

Nowadays, more and more attention is being given to the field of revenue management
in queueing systems. In the third part of this thesis, we consider the revenue management
problem in a M/M/1/∞ queueing system with two types of customers with different valua-
tion of service and different unit waiting cost. We also incorporate customer abandonments
into consideration. By using a mechanism design framework and adapting the achievable
region approach, we transform the scheduling control problem into a nonlinear program.
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Then through a two-stage optimization technique, we identify the optimal price-lead time
manus and scheduling policies for different scenarios. The optimality condition for strategic
delay is also discussed.

The rest of this thesis is organized as follows. In Chapter 2, performance for queues
with customer abandonments and retrials is analyzed. Our study in retrial queueing system
with negative customers and unreliable servers is mentioned in Chapter 3. In Chapter 4, we
continue our study to the revenue management problem for queueing systems with customer
abandonments. Proofs of Lemmas and Propositions are included in Appendix.
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Chapter 2

Performance Analysis for Queues with
Customer Abandonments and Retrials

2.1 Introduction

In classical queueing theory, customers’ patience is usually not taken into consideration.
Even for cases when the assumption of infinite customers’ patience is relaxed, it is also
assumed that an impatient customer leaves the system without having the option to go back
for service. Actually, the assumption about loss of customers who choose to leave the system
is just a first-order approximation to the real situation. Usually such a customer returns
to the system and tries to get service again after a random time. Real world examples
can be easily found for returning customers. Take call centers as an example, incoming
customers who find all customer representatives busy will hang up immediately or hold on
to wait for the next available service slot. For those customers who choose to wait, when the
waiting time exceeds their tolerance, they get impatient and renege from the system. This
phenomenon is called customer abandonment. For those abandoning customers, they may
leave the system forever, or go back to the service system after some time, which is called
customer retrial. Similar behaviors may also be found for customers in the shopping mall.
Customers who find a long waiting line may wish to do something else and return later on
with the hope that the queue dissolves.

The importance of customers’ abandonments and retrials is also discussed in some classic
papers. Falin and Templeton (1997) emphasize that the standard queueing model that does
not take retrial phenomenon into account cannot be applied in solving numbers of practically
important problems. Furthermore, the impact of customers’ abandonments and retrials on
queueing systems performance can be found in many papers, such as Aguir et al. (2004),
Wuchner et al. (2008), and etc. Nevertheless, most of previous research considers customer
abandonments or retrials separately. To the best of our knowledge, only Mandelbaum et al.
(2002) deal with queueing systems with both abandonments and retrials, where fluid model
approximation is used. Consequently, only a few performance measurements are obtained,
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such as the average waiting time and the average queue length. For this chapter, we at-
tempt to get a full characterization of dynamics for the queueing system with both customer
abandonments and retrials.

In this chapter, we first study multi-server systems with customers who may renege
from/abandon the system if their waiting time exceeds their patience limit, i.e., the maximum
time they would be willing to wait for service. Also, abandoning customers may choose to
rejoin the service system after some time. Our model consists of two nodes: a service node
with several servers where customers wait to be served and a retrial pool (orbit) with infinite
servers where customers wait to go back to the service node. Different from previous papers,
we characterize the stationary behavior of the service node. To tackle this problem, we
invoke the RTA (retrials see time average) approximation to separate the analysis of these
two nodes, which subsequently allows us to get the performance measurements for the entire
queueing system. The detailed description of this technique is given in Section 2.3. We
verify the effectiveness of our algorithm both analytically and numerically. Also, we find
that the modified model based on RTA approximation preserves all structural properties of
the original model.

We also extend our study to the retrial queue with multi-class customers. In the real
life, besides customers abandonments and retrials, we can find customers with different
abandonment and retrial behaviors. For instance, emergency patients for whom reneging
might refer to their deaths will have lower patience than non-emergency patients . Under
these circumstances, the health-care management will most likely choose to give priority to
the emergency patients over the others. Similarly, a customer contact center might offer an
e-mailing option to its customers as an alternative medium to be reached. Customers may
request in their e-mails to be called back or the type of service requested might be handled
more easily by a customer representative calling them. Therefore, after serving high-priority
impatient customers who place phone-calls, customer representatives can call the customers
who have sent e-mail requests.

For our study in the multi-class customers model, two scenarios are considered. In the
first scenario, we consider two types of customers who have different abandonment rates,
where one type of customers have infinite patience and the others have finite patience. In
this scenario, we assign the high priority to customers with finite patience. Consequently,
two separate queues are introduced. We use level crossing techniques to get the density
function for the virtual waiting time for customers in the queue with priority. Further, other
performance measurements of the priority queue are obtained, such as average waiting time
for customers being served, mean number of customers in the priority queue, and so on. The
second scenario involves two type of customers with different retrial rates. In this scenario,
we extend RTA approximation to the multi-types case. By using such an approximation,
we separate the analysis of the service node from the orbit and get the stationary properties
of the whole queueing system. With the detailed queueing length distribution and waiting
time distribution obtained in our analysis, we can get the system performance evaluations
under different settings, i.e., different numbers of servers or different priority rules. Further,
we can use these results in the design of the queueing system.
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The rest of this chapter is organized as follows. In Section 2.2, we review previous research
papers briefly. In Section 2.3, we extend RTA approximation to our queueing model with
both abandonments and retrials. We also prove the effectiveness of such extension both
analytically and numerically. In Section 2.4, we continue our study to the case with multi-
class customers, where two scenarios are considered. We summarize our findings in Section
2.5.

2.2 Literature review

Over the past couple of decades, there are many papers dealing with the multi-server model
with customer abandonments. Movaghar (1998) derived the steady-state distribution of the
number of customers in the system and the distribution of waiting time of M(n)/M/s queue
with customer abandonments. Brandt and Brandt (2002) analyze the queueing model with
state dependent exponential arrival and service rates as well as general abandonment rate.
They derive equations for the state probabilities and waiting time distribution. For large
scale queueing system, several performance measures in the limit as the arrival rates and
servers go to infinity, are derived by Zeltyn and Mandelbaum (2005). In addition, Whitt
(2006) performs the sensitivity of Erlang-A queueing model, demonstrating that performance
measures in that model are sensitive to small changes in the arrival and service rates, but
relatively insensitive to small changes in the abandonment rate.

In previous queueing literature, customer retrial has also been well studied. For the multi-
server retrial model, explicit formulae for the main performance characteristics (stationary
distribution, blocking probability and mean queue length) are absent when the number of
servers is more than two, see Artalejo and Gómez-Corral (2008). Consequently, different
approximation methods are introduced, such as direct truncation model, generalized trun-
cation model, RTA (Retrial See time Average) approximation, and etc. For instance, Falin
(1983) assumes that the retrial rate becomes infinite when the number of customers in orbit
exceeds a level M. It means that, from the level M up, the system performs as an ordinary
M/M/1 queue. Neuts and Rao (1990) develop a tractable approximation, which yields an
infinitesimal generator that is essentially a quasi-birth-and-death (QBD) process with a large
number of boundary states. Recently, Artalejo et al. (2005) deal with a multi-server retrial
queueing model in which the number of active servers depends on the number of customers in
the system. For a fixed choice of the threshold levels, the stationary distribution and various
performance measures of the system are calculated. The optimum threshold level is also
numerically computed in the case of equidistant connection levels. For detailed overviews of
the main results and the bibliographical information about the retrial queues, see Artalejo
(1999) and Artalejo (2010).

For the multi-class customers model, incorporating priority rule among impatient cus-
tomer classes brings several challenges. Usually, analytical models are confined to problems
with two classes of customers. For instance, Choi et al. (2001) analyze the M/M/1 queue
with two classes of customers where class 1 customers have deterministic impatience time
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while class 2 customers are assumed to be infinitely patient. With class 1 customers hav-
ing preemptive priority over class 2 customers, they obtain the joint distribution of the
number of class 1 and class 2 customers in the system and the distribution of the total re-
sponse time of class 2 customers. Subsequently, Brandt and Brandt (2004) extend the two
class impatient customers model to a setting, where they allow the distribution of the high-
priority customers abandonment time to be general. Also, high priority customers are given
preemptive-resume priority over the other class in that model. By solving the balance equa-
tions for the partial probability generating functions of the detailed system state process,
the joint queue length distribution and the Laplace transforms of the waiting and sojourn
time for low-priority customers are derived. Recently, Iravani and Balcıoglu (2008) study a
multi-server queueing model with two classes of customers, one has exponential distributed
tolerance time and the other has infinite patience. Priority rule is also incorporated in that
model, with the impatient customers having non-preemptive priority over the other. By
using the level crossing method, they obtain the steady-state performance measures of the
high-priority class. Factorial moments of the low-priority queue length of the multi-server
system are also obtained.

In the field of multi-class queueing systems with customers’ abandonments, simulation
usually provides a good approach for complicated models. For instance, Ahghari and Bal-
cioglu (2006) conduct an extensive simulation study on the customer contact center that
provide different types of services to customers who place phone calls or send e-mail mes-
sages, with phone calls having priority over e-mail request. They show that strategies per-
mitting pre-emptive-resume policies provide the best performance for phone calls. Among all
the papers dealing with multi-class customers, with or without the consideration of priority
rule, customer abandonments or retrials are omitted. In contrast, we consider a multi-class
queueing model together with customer abandonments and retrials.

2.3 Retrial queue analysis using RTA approximation

In this section, we consider a multi-server queue where waiting customers may abandon and
subsequently re-enter the service. We will get the stationary behavior of the above queueing
system under appropriate approximation.

Model description

Our model, depicted in the Figure 2.1, consists of two types of nodes: a service node with
c servers, and a retrial pool (orbit) with infinite servers, where customers effectively serve
themselves. New customers arrive at the service node as a Poisson process with rate λ. The
service node has a maximum capacity N . When there are already N customers in the service
node, new arrivals will be blocked. Blocked customers will leave the system.

In this section, we focus on the case with homogeneous customers, leaving the discussion
on multi-type case to the next section. Arriving customers who find an idle server are
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taken into service with a duration which is exponentially distributed with rate ν. Customers
who find all servers busy join a queue and are served in a First-Come-First-Serve (FCFS)
manner. Each waiting customer has the same maximum tolerance time which is exponentially
distributed with rate γ; equivalently, each customer waiting in queue abandons at rate γ. An
abandoning customer leaves the system forever with probability 1−β or joins the retrial pool
with probability β. Customers in the retrial pool leave and subsequently enter the service
node at rate µ. Consequently, when there are i customers in the orbit, the total retrial rate
is iµ. After customers complete their retrials, they are treated as new customers; thus, new
customers and retrial customers are not distinguished. In our model, we assume the inter-
arrival time, service time, inter-abandonment time and inter-retrial time to be exponential.
The memoryless property brought by the exponential distribution facilitates our analysis,
making the whole problem treatable. Exponential assumption is also commonly used in
queueing literature, such as Iravani et al. (2008), Krishna et al. (2008), and etc.

Figure 2.1: The multi-server queue with abandonments and retrials.

