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Abstract

Circuit-QED and Quantum Feedback Control

by

Hanhan Li

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Birgitta Whaley, Co-chair

Associate Professor Irfan Siddiqi, Co-chair

Quantum computation and quantum information are an emerging research field that in-
volves both physics, computer science, and engineering. The quantum nature of our world
can be harnessed to dramatically improve the way we store, transmit, and process informa-
tion. The first part (Chap. 1) of this thesis presents the theory behind quantum information
science and gives a survey of some fascinating topics in this area. The second part (Chap. 2
and 3) studies dissipative quantum systems, which helps us understand the challenges facing
all real quantum information processors. The third part (Chap. 4 and 5) discusses how we
may use control strategies to fight dissipation and protect quantum information. The last
part (Chap. 6 and 7) of this thesis describes circuit-QED systems, a solid state implemen-
tation of quantum computers that has become increasingly popular over the years due to
great controllability and scalability. Most of my independent contributions are contained in
Chap. 3, 4, 5, and Sec. 6.3.1, 7.3.
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Chapter 1

Introduction

1.1 Prologue

Quantum information science studies how quantum mechanical effects influences computer
science and information theory. The birth of this field dates back to the 1980s when pioneers
like Manin [70] and Feynman [28] realized that a quantum computer allows us to perform
certain simulations much more efficiently than a classical one, and that its reversibility nat-
urally avoids the heat dissipation problem. Quantum information science took an explosive
growth afterward, characterized by the milestone events such as Charles Bennett and Gilles
Brassard’s secure cryptographic key distribution protocol in 1984 [5], Peter Shor’s factoring
algorithm in 1994 [106], Lov Grover’s database search algorithm in 1996, the Loss-DiVincenzo
quantum computer proposal in 1997 [67]. It is nowadays a major research field that encom-
passes quantum computing, quantum complexity theory, quantum communication, quantum
communication complexity, quantum error correction, entanglement information, superdense
coding, teleportation, etc.

In this chapter, we will walk through some preliminary concepts about density operators
and quantum operations. We will then take a glimpse of two fascinating subjects in the field,
quantum algorithms and quantum cryptography.

1.2 Density Operators

The state of a quantum system can be represented by a vector in a Hilbert space if we have
complete information about it. Such a state is called a pure state. In practice, we often know
a collection of states {|ψk〉} the system might be in, and the probability pk associated with
each one of them. Obviously

∑
k

pk = 1. States like this which we lack perfect knowledge

about are called mixed states. The mathematical quantity we use to represent a mixed state
is the following density operator:
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ρ =
∑
k

pk |ψk〉 〈ψk| . (1.1)

For a given basis, we can write down the density operator as a density matrix. It’s easy to
see that a density operator is Hermitian, positive semi-definite, and has unit trace. The unit
trace property follows directly from probabilities adding up to one.

The Density Operator for a Qubit

Figure 1.1: The Bloch sphere

The density matrix for a qubit can be ex-
pressed as

ρ =
1

2
(I + xσx + yσy + zσz), (1.2)

with the real coefficients x, y, and z satis-
fying x2 + y2 + z2 ≤ 1. It turns out x, y,
and z are the expectation values of the cor-
responding Pauli operators. For example,
x = 〈σx〉. One can geometrically represent
a qubit state by a point with coordinates
(x, y, z) in 3D, and it is located within
a unit sphere called the Bloch sphere as
shown on the left. Also, when you mix two
states with some weights, you just need to
take the arithmetic average of the repre-
senting points with these weights to com-
pute the resulting state. The Bloch vec-
tor (the vector from the origin to the rep-

resenting point) has a nice property: it transforms just like a ordinary vector under
SO(3)rotations! One can check that pure states reside on the surface of the sphere and
mixed states reside inside the sphere. A pure state labeled by θ and φ in the spherical
coordinates corresponds to the state

|ψ〉 = cos(
θ

2
) |0〉+ exp(iφ) sin(

θ

2
) |1〉 . (1.3)

It might sound a bit strange that we use the density operator instead of {pk} and {|ψk〉} to
describe a mixed state. Indeed, different statistical mixtures of pure states may correspond to
the same density operator. For a spin-1

2
system, equal mixture of the two σz eigenstates and
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equal mixture of the two σx eigenstates both give rise to the density operator 1
2
I. Therefore,

it seems that we throw away some information about the system by inventing the density
operator, but we will soon see that what we throw away is exactly the irrelevant information.
Let us first follow the line of logic in Ref. [3] and derive some properties of density operators.

How does the density operator change when we evolve the system from time ti to tf? Let
the unitary time evolution operator be U , then

ρ(tf ) =
∑
i

pk |ψk(tf )〉 〈ψk(tf )|

=
∑
i

pkU |ψk(ti)〉 〈ψk(ti)|U †

= U(
∑
i

pk |ψk(ti)〉 〈ψk(ti)|)U †

= Uρ(ti)U
†. (1.4)

Next, how does the density operator change when we make a quantum measurement? let
{Vi} be the eigenspaces of a measurement operator O, and Pi be the projection operation
onto Vi. (The projections obey the rules Pi = P †i , PiPj = δijPi, and

∑
i

Pi = 1.) The

probability of getting measurement result i, i.e. collapsing into the space Vi, is given by:

p(i) =
∑
k

pk 〈ψk|Pi |ψk〉

=
∑
k

pk 〈ψk|Pi
∑
j

|j〉 〈j |ψk〉

=
∑
j

〈j|
∑
k

pk |ψk〉 〈ψk|Pi |j〉

= Tr(ρPi). (1.5)

Suppose we obtain result i, what would be the density operator immediately after the mea-
surement? We know that if the system is initially in the pure state ψk, the post-measurement
state would be ∣∣ψ′k|i〉 =

Pi |ψk〉√
〈ψk|Pi |ψk〉

. (1.6)

We also need to know the probability of being in such a state to calculate the density
operator. The prior probability for the pre-measurement state to be |ψk〉 is pk, but the proper
probability to use is the posterior probability p(k|i) given that the measurement result is
i. They are related by the Bayes rule, p(k|i) = p(i|k)pk/p(i), where p(i|k) = 〈ψk|Pi |ψk〉.
Therefore, the post-measurement density operator conditioned on result i is:

ρ′i =
∑
k

p(k|i) |ψ′k〉 〈ψ′k| =
PiρPi

Tr(ρPi)
. (1.7)
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Also, it’s easy to check that the expectation value of the observable O is

〈O〉 = Tr(ρO). (1.8)

The above equations are basic quantum mechanical laws written in the density operator
picture. Let us then come back to the question raised earlier in this section. Does the density
operator fail to capture everything because different statistical mixtures may yield the same
density operator? We see from Eq. 1.5 that the measurement statistics depends solely on
the density matrix ρ instead of specific ways of mixtures. Also we see from Eq. 1.4 and
1.7 that post-evolution and post-measurement density operators can be written in terms the
pre-evolution and pre-measurement density operators. Hence, there is no way to distinguish
two mixed states that have the same density operator, no matter what kinds of evolution
and measurement we perform. Conversely, it’s easy to show that mixed states described
by different density operators are distinguishable by performing projective measurements.
Therefore, the density operator provides the most precise way to describe a mixed state.

Quantum Smoothing

Does a density operator always suffice to describe the state of a system? Not for quan-
tum smoothing [134]. Consider again two states of the spin-1

2
system that have the same

density operator 1
2
I: 1. Equal mixture of the two σz eigenstates |0〉 and |1〉; 2. Equal

mixture of the two σx eigenstates |+〉 and |−〉. (|±〉 ≡ (|0〉±|1〉)/
√

2.) Suppose we make
a σz measurement and the result comes out to be +1. Then we ask the following ques-
tion: what was the state of the system before the measurement given the measurement
outcome? For case 1, we know |1〉 cannot yield outcome +1, so the pre-measurement
state should be the pure state |0〉, diag{1, 0} in the density matrix notation. For case
2, both |+〉 and |−〉 will yield outcome +1 with the same probability 50%, so the pre-
measurement state is still equally likely to be |+〉 and |−〉, 1

2
I in the density matrix

notation. Therefore, we get completely different answers for different mixtures that have
the same density operator. These kinds of problems where we try to estimate the state
in the past are called smoothing problems. A hybrid classical-quantum density opera-
tor is needed to properly describe a state [22]. As long as we do not backtracking states
conditioned on measurement outcomes, the standard density operator formalism suffices.

Real quantum systems are often composite systems. For example, a cavity-QED setup
has an atom and photons as its subsystems. When we consider a composite system of two
subsystem 1 and 2, the Hilbert space is the tensor product of the Hilbert spaces associated
with each one of them, i.e., H = H1⊗H2. A generic state (which may be entangled) for the
bipartite system can be written as:

ρ =
∑
ij

∑
i′j′

ρij;i′j′ |i〉1 |j〉2 1〈i
′| 2〈j

′|. (1.9)
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If we want to focus our study on one subsystem, we can get its state by tracing over the
other subsystem. For example, the reduced density operator for the first system is

ρ1 ≡ Tr2ρ, (1.10)

where Tr2 denotes the partial trace:

Tr2ρ ≡
∑
j

2〈j|ρ |j〉2 , (1.11)

Let us explore some properties of the partial trace. Suppose the composite system evolves
under some separable operator U1 ⊗ U2. If at the end we just care about system 1, we can
trace over system 2 at the very beginning at consider system 1 all the way. Mathematically,

Tr2(U1 ⊗ U2ρU
†
1 ⊗ U

†
2) = U1(Tr2ρ)U †1 . (1.12)

Suppose we measure system 1 with some observable O1, whose eigenspace projection
operators are {P1i}. For the composite system, the projection operators are {Pi}, where
Pi = P1i ⊗ I2. We can again trace over system 2 even before the measurement because the
probability of collapsing onto the ith eigenspace is

Tr(ρPi) = Tr((Tr2ρ)P1i), (1.13)

and the reduced density operator of system 1 after measurement is

Tr2
PiρPi

Tr(ρPi)
=

P1i(Tr2ρ)P1i

Tr((Tr2ρ)P1i)
. (1.14)

One can similarly prove that a projective measurement on system 2 does not affect the
reduced density operator of system 1 at all.

Therefore, we can isolate a system by tracing over its environment if the system and
environment are evolved and measured separately in the future.

1.3 Quantum Operations

In this section, we will develop the formalism of quantum operations, which describe gener-
ically the dynamics of a quantum system. We will again follow the presentation of Ref.
[4].

First consider the so called system-bath model for a quantum operation. Let us use the
subscript 1 to denote the system and 2 to denote the bath. Consider the following initial
product state for the system and bath:

ρ = ρ1 ⊗ |0〉2 2〈0|. (1.15)
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We apply some unitary evolution operator U on the composite space and extract the reduced
density operator of the system:

ρ′1 = Tr2(UρU †) =
∑
j

2〈j|U |0〉2 ρ1 2〈0|U
† |j〉2 . (1.16)

where {|j〉2} is an orthonormal basis set for the bath. If we define the Kraus operators

Ej ≡ 2〈j|U |0〉2 , (1.17)

we can rewrite Eq. 1.16 as

ρ′1 =
∑
j

Ejρ1E
†
j . (1.18)

It’s easy to check that Kraus operators satisfy the following completeness relation:∑
j

E†jEj = I. (1.19)

Eq. 1.18 together with Eq. 1.19 defines a linear map S : ρ1 → ρ′1 from linear operators
to linear operators, and this map S is called a quantum operation. Eq. 1.18 is known as
the Kraus representation of a quantum operation. Please be aware that the same quantum
operation can have many different Kraus representations, and for an N dimensional Hilbert
space, we can always choose a representation where the number of Kraus operators is less
than equal to N2.

What we have shown so far is that the system-bath representation naturally produces
the Kraus representation. It’s not hard to reverse the procedure and show that any quantum
operation can be lifted to a unitary operator on a larger space. We first add an auxiliary
bath whose dimension matches the number of Kraus operators. A unitary operator U that
satisfies the following relation is a desired lift [4].

U |ψ〉1 |0〉2 =
∑
j

Ej |ψ〉1 |j〉2 . (1.20)

The completeness relation of {Ei} guarantees that U preserves inner products,

1〈ψ| 2〈0|U
†U |ψ〉1 |0〉2 =

∑
k

1〈ψ|E
†
kEk |φ〉1 = 1〈ψ |φ〉1, (1.21)

and can always be constructed. Therefore, the system-bath representation and the Kraus
representation of quantum operations are equivalent.

Now let us have a third definition of a quantum operation, which is more mathematically
abstract. A map S : ρ→ ρ′ is a quantum operation if and only if the following four criteria
are satisfied:

1. S is linear,
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2. S preserves hermiticity,

3. S preserves trace,

4. S is completely positive.

This definition of quantum operations is completely equivalent to the previous two, the proof
of which is a bit lengthy and is provided in Ref. [80].

The notion of quantum operations captures a wide range of dynamics like unitary evo-
lution, quantum measurement and stochastic changes. It is particularly useful for describ-
ing open quantum systems, as we see from the system-bath model. We can also general-
ize the concept of a quantum operation to include non-trace-preserving operations where
Tr(S(ρ)) ≤ 1 is allowed, which can describe processes like post-selection by measurement.
However, for the purpose of this thesis, we will stick with the trace-preserving definition of
quantum operations.

1.3.1 Generalized measurements

Let us move on and define what is called a generalized measurement. This is described by a
set {Mi} of measurement operators that satisfy the completeness relation∑

i

M †
iMi = I. (1.22)

If the pre-measurement state is given by the density operator ρ, then with probability

pi = Tr(M †
iMiρ) (1.23)

the measurement gives outcome i and the post-measurement state becomes

ρ′i =
MiρM

†
i

Tr(M †
iMiρ)

. (1.24)

Hence, the unconditioned post-measurement state is

ρ′ =
∑
i

MiρM
†
i . (1.25)

As its name suggests, a generalized measurement generalizes the concept of a projective
measurement, where {Mi} are orthogonal projectors. Please be aware if we identify Mi

with the Kraus operators, Eq. 1.25 takes exactly the form of a Kraus representation of
a quantum operation. Therefore, the overall effect of a generalized measurement is also a
quantum operation.

How does a generalized measurement come about? Not surprisingly, we can model an
arbitrary generalized measurement on the system by adding an auxiliary bath. As before,



CHAPTER 1. INTRODUCTION 8

we will consider an initial product state ρ = ρ1 ⊗ |0〉2 2〈0| and a unitary evolution U on the
combined space. U is defined by its following action:

U |ψ〉1 |0〉 =
∑
j

Mj |ψ〉1 |j〉2 , (1.26)

We then make a projective measurement {Pi} on the bath in the standard basis, namely
Pi = I1 ⊗ |i〉2 2〈i|. One can check that the measurement gives outcome i with probability

pi = Tr(UρU †Pi) = Tr(M †
iMiρ), (1.27)

and the post-measurement state would be

ρ′i =
PiUρU

†Pi
Tr(UρU †Pi)

=
MiρM

†
i

Tr(M †
iMiρ)

. (1.28)

Hence, the generalized measurement on a system naturally arises from a unitary evolution of
system and bath followed by a non-degenerate projective measurement on the bath, which
is a manifestation of Neumark’s theorem discussed in Ref. [84].

