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CHAPTER 1

INTRODUCTION

1.1 MOTIVATION

Optimization algorithms are mathematical methods that are important to solving prob-

lems from diverse disciplines, such as machine learning, quantum chemistry, and finance.

In particular, methods for large-scale and non-convex optimization are relevant to var-

ious real-world problems that aim to minimize cost, error, or risk, or maximize output,

profit or probability. Mathematically, the unconstrained minimization problem is rep-

resented as

minimize
x∈Rn

f(x), (1.1)

where f(x) : Rn → R is a nonlinear and possibly non-convex objective function. This

dissertation concentrates on efficient large-scale trust-region quasi-Newton methods be-

cause trust-region methods incorporate a mechanism, which makes them directly appli-

cable to convex and non-convex optimization problems. Furthermore, much influential

progress to effectively solve (1.1) is based on sophisticated ideas from numerical linear

algebra. For this reason, we also emphasize methods from linear algebra and apply

them to concepts in optimization.

1.2 MULTIVARIABLE OPTIMIZATION

Practical methods for the general problem in (1.1) estimate the solution by a sequence

of iterates {xk}, which progressively decrease the objective function

f(xk) ≥ f(xk+1). (1.2)

At a stationary point the gradient of the objective function is zero, which is why the

iterates also need to satisfy ∇f(xk+1)→ 0. The sequence of iterates is typically defined

1
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by the update formula

xk+1 = xk + sk,

where sk ∈ Rn is the so-called search direction or step. There are two conceptually

different methods for computing sk. The first of the two methods is the so-called line-

search method. This method initially fixes a desirable search-direction, say s̄k, and

then varies the length of this direction by means of a scalar α > 0, i.e. this method

searches for a minimum along the line αs̄k. The line-search parameter, α, is typically

determined so that the objective function decreases and the step length is not too short.

The second of the two methods is the so-called trust-region method. This method first

fixes the length of a search-direction, say ∆̄ > 0, and then computes a desirable vector

such that the objective function decreases and sufficient progress is made. The trust-

region method is regarded as the computationally more costly of the two methods per

iteration, but its search-directions are also regarded to be of higher quality than those

of the line-search methods. Common to both methods is a quadratic approximation of

the objective function, around the current iterate xk:

f(xk + s) ≈ f(xk) +∇f(xk)
T s +

1

2
sTBks, (1.3)

where Bk ∈ Rn×n is either the Hessian matrix of second derivatives (Bk = ∇2f(xk))

or an approximation to it (Bk ≈ ∇2f(xk)). Both the line-search and the trust-region

methods compute steps based on minimizing the quadratic approximation in (1.3), as

a means of minimizing the nonlinear objective function f(x).

1.3 TRUST-REGION METHOD

The origins of trust-region methods are based on two seminal papers [Lev44, Mar63]

for solving nonlinear least-squares problems (cf. [CGT00]). In the early 1980’s the

name “trust-region method” was coined through the articles [Sor82, MS83], in which

theory and a practical method for small and medium sized problems was developed.

Recent advances in unconstrained trust-region methods are in the context of large-scale

problems [Yua15]. The search directions in trust-region methods are computed as the

solutions to the so-called trust-region subproblems

sk = arg min
‖s‖≤∆k

Q(s) = gTk s +
1

2
sTBks, (1.4)

where gk = ∇f(xk) is the gradient of the objective function, ∆k > 0 is the trust-region

radius, and where ‖ · ‖ represents a given norm. An interpretation of the expression in

(1.4) is that the quadratic approximation, Q(s) ≈ f(xk + s) − f(xk), is only accurate

within the region specified by a given norm – this is the “trust-region”. Trust-region
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methods are broadly classified into two groups; if a method nearly exactly computes the

solution to the trust-region subproblem, then it is a high accuracy method, alternatively,

if it approximately solves the trust-region subproblem then it is an approximate method

[RSS01, BGYZ16]. Approximate methods were originally intended for large optimiza-

tion problems, and typically do not make additional assumptions on the properties

of the Hessian matrix. A prominent approximate method is the one due to Steihaug

[Ste83]. However, when additional assumptions on the properties of the Hessian are

made, then recently developed methods are able to solve even large-scale trust-regions

subproblems with high accuracy. In particular, when limited memory quasi-Newton

matrices approximate the true Hessian matrix, then the combination of quasi-Newton

matrices with trust-region methods has spanned the development of large-scale quasi-

Newton trust-region methods. Examples of these methods are the ones by Erway and

Marica [EM14], Burke et al. [BWX96], and Burdakov et al. [BGYZ16]. In this dis-

sertation we focus on methods for large-scale problems that compute high accuracy

solutions of trust-region subproblems. Unlike the methods in [EM14, BWX96] and

[BGYZ16], who target convex trust-region subproblems, we analyze the solution of po-

tentially non-convex subproblems, too. Moreover, we address the question of how to

initialize limited-memory quasi-Newton matrices in a trust-region algorithm, and extend

an effective unconstrained trust-region method to linear equality constrained problems.

Because of the constraint ‖s‖ ≤ ∆k in (1.4), the trust-region subproblem always has a

solution, even in the case when the quadratic approximation is not convex. For example,

if the `2 norm is used in (1.4), then solving a non-convex trust-region subproblem in two

dimensions amounts to minimizing the multivariable quadratic function Q(s) within a

disk:

Q(s)

sk

Saddle

s1

s 2

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Figure 1.1 Trust-region subproblem in two dimensions. The quadratic approximation Q(s)
is not convex, has a saddle point and is unbounded. The trust-region subproblem has a finite
solution represented by sk.



4 CHAPTER 1 INTRODUCTION

At the solution sk one of two conditions may hold. Either it is within the trust-region,

i.e. ‖sk‖ < ∆k, or the solution is at the boundary of the trust-region, i.e. ‖sk‖ = ∆k.

Therefore a strategy to compute the solution to the trust-region subproblem is:

1. If Q(s) is convex, then compute ∇Q(s∗) = gk + Bks
∗ = 0. If moreover ‖s∗‖ ≤ ∆k

then set sk = s.

2. Otherwise find the optimal pair (s∗, σ∗) ∈ (Rn,R) such that (Bk + σ∗I)s∗ = −gk,

the boundary condition ‖s∗‖ = ∆k holds, and Bk + σ∗I is postive definite.

In order to measure the accuracy of the quadratic approximation typical trust-region

methods compute a performance ratio, which relates the actual improvements in the ob-

jective function to the predicted improvements of the approximation. The performance

ratio is defined as

ρk =
f(xk+1)− f(xk)

Q(sk)
.

If ρk ≥ 1 then sk resulted in large desirable actual improvements. The other extreme

occurs when ρk ≤ 0, in which case the objective function worsened, as the denominator

of ρk is always non-positive since Q(sk) ≤ Q(0) ≤ 0. Practical techniques specify a

certain threshold 0 < c ≤ 1 such that if ρk > c , then the step is still regarded as a

desirable direction. Otherwise the radius ∆k is decreased, and a new solution to the

subproblem in (1.4) is computed. In a general trust-region algorithm, a lower bound

(c−) and an upper bound (c+) on c will be provided. Moreover, the positive parameters

d− and d+ are used to shrink (∆k ← d−∆k) or enlarge (∆k ← d+∆k) the trust-region

radius. We summarize the trust-region approach in the form of an algorithm.

ALGORITHM 1.1

Initialize: x0,g0,B0,∆0, 0 < c− < c < c+, 0 < d− < 1 < d+, 0 < ε

For k = 1, 2, . . .

1. If ‖gk‖2 > ε go to 2., otherwise terminate;

2. Compute sk = arg min
‖s‖≤∆k

Q(s);

3. Compute ρk = (f(xk + sk)− f(xk))/Q(sk);

4. If ρk > c go to 6, otherwise go to 5;

5. Set ∆k = d−∆k, go to 2;

6. If ρk > c+, set ∆k = d+∆k, otherwise set ∆k = ∆k;

7. Set xk+1 = xk + sk, update gk+1,Bk+1 go to 1.;
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The computationally most intensive component of Algorithm 1.1 is the solution of the

subproblem in Step 2. Chapter 2 analyzes efficient solutions of large-scale trust-region

subproblems. In particular, the matrix Bk will represent so-called quasi-Newton ma-

trices, and solving the trust-region subproblem will exploit the structure of the quasi-

Newton matrices.

1.4 QUASI-NEWTON MATRICES

Because quasi-Newton matrices form an integral part of this dissertation, we review

their basic concepts in this section. The original ideas on quasi-Newton matrices were

developed by Davidon [Dav59, Dav90]. In particular, these methods rely on the insight

from Davidon that properties of the Hessian matrix can be efficiently approximated

using low-rank matrix updates. Specifically, the Hessian matrix can be viewed as a

linear mapping from the space of changes in iterates xk+1 − xk to the space of changes

in gradients gk+1−gk. This property may be understood as a multi-dimensional analog

of the chain rule

d∇f(x) = d


∂2f(x)
∂x1
...

∂f(x)
∂xn

 =


∂2f(x)
∂x21

dx1 + · · ·+ ∂2f(x)
∂x1∂xn

dxn
...

∂2f(x)
∂xn∂x1

dx1 + · · ·+ ∂2f(x)
∂x2n

dxn

 = ∇2f(x)dx.

Approximating the continuous changes by d∇f(x) ≈ gk+1 − gk ≡ yk and by dx ≈
xk+1 − xk ≡ sk, then desirable estimates of the Hessian matrix, Bk+1 ≈ ∇2f(xk+1),

and its inverse, Hk+1 ≈ (∇2f(xk+1))−1, satisfy

yk = Bk+1sk and Hk+1yk = sk. (1.5)

The conditions in (1.5) are the secant-conditions, which characterize the family of quasi-

Newton matrices. Since the Hessian is symmetric, all quasi-Newton matrices must

be symmetric, too. Moreover, it is desirable that quasi-Newton matrices retain past

information and are easily updated. In order to address the latter requirements, quasi-

Newton matrices are computed via recursive formulas that use low rank matrix updates.

The most common update formulas are those of rank-1 or rank-2 matrices. Thus the

most widespread quasi-Newton matrices, which approximate the inverse Hessian, are

represented as

Hk+1 = Hk + αaaT + βbbT , (1.6)

where both scalars α, β ∈ R and both vectors a,b ∈ Rn are determined such that (1.5)

holds. Another advantage of representing the quasi-Newton formulas in the form of

recursive low-rank updates is that the inverse to Hk+1 is analytically computed using the

Sherman-Morrison-Woodbury formula. A prominent quasi-Newton matrix is obtained
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if the update is a rank-1 matrix. Therefore, with say β = 0, the secant-condition (1.5)

implies

Hk+1 = Hk +
1

yTk (sk −Hkyk)
(sk −Hkyk) (sk −Hkyk)

T . (1.7)

This so-called symmetric rank-1 matrix (SR1) is unique, in the sense that it is the only

symmetric rank-1 update that also satisfies the secant-conditions [Fle70, Pow70]. The

rank-2 matrix credited as the original quasi-Newton matrix [FP63, Dav59, Dav90] is

known as the Davidon-Fletcher-Powell (DFP) matrix. The DFP matrix was derived

in [Dav59] by setting either a or b in (1.6) equal to sk, and then by determining the

remaining unknowns from the secant-condition (1.5). Another well know quasi-Newton

formula is the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update. The SR1, DFP and

BFGS matrices are all members of Broyden’s family of quasi-Newton matrices [Bro67].

A quasi-Newton formula, which is less known is the multipoint symmetric secant (MSS)

update [Bur83]. We will devote a chapter to a trust-region method based on the MSS ma-

trix. The quasi-Newton matrices share symmetry, the secant conditions, and recursive

low-rank updates. Quasi-Newton matrices differ in the size of the low-rank update,

and in their definiteness. For instance, as long as sTi yi > 0 for i = 0, 1, · · · , k, then

the BFGS and DFP updates generate positive definite matrices, when the initial matrix,

H0, is positive-definite, too. For reference, we mention the definiteness and rank of the

quasi-Newton matrices from this dissertation:

Name Rank Definiteness

BFGS 2 positive definite
SR-1 1 indefinite
DFP 2 positive definite
MSS 2 indefinite

Table 1.1
Summary of properties of quasi-Newton matrices.

From a theoretical point of view, indefinite quasi-Newton matrices are attractive

because they can potentially approximate the true hessian matrix more accurately,

when it is indefinite [BKS96, CGT91]. However for many practical implementations

the BFGS matrix is the method of choice, because it can be easily maintained to stay

positive definite, and for its convincing practical performances [LN89]

1.4.1 COMPACT REPRESENTATION

The compact representation of quasi-Newton matrices is the representation of the re-

cursively defined update formulas from (1.6), in the form of an initial matrix plus a

matrix update. In this sense it can be understood as a particular type of matrix fac-

torization. The compact representation of the BFGS and SR1 matrices was formally

developed by Byrd et al. [BNS94]. Originally Broyden [Bro67] developed the concept
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of representing the recursive formulas of quasi-Newton matrices in the form of linear

systems. The compact representation of the full Broyden class of quasi-Newton matrices

was recently established in [DEM16]. The matrix Bk = H−1
k defines the trust-region

subproblems in (1.4), which is why we will describe the compact representation in terms

of Bk instead of Hk. By describing the compact representation of Bk, we incur no loss of

substance because the inverses of quasi-Newton matrices are computed analytically us-

ing the Sherman-Morrison-Woodbury formula. The compact representation of Bk uses

the following matrices which stores previously computed pairs {si,yi} for 0 ≤ i ≤ k−1:

Sk = [ s0 s1 · · · sk−1 ] and Yk = [ y0 y1 · · · yk−1 ] . (1.8)

Then the compact representation of Bk has the following form:

Bk = B0 + ΨkMkΨ
T
k , (1.9)

where B0 ∈ Rn×n is the initialization, and the square symmetric matrix Mk ∈ R2k×2k

is different for each update formula. For all quasi-Newton matrices in this dissertation

Ψk = [ B0Sk Yk ] ∈ Rn×2k, except for the MSS and SR1 matrices. For the MSS

matrices Ψk = [ Sk (Yk − B0Sk) ] ∈ Rn×2k, while for SR1 matrices Ψk = (Yk −
B0Sk) ∈ Rn×k. We assume that Ψk is of full column rank. If k � n, then the matrix

product ΨkMkΨ
T
k resembles a vector outer product

ΨkMkΨ
T
k =

 Ψk


[
Mk

][
ΨT
k

]
,

which enables efficient computations of matrix-vector applies. That is, computing

(ΨkMkΨ
T
k )s for a vector s ∈ Rn can be done in complexity O(4kn), instead of O(n2).

Moreover, by storing only the matrices Ψk and Mk, the compact representation, without

the initial matrix, requires only 2kn+ (2k)2 storage entries, instead of n2 locations.

1.4.2 LIMITED-MEMORY COMPACT REPRESENTATIONS

Among the first limited-memory methods is one developed by Nocedal in 1980 [Noc80]

for the recursion on of the BFGS formula. The main characteristic of limited-memory

methods is that only a small subset of the pairs (si,yi), i = 0, 1, · · · , k − 1 is used to

update the quasi-Newton matrices. The most common application of a limited-memory

strategy is to store a fixed number l with l � n of the most recent pairs, so that the
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matrices Sk and Yk are tall and rectangular with

Sk = [ sk−l sk−l+1 · · · sk−1 ] and Yk = [ yk−l yk−l+1 · · · yk−1 ] .

When the newest pair (sk,yk) has been computed, then the next matrices Sk+1 and

Yk+1 are obtained from Sk and Yk by shifting their columns to the left by one in-

dex and inserting sk as the last column. That is, the updated matrix Sk+1 becomes

Sk+1 = [ sk−l+1 sk−l+2 · · · sk ], while Yk+1 = [ yk−l+1 yk−l+2 · · · yk ] . In

limited-memory methods the initial matrix B0 is chosen to simplify the computations,

too. Typically, B0 is taken to be a multiple of the identity matrix in the form of

B
(k−1)
0 = B0 = γk−1In, where γk−1 =

‖yk−1‖2
yT
k−1sk−1

. Chapter 3 of this dissertation proposes

a large-scale quasi-Newton trust-region method when the initial matrix is not chosen as

a multiple of the identity matrix. As is standard notation, the name of a quasi-Newton

formula prepended with an captial ‘L-’, symbolizes the limited-memory version of that

particular quasi-Newton matrix. For example, L-BFGS represents the limited memory

version of the BFGS matrix. In particular, for L-BFGS, the matrix Ψk is of dimension

Rn×2l instead of Rn×2k. Similarly, the matrix Mk is of dimension (2l × 2l), instead of

(2k×2k). Since our goal is to develop methods for large-scale optimization problems all

quasi-Newton matrices in this dissertation are assumed to be limited-memory matrices.

1.4.3 PARTIAL EIGENDECOMPOSITION

The structure of the compact representation from (1.9) enables an efficient factorization

of the matrix into a partial spectral decomposition. Here, as in [BGYZ16, EM15], an

implicit QR factorization of the rectangular matrix Ψk is used in the process. An alter-

native approach, which was proposed in [Lu96], is to use an implicit SVD factorization

of Ψk, instead. We take Ψk to be of dimensions n× 2l. Now, consider the problem of

computing the eigenvalues of Bk:

Bk = γk−1In + ΨkMkΨ
T
k ,

where B0 = γk−1In. The “thin” QR factorization of Ψk can be written as Ψk = QR

where Q ∈ Rn×2l and R ∈ R2l×2l is invertible because, by assumption, Ψk has full

column rank. Then,

Bk = γk−1In + QRMkR
TQT .

The matrix RMRT ∈ R2l×2l is of a relatively small size, and thus, it is computationally

inexpensive to form its spectral decomposition. We define the spectral decomposition

of RMkR
T as UΛ̂UT , where U ∈ R2l×2l is an orthogonal matrix whose columns are

made up of eigenvectors of RMkR
T and Λ̂ = diag(λ̂1, . . . , λ̂2l) is a diagonal matrix

whose entries are the associated eigenvalues.
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Thus,

Bk = γk−1In + QUΛ̂UTQT .

Since both Q and U have orthonormal columns, P‖
4
= QU ∈ Rn×2l also has orthonormal

columns. Let P⊥ denote the matrix whose columns form an orthonormal basis for(
P‖
)⊥

. Thus, the spectral decomposition of Bk is defined as Bk = PΛPT , where

P ≡
[

P‖ P⊥

]
and Λ ≡

[
Λ1 0

0 Λ2

]
=

[
Λ̂ + γk−1I2l 0

0 γk−1In−2l

]
, (1.10)

where Λ = diag(λ1, . . . , λn) = diag(λ̂1 + γk−1, . . . , λ̂2l + γk−1, γk−1, . . . , γk−1), Λ1 ∈
R2l×2l, and Λ2 ∈ R(n−2l)×(n−2l). The remaining eigenvalues, found on the diagonal of

Λ2, are equal to λ2l+1 = γk−1. (For further details, see [BGYZ16, EM15].) In this

dissertation, we assume the first 2l eigenvalues in Λ are ordered in increasing values,

i.e., λ1 ≤ λ2 ≤ . . . ≤ λ2l. Finally, throughout this dissertation we denote the leftmost

eigenvalue of Bk by λmin, which is computed as λmin = min{λ1, γk−1}.

We emphasize three important properties of the eigendecomposition. First, all eigen-

values of Bk are explicitly obtained and represented by Λ. Second, only the first 2l

eigenvectors of Bk are explicitly computed; they are represented by P‖. In particular,

since Ψk = QR, then

P‖ = QU = ΨkR
−1U. (1.11)

If P‖ needs to only be available to compute matrix-vector products, then one can avoid

explicitly forming P‖ by storing Ψk, R, and U. Third, the eigenvalues given by the

parameter γk−1 can be interpreted as an estimate of the curvature of f in the space

spanned by the columns of P⊥.

1.5 EXISTING QUASI-NEWTON TRUST-REGION

METHODS

When Bk is a quasi-Newton matrix in the trust-region subproblem (1.4), then the cor-

responding trust-region method is called a quasi-Newton trust-region method. Methods

of this type are proposed in [Ger04, BKS96, Pow70], among others. The approaches

in Powell [Pow70] can be considered as virtually the first quasi-Newton trust-region

methods, while the name of these methods appears to be associated with Gertz [Ger04].

In Byrd et al. [BKS96] an analysis of a SR1 trust-region method is proposed, which

is based on the argument that indefinite SR1 matrices are well suited for trust-region

methods. Their argument is based on the fact that the trust-region subproblem can

produce desirable steps even when the quadratic approximation Q(s) in (1.4) is not

convex (cf. Section 1.3). The previous references all use the recursive formulas of quasi-



10 CHAPTER 1 INTRODUCTION

Newton matrices, instead of limited-memory compact representations. In the context

of large-scale optimization, however, limited-memory methods are the de facto stan-

dard. Large-scale limited-memory quasi-Newton trust-region subproblem solvers were

proposed in [EM14, BWX96, BGYZ16], for the case of L-BFGS matrices. In fact, two

other PhD dissertations include limited-memory quasi-Newton trust-region methods.

In [Lu96] an `2-norm trust-region method based on the L-SR1 matrix is developed.

In [Zik14] a so-called shape-changing L-BFGS trust-region method is described. The

contributions of this dissertation are laid out in the next section, however significant

differences to previous research are that we combine L-SR1 matrices with norms other

than the `2-norm, focus on novel initial matrices in a L-BFGS trust-region method, de-

velop a method based on the less known limited-memory multipoint symmetric secant

(L-MSS) matrix, and propose a limited-memory quasi-Newton trust-region method for

equality constrained problems. A significant component of this dissertation is also de-

voted to the corresponding ideas from numerical linear algebra. Therefore factorizations

of oblique projection matrices, compact representations of quasi-Newton matrices with

linear equality constraints, or compact representations with dense initial matrices, are

also developed.

1.6 CONTRIBUTIONS OF THE DISSERTATION

The contributions of this dissertation are in the context of limited-memory quasi-Newton

trust-region methods. We start with a general overview of our contributions, and specify

more details in a later enumeration.

In Chapter 2, we propose two methods for solving quasi-Newton trust-region sub-

problems using L-SR1 updates, where the Hessian approximations are potentially in-

definite. This is in contrast to existing methods for L-BFGS updates, where the Hes-

sian approximations are guaranteed to be positive definite. The first of these methods

is based on the published paper, “On solving L-SR1 trust-region subproblems,” J. J.

Brust, J. B. Erway, and R. F. Marcia, Computational Optimization and Applications,

66:2, pp. 245-266, 2017. The second method is based on the submitted paper (currently

under first revision), “Shape-changing L-SR1 trust-region methods,” J. J. Brust, O. P.

Burdakov, J. B. Erway, R. F. Marcia, and Y.-x. Yuan.

Next, in Chapter 3, we propose a limited-memory quasi-Newton trust-region method

for unconstrained minimization, which uses a dense initial matrix instead of a standard

multiple of the identity intitial matrix. This method is described in the manuscript,

“Dense Initializations for Limited-Memory Quasi-Newton Methods” J. J. Brust, O. P.

Burdakov, J. B. Erway, and R. F. Marcia, which was submitted to the SIAM Journal

on Optimization.

In Chapter 4 we apply the compact representation of the multipoint symmetric
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secant quasi-Newton matrix in an trust-region method for unconstrained minimization.

In particular, we develop an novel approach for solving limited memory multipoint

symmetric secant (L-MSS) trust-region subproblems.

In Chapter 5 we develop a large-scale trust-region method for linear equality con-

strained minimization problems. This method extends non-standard trust-region norms

from unconstrained minimization to constrained problems. A manuscript of this method

is currently in preparation.

Finally, in Chapter 6, we propose matrix factorizations of oblique projection matrices

and a practical method to compute their singular values. Oblique projection matrices

often arise in constrained optimization methods.

We now enumerate our contributions in more detail.

1. THE ORTHONORMAL BASIS SR1 (OBS) METHOD: This is a `2-norm trust-

region subproblem solver, which connects two strategies to compute exact sub-

problem solutions. The proposed method combines an approach from [BWX96],

based on the Sherman-Morrison-Woodbury formula, with an approach in [BGYZ16]

that uses an orthonormal basis (OB), in order to compute L-SR1 subproblem solu-

tions. Because L-SR1 matrices are not guaranteed to be positve definite, we analyze

the subproblem solutions on a case-by-case basis, depending on the definiteness

of the quasi-Newton matrix. In particular, we propose a formula to compute the

trust-region subproblem solution, when an eigendecomposition of the L-SR1 ma-

trix is used, and the so-called “hard case” [MS83] occurs. The hard case can

occur under two conditions: (1) the quasi-Newton matrix is indefinite, as is true

for L-SR1 matrices, and (2) the gradient (gk) is orthogonal to the eigenvectors of

the quasi-Newton matrix, which correspond to the smallest eigenvalue. When the

trust-region subproblem solution lies at the boundary, then trust-region methods

use a one dimensional root finding procedure to specify the solution. We propose

an improved initial value for Newton’s one dimensional root finding method, which

uses the eigenvalues of the quasi-Newton matrix and does not require safeguarding,

which is common in many trust-region methods (see e.g., [MS83]).

2. THE SHAPE-CHANGING SR1 (SC-SR1) METHOD: Instead of the `2-norm,

this method is developed for trust-region subproblems defined by shape-changing

norms in combination with L-SR1 matrices. Because the shape-changing norms

were originally developed in the context of positive definite L-BFGS matrices, we

analyze how to compute subproblem solutions with these norms when indefinite

L-SR1 matrices are used. In particular, we characterize the global trust-region

subproblem solution with one of the shape-changing norms in the form of a general

optimality condition.

3. THE DENSE B0 METHOD: This is a large-scale L-BFGS trust-region method for
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unconstrained minimization. It uses dense initial matrices, instead of multiple of

identity matrices, to initialize the L-BFGS approximations of the algorithm. The

dense initial matrices compute two curvature estimates of the true Hessian matrix,

in order to update the limited-memory quasi-Newton matrices. This is unlike the

most common practice of using only one curvature estimate [BNS94]. In particu-

lar, we develop various alternatives for the two curvature estimates of the dense

initial matrices. Moreover, we propose a general formula of the compact repre-

sentation of quasi-Newton matrices, which make use of the dense initializations.

In other words, we propose the compact representation of limited-memory quasi-

Newton matrices that use two curvature estimates of the true Hessian matrix,

instead of one.

4. THE MULTIPOINT SYMMETRIC SECANT (MSSM) METHOD: This method

uses the indefinite limited-memory multipoint symmetric secant matrix in a trust-

region method for unconstrained minimization. Because L-MSS matrices are not

necessarily positive definite, they may better approximate indefinite Hessian ma-

trices. Since these matrices have a compact representation, they are readily ap-

plicable for large-scale problems. We propose two approaches for a L-MSS trust-

region method: One approach uses an orthonormal basis to compute a partial

eigendecomposition of the L-MSS matrices, and then computes trust-region sub-

problem solutions based on the eigendecomposition. The second approach makes

use of a set of properties of MSS matrices, and proposes a closed-form solution of

`2-norm L-MSSM subproblems.

5. THE EQUALITY CONSTRAINED TRUST-REGION METHOD: This is a large-

scale quasi-Newton trust-region method for linear equality constrained minimiza-

tion. It combines shape-changing norms with equality constrained trust-region

subproblems. In unconstrained optimization, shape-changing norms are used to

obtain an analytic solution of quasi-Newton trust-region subproblems. In order to

also compute analytic solutions when linear equality constraints are imposed, we

develop two novel factorizations, which are based on the compact representation of

quasi-Netwton matrices. First we develop the compact representation of the (1,1)

block of the Karush-Kuhn-Tucker KKT optimality matrix. Secondly, we propose

the partial eigendecomposition of the latter (1,1) block. Combining our matrix

factorizations with the shape-changing norms, yields a method for computing an-

alytic trust-region subproblem solutions even when linear equality constraints are

present. We also develop a method when the `2-norm is applied, and compare the

shape-changing norm method with the `2-norm method.

6. OBLIQUE PROJECTION MATRICES: We analyze and develop factorizations

of oblique projection matrices. These matrices arise in applications such as con-



13 CHAPTER 1 INTRODUCTION

strained optimization and least-squares problems. Since the condition number of

a matrix can be used as an indicator of the reliability of computations with that

particular matrix, computing condition numbers can be of practical interest for

various applications. Unlike orthogonal projection matrices, the singular values of

oblique projection matrices are not trivially inferred. We propose the eigendecom-

position of oblique projection matrices and develop methods to compute singular

values and condition numbers of oblique projections.

The work of this dissertation was done in collaboration with several leading researchers

in the field of trust-region methods and optimization. Prof. Jennifer Erway from Wake

Forest University developed the Interior-Point Sequential Subspace Minimization (IP-

SSM) trust-region method [EG10]. Prof. Oleg Burdakov from Linköping University in

Sweden and Prof. Ya-Xiang Yuan from the Chinese Academy of Science developed the

shape-changing norm [BGYZ16] that we use in Chapters 2-4. Dr. Cosmin Petra is

a Computational Mathematician at Lawrence Livermore National Laboratory (LLNL),

and the Chapters 5 and 6 are based on research done during my summer internship at

LLNL under his supervision in 2017.

1.6.1 CLASSIFYING THE PROPOSED METHODS

As a point of reference, the optimization methods of this dissertation are classified

according to different problem formulations. Underlying all proposed methods are the

assumptions that the objective function f(x) is at least twice continuously differentiable,

but the Hessian matrix is not explicitly available. The quasi-Newton matrices used to

approximate the Hessian are all represented as a compact matrix factorization, which

means that the proposed methods are for large-scale problems. If the Hessian matrix is

available, then methods that make use of its information may be more desirable. For

notation we define the symbols

L ≡ Large-scale (large n), NCX ≡ Non-convex, l2 ≡ `2-norm,

and SC ≡ Shape-changing norms (cf. Chapter 2, eq. (2.18)).

The proposed solvers for trust-region subproblems in (1.4) are summarized in Table

1.2. These solvers can be viewed as nonlinear programming methods, when the objective

is a multivariable quadratic function defined by quasi-Newton matrices.

Alternatives for the proposed OBS method are the L-BFGS trust-region subproblem

solvers from [BWX96, EM14]. The alternative for the proposed SC-SR1 is the shape-

changing L-BFGS trust-region subproblem solver from [BGYZ16]. The proposed MSSM

method is similar to the OBS and SC-SR1 methods, with the main difference of using

the multipoint symmetric secant quasi-Newton matrix, instead of the L-SR1 matrix. All

proposed subproblem solvers are advantageous in situations when the true Hessian is
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METHOD QUASI-NEWTON CONSTRAINTS STRENGTHS
OBS L-SR1 l2 L,NCX

SC-SR1 L-SR1 SC L,NCX

MSSM L-MSS l2, SC L,NCX

Table 1.2
Classification of proposed trust-region subproblem solvers. Here the label NCX means that the
method is well suited for non-convex subproblems.

indefinite, since the L-SR1 and L-MSS matrices are indefinite.

Table 1.3 summarizes the proposed minimization methods for general nonlinear and

potentially non-convex objective functions.

METHOD QUASI-NEWTON CONSTRAINTS STRENGTHS
Dense Any – L

Constrained Any A
m×n

x = b
m×1

L, m� n

Table 1.3
Classification of proposed minimization methods. Here Dense is the dense initialization method
proposed in Chapter 3, and Constrained represents the method developed in Chapter 5.

The prominent alternative to the dense initialization method is the line-search L-

BFGS approach [ZBN97]. An alternative approach for the constrained method is the

large-scale L-BFGS trust-region algorithm for general equality constraints in [LNP98]. In

numerical comparisons with a benchmark line-search approach, the Dense method does

perform particularly well (cf. Figure 3.5). Moreover, numerical experiments indicate

that Dense method does well on difficult problems (cf. Figure 3.9), whereas for easier

problems a hybrid trust-region line-search method as in [BGYZ16] may be advantageous.

The Constrained method is for general minimization with linear equality constraints.

One of its main advantages are fast computations of iterates, because it uses an analytic

formula for the solutions of trust-region subproblems. The method assumes that m� n,

and full rank equality constraints.



CHAPTER 2

THE TRUST-REGION

SUBPROBLEM SOLVERS

This chapter is based on two manuscripts. The first of these is the published paper, “On

solving L-SR1 trust-region subproblems,” J. J. Brust, J. B. Erway, and R. F. Marcia,

Computational Optimization and Applications, 66:2, pp. 245-266, 2017. The second is

the paper submitted to Transactions on Mathematical Software (currently under first

revision), “Shape-changing L-SR1 trust-region methods,” J. J. Brust, O. P. Burdakov,

J. B. Erway, R. F. Marcia, and Y.-x. Yuan.

2.1 SUBPROBLEM SOLVERS

A computationally demanding component in trust-region methods is the solution of

the subproblems at each iteration (Step 2 in Algorithm 1). Therefore this chapter

proposes two efficient methods to accurately solve large-scale trust-region subproblems.

Specifically, we focus on highly accurate solutions of

minimize
‖s‖≤∆k

Q(s) = gTk s +
1

2
sTBks, (2.1)

where Bk is a limited-memory compact quasi-Newton matrix. Our analysis uses the

limited-memory symmetric rank-1 (L-SR1) matrix because it is a potentially indefinite

quasi-Newton matrix. In other words, the subproblem’s objective function, Q(s), is not

necessarily convex.

High-accuracy L-SR1 subproblem solvers are of interest in large-scale optimization

for two reasons: (1) In previous works, it has been shown that more accurate subproblem

solvers can require fewer overall trust-region iterations, and thus, fewer overall function

and gradient evaluations [EG10, EGG09, EM14]; and (2) it has been shown that under

certain conditions SR1 matrices converge to the true Hessian–a property that has not

been proven for other quasi-Newton updates [CGT91]. While these convergence results

15
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have been proven for SR1 matrices, we are not aware of similar results for L-SR1 matrices.