In order to describe the system, we need parameters shown in the following table.
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λ Arrival rate to the service node
N Maximum number of customers allowed in the service node
ν Service rate of each service channel
c Total number of servers
γ Abandonment rate for customers in the main queue
β Probability that a customer joins the retrial orbit after abandonment
µ Retrial rate for customers in the orbit

Stationary distribution analysis using RTA approximation

For the queueing system mentioned in the previous subsection, its state at time t can be
described as ζ(t) = {C(t), M(t)}, where C(t) is the number of customers in the main queue
and M(t) is the number of customers in the orbit. Obviously, {ζ(t)|t ≥ 0} is a homogeneous
continuous-time Markov chain with state space E = {0, 1, 2...N} × N. Let Pi,j be the sta-
tionary probability of state (i, j), the balance equations for this Markov chain are as follows:

For 0 ≤ i ≤ c:

Pi,j(λ+ iν + jµ) = λPi−1,j + (j + 1)µPi−1,j+1 + (i+ 1)νPi+1,j;

for c < i < N :

Pi,j(λ+ cν + jµ+ (i− c)γ) = λPi−1,j + (j + 1)µPi−1,j+1 + cνPi+1,j +
(i+ 1− c)βγPi+1,j−1 + (i+ 1− c)(1− β)γPi+1,j;

for i = N :

Pi,j(cν + (i− c)γ) = λPi−1,j + (j + 1)µPi−1,j+1 + (j + 1)µPi,j+1.

Although the solution for the above equations will lead us to the stationary probabilities, in
most cases characterizing the solution turns out to be a difficult task. Artalejo and Gómez-
Corral (2008) indicate that when c > 2, we cannot find the explicit expression for Pi,j.
Consequently, some approximations are needed to obtain Pi,j. We will use RTA (retrials see
time average) approach. The retrials see time averages (RTA) approximation is similar to the
well-known PASTA property. Roughly speaking, PASTA says that if the arrival process is
Poisson, then the steady state probability that an arriving customer sees the system in state
i is the same as the limiting probability that the system is in state i. Applying this property
into the retrial queueing system, we can expect that when the system is in steady state, the
proportion of customers who see i customers in the service node is the same as its limiting
probability. This is the essence of RTA approximation. For previous papers dealing with
retrial queues, RTA approximation has never been used in the model with both customers’
abandonments and retrials. Here we will extend RTA approximation to such setting.
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First, we need to make some additional notation. Define:

νi = min(i, c)ν, and γi = (i− c)+γ.

Then, summing the above Kolmogorov equations over j, we get:

(Li−1µ+ λ)Pi−1 = (νi + γi)Pi, (2.1)

where Pi =
∞∑
j=0

Pi,j is the probability that there are i customers in the service node, and

Li =
∞∑
j=0

jPi,j is the expected number of customers in the orbit when there are i customers

in the service node. Based on RTA approximation, we have the following equation.

Li = L, ∀i,

where L is chosen in R+. Considering the service node separately, we have the following
equations:

(Lµ+ λ)Pi−1 = (νi + γi)Pi, and
N∑
i=0

Pi = 1.

Solving the above equations, we obtain the stationary distribution for the service node as
follows:

P0 = (1 +
N∑
i=1

(
i∏

j=1

Lµ+ λ

νi + γi
))−1, (2.2)

Pi =
i∏

j=1

Lµ+ λ

νi + γi
/(1 +

N∑
i=1

(
i∏

j=1

Lµ+ λ

νi + γi
)). (2.3)

From the above expressions, we can see that Pi is a function of L. In order get the value of
L, we need to find another equation. By equating the flow rate into and the flow rate out
of the subset N × {0, 1, 2..., j} ⊂ E (recall that E is the state space of the entire Markov
Chain), we have:

(j + 1)µ
N∑
i=0

Pi,j+1 =βγ
N∑
i=c

(i− c)Pi,j. (2.4)

Summing (4) over j and applying RTA assumption, we get:

µL = βγ
N∑
i=c

(i− c)Pi. (2.5)

Plugging (2) and (3) to (5), it yields:

µL = βγ
N∑
i=c

(i− c)
i∏

j=1

Lµ+ λ

νi + γi
/(1 +

N∑
i=1

(
i∏

j=1

Lµ+ λ

νi + γi
)) . (2.6)
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In order to make RTA approximation efficient for our model, we need a unique positive root
when solving (6). Such uniqueness is established by the following lemma.

Lemma 1. Equation (6) always has a unique positive root.

Lemma 1 guarantees the usefulness of RTA approximation in this model. Now, with L,
we are able to calculate some performance measurements for the queueing system.

Proposition 2. The system performance can be characterized by means of the following
quantities:

1. The probability that all servers are idle:

P0 = [1 +
N∑
i=1

(
i∏

j=1

Lµ+ λ

νi + γi
)]−1. (2.7)

2. The average number of customers in the service node:

C =
N∑
i=0

iPi =
N∑
i=0

i
i∏

j=1

Lµ+λ
νi+γi

1 +
N∑
i=1

(
i∏

j=1

Lµ+λ
νi+γi

)

. (2.8)

3. The average waiting time for each customer in the main queue:

W =
1

Lµ+ λ

N∑
i=c

(i− c)
i∏

j=1

Lµ+λ
νi+γi

1 +
N∑
i=1

(
i∏

j=1

Lµ+λ
νi+γi

)

. (2.9)

4. The proportion of customers getting served:

P (s) =
ν

λ
[

c∑
i=0

i
i∏

j=1

Lµ+λ
νi+γi

1 +
N∑
i=1

(
i∏

j=1

Lµ+λ
νi+γi

)

+
N∑

i=c+1

c
i∏

j=1

Lµ+λ
νi+γi

1 +
N∑
i=1

(
i∏

j=1

Lµ+λ
νi+γi

)

]. (2.10)

5. The proportion of customers getting blocked:

P (b) = PN =
N∏
j=1

Lµ+ λ

νi + γi
/(1 +

N∑
i=1

(
i∏

j=1

Lµ+ λ

νi + γi
). (2.11)



CHAPTER 2. PERFORMANCE ANALYSIS FOR QUEUES WITH CUSTOMER
ABANDONMENTS AND RETRIALS 11

Evaluation for the accuracy of RTA approximation

In the previous subsection, we obtain the stationary distribution for the main waiting queue
by applying RTA approximation. Although the effectiveness of such approximation was
proved for some other retrial queue settings in the previous literature, its usefulness is not
guaranteed in our model. In order to check how this approximation works in our model,
we need to compare the result obtained by RTA approximation with the actual system
output, where we choose the average customer waiting time to make such a comparison.
Nevertheless, the exact average customer waiting time for the actual system can not be
calculated analytically. Alternatively, we find a pair of bounds for both the real system and
the modified system by RTA approximation. By comparing these two bounds, we can see the
difference between the result obtained by RTA approximation and the actual system output.
Let MO denote the original model and MR denote the model using RTA approximation.
First, we introduce two modified models which can serve as the upper bound and lower
bound.

The first model is a M/M/c/N queue with customer abandonments only (M1). The
setting of this model is the same as the original model (MO) except that we restrict β = 0
in M1. This means for those customers who choose to abandon, they will not join the orbit.
All of them are forced to leave the system. In this model, since there is no orbit, we can
focus our analysis on the main waiting queue. The balance equations are as follows:

λPi = (i+ 1)νPi+1 for i < c,

λPi = (cν + (i+ 1− c)γ)Pi+1 for i ≥ c,

N∑
i=0

Pi = 1.

The second model is a M/M/c/N queue with an infinite retrial rate (M2). The setting of
this model is the same as the original model (MO) except that we restrict µ = ∞ in M2.
This means for any customer who choose to retrial, he can get back to the service node
immediately. In this model, due to the infinite retrial rate, the number of customers in the
orbit is always zero. Therefore, we only pay attention to the main queue. In the absence of
rearranged sequence due to retrials, the system can be considered as an M/M/c/N queue with
customer abandonment rate (1 − β)γ, the balance equation is quite similar to M1. Define
WM1, WM2, WMO and WMR to be the average customer waiting time for the corresponding
four models. We have the following Lemma.

Lemma 3. |WMR −WMO| 6 WM2 −WM1.

To articulate the intuition behind Lemma 3, let us just take the service node into consid-
eration. In this case, it is obvious that no matter how many customers in the service node
and how many customers in the orbit, the customers’ incoming rate to the service node in
M1 is less than MO and MR. Consequently, for the average customer waiting time, M1
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serves as the lower bound for both MO and MR. The situation for M2 is just the opposite,
this makes M2 to be the upper bound for MO and MR.

Lemma 3 provides a way to estimate the difference of average customer waiting time
between MO and MR by comparing the performance of M1 and M2. From the definition
of M1 and M2, we know these are two Erlang-A queueing models with abandonment rate to
be γ and (1−β)γ. Whitt (2006) performs a complete sensitivity analysis of performance in the
Erlang-A queueing model to changes in the model parameters. He shows that performance of
the Erlang-A queueing model is insensitive to the change of abandonment rate. Consequently,
the accuracy of RTA approximation in our model is quite impressive.

Sensitivity analysis

After proving the effectiveness of RTA approximation in our model, we will explore how the
system output changes with respect to the change of system parameters for both the original
model and the model based on RTA approximation. We have the following proposition.

Proposition 4. Suppose the average customer waiting times in the service node for the
original model and the model based on the RTA approximation are WMO and WMR, then
WMO and WMR change according to the following properties:

1. WMO and WMR are increasing functions with respect to λ,

2. WMO and WMR are increasing functions with respect to β,

3. WMO and WMR are increasing functions with respect to µ,

4. WMO and WMR are decreasing functions with respect to γ,

5. WMO and WMR are decreasing functions with respect to ν.

From the above proposition, we can see that the two models share the same monotonicity
property as system parameters change, which shows the effectiveness of RTA approximation
in this model once again.

Numerical results

In Subsection 3.3, we justify the effectiveness of RTA approximation in our model analyti-
cally. In this subsection, we use simulation to get the the output of the actual system. Then
we can make a numerical comparison between the result got by the model based on RTA ap-
proximation and actual system output. Here, two variables are used for such a comparison:
one is the average waiting time in queue (w), and the other is the proportion of customers
getting served (Ps). We choose five scenarios to check the robustness of RTA approximation
in different settings. Especially, we will see if the RTA approximation can produce good
result when the system size is large.
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We test the accuracy of our algorithm in five different settings. Tables 1 - 5 show the
performance of the RTA approximation in different traffic densities, abandonment rates, re-
trial rates, retrial probabilities, and system size. For the simulation results in the following
tables, we run 5 replications, each of which generates around 30,000 arrivals, and then we
take the mean value of the 5 replications. The run time for each simulation (including 5 repli-
cations) is about 30 minutes, while the calculation time for each situation for Tables 1 - 4 is
less than 10 seconds and the calculation time for each case in Table 5 is less than one minute.