1.3.2 POVM’s

A positive operator-valued measurement(POVM) we often encounter is very similar to a
generalized measurement. It is characterized by a set of positive semi-definite operators
{Fi}(POVM elements) such that ∑

i

Fi = I. (1.29)

The above partition of unity with operators is called an operator-valued measure, and hence
the name POVM. Measuring the state ρ gives outcome i with probability

Tr(Fiρ), (1.30)

and a POVM does not make any assumption about the post-measurement states. Because
M †

iMi is automatically positive semi-definite, and a positive semi-definite matrix can always
be written as M †

iMi, the definition of measurement statistics in a POVM is equivalent to that
in a generalized measurement, and a generalized measurement is a POVM. The following
is an example of dynamics captured by POVM’s. A system and bath initially start with a
product state, and a generic projective measurement is performed on the combined space.
The conditioned post-measurement state cannot be written in a simple form as Eq. 1.24 in
general, but the outcome probabilities are given by Eq. 1.30 with appropriately chosen {Fi}
as in a POVM.
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1.4 Quantum Algorithms

Quantum computing is a fascinating application of quantum mechanics in computer science.
Because a quantum system can provide a much larger space for states and operations than a
classical system can, and a sort of parallelism is intrinsic to quantum superposition, quantum
computers are potentially more powerful than a classical computer. In this thesis, we will
use exclusively the circuit model of quantum computation. In this model, a collection of
two-level systems (called quantum bits or qubits) is served as a quantum register. We apply
quantum operations called gates (which are analogous to classical gates like NOT and AND)
on them and make measurement to obtain the results. This model is easy to understand
and close to experiment implementations. There are other models like one-way quantum
computers, adiabatic quantum computers, and topological quantum computers. The above
four models are all shown to be equivalent to the more abstract model, the quantum Turing
machine.

For a qubit, we always choose some orthonormal basis states |0〉, |1〉 to represent value
0 and 1 of a bit. This basis is called computational basis or standard basis. For a n-qubit
register, we follow the usual rule of a digital representation of a number (i.e. the most
significant digit at the left) and use a single number to denote a basis state. For example,
|4〉 = |1〉 |0〉 |0〉.

To get an idea of the huge power of quantum computers, consider a n-qubit register. The
Hilbert space is 2n dimensional, so a general state will be a superposition of the 2n basis
states as follows:

|ψ〉 =
2n∑
i=1

ci |i〉 . (1.31)

If we apply a unitary gate U on it, output gate would be

U |ψ〉 =
2n∑
i=1

ciU |i〉 . (1.32)

Classically a gate acts on one state at a time, but the quantum gate U seams to act simulta-
neously on all 2n basis states, and the results of all of them are encoded in the output state
to some extend. This is why there is some intrinsic parallelism at work in a quantum opera-
tion. However, extracting useful information out of the output states is extremely difficult.
A simple measurement collapses a quantum states, destroys most of the information, and the
outcome gives little knowledge about the state. One typically needs to engineer the initial
state, the quantum gates, as well as the measurement procedure in order to utilize the power
of a quantum operation, which is quantum algorithms all about. The most famous algorithm
classes so far are quantum search based algorithms and quantum Fourier transform based
algorithms, and we will talk about how these two basic algorithms work.

Before we dive into quantum algorithms, let us walk through some elementary gates we
will often encounter in quantum computing. Two useful single qubit gates are the Hadamard
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gate and the phase shift gate. The Hadamard gate is defined as

H =
1√
2

[
1 1
1 −1

]
. (1.33)

This gate transforms the computational basis {|0〉,|1〉} into the so called Hadamard basis
{|+〉,|−〉}, which correspond to the two poles on the x axis in the Bloch sphere. The phase
shift gate is defined as

Rz(δ) =

[
1 0
0 exp(iδ)

]
. (1.34)

This gate shifts the relative phase of |1〉 to |0〉, and it is basically a rotation of angle θ about
the z axis.

The controlled-NOT (CNOT) gate is a two-qubit gate that is very important for quantum
computation. It is defined by its action on the basis states, i.e. CNOT(|x〉 |y〉) = |x〉 |x⊕ y〉
with x, y=0, 1, and ⊕ means XOR operation. The gate applies a NOT operation on
the second (target) qubit conditioned on the first (control) qubit being 1. The matrix
representation of a CNOT gate is 

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (1.35)

We can similarly define a C-U gate for any unitary operator U . It applies U on the target
qubit if the control qubit is 1. For (k + 1)-qubit system, we can define a Ck-U gate, which
applies U on the target qubit if all the k control qubits are 1. Fig. 1.2 shows how to represent
these gates in a circuit diagram.

CNOT gates are very useful for entanglement generation. Moreover, CNOT gates are so
powerful that an arbitrary unitary operation on n qubits can be constructed from one-qubit
gates and two-qubit CNOT gates. Namely, these gates forms a universal set for quantum
computation.

Suppose we have an integer function f(x):{0, 1}n → {0, 1}m that we want to evaluate.
Classically, we just need to construct a gate with n inputs and m outputs that implement
this function. We may not be able to implement f directly in a quantum gate because
unitary operations are reversible while f might not be. However, we can always embed a
function f into a reversible function f̃ :{0, 1}m+n → {0, 1}m+n as

f̃(x, y)) = (x, y ⊕ f(x))), (1.36)

where x is n-bit, y is m-bit, and ⊕ is the bitwise XOR operation. The actually result f(x)
is just the last m bits of f̃(x, 0)). This f̃ defines a unitary operator Uf , which is sometimes
called the oracle operator.
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(a) The CNOT gate (b) The C2-U gate

Figure 1.2: Circuit representations of the CNOT gate (controlled by one qubit) and a general
unitary gate (controlled by two qubits).

1.4.1 Quantum Search

The unstructured database search problem is concerned with the finding one particular item
in an unstructured database. It can be phrased in terms of an ordinary search problem
which is important for the study of many computer science problem such as the NP class.
The search problem can be described as follows. Suppose we would like to find one marked
item x0 among {0,1,...,N − 1}. We have at our disposal a function f :{0, 1}n → {0, 1} with
n ≥ log(N)which checks if the input is the marked one:

f(x) =

{
1 if x = x0,
0 otherwise.

(1.37)

The problem is to find x0 with fewer queries of an oracle operator of f as possible. For a
quantum algorithm, this oracle O is usually defined by1

|x〉 O−→ (−)f(x) |x〉 . (1.38)

A classical algorithm can do no better than an exhaustive search of all the possibilities and
the complexity is O(N). However, Grover showed that a quantum algorithm can solve it in
O(
√
N) queries and let us see how it works.

Besides the oracle O, let us define the following operator D that can also act on the n
qubit system:

D = 2 |S〉 〈S| − I, (1.39)

1It can be constructed from the standard oracle operator, Eq. 1.36 by setting the second register |y〉 to
|−〉.
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where |S〉 is the equal superposition state:

|S〉 =
1√
2n

2n−1∑
x=0

|x〉 . (1.40)

D is sometimes referred to as the inversion about mean operator. Grover’s iterator is defined
as

G = DO. (1.41)

The initial state of the n qubits is set to |S〉, which can be obtained from |0〉 by applying
a Hadamard gate on each qubit. We will repeatedly apply Grover’s iterator, and the state
is going to reach pretty close to |x0〉 at some point. To see why, let us have a geometric
representation of Grover’s iteration as in Fig. 1.3. The figure plots a (real) 2-D plane
spanned by |x0〉 and |S〉. Let

∣∣x⊥0 〉 denote the state orthogonal to |x0〉, and θ be the angle
between |S〉 and

∣∣x⊥0 〉. If a state |ψ〉 is on this plane, O is a reflection operation about
∣∣x⊥0 〉,

and D is a further reflection about |S〉. The combined effect, i.e. the Grover iteration, is
a counterclockwise rotation of angle 2θ. It is easy to see for a large N , k ≈ π

4θ
≈ π

4

√
N =

O(
√
N) applications of the iterator achieves the goal. A simple measurement in the standard

basis at the end will reveal |x0〉 with high probability.
It can be shown that Grover’s algorithm is asymptotically optimal, namely, there is no

search algorithm that can do better than O(
√
N) queries.

Let us now come back to a point we glossed over at the beginning of this subsection. How
can the unstructured database search problem be phrased in terms of the search problem? It
seems that the function f already knows what x0, and what is the point of making all these
queries? It turns out f just verifies if the input is the desired answer, and we can implement
f without knowing what it is.

In the database search problem, the database contains items {d0,d1,...,dN−1}. We know
that a particular item dx0 we are searching appears exactly once in the database, and we
would like to find the index x such that dx = dx0 . We basically need a function f given by
Eq. 1.37 that checks this condition. Classically, the oracle gate of f can be built out of a
random access memory(RAM) where we can retrieve dx and a comparison circuit to check
dx = dx0 . However, to build this quantum oracle operator O of f , we need a bit more effort.

Let each item in the database be m-bit, and we will use n ≥ log(N) bits for addressing.
We also assume that the database is stored in a quantum RAM [35] where we can access a
superposition of addresses. We will need three registers with n, m, and m bits respectively.

|x〉 |0〉 |dx0〉
LD−→|x〉 |dx〉 |dx0〉

CMP−−−→(−)f(x) |x〉 |dx〉 |dx0〉
LD−→(−)f(x) |x〉 |0〉 |dx0〉
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Figure 1.3: Geometric visualization of Grover’s iteration [3].

The initial states of the registers are indicated in the diagram above. We first apply the
LD operation, which loads from the quantum RAM the item dx addressed by the first register
to the second register: LD(|x〉 |y〉) = |x〉 |dx ⊕ y〉. We then apply the CMP operation, which
flips the sign of the state if the values of the second and third register are the same. We finally
applies the LD operation again to reset the state of the second register. The combined effect
of this three unitary operations is exactly the oracle operator indicated in Eq. 1.38 since
the last two register values are unchanged. Therefore we constructed this operator without
knowing x0, and reduced the unstructured database search problem into the standard search
problem.
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1.4.2 The quantum Fourier transform

The quantum Fourier transform is a unitary operator F on a register of n qubits (N = 2n).
It is defined by its action on the basis states:

F (|j〉) =
1√
N

N−1∑
k=0

exp(2πijk/N) |k〉 . (1.42)

The transformation of the coefficients of any state under the application of F is exactly the
discrete Fourier transform.

Figure 1.4: A circuit implementing the quantum Fourier transform [3]. The input bits are
laid out with the most significant one on the top and output bits with the most significant
one on the bottom.

The quantum Fourier transform can be implemented in O(n2) elementary operation as
shown in Fig. 1.4, where Rk in the diagram denotes the phase shift operator Rz(

2π
2k

). The
fastest known classical algorithm, the fast Fourier transform, requires O(N log(N)) = O(2nn)
elementary operations [17], which is exponentially slower than the quantum counterpart.
There is a caveat however. The result in the quantum Fourier transform is encoded in the
amplitudes of a superposition state and we may not access all the information.

The debut of Shor’s algorithm for integer factorization in 1994 revolutionized people’s
understanding of quantum algorithms. It is believed to be in the complexity class NP but
not P, and many modern cryptographic algorithms are based on the hardness of this prob-
lem. The best known classical algorithm requires exp(O(n1/3(log n)2/3)) operations [18] while
Shor’s algorithm requires only O(n2 log n log(log n)) operations [106]. The Shor’s algorithm
is based on period finding, which is in term based on the quantum Fourier transform. Some
other applications of the quantum Fourier transform include discrete logarithms, the hidden
subgroup problem, and etc.
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1.4.3 Conclusions

The class of problems that can be efficiently solved by quantum computers is called BQP
(bounded error, quantum, polynomial time). It is the counterpart of BPP (bounded error,
probabilistic, polynomial time) on classical computers. It is speculated that BQP contains
part of NP but not NP-complete. The integer factorization problem, which is in BQP, is
widely believed to be outside P . Please refer to Ref. citenielsen2010quantum for a detailed
discussion. The field of quantum computing is still in its infancy, and there is much to be
done before we can tell how powerful quantum computers are.

1.5 Quantum Cryptography

1.5.0.1 Public-key Cryptosystems

In this era of rapid technological and social development, information exchange among peo-
ple all over the global becomes increasingly important and frequent. Cryptography helps
us encrypt a message so that it can only be decrypted by authorized parties. The most
commonly used cryptosystem today is the public-key cryptosystem, which is the foundation
for secure online transactions. The sender encrypts the message with the public key of the
receiver, and only the receiver can decrypt it because no one else knows the secret key. The
function of the public-key cryptosystem relies on the concept of one-way functions with a
trapdoor: It takes a classical computer exponentially long time to compute the function in
the reverse direction compared with the forward direction without knowing the trapdoor. A
well known implementation of the public-key cryptosystem is the RSA algorithm, which is
related to the computational complexity of factoring the product of two large prime num-
bers [74]. However, these kinds of algorithms pose ever increasing security concerns. First,
there is no proof of the existence of any one-way function with a trapdoor, and it may be
possible to realize the reverse computation of the one-way functions used today with some
advancement of mathematics. Second, the quantum factorization algorithm developed by
Peter Shor could do the prime factorization (and complete the reverse computation) in poly-
nomial time. These risks of the widely used public-key cryptosystems call for alternative
encryption methods.

1.5.0.2 Secret-key Cryptosystems

Secret-key Cryptosystems use the same key, which is kept secret between the sender and the
receiver, to encrypt and decrypt the message. The most common example of this kind is
the one-time pad. If both parties somehow manage to obtain a complete random key which
is at least as long as the message, the sender could send the binary sum of the message
and the key, and the receive could recover the message by subtracting the key from it. The
cryptogram does not provide any information to a third party since it is just as random as the
secret key. Everything works fine so far, but the problem with the one-time pad lies on the
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practical difficulty in distributing such keys to only designated receivers. Authorities that
have high security demands would typically use a courier to deliver such keys. However, not
only is sending couriers inconvenient, but there is not a “physical principle” that prevents a
human from abusing keys. Moreover, one-time pad is so called because it is no longer secure
when used more than once. For example, an eavesdropper may distill the binary sum of the
original two messages by taking the binary sum of the messages encrypted with the same
key. Therefore, we need to keep sending couriers as we have more and more messages to
deliver. What we really desire is a method to automatically distribute the secret key whose
security is guaranteed by physical laws.

1.5.0.3 Quantum Key Distribution

When traditional information transmission is no longer believed to be secure, quantum me-
chanics comes into rescue. Some properties of quantum mechanics seem to be designed for
cryptography: a measurement will in general perturb a system; it is impossible to clone a
quantum state; entanglement creates non-classical correlation between measurement results
separated by remote distances. In a classical channel between Alice and Bob, Eve may
well intercept the signal, get the information, and resend it to Bob. However, in quantum
mechanics, Eve cannot duplicate the signal, and any measurement attempting to obtain
information from it might reveal her existence. Therefore, it is feasible to distribute a se-
cret key using a quantum mechanical channel, which is known as quantum key distribution
(QKD). It is the main topic in quantum cryptography.

1.5.1 QKD protocols

1.5.1.1 Prepare-and-measure protocols

In prepare-and-measure protocols, Alice sends to Bob a sequence qubits, which encodes a
secret key. Bob makes measurements on the qubits received and obtains the key based on
the measurement results. These protocols do not require quantum computation or storage,
and are feasible to implement nowadays or in near future. The first QKD protocol ever
proposed, the BB84 protocol [5], belongs to this category. It is named after its inventor
Charles Bennett and Gilles Brassard. According to the protocol, Alice transmits states in a
2-D Hilbert space, for example, the photon spin system. We will work in two different bases,
with basis 1 constituting vertical (|90 >) and horizontal (|0 >) polarizations, and basis 2
constituting plus 45◦ (|45 >) and minus −45◦ (| − 45 >) polarizations. Furthermore, we
interpret |90 > and |45 > as value 1, |0 > and | − 45 > as value 0 in a binary digit. Alice
sends a sequence of photons chosen randomly among these four states, and Bob measures
the incoming photons with polarizations chosen randomly between these two bases. Then
Alice and Bob communicate through a classical channel about which bases they use to send
or measure the photons (not the polarizations) and keep the data when they use the same
one. They are left with about half of the digits where their data are perfectly correlated,
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which can be used as a secret key. In the protocol, it is crucial that Alice and Bob randomize
among the bases and polarizations. Let us suppose Eve intercepts the photons, measures the
polarizations in the bases of her choice, and resends them to Bob after her measurements,
which is known as the an intercept-resend attack. Randomization ensures that there is a 50
percent probability that she uses a different basis compared to the one Alice and Bob use for
each qubit; there is also a 50 percent probability that Bob will obtain the right measurement
result if the photon is polarized in a different basis. Therefore, Eve will create a 25% error
rate, which may well reveal her presence. Also keep in mind that Eve guesses correctly for
about 75% of the qubits. There are a lot of protocols similar to BB84. One can use two non-
orthogonal states or six states in the 2-D Hilbert space. In the latter, Alice randomizes among
six states, which correspond to the intersections of x, y, and z axes with the Poincare sphere
centered at the origin, and Bob makes measurements in the bases randomly chosen from the
three bases. This protocol will best preserve the symmetry of the system. Other prepare-
and-measure protocols include randomizing with unequal probabilities over the states and
working in dimensions higher than 2. However, it is far from clear which protocols are most
effective.