Solving large trust-region subproblems defined by indefinite matrices are especially

challenging, with optimal solutions lying on the boundary of the trust-region. Since

L-SR1 matrices are not guaranteed to be positive definite, additional care must be taken

to handle indefiniteness and the so-called hard case (see, e.g., [CGT00, MS83]). To our

knowledge, there are only three solvers designed to solve the quasi-Newton subproblems

to high accuracy for large-scale optimization. Specifically, the MSS method [EM14] is

an adaptation of the Moré-Sorensen method [MS83] to the limited-memory Broyden-

Fletcher-Goldfarb-Shanno (L-BFGS) quasi-Newton setting. Burke et al. [BWX96] pro-

posed a method based on the Sherman-Morrison-Woodbury formula, and more recently,

in [BGYZ16], Burdakov et al. solve a trust-region subproblem where the trust region

is defined using shape-changing norms. All of these methods are based on the posi-

tive definite L-BFGS quasi-Newton matrix. In contrast, the methods in this chapter

are developed for indefinite quasi-Newton matrices by handling three additional non-

trivial cases: (1) the singular case, (2) the so-called hard case, and (3) the general

indefinite case. We know of no high-accuracy solvers designed specifically for L-SR1

trust-region subproblems for large-scale optimization of the form (2.4) that are able to

handle these cases associated with SR1 matrices. It should be noted that large-scale

solvers exist for the general trust-region subproblem that are not designed to exploit

any specific structure of Bk. Examples of these include the Large-Scale Trust-Region

Subproblem (LSTRS) algorithm [RSS01, RSS08] and the Sequential Subspace Method

SSM [Hag01, HP04].

Because the methods, which we propose in this chapter are based on an implicit

eigendecomposition of the L-SR1 matrix we first describe its compact representation.

2.2 L-SR1 MATRICES

The symmetric rank-1 quasi-Newton matrix has been proposed, among others, by

Fletcher [Fle70] and Powell [Pow70]. Specifically, starting from an initial matrix B0,

the recursive SR1 formula is given by

Bk+1
4
= Bk +

(yk −Bksk)(yk −Bksk)
T

(yk −Bksk)T sk
, (2.2)

provided (yk −Bksk)
T sk 6= 0. In practice, B0 is often taken to be a scalar multiple of

the identity matrix; for the duration of this chapter we assume that B0 = γkI, γk ∈ R.

Limited-memory symmetric rank-one matrices (L-SR1) store and make use of only the l

most-recently computed pairs {(si,yi)}, where l� n (for example, Byrd et al. [BNS94]

suggest l ∈ [3, 7]). For simplicity of notation, we assume that the current iteration

number k is less than the number of allowed stored limited-memory pairs l.
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The SR1 update is a member of the Broyden class of updates (see, e.g., [NW06]).

Unlike widely-used updates such as the BFGS and the DFP updates, the SR1 formula can

yield indefinite matrices; that is, SR1 matrices can incorporate negative curvature in-

formation. In fact, the SR1 update has convergence properties superior to other widely-

used positive-definite quasi-Newton matrices such as BFGS; in particular, [CGT91] give

conditions under which the SR1 update formula generates a sequence of matrices that

converge to the true Hessian.

2.3 THE L-SR1 COMPACT REPRESENTATION

The compact representation of SR1 matrices can be used to compute the eigenvalues

and a partial eigenbasis of these matrices. In this section, we describe the compact

formulation of SR1 matrices. To begin, recall the matrices:

Sk = [ sk−l sk−l+1 · · · sk−1 ] and Yk = [ yk−l yk−l+1 · · · yk−1 ] .

With these, the matrix STkYk ∈ Rl×l can be written as the sum of the following

three matrices:

STkYk = Lk + Ek + Tk,

where Lk is strictly lower triangular, Ek is diagonal, and Tk is strictly upper triangular.

Then, Bk can be written as

Bk = γk−1I + ΨkMkΨ
T
k , (2.3)

where Ψk ∈ Rn×l and Mk ∈ Rl×l, and γk−1 ∈ R. In particular, Ψk and Mk are given

by

Ψk = Yk − γk−1Sk and Mk = (Ek + Lk + LTk − γk−1S
T
k Sk)

−1.

This compact representation is due to Byrd et al. [BNS94, Theorem 5.1]. For the

duration of this chapter, we assume that updates are only accepted when both the next

SR1 matrix Bk+1 is well-defined and Mk exists [BNS94, Theorem 5.1]. For notational

simplicity, we assume Ψk has full column rank; when Ψk does not have full column

rank, then modifications proposed in [BGYZ16] can be used instead. Notice that the

computation of Mk is relatively inexpensive, since it is a very small square matrix.

Importantly, since the SR1 matrix is indefinite the scalar ∞ < γk−1 <∞ may take any

sign.
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2.4 THE OBS METHOD

2.4.1 MOTIVATION

We will now describe a method for minimizing the trust-region subproblem defined by a

limited-memory symmetric rank-one (L-SR1) matrix subject to a two-norm constraint,

i.e.,

minimize
s∈Rn

Q(s) = gTk s +
1

2
sTBks subject to ‖s‖2 ≤ ∆k. (2.4)

Methods that solve the trust-region subproblem to high accuracy are often based on

the optimality conditions for a global solution to the trust-region subproblem (see, e.g.,

Gay [Gay81], Moré and Sorensen [MS83] or Conn, Gould and Toint [CGT00]), given in

the following theorem:

Theorem 2.1. Let ∆k be a positive constant. A vector s∗ is a global solution of the

trust-region subproblem (2.4) if and only if ‖s∗‖2 ≤ ∆k and there exists a unique σ∗ ≥ 0

such that Bk + σ∗In is positive semidefinite and

(Bk + σ∗In)s∗ = −gk and σ∗(∆k − ‖s∗‖2) = 0. (2.5)

Moreover, if Bk + σ∗In is positive definite, then the global minimizer is unique.

The result in Theorem 2.1 is based the Lagrangian objective function defined as

L(s, σ) ≡ Q(s) + σ
2 ‖s‖

2
2 for a Lagrange multiplier σ ≥ 0. Computing the stationary

point of the Lagrangian ∇L(s∗, σ∗) = 0 implies the equation (Bk+σ∗In)s∗ = −gk. The

second equality in (2.5) is a complementarity condition, which states that at a solution

either σ∗ = 0, or s∗ lies on the boundary, i.e., ‖s∗‖2 = ∆k.

A well known method, which seeks a solution pair of the form (s∗, σ∗) that satisfies

both equations in (2.5) is the Moré-Sorensen method [MS83]. The method alternates

between updating s∗ and σ∗; specifically, the method fixes σ∗, solving for s∗ using

the first equation and then fixes s∗, solving for σ∗ using the second equation. In or-

der to solve for s∗ in the first equation, the Moré-Sorensen method uses the Cholesky

factorization of Bk+σIn; for this reason, this method is prohibitively expensive for gen-

eral large-scale optimization when Bk does not have a structure that can be exploited.

However, the Moré-Sorensen method is arguably the best direct method for solving the

trust-region subproblem. While the Moré-Sorensen direct method uses a safeguarded

Newton method to find σ∗, the method proposed in this section makes use of Newton

method’s together with a judicious initial guess so that safeguarding is not needed to

obtain σ∗. Moreover, unlike the Moré-Sorensen method, the proposed method computes

s∗ by formula, and in this sense, is an iteration-free method.
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2.4.2 PROPOSED METHOD

The method proposed in this section, called the “Orthonormal Basis L-SR1” (OBS)

method, is able to solve the trust-region subproblem to high accuracy even when the

L-SR1 matrix is indefinite. The method makes use of two separate techniques. One

technique uses (1) a Newton method to find σ∗ that is initialized so its iterates converge

monotonically to σ∗ without any safeguarding when global solutions lie on the boundary

of the trust region, and (2) the compact formulation of SR1 matrices together with the

strategy found in [BWX96] to compute s∗ directly by formula. The other technique is

newly proposed. This technique computes an optimal pair (s∗, σ∗) using an orthonormal

basis for the eigenspace of Bk. The idea of using an orthonormal basis to represent s∗

is not new; this approach is found in [BGYZ16]. Here, we apply this approach to the

cases when Bk is singular and indefinite.

We begin by providing an overview of the OBS method. To solve the trust-region

subproblem, we first attempt to compute an unconstrained minimizer su to (2.4). If the

objective function Q(s) is strictly convex (i.e., Bk � 0 ) and the unconstrained minimizer

lies inside the trust region, the optimal solution for the trust-region subproblem is given

by s∗ = su and σ∗ = 0. This computation is simplified by first finding the eigenvalues of

Bk (see (1.10)); the solution su to the unconstrained problem is found using a strategy

proposed in [BWX96], adapted for L-SR1 matrices. If ‖su‖2 > ∆k or is not well-defined,

a global solution of the trust-region subproblem must lie on the boundary, i.e., it is a

root of the following function, also known as the secular-equation:

φ(σ) =
1

‖s(σ)‖2
− 1

∆k
. (2.6)

When a global solution is on the boundary, we consider three cases separately: (i)

Bk is positive definite and ‖su‖2 > ∆k, (ii) Bk is positive semidefinite, and (iii) Bk is

indefinite. We note that the so-called hard case can only occur in the third case. Details

for each case are provided below; however, we begin by considering the unconstrained

case.

Computing the unconstrained minimizer. The OBS method begins by computing

the eigenvalues of Bk as in Section 1.4.3. If Bk is positive definite, the method computes

‖su‖2 using properties of orthogonal matrices. If ‖su‖2 ≤ ∆k, then (s∗, σ∗) = (su, 0).

We begin by presenting the computation of ‖su‖2, which is only performed when Bk is

positive definite. We include σ in the derivation for completeness even though σ = 0

when finding the unconstrained minimizer.

The unconstrained minimizer su is the solution to the first optimality condition

in (2.5); however, the unconstrained minimizer can also be found by rewriting the

optimality condition using the spectral decomposition of Bk. Specifically, suppose Bk =
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PΛPT is the spectral decomposition of Bk, then

−gk = (Bk + σIn)s = (PΛPT + σIn)s = P(Λ + σIn)v,

where v = PT s. Since P is orthogonal, the first optimality condition expressed in (2.1)

can be written as

(Λ + σIn)v = −PTgk. (2.7)

Note that the spectral decomposition of Bk transforms the first system in (2.5) into a

solve with a diagonal matrix in (2.7). If we express the right hand side as

PTgk = [ P‖ P⊥]Tgk =

[
PT
‖ gk

PT
⊥gk

]
4
=

[
g‖

g⊥

]
,

then

‖s(σ)‖22 = ‖v(σ)‖22 =

{
k+1∑
i=1

(g‖)
2
i

(λi + σ)2

}
+

‖g⊥‖22
(γk−1 + σ)2

. (2.8)

Thus, the length of the unconstrained minimizer su = s(0) is computed as ‖su‖2 =

‖v(0)‖2, where g‖ = PT
‖ gk = (QU)Tgk = (ΨkR

−1U)Tgk and ‖g⊥‖22 = ‖gk‖22 − ‖g‖‖22.

Notice that determining ‖su‖2 does not require forming su explicitly. Moreover, we

are able to compute ‖g⊥‖2 without having to compute g⊥ = PT
⊥gk, which requires

computing P⊥, whose columns form a basis orthogonal to P‖.

If ‖su‖2 ≤ ∆k, then s∗ = su and σ∗ = 0. To compute su, we use the Sherman-

Morrison-Woodbury formula for the inverse of Bk as in [BWX96], adapted from the

BFGS setting into the SR1 setting:

s∗ = − 1

τ∗
[
In −Ψk(τ

∗M−1
k + ΨT

kΨk)
−1ΨT

k

]
gk, (2.9)

where τ∗ = γk−1. Notice that this formula calls for the inversion of (τ∗M−1
k + ΨT

kΨk);

however, the size of this matrix is small (l × l), making the computation practical.

On the other hand, if ‖su‖2 > ∆k, then the solution s∗ must lie on the boundary.

We now consider the three cases as mentioned above.

Case (i): Bk is positive definite and ‖su‖2 > ∆k. Since the unconstrained minimizer

lies outside the trust region and ‖su‖2 = ‖s(0)‖2, then φ(σ) given by (2.6) is such that

φ(0) < 0. In this case, the OBS method uses Newton’s method to find σ∗. (Details on

Newton’s method are provided in Subsection 2.4.3.) Finally, setting τ∗ = γk−1 + σ∗,

the global solution of the trust-region subproblem, s∗, is computed using (2.9).

Case (ii): Bk is singular and positive semidefinite. Since γk−1 6= 0 and Bk is

positive semidefinite, the leftmost eigenvalue is λ1 = 0. Let r be the multiplicity of
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the zero eigenvalue; that is, λ1 = λ2 = . . . = λr = 0 < λr+1. For σ > 0, the matrix

(Λ + σIn) is invertible, and thus, ‖s(σ)‖2 in (2.8) is well-defined for σ ∈ (0,∞). If

limσ→0+ φ(σ) < 0, the OBS method uses Newton’s method to find σ∗. (Details on

Newton’s method are provided in Subsection 2.4.3.) Setting τ∗ = γk−1 + σ∗, s∗ is

computed using (2.9).

We now consider the remaining case: limσ→0+ φ(σ) ≥ 0. By [CGT00, Lemma 7.3.1],

φ(σ) is strictly increasing on the interval (0,∞). Thus, φ can only have a root in the

interval [0,∞] at σ = 0. We now show that (s∗, σ∗) is a global solution of the trust-region

subproblem with σ∗ = 0 and

s∗ = −B†kgk = −P(Λ + σ∗In)†PTgk,

where † denotes the Moore-Penrose pseudoinverse. The second optimality condition

holds in (2.5) since σ∗ = 0. It can be shown that the first optimality condition holds by

using the fact that gk must be perpendicular to the eigenspace corresponding to the 0

eigenvalue of Bk, i.e., (PT
‖ gk)i = 0 for i = 1, . . . , r (see [MS83]).

In this subcase, the trust-region subproblem solution s∗ can be computed as follows

(here c1 represents the condition σ∗ 6= −γk−1):

s∗ = −P(Λ + σ∗In)†PTgk

=


−P‖(Λ1 + σ∗I)†PT

‖ gk −
1

γk−1 + σ∗
P⊥PT

⊥gk if c1,

−P‖(Λ1 + σ∗In)−1PT
‖ gk otherwise

=


−ΨkR

−1U(Λ1 + σ∗In)†g‖ −
1

γk−1 + σ∗
(In −ΨkR

−1R−TΨT
k )gk if c1,

−ΨkR
−1U(Λ1 + σ∗In)−1g‖ otherwise,

(2.10)

which makes use of a chain of equalities:

P⊥PT
⊥gk = (In −P‖P

T
‖ )gk = (In −ΨkR

−1R−TΨT
k )gk.

The actual computation of s∗ in (2.10) requires only matrix-vector products; no ad-

ditional large matrices need to be formed to find a global solution of the trust-region

subproblem.

Case (iii): Bk is indefinite. Since Bk is indefinite, λmin = min{λ1, γk−1} < 0. Let

r be the algebraic multiplicity of the leftmost eigenvalue. For σ > −λmin, (Λ + σIn) is

invertible, and thus, ‖s(σ)‖2 in (2.8) is well defined in the interval (−λmin,∞).

If limσ→−λ+min
φ(σ) < 0, then there exists σ∗ ∈ (−λmin,∞) with φ(σ∗) = 0 that can

be obtained as in Case (i) using Newton’s method (see Sec. 2.4.3). The solution s∗ is

computed via (2.9) with τ∗ = γk−1 + σ∗.
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If limσ→−λ+min
φ(σ) ≥ 0, then gk must be orthogonal to the eigenspace associated

with the leftmost eigenvalue of Bk [MS83]. In other words, if λmin = λ1, then (g‖)i = 0

for i = 1, . . . , r; otherwise, if λmin = γk−1, then ‖g⊥‖2 = 0. We now consider the cases

of equality and inequality separately.

If limσ→−λ+min
φ(σ) = 0, then σ∗ = −λmin > 0, and a global solution of the trust-

region subproblem is given by

s∗ = −(Bk + σ∗In)†gk = −P(Λ + σ∗In)†PTgk.

As in Case (ii), s∗ is obtained from (2.10) and can be shown to satisfy the optimality

conditions (2.5).

Finally, if limσ→−λ+min
φ(σ) > 0, then

lim
σ→−λ+min

‖s(σ)‖2 = lim
σ→−λ+min

‖ − (Bk + σ∗In)−1 gk‖2 < ∆k.

This corresponds to the so-called hard case. The optimal solution is given by

s∗ = ŝ∗ + z∗, where ŝ∗ = − (Bk + σ∗In)† gk, z∗ = αumin, (2.11)

and where umin is an eigenvector associated with λmin and α is computed so that

‖s∗‖2 = ∆k [MS83]. As in Case (ii), we avoid forming P⊥ using (2.10) to compute ŝ∗.

The computation of umin depends on whether λmin is found in Λ1 or Λ2 in (1.10). If

λmin = λ1 then the first column of P is a leftmost eigenvector of Bk, and thus, umin

is set to the first column of P‖. On the other hand, if λmin = γk−1, then any vector

in the column space of P⊥ will be an eigenvector of Bk corresponding to λmin. Since

Range(P‖)
⊥ = Range(P⊥), the projection matrix (In −P‖P

T
‖ ) maps onto the column

space of P⊥. For simplicity, we map one canonical basis vector at a time (starting with

e1) into the space spanned by the columns of P⊥ until we obtain a nonzero vector.

Since dim(P‖) = l � n, this process is practical and will result with a vector that lies

in Range(P⊥); that is, umin ≡ (In −P‖P
T
‖ )ej for at least one j in {1 ≤ j ≤ l+ 1} with

‖umin‖2 6= 0. (We note that both λ1 and γk−1 cannot both be λmin since λ1 = λ̂1 +γk−1

and λ̂1 6= 0 (see Section 1.10)).

The following theorem provides details for computing optimal trust-region subprob-

lem solutions characterized by Theorem 2.1 for the case when Bk is indefinite.

Theorem 2.2. Consider the trust-region subproblem given by

minimize
s∈Rn

Q(s) = gTk s +
1

2
sTBks subject to ‖s‖2 ≤ ∆k,

where Bk is indefinite. Suppose Bk = PΛPT is the spectral decomposition of Bk, and
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without loss of generality, assume Λ = diag(λ1, . . . , λn) is such that λmin = λ1 ≤ λ2 ≤
. . . ≤ λn. Further, suppose gk is orthogonal to the eigenspace associated with λmin, i.e.,

gTk Pej = 0 for j = 1, . . . , r, where r ≥ 1 is the algebraic multiplicity of λmin. Then, if

the optimal solution of the subproblem is with σ∗ = −λmin, then the global solutions to

the trust-region subproblem are given by s∗ = ŝ∗+ z∗ where ŝ∗ = − (Bk + σ∗In)† gk and

z∗ = ±αumin, where umin is a unit vector in the eigenspace associated with λmin and

α =
√

∆2
k − ‖ŝ∗‖22. Moreover,

Q(ŝ∗ ± αz∗) =
1

2
gTk ŝ∗ − 1

2
σ∗∆2

k. (2.12)

Proof. By [MS83], a global solution of trust-region subproblem is given by s∗ = ŝ∗ + z∗

where ŝ∗ = − (Bk + σ∗In)† gk, z∗ = ᾱumin, and ᾱ is such that ‖s∗‖2 = ∆k. It remains

to show that both roots of the quadratic equation ‖ŝ∗ + αumin‖22 = ∆2
k are given by

α = ±
√

∆2
k − ‖ŝ∗‖22 and that (2.12) holds.

To see this, we begin by showing that (ŝ∗)T z∗ = 0. Let r ≥ 1 be the algebraic multi-

plicity of λmin. Then, ŝ∗ = −(Bk +σ∗In)†gk = −P(Λ +σ∗In)†PTgk = −Pv(σ∗), where

v(σ∗) ≡ (Λ + σ∗In)†PTgk. Notice that by definition of the pseudoinverse, v(σ∗)i = 0

for i = 0, . . . , r. Since umin is in the eigenspace associated with λmin, then it can be

written as a linear combination of the first r columns of P, i.e., umin =
∑r

i=1 ũiPei for

some {ũi} ∈ < where ei denotes the ith canonical basis vector. Then,

(ŝ∗)T z = α (ŝ∗)T umin = α(Pv(σ∗))T

(
r∑
i=1

ũiPei

)
= αv(σ∗)T

r∑
i=1

ũiei = 0,

since the first r entries of v(σ∗) are zero. Since ŝ∗ is orthogonal to z∗, then

α = ±
√

∆2
k − ‖ŝ∗‖22.

To see (2.12), consider the following:

Q(ŝ∗ ± αumin) = (ŝ∗ ± αumin)Tgk +
1

2
(ŝ∗ ± αumin)TBk(ŝ

∗ ± αumin)

= (ŝ∗ ± αumin)T (gk −
1

2
gk −

1

2
σ∗(ŝ∗ ± αumin))

=
1

2
(ŝ∗ ± αumin)Tgk −

1

2
σ∗‖ŝ∗ ± αumin‖22

=
1

2
gTk ŝ∗ − 1

2
σ∗∆2

k, (2.13)

since uTmingk = (
∑r

i=1 ũiPei)
T gk =

(∑r
i=1 ũie

T
i PT

)
gk = 0 since gk is orthogonal to

the eigenspace associated with λmin. � �
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The OBS method is summarized in Algorithm 2.1.

ALGORITHM 2.1

Compute Ψk = QR; or ΨT
kΨk = RTR;

Compute RMkR
T = UΛ̂UT with λ̂1 ≤ λ̂2 ≤ · · · ≤ λ̂k+1;

Set Λ1 = Λ̂ + γk−1In;

Set λmin = min(λ1, γk−1);

Define P‖ ≡ ΨkR
−1U and g‖ ≡ PT

‖ gk;

Compute aj = (g‖)j , j = 1, . . . , l; al+1 =
√
‖gk‖22 − ‖g‖‖22;

1. If λmin > 0 and φ̄(0) ≥ 0, then set σ∗ = 0; compute s∗ by (2.9); terminate;

2. If λmin ≤ 0 and φ̄(−λmin) ≥ 0, then set σ∗ = −λmin; compute s∗ by (2.10); If

λmin < 0, then compute z∗ by (2.11), update s∗ ← s∗ + z∗; terminate;

3. Otherwise find σ∗ with φ(σ∗) = 0, σ∗ ∈ (max{−λmin, 0},∞) by Newton’s method;

compute s∗ by (2.9) with τ∗ = σ∗ + γk−1; terminate;

2.4.3 NEWTON’S METHOD

Newton’s method is used to find a root of φ(σ) whenever

lim
σ→−λ+min

φ(σ) = lim
σ→−λ+min

1

‖s(σ)‖2
− 1

∆k
< 0.

Since ‖s(σ)‖2 does not exist at the eigenvalues of Bk, we first define the continuous

extension of φ(σ), whose domain is all of R. Let ai = (g‖)i for 1 ≤ i ≤ l, al+1 = ‖g⊥‖2,

and λl+1 = γk−1. Combining the terms in (2.8) that correspond to the same eigenvalues

and eliminating all terms with zero numerators, we have that for σ 6= λi, ‖s(σ)‖22 can

be written as

‖s(σ)‖22 =
l+1∑
i=1

a2
i

(λi + σ)2
=

L∑
i=1

ā2
i

(λ̄i + σ)2
,

such that for i = 1, . . . , L, āi 6= 0 and λ̄i are distinct eigenvalues of Bk with λ̄1 < λ̄2 <

· · · < λ̄L. Note that the last sum is well-defined for σ = λj 6= −λ̄i, for 1 ≤ i ≤ L. Then,



25 CHAPTER 2 THE TRUST-REGION SUBPROBLEM SOLVERS

the continuous extension φ̄(σ) of φ(σ) is given by:

φ̄(σ) =


− 1

∆k
if σ = −λ̄i, 1 ≤ i ≤ L

1√√√√ L∑
i=1

ā2
i

(λ̄i + σ)2

− 1

∆k
otherwise.

A crucial characteristic of φ̄ is that it takes on the value of the limit of φ at σ = −λi,
for 1 ≤ i ≤ l + 1. In other words, for each i ∈ {1, . . . , l + 1},

lim
σ→−λi

φ(σ) = φ̄(−λi).

The derivative of φ̄(σ) is used only for Newton’s method and is computed as follows:

φ̄′(σ) =

(
L∑
i=1

ā2
i

(λ̄i + σ)2

)− 3
2 L∑
i=1

ā2
i

(λ̄i + σ)3
if σ 6= −λ̄i, 1 ≤ i ≤ L. (2.14)

Note that φ̄′(−λj) exists as long as −λj 6= −λ̄i, for 1 ≤ i ≤ L. Furthermore, for

σ > −λ̄1, φ̄′(σ) > 0, i.e., φ̄(σ) is strictly increasing on the interval [−λ̄1,∞). Finally, it

can be shown that φ̄′′(σ) < 0 for σ > −λ̄1, i.e., φ̄(σ) is concave on the interval [−λ̄1,∞).

For illustrative purposes, we plot examples of φ̄(σ) in Fig. 1 for the different cases we

considered in this Section 2.5.2. Note that we use Newton’s method to find σ∗ when

(a) λmin ≥ 0 and φ̄(0) (see Figs. 1(b) and (c)), or (b) λmin < 0 and φ̄(−λmin) < 0 (see

Figs. 1(d) and (e)).

We now define an initial iterate such that Newton’s method is guaranteed to converge

to σ∗ monotonically.

Theorem 2.3. Suppose φ̄(max{0,−λmin}) < 0. Let

σ̂ 4= max
1≤i≤k+2

{
|ai|
∆k
− λi

}
=
|aj |
∆k
− λj (2.15)

for some 1 ≤ j ≤ k+2. Newton’s method applied to φ̄(σ) with initial iterate σ(0) 4= max{0, σ̂}
is guaranteed to converge to σ∗ monotonically.

Proof. Since φ̄(σ) is strictly increasing and concave on [−λmin,∞) and φ̄(σ∗) = 0, it is

sufficient to show that (i) −λmin ≤ σ(0) ≤ σ∗, and (ii) φ̄′(σ(0)) exists (see e.g., [KC02]).

We note that σ̂ ≥ −λmin, and thus, σ(0) ≥ max{0,−λmin} ≥ −λmin. To show that

σ(0) ≤ σ∗, we show that φ̄(σ(0)) ≤ φ̄(σ∗) = 0.
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Figure 2.1 Graphs of the function φ̄(σ). (a) The positive-definite case where the unconstrained
minimizer is within the trust-region radius, i.e., φ̄(0) ≥ 0, and σ∗ = 0. (b) The positive-definite
case where the unconstrained minimizer is infeasible, i.e., φ̄(0) < 0. (c) The singular case where
λ̄1 = λmin = 0. (d) The indefinite case where λ̄1 = λmin < 0. (e) When the coefficients ai
corresponding to λmin are all 0, φ̄(σ) does not have a singularity at λmin. Note that this case is
not the hard case since φ̄(−λmin) < 0. (f) The hard case where there does not exist σ∗ > −λmin

such that φ̄(σ∗) = 0.
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If σ̂ = |aj |/∆k − λj with |aj | 6= 0, then evaluating ‖s(σ)‖2 at σ = σ̂ yields

‖s(σ̂)‖22 =
k+2∑
i=1

a2
i

(λi + σ̂)2
≥

a2
j

(λj + σ̂)2
=

a2
j

(λj +
|aj |
∆k
− λj)2

= ∆2
k,

and thus, φ̄(σ̂) ≤ 0. Since φ̄(max{0,−λmin}) < 0, then φ̄(σ(0)) ≤ 0. If |aj | = 0, then

σ̂ = −λj . Since −λi ≤ −λmin for all i, σ̂ = −λmin. Thus, φ̄(σ(0)) = φ̄(max{0,−λmin}) <
0. Consequently, φ̄(σ(0)) ≤ 0, and therefore, σ(0) ≤ σ∗ since φ̄(σ) is monotonically

increasing.

Next, we show that φ̄′(σ(0)) exists. On the interval (−λmin,∞), φ̄(σ) is differentiable

(see (2.14)). Therefore, if σ(0) > −λmin, then φ̄′(σ(0)) exists. If σ(0) = −λmin, then σ̂ =

−λmin, which implies that a1 = · · · = ar = 0 or ak+2 = 0 (see (2.15)). From the definition

of φ̄(σ), λmin 6= λ̄i for 1 ≤ i ≤ L. Thus, φ̄(σ) is differentiable at σ = −λmin = σ(0). �

�

We note that when aj 6= 0 in (2.15), σ̂ is the largest σ that solves the secular equation

with the infinity norm:

φ∞(σ̂) =
1

‖v(σ̂)‖∞
− 1

∆k
= 0.

We illustrate the choice of initial iterate for Newton’s method in Fig. 2.
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φ̄(σ)

(a) (b)

Figure 2.2 Choice of initial iterate for Newton’s method. (a) If aj 6= 0 in (2.15), then σ̂
corresponds to the largest root of φ∞(σ) (in red). Here, −λmin > 0, and therefore σ(0) = σ̂. (b)
If aj = 0 in (2.15), then λmin 6= λ̄1, and therefore, φ̄(σ) is differentiable at −λmin since φ̄(σ) is
differentiable on (−λ̄1,∞). Here, −λmin > 0, and thus, σ(0) = σ̂ = −λmin.

Finally, we present Newton’s method for computing σ∗ in Algorithm 2.2.
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ALGORITHM 2.2

Initialize: Tolerance τ > 0

1. If φ̄(max{0,−λmin}) < 0, then set σ̂ = max1≤j≤k+2
|aj |
∆k
− λj , σ = max{0, σ̂} go to

2.;

2. While |φ̄(σ)| > τ , set σ = σ − φ̄(σ)/φ̄′(σ) otherwise set σ∗ = σ, terminate;

3. If λmin < 0, then set σ∗ = −λmin, terminate;

4. Otherwise set σ∗ = 0;

2.4.4 NUMERICAL EXPERIMENTS

In this section, we demonstrate the accuracy of the proposed OBS algorithm imple-

mented in MATLAB to solve limited-memory SR1 trust-region subproblems. We gener-

ated five sets of experiments composed of problems of various sizes using random data.

The Newton method to find a root of φ was terminated when the ith iterate satisfied

‖φ(σ(i))‖ ≤ τ‖φ(σ(0))‖+
√
τ , where σ(0) denotes the initial iterate for Newton’s method

and τ corresponds to the machine precision. This is the only stopping criteria used by

the OBS method since other aspects of this method compute solutions by formula. The

problem sizes n range from n = 103 to n = 107. The number of limited-memory updates

l was set to 5, and γk−1 = 0.5 unless otherwise specified below. The pairs Sk and Yk,

both n × l matrices, were generated from random data. Finally, gk was generated by

random data unless otherwise stated. The five sets of experiments are intended to be

comprehensive: They include the unconstrained case and the three cases discussed in

Subsection 2.4.2. The five experiments are as follows:

1. The matrix Bk is positive definite with ‖su‖2 ≤ ∆k: We ensure Ψk and Mk are

such that Bk is strictly positive definite by altering the spectral decomposition

of RMkR
T . We choose ∆k = µ‖su‖2, where µ = 1.25, to guarantee that the

unconstrained minimizer is feasible. The graph of φ̄(σ) corresponding to this case

is illustrated in Fig. 1(a).

2. The matrix Bk is positive definite with ‖su‖2 > ∆k: We ensure Ψk and Mk are

such that Bk is strictly positive definite by altering the spectral decomposition of

RMkR
T . We choose ∆k = µ‖su‖2, where µ is randomly generated between 0 and

1, to guarantee that the unconstrained minimizer is infeasible. The graph of φ̄(σ)

corresponding to this case is illustrated in Fig. 1(b).

3. The matrix Bk is positive semidefinite and singular with s = −B†kgk infeasible:

We ensure Ψk and Mk are such that Bk is positive semidefinite and singular

by altering the spectral decomposition of RMkR
T . Two cases are tested: (a)
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φ̄(0) < 0 and (b) φ̄(0) ≥ 0. Case (a) occurs when ∆k = (1 + µ)‖su‖2, where µ is

randomly generated between 0 and 1; case (b) occurs when ∆k = µ‖su‖2, where µ

is randomly generated between 0 and 1. The graph of φ̄(σ) in case (a) corresponds

to Fig. 1(c). In case (b), ai = 0 for i = 1, . . . , r, and thus, φ̄(σ) does not have a

singularity at σ = 0, implying the graph of φ̄(σ) for this case corresponds to Fig

1̇(a).

4. The matrix Bk is indefinite with φ̄(−λmin) < 0: We ensure Ψk and Mk are such

that Bk is indefinite by altering the spectral decomposition of RMkR
T . We

test two subcases: (a) the vector gk is generated randomly, and (b) a random

vector gk is projected onto the orthogonal complement of P‖1 ∈ Rn×r so that

ai = 0, i = 1, . . . , r, where r = 2. For case (b), ∆k = µ‖su‖2, where µ is randomly

generated between 0 and 1, so that φ̄(−λmin) < 0. The graph of φ̄(σ) in case (a)

corresponds to Fig. 1(d), and φ̄(σ) in case (b) corresponds to Fig. 1(e).

5. The hard case (Bk is indefinite): We ensure Ψk and Mk are such that Bk is indefi-

nite by altering the spectral decomposition of RMkR
T . We test two subcases: (a)

λmin = λ1 = λ̂1 + γ < 0, and (b) λmin = γ < 0. In both cases, ∆k = (1 + µ)‖su‖2,

where µ is randomly generated between 0 and 1, so that φ̄(−λmin) > 0. The graph

of φ̄(σ) for both cases of the hard case corresponds to Fig. 1(f).

We report the following: (1) opt 1 (abs)=‖(Bk+σ∗In)s∗+gk‖2, which corresponds

to the norm of the error in the first optimality conditions; (2) opt 1 (rel) =(‖(Bk +

σ∗In)s∗ + gk‖2)/‖gk‖2, which corresponds to the norm of the relative error in the first

optimality conditions; (3) opt 2=σ∗|s∗ −∆k|, which corresponds to the absolute error

in the second optimality conditions; (4) σ∗; and (5) Time. We ran each experiment five

times and report one representative result for each experiment. We show in Fig. 2.4.4

the computational time for each of the five runs in each experiment.

For comparison, we report results for the OBS method as well as the Large-Scale

Trust-Region Subproblem (LSTRS) method [RSS01, RSS08]. The LSTRS method solves

large trust-region subproblems by converting the subproblems into parametrized eigen-

value problems. This method uses only matrix-vector products. For these tests, we

suppressed all run-time output of the LSTRS method and supplied a routine to compute

matrix-vector products using the factors in the compact formulation, i.e., given a vector

v, the product with Bk is computed as Bkv← γk−1v + Ψk(Mk(Ψ
T
k v)). Note that the

computations of Mk and Ψk are not included in the time counts for LSTRS.