Table 1
γ = 0.1, β = 0.5, µ = 0.1, N = 100

w Ps

RTA Simulation Difference RTA Simulation Difference
λ/cν = 1 3.997 4.072 1.84% 0.675 0.684 1.32%
λ/cν = 0.5 1.038 1.062 2.26% 0.897 0.910 1.43%
λ/cν = 0.25 0.658 0.614 7.17% 0.997 0.997 0
λ/cν = 0.2 0.621 0.578 7.44% 1 1 0

Table 1 shows the performance measures difference between the original model and the
model based on RTA approximation in different traffic density. From this table we can see
that RTA approximation works pretty well in heavy traffic situations (λ/cν ≥ 0.5). Nev-
ertheless, when the traffic density is low, the accuracy of such an approximation is not so
satisfying. One possible reason for this phenomenon is that when the traffic density is low,
the assumption that Li = L for all i fails to hold. Since managers always want to set the
system to high traffic density situation in order to make the best use of servers, the lack
of accuracy of this algorithm in low traffic density situation should not be a big concern in
practice.

Table 2
λ = 0.1, β = 0.5, µ = 0.1, N = 100, c = 2, ν = 0.1

w Ps

RTA Simulation Difference RTA Simulation Difference
γ = 0.2 0.664 0.678 2.06% 0.868 0.882 1.59%
γ = 0.1 1.038 1.062 2.26% 0.897 0.910 1.43%
γ = 0.05 1.494 1.496 0.13% 0.926 0.932 0.64%
γ = 0.02 2.130 2.122 0.38% 0.958 0.966 0.83%

The above table shows the comparison between the two models in different abandonment
rates. It is shown that the RTA approximation works well in all kinds of abandonment rates.
Also, we find that high abandonment rate will make the average waiting time in queue be
lower. Nevertheless, a higher abandonment rate means higher loss of customers, which is
not desired.

Table 3
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λ = 0.1, β = 0.5, γ = 0.1, N = 100, c = 2, ν = 0.1
w Ps

RTA Simulation Difference RTA Simulation Difference
µ = 0.2 1.040 1.066 2.44% 0.898 0.902 0.44%
µ = 0.1 1.038 1.062 2.26% 0.897 0.910 1.43%
µ = 0.05 1.037 1.042 0.48% 0.896 0.896 0
µ = 0.02 1.036 1.038 0.19% 0.896 0.894 0.22%

From this table, we can see that RTA approximation works well in different retrial rates.
Also, it is shown that a higher retrial rate will make the average waiting time higher. This is
because a higher retrial rate results in a higher incoming rate for the retrial stream, so that
the traffic density will get higher. However, in the case shown above, the probability that a
customer will choose to abandon and then retrial is low. The effect of the retrial rate on the
whole system performance is not so obvious.

Table 4
λ = 0.1, γ = 0.1, µ = 0.1, N = 0.1, c = 1, ν = 0.125

w Ps

RTA Simulation Difference RTA Simulation Difference
β = 0.2 2.955 2.972 0.57% 0.706 0.694 1.73%
β = 0.4 2.998 3.026 0.93% 0.716 0.708 1.13%
β = 0.6 3.211 3.290 2.40% 0.757 0.762 0.66%
β = 0.8 3.513 3.564 1.43% 0.813 0.804 1.12%

In the Table 4, we show the accuracy of RTA approximation for different β values. We
can see that the differences for w and Ps between the original model and RTA model are
small. Besides, comparing different rows, we find that a higher probability to retrial (β value)
leads to worse system performance, e.g., a higher average waiting time. This is because a
higher probability to retrial means more customers to retrial, which will make the traffic
density larger. As a result, the average waiting time in queue will get worse. Nevertheless,
when such a probability increases, the proportion of customers getting served is higher which
is desired by managers.

Table 5
N = 100, γ = 0.1, µ = 0.1, β = 0.5, ν = 0.1, λ/cν = 0.9

w Ps

RTA Simulation Difference RTA Simulation Difference
c = 10 0.997 1.012 1.48% 0.937 0.947 1.06%
c = 20 0.939 0.920 2.07% 0.965 0.971 0.62%
c = 50 0.660 0.654 0.92% 0.986 0.982 0.41%
c = 100 0.342 0.348 1.72% 0.993 0.998 0.50%

The above table describes the performance of RTA approximation in different system sizes.
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From this table we can see that even with a large system size, the result got by RTA ap-
proximation is closed to the actual system output. We also observe that as the system size
grows, the whole system performance gets better, e.g., the average waiting time in queue is
lower and the proportion of customers getting served is higher. From this observation, we
can conclude that when the system size is big, we can try tougher staffing decision, which
makes the traffic density even higher without worrying about failing to retain the service
goal.

In this section, we complete our investigation over the queueing system with both aban-
donments and retrials for the single type customers case. In the next section, we will extend
our study to multi-type customers scenarios.

2.4 Extensions to multi-class customers models

We now examine the queueing system with both abandonments and retrials to the case
with multi-class incoming customers. Two scenarios are considered here: one is multi-class
customers with different abandonment rates and the other is multi-class customers with
different retrial rates.

Multi-class retrial queue with different abandonment rates

We first study the model with two types of customers having different abandonment rates.
Particularly, one type of customers have finite patience and the others have infinite patience,
i.e., their abandonment rate is zero. Our model, depicted in Figure 2.2, contains three types
of nodes. The first two are queue I and queue II, which share the same set of c servers with
exponential service time of rate ν. The third one is the retrial pool (orbit). As mentioned
before, it can be considered as a service system with infinite servers, where customers effec-
tively serve themselves. Type-I customers who have finite patience enter queue I with Poisson
arrivals of rate λ1. The arrival process of type-II customers to queue II is also Poisson with
rate λ2. In our model, customers in queue I have non-preemptive priority over customers
in queue II; thus the service for type-II customers cannot be interrupted by the arrival of a
type-I customer. Each customer waiting in queue I has the same maximum tolerance time
which is exponentially distributed with rate γ, meaning that each customer waiting in queue
I abandons at rate γ. An abandoning customer joins queue II with probability 1−β or joins
the retrial pool with probability β. Since customers in queue II have infinite patience, they
do not renege. Customers in the retrial pool leave and subsequently enter queue I at rate µ.
In the service node, retrial customers and new customers are not distinguished.

For the above model, as we need a three-dimensional state space to fully describe the
system, it is difficult to get the stationary distribution of queue I and queue II due to such a
large state space. Here we choose to use level crossing techniques to get the virtual waiting
time distribution. Nevertheless, in order to use such techniques, it is essential to separate the
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Figure 2.2: Retrial queue with two types of customers of different abandonment rates.

analysis of queue I and queue II with the retrial pool. Such a separation can be achieved by
adopting RTA approximation mentioned before. In this model, without considering queue
II, the sub-system with queue I and the retrial pool is just the same as the model mentioned
in Section 2.3. Since customers in queue II do not abandon, it is reasonable to apply RTA
approximation given that its effectiveness is proved comprehensively in the previous section.
Just like the RTA approximation mentioned in Section 2.3, we assume that no matter how
many customers are in queue I, the expected number of customers in the retrial pool remains
a constant L.

Let f1(x) be the density function for the virtual waiting time of customers in queue I.
We define the active phase to be the periods during which all servers are busy. Accordingly,
f1(x) is defined for x > 0, which is the virtual waiting time given that we are in an active
phase. In other words, we have f1(x) = f1(x|AP )P (AP ), where P (AP ) is the probability
that the system is in an active phase. Let Pj be the probability that j servers are busy when
j ≤ c− 1. Then the probability that an arriving customer finds all servers busy is

P (AP ) = 1−
c−1∑
j=0

Pj. (2.12)

In order to get f1(x), we need the following lemma.
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Lemma 5. f1(x) can be obtained by solving the following equations.

f1(x) = (λ1 + λ2 + Lµ)Pc−1e
−cνx + (λ1 + Lµ)

∫ x

0
e−cν(x−y)e−γyf1(y)dy + λ2P (AP )e−cνx

+ (λ1 + Lµ)(1− β)e−cνx
∫ x

0
(1− e−γy)f1(y)dy.

(2.13)
c−1∑
j=0

ρj

j!
P0 +

∫ ∞

0

f1(y)dy = 1, (2.14)

where ρ = (λ1 + λ2 + Lµ)/ν.

Solving (2.13) and (2.14), we can get f1(x) and P (AP ) as functions of L. (Detailed
calculation steps are included in the Appendix.) Here, we present the calculation of some
queueing measures first and leave the discussion of the value of L to the next part.

Proposition 6. Given f1(x) and P (AP ), some performance measurements for the above
queueing system can be calculated as follows.

1. The probability that customers in queue I choose to abandon and finally join queue II:

Pc = (1− β)

∫ ∞

0

f1(y)(1− e−γy)dy.

2. The conditional probability that a customer in queue I is served given that it does not
abandon:

Ps =
1− P (AP ) +

∫∞
0

f1(y)e
−γydy

1− Pc

.

3. The waiting time density function of a customer who has been served without entering
queue II:

Ws(x) =
1− P (AP ) +

∫ x

0
f1(y)e

−γydy

(1− Pc)Ps

.

4. Mean number of customers waiting in queue I:

A = (λ1 + Lν)

∫ ∞

0

xWs(x)dx.

To apply Proposition 6, the value of L is needed. We can use the same method mentioned
in Section 2.3 to obtain such a value. Equating the total incoming rate and outgoing rate
for the orbit, we have:

Lµ = Aγβ.

Solving the above equation, we can get the value of L; afterwards, we can analyze properties
of queue I following the approach mentioned above. In our study, we focus on the performance
of queue I. Since queue II is considered to be a call-back queue, its performance measurements
are omitted here.
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Multi-class retrial queue with different retrial rates

In this subsection, we consider the case with two types of customers who have different
retrial rates involved. Similar to the model in Section 2.3, the model in this section also
consists of two nodes: a service node with c servers, and a retrial pool (orbit) with infinite
servers. Two types of customers arrive at the service node as a Poisson process with rates
λ1 and λ2. At the service node, both types of customers are treated equally, meaning that
there is no priority rule between the two. Customers arriving to find an idle server are taken
into service, service time for both types of customers is exponentially distributed with rate
ν. Customers who find all servers busy join a queue, where they are served in an FCFS
manner, the maximum number of customers in the service node is N . Both types of waiting
customers have the same maximum tolerance time which is also exponentially distributed
with rate γ. An abandoning customer leaves the system forever with probability 1 − β or
joins the retrial pool with probability β. In the retrial pool, type-I customers leave at rate
µ1, while type-II customers leave at rate µ2. After customers complete their retrials, they
are treated as new customers.

In order to fully describe the system, we need a four dimensional state space, (i1, i2, j1, j2),
where i1 and i2 are the numbers of type-I and type-II customers in the service node, j1 and
j2 are the numbers of type-I and type-II customers in the retrial pool. Although we can
write down the transition rate matrix for such a state space, it is not possible to solve the
balance equations in most cases. Observing that two types of customers have completely the
same properties in the service node. We have the following equations:

E[M1] =
λ′
1

λ′
1 + λ′

2

E[M ] and E[M2] =
λ′
2

λ′
1 + λ′

2

E[M ],

where E[M1] and E[M2] are the average numbers of type-I and type-II customers in the
service node, and E[M ] = E[M1] + E[M2] is the average number of total customers in
the service node. λ′

1 and λ′
2 are the virtual arrival rates for type-I and type-II customers,

which are the sum of new arrivals together with retrials. From the above equations, when
calculating first moment, state space collapse can be achieved. In other words, we can reduce
the original two dimensional problem for the service node into one, which serves as the basis
for our further analysis.