1.5.1.2 Entanglement based protocols

Entanglement based protocols usually utilize EPR pairs to generate secret keys. They were
first developed by Artur Ekert in 1991 [26]. A source generates a sequence of photon pairs in
singlet states. One photon in each pair is sent to Alice and the other to Bob, the same setup
in the Bell’s measurements. Then both of them measure the incoming photon spins with
polarizations randomly chosen from the two bases described in the BB84 protocol. Because
of the entanglement, they will get perfectly correlated results whenever they use the same
measurement basis. Therefore, they could use the scheme in the BB84 to establish the sifted
key. Photon pairs in other bell states may also be used. In these protocols, the secret keys
are generated by measurements in quantum mechanics and are ensured to be random.

1.5.2 Eavesdropping Analysis

1.5.2.1 Error Correction and Privacy Amplification

Ideally, the sifted key obtained in the protocols described earlier can be used as a one-time
pad. However, in a real system there will be a significant Quantum Bit Error Rate (QBER) in
the sifted key, due to the imperfectness of the sources and detectors, the loss in the channels
of transmission, and potential eavesdropping. However, we need to make our protocols secure
even if the QBER is entirely due to Eve’s interference. Let us suppose the outcome of their
measurements provide Alice, Bob, and Eve random variables a, b, and e, respectively, with a
joint probability distribution P (a, b, e). Consequently, the last step in a QKD protocol often
uses classical algorithms, first to correct the errors, and then to reduce Eve’s information on
the final key to a negligible level, a process called privacy amplification [36]. Here, I would
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like to state a theorem in information theory [19]: For a given P(a,b,e), Alice and Bob can
establish a secret key (using only error correction and classical privacy amplification) if and
only if I(a, b) ≥ I(a, e) or I(a, b) ≥ I(b, e), where I(a, b) is the mutual information between
a and b. In general, Alice and Bob will first compare part of the sifted key to estimate
the QBER and then calculate the mutual information. This theorem guarantees a secure
key using only one-way communication if Bob has more information than Eve about Alice’s
qubits, and they will abort the communication otherwise. A cascade protocol is typically
used to make error corrections. This scheme operates in several rounds, and in each round
both keys are divided into blocks and the parity of those blocks is compared. If a difference
in parity is found then a binary search is performed to find and correct the error. If an error
is found in a block from a previous round that had correct parity then another error must be
contained in that block; this error is found and corrected as before. This process is repeated
recursively, which is the source of the cascade name. After all blocks have been compared,
Alice and Bob both reorder their keys in the same random way, and a new round begins.
At the end of multiple rounds Alice and Bob will have identical keys with high probability.
Privacy amplification uses Alice and Bob’s key to produce a new, shorter key, in such a way
that Eve has only negligible information about the new key. Let us consider a pedagogical
example where Eve knows that each bit of the secret key has a Bernoulli distribution B(p)
over 0 and 1 with 1

2
< p < 1. Suppose Alice and Bob divide the key into pairs of bits and

form a new key of half the length by taking the binary sum of each pair. Then, to Eve, each
bit of the new key has a distribution B(p

′
) with p

′
= p2 + (1 − p)2. Since 1

2
< p

′
< p, this

process reduces Eve’s information about the secret key. In practice, privacy amplification
can be done using a universal hash function, chosen at random from a publicly known set
of such functions, which takes as its input a binary string of length equal to the key and
outputs a binary string of a chosen shorter length. The amount by which this new key is
shortened is calculated, based on how much information Eve could have gained about the
old key (which is known due to the errors this would introduce), in order to reduce the
probability of Eve having any knowledge of the new key to a very low value. In fact, Alice
and Bob can still establish a secret key by using advantage distillation even if the conditions
in the theorem are not satisfied. As its name suggest, advantage distillation enables Alice
and Bob gain an information advantage over Eve despite the initial disadvantage. A simple
protocol involves Alice and Bob dividing the keys into pairs of bits and comparing the binary
sum of each pair. They discard the entire pair if the sums match and discard the second
bit of the pair otherwise. They keep iterate the process until Bob has more information
than Eve about Alice’s bits. Advantage distillation schemes require two-way communication
and are much less efficient. If we use EPR pairs to distribute secret keys, a quantum
privacy amplification scheme, called Entanglement Purification Protocols (EPP) offers a
brand new way for post-processing received qubits. Alice and Bob can use Local Operation
and Classical Communication (LOCC) to purify the partially entangled photon pairs. They
let the photon pairs achieve a desired fidelity that Eve will have negligible information on
their measurement results. (A secure EPP will be offered in the next section.) Remember
that perfect EPR pairs are automatically disentangled with the environment and leak no
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information to Eve. Similarly, EPP protocols can use either one-way or two-way classical

Figure 1.5: Schematic representation of entanglement purification protocols

communication. As shown in the figure above, in a one-way EPP protocol, Alice performs
some quantum operation on her qubits (including measurements), and send her measurement
results (the red line) to Bob. Bob then manipulates his qubits according to the information
received from Alice. When QBER is too large for one-way EPPs to be secure, we may use
two-way EPPs, which iterate the process for enough rounds until one-way EPPs are safe to
perform.

1.5.2.2 Types of attacks

Let us follow Ref. [36] and discuss several kinds of eavesdropping strategies. Eve can either
measure the qubits Alice sends independently, known as an individual attack, or transform
and measure multiple qubits coherently, known as a joint attack. However, it is not yet
known if the joint attacks are more efficient than the individual attacks. Let us first examine
the intercept-resend strategy, the simplest example of the individual attacks, on the BB84
protocol. Eve resends a bit after performing a polarization measurement. Alice’s input, a,
takes one of two values, and Eve’s variable, e, gets one of the four possible results, |90 >,
|45 >, |0 >, and | − 45 >. Their mutual information can be calculated from the following
formula [36]:

I(a, e) = H(a) +
∑
a,e

P (a, e) log2 P (a|e) (1.43)

where H(a)=1 is the entropy of a qubit from Alice, P (a, e) and P (a|e) are the joint and
conditional probability density. One can compute P (a|e) from the Bayes’s theorem since
P (e|a) is known. Finally, we get I(a, e) = 0.5. This result makes sense, since Eve is certain
about half of the qubits Alice sent and knows nothing about the other half. The mutual
information between Alice and Bob is calculated by [36]:

I(a, b) = 1 +D log2D + (1−D) log2 (1−D) (1.44)
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where D is the QBER. If Eve intercepts every qubit, then D = 0.25, and I(a, b) = 0.18 <
I(a, e). Alice and Bob cannot deduce a secret key as a result. A more sophisticated individual

Figure 1.6: Poincare sphere representation of BB84 state in the event of a symmetric attack
[36].

attack is the symmetric attack. Eve performs some unitary operation in the join Hilbert
space, C2⊗He, where C2 is the qubit space and He is the space of Eve’s probe system. This
operation will in general reduce Bob’s state to a mixed one, and a symmetric attack relates
the mixed state to the original state Alice sends by a simple shrinking factor, shown in Figure
1.6. Eve waits until Alice and Bob announces their bases and takes measurement accordingly.
The most effective symmetric attack maximizes the mutual information I(a, e) while keeping
QBER fixed. I omit the analysis here, and the resulting mutual information as a function

of QBER is presented in Figure 1.7. Below a critical QBER, D0 = 1−1/
√

2
2
≈ 15%, Bob has

more information than Eve, and secret-key agreement can be achieved using information
reconciliation and privacy amplification. D0 is precisely the noise threshold above which the
Bell’s inequality is no longer violated.

1.5.2.3 A proof of conditional security

In eavesdropping analysis, it is desired that our protocols are secure against all kinds of
possible attacks, and finding mathematical proofs of the unconditional security is worthwhile.
This kind of proofs guarantees the security of information transmission, even if Eve uses any
conceivable future technology and all the QBER is attributed to Eve, as long as the attacks
obey the laws of quantum mechanics. Sometimes these ultimate proofs are non-existent or
hard to find, and people may develope practical proofs of the protocols, which only guarantee
securities against specific attacks or implementations [36]. The BB84, the six-state protocol,
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Figure 1.7: Eve’s and Bob’s information vs the QBER for individual attack against BB84
protocol [36].

and the EPR protocol have been proven secure against any attacks allowed by quantum
mechanics, both for sending information using an ideal photon source which only ever emits
a single photon at a time, and also using practical photon sources which sometimes emit
multi-photon pulses. I will provide some unconditional proofs in the next section. Here, I
would like to sketch a security proof of the BB84 protocol under individual attacks since it
is conceptually clean. Suppose Bob measures n qubits sent out by Alice in the correct bases.
There is a fact that can be understood fairly intuitively but is not straightforward to prove
[36]:

I(a, e) + I(a, b) ≤ 1. (1.45)

This inequality sets an upper bound on the total information Bob and Eve know about
Alice’s qubits. Namely, the information cannot exceed 1 per qubit. Therefore, we need
I(a, b) ≥ 1/2 on average to extract a secret key. Combining this with Equation 1.44 yields
the safety range of the QBER: D ≤ 11%. In the classical post-processing, Alice and Bob
first randomly choose half of the bits in the key to get the QBER and discard them. Since
they are exponentially certain the rest sequence of bits will have a similar QBER, they can
safely proceed with classical error correction and privacy amplification if the QBER is below
11% This proof also valid if the key is much longer than the number of qubits that Eve
attacks coherently, so that the Shannon information we used represents averages over many
independent realizations of classical random variables [36]. However, we still have the same
11% bound for any kind of attacks, which will be presented in the next subsection. This
bound is clearly consistent with the 15% bound mentioned earlier in the symmetric attack.
It is widely speculated that we need the more stringent 11% bound only if Eve has the power
to coherently attack as many qubits as she wants.
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1.5.3 Proofs of Unconditional Security

In joint attacks, the error caused by or information gained by Eve for one qubit may be
correlated with that of another, which makes it hard to bound Eve’s information by simply
looking at QBER. To prove that a protocol is secure against any kind of attacks Eve may
use is not easy. Such an unconditional proof was first suggested by D. Mayers when he gave
a speech in 1996 in Italy, although at that time hardly anyone in the audience understood
him. Two years later, H. Lo and H. F. Chau published a paper which rigorously proves
the unconditional security of the EPR protocol using the Mayer’s schemes [66]. In 2000, P.
Shor, and J. Preskill systematically reduced the EPR protocol to a BB84 protocol without
compromising the security and obtained the 11% security bound for BB84 QBER [107].
Some generalizations and improvement of this result was further developed. Before delving
into the proofs, we need to know the mathematical definition of security: A QKD protocol
is secure if, for any security parameters s > 0 and r > 0, and for any eavesdropping strategy,
either the protocol aborts with probability at least 1− s, or it guarantees that Eve’s mutual
information with the final key is less than r if the protocol succeeds. The reason we allow the
protocol to abort as an alternative is that demanding Eve has negligible information all the
time is too strong to achieve. Consider a simple case where Eve intercepts and resends every
bit, which will cause a reasonable protocol to abort. However, in the extremely unlikely
circumstance where Eve passes the security check performed by Alice and Bob, Eve will
have non-negligible information about the final key. There are a few additional assumptions
I need to make in order to validate the proofs in the following subsections. (There are proofs
relaxing some of these constraints, but I will not discuss them in this paper.)

• Alice and Bob have perfect photon generators and detectors.

• Eve cannot access Alice and Bob’s encoding and decoding devices.

• Alice and Bob possess truly random number generators.

• The classical communication channel is authentic.

1.5.3.1 The modified Lo-Chau protocol

In this subsection, I would like to present and prove the security of an EPR protocol, the
modified Lo-Chau protocol [107]:

1. Alice creates 2n EPR pairs in the state |ψ+〉 = (|00〉+ |11〉)/
√

2.

2. Alice selects a random 2n bit string b, and performs a Hadamard transformation on
the second half of each EPR pair for which b is 1.

3. Alice sends the second half of each EPR pair to Bob.

4. Bob receives the qubits and publicly announces this fact.



CHAPTER 1. INTRODUCTION 23

5. Alice randomly selects n of the 2n encoded EPR pairs to serve as check bits to test for
Eve’s interference.

6. Alice announces the bit string b, and which n EPR pairs are to be check bits.

7. Bob performs Hadamard transformations on the qubits where b is 1.

8. Alice and Bob each measure their halves of the n check EPR pairs in the Z basis
and share the results. If more than t of these measurements disagree, they abort the
protocol.

9. Alice and Bob measure their remaining n qubits according to the check matrix for a
pre-determined [n, m] quantum code correcting up to t(1 + ε) errors. They share the
results, compute the syndromes for the errors, and then correct their states, obtaining
m nearly perfect EPR pairs.

