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Social robots are becoming a part of everyday life, including household compan-

ions, education and healthcare assistants, museum guides and hotel delivery bots. These

robots can benefit from machine perception algorithms that automatically recognize

people, their facial expressions and the surrounding environment. In this thesis, we

develop perceptual algorithms for a social robot called RUBI, who is used to interact

with toddlers in the classroom and enrich the early childhood education environment. We

develop a classic computer vision pipeline for RUBI to recognize and analyze toddlers’

faces in the classroom. In the second and third chapters of this thesis, we show how
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RUBI can use this capability to extract the social structure of a group of toddlers, as well

as the children’s preferences for different activities and their playmates.

In the remainder of this thesis, we develop Active Object Recognition (AOR)

models for RUBI. While interacting with children, RUBI can teach object names to

children, to extend their vocabulary and monitor their learning skills. In chapter 4, we

introduce GERMS, a dataset designed to accelerate progress on AOR in the context of

human robot interaction. This dataset is designed for RUBI to recognize toys in her

grippers so that she can name them for the children. We use deep Q-learning to train

RUBI to optimize her actions (rotating the toy in her gripper) for toy recognition. In

chapter 5, we improve her performance by training a deep neural network end-to-end, for

joint object label and action prediction. A generative model of object similarities based

on Dirichlet distribution is proposed and embedded in the network for encoding the state

of the system. In chapter 6, we propose a method for supervised learning of AOR policy.

We formulate AOR as a Partially Observable Markov Decision Process (POMDP) and

extract rollouts of object inspection using Belief Tree search. We then train a Long Short

Term Memory network (LSTM) on these rollouts to predict the best next action. We

show improvement in recognition performance by iteratively optimizing the observation

function, and then retraining the supervised LSTM policy network.

xvii



Chapter 1

Introduction

1.1 Perceptual Primitives for Social Robots

Social robots are becoming prevalent in all aspects of everyday human life. There

are numerous companies and startups that are developing robots as family companions,

health care companions, for delivering groceries, as museum guides, and for educational

and therapeutic purposes. These robots come in a variety of forms and sizes, with some,

such as Naor, adapting a humanoid design, while others, such as Jibor, are designed

to express social behavior without an explicit human form. Despite the wide range

of appearances and applications of social robots, they all need perceptual capabilities

that enable them to perceive and understand the surrounding environment, people, and

activities, and respond in an appropriate way.

In this thesis, we develop perceptual algorithms for a social robot called RUBI,

which is used in a daycare classroom for teaching and monitoring the learning perfor-

mance of children. The application of robots as a teaching agent to deliver educational

content and monitor students’ learning is becoming a common research trend. For ex-

ample, robots have been used to teach vocabulary [51, 21], science [35, 42], geometric

shapes [33], language [31, 70, 22], dance and music [23] and story telling [26]. See

figure 1.1 for example settings of child-robot interaction.

1
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Figure 1.1. Top-left: Nao teaching children to sort objects by shape, top-right: Drag-
onBot teaching words, bottom-left: IROBI teaching English, bottom-right: iCat teaching
language.

In these works, researchers are trying to answer questions such as, is a physical

robot more effective than on-screen interactive technology [22] or an animated virtual

robot [42]? When taught by a physical robot, will the children form a friendship with

the robot [31], and would they treat the robot as a peer [26]? Most of these studies

were carried out in a wizard-of-Oz (WOZ) setting in which a person remotely controlled

the robot and its behavior. In contrast to the WOZ setting, an autonomous robot is one

that can automatically recognize people and their behavior, understand social cues and

generate appropriate behavior in response to these external factors. A robot equipped with

such capabilities reduces the manual labor required to analyze the results of experiments

in using the robot to educate children, by keeping track of the amount of interaction with

each child and that child’s performance on the tasks. A robot with these capabilities can

also serve as an automated monitoring tool for teachers on the child’s developing skills.

Finally, such a robot can extract the social structure of the environment by collecting

statistics on interactions between the children.
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The primary subject of this thesis is to develop perceptual primitives for RUBI,

and to showcase examples of how these capabilities can be used effectively in the

classroom. We develop face recognition for RUBI, and show that when RUBI is equipped

with face recognition, she can extract useful information about the social structure of the

classroom. We develop active object recognition methods for RUBI, in order to provide

her with the capability of recognizing toys handed to her by the children.

In the next section, we provide a brief overview of the RUBI project. Then we

describe the contributions and outline of this thesis.

1.2 RUBI Project

The RUBI project started in 2004, with the goal of enriching the classroom

environment in early childhood education [55]. Over 10 years, six different prototypes

of RUBI were developed and tested in the Early Childhood Education Center (ECEC)

at UCSD (see Figure 1.2). Earlier versions of RUBI were Wizard of Oz experiments,

while later versions were fully autonomous in generating behavior and interacting with

the children. Over the course of 10 years, various perceptual primitives were gradually

added to RUBI, enabling the robot to generate more complex behavior while interacting

with the children.

One of the earliest perceptual primitives added to RUBI was the ability to detect

faces and recognize facial expressions [7]. This enabled early versions of RUBI to

perform real-time social interaction by extracting dynamics of facial expressions from

images and automatically evaluating RUBI’s interactions with the children [19, 39, 40,

74]. In chapter 2 and 3, we will use facial expression recognition on the data collected

by RUBI-5 in the classroom to predict the children’s preference over different activities

while playing with the robot.

Along with these perceptual capabilities, the ability to learn to respond to the
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RUBI 1 + 2 RUBI 3 + 4 RUBI 5 + 6

2004    2008 2012

Artist: Theresa Lee

Figure 1.2. RUBI 1-6. The robots exhibit different levels of autonomy and complexity.

environment in an appropriate way was implemented in the form an Infomax controller,

allowing RUBI to model the social contingencies of the environment and respond to

sounds in a meaningful way [52]. The ability to perceive touch allowed RUBI to

categorize the behavior of children towards itself and to conclude that caring behavior

and object-related touches were sustained over longer periods of time, compared to

curiosity-driven touch behavior [80]. The Infomax controller and touch sensing capability

were later used in a study to demonstrate the children’s sustained interest in RUBI over

long periods of time [79]. Visual saliency detection allowed RUBI to focus its visual

sensors more often on the people in the environment [13]. Automatic cry [68] and mood

detection [67] allowed RUBI to act in a manner consistent with the current activities in

the classroom.

1.3 Contribution of this Thesis

This thesis can be divided to two parts based on the technical contributions. In

the first part, we develop a face recognition model for RUBI and show how RUBI can use

that to enrich its analysis of the emotional dynamics and social structure of the classroom.
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In the second part, we focus on active object recognition, where we develop models for

in-hand object recognition for RUBI. Active object recognition can be used by RUBI to

teach object naming to toddlers during “give-and-take” activity.

1.3.1 Face Recognition and Social Structure of the Classroom

In the first two chapters, we develop a face recognition module for RUBI by

collecting a large number of face images, manually labeling the images and training

a supervised classifier on the extracted visual features. We show that RUBI, equipped

with person recognition, extracts interesting social dynamics from the classroom. We

also showcase the usefulness of facial expression recognition in RUBI, by analyzing the

emotional development of the classroom during song-and-dance activity.

In a field study that lasted more than 6 months, RUBI collected images of children

in the classroom during different activities. We extract faces from these images, and

compiled that into a face recognition dataset, called ECEC faces. The dataset contains

more than 7K images of 16 toddlers and 12 adults. The face images vary greatly in depth

rotation and facial expressions. It is specially challenging since it captures a period of 6

months during which faces of toddlers changes dramatically. Figure 1.3 shows images of

one toddler from the ECEC faces dataset.

Figure 1.3. Example face images from ECEC face dataset. We show the temporal
evolution of a face of one toddler over 5 months. Each image is labeled with its capture
date.

We develop a face recognition module for RUBI by building a preprocessing,
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feature extraction and classification pipeline. The preprocessing is minimal. We crop

faces detected by the OpenCV face detector. For feature extraction, we compare HOG,

LBP and Daisy features and show that LBP is more efficient and leads to higher classifi-

cation accuracy. We test the system with multinomial regression and SVM classifiers,

and conclude that the resulting accuracy is very similar for both of these classifiers. This

pipeline achieves 84% accuracy on the test set portion of the ECEC faces dataset.

We show that using face recognition, RUBI can analyze the social structure of the

classroom. We analyze the preferences of children to play with each other, or to avoid

each other while in front of RUBI. The result is a diagram, called a RUBI-gram, that

depicts the children as nodes of a graph and their preference as the edges. Teachers at

ECEC have expressed their desire for such automated social interaction information as

can be gained from the RUBI-gram.

We show how RUBI can use the ability to recognize facial expressions to extract

emotional dynamics of the classroom and toddlers’ preferences for different activities.

We used the FACET SDK that extracts six channels depicting different emotions from

face images. We showed that RUBI can predict the preference of toddlers for different

activities, using the joy channel. Her predictions are as good as the teachers’ ratings of

the children’s preferences. As an example analysis, we extracted the dynamics of joy

channel, averaged over multiple trials, during “the bus song”. Interesting information is

revealed in this analysis, which shows peaks of joy during certain verses of the song.

1.3.2 Active Object Recognition for Object Naming

Object naming is an important development stage in toddlers, and is the gateway

to developing language. We would like RUBI to teach object names to toddlers using

one of RUBI’s most beloved activities called “give-and-take”, in which toddlers bring an

object and hand it to RUBI. The robot then examines the object and says its name, after



7

which returns the object to the toddler. In the context of give-and-take, RUBI has the

opportunity to teach object names to children, assess their knowledge of object names,

and compare the efficacy of 3D in-hand object learning to 2D on-screen object learning.

In the second part of this thesis, we focus on developing an active object recognition

model for RUBI to enable this activity.

We collected a dataset of 136 “giant microbes” objects to teach object naming to

children. We select giant microbes to minimize the effect of children’s prior knowledge of

objects on the results of experiments. For each object in this dataset, we put the object in

RUBI’s gripper and let RUBI collect images while rotating the object. For each object, 10

different in-hand views are collected, 6 of which are used for training and the rest for test

set. The images are accompanied by the gripper location that rotates the object, allowing

simulation of different actions while examining objects. We call this dataset GERMS,

and make it publicly available to the active object recognition community. Comparing

to other datasets, GERMS is more challenging, includes larger number of objects and

views, and has complex background that simulates in-class situation.

We developed a model for active object recognition of GERMS by training

a neural network using reinforcement learning to predict the action-values for object

exploration actions. The learning rule for network parameters was derived using an

iterative Q-learning approach. In this work, the appearance of objects is fixed before

learning object inspection policy. We show the performance of the proposed Deep Q-

network on active recognition of GERMS, and compare it to a random strategy. These

results serve as a baseline for the GERMS dataset, to which other researchers can compare

the performance of their methods.

We extended the previous model to learn the object appearance along with object

exploration policy. We trained a neural network end-to-end using classification and

action-value prediction errors. We experimentally show that the network can be trained
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using errors from prediction of label and action modalities. The network predicts actions

and label in two different layers, and images are selected based on the proposed action

to train the network. We found that a plain Deep Q-learning network fails to perform

any better than random in this case, due to overfitting to a subset of images. To alleviate

this problem, we introduce a Dirichlet layer that encodes the belief of objects based on

the selected action. The Dirichlet layer is embedded in the network and trained using

gradient descend along with other parameters of the network. We show that adding

Dirichet layer significantly improves the performance of the layer, and partly cures the

overfitting problem. We show that the proposed network achieves state of the art results

on the GERMS dataset, surpassing the plain Deep Q-learning network.

In previously mentioned approaches, and other recent methods on active object

recognition, this problem has been approached as an semi-supervised learning paradigm

in which optimal trajectories for object inspection are not known and to be discovered

by reducing label uncertainty or training with reinforcement learning. These methods

have no guarantee of their optimality, even on the training set. In the last contribution

of this thesis, we formulate Active Object Recognition (AOR) as a Partially Observable

Markov Decision Process (POMDP) and find near-optimal values and corresponding

action-values of training data using Belief Tree Search (BTS) on the AOR belief Markov

Decision Process (MDP). We train a Long Short Term Memory (LSTM) network on these

values to predict the best next action on the training set rollouts and experimentally show

that our method generalizes well to explore novel objects and novel views of familiar

objects with high accuracy. We compare this supervised scheme against guided policy

search, and show that the LSTM network reaches higher recognition accuracy compared

to the guided policy search and guided Neurally Fitted Q-iteration. We further look

into optimizing the observation function to increase the total collected reward during

active recognition. We also look into optimizing the observation function by deriving a
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gradient-based update to increase the total expected reward. We show that by optimizing

the observation function and retraining the supervised LSTM network, active object

recognition performance on the GERMS improves significantly.

1.4 Thesis Outline

The perceptual capabilities we mentioned above allowed RUBI to better under-

stand the surrounding social dynamics in the classroom. However the ability to recognize

people and the environment could largely benefit the robot, researchers, and also the

teachers and students. In this thesis, we add person and object recognition abilities to

RUBI. Person recognition will reduce the analysis time of the experiments significantly,

while enabling RUBI to extract subject-specific statistics from the classroom. Object

recognition allows RUBI to improve its interaction with children and teach object names

to children. Here, we briefly mention the outline of this thesis.

In chapter 1, we go into the details of preparing RUBI-5 hardware and software

for its first field study. We delve into the details of preparing RUBI, and refining its facial

expression generation. Then we describe the person recognition algorithm implemented

in RUBI-5. This robot operated autonomously in classroom 1B in Early Childhood

Education Center (ECEC) at UCSD, collecting images of children and teachers over a

period of 6 months. To train the person recognition system, we extract and manually

label faces of teachers and toddlers from images that RUBI-5 collected during this time.

Using the extracted facial expressions and identities, we predict the children’s preference

over different activities. We show that by using joy as the indicator, RUBI-5 can predict

the children’s preference over several games as good as teachers.

In chapter 2, we demonstrate the utility of person recognition in the extraction of

social dynamics of the classroom. In this work, we analyze the data collected during a one

month field study, in which RUBI collected facial expressions and identity of toddlers
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in the classroom. First we analyze the dynamics of the classroom affect during the

sing-and-dance activity. Then we present the analysis of social structure of the classroom,

in which the preference of children to avoid each other or play together in front of RUBI

is shown in the RUBI-gram graphical form.

Object naming is an essential skill for developing children, and can reveal a great

deal about their current assessments of the referents of the words they know, as well

as provide scaffolding for relational thinking and analogical reasoning. In chapter 3,

we develop an object recognition algorithm for RUBI, that allows the robot to teach

object names to toddlers. The main contribution of chapter 3 is to introduce GERMS, a

dataset for active object recognition, that we use in the classroom to teach object names

and assess children’s ability to learn new objects. We collect a dataset of 136 different

objects by using RUBI-6 to hold the objects in its gripper and capture images while

rotating the object. We use GERMS to train an active object recognition model using

deep Q-learning, and show that the proposed method for active recognition of GERMS is

superior to random selection of actions while examining objects for recognition.

In chapter 4, we delve deep into development of a deep learning model for active

object recognition. Deep learning has become the most active branch in computer vision,

and large progress has been made on object recognition. We develop a deep learning

model that is trained to perform active object recognition by predicting the best next

action given the current view of the object. The network is trained using an stochastic

update rule based on deep Q-learning. The proposed network is trained end-to-end to

simultaneously predict object label and action. In order to reduce overfitting of the model

to specific objects, a layer of Dirichlet belief encoding is added to the network that is

intended to provide a generative model of object-action beliefs. We derive a gradient-

based update rule for the Dirichlet layer, and show that its performance is improved

significantly compared to the regular deep Q-learning network.
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In chapter 5, we solve the active object recognition by reducing it to a supervised

learning problem. We formulate the active object recognition as a Partially Observable

Markov Decision Process (POMDP), and adapt a belief tree search algorithm to calculate

the values of object beliefs that are arbitrarily close to the optimal value. The extracted

values are then used to train a long short-term memory (LSTM) network that predicts the

best next action given the current view of the object. The proposed method has advantages

over previous approaches, such as fast training and convergence to the desired policy,

no requirement for a generative model of objects and generalization to novel objects.

We show that this method achieves state of the art performance on the GERMS dataset.

We also show that the active recognition of objects can be used to update the image

classification model, using a weighted version of training data, that leads to increased

accuracy of static and active object recognition.



Chapter 2

Home Alone: Social Robots for Digital
Ethnography of Toddler Behavior

2.1 Abstract

We describe the results of a field study in which the social robot RUBI-5, was

left alone for a 28 day period to interact autonomously with 16 toddlers at an Early

Childhood Education Center. The study is part of the RUBI project, which started in 2004

with the goal of exploring the potential of social robotics for research and enrichment

of early childhood education environments. As part of the 28 day field study RUBI-5

collected data about the facial expressions, activities, and spatio-temporal proximity of

the toddlers. We found that RUBI-5 could use the facial expression data to accurately

predict the children’s preference for different activities: on average robot agreed with

human judges as much (Pearson Correlation =0.67) as human judges agreed with each

other (Pearson Correlation = 0.68). In addition RUBI discovered some useful aspects of

the social structure of the toddler’s group. The study is an important milestone in social

robotics, both for the length of time the robot could interact autonomously with children,

and for the richness of the data that it provided. The results indicate that social robots

have the potential to act as low cost, autonomous “digital ethnographers” in a manner

that may revolutionize the science and technology of early childhood education.

12
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2.2 Introduction

An unprecedented number of children in the US start public school with major

deficits in basic academic skills [77]. Scientific evidence shows that children who have

early failure experiences in school are those who are most likely to become inattentive,

disruptive, or withdrawn later on. Empirical research using longitudinal randomized

control studies is now showing that early childhood education programs can effectively

prevent academic deficits [77]. However, due to their high costs, such programs may not

find widespread use. Thus it is critical to find innovative ways to gather and analyze data

on early childhood education so as to better understand toddler’s behavior and to conduct

rapid, big-data experiments. As part of this overall vision, the RUBI project started

back in 2004 with the goal of studying the potential of social robot technologies in early

childhood education. Since then 5 different robot prototypes have been developed and

immersed on an early childhood education center for sustained periods of time (see Figure

2.1). The early prototypes (RUBI-1, 2) were remotely operated by humans. RUBI-3

was a transitional design. RUBI-4 was the first prototype to operate autonomously for

a period of 15 days. RUBI-4 provided useful data about toddler behavior. In particular

it was shown that a 2-week period of interaction with RUBI-4 resulted in improvement

of vocabulary skills in 18-24 month olds [51]. However many of the results found with

RUBI-4 required for human ethnographers to analyze hundreds of hours of video, a

process that was both slow and costly. The latest prototype (RUBI-5) (Figure 2.1, bottom

row) was designed to operate as an autonomous “digital ethnographer” that would embed

itself on the daily routine of the toddlers life and enrich their environment while gathering

and analyzing the observed behaviors.