Recall that we use the well known PASTA property as the basis for RTA approximation.
Now we can extend the PASTA property into multi-class customers’ case. When the arrival
process is Poisson, the limiting probability that a retrial customer sees i type-I (II) customers
is the same as the stationary probability that there are i type-I (II) customers in the service
node. So, we can get the following equations.

Ni1 = E[N1] ∀i , and Ni2 = E[N2] ∀i,

where Ni1 and Ni2 are the expected numbers of type-I and type-II customers in the orbit
when there are i customers in the service node. E[N1] and E[N2] are the average number of
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type I and II customers in the orbit. Let E[N1] = L1 and E[N2] = L2. We have

λ′
1 = λ1 + L1µ1 , and λ′

2 = λ2 + L2µ2.

Now, we can use the same techniques mentioned in Section 2.3 to analyze queueing properties
for the service node. The limiting probability that there are i customers in total at the service
node is given by

Pi =
i∏

j=1

λ1 + L1µ1 + λ2 + L2µ2

νi + γi
/(1 +

N∑
i=1

(
i∏

j=1

λ1 + L1µ1 + λ2 + L2µ2

νi + γi
)). (2.15)

We can calculate E[M1] and E[M2] as follows

E[M1] =
λ1 + L1µ1

λ1 + L1µ1 + λ2 + L2µ2

N∑
i=c

iPi,

E[M2] =
λ2 + L2µ2

λ1 + L1µ1 + λ2 + L2µ2

N∑
i=c

iPi.

Equating the incoming rate and outgoing rate for both type I and II customers in the orbit,
we get:

L1µ1 =
λ1 + L1µ1

λ1 + L1µ1 + λ2 + L2µ2

N∑
i=c

(i− c)Piγβ, (2.16)

L2µ2 =
λ2 + L2µ1

λ1 + L1µ1 + λ2 + L2µ2

N∑
i=c

(i− c)Piγβ. (2.17)

Plugging (14) into (15) and (16) and solving the equations, we can get the value of L1 and
L2. Some performance measures of the service node can be achieved.

Proposition 7. Given L1 and L2, some performance measurements for the above queueing
system can be calculated as follows.

1. The average waiting time for each customer in the service node:

W =
N∑
i=c

(i− c)
i∏

j=1

λ1+L1µ1+λ2+L2µ2

νi+γi

1 +
N∑
i=1

(
i∏

j=1

λ1+L1µ1+λ2+L2µ2

νi+γi
)

/ (λ1 + L1µ1 + λ2 + L2µ2 ).
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2. The proportion of customers getting served:

Ps =
ν

λ
(

c∑
i=0

i
i∏

j=1

λ1+L1µ1+λ2+L2µ2

νi+γi

1 +
N∑
i=1

(
i∏

j=1

λ1+L1µ1+λ2+L2µ2

νi+γi
)

+
N∑

i=c+1

c
i∏

j=1

λ1+L1µ1+λ2+L2µ2

νi+γi

1 +
N∑
i=1

(
i∏

j=1

λ1+L1µ1+λ2+L2µ2

νi+γi
)

).

From Proposition 7, we can see that W is increasing with respect to λ1, λ2, µ1, µ2 and β;
but decreasing with respect to γ and ν. Actually, this fits our intuition quite well. Higher λ1

and λ2 mean larger incoming flows, with service capacity unchanged, the traffic density will
get higher. As a result, the average waiting time will get higher. For β, a higher β means
more customers tend to retrial, which also results in a larger incoming flow as well as higher
average waiting time. The impact of an increase in µ1 and µ2 is similar to β, which also
results in a higher average waiting time. The situation for γ is just the opposite, high value
of γ means more customers reneging from the system, which decreases the overall traffic
density. As for ν, the result is even more straight forward. With a higher service capacity,
average waiting time will decrease when incoming flow is kept unchanged.

2.5 Conclusion

In this chapter, we study the stationary behavior of a queueing system with both abandon-
ments and retrials. Using the RTA approximation, we separate the analysis of the service
node and retrial pool, and subsequently derive the queueing dynamics. By finding the upper
bound and lower bound for both the original model and RTA model, we prove that the
difference between the result obtained by RTA approximation and the actual system output
is small in the heavy traffic region. Additionally, our simulation results confirm the accuracy
of our methodology. Further, the sensitivity analysis on various key parameters exhibits the
same structural properties in both the original model and the model with approximation.
We also derive the queueing behaviors in two kinds of queueing systems with multi-class
customers. We first study the model involving two types of customers with different aban-
donment rates. In this model, two types of customers have separate queues, with one has
priority over the other. Using level crossing techniques, we find the density function for the
virtual average waiting time, by which we calculate other performance measures of the queue
with priority. Finally, we consider the scenario where two types of customers with different
retrial rates are introduced. By extending PASTA property and RTA approximation into
multi-type case, we characterize the stationary behavior of the service node and get the mean
number of both types of customers in the main queue.

Our analysis can be extended in several ways. As a natural extension, one can study
the model with heterogeneous abandonment rates and heterogeneous retrial rates. This
model is a combination of the two multi-class scenarios we have investigated. Another
possible direction is to incorporate various sorts of priority rules in our multi-class models.
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For example, in certain scenarios, the server may give equal priority to different classes of
customers; in this case, the queue is no longer completely separated, and one has to keep
track of the detailed sequence of customers awaiting in the same queue. This complicates
the analysis because the state space explodes dramatically. While it is beyond the scope of
this chapter, it remains a fruitful direction for future work.
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Chapter 3

Retrial Queueing System with
Negative Customers and Unreliable
Servers

3.1 Introduction

In call centers, customer retrials can be commonly found. In a report regarding the recent
development of call centers published by Global Industry Analysts, Inc., it is pointed out
that around 10%-15% customers in call centers would choose to renege while waiting in
the line. Among those customers, around 40% choose to redial after some time. Besides
customer retrials, deletion signals and unreliable servers are also common in practice. In the
year of 2009, the loss caused by failures of computer telephony integration systems is around
106 million USD.

As a motivating example of the queueing system with customer retrials, deletion sig-
nals (negative customers) as well as unreliable servers, consider a call center with computer
telephony integration which consists of multiple trunk lines that connect calls to the center
through the private automatic branch exchange. An arriving call that finds one customer
service representative available will get served immediately. If all customer representatives
are busy, the customer waits in queue until a customer representative becomes available.
Some customers are not patient enough to wait until a customer representative becomes
available. After getting impatient, some customers will retry to access the call center after
random amount of time, this is called customer retrials. When serving existing customers,
call centers also admit messages from other service sites, inviting customers to immigrate
there. Customers are matched with single messages, and are sent to the sites where the
messages had originated. Such process takes no time. In this case, such invitation messages
can be considered as negative customers, which remove an ordinary (positive) customer upon
arrival. In call centers, the computer telephony integration system is not always reliable.
It would become non-functional due to virus or hardware failures, thereby violating the
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operation of the system. This phenomenon is called server disasters. Also, customer rep-
resentatives in call centers can not work all the time. They need to take a rest sometimes,
such as lunch break. Such rest usually happens at service completions, which is called server
vocations.

In some classic papers, the impact of customer retrials, negative customers and unreliable
servers on queueing system performance has also been discussed. Falin and Templeton (1997)
emphasize that the standard queueing model that does not take retrial phenomenon into
account cannot be applied in solving numbers of practically important problems. Artalejo
(2000) provides a comprehensive survey on the impact of negative customers and disasters
over queueing systems. It is shown by previous papers that for retrial queueing systems,
incorporating negative customers or unreliable servers increases the complexity of queueing
dynamics greatly. As a result, although much research has been done for the field of negative
customers, customer retrials and unreliable servers, it is almost blank in queueing systems
with these three phenomena. For previous papers on the performance measures of retrial
queueing systems with negative customers and unreliable servers, results crucially rely on
fluid models approximation or heavy traffic approximation. Different from these papers, we
characterize the detailed queueing dynamics of the system in this chapter, which allows us
to get high moments of performance measures.

In this chapter, we first study a multi-server queueing system with two types of customers,
regular customers and negative customers. Regular customers may renege from the system if
their waiting time exceeds their patience limit. Upon abandonment, customers may choose
to rejoin the service system after some time. For negative customers, upon their arrival, they
will remove some regular customers instantly. To tackle this problem, we invoke the RTA
(retrials see time average) approximation. Subsequently, the performance measurements for
the entire queueing system are derived.

We also extend our study to incorporate unreliable servers, where two kinds of server
interruptions (server disasters and server vocations) are considered together. We derive
differential equations regarding probability generating functions from the balance equations.
Then, using the concept of stochastic decomposition, we get the generating function of the
steady-state number of customers; this subsequently leads to the performance measurements
for the entire queueing system.

The rest of this chapter is organized as follows. In Section 3.2, we review previous research
papers briefly. In Section 3.3, we analyze the stationary behavior of a queueing system with
customers abandonments, retrials as well as negative customers. In Section 3.4, we continue
our study to the case with an unreliable server. We summarize our findings in Section 3.5.

3.2 Literature review

In the previous queueing literature, customer retrial has been well studied. For the multi-
server retrial model, explicit formulae for the main performance characteristics are absent
when the number of servers is more than two, see Artalejo and Gómez-Corral (2008). Con-
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sequently, different approximation methods are introduced, such as direct truncation model,
generalized truncation model, RTA (Retrial See time Average) approximation, and etc. For
instance, by applying PASTA property to the retrial queueing system, Artalejo (1995) as-
sumes the average number of customers in the retrial pool to be a constant no matter how
many customers in the queue. With this assumption, he got the average number of cus-
tomers both in the queue and in the retrial pool. Recently, Artalejo et al. (2005) deal with
a multi-server retrial queueing model in which the number of active servers depends on the
number of customers in the system. For a fixed choice of the threshold levels, the stationary
distribution and different performance measures of the system are calculated. The optimum
threshold level is also numerically computed in the case of equidistant connection levels. For
detailed overviews of the main results and the bibliographical information about the retrial
queues, see Artalejo (2010).

Over the past couple of decades, many papers have studied negative customers. Applica-
tions of negative arrivals to queueing networks can be found in a survey by Artalejo (2000).
Recently, the topic of negative customers was extended to a discrete-time queue systems.
Atencia and Moreno (2004) present a stationary queue length distribution of the Geo/Geo/1
queue. That model has either negative customers or disasters under an assumption that an
arriving customer is classified as a positive customer or a negative customer (disaster) with
a certain probability. Park et al. (2009) extend the analysis to Geo/G/1 queue and get the
stationary queue length as wellas sojourn time of that model.

On the other hand, many authors have investigated the systems with a repairable service
system which has breakdowns or some other kinds of service interruptions. Takine and
Sengupta (1997) study a queueing system with interruptions under the assumption that as
soon as the service channel fails, it instantaneously undergoes repairs. Ke (2006) investigates
some control policies for unreliable server systems. Recently, Choudhury and Tadj (2009)
study an M/G/1 queue with a second optional service channel which is subject to random
breakdowns. They derive the joint distributions of state of the server and queue size, and
also obtain some important performance measures as well as reliability indices.