10. Alice and Bob measure the EPR pairs in the Z basis to obtain a shared secret key.

The basic idea in this protocol is to obtain the QBER from the check qubits and then perform
quantum error corrections. Because an operation element of any quantum operation can be
written as a linear superposition of tensor products of identity and Pauli matrices (I, σx,
σy and σz), we can reduce a continuous set of transformations by Eve to a discrete set
of Pauli operations [38]. In step 2, Alice transforms half of the qubits to create symmetry
between Z basis and X basis and enable them to detect both bit flip and phase flip errors (and
simultaneous occurrences of the two). When the number of disagreements of the check qubits
is bound by t, Alice and Bob will be exponentially certain that the remaining qubits have
less than t(1+ ε) errors. Therefore, the fidelity of their m EPR pairs is exponential close to 1
after they perform error corrections in Step 9 [38]. High fidelity implies low entropy. One can
prove the following: if F (ρ, |ψ+〉⊗m)2 > 1−2−s, then S(ρ) < (2m+s+1/ ln 2)2−s+O(2−2s),
where ρ is the density matrix of Alice and Bob’s photon pairs [80]. Take the state the whole
world to be pure, the entropy of the rest of the world is S(ρenvi) = S(ρ). Even if the rest
of the world is at Eve’s disposal, and she is able to make any kind of measurements she
wants, the mutual information between Eve’s measurement result and the final key is bound
by S(ρenvi), according to Holevo’s theorem. Since Eve’s information about the final key
may be made as small as possible, the modified Lo-Chau protocol is unconditionally secure.
However, in this protocol, Bob needs to wait for Alice’s classical information before making
transformations and measurements. Therefore, quantum memory is required to store the
qubits for a reasonably long time. Moreover, the quantum error correction scheme requires
quantum computers. Neither quantum memory nor quantum computation is not likely to
realize in near term. Therefore, the construction of a practical, secure BB84 protocol is
desired.
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1.5.3.2 The secure BB84 protocol

In this section, we follow the proof given by Shor and Preskill [107] and systematically
reduce the manifestly secure EPR protocol to a one-way BB84 protocol. The key idea in
this reduction is to bring Alice’s measurements to before she sends the qubits. Because
the operations on Alice’s bits commute with all the operations on the Hilbert space of the
rest of the world, performing measurements beforehand makes no difference for Bob and
Eve. Therefore, we can first bring forward Alice’s measurements on the check qubits. The
result is to change each EPR state to a state randomly chosen from |00〉 , |11〉 for those bits
where b is 1. Notice the replaced states are not entangled at all, and Alice only needs to
create the second qubit of each pair and send it to Bob. In order to further reduce the
modified Lo-Chau protocol, we assume Alice and Bob use an [n,m] CSS code of C1 over C2,
CSS(C1, C2). 2 In this scheme, Alice and Bob both measure the stabilizer generators given
by the parity check matrices H1 and H⊥2 on their n qubits. Alice sends Bob her measurement
results (a binary string), and Bob performs Pauli operations to correct error according to
the error syndromes. It can be shown that Alice’s syndrome measurements collapse her n
qubits with equal probability to codeword spaces corresponding to a family of equivalent
CSS(C1, C2) codes, and her final measurements collapse the qubits randomly into one of the

codeword states, 1√
|C2|

∑
ω∈C2

|vk + ω〉, where vk is a representative of one of the 2m cosets of

C2 in C1. Therefore, Alice’s measurements on her half of the n EPR pairs are equivalent to
choosing a random vk and sending the corresponding CSS(C1, C2) encoded states. Through
additional simplification, Alice may encode vk in the Z basis, and Bob’s decoding procedure
is removed. [80] In the final step of the reduction, we double the qubits Alice sends to Bob.
Bob randomly applies Hadamard transformations to the qubits, and after Alice announces
b, they throw away about half the qubits where only one of them makes the transformation.
This way, Bob does not need store the qubits until Alice announces the string b. Notice Alice
and Bob may replace the random Hadamard transformations with sending and measuring
qubits randomly in X and Z bases. We obtain the following BB84 protocol with classical
post-processing [107]:

1. Alice creates (4 + δ)n random bits.

2. Alice chooses a random (4 + δ)n-bit string b. For each bit, she creates a state in the
Z basis (if the corresponding bit of b is 0) or the X basis (if the bit of b is 1).

3. Alice sends the resulting qubits to Bob.

4. Bob receives the (4 + δ)n qubits, measuring each in Z or X basis at random.

2CSS codes are derived from their classical analogs. Suppose C1 and C2 are [n, k1] and [n, k2] classical
linear codes respectively, such that C2 ⊂ C1, and both C1 and C⊥2 can correct errors on up to t bits. Then
CSS(C1, C2) is an [n, k1 − k2] quantum error-correcting code which can correct arbitrary errors on up to t
qubits [80].



CHAPTER 1. INTRODUCTION 25

5. Alice announces b.

6. Bob discards any results where he measured in a basis different from Alice prepared.
With high probability, there are at least 2n bits left (if not, abort the protocol). Alice
decides randomly on a set of 2n bits to use for the protocol and chooses at random n
of these to be check bits.

7. Alice and Bob announce the values of their check bits. If more than t of these values
disagree, they abort the protocol.

8. Alice announces u+v, where v is the string consisting of the remaining non-check bits,
and u is a random codeword in C1.

9. Bob subtracts u+ v from his code qubits, v+ error, and corrects the result, u+ error,
to a codeword in C1.

10. Alice and Bob use the coset of u+ C2 as the key.

The last two steps of this protocol can be interpreted as error correction and privacy am-
plification. The unconditional security of this BB84 protocol follows from that of the mod-
ified Lo-Chau protocol. We can calculate the safety range for the QBER. According to
Shannon’s bound, CSS codes exists with asymptotic key rate k/n = 1 − 2H(t/n), where
H(p) = −p log(p) − (1 − p) log(1 − p). (To apply the Shannon’s bound, we need to add
some additional steps to the protocol which assures the errors occur randomly [107].) This
key rate goes to 0 as t/n, the QBER, reaches 11%. This is exactly the bound on QBER
assuming individual attacks. Therefore, this one-way BB84 protocol can tolerate QBER up
to 11%.

1.5.3.3 Other secure protocols

We can use a similar scheme to construct a secure six-state protocol. In fact, if we randomly
mix the three bases X, Y, Z (instead of two bases by applying Hadamard transformations)
in the modified Lo-Chau protocol, we can reduce it to the six-state protocol with almost
the same procedures. Notice the modified Lo-Chau protocols with CSS error-correcting
codes are effectively one-way EPPs, and what we did is a reduction from one-way EPPs to
one-way prepare-and-measure protocols. Gottesman and Lo showed in 2001 that carefully
chosen two-way EPPs can be reduced to two-way prepare-and-measure protocols [38]. Two-
way communications greatly improve the error tolerance of the cryptosystems at the expense
of efficiency.

1.5.3.4 Bounds on QBER

In this section, I would like to summarize the security bounds on QBER for prepare-and-
measure protocols, shown in Tab. 1.1. The upper bounds come from eavesdropping strategies
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that compromise the security of cryptosystems for any protocol Alice and Eve may use, and
the lower bounds come from QKD protocols provably secure against any eavesdropping
strategies. Shor and Preskill’s proof provides the 11% lower bound for the one-way BB84,
and Lo slightly improved the result for the six-state protocol. The lower bounds for the
two-way protocols are obtained by Chau [11]. The isotropic optimal cloning eavesdropping
strategy, which copies states with fidelity 5/6, gives the 1/6 upper bound on the one-way
six-state protocol. No protocol can generate a secure key with this QBER because Eve may
receive as much information from Alice as Bob may and is able to produce a final key just like
Bob. For the one-way BB84 protocol, which is biased towards the X and Z bases, Eve can
further optimize the cloning strategy and compromise the security of cryptosystems with a
slightly lower QBER. Both two-way upper bounds come from the intercept-resend strategy.
For this strategy, Bob’s measurement results can be interpreted as a classical random variable
whose distribution is completely known by Eve. No matter what Alice and Bob do, Alice
cannot know more about Bob’s variable than Eve does. Therefore, the corresponding QBER
is not secure. It is interesting to notice that the provably secure 27.6% QBER for the six-

Table 1.1: Security bounds of QBER on the BB84 and the six-state protocols

The BB84 Protocol
one-way two-way

Upper bound 14.6% 1/4
Lower bound 11.0% 20.0%

The six-state Protocol
one-way two-way

Upper bound 1/6 1/3
Lower bound 12.7% 27.6%

state protocol is higher than the upper bound of QBER for a secure BB84, which indicates
that the six-state protocol is more error tolerant than BB84.

1.5.4 Conclusions

Quantum cryptography is an illuminating application of Quantum mechanics. Its security
relies on the fundamental physical principles rather than computational complexity. As of
March 2007 the longest distance over which quantum key distribution has been demonstrated
using optic fiber is 148.7 km, achieved by Los Alamos/NIST using the BB84 protocol [44].
Currently, there are also several companies offering commercial quantum cryptography sys-
tems, such as MagiQ Technologies in New York. With rapid improving photon generators,
detectors, and optic fiber networks, the widespread adoption of quantum cryptography will
not be far away.
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Chapter 2

Open Quantum Systems

2.1 Introduction

Real quantum systems are rarely isolated. The coupling to an environment typically leads
to dissipative processes such as decoherence of the system. Such open quantum system
processes pose a tremendous challenge to quantum information processing. It is crucial
to understand open quantum system evolution in order to effectively track and control a
quantum state. In addition, we may intentionally need a quantum system to be open in
order to perform a measurement. Different measurement operations can be realized by
engineering the measurement apparatus and their interaction with the system. This chapter
provides some preliminary ways to describe open quantum systems. Sec. 2.2 introduces
the Lindblad master equation, which is a theoretically important concept that describes the
most general time-homogeneous Markovian processes. In Sec. 2.3 we will see that open
quantum system evolution can be approximated by the Lindblad master equation under
certain assumptions. Sec. 2.4 introduces continuous-in-time measurement processes where
we continuously monitor the environment the open system is coupled to. In Sec. 2.5, we
will look at a particular measurement technique, photodetection, which is commonly used
today.

2.2 The Lindblad Master Equation

Master equations are widely used to describe the temporal evolution of many open quantum
systems. In this section, we will follow Ref. [4] and derive the Lindblad master equation
(the most general type of Markovian and time-homogeneous master equation) within the
framework of the quantum operation formalism.

The Markovian and time-homogeneous master equation takes the form of

ρ̇ = Lρ, (2.1)
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and we would like to find a generic expression for this Liouvillian superoperator1. We assume
a quantum operation evolves the state from ρ(t) to ρ(t+ dt). In the Kraus representation,

ρ(t+ dt) = S(t, t+ dt)ρ(t) =
M−1∑
k=0

Ekρ(t)E†k, (2.2)

where M(≤ N2) is the number of Kraus operators. To ensure that S(t, t) = 1, we may quite
generally write the Kraus operators for this infinitesimal transformation as follows (See Sec.
6.2.2 in [4]):

E0 = I +
1

~
(−iH +K)dt, (2.3a)

Ek = Lk
√

dt, (k = 1, ...,M − 1). (2.3b)

where H and K are Hermitian operators and {Lk} are called Lindblad operators. The
completeness relation for the Kraus operators, Eq. 1.19, then becomes

K = −~
2

M−1∑
k=1

L†kLk. (2.4)

Plugging the expression for Ek into Eq. 2.2 and ignoring higher order terms in dt, we
immediately identify the Liouvillian superoperator as

Lρ = − i
~

[H, ρ] +
M−1∑
k=1

D[Lk]ρ, (2.5)

where the operator (A) dependent superoperator D[A] is defined as

D[A]ρ ≡ AρA† − 1

2
(A†Aρ+ ρA†A). (2.6)

Eq. 2.1 and 2.5 gives the master equation in the Lindblad form.

2.3 Open Quantum Systems and Born-Markov

Approximation

In this section, we will follow Ref. [9] and show that the Lindblad master equation describes
the dynamics of many open quantum systems under certain assumptions and approximations.

We once again consider a system S coupled to a bath B. The Hamiltonian for the total
system (which is assumed to be constant) can be written as follows:

H = HS +HB +HI , (2.7)

1This Liouvillian superoperator is the generator of the so called quantum dynamical semigroup.
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where HS and HB are the free Hamiltonians of the system and the bath respectively, and
HI is the interaction between them. HI can be expanded in the following form:

HI =
∑
α

Aα ⊗Bα, (2.8)

where Aα and Bα are Hermitian operators acting on the system and the bath. In the following
derivation of the master equation, the interaction picture will be used. Let us assume the
system and the bath start out in the product state:

ρ(0) = ρS(0)⊗ ρB(0), (2.9)

where ρB(0) is assumed to be a stationary state of HB, e.g., the thermally equilibrium state.
The bath correlation functions, which will come in handy soon, are defined as

Cαβ(t) ≡ 〈Bα(s)Bβ(s− t)〉 . (2.10)

Here, the RHS is independent of s for a stationary ρB. The correlation functions typically
decay exponentially with t, and the characteristic time scale τB for the decay is called the
correlation time of the bath. The dynamics of the total density matrix is given by

ρ̇(t) = −i[HI(t), ρ(t)], (2.11)

which can be written in the following integral form:

ρ(t) = ρ(0)− i
∫ t

0

ds[HI(t), ρ(s)]. (2.12)

Without loss of generality, we can assume 〈Bα(t)〉 = 0. If this is not true, we can redefine
Bα as Bα − 〈Bα〉 and move 〈Bα〉Aα to the system Hamiltonian. As a consequence,

TrB[HI(t), ρ(0)] = 0. (2.13)

Inserting Eq. 2.12 into the right-hand side(RHS) of Eq. 2.11 and tracing over the bath, we
obtain

ρ̇S(t) = −
∫ t

0

dsTrB[HI(t), [HI(s), ρ(s)]]. (2.14)

We first employ the so called Born approximation. This states that if the system-bath
coupling is sufficiently weak, the bath is negligibly affected by the system, and the total
state ρ(s) on the RHS of Eq. 2.14 can be approximated by ρS(s)⊗ ρB(0).2 To simplify the
equation further, we perform the Markov approximation and replace ρS(s) with ρS(t). This
can be justified if τB � τR, where τR is the relaxation time of the system, namely, the time

2Please be aware that unlike this expression, the actual total state will be entangled in general. Here, we
are just using lower order approximations to the state in an expression to calculate higher order corrections.
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over which ρS(t) changes significantly. We now have the following Redfield Equation which
is local in time:

ρ̇S(t) = −
∫ t

0

dsTrB[HI(t), [HI(s), ρS(t)⊗ ρB]]. (2.15)

To further simplify the expression, we can approximate 0 with −∞ for the lower bound of
integral if we only care about the dynamics on the time scale much longer than τB. All the
above approximations are collectively referred to as the Born-Markov approximation.

The dynamical equation arising from the Born-Markov approximation is still not time-
homogeneous3. To proceed, let us denote the eigenvalues of HS by ε and the projection
onto the eigenspace belonging to ε by Π(ε). Then we can define the eigenoperators (in the
Schrodinger picture)

Aα(ω) ≡
∑
ε′−ε=ω

Π(ε)AαΠ(ε′). (2.16)

It is not hard to see that ∑
ω

Aα(ω) =
∑
ω

A†α(ω) = Aα. (2.17)

Hence, the interaction Hamiltonian can be expressed as

HI(t) =
∑
α,ω

e−iωtAα(ω)⊗Bα(t). (2.18)

We now introduce the one-sided Fourier transforms:

Γαβ(ω) ≡
∫ ∞

0

Cαβ(t)eiωtdt. (2.19)

With a little bit of algebra, the master equation under the Born-Markov approximation can
be rewritten as

ρ̇S(t) =
∑
ω,ω′

∑
α,β

ei(ω
′−ω)tΓαβ(ω)

(
Aβ(ω)ρS(t)A†α(ω′)− A†α(ω′)Aβ(ω)ρS(t)

)
+ h.c. (2.20)

In order to obtain the Markovian master equation, we need to make a rotating wave approx-
imation. The intrinsic time scale of the system τS is set by the typical value of |ω′ − ω|−1,
the reciprocal of level spacings. If τS � τR, the ω′ 6= ω terms in Eq.2.20 oscillate rapidly
and have negligible contribution to the dynamics. We thus have

ρ̇S(t) =
∑
ω

∑
α,β

Γαβ(ω)
(
Aβ(ω)ρS(t)A†α(ω)− A†α(ω)Aβ(ω)ρS(t)

)
+ h.c. (2.21)

Let us define two components of the one-sided Fourier transforms:

Sαβ ≡
1

2i
(Γαβ(ω)− Γ∗βα(ω)), (2.22)

3And it does not guarantee a quantum dynamical semigroup.
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and

γαβ(ω) ≡ Γαβ(ω) + Γ∗βα(ω) =

∫ +∞

−∞
Cαβ(t)eiωtdt. (2.23)

It can be shown that γαβ(ω) form a positive semi-definite matrix [9].
With these definitions we finally obtain the desired Markovian master equation (in the

interaction picture):

ρ̇S(t) = − i
~

[HLS, ρS(t)] +D(ρS(t)). (2.24)

HLS is the Lamb shift Hamiltonian, which is

HLS =
∑
ω

∑
α,β

Sαβ(ω)A†α(ω)Aβ(ω). (2.25)

It commutes with the system Hamiltonian and causes a shift in the intrinsic energy levels of
the system. The dissipator term takes the form

D(ρS) =
∑
ω

∑
α,β

γαβ(ω)
(
Aβ(ω)ρS(t)A†α(ω)− 1

2
{A†α(ω)Aβ(ω), ρS}

)
. (2.26)

This dissipator can be brought into the Lindblad form (Eq. 2.5 and 2.6) by diagonalizing
the matrices γαβ(ω) (where the two layers of summation can be collectively indexed by k)
[9].