After a construction period that lasted several years, including hundreds of hours

of short-term field studies, we felt that RUBI-5 was ready for a long-term study. One of
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Figure 1. Top row: RUBI progression: from left to right RUBI-1, RUBI-2, RUBI-3 & RUBI-4. RUBI-1 and 2 were remotely 
operated. RUBI-3 was the first fully autonomous design. Bottom row: RUBI-5 playing with kids at ECEC classroom 2A. Figure 2.1. Top row: RUBI progression: from left to right RUBI-1, RUBI-2, RUBI-3 &

RUBI-4. RUBI-1 and 2 were remotely operated. RUBI-3 was the first fully autonomous
design. Bottom row: RUBI-5 playing with kids at ECEC classroom 2A.

our goals was to break the previous record of 15 days of autonomous operation, achieved

by RUBI-4. More importantly we wanted to explore whether RUBI-5 could autonomously

data-mine the toddler’s behavior and provide insights about what activities the children

like most. To this end RUBI-5 was equipped with off-the-shelf computer vision tools to

recognize the children she interacted with and to analyze their facial behavior. Here we

show that these tools, while still not perfect, provided very useful information, including

the preference of children for different activities, as well as sociograms indicating which

children tend to interact with RUBI and one another on a daily basis.

The rest of the paper is organized as follows. In Section 2, we describe the design

and modification process for RUBI-5 along with the software architecture we used to

make this study feasible. In Section 3, we describe the specification of the study in

terms of experiments setup, number of toddlers involved and the data collection and

processing procedures. Section 4 describes the results for the experiment and is followed

by a conclusions section.
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2.3 Robot Design

For more than 8 years the RUBI robot series have been built and improved

using the experiences achieved from thousands of hours of field studies [19, 55, 54, 68,

69, 79, 30]. During these studies, robot prototypes were immersed in an uncontrolled

environment to interact with toddlers at the Early Childhood Education Center (ECEC)

at the University of California, San Diego. User-friendly appearance, ability to operate

autonomously, low cost design and implementation, and safety of interaction with toddlers

were among the early design criteria that emerged from these field studies. As a better

understanding was gained of the sort of interactions that emerge between toddlers and

robots, the emphasis switched from Wizard-of-Oz studies in which RUBI was tele-

operated by a human, to sustained, full autonomy. RUBI-4 was the first robot of the series

that operated autonomously for 15 consecutive days. To achieve this end a relatively

simple design was used (e.g., single degree of freedom head, no facial expressions, 2

degree of freedom arms). While RUBI-4 provided very useful data, confirming that

children that interact with the robot show significant increases in vocabulary skills,

the analysis of the obtained data was very time consuming and expensive. The main

bottleneck was the human coding of 14 days times 8 hours per day times 3 cameras.

This coding ended up taking more than a year of time. Thus the design of RUBI-5, the

robot prototype presented in this document, focused on two aspects: (1) increase the

complexity of the robot so as to support more complex forms of interactions than RUBI-4

could do, and (2) use machine perception software to automatically analyze the sensory

data. The goal was for RUBI-5 to become an autonomous “digital ethnographer” that

could be left alone with a group of toddlers to analyze their behavior while enriching

their educational environment. In the following two subsections we describe RUBI-5 and

go into the details of hardware components and software architecture.
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Figure 2: RUBI-5 appearance and hardware list. Figure 2.2. RUBI-5 appearance and hardware list.

2.3.1 Hardware

Figure 2.2 shows RUBI-5, the latest prototype of the RUBI series. This was

the first prototype developed using modern digital fabrication methods. The robot is

24x20x37 inches. Her drive train consists of two Shayang Ye IG-52GM motors with

magnetic encoders, controlled by Roboteq’s MDC2250 Motor Controller board. Each

of Rubi’s arms has 4 DOF, independently controlled using Robotis’ Dynamixel servos

EX106+, RX64 and RX28. Each hand has an IR sensor inside the gripper that can detect

an object. The head has 3 DOF, a webcam for image capture and an iPad2 for the face.

RUBI’s “belly” has a touchscreen tablet PC, which is used to display educational games

and popular songs. A MacMini server with 2 GHz Intel Core i7 processor and 8 GB of

RAM runs the Robot Operating System (ROS), the machine perception engines (face

detection, person recognition, expression recognition), activity scheduling, and motor

control algorithms.

Because the toddlers can stand in different distances to RUBI-5 while playing

the games or dancing with the songs, we installed 3 cameras, each capturing part of the

robot’s surrounding area: One in the head, another in the torso and the last one under the

tablet. Figure 2.3 shows shots of the same scene from 3 different cameras.
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2.3.2 Software

ROS: software architecture is based on the Robot Operating System (ROS). The

entire system is distributed and works by passing ROS messages between ROS nodes that

provide a variety of services. A node called RUBIScheduler is a finite state machine that

schedules the activity to play with the children. This is based on the previous activities,

the amount of time since the children touched RUBI’s belly and the constraints of the

ECEC classroom’s daily schedule.

Games: There were two types of material presented on the touch-screen: (1)

RUBI sings popular songs (“Wheels on the Bus”, and “Monkeys on the Bed”) while she

physically dances and shows an animation in her belly’s touchscreen. (2) Educational

Games. These are Flash-based educational games targeting vocabulary development. For

example, in one game 4 images are presented on the screen and RUBI asked to touch one

of them (e.g., where is the orange?). These games combine sounds and visuals presented

on RUBI’s belly, as well as physical actions, like clapping, looking towards the screen

when the child touches it, and smiling. In addition RUBI can play “Give and Take” games

(see Figure 2.1 bottom row). In this game children give objects to RUBI. She takes the

object, looks at it and gives it back to the child saying “Thank You”.

If RUBI’s belly is not touched for a period of 10 seconds the RUBIScheduler

puts her in “Idle Mode”, in which she makes randomly scheduled idle movements, and

displays simple visuals on her belly. When children touch RUBI’s belly the scheduler

chooses a new activity, provided it is consistent with the classroom’s daily schedule.

Facial Expression Production: RUBI’s facial expressions are controlled by a

ROS node, called RUBIFace, running on an iPad. RUBIFace animates facial expressions

using 23 different parameters. The set of facial expressions used at ECEC field studies

were selected using a survey conducted on 30 different adults. These people we asked
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Figure 3. Scene shots from RUBI-5’s three different webcams. The left image is the picture from camera under the tablet. The 
middle picture is the tablet webcam’s shot and the right one is captured by the webcam inside the head. Figure 2.3. Scene shots from RUBI-5’s three different webcams. The left image is the
picture from camera under the tablet. The middle picture is the tablet webcam’s shot and
the right one is captured by the webcam inside the head.

	

Figure 4: Visualization of the results of RUBI-5 online facial 
survey. People were asked to give their opinions about each face 
by grading them in different aspect such as positive-negative, 
active-passive and like-dislike. 

Figure 2.4. Visualization of the results of RUBI-5 online facial survey. People were
asked to give their opinions about each face by grading them in different aspect such as
positive-negative, active-passive and like-dislike.

to give scores to a wide range of facial expressions based on multiple questions. We

performed MDS on the survey’s outputs to represent the different expressions using a 2

dimensional space, which can be roughly interpreted as “valence” and “energy”. Figure

2.4 shows the results for 40 different faces. We picked the top 10 images with the highest

positive valence.

Person Recognition: RUBI-5 captures the ongoing scene using three cameras,

located in the head, right and center of the belly’s tablet and bellow the belly. Currently

these cameras are used to identify who is playing with RUBI and what facial expressions

they are making. The face recognition system was developed by us, using the following
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Figure 5: example faces from our dataset. Each row represents 
different views of the same child. The images were collected 
over a course of 8 months at ECEC. 

Figure 2.5. Example faces from our dataset. Each row represents different views of the
same child. The images were collected over a course of 8 months at ECEC.

pipeline. After an image is captured, we use the OpenCV face detector to find the faces in

the image. Each detected face is normalized to a specific size, it is converted to a 4 layer

Gaussian image pyramid with a between layer downscale of 1.2. Daisy features [81] are

extracted from overlapping image patches from each layer of this pyramid. PCA is then

used to reduce the dimensionality of the features. A Multinomial Logistic Regression

classifier is used to recognize the different participants. The classifier was trained using

7000 images of 28 subject collected by RUBI. Of these 28 subjects, 16 were toddlers

and 12 were adults, including classroom teachers and researchers accompanying RUBI.

Because adults were also present in the field while RUBI-5 was interacting with kids,

we added them to our dataset to reduce the number of false positives. Figure 2.5 shows

some examples of this dataset. We divided the entire dataset into two non-overlapping

sets: train and test. The test set size was 35% of the entire dataset. After training using

the training set we tested the system on the test set using the following procedure: For

each image on the test set the system had to choose amongst 28 possible alternatives (16

toddlers, plus 12 adults). The system guessed the correct alternative with 93% accuracy.

Facial Expression Recognition: Facial expression recognition was performed
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using the FACET R1.1 SDK from Emotient.com. FACET is the commercial version of

CERT [41], one of the most popular and accurate facial expression recognition systems.

FACET R1.1 recognizes 6 primary expressions of emotion: anger, disgust, fear, joy,

sadness and surprise. Since FACET R1.1 was trained to recognize adult facial expressions

from faces that deviate no more than 15 degrees from frontal, it was not clear whether

the system would prove useful to recognize toddler facial expressions.

2.4 Study Design

Participants: 16 toddlers (ages 11 to 23 months) from room 2A of UCSD’s

Early Childhood Education Center (ECEC) enrolled during the period of Jan 24 to

September 11, 2013. The total number of children at any given time ranged from 9-12.

Two teachers informally observed the interaction between the children and RUBI. A

research assistant under the supervision of an ethnographer took notes to characterize the

observed interactions between children and robot using standard ethnographic methods.

Procedure: RUBI was left alone in Room 2A of ECEC, starting on Jan 24, for

increasingly longer periods of field testing. On Aug 12 we brought RUBI to ECEC with

the intention of continuing the study until she stopped operating. This happened on

September 11, 2013. During this period RUBI was relatively stationary, making only

small rotational movements with the drivetrain, thus allowing to obtain power using a

standard electrical outlet. RUBI-5 ran on two types of schedules: continuously while

research staff were on location; and an automated schedule designed to coincide with

activity periods chosen by the educational staff as curriculum appropriate. During every

session, RUBI-5 was on idle state until someone touched her belly. At this time, she

chose either a game or a song. The songs always end after a specific pre-determined time,

while the games continue until no one touches the belly for 10 seconds. After game or

song has finished, RUBI goes back to the idle state, showing the idle game on the belly
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and looking around while moving slightly her arms and head. This cycle continues until

the session finishes.

Data: During each session, RUBI kept the log of the games and songs that were

played. She also recorded images from the three RUBI cameras. The head and belly

mounted cameras captured an image when they detect a face and a game is being played.

The tablet camera captured images every 2 seconds during the game episodes. These

pictures were then processed to extract the identity using the face recognition described

in section 2.2. Facial expressions were also extracted using the FACET SDK.

2.5 Results

Expression Recognition: One of our goals was to test whether RUBI could

automatically detect which kind of activities the children liked most. To this end we

asked 2 teachers and the research assistant to rank from last (1) to first (10) how much

the children liked the 10 activities they did with RUBI: “Give and Take”, “Bus Song”,

“Monkey Song”, “Animals Game”, “Balloons Game”, “Fruits Game”, “Transportation

Game”, “Photos Game”, “Triangles Game”, “Objects Game”. The average Pearson

correlation between the three human judges was 0.68. We then computed the correlation

between the output of the different emotion recognition channels and the activity rankings

averaged across the 3 human judges. The independent variable was the total number of

images greater than 0.95 on the corresponding emotion channel. This means that FACET

was at least 95% sure that the face exhibited the expression of the target emotion. There

was a statistically significant correlation (r=0.73, p < 0.05, 2-tails) between the output

of the Joy channel and the average human rankings of the different games (see Table

2.1). The average agreement between the Joy channel and each of the human judges

was 0.67, which was very close to the average agreement between the 3 judges (0.68).

We were surprised that some of the channels associated with negative emotions (e.g.,
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Table 2.1. Correlation between expert observer ranking of preferred game and FACET
output channels.)

Channel Pearson Correlation Significance: 2-tailed t-test (9 df)

Anger 0.179 p > 0.05%
Disgust 0.534 p > 0.05%
Sadness 0.011 p > 0.05%
Surprise 0.463 p > 0.05%
Fear 0.534 p > 0.05%
Joy 0.733* p < 0.05%

Fear, Disgust) showed relatively large, though not significant, correlation with game

preferences. One explanation provided by the teachers is that some children get upset

when some of their favorite games are about to end.

Figure 2.6 shows rows of 8 faces corresponding to the highest values of joy for

10 toddlers and faces corresponding to the lowest values of joy for the same toddlers.

The numbers written on each side of the figure are the averages of joy value calculated

from the faces in the corresponding row. The Figure shows that while, not perfect, on

average the images that FACET chosen as being more joyful, do indeed look more joyful

than those chosen as being less joyful.

RUBIGrams: Next we map the frequency of dyadic activities between the

different children. The goal was for RUBI to automatically generate a RUBI-centric

sociogram [82, 20], which here we call a RUBIGram. To this end, RUBI partitioned the

time she was interacting with children into intervals defined by the start and end time of

a game or a song. For each interval, RUBI identified the toddlers interacting with her

during that activity. For each pair of children RUBI computed the number of activities

in which the two children were seen together. A “RUBIGram” was then constructed

as follows: Children that are seen together often were connected with wide lines, and

children that are seldom seen together were connected with thin lines. Figure 7 shows

the resulting RUBIGram. The graph shows clear patterns in the playing styles of the
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Figure 6. Faces corresponding to largest and smallest values of the joy channel. Faces in the left side have the top 8 values of joy 
for the corresponding toddler. Faces in the right side have the lowest value of joy for the same subjects. . The average of joy 
values for the faces in each row are written on the sides. 
Figure 2.6. Faces corresponding to largest and smallest values of the joy channel. Faces
in the left side have the top 8 values of joy for the corresponding toddler. Faces in the
right side have the lowest value of joy for the same subjects. The average of joy values
for the faces in each row are written on the sides.

different children. Some children play with RUBI while other children are present. Other

children tend to play with RUBI alone.

2.6 Discussion

We presented results of a field study in which a social robot (RUBI-5) was left

alone at UCSD’s Early Childhood Education Center for a period of 28 days in a classroom

of 16 toddlers. During this time RUBI interacted with the children in a fully autonomous

manner playing “Give and Take” games, singing, dancing, and playing educational games

that have been previously shown to improve children’s vocabulary skills [51]. More

importantly during this time RUBI collected data from 3 cameras, two touchscreens and,

proximity sensors. Off-the-shelf computer vision tools allowed RUBI to recognize who

she was playing with, what games they were playing, and what facial expressions they
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were making. Using this information RUBI could detect which activities the children

enjoyed most, with as much accuracy as experienced teachers and ethnographic observers

could do. In addition RUBI discovered some aspects of the social structure of the group

of toddlers, including cliques of children that tend to play together with RUBI.

While the results are preliminary they show that low cost social robots like RUBI

could be used as autonomous digital ethnographers, to run experiments, and datamine the

children’s social, affective, and cognitive behaviors. Based on the experience with the

previous robot prototype, RUBI-4, it would have taken thousands of hours to manually

code and analyze the data from the 3 video cameras. Instead RUBI-5 could automatically

analyze the data in real time, at little or no cost. The results of the data analyses, e.g.,

sociograms, preferred games, typical facial expressions, scores on the different games,

could be provided to teachers on a periodic base, to keep track of the children’s social,

affective and cognitive state. More importantly a network of such robots may open

opportunities to run high volume, low cost experiments, to better understand, monitor,

and improve the learning and development in our early childhood education centers.
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Chapter 3

RUBI as a Tool to Monitor Socio Emo-
tional Development in Early Childhood
Education

3.1 Abstract

Sociable robots are benefiting from machine perception systems that automatically

recognize social behavior (e.g., detect and recognize people, recognize their facial

expressions and gestures). These systems can be used to support sophisticated forms of

human-robot interaction. In addition the data provided by the perceptual systems can

be data-mined to discover the socio-emotional structure of the environments where the

robot operates. In this paper we analyze the data collected by a social robot, named

RUBI-5, during a field study at an Early Childhood Education Center in which the robot

autonomously interacted with 16 toddlers for a period of 28 days. RUBI-5 was equipped

with face detection, person identification and automatic recognition of facial expressions

of emotion. The data automatically collected by RUBI during the 28-day period revealed

the children’s preferences for different activities as well as each toddler’s preferences to

play with or to avoid playing with other specific children. The study illustrates that social

robots may become a useful tool in early childhood education to discover socio-emotional

patterns over time and to monitor their development. The data provided by the robots

25
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could be used by educators and clinicians to discover problems and provide appropriate

interventions.

3.2 Introduction

Previous research shows that relatively simple sociable robots can generate rich

forms of socio-emotional interaction with toddlers that are sustained for months [79]. In

addition randomized pretest/posttest studies have shown that interaction with these robots

can result in measurable gain in vocabulary skills [51]. Recent advances in machine

perception are making possible the automatic recognition of emotion-relevant behavior

in real time (e.g., detect and recognize faces and facial expressions of emotion). These

new systems can be used to support sophisticated forms of HRI. In addition the sensory

data used by the robot can be stored and data-mined. In this paper we analyze the data

collected by a social robot, named RUBI-5, during a 28 day long field study at the UCSD

Early Childhood Education Center. RUBI-5 was equipped with 3 cameras connected

to computer vision systems to detect people, recognize them and analyze their facial

expressions. The results of the analysis show that the data collected by social robots

can indeed be very useful to discover socio-emotional patterns and to monitor their

development over time.

The study is part of the RUBI project, which started in 2004 with the goal of

studying the potential value of social robot technologies in early childhood education

environments [19, 55, 54]. Figure 3.1 shows the different robot prototypes used in the

project, starting with QRIO and ending with RUBI-5. The diagram organizes the different

prototypes by level of mechanical complexity, degree of robot autonomy, and quality

of the observed human-robot interactions. The latest prototype so far is RUBI-5, the

prototype we used in the field study described here. In the study presented here RUBI-5

functioned autonomously for 28 consecutive days with 16 toddlers in real life conditions.
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Figure 1. Prototypes used in the RUBI project organized 
in terms of their complexity (Y axis), degree of autonomy 

(Y axis) and quality of the HRI (red for high, blue for 
low). 