For queueing models with unreliable servers, incorporating customer retrials brings sev-
eral challenges. Sherman and Kharoufeh (2006) analyze an unreliable M/M/1 retrial queue
with infinite-capacity orbit and normal queue. Retrial customers repeatedly attempt to ac-
cess the server at i.i.d. intervals until it is found functioning and idle. They provide stability
conditions as well as several stochastic decomposability results. Adopting different settings,
Li et al. (2006) consider a BMAP/G/1 retrial queue with a server subject to breakdowns
and repairs, where the life time of the server is exponential and the repair time is gen-
eral. By using the supplementary variable method, they apply the RG-factorization of a
level-dependent continuous-time Markov chain of M/G/1 type and provide the stationary
performance measures of the system.
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3.3 Retrial queueing system with negative customer

Model description

Our model consists of two types of nodes: a service node with c servers, and a retrial pool
(orbit) with infinite servers, where customers effectively serve themselves. Regular customers
and negative customers arrive at the service node as Poisson process with rates λ1 and λ2.
When one negative customer arrives at the system, i regular customers are forced to leave
the system with probability qi, and this negative customer leaves. Such a process happens
instantly. Note that when the number of regular customers in the system is less than i, all
regular customers will be removed. The service node has a maximum capacity K. When
there are already K customers in the service node, new arrivals will be blocked. If regular
customers arrive and find an idle server, they are taken into service with a duration which
is exponentially distributed with rate ν. Customers who find all servers busy join a queue
and are served in a FCFS (First-Come-First-Serve) manner. Each waiting customer has the
same maximum tolerance time which is exponentially distributed with rate γ; equivalently,
each customer waiting in queue abandons at rate γ. An abandoning customer leaves the
system forever with probability 1−β or joins the retrial pool with probability β. Customers
in the retrial pool leave and subsequently enter the service node at rate µ. Consequently,
when there are i customers in the orbit, the total retrial rate is iµ. After customers complete
their retrials, they are treated as new customers, i.e., new customers and retrial customers
are not distinguished.

Stationary distribution analysis

The above queueing system can be modeled as a continuous-time Markov chain with state
ζ(t) = {C(t), M(t)}, where C(t) is the number of customers in the main queue and M(t) is
the number of customers in the orbit. Let Pi,j be the stationary probability of state (i, j),
the balance equations for this Markov chain are as follows:

For i = 0:
Pi,j(λ1 + jµ) = (i+ 1)νPi+1,j,

For 0 < i ≤ c:

Pi,j(λ1 + λ2 + iν + jµ) = λPi−1,j + (j + 1)µPi−1,j+1 + ((i+ 1)ν + λ2)Pi+1,j,

for c < i < N :

Pi,j(λ1 + λ2 + cν + jµ+ (i− c)γ) = λPi−1,j+
(j + 1)µPi−1,j+1 + (cν + λ2)Pi+1,j + (i+ 1− c)βγPi+1,j−1 + (i+ 1− c)(1− β)γPi+1,j,

for i = N :

Pi,j(cν + (i− c)γ) = λPi−1,j + (j + 1)µPi−1,j+1 + (j + 1)µPi,j+1.
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Define Li =
∞∑
j=0

jPi,j, which is the expected number of customers in the orbit when there

are i customers in the service node. Based on RTA (retrials see time average) approximation,
we have: Li = L, ∀i, where L is chosen in R+. With RTA approximation, we can separate
the analysis of the service node apart from the analysis of the retrial pool. Here, we need
some additional notations:

νi = min(i, c)ν, γi = (i− c)+γ, Pi =
∞∑
j=0

Pi,j,

where Pi is the probability that there are i customers in the service node. Considering the
service node separately, we have the following balance equation:

Pi(λ1 + Lµ) = Pi+1(νi+1 + γi+1 + λ2q1) +
k∑

j=i+2

Pjλ2qj−i.

Define:

yi =
νi + γi + λ2q1

λ1 + Lµ
, Fi =

λ2qi
λ1 + Lµ

.

We have:

Pi = Pi+1yi+1 +
K∑

j=i+2

PjFj−i.

The above equation means that Pi can be expressed as a function of (Pi+1, Pi+2, ..., PK). To
simplify the expression for Pi, we define the following:

x(i, s) =


yi if s = 1
Fs if s > 1.
1 if s = 0

Also, define Si as a set of sequence (sK , sK−1, ..., si) which satisfies
K∑
j=i

sj = K − i, sj ∈ N.

With the definition, we can get the expression for Pi as follows:

Pi = PK

∑
Si

K∏
j=i

x(i+

j∑
t=i

st, sj).

Also, we have the normalization condition:
K∑
i=0

Pi = 1. Then we can get the stationary

probabilities for this queueing system as follows:

Pi =

∑
Si

K∏
j=i

x(i+
j∑

t=i

st, sj)

K∑
i=0

∑
Si

K∏
j=i

x(i+
j∑

t=i

st, sj)

.
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Given P (i), the average number of customers waiting in queue can be calculated as: E =
K∑
i=c

(i− c)Pi. Then, equating the incoming rate to the orbit and the outgoing rate from the

orbit, we have: γE = µL. Solving this equation, we can get the value of L. Now, with L,
we are able to calculate some performance measurements for the queueing system.

Proposition 8. The system performance can be characterized as follows:

1. The probability that all servers are idle:

P0 =

∑
S0

K∏
j=i

x(i+
j∑

t=i

st, sj)

K∑
i=0

∑
Si

K∏
j=i

x(i+
j∑

t=i

st, sj)

.

2. The average number of customers in the service node:

E(Q) =
K∑
i=c

(i− c)
∑
Si

K∏
j=i

x(i+
j∑

t=i

st, sj)

K∑
i=0

∑
Si

K∏
j=i

x(i+
j∑

t=i

st, sj)

.

3. The average waiting time for each customer in the main queue:

E(w) =
1

Lµ+ λ1

K∑
i=c

(i− c)
∑
Si

K∏
j=i

x(i+
j∑

t=i

st, sj)

K∑
i=0

∑
Si

K∏
j=i

x(i+
j∑

t=i

st, sj)

.

4. The proportion of customers getting blocked:

P (b) =
1

K∑
i=0

∑
Si

K∏
j=i

x(i+
j∑

t=i

st, sj)

.

From Proposition 8, we can find that E(Q) is an increasing function with respect to
λ1, µ and β, it is also a decreasing function with respect to λ2, ν and γ. This observation
meets our intuition well. There is also an interesting observation that although we can not
easily find the how the change of the average number of regular customers deleted by a

negative customer (
K∑
i=1

iqi) affect the value of E(Q), we can find that there is no monotonic

relationship existed through some numerical experiments. For example, when λ1 = 10, λ2 =
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10, ν = 15, µ = 5, γ = 5, β = 0.5, consider two scenarios, one is q1 = q2 = 0.5, the other is
q0 = 0.7, q4 = 0.3. Although the average number of regular customer deleted by a negative
customer for scenario 2 is smaller than scenario 1, E(Q) for scenario 2 is larger than scenario
1. One possible reason for this is that the distribution variance for scenario 2 is larger than
scenario 1. In this sense, we can see that for negative customers deletion behavior, both the
first order property and the second order property will affect the value of E(Q).

3.4 Retrial queueing system with negative customers

and unreliable servers

In this section, we take unreliable servers into consideration, i.e., the server in the queueing
system would become dysfunctional randomly. We consider two kinds of server interruptions
together. One could happen at any time, while the other only happens randomly at service
completions. Once the server breaks down (no matter what kind of interruption happens),
service to the current customer stops. After some random time, the server becomes functional
again and the service resumes. Here, we allow different resume times for the two kinds of
service interruptions.

Model description

The model here consists of two types of nodes: a service node with a single server, and a
retrial pool. Differently from the model mentioned in Section 3.3, we only consider a single
server queueing system in this section. The primary reason for this setting is the tractability.
Regular customers and negative customers arrive at the service node as a Poisson process
with rates λ1 and λ2. For each negative customer, it would remove at most one regular
customer in the system. Thus, when one negative customer arrives, if the system is not
empty, one regular customer is forced to leave the system. Otherwise, the negative customer
just leaves with no effect on the queueing system. Such single deletion rule can be found
in many recent papers, such as Park et al. (2009), Chae et al. (2010), and so on. In this
model, the server breaks down with rate θ. Customers interrupted by a server failure do not
leave the server; they will wait until the service resumes. The repair time is exponentially
distributed with rate ω1. Upon each service completion, with probability α, the server would
enter vacation mode; in this case, the service to current customer is interrupted. The resume
rate for the server in vacation mode is ω2. We also take customer abandonments and retrials
into consideration. Customers renege with rate γ and retrial with rate µ.

Stationary distribution analysis

In order to fully describe the system, we need a three-dimensional state space, (i, j, k), where
i is the number of customers in the service node, and j is the status of the server, k is the
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number of customers in the orbit. However, by using retrials see time averages (RTA) ap-
proximation, state space collapse can be obtained. Assuming the number of customers in
the orbit as a constant L, we can use a continuous-time Markov process {X(t), U(t)} to
describe the state of the system at time t, where X(t) is the number of customers in the
system at t, and U(t) is the status of the system. If at time t, the system is experiencing an
interruption, then U(t) is equal to D (disaster); if at time t, the system is in vacation mode,
then U(t) is equal to V (vacation); otherwise, U(t) is N (normal). Accordingly, we denote
the steady-state probability of the system by Pi,D, Pi,V and Pi,N .

The steady-state balance equations are given below

(λ1 + Lµ+ λ2 + ν + (i− 1)γ + θ)Pi,N =
(λ1 + Lµ)Pi−1,N + (λ2 + (1− α)ν + iγ)Pi+1,N + ω1Pi,D + ω2Pi,V ,
(λ1 + Lµ+ (i− 1)γ + ω1)Pi,D = (λ1 + Lµ)Pi−1,D + iγPi+1,D + θPi,N ,
(λ1 + Lµ+ (i− 1)γ + ω2)Pi,V = (λ1 + Lµ)Pi−1,V + iγPi+1,V + ανPi,N .

(3.1)

The boundary equations are

(λ1 + Lµ+ θ)P0,N = (λ2 + ν)P1,N + ω1P0,D + ω2P0,V ,
(λ1 + Lµ+ ω)P0,D = θP0,N ,
(λ1 + Lµ+ ω)P0,V = ανP0,N .

(3.2)

Let GN(z) =
∞∑
i=0

ziPi,N , GD(z) =
∞∑
i=0

ziPi,D, and GV (z) =
∞∑
i=0

ziPi,V for |z| ≤ 1. By stochastic

decomposition, the generating function of the steady-state number of customers in the service
node is given by G(z) = GN(z) +GD(z) +GV (z).

Multiplying both sides of (3.1) and (3.2) by zi and summing over all i’s yield the differ-
ential equations

((λ1 + Lµ)(1− z) + (λ2 + ν − γ)(1− 1
z
) + θ)GN(z) + γ(z − 1)G′

N(z)
+(r − λ2 − (1− α)ν)(1− 1

z
)P0,N = ω1GD(z) + ω2GV (z),

((λ1 + Lµ)(1− z)− γ(1− 1
z
) + ω1)GD(z) + γ(z − 1)G′

F (z) + γ(1− 1
z
)P0,D = θGN(z),

((λ1 + Lµ)(1− z)− γ(1− 1
z
) + ω2)GV (z) + γ(z − 1)G′

V (z) + γ(1− 1
z
)P0,V = ανGN(z).