In conclusion, the Lindblad master equation can be used to describe a general open
quantum system evolution under the aforementioned approximations and assumptions. In
the next chapter, we will see a more accurate (and more complicated) way to describe the
evolution, using the Hierarchical Equations of Motions [52], and compare the results.

2.4 Weak Measurements

For a typical generalized measurement, the state of the quantum system is strongly per-
turbed by the measurement. For a weak measurement, the state either has an infinitesimal
probability to change appreciably (weak measurement of the first kind), or an appreciable
probability to change infinitesimally (weak measurement of the second kind). As a result,
the unconditioned state is only perturbed weakly and very little information is revealed
by the measurement. This infinitesimal change is characterized by a quantity ε � 1. For
a continuous-in-time measurement, the effect of each infinitesimal time dt is a weak mea-
surement with ε = kdt, where k is called the measurement strength.4 The evolution of
a quantum state under such continuous-in-time measurement form a quantum trajectory.
Most experimental measurements are continuous-in-time measurements, as it takes time to

4From the point of view of weak measurement, k should really be called measurement strength per unit
time.
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collapse the state of a system. It has also been shown that weak measurements are univer-
sal in the sense that any generalized measurement can be decomposed into a sequence of
weak measurements without the use of an ancilla [83]. Therefore, it is both theoretically and
experimentally important to formulate weak measurements.

We shall use a single qubit with H = 0 as a simple example to illustrate the aforemen-
tioned two kinds of weak measurement. For the first kind, let us examine a generalized
measurement with the following two operation elements [10]:

M0 = |0〉 〈0|+
√

1− ε |1〉 〈1| , (2.27a)

M1 =
√
ε |1〉 〈1| . (2.27b)

It is easy to see that they satisfy the completeness relation. Let us define c = |1〉 〈1| and
write

M0 =
√
I − εc†c, (2.28a)

M1 =
√
εc. (2.28b)

If a state ψ is measured, we have probability 1 − ε‖c |ψ〉 ‖2 of getting outcome 0 with (un-
normalized) post-measurement state

|ψ〉′1 ≈ (I − ε

2
c)ψ (2.29)

and probability ε‖c |ψ〉 ‖2 of getting outcome 1 with (unnormalized) post-measurement state

c |ψ〉 . (2.30)

Therefore, we usually have outcome 0 and the state changes infinitesimally; very rarely we
have outcome 1 and the state changes significantly. Typically, this rare outcome 1 event will
reveal a lot of information about the state of the system. For c = |1〉 〈1|, it simply means
the state collapses to |1〉. Let us take this measurement as continuous-in-time and get an
evolution equation for ψ(t). We write ε = dt; k is set to 1 here because it can always be
absorbed in c. Let us use dN(t) as the indicator random variable for outcome 1 to happen
during [t, t+ dt]. Then

E[dN(t)] = dt‖c |ψ〉 ‖2. (2.31)

From the post-measurement states and probabilities, it is straightforward to obtain the
following Stochastic Schrodinger Equation(SSE) (Eq. 4.19 in Ref. [130]):

d |ψ(t)〉 =

[
dN(t)

(
c√
〈c†c(t)〉

− 1

)
+ dt

(
1

2

〈
c†c
〉

(t)− 1

2
c†c

)]
|ψ(t)〉 . (2.32)

If we work with density operators, the Stochastic Master Equation (SME) for the above
dynamics is (Eq. 4.22 in Ref. [130]):

dρ(t) =

{
dN(t)G[c]− dtH[

1

2
c†c]

}
ρ(t) (2.33)
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where

G[A]ρ =
AρA†

Tr[AρA†]
− ρ, (2.34)

H[A]ρ = Aρ+ ρA† − Tr[Aρ+ ρA†]ρ. (2.35)

Eq. 2.33 is the conditioned master equation, where evolution depends on the outcome of
measurements. The evolution of ρ(t) with a particular noise realization dN(t) constitutes a
quantum trajectory. The evolution is continuous whenever dN(t) = 0. However, a discon-
tinuity, which is called a quantum jump, happens when dN(t) = 1. By averaging over the
measurement noise, the evolution of the unconditioned state turns out to be [130]:

ρ̇ = D[c]ρ (2.36)

This is just the Lindblad master equation we encountered in Sec. 2.2. Please be aware that
we did not assume any specific form for the operator c.

Let us now examine the second kind of weak measurement on a qubit. Consider the
following two operation elements [10]:

M0 =

√
1

2
+
√
ε |0〉 〈0|+

√
1

2
−
√
ε |1〉 〈1| , (2.37a)

M1 =

√
1

2
−
√
ε |0〉 〈0|+

√
1

2
+
√
ε |1〉 〈1| . (2.37b)

Because both operation elements are infinitesimally different from I/
√

2, both outcomes
appear with roughly 1

2
probability and the state changes infinitesimally. Also, little informa-

tion is gained from the measurement. If we write ε = dt, we can obtain the following SME
(conditioned on the measurement outcome) for the qubit density operator ρ(t) [10]:

dρ(t) = D[σz]ρ(t)dt+H[σz]ρ(t)dW. (2.38)

where dW is a Wiener increment, which satisfies mean E[dW ] = 0 and variance E[dW 2] = dt.
dW captures the diffusive behavior that is the continuous limit of small quantum jumps.
The evolution for the unconditioned state is again described by a Lindblad master equation:

dρ(t) = D[σz]ρ(t)dt. (2.39)

Next let us look at an example where the Hilbert space is continuous. We will examine a
weak position measurement on the 1D position space L2(R) [58] with the following operation
elements labeled by the continuous variable α:

M(α) =

(
4ε

π

) 1
4
∫ ∞
−∞

exp[−2ε(x− α)2] |x〉 〈x| dx. (2.40)
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It is easy to check that the completeness relation
∫∞
−∞M(α†)M(α)dα = 1 is satisfied. Be-

cause it is Gaussian weighted sum of position projectors centered around α, M(α) can be
regarded as a ‘weak’ projector onto position α. A post-measurement state M(α) |ψ〉 is only
infinitesimally different from the pre-measurement state |ψ〉 (so it shall be interpreted as the
weak measurement of the second kind).

We will regard the measurement as continuous-in-time and set ε = kt as usual. Let us
derive the probability distribution of α when such a measurement is performed on a state ψ
[58]:

P (α) = ‖A(α) |ψ〉 ‖2

=

(
4kdt

π

)1/2 ∫ ∞
−∞
|ψ(x)|2 exp[−4kdt(x− α)2]dx

≈
(

4kdt

π

)1/2

exp[−4kdt(α− 〈X〉)2]. (2.41)

At the last step, we have treated |ψ(x)|2 as a delta function centered at its average, δ(x−〈X〉),
because dt is small. Therefore, α can also be written as the following stochastic variable

α = 〈X〉+
1√
8k

dW/dt. (2.42)

where dW is a Wiener increment. Jacobs and Steck have worked out the post measurement
state as follows [58]:

|ψ(t+ dt)〉 ∝M(α) |ψ(t)〉
∝ exp{−2kdtX2 +X[4k 〈X〉 dt+ (2k)1/2dW ]} |ψ(t)〉
∝ {1− [kX2 − 4kX 〈X〉]dt+ (2k)1/2XdW} |ψ(t)〉 . (2.43)

In the second line, we have written α in terms of dW and in the third line we have expanded
everything to O(dt). Normalizing this gives the following SSE (Eq. 30 in [58]):

d |ψ〉 = −k(X − 〈X〉)2dt+ (2k)1/2(X − 〈X〉)dW |ψ〉 . (2.44)

The corresponding SME can be written as (Eq. 32 in [58])

dρ = 2kD[X]ρdt+
√

2kH[X]ρdW, (2.45)

with H given by Eq. 2.35 and D given by Eq. 2.6. The unconditioned master equation
(averaged over the measurement records) is again in the Lindblad form:

dρ = 2kD[X]ρdt. (2.46)

Weak measurements on a two-level system and on L2(R) can both be realized experi-
mentally. Direct photodetection of the fluorescence of a two-level atom can realize a weak
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measurement with c = σ− jumps [122]. A circuit-QED system can implement a weak mea-
surement of the Pauli operators on a transmon qubit [61]. An optical cavity can be used
to weakly measure the position of a trapped atom or the mirror confining the cavity [122].
Because it only weakly perturbs the state, weak measurement has many interesting appli-
cations in state tomography, process tomography, continuous error correction and feedback
control, etc.

2.5 Photodetection and Homodyne Detection

In this section, let us look at a very sensitive and widely used quantum measurement, pho-
todetection, and see how it can be used to monitor the system.

2.5.1 Direct Detection

In a direct photodetection, the system (an atom, cavity, etc) is coupled to a photon bath
which is initially in a vacuum state, and we can continuously monitor photons coming into
the bath. Let c be the system operator, and b(t) be the photon bath annihilation operator
satisfying the commutation relation [130]:

[b(t), b†(t′)] = δ(t− t′). (2.47)

Let us define dBt = b(t)dt, and it is easy to see that [dBt, dB
†
t ] = dt. Let us assume the

interaction between the system and the bath in the interval [t, t + dt) takes the following
form [130]:

U(t+ dt, t) = exp[cdB† − c†dB − iHdt], (2.48)

where we are in the interaction picture of the bath and H is the system Hamiltonian. If the
system-bath starts at |ψ(t)〉 |0〉, after dt the state becomes

U(t+ dt, t) |ψ(t)〉 |0〉 = |ψ〉 [1− dtc†c/2− iHdt] |0〉+ c |ψ(t)〉 dB† |0〉 . (2.49)

It is clear that the first term represents zero photon and that the second term represents one
photon. Therefore, the probability of detecting one photon in bath is

‖c |ψ(t)〉 dB† |0〉 ‖2 = ‖c |ψ(t)〉 ‖2dt. (2.50)

and system state jumps to c |ψ〉 after the detection.5 Therefore, direct detection can be
described by a weak measurement with the following two operation elements:

M0 = I − dt(iH +
1

2
c†c), (2.51a)

5The bath state will also revert back to vacuum after detection as new field moves in to interact with
the system.
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M1 =
√

dtc. (2.51b)

The form of the measurement is similar to that in Eq. 2.28 in the qubit example.6 The
conditioned SME,

dρ(t) =

{
dN(t)G[c]− dtH[iH +

1

2
c†c]

}
ρ(t), (2.52)

and the unconditioned master equation,

dρ(t) = −idt[H, ρ] + dtD[c]ρ, (2.53)

can be derived in an analogous way. The photocurrent is defined as the number of detections
per unit time, ie.,

I(t) = dN(t)/dt, (2.54)

and E[I(t)] = Tr[ρ(t)c†c]. In the case of a cavity, it just means the photon flux leaking out.

2.5.2 Homodyne Detection

Figure 2.1: A scheme for simple homodyne detection. A low-reflectivity beam-splitter
(LRBS) transmits almost all of the system output, and adds only a small amount of the
local oscillator through reflection. Nevertheless, the local oscillator is so strong that this
reflected field dominates the intensity at the single photoreceiver. This is a detector that
does not resolve single photons but rather produces a photocurrent proportional to J(t) plus
a constant [130].

In many situations we would like to obtain quadrature measurement of a beam, which
carries information about its phase. This is where a homodyne detection comes in. The way

6Here, we have the additional unitary evolution term.
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we do it is to mix the signal beam with a strong reference beam (called a local oscillator)
with the same frequency, and we measure the intensity of the output beam, as shown in
Fig. 2.1. The mixing is done through a beam splitter. Just from classical analysis, we can
conclude that to the first order only the component of the signal in-phase with the local
oscillator will affect the intensity of the resulting beam [113]. By tuning the phase of the
local oscillator, we can measure a desired quadrature of the signal. Let us see how everything
works quantum mechanically.

Let γ be the complex amplitude of the local oscillator. The beamsplitter basically does
the following transformation: c→ c+ γ [130]. Under such transformation, the measurement
operators transform (from Eq. 2.51) to

M0 = I − dt[iH +
1

2
(cγ∗ − c†γ) +

1

2
(c† + γ∗)(c+ γ)], (2.55a)

M1 =
√

dt(c+ γ). (2.55b)

It is easy to check that the unconditioned master equation is still given by Eq. 2.53 while
the conditioned SME becomes

dρ(t) =

{
dN(t)G[c+ γ]− dtH[iH + γc+

1

2
c†c]

}
ρ(t). (2.56)

dN is the indicator random variable for a photon detection during [t, t+ dt], which satisfies

E[dN(t)/dt] = Tr[(c† + γ∗)(c+ γ)ρ(t)]. (2.57)

Let us take γ to be real. E[dN(t)/dt] = Tr[γ2 + γ(c† + c) + c†cρ(t)] and the homodyne
detection measures the quadrature x = c† + c. In the large γ limit, the number of detection
dN can be written as7 [130]

dN(t) = γ2[1 + 〈x〉 /γ]dt+ γdW. (2.58)

The homodyne detection current is defined as [130]

J(t) ≡ lim
γ→∞

dN − γ2dt

γdt
= 〈x〉 (t) + ξ(t), (2.59)

8where ξ = dW/dt is the Wiener noise. The expectation value of the current is exactly
the expectation value of the system quadrature operator we would like measure. The SME
becomes (Eq. 4.72 in [130])

dρ(t) = −i[H, ρ(t)]dt+D[c]ρ(t)dt+H[c]ρ(t)dW. (2.60)

7Here the time step dt is taken to be on the order of γ−3/2 so the number of detection events is large
while the system change is small during the interval.

8γ2dt represents the number of detection events coming from the local oscillator in the absence of the
system output. γdt is a normalizing factor.
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We immediately see that the unconditioned master equation is still Eq. 2.53 unchanged
(because dW averages to zero).

The above mentioned scheme is called a simple homodyne detection. In practice, a
balanced homodyne detection is more common where we use a 50 : 50 beam splitter and
mix the signal from both output ports to produce a homodyne current [130]. It has many
practical advantages over a simple homodyne detection. Theoretically, the dynamics in the
large γ limit, i.e. Eq. 2.59 and 2.60, is the same for both.

Homodyne detection is widely used for measuring Cavity-QED systems (in both radio
and optical frequency). Many experimental demonstrations of quantum error correction and
feedback control have homodyne detection as an integral component [130].
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Chapter 3

Hierarchical Equations of Motion

3.1 Formalism

Understanding open quantum system evolution is crucial for quantum information process-
ing. The difficult part in quantum dissipation theory is how to trace over the bath degrees
of freedom, which are usually infinitely many. The Lindblad master equation derived in Sec.
2.3 can approximately describe dissipative systems in its regime of validity. Let us summa-
rize the assumptions made. First, the system-bath coupling is weak, so we can expand the
exact equation of motion perturbatively. Second, the bath correlation time is much shorter
than the system relaxation time, so the evolution is Markovian. Lastly, the intrinsic time
scale of the system (which is the inverse of the typical level spacing) is much larger than the
relaxation time of the system, so the evolution can be regarded as time-homogeneous under
the rotating wave approximation. These assumptions are violated in many real quantum
systems, and a more general treatment is desired. It turns out that the system evolution
can be described exactly in terms of a influence phase functional under a Gaussian bath
assumption [92]. However, the expression with the influence phase functional is not time
local. We are going to write the system evolution in terms of a set of hierarchical equations
of motion(HEoM). HEoM can be solved effectively because they are time-local differential
equations and can be truncated at certain order. Let us see how it works in detail.