Figure 3.1. Prototypes used in the RUBI project organized in terms of their complexity
(Y axis), degree of autonomy (Y axis) and quality of the HRI (red for high, blue for low).

By the time she broke our previous record, RUBI-5 was in full need of repair: a physically

broken arm, and several burnt servomotors. During the 28 days of operation RUBI-5

collected a wealth of sensory data. Previously, we showed how RUBI-5 predict kids

preference over different activities using facial expression recognition [43]. Here, we

delve into more details about socio-emotional analysis of the environment in which

RUBI-5 operated.

Robots have previously been used in classrooms for educational purposes. In a 2

week field study, Movellan et. al. [51] used a robot to teach kids English and Finnish

vocabulary. It was shown that the kids that had the most persistent interaction time with

the robot learned most. In another study, Kanda et. al. [31] used a humanoid robot to

interact with elementary school students and teach them English. They proposed if the

students have some background, education with robot might be more fruitful. Robots has

also been used in schools to monitor the social structure of the environment. Also, Kanda
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used Robovie to monitor the social structure of an elementary school and discover the

pattern of friendship between students [32]. Tanaka and Movellan [80] analyzed behavior

of toddlers interacting with QRIO robot and found 6 different categories of touch related

behavior.

Not surprisingly, emotion plays a critical role in the interaction between toddlers

and robots. Having something akin to emotional states that the children could understand

was critical for surviving the rigors of interacting with toddlers. From the early versions of

RUBI [19, 55], we also pioneered the development and testing of expression recognition

technology in daily life environments, including smile detection [54, 84] and the ability

to analyze and detect infants crying from sound [68, 69]. This pioneering work was

influential on the development of the sophisticated facial expression recognition software,

FACET 1.1 that we used in RUBI-5.

The paper is organized as follows. In Section 2, we briefly describe the RUBI-5

architecture, including face recognition and facial expression recognition. In Section 3,

we describe the field study that is the focus of this document. Section 4 describes the

main results of the study and is followed by a discussion section.

3.3 The RUBI-5 Prototype

3.3.1 Hardware

RUBI-5, the latest prototype of the RUBI series is shown in figure 3.2. This

was the first prototype developed using modern digital fabrication methods [30]. Each

of Rubi’s arms has 4 DOF, independently controlled using Robotis’ Dynamixel servos

EX106+, RX64 and RX28. Each hand has an IR sensor inside the gripper that is used as

object proximity sensor. The head has 3 DOF, a webcam for image capture and an iPad2

for the animated face. RUBI’s “belly” has a touchscreen tablet PC, which is used to
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Figure 2: RUBI-5. 

 
Figure 3.2. RUBI-5.

display educational games and popular songs. A MacMini server with 2 GHz Intel Core

i7 processor and 8 GB of RAM runs the Robot Operating System (ROS), the machine

perception engines (face detection, person recognition, and expression recognition),

activity scheduling, and motor control algorithms.

3.3.2 Software

ROS: RUBI-5’s software architecture is based on the Robot Operating System

(ROS). The entire system is distributed and works by passing ROS messages between

ROS nodes that provide a variety of services. A node called RUBIScheduler is a finite

state machine that schedules the activity to play with the children. This is based on the

previous activities, the amount of time since the children touched RUBI’s belly and the

constraints of the ECEC classroom’s daily schedule.

Games: RUBI performs four types of activities: (1) Sings songs (“Wheels on

the Bus”, and “Monkeys on the Bed”) while playing animations on her belly’s tablet,

and dancing. (2) Educational Games targeting vocabulary development. For example, in
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one game 4 images are presented on the screen and RUBI asked to touch one of them

(e.g., where is the orange?). These games combine sounds and visuals presented on

RUBI’s belly, as well as physical actions, like clapping, looking towards the screen when

the child touches it, and smiling. (3) “Give and Take” games: children give objects to

RUBI. She takes the object, looks at it and gives it back to the child saying “Thank You”.

(4) Idle. If RUBI’s belly is not touched for a period of 10 seconds the RUBIScheduler

puts her in “Idle Mode”, in which she makes randomly scheduled idle movements, and

displays simple visuals on her belly. When children touch RUBI’s belly the scheduler

chooses a new activity, provided it is consistent with the classroom’s daily schedule.

Person Recognition: RUBI-5 captures the ongoing scene using three cameras,

located in the head, right and center of the belly’s tablet and under the belly. Currently

these cameras are used to identify who is playing with RUBI and what facial expressions

they are making. We use the following face recognition pipeline. Each image is fed to

OpenCV face detector to find the faces in the image. The detected faces are normalized

to the same size and converted to 5 layer Gaussian image pyramids with a between layer

downscale of 1.2. Daisy features [81] are extracted from overlapping image patches

from each layer of this pyramid. PCA is then used to reduce the dimensionality of the

features. A Multinomial Logistic Regression classifier is used to recognize the different

participants (see Figure 3.3).

The classifier was trained using 7000 images of 28 subject collected by RUBI. Of

these 28 subjects, 16 were toddlers and 12 were adults, including classroom teachers and

researchers accompanying RUBI. We divided the entire dataset into two non-overlapping

sets: train and test. The test set size was 35% of the entire dataset. After training using

the training set we tested the system on the test set using the following procedure: For

each image on the test set the system had to choose amongst 28 possible alternatives (16

toddlers, plus 12 adults). The system guessed the correct alternative with 93% accuracy.
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!
Figure 3. Face recognition pipeline in RUBI-5. Figure 3.3. Face recognition pipeline in RUBI-5

Figure 3.4 shows the confusion matrix for our dataset.

Facial Expression Recognition: Facial expression recognition was performed

using the FACET R1.1 SDK from Emotient.com. FACET is the commercial version of

CERT [41], one of the most popular and accurate facial expression recognition systems.

FACET R1.1 recognizes 6 primary expressions of emotion: anger, disgust, fear, joy,

sadness and surprise. Since FACET R1.1 was trained to recognize adult facial expressions

from faces that deviate no more than 15 degrees from frontal, it was not clear whether

the system would prove useful to recognize toddler facial expressions.

3.4 Study Design

Participants: 16 toddlers (ages 11 to 23 months) from room 1B of UCSD’s

Early Childhood Education Center (ECEC) enrolled during the period of Jan 24 to

September 11, 2013. The total number of children at any given time ranged from 9-12.

Two teachers informally observed the interaction between the children and RUBI. A

research assistant under the supervision of an ethnographer took notes to characterize the

observed interactions between children and robot using standard ethnographic methods.

Procedure: RUBI was left alone in Room 1B of ECEC, starting on Jan 24, for
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Figure 4. Confusion matrix for face recognition on ECEC 
faces dataset. Figure 3.4. Confusion matrix for face recognition on ECEC faces dataset.

increasingly longer periods of field-testing. On Aug 12 we brought RUBI to ECEC with

the intention of continuing the study until she stopped operating. This happened on

September 11, 2013. During this period RUBI was relatively stationary, making only

small rotational movements with the drivetrain, thus allowing to obtain power using a

standard electrical outlet. RUBI-5 ran on two types of schedules: continuously while

research staff were on location; and an automated schedule designed to coincide with

activity periods chosen by the educational staff as curriculum appropriate. During every

session, RUBI-5 was on idle state until someone touched her belly. At this time, she

chose either a game or a song. The songs always end after a specific pre-determined time,

while the games continue until no one touches the belly for 10 seconds. After game or

song has finished, RUBI goes back to the idle state, showing the idle game on the belly

and looking around while moving slightly her arms and head. This cycle continues until

the session finishes.

Data: During each session, RUBI kept the log of the games and songs that were

played. She also recorded images from the three RUBI cameras. The head and belly-

mounted cameras captured an image when they detect a face and a game is being played.
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The tablet camera captured images every 2 seconds during the game episodes. These

pictures were then processed to extract the identity using the face recognition described

in the previous section. Facial expressions were also extracted using the FACET SDK.

3.5 Results

3.5.1 Predicting Activity Preferences

We asked the 2 classroom teachers and a research assistant that observed the

children on a daily basis to rank how much the children liked the 10 different activities

they played with RUBI: 7 educational games, 2 songs, 1 give and take game. The average

Pearson correlation between the three human judges was 0.68. Then we computed the

correlation between the output of the different emotion channels (obtained using FACET)

and the activity rankings averaged across the 3 human judges. The independent variable

was the total number of images greater than 0.95 on the corresponding emotion channel

(e.g. FACET was at least 95% sure about the target emotion). Amongst all the facial

expression channels we found one large and statistically significant correlation (r=0.73,

p¡ 0.05, 2-tails): the Joy channel. The average agreement between the Joy channel and

each of the human judges was 0.73, which was very close to the average agreement

between the 3 judges (0.68). Thus the facial expressions of Joy, automatically detected

by the robot, provide reasonable estimates of how much the children like the different

activities. Figures 3.5 shows rows of 8 faces corresponding to the highest values of joy

for 3 toddlers and faces corresponding to the lowest values of joy for the same toddlers.

The Figure shows that, while not perfect, on average the images that FACET chosen as

being more joyful, do indeed look more joyful than those chosen as being less joyful.

We then retrieved the top pictures that were used in predicting activity preference

(Figure 3.6). We found that some of these faces were actually from some of the adults in
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Figure 5. Examples of toddlers faces with maximum and 
minimum Joy value. The left 8 columns are the faces with 
top Joy value, while the right 8 columns are the faces with 

least Joy value. The average of Joy channel for 
corresponding set of faces is written next to them. 

Figure 3.5. Examples of toddlers faces with maximum and minimum Joy value. The left
8 columns are the faces with top Joy value, while the right 8 columns are the faces with
least Joy value. The average of Joy channel for corresponding set of faces is written next
to them.

 

Figure 6. Faces with top Joy values. Each row 
indicates one class according to the face recognition 
system. Some of the misclassified samples are adults 

(usually parents of toddlers) that were not in our face 
training dataset. 

Figure 3.6. Faces with top Joy values. Each row indicates one class according to the
face recognition system. Some of the misclassified samples are adults (usually parents of
toddlers) that were not in our face training dataset.

the classroom. Basically RUBI detected the general mood of the classroom, including

the response of adults, while RUBI was engaging the children on different activities.

3.5.2 Detailed Temporal Analysis

During the 28 days of field study RUBI played the same activities multiple times.

We synchronized the outputs of the Joy detector channel for each activity and averaged it

across the 3 cameras and the different times the activity was played. In all the activities

except for one, the result was that Joy was approximately constant across the activity.

However for the “Wheels on the Bus” song the function had clear peaks and valleys (See

Figure 3.7). The local peak in the Joy channel appeared at the beginning of the song,

indicating that they were happy RUBI was playing this song, and at the points in the

songs where RUBI said “all to the town”.
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Figure 7. Average of Joy channel for different trials of 
“The Wheels on the Bus” song. A local peak is observed 

at the start of the verse “all to the town”. 

All through the town

Figure 3.7. Average of Joy channel for different trials of “The Wheels on the Bus” song.
A local peak is observed at the start of the verse “all to the town”.

3.5.3 RUBIGrams

We also investigated whether the data collected by RUBI could reveal some

aspects of the social structure in the classroom. To this end we collected the frequencies

with which RUBI detected two children together during each specific game and song

trial. The results are presented in Figure 3.8, using a Sociogram-like display, which we

called RUBIGram: The width of the lines in figure 3.8 represents the relative amount of

time each pair was seen together. The graph shows that some children play much more

with RUBI than others, and that some pairs of children are seen together much more than

others. However two children may be seen together often for two reasons: (1) they may

like playing together with RUBI. (2) They may be playing independently and, just by

chance, those children that play more with RUBI are more likely to be seen together. We

then compensated for the effects of chance as follows: for each edge between x,y, denote

the strength of edge with P(x,y). This is the amount of time x,y were seen together.

Denote by P(x) the total amount of time x spent with RUBI. Then we are interested in the

quantity P(x,y)−P(x)P(y), which is 0 if the times x,y spent with RUBI are independent

of each other. Figure 3.9 shows the edges corresponding to P(x,y)−P(x)P(y). Positive

values are shown by red, while negative values are in blue. Thus positive values indicate
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Figure 8. RUBIGram. Each link between two toddlers 
indicate the amount of time they spent together playing 
with RUBI. The width of the line represents the time. 

Figure 3.8. RUBIGram. Each link between two toddlers indicate the amount of time
they spent together playing with RUBI. The width of the line represents the time.

that two children are seen together more than it is expected from chance. Blue lines

indicate that two children are seen together less than would be expected from chance

(i.e., they avoid each other).

3.6 Discussion

Advances in machine perception technologies are providing social robots with

perceptual primitives that can support sophisticated forms of HRI. Because of the active,

real time experience that sociable robots can provide, they are ideal tools to harvest

and datamine behavioral data from daily-life environments. Here we showed some

analysis of data harvested by a social robot, RUBI-5, that interacted with 16 toddlers for

a period of 28 days. In particular we focused on the analysis of the facial expressions the
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Figure 9. Chance corrected RUBIGram. Red 
edges indicate pairwise associations larger than 

expected from pure chance, while blue edges 
indicate avoidance. 

Figure 3.9. Chance corrected RUBIGram. Red edges indicate pairwise associations
larger than expected from pure chance, while blue edges indicate avoidance.
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children made while engaging on different activities with the robot, and on the analysis

of which toddlers the robot saw playing together. The analysis revealed that automatic

expression recognition (joy detection) was a very effective metric for detecting activity

preferences. Using expression recognition RUBI achieved a 0.73 average correlation with

the preference rankings provided by human observers. This is slightly larger than the

human inter-observer correlation (0.68) for preference rankings. RUBI could also provide

precise temporal information about which parts of an activity the children liked most.

In addition RUBI discovered which children preferred to play alone, play with other

specific children, or avoided specific children. The study illustrates that social robots

could become a useful tool in early childhood education to discover socio-emotional

patterns over time and to monitor their development. The data harvested by these robots

could be mined to develop norms for typical socio-emotional development and to help

on early detection of developmental disorders.
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Chapter 4

Deep Q-learning for Active Recogni-
tion of GERMS: Baseline performance
on a standardized dataset for active
learning

4.1 Abstract

In this paper, we introduce GERMS, a dataset designed to accelerate progress on

active object recognition in the context of human robot interaction. GERMS consists of

a collection of videos taken from the point of view of a humanoid robot that receives

objects from humans and actively examines them. GERMS provides methods to sim-

ulate, evaluate, and compare active object recognition approaches that close the loop

between perception and action without the need to operate physical robots. We present a

benchmark system for active object recognition based on deep Q-learning (DQL). The

system learns to actively examine objects by minimizing overall classification error using

standard back-propagation and Q-learning. DQL learns an efficient policy that achieves

high levels of accuracy with short observation periods.

39
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4.2 Introduction

Active object recognition (AOR) refers to problems in which an agent interacts

with the world (e.g., via commands to servo motors of a robotic arm) and controls its

sensor parameters (e.g., camera orientation, gain, sensitivity) to maximize the speed

and accuracy with which it recognizes objects. A wide range of approaches have been

developed since Wilkes and Tsotsos’ [85] pioneering work. These approaches are

designed to re-position sensors or change the environment so that the new inputs to the

system become less ambiguous [1, 5] with respect to goals such as 3D reconstruction,

localization or recognition of objects (see [66] for a comprehensive literature review).

Active object recognition systems include two modules: A recognition module

and a control module. Given a sequence of images, the recognition module produces

a belief state about the objects that generated those images. Given this belief state, the

control module produces actions that will affect the images observed in the future. The

controller is typically designed to improve the speed and accuracy of the recognition

module. One of the earliest active systems for object recognition was developed by

Wilkes and Tsotsos [85]. They used a heuristic procedure to bring the object into a

”standard” view by a robotic-arm-mounted camera. In a series of experiments on 8

Origami objects, they qualitatively report promising results for achieving the standard

view and retrieving the correct object labels. Seibert and Waxman explicitly model the

views of an object by clustering the images acquired from the view-sphere of the object

[73]. The correlation matrices between these are then used to predict the correct object

label. Using three model aircraft objects, they show that the belief over the correct object

improves with the number of observed transitions compared to randomly generated paths

on the view sphere of these objects.

Since these pioneering efforts, more theoretically-motivated approaches have
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attempted to optimize an objective function, for example the conditional entropy H(O|M)

between the original object O and the observed signal M, the expected entropy loss over

actions, the belief uncertainty, or simply the variance among the object representations[8,

11, 14, 71]. Paletta & Pinz’s work [59] is probably the most similar to our proposed

model, as they treat active object recognition as a reinforcement learning problem, using

Q-learning to find the optimal policy. They used an RBF neural network with the reward

function depending on the amount of entropy loss between the current and the next

state. Finally, the architecture for our work was inspired in part by recent work using a

DCNN for representation of images in the context of learning to play Atari games with

reinforcement learning[49].

A common thread in many of these approaches is the use of small, sometimes

custom-designed sets of objects. One exception by Schiele and Crowley[71] used the

COIL-100 dataset for their experiments, which consists of 7200 images of 100 toy objects

rotated in depth [58]. This dataset is appealing for active object recognition because

it provides systematically defined views of objects. However it is not an adequately

challenging dataset for several reasons, including the simplicity of the image background,

and the high similarity of different views of the objects due to single-track recording

sessions. Indeed, by selecting the two most discriminative views of each object, Schiele

and Crowley achieved almost perfect recognition accuracy.

This paper makes two main contributions: First, we present and make publicly

available the GERMS dataset 1, that was specifically developed for active object recog-

nition. The goal of this dataset is to accelerate progress on active object recognition by

providing a common framework for evaluation of active object recognition algorithms.

The dataset can be used to simulate the effect of robot actions without the need to have

access to the physical robot. Second, we propose an architecture (DQL) for AOR based

1Available at http://rubi.ucsd.edu/GERMS/

http://rubi.ucsd.edu/GERMS/
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on deep Q-learning. Deep Q-learning supports learning the optimal policy for action

selection from raw images [49]. The proposed model sets a performance baseline on the

GERMS dataset that can be improved upon by other research groups. Although there is

existing work that utilizes deep convolutional neural networks (DCNN) for mapping raw

image sensory to actuator values [38], to our knowledge, this is the first work employing

deep Q-learning for active object recognition. In the following sections, we introduce the

GERMS dataset and describe its composition, data collection procedure and proposed

benchmarks. Then the DQL system is described in detail, and our baseline performance

benchmarks are reported.