Tables 2.1 and 2.2 shows the results of Experiment 1. In all cases, the OBS method

and the LSTRS method found global solutions of the trust-region subproblems. The

relative error in the OBS method is smaller than the relative error in the LSTRS method.

Moreover, the OBS method solved each subproblem in less time than the LSTRS method.



30 CHAPTER 2 THE TRUST-REGION SUBPROBLEM SOLVERS

Table 2.1
Experiment 1: OBS method with Bk is positive definite and ‖su‖2 ≤ ∆k.

n opt 1 (abs) opt 1 (rel) opt 2 σ∗ Time

1.0e+03 3.24e-15 1.03e-16 0.00e+00 0.00e+00 2.12e-02

1.0e+04 1.21e-14 1.21e-16 0.00e+00 0.00e+00 2.76e-02

1.0e+05 4.61e-14 1.46e-16 0.00e+00 0.00e+00 5.46e-02

1.0e+06 1.08e-13 1.08e-16 0.00e+00 0.00e+00 5.34e-01

1.0e+07 5.31e-13 1.68e-16 0.00e+00 0.00e+00 5.34e+00

Table 2.2
Experiment 1: LSTRS method with Bk is positive definite and ‖su‖2 ≤ ∆k.

n opt 1 (abs) opt 1 (rel) opt 2 σ∗ Time

1.0e+03 2.11e-05 6.70e-07 0.00e+00 0.00e+00 4.72e-01

1.0e+04 8.27e-07 8.28e-09 0.00e+00 0.00e+00 4.98e-01

1.0e+05 2.64e-07 8.37e-10 0.00e+00 0.00e+00 9.15e-01

1.0e+06 3.54e-09 3.53e-12 0.00e+00 0.00e+00 7.08e+00

1.0e+07 2.79e-09 8.81e-13 0.00e+00 0.00e+00 6.66e+01

Table 2.3
Experiment 2: OBS method with Bk is positive definite and ‖su‖2 > ∆k.

n opt 1 (abs) opt 1 (rel) opt 2 σ∗ Time

1.0e+03 3.44e-15 1.06e-16 1.75e-09 4.82e+01 2.83e-02

1.0e+04 1.35e-14 1.35e-16 5.83e-13 1.99e+01 2.70e-02

1.0e+05 3.34e-14 1.06e-16 6.15e-13 1.57e+01 6.39e-02

1.0e+06 9.58e-14 9.58e-17 1.30e-11 7.06e+01 5.38e-01

1.0e+07 4.49e-13 1.42e-16 5.39e-06 1.08e+00 5.37e+00

Table 2.4
Experiment 2: LSTRS method with Bk is positive definite and ‖su‖2 > ∆k.

n opt 1 (abs) opt 1 (rel) opt 2 σ∗ Time

1.0e+03 1.32e-14 4.05e-16 6.25e-04 4.82e+01 4.44e-01

1.0e+04 1.20e-13 1.20e-15 1.20e-03 1.99e+01 4.80e-01

1.0e+05 5.45e-11 1.73e-13 4.90e-04 1.57e+01 7.30e-01

1.0e+06 4.68e-10 4.68e-13 1.35e-06 7.06e+01 4.56e+00

1.0e+07 4.15e-05 1.31e-08 4.47e-05 1.08e+00 4.21e+01

Tables 2.3 and 2.4 show the results of Experiment 2. In this case, the unconstrained

minimizer is not inside the trust region, making the value of σ∗ strictly positive. As in

the first experiment, the OBS method appears to obtain solutions to higher accuracy

(columns 1, 2, and 3) and in less time (column 4) than the LSTRS method. Finally, it is

worth noting that as n increases, the accuracy of the solutions obtained by the LSTRS

method appears to degrade.

Tables 2.5 and 2.6 display the results of Experiment 3(a). This experiment is the

first of two in which Bk is highly ill-conditioned. In this experiment, the LSTRS method
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Table 2.5
Experiment 3(a): OBS method with Bk is positive semidefinite and singular with ‖B†gk‖2 > ∆k.

n opt 1 (abs) opt 1 (rel) opt 2 σ∗ Time

1.0e+03 2.80e-14 8.89e-16 6.25e-10 3.38e-01 2.70e-02

1.0e+04 1.17e-13 1.16e-15 1.18e-08 1.03e-01 3.36e-02

1.0e+05 3.48e-12 1.10e-14 2.16e-07 8.75e-03 6.43e-02

1.0e+06 1.44e-11 1.44e-14 1.48e-09 3.62e-03 5.44e-01

1.0e+07 5.52e-10 1.74e-13 8.96e-09 2.88e-03 5.39e+00

Table 2.6
Experiment 3(a): LSTRS method with Bk is positive semidefinite and singular with ‖B†kgk‖2 >
∆k.

n opt 1 (abs) opt 1 (rel) opt 2 σ∗ Time

1.0e+03 9.75e-03 3.10e-04 1.51e-16 3.41e-01 4.78e-01

1.0e+04 7.93e-02 7.91e-04 2.65e-15 1.07e-01 5.69e-01

1.0e+05 1.85e-01 5.84e-04 8.16e-16 9.57e-03 1.56e+00

1.0e+06 1.29e-01 1.29e-04 6.04e-16 1.70e-03 1.28e+01

1.0e+07 2.24e+03 7.09e-01 1.05e-10 1.30e-06 6.39e+01

appears unable to obtain solutions to high absolute accuracy (see column 2 in Table

6). Moreover, the time required by the LSTRS to obtain solutions is, in some cases,

significantly more than the time required by the OBS method. In contrast, the OBS

method is able to obtain high accuracy solutions. Notice that the optimal values σ∗

found by both methods appear to differ. Global solutions to the subproblems solved in

Experiment 3(a) lie on the boundary of the trust region. Because LSTRS was able to

satisfy the second optimality condition to high accuracy but not the first, this suggests

LSTRS’s solution s∗ lies on the boundary but there is some error in this solution. As n

increases, the solution quality of the LSTRS method appears to decline with significant

error in the case of n = 107. In this experiment, the OBS method appears to find

solutions to high accuracy in comparable time to other experiments; in contrast, the

LSTRS method appears to have difficulty finding global solutions.

Table 2.7
Experiment 3(b): OBS method with Bk is positive semidefinite and singular with ‖B†kgk‖2 ≤ ∆k.

n opt 1 (abs) opt 1 (rel) opt 2 σ∗ Time

1.0e+03 4.10e-15 1.34e-16 9.05e-10 4.85e+01 3.01e-02

1.0e+04 1.01e-14 1.02e-16 1.34e-11 6.98e+00 4.36e-02

1.0e+05 3.03e-14 9.55e-17 7.99e-14 2.25e+01 6.70e-02

1.0e+06 1.39e-13 1.39e-16 4.18e-12 3.42e+00 5.41e-01

1.0e+07 3.46e-13 1.09e-16 1.28e-11 1.08e+00 5.37e+00

The results for Experiment 3(b) are shown in Tables 2.7 and 2.8. This is the sec-

ond experiment involving ill-conditioned matrices. As with Experiment 3(a), the OBS

method is able to obtain high-accuracy solutions in generally less time than the LSTRS
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Table 2.8
Experiment 3(b): LSTRS method with Bk is positive semidefinite and singular with ‖B†kgk‖2 ≤
∆k.

n opt 1 (abs) opt 1 (rel) opt 2 σ∗ Time

1.0e+03 9.40e-15 2.97e-16 8.19e-04 4.85e+01 4.42e-01

1.0e+04 2.06e-12 2.07e-14 6.59e-04 6.98e+00 4.79e-01

1.0e+05 1.69e-11 5.34e-14 4.27e-05 2.25e+01 7.43e-01

1.0e+06 6.27e-08 6.28e-11 6.19e-05 3.42e+00 4.60e+00

1.0e+07 4.28e-05 1.35e-08 2.59e-05 1.08e+00 6.29e+01

method. The accuracy obtained by the LSTRS method appears to degrade as the size

of the problem increases. In this experiment, the global solution always lies on the

boundary, but the larger residuals associated the second optimality condition in Table

8 indicate that the computed solutions by LSTRS do not lie on the boundary.

Table 2.9
Experiment 4(a): OBS method with Bk is indefinite with φ̄(−λmin) < 0. The vector gk is
randomly generated.

n opt 1 (abs) opt 1 (rel) opt 2 σ∗ Time

1.0e+03 2.83e-15 9.04e-17 3.57e-12 1.89e+02 3.05e-02

1.0e+04 1.27e-14 1.27e-16 1.53e-09 1.18e+02 3.99e-02

1.0e+05 3.42e-14 1.08e-16 9.15e-13 3.92e+02 6.40e-02

1.0e+06 1.19e-13 1.20e-16 4.79e-12 5.39e+03 5.43e-01

1.0e+07 3.46e-13 1.09e-16 8.18e-11 1.94e+04 5.35e+00

Table 2.10
Experiment 4(a): LSTRS method with Bk is indefinite with φ̄(−λmin) < 0. The vector gk is
randomly generated.

n opt 1 (abs) opt 1 (rel) opt 2 σ∗ Time

1.0e+03 4.92e-14 1.57e-15 5.40e-04 1.89e+02 4.40e-01

1.0e+04 2.82e-14 2.79e-16 1.03e-03 1.18e+02 4.80e-01

1.0e+05 2.11e-13 6.69e-16 2.68e-06 3.92e+02 7.24e-01

1.0e+06 2.93e-11 2.94e-14 1.38e-07 5.39e+03 4.49e+00

1.0e+07 1.81e-10 5.74e-14 3.19e-10 1.94e+04 4.12e+01

The results for Experiment 4(a) are displayed in Tables 2.9 and 2.10. Both methods

found solutions that satisfied the first optimality conditions to high accuracy. The

overall solution quality from the OBS method appears better in the sense that the

residuals for both optimality conditions in Table 2.9 are smaller than the residuals for

both optimality conditions in Table 2.10. Finally, the OBS method took less time to

solve the subproblem than the LSTRS method.

The results of Experiment 4(b) are in Tables 2.11 and 2.12. Both methods solved

the subproblem to high accuracy as measured by the first optimality condition; however,

the OBS method solved the subproblem to significantly better accuracy as measured by
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Table 2.11
Experiment 4(b): OBS method with Bk is indefinite with φ̄(−λmin) < 0. The vector gk lies in
the orthogonal complement of P‖1.

n opt 1 (abs) opt 1 (rel) opt 2 σ∗ Time

1.0e+03 3.42e-15 1.07e-16 1.17e-09 1.31e+01 2.91e-02

1.0e+04 1.38e-14 1.38e-16 1.50e-14 2.81e+00 3.16e-02

1.0e+05 3.17e-14 1.00e-16 3.55e-13 1.82e+01 6.66e-02

1.0e+06 1.30e-13 1.30e-16 1.76e-12 4.76e+00 5.46e-01

1.0e+07 3.14e-13 9.94e-17 4.36e-11 7.58e+01 5.36e+00

Table 2.12
Experiment 4(b): LSTRS method with Bk is indefinite with φ̄(−λmin) < 0. The vector gk lies
in the orthogonal complement of P‖1.

n opt 1 (abs) opt 1 (rel) opt 2 σ∗ Time

1.0e+03 1.16e-14 3.64e-16 1.24e-03 1.31e+01 4.42e-01

1.0e+04 2.48e-12 2.49e-14 1.02e-04 2.81e+00 4.70e-01

1.0e+05 1.50e-10 4.75e-13 2.82e-04 1.82e+01 7.30e-01

1.0e+06 1.65e-08 1.65e-11 9.70e-05 4.76e+00 4.65e+00

1.0e+07 2.08e-07 6.58e-11 1.06e-05 7.58e+01 4.21e+01

the second optimality condition than the LSTRS method. All residuals associated with

the first and second optimality condition are less for the solution obtained by the OBS

method. Moreover, the time required to find solutions was less for the OBS method.

Table 2.13
Experiment 5(a): The OBS method in the hard case (Bk is indefinite) and λmin = λ1 = λ̂1 +
γk−1 < 0.

n opt 1 (abs) opt 1 (rel) opt 2 σ∗ Time

1.0e+03 1.29e-14 4.34e-16 1.93e-16 4.35e-01 3.38e-02

1.0e+04 5.87e-14 5.86e-16 2.59e-14 6.08e-01 2.73e-02

1.0e+05 2.34e-12 7.43e-15 5.79e-14 8.15e+00 8.08e-02

1.0e+06 1.33e-11 1.33e-14 1.19e-12 3.97e+00 6.72e-01

1.0e+07 1.67e-10 5.28e-14 4.43e-12 5.27e-01 6.71e+00

Table 2.14
Experiment 5(a): The LSTRS method in the hard case (Bk is indefinite) and λmin = λ1 =

λ̂1 + γk−1 < 0.

n opt 1 (abs) opt 1 (rel) opt 2 σ∗ Time

1.0e+03 2.10e-05 7.07e-07 1.16e-15 4.35e-01 4.70e-01

1.0e+04 3.88e+00 3.87e-02 1.50e-03 6.08e-01 4.71e-01

1.0e+05 1.27e+02 4.01e-01 5.72e-04 8.15e+00 7.65e-01

1.0e+06 2.04e+02 2.04e-01 1.45e-04 3.97e+00 4.59e+00

1.0e+07 1.64e+03 5.17e-01 2.30e-05 5.27e-01 4.23e+01
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In the hard case with λmin being a nontrivial eigenvalue, the OBS method obtains

global solutions to the subproblems; however, the LSTRS method had difficulty finding

high-accuracy solutions for all problem sizes. In particular, as n increases, the solution

quality of the LSTRS method appears to decline with significant error in the case of

n = 107. In all cases, the time required by the OBS method to find a solution was less

than that of the time required by the LSTRS method.

Table 2.15
Experiment 5(b): The OBS method in the hard case (Bk is indefinite) and λmin = γk−1 < 0.

n opt 1 (abs) opt 1 (rel) opt 2 σ∗ Time

1.0e+03 3.52e-15 1.11e-16 3.53e-09 6.35e+01 2.93e-02

1.0e+04 9.50e-15 9.48e-17 1.16e-14 2.10e+02 3.82e-02

1.0e+05 3.01e-14 9.50e-17 4.49e-13 4.49e+02 6.71e-02

1.0e+06 9.48e-14 9.47e-17 6.86e-12 1.34e+04 5.32e-01

1.0e+07 3.40e-13 1.07e-16 2.97e-12 8.91e+03 5.36e+00

Table 2.16
Experiment 5(b): The LSTRS method in the hard case (Bk is indefinite) and λmin = γk−1 < 0.

n opt 1 (abs) opt 1 (rel) opt 2 σ∗ Time

1.0e+03 2.24e-14 7.12e-16 7.36e-04 6.35e+01 4.41e-01

1.0e+04 6.35e-14 6.33e-16 1.92e-06 2.10e+02 5.02e-01

1.0e+05 2.26e-13 7.14e-16 5.09e-08 4.49e+02 7.49e-01

1.0e+06 6.61e-12 6.61e-15 4.76e-08 1.34e+04 4.32e+00

1.0e+07 8.77e-11 2.77e-14 1.05e-08 8.91e+03 4.09e+01

The results of Experiment 5(b) are in Tables 2.15 and 2.16. Unlike in Experiment

5(a), the LSTRS method was able to find solutions to high accuracy. In all cases, the

OBS method was able to find solutions with higher accuracy than the LSTRS method

and in less time.
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Figure 2.3 Semi-log plots of the computational times (in seconds). Each experiment was run
five times; computational time for the LSTRS and OBS method are shown for each run. In all
cases, the OBS method outperforms LSTRS in terms of computational time.

2.4.5 SUMMARY

In this section we presented the OBS method, which solves trust-region subproblems

of the form (2.4) where Bk is a large L-SR1 matrix. The OBS method uses two main
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strategies. In one strategy, σ∗ is computed from Newton’s method and initialized at

a point where Newton’s method is guaranteed to converge monotonically to σ∗. With

σ∗ in hand, s∗ is computed directly by formula. For the other strategy, we propose a

method that relies on an orthonormal basis to directly compute s∗. (In this case, σ∗ can

be determined from the spectral decomposition of Bk.) Numerical experiments suggest

that the OBS method is able to solve large L-SR1 trust-region subproblems to high

accuracy. Moreover, the method appears to be more robust than the LSTRS method,

which does not exploit the specific structure of Bk. In particular, the proposed OBS

method achieves high accuracy in less time in all of the experiments and in all measures

of optimality when compared to the LSTRS method. Future research will consider the

best implementation of the OBS method in a trust-region method (see, for example,

[BKS96]), including initialization of γk−1 and rules for updating the matrices Sk and

Yk containing the quasi-Newton pairs.

2.5 THE SC-SR1 METHOD

2.5.1 MOTIVATION

In this section we propose a method that is very similar to the method from the previous

section, except for one major difference. Instead of `2-norm trust-region subproblems,

we analyze subproblems defined by shape-changing norms, which were originally de-

scribed in [BY02]. Shape-changing norms are norms that depend on Bk; thus, in the

quasi-Newton setting where the quasi-Newton matrix Bk is updated each iteration,

the shape of the trust region changes each iteration. One of the earliest references to

shape-changing norms is found in [Gol80] where a norm is implicitly defined by the

product of a permutation matrix and a unit lower triangular matrix that arise from a

symmetric indefinite factorization of Bk. Perhaps the most widely-used shape-changing

norm is the so-called “elliptic norm” given by ‖x‖A 4= xTAx, where A is a positive-

definite matrix (see, e.g., [CGT00]). A well-known use of this norm is found in the Stei-

haug method [Ste83], and, more generally, truncated preconditioned conjugate-gradients

(CG) [CGT00]; these methods reformulate a two-norm trust-region subproblem using

an elliptic norm to maintain the property that the iterates from preconditioned CG are

increasing in norm.

The shape-changing norms proposed in [BY02] have the advantage of breaking the

trust-region subproblem into two separate subproblems. Using one of the proposed

shape-changing norms, the solution of the subproblem then has a closed-form expression.

In the other proposed norm, one of the subproblems has a closed-form solution while

the other is easily solvable. The recently-published LMTR algorithm [BGYZ16] solves

trust-region subproblems defined using these shape-changing norms when Bk in (2.1) is

produced using L-BFGS updates. In this section, we propose solving the shape-changing
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trust-region subproblem where Bk is obtained from L-SR1 updates. As in the previous

section, we compute the subproblem solution on a case-by-case basis. In particular, we

analyze the situations when Bk is postive definite, when Bk is singular, or when Bk

is indefinite. What is different from the previous section, is that we apply the shape-

changing norms instead of the `2-norm, when the trust-region subproblem solution lies

at the boundary.

2.5.2 PROPOSED METHOD

The proposed method is able to solve the L-SR1 trust-region subproblem to high accu-

racy, even when Bk is indefinite. The method makes use of the eigenvalues of Bk and the

factors of P‖. To describe the method, we first transform the trust-region subproblem

(2.1) so that the quadratic objective function becomes separable. Then, we describe

the shape-changing norms proposed in [BY02, BGYZ16] that decouple the separable

problem into two minimization problems, one of which has a closed-form solution while

the other can be solved very efficiently. Finally, we show how these solutions can be

used to construct a solution to the original trust-region subproblem.

2.5.3 TRANSFORMING THE TRUST-REGION SUBPROBLEM

Let Bk = PΛPT be the eigendecomposition of Bk described in Section 1.4.3. Letting

v = PT s and gP = PTgk, the objective function Q(s) in (2.1) can be written as a

function of v:

Q (s) = gTk s +
1

2
sTBks = gTPv +

1

2
vTΛv ≡ q (v) .

With P =
[

P‖ P⊥
]
, we partition v and gP as follows:

v = PT s =

[
PT
‖ s

PT
⊥s

]
=

[
v‖

v⊥

]
and gP =

[
PT
‖ gk

PT
⊥gk

]
=

[
g‖

g⊥

]
,

where v‖,g‖ ∈ Rl and v⊥,g⊥ ∈ Rn−l. Then,

q (v) =
[
gT‖ gT⊥

] [v‖

v⊥

]
+

1

2

[
vT‖ vT⊥

] [Λ1

γk−1In−l

][
v‖

v⊥

]
= gT‖ v‖ + gT⊥v⊥ +

1

2

(
vT‖ Λ1v‖ + γk−1 ‖v⊥‖22

)
= q‖

(
v‖
)

+ q⊥ (v⊥) , (2.16)

where

q‖
(
v‖
)
≡ gT‖ v‖ +

1

2
vT‖ Λ1v‖ and q⊥ (v⊥) ≡ gT⊥v⊥ +

γk−1

2
‖v⊥‖22 .
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Thus, the trust-region subproblem (2.1) can be expressed as

minimize
‖Pv‖≤∆k

q (v) = q‖
(
v‖
)

+ q⊥ (v⊥) . (2.17)

Note that the function q(v) is now separable in v‖ and v⊥. To completely decouple

(2.17) into two minimization problems, we use a shape-changing norm so that the norm

constraint ‖Pv‖ ≤ ∆k decouples into separate constraints, one involving v‖ and the

other involving v⊥.

2.5.4 SHAPE-CHANGING NORMS

Consider the following shape-changing norms proposed in [BY02, BGYZ16]:

‖s‖P,2 4= max
(
‖PT
‖ s‖2, ‖PT

⊥s‖2
)

= max
(
‖v‖‖2, ‖v⊥‖2

)
, (2.18)

‖s‖P,∞ 4
= max

(
‖PT
‖ s‖∞, ‖PT

⊥s‖2
)

= max
(
‖v‖‖∞, ‖v⊥‖2

)
. (2.19)

We refer to them as the (P, 2) and the (P,∞) norms, respectively. Since s = Pv, the

trust-region constraint in (2.17) can be expressed in these norms as

‖Pv‖P,2 ≤ ∆k if and only if ‖v‖‖2 ≤ ∆k and ‖v⊥‖2 ≤ ∆k,

‖Pv‖P,∞ ≤ ∆k if and only if ‖v‖‖∞ ≤ ∆k and ‖v⊥‖2 ≤ ∆k.

Thus, from (2.17), the trust-region subproblem is given for the (P, 2) norm by

minimize
‖Pv‖P,2≤∆k

q (v) = minimize
‖v‖‖2≤∆k

q‖
(
v‖
)

+ minimize
‖v⊥‖2≤∆k

q⊥ (v⊥) , (2.20)

and using the (P,∞) norm it is given by

minimize
‖Pv‖P,∞≤∆k

q (v) = minimize
‖v‖‖∞≤∆k

q‖
(
v‖
)

+ minimize
‖v⊥‖2≤∆k

q⊥ (v⊥) . (2.21)

As shown in [BGYZ16], these norms are equivalent to the two-norm, i.e.,

1√
2
‖s‖2 ≤ ‖s‖P,2 ≤ ‖s‖2

1√
l
‖s‖2 ≤ ‖s‖P,∞ ≤ ‖s‖2.

Note that the latter equivalence factor depends on the number of stored quasi-Newton

pairs l and not on the number of variables (n).

Notice that the shape-changing norms do not place equal value on the two subspaces

since the region defined by the subspaces is of different size and shape in each of them.

However, because of norm equivalence, the shape-changing region insignificantly differs
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from the region defined by the two-norm, the most commonly-used choice of norm.

We now show how to solve the decoupled subproblems.

2.5.5 SOLVING FOR THE OPTIMAL v∗⊥

The subproblem

minimize
‖v⊥‖2≤∆k

q⊥ (v⊥) ≡ gT⊥v⊥ +
γk−1

2
‖v⊥‖22 (2.22)

appears in both (2.20) and (2.21); its optimal solution can be computed by formula. For

the quadratic subproblem (2.22) the solution v∗⊥ must satisfy the following optimality

conditions adapted from [Gay81, MS83, Sor82] associated with (2.22): For some σ∗⊥ ∈
R+,

(γk−1 + σ∗⊥) v∗⊥ = −g⊥, (2.23a)

σ∗⊥ (‖v∗⊥‖2 −∆k) = 0, (2.23b)

‖v∗⊥‖2 ≤ ∆k, (2.23c)

γk−1 + σ∗⊥ ≥ 0. (2.23d)

Note that the optimality conditions are satisfied by (v∗⊥, σ
∗
⊥) given by

v∗⊥ =


− 1
γk−1

g⊥ if γk−1 > 0 and ‖g⊥‖2 ≤ ∆k|γk−1|,

∆ku if γk−1 ≤ 0 and ‖g⊥‖2 = 0,

− ∆k
‖g⊥‖2 g⊥ otherwise,

(2.24)

and

σ∗⊥ =

0 if γk−1 > 0 and ‖g⊥‖2 ≤ ∆k|γk−1|,
‖g⊥‖2

∆k
− γk−1 otherwise,

(2.25)

where u ∈ Rn−l is any unit vector with respect to the two-norm.

2.5.6 SOLVING FOR THE OPTIMAL v∗‖

In this subsection, we detail how to solve for the optimal v∗‖ when either the (P,∞)-norm

or the (P, 2)-norm is used to define the trust-region subproblem.

(P,∞)-norm solution. If the shape-changing (P,∞)-norm is used in (2.17), then the

subproblem in v‖ is

minimize
‖v‖‖∞≤∆k

q‖
(
v‖
)

= gT‖ v‖ +
1

2
vT‖ Λ1v‖. (2.26)

The solution to this problem is computed by separately minimizing l scalar quadratic
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problems of the form

minimize
|[v‖]i|≤∆k

q‖,i([v‖]i) =
[
g‖
]
i

[
v‖
]
i
+
λi
2

([
v‖
]
i

)2
, 1 ≤ i ≤ l. (2.27)

The minimizer depends on the convexity of q‖,i, i.e., the sign of λi. The solution to

(2.27) is given as follows:

[v∗||]i =



− [g||]i
λi

if

∣∣∣∣ [g||]iλi

∣∣∣∣ ≤ ∆k and λi > 0,

c if
[
g‖
]
i

= 0, λi = 0,

−sgn(
[
g‖
]
i
)∆k if

[
g‖
]
i
6= 0, λi = 0,

±∆k if
[
g‖
]
i

= 0, λi < 0,

− ∆k

|[g||]i|
[
g||
]
i

otherwise,

(2.28)

where c is any real number in [−∆k,∆k] and “sgn” denotes the signum function (see [BGYZ16]

for details).

(P, 2)-norm solution: If the shape-changing (P, 2)-norm is used in (2.17), then the

subproblem in v‖ is

minimize
‖v‖‖2≤∆k

q‖
(
v‖
)

= gT‖ v‖ +
1

2
vT‖ Λ1v‖. (2.29)

The solution v∗‖ must satisfy the following optimality conditions [Gay81, MS83, Sor82]

associated with (2.29): For some σ∗‖ ∈ R+,

(Λ1 + σ∗‖I)v∗|| = −g||, (2.30a)

σ∗‖

(
‖v∗||‖2 −∆k

)
= 0, (2.30b)

‖v∗||‖2 ≤ ∆k, (2.30c)

λi + σ∗‖ ≥ 0 for 1 ≤ i ≤ l. (2.30d)

A solution to the optimality conditions (2.30a)-(2.30d) can be computed using the

method found in [BEM17]. For completeness, we outline the method here; this method

depends on the sign of λ1. Throughout these cases, we make use of the expression of

v‖ as a function of σ‖. That is, from the first optimality condition (2.30a), we write

v‖
(
σ‖
)

= −
(
Λ1 + σ‖I

)−1
g‖, (2.31)

with σ‖ 6= −λi for 1 ≤ i ≤ l.
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Case 1 (λ1 > 0). When λ1 > 0, the unconstrained minimizer is computed (setting

σ∗‖ = 0):

v‖ (0) = −Λ−1
1 g‖. (2.32)

If v‖(0) is feasible, i.e., ‖v‖ (0) ‖2 ≤ ∆k then v∗‖ = v‖(0) is the global minimizer;

otherwise, σ∗‖ is the solution to the secular equation (2.36) (discussed below). The

minimizer to the problem (2.29) is then given by

v∗‖ = −
(

Λ1 + σ∗‖I
)−1

g‖. (2.33)

Case 2 (λ1 = 0). If g‖ is in the range of Λ1, i.e., [g‖]i = 0 for 1 ≤ i ≤ r, then set σ‖ = 0

and let

v‖ (0) = −Λ†1g‖,

where † denotes the pseudo-inverse. If ‖v‖(0)‖2 ≤ ∆k, then

v∗‖ = v‖ (0) = −Λ†1g‖

satisfies all optimality conditions (with σ∗‖ = 0). Otherwise, i.e., if either [g‖]i 6= 0 for

some 1 ≤ i ≤ r or ‖Λ†1g‖‖2 > ∆k, then v∗‖ is computed using (2.33), where σ∗‖ solves

the secular equation in (2.36) (discussed below).

Case 3 (λ1 < 0): If g‖ is in the range of Λ1 − λ1I, i.e., [g‖]i = 0 for 1 ≤ i ≤ r, then we

set σ‖ = −λ1 and

v‖ (−λ1) = − (Λ1 − λ1I)† g‖.

If ‖v‖(−λ1)‖2 ≤ ∆k, then the solution is given by

v∗‖ = v‖ (−λ1) + αe1, (2.34)

where α =
√

∆2
k −

∥∥v‖ (−λ1)
∥∥2

2
. (This case is referred to as the “hard case” [CGT00,

MS83].) Note that v∗‖ satisfies the first optimality condition (2.30a):

(Λ1 − λ1I) v∗‖ = (Λ1 − λ1I)
(
v‖ (−λ1) + αe1

)
= −g‖.

The second optimality condition (2.30b) is satisfied by observing that

‖v∗‖‖
2
2 = ‖v‖(−λ1)‖22 + α2 = ∆2

k.

Finally, since σ∗‖ = −λ1 > 0 the other optimality conditions are also satisfied.

On the other hand, if [g‖]i 6= 0 for some 1 ≤ i ≤ r or ‖(Λ1 − λ1I)†g‖‖2 > ∆k, then

v∗‖ is computed using (2.33), where σ∗‖ solves the secular equation (2.36).
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The secular equation. We now summarize how to find a solution of the so-called

secular equation. Note that from (2.31),

‖v‖(σ‖)‖22 =
l∑

i=1

(g‖)
2
i

(λi + σ‖)2
.

If we combine the terms above that correspond to the same eigenvalues and remove the

terms with zero numerators, then for σ‖ 6= −λi, we have

‖v‖(σ‖)‖22 =
L∑
i=1

ā2
i

(λ̄i + σ‖)2
,

where āi 6= 0 for i = 1, . . . , L and λ̄i are distinct eigenvalues of Bk with λ̄1 < λ̄2 < · · · <
λ̄L. Next, we define the function

φ‖
(
σ‖
)

=



1√√√√ L∑
i=1

ā2
i

(λ̄i + σ‖)2

− 1

∆k
if σ‖ 6= −λ̄i where 1 ≤ i ≤ L

− 1

∆k
otherwise.

(2.35)

From the optimality conditions (2.30b) and (2.30d), if σ∗‖ 6= 0, then σ∗‖ solves the secular

equation

φ‖

(
σ∗‖

)
= 0, (2.36)

with σ∗‖ ≥ max{0,−λ1}. Note that φ‖ is monotonically increasing and concave on the

interval [−λ1,∞); thus, with a judicious choice of initial σ0
‖, Newton’s method can be

used to efficiently compute σ∗‖ in (2.36) (see [BEM17]).

The details on the solution method for subproblem (2.29) are as described in Sub-

section 2.4.2 from the previous Section 2.4.

2.5.7 COMPUTING s∗

Given v∗ = [ v∗‖ v∗⊥ ]T , the solution to the trust-region subproblem (2.1) using either

the (P, 2) or the (P,∞) norms is

s∗ = Pv∗ = P‖v
∗
‖ + P⊥v∗⊥. (2.37)

(Recall that using either of the two norms generates the same v∗⊥ but different v∗‖.) It

remains to show how to form s∗ in (2.37). Matrix-vector products involving P‖ are

possible using (1.11), and thus, P‖v
∗
‖ can be computed; however, an explicit formula to

compute products with P⊥ is not available. To compute the second term, P⊥v∗⊥, we
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observe that v∗⊥, as given in (2.24), is a multiple of either g⊥ = PT
⊥gk or a vector u with

unit length, depending on the sign of γk−1 and the magnitude of g⊥. In the latter case,

define u =
PT
⊥ei

‖PT
⊥ei‖2

, where i ∈ {1, 2, . . . , l + 1} is the first index such that
∥∥PT
⊥ei
∥∥

2
6= 0.

(Such an ei exists since rank(P⊥) = n− l.) Thus, we obtain

s∗ = P‖v
∗
‖ +

(
I−P‖P

T
‖

)
w∗, (2.38)

where

w∗ =


− 1
γk−1

gk if γk−1 > 0 and ‖g⊥‖2 ≤ ∆k|γk−1|,
∆k

‖PT
⊥ei‖2

ei if γk−1 ≤ 0 and ‖g⊥‖2 = 0,

− ∆k
‖g⊥‖2 gk otherwise.

(2.39)

The quantities ‖g⊥‖2 and
∥∥PT
⊥ei
∥∥

2
are computed using the orthogonality of P, which

implies ∥∥g‖∥∥2

2
+ ‖g⊥‖22 = ‖gk‖22, and ‖PT

‖ ei‖22 + ‖PT
⊥ei‖22 = 1. (2.40)

Then ‖g⊥‖2 =
√
‖gk‖22 − ‖g‖‖22 and ‖PT

⊥ei‖2 =
√

1− ‖PT
‖ ei‖22. Note that v∗⊥ is never

explicitly computed.

2.5.8 COMPUTATIONAL COMPLEXITY

We estimate the cost of one iteration using the proposed method to solve the trust-

region subproblem defined by shape-changing norms (2.18) and (2.19). We make the

practical assumption that γk−1 > 0.

Theorem 2.4. The dominant computational cost of solving one trust-region subproblem

for the proposed method is 4ln floating point operations.

Proof. Computational savings can be achieved by reusing previously computed ma-

trices and not forming certain matrices explicitly. We begin by highlighting these cases.

First, we do not form Ψk = Yk − γk−1Sk of dimensions Ψk ∈ Rn×l explicitly. Rather,

we compute matrix-vector products with Ψk by computing matrix-vector products with

Yk and Sk. Second, to form ΨT
kΨk, we only store and update the small l × l matrices

YT
k Yk, STkYk, and STk Sk. This update involves 3ln vector inner products. Third, as-

suming we have already obtained the Cholesky factorization of ΨT
kΨk associated with

the previously-stored limited-memory pairs, it is possible to update the Cholesky fac-

torization of the new ΨT
kΨk at a cost of O(l2) [Ben65, GGMS74].