For above differential equations, there are six unknown variables. Thus, we still need
three additional equations:

(λ1 + Lµ+ ω)P0,D = θP0,N ,
(λ1 + Lµ+ ω)P0,V = ανP0,N ,
P0,N = GN(0),

where the first two equations are from the boundary conditions and the second one is from
the property of probability generating function. Then, with the normalization equation
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G(1) = GN(1) + GD(1) + GV (1) = 1, the unique solution for GN(z) and GF (z) can be
obtained as follows.

GN(z) =
ν(ω1 + ω2)− (λ1 + Lµ)(ω1 + θ) + γλ2

ν(ω1 + ω2 + θ)
P (z)c,

GD(z) =
(λ1 + Lµ){(1− z)[ω1 + θ + (λ1 + Lµ)(1− z)][νω1 − (λ1 + Lµ)(ω1 + θz)]}

ν(ω1 + θ)[θz − (ν − (λ1 + Lµ)z)(1− z)]
P (z)c+1,

GV (z) =
(λ1 + Lµ){(1− z)[ω1 + θ + (λ1 + Lµ)(1− z)][ανω2 − (λ1 + Lµ)ω2]}

(αν2 + νθ)[θz − (αν − (λ1 + Lµ)z)(1− z)]
P (z)c,

where

P (z) =
νω1 − (λ1 + Lµ)(ω1 + θ) + γλ2

νω1 − (λ1 + Lµ)(ω1 + θz) + γλ2z
+

ω2ν − αν

ω2ν − ανz
, c =

ω1 + ω2 + θ + αν

µ
.

Since the generating function of the steady-state number of customers can be calculated
as G(z) = GN(z)+GD(z)+GV (z), we are able to calculate some performance measurements
for the queueing system.

Proposition 9. Given G(z), some performance measurements for the above queueing system
can be calculated as follows.

1. The probability that all servers are idle:

P0 = (
νω1 − (λ1 + Lµ)(ω1 + ω2 + θ) + γλ2

νω1 − (λ1 + Lµ)ω2

)
ω1+θ

µ · νω1 + γλ2

(ω1 + ω2)
2 + (ω1 + ω2)αν

.

2. The average number of customers in the service node:

N =
νθ(θ + αν) + (λ1 + Lµ)(ω1 + ω2 + θ)2 + γλ2

ν(ω1 + θ)[(ω1 + ω2)
2 + (ω1 + ω2)θ − (λ1 + Lµ)(ω2 + θ)]

3. The average number of customers waiting:

Q =
νθ(θ + αν) + (λ1 + Lµ)(ω1 + ω2 + θ)2 + γλ2

ν(ω1 + θ)[(ω1 + ω2)
2 + (ω1 + ω2)θ − (λ1 + Lµ)(ω2 + θ)]

.

To apply Proposition 9, the value of L is needed. We can use the same method mentioned
in Section 3.3 to obtain such a value. Equating the total incoming rate and outgoing rate
for the orbit, we have:

Qγβ = Lµ.

Solving the above equation, we can get the value of L.



CHAPTER 3. RETRIAL QUEUEING SYSTEM WITH NEGATIVE CUSTOMERS
AND UNRELIABLE SERVERS 31

From Proposition 9, we can see that Q is increasing with respect to λ1, θ, ω1, α and
ω2. It is decreasing with respect to λ2. This observation is quite straight forward. A higher
λ1 means a larger incoming flow, with service capacity unchanged, the traffic density will
get higher. As a result, the average number of waiting customers will get higher. While
the situation for λ2 is just the opposite. For θ, higher θ means a larger proportion of time
the system is down. In this sense, the virtual service rate will be lower. Then, the average
number of waiting customers will get higher. In the same way, we can see that as ω1, α and
ω2 increase, the average number of waiting customers will also increase.

3.5 Conclusion

In this chapter, we study the stationary behavior of a multi-server queueing system with
two types of customers, regular customers and negative customers. Regular customers may
renege and subsequently reenter the queueing system, while negative customers can be con-
sidered as deletion signals. Using the RTA approximation, we separate the analysis of the
service node and retrial pool, and then derive the queueing dynamics. Further, we derive
the queueing behaviors in the retrial queueing system with negative customers and unreli-
able servers, where two kinds of server interruptions (server disasters and server vocations)
are considered together. Using stochastic decomposition, we get the generating function
of the steady-state number of customers; this subsequently leads to the performance mea-
surements for the entire queueing system. We also compare our results with come previous
papers, finding that our results converge to the results got by those papers in extreme cases.

Our analysis can be extended in several ways. First, we assume that there is no pro-
cessing time for negative customers. This assumption can be relaxed in further analysis by
adopting deterministic or random processing time for negative customers. Then, one can as-
sign different priority rules between regular customers and negative customers. For example,
in certain scenarios, the server may give equal priority to regular customers and negative
customers; in this case, one has to keep track of the detailed sequence of customers awaiting
in the same queue. Another possible direction is to allow each negative customer to delete
random number of regular customers for the model with unreliable servers. However, both
directions would complicate the analysis a lot because the state space explodes dramatically.
While it is beyond the scope of this chapter, it remains a fruitful direction for future work.
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Chapter 4

Revenue Management in Queue
Systems With Customer Renege

4.1 Introduction

As a motivating example of the chapter, consider a computer repair shop facing customers
with different lead time sensitivities. Some customer just want their computers to be re-
paired, no matter how much time it takes. Some customers are more sensitive on the lead
time between order placement and delivery since they have some urgent need for their com-
puter, in this sense, they value speedy service more. For the second type of customers, if
their wait time exceed some certain amount, they may leave and seek for other services, this
phenomenon is called customer renege. For the owner of the computer repair shop, how to
design a price-lead time menu to maximize its revenue from heterogeneous customers is a
critical issue. This chapter will provide an answer for such question.

The above example is a good case for the revenue management problem in queueing
systems with customers renege. Actually, similar cases can be easily found in real life. UPS
and Fedex offer different price-lead time options to meet different customers’ need, e.g., same-
day, five days, and so on. Dell would give priority customer support to those who buy extra
coverage plan. For recent years, there are many papers dealing with revenue management
in queueing systems, like Maglaras (2006), Afeche (2004), etc.. However, none of these
papers take customers renege into consideration. In queueing theory, it is emphasized that
the standard queueing model that does not take customers renege into account cannot be
applied in solving numbers of practically important problems. In this sense, this chapter is
aiming to fill the gap by studying a revenue management problem in queueing systems with
customers renege.

In this chapter, we consider a problem in the context of a queueing model with two types
of customers, i.e., impatient customers and patient customers who have different waiting
cost per unit time. Also, for impatient customers, they may renege from the system if their
waiting time exceeds their patience limit. For both types of customers, their valuation of
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service and waiting cost per unit time are private information. The service provider’s goal
is to design a menu and corresponding scheduling policy to maximize revenue when facing
this information asymmetry. By using a mechanism design framework and adapting the
achievable region approach, we transform the scheduling control problem into a nonlinear
program. Then through a two-stage optimization technique, we finally identify the optimal
price-lead time manus and scheduling policies for different scenarios. We also discuss how
the optimality conditions for strategic delay (see Afeche (2004)) change in the setting with
customers renege.

The rest of the chapter is organized as follows. In Section 4.2, we review previous research
papers briefly. In Section 4.3, our model and problem formulation are explained in detail.
Then, we analyze the optimal price-lead time manus and scheduling policies and present
some structural results in Section 4.4. Finally, our main findings will be summarized in
Section 5.

4.2 Literature review

In this chapter, we adapt achievable region approach to transform the scheduling control
problem into a nonlinear program. This approach is pioneered by Coffman and Mitrani
(1980) which studies the problem of designing scheduling strategies when the demand on the
system is known and waiting time requirements are prespecified. After that, Shanthikumar
and Yao (1992) extend these results by introducing the concept of strong conservation laws
and proving a powerful result about the achievable region when strong conservation laws hold.
Different from papers which apply achievable region approach on performance measures that
are expectations of steady-state random variable, Green and Stidham (2000) study optimal
control for certain scheduling problems on a sample-path basis by using the property that
strong conservation laws hold for performance measures at every time point on every sample
path.

In the field of resource allocation using mechanism design, Mussa and Rosen (1978) con-
sider a class of monopoly pricing problem involving a quality-differentiated spectrum of goods
with the same type. They find that the optimal policy would reveal consumer preferences
and assign different consumer types to different varieties of goods. After that, Rochet and
Choné (1998) provide existence proofs and characterization results for the multidimensional
version of the multi-product monopolist problem of Mussa and Rosen (1978), they also show
that bunching is robust in these multidimensional screening problems, even with very reg-
ular distributions of types. Recently, Dana Jr and Yahalom (2008) generalize Mussa and
Rosen’s model by introducing an aggregate resource constraint, which induces an upwards
distortion in product quality for high valuation consumers because the standard downward
distortions in product quality for other consumers relax the resource constraint. The above
three papers are quite close to this one, however, our setup differs the above three in two
aspects: first, in our model, customer utility depends on overall demand because of capac-
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ity constraint, queueing and delay costs; second, service provider can control externalities
through scheduling policy.

On the other hand, many authors work on incentive-compatible socially optimal pricing
and scheduling. Van Mieghem (2000) studies the optimal prices and service quality grades
that a firm provides to heterogeneous customers who measure quality by their experienced
delay distributions. They also analyze multi-plan pricing, which offers all customers a menu
with a choice of multiple rate plans. Ha (2001) derives incentive-compatible and socially
optimal prices under customer-chosen service requirements, first-in-first-out (FIFO) service
rule and processor sharing. Hsu et al. (2009) propose a resource allocation and pricing
mechanism for a service system that serves multiple classes of jobs where class of service
request is subject to a class-dependent quality of service (QoS) guarantee on the expected
delay bound. They show that the pricing scheme with the QoS guarantee depends on the
scheduling policy implemented and has different characteristics from that without the QoS
guarantee.

Recently, there are also many research papers dealing with pricing operational decisions
for queueing systems. Hassin and Haviv (2003) give a very good survey on different topics
in this field, e.g., profit maximization in observable queues, incentive compatible prices in
priority queues and so on. Besides, Çelik and Maglaras (2008) consider a make-to-order
manufacturer that offers multiple products to a market of price and delay sensitive users.
They derive near-optimal dynamic pricing, lead-time quotation, sequencing, and expediting
policies using an approximating diffusion control problem. Some numerical results are also
provided to show the value of joint pricing and lead-time control policies. Akan et al. (2012)
study a congestible system serving multiple classes of customers with convex-concave delay
cost functions. By using a novel fluid model, they investigate how such menus should be
chosen dynamically to maximize welfare. They also show that the cost-balancing policy is
socially optimal if the system manager have perfect information on customers type.