4.3 The GERMS Dataset

Many of the active object recognition methods are built around a specific hardware

system, which makes the replication of their results very difficult. Other systems use

off-the-shelf computer vision datasets, which include several views of objects captured by

systematically changing object’s orientation in the image. However, these datasets do not

offer any active object recognition benchmark per se. Adapting such datasets for active

object recognition ignores the challenges in the active component such as noisy actions.

A well-defined benchmark should consist of an established list of training and testing

images, along with the baseline results for object recognition. The dataset should also

offer methods to simulate active observation with actual robotic sensory systems. In this

section, we introduce the GERMS dataset, which aims to accelerate progress on active

object recognition by addressing some of the shortcomings of the previous datasets.

4.3.1 Data Collection Context

The data collection procedure was motivated by the needs of the RUBI project,

whose goal is to develop robots that interact with toddlers in early childhood education
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Figure 4.1. Left: RUBI holding an object. Middle: RUBI brings the object to its center
of view and rotates it 180 degrees using its wrist. Right: The red arc shows the direction
of rotation of the wrist. The wrist joint is shown in green.

environments [51, 53, 43, 30, 19]. As part of this project, we found that one of the

activities toddlers liked most was give-and-take games with the robot (RUBI). In these

games the toddlers hand objects to RUBI, who then pretends to examine them and gives

them back to the toddler. We found that teachers use this type of give-and-take activity as

an opportunity to name the objects and teach vocabulary skills. Thus we aim for RUBI to

be able to recognize and name the objects given to it. In order to minimize the effect of

prior knowledge of the objects that different toddlers have, we choose a large collection

of soft toys, whose names the toddlers were unlikely to know.

4.3.2 Dataset Details

The GERMS dataset consists of 1365 video recordings of give-and-take trials

using 136 different objects. The objects are soft toys depicting various human cell types,

microbes and disease-related organisms. Figure 4.2 shows a collage of these toys. Subsets

of objects in GERMS exhibit interesting visual similarities that makes it a suitable dataset

for active object recognition. For example, ambiguity between objects in figure 4.3(a)

can be resolved only from certain alternative views.

A trial starts when someone hands an object to RUBI (see Figure 4.1). RUBI
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Figure 4.2. Object set used in GERMS dataset. The objects represent human cell types,
microbes and disease-related organisms.

(a) (b)

Figure 4.3. (a) Similar objects. Top: 3 brain cells. Bottom: 3 cancer cells. Toys in each
row are not distinguishable from the rear view. (b) Coordinate system on sore throat (see
text).

brings the grasped object to its center of view, rotates it by 180 degrees and then returns

it. During each trial, RUBI continuously records images from its head-mounted camera

at 30 frames per second. For each image, it also reads the positions of its joints. These

data are then stored in a track, a collection of which constitutes the dataset.

On average, each track contains 265 snapshots of a give-and-take trial, with each

snapshot consisting of an image from the head-mounted camera, the capture time, and

the joint angles at capture time. These joint angles allow researchers to simulate different

active observation policies. Table 4.1 summarizes the number of images in the dataset.

The details of the objects used, and train and test data collection are described in the next

two subsections.
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Table 4.1. GERMS dataset statistics (mean±std).

No. of tracks Frames/track Frames with
object/track

Mean track
length (sec)

Train 816 265±7 157±12 8.94 %
Test 549 265±7 145±19 8.91 %

4.3.3 Data Collection

The training data consist of 6 video clips per object, for a total of 816 clips. In

each clip an object was handed to RUBI in one of 6 predetermined poses. These poses

are determined via an object-centered coordinate system (see Figure 4.3(b)). The Z-axis

is aligned with the longest side of the object, with the positive direction determined by

the orientation of the object’s face. The Y-axis always comes out of the object’s face

plane. The 6 different poses result from the combination of 3 object orientations with

respect to each of 2 grippers (left arm and right arm). Figure 4.4(a) shows the 6 different

configurations for a single object. In each trial, RUBI grabs the object in one of these

6 configurations, brings the object to its center of view, and rotates the object by 180

degrees.

To collect test data, we asked a set of human subjects to hand the GERM objects

to RUBI in poses they considered natural. A total of 12 subjects participated in test data

collection, each subject handing between 10 and 17 objects to RUBI. They were asked to

hand each object to each gripper twice, using a different pose each time. Figure 4.4(b)

shows snapshots of the test data for the same object. The background of the GERMS

dataset was provided by a large screen TV displaying video scenes from the classroom in

which RUBI operates, including toddlers and adults moving around.

4.3.4 Annotation

The training and test data were annotated manually with the target object’s
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(a) (b)

Figure 4.4. (a) Six different poses of flesh eating object used for training data. The
images are captured from RUBI’s head-mounted camera, (b) Test poses for flesh eating
object.

bounding box in frames where the object was visible. These annotations serve to limit

the boundaries of objects in each image since the images are much larger than individual

objects. For examples of annotations, see Figure 4.5. The annotations provide ground

truth to test object segmentation algorithms and to allow testing AOR algorithms that

assume ideal object segmentation.

4.3.5 Actuator Data

Accompanying each image in give-and-take trials are recordings of the joints of

the robot. These joints include 2-DOF head, and two 7-DOF arms. The servos are MX-

28T and MX106T type Dynamixels. Each servo is equipped with a contact-less absolute

encoder with 12-bit resolution of 360 degrees. During a give-and-take trial, after each

image is captured, its corresponding servo positions are also recorded simultaneously.

4.4 Active Object Recognition Using Deep Q-learning

As in previous work by Paletta & Pinz [59], we treat active object recognition
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Figure 4.5. Bounding box annotation examples.

as a reinforcement learning problem, using Q-learning to find the optimal policy. We

use a DCNN for object representation and policy learning and call it deep Q-learning

(DQL). Our model takes a minimalist approach to encoding the state: we extract a belief

vector over different object labels and use that as input to the policy learning DCNN.

Our method is different from the work by Mnih et al. [49] in an important way. We

use objects beliefs as representation of the current states to learn actions, while in [49]

actions are learned from the raw image. Here we hypothesize that the next action to

disambiguate the current view can be inferred only from the belief over different objects.

Another difference between our problem and that of [49] is that object recognition at

test-time may not be episodic, that is, there may be no way of knowing when the object

inspection is finished. This is a difficult problem to solve automatically, for this work we

use a fixed length threshold to finish the object inspection trials.

4.4.1 Deep Q-learning

The model architecture is shown in figure 4.6. An image is first transformed into

a set of features using a DCNN borrowed from [16] which was trained on ImageNet. We

add a softmax layer on top of this model to recognize GERMS objects; the output of this

softmax layer is the belief over different GERMS objects given an image. This belief

is combined with the accumulated belief from the previous images using Naive Bayes.

This accumulated belief represents the state of the AOR system in each time step. Let Ii

be the input image to the system at the ith time step, the accumulated belief over objects
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given images from time steps 1, . . . ,n is given by,

P(O|I1, . . . , In) ∝

n

∏
i=1

P(O|Ii) (4.1)

where P(O|Ii) is the posterior belief over object label O computed by the first softmax

layer in figure 4.6. The accumulated belief is then transformed by the policy learning

network into action values. This network is composed of two Rectified-Linear-Unit

(ReLU) layers followed by a Linear-Unit (LU) layer. Each unit in the LU represents

the action value for a given accumulated belief and one of the possible actions. We will

discuss possible actions in the next subsection. In order to train this module, we employ

the Q-learning iterative update:

Q(s,a)← Q(s,a)+α{R(s,a)+ γ max
a∗

Q(s∗,a∗)−Q(s,a)}. (4.2)

In the above equation, Q(s,a) is the action value for action a in state s, α is the learning

rate and 0 < γ < 1 is the reward discount factor. The Q-learning iterative update is turned

into the following stochastic gradient descent weight update rule for the network:

W ←W −λ

(
Rt + γ max

a
Q(Bt+1,a)−Q(Bt ,at)

)
∂

∂W
Q(Bt ,at). (4.3)

Here, W is the set of weights of the policy learning network, Q(s,a) is the action-value

learned by the network for action a in state s, γ is the reward-discount factor and Rt is the

reward value at time step t. Also, λ is the learning rate for the neural network and Bt is

the vector of beliefs over object labels, which is used here to represent the state of the

system.
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Figure 4.6. The proposed architecture for DQL. Images are first transformed into beliefs
over object labels using a pre-trained Alex-net (gray block). Each block except for 7-layer
Alex-net represents one layer in the network.

4.4.2 Policy Learning

The number of output units in the policy learning network is equal to the number

of possible actions. Each output unit calculates the action value Q(s,a) for one action a.

We implemented a set of actions which rotate the robot’s wrist from its current position

by an offset angle. We chose the rotation offsets to be ±π/64, ±π/32, ±π/16, ±π/8,

±π/4, for a total of ten actions. The allowable range of rotation for both robot wrists is

in [0,π]. We choose these actions because they allow for both fine-grained inspection of

the object at hand and large rotations to traverse the entire range of wrist rotation in few

actions.

The training procedure for DQL is shown in Algorithm 1. In this algorithm,

AlexNet-Softmax converts a single image into a belief vector over objects, and Action-

Value converts the accumulated belief into action-values using the policy network. A

game play is defined as the sequence of moves (wrist rotations) selected by the policy

learning network to examine the current object at hand. Each move results in rotation

of the object and thus a new belief vector over object labels. The mapping of the image

to action values is shown in lines 8-11 of Algorithm 1. For the selected action then we

update the parameters of the network according to Equation 4.3. For each update, we

calculate the target value of the selected action by grabbing the next image based on
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the current pose of the robots wrist and the selected action. The action value for this

look-ahead image is used as the target value for the current image (lines 12-15).

In Algorithm 1 we show the training for a single image at a time. In practice, the

training algorithm uses mini-batches that contain images from different give-and-take

trials. In each training iteration, the procedure keeps track of different game plays and

updates the neural network parameters using the sum of their gradients. A game play

finishes after n moves, after which the training proceeds to the next mini-batch.

We use the same set of learning parameters to train different models for the left

and right arm. The training is done using stochastic gradient descent with mini-batches

of size 128. The learning rate starts at 0.01 and is multiplied by 0.1 every 1000 iterations.

The training procedure is on-policy, with probabilistic action selection. The training

runs for 5 epochs over the training data (3500 iterations on mini-batches), where for

each mini-batch a game play of length 5 is followed to update the weights. We found

no significant difference in the accuracy of models trained with longer game plays (10

and 20). After each move, a reward Rc of ±10 was given to the network depending on

whether the maximum probability label in the accumulated belief vector is equal to the

target label for that give-and-take trial or not.

4.5 Baseline Results

The GERMS dataset contains two benchmark tasks, one for each arm. We report

the accuracy of label prediction on test set trials. On each trial a new test object is

selected for recognition. The AOR algorithm chooses a sequence of servo configurations

producing a sequence of views of the test object. We report the accuracy of predicting

the correct label as a function of the number of actions

We report the accuracy of the DQL active object recognition system as the

baseline for GERMS. An instance of the network in Figure 4.6 is trained using game
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Algorithm 1. Training Deep Q-learning network
1: procedure TRAIN

2: t← 1
3: while not converged do
4: It ← Next-Training-Image(t−1)
5: Ic← It
6: Bc← vector of ones of length C
7: for move=1 To LengthofGamePlay do
8: A← AlexNet-Softmax(Ic)
9: Bc← Normalize( elementwise-product(A,Bc) )

10: Q(Bc,a)← Action-Value(Bc)
11: ac← Action-Selection(Q(Bc,a))
12: I∗c ← Next-Image(Ic,ac)
13: A∗← AlexNet-Softmax(I∗c )
14: B∗c ← Normalize( elementwise-product(A∗,Bc) )
15: Q(B∗c ,a)← Action-Value(B∗c)
16: W ←W −λ (Rc + γ maxa Q(B∗c ,a−Q(Bc,ac)))

∂

∂W Q(Bc,ac)
17: Ic← Next-Image(Ic,ac)
18: end for
19: t← t +1
20: end while
21: end procedure

plays of length 5 using images from the training set. After the model is trained, we

measure the performance on the test set as a function of the number of actions. For each

action, a new accumulated belief vector is calculated and used to measure the accuracy

of the model. The benchmarks are shown in figure 4.7.

We compared the performance of our model against two alternative policies:

sequential and random. The random policy selects a random action with uniform proba-

bility, while the sequential strategy always starts from the same position and moves in

the same direction to the next immediate position. Figure 4.7 compares the accuracy

of predicting the correct object label as a function of the number of observed images.

This performance is averaged over the entire set of images in the test set, that is if the

system starts from any image in the test set and selects the next action according to

the corresponding policy. We report the average performance of 20 models trained in
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(a) (b)

Figure 4.7. Performance comparison between DQL, sequential and random policies on
test images for RUBI’s (a) left and (b) right arm.

Figure 4.8. From left to right: the sequence of actions chosen by DQL on ”Cancer”.

separate runs of Algorithm 1.

Table 4.2 shows the required number of step to reach the same level of prediction

accuracy over 136 different target classes of GERMS by the sequential, random and

DQL strategies. For the samples collected with the left arm, DQL strategy achieves 55%

accuracy in only 3 steps which is significantly better than 18 steps by the random and 37

steps by the sequential method. For the same arm, DQL achieves its peak performance

(58%) in 7 steps while the other two methods can’t achieve this in a maximum of 30

steps. For the right arm, DQL reaches 58% accuracy in 3 steps, compared to 10 steps

required by the random strategy. Sequential method can’t reach this level in 30 steps.

DQL achieves its peak performance of 62% accuracy in 10 steps, while none of the other

methods can reach the same accuracy within 30 steps.

4.6 Discussion

Active object recognition has the potential to overcome many of the difficulties
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Table 4.2. Number of steps required by the sequential, random and DQL policies to
reach the same level of label prediction accuracy on GERMS dataset.

48% 53% 55% 58% 62%

Sequential 18 30 - - -
Right ArmRandom 2 4 6 10 -

DQL 1 2 2 3 10

Sequential 15 24 - - -
Left ArmRandom 3 10 18 - -

DQL 1 3 3 7 -

encountered in classical vision problems of passive object recognition from static images.

While the literature on active object recognition has shown promising results, progress

has been slow due to the lack of realistic datasets and benchmarks that can be easily

shared by multiple research groups. In this paper, we introduced the GERMS dataset that

includes a collection of videos, a set of active object recognition benchmarks and baseline

results on those benchmarks. We hope that this dataset will facilitate the comparison of

different active object recognition methods and accelerate progress in the field.

We also proposed an architecture for active object recognition based on deep

Q-learning. Instead of the standard approach of encoding the state using a vector

of visual features, we used the representation produced by a commodity deep object

classification network [49]. This representation was then processed by an additional deep

network trained using Q-learning for efficient action selection. The proposed approach

outperforms sequential and random action selection policies and serves as baseline for

future comparisons. We also observed that different lengths of game plays did not have

an impact on the performance of trained model. The model achieves its peak recognition

accuracy in 7-10 steps, far fewer than the random and sequential strategies, and always

achieves the highest accuracy among them.

The current baseline approach relied on human-annotated bounding boxes. We are
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currently baselining algorithms that include automatic object segmentation. We are also

evaluating potential performance gains achievable by post-training the early perceptual

layers of the object recognition network using the policy learning error signals.
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Chapter 5

Deep Active Object Recognition by
Joint Label and Action Prediction

5.1 Abstract

An active object recognition system has the advantage of acting in the environment

to capture images that are more suited for training and lead to better performance at

test time. In this paper, we utilize deep convolutional neural networks for active object

recognition by simultaneously predicting the object label and the next action to be

performed on the object with the aim of improving recognition performance. We treat

active object recognition as a reinforcement learning problem and derive the cost function

to train the network for joint prediction of the object label and the action. A generative

model of object similarities based on the Dirichlet distribution is proposed and embedded

in the network for encoding the state of the system. The training is carried out by

simultaneously minimizing the label and action prediction errors using gradient descent.

We empirically show that the proposed network is able to predict both the object label

and the actions on GERMS, a dataset for active object recognition. We compare the test

label prediction accuracy of the proposed model with Dirichlet and Naive Bayes state

encoding. The results of experiments suggest that the proposed model equipped with

Dirichlet state encoding is superior in performance, and selects images that lead to better

55
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training and higher accuracy of label prediction at test time.

5.2 Introduction

A robot interacting with its environment can collect large volumes of dynamic

sensory input to overcome many challenges presented by static data. A robot manipulating

an object with the capability to control its camera orientation, for example, is an example

of an active object recognition (AOR) system. In such dynamic interactions, the robot can

select the training data for its models of the environment, with the goal of maximizing

the accuracy with which it perceives its surroundings. In this paper, we focus on AOR

with the goal of developing a model that can be used by a robot to recognize an object

held in its hand.

There are a variety of approaches to AOR, the goal of which is to re-position

sensors or change the environment so that the new inputs to the system become less

ambiguous for label prediction [1, 5, 18]. An issue with previous approaches to AOR is

that they mostly used small simplistic datasets, which were not reflective of challenges in

real-world applications [45]. To avoid this problem, we have collected a large dataset

for AOR, called GERMS1, which contains more than 120K high resolution (1920x1080)

RGB images of 136 different plush toys. This paper extends our previous work, Deep

Q-learning [45], where an action selection network was trained on top of a pre-trained

convolutional neural network. In this paper we extend the model to train the network

end-to-end using GERMS images to jointly predict object labels and action values.

This paper makes two contributions: First, we develop a deep active object

recognition (DAOR) model to jointly predict the label and the best next action on an

input image. A deep convolutional neural network is trained to predict the object label

and action-values from an image of the object. We use reinforcement learning to teach

1Available at http://rubi.ucsd.edu/GERMS/

http://rubi.ucsd.edu/GERMS/
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the network to predict the action values, and minimize the action value prediction error

along with the label prediction cross entropy. The visual features in early stages of this

network are learned to minimize both errors. The second contribution of this work is to

embed a generative Dirichlet model of objects similarities for encoding the state of the

system. This model integrates information from different images into a vector, based on

which actions are calculated to improve object recognition. We embed this model as a

layer in the network and derive the learning rule for updating the Dirichlet parameters

using gradient descent. We conduct a series of experiments on the GERMS dataset to

test (1) if the model can be trained jointly for label and action prediction, and (2) how

effective is the proposed Dirichlet state encoding compared to more traditional Naive

Bayes approach, and (3) discuss some of the properties of the learned policies.