We now consider the dominant cost for a single subproblem solve. The eigendecom-

position RMkR
T = UΛ̂UT costs O(l3) =

(
l2

n

)
(ln), where l � n. To compute s∗ in

(2.38), one needs to compute v∗ from Subsection 2.5.6 and w∗ from (2.39). The dom-

inant cost for computing v∗ and w∗ is forming ΨTgk, which requires 2ln operations.

(In practice, this quantity is computed while solving the previous trust-region subprob-



44 CHAPTER 2 THE TRUST-REGION SUBPROBLEM SOLVERS

lem and can be stored to avoid recomputing when solving the current subproblem–

see [BGYZ16] for details.) Note that given PT
‖ gk, the computation of s∗ in (2.38)

costs 2ln + 2ln = 4ln. Thus, the dominant term in the total number of floating point

operations is 4ln.

We note that the floating point operation count of O(4ln) is the same cost as for

L-BFGS [Noc80].

2.5.9 CHARACTERIZATION OF GLOBAL SOLUTIONS

We provide a result on how to characterize global solutions to the trust-region subprob-

lem defined by shape-changing norm (P, 2)-norm. The following theorem is adapted

from well-known optimality conditions for the two-norm trust-region subproblem [Gay81,

MS83].

Theorem 2.5. A vector s∗ ∈ Rn such that
∥∥∥PT
‖ s∗
∥∥∥

2
≤ ∆k and

∥∥PT
⊥s∗
∥∥

2
≤ ∆k, is

a global solution of (2.1) defined by the (P, 2)-norm if and only if there exists unique

σ∗‖ ≥ 0 and σ∗⊥ ≥ 0 such that

(
Bk + C‖

)
s∗ + gk = 0, σ∗‖

(∥∥∥PT
‖ s∗
∥∥∥

2
−∆k

)
= 0, σ∗⊥

(∥∥PT
⊥s∗
∥∥

2
−∆k

)
= 0,

where C‖ ≡ σ∗⊥I +
(
σ∗‖ − σ

∗
⊥

)
P‖P

T
‖ , the matrix Bk + C‖ is positive semi-definite, and

P = [ P‖ P⊥ ] and Λ1 = diag(λ1, . . . , λk+1) = Λ̂ + γk−1I are as in (1.10).

2.5.10 NUMERICAL EXPERIMENTS

In this subsection, we report numerical experiments with the proposed shape-changing

SR1 (SC-SR1) algorithm implemented in MATLAB to solve limited-memory SR1 trust-

region subproblems. The SC-SR1 algorithm was tested on randomly-generated problems

of size n = 103 to n = 106. We report five experiments when there is no closed-form

solution to the shape-changing trust-region subproblem and one experiment designed to

test the SC-SR1 method in the so-called “hard case”. These six cases only occur using

the (P, 2)-norm trust region. (In the case of the (P,∞) norm, v∗‖ has the closed-form

solution given by (2.28).) The six experiments are outlined as follows:

(E1) Bk is positive definite with ‖v‖(0)‖2 ≥ ∆k.

(E2) Bk is positive semidefinite and singular with [g‖]i 6= 0 for some 1 ≤ i ≤ r.

(E3) Bk is positive semidefinite and singular with [g‖]i = 0 for 1 ≤ i ≤ r and ‖Λ†g‖‖2 >
∆k.

(E4) Bk is indefinite and [g‖]i = 0 for 1 ≤ i ≤ r with ‖(Λ− λ1I)†g‖‖2 > ∆k.
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(E5) Bk is indefinite and [g‖]i 6= 0 for some 1 ≤ i ≤ r .

(E6) Bk is indefinite and [g‖]i = 0 for 1 ≤ i ≤ r with ‖v‖(−λ1)‖2 ≤ ∆k (the “hard

case”).

For these experiments, Sk, Yk, and gk were randomly generated and then altered to

satisfy the requirements described above by each experiment. All randomly-generated

vectors and matrices were formed using the MATLAB randn command, which draws

from the standard normal distribution. The initial SR1 matrix was set to B0 = γk−1I,

where γk−1 = |10 ∗ randn(1)|. Finally, the number of limited-memory updates l was

set to 5, and r was set to 2. In the five cases when there is no closed-form solution,

SC-SR1 uses Newton’s method to find a root of φ‖. We use the same procedure as

in [BEM17, Algorithm 2] to initialize Newton’s method since it guarantees monotonic

and quadratic convergence to σ∗. The Newton iteration was terminated when the ith

iterate satisfied |φ‖(σi)| ≤ eps · |φ‖(σ0)|+√eps, where σ0 denotes the initial iterate for

Newton’s method and eps is machine precision. This stopping criteria is both a relative

and absolute criteria, and it is the only stopping criteria used by SC-SR1.

In order to report on the accuracy of the subproblem solves, we make use of the

optimality conditions found in Theorem 2.5. For each experiment, we report the fol-

lowing: (i) the norm of the residual of the first optimality condition, opt 1 4
= ‖(Bk +

C‖)s
∗+gk‖2, (ii) the combined complementarity condition, opt 2 4= |σ∗‖(‖P

T
‖ s∗‖2−∆k)|

+ |σ∗⊥(‖PT
⊥s∗‖2 −∆k)|, (iii) σ∗‖ + λ1, (iv) σ∗⊥ + γk−1, (v) σ∗‖, (vi) σ∗⊥, (vii) the number

of Newton iterations (“itns”), and (viii) time. The quantities (iii) and (iv) are reported

since the optimality condition that Bk + C‖ is a positive semidefinite matrix is equiva-

lent to γk−1 + σ∗⊥ ≥ 0 and λi + σ∗‖ ≥ 0, for 1 ≤ i ≤ l. Finally, we ran each experiment

five times and report one representative result for each experiment.

n opt 1 opt 2 σ∗‖ + λ1 σ∗⊥ + γk−1 σ∗‖ σ∗⊥ itns time

1.0e+03 3.09e-14 2.74e-12 4.50e+00 4.86e+01 1.14e+00 4.72e+01 2 6.99e-04

1.0e+04 4.64e-14 3.59e-11 5.78e+00 3.07e+02 1.58e+00 3.07e+02 2 1.51e-03

1.0e+05 4.05e-13 9.99e-14 4.09e+00 9.01e+02 1.03e+00 9.00e+02 2 1.39e-02

1.0e+06 8.69e-12 1.35e-09 9.73e+00 4.08e+03 2.43e+00 4.08e+03 1 1.87e-01

Table 2.17
Experiment 1: B is positive definite with ‖v‖(0)‖2 ≥ ∆k.

n opt 1 opt 2 σ∗‖ + λ1 σ∗⊥ + γk−1 σ∗‖ σ∗⊥ itns time

1.0e+03 1.60e-14 8.21e-15 1.01e+02 1.14e+03 1.01e+02 1.13e+03 3 8.62e-04

1.0e+04 1.92e-13 5.10e-09 2.22e+00 1.87e+02 2.22e+00 1.85e+02 3 1.45e-03

1.0e+05 1.83e-12 1.55e-11 5.41e+00 1.04e+03 5.41e+00 1.00e+03 2 1.44e-02

1.0e+06 5.06e-12 3.74e-12 4.75e+02 2.26e+05 4.75e+02 2.26e+05 2 1.88e-01

Table 2.18
Experiment 2: B is positive semidefinite and singular and [g‖]i 6= 0 for some 1 ≤ i ≤ r.
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n opt 1 opt 2 σ∗‖ + λ1 σ∗⊥ + γk−1 σ∗‖ σ∗⊥ itns time

1.0e+03 4.88e-14 1.46e-14 3.87e+00 3.51e+02 3.87e+00 3.45e+02 2 5.82e-04

1.0e+04 1.91e-13 5.05e-11 3.71e+00 6.29e+02 3.71e+00 6.24e+02 1 1.33e-03

1.0e+05 1.94e-12 7.18e-13 5.06e+00 3.24e+03 5.06e+00 3.23e+03 2 1.38e-02

1.0e+06 1.99e-11 1.88e-11 4.88e+00 1.40e+04 4.88e+00 1.40e+04 1 1.90e-01

Table 2.19
Experiment 3: B is positive semidefinite and singular with [g‖]i = 0 for 1 ≤ i ≤ r and ‖Λ†g‖‖2 >
∆k.

n opt 1 opt 2 σ∗‖ + λ1 σ∗⊥ + γk−1 σ∗‖ σ∗⊥ itns time

1.0e+03 2.81e-14 8.28e-15 6.29e+00 1.19e+03 7.13e+00 1.18e+03 2 6.53e-04

1.0e+04 1.25e-13 6.94e-14 3.70e+00 1.67e+03 4.52e+00 1.66e+03 2 1.89e-03

1.0e+05 2.99e-12 2.67e-12 7.77e+00 6.66e+03 8.41e+00 6.65e+03 1 1.40e-02

1.0e+06 1.92e-11 1.73e-11 7.06e+00 1.75e+04 7.19e+00 1.75e+04 1 1.88e-01

Table 2.20
Experiment 4: Bk is indefinite and [g‖]i = 0 for 1 ≤ i ≤ r with ‖(Λ− λ1I)†g‖‖2 > ∆k.

Tables 2.17-2.22 show the results of the experiments. In all tables, the residual of

the two optimality conditions opt 1 and opt 2 are on the order of 1×10−10 or smaller.

Columns 4 and 5 in all the tables show that σ∗‖ + λ1 and σ∗⊥ + γk−1 are nonnegative

with σ‖ ≥ 0 and σ⊥ ≥ 0 (Columns 6 and 7, respectively). Thus, the solutions obtained

by SC-SR1 for these experiments satisfy the optimality conditions to high accuracy.

Also reported in each table are the number of Newton iterations. In the first five

experiments no more than four Newton iterations were required to obtain σ‖ to high

accuracy (Column 8). In the hard case, no Newton iterations are required since σ∗‖ =

−λ1. This is reflected in Table 2.22, where Column 4 shows that σ∗‖ = −λ1 and Column

8 reports no Newton iterations.)

The final column reports the time required by SC-SR1 to solve each subproblem.

Consistent with the best limited-memory methods, the time required to solve each

subproblem appears to grow linearly with n, as predicted in Section 2.5.8.

Additional experiments were run with g‖ → 0. In particular, the experiments were

rerun with g scaled by factors of 10−2, 10−4, 10−6, 10−8, and 10−10. All experiments

resulted in tables similar to those in Tables 2.17-2.22: the optimality conditions were

satisfied to high accuracy, no more than three Newton iterations were required in any

experiment to find σ∗‖, and the CPU times are similar to those found in the tables.

n opt 1 opt 2 σ∗‖ + λ1 σ∗⊥ + γk−1 σ∗‖ σ∗⊥ itns time

1.0e+03 9.49e-15 3.10e-12 4.94e-01 7.49e+01 1.38e+00 6.71e+01 2 6.39e-04

1.0e+04 1.07e-13 1.19e-14 1.22e+01 8.54e+02 1.23e+01 8.43e+02 4 1.63e-03

1.0e+05 7.77e-13 2.27e-13 3.98e-01 3.45e+02 9.45e-01 3.40e+02 3 1.38e-02

1.0e+06 9.75e-12 1.50e-10 3.27e-01 1.23e+03 1.26e+00 1.23e+03 2 1.91e-01

Table 2.21
Experiment 5: Bk is indefinite and [g‖]i 6= 0 for some 1 ≤ i ≤ r.
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n opt 1 opt 2 σ∗‖ + λ1 σ∗⊥ + γk−1 σ∗‖ σ∗⊥ itns time

1.0e+03 1.62e-14 6.37e-15 0.00e+00 9.37e+02 6.08e-01 9.17e+02 0 1.33e-03

1.0e+04 1.00e-13 8.04e-14 0.00e+00 3.66e+02 9.19e-01 3.62e+02 0 1.39e-03

1.0e+05 1.52e-12 4.25e-13 0.00e+00 1.28e+03 5.59e-01 1.28e+03 0 1.54e-02

1.0e+06 1.38e-11 1.07e-11 0.00e+00 9.50e+03 9.93e-01 9.49e+03 0 2.05e-01

Table 2.22
Experiment 6: Bk is indefinite and [g‖]i = 0 for 1 ≤ i ≤ r with ‖v‖(−λ1)‖2 ≤ ∆k (the “hard
case”).

2.6 SUMMARY

In this chapter we proposed two methods to solve large-scale trust-region subproblems

(2.1), when the quadratic objective function, Q(s), is not convex. In particular, we

use the compact representation of the indefinite SR1 quasi-Newton matrix to define the

trust-region subproblems. SR1 matrices have desirable convergence properties, as they

tend to approximate the true hessian matrix comparatively well. However since the

SR1 matrix is not guaranteed to be positive definite, the solution of the trust-region

subproblems requires a case-by-case analysis.

The first method we proposed is the Orthonormal Basis SR1 method (OBS), which

solves the trust-region subproblem when the constraint norm is the `2 norm. This

approach first computes the unconstrained minimizer of the L-SR1 matrix. If the L-SR1

matrix is positive definite and the unconstrained minimizer is feasible, then the OBS

method terminates. Otherwise, it calculates a suitable Lagrange multiplier σ∗ using the

partial eigendecomposition and a one-dimensional Newton’s method (Algorithm 2.2)

and then calculates the global solution s∗ accordingly. We also address the so-called

hard case, where we define the solution by formula.

Secondly, we proposed the SC-SR1 method. In this method the trust-region subprob-

lem is defined by so-called shape-changing norms. Based on the partial eigendecomposi-

tion of L-SR1 matrices, the shape-changing norms decouple the trust-region subproblem

into two simpler problems. With one of the shape-changing norms analytic subproblem

solutions are computed, while with the other norm only a small `2 trust-region subprob-

lem needs to be solved. We also propose formulas for the solution of the hard-case, and

derive the subproblem optimality conditions of the shape-changing norm that does not

compute analytic solutions.



CHAPTER 3

THE DENSE INITIAL MATRIX

TRUST-REGION METHOD

This chapter is based on the manuscript “Dense Initializations for Limited-Memory

Quasi-Newton Methods”, J. J. Brust, O. P. Burdakov, J. B. Erway, and R. F. Marcia,

which is submitted to the SIAM Journal on Optimization.

3.1 MOTIVATION

In this chapter we propose a new dense initialization for quasi-Newton methods to solve

problems of the form

minimize
x∈Rn

f(x),

where f(x) : Rn → R is a general nonconvex function that is at least continuously dif-

ferentiable. The dense initialization matrix is designed to be updated each time a new

quasi-Newton pair is computed (i.e., as often as once an iteration); however, in order to

retain the efficiency of limited-memory quasi-Newton methods, the dense initialization

matrix and the generated sequence of quasi-Newton matrices are not explicitly formed.

This proposed initialization makes use of an eigendecomposition-based separation of Rn

into two orthogonal subspaces – one for which there is approximate curvature infor-

mation and the other for which there is no reliable curvature information. A different

scaling parameter may then be used for each subspace. This initialization has broad

applications for general quasi-Newton trust-region and line search methods. In fact,

this work can be applied to any quasi-Newton method that uses an update with a com-

pact representation, which includes any member of the Broyden class of updates. In this

chapter, we explore its use in one specific application; in particular we consider a limited-

memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) trust-region method where each

subproblem is defined using a shape-changing norm [BGYZ16]. The reason for this

choice is that the dense initialization is naturally well-suited for solving L-BFGS trust-

48
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region subproblems defined by this norm. Numerical results on the CUTEst test set

suggest that the dense initialization outperforms other L-BFGS methods.

The L-BFGS update is the most widely-used quasi-Newton update for large-scale

optimization; it is defined by the recursion formula

Bk+1 = Bk −
1

sTkBksk
Bksks

T
kBk +

1

sTk yk
yky

T
k , (3.1)

where

sk ≡ xk+1 − xk and yk ≡ ∇f(xk+1)−∇f(xk), (3.2)

and B0 ∈ Rn×n is a suitably-chosen initial matrix. This rank-two update to Bk preserves

positive definiteness when sTk yk > 0. For large-scale problems only l � n of the most

recent updates {si,yi} with k− l ≤ i ≤ k−1 are stored in L-BFGS methods. (Typically,

l ∈ [3, 7] (see, e.g., [BNS94]).)

There are several desirable properties for picking the initial matrix B0. First, in

order for the sequence {Bk} generated by (3.1) to be symmetric and positive definite,

it is necessary that B0 is symmetric and positive definite. Second, it is desirable for B0

to be easily invertible so that solving linear systems with any matrix in the sequence is

computable using the so-called “two-loop recursion” [BNS94] or other recursive formulas

for B−1
k (for an overview of other available methods see [EM17]). For these reasons, B0

is often chosen to be a scalar multiple of the identity matrix, i.e.,

B0 = γkIn, with γk > 0. (3.3)

For BFGS matrices, the conventional choice for γk is

γk =
yTk yk

sTk yk
, (3.4)

which can be viewed as a spectral estimate for of ∇2f(xk) [NW06]. (This choice was

originally proposed in [SP78] using a derivation based on optimal conditioning.) It is

worth noting that this choice of γk can also be derived as the minimizer of the scalar

minimization problem

γk = argmin
γ

∥∥B−1
0 yk − sk

∥∥2

2
, (3.5)

where B−1
0 = γ−1In. For numerical studies on this choice of initialization, see, e.g., the

references listed within [BWX96].

In the next sections, we consider a specific dense initialization in lieu of the usual

diagonal initialization. The aforementioned separation of Rn into two complementary

subspaces allows us to use different parameters in order to estimate the curvature of the

underlying Hessian in these subspaces. An alternative view of this initialization is that it



50 CHAPTER 3 THE DENSE INITIAL MATRIX TRUST-REGION METHOD

makes use of two spectral estimates of ∇2f(xk). Finally, the proposed initialization also

allows for efficiently solving and computing products with the resulting quasi-Newton

matrices.

3.2 BACKGROUND

The method described in this chapter solves a sequence of L-BFGS trust-region subprob-

lems defined by a shape-changing norm. Therefore we will first describe the compact

representation of L-BFGS matrices, and then review their partial eigendecomposition.

As in Section 2.5 from Chapter 2, the partial eigendecomposition enables the definition

of the shape-changing norm.

3.2.1 THE L-BFGS COMPACT REPRESENTATION

The special structure of the recursion formula for L-BFGS matrices admits the limited-

memory compact representation from Subsections 1.4.1 and 1.4.2.

Using the l most recently computed pairs {sj} and {yj} given in (3.2), we recall the

following matrices

Sk ≡ [ sk−l sk−l+1 · · · sk−1 ] and Yk ≡ [ yk−l yk−l+1 · · · yk−1 ] .

With Lk taken to be the strictly lower triangular part of the matrix of STkYk, and Dk

defined as the diagonal of STkYk, the compact representation of an L-BFGS matrix is

Bk = B0 + ΨkMkΨ
T
k , (3.6)

where

Ψk
4
= [ B0Sk Yk ] and Mk

4
= −

[
STkB0Sk Lk

LTk −Dk

]−1

(3.7)

(see [BNS94] for details). Note that Ψk ∈ Rn×2l, and Mk ∈ R2l×2l is invertible provided

sTi yi > 0 for all i [BNS94, Theorem 2.3]. An advantage of the compact representation is

that if B0 is appropriately chosen, then computing products with Bk or solving linear

systems with Bk can be done efficiently [EM17].

3.2.2 PARTIAL EIGENDECOMPOSITION OF Bk

The partial eigendecomposition of the compact representation of any quasi-Newton

matrix that is defined by the initial matrix B0 = γk−1In is described in Chapter 1,

Subsection 1.4.3. Therefore, the L-BFGS compact representation from (3.6) can be

efficiently eigendecomposed, using either a partial QR decomposition [BGYZ16]or a

partial singular value decomposition (SVD) [Lu96] (cf. Section 1.4.3). The approach
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that uses the QR decomposition, based on the assumption that Ψk has rank r = 2l (For

the rank-deficient case, see the techniques found in [BGYZ16].), lets

Ψk = QR,

be the so-called “thin” QR factorization of Ψk, where Q ∈ Rn×r and R ∈ Rr×r. Since

the matrix RMkR
T is a small (r × r) matrix with r � n (recall that r = 2l, where l

is typically between 3 and 7), it is computationally feasible to calculate its eigendecom-

position; thus, suppose UΛ̂UT is the eigendecomposition of RMkR
T . Then,

ΨkMkΨ
T
k = QRMkR

TQT = QUΛ̂UTQT = ΨkR
−1UΛ̂UTR−TΨT

k .

Defining

P‖ = ΨkR
−1U, (3.8)

gives that

ΨkMkΨ
T
k = P‖Λ̂PT

‖ . (3.9)

Thus, for B0 = γk−1In, the eigendecomposition of Bk can be written as

Bk = γk−1I + ΨkMkΨ
T
k = PΛPT , (3.10)

where

P ≡
[

P‖ P⊥
]
, Λ 4

=

[
Λ̂ + γk−1Ir

γk−1In−r

]
, (3.11)

and P⊥ ∈ Rn×(n−r) is defined as the orthogonal complement of P‖, i.e., PT
⊥P⊥ = In−r

and PT
‖P⊥ = 0r×(n−r) . Hence, Bk has r eigenvalues given by the diagonal elements of

Λ̂ + γk−1Ir and the remaining eigenvalues are γk−1 with multiplicity n− r.

PRACTICAL COMPUTATIONS

Using the above method yields the eigenvalues of Bk as well as the ability to compute

products with P‖. Formula (3.8) indicates that Q is not required to be explicitly formed

in order to compute products with P‖. For this reason, it is desirable to avoid forming

Q by computing only R via the Cholesky factorization of ΨT
kΨk, i.e., ΨT

kΨk = RTR

(see [BGYZ16]).

At an additional expense, the eigenvectors stored in the columns of P‖ may be

formed and stored. For the shape-changing trust-region method used in this chapter,

it is not required to store P‖. In contrast, the matrix P⊥ is prohibitively expensive

to form. It turns out that for this work it is only necessary to be able to compute
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projections into the subspace P⊥PT
⊥, which can be done using the identity

P⊥PT
⊥ = I−P‖P

T
‖ . (3.12)

3.2.3 A SHAPE-CHANGING L-BFGS TRUST-REGION METHOD

We now consider the trust-region subproblem defined by the shape-changing infinity

norm (2.19) from Section 2.5.4:

minimize
‖s‖P,∞≤∆k

Q(s) = gTk s +
1

2
sTBks, (3.13)

where

‖s‖P,∞
4
= max

(
‖PT
‖ s‖∞, ‖PT

⊥s‖2
)

(3.14)

and P‖ and P⊥ are given in (3.11). Note that the ratio ‖s‖2/‖s‖P,∞ does not depend

on n, but only moderately depends on r. (In particular, 1 ≤ ‖s‖2/‖s‖P,∞ ≤
√
r + 1.)

Because this norm depends on the eigenvectors of Bk, the shape of the trust region

changes each time the quasi-Newton matrix is updated, which is possibly every iteration

of a trust-region method. (See [BGYZ16] for more details and other properties of this

norm.) The motivation for this choice of norm is that the the trust-region subproblem

(3.13) decouples into two separate problems for which closed-form solutions exist.

We now review the closed-form solution to (3.13), as detailed in [BGYZ16]. Let

v = PT s =

[
PT
‖ s

PT
⊥s

]
4
=

[
v‖

v⊥

]
and PTgk =

[
PT
‖ gk

PT
⊥gk

]
4
=

[
g‖

g⊥

]
. (3.15)

With this change of variables, the objective function of (3.13) becomes

Q (Pv) = gTk Pv +
1

2
vT
(
Λ̂ + γk−1In

)
v

= gT‖ v‖ + gT⊥v⊥ +
1

2

(
vT‖

(
Λ̂ + γk−1Ir

)
v‖ + γk−1 ‖v⊥‖22

)
= gT‖ v‖ +

1

2
vT‖

(
Λ̂ + γk−1Ir

)
v‖ + gT⊥v⊥ +

1

2
γk−1 ‖v⊥‖22 .

The trust-region constraint ‖s‖P,∞ ≤ ∆k implies
∥∥v‖∥∥∞ ≤ ∆k and ‖v⊥‖2 ≤ ∆k, which

decouples (3.13) into the following two trust-region subproblems:

minimize
‖v‖‖∞≤∆k

q‖
(
v‖
) 4

= gT‖ v‖ +
1

2
vT‖

(
Λ̂ + γk−1Ir

)
v‖ (3.16)

minimize
‖v⊥‖2≤∆k

q⊥ (v⊥) 4
= gT⊥v⊥ +

1

2
γk−1 ‖v⊥‖22 . (3.17)

Observe that the resulting minimization problems are considerably simpler than the
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original problem since in both cases the Hessian of the new objective functions are di-

agonal matrices. The solutions to these decoupled problems have closed-form analytical

solutions [BGYZ16, BBE+16]. Specifically, letting λi
4
= λ̂i+γk−1, the solution to (3.16)

is given coordinate-wise by

[v∗||]i =



− [g||]i
λi

if

∣∣∣∣ [g||]iλi

∣∣∣∣ ≤ ∆k and λi > 0,

c if
[
g‖
]
i

= 0 and λi = 0,

−sgn(
[
g‖
]
i
)∆k if

[
g‖
]
i
6= 0 and λi = 0,

±∆k if
[
g‖
]
i

= 0 and λi < 0,

− ∆k

|[g||]i|
[
g||
]
i

otherwise,

, (3.18)

where c is any real number in [−∆k,∆k] and ‘sgn’ denotes the signum function. Mean-

while, the minimizer of (3.17) is given by

v∗⊥ = βg⊥, (3.19)

where

β =

− 1
γk−1

if γk−1 > 0 and ‖g⊥‖2 ≤ ∆k|γk−1|,

− ∆k
‖g⊥‖2 otherwise.

(3.20)

Note that the solution to (3.13) is then

s∗ = Pv∗ = P‖v
∗
‖ + P⊥v∗⊥ = P‖v

∗
‖ + βP⊥g⊥ = P‖v

∗
‖ + βP⊥PT

⊥gk, (3.21)

where the latter term is computed using (3.12). Additional simplifications yield the

following expression for s∗:

s∗ = βgk + P‖(v
∗
‖ − βg‖). (3.22)

The overall cost of computing the solution to (3.13) is comparable to that of using the

Euclidean norm (see [BGYZ16]). The main advantage of using the shape-changing norm

(3.14) is that the solution s∗ in (3.22) has a closed-form expression.

3.3 THE PROPOSED METHOD

In this section, we present a new dense initialization and demonstrate how it is naturally

well-suited for trust-region methods defined by the shape-changing infinity norm. Fi-

nally, we present a full trust-region algorithm that uses the dense initialization, consider

its computational cost, and prove global convergence.
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3.3.1 DENSE INITIAL MATRIX B̂0

In this section, we propose a new dense initialization for quasi-Newton methods. Impor-

tantly, in order to retain the efficiency of quasi-Newton methods the dense initialization

matrix and subsequently updated quasi-Newton matrices are never explicitly formed.

This initialization can be used with any quasi-Newton update for which there is a com-

pact representation; however, for simplicity, we continue to refer to the BFGS update

throughout this section. For notational purposes, we use the initial matrix B0 to repre-

sent the multiple of identity matrix, and B̂0 to denote the proposed dense initialization.

Similarly, {Bk} and {B̂k} will be used to denote the sequences of matrices obtained

using the initializations B0 and B̂0, respectively.

Our goal in choosing an alternative initialization is four-fold: (i) to be able to treat

subspaces differently depending on whether curvature information is available or not,

(ii) to preserve properties of symmetry and positive-definiteness, (iii) to be able to

efficiently compute products with the resulting quasi-Newton matrices, and (iv) to be

able to efficiently solve linear systems involving the resulting quasi-Newton matrices.

The initialization proposed in this paper leans upon two different parameter choices

that can be viewed as an estimate of the curvature of ∇2f(xk) in two subspaces: one

spanned by the columns of P‖ and another spanned by the columns of P⊥.

The usual initialization for a BFGS matrix Bk is B0 = γk−1In, where γk−1 > 0.

Note that this initialization is equivalent to

B0 = γk−1PPT = γk−1P‖P
T
‖ + γk−1P⊥PT

⊥.

In contrast, for fixed γk−1, γ
⊥
k−1 ∈ R, consider the following symmetric, and in general,

dense initialization matrix:

B̂0 = γk−1P‖P
T
‖ + γ⊥k−1P⊥PT

⊥, (3.23)

where P‖ and P⊥ are the matrices of eigenvectors defined in Section 3.2.2. We now

derive the eigendecomposition of B̂k.

Theorem 3.1. Let B̂0 be defined as in (3.23). Then B̂k generated using (3.1) has the

eigendecomposition

B̂k =
[

P‖ ,P⊥
] [ Λ̂ + γk−1Ir

γ⊥k−1In−r

] [
P‖ P⊥

]T
, (3.24)

where P‖,P⊥, and Λ̂ are given in (3.8), (3.11), and (3.9), respectively.

Proof. First note that the columns of Sk are in Range(Ψk), where Ψk is defined in (3.7).

From (3.8), Range(Ψk) = Range(P‖); thus, P‖P
T
‖ Sk = Sk and PT

⊥Sk = 0(n−r)×r. This
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gives that

B̂0Sk = γk−1P‖P
T
‖ Sk + γ⊥k−1P⊥PT

⊥Sk = γk−1Sk = B0Sk. (3.25)

Combining the compact representation of B̂k ((3.6) and (3.7)) together with (3.25)

yields

B̂k = B̂0 −
[
B̂0Sk Yk

] [ STk B̂0Sk Lk

LTk −Dk

]−1 [
STk B̂0

YT
k

]

= B̂0 − [B0Sk Yk]

[
STkB0Sk Lk

LTk −Dk

]−1 [
STkB0

YT
k

]
= γk−1P‖P

T
‖ + γ⊥k−1P⊥PT

⊥ + P‖Λ̂PT
‖

= P‖

(
Λ̂ + γk−1Ir

)
PT
‖ + γ⊥k−1P⊥PT

⊥,

which is equivalent to (3.24). �

It can be easily verified that (3.24) holds also for P‖ defined in [BGYZ16] for possibly

rank-deficient Ψk. applies only to the special case when Ψk is full-rank.)

Theorem 3.1 shows that the matrix B̂k that results from using the initialization

(3.23) shares the same eigenvectors as Bk, generated using B0 = γk−1In. Moreover,

the eigenvalues corresponding to the eigenvectors stored in the columns of P‖ are the

same for B̂k and Bk. The only difference in the eigendecompositions of B̂k and Bk is

in the eigenvalues corresponding to the eigenvectors stored in the columns of P⊥. This

is summarized in the following corollary.

Corollary 3.2. Suppose Bk is a BFGS matrix initialized with B0 = γk−1In and B̂k is

a BFGS matrix initialized with (3.23). Then Bk and B̂k have the same eigenvectors;

moreover, these matrices have r eigenvalues in common given by λi
4
= λ̂i + γk−1 where

Λ̂ = diag(λ̂1, . . . , λ̂r).

Proof. The corollary follows immediately by comparing (3.10) with (3.24).

The results of Theorem 3.1 and Corollary 3.2 may seem surprising at first since

every term in the compact representation ((3.6) and (3.7)) depends on the initialization;

moreover, B̂0 is, generally speaking, a dense matrix while B0 is a diagonal matrix.

However, viewed from the perspective of (3.23), the parameter γ⊥k−1 only plays a role in

scaling the subspace spanned by the columns of P⊥.

The initialization B̂0 allows for two separate curvature approximations for the BFGS

matrix: one in the space spanned by columns of P‖ and another in the space spanned by

the columns of P⊥. In the next subsection, we show that this initialization is naturally

well-suited for solving trust-region subproblems defined by the shape-changing infinity

norm.
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3.3.2 THE TRUST-REGION SUBPROBLEM

Here we will show that the use of B̂0 provides the same subproblem separability as B0

does in the case of the shape-changing infinity norm.

For B̂0 given by (3.23), consider the objective function of the trust-region subprob-

lem (3.13) resulting from the change of variables (3.15):

Q(Pv) = gTk Pv +
1

2
vTPT B̂kPv

= gT‖ v‖ +
1

2
vT‖

(
Λ̂ + γk−1Ir

)
v‖ + gT⊥v⊥ +

1

2
γ⊥k−1 ‖v⊥‖

2
2 .

Thus, (3.13) decouples into two subproblems: The corresponding subproblem for q‖(v‖)

remains (3.16) and the subproblem for q⊥(v⊥) becomes

minimize
‖v⊥‖2≤∆k

q⊥ (v⊥) 4= gT⊥v⊥ +
1

2
γ⊥k−1 ‖v⊥‖

2
2 . (3.26)

The solution to (3.26) is now given by

v∗⊥ = β̂g⊥, (3.27)

where

β̂ =

−
1

γ⊥k−1

if γ⊥k−1 > 0 and ‖g⊥‖2 ≤ ∆k|γ⊥k−1|,

− ∆k
‖g⊥‖2 otherwise.

(3.28)

Thus, the solution s∗ can be expressed as

s∗ = β̂gk + P‖(v
∗
‖ − β̂g‖), (3.29)

which can computed as efficiently as the solution in (3.22) for conventional initial ma-

trices since they differ only by the scalar (β̂ in (3.29) versus β in (3.22)).

3.3.3 DETERMINING THE PARAMETER γ⊥k−1

The values γk−1 and γ⊥k−1 can be updated at each iteration. Since we have little in-

formation about the underlying function f in the subspace spanned by the columns

of P⊥, it is reasonable to make conservative choices for γ⊥k−1. Note that in the case

that γ⊥k−1 > 0 and ‖g⊥‖2 ≤ ∆k|γ⊥k−1|, the parameter γ⊥k−1 scales the solution v∗⊥ (see

3.28); large values of γ⊥k−1 will reduce these step lengths in the space spanned by P⊥.

Since the space P⊥ does not explicitly use information produced by past iterations, it

seems desirable to choose γ⊥k−1 to be large. However, the larger that γ⊥k−1 is chosen, the

closer v∗⊥ will be to the zero vector. Also note that if γ⊥k−1 < 0 then the solution to the

subproblem (3.26) will always lie on the boundary, and thus, the actual value of γ⊥k−1
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becomes irrelevant. Moreover, for values γ⊥k−1 < 0, B̂k is not guaranteed to be positive

definite. For these reasons, we suggest sufficiently large and positive values for γ⊥k−1

related to the curvature information gathered in γ1, . . . , γk−1. Specific choices for γ⊥k−1

are presented in the numerical results section.