We break the system-bath Hamiltonian into three parts as usual:

H = HS +HB +HI . (3.1)

Let us assume the bath is a collection of harmonic oscillators, e.g.,

HB =
∑
k

ωkb
†
kbk. (3.2)

We also assume the interaction takes the form

HI = V B, (3.3)
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where V is a Hermitian system operator and B is Hermitian bath operator that is a linear
combination of creation and annihilation operators, e.g.,

B =
∑
k

(gkbk + g∗kb
†
k). (3.4)

The product form for HI is assumed for simplicity of illustration. The derivation of the
HEoM can be generalized straightforwardly if the interaction takes the completely general
form

HI =
N∑
i=1

ViBi. (3.5)

The spectral density of the interaction, which describes how the interaction strength varies
with frequency, is defined as

J(ω) =
∑
k

|gk|2δ(ω − ωk). (3.6)

Let us further assume the system-bath starts out in the product state

ρ(0) = ρS(0)⊗ ρB, (3.7)

where ρB is the thermal state

ρB =
exp(−βHB)

TrB[exp(−βHB)]
. (3.8)

We define the average over thermal bath operation 〈...〉B as 〈O〉B = TrB(OρB). Then the
evolution of the system density operator can be written as [124]

ρS(t) =

〈
T+ exp

(∫ t

0

L(s)ds

)〉
B

ρS(0), (3.9)

where T+ means chronological time ordering, and L is the Liouvillian(see Chap. 2) for the
total Hamiltonian H.

Let us work in the interaction picture defined by HS + HB. We define the following
Gaussian property of a bath for its annihilation operators ak according to Wick’s theorem
[92]:

〈T+ak(t2n)ak(t2n)...ak(t1)〉B =
∑
a.p.p

∏
i,j

〈T+ak(ti)ak(tj)〉B , (3.10)

where a.p.p means all ways of picking pairs among 2n operators [52]. It basically states
that the n-point correlation functions are completely determined by the 2-point correlation
functions, and that odd-point correlation functions are all zero. The Gaussian property is
guaranteed for a bath that consists of harmonic oscillators, as assumed in Eq. 3.2. This
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property is also valid in more general classes of bath, as long as the interaction consists of a
large number of weak interactions [112]. We use C to denote the 2-point correlation function
(with no time ordering):

C(t2 − t1) ≡ 〈B(t2)B(t1)〉B . (3.11)

Let CR and CI be its real and imaginary components. It is easy to check that

CR =
1

2
〈{B(t2), B(t1)}〉B , (3.12)

CI = − i
2
〈[B(t2), B(t1)]B〉 , (3.13)

where {, } is the anticommutator and [, ] is the commutator. C can be expressed in terms of
the spectral density as [110]

C(t) =
1

π

∫ ∞
0

dωJ(ω)
exp(−iωt)

1− exp(−βω)
. (3.14)

The expansion of Eq. 3.9 contains bath operators of all orders. However, the trace of
the bath of all these operators can be eliminated in favor of C(t) because of the Gaussian
property. Therefore, (with somewhat lengthy algebra) Eq. 3.9 can be expressed as

ρS(t) = T+ exp(i∆[V ])ρS(0), (3.15)

with the influence phase functional ∆[V ] given by [68]

∆[V ] = i

∫ t

0

dt2

∫ t2

0

dt1V (t2)×[CR(t2 − t1)V (t1)× + iCI(t2 − t1)V (t1)◦], (3.16)

where A×B ≡ [A,B] and A◦B ≡ {A,B}. ∆[V ] completely captures the influence of the
bath on the system and hence the name.

A standard way to solve Eq. 3.15 is to use a path integral representation involving the
Feynman-Vernon influence functional [29]. However, evaluation of this remains challenging
for most practical systems. In this section, we are going to decode instead it into a set of
time-local differential equations, HEoM.

First, we need to cast C(t) (in the t > 0 region) into a sum of exponential functions of t:

C(t) =
∑
m

cm exp(ν ′mt). (3.17)

The following Drude spectral density is often used in chemical physics and biophysics:

J(ω) =
2λγω

ω2 + γ2
. (3.18)

Using Eq. 3.14, the corresponding correlation function expansion, Eq. 3.17, is seen to be an
infinite series with

ν ′0 = γ, (3.19a)
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ν ′m≥1 = 2πm/β, (3.19b)

c0 = γλ(cot(βγ/2)− i), (3.19c)

cm≥1 =
4λγν ′m

β(ν ′m
2 − γ2)

. (3.19d)

The series can be truncated at some order m = M , with the value of m required to achieve
converged result increasing as temparature decreases. In the high temperature regime where
βγ < 1, keeping one or two terms in the series typically suffices [52]. For most chemical and
biological systems, the high temperature condition is satisfied.

For many quantum computing devices, e.g. cavity-QED, the coupling spectral density
takes the Lorentz shape [68]:

J(ω) =
λγ

π[(ω − Ω)2 + γ2]
. (3.20)

In the regime where γ � Ω and βΩ � 1, the corresponding correlation function can be
approximated as a single exponential with1

ν ′0 = −(γ + iΩ), (3.21a)

c0 = λ. (3.21b)

For a more general spectrum, we can use a few exponential functions to fit the correlation
function.

With the correlation function cast into the sum-of-exponentials form, the system evolu-
tion (in the Schrodinger picture) can be cast into the following form [68]:

ρS(t) = U(t)T+ exp

[∫ t

0

dt2

∫ t2

0

dt1Φ(t2)
K∑
k=1

e−νk(t2−t1)Θk(t1)

]
ρS(0)U †(t), (3.22)

where U(t) = exp[−i(HS +HB)t]. Φ(t) = −iV (t)× and Θ(t) is a linear combination of V (t)×

and V (t)◦. (K is at most twice as large as M .) Let us introduce the following hierarchy of
auxiliary density operators indexed by the non-negative integer vector n = {n1, n2, ..., nK}:

ρn(t) =U(t)T+

{
K∏
k=1

[∫ t

0

dτe−νk(t−τ)Θk(τ)

]nk

× exp

[∫ t

0

dt2

∫ t2

0

dt1Φ(t2)
K∑
k=1

e−νk(t2−t1)Θk(t1)

]}
ρS(0)U †(t), (3.23)

1In Ref. [68] it is treated as an exact expression, but it is really just an approximation with a regime of
validity, even at zero temperature.
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and one can see that ρS is the same as ρ0. Let ν = {ν1, ν2, ..., νK} and ek be the K-vector
such that (ek)i = δki. By directly differentiating Eq. 3.23, we can obtain the following K-
level hierarchy equations that relate the time derivative of each auxiliary operator to some
other auxiliary operators:

ρ̇n(t) = −(iH×S + n · ν)ρn(t) + Φ(t)
K∑
k=1

ρn+ek(t) +
K∑
k=1

nkΘk(t)ρn−ek(t). (3.24)

2It holds for n = 0 and all auxiliary n. The initial conditions of the operators are

ρn(0) =

{
ρS(0) for n = 0,
0 otherwise.

(3.25)

If the system-bath interaction takes the form of sum of N terms as in Eq. 3.5, the HEoM
would be NK-level.

The HEoM can be terminated at a finite stage for computation. Typically ρn with
n · ν � ωS can be ignored [52], where ωS is the characteristic intrinsic frequency of the
system.

We see that the HEoM method relaxes most of the assumptions that are necessary for
deriving the Lindblad master equation (mentioned at the beginning of the section). The
HEoM usually provide an effective way to solve for the dynamics of an open quantum system
as long as the bath is Gaussian.

In the next section, we will look at an example where the bath correlation function takes
the form described by Eq. 3.21. For this particular case, the two-level (K = 2) HEoM can
be written as [68]

ρ̇n(t) = −(iH×S + n · ν)ρn(t)− i
2∑

k=1

V ×ρn+ek(t)− iλ

2

2∑
k=1

nk[V
× + (−1)kV ◦]ρn−ek(t). (3.26)

3.2 Qubit Relaxation

In this section we will look at a qubit system coupled to a Gaussian bath. The dephasing
(T2) effect can be modeled by setting V = σz and the relaxation (T1) effect can be modeled
by setting V = σx. We will study relaxation as an example. Let the qubit frequency and
the bath correlation function be given by Eq. 3.20, namely,

C(t2 − t1) = λ exp[−(γ + iΩ)(t2 − t1)], (3.27)

2The RHS of Eq. 3.24 is obtained by taking the time derivative of the RHS of Eq. 3.23 with the
product rule and substituting in the auxiliary operators. (Keep in mind that the time derivative operator
and the time ordering operator commute.) −iH×S ρn(t) comes from the terms involving d

dtU and d
dtU

†;

−n · νρn(t) and +
∑K
k=1 nkΘk(t)ρn−ek

(t) comes fom the term involving d
dt

∏K
k=1

[∫ t
0

dτe−νk(t−τ)Θk(τ)
]nk

;

+Φ(t)
∑K
k=1 ρn+ek

(t) comes from the term involving d
dt exp

[∫ t
0

dt2
∫ t2
0

dt1Φ(t2)
∑K
k=1 e

−νk(t2−t1)Θk(t1)
]
.
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which approximately corresponds to the Lorentz coupling spectrum at near zero temperature.
The correlation time is characterized by γ−1.

3.2.1 The natural relaxation

We first like to see what the Lindblad master equation tells us about the process. The
Fourier transform of the correlation function, Γ(ω),3 turns out to be the same as the Lorentz
spectral density, Eq. 3.20, up to a constant factor of 2/π:

Γ(ω) =
2λγ

(ω − Ω)2 + γ2
. (3.28)

According to Eq. 2.24, the Lindblad master equation can be written as4

ρ̇ = Γ(ω0)D[σ−]ρ+ Γ(−ω0)D[σ+]ρ. (3.29)

This equation can be solved analytically in a straightforward way. The steady state (in
terms of the Bloch vector components xss, yss, and zss) is given by

xss = 0, (3.30a)

yss = 0, (3.30b)

zss = −Γ(ω0)− Γ(−ω0)

Γ(ω0) + Γ(−ω0)
, (3.30c)

which is very close to the ground state as we expect. The evolution of the Bloch vector
components x, y, z is given by

x(t) = exp(−t/(2τR))x(t), (3.31a)

y(t) = exp(−t/(2τR))y(t), (3.31b)

z(t) = zss + (z(0)− zss) exp(−t/τR), (3.31c)

where the system relaxation time τR = [Γ(ω0) + Γ(−ω0)]−1. Dotted red lines in Fig 3.1
show the relaxation process of the qubit if the initial state is set to be maximally mixed
(x = y = z = 0). The monotonic nature of the relaxation is consistent with the Markovian
dynamics assumed in the Lindblad model.

Let us solve the same relaxation process with the HEoM, Eq. 3.26. We will keep the
auxiliary density matrices to the second order, namely ρn with n1 + n2 ≤ 2. Solid blue lines
in Fig 3.1 show the solution to this second order HEoM, which should be treated as almost

3It is the same as γ(ω) in Sec. 2.3.
4Γ(−ω0) represents a very weak unphysical excitation process. It comes from the error in approximating

the correlation function with the single exponential. We use the same correlation function for both the
Lindblad master equation and the HEoM, so it does not jeopardize our comparison anyway.
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(a) γ = 2, τ−1R ≈ 1.38 (b) γ = 10, τ−1R ≈ 1.60

Figure 3.1: This figure compares the relaxation process of a qubit predicted by the Lindblad
master equation (Eq. 3.29) and the 2nd order HEoM (Eq. 3.26). x = y = 0 is satisfied
throughout the process, and only the evolution of z is shown. ω0 = 95, Ω = 100, λ = 10,
and two different values of bath correlation rate γ are chosen.

exact. We can see the relaxation process is not a monotonic decay, there can now exist
oscillatory behavior which is characteristic of non-Markovianity.

From the comparison, we see that when the bath correlation time and the system re-
laxation time are comparable (γ−1 ∼ τR), the Lindblad master equation has a significant
deviation from the HEoM (Eq. 3.1a). Specifically, it fails to demonstrate the oscillatory
behavior in the decay. However, when the bath correlation time becomes much shorter than
the system relaxation time (γ−1 � τR), the Lindblad master equation becomes reasonably
accurate (Eq. 3.1b).

3.2.2 The controlled relaxation

In this subsection, we are going to see how an open loop unitary control operation might aid
the relaxation process. We will solve everything using HEoM.

Let us look at control for an example in the non-Markovian regime where the qubit
frequency (ω0 = 90) is further away from the peak (Ω = 100) of the coupling spectrum than
in Fig. 3.1a. We take γ = 2 as before. Fig. 3.2 demonstrates different control schemes for
such a highly non-markovian parameter regime. The natural relaxation process (shown in
the solid black line) is significantly slower than in Fig. 3.1a because the qubit and the bath
are far off-resonant. In order to speed up the process, we try a simple control Hamiltonian
Hc = 5σz that brings the effective qubit frequency to the same value as Ω. The system
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evolution under this on-resonant control is shown in the dotted blue line. Although this
is much faster than the natural relaxation, there is a strong oscillatory behavior where the
system “bounces back” from close to the ground state. In order to alleviate the problem, let
us try an improved strategy. We initially apply Hc to create a resonance; when the qubit
is most close to the ground state, we turn off Hc to bring qubit out of resonance. This
strategy is shown in the dashed red line in the plot. We see that the oscillatory effect is
indeed reduced and the qubit has better relaxation behavior under this control strategy.

Figure 3.2: This figures shows the relaxation process of the qubit subject to different control
protocols. For ‘Off resonance’ protocol, there is no control Hamiltonian added. For ‘On
resonance’ protocol, Hc = 5σz is on all the way through. For ‘On+Off’ resonance protocol,
Hc is on until t ≈ 0.6. Parameters chosen are ω0 = 90, Ω = 100, λ = 10, γ = 2.
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3.2.3 Conclusion

In this section, we saw that the Lindblad master equation fails to capture certain important
feature of an open quantum system outside its regime of validity. The Born-Markov approx-
imation breaks down if the bath is non-Markovian, the system-bath coupling is strong, or
the control Hamiltonian is strong. However, the HEoM are typically still valid and provide
a useful tool to tackle such open quantum systems. We also see for qubit relaxation that we
can use coherent control to battle the non-markovian effects by solving HEoMs.

3.3 Unravelling HEoMs

5 In the previous chapter, we see that a deterministic master equation can be unraveled into
a stochastic master equation, with the former describing the average behavior of the latter.
When the stochastic master equation is equivalent to a stochastic Schrodinger equation, it
can be advantageous to solve the deterministic master equation by numerically averaging out
the solutions to the stochastic Schrodinger equation. The reason is that for a Hilbert space
of dimension N , a density operator is of size N × N while a pure state vector is of size N .
Although we need to solve many runs of a stochastic differential equation(SDE) to obtain a
good average, this unravelling technique is useful when N is large enough, particularly if we
do not even have a RAM of size N ×N .

We would like to apply the same trick to unravel the HEoM. Please be aware that this is
merely a mathematical treatment, where individual trajectories have no physical meaning.
In order to show the possibility of such an unravelling, we consider a system coupled to a
bath via HI = V ⊗B. We assume the bath is at a high temperature T and the coupling has
the Drude spectral density (Eq. 3.18). Let us write the first order HEOM that involves the
density operator ρ and a single auxiliary density operator σ [52]:

dρ

dt
=− i[H, ρ] + i[V, σ]

dσ

dt
=− i[H, σ]− γσ + i2λT [V, ρ] + λγ{V, ρ} (3.32a)

We write ρ(t) = E[|ψ(t)〉
〈
ψ̄(t)

∣∣ + h.c.], σ(t) = E[|φ(t)〉
〈
φ̄(t)

∣∣ + h.c.]. Eq. 3.32 can then
be unraveled into the following linear SDE for |ψ(t)〉,

∣∣ψ̄(t)
〉
, |φ(t)〉, and

∣∣φ̄(t)
〉
:

d |ψ〉 =− iH |ψ〉 dt+ iV |φ〉 dt+ |φ〉 dWψ̄, (3.33a)

d
∣∣ψ̄〉 =− iH

∣∣ψ̄〉 dt+
∣∣φ̄〉 dWψ + iV

∣∣φ̄〉 dWψ̄, (3.33b)

d |φ〉 =− (iH + γ/2) |φ〉 dt+ (i2λT + λγ)V |ψ〉 dWφ + |ψ〉 dWφ̄, (3.33c)

d
∣∣φ̄〉 =− (iH + γ/2)

∣∣φ̄〉 dt+
∣∣ψ̄〉 dWφ + (i2λT + λγ)V

∣∣ψ̄〉 dWφ̄, (3.33d)

5This section is my joint work with Alireza Shabani.
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where dWψ and dWψ̄ are two independent Wiener processes, as also dWφ and dWφ̄.6

It turns out that almost all trajectories of the above SDE are unbounded, although their
true average will be our desired solution to the HEoM. The symmetric random walk in 1D
would be an analogy: almost all trajectories diverge, but the average stays constant at the
initial position. Therefore, the number of trajectories we need to average over increases with
time and this unravelling approach is not feasible once time gets large.