In the next section, we review some of the previous approaches to AOR and the

datasets they used. Next we introduce the GERMS dataset and describe the training and

testing data used for the experiments in this paper. After that, we describe the details of

the proposed network and Dirichlet state encoding, going into the details of cost function

and update rules for different layers of the network. In the results section, we report

the properties of the proposed network and compare its performance in different state

encoding scenarios. The final section is the concluding remarks.

5.3 Literature Review

Active object recognition methods can be divided into two groups based on how

they select actions to improve object recognition. The first group uses heuristic methods

to select actions, for example to bring the object to a predefined standard view where

the recognition performance is expected to be maximized. The second group of methods

are motivated by information theory, using information gain to determine the effect of

actions on object label prediction uncertainty. The next action is chosen to maximize the
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reduction in this uncertainty.

An early heuristic AOR system was developed by Wilkes and Tsotsos [85]. They

used a heuristic procedure to change the camera’s position and orientation to bring the

object into a ‘standard’ view using a robotic-arm-mounted camera. The standard view

of objects was defined to be unique among all objects with respect to their low level

visual features. In a series of experiments on 8 Origami objects, they qualitatively report

promising results for achieving the standard view and retrieving the correct object labels.

Heuristic method clearly suffer from generalization problem, as the number of objects

increases it is not possible to define standard views for each object manually. A more

systematic approach is needed to define the effectiveness of different object views for

label prediction.

Among the information theoretic approaches to AOR, Schiele and Crowley’s

work was pioneering in making an analogy between object recognition and information

transmission [71]. They try to minimize the conditional entropy H(O|M) between the

original object O and image M, which is the object’s transformation through measurement.

Starting from a random view of an object, their system determines the most-likely

object label and moves to the view that has the lowest conditional entropy for that label

among the training data. The movement is then verified by measuring the prediction

discrepancy between the first and the second views. They used the COIL-100 dataset

for their experiments, which consists of 7200 images of 100 toy objects rotated in depth

[58]. This dataset has been appealing for active object recognition because it provides

systematically defined views of objects. Schiele and Crowley achieved almost perfect

recognition accuracy on this dataset using their one-step view selection procedure.

Borotschnig et al. formulate the observation planning in terms of maximization

of the expected entropy loss over actions [8]. Larger entropy loss is equivalent to less

ambiguity in interpreting the image. A set of distributions are learned for different views
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of each object, and used to predict the entropy loss for the next view. The novelty of

this work is the use of parametric distributions for object views. With an active vision

system consisting of a turntable and a moving camera, they report improvements in object

recognition over random selection of next views on a small set of objects.

Paletta & Pinz search for the most discriminative views of objects by maximizing

the entropy loss between two consecutive views of objects [59]. The novelty of their

method is the use of reinforcement learning to discover the optimal strategies to explore

the objects. Action-values in this work correspond to the decrease in entropy of view

sequences of objects. A variant of Q-learning is used to train a neural network to predict

the action values given the current view of the image. This work is different from our

work in that in our model the visual features are learned simultaneously with the optimal

policy, which allows the features to be tuned for object inspection. Paletta & Pinz showed

that their model is superior in recognizing COIL100 objects compared to a random

exploration strategy.

Calculating the exact value for entropy loss is computationally expensive since

it requires marginalization over the observation space, and one might resort to approx-

imations or simpler criterion to measure the uncertainty in prediction. This argument

motivated Browatzki et al. to maximize a measure of variance of observations across

different objects [11]. They used a particle filter approach to determine the viewing pose

of an object held in-hand by an iCub humanoid robot. They show that their method is

superior to random action selection on small sets of custom objects.

A common trend in these approaches is the use of small, sometimes custom-

designed sets of objects. There are medium sized datasets such as COIL-100, which

consists of 7200 images of 100 toy objects rotated in depth [58]. We have summarized

the properties of datasets used in these studies in table 5.1. In this table, meridian denotes

the great circles on the surface of view sphere of objects, moving along which camera
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Table 5.1. Details of different active object recognition datasets used in the literature.

Dataset number
of objects

Meridians
on view
sphere

occlusion publicly
available

complex
back-
ground

Origami [85] 8 1(single view) No No No
COIL100 [58] 100 1×2π No Yes No
model objects [8] 15 3×2π No No No
office objects [11] 18 not specified Yes No No
GERMS [45] 136 10×π Yes Yes Yes

captures images of objects. We also mention the angular distance that camera traverses

on the great circle while capturing images, with 2π denoting a full circle. From this table

it is clear that these datasets are not challenging for recognition because of small number

of objects, simple background and no occlusion of the objects in images. We collected

GERMS, which includes a large number of objects with complex background, occlusion

and large number of viewing pose per objects to cover the shortcoming of existing AOR

datasets.

Another common trend in the existing literature is the notion of a pre-defined

encoding scheme for objects appearance. In these studies, visual features extracted from

objects are hand-crafted and fixed during policy learning. However, a more compelling

scheme would be to learn the features for object appearance encoding along with the

object exploration policy. This way we allow the visual features to be fine-tuned for

better object inspection. In this paper, we train a deep convolutional neural network to

jointly predict label and action-values given objects images. Deep neural networks have

proven to be superior in learning visual features to hand-crafted methods. We utilize

a deep network to learn the appearance and object inspection policy at the same time.

This reduces the training to a single stage, as opposed to the two stage process of feature

encoding and policy learning in the current AOR literature.
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5.4 The GERMS Dataset

The GERMS dataset was collected in the context of the RUBI project, whose goal

is to develop robots that interact with toddlers in early childhood education environments

[43, 56, 45]. This dataset consists of 1365 video recordings of give-and-take trials using

136 different objects. The objects are soft toys depicting various human cell types,

microbes and disease-related organisms. Figure 5.1 shows the entire set of these toys.

Each video consists of the robot (RUBI) bringing the grasped object to its center of view,

rotating it by 180 degrees and then returning it. The dataset was recorded from RUBI’s

head-mounted camera at 30 frames per second.

Figure 5.1. The GERMS dataset. The objects represent human cell types, microbes and
disease-related organisms.

The data for GERMS were collected in two days. On the first day, each object

was handed to RUBI in one of 6 pre-determined poses, 3 to each arm, after which RUBI

grabbed the object and captured images while rotating it. The robot also captured the

positions of its joints for every capture image. On the second day, we asked a set of

human subjects to hand the GERM objects to RUBI in poses they considered natural. A

total of 12 subjects participated in test data collection, each subject handing between 10

and 17 objects to RUBI. For each object, at least 4 different test poses were captured.
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Table 5.2. GERMS dataset statistics (mean±std).

Number of tracks Images per Track Total Number of
Images

Day 1 816 157±12 76,722
Day 2 549 145±19 51,561

The background of the GERMS dataset was provided by a large screen TV displaying

video scenes from the classroom in which RUBI operates, including toddlers and adults

moving around.

We use half of the data collected in day 1 and 2 for training and the other half of

each day for testing. More specifically, three random tracks out of six tracks for each

object in Day 1 and two randomly selected tracks for each object from Day 2 were used

for training the network and the rest was used for testing. Table 5.2 shows the statistics

of training and testing data for the experiments in this paper.

5.5 Network Architecture

The traditional view of an active object recognition pipeline usually treats the

visual recognition and action learning problems separately, with visual features being

fixed when learning actions. In this work, we try to solve both problems simultaneously

to reduce the training time of an AOR model. By incorporating the errors from action

prediction into visual feature extraction, we hope to acquire features that are suited for

both label and action prediction.

The network architecture is shown in figure 5.2. The input image is first trans-

formed to a set of beliefs over different object labels by a classification network. The

belief vector is then combined with the accumulated belief vectors over previous views

to produce an encoding of the state of the system. This is accomplished by the Mixture

belief update layer in the network. The new accumulated belief is then transformed into
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action-values, based on which the next object view is selected.

Figure 5.2. The network architecture for active object recognition. Red arrows represent
target values that are used to train the network. The numbers represent the number of
units in each layer of the network.

We next detail each part of the network, describing the challenges in training

the layer and corresponding solutions. We first address the transformation of images

into beliefs over object classes. Then we outline the belief accumulation problem over

object views, followed by the action learning and,finally, present the full description of

the algorithm to train this model.

5.5.1 Single Image Classification

The goal of this part of the network is to transform a single image into beliefs

over different object labels. The feature extraction stage is comprised of 3 convolution

layers followed by 3 fully connected layers. The dimensions of each layer are shown in

figure 4.6. The convolution layers use filters of size 3×7×7, 64×5×5 and 128×3×3

respectively for layers 1,2 and 3. The number of parameters in each layer of the network

is shown in table 5.3. The operations of each layer are inspired by the model proposed in

[36]. Each convolution layer is followed by rectification, normalization across channels

and max pooling over a neighborhood of size 2×2 with stride of 1.

We shall denote the GERMS dataset by D = {Ii,yi,Pi}N
i=1, where Ii ∈ R64×64×3
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Table 5.3. Number of units and parameters for the proposed network.

Layer Number of Units Input to Unit Num. Parameters

Conv1 64x30x30 3×7×7 9K
Conv2 128x13x13 64×5×5 204K
Conv3 256x11x11 128×3×3 294K
ReLU1 256 30976 7M
ReLU2 256 256 65K
Softmax 136 256 34K
State Update. 1360 136 184K
ReLU3 256 1360+256 413K
ReLU4 256 256 65K
LU 10 256 2K

is the image captured by the robot camera, yi ∈ {o1,o2, ...,oc} is the object label and Pi

is a positive integer number denoting the pose of the robot’s gripper [45]. In order to

learn the weights of the single image classification part, we perform gradient decent on

action prediction and cross-entropy costs, denoted by CRL and CCL respectively. The

cross-entropy classification cost CCL is:

CCL =−
N

∑
i=1

C

∑
j=1

I(yi = c) logBi j. (5.1)

Here I is the indicator function for the class of the object and Bi j = P(o j|Ii) is the

predicted label belief for the ith image belonging to the jth object class. The next

subsection describes the action prediction cost CRL.

5.5.2 Action Value Prediction

Active object recognition can be treated as a reinforcement learning problem,

whose goal is to learn an optimal policy π∗ : S→ A from states S to actions A. The

optimal policy is expected to maximize the total reward for every interaction sequence
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sπ
0:T with the environment,

s0
π(s0)−−−→ s1

π(s1)−−−→ s2
π(s2)−−−→ . . .

π(sT−−1)−−−−−→ sT

where si
π(si)−−−→ si+1 is the transition from si to si+1 by performing the action ai = π(si).

The total reward for an interaction sequence sπ
0:T is T R(sπ

0:T ) = ∑
T
t=0 γ tR(st) where

R : S→ R is a reward function and γ, 0 < γ < 1 is a discount factor used to emphasize

immediate rewards. For an AOR system, an interaction sequence starts by observing

image of the object with the initial orientation in the robot’s gripper. The state of the

system is then updated by the observed image, and an action is selected to perform on

the object to maximize the total reward. The reward in each step is determined by the

accuracy of predicted label for the observed images up to that step.

In order to learn the optimal policy, we use the Q(λ ) algorithm to train the

network to predict actions for improved classification [83]. This is a model-free method

that learns to predict the expected reward of actions in each state. More specifically, let

Qπ(s,a) be the action value for state s and action a,

Qπ(s,a) = Eπ {T R(sπ
0:T )|s0 = s,a0 = a} ,

which is the expected reward for performing action a in state s and then following

policy π . Let the agent interact with the environment to produce a set of interaction

sequences {sπ
0:T}. Then Q(λ ) learns a policy by applying the following update rule to

every observed transition T Rπ(st ,st+1) = st
π(st)−−−→ st+1,

Qπ(st ,at)← (1−α)Qπ(st ,at)+α

[
R(st+1)+ γ max

a
Qπ(st+1,a)

]
(5.2)

where 0 < α < 1 is the learning rate, and action at is selected using an epsilon-greedy
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version of the learned policy. We interpret this iterative update in the following way to be

useful for training a neural network. Let the output layer of the network predict Q(s,a)

for the learned policy π for every possible action a in s. Then a practical approximation

of the optimal policy is obtained by minimizing the reinforcement learning cost,

CRL = ∑
T Rπ (st ,st+1)∈{sπ

0:T }

[
R(st+1)+ γ max

a
Qπ(st+1,a)−Qπ(st ,at)

]2
(5.3)

In this network, action value prediction is performed by transforming the state of the

system st at tth step through layers ReLU3,ReLU4 and LU. We train the weights of the

network in these layers by minimize CRL. In the next subsection, we go into the details

of state encoding, and after that we describe the details of the set of actions.

5.5.3 State Encoding

State encoding has a prominent effect on the performance of an AOR system.

Based on the current state of the system, an action is selected that is expected to decrease

the ambiguity about the object label. An appealing choice is to transform images into

beliefs over different target classes and use them as the state of the system. Based on the

target label beliefs, the system decides to perform an action to improve its target label

prediction. What we expect from the AOR system is to guide the robot to pick object

views that are more discriminative among target classes.

We first transform the input image Ii into a belief vector Bi = [Bi j]
C
j=1 using the

the first 7 layers of the network, where

Bi j ≥ 0,
C

∑
j=1

Bi j = 1,

The produced label belief vector is then combined with the previously observed belief

vectors from this interaction sequence to form the state of the system. The motivation
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for this encoding is that the combined belief encodes the ambiguity of the system

about target classes and thus can be used to navigate to more discriminative views of

objects. Active object recognition methods usually adapt a Naive Bayes approach to

combining beliefs from different observations. Assume that in an interaction sequence,

a sequence of images I0:t = {I0, I1, . . . , It} have been observed and their corresponding

beliefs B0:t = {B0,B1, . . . ,Bt} have been calculated. The state of the system at time t

is calculated using Naive Bayes belief combination, which is to take the element-wise

product of the individual belief vectors and then normalize,

st = P(O|I0:t) =
P(O, I0:t)

P(I0:t)

∝ P(O)
t

∏
i=0

P(Ii|O)

∝

t

∏
i=0

P(O|Ii) (5.4)

where O is the target label, and P(O|Ii) is the vector of beliefs produced using single

image classification. Here we assumed a uniform prior over images and target labels.

The problem with Naive Bayes is that if an image is observed repeatedly in I0:t , the result

will change based on the number of repetitions. This is undesirable since the state of the

system changes with repeated observations of an image where no new information is

added to the system. If a specific image is suitable for classification, the system can visit

that image more often to artificially increase the performance of the system. To avoid

this problem, we adapt a generative model based on Dirichlet distribution to combine

different belief vectors.

We use a generative model similar to [64] to calculate the state of the system given

a set of images. The intuition behind this model is that performing an action on an object

will produce a distribution of belief vectors. We model the observed belief vectors given
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the object and action as a Dirichlet distribution, parameters of which are learned from the

data. The model is shown in figure 5.3. Here a ∈ {a1,a2, . . . ,aH} is a discrete variable

representing the action from the repertoire of actions, o ∈ {o1,o2, . . . ,oC} represents the

object label and α ∈ RC is the vector of parameters of the Dirichlet distribution from

which the belief vector B ∈ RC over target labels is drawn,

P(B|α) = Dir(B;α)

=
Γ(∑C

j=1[α] j)

∏
C
j=1 Γ([α] j)

C

∏
j=1

[B][α] j−1
j (5.5)

!!! !!!
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Figure 5.3. Dirichlet belief update layer. Each unit in this layer represents a Dirichlet
distribution for a pair of object-action. The parameters of this layer are the vectors of
Dirichlet parameters αo

k for each unit.

The state of the system is calculated by computing the posterior probability of

object-action beliefs using the model in figure 5.3. Let Po
a (ai,Bi) = P(o,a|ai,Bi) denote

the posterior probability of an object-action pair given the performed action and the

observed belief vector. Assuming uniform prior over object and α and a deterministic
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policy for choosing actions,

P(o,a|B) =

=

∫
α

P(o,a,B,α)dα

P(B)

∝

∫
α

P(o)P(a|o)P(α|o,a)P(B|α)dα

∝

∫
αo

a

Dir(B;α
o
a ))dα

o
a (5.6)

The notation αo
a is to make clear that there is an α for each pair of object-action. Instead

of full posterior probability, we use α̂o
a , the maximum likelihood estimate of α , and

replace the integral above by ,

P(o,a|B)≈ Dir(B|α̂o
a ) (5.7)

For an interaction sequence B0:t and A0:t = {a0,a1, . . . ,at}, the posterior probability of

object-action pair is,

P(o,a|A0:t ,B0:t) =
t

∏
i=0

P(o,a|Bi)
I(a,ai) (5.8)

The state of the system is comprised of the vector of object posterior beliefs for every

object and action, plus the features and belief extracted from the latest image It ,

st = {[P(o,a|A0:t ,B0:t)],Bt}, (5.9)

o ∈ {o1,o2, . . . ,oC}

a ∈ {a1,a2, . . . ,aH}

Note that st ∈ RCH is a vector of length C×H.
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5.5.4 Training for Joint Label and Action Prediction

Our goal is to train the network for joint action and label prediction. We achieve

this by minimizing the total cost which is the sum of label (5.1) and action prediction

(5.3) costs. The errors for action value prediction are back-propagated through the entire

network, reaching visual feature extraction units. The total cost function for action-value

and label prediction is,

Cost = CRL +CCL (5.10)

The weights of the network in the visual feature extraction layers (Conv1, Conv2,

Conv3, ReLU1, ReLU2, softmax) are trained using backpropagation on (5.10), while the

action prediction layers (ReLU3, ReLU4 and LU) are trained by gradient descent on the

action prediction error (5.3).

We use gradient descent with respect to the network weights to minimize the cost

function in (5.10). If the training converges, it will land on a local optimum point since

the neural network’s error surface is spiky with many local optimums. A concern may be

raised that the minimization of the cost function may diverge, for example if changing

the network weights to reduce the reinforcement learning cost causes the classification

cost to increase. We didn’t observe such behavior in practice while training the network.

A counter argument against the divergence of the cost function is that learning a better

classifier is in the direction of learning an optimal policy, as less confusion in label

prediction simplifies the object exploration policy and can help the policy to more

efficiently search for discriminative views of objects.

To learn the parameters of the belief update layer αo
a , we use gradient descent

on log-likelihood of the data. The maximum likelihood of Dirichlet distribution is a

convex function of its parameters and can be minimized using gradient descent. For a
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set of beliefs B1:N observed by performing action a on the object o, the gradient of the

log-likelihood with respect to the parameters are,

∂ logP(B1:N |αo
a )

∂ [αo
a ]k

= N
d

d[αo
a ]k

logΓ(
C

∑
j=1

[αo
a ] j)−

d
d[αo

a ]k
logΓ([αo

a ]k)+ logBk

= NΨ(
C

∑
j=1

[αo
a ] j)−NΨ([αo

a ]k)+ logBk (5.11)

where Ψ(x) = d/d(x) logΓ(x) is the digamma function. There is one unit per Dirichlet

distribution Dir(|αO
a ) in the belief update layer of the network. These units receive the

current belief and the previous state of the system, and produce an updated belief. An

schematic of the belief update layer of the network is shown in figure 5.3. Learning αo
k

is carried out simultaneously with the rest of the network weights in the same training

session.