3.3.4 THE ALGORITHM AND ITS PROPERTIES

In Algorithm 3., we present a basic trust-region method that uses the proposed dense ini-

tialization. In this setting, we consider the computational cost of the proposed method,

and we prove global convergence of the overall trust-region method. Since P may

change every iteration, the corresponding norm ‖ · ‖P,∞ may change each iteration.

Note that initially there are no stored quasi-Newton pairs {sj ,yj}. In this case, we

assume P⊥ = In and P‖ does not exist, i.e., B0 = γ⊥0 In.

ALGORITHM 3.1

Set x0 ∈ Rn, ∆0 > 0, ε > 0, γ⊥0 > 0 , 0 ≤ τ1 < τ2 < 0.5 < τ3 < 1, 0 < η1 < η2 ≤
0.5 < η3 < 1 < η4; Compute g0;

For k = 1, 2, . . .

1. If ‖gk‖ ≤ ε terminate;

2. Compute Ψk,R
−1,Mk,U, Λ̂ and Λ from Section 3.2; Compute s∗ from (3.21),

compute ρk = f(xk+s∗)−f(xk)
Q(s∗) ;

3. If ρk ≥ τ1, then set xk+1 = xk + s∗, update gk+1, sk, yk, γk and γ⊥k ; If ρk < τ1 set

xk+1 = xk ;

4. If ρk ≤ τ2, then set ∆k+1 = min (η1∆k, η2‖sk‖P,∞) go to 1.;

5. If ρk ≥ τ3 and ‖sk‖P,∞ ≥ η3∆k, then set ∆k+1 = η4∆k; Otherwise set ∆k+1 = ∆k;

The only difference between Algorithm 3.1 and the proposed LMTR algorithm in

[BGYZ16] is the initialization matrix. Computationally speaking, the use of a dense

initialization in lieu of a diagonal initialization plays out only in the computation of s∗

by (3.21). However, there is no computational cost difference: The cost of computing

the value for β using (3.28) in Algorithm 3.1 instead of (3.20) in the LMTR algorithm

is the same. Thus, the dominant cost per iteration for both Algorithm 3.1 and the

LMTR algorithm is 4ln operations (see [BGYZ16] for details). Note that this is the

same cost-per-iteration as the line search L-BFGS algorithm [BNS94].

In the next result, we provide the global convergence theory for Algorithm 3.1. This

result is based on the convergence analysis presented in [BGYZ16].
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Theorem 3.3. Let f : Rn → R be twice-continuously differentiable and bounded below

on Rn. Suppose that there exists a scalar c1 > 0 such that

‖∇2f(x)‖ ≤ c1, ∀x ∈ Rn. (3.30)

Furthermore, suppose for B̂0 defined by (3.23), that there exists a positive scalar c2 such

that

γk−1, γ
⊥
k−1 ∈ (0, c2], ∀k ≥ 0, (3.31)

and there exists a scalar c3 ∈ (0, 1) such that the inequality

sTj yj ≥ c3‖sj‖‖yj‖ (3.32)

holds for each quasi-Newton pair {sj ,yj}. Then, if the stopping criteria is suppressed,

the infinite sequence {xk} generated by Algorithm 3.1 satisfies

lim
k→∞

‖∇f(xk)‖ = 0. (3.33)

Proof. From (3.31), we have ‖B̂0‖ ≤ c2, which holds for each k ≥ 0. Then, by

[[BGYZ16], Lemma 3], there exists c4 > 0 such that

‖B̂0‖ ≤ c4.

Then, (3.33) follows from [[BGYZ16], Theorem 1]. �

In the following section, we consider γ⊥k−1 parameterized by two scalars, c and λ:

γ⊥k−1(c, λ) = λcγmax
k−1 + (1− λ)γk−1, (3.34)

where c ≥ 1, λ ∈ [0, 1], and

γmax
k−1

4
= max γi

1≤i≤k−1
,

where γk−1 is taken to be the conventional initialization given by (3.4). (This choice

for γ⊥k−1 will be further discussed in Section 3.4.) We now show that Algorithm 3.1

converges for these choices of γ⊥k−1. Assuming that (3.30) and (3.32) hold, it remains to

show that (3.31) holds for these choices of γ⊥k−1. To see that (3.31) holds, notice that

in this case,

γk−1 =
yTk−1yk−1

sTk−1yk−1
≤

yTk−1yk−1

c3‖sk−1‖‖yk−1‖
≤ ‖yk−1‖
c3‖sk−1‖

.
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Substituting in for the definitions of yk−1 and sk−1 yields that

γk−1 ≤
‖∇f(xk)−∇f(xk−1)‖

c3‖xk − xk−1‖
,

implying that (3.31) holds. Thus, Algorithm 3.1 converges for these choices for γ⊥k−1.

3.3.5 IMPLEMENTATION DETAILS

In this section, we describe how we incorporate the dense initialization within the exist-

ing LMTR algorithm [BGYZ16]. At the beginning of each iteration, the LMTR algorithm

with dense initialization checks if the unconstrained minimizer (also known as the full

quasi-Newton trial step),

s∗u = −B̂−1
k gk (3.35)

lies inside the trust region defined by the two-norm. Because our proposed method uses a

dense initialization, the so-called “two-loop recursion” [6] is not applicable for computing

the unconstrained minimizer s∗u in (3.35). However, products with B̂−1
k can be performed

using the compact representation without involving a partial eigendecomposition, i.e.,

B̂−1
k =

1

γ⊥k−1

In + ΨkM̂kΨ
T
k , (3.36)

where Ψk = [ Sk Yk ],

M̂k =

[
T−Tk (Ek + γ−1

k−1Y
T
k Yk)T

−1
k −γ−1

k−1T
−T
k

−γ−1
k−1T

−1
k 0m

]
+ αk−1(ΨT

kΨk)
−1,

αk−1 =

(
1

γk−1
− 1

γ⊥k−1

)
, Tk is the upper triangular part of the matrix STkYk, and Ek

is its diagonal. Thus, the inequality

‖s∗u‖2 ≤ ∆k (3.37)

is easily verified without explicitly forming s∗u using the identity

‖s∗u‖22 = gTk B̂−2
k gk = γ−2

k−1‖gk‖
2 + 2γ−1

k−1u
T
k M̂kuk + uTk M̂k(Ψ

T
kΨk)M̂kuk. (3.38)

Here, as in the LMTR algorithm, the vector uk = ΨT
k gk is computed at each iteration

when updating the matrix ΨT
kΨk. Thus, the computational cost of ‖s∗u‖2 is low because

the matrices ΨT
kΨk and M̂k are small in size. The norm equivalence for the shape-

changing infinity norm studied in [BGYZ16] guarantees that (3.37) implies that the

inequality ‖s∗u‖P,∞ ≤ ∆k is satisfied; in this case, p∗u is the exact solution of the trust-

region subproblem defined by the shape-changing infinity norm.
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If (3.37) holds, the algorithm computes s∗u for generating the trial point xk + s∗u. It

can be easily seen that the cost of computing s∗u is 4ln operations, i.e. it is the same as

for computing search direction in the line search L-BFGS algorithm [6].

On the other hand, if (3.37) does not hold, then for producing a trial point, the

partial eigendecomposition is computed, and the trust-region subproblem is decoupled

and solved exactly as described in Section 3.3.2.

3.4 NUMERICAL EXPERIMENTS

We perform numerical experiments on 65 large-scale (1000 ≤ n ≤ 10000) CUTEst [GOT03]

test problems, made up of all the test problems in [BGYZ16] plus an additional three

(FMINSURF, PENALTY2, and TESTQUAD [GOT03]) since at least one of the methods

in the experiments detailed below converged on one of these three problems. The same

trust-region method and default parameters as in [BGYZ16, Algorithm 1] were used for

the outer iteration. At most five quasi-Newton pairs {sk,yk} were stored, i.e., l = 5.

The relative stopping criterion was

‖gk‖2 ≤ εmax (1, ‖xk‖2) ,

with ε = 10−10. The initial step, s0, was determined by a backtracking line-search

along the normalized steepest descent direction. The rank of Ψk was estimated by the

number of positive diagonal elements in the diagonal matrix of the LDLT decomposition

(or eigendecomposition of ΨT
kΨk) that are larger than the threshold εr = (10−7)2. (Note

that the columns of Ψk are normalized.)

We provide performance profiles (see [DM02]) for the number of iterations (iter)

where the trust-region step is accepted and the average time (time) for each solver on

the test set of problems. The performance metric, ρ, for the 65 problems is defined by

ρs(τ) =
card {p : πp,s ≤ τ}

65
and πp,s =

tp,s
min tp,i
1≤i≤S

,

where tp,s is the “output” (i.e., time or iterations) of “solver” s on problem p. Here S

denotes the total number of solvers for a given comparison. This metric measures the

proportion of how close a given solver is to the best result. We observe as in [BGYZ16]

that the first runs significantly differ in time from the remaining runs, and thus, we ran

each algorithm ten times on each problem, reporting the average of the final eight runs.

In this section, we present the following six types of experiments involving LMTR:

1. A comparison of results for different values of γ⊥k−1(c, λ).
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2. Two versions of computing full quasi-Newton trial step (see Section 3.5) are com-

pared. One version uses the dense initialization to compute s∗u as described in

Section 3.5; the other uses the conventional initialization, i.e., s∗u is computed as

s∗u = B−1
k gk. In the both cases, the dense initialization is used for computing trial

steps obtained from explicitly solving the trust-region subproblem (Section 3.2)

when the full quasi-Newton trial step is not accepted.

3. A comparison of alternative ways of computing the partial eigendecomposition

(Section 2.2), namely, those based on QR and SVD factorizations.

4. A comparison of LMTR together with a dense initialization and the line search

L-BFGS method with the conventional initialization.

5. A comparison of LMTR with a dense initialization and L-BFGS-TR [BGYZ16],

which computes a scaled quasi-Newton direction that lies inside a trust region.

This method can be viewed as a hybrid line search and trust-region algorithm.

6. A comparison of the dense and conventional initializations.

In the experiments below, the dense initial matrix B̂0 corresponding to γ⊥k−1(c, λ)

given in (3.34) will be denoted by

B̂0(c, λ) ≡ γk−1P‖P
T
‖ + γ⊥k−1(c, λ)P⊥PT

⊥.

Using this notation, the conventional initialization B0(γk−1) can be written as B̂0(1, 0).

Experiment 1. In this experiment, we consider various scalings of a proposed γ⊥k−1

using LMTR. As argued in Section 3.3.3, it is reasonable to choose γ⊥k−1 to be large

and positive; in particular, γ⊥k−1 ≥ γk−1. Thus, we consider the parametrized family

of choices γ⊥k−1
4
= γ⊥k−1(c, λ) given in (3.34). These choices correspond to conservative

strategies for computing steps in the space spanned by P⊥ (see the discussion in Section

3.3.3). Moreover, these can also be viewed as conservative strategies since the trial step

computed using B0 will always be larger in Euclidean norm than the trial step computed

using B̂0 using (3.34). To see this, note that in the parallel subspace the solutions will

be identical using both initializations since the solution v∗‖ does not depend on γ⊥k−1

(see (3.18)); in contrast, in the orthogonal subspace, ‖v∗⊥‖ inversely depends on γ⊥k−1

(see (3.27) and (3.28)).

We report results using different values of c and λ for γ⊥k (c, λ) on two sets of tests.

On the first set of tests, the dense initialization was used for the entire LMTR algoirthm.

However, for the second set of tests, the dense initialization was not used for the compu-

tation of the unconstrained minimizer s∗u; that is, LMTR was run using Bk (initialized

with B0 = γk−1I where γk−1 is given in (3.4)) for the computation of the unconstrained
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Parameters

c λ γ⊥k−1

1 1 γmax
k−1

2 1 2γmax
k−1

1 1
2

1
2γ

max
k−1 + 1

2γk−1

1 1
4

1
4γ

max
k−1 + 3

4γk−1

Table 3.1
Values for γ⊥k−1 used in Experiment 1.

minimizer s∗u = −B−1
k gk. However, if the unconstrained minimizer was not taken to be

the approximate solution of the subproblem, B̂k with the dense initialization was used

for the shape-changing component of the algorithm with γ⊥k−1 defined as in (3.34). The

values of c and λ chosen for Experiment 1 are found in Table 3.4. (See Section 3.3.5 for

details on the LMTR algorithm.)

Figure 3.1 displays the performance profiles using the chosen values of c and λ to

define γ⊥k−1 in the case when the dense initialization was used for both the computation

of the unconstrained minimizer p∗u as well as for the shape-changing component of the

algorithm, which is denoted in the legend of plots in Figure 3.1 by the use of an asterisk

(∗). The results of Figure 3.1 suggest the choice of c = 1 and λ = 1
2 outperform the other

chosen combinations for c and λ. In experiments not reported here, larger values of c

did not appear to improve performance; for c < 1, performance deteriorated. Moreover,

other choices for λ, such as λ = 3
4 , did not improve results beyond the choice of λ = 1

2 .
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Figure 3.1 Performance profiles comparing iter (left) and time (right) for the different values

of γ⊥k−1 given in Table 3.4. In the legend, B̂0(c, λ) denotes the results from using the dense

initialization with the given values for c and λ to define γ⊥k−1. In this experiment, the dense
initialization was used for all aspects of the algorithm.

Figure 3.2 reports the performance profiles for using the chosen values of c and λ

to define γ⊥k−1 in the case when the dense initialization was only used for the shape-

changing component of the LMTR algorithm–denoted in the legend of plots in Figure 3.2
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by the absence of an asterisk (∗). In this test, the combination of c = 1 and λ = 1 as

well as c = 1 and λ = 1
2 appear to slightly outperform the other two choices for γ⊥k in

terms of both then number of iterations and the total computational time. Based on

the results in Figure 3.2, we do not see a reason to prefer either combination c = 1 and

λ = 1 or c = 1 and λ = 1
2 over the other.

Note that for the CUTEst problems, the full quasi-Newton trial step is accepted as

the solution to the subproblem on the overwhelming majority of problems. Thus, if the

scaling γ⊥k−1 is used only when the full trial step is rejected, it has less of an affect on the

overall performance of the algorithm; i.e., the algorithm is less sensitive to the choice

of γ⊥k−1. For this reason, it is not surprising that the performance profiles in Figure 3.2

for the different values of γ⊥k−1 are more indistinguishable than those in Figure 3.1.

Finally, similar to the results in the case when the dense initialization was used for

the entire algorithm (Figure 3.1), other values of c and λ did not significantly improve

the performance provided by c = 1 and λ = 1
2 .
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Figure 3.2 Performance profiles comparing iter (left) and time (right) for the different values

of γ⊥k−1 given in Table 3.4. In the legend, B̂0(c, λ) denotes the results from using the dense

initialization with the given values for c and λ to define γ⊥k−1. In this experiment, the dense
initialization was only used for the shape-changing component of the algorithm.

Experiment 2. This experiment was designed to test whether it is advantageous to

use the dense initialization for all aspects of the LMTR algorithm or just for the shape-

changing component of algorithm. For any given trust-region subproblem, using the

dense initialization for computing the unconstrained minimizer is computationally more

expensive than using a diagonal initialization; however, it is possible that extra compu-

tational time associated with using the dense initialization for all aspects of the LMTR

algorithm may yield a more overall efficient solver. For these tests, we compare the top

performer in the case when the dense initialization is used for all aspects of LMTR, i.e.,

(γ⊥k−1(1, 1
2)), to one of the top performers in the case when the dense initialization is

used only for the shape-changing component of the algorithm, i.e., (γ⊥k−1(1, 1)).
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Figure 3.3 Performance profiles of iter (left) and time (right) for Experiment 2. In the legend,

the asterisk after B̂0(1, 12 )∗ signifies that the dense initialization was used for all aspects of the

LMTR algorithm; without the asterisk, B̂0(1, 1) signifies the test where the dense initialization
is used only for the shape-changing component of the algorithm.

The performance profiles comparing the results of this experiment are presented in

Figure 3.3. These results suggest that using the dense initialization with γ⊥k−1(1, 1
2) for

all aspects of the LMTR algorithm is more efficient than using dense initializations only

for the shape-changing component of the algorithm. In other words, even though using

dense initial matrices for the computation of the unconstrained minimizer imposes an

additional computational burden, it generates steps that expedite the convergence of

the overall trust-region method.

Experiment 3. As noted in Section 3.2.2, a partial SVD may be used in place of a

partial QR decomposition to derive alternative formulas for computing products with P‖.

Specifically, if the SVD of ΨT
kΨk is given by WΣ2WT and the SVD of ΣWTM−1

k WΣ

is given by GΛ̂GT , then P‖ can be written as follows:

P‖ = ΨkWΣ−1G. (3.39)

Alternatively, in [Lu96], P‖ is written as

P‖ = ΨkM
−1
k WΣGΛ̂−1. (3.40)

Note that both of the required SVD computations for this approach involve r×r matrices,

where r ≤ 2l� n.

For this experiment, we consider LMTR with the dense initialization B̂0(1, 1
2)∗ used

for all aspects of the algorithm (i.e., the top performer in Experiment 2). We compare

an implementation of this method using the QR decomposition to compute products

with P‖ to the two SVD-based methods. The results of this experiment given in Figure

3.4 suggest that the QR decomposition outperforms the two SVD decompositions in
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terms of both the number of iterations and time. (Note that the QR factorization was

used for both Experiments 1 and 2.)
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Figure 3.4 Performance profiles of iter (left) and time (right) for Experiment 3 comparing
three formulas for computing products with P‖. In the legend, ”QR” denotes results using (3.8),
”SVD I” denotes results using (3.39), and ”SVD II” denotes results using (3.40). These results
used the dense initialization with γ⊥k−1(1, 12 ).

Experiment 4. In this experiment, we compare the performance of the dense initial-

ization γ⊥k−1(1, 0.5) to that of the line-search L-BFGS algorithm. For this comparison, we

used the publicly-available MATLAB wrapper [Bec15] for the FORTRAN L-BFGS-B code

developed by Nocedal et al. [ZBN97]. The initialization for L-BFGS-B is B0 = γk−1I

where γk−1 is given by (3.4). To make the stopping criterion equivalent to that of

L-BFGS-B, we modified the stopping criterion of our solver to [ZBN97]:

‖gk‖∞ ≤ ε.

The dense initialization was used for all aspects of LMTR.

The performance profiles for this experiment is given in Figure 3.5. On this test set,

the dense initialization outperforms L-BFGS-B in terms of both the number of iterations

and the total computational time.

Experiment 5. In this experiment, we compare LMTR with a dense initialization to

L-BFGS-TR [BGYZ16], which computes an L-BFGS trial step whose length is bounded

by a trust-region radius. This method can be viewed as a hybrid L-BFGS line search

and trust-region algorithm because it uses a standard trust-region framework (as LMTR)

but computes a trial point by minimizing the quadratic model in the trust region along

the L-BFGS direction. In [BGYZ16], it was determined that this algorithm outper-

forms two other versions of L-BFGS that use a Wolfe line search. (For further details,

see [BGYZ16].)

Figure 3.6 displays the performance profiles associated with this experiment on the
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Figure 3.5 Performance profiles of iter (left) and time (right) for Experiment 4 comparing
LMTR with the dense initialization with γ⊥k−1(1, 12 ) to L-BFGS-B.
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Figure 3.6 Performance profiles of iter (left) and time (right) for Experiment 5 comparing
LMTR with the dense initialization with γ⊥k−1(1, 12 ) to L-BFGS-TR.

entire set of test problems. For this experiment, the dense initialization with γ⊥k−1(1, 1
2)

was used in all aspects of the LMTR algorithm. In terms of total number of iterations,

LMTR with the dense initialization outperformed L-BFGS-TR; however, L-BFGS-TR ap-

pears to have outperformed LMTR with the dense initialization in computational time.

Figure 3.6 (left) indicates that the quality of the trial points produced by solving the

trust-region subproblem exactly using LMTR with the dense initialization is generally

better than in the case of the line search applied to the L-BFGS direction. However,

Figure 3.6 (right) shows that LMTR with the dense initialization requires more com-

putational effort than L-BFGS-TR. For the CUTEst set of test problems, L-BFGS-TR

does not need to perform a line search for the majority of iterations; that is, the full

quasi-Newton trial step is accepted in a majority of the iterations. Therefore, we also

compared the two algorithms on a subset of the most difficult test problems–namely,

those for which an active line search is needed to be performed by L-BFGS-TR. To this

end, we select, as in [BGYZ16], those of the CUTEst problems in which the full L-BFGS



67 CHAPTER 3 THE DENSE INITIAL MATRIX TRUST-REGION METHOD

(i.e., the step size of one) was rejected in at least 30% of the iterations. The number

of problems in this subset is 14. The performance profiles associated with this reduced

test set are in Figure 3.7. On this smaller test set, LMTR outperforms L-BFGS-TR both

in terms of total number of iterations and computational time.

Finally, Figures 3.6 and 3.7 suggest that when function and gradient evaluations are

expensive (e.g., simulation-based applications), LMTR together with the dense initial-

ization is expected to be more efficient than L-BFGS-TR since both on both test sets

LMTR with the dense initialization requires fewer overall iterations. Moreover, Fig-

ure 3.7 suggests that on problems where the L-BFGS search direction often does not

provide sufficient decrease of the objective function, LMTR with the dense initialization

is expected to perform better.

1 2 3 4 5 6

τ

0.2

0.4

0.6

0.8

1

ρ
s
(τ

)

B̂0(1,
1
2 )

∗

L-BFGS-TR

1 1.5 2 2.5 3

τ

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ
s
(τ

)

B̂0(1,
1
2 )

∗

L-BFGS-TR

Figure 3.7 Performance profiles of iter (left) and time (right) for Experiment 5 comparing
LMTR with the dense initialization with γ⊥k−1(1, 12 ) to L-BFGS-TR on the subset of 14 problems
for which L-BFGS-TR implements a line search more than 30% of the iterations.

Experiment 6. In this experiment, we compare the results of LMTR using the dense

initialization to that of LMTR using the conventional diagonal initialization B0 = γk−1In

where γk−1 is given by (3.3). The dense initialization selected was chosen to be the top

performer from Experiment 2 (i.e., γ⊥k−1(1, 1
2)), and the QR factorization was used to

compute products with P‖.

From Figure 3.8, the dense initialization with γ⊥k−1(1, 1
2) outperforms the conven-

tional initialization for LMTR in terms of iteration count; however, it is unclear whether

the algorithm benefits from the dense initialization in terms of computational time.

The reason for this is that the dense initialization is being used for all aspects of the

LMTR algorithm; in particular, it is being used to compute the full quasi-Newton step

p∗u (see the discussion in Experiment 1), which is typically accepted most iterations on

the CUTEst test set. Therefore, as in Experiment 5, we compared LMTR with the dense

initialization and the conventional initialization on the subset of 14 problems in which

the unconstrained minimizer is rejected at least 30% of the iterations. The performance
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Figure 3.8 Performance profiles of iter (left) and time (right) for Experiment 6 comparing
LMTR with the dense initialization with γ⊥k−1(1, 12 ) to LMTR with the conventional initialization.
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Figure 3.9 Performance profiles of iter (left) and time (right) for Experiment 6 comparing
LMTR with the dense initialization with γ⊥k−1(1, 12 ) to LMTR with the conventional initialization
on the subset of 14 problems in which the unconstrained minimizer is rejected at 30% of the
iterations.

profiles associated with this reduced set of problems are found in Figure 3.9. The re-

sults from this experiment clearly indicate that on these more difficult problems the

dense initialization outperforms the conventional initialization in both iteration count

and computational time.

3.5 SUMMARY

In this chapter we propose a large-scale quasi-Newton trust-region method, that uses

novel initial matrices to update the quasi-Newton matrix. When the trust-region sub-

problems are defined by shape-changing norm, the computational costs per iteration

with the proposed initial matrices are the same as with conventional multiple-of-identity

initial matrices. However, unlike multiple-of-identity initial matrices, the proposed

dense initial matrices distinguish two subspaces. One of these subspaces corresponds to
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information generated by the quasi-Newton approximation, while in the other subspace

not much is known about the objective function. By deemphasizing the significance of

search directions that lie in the subspace with little information, the proposed initial ma-

trices improve the performance of a benchmark trust-region quasi-Newton algorithm. In

particular, we propose various alternatives for choices of two curvature estimates, which

correspond to the two subspaces of the dense initial matrices. Finally, we develop the

compact representation of quasi-Newton matrices with the proposed initial matrices.

This means that the novel initializations are generally applicable to any optimization

method that uses compact quasi-Newton matrices.



CHAPTER 4

THE MULTIPOINT

SYMMETRIC SECANT

METHOD

4.1 MOTIVATION

In this chapter we develop a large-scale quasi-Newton trust-region method, in which

the quasi-Newton matrix is defined by an indefinite rank-2 update. The formula that

we will analyze was independently developed in [DM77] and in [Bur83]. We will use

the interpretation from [Bur83], in which a collection of secant equations –the so-called

multipoint or multiple secant conditions– motivate the development of a different quasi-

Newton formula. The multiple secant conditions are the generalization of the secant-

condition (1.5) from Chapter 1. Instead of enforcing one equation of the form Bk+1sk =

yk, the multiple secant equations specify the system of conditions

Bk+1 [ sk sk−1 · · · s0 ] = [ yk yk−1 · · · y0 ] . (4.1)

Therefore the quasi-Newton matrix that is based on the equations (4.1) will be denoted

by multipoint symmetric secant matrix (MSSM).

4.2 THE MSSM QUASI-NEWTON MATRIX

In this section we apply the convention from [Bur83], in which the matrices Sk and Yk

are defined as

Sk = [ sk−1 sk−2 · · · s0 ] and Yk = [ yk−1 yk−2 · · · y0 ] .

70
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Moreover, we assume that Sk ∈ Rn×k and Yk ∈ Rn×k are both of full column rank. Until

otherwise noted, suppose that k = n, which means that Sk and Yk are both invertible.

The idea that a quasi-Newton matrix should satisfy multiple-secant-conditions of the

form BkSk = Yk is desirable, but typically not possible. A practical difficulty is that

the multiple-secant-conditions and the requirement of symmetry of the quasi-Newton

matrix are under normal circumstances inconsistent. In fact, the necessary condition for

the existence of a symmetric matrix Bk, which satisfies the multiple-secant-conditions

is that the product STkYk is symmetric [Sch83], i.e.,

STk (BkSk) = STk (Yk) . (4.2)

However, typically STkYk is not symmetric. Therefore an approach was developed in

[Bur83], which proposes a compromise between these opposing conditions. In par-

ticular, a symmetrization transformation is applied to STkYk, in order to guarantee

symmetry. The symmetrization transformation, however, comes at the cost of only ap-

proximately satisfying the multiple-secant-conditions. We now review the approach of

the MSSM matrix.

Let STkYk be decomposed as

STkYk = Lk + Ek + Tk, (4.3)

where Lk is the strictly lower triangular matrix, Ek is the diagonal matrix, and Tk is the

strictly upper triangular matrix of STkYk. The three matrices Lk,Ek and Tk are each

of dimension Rk×k. With this, the symmetrization transformation applied to STkYk is

defined as

sym
(
STkYk

)
= sym (Lk + Ek + Tk) ≡ Lk + Ek + LTk = Γk, (4.4)

where Lk + Ek + LTk = Γk, is used for notation only. The effect of the symmetrization

transformation is that the elements below the main diagonal of STkYk are copied into

the elements above the main diagonal. Based on the symmetrization, the MSS matrix

is determined as the quasi-Newton matrix, Bk, which satisfies the system

STk (BkSk) = sym
(
STkYk

)
= Γk. (4.5)

Subsequently, the unique matrix Bk, is represented from (4.5) as

Bk = S−Tk ΓkS
−1
k . (4.6)
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4.2.1 THE UPDATE FORMULA

In the previous section it was assumed that k = n, which resulted in the formula (4.6)

to compute Bk = Bn. The recursive update formula of the MSSM is obtained by

analyzing the transition from k = n to the next iterate k+ 1 = n+ 1. In particular, let

Sk+1 ∈ Rn×n and Yk+1 ∈ Rn×n be represented as

Sk+1 = [ sk sk−1 · · · s1 ] and Yk+1 = [ yk yk−1 · · · y1 ] .

A matrix factorization is used to express Sk+1 and Yk+1 in terms of Sk,Yk, sk and

yk. In particular, with the permutation matrix P̄ = [ en e1 e2 · · · en−1 ] (here ei

represents the ith column of In), which inserts the last column into the first, and shifts

all other columns one index to the right, then Sk+1 is represented as

Sk+1 = [ sk−1 sk−2 · · · s1 sk ] P̄ =
(
Sk − s0e

T
n + ske

T
n

)
P̄ =

(
Sk + (sk − Sken)eTn

)
P̄.

This expression is a consequence of the observation that the rank-1 matrix (sk−Sken)eTn

only has one non-zero column, i.e.,

(sk − Sken)eTn =

 0n×(n−1) (sk − s0)

 .
In an analogous way, the matrix Yk+1 is obtained as an update of Yk

Yk+1 =
(
Yk + (yk −Yken)eTn

)
P̄.

Since Sk+1 and Yk+1 are represented in terms of rank-1 modifications, their inverses

are analytically computed by the Sherman-Morrison-Woodbury formula. The recursive

update formula of the MSS matrix is subsequently based on substituting Sk+1 and Yk+1

into the right hand side of (4.6), that is

Bk+1 =
((

Sk + (sk − Sken)eTn
)
P̄
)−T

Γk+1

((
Sk + (sk − Sken)eTn

)
P̄
)−1

,

where Γk+1 = sym
(
STk+1Yk+1

)
. We describe the derivation of the recursive MSSM

update formula in the Appendix (see Section A). Here we state that for a vector ck,

which satisfies cTk Sk = 0 and cTk sk 6= 0, the recursive formula of the MSS matrix is

defined by the rank-2 update

Bk+1 = Bk+
1

sTk ck

(
ck(yk −Bksk)

T + (yk −Bksk)c
T
k

)
− 1

(sTk ck)2
((yk−Bksk)

T sk)ckc
T
k .

(4.7)
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The MSSM is closely related to the symmetric rank-1 matrix (SR1). In fact, it can be

interpreted as a generalization of the SR1. Namely, if the vector c̃k = yk−Bksk, satisfies

c̃Tk Sk = 0 and c̃Tk sk 6= 0 then the formula in (4.7) with ck = c̃k reduces to the formula

of the SR1 update Bk+1 = Bk + 1
sTk (yk−Bksk)

(yk − Bksk)(yk − Bksk)
T . Similar to the

SR1 update, the MSS formula also results in indefinite quasi-Newton matrices.

4.2.2 THE MSSM COMPACT REPRESENTATION

The compact representation of the MSS matrix was originally developed in [BMP02],

based on an approach that is different from the ones found in the literature [BNS94,

DEM16]. First, we suppose that k < n, and that the subsequent MSS matrices are

generated by the formula (4.7). Next let the orthogonal complement of Sk take the

representation

S⊥k ≡ Ck =
[

ck
(1) · · · ck

(n−k)
]
∈ Rn×(n−k),

where ck
(1) = ck/‖ck‖2. Since Ck is the orthogonal complement of Sk it satisfies the

equations

STkCk = 0k×(n−k) and CT
kCk = In−k.

Moreover, since sTk ck 6= 0 by the definition of (4.7), then

STk+1ck = [ sk Sk ]T ck =


sTk ck

0
...

0

 = (sTk ck)e1.

Thus, at the previous iteration (k− 1), the equality STk ck−1 = (sTk−1ck−1)e1 held. With

these definitions, the MSS matrices from (4.7) satisfy a set of matrix identities. We

will briefly review the properties of MSS matrices because they are the basis to the

compact representation. Additionally, we will use the properties of the MSS matrices

in order to develop a novel method of solving multipoint symmetric secant trust-region

subproblems. The first matrix identities satisfied by Bk are

STkBkSk = Γk, 0 < k < n.
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This identity is the result of applying STk and Sk to the recursive formula in (4.7), i.e.,

STkBkSk = STkBk−1Sk + e1(yk−1 −Bk−1sk−1)TSk + STk (yk−1 −Bk−1sk−1)eT1

− (yk−1 −Bk−1sk−1)T sk−1e1e
T
1

=


sTk−1yk−1 yTk−1Sk−1

STk−1yk−1

[
STk−1Bk−1Sk−1

]


= Γk.

The third equality is obtained by observing that STk−1yk−1 = Lke1 and that sTk−1yk−1 =

eT1 Eke1. Then by recursively unwinding the block [STk−1Bk−1Sk−1], the process is re-

peated so that STkBkSk = Lk + Ek + LTk = Γk. A second set of equations that define

the MSS matrix are

STkBkCk = YT
k Ck, 0 < k < n.

These equations are obtained by similar recursive arguments as before, i.e. STk and Ck

are applied to the recursive formula in (4.7), so that

STkBkCk = STk

(
Bk−1Ck +

1

sTk−1ck−1
ck−1(yk−1 −Bk−1sk−1)TCk

)
= STkBk−1Ck + e1(yk−1 −Bk−1sk−1)TCk

=

[
yTk−1Ck

STk−1Bk−1Ck

]
= YT

k Ck.

The last equality is the result of an induction on STk−1Bk−1Ck. Finally, applying CT
k

and Ck to the recursive formula in (4.7) and using an induction, then the identity

CT
kBkCk = CT

kB0Ck = γkIn−k is established. Collecting the properties of the MSSM ,

then the multipoint symmetric secant matrix satisfies the system of matrix equations

[ Sk Ck ]T Bk [ Sk Ck ] =

[
Γk YT

k Ck

CT
kYk CT

kB0Ck

]
. (4.8)

The application of the inverse [ Sk Ck ]−T = [ Sk(S
T
k Sk)

−1 Ck ] to the system in

(4.8) is a key step in deriving the MSS compact representation. We describe the details

of the derivation in the Appendix (see Section B). Here we report that the compact
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representation of the MSSM is given by

Bk = B0 + ΨkMkΨ
T
k , (4.9)

where we define (STk Sk)
−1 ≡ Ξk and

Ψk ≡ [ Sk (Yk −B0Sk) ] , Mk ≡

[
Ξk(S

T
kB0Sk − (Tk + Ek + TT

k ))Ξk Ξk

Ξk 0k×k

]
.