4.3 Model description

Model primitives and problem formulation

In our model, we consider a service system facing two kinds of customer, patient customers
and impatient customers. Here, we define impatient customers to be type-1 and patient
customers to be type-2. The arrival rates for these two types of customers are Λ1 and Λ2.
These two types of customers differ in two attributes, service valuation and delay cost rate.
For the service valuation, it represents a customer’s willingness to pay for immediate delivery
of the service. While for the delay cost rate, it measures the cost per unit time between the
placement and delivery of an order. Type-i valuation vi is a random variables with c.d.f
Fi and p.d.f fi. Type-i delay cost rate is a deterministic number ci. We assume w.o.l.g.
that c1 > c2. For impatient (type-1) customers, their service would expire if the lead time
exceeds some certain amount T . This means if a impatient customer waits for more than
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T , even if she gets served eventually, this service would create no value to her. In this
sense, all impatient customers would leave after waiting for time T , which is considered as
customer abandonments. The service time for two kinds of customers is the same, which is
exponentially distributed with rate µ.

Upon each customer’s arrival, she can not observe the current number of customers
waiting for service. Instead, she is given a static menu of two options, (p1,W1) (class-1
option) and (p2,W2) (class-2 option). Here, pk(k = 1, 2) is job price, which measures the
money a customer pays for getting the service; Wk(k = 1, 2) is the expected lead time. We
assume p1 > p2 and W1 < W2, meaning that if a customer pays more for getting the service,
her expected waiting time would be shorter.

In this model, we assume all customers seek to maximize their expected utility. We
also assume them to be risk neutral with respect to lead time uncertainty. When a type-
i customer chooses a class-k option, her utility is given as vi − ciWk − pk. Adapting the
concept in Mechanism Design, we can restrict attention to menus that target class-i service
to type-i customers, meaning that type 1 customers would prefer class-1 option, while type 2
customers would prefer class-2 option. Such menus must satisfy the incentive-compatibility
(IC) constraints vi−ciWi−pi ≥ vi−ciWj−pj, i ̸= j. Under an IC menu, when vi−ciWi−pi <
0, a type-i customer would not choose any option in the menu, meaning that she would leave
immediately after she sees the menu. In this sense, the actual arrival rate for type-i customers
is λi = Λi · F i(ciWi + pi), i = 1, 2, where F i = 1− Fi.

For the service provider, she knows the arrival rate Λi, the value distributions Fi, delay
cost rates ci and the service time distribution. Her goal is to design a price-lead time
menu and scheduling policy to maximize her expected revenue. Since the expect revenue for
the service provider is λ1p1 + λ2p2, her goal becomes maximizing λ1p1 + λ2p2 under some
constraints. Recall that W1 and W2 are the announced expected waiting time, in order to
ensure the credibility of the service provider, Wi = ws

i should be satisfied, where ws
i is the

realized class-i mean steady-state delay given a scheduling policy s. For the value of W1, if
W1 > T , no type-1 customer will join the service system since their service expires after time
T . Because there is no incentive for the service provider to keep high type customers away,
W1 ≤ T should be satisfied. As for W2, there are two possibilities. If W2 > T , there is no
incentive for a type-1 customer to choose class-2 option. So IC-1 constraint is not necessary.
While when W1 ≤ T , IC-1 constraint should be considered.

In summary, the service provider solves a two-scenario optimizing problem to maximize
her expected revenue.
Scenario 1

max λ1p1 + λ2p2
s.t. λi = Λi · F i(ciWi + pi), i = 1, 2

c2W2 + p2 ≤ ciW1 + p1
λ1 + λ2 < µ
W1 ≤ T
W2 > T
Wi = ws

i , i = 1, 2
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Scenario 2
max λ1p1 + λ2p2

s.t. λi = Λi · F i(ciWi + pi), i = 1, 2
c1W1 + p1 ≤ ciW2 + p2
c2W2 + p2 ≤ ciW1 + p1
λ1 + λ2 < µ
W1 ≤ T
W2 ≤ T
Wi = ws

i , i = 1, 2

Strategic delay and modified formulation

For the optimization problem mentioned in previous subsection, we are trying to find the opti-
mal scheduling rule s. Actually, we can transform the problem into a the simpler optimization

problem of finding (W1,W2) in the corresponding achievable region OA
∆
= {(ws

1, w
s
2) : s ∈ A},

where A is the set of admissible scheduling policies. The admissible scheduling policies can
be work conserving rules, like First-In-First-Out (FIFO), Last-In-First-Out (LIFO) or some
strategic delay rule which is mentioned in Afeche (2004). In order to do this transformation,
we have the following lemma.

Lemma 10. There exists a policy s ∈ A such that Wi = ws
i , i = 1, 2 if and only if

W1 ≥
1

µ− λ1 · µT
1+µT

(4.1)

W2 ≥
1

µ− λ2

(4.2)

λ1T

1 + µT
·W1 +

λ2

µ
·W2 ≥

1

µ
·

λ1 · µT
1+µT

+ λ2

µ− λ1 · µT
1+µT

− λ2

(4.3)

With this lemma, the constraint Wi = ws
i , i = 1, 2 can be expressed as the above three

inequalities. Further, the original problem is optimizing over pk(k = 1, 2), in order to make
the solution process easier, we will transform it into an optimization problem over λi(k = 1, 2)
by making the following definition

vi(λi)
∆
= F

−1

i (
λi

Λi

), i = 1, 2

In this sense, the objective function is expressed as
2∑

i=1

λi(vi(λi)− ciWi), and IC constraints

become v1(λ1)−v2(λ2)
c1−c2

≥ W1 and v1(λ1)−v2(λ2)
c1−c2

≤ W2. Then, we obtain the following equivalent
problem.
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Scenario 1

max
2∑

i=1

λi(vi(λi)− ciWi)

s.t. 0 ≤ λi < Λi i = 1, 2
λ1 + λ2 < µ
W1 ≥ 1

µ−λ1· µT
1+µT

W2 ≥ 1
µ−λ2

W1 ≤ T
W2 > T

λ1T
1+µT

·W1 +
λ2

µ
·W2 ≥ 1

µ
· λ1· µT

1+µT
+λ2

µ−λ1· µT
1+µT

−λ2

v1(λ1)−v2(λ2)
c1−c2

≤ W2

Scenario 2

max
2∑

i=1

λi(vi(λi)− ciWi)

s.t. 0 ≤ λi < Λi i = 1, 2
λ1 + λ2 < µ
W1 ≥ 1

µ−λ1· µT
1+µT

W2 ≥ 1
µ−λ2

W1 ≤ T
W2 ≤ T

λ1T
1+µT

·W1 +
λ2

µ
·W2 ≥ 1

µ
· λ1· µT

1+µT
+λ2

µ−λ1· µT
1+µT

−λ2

v1(λ1)−v2(λ2)
c1−c2

≥ W1
v1(λ1)−v2(λ2)

c1−c2
≤ W2

4.4 Structural results

For the above optimization problem, the decision variables are λi and Wi, in order to find
the optimal solution, we adapt a two-step methodology. Detailed approach is as follows.
STEP 1 Treat λi as known, determine the optimal lead time Wi for scenario 1, then do the
same thing for scenario 2.
STEP 2 Based on the results in step 1, find the arrival rates λ1

i and lead time W 1
i which

maximize the revenue in scenario 1, define Π1 =
2∑

i=1

λ1
i (vi(λ

1
i )− ciW

1
i ). Also, find the optimal

λ2
i and W 2

i for scenario 2, define Π2 =
2∑

i=1

λ2
i (vi(λ

2
i )− ciW

2
i ).

STEP 3 Compare the value of Π1 and Π2, see which scenario yields a higher revenue.
Before solving the above optimization problem, we first consider the so-called first-best

problem which is the original problem without IC constraints. For the first-best problem,
we have the following Proposition.
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Proposition 11. For fixed λ1 and λ2, when IC constraints are not considered, the optimal
solution (first-best optimal) for scenario 1 is

W cµ−1
1 = 1

µ−λ1· µT
1+µT

W cµ−1
2 = µ

(µ−λ1· µT
1+µT

)(µ−λ1· µT
1+µT

−λ2)
.

While the first-best optimal for scenario 2 is

W cµ−2
1 = 1

µ−λ1· µT
1+µT

W cµ−2
2 = T

From this proposition, we can see that if we don’t consider IC constraints, the revenue
maximization problems are exactly the same as delay cost minimization problems for both
scenario 1 and 2. In this sense, the work conserving preemptive cµ scheduling rule is optimal
for the first best problems of two scenarios, meaning that giving absolute priority to impatient
customers (since they have higher unit waiting cost so that the cµ index for them is higher)
produces highest revenue for the service provider if IC constraints are not considered.

If we incorporate the IC constraints, the optimization problems for both scenarios will be
much more complicated. For the optimality of the second-best problems (first best problems
with IC constraints, which is also the original problem), we have the following Proposition.

Proposition 12. For fixed λ1 and λ2, the second-best optimal lead time is given as follows.

1. When µ

(µ−λ1· µT
1+µT

)(µ−λ1· µT
1+µT

−λ2)
< T and v1(λ1)−v2(λ2)

c1−c2
> µ

(µ−λ1· µT
1+µT

)(µ−λ1· µT
1+µT

−λ2)
, the

second-best optimal lead time is

W SD−2
1 =

1

µ− λ1 · µT
1+µT

,W SD−2
2 =

µ

(µ− λ1 · µT
1+µT

)(µ− λ1 · µT
1+µT

− λ2)
.

2. When µ

(µ−λ1· µT
1+µT

)(µ−λ1· µT
1+µT

−λ2)
≥ T and v1(λ1)−v2(λ2)

c1−c2
> 1

µ−λ1· µT
1+µT

, the second-best opti-

mal lead time is

W SD−1
1 =

1

µ− λ1 · µT
1+µT

,W SD−1
2 =

v1(λ1)− v2(λ2)

c1 − c2
.

3. When µ

(µ−λ1· µT
1+µT

)(µ−λ1· µT
1+µT

−λ2)
< T and v1(λ1)−v2(λ2)

c1−c2
≤ µ

(µ−λ1· µT
1+µT

)(µ−λ1· µT
1+µT

−λ2)
, the

second-best optimal lead time is

W cµ−1
1 =

1

µ− λ1 · µT
1+µT

,W cµ−1
2 =

µ

(µ− λ1 · µT
1+µT

)(µ− λ1 · µT
1+µT

− λ2)
.
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4. When µ

(µ−λ1· µT
1+µT

)(µ−λ1· µT
1+µT

−λ2)
≥ T and v1(λ1)−v2(λ2)

c1−c2
≤ 1

µ−λ1· µT
1+µT

, the second-best opti-

mal lead time is

W cµ−2
1 =

1

µ− λ1 · µT
1+µT

,W cµ−2
2 = T.

5. When none of the condition 1-4 holds, there is no optimal solution.

For the above proposition, W SD−1
i W SD−2

i correspond to some scheduling policy which is
not work conserving. So, in some situations, it is optimal for the service provider to delay the
service of patient customers intentionally, which is called strategic delay (see Afeche (2004)).
Although by adapting those strategic delay scheduling policies, the aggregate delay cost rate
will increase, impatient customers would have more incentives to buy the premium service,
which gives extra revenue for the service provider.