5.5.5 Reward Function

Another component that has an important effect on the performance of our AOR

system is the reward function which maps state of the system (5.4) into rewards. A simple

choice for reward function is

R(st) =

 +1 if argmaxi[Bt ]i = Target-Label(It))

−1 otherwise
(5.12)

A reward of +1(−1) is given to the system if at time step t the action at brings the object

to a pose for which the predicted label is correct (wrong). The intention behind this

reward function is to drive the AOR system to pick actions that lead to best next view of

the object in terms of label prediction.
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5.5.6 Action Coding

In order to be able to reach every position in the robot’s joint gripper range, we

use a set of relative rotations as the actions of the system. More specifically, we use 10

actions to rotate the gripper from its current position by any of the following offset values:

{±π

4 ,±
π

8 ,±
π

16 ,±
π

32 ,±
π

64}. The total range of rotation for each of the robot’s grippers

is π . The actions are selected to be fine grained enough so that the robot can reach

any position with minimum number of movements possible. This encoding is simple

and flexible in the range of positions that the robot can reach, however we found that

the policies can become stuck with a few actions without trying the rest. Encoding the

states with the Dirichlet belief update helps alleviate this issue to some degree, however,

it doesn’t completely remove the problem. We deal with this problem by forcing the

algorithm to pick the next best action whenever the best action leads to an image which

has already been seen.

5.6 Experimental Results

5.6.1 Training Details

We trained the network by minimizing the costs of classification, action value

prediction (5.3) and negative of log-likelihood of Dirichlet distributions (5.11). We used

backpropagation with minibatches of size 128 to train the network. For Q(λ ) , we used ini-

tial learning rate of 0.1 which was multiplied by 0.5 after iterations 400,800,1200,1500

and then remained constant. The total number of training iterations is 4000. For each

iteration, an interaction sequence of length 5 is followed. The full training procedure is

shown in algorithm 2. For Q(λ ) , we used ε-greedy policy in the training stage, with ε

decreasing step-wise from 0.9 to 0.1. We found that using an ε > 0 at the test stage hurts

the performance, therefore we used ε = 0 during testing. The number of actions is 10 as



73

Algorithm 2. Training the network for joint label and action prediction.
1: procedure TRAIN

2: R← 1
3: for iteration=1 To N do
4: I1,y← NextImage(iteration)
5: s0← [0]
6: Actions← RandomActions(NumActions)
7: for t=1 To NumMoves do
8: st ,predictedActions← FeedForward(It ,st−1,Actions)
9: It+1,y← NextImage(It ,predictedActions)

10: targetActionVals, ŷ← LookAhead(It+1,st ,Actions)
11: if t = NumMoves then
12: targetActionVals← targetActionVals+R(st)
13: end if
14: for W ∈ {ReLU3,ReLU4,LU} do
15: W ←W −λW

∂

∂W {CRL}
16: end for
17: for W ∈ {Conv1,Conv2,Conv3,ReLU1,ReLU2,So f tmax} do
18: W ←W −λW

∂

∂W {CRL +CCL}
19: end for
20: for o ∈ {o1,o2, . . . ,oC},a ∈ {a1,a2, . . . ,aH} do
21: αo

a ← αo
a +λ

∂

∂αo
a

logP(Bt |αo
a )

22: end for
23: end for
24: end for
25: end procedure

described above, and there are a total of 136 object classes, resulting in a total of 1360

Dirichlet distributions for state encoding 5.9.

5.6.2 Learning the Parameters of Dirichlet Distributions

Figure 5.4 shows the average negative log-likelihood of the data under Dirichlet

distributions for training a network. This figure shows that the neg-log-likelihood of data

decreases for the first 1000 iterations, after which the rate of change is decreased but

not stopped. In this figure, there are impulses that occur in the negative-log-likelihood

of the data. It is observed that the magnitude of these impulses increase as the model
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Figure 5.4. Average Negative log-likelihood of data under Dirichlet distributions. The
decrease in negative log-likelihood indicates learning in the belief update layer.

fits the training data. We attribute these impulses to the glitches in the gradients of the

action-value cost function with respect to the network weights. As training continues, the

glitches are fixed by the image batches for which the network can predict the action-values

correctly.

5.6.3 Label Prediction Accuracy

Static Label Prediction

First we report the accuracy of static label prediction on GERMS using a deep

convolutional network that is trained to predict object labels without the active component.

We train a deep convolutional network with 3 convolutional and 2 fully connected layers

with the number of units shown in figure 4.6. This network is trained by minimizing

the cross entropy cost in (5.1) for predicting the labels of single frames of the GERMS

dataset. Unlike active methods which select different images with different probabilities

for training, we select GERMS training images for static label prediction with uniform
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probability. For testing with one or more images, we randomly select images from each

track, and classify them with the trained network. The probabilities for multiple images

are combined using the naive Bayes rule in (5.4). The average accuracy of static label

prediction for the test set is shown in table 4.2.

We observe that the accuracy of static label prediction is higher than Naive Bayes

active methods, but lower than Dirichlet based active models. The difference originates

from the ability of active methods in selecting images that are used for training and then to

choose such images at test time. Dirichlet based active methods achieve higher accuracy

by focusing the training on images that are more discriminative for label prediction.

The static model randomly chooses among the ambiguous and non-ambiguous views of

different objects at training, which leads to lower accuracy compared to Dirichlet based

methods. On the other hand Naive Bayes methods fail to visit enough training images

due to overfitting in the action selection layer, and thus are unable to compete in accuracy

even with static models.

Since the primary focus of this paper is active object recognition, we do not

investigate further the properties of static object recognition models. Instead, we focus

on Dicihlet-based and Naive Bayes active object recognition models, and compare their

performance in the following sections.

Comparing Naive Bayes and Dirichlet State Encoding

In this section we compare the effectiveness of the Dirichlet and Naive Bayes

state encodings for label prediction accuracy. For Naive Bayes models (NB), the state

of the system is updated using (5.4), while the size and configuration of the rest of the

network remain the same. Dirichlet (DR) state encoding is implemented using (5.9). For

each encoding and for each arm, we train 10 different models and report the average test

label prediction accuracy as a function of number of observed images, comparing the
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Figure 5.5. Test label prediction accuracy as a function of number of observed images for
left and right arms for Dirichlet state encoding with repeated visits (DR) and non-repeated
visits (DN).

Deep Active Object Recognition (DAOR) and Random (Rnd) action selection policies.

Figure 5.5 plots the performance for these models. It is obvious that the Dirichlet model

is superior to Naive Bayes in label prediction accuracy.

The first point to notice in figure 5.5 is the performance difference between Naive

Bayes and Dirichlet belief updates on single images (action 0). NB models achieve a

performance less than 35%, while Dirichlet achieves higher than 40%. One interpretation

of this result is that the Naive Bayes model pick actions that bounce between a subset of

train images, leading to under-fitting of the model. In the visualizing policies subsection,

we provide some evidence for this justification. On the other hand, the performance of

DR-DAOR model tends to saturate after 3 actions, while DR-Rnd keeps improving for

subsequent actions. This might be due to the fact that DR-DAOR also bounces between

subsets of images at the test time. We can avoid such behavior by forcing the policies

to pick actions that lead to joint poses that haven’t already been visited in the same

interaction sequence.
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Figure 5.6. Test label prediction accuracy as a function of number of observed images
for left and right arms for Naive Bayes (NB) and Dirichlet (DR) state encoding.

Removing Duplicate Visits

We train a set of models using Dirichlet state encoding, while forcing the policy to

pick non-duplicate joint poses in every action of an interaction sequence. This approach

is easy to implement by keeping a history of visited joint poses during an interaction

sequence and picking actions with highest action value that lead to novel joint positions.

We refer to this model as Dirichlet with non-repeated visits (DN). Comparison between

DN and DR for Rnd and DAOR policies (both forced to visit novel poses) is shown in

figure 5.6.

Comparison between the models mentioned above is shown in table 5.4. We see

that the best performing model is DN-DAOR with the exception of action 1 for the right

arm, which DR-DAOR achieves the best performance. For both arms, Dirichlet models

perform significantly better than Naive Bayes, improving the model’s performance on

average by 10% for the right arm and 14% for the left arm.

Visualizing Policies

It may help us understand the weakness and strength of different models if we

take a closer look into the learned policies. For this purpose, we visualize the consecutive
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Table 5.4. Comparison of static, DQN, random and sequential AOR accuracy(%) as a
number of observed frames.

1 2 3 4 5 6

Static OR 35.2 46.3 51.0 53.9 56.0 57.1

Right Arm
NB-Rnd 31.3 38.1 41.3 43.4 45.0 46.1
NB-DAOR 31.3 42.1 45.8 48.0 48.3 49.0
DR-RND 40.3 48.7 51.9 53.6 54.6 55.2
DR-DAOR 40.3 49.7 51.6 53.0 52.5 52.6
DN-RND 39.4 47.8 50.8 52.5 53.6 54.3
DN-DAOR 39.3 48.4 53.1 55.4 57.0 57.1

Static OR 35.6 46.2 50.8 53.4 55.3 56.6

Left Arm
NB-Rnd 32.7 39.5 42.9 44.9 46.3 47.4
NB-DAOR 32.7 43.7 47.5 49.6 50.0 50.6
DR-RND 43.7 52.5 55.8 57.5 58.6 59.3
DR-DAOR 43.7 53.0 54.9 55.9 55.5 55.4
DN-RND 45.4 54.5 58.0 60.0 61.1 61.9
DN-DAOR 45.4 56.3 60.7 62.8 64.1 64.6

actions in the interaction sequences of length 5, as shown for training data in figures 5.7

and for test data in figure 5.8. Each plot represents actions in different rows, with the

magnitude and orientation of the action begin depicted by the length and direction of the

corresponding arrow on the left side. Each time step of the interaction sequence is shown

as a numbered column. The colored lines in each plot connect one action in column i to

another action in column i+1 only if those actions appeared consecutively in interaction

sequences at these time steps. The thickness of lines depicts the relative frequency by

which two actions were observed on the data.

Figure 5.7 visualizes the policies DN-DAOR and NB-DAOR on the training data.

This figure helps clarify the lower performance of NB models as described before. For

NB-DAOR shown on the left side of figure 5.7, we see thick lines connecting actions that

rotate the object with the largest magnitude in opposite directions. The relative thickness

of these lines indicates that the model tends to go to one end of the joint’s rotation range,
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Figure 5.7. Visualization of (left) NB and (right) DN policies on training data. Each
row represents an action and each column represents a time-step in object exploration
performed by the policy in an interaction sequence. The color of lines connecting two
columns are different for clarity for every consecutive time steps, while the thickness of
these line indicate the frequency of that transition between views in interaction sequences.

go back with one large rotation and then repeat. Despite presence of other actions, this

back and forth action dominates the training process, leading to lower accuracy on test

label prediction for single images. On the right side of figure 5.7 we see that DN-DAOR

picks a wide range of actions, which leads to better examination of training images and

thus higher performance on single images.

Figure 5.8 visualizes the learned policies at test time for NB-DAOR and DN-

DAOR. We see on the left side that NB-DAOR only swings between the two large

rotations in the opposite direction, while DN-DAOR prefers to do a few larger actions

(thick purple and blues lines connecting columns 2, 3 and 4) followed by few smaller
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Figure 5.8. Visualization of (left) NB and (right) DN policies for test data. NB model
prefers to repeats the same two actions, swinging between two joint poses at one end
of the joint range. The DN model usually performs a few larger rotations on the object,
followed by a few smaller rotations in different directions to inspect the objects in a
fine-grained manner.

actions in different directions. There is no back and forth for DN-DAOR between visited

joint positions, which leads to better performance on the test set.

5.7 Discussion

In this paper, we proposed a model for active object recognition based on deep

convolutional neural networks. The model is trained by minimizing the action and label

prediction costs. The visual features in early stages of this network were trained by

minimizing both the action and label prediction costs. The difference between the work

presented here and deeply supervised networks [17] is that in the latter, the training is
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carried out by minimizing the classification error, while in our approach we minimized

the action learning cost along with classification error. The joint cost minimization allows

the model to learn visual features that are suitable for predicting object label and the

action to be performed on the object to improve the recognition performance.

We adapted an alternative approach to the common Naive Bayes belief update

rule for state encoding of the system. Naive Bayes has the potential of overfitting to

subsets of training images, which could lead to lower accuracy at the test time. We used

a generative model based on Dirichlet distribution to model the belief over object-action

pairs. This model was embedded into the network, which allowed training the network

in one pass jointly with label and action-value learning. The results of experiments

confirmed that the proposed Dirichlet model is superior in test label prediction accuracy

to the Naive Bayes approach for state encoding.

A common trend we observed in the models trained in this paper was the strong

preference for a few actions, which led to limited examination of the objects, and thus

lower performance on label prediction. This preference was strongest in the Naive

Bayes state encoding models. Employing Dirichlet for state encoding helped alleviate

this problem, mainly for the training data and less for the test data. We observed that

the strong preference for a limited set of actions weakens for the training stage for the

DR-DAOR model, and as a result the model explored the training data more efficiently

and achieved higher label prediction accuracy on the test data.

A difficulty that arises in using beliefs for state encoding is the difference in

distribution of beliefs over train and test data. This results in overfitting of the policies

to high confidence beliefs, which may not be the case for test data. In training our

models, the training accuracy reaches above 90% after 1000 iterations. This may cause

the algorithm to reward every action, which finally may lead to one action taking over

and always producing the highest action value. A remedy for this problem requires
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the training data to be representative of the test data in prediction accuracy. However

we found that the test set in GERMS is very challenging for label prediction. Another

possibility is the use of outside data in training the label prediction module, which may

help produce more similar distribution of beliefs over training and test data.
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Chapter 6

Belief Tree Search for Active Object
Recognition

6.1 Abstract

Active Object Recognition (AOR) has been approached as an unsupervised

learning problem, in which optimal trajectories for object inspection are not known and

to be discovered by reducing label uncertainty or training with reinforcement learning.

Such approaches suffer from local optima and have no guarantees of the quality of their

solution. In this paper, we treat AOR as a Partially Observable Markov Decision Process

(POMDP) and find near-optimal values and corresponding action-values of training data

using Belief Tree Search (BTS) on the AOR belief Markov Decision Process (MDP).

AOR then reduces to the problem of knowledge transfer from these action-values to the

test set. We train a Long Short Term Memory (LSTM) network on these values to predict

the best next action on the training set rollouts and experimentally show that our method

generalizes well to explore novel objects and novel views of familiar objects with high

accuracy. We compare this supervised scheme against guided policy search, and show

that the LSTM network reaches higher recognition accuracy compared to the guided

policy search and guided Neurally Fitted Q-iteration. We further look into optimizing the

observation function to increase the total collected reward during active recognition. In

83
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AOR, the observation function is known only approximately. We derive a gradient-based

update for the observation function to increase the total expected reward. We show that

by optimizing the observation function and retraining the supervised LSTM network, the

AOR performance on the test set improves significantly.

6.2 Introduction

Active Object Recognition (AOR) refers to the problem of predicting object label

from the images while being able to change the pose of the object relative to the camera

for increasing prediction certainty. A robot rotating an in-hand object to refine its label

prediction accuracy is an example of an AOR system. Ambiguity in object recognition

exists because of similar views of different objects. AOR aims at finding the optimal

sequence of actions which decreases the label ambiguity and improves object recognition

performance in smaller number of steps. Despite its wide application and performance

improvement capacity, AOR has not been applied widely and has remained secluded

from main-stream computer vision progress in recent years.

Existing approaches to AOR change the sensor position to reduce the ambiguity

of label prediction [2, 6, 18]. Most of these methods rely on uncertainty about object

label, and use greedy best next action selection [12] at the test time to decrease label

probability entropy. A few methods aim for optimal action selection at the test time

using dynamic programming [3] or Monte Carlo planning [61]. However these methods

require a model of the object, and are computationally heavy at the test time. We propose

a method that reduces optimal action selection to classification of belief at the test time

and does not require a generative model of objects. We show that the proposed method

generalizes well to novel views of familiar objects, and also to novel objects. Moreover,

we show that AOR paradigm can be used to improve the label prediction accuracy of

image classifier by emphasizing images in the train set that are more likely to result in
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higher rewards.

In the first contribution of this paper, we formulate AOR as a POMDP problem

and adapt a Belief Tree Search algorithm [37] to discover near-optimal values for objects

poses on the training set. We infer a policy from these values, and use it to train an

LSTM network to predict the best action given the current objects belief. At the test

time, we use the actions predicted by this LSTM to explore the objects. We show that

this supervised approach generalizes well to explore novel objects and novel views of

familiar objects, and results in higher AOR accuracy compared to reinforcement learning

and guided policy search methods.

In our second contribution, we derive an update rule to learn the parameters of the

POMDP likelihood function with the goal of maximizing the total reward. This update

rule emphasizes views of objects that will produce higher rewards in the future. We show

that by retraining the likelihood function using the proposed method, the performance of

the AOR system significantly improves.

In the next section, we review the previous approaches related to our method.

Then we present the BTS algorithm and the observation function update rule. In the

results section, we report the details of the implementation of these methods and their

performance on GERMS [45] dataset. GERMS has proven to be a challenging AOR

dataset, and we improve state-of-the-art performance on this dataset. The final section is

the concluding remarks.

6.3 Literature Review

A large category of AOR models try to minimize the predicted label uncertainty

through best next-action planning [72, 9, 15, 18, 10, 12]. These models predict the

object label probabilities using the current view, and search for the best next action

that minimizes the expected entropy of object labels. In these methods, learning object
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appearance is performed by fitting a generative model offline, while best action selection

is carried out online at the test time. Uncertainty measures such as conditional entropy

and mutual information are computationally expensive to evaluate for all possible ob-

servations. Therefore these methods usually resort to approximations of these measures,

which might result in poor AOR performance.

A second category of models use techniques such as REINFORCE [86] or Neu-

rally Fitted Q-Iteration (NFQ) [65] to find a good policy or action-value function for

object exploration [60, 47, 45]. A parametric function that encodes object exploration

policy or action-values is learned offline by using an exploration policy and collecting

rewards that depend on the label prediction accuracy. The model then updates the pa-

rameters of policy or action-value function to maximize its total expected reward. These

method suffer from high variance of prediction due to sampling of actions, only guarantee

convergence to a local optima and require large training periods to explore and discover

suitable sequences of actions.