(4.10)

We will use the limited-memory version of the MSS matrix, so that Ψk is of dimension

Rn×2l and Mk is of dimension R2l×2l.

4.3 SOLVING THEMSSM TRUST-REGION SUBPROB-

LEM

The MSS matrix, such as the SR1 matrix, is indefinite. Therefore a reasonable approach

is to extend the two methods from Chapter 2, i.e., the OBS method, and the SC-

SR1 method, to the L-MSS matrix. In particular the MSSM method uses a rank-

2 quasi-Newton update formula, instead of the rank-1 formula of the SR1. We will

develop two approaches to solve trust-region subproblems of the form (1.4), where Bk

is the multipoint-symmetric-secant matrix. In the first approach, we use a partial

eigendecomposition of the compact representation of the MSSM. This approach has

the advantage that subproblems defined by the shape-changing norms are solved as in

Chapter 2. Alternatively, if the trust-region subproblems are defined by the `2-norm,

then the properties of the MSS matrix, cf. (4.8), can be used to solve the trust-region

subproblem by only computing one eigenvalue. This second approach may be more

attractive, when computing the partial eigendecomposition is difficult to do. This may

be the case when the number of stored limited memory pairs {sk−i,yk−i}li=1 grows large.

Approach I. In this approach we factor the compact representation of the L-MSSM,

using an implicit spectral decomposition (cf. Subsection 1.4.3), so that

Bk = B0 + ΨkMkΨ
T
k = PΛPT , (4.11)

where the initial matrix, B0, is either a multiple of the identity matrix, or a dense

initialization as proposed in Chapter 3. We will use an initial matrix of the form

B0 = γkI, in this section. By the change of variables v = PT s, the trust-region

subproblem is transformed into a subproblem that is easier to solve, i.e.,

minimize
‖s‖≤∆k

gTk s +
1

2
sTBks = minimize

‖Pv‖≤∆k

gTk (Pv) +
1

2
vTΛv.
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Depending on the choice of norm, then the solutions s∗ to the trust-region subproblems

are either as described in Algorithm 2.2 (cf. Section 2.4.2), when the `2-norm is used, or

as described in Section 2.5.7, when the shape-changing norms are used. This approach

to solve the subproblem is very effective, as long as the implicit spectral decomposition

of Bk can be computed efficiently.

Approach II. An alternative solution method to the `2 L-MSSM trust-region sub-

problem is based on the change of variables

s = [ Sk Ck ] w. (4.12)

Here Sk ∈ Rn×l and Ck ∈ Rn×(n−l) represents the orthogonal complement of Sk, i.e.

Ck = S⊥k . The vector w ∈ Rn is a vector of new variables. We will use the large

orthonormal matrix Ck in the derivation of the solution, however it is not necessary to

explicitly compute this matrix. Moreover, this approach does not compute the partial

eigendecomposition of the L-MSSM. Instead, observe from the properties of the MSS ma-

trix (4.8), that the trust-region objective function, has the equivalent representation

Q(s) = gTk s+
1

2
sTBks = gTk [ Sk Ck ] w+

1

2
wT

[
Γk YT

k Ck

CT
kYk γkIn−l

]
w ≡ q(w), (4.13)

where the initial matrix is taken to be a multiple of the identity matrix. Next we

separate w into two components, and define [ Sk Ck ]T gk also in terms of two blocks,

namely we use

w ≡

[
w‖

w⊥

]
, and [ Sk Ck ]T gk =

[
STk gk

CT
k gk

]
≡

[
g‖

g⊥

]
.

Here the vectors w‖ and g‖ are of dimension Rl, respectively, whereas the vectors w⊥

and g⊥ are of dimension Rn−l, respectively. With these separations, the subproblem

objective function becomes

q(w) = gT‖w‖ + gT⊥w⊥ +
1

2

(
wT
‖ Γkw‖ + 2wT

‖YT
k Ckw⊥ + γk ‖w⊥‖22

)
≡ q(w‖,w⊥).

(4.14)

Moreover the square of the constraint is also expressed in terms of w‖ and w⊥, i.e.,

‖s‖22 = ‖[ Sk Ck ]w‖22 =
∥∥Skw‖∥∥2

2
+ ‖w⊥‖22 ,

where we use the orthogonality conditions STkCk = 0l×(n−l). Similar as in Chapter

2, the global solution of the trust-region subproblem is characterized as the stationary
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point of the Lagrangian function

L(w‖,w⊥, σ) ≡ q(w‖,w⊥) +
σ

2

(∥∥Skw‖∥∥2

2
+ ‖w⊥‖22

)
,

where σ ≥ 0 is a lagrange multiplier. Setting the gradient of the Lagrangian at the

solution equal to zero, that is, ∇L(w∗‖,w
∗
⊥, σ

∗) = 0, yields the nonlinear system of

equations [ (
Γk + σ∗STk Sk

)
YT
k Ck

CT
kYk (γk + σ∗)In−l

][
w∗‖
w∗⊥

]
= −

[
g‖

g⊥

]
. (4.15)

The solutions to the system in (4.15) are

w∗⊥ =
−1

γk + σ∗
CT
k

(
gk + Ykw

∗
‖

)
, (4.16)

and

w∗‖ =

(
Γk + σ∗STk Sk +

1

γk + σ∗
YT
k CkC

T
kYk

)−1(
−g‖ +

1

γk + σ∗
YT
k CkC

T
k gk

)
.

(4.17)

The matrix CkC
T
k is the orthogonal projection onto the nullspace of Sk, and has the

expression CkC
T
k = In − Sk(S

T
k Sk)

−1STk . Therefore, once σ∗ is known then w∗‖ is

computed explicitly. Moreover, s∗ is also obtained by an analytic formula

s∗ = [ Sk Ck ] w∗

= Skw
∗
‖ + Ckw

∗
⊥

= Skw
∗
‖ −

1

γk + σ∗

(
In − Sk

(
STk Sk

)−1
STk

)(
gk + Ykw

∗
‖

)
. (4.18)

Computing σ∗.

In order to describe our approach to compute σ∗ note from equations (4.17), and (4.18)

that the optimal vectors w∗⊥ and w∗‖ are functions of the optimal scalar σ∗ ≥ 0. At any

other nonnegative value σ ≥ 0 we use the representations

w⊥ = w⊥(σ) =
−1

γk + σ
CT
k

(
gk + Ykw‖

)
,

and

w‖ = w‖(σ) =

(
Γk + σSTk Sk +

1

γk + σ
YT
k CkC

T
kYk

)−1(
−g‖ +

1

γk + σ
YT
k CkC

T
k gk

)
.

Moreover we define

G‖ = G‖(σ) ≡ (γk + σ)Γk + σ(γk + σ)STk Sk + YT
k CkC

T
kYk,
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and

ḡ‖ = ḡ‖(σ) ≡
(
−(γk + σ)g‖ + YT

k CkC
T
k gk

)
,

so that G‖(σ)w‖(σ) = ḡ‖(σ). Now let the secular equation be expressed as

φ (σ) =
1√
ψ (σ)

− 1

∆k
,

where

ψ = ψ (σ) ≡ ‖s‖22 =
∥∥Skw‖∥∥2

2
+ ‖w⊥‖22 .

Then the optimal σ∗ will be a root of ψ (σ), i.e., ψ (σ∗) = 0. Observe that

dψ(σ)

dσ
= 2wT

‖ STk Skw
′
‖ + 2wT

⊥w′⊥,

where w′‖ =
dw‖(σ)

dσ and w′⊥ = dw⊥(σ)
dσ . Taking derivatives of G‖w‖ = ḡ‖, then

G′‖w‖ + G‖w
′
‖ = −ḡ′‖ implies w′‖ = −G−1

‖

(
ḡ′‖ + G′‖w‖

)
,

where G′‖ and g′‖ represent the derivatives of G‖ and g‖ with respect to σ,

G′‖ = γkΓk + (γk + 2σ)STk Sk, and g′‖ = −γkg‖.

In other words, after computing w‖, then w′‖ can be found. Similarly we compute

w′⊥ =
1

(γk + σ)2
CT
k

(
(1− (γk + σ))gk + Yk

(
w‖ − (γk + σ)w′‖

))
.

Note that wT
⊥w′⊥ is explicitly computable, since CkC

T
k is available. With this we find

that
dφ(σ)

dσ
=

−1

2
(√
ψ
)3 dψ(σ)

dσ
= −

wT
‖ STk Skw

′
‖ + wT

⊥w′⊥(√
wT
‖ STk Skw‖ + wT

⊥w⊥

)3 ,

is given explicitly. Using the expressions for φ (σ) and dφ(σ)
dσ , we can apply Newton’s

method to solve for an optimal σ∗ such that φ (σ∗) = 0. Therefore our alternative

trust-region solution strategy for the trust-region subproblem (1.4) with the `2-norm

constraint is summarized in Algorithm 4.1

ALGORITHM 4.1

1. Compute λmin, the smallest eigenvalue;

2. If 0 ≤ λmin set σ∗ = 0, compute s∗ from (4.18). If ‖s∗‖2 ≤ ∆k terminate; otherwise

go to 3;
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3. Solve for σ∗ + λmin ≥ 0, φ(σ∗) = 0 by Newton’s method; compute s∗ from (4.18),

terminate;

In step 1 of Algorithm 4.1 the smallest eigenvalue λmin is computed. This eigenvalue

can be obtained by a technique similar to that described in Section 1.4.3. Based on

the implicit QR factorization of Ψk, we use the identity ΨkMkΨ
T
k = QRMkR

TQT .

The matrix RMkR
T is a small 2l × 2l matrix, and its smallest eigenvalue λ̂min can

be computed at complexity O(l2) (computing l eigenvalues is of complexity O(l3)).

Subsequently, the smallest eigenvalue of Bk is given by λmin = γk−1 + λ̂min.

4.4 NUMERICAL EXPERIMENTS

This section reports the results of implementations of Approach I and Approach II

(cf. Section 4.3). Because Approach I is applicable with both, the `2-norm, and the

shape-changing norms, we carried out experiments based on both of these norms. For

Approach II we applied the `2-norm.

4.4.1 APPROACH I: MSSM SUBPROBLEMSWITH THE `2-NORM

Similar as in Section 2.4.4 we generated five sets of experiments composed of problems

ranging from n = 103 to n = 107. The number of limited-memory updates l was

set to 5, and thus 2l = 10. The initial matrix is a multiple of identity matrix B0 =

γk−1In with γk−1 = 0.5. The pairs Sk and Yk, both n × l matrices, were generated

from random data. Finally, gk was generated by random data and the ‘unconstrained’

minimizer is computed from the compact representation in (4.10) by the Sherman-

Morrison-Woodbury formula as su = −
(
γk−1In + ΨkMkΨ

T
k

)−1
gk.

1. The matrix Bk is positive definite with ‖su‖2 ≤ ∆k.

2. The matrix Bk is positive definite with ‖su‖2 > ∆k.

3. The matrix Bk is positive semidefinite and singular with s = −B†kgk infeasible.

4. The matrix Bk is indefinite with ‖(Bk − λ1In)gk)‖2 > ∆k (a) the vector gk is

generated randomly, and (b) a random vector gk is projected onto the orthogonal

complement of the space spanned by the smallest eigenvalue of Bk.

5. The hard case (Bk is indefinite): We ensure Ψk and Mk are such that Bk is

indefinite. We test two subcases: (a) λmin = λ1 = λ̂1 + γk−1 < 0, and (b)

λmin = γk−1 < 0. In both cases, ∆k = (1 + µ)‖su‖2, where µ is randomly

generated between 0 and 1, so that ‖(Bk − λ1In)gk)‖2 > ∆k.

We report the following: (1) opt 1 (abs)=‖(Bk+σ∗In)s∗+gk‖2, which corresponds

to the norm of the error in the first optimality conditions; (2) opt 1 (rel) =(‖(Bk +
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σ∗In)s∗ + gk‖2)/‖gk‖2, which corresponds to the norm of the relative error in the first

optimality conditions; (3) opt 2=σ∗|s∗ −∆k|, which corresponds to the absolute error

in the second optimality conditions; (4) σ∗, and (5) Time. We ran each experiment five

times and report one representative result for each experiment.

Table 4.1
Experiment 1: Bk is positive definite and ‖su‖2 ≤ ∆k.

n opt 1 (abs) opt 1 (rel) opt 2 σ∗ Time

1.0e+03 3.65e-15 1.21e-16 0.00e+00 0.00e+00 7.44e-04

1.0e+04 1.03e-14 1.04e-16 0.00e+00 0.00e+00 2.36e-03

1.0e+05 3.64e-14 1.14e-16 0.00e+00 0.00e+00 2.70e-02

1.0e+06 1.00e-13 1.00e-16 0.00e+00 0.00e+00 3.94e-01

1.0e+07 4.13e-13 1.31e-16 0.00e+00 0.00e+00 3.85e+00

Table 4.1 shows the results of Experiment 1. In all cases, the method found global

solutions of the trust-region subproblems.

Table 4.2
Experiment 2: Bk is positive definite and ‖su‖2 > ∆k.

n opt 1 (abs) opt 1 (rel) opt 2 σ∗ Time

1.0e+03 4.58e-15 1.43e-16 4.14e-15 4.66e+00 1.07e-03

1.0e+04 1.06e-14 1.05e-16 1.72e-14 1.93e+00 2.90e-03

1.0e+05 3.83e-14 1.21e-16 9.75e-13 8.16e-01 2.93e-02

1.0e+06 1.13e-13 1.13e-16 2.19e-13 3.08e+00 3.78e-01

1.0e+07 3.12e-13 9.87e-17 1.16e-11 6.94e+00 1.35e+01

Table 4.2 shows the results of Experiment 2. In this case, the unconstrained mini-

mizer is not inside the trust region, making the value of σ∗ strictly positive.

Table 4.3
Experiment 3(a): Bk is positive semidefinite and singular with ‖B†kgk‖2 > ∆k.

n opt 1 (abs) opt 1 (rel) opt 2 σ∗ Time

1.0e+03 4.02e-15 1.34e-16 3.59e-15 2.70e+00 1.31e-03

1.0e+04 1.04e-14 1.05e-16 1.82e-13 5.85e+01 2.38e-03

1.0e+05 4.51e-14 1.42e-16 1.75e-13 1.76e+00 2.70e-02

1.0e+06 9.40e-14 9.39e-17 5.39e-12 5.67e+00 3.66e-01

1.0e+07 3.23e-13 1.02e-16 2.59e-10 8.70e+00 3.61e+00

Table 4.3 displays the results of Experiment 3(a). This experiment is the first of

two in which Bk is highly ill-conditioned. The proposed method is able to obtain high

accuracy solutions. Global solutions to the subproblems solved in Experiment 3(a) lie

on the boundary of the trust region.

The results for Experiment 3(b) are shown in Table 4.4. This is the second exper-

iment involving ill-conditioned matrices. As with Experiment 3(a), the method is able
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Table 4.4
Experiment 3(b): Bk is positive semidefinite and singular with ‖B†kgk‖2 ≤ ∆k.

n opt 1 (abs) opt 1 (rel) opt 2 σ∗ Time

1.0e+03 4.41e-15 1.38e-16 0.00e+00 0.00e+00 9.72e-04

1.0e+04 1.51e-14 1.50e-16 0.00e+00 0.00e+00 3.15e-03

1.0e+05 3.55e-14 1.12e-16 0.00e+00 0.00e+00 3.13e-02

1.0e+06 1.68e-13 1.68e-16 0.00e+00 0.00e+00 4.10e-01

1.0e+07 3.98e-13 1.26e-16 0.00e+00 0.00e+00 4.29e+00

to obtain high-accuracy solutions. In this experiment, the global solution always lies on

the boundary.

Table 4.5
Experiment 4(a): Bk is indefinite with ‖(Bk − λ1In)gk)‖2 > ∆k. The vector gk is randomly
generated.

n opt 1 (abs) opt 1 (rel) opt 2 σ∗ Time

1.0e+03 3.14e-15 1.01e-16 0.00e+00 2.44e+01 8.82e-04

1.0e+04 9.08e-15 9.17e-17 9.89e-15 8.91e+01 3.03e-03

1.0e+05 4.02e-14 1.27e-16 6.83e-14 3.07e+02 3.02e-02

1.0e+06 1.03e-13 1.03e-16 2.73e-11 9.95e+02 3.78e-01

1.0e+07 3.00e-13 9.48e-17 1.10e-10 3.16e+03 3.61e+00

The results for Experiment 4(a) are displayed in Table 4.5. The method found

solutions that satisfies the first optimality condition high accuracy.

Table 4.6
Experiment 4(b): Bk is indefinite with ‖(Bk − λ1In)gk)‖2 > ∆k. The vector gk lies in the
orthogonal complement of the smallest eigenvector.

n opt 1 (abs) opt 1 (rel) opt 2 σ∗ Time

1.0e+03 2.97e-15 9.35e-17 1.01e-14 6.07e+01 8.05e-04

1.0e+04 1.19e-14 1.20e-16 2.66e-15 4.98e-01 2.30e-03

1.0e+05 3.85e-14 1.22e-16 1.46e-12 1.84e+00 2.94e-02

1.0e+06 9.63e-14 9.62e-17 2.81e-11 3.91e+01 4.01e-01

1.0e+07 2.94e-13 9.28e-17 3.64e-11 2.35e+01 3.62e+00

The results of Experiment 4(b) are in Table 4.6 . The method solved the subproblem

to high accuracy as measured by the optimality conditions.

In the hard case with λmin being a nontrivial eigenvalue, the method obtains a global

solution as measured by the optimality conditions.

The results of Experiment 5(b) are in Table 4.8. The method was able to find

solutions in the two instances of the hard-case.
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Table 4.7
Experiment 5(a): The hard case (Bk is indefinite) and λmin = λ1 = λ̂1 + γk−1 < 0.

n opt 1 (abs) opt 1 (rel) opt 2 σ∗ Time

1.0e+03 4.88e-15 1.54e-16 1.58e-15 8.88e-01 7.67e-04

1.0e+04 2.48e-13 2.51e-15 2.20e-15 6.19e-01 2.61e-03

1.0e+05 1.01e-12 3.18e-15 1.40e-13 5.17e-01 3.42e-02

1.0e+06 1.58e-11 1.58e-14 2.28e-12 4.72e-01 4.19e-01

1.0e+07 1.09e-10 3.45e-14 1.57e-10 5.89e-01 4.38e+00

Table 4.8
Experiment 5(b): The hard case (Bk is indefinite) and λmin = γk−1 < 0.

n opt 1 (abs) opt 1 (rel) opt 2 σ∗ Time

1.0e+03 5.68e-14 2.93e-14 1.24e-13 8.71e+00 8.84e-04

1.0e+04 4.40e-14 1.61e-14 4.04e-14 5.69e+00 2.79e-03

1.0e+05 1.04e-13 3.36e-14 1.37e-12 1.21e+01 3.35e-02

1.0e+06 1.32e-13 5.34e-14 1.00e-13 3.13e+00 4.40e-01

1.0e+07 1.70e-13 7.89e-14 9.61e-12 1.89e+00 4.41e+00

4.4.2 APPROACH I: MSSM SUBPROBLEMS WITH THE (P, 2)-

NORM

In this section, we report numerical experiments with shape-changing (P, 2)-norm (cf.

eq. (2.18)) implemented in MATLAB. The algorithm was used on randomly-generated

problems of size n = 103 to n = 107. We report five experiments when there is no

closed-form solution to the shape-changing trust-region subproblem and one experiment

designed to test the method in the so-called “hard case”. These six cases only occur

using the shape-changing (P, 2)-norm, since the alternative (P,∞)-norm yields analytic

solutions. To compute subproblem solutions with MSS matrices we apply the procedures

as proposed in 2.5.2. The difference is that instead of the L-SR1 matrix Bk from (2.3)

we apply the compact representation of the L-MSSM matrix Bk as defined by (4.10).

The six experiments are outlined as follows:

(E1) Bk is positive definite with ‖v‖(0)‖2 ≥ ∆k.

(E2) Bk is positive semidefinite and singular with [g‖]i 6= 0 for some 1 ≤ i ≤ r.

(E3) Bk is positive semidefinite and singular with [g‖]i = 0 for 1 ≤ i ≤ r and ‖Λ†g‖‖2 >
∆k.

(E4) Bk is indefinite and [g‖]i = 0 for 1 ≤ i ≤ r with ‖(Λ− λ1I)†g‖‖2 > ∆k.

(E5) Bk is indefinite and [g‖]i 6= 0 for some 1 ≤ i ≤ r .

(E6) Bk is indefinite and [g‖]i = 0 for 1 ≤ i ≤ r with ‖v‖(−λ1)‖2 ≤ ∆k (the “hard

case”).
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For these experiments, Sk, Yk, and gk were randomly generated and then altered to

satisfy the requirements described above by each experiment. All randomly-generated

vectors and matrices were formed using the MATLAB randn command, which draws

from the standard normal distribution. The initial MSS matrix was set to B0 = γk−1I,

where γk−1 = |10 ∗ randn(1)|. Finally, the number of limited-memory updates l was

set to 5 (2l = 10), and r was set to 2. In the five cases when there is no closed-form

solution, the method uses Newton’s 1D zero solver to find a root of φ‖. We use the same

procedure as in [BEM17, Algorithm 2] to initialize Newton’s method since it guarantees

monotonic and quadratic convergence to σ∗. The Newton iteration was terminated

when the ith iterate satisfied |φ‖(σi)| ≤ eps · |φ‖(σ0)| + √eps, where σ0 denotes the

initial iterate for Newton’s method and eps is machine precision. This stopping criteria

is both a relative and absolute criteria, and it is the only stopping criteria used.

In order to report on the accuracy of the subproblem solves, we make use of the

optimality conditions found in Theorem 2.5. For each experiment, we report the fol-

lowing: (i) the norm of the residual of the first optimality condition, opt 1 4
= ‖(Bk +

C‖)s
∗+gk‖2, (ii) the combined complementarity condition, opt 2 4= |σ∗‖(‖P

T
‖ s∗‖2−∆k)|

+ |σ∗⊥(‖PT
⊥s∗‖2 −∆k)|, (iii) σ∗‖ + λ1, (iv) σ∗⊥ + γk−1, (v) σ∗‖, (vi) σ∗⊥, (vii) the number

of Newton iterations (“itns”), and (viii) time. The quantities (iii) and (iv) are reported

since the optimality condition that Bk + C‖ is a positive semidefinite matrix is equiva-

lent to γk−1 + σ∗⊥ ≥ 0 and λi + σ∗‖ ≥ 0, for 1 ≤ i ≤ 2l. Finally, we ran each experiment

five times and report one representative result for each experiment.

n opt 1 opt 2 σ∗‖ + λ1 σ∗⊥ + γk−1 σ∗‖ σ∗⊥ itns time

1.0e+03 2.49e-14 1.66e-14 2.98e+01 4.10e+02 1.10e+01 3.91e+02 3 8.71e-04

1.0e+04 8.80e-14 1.44e-13 1.84e+01 7.52e+02 2.88e+00 7.37e+02 3 3.88e-03

1.0e+05 8.98e-13 4.25e-13 1.19e+01 9.47e+02 8.29e+00 9.44e+02 3 2.72e-02

1.0e+06 1.01e-11 0.00e+00 2.63e+01 1.21e+04 1.32e+01 1.21e+04 4 2.87e-01

1.0e+07 1.14e-10 6.40e-11 4.00e+00 5.29e+03 3.34e-01 5.29e+03 3 2.83e+00

Table 4.9
Experiment 1: Bk is positive definite with ‖v‖(0)‖2 ≥ ∆k.

n opt 1 opt 2 σ∗‖ + λ1 σ∗⊥ + γk−1 σ∗‖ σ∗⊥ itns time

1.0e+03 1.41e-13 1.67e-13 5.52e-01 8.94e+00 5.52e-01 0.00e+00 2 6.06e-04

1.0e+04 2.38e-13 2.72e-15 1.18e-01 8.60e+00 1.18e-01 0.00e+00 2 1.95e-03

1.0e+05 3.32e-12 1.40e-15 2.82e-02 9.05e+00 2.82e-02 0.00e+00 2 2.77e-02

1.0e+06 2.30e-12 2.64e-15 1.55e-02 9.20e+00 1.55e-02 0.00e+00 2 2.87e-01

1.0e+07 1.59e-10 1.48e-10 2.64e-04 5.46e-01 2.64e-04 0.00e+00 1 2.93e+00

Table 4.10
Experiment 2: Bk is positive semidefinite and singular and [g‖]i 6= 0 for some 1 ≤ i ≤ r.

Tables 4.9–4.14 show the results of the experiments. In all tables, the residual of

the two optimality conditions opt 1 and opt 2 are on the order of 1×10−10 or smaller.

Columns 4 and 5 in all the tables show that σ∗‖ + λ1 and σ∗⊥ + γk−1 are nonnegative
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n opt 1 opt 2 σ∗‖ + λ1 σ∗⊥ + γk−1 σ∗‖ σ∗⊥ itns time

1.0e+03 3.09e-14 7.46e-13 1.87e+01 7.44e+02 1.87e+01 7.29e+02 3 2.35e-03

1.0e+04 1.43e-13 4.38e-14 7.71e+01 2.01e+03 7.71e+01 2.00e+03 3 2.01e-03

1.0e+05 2.41e-12 1.93e-13 2.48e-01 5.81e+02 2.48e-01 5.78e+02 3 2.75e-02

1.0e+06 1.05e-11 1.99e-12 1.84e+01 7.15e+03 1.84e+01 7.15e+03 3 2.89e-01

1.0e+07 8.87e-11 4.97e-11 5.23e+00 2.61e+04 5.23e+00 2.61e+04 3 2.92e+00

Table 4.11
Experiment 3: Bk is positive semidefinite and singular with [g‖]i = 0 for 1 ≤ i ≤ r and

‖Λ†g‖‖2 > ∆k.

n opt 1 opt 2 σ∗‖ + λ1 σ∗⊥ + γk−1 σ∗‖ σ∗⊥ itns time

1.0e+03 2.45e-14 5.02e-15 2.17e+00 8.33e+01 2.43e+00 8.31e+01 3 6.71e-04

1.0e+04 1.37e-13 6.03e-14 6.34e+00 7.26e+02 6.37e+00 7.14e+02 3 2.25e-03

1.0e+05 7.85e-13 3.47e-12 1.19e+00 1.02e+03 1.26e+00 1.01e+03 2 2.85e-02

1.0e+06 1.45e-11 9.39e-12 7.87e+00 5.13e+03 8.35e+00 5.12e+03 3 2.85e-01

1.0e+07 9.33e-11 4.05e-11 9.66e+00 1.59e+04 1.04e+01 1.59e+04 3 2.90e+00

Table 4.12
Experiment 4: Bk is indefinite and [g‖]i = 0 for 1 ≤ i ≤ r with ‖(Λ− λ1I)†g‖‖2 > ∆k.

n opt 1 opt 2 σ∗‖ + λ1 σ∗⊥ + γk−1 σ∗‖ σ∗⊥ itns time

1.0e+03 1.18e-14 2.41e-12 3.08e-01 3.12e+01 9.61e-01 2.38e+01 4 7.67e-04

1.0e+04 1.42e-13 3.40e-14 1.28e+00 9.92e+01 1.60e+00 9.79e+01 4 2.00e-03

1.0e+05 3.80e-13 2.18e-13 2.37e+00 3.17e+02 3.13e+00 2.96e+02 2 2.50e-02

1.0e+06 1.01e-11 1.30e-12 1.92e+00 1.00e+03 2.69e+00 9.99e+02 4 3.00e-01

1.0e+07 7.39e-11 2.45e-11 4.91e-01 3.16e+03 1.12e+00 3.14e+03 2 2.84e+00

Table 4.13
Experiment 5: Bk is indefinite and [g‖]i 6= 0 for some 1 ≤ i ≤ r.

n opt 1 opt 2 σ∗‖ + λ1 σ∗⊥ + γk−1 σ∗‖ σ∗⊥ itns time

1.0e+03 2.53e-14 2.58e-17 0.00e+00 1.01e+02 4.66e-01 8.91e+01 0 6.09e-04

1.0e+04 1.06e-13 1.03e-13 0.00e+00 1.60e+02 9.46e-03 1.54e+02 0 2.20e-03

1.0e+05 1.57e-12 9.26e-13 0.00e+00 3.83e+02 4.09e-01 3.78e+02 0 2.94e-02

1.0e+06 1.24e-11 9.47e-12 0.00e+00 6.22e+03 8.39e-01 6.20e+03 0 2.94e-01

1.0e+07 8.39e-11 1.62e-11 0.00e+00 8.10e+03 6.63e-01 8.09e+03 0 3.10e+00

Table 4.14
Experiment 6: Bk is indefinite and [g‖]i = 0 for 1 ≤ i ≤ r with ‖v‖(−λ1)‖2 ≤ ∆k (the “hard
case”).

with σ‖ ≥ 0 and σ⊥ ≥ 0 (Columns 6 and 7, respectively). Thus, the solutions obtained

with the L-MSS matrices for these experiments satisfy the optimality conditions to high

accuracy.

Also reported in each table are the number of Newton iterations. In the first five

experiments no more than four Newton iterations were required to obtain σ‖ to high

accuracy (Column 8). In the hard case, no Newton iterations are required since σ∗‖ =

−λ1. This is reflected in Table 4.14, where Column 4 shows that σ∗‖ = −λ1 and Column

8 reports no Newton iterations.
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The final column reports the time required by the method to solve each subproblem.

Consistent with the best limited-memory methods, the time required to solve each

subproblem appears to grow linearly with n.

4.4.3 APPROACH II: MSSM SUBPROBLEMSWITH THE `2-NORM

Similar as in Section 4.4.3 we generated five sets of experiments composed of problems

ranging from n = 103 to n = 107. The number of limited-memory updates l was

set to 5, and thus 2l = 10. The initial matrix is a multiple of identity matrix B0 =

γk−1In with γk−1 = 0.5. The pairs Sk and Yk, both n × l matrices, were generated

from random data. Finally, gk was generated by random data and the ‘unconstrained’

minimizer is computed from the compact representation in (4.10) by the Sherman-

Morrison-Woodbury formula as su = −
(
γk−1In + ΨkMkΨ

T
k

)−1
gk.

1. The matrix Bk is positive definite with ‖su‖2 ≤ ∆k.

2. The matrix Bk is positive definite with ‖su‖2 > ∆k.

3. The matrix Bk is positive semidefinite and singular with s = −B†kgk infeasible.

4. The matrix Bk is indefinite.

5. The hard case (Bk is indefinite): λmin = λ1 = λ̂1 + γk−1 < 0 and ‖(Bk −
λ1In)gk)‖2 > ∆k.

We report the following: (1) opt 1 (abs)=‖(Bk+σ∗In)s∗+gk‖2, which corresponds

to the norm of the error in the first optimality conditions; (2) opt 1 (rel) =(‖(Bk +

σ∗In)s∗ + gk‖2)/‖gk‖2, which corresponds to the norm of the relative error in the first

optimality conditions; (3) opt 2=σ∗|s∗ −∆k|, which corresponds to the absolute error

in the second optimality conditions; (4) σ∗, and (5) Time. We ran each experiment five

times and report one representative result for each experiment.

Table 4.15
Experiment 1: Bk is positive definite and ‖su‖2 ≤ ∆k.

n opt 1 (abs) opt 1 (rel) opt 2 σ∗ Time

1.0e+03 4.24e-15 1.34e-16 0.00e+00 0.00e+00 1.97e-03

1.0e+04 1.35e-14 1.34e-16 0.00e+00 0.00e+00 3.30e-03

1.0e+05 3.63e-14 1.15e-16 0.00e+00 0.00e+00 2.11e-02

1.0e+06 1.28e-13 1.28e-16 0.00e+00 0.00e+00 2.19e-01

1.0e+07 3.57e-13 1.13e-16 0.00e+00 0.00e+00 2.21e+00

Table 4.15 shows the results of Experiment 1. In all cases, the method found global

solutions of the trust-region subproblems.

Table 4.16 shows the results of Experiment 2. In this case, the unconstrained mini-

mizer is not inside the trust region, making the value of σ∗ strictly positive.
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Table 4.16
Experiment 2: Bk is positive definite and ‖su‖2 > ∆k.

n opt 1 (abs) opt 1 (rel) opt 2 σ∗ Time

1.0e+03 4.02e-15 1.30e-16 4.98e-15 2.99e+01 2.31e-03

1.0e+04 1.37e-14 1.35e-16 1.20e-10 1.60e+01 3.61e-03

1.0e+05 3.52e-14 1.11e-16 1.35e-12 1.65e+02 2.16e-02

1.0e+06 1.44e-13 1.44e-16 2.71e-12 1.73e+01 2.23e-01

1.0e+07 4.15e-13 1.31e-16 2.67e-11 3.69e+01 2.21e+00

Table 4.17
Experiment 3: Bk is positive semidefinite and singular with ‖B†kgk‖2 > ∆k.

n opt 1 (abs) opt 1 (rel) opt 2 σ∗ Time

1.0e+03 9.88e-14 3.13e-15 6.28e-16 2.21e-02 2.26e-03

1.0e+04 3.44e-13 3.39e-15 2.45e-15 3.83e-02 3.89e-03

1.0e+05 4.10e-12 1.30e-14 5.65e-13 7.21e-03 2.13e-02

1.0e+06 1.63e-13 1.63e-16 1.91e-11 3.70e-01 2.20e-01

1.0e+07 1.14e-10 3.60e-14 6.42e-14 5.24e-04 2.20e+00

Table 4.17 displays the results of Experiment 3. In this experiment Bk is singular,

and therefore not well conditioned. The proposed method is able to obtain high accu-

racy solutions. Global solutions to the subproblems solved in Experiment 3 lie on the

boundary of the trust region.

Table 4.18
Experiment 4: Bk is indefinite.

n opt 1 (abs) opt 1 (rel) opt 2 σ∗ Time

1.0e+03 1.66e-14 5.29e-16 3.72e-15 4.19e-01 2.32e-03

1.0e+04 5.33e-13 5.35e-15 8.36e-12 9.49e-01 3.76e-03

1.0e+05 4.26e-14 1.35e-16 1.77e-09 4.59e+00 2.19e-02

1.0e+06 6.64e-13 6.64e-16 1.43e-12 9.26e-01 2.25e-01

1.0e+07 4.09e-13 1.29e-16 4.52e-10 2.70e+00 2.21e+00

The results for Experiment 4 are displayed in Table 4.18. The method found solu-

tions that satisfies the first optimality condition high accuracy.