The way to alleviate the problem is to make the trajectories as bounded as possible.
Please notice that the trace of ρ is conserved in the HEoM. It corresponds to the quantity

Tρ =
〈
ψ̄
∣∣ψ〉+

〈
ψ
∣∣ ψ̄〉 (3.34)

in the SDE, which can be made conserved for individual trajectories if we apply the trick
mentioned in Ref. [33]. The idea behind this trick will be explained soon. Let

Rψ =
1

2
(
〈
φ̄
∣∣ψ〉+

〈
ψ̄
∣∣ iV |φ〉) + h.c., (3.35a)

Rψ̄ =
1

2
(
〈
φ
∣∣ ψ̄〉+ 〈ψ| iV

∣∣φ̄〉) + h.c, (3.35b)

and

Rφ = 0, (3.36a)

Rφ̄ = 0. (3.36b)

The non-linear but ρ-trace-preserving unraveling can be written as:

d |ψ〉 =− iH |ψ〉 dt− |ψ〉 dBρ + iV |φ〉 (Rψdt+ dWψ) + |φ〉 (Rψ̄dt+ dWψ̄), (3.37a)

d
∣∣ψ̄〉 =− iH

∣∣ψ̄〉 dt−
∣∣ψ̄〉 dBρ +

∣∣φ̄〉 (Rψdt+ dWψ) + iV
∣∣φ̄〉 (Rψ̄dt+ dWψ̄), (3.37b)

d |φ〉 =− (iH + γ/2) |φ〉 dt− |φ〉 dBσ + (i2λT + λγ)V |ψ〉 (Rφdt+ dWφ)/C

+ C |ψ〉 (Rφ̄dt+ dWφ̄), (3.37c)

d
∣∣φ̄〉 =− (iH + γ/2)

∣∣φ̄〉 dt−
∣∣φ̄〉 dBσ + C

∣∣ψ̄〉 (Rφdt+ dWφ)

+ (i2λT + λγ)V
∣∣ψ̄〉 (Rφ̄dt+ dWφ̄)/C, (3.37d)

where

dBρ = RψdWψ +Rψ̄dWψ̄ +
1

2
(R2

ψ +R2
ψ̄)dt, (3.38)

dBσ = RφdWφ +Rφ̄dWφ̄ +
1

2
(R2

φ +R2
φ̄)dt, (3.39)

and C can be an arbitrary real constant7.

6It is ok to have correlations between other pairs, (eg, dWψ and dWφ) although we will treat all the
Wiener processes to be independent of each other in the simulation.

7We set C =
√
|i2λT + λγ| for best convergence in simulation.
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Eq. 3.37 unravels the original HEoM for arbitrary deterministic functions Rψ, Rψ̄, Rφ,
and Rφ̄. However, only Eq. 3.35 ensures that ρ is normalized for each unravelling. We
set the other two to zero in Eq. 3.36 just to make the unravelling simpler; σ can not be
normalized as its trace is not conserved in the original HEoM.

The idea behind the above normalized unravelling is the following. For the original
unnormalized unravelling, Eq. 3.33, we have

dTρ = 2RψdWψ + 2Rψ̄dWψ̄. (3.40)

For each trajectory, we can apply the following transformation

ψ(t)→ ψ(t)/
√
Tρ(t), (3.41a)

ψ̄(t)→ ψ̄(t)/
√
Tρ(t), (3.41b)

to ψ and ψ̄, so that Tρ (after the transformation) is held constant at 1. However, in order to
keep the trajectory’s contribution to the average the same, we need to increase its probability
by Tρ to compensate for the fact that Eq. 3.41 scales it down by Tρ. As explained in Ref. [33],
this probability renormalization can be achieved by making the following transformation to
the Wiener noise increments [33]:

dWψ → 2Rψdt+ dWψ, (3.42a)

dWψ̄ → 2Rψ̄dt+ dWψ̄. (3.42b)

Eq. 3.37 is then obtained by applying the above transformations (and similar ones associated
with φ and φ̄) to Eq. 3.33.

We will use qubit dephasing as an example. Let H = 1
2
ω0σz and V = σz. Fig. 3.3b

shows, for a general initial state, the dynamics solved from HEoM directly (dotted line)
vs. the average of the normalized unraveling (solid line). (Shown are the Bloch vector
components in the rotating frame, X, Y , and Z, where Z should stay constant for this
dephasing dynamics.) One can spot a systematic deviation between them. I tried both the
Euler-Maruyama method and the 4th order Runge-Kutta method for the unraveled SDE,
and I chose different time steps, but the same deviation is present. Therefore, this unravelling
approach does not seem to work as we desire.

I speculate that the reason why the simulation average deviates from the true average may
be the following. φ and φ̄ can go unbounded for some trajectories, although the probabilities
are exponentially suppressed by the γ terms; ψ and ψ̄ can go unbounded too, even if Tρ is
fixed at 1 (which is manifested by the spikes in Fig. 3.3a). Such unbounded trajectories have
non-negligible contribution to the true average. However, they are not adequately sampled
in the simulation because their probabilities are perhaps exponentially low. As a result, the
stochastic trajectory average is erroneous.

One may also use Poisson processes instead of Wiener processes in an unravelling. A
Poisson process dN(t) that happens in [t, t + dt) takes either 0 or 1 and has expectation
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(a) One trajectory (b) STA

Figure 3.3: The Bloch vector components X, Y , Z (in the rotating frame defined by ω0)
associated with (a) one typical unravelling (b) the HEoM, Eq. 3.32 with V = σz, solution
(labeled with ‘Solution’) vs. stochastic trajectory average (labeled with ‘STA’) of the un-
ravellings. The average is done with 20000 simulation runs. Parameters chosen are T = 40,
λ = 1, γ = 10. (ω0 is irrelevant here.)

value dt. In order to get a Poisson type of unravelling, we just need to replace dW with
dN − dt in the above unravelings. However, the Poisson SDE run into an even worse
convergence issue because there seems to be no way to even normalize the trajectories using
the trace-preserving technique.

So far I am not able to come up with an unravelling scheme that is feasible to implement,
but it is worthy of future research.
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Chapter 4

PI Control

Quantum states are fragile and decoherence poses a main challenge to implementing a quan-
tum computer. One way to battle decoherence is to control the quantum system based
on the past measurement record, also known as feedback control or closed-loop control.
The simplest feedback method would be tuning the feedback strength so that it is always
proportional to the instantaneous measurement current [127]. This method is referenced to
nowadays as Wiseman-Milburn feedback [130], or (direct) proportional feedback. Wiseman-
Milburn feedback strategies can give us significant improvement over no feedback at all, but
they are usually far from optimal. The most effective feedback method would be to perform
a real-time estimation of the current quantum state and to adjust the control accordingly.
However, real-time estimation is usually extremely difficult to implement experimentally,
due to the complicated dependence of the state estimator on the measurement records. In
this section, we will introduce a quantum control strategy that is based on integrations of
past measurement currents, called integral feedback. It is well-known in classical control
theory [109] but has not been extensively studied for quantum control.1 Integral feedback is
a trade-off between performance and feasibility. It might perform better than proportional
feedback because it takes into account measurement records in the past in additional to
those at present, and a simple integral is also much easier to implement experimentally than
a complicated state estimator. A control strategy that combines the proportional feedback
and integral feedback is called PI control. In this section, we will formulate the quantum the-
ory of PI control and give two examples comparing the relative performance of proportional
and integral feedback.

4.1 Formalism

In this section, we will develop the formalism for a quantum system under continuous-in-
time measurement (e.g., homodyne detection) and PI feedback control. Let ρ be the state

1The idea of integral feedback on quantum systems was mentioned in Ref. [98] where a low-pass filter of
the measurement signal over a small time window was used to condition the feedback.
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of the system, H be the intrinsic Hamiltonian, c be the measurement operator,2 η be the
measurement efficiency. We will set ~ = 1 in this section.

The measurement conditioned dynamics of the system without control can be described
by the following stochastic master equation which we studied in Sec. 2.60:

[dρ(t)]nf = −i[H, ρ(t)] +D[c]ρ(t)dt+
√
ηH[c]ρ(t)dW (t), (4.1)

where dW is a Wiener increment satisfying dW 2 = dt. The superoperators in this equation
are defined as D[A]ρ ≡ AρA† − 1

2
(A†Aρ + ρA†A) and H[A]ρ ≡ Aρ + ρA† − Tr[(A + A†)ρ]ρ.

The measurement current can be written as [130]

J(t) = 〈c+ c†〉(t) + ξ(t)/
√
η, (4.2)

where ξ(t) = dW/dt is the Wiener noise. A PI feedback superoperator K, which may be
dependent on both the instantaneous current and a time integral of the current, generates
the following additional dynamics:

[ρ̇(t)]fb = Kρ ≡ J(t− τP )(−i)[FP , ρ(t)] + Jint(t)(−i)[FI , ρ(t)], (4.3)

where FP and FI are the control operators associated with the proportional and integral
feedback respectively. The time delay τP is physically present in a real feedback system and
sometimes can also be utilized to improve the feedback performance (see subsection 4.3.3).
The integral Jint of the current can be expressed as:

Jint(t) =

∫ τI

0

J(t− s)w(t, s)ds, (4.4)

where w(t, s) is a filter representing how heavily we weigh the photocurrent at time s ago
towards the feedback and τI is the filter integration time. We will normalize w(t, s) by∫ τI

0
w(t, s)ds = 1.3 Therefore, Jint(t) behaves just like a smoothed-out version of J(t) with

the same integrated strength. A simple filter could have a constant ω(t, s). However, a
ω(t, s) that decays in s would likely perform better, because it puts lesser weight on current
further in the past. Please note that the filter does not reduce the amount of noise injected
into the system, it merely injects each piece of noise over a period of time instead of in a
single shot.

The following derivation of system dynamics will be similar to that for the Wiseman-
Milburn feedback in Ref. [130]. Let us define the anti-commutator superoperator F× as
F×ρ ≡ [F, ρ]. When we evolve the system for time dt, we need to add the feedback incre-
mental superoperator exp(Kdt) to the evolution given by Eq. 4.1, namely,

ρ(t+ dt) = exp(Kdt)× {1− iH×dt+D[c]dt+
√
ηH[c]dW (t)}ρ(t), (4.5)

2The measurement strength is encoded in this operator.
3For time-homogeneous filters, w(t, s) is independent of t.
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and
Kdt = [〈c+ c†〉(t− τP )dt+ dW (t− τP )/

√
η](−i)F×P + Jint(−i)F×I dt. (4.6)

The dW term in Kdt is of O(
√

dt) and needs to be expanded to the second power in
exp(Kdt). The other two terms in Kdt are of O(dt) and need to be expanded to the first
power only. In particular, Jint, as seen from Eq. 4.4, is basically a weighted sum of N = τI/dt
independent Wiener increments dWi (i=1, 2, ... N). Hence, (Jint)

2, which consists of a sum
of N terms, (dWi)

2, that are of O(dt), is regular (i.e., O(dt0)). Therefore, Jint is regular as
well and Jintdt ∼ O(dt). We note that the time step dt should be much smaller than the
filter integration time τI here.4

In principle, the proportional feedback can be treated as the integral feedback with a
delta function filter, namely, the first term in Eq. 4.3 can be absorbed in the second term
by adding the filter w(t, s) = δ(s − τP ). We can choose a rectangle with (very narrow)
width τI and height 1/τI to approximate this delta function. Practically, 1/τI represents
the bandwidth of the proportional feedback loop. However, the time step needs to be much
smaller than this τI when we simulate the resulting SME, which can be very inefficient.
Therefore, we still treat the proportional term separately when deriving the SME.

The result for the total conditioned evolution of the system is then

ρ(t+ dt) = {1 + [〈c+ c†〉(t− τP )dt+ dW (t− τP )/
√
η](−i)F×P +D[FP ]dt/η + Jint(−i)F×I dt}

× {1− iH×dt+D[c]dt+
√
ηH[c]dW (t)}ρ(t). (4.7)

For τP > 0, the conditioned SME becomes:

dρ(t) =dt
{
−i[H, ρ(t)] +D[c]ρ(t) + 〈c+ c†〉(t− τP )(−i)[FP , ρ(t)] +D[FP ]ρ(t)/η

+Jint(−i)[FI , ρ(t)]}+ dW (t− τP )(−i)[FP , ρ(t)]/
√
η +
√
ηdW (t)H(c)ρ(t). (4.8)

For τP = 0, the conditioned SME becomes:5

dρ(t) =dt
{
−i[H, ρ(t)] +D[c]ρ(t)− i[FP , cρ(t) + ρ(t)c†] +D[FP ]ρ(t)/η + Jint(−i)[FI , ρ(t)]

}
+ dW (t)H[

√
ηc− iFP/

√
η]ρ(t). (4.9)

One can see that unlike proportional feedback, the integral feedback just adds a regular
unitary evolution term to the system dynamics. In this paper, we will always simulate the
above integral stochastic differential equations(SDE) with what we call a generalized Euler-
Maruyama method. For the usual Euler-Maruyama [59] method, we generate a Wiener noise
increment dW (t) for each time step [t, t+dt] and update the state according to the stochastic
differential equation. For our generalized Euler-Maruyama method, we always keep a record
of the noise up to time τ = max(τI , τP ) in the past, i.e., dW (t), dW (t− dt), ... dW (t− τ)).
Therefore, dW (t − τP ) is accessible and Jint(t) can be calculated at each time t, and the
state can be updated according to the SDE as usual.

4More precisely, dt should be much smaller than the duration in s over which ω(t, s) varies significantly.
5The system evolution described by Eq. 4.8 converges smoothly to that described by Eq. 4.9 as τP

approaches zero.
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4.2 Two-qubit Entanglement Generation

In this section, we explore the use of PI control to generate an entangled two-qubit state
with a local Hamiltonian and non-local measurement. We will continue to set ~ = 1 in
this section. Let us use Ti to denote the triplet state with total spin i, where i = −1, 0, 1.
Namely, T−1 = |00〉, T0 = |01〉+ |10〉, and T1 = |11〉. Our goal is to stabilize the state to T0.

We assume the two qubits are subject to a simple intrinsic Hamiltonian h1σz1 + h2σz2
where h1 and h2 are constants and decoherence is negligible. If we work in the rotating
frame defined by the intrinsic Hamiltonian, the system Hamiltonian vanishes, i.e., H = 0.
We assume the measurement operator c is given by

c =
√

2kLz, (4.10)

where Lz = (σz1 + σz2)/2 and k is the measurement strength. We also assume that a
Lx = (σx1 + σx2)/2 feedback Hamiltonian with controllable strength (see below) is at our
disposal. If the initial state is in the triplet subspace, the subsequent evolution will stay
within the subspace under such measurement and feedback. Without loss of generality, we
set k = 1.