More recently, deep convolutional neural networks (CNN) have been applied

in AOR as a tool for modeling object appearance along with action-value prediction

[29, 44, 24, 27]. Malmir et. al trained a deep CNN using NFQ update rule [44]. In this

work, a layer of Dirichlet distribution is embedded into the network for modeling the

distribution of beliefs for different object-action pairs. Johns et. al used deep CNNs for

entropy regression and action prediction for the set of next view points [29]. Finding the

optimal trajectory for object inspection is then approximated by maximizing the sum

of cross entropy over adjacent views pairs. Haque et al. trained LSTM networks with

REINFORCE algorithm to recognize subjects from 3D point-clouds [24]. Jayaraman

and Grauman modeled object exploration policy as a neural network and trained it using

classification accuracy as reward [27]. They found that predicting the next state of

the environment based on current state and action improves the overall AOR accuracy.
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All these methods show improved performance over random exploration strategy and

non-active methods. However they suffer from the same problem as previous methods,

which is lack of guarantee of performance even on the training set.

There are very few approaches to AOR that aim to find optimal exploration

policies. Atanasov et al. [3] adapted an active hypothesis testing approach [57] for

camera view-point selection for object segmentation. This approach learns a model of

object appearance, and uses that for planning a sequence of actions that minimizes the

cost of motor movements, object classification and view-point prediction. A dynamic

programming approach is used to discover the best sequence of actions that minimizes

this cost. This method depends on the representation of object appearance for efficient

planning, while our method acts in the belief space and is completely independent of

object representation and classification. Patten et al. used Monte Carlo planning for

active exploration and perception of outdoor objects . [61]. This method uses rollouts

that depends on the point-cloud of objects for different actions. Compared to this method,

our method is more intuitive, and doesn’t require 3D models of objects.

Of special interest to this paper are works on belief tree search and Monte Carlo

POMDP planning. Lee et. al [37] proposed clustering of beliefs in a belief tree search

algorithm to reduce the width of the tree. DESPOT [76] uses sampling of observations

to reduce the width of the belief tree for optimal action selection. POMCP [75] adapts

Monte Carlo sampling and the Upper Confidence Trees algorithm [34] for efficient

POMDP planning. We adapt an approach similar to [37] because of desirable properties

such as acting on the belief space and performance guarantees on the reachable space of

beliefs.

An important property of the proposed approach is its freedom of maintaining an

object model. Our method acts in the belief space of objects, and only requires a black

box simulator of objects that produces rollouts of object examination, and returns the
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sequence of actions and their corresponding beliefs. Another important property of our

method is that at the test time, the next action selection is achieved by (computationally

simple) classification of the current belief. We show that this approach is more effective

for learning object exploration policies, compared to reinforcement learning and actor-

critic methods. In the next section we describe the proposed approach in more details.

6.4 Proposed Method

6.4.1 Belief Tree Search

Active object recognition is formulated as a POMDP problem denoted with

tuple < S ,A ,O,T ,P,R,γ >, where S is the set of states (object labels), A is

the set of actions for object examination, and O is the set of observations (captured

images of objects). We don’t perceive the identity of object directly but rather collect

information about it through observations. The transition function T marks the transition

between different states and the observation function P(s,a,o) relates the observations

to different object identities through P(s,a,o) = Pr(o|s,a), the probability of observing

o after taking action a when the object labels is s. The reward function R(s,a) determines

the reward for taking action a when the object label is s. Finally, γ is the reward discount

factor.

In AOR POMDP, the transition function T reduces to the identity function. The

observation space on the other hand includes all images of objects, and is prohibitively

large to apply value iteration techniques [63]. Another possibility is to use Monte Carlo

planning , which builds a search tree for one-step action planning [75]. However this

method suffers from the curse of history. We seek to find a solution to the AOR POMDP

that compactly represents history, and allows tractable search for finding the optimal

values, and the corresponding action-values.
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It has been shown that solution to POMDP can be found by solving the equivalent

belief MDP, where the belief b ∈ R|S | denotes the posterior probability of states given

the observation history,

bt(s) = Pr(s|a0:t−1,o0:t−1) (6.1)

∑
s∈S

b(s) = 1, b(s)≥ 0 ∀s ∈S .

In belief MDP, states represent the posterior probabilities of POMDP states given the

action-observation history. For this MDP, the transition between beliefs given action a is

defined as,

T MDP(b,a,b′)

= Pr(b′|b,a)

= ∑
o∈Ω(b,a,b′)

∑
s,s′∈S

b(s)T POMDP(s,a,s′)P(s′,a,o) (6.2)

where Ω(b,a,b′) denotes the set of observations that can result in changing beliefs from

b to b′,

Ω(b,a,b′) = {o ∈ O|

b′(s′) =
P(s′,a,o)∑s∈S T POMDP(s,a,s′)b(s)

Pr(o|a,b)
} (6.3)

The belief MDP reward is defined by calculating the expected reward over states,

R(b,a) = ∑
s∈S

b(s)Ra
s . (6.4)

And finally, given an initial belief b, action a and observation o the updated belief b′ is
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calculated by,

b′(s′) = Pr(s′|b,a,o)

=
P(a,s′,o)∑s∈S b(s)T POMDP(s,a,s′)

Pr(o|a,b)
. (6.5)

Now that we defined the equivalent belief MDP, we aim at solving the planning

problem using Belief Tree Search algorithm. This algorithm constructs a search tree for a

given belief b, where different branches represent actions and the resulting observations.

Each node in the tree represents a belief about the underlying POMDP states and edge

captures an action and the resulting observation. The algorithms starts with b at the root

and exhaustively performs all action to collect new observations and form new beliefs.

These beliefs are then added as children of the root and the process iterates with new

beliefs until stop states are reached in the leaves. The values are then backtracked from

the leaves to the root to estimate the value of b. The belief tree search is used in online

planning for POMDPs where the dynamics of the environment are known. We adapt BS

to calculate the optimal values of images for the training set.

The plain belief tree search algorithm is computationally intractable to use for

AOR belief MDP, since it examines all observations for each action. Instead we adapt

the algorithm in theorem 1 of [37], which sacrifices optimality of the predicted values

in exchange of computational tractability. This algorithm utilizes the smoothness of

the optimal value function to cluster the belief space. More specifically, for a given

δ > 0, each node in the tree represents the approximate value of beliefs that are in

δ -neighborhood of b′, which we represent as δ (b). By clustering the belief space, the

width of the belief tree decreases to a manageable size. This algorithm calculates the

approximate optimal value of a given belief b only in R(b), which is the reachable space
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of b. The reachable space is defined as the set of beliefs that are reachable by arbitrary

sequences of actions from b. Finally, the algorithm utilizes the discount factor γ to limit

the height of the belief tree.

We adapt this algorithm to find an approximately optimal value for each image in

the training set. The algorithm is depicted in pseudo code style in algorithm 3. Using

these values, training an active object recognition system reduces to a supervised learning

and knowledge transfer problem. In each node of the tree, the algorithm expands all

actions and receives the new observations. New beliefs are then calculated using (6.5).

For each new belief b′, if there is an already expanded belief b0 in that height of the

tree for which b′ ∈ δ (b0), the algorithm sets the value of b′ equal to b0 and backtracks.

Otherwise, the search continues in the children of b′.

Our algorithm builds a belief tree over R(b0) by sampling from images in the

training set and maintaining a δ -packing of R(b0) at each level of the tree. A belief

tree with root b0 denotes all the possible actions and observations that are encountered

while inspecting an object with the initial belief b0. A belief tree captures all the possible

actions and observations, construction of full belief tree is prohibitive in case of active

object recognition because the size of the observation space is extremely large. One

modification that we made to algorithm 3 compared to theorem 1 of [37] is that at the

root node, we calculate the value of δ (b0). This is to reduce the overfitting of values

to specific beliefs. In our algorithm, if two beliefs are very similar but result in vastly

different rewards, that should be considered in calculating the value of b0. In AOR

this happens when the classifier is uncertain about some examples then their beliefs are

close to each other and this should be reflected in their calculated values. Figure 6.1

demonstrates the belief tree search .

Theorem 1 provides guarantee on the optimality of the values found for images

in algorithm (3).
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Algorithm 3. Belief Tree Search
Belief Tree Search(Belief b0, radius δ , max height h)
for All Images oi in training set do

bi← Classify(oi)
if bi ∈ δ (b0) then

Expand(oi,bi,0)
end if

end for
Expand(Image o, Belief b, level i)
if i = h then return
end if
for action a ∈A do

Image oa← Simulate-Action(o,a)
Belief ba← Transition(b,a,oa)
if ba ∈ δ -neighborhood of any b′ belief at level i+1 then

V (ba)←V (b′)
else

Add ba to nodes in level i+1
Expand(oa,ba, i+1)

end if
add (oa,ba) to children of b

end forreturn

Theorem 1. For a given maximum error ε , and the optimal value function V ∗(b),

algorithm (3) finds the value of a given belief b0 such that |V ∗(b0)−V (b0)| ≤ ε by

setting the parameter values as,

δ =
ε(1− γ)2

2Rmax
(6.6)

h = logγ

(1− γ)ε

2Rmax
(6.7)

Proof. See the supplementary materials.

6.4.2 Optimizing Observation Function

In POMDP problems, usually it is assumed that the observation function is given

as part of the environment. In AOR POMDP, the observation function is usually modeled

using a generative model of objects. For example Borotsching et. al use Gaussian mixture

on the eigenspace to model the likelihood of images from the view sphere of object under

different classes [9]. Calculating the observation function value for an image usually

requires feature extraction from the image and density estimation for different classes.
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Figure 6.1. Belief Tree Search algorithm. Each node in the tree represents the value of
δ -neighborhood of a belief with some error. Different observations may lead to visiting
the same belief after taking an action.

We assume an observation function parameterized by φ ,

P(s,a,o;φ) = Pr(o|s,a;φ) (6.8)

where φ is usually learned using maximum likelihood estimation. Different values

of parameters φ changes the observation function. One may improve the observation

function by using a different estimation of φ , which changes the feature extraction or

density estimation. The improved observation function then results in a POMDP with

different environment dynamics. In the ideal case, the observation function for an image

is 1 for the correct object label and 0 for other labels, in which case the POMDP reduces

to a trivial MDP.

For a given observation function, theorem 1 finds the image values for policies

arbitrarily close to the optimal policy. However these values depend on the POMDP
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dynamics, e.g. the observation function. We propose to improve the observation function

by increasing the total reward collected by the near-optimal policy. For any policy π and

observation function P , the total reward ρ is defined as,

ρ(π,P) = E

{
∞

∑
t=1

γ
trt |so,π

}

=
∫

b∈B
dP,π(b) ∑

a∈A
π(b,a)R(b,a)db (6.9)

Where B is the |S |-dimensional belief simplex. Changing the observation function

parameters may increase the likelihood of images under the correct object label. Theorem

2 presents a gradient ascent update rule to the parameters of observation function, with

the goal of increasing the total reward.

Theorem 2. Given a policy π and the corresponding value function V π the

gradient of the total reward ρ(π,P) with respect to the parameters of the observation

function P(;φ) is given by,

∂

∂φ
ρ(P,π)

=
∫

b
dP,π(b)∑

a
π(b,a)

∫
b′

∑
o∈Ω(b,a,b′)

∑
s,s′∈S

b(s)T (s,a,s′)V π(b′)
∂

∂φ
P(o|s′,a)db′db (6.10)

Proof. See the supplementary notes.

Intuitively speaking, the update rule in (6.10) weights each parameter by the value

of the belief that is reached by observing the corresponding o. Changing the observation

function parameters φ changes the belief MDP dynamics as the transition probabilities

in (6.2) depend on P . After updating the observation function, a new belief MDP is

reached, for which we can use theorem 1 to find near-optimal values of images. In
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practice evaluation of (6.10) is computationally intractable. In the results section, we

use a sampling approach for updating the observation function based on the values of

images.

6.5 Results

6.5.1 Calculating BTS Action-Values

In this section, we implement the proposed method in algorithm (3) for active

recognition of GERMS [45]. This is a medium size dataset with ∼ 120K images of

136 different object collected by a robot. The robot grabs each object with 10 different

orientations and examines the object by rotating them in front of the camera. The goal is

to recognize object for 4 test orientations, given the other 6 in-hand orientations. The

actions bring the robot gripper into one of 5 pre-defined positions that are evenly spaced

in the rotation range (180 degrees) of the gripper. GERMS is proved to be a challenging

dataset since separation of objects in this dataset requires extraction of fine-grained visual

cues.

We extract visual features from GERMS images using ResNet deep CNN model

[25]. A softmax layer is trained on top of these features to predict the object label. Then

we convert train and test images into belief vectors, and train our AOR method in the

belief space. We normalize the output of the softmax layer for each class to sum to 1

over all GERMS images and use that as the observation probability. This is to ensure that

the deep CNN outputs the likelihood and to maintain the integrity of (6.2) and (6.5).

After calculating the likelihood of train images, we use algorithm 3 to obtain

the value of the near-optimal policy for them. In order to use these values in planning,

[37] proposes a sampling approach that repeatedly executes algorithm 3 for different

simulations and augments the tree with newly discovered beliefs and finally uses the
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action-values of the root of the resulting tree for planning. The proposed BTS algorithm

is similar to the work in [37] in that we use belief vectors in δ -neighborhood of the root

to run the simulations. We found the action-values of the root of the tree to be very

effective for AOR.

After we extract the action-values for training images, we transfer the knowledge

of these action-values to the test set using three different approaches. In the first and

second approaches, we use Neurally Fittred Q-learning (NFQ) [65] and Actor Critic

(AC) [62], guided by a probabilistic policy that uses the action-values from BTS. We

show that guiding NFQ and AC results in slight improvement of average performance

on the test set, compared to the plain version. In the third approach, we use an LSTM

network to learn to predict the best action given the objects belief.

6.5.2 Guided Neurally Fitted Q-learning

Neurally Fitted Q-learning (NFQ) trains a neural network to predict the action-

values using the reward signal from the environment [65]. This algorithm has been

successfully applied to reinforcement learning benchmarks [65], Atari games [50] and

active object recognition [45]. At the heart of this approach is an iterative update rule for

the network parameters θ ,

θt+1← θt +α
∂

∂θ
(Rt + γ max

a
Q(st+1,a)−Q(st ,at))

2 (6.11)

where Rt is the reward at time step t, γ is the reward discount factor, α is the learning

rate and Q(s,a) is the network output denoting action-values for action a in state s.

In the above, the gradient operator on the right hand applies only to Q(st ,at). It has

been observed that the plain NFQ algorithm may fail to discover optimal policies for

active object recognition [44]. Instead, we employ the n-step extension of this algorithm,
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proposed in [46], in which the update rule in (6.11) is applied to action sequences of

length n. The n-step NFQ speeds up learning by updating n action-values in each iteration,

compared to a single action-value update in the original NFQ. All experiments reported

here are obtained using 10-step rollouts.

We improve the performance of NFQ by applying the importance sampling

framework for policy search [28]. The idea is to use an auxiliary policy πθ ′ to acquire

sequences of actions and states τ = {s0,a0,s1,a1, . . .}, and update the parameters of the

target policy πθ using these sequences. In order to obtain an unbiased estimate of the

policy gradients, update terms are weighted by their importance,

P(τ|πθ )

P(τ|πθ ′)
=

∏ j πθ (a j|s j)

∏ j πθ ′(a j|s j)
(6.12)

Where P(τ|π) is the probability of rollout sequence τ under policy π , and π(a|s) is the

probability of action a in state s under policy π . We implement the guided NFQ (GNFQ)

by drawing sequences of actions from an stochastic policy acquired by performing

softmax on BTS action-values. The gradients in (6.11) are then multiplied by their

importance in (6.12) and applied to the network. Figure 6.2 shows the performance of

NFQ and GNFQ on the GERMS test set. For both approaches, we show 1−σ interval of

object recognition accuracy. We also report the performance of random policy (RND),

where at each time step, a previously unseen view of the object is explored. We see

that the plain NFQ algorithm fails to surpass the random policy, while GNFQ performs

slightly better than random. The advantage of GNFQ over NFQ and RND is most

significant over the first action, and it gradually fades over the next four actions. After

the last action where the majority of evidence has been accumulated, all three methods

reach the same label prediction accuracy.
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Figure 6.2. Comparison of AOR performance for NFQ, guided NFQ and random policies.
The shaded areas show accuracy mean ± std.

6.5.3 Guided Actor-critic

Actor-critic is a policy learning method which updates the policy parameters

using gradients of the total expected reward [62]. To reduce the variance of gradient

estimation, a bias which is the prediction of the current state value, is decreased from the

reward,

θt ← θt +α
∂

∂θ
logπθ (at |st)(Rt−Vψ(st)) (6.13)

ψt ← ψt +α
∂

∂ψ
(Vψ(st)−Rt)

2 (6.14)

where α is the learning rate, Rt is the reward at time t, Vψ(st) is the predicted value for

st parameterized by ψ , and πθ (at |st) is the probability that policy πθ , parameterized by
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θ , assigns to action at in state st . In figure 6.3, we show the performance of 10-step

actor-critic method with (ACG) and without (AC) guiding. We used the same guiding

scheme as described above, by multiplying the gradient terms of (6.13) and (6.14) by

their importance (6.12). We see that the plain AC fails to perform better than random,

while ACG shows slight performance improvements over RND after the second and third

actions.
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Figure 6.3. Comparison of AOR performance for actor-critic, guided actor-critic and
random policies. The shaded areas show accuracy mean ± std.

6.5.4 Supervised Learning of Action-Values

To transfer the knowledge of extracted action-values from training to test set, we

train a neural network to directly predict the best next action given a belief. We use a

stack of 3 LSTM layers with 128 units in each layer, followed by a softmax layer that

predicts action (see Figure 6.4). The training sequences are produced by following a

probabilistic policy derived from BTS action-values. For each belief vector, the target
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action is the action selected in the rollout by the BTS-driven policy. We found that

using both rollouts and LSTM is crucial to the AOR performance in supervised action

prediction. Figure 6.5 compares the performance of LSTM and random policies. LSTM

has a clear advantage in performance over the random policy. Moreover, the variance

of the learned policy is significantly smaller compared to actor-critic and NFQ methods.

Figure 6.6 compares the average performance of all methods. We see that supervised

learning for action-value prediction is clearly superior to the policy learning methods.