Table 4.19
Experiment 5: The hard case (Bk is indefinite) and λmin = λ1 = λ̂1 + γk−1 < 0.

n opt 1 (abs) opt 1 (rel) opt 2 σ∗ Time

1.0e+03 9.80e-14 3.13e-15 1.16e-14 8.18e-01 2.53e-03

1.0e+04 1.66e-12 1.66e-14 1.31e-14 1.54e-01 5.25e-03

1.0e+05 1.74e-11 5.50e-14 1.66e-13 1.01e-01 4.05e-02

1.0e+06 2.76e-10 2.76e-13 2.09e-12 1.39e-01 4.64e-01

1.0e+07 1.82e-10 5.76e-14 2.34e-10 5.00e-01 4.59e+00
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In the hard case with λmin being a nontrivial eigenvalue, the method obtains a global

solution as measured by the optimality conditions.



CHAPTER 5

LINEAR EQUALITY

CONSTRAINED

TRUST-REGION

METHODS

This chapter is based on the manuscript “Large-Scale Quasi-Newton Shape-Changing

Trust-Region Method with Low Dimensional Linear Equality Constraints” J. B. Brust,

R. F. Marcia, and C. G. Petra, which is currently in preparation.

5.1 BACKGROUND

5.1.1 PROBLEM FORMULATION

In this chapter we focus on the linear equality constraint minimization problem

minimize
x∈Rn

f(x) subject to Ax = b, (5.1)

where the objective function f : Rn → R is continuously differentiable and the con-

straints are defined by A ∈ Rm×n and b ∈ Rm. We assume that m � n and that the

rectangular matrix A is of full row rank. Because it has been shown that trust-region

methods are effective for solving constrained optimization problems [CDJT84, Var85,

LNP98], we propose solving the problem in (5.1) using trust-region methods. In par-

ticular, we concentrate on trust-region methods that use limited-memory quasi-Newton

matrices, and exploit the structure of these matrices to compute the trust-region sub-

problem solutions.

88
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5.1.2 CONSTRAINED TRUST-REGION METHOD

The constrained trust-region method is obtained as an extension of the unconstrained

method described in Chapter 1, Section 1.3. Recall the quadratic subproblems of the

form

sk = arg min
‖s‖≤∆k

Q(s) = sTgk +
1

2
sTBks (5.2)

where the solution sk is used to compute the next iterate xk+1 = xk + sk.

In order to use trust-region methods to solve (5.1), we note that if the current iterate

xk is feasible, i.e., Axk = b, then the next iterate xk+1 is also feasible, i.e., Axk+1 = b,

only if Ask = 0. Thus, the trust-region subproblem corresponding to (5.1) is given by

minimize
‖s‖≤∆k

Q(s) = sTgk +
1

2
sTBks subject to As = 0. (5.3)

Without the equality constraint in (5.3), the trust-region subproblem can be solved

to high accuracy with the methods from Chapter 2 or using e.g. [BWX96, EM14,

BGYZ16]. However, these methods cannot be used directly to solve (5.3) with the

equality constraint.

For this chapter, the matrix Bk represents the limited-memory Broyden-Fletcher-

Goldfarb-Shanno (L-BFGS) matrix. Furthermore, we propose solving (5.3) with two

norms. Specifically, we use the shape-changing (P,∞)-norm in (2.19) from Subsec-

tion 2.5.4, as well as the `2-norm. Unlike in the previous chapters, we compute the

compact representation of part of the Hessian of the Lagrangian function (without the

norm constraint) rather than the Hessian of the objective function Q(s). This compact

representation allows Q(s) to be decomposed into two subproblems. And by using a

shape-changing norm, closed-form solutions can then be computed. We use the com-

pact representation of the inverse L-BFGS matrix Hk = B−1
k in this chapter, because it

simplifies the development of our methods. In particular, let δk =
yT
k−1sk−1

yT
k−1yk−1

, and let the

matrices Lk,Dk and Tk be as defined in Section 3.2, then the compact representation

of Hk is

Hk = δkI + Ψ̂kM̂kΨ̂
T
k , (5.4)

where

M̂k ≡

[
T−Tk (Dk + δkY

T
k Yk)T

−1
k −δkT−Tk

−δkT−1
k 0

]
,

Ψ̂k = [ Sk Yk ] ∈ Rn×2l and with M̂k ∈ R2l×2l (see [BNS94] for details). Note that

the methods that will be described in this chapter are applicable to any quasi-Newton

matrix with a compact representation, not only the L-BFGS matrix.
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5.2 LARGE-SCALE QUASI-NEWTON METHODS

5.2.1 THE KARUSH-KUHN-TUCKER (KKT) MATRIX

When the norm constraint ‖s‖ ≤ ∆k in (5.3) is not present, then the solution of this

‘unconstrained’ problem can be characterized as a stationary point of the Lagrangian

objective function

L(s, ρ) = Q(s) + ρTAs,

where ρ ∈ Rm is a vector of Lagrange multipliers. The stationary point (su, ρu) is

obtained by setting the gradient of the Lagrangian equal to zero, i.e., ∇L(su, ρu) = 0.

This gives rise to the Karush-Kuhn-Tucker (KKT) system[
Bk AT

A 0

][
su

ρu

]
=

[
−gk

0

]
. (5.5)

Let K denote the KKT matrix in (5.5). Note that K can be explicitly inverted as

K−1 =

[
Hk −HkA

T (AHkA)−1AHk HkA
T (AHkA)−1

(HkA
T (AHkA)−1)T (AHkA)−1

]
≡

[
K−1

11 K−1
12

K−1
21 K−1

22

]
.

The block-wise notation reveals that the stationary vector su = −K−1
11 gk depends only

on the upper left hand block, i.e. block K−1
11 . In the next section we will compute the

compact representation of

K−1
11 = Hk −HkA

T (AHkA)−1 AHk ≡ HkWk, (5.6)

where Wk = I −AT (AHkA)−1 AHk. The compact representation in (5.6) facilitates

computing the solutions to the trust-region subproblems in (5.3). Furthermore, the

compact representation enables us to develop the partial eigendecomposition of (5.6),

which we will combine with a shape-changing norm in order to compute an analytic

solution to (5.3).

5.2.2 COMPACT REPRESENTATION OF K−1
11

We now describe the compact representation of (5.6) with a lemma:

Lemma 5.1. The (1,1) block of the inverse KKT matrix in (5.6) has the compact

representation

K−1
11 = δkI + ΨkMkΨ

T
k , (5.7)

where

Ψk ≡ [AT Ψ̂k], Mk ≡ −

[
M11 M12

MT
12 M22

]
, Kk = AΨ̂kM̂k,
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and where

M11 = δ2
k(AHkA

T )−1, M12 = δ−1
k M11Kk, M22 = δ−2

k KT
kM11Kk − M̂k.

Proof. Define Kk ≡ AΨ̂kM̂k, and observe that

AHk = δkA + AΨ̂kM̂kΨ̂
T
k ≡ δkA + KkΨ̂

T
k = [δkIm Kk]

[
A

Ψ̂T
k

]
.

Now let M11 ≡ δ2
k(AHkA

T )−1, so that

HkA
T (AHkA

T )−1AHk = [AT Ψ̂k]

[
M11 δ−1

k M11Kk

δ−1
k KT

kM11 δ−2
k KT

kM11Kk

][
A

Ψ̂T
k

]
.

Next, expressing Hk, from (5.4), as

Hk = δkI + Ψ̂kM̂kΨ̂
T
k = δkI + [AT Ψ̂k]

[
0m

M̂k

][
An

Ψ̂T
k

]
,

and combining the previous identities, yields

K−1
11 = Hk −HkA

T (AHkA)−1 AHk

= δkI− [AT Ψ̂k]

[
M11 M12

MT
12 M22

][
An

Ψ̂T
k

]
≡ δkI + ΨkMkΨ

T
k ,

where M12 ≡ δ−1
k M11Kk, M22 ≡ δ−2

k KT
kM11Kk − M̂k, and where Ψk and Mk are

defined so that the last equivalence holds. �

5.3 TRUST-REGION APPROACH WITH AN `2 CON-

STRAINT

If the `2-norm is used in (5.3), that is, ‖s‖2 ≤ ∆k is used, then the solution, defined by

the optimal Lagrange multiplier σ∗ ≥ 0 and a vector of Lagrange multipliers ρ̂∗, is the

vector ŝ∗ that satisfies the system[
(Bk + σ∗I) AT

A 0

][
ŝ∗

ρ̂∗

]
=

[
−gk

0

]
. (5.8)
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In solving this latter system, we express the optimal vectors ŝ∗ ≡ ŝ∗(σ∗) as:

ŝ∗(σ∗) = −(Bk + σ∗I)−1
(
I−AT

(
A(Bk + σ∗I)−1AT

)−1
A(Bk + σ∗I)−1

)
gk

= −Ĥ∗kŴ
∗
kgk, (5.9)

where Ĥ∗k = (Bk + σ∗I)−1, and Ŵ∗
k = I −AT

(
A(Bk + σ∗I)−1AT

)−1
A(Bk + σ∗I)−1.

When an arbitrary σ is used, instead of the optimal σ∗, we use the expression ŝ(σ) =

ĤkŴkgk to represent (5.9). Now, if ‖ŝ(0)‖2 ≤ ∆k, then the expression in (5.9) with

σ∗ = 0, yields the subproblem solution. Otherwise we use Newton’s method to solve for

σ∗ > 0 in the so-called secular-equation [CGT00]

φ(σ∗) =
1

‖ŝ∗(σ∗)‖2
− 1

∆k
= 0. (5.10)

The solution of the latter scalar equation corresponds to ‖ŝ∗(σ∗)‖2 = ∆k. First note

that
d

dσ
(φ(σ)) = φ′(σ) = − ŝ(σ)T ŝ′(σ)

‖ŝ(σ)‖32
,

where ŝ′(σ) represents the derivative of ŝ(σ). The vector ŝ′(σ) is computed by differen-

tiating both sides of the system in (5.8), i.e.,

d

dσ

([
(Bk + σI) AT

A 0

][
ŝ

ρ̂

])
=

d

dσ

([
−gk

0

])
,

and subsequently solving the resulting equations for ŝ′:[
(Bk + σI) AT

A 0

][
ŝ′

ρ̂′

]
=

[
−ŝ(σ)

0

]
.

The expression for ŝ′ ≡ ŝ′(σ) is

ŝ′(σ) = −(Bk + σI)−1
(
I−AT

(
A(Bk + σI)−1AT

)−1
A(Bk + σI)−1

)
ŝ(σ)

= −ĤkŴkŝ(σ).

Now observe that the matrix ĤkŴk is symmetric positive semidefinite for positive

values of σ, so that

−ŝ(σ)T ŝ′(σ) = ŝ(σ)T ĤkŴkŝ(σ) ≥ 0

for σ ≥ 0. This implies that φ′(σ) ≥ 0 for σ ≥ 0. In other words, φ(σ) is monotonically

increasing for positive σ. Because Newton’s method is applied in the case that ‖ŝ(0)‖2 =

‖ŝ(0)‖2 ≥ ∆k, corresponding to φ(0) < 0, a unique σ∗ > 0 can be computed that solves

the secular-equation in (5.10).
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The algorithms developed in this article assume that a feasible initial point x0 ∈ Rn

is given. The approach with a `2 norm is summarized in Algorithm 5.1

ALGORITHM 5.1:

1. Initialization: ∆0 > 0,0 ≤ d− ≤ 1 ≤ d+, δ0 = 1/‖Wg0‖2, Ψ0 = AT , M0 =

δ0(AAT )−1, B0 = In, k = 0;

2. Set: sk = −
(
δkI−ΨkMkΨ

T
k

)
gk;

3. If ‖sk‖2 ≤ ∆k and f(xk + sk) < f(xk) then go to 6. otherwise go to 4.;

4. Set sk = s∗(eq.(5.9));

5. If f(xk + sk) < f(xk) then go to 6., otherwise ∆k = d−∆k go to 4.;

6. Set ∆k = d+∆k, xk = xk + sk, update Ψk,Mk,Bk,gk, δk, k = k + 1 go to 2.;

5.4 TRUST-REGION APPROACH WITH A SHAPE-

CHANGING CONSTRAINT

Instead of the `2-norm, we will next describe how to apply a shape-changing norm

in the context of a constrained trust-region method. First, we use a transformation

based on the eigenvectors of the (1,1) block of the inverse KKT matrix from (5.6), in

order to simplify the trust-region subproblem. Then we propose an effective method

to obtain the eigendecomposition of the relevant KKT block. Finally, we decouple the

transformed trust-region subproblem by applying a shape-changing norm, and compute

analytic solutions.

5.4.1 TRANSFORMATION OF THE TRUST-REGION SUBPROB-

LEM

In this subsection we transform the quadratic objective function from (5.3), by a change

of variables. The transformed objective can then be combined with a shape-changing-

norm, to effectively solve the subproblem. Observe that the nullspace of K−1
11 is spanned

by the columns of AT , i.e. K−1
11 AT = 0. Therefore, the eigendecomposition of K−1

11 can

be represented as

K−1
11 = PΛPT = [P‖1 P2]

[
0m

Λ−1
2

]
[P‖1 P2]T , (5.11)

where the orthonormal eigenvectors are contained in the matrix P = [P‖1 P2] ∈ Rn×n

(I = PPT = PTP ), and where Λ−1
2 ∈ R(n−m)×(n−m) symbolizes a diagonal matrix
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of eigenvalues. In this notation the rectangular matrix P‖1 ∈ Rn×m represents the

eigenvectors corresponding to the zero eigenvalues of K−1
11 . With this, we deduce, since

AT ∈ Range
(
P‖1

)
, the following identity: PT

2 AT = 0(n−m)×m. In order to diagonalize

and to decouple the subproblem in (5.3), we first propose Lemma 1 that describes the

relation between the eigenvectors in the rectangular matrix P2 ∈ Rn×(n−m) and the

quasi-Newton matrix Bk.

Lemma 5.2. The identity PT
2 BkP2 = Λ2 holds for the eigenvectors and eigenvalues

from (5.11).

Proof. Multiply the (1,1) block of KK−1 by PT
2 from the left and by P2 from the right,

so that:

PT
2 [In 0n×m]KK−1

[
In

0m×n

]
P2 = PT

2

(
BkK

−1
11 + ATK−1

21

)
P2

= PT
2

(
BkPΛPT + ATK−1

21

)
P2

= PT
2 BkP2Λ

−1
2 .

Now, since KK−1 = In+m, and since the matrix P2 has orthonormal columns, it holds

that

PT
2 BkP2Λ

−1
2 = In−m.

Therefore we conclude that PT
2 BkP2 = Λ2. �

To diagonalize the constrained subproblem we apply the change of variables v =[
v‖1
v2

]
=

[
PT
‖1s

PT
2 s

]
= PT s. First, we analyze the effect of this change on the linear

constraints:

As = APv = [AP‖1 0m×(n−m)]v = AP‖1v‖1 = 0.

Since AT is in the range of P‖1, we may represent AT as AT = P‖1R1 with an m×m
invertible matrix R1. Thus the constraint

AP‖1v‖1 =
(
RT

1 PT
‖1

)
P‖1v‖1 = RT

1 v‖1 = 0,

implies that v‖1 = 0. Second, we examine the effect of the change of variables on the

quadratic approximation Q(s):

Q(s) = Q(Pv) = gTk (Pv) +
1

2
vTPTBkPv

= gTk (P2v2) +
1

2
vT2 PT

2 BkP2v2

= gTk (P2v2) +
1

2
vT2 Λ2v2

≡ q(v2),
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where we apply Lemma 5.2 to obtain the last equality. Observe that Q(Pv) ≡ q(v2) is

an quadratic objective function defined by the diagonal matrix of eigenvalues Λ2 and by

the n −m unknowns denoted as v2. Because the matrix in the transformed quadratic

objective function is diagonal, it will be straightforward to later separate it into different

subspaces. Since the change of variables relies on the eigendecomposition of the matrix

K−1
11 , we first develop an effective partial eigenfactorization of K−1

11 .

5.4.2 PARTIAL EIGENDECOMPOSITION OF K−1
11

Our approach to computing the eidendecomposition of (5.7) is based on factoring the

low rank matrix Uk ≡ ΨkMkΨ
T
k . Note that since Rank(Uk) = 2l +m, the matrix Uk

has only 2l+m non-zero eigenvalues. We denote the orthonormal basis that corresponds

to the nullspace of Uk as P⊥ ∈ Rn×(n−(2l+m)). In other words, the matrix P⊥ satisfies

UkP⊥ = 0. However, since the matrix P⊥ would be prohibitively expensive to compute

when n becomes large, we do not explicitly compute it in our approach. Next observe,

from e.g. (5.6), that K−1
11 AT = (δkI−Uk)A

T = 0 so that UkA
T = δkA

T . Therefore the

set of eigenvectors of Uk, corresponding to the repeated eigenvalue δk, can be expressed

as P‖1 = AT (AAT )−1/2. We thus represent the factorization of Uk as

Uk = [AT Ψ̂k]Mk

[
A

Ψ̂T
k

]
= [P‖1 P‖2 P⊥]

 δkIm

D−1
2

0




PT
‖1

PT
‖2

PT
⊥

 , (5.12)

where D−1
2 ∈ R2l×2l is a diagonal matrix of eigenvalues, and the columns of the rect-

angular matrices P‖1 ∈ Rn×m, P‖2 ∈ Rn×2l, P⊥ ∈ Rn×(n−(2l+m)) represent mutually

orthogonal eigenvectors. Next we describe how to compute the non-zero eigenvalues in

the matrix D−1
2 and its corresponding eigenvectors in P‖2. Subsequently, we combine

the results to arrive at the implicit eigendecomposition of (5.7). First, deflate the right

hand side in (5.12), by substituting P‖1 = AT (AAT )−1/2, and by suppressing the zero

eigenvalues. In this way we obtain an identity for the eigenvectors P‖2 and eigenvalues

D−1
2 :

[AT Ψ̂k]

[
M11 −

(
AAT

)−1
M12

MT
12 M22

][
A

Ψ̂T
k

]
= P‖2D

−1
2 PT

‖2. (5.13)

Since 0 = PT
‖1P‖2 = (AAT )−1/2AP‖2, which means that AP‖2 = 0, then we apply the

orthogonal projection W = I −AT (AAT )−1A from the left and from the right to the

expression in (5.13), so that

WΨ̂kM22Ψ̂
T
kWT = P‖2D

−1
2 PT

‖2.
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Next compute the non-zero eigenvalues of WΨ̂kM22Ψ̂
T
kWT using an implicit QR fac-

torization of the matrix WΨ̂k ∈ Rn×2l. In particular, let WΨ̂k = QR where we do not

explicitly compute the orthogonal matrix Q ∈ Rn×2l, and where R ∈ R2l×2l is an up-

per triangular matrix. Then we explicitly compute the eigendecomposition of the small

matrix RM22R
T = VD̃−1

2 VT , where V ∈ R2l×2l is orthogonal and D̃−1
2 is a diagonal

matrix of eigenvalues. With this

WΨ̂kM22Ψ̂
T
kWT = QRM22R

TQT = QVD̃−1
2 RTVT .

Now, since QV is a matrix of orthonormal columns, and D̃−1
2 is diagonal we find that

QV = P‖2 and D̃−1
2 = D−1

2 . Note that Q is not explicitly computed, instead we

represent it with the identity QR = WΨ̂k as Q = WΨ̂kR
−1. Thus P‖2 has the

explicit form

P‖2 = QV = WΨ̂kR
−1V =

(
Ψ̂k −AT (AAT )−1AΨ̂k

)
R−1V.

To compute the upper triangular matrix R we set R = LD1/2, where we compute the

LDLT factorization (WΨ̂k)
TWΨ̂k = (QR)TQR = LDLT . Based on the previous

analysis we now obtain the implicit eigendecomposition of K−1
11 from (5.7). Since the

columns of P = [P‖1 P‖2 P⊥] ∈ Rn×n are mutually orthogonal, we obtain the factor-

ization

K−1
11 = δkI− [AT Ψ̂k]

[
M11 M12

MT
12 M22

][
A

Ψ̂T
k

]

= δkI− [P‖1 P‖2 P⊥]

 δkIm

D−1
2

0




PT
‖1

PT
‖2

PT
⊥



= [P‖1 P‖2 P⊥]

 0m

δkI2l −D−1
2

δkIn−(2l+m)




PT
‖1

PT
‖2

PT
⊥

 , (5.14)

where

P‖1 = AT (AAT )−1/2, P‖2 =
(
Ψ̂k −AT (AAT )−1AΨ̂k

)
R−1V, D−1

2 = D̃−1
2 .

Observe that the eigendecomposition only requires the computation of a few eigenvalues

(2l), corresponding to (δkI2l−D̃−1
2 ) explicitly. Moreover, we do not compute the columns

of the matrix P⊥ explicitly.
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5.4.3 SOLVING THE SHAPE-CHANGING SUBPROBLEM

This subsection describes the solution to the subproblem in (5.3), with the shape-

changing (P,∞)-norm:

‖s‖P,∞ ≡ max
(∥∥v‖∥∥∞ , ‖v⊥‖2) . (5.15)

Here we define v‖ = PT
‖ s =

[
PT
‖1s

PT
‖2s

]
=

[
v‖1
v‖2

]
, and v⊥ = PT

⊥s. Then, using the change

of variable s = Pv, the original minimization has an equivalent expression

minimize
‖s‖P,∞ ≤ ∆k

As = 0

Q(s) = minimize
‖Pv‖P,∞ ≤ ∆k

v‖1 = 0

Q(Pv).

The objective function Q(Pv) and the shape-changing norm now further decouple. First

recall, from Subsection 5.4.1, that Q(Pv) = q(v2). Then, denoting P2 = [P‖1 P‖2],

we define the vectors PT
2 gk ≡

[
PT
‖2gk

PT
⊥gk

]
=

[
g‖2
g⊥

]
, and v2 ≡

[ v‖2
v⊥

]
. With the notation

Λ2 =

[
(δkI−D̃−1

2 )−1

γkI

]
≡
[

Λ̄2
γkI

]
, and the result of Lemma 5.2, then Q(Pv) separates

once more:

Q(Pv) = q(v2) = gTk (P2v2) +
1

2
vT2 PT

2 BkP2v2

= gT‖2v‖2 + gT⊥v⊥ +
1

2

(
vT‖2Λ̄2v‖2 + γk ‖v⊥‖22

)
.

In other words, the objective function can be further decoupled into the variables v‖2

and v⊥. Simultaneously, the shape-changing constraint also decouples into v‖2 and v⊥.

Since v‖1 = 0, then the norm constraint satisfies the equivalence relation:

max
(∥∥v‖∥∥∞ , ‖v⊥‖2) ≤ ∆k is equivalent to max

(∥∥v‖2∥∥∞ , ‖v⊥‖2) ≤ ∆k.

Using our analysis, the minimization of the subproblem (5.3) with the shape-changing

norm as defined in (5.15), is equivalent to the minimization of two decoupled diagonal-

ized problems

minimize
‖v‖2‖∞≤∆k

gT‖2v‖2 +
1

2
vT‖2Λ̄2v‖2 + minimize

‖v⊥‖2≤∆k

gT⊥v⊥ +
γk
2
‖v⊥‖22 .
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The two separated minimization problems can be solved analytically. Specifically, letting

λi ≡ [Λ̄2]ii = [(δkI− D̃−1
2 )−1]ii, then the solution of v∗‖2 is given, coordinate-wise, by

[v∗‖2]i =



− [g‖2]i
λi

if

∣∣∣∣ [g‖2]iλi

∣∣∣∣ ≤ ∆k and λi > 0,

c if
[
g‖2
]
i

= 0 and λi = 0,

−sgn(
[
g‖2
]
i
)∆k if

[
g‖2
]
i
6= 0 and λi = 0,

±∆k if
[
g‖2
]
i

= 0 and λi < 0,

− ∆k

|[g‖2]i|
[
g‖2
]
i

otherwise,

, (5.16)

where c is any real number in [−∆k,∆k] and ‘sgn’ denotes the signum function. The

minimizer v∗⊥ is given by

v∗⊥ = βg⊥, (5.17)

where

β =

−δk if δk > 0 and ‖δkg⊥‖2 ≤ ∆k,

− ∆k
‖g⊥‖2 otherwise.

(5.18)

Thus, v∗ =

 0

v∗‖2
v∗⊥

, yields the solution s∗, by using the transformation s∗ = Pv∗. Since

our method does not compute the large orthonormal matrix P⊥, the next subsection

describes a direct formula to compute s∗.

5.4.4 COMPUTING THE SOLUTION s∗

Observe that since P = [P‖1 P‖2 P⊥] is orthogonal, then PPT = P‖1P
T
‖1 + P‖2P

T
‖2 +

P⊥PT
⊥ = In. Therefore, P⊥PT

⊥ = In−P‖1P
T
‖1−P‖2P

T
‖2 and the previous computations,

yield

s∗ = Pv∗

= [P‖1 P‖2 P⊥]

 0

v∗‖2
v∗⊥


= P‖2v

∗
‖2 + P⊥v∗⊥

= P‖2v
∗
‖2 + βP⊥PT

⊥gk

= P‖2

(
v∗‖2 − βg‖2

)
+ β

(
In −AT

(
AAT

)−1
A
)

gk. (5.19)
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Ultimately, using the explicit form of P‖2 in (5.14), then s∗ is expressed by the formula

s∗ =
(
Ψ̂k −AT (AAT )−1AΨ̂k

)
R−1V

(
v∗‖2 − βg‖2

)
+ β

(
gk −AT

(
AAT

)−1
Agk

)
. (5.20)

The minimization using the shape-changing infinity from this section is summarized

in Algorithm 5.2:

ALGORITHM 5.2:

1. Initialization: ∆0 > 0,0 ≤ d− ≤ 1 ≤ d+, δ0 = 1/‖Wg0‖2, Ψ0 = AT , M0 =

δ0(AAT )−1, B0 = In, k = 0;

2. Set: sk = −
(
δkI−ΨkMkΨ

T
k

)
gk;

3. If ‖sk‖2 ≤ ∆k and f(xk + sk) < f(xk) then go to 6. otherwise go to 4.;

4. Set sk = s∗(eq.(5.20));

5. If f(xk + sk) < f(xk) then go to 6., otherwise ∆k = d−∆k go to 4.;

6. Set ∆k = d+∆k, xk = xk + sk, update Ψk,Mk,Bk,gk, δk, k = k + 1 go to 2.;

5.5 ANALYSIS

This section analyses the convergence properties of the two methods proposed in this

article. The analysis is based on the sufficient decrease principle, for trust-region meth-

ods [CGT00]. The sufficient decrease principle requires that a computed minimizer to

the trust-region subproblem reduces the quadratic approximation Q(s), by an satisfac-

tory amount. Specifically, in [YuaNA], for constrained trust-region subproblems, the

sufficient decrease condition is formulated as:

Q(0)−Q(s) ≥ cεk ·min(εk/‖Bk‖2,∆k), (5.21)

where c > 0, εk = ‖gk −ATρ‖2 and ρ ∈ Rm is a vector of Lagrange multipliers. If the

steps in a trust-region algorithm satisfy the condition (5.21), then global convergence

of the algorithm is deduced, as the method is guaranteed a sufficient improvement at

each accepted trial step [CGT00, YuaNA].

Observe that both proposed algorithms (statements 2.), first test the ’unconstrained’

minimizer sk = su = −K−1
11 gk from (5.5). Only if the length of this direction exceeds the

trust-region constraint, ‖su‖2 ≥ ∆k, then the steps computed by the two methods will

be different. The next subsection demonstrates that su satisfies the sufficient decrease

condition (5.21).
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5.5.1 SUFFICIENT DECREASE WITH THE ‘UNCONSTRAINED’

MINIMIZER su

First observe, from the definition of Wk in (5.6), that WT
k HkWk = HkWk. Then

substitute the unconstrained minimizer, sk = su = −K−1
11 gk = −HkWkgk into the left

hand side of (5.21), to obtain

Q(0)−Q(sk) = gTk HkWkgk − 1/2gTk WT
k HkWkgk

= 1/2gTk WT
k HkWkgk

≥ 1

2λ̂max

gTk WT
k Wkgk

≡ 1/2
(εuk)2

‖Bk‖2
= 1/2εuk ·min(εuk/‖Bk‖2,∆k), (5.22)

where εuk = ‖Wkgk‖2 = ‖gk −ATρu‖2 and where ρu is specified by the system in (5.5).

Comparing the last equality from (5.22) with (5.21), we conclude that the unconstrained

minimizer satisfies the sufficient decrease condition.

5.5.2 SUFFICIENT DECREASE WITH THE `2 CONSTRAINT

In Algorithm 5.1, with the `2 constraint the search direction is computed as

ŝ∗k = −Ĥ∗kŴ
∗
kgk = −(Bk + σ∗I)−1Ŵ∗

kgk,

where Ŵ∗
k is as defined below (5.9). Next it is demonstrated that ŝ∗k satisfies the

sufficient decrease condition. In particular, we propose

Lemma 5.3. The solution

ŝ∗k = −(Bk + σ∗In)−1
(
I−AT

(
A(Bk + σ∗In)−1AT

)−1
A(Bk + σ∗In)−1

)
gk

where σ∗ ≥ 0, of the trust-region subproblem in (5.2) defined by the `2-norm satisfies

the sufficient decrease condition from (5.21).

Proof. First, when σ∗ = 0 then ŝ∗k = su, so that the sufficient decrease condition is as

in (5.22). If σ∗ > 0, then ŝ∗k lies on the boundary, i.e. ‖ŝ∗k‖2 = ∆k. In this case, observe

that

(ŝ∗k)
T (Bk + σ∗I)ŝ∗k = (ŝ∗k)

TBksk + σ∗∆2
k = −(ŝ∗k)

TŴ∗
kgk = gTk (Ŵ∗

k)
T Ĥ∗kŴ

∗
kgk.
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Moreover, from the definition of Ŵ∗
k, it holds that (Ŵ∗

k)
T Ĥ∗kŴ

∗
k = Ĥ∗kŴ

∗
k. Therefore

Q(0)−Q(ŝ∗k) = −(gTk ŝ∗k + 1/2(ŝ∗k)
TBkŝ

∗
k)

= −
(
gTk ŝ∗k + 1/2(gTk (Ŵ∗

k)
T Ĥ∗kŴ

∗
kgk − 1/2σ∗∆2

k)
)

= −
(
−gTk Ĥ∗kŴ

∗
kgk + 1/2(gTk (Ŵ∗

k)
T Ĥ∗kŴ

∗
kgk − 1/2σ∗∆2

k)
)

= 1/2gTk (Ŵ∗
k)
T Ĥ∗kŴ

∗
kgk + 1/2σ∗∆2

k.

Since Ĥ∗k = (Bk + σ∗I)−1 we deduce that
‖Ŵ∗

kgk‖22
λ̂max+σ∗

≤ gTk (Ŵ∗
k)
T Ĥ∗kŴ

∗
kgk. Moreover

since

∆2
k = (ŝ∗k)

T ŝ∗k = gTk (Ŵ∗
k)
T (Ĥ∗k)

2Ŵ∗
kgk ≤

‖Ŵ∗
kgk‖22

(λ̂min + σ∗)2
,

an upper bound on σ∗ is: σ∗ ≤ ‖Ŵ∗
kgk‖2
∆k

. Letting εlk = ‖Ŵ∗
kgk‖2 = ‖gk − AT ρ̂∗‖2,

where ρ̂∗ is specified by the system in (5.8), then the inequalities hold

Q(0)−Q(sk) = 1/2gTk (Ŵ∗
k)
T Ĥ∗kŴ

∗
kgk + 1/2σ∗∆2

k

≥ 1/2gTk (Ŵ∗
k)
T Ĥ∗kŴ

∗
kgk

≥ 1/2

(
(εlk)

2

λ̂max + σ∗

)
≥ 1/2

(
(εlk)

2

‖Bk‖2 + εlk∆
−1
k

)
.

Now consider two cases. Case 1 is defined by the condition ‖Bk‖2 > εlk∆
−1
k , which

means that Q(0)−Q(sk) ≥ 1/4 · (εlk)2/‖Bk‖2. Case 2 is defined when ‖Bk‖2 < εlk∆
−1
k ,

which means that Q(0)−Q(sk) ≥ 1/4 · εlk∆k. Therefore we conclude that the sufficient

decrease condition of (5.21), with the `2 constraint, holds as:

Q(0)−Q(sk) ≥ 1/4εlk ·min(εlk/‖Bk‖2,∆k),

where εlk = ‖gk −AT ρ̂∗‖2. �

5.5.3 SUFFICIENT DECREASE WITH THE SHAPE-CHANGING

CONSTRAINT

Note from Section 5.4.1 that the quadratic objective function has an equivalent repre-

sentation in a transformed space, i.e. Q(s) = q(v2). This relation connects the sufficient

decrease condition in the transformed space to the same condition in the original space.

Lemma 5.4. The solution

s∗ = Pv∗ = P

[
0

v∗2

]
,
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in (5.19) to the trust-region subproblem in (5.3) defined by the shape-changing norm

(5.15), satisfies the sufficient decrease condition (5.21).

Proof. Represent

v∗2 = −


θ1,1

. . .

θ2l,2l

βIn−(m+2l)

g2 ≡ −Θ2g2,

where

θi,i =


1
λi

if

∣∣∣∣ [g‖2]iλi

∣∣∣∣ ≤ ∆k

−∆k[g‖2]i
|[g‖2]i|

otherwise,

and where β is as defined in (5.18). Observe that the component-wise inequality Θ2Λ2 ≤
I holds. Thus

Q(0)−Q(s∗) = −q(v∗2) = −
(

gT2 v∗2 +
1

2
(v∗2)TΛ2v

∗
2

)
= −

(
−gT2 Θ2g2 +

1

2
gT2 Θ2Λ2Θ2g2

)
≥ 1

2
gT2 Θ2g2

≥ 1

2
gT2 g2min (1/λmax,∆k/‖g2‖2)

=
1

2
‖g2‖2min (‖g2‖2/‖Λ2‖2,∆k) .