4.5 Summary

In this chapter, we study a revenue management problem for a queueing system with two
types of customers which have different valuation of service and different unit waiting time.
The key difference between this chapter and previous research papers is that we assume the
service for impatient customers would expire after time T . This brings customer abandon-
ments to our model. By using a mechanism design framework and adapting the achievable
region approach, we transform the scheduling control problem into a nonlinear program.
Then through a two-stage optimization technique, we finally identify the optimal price-lead
time manus and scheduling policies for different scenarios. We also discuss how the optimal-
ity conditions for strategic delay change in the setting with customers renege. In this sense,
this chapter is an extension for Afeche (2010) by introducing customer abandonments.
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Appendix A

Proofs

Proof of Lemma 1. Define: x = Lµ+ λ, ai =
i∏

j=1

1
νi+γi

, bi = βγ(i− c). Then, (6) reduces

to:

x− λ = βγ

N∑
i=c

(i− c)
aix

i

1 +
N∑
i=1

aixi

.

Making a transform on the above equation, we have:

−λ+(1−λa1)x+(a2−λa3)x
2+...+(ac−1−λac−bc)x

c+...+(aN−1−λaN−bN)x
N+aNx

N+1 = 0.

For the above equation, it is easy to see that the number of variations of sign in the coefficient
sequence of xi is 1. So, by extended Descartes’ rule of signs, there will be a unique positive
root of x, which means that the positive root for L will also be unique. �

Proof of Proposition 2. Parts 1,2 and 5 are already derived in the main body of
section 3. Here, we only prove parts 3 and 4.
For part 3, Let EQ be the average number of customers waiting in the main queue. Apply
the Little’s Law to the main queue, we have:

W =
EQ

Lµ+ λ
=

1

Lµ+ λ

N∑
i=c

(i− c)Pi =
1

Lµ+ λ

N∑
i=c

(i− c)
i∏

j=1

Lµ+λ
νi+γi

1 +
N∑
i=1

(
i∏

j=1

Lµ+λ
νi+γi

)

.

For part 4, in the long run, the proportion of customers getting served equals to the outgoing
rate from the server over the incoming rate to the service node, so we have:

P (s) =
ν

λ
[

c∑
i=0

i
i∏

j=1

Lµ+λ
νi+γi

1 +
N∑
i=1

(
i∏

j=1

Lµ+λ
νi+γi

)

+
N∑

i=c+1

c
i∏

j=1

Lµ+λ
νi+γi

1 +
N∑
i=1

(
i∏

j=1

Lµ+λ
νi+γi

)

]. � (A.1)
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Proof of Lemma 3. For MO, M1 and M2, we have:

(Li−1µ+ λ)Pi−1 = (νi + γi)Pi (MO),

λPi−1 = (νi + γi)Pi (M1),

λPi−1 = (νi + (1− β)γi)Pi (M2),

where Pi is the stationary probability that there are i customers in the service node. Also, we
have: Li−1µ = βγi. So, we can easily get the following result: Pi/Pi−1(M1) ≤ Pi/Pi−1(MO) ≤
Pi/Pi−1(M2). Further, we know that the average waiting time is an increasing function with
respect to Pi/Pi−1. Consequently, we have:

WM1 6 WMO 6 WM2.

Similarly, we can prove WM1 6 WMR 6 WM2. So, we have: |WMR −WMO| 6 WM2 −WM1.
�

Proof of Proposition 4. Take part 1 as an example, proofs for other parts can be done
in the same way. It is obvious that for the original model, a higher customer arrival rate
will result in a higher average customer waiting time. So, the average customer waiting time
WMO is increasing with respect to λ. For WMR, we have: (Lµ + λ)Pi−1 = (νi + γi)Pi, and
we know that WMR is an increasing function with respect to Pi/Pi−1. So, we only need to
show that the value of L increases with respect to λ.

Here, we are using the counter example to prove that L is increasing with respect to
λ. Suppose the value of L does not change with respect to λ, we can conclude that the
incoming flow to the orbit is greater than the outgoing flow. So, the orbit can not be in
steady state, which makes a contradiction. Therefore, the value of L can not keep the same.
Then, suppose the value of L decreases when λ increases, we can conclude that the outgoing
flow from the orbit is greater than its incoming flow, so the orbit can not be in steady state
also, which makes another contradiction. Consequently, the value of L can not decrease.
Based on the above two claims, we can see that the value of L is an increasing function
with respect to λ. Then, we can get the conclusion that WMR is an increasing function with
respect to λ directly. �

Proof of Lemma 5. From Brill and Posner (1981), Brill (1979) and Brill and Posner
(1977), the rate of downcrossing of level x is f1(x). For the upcrossing of level x, there are
four situations in total. The first situation is due to customers who find only one server idle
upon arrival and initiate the active phase. In order for the virtual waiting time to upcross x,
the time until the first service completion should be greater than x. Thus, such an upcrossing
occurs with rate (λ1 + λ2 + Lµ)Pc−1e

−cνx.

The second situation is from customers who are patient enough to reach servers. The
rate of such upcrossing is (λ1 + Lµ)

∫ x

0
e−cν(x−y)e−γyf1(y)dy. In the third situation, con-

sider one type-II customer arrives during an active phase, since type II customers will not
increase the waiting time for type-I customer until they seize the first server becoming idle
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from the call back queue. In this situation, the next type-I customer’ waiting time will be
greater than x only if the first service completion time for c servers is greater than x. So
such upcrossing rate is λ2P (AP )e−cνx. The last situation involves customers initially joining
queue I who later get inpatient and join queue II. Assume that the virtual waiting time
upon this customer’s arrival is at level y, we can find that the upcrossing rate is given by
(λ1 + Lµ)(1− β)e−cνx

∫ x

0
(1− e−γy)f1(y)dy.

By equating the rate of downcrossings and the rate of upcrossings, we get

f1(x) = (λ1 + λ2 + Lµ)Pc−1e
−cνx + (λ1 + Lµ)

∫ x

0
e−cν(x−y)e−γyf1(y)dy + λ2P (AP )e−cνx

+ (λ1 + Lµ)(1− β)e−cνx
∫ x

0
(1− e−γy)f1(y)dy.

For the normalizing condition, we have:

c−1∑
j=0

Pj +

∫ ∞

0

f1(y)dy = 1.

As we know that the number of busy servers is birth-death process, so the value of Pj can be
stated in terms of P0. Let ρ = (λ1 + λ2 + Lµ)/ν, the normalizing condition can be reduced
to :

c−1∑
j=0

ρj

j!
P0 +

∫ ∞

0

f1(y)dy = 1. �

Calculation of f1(x) and P (AP ). Taking the derivative of both sides in (2.13) with
respect to x, we can get the first order differential equation:

f ′
1(x) = (λ1 + Lµ)e−γxf1(x)− cν[(λ1 + λ2 + Lµ)Pc−1e

−cνx + λ2P (AP )e−cνx

+(λ1 + Lµ)
∫ x

0
e−cν(x−y)e−γyf1(y)dy + (λ1 + Lµ)(1− β)e−cνx

∫ x

0
(1− e−γy)f1(y)dy].

From equation (2.13), the above differential equation reduces to:

f ′
1(x) = (λ1 + Lµ)e−γxf1(x)− cνf1(x).

Solving the above equation, we get

f1(x) = Ke
λ1+Lµ

γ
(1−e−γx)−cνx, (A.2)

where K is a constant. In order to get the value of K, take Laplace transform on both sides
of equation (2.13), we have

f̃1(s) =
1

cν+s
[(λ1 + λ2 + Lµ)Pc−1 + (λ1 + Lµ)f̃1(s+ γ) + λ2P (AP )

+ (λ1 + Lµ)(1− β)(P (AP )− f̃1(γ))].
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And we know lim
s→0

f̃1(s) = P (AP ), from the above equation, we can obtain

f̃1(γ) =
−(λ1 + λ2 + Lµ)Pc−1 + P (AP )(cν − λ1 − λ2 − Lµ+ (λ1 + Lµ)β)

(λ1 + Lµ)β
. (A.3)

Setting x = 0 in (2.13) and (2) gives that

K = (λ1 + λ2 + Lµ)Pc−1 + λ2P (AP ) + (λ1 + Lµ)(1− β)(P (AP )− f̃1(γ)). (A.4)

From the normalizing condition and equation (2), (4), we can obtain

P0 =
1− U [λ1 + Lµ+ λ2 − β(λ1 + Lµ)− 1−β

β
(cν − (λ1 + Lµ+ λ2 − β(λ1 + Lµ)))]

UX +
∑c−1

j=0
ρj

j!

,

where

U =

∫ ∞

0

e
λ1+Lµ

γ
(1−e−γx)−cνxdx,

and

X =
(λ1 + λ2 + Lµ)ρc−1

β(c− 1)!
+

(1− β)cν − (λ1 + Lµ+ λ2 − β(λ1 + Lµ)

β

∑c−1

j=0

ρj

j!
.

With the value of P0, we can compute K and P (AP ) and obtain f1(x) with no difficulty. �
Proof of Proposition 8 The average number of customers in the service node is

E(Q) =
K∑
i=c

(i− c)Pi =
K∑
i=c

(i− c)
∑
Si

K∏
j=i

x(i+
j∑

t=i

st, sj)

K∑
i=0

∑
Si

K∏
j=i

x(i+
j∑

t=i

st, sj)

.

For the average waiting time, applying Little’s Law to the service node, we have

E(w) =
E

Lµ+ λ1

=
1

Lµ+ λ1

K∑
i=c

(i− c)
∑
Si

K∏
j=i

x(i+
j∑

t=i

st, sj)

K∑
i=0

∑
Si

K∏
j=i

x(i+
j∑

t=i

st, sj)

.

In the long run, the proportion of customers getting blocked equals to the probability that
the service node is in state K, so

P (b) = PK =
1

K∑
i=0

∑
Si

K∏
j=i

x(i+
j∑

t=i

st, sj)

. �
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Proof of Proposition 9 From the properties of probability generating function, the
stationary probabilities can be calculated by the probability generating function.

Pk =
G(k)(0)

k!
.

The probability that all servers are idle is

P0 = G(0) = (
νω1 − (λ1 + Lµ)(ω1 + ω2 + θ) + γλ2

νω1 − (λ1 + Lµ)ω2

)
ω1+θ

µ · νω1 + γλ2

(ω1 + ω2)
2 + (ω1 + ω2)αν

.

Also, the average number of customers in the service node is

N = G′(1) =
νθ(θ + αν) + (λ1 + Lµ)(ω1 + ω2 + θ)2 + γλ2

ν(ω1 + θ)[(ω1 + ω2)
2 + (ω1 + ω2)θ − (λ1 + Lµ)(ω2 + θ)]

Since the average number of customers waiting equals the average number of customers
in the system minus the average number of customers in the server, we have

Q = N − 1 · P1 =
νθ(θ + αν) + (λ1 + Lµ)(ω1 + ω2 + θ)2 + γλ2

ν(ω1 + θ)[(ω1 + ω2)
2 + (ω1 + ω2)θ − (λ1 + Lµ)(ω2 + θ)]

. �
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