Table 6.1 compares the performance of all methods in more details.

Observation 

Function

LSTM

LSTM

LSTM

Softmax

LSTM

LSTM

LSTM

Softmax

action 1 action 2

LSTM

LSTM

LSTM

Softmax

action n

belief

Observation 

Function

Observation 

Function

belief belief

Random

Selection

Observation 
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 Label

…

…

…

…

belief…

Figure 6.4. The proposed supervised learning method for action prediction using LSTM
network. The observation function is fixed for training the LSTM layers.

6.5.5 Generalization to Novel Objects

In this section, we test the generalization of the proposed AOR method to novel

object. The goal of this experiment is to understand how much object inspection knowl-
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Figure 6.5. Comparison of AOR performance for LSTM and random methods. The
shaded areas show accuracy mean ± std.

edge is transferrable between GERMS objects. For this purpose, we use 60% of objects

in GERMS for supervised training of action prediction, and the rest of objects for testing.

The results averaged over 20 different experiments are shown in figure 6.7. Overall, the

variance of results is high because of the large variations in the recognition accuracy of

GERMS objects. We see that the supervised LSTM method achieves significantly higher

performance compared to the random strategy.

6.5.6 Improving Observation Function

We retrain the observation function using the proposed gradient update rule in

(6.10) to increase the AOR total collected reward. In order to implement this update

rule, we adapt a sampling strategy by generating a set of rollouts using policy π derived

from BTS action-values. Let bi denote the belief vector corresponding to image Ii. Let

{b j,a j}, j = 1,2, . . . ,n denote the set of beliefs and actions that resulted in bi in the
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Figure 6.6. Comparison of AOR performance for LSTM, AC, NFQ and RND policies.

rollouts. The retraining weight of Ii is then calculated using a sample average of (6.10)

on these rollouts,

Weight(bi) ∝
1
n

n

∑
j=1

π(b j,a j)b j(s)V π(bi) (6.15)

where V π values are calculated using algorithm 3, b(s) denotes the entry corresponding

to object label s in belief vector b, and π(b,a) is the probability assigned to action a

for belief b by the BTS-driven policy. We retrain the softmax over visual features, by

weighting the cross entropy cost of each image by (6.15). After retraining, we run

the BTS algorithm on the resulting beliefs and train the LSTM model on the resulting

action-values. We show the performance of the retrained LSTM as LSTM-i2 in figure

6.8. The retrained LSTM achieves significantly higher accuracy compared to the original

LSTM. We repeat this procedure and observe slight improvements, shown as LSTM-i3 in

figure 6.8. In practice, the performance of the LSTM starts to decline after the second
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Table 6.1. AOR performance comparison on the GERMS test data based on the number
of actions.

Method 0 1 2 3 4 5

RND 0.590 0.677 0.714 0.736 0.749 0.758
AC 0.590 0.677 0.713 0.735 0.748 0.757

ACG 0.590 0.678 0.717 0.741 0.754 0.760
NFQ 0.590 0.677 0.713 0.736 0.750 0.758

NFQG 0.590 0.688 0.717 0.738 0.748 0.758
LSTM 0.590 0.694 0.732 0.746 0.754 0.757

LSTM-i2 0.614 0.715 0.751 0.769 0.778 0.785
LSTM-i3 0.617 0.718 0.758 0.776 0.790 0.793

retraining. The performance of the retrained models are shown in more details in table

6.1.

6.6 Discussion

Active object recognition has received little attention from mainstream computer

vision and machine learning communities despite its potential for improving recognition

performance. Progress on AOR has been slow due to reliance of the AOR models on

semi supervised or heuristic methods for learning object inspection policy. In this work,

we proposed a method that learns the object exploration policy in a supervised manner

from the training data. The proposed method has desirable properties, for example it

provides guarantee of optimality of calculated values on training set, it is very fast at the

test time and generalizes well to novel objects and novel views of familiar objects since

it does not require a generative model of objects.

Recently there has been a renewed interest in attention models mostly for reasons

beyond object recognition. These models rely on reinforcement learning [48] or variation

inference [4] to guide the system to discover suitable exploration policies. In contrast, our

method benefits from reduced training time, which is a large problem in these approaches.
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Figure 6.7. Generalization of object inspection policies of LSTM model to novel objects.
The reported numbers are mean± standard error.

By reducing the optimal policy inference to a supervised learning problem, we can use

recent advances in supervised visual recognition for learning policies and knowledge

transfer to test data.

We developed a weighting scheme for training classification of single images,

that puts emphasize on images with higher values during exploration. The weight of

each image is a measure of how useful it is in inferring the correct label of object. Such

weighting scheme potentially reduces overfitting of the image classification model to the

training data that have little or no discriminative information. Because of the complex

background in GERMS images and blocking of in-hand object by the robot gripper, there

is high chance of overfitting to background cues during training. By performing BTS,

the AOR has the opportunity to look ahead a few steps in active inspection of objects.

Image values are then used to guide the single image classification model to discover

more discriminative features.
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Figure 6.8. Comparison of the accuracy of the retrained LSTM models, denoted as
LSTM-iteration2 (LSTM-i2) and LSTM-iteration3 (LSTM-i3) with the original model.

6.7 Appendix

6.7.1 Proof of Theorem 1

Theorem 1. Let V ∗(b) be the optimal value function for the POMDP AOR

on ℜ(b). For a given maximum error ε ≥ 0, algorithm 1 finds the value b such that

|V ∗(b)−V (b)| ≤ ε by setting the maximum height h and partitioning radius δ to

h = logγ

(1− γ)ε

2Rmax
(6.16)

δ =
ε(1− γ)2

2Rmax
(6.17)

where Rmax is the maximum reward and γ is the discount factor in AOR POMDP.

Proof. We use similar steps to the proof of theorem 1 in [37]. The main difference in our

proof is that the error at the root comes from approximation of policy and δ -packing of
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beliefs. Let ε ′i = |V ∗(b′)−V (b)| be the approximation error for belief b at level i of the

tree where We assign beliefs b and b′ the same value through δ -packing and where V ∗ is

the optimal value function and V is the approximation. This error can be divided into

two parts,

ε
′
h = |V ∗(b′)−V (b)|

≤ |V ∗(b′)−V ∗(b)+V ∗(b)−V (b)|

≤ |V ∗(b′)−V ∗(b)|+ |V ∗(b)−V (b)|

≤ Rmax

1− γ
δ + |V ∗(b)−V (b)| (6.18)

We used lemma 1 of [37] in the last step above for an upper bound on the difference

of optimal value function for b and b′. Let εi = |V ∗(b)−V (b)|, then the error at root,

assuming the height of tree is h, is,

ε
′
h ≤

Rmax

1− γ
δ + εh (6.19)

Let ε ′i−1 be the largest error of children of a node at level i. We have,

εi ≤ γε
′
i−1 (6.20)
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Then we can complete the recursion in (6.18), starting from error at the root of tree

ε
′
h ≤

Rmax

1− γ
δ + εh

≤ Rmax

1− γ
δ + γε

′
h−1

≤ Rmax

1− γ
δ + γ{Rmax

1− γ
δ + εh−1}

(6.21)

after several expansion of εh−1 in the above,

ε
′
h ≤

Rmax

1− γ
δ +

Rmaxγ

(1− γ)2 δ + γ
h Rmax

1− γ
(6.22)

If we set,

h = logγ

{
1− γ

Rmax

ε

2

}
(6.23)

δ =
(1− γ)2

Rmax

ε

2
(6.24)

we get the desired result.

6.7.2 Proof of Theorem 2

Theorem 2. Given a policy π and the corresponding value function V π , the

gradient of the total reward ρ(π,P) with respect to the parameters of the observation
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function P(;φ) is given by,

∂

∂φ
ρ(P,π)

=
∫

b
dP,π(b)∑

a
π(b,a)

∫
b′

∑
o∈Ω(b,a,b′)

∑
s,s′∈S

b(s)T (s,a,s′)V π(b′)
∂

∂φ
P(o|s′,a)db′db (6.25)

Proof. We extend theorem 1 in [78] to the POMDP case. For a given observation

function, algorithm 1 approximates the image value for a policy that is arbitrarily close to

the optimal policy. However these values depend on the POMDP dynamics, that is, the

observation function. Once these values are extracted, we can improve the observation

function with the goal of increasing the total reward collected by the optimal policy. For

any policy π(b,a) and observation function P , the total reward ρ is defined as,

ρ(π,P) = E

{
∞

∑
t=1

γ
trt |so,π,P

}

=
∫

b∈B
dP,π(b) ∑

a∈A
π(b,a)R(b,a)db (6.26)

Where B is the |S |-dimensional belief simplex and dP,π(b) is the stationary distribution

of observing belief b in the belief MDP. Note that this stationary distribution depends

on the POMDP observation function and the policy π . Theorem 2 presents a gradient

ascent update rule to the parameters of observation function with the goal of increasing

this total reward.

Note that we cannot directly apply the gradient operator to 6.26 because dπ,P(b)
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depends on P . We start by writing the equation for the value function,

V π,P(b) = ∑
a

π(b,a)Qπ,P(b,a) (6.27)

= ∑
a

π(b,a)
{

R(b,a)−ρ(π,P)+
∫

b′
Tr(b,a,b′)V π,P(b′)db′

}
(6.28)

If we take the gradient of the above w.r.t to the paramters φ of the observation function

P , we have,

∂

∂φ
V π,P(b) =−∑

a
π(b,a)

∂

∂φ
ρ(π,P) (6.29)

+∑
a

π(b,a)
∫

b′
∑

o∈Ω(b,a,b′)
∑
s,s′

[
∂

∂φ
V π,P(b′)P(o|s′,a) (6.30)

+
∂

∂φ
P(o|s′,a).V π,P(b′)]db′ (6.31)

=− ∂

∂φ
ρ(π,P) (6.32)

+∑
a

π(b,a)
∫

b′
∑

o∈Ω(b,a,b′)
∑
s,s′

V π,P(b′)
∂

∂φ
P(o|s′,a)db′ (6.33)

+∑
a

π(b,a)
∫

b′
∑

o∈Ω(b,a,b′)
∑
s,s′

P(o|s′,a) ∂

∂φ
V π,P(b′)db′ (6.34)
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Now if we take the expectation of the above w.r.t b, we get,

∫
b

dπ,P(b)
∂

∂φ
V π,P(b)db = (6.35)

−
∫

b
dπ,P(b)

∂

∂φ
ρ(π,P)db

+
∫

b
dπ,P(b)∑

a
π(b,a)

∫
b′

∑
o∈Ω(b,a,b′)

∑
s,s′

V π,P(b′)
∂

∂φ
P(o|s′,a)db′db

+
∫

b
dπ,P(b)∑

a
π(b,a)

∫
b′

∑
o∈Ω(b,a,b′)

∑
s,s′

P(o|s′,a) ∂

∂φ
V π,P(b′)db′db

(6.36)

However note that,

dπ,P(b′) =
∫

b
dπ,P(b)∑

a
π(b,a) ∑

o∈Ω(b,a,b′)
∑
s,s′

P(o|s′,a). (6.37)

As a result, the last term on the right side of 6.35 cancels with the term on the left side,

and the proof of theorem1. concludes by noticing that ρ(π,P) is independent of the

initial b.
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Chapter 7

Conclusion

7.1 Perceptual Primitives for RUBI

Advances in machine perception technologies are providing social robots with

perceptual primitives that can support sophisticated forms of HRI. In this thesis, we

developed perceptual primitives for RUBI, a social robot in early childhood education. We

developed a face recognition model for RUBI using classic computer vision pipeline. We

demonstrated example applications of face recognition for RUBI in an Early Childhood

Education Center (ECEC) classroom at UCSD. Furthermore, we developed active object

recognition models for RUBI that enables her to teach object names to the children in the

classroom.

In the first part of this thesis, we developed a supervised face recognition model

for RUBI, to enrich the analysis of social structure of the classroom. We created a dataset

of faces of toddlers and adults using images collected by RUBI in the classroom. The

dataset contains face images taken over a period of 6 months, and exhibits a variety of

face poses and facial expressions which make face recognition in the classroom difficult.

To make the face recognition robust to these variations, we trained the classifier on the

densely extracted features from the Gaussian pyramid of face images. We presented

RUBI-gram by analyzing the social structure of the classroom using the face recognition

111



112

model, and the data from the “home-alone” study. RUBI-gram summarizes the children’s

preference for playmates during the time they play in front of RUBI.

We presented the results of facial expression recognition in the classroom, and

predicted the children’s preference for different activities and games using the “joy” chan-

nel from the facial expression recognition tool. Face recognition and facial expression

recognition enable RUBI to present the results of the data analyses, RUBI-gram, preferred

games and typical facial expressions to the teachers on a periodic base, to keep track of

the children’s social, affective and cognitive state.

We developed models for active object recognition for RUBI to enable her to

teach object names to the children during give-and-take. In this game, a toddler hands

in an object to RUBI, after which she examines the object and says it name. This game

is an opportunity to teach object naming to the children, and compare learning from

3D in-hand objects to the on-screen 2D images of objects. By holding an object in her

gripper, RUBI has the opportunity to actively improve the object recognition accuracy by

examining the object from different views.

In chapter 4, we developed a model for active in-hand object recognition using

deep Q-learning. While the literature on active object recognition has shown promising

results, progress has been slow due to the lack of realistic datasets and benchmarks that

can be easily shared by multiple research groups. We introduced the GERMS dataset that

includes a collection of videos, a set of active object recognition benchmarks and baseline

results on those benchmarks. We hope that this dataset will facilitate the comparison of

different active object recognition methods and accelerate progress in the field. We also

trained a model for active object recognition using deep Q-learning. We encoded the

state of the system as the belief over different object labels. This representation was then

processed by an additional deep network trained using Q-learning for efficient action

selection. The proposed approach outperforms sequential and random action selection
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policies and serves as baseline for future comparisons. We showed that training the

system with different lengths of game plays did not have an impact on the performance

of trained model.

In chapter 5, we trained a deep neural network for joint object classification and

action prediction. The model is trained end-to-end, by minimizing the action and label

prediction errors. The visual features in early stages of this network are learned by

minimizing both errors simultaneously. The joint cost minimization allows the model

to learn visual features that are suitable for predicting object label and the action to be

performed on the object to improve the recognition performance.

We proposed a Dirichlet-based encoding of the state of the system as an alternative

to the common Naive Bayes approach. Naive Bayes belief update leads to overfitting

the action prediction to subsets of training images for which classification is confident.

We used a generative model based on Dirichlet distribution for each object-action pair,

to encode the beliefs observed while examining the object. This model was added to

the network as a layer before the action selection layer, to enable training the network

end-to-end for label and action-value prediction. The results of experiments confirmed

that the proposed Dirichlet model is superior in test label prediction accuracy to the Naive

Bayes approach.

We discovered a few challenges in training active object recognition systems

using deep Q-learning. First, there is no guarantee on the performance of discovered

policies in deep Q-learning, even on the training set. Second, semi-supervised learning of

policies may fail to converge to a suitable solution due to numerous local optimums. We

observed that deep Q-learning converges to the grid search policy for all objects, while

intuitively we expect a “good” policy to prefer different actions for different objects.

Another problem is the difference between the distribution of beliefs in the training set

and the test set. The training beliefs are usually peaked on the correct object label, while
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the test beliefs are more flat.

In chapter 6, we address these challenges by formulating active object recognition

as a Partially Observable Markov Decision Process (POMDP) and calculating the near-

optimal values on the training images using Belief Tree search. We used leave-one-out

strategy in training the observation function, in order to increase the similarity of training

and test beliefs. We adapted a Belief Tree search method to calculate near-optimal values

of beliefs in the training set, and used the corresponding action values to train active

object recognition policy. The proposed method learns the object exploration policy

in a supervised manner from the training data, it provides guarantee of optimality of

calculated values on training set, it is very fast at the test time and generalizes well to

novel objects and novel views of familiar objects since it does not require a generative

model of objects.

We developed a weighting scheme for training classification of single images,

that emphasizes the more useful images for active recognition. This weighting scheme

potentially guides the training of image classification model to learn from more discrim-

inative images. Because of the complex background in GERMS images and blocking

of in-hand object by the robot gripper, there is high chance of overfitting to background

cues during training. By performing Belief Tree search, active object recognition has

the opportunity to look ahead a few steps in inspection of objects to determine the value

of images. These values are then used to guide the single image classification model to

discover more discriminative features.
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7.2 Future Work

7.2.1 Semi-supervised Person Recognition

The next step for enabling RUBI to recognize people in the classroom is to

develop algorithms that can recognize faces, including detecting the presence of new

faces, with very little supervision. The learning is done mostly with unlabeled or weakly-

labeled data, where RUBI is able to ask the teachers for the labels of particular faces.

The development of a method for RUBI to learn faces without hand-labeling hundreds of

frames will make it practical for RUBI to learn the childrens appearances, and to learn

their names, with just a small amount of input from their teachers. She can then record

the performance of children and track their social interactions. The system will also be

able to flexibly add identities, as new toddlers join the classroom.

RUBI typically records many hours of video, labeling these frames is a time-

consuming and expensive process. The Next step is to use semi-supervised and active

approaches to train classifiers for person recognition by leveraging this large amount of

data. Temporal properties of the collected data provides additional constraints that can

be used in semi-supervise learning of people, for example two faces that appear in the

same frame belong to different people. Additional cues such as clothing or gait can also

be used to help recognize people.

7.2.2 Active Object Recognition using Shift of Attention

We can extend the set of actions in active object recognition to include attending

to specific regions of image. This has the benefit of reducing the input size to the

recognition module, by selecting a small region of interest, while being able to attend to

visual features that are important for fine-grained visual categorization. The proposed

framework in chapter 6 can be used to extract near-optimal policies, that can be learned
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in a supervised manner.

7.2.3 Agent RUBI: social perceptual primitives in the wild

RUBI provides the opportunity to collect data on human social interactions and

culture from the real world outside of controlled lab environments. This data will enable

us to understand in-the-wild human-robot interactions. Consider a scenario in which

RUBI is placed in the hallway of the library, to freely interact with people. In this

scenario, RUBI is a “social agent” with the goal of collecting social behavior data. As

people gather around RUBI to interact with her, we can analyze their social posture and

behavior and improve RUBI’s social behavior by learning from these data.

In order for RUBI to engage in social interaction with people, we must provide

a set of perceptual primitives for recognizing the social behavior, such as posture, gaze

and speech. We can extend the sensory repertoire of RUBI to include Kinectr, which

simplifies extraction of human skeleton. categorizing social behavior then requires fitting

temporal classification models to the observed data.
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