Moreover,

‖g2‖22 = gTk P2P
T
2 gk = ‖(I−AT (AAT )−1A)gk‖22 ≡ ‖gk −ATρPk ‖22,

where ρPk ≡ (AAT )−1Agk. Since PT
2 BkP2 = Λ2 and therefore ‖Bk‖2 ≥ ‖Λ2‖2, the

sufficient decrease condition from (5.21) holds as

Q(0)−Q(s∗) = −q(v∗2) ≥ 1/2‖g2‖2min (‖g2‖2/‖Λ2‖2,∆k)

≥ 1/2εPk ·min
(
εPk /‖Bk‖2,∆k

)
,

where εPk = ‖gk −ATρPk ‖2. �

5.5.4 CONVERGENCE

The convergence of algorithms 5.1 and 5.2 will be established in a theorem, which invokes

the theory developed by Conn et al. [CGT00]. To be consistent with [CGT00], our
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result is based on the assumptions: A. The objective function f(x) is twice continuously

differentiable, it is bounded from below (f(x) ≥ k−), and the Hessian is bounded from

above (∇2f(x) ≤ k+). B. The constraints are twice continuously differentiable, and they

are consistent. C. A first order constraint qualification holds at a stationary point x∗.

D. The quadratic approximation Q(s) is twice continuously differentiable, and E. The

quasi-Newton matrix Bk is invertible for all k, i.e., the lowest eigenvalue λmin is bounded

from 0, and the largest eigenvalue λmax is bounded from infinity. These properties are

shown for the L-BFGS matrix in [BGYZ16]. Finally we note that

1√
l +m

‖s‖2 ≤ ‖s‖P,∞ ≤
√
l +m‖s‖2,

which relates the shape-changing norm to the `2-norm (cf. Section 2.5.4), and ensures

a measure of ‘closeness’ to the `2-norm . We thus propose

Theorem 5.5. Suppose that the eigenvalues of Bk are bounded, i.e., 0 < cl ≤ λ̂min ≤
λ̂max < cu for some constants cl and cu. Then every limit point of the sequence of iterates

xk,xk+1, . . . generated by algorithm 5.1, or by algorithm 5.2, is first order critical.

Proof. The algorithms proposed in this section have the same form as Algorithm 12.2.1

p. 452 [CGT00], which is included here for completeness. Note that the algorithm is

reproduced almost literally, except for slight adaptations in order to be consistent with

the problem formulation of this chapter.

ALGORITHM 5.3 (Algorithm 12.2.1 in [CGT00])

Step 0: Initialization. An initial feasible point x0 and an initial trust-region radius

∆0 are given. The constants 0 < ε1 ≤ ε2 < 1 and 0 < γ1 ≤ γ2 < 1 are also given.

Compute f(x0) and set k = 0.

Step 1: Model definition. Define a model Q(s) subject to As = 0, ‖s‖ ≤ ∆k.

Step 2: Step calculation. Compute a step sk that sufficiently reduces the modelQ(s)

in the sense of (5.23) and (5.24), while sk satisfies the constraints from Step 1;

Step 3: Acceptance of the trial point. Compute f(xk + sk) and define the ratio

ρk =
f(xk)− f(xk + sk)

Q(0)−Q(sk)
.

If ρk ≥ ε1, then define xk+1 = xk + sk; otherwise define xk+1 = xk.
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Step 4: Trust-region radius update. Set

∆k+1 ∈


[∆k,∞) if ρk ≥ ε2,

[γ2∆k,∆k] if ρk ∈ [ε1, ε2),

[γ1∆k, γ2∆k] if ρk < ε1.

Increment k by 1 and go to Step 1.

Algorithm 12.2.1 converges to a first order critical point, as long as the steps sk

satisfy the sufficient-decrease condition

Q(0)−Q(sk) ≥ cπkmin (πk/‖Bk‖2,∆k) , (5.23)

where 0 < c < 1, and

πk =

∣∣∣∣ minimize
‖s‖2≤1

gTk s

∣∣∣∣ subject to As = 0. (5.24)

Observe that by solving the minimization in (5.24) that πk is expressed as

πk =
∥∥(In −AT (AAT )−1A)gk

∥∥
2

= εPk ,

where εPk is as specified in the proof of lemma 5.4. Therefore we conclude that algorithm

5.2 satisfies the sufficient decrease condition (5.23), and consequently converges to a

critical point. In the `2-norm algorithm we have

εlk =
∥∥gk −AT ρ̂∗

∥∥
2

=
∥∥(In −AT (A(Bk + σ∗In)−1AT )−1(A(Bk + σ∗In)−1)gk

∥∥
2

≥ λ̂min + σ∗

λ̂max + σ∗

∥∥(In −AT (AAT )−1A)gk
∥∥

2

=
λ̂min + σ∗

λ̂max + σ∗
πk.

By assumption there exist two positive constants cl and cu, so that 0 < cl ≤ λ̂min ≤
λ̂max < cu and thus

εlk ≥ cl/cuπk,

where cl/cu ≥ 1. Therefore we conclude that algorithm 5.1 also satisfies (5.23), and

thus converges to a critical point. �
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5.6 NUMERICAL EXPERIMENTS

This section describes numerical experiments of comparing the two methods that we

developed in this article, namely Algorithms 1 and 2, which we label as TR–`2 and

TR–(P,∞), respectively. We perform four sets of experiments. In Experiment I, we

generated synthetic convex quadratic problems with linear equality constraints as test

problems. In Experiment II, we considered problems from CUTEst with linear con-

straints. Among the selected linear problems we filter for the ones that have fewer con-

straints than unknowns. Even though many of the problems selected in this way include

inequality and bound constraints, the test is are carried out as if all constraints were

equality constraints. In Experiment III, we use 62 large-scale unconstrained CUTEst

problems, and impose synthetically generated linear equality constraints on the un-

constrained problems. The fourth part applies extensions of our methods in order to

solve a nonlinearly constraint problem. Performance profiles (see [DM02]) are provided,

when they yield additional insights. In particular, we compare the number of iterations

(iter) (when the trust-region step is accepted) and the average time (time) for each

solver on the test set of problems. The performance metric, ρ, with a given number of

test problems, np, is

ρs(τ) =
card {p : πp,s ≤ τ}

np
and πp,s =

tp,s
min tp,i
1≤i≤S

,

where tp,s is the “output” (i.e., time or iterations) of “solver” s on problem p. Here S

denotes the total number of solvers for a given comparison. This metric measures the

proportion of how close a given solver is to the best result. Throughout this section,

the two proposed algorithms are regarded to have converged when two conditions are

simultaneously satisfied:

∥∥gk −AT (AAT )−1Agk
∥∥

2
≤ ε1max (1, ‖xk‖2) and ‖Axk − b‖2 ≤ ε2.

Typically we set ε1 = 1 × 10−3 and ε2 = 1 × 10−5. Other parameters in the algorithm

are d− = 1/4, d+ = 2 and l = 5. The implementations and tests are carried out in

MATLAB.

5.6.1 EXPERIMENT I

The purpose of this experiment is to test the convergence properties of the algorithms,

and to compare their performances as the problem dimension n varies. In particular,

we randomly generate the problem data

Q ∈ Rn×n, g ∈ Rn, A ∈ Rm×n, b ∈ Rm,
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where the matrix Q is positive semidefinite, and where we define the objective functions

as f(x) = gTx+1/2xTQx. We setm = 10 and vary n ∈ {20, 50, 100, 1000, 5000, 7000, 10000}.
The results of running the two methods are summarized in Fig. 5.1:
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Figure 5.1 Performance profiles comparing iter (left) and time (right) of applying TR–`2 and
TR–(P,∞) on convex quadratic problems with varying dimension sizes.

We observe that both solvers converge on all test problems, and that TR–(P,∞)

performs well in terms of time and iterations.

5.6.2 EXPERIMENT II

The purpose of this experiment is to apply our algorithms to a set of standard test

problems that are of the form (5.1). In this context, we filter the CUTEst library

for problems with linear constraints, and dimensions of the form 1 ≤ m ≤ 200 and

201 ≤ n < ∞. Among the problems that are selected, using the above search criteria,

many include linear inequality constraints, or bounds on the variables. In our tests we

treat all inequalities as equality constraints, and do not attempt to satisfy the bounds.

The selected problems are

We report whether a algorithm converged on a particular problem (conv), the num-

ber of function evaluation it required (fval) and times (time).

We observe that for this set of problems, the number of function evaluations for both

solvers exactly coincide. A reason for this is that the algorithms, on the problems with-

out an error, stopped quickly within only two iterations. We reiterate that even though

Table 5.2 indicates that an algorithm converged, this only means that the stopping

criteria were met, when all constraints are treated as linear equality constraints. The

computed solutions may be very different from the solutions to the original problems.
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Problem Equalities Inequalities Bounds
PRIMAL1 0 1 1
PRIMAL2 0 1 1
PRIMAL3 0 1 1
PRIMAL4 0 1 1
PRIMALC1 0 1 1
PRIMALC2 0 1 1
PRIMALC5 0 1 1
PRIMALC8 0 1 1
STATIC3 1 0 0
TABLE7 1 0 1
TABLE8 1 0 1

Table 5.1
CUTEst problems with linear constraints that satisfy 1 ≤ m ≤ 200 and 201 ≤ n <∞. Here a ‘1’
indicates that the particular constraint type is present in the problem. For example PRIMAL1
has no equality constraints, but it has inequality and bound constraints. Here m is the sum of
the number of constraints from each type, i.e., m = mEq. +mIn. +mBo.

Problem conv `-2 fval `-2 time `-2 conv (P,∞) fval (P,∞) time (P,∞)
PRIMAL1 1 8 2.7 ×10−3 1 8 3.0 ×10−3

PRIMAL2 1 7 4.6 ×10−3 1 7 4.8 ×10−3

PRIMAL3 1 6 6.1 ×10−3 1 6 6.3 ×10−3

PRIMAL4 1 5 6.4 ×10−3 1 5 7.9 ×10−3

PRIMALC1 1 33 1.6 ×10−3 1 33 1.6 ×10−3

PRIMALC2 1 33 1.5 ×10−3 1 33 1.5 ×10−3

PRIMALC5 1 30 1.7 ×10−3 1 30 1.8 ×10−3

PRIMALC8 1 34 1.9 ×10−3 1 34 2.0 ×10−3

STATIC3 0 77 5.6 ×10−3 0 77 5.9 ×10−3

TABLE7 1 1 6.0 ×10−3 1 1 8.3 ×10−3

TABLE8 1 1 3.1 ×10−3 1 1 2.4 ×10−3

Table 5.2
CUTEst problems with linear constraints that satisfy 1 ≤ m ≤ 200 and 201 ≤ n <∞.

5.6.3 EXPERIMENT III

This experiment is to benchmark our algorithms on a set of large-scale problems. In

this test we use 62 large-scale unconstrained CUTEst problems, and add randomly gen-

erated linear equality constraints to the objective functions. The number of equality

constraints is fixed to m = 10. To set up the test problems, first we fix a seed to

the random number generator using the command rng(090317);. Then we invoke the

unconstrained CUTEst objective function. The linear constraints are generated using

the command A = randn(m,n)/norm(x0); where x0 is the initial vector formed by the

initialization of the CUTEst problem. We provide a list of the CUTEst objective func-

tions from this experiment in the Appendix.The results of running the two methods are

summarized in Fig. 5.2:

We observe that TR–(P,∞) performs well in terms of time, which may be con-

tributed to the fact that this method computes a trust-region step using a formula.
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Figure 5.2 Performance profiles comparing iter (left) and time (right) of applying TR–`2 and
TR–(P,∞) on large-scale CUTEST problems with randomly added linear equality constraints.

5.7 SUMMARY

In this chapter we develop two limited memory quasi-Newton trust-region methods,

when linear equality constraints are present. The methods differ by the use of the norm

that defines the trust-region subproblem. The advantage of the novel method based on

the so-called shape-changing norm is that a search direction step can be computed using

an analytic formula. Numerical experiments indeed indicate that the proposed method

yields savings in computational times, when compared with the `2-norm trust-region

solver implementation.



CHAPTER 6

OBLIQUE PROJECTION

MATRICES

This chapter is based on the manuscript “On the Eigendecomposition and Singular

Values of Oblique Projection Matrices”, J. J. Brust, R. F. Marcia and C. G. Petra

which is currently in preparation.

6.1 MOTIVATION

We present the eigendecomposition of oblique (non-symmetric) reduced-rank projec-

tion matrices, and develop an efficient algorithm to compute their singular values. The

eigendecomposition can be used in computing pseudo-inverses in applications of oblique

projection matrices, while the singular values define the spectral norm of these matri-

ces. Oblique projection matrices arise in contexts such as systems of linear inequali-

ties, constrained optimization and signal processing [CE02, BS94]. In previous research

[Ste89, O’L90, FS01], bounds on the spectral norm of oblique projections are proposed.

However, instead of computing bounds on the spectral norm of oblique projections, we

compute the spectral norm directly based on an analysis of the form of the singular

values.

6.2 REPRESENTATION OF OBLIQUE PROJECTIONS

The oblique projection matrix W ∈ Rn×n is defined by the properties

WW = W and W 6= WT , (6.1)

where Rank(W) = n − m. Based on the first property, W itself spans the space of

eigenvectors that have associated eigenvalues of repeated ones. Since the matrix is

also of low-rank, the remaining eigenvalues are zeros. Thus any diagonalizable oblique

109
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projection matrix can be represented as:

W = In −XMYT , (6.2)

where the matrices X ∈ Rn×m, and Y ∈ Rn×m are full column rank matrices, and where

M = (YTX)−1. Because of the first property in (6.1), the matrix XMYT = In −W is

an oblique projection matrix itself. We assume that m� n.

6.3 RELATED WORK

In Steward [Ste89] and O’Leary [O’L90] an analysis of the spectral norm of oblique

projections is proposed. In particular, the matrices are defined by In −W where Y =

XD, and where D ∈ Rn×n is a positive definite diagonal matrix. The main result of

the two articles is that

∥∥X(XTDX)−1XTD
∥∥

2
≤
(

min
I

inf+ (UI)

)−1

,

where inf+ (UI) symbolizes the smallest non-zero singular value of any submatrix UI of

an orthonormal basis U ∈ Rn×m to X. In this chapter, we analyze the eigendecompo-

sition of oblique projections by expressing them in the form W = In −X(XTY)−1YT ,

and explicitly compute their singular values. As a corollary, the spectral norm is then

inferred as the largest singular value.

6.4 EIGENDECOMPOSITION

Begin with the observation (XMYT )X = X, so that

WX = (In −XMYT )X = 0.

Morover, since X is of full column rank this also means that the columns of X span the

nullspace of W. Denote an orthonormal basis of Range(X) by Q ∈ Rn×m. Then define

the orthogonal complement of Q by Q⊥ ∈ Rn×(n−m), so that

In = [ Q Q⊥ ][ Q Q⊥ ]T = [ Q Q⊥ ]T [ Q Q⊥ ]. (6.3)

Then observe that XQ⊥ = 0n×(n−m), and therefore

W(WQ⊥) = WQ⊥.
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This implies that, since Q⊥ is the orthogonal complement of the nullspace of W, the

matrix

WQ⊥ = Q⊥ −XMYTQ⊥ ≡ Z (6.4)

corresponds to the eigenvectors with eigenvalue 1. Using the columns of Z we form the

matrix S = [ XM Z ] ∈ Rn×n, which allows us to eigendecompose W. In particular,

S and its inverse S−1 are key in the diagonalization of W. The inverse of S is described

next.

Lemma 6.1. The square matrix

S = [ XM Z ] , (6.5)

has the explicit inverse

S−1 =

[
YT

QT
⊥

]
. (6.6)

Proof. The proof is based on showing that S−1 is the right, and the left inverse of S,

respectively. First observe from (6.3) that

Q⊥QT
⊥ = In −QQT ,

and thus W(Q⊥QT
⊥) = W(In −QQT ) = W. Thus, for the right inverse

SS−1 = [ XM Z ]

[
YT

QT
⊥

]
= XMYT + ZQT

⊥

= XMYT + (Q⊥ −XMYTQ⊥)QT
⊥

= XMYT + (In −XMYT )(In −QQT )

= XMYT + (In −XMYT )

= In.

For the left inverse, since QT
⊥X = 0, then QT

⊥W = QT
⊥. Moreover, from (6.1) YTW =
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0, so that

S−1S =

[
YT

QT
⊥

]
[ XM Z ]

=

[
YTXM YTZ

QT
⊥XM QT

⊥Z

]

=

[
Im YTWQ⊥

QT
⊥XM QT

⊥Q⊥

]

=

[
Im

In−m

]
.

�

Based on Lemma 6.1, we propose the eigendecomposition of W in the next theorem.

Theorem 6.2. The oblique projection matrix W from (6.2), is eigendecomposed as

W = SΛS−1, (6.7)

where the left eigenvectors are the columns of S−1 from (6.6) and the right eigenvec-

tors are the columns of S from (6.5), respectively. The diagonal matrix Λ ∈ Rn×n of

eigenvalues is given by

Λ =

[
0m

In−m

]
.

Proof. Observe the fundamental identity

SΛS−1 = [ XM Z ]

[
0m

In−m

][
YT

QT
⊥

]
= ZQT

⊥

= (In −XMYT )Q⊥QT
⊥

= (In −XMYT )(In −QQT )

= (In −XMYT )

= W.

�

6.5 SINGULAR VALUES

To compute the singular values of W we compute the eigenvalues of WWT . Specifically,

we proceed by applying three similarity transformations, which yield
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Theorem 6.3. The singular values of the oblique projection matrix W from (6.2) are

the diagonal elements of the matrix

Θ =

 Im + ΣTΣ

In−2m

0m×m

 . (6.8)

Proof. The singular values of W are equivalent to the eigenvalues of WWT . Therefore

we apply similarity transformations to WWT , which reduce the matrix to a triangular

form. First let P = [ Q⊥ Q ] so that

PTWWTP =

[
In−m QT

⊥WTQ

QTWQ⊥ QTWWTQ

]
.

Then let upper triangular matrices be given by

R =

[
In−m −QT

⊥WTQ

Im

]
,

and

R−1 =

[
In−m QT

⊥WTQ

Im

]
.

The second similarity transformation is computed as

R−1PTWWTPR =

[
I QT

⊥WTQ

I

][
I QT

⊥WTQ

QTWQ⊥ QTWWTQ

][
I −QT

⊥WTQ

I

]

=

[
In−m QT

⊥WTQ

Im

][
In−m 0(n−m)×m

QTWQ⊥ 0m×m

]

=

[
In−m + (QT

⊥WTQ)(QT
⊥WTQ)T 0(n−m)×m

QTWQ⊥ 0m×m

]
.

Therefore m eigenvalues of WWT are 0, while the remaining eigenvalues are the

eigenvalues of the matrix In−m + (QT
⊥WTQ)(QT

⊥WTQ)T ≡ I + ΨΨT , where Ψ ≡
QT
⊥WTQ. A key observation is that the dimensions of Ψ are (n − m) × m. Since

m� n, then m� (n−m). Denote the SVD of Ψ by

Ψ = UΣVT ,

where U ∈ R(n−m)×(n−m), Σ ∈ R(n−m)×m with σ1 ≥ σ2 ≥ . . . ≥ σm ≥ 0, and V ∈
Rm×m. Then I + ΨΨT = U(I + ΣΣT )UT . Applying the similarity transformation
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K =

[
U

Im

]
, yields the lower triangular matrix

KTR−1PTWWTPRK =

[
U

I

]T [
I + (QT

⊥WTQ)(QT
⊥WTQ)T 0

QTWQ⊥ 0

][
U

I

]

=

[
UT (In−m + ΨΨT )U 0

QWTQT
⊥ 0

]

=

[
In−m + ΣΣT 0(n−m)×m

QWTQT
⊥ 0m×m

]
. (6.9)

Therefore the non-zero eigenvalues of WWT are the non-zeros elements of the diagonal

matrix In−m+ΣΣT , and the matrix Θ from (6.8) combines all eigenvalues of WWT . �

6.6 ALGORITHM

The non-zero singular values σi can be efficiently computed as the eigenvalues of the

small (m×m) matrix ΨTΨ , i.e.,

ΨTΨ = (Q⊥WTQ)TQ⊥WTQ = QTWWTQ = VΣTΣVT .

The algorithm to compute the eigenvalues of WWT is:

ALGORITHM 6.1:

1. Compute Q, the orthonormal basis of X;

2. Compute the eigenvalues of
(
QTWWTQ

)
= Σ2 with σ1 ≥ σ2 ≥ . . . ≥ σm;

3. Form

eig
(
WWT

)
=

 Im + Σ2

In−2m

0m×m

 ;

Corollary 6.4. The spectral norm is computed by

‖W‖2 =
√

1 + σ2
1.

6.7 NUMERICAL EXPERIMENTS

We demonstrate the effectiveness of Algorithm 6.1 when the oblique projections in

(6.2) become large. In particular, we randomly generate the matrices X ∈ Rn×m and

Y ∈ Rn×m, with M = (YTX)−1. Throughout the experiments m is fixed to the
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value of m = 4 while n varies between 101 ≤ n ≤ 106. For comparison we com-

pute the singular values of (6.2) also using a standard build-in MATLAB function.

For dimensions of n > 5, 000, MATLAB exceeded our computational time budget of

30 seconds, which is why we omit to report its results beyond n = 5, 000. To com-

pare the accuracy of Algorithm 6.1 with the build-in function, we define the quantity

error ≡
√∑n

i=1((σ2
i )

ALG.6.1 − (σ2
i )

MTLB.
)2/n. Here (σ2

i )
ALG.6.1

and (σ2
i )

MTLB.
rep-

resent singular values, computed by the two respective methods. We also display the

scaled spectral norm of ‖W‖2/n and report the time (in seconds) to compute all singular

values with the two methods.

n ‖W‖2/n (ALG.6.1) ‖W‖2/n (MTLB.) time (ALG.6.1) time (MTLB.) error

10 0.5866 0.5866 0.0003 0.0001 1.0× 10−15

100 0.9168 0.9168 0.0001 0.0026 9.0× 10−14

1000 0.4712 0.4712 0.0001 0.3036 5.3× 10−9

3000 0.6829 0.6829 0.0002 6.6539 1.3× 10−11

5000 0.6845 0.6845 0.0002 28.6290 2.6× 10−11

10000 0.1938 N/A 0.0003 N/A N/A
100000 0.5508 N/A 0.0044 N/A N/A
1000000 0.6409 N/A 0.0382 N/A N/A

Table 6.1
Comparison of Algorithm 6.1 with the build-in MATLAB function eig to compute the singular
values of oblique projection matrices (6.2). The build-in function is only used to compute singular
up to n = 5, 000, because beyond this value it becomes exceedingly slow.

6.8 SUMMARY

In this chapter we describe the eigendecomposition of oblique projection matrices, which

may be used in the computation of pseudo-inverses. We derive expressions for the sin-

gular values of oblique projection matrices, which enabled us to develop an effective

algorithm to compute the singular values of large-scale oblique projections. The pro-

posed method may be potentially used to assess the reliability of computations with

large-scale oblique projection matrices, because it can be used to compute the spectral

norm efficiently.



CHAPTER 7

SUMMARY

In this dissertation, I have focused on the development of novel methods for large-scale

quasi-Newton trust-region methods. A significant component of the dissertation is in

the realm of applying and inventing approaches from numerical linear algebra. For

large-scale quasi-Newton trust-region subproblems, two high-accuracy solvers are pro-

posed; the OBS method, and the SC-SR1 method, which use partial eigendecompositions

of L-SR1 quasi-Newton compact factorizations. In Chapter 3 we develop a trust-region

method for large-scale unconstrained minimization. The novelty introduced by this

method is that instead of a standard multiple of identity initial quasi-Newton matrix

a more sophisticated dense initial matrix is used. Chapter 4 proposes a trust-region

method when the less known indefinite limited-memory multipoint symmetric secant

(L-MSS) matrix approximates the Hessian. Based on L-MSS matrices two approaches

to solve trust-region subproblems are developed. One approach is based on an par-

tial eigendecomposition of the quasi-Newton matrix, while the other approach exploits

properties of MSS matrices to derive a formula for the `2-norm trust-region subprob-

lem solution. The final two chapters propose methods in the context of large-scale

equality constrained optimization. Specifically, we develop a matrix factorization of the

(1,1) block of the inverse Karush-Kuhn-Tucker matrix, which in combination with non

standard norms, yields analytic solutions of linear equality constrained trust-region sub-

problems. In addition, we find the eigendecomposition of oblique projection matrices

and develop an algorithm to efficiently compute the singular values of these matrices.

Overall, I envision my future efforts to focus on the development of novel mathe-

matical methods that are available in the form of software tools. I am highly motivated

to continue any established collaborations, and will actively seek new opportunities in

order to pursue my goals.
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Appendix A

THE RECURSIVE MSSM

UPDATE FORMULA

This appendix spells out the details of deriving the recursive update formula in (4.7).

Here we define s̄ = sk − s0 and ȳ = yk − y0, so that Sk+1 and Yk+1 are written as

Sk+1 =
(
Sk + s̄eTn

)
P̄ and Yk+1 =

(
Yk + ȳeTn

)
P̄.

The product STk+1Yk+1 is computed as

STk+1Yk+1 = P̄T
(
STkYk + SkȳeTn + ens̄

TYk + ens̄
T ȳeTn

)
P̄ ≡ P̄TΘP̄,

where we define Θ ≡ STkYk + SkȳeTn + ens̄
TYk + ens̄

T ȳeTn in order to simplify the

notation. The symmetrization transformation has a special property when it is applied

to a matrix that is permuted by P̄T and P̄. In [Bur83] eq. (2.4) it is established that

for any square matrix B ∈ Rn×n

sym
(
P̄TBP̄

)
= P̄T

(
sym(B) +

(
B−BT

)
ene

T
n + ene

T
n

(
BT −B

))
P̄.

In the same reference, it is also noted that the symmetrization transformation is a

linear operation in terms of its arguments, i.e., sym (B + C) = sym (B) + sym (C) for
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any square matrices B,C ∈ Rn×n. Therefore

Γk+1 = sym
(
STk+1Yk+1

)
= sym

(
P̄TΘP̄

)
= P̄T

(
sym (Θ) +

(
Θ−ΘT

)
ene

T
n + ene

T
n

(
ΘT −Θ

))
P̄

= P̄T

(
sym

(
STkYk

)
+
(
STk yk −YT

k s0

)
eTn

+ en
(
yTk Sk − sT0 Yk

)
+ s̄T ȳene

T
n

)
P̄.

Since Sk+1 is assumed to be a square invertible matrix, its inverse can be computed by

the Sherman-Morrison-Woodbury formula

S−1
k+1 = P̄T

(
S−1
k +

1

sTk S−Tk en

(
en − S−1

k sk
) (

S−Tk en

)T)
≡ P̄T

(
S−1
k + α

(
en − S−1

k sk
)
cTk
)
,

where ck ≡ S−Tk en and α ≡ 1/sTk ck. Our goal now is to separate the expression

Bk+1 = S−Tk+1Γk+1S
−1
k+1

= S−Tk+1

(
P̄T
(
sym

(
STkYk

)
+
(
STk yk −YT

k s0

)
eTn

+ en
(
yTk Sk − sT0 Yk

)
+ s̄T ȳene

T
n

)
P̄

)
S−1
k+1,

into simpler components in order to reveal the recursive relation. Therefore we start

with the term S−Tk+1P̄
T sym

(
STkYk

)
P̄S−1

k+1. Since sym
(
STkYk

)
= Γk and Γken =(

Lk + Ek + LTk
)
en = YT

k s0, then

S−Tk+1P̄
T sym

(
STkYk

)
P̄S−1

k+1 = Bk + α

((
S−Tk YT

k s0 −Bksk

)
cTk

+ ck

(
S−Tk YT

k s0 −Bksk

)T )
+ α2ck

(
en − S−1

k sk
)T

Γk
(
en − S−1

k sk
)
cTk .

Next we note that

S−Tk+1P̄
T
((

STk yk −YT
k s0

)
eTn
)
P̄S−1

k+1 = α

(
yk + S−Tk YT

k s0

+ αck
(
en − S−1

k sk
)T (

STk yk −YT
k s0

))
cTk ,
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and observe that

s̄T ȳS−Tk+1P̄
Tene

T
n P̄S−1

k+1 = α2s̄T ȳckc
T
k .

Now, combining the previous expressions results in

Bk+1 = S−Tk+1Γk+1S
−1
k+1

= Bk + α
(
S−Tk YT

k s0 −Bksk

)
cTk + αck

(
S−Tk YT

k s0 −Bksk

)T
+ α

(
yk + S−Tk YT

k s0 + αck
(
en − S−1

k sk
)T (

STk yk −Yks0

))
cTk

+ α2ck

(
s̄T ȳ + 2

(
en − S−1

k sk
)T (

STk yk −Yks0

)
+
(
en − S−1

k sk
)T

Γk
(
en − S−1

k sk
))

cTk

= Bk + α
(

(yk −Bksk) cTk + ck (yk −Bksk)
T
)

+ α2ck

(
s̄T ȳ + 2

(
en − S−1

k sk
)T (

STk yk −Yks0

)
+
(
en − S−1

k sk
)T

Γk
(
en − S−1

k sk
))

cTk

= Bk + α
(

(yk −Bksk) cTk + ck (yk −Bksk)
T
)
− α2sTk (yk −Bksk)ckc

T
k . (A.1)

By substituting α = 1/sTk ck into (A.1), we verify that this equation is the same as the one

from (4.7). In [Bur83] it is observed that the recursive MSSM formula remains unchanged

if instead of ck = S−Tk en any multiple of this vector is chosen, e.g., dk = βck = βS−Tk en

for β ∈ R. Based on this observation, it is deduced that if k < n, (the matrix Sk ∈ Rn×k

does not have a square inverse), that any vector ck can be used to define (A.1) as long

as cTk [ sk−1 · · · s0 ] = 01×(k−1). In other words, cTk shares the properties of a column

in the inverse matrix, if this matrix were to exist.



Appendix B

THE MSSM COMPACT

REPRESENTATION

In this appendix the details of deriving the compact representation from (4.9) are de-

scribed. In particular, we start from the expression

Bk = ([ Sk Ck ]T )−1

[
Γk YT

k Ck

CT
kYk CT

kB0Ck

]
([ Sk Ck ])−1

=
[

Sk(S
T
k Sk)

−1 Ck

] [ Γk YT
k Ck

CT
kYk CT

kB0Ck

] [
Sk(S

T
k Sk)

−1 Ck

]T
. (B.1)

Expanding the representation in (B.1) we obtain

Bk = Sk(S
T
k Sk)

−1Γk(S
T
k Sk)

−1STk +

CkC
T
kYk(S

T
k Sk)

−1STk + Sk(S
T
k Sk)

−1YT
k CkC

T
k + CkC

T
kB0CkC

T
k . (B.2)

From the definition of Ck, the matrix CkC
T
k is the orthogonal projection onto the

nullspace of Sk, and it has the expression

CkC
T
k = In − Sk(S

T
k Sk)

−1STk .

First compute

CkC
T
kYk(S

T
k Sk)

−1STk = Yk(S
T
k Sk)

−1STk − Sk(S
T
k Sk)

−1STkYk(S
T
k Sk)

−1STk

≡ YkΞkS
T
k − SkΞkS

T
kYkΞkS

T
k ,
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where (STk Sk)
−1 ≡ Ξk. Secondly compute

CkC
T
kB0CkC

T
k = B0 −B0Sk(S

T
k Sk)

−1STk − Sk(S
T
k Sk)

−1STkB0

+ Sk(S
T
k Sk)

−1STkB0Sk(S
T
k Sk)

−1STk

≡ B0 −B0SkΞkS
T
k − SkΞkS

T
kB0 + SkΞkS

T
kB0SkΞkS

T
k .

With the latter two terms the expression in (B.2) becomes

Bk = B0 + SkΞk(Γk − STkYk −YT
k Sk + STkB0Sk)ΞkS

T
k +

(Yk −B0Sk)ΞkS
T
k + SkΞk(Y

T
k − STkB0).

With equations (4.3) and (4.4) from Section 4.2, then

Γk − STkYk −YT
k Sk = Lk + Ek + LTk − (Lk + Ek + Tk)− (LTk + Ek + TT

k )

= −(Tk + Ek + TT
k ).

By combining the previous two terms, we obtain

Bk = B0 + SkΞk

(
STkB0Sk − (LTk + Ek + TT

k )
)
ΞkS

T
k

+ (Yk −B0Sk)ΞkS
T
k + SkΞk(Y

T
k − STkB0)

= B0 + ΨkMkΨ
T
k ,

where

Ψk ≡ [Sk (Yk −B0Sk)] , Mk ≡

[
Ξk

(
STkB0Sk − (LTk + Ek + TT

k )
)
Ξk Ξk

Ξk 0

]
.

This is the compact representation of the MSSM matrix as in (4.9).



Appendix C

TABLE OF CUTEST

PROBLEMS

Problem n Problem n
ARWHEAD 5000 GENHUMPS 5000
BDQRTIC 5000 LIARWHD 5000
BOX 10000 MOREBV 5000
BROYDN7D 5000 MSQRTALS 1024
BRYBND 5000 NCB20 5010
COSINE 10000 NONCVXU2 5000
CRAGGLVY 5000 NONCVXUN 5000
CURLY10 10000 NONDIA 5000
CURLY20 10000 NONDQUAR 5000
CURLY30 10000 PENALTY1 1000
DIXMAANA 3000 POWELLSG 5000
DIXMAANB 3000 POWER 10000
DIXMAANC 3000 TESTQUAD 5000
DIXMAAND 3000 JIMACK 3549
DIXMAANE 3000 NCB20B 5000
DIXMAANF 3000 EIGENALS 2550
DIXMAANG 3000 EIGENBLS 2550
DIXMAANH 3000 QUARTC 5000
DIXMAANI 3000 SCHMVETT 5000
DIXMAANJ 3000 SINQUAD 5000
DIXMAANK 3000 SPARSQUR 10000
DIXMAANL 3000 SPMSRTLS 4999
DIXON3DQ 10000 SROSENBR 5000
DQDRTIC 5000 TOINTGSS 5000
DQRTIC 5000 TQUARTIC 5000
EDENSCH 2000 TRIDIA 5000
EG2 1000 VAREIGVL 50
ENGVAL1 5000 WOODS 4000
EXTROSNB 1000 SPARSINE 5000
FLETCHCR 1000
FMINSRF2 5625
FREUROTH 5000

Table C.1
Unconstrained CUTEst problems used in EXPERIMENT III.
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