The measurement current (as given by Eq. 4.2) serves as a good error signal. At the
target state T0, the expectation value of the current is 0; at T1 and T−1 the expectation is
positive and negative respectively.

Let us write FP = fPLx and FI = fILx, where fP and fI are the proportional and integral
feedback strength. Since applying a Lx rotation can bring T±1 closer to T0, the feedback
Hamiltonian can partially correct the error. Therefore, we expect the feedback as given by
Eq. 4.3 will be helpful. For the integral feedback, we would like to choose the following filter
that takes the exponential decay form:

Jint(t) =
1

τI

∫ t

−∞
J(s) exp(−(t− s)/τI)ds. (4.11)

To judge the quality of the feedback strategies, we will look at the steady state populations
of the three triplet states as well as the concurrence. Given a density operator ρ, the
population of a pure target state |ψ〉 is defined as 〈ψ | ρ |ψ〉. Concurrence, an excellent
measure of entanglement, is defined for a mixed state of two qubits as

C(ρ) ≡ max(0, λ1 − λ2 − λ3 − λ4) (4.12)

in which λ1,...,λ4 are the eigenvalues, in desreasing order, of the Hermittian matrix

R =
√√

ρρ̃
√
ρ (4.13)

with
ρ̃ = (σy ⊗ σy)ρ∗(σy ⊗ σy) (4.14)
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the spin flipped state of ρ [43, 131].
The steady state is independent of a wide variety of initial states we explored. Fig. 4.1a

and Fig. 4.1c show the unconditioned evolution of the system under proportional and integral
feedback respectively. The measurement efficiency and feedback strength are the same for
both strategies (fI = fP = 0.2, η = 0.4). We chose τP = 0 for the proportional feedback and
a near-optimal integration time τI = 3 for the integral feedback. The unconditioned density
matrices for the proportional feedback are calculated with the (unconditioned) Wiseman-
Milburn equation (Eq. 4.9 without the Jint term and the dW term), and those for the
integral feedback are calculated with Eq. 4.9 by averaging over 2000 runs. One can see
that the concurrence and the three triplet populations reach steady state for both feedback
strategies, but the integral feedback is able to produce a higher steady state concurrence
than the proportional feedback. (Please be aware that all triplet populations vary wildly
between 0 and 1 for individual trajectories under both feedback strategies.)

To further illustrate the trade-off between short and long integration time, Fig. 4.2 plots
the steady state concurrence vs. filter integration time τI for the integral control. (τI = 0
should be understood as the proportional feedback with no delay.) For any feedback strength,
there is a peak in concurrence that corresponds to a non-zero optimal filter integration
time.6 For a fixed filter integration time, the steady state concurrence decreases with the
feedback strength fI , and it converges to some upper limit as the strength goes to zero.7

For the proportional feedback (at τI = 0 as noted above), this limiting concurrence is about
0.36, but Fig. 4.2 shows that integral feedback can exceed this limit by a wide margin.
We also simulated proportional feedback strategies with delay (e.g., Fig. 4.1b), and these
also perform worse than the best integral feedback strategies.8 Therefore, our two-qubit
entanglement generation problem is a convincing example that shows feedback control with
a filtered current is effective in generating entanglement and outperforms the conventional
proportional feedback strategy.

The reason why integrating the current helps can be understood as follows. The feedback
is ineffective in correcting any incremental measurement noise, because the generator of the
measurement noise, H[Lz], is not proportional to the generator of the feedback, L×x . Indeed,
when the state is close to T0, measurement in an infinitesimal time tends to slightly mix the
state with more T±1 population, but we are better off not performing any Lx rotation at
all at the feedback step, since the T0 population still dominates. However, if measurement
drives the state all the way to be T−1 or T1 dominant after some finite time, we can perform a
finite Lx feedback rotation and bring the state much closer to T0. Therefore, the feedback is
effective in correcting accumulated measurement noise instead of incremental measurement
noise, and integrating the measurement record will be very useful.

6The peak for fi = 0.1 is out of the range of Fig. 4.2.
7The system takes longer and longer to reach steady state as the feedback strength fI goes to zero,

however.
8The performance of proportional feedback decreases with the delay time τP as we expect.
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(a) Proportional control with τP = 0 (b) Proportional control with τP = 1.5

(c) Integral control

Figure 4.1: The average evolution of a two-qubit system under feedback control. (a) shows
the proportional feedback with τP = 0 and fP = 0.2 calculated according to the unconditional
Wiseman-Milburn equation; (b) shows the proportional feedback with τP = 1.5 and fP = 0.2
calculated by averaging over trajectories simulated with Eq. 4.8; (c) shows the integral
feedback with τI = 3 and fI = 0.2 calculated by averaging over trajectories simulated with
Eq. 4.9. η = 0.4 is chosen for both. The initial state is taken to be the unentangled state
T1.
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Figure 4.2: The steady state concurrence vs. integration time for the integral control. The
relation is plotted with η = 0.4 and three different fI values.

4.3 Harmonic Oscillator State Stabilization

The feedback control on a harmonic oscillator has many practical interests, both classical
and quantum mechanical. Manipulating trapped cold ions or atoms would be an example.
The quantum case was considered in Refs. [24, 47, 25]. We investigage here if adding a filter
in the control loop enhances control or not. The system is damping at rate γ due to some
coupling to a bath of zero temperature (spontaneous emission in the case of a trapped atom).
We apply a continuous measurement of the position x with strength k and efficiency η. The
master equation can be written as [25]

dρ = − i
~

[H0, ρ]dt+ 2γD[a]ρ+ 2kD[x]ρdt+
√

2ηkH[x]ρdW, (4.15)

where ω = 2π/T is the angular frequency and a is the annihilation operator. H0 = mωx2/2+
p2/(2m). The measurement current j is given by9 [24]

j(t) = 4ηk〈x〉(t) +
√

2ηkξ(t). (4.16)

Based on the outcomes of the measurement, we apply a feedback linear in x and p. Let us
write the proportional feedback operator as

FP = αx+ βp. (4.17)

9This expression is the same as Eq. 4.2 except an overall constant.
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α and β are proportional feedback strength. This proportional feedback is the same as in
Ref. [24] except we will also consider a delay τP in the feedback loop. Let us add the
following regular feedback to the above proportional feedback

Hf = fx(t)p− fp(t)x, (4.18)

where fx(t) and fp(t) are the strength for x and p control respectively, which include any
dependence on integrals of the measurement records.

If we start with a Gaussian state, the state will remain Gaussian under such measurement
and feedback [53]. A Gaussian state is completely determined by its first moments (〈x〉,〈p〉)
and second moments (Vx ≡ 〈(x− 〈x〉)2〉, Vp ≡ 〈(p− 〈p〉)2〉, Cxp ≡ 1

2
〈xp+ px〉 − 〈x〉 〈p〉). It

has been shown that the evolution of second moments are independent of the feedback and
that they will reach steady state [24]. The steady state values can be expressed as follows in
the γ � k limit [24]:

Vx = (
~√

2ηmω
)

1√
ξ + 1

, (4.19a)

Vp = (
~mω√

2η
)

ξ√
ξ + 1

, (4.19b)

Cxp = (
~

2
√
η

)

√
ξ − 1√
ξ + 1

, (4.19c)

where

ξ =

√
1 +

4

ηr2
, r =

mω2

2~ηk
. (4.20)

One can see that the state becomes more squeezed in the x quadrature than in the p quadra-
ture as a result of the x measurement.

The evolution of the first moments is given by [24]

d〈x〉(t) = (〈p〉/m)dt+ dx̃(t), (4.21a)

d〈p〉(t) = −mω2〈x〉dt+ dp̃(t). (4.21b)

where

dx̃(t) = −γ〈x〉(t)dt+ fx(t)dt+ 4ηkβ〈x〉(t− τP )dt+
√

2ηk(2VxdW (t) + βdW (t− τP )),
(4.22a)

dp̃(t) = −γ〈p〉(t)dt+ fp(t)dt− 4ηkα〈x〉(t− τP )dt+
√

2ηk(2CxpdW (t)− αdW (t− τP )).
(4.22b)

The above results are obtained with the Heisenberg equations of motion associated with the
SME (Eq. 4.9) under the aforementioned measurement and control. For simplicity, we will
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consider the dynamics when the second moments have reached steady state, as given by Eq.
4.19.

For better simulation behavior, we make a change of variables and write the two quadra-
tures operators x and p in the lab frame in terms of X and P in the rotating frame, namely,

x = X(t) cos(ωt) + P (t) sin(ωt)/(mω), (4.23a)

p = −mωX(t) sin(ωt) + P (t) cos(ωt). (4.23b)

The expectation values of the quadrature operators obey the same transformation rules
above, obviously. Then the dynamics in the lab frame, Eq. 4.21, can be translated to the
following dynamics in the rotating frame10:

d〈X〉(t) = dx̃(t) cos(ωt)− dp̃(t) sin(ωt)/(mω), (4.24a)

d〈P 〉(t) = mωdx̃(t) sin(ωt) + dp̃(t) cos(ωt). (4.24b)

where the right hand side can also be written in terms of 〈X〉 and 〈P 〉 using Eq. 4.22 and
4.23.

In the following subsections, we will explore the state stabilization problem where the
goal is to center the state at an arbitrary point (〈X〉 = Xg, 〈P 〉 = Pg) in the rotating frame.
Also, (xg(t), pg(t)) denotes the same target state in the lab frame, which is again related to
(Xg, Pg) with the transformation Eq. 4.23. The cooling problem can be viewed as a special
case where Xg = 0 and Pg = 0.

4.3.1 x and p Control

In the case where both x and p control are feasible, any state can be driven exponentially close
to the target state (xg(t), pg(t)) by setting α = 2Cxp, β = −2Vx, fx(t) = (γ + 8ηkVx)xg(t),
and fp(t) = γpg(t) + 8ηkCxpxg(t).

11 Then Eq. 4.22 becomes

dx̃(t) = −γ(〈x〉(t)− xg(t))dt− 8ηkVx(〈x〉(t)− xg(t))dt, (4.25a)

dp̃(t) = −γ(〈p〉(t)− pg(t))dt− 8ηkCxp(〈x〉(t)− xg(t))dt. (4.25b)

The idea behind this setting is two-fold. First , the measurement noise (dW terms)
is completely canceled out by feedback and the evolution is deterministic.12 Second, the
relaxation terms, which are proportional to the error signals 〈x〉 − xg and 〈p〉 − pg, correct
any deviation from the target state. (The term 〈x〉 − xg in the dynamics for pg(t) does not
act as a feedback, but it does not do much harm either. It will eventually decay to zero

10Ref. [25] did the frame change using the rotating wave approximation, but we are doing it rigorously.
11Our settings generalize those in Ref. [24], which studied the cooling problem, i.e., Xg = 0 and Pg = 0.
12Similar noise cancelling behavior is also observed in feedback control of a single qubit [64].
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when the target state is approached.) Therefore, any initial state can be perfectly stabilized
as illustrated in Fig. 4.3a. We note that fx(t) and fp(t) here are basically (time dependent)
offsets that are independent of the measurement current, so the scheme described above is
essentially a current proportional feedback.

(a) Proportional control (b) Integral control

Figure 4.3: The evolution of X and P quadratures in the rotating frame of an oscillator
subject to an x and p control Hamiltonian. The parameters of the oscillator are as follows:
m = 1, ω = 1, η = 0.1, k = 0.02, γ = 0. The initial state is set to Xg = 10, Pg/(mω) = 10
and the target state is set toXg = 6, Pg/(mω) = 4. For the integral control, the characteristic
time τI for the exponential filter is set to 0.04T . The chosen feedback strengths are very
optimal.

Now let us see what happens when we use integral control. We would like to average out
the currents up to about time τI in the past, so we process the current with the following
exponential filter:

I(t) =
1

τI

∫ t

−∞
j(s) exp(−(t− s)/τI)ds. (4.26)

A very good choice of feedback making use of such an integral filter is the following:

fx(t) ≈ −2Vx(I(t)− 4ηkxg(t)) + γxg(t),

fp(t) ≈ −2Cxp(I(t)− 4ηkxg(t)) + γpg(t). (4.27)

The idea behind the choice of coefficients in this current integration feedback is similar to the
case of the current proportional feedback above, namely noise cancellation and correction
based on the error signals. A typical evolution, from the same initial states as in the pro-
portional case, is shown in Fig. 4.3b. One can spot a systematic deviation from the target



CHAPTER 4. PI CONTROL 61

state; this deviation can be removed by adjusting the coefficients in front of xg and pg in the
feedback. However, there is nevertheless randomness in the evolution because we are not
able to cancel out the noise precisely in the integral feedback.13 Hence, the actual state will
fluctuate around the target state, preventing perfect state stabilization. We will see in the
next subsection that another good choice of filter is the sinusoidal filter, but we nevertheless
get this stochastic behavior for virtually all filters. We therefore conclude that if we have
access to both x and p control, integrating the current will only make things worse.

4.3.2 x Control only under Rotating Wave Approximation

Let us now explore what will happen if we only have access to a control Hamiltonian that
is proportional to x. It physically represents a force, which is most realistic. Because the
strength fp for the control Hamiltonian x enters the dynamics in d〈p〉 as indicated in Eq.
4.22, getting a good estimate of 〈p〉 would be very helpful. However, the measurement
current only directly reveals information about x. In order to proceed, we will integrate the
current with sin and cos filters to get good estimate of the two quadratures 〈X〉 and 〈P 〉 of
the oscillator in the rotating frame, as Doherty suggests [25]:

JX(t) =
√

~/(mωkη)

∫ t

t−τ ′I
j(s) cos(ωs)ds/τ ′I , (4.28a)

JP (t) =
√

~mω/(kη)

∫ t

t−τ ′I
j(s) sin(ωs)ds/τ ′I , (4.28b)

where τ ′I should be chosen as an integer multiple of T/2, especially when it is small.
Let us also write the feedback strength fp(t) in terms of two lab frame quantities fX(t)

and fP (t)
fp(t) = −2mωfX(t) sin(ωt) + 2fP (t) cos(ωt). (4.29)

In order to come up with a simple dynamical equation, let us apply the rotating wave
approximation [25], which only discerns dynamics on a scale larger than one period of oscil-
lation. This approximation is valid when k � mω2/~, and fX together with fP are slowly
varying. In this picture, the effective measurement strength is K = ~k/(mω), and the above
two quadrature currents can be written as [25]

JX(t) = 2
√
ηK〈X〉(t) +

√
~/(mω)ξX , (4.30a)

JP (t) = 2
√
ηK〈P 〉(t) +

√
~mωξP , (4.30b)

where ξX and ξP are two independent Wiener noise processes.14 Also, under rotating wave
approximation, the state evolution, Eq. 4.24, can be simply expressed as [25]

d〈X〉(t) = −γ〈X〉(t)dt+ fX(t)dt+ 2
√
ηk(VxdWX − CxpdWP/(mω)), (4.31a)

13There is no precise noise cancellation in integral feedback because the measurement noise term dW is
singular but the integral feedback term is regular, i.e., is O(dt0).

14They come from the two quadratures of the original Wiener noise in j(t).
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d〈P 〉(t) = −γ〈P 〉(t)dt+ fP (t)dt+ 2
√
ηk(mωVxdWP + CxpdWX), (4.31b)

where fX and fP can be anything dependent on JX and JP as a result of the feedback. A
sensible integral feedback with strength uX and uP and characteristic filter length τI can be
written as

fX(t) =
uX
τI

∫ t

−∞
JX(s) exp(−(t− s)/τI)ds+ γXg, (4.32a)

fP (t) =
uP
τI

∫ t

−∞
JP (s) exp(−(t− s)/τI)ds+ γPg. (4.32b)

The proportional feedback can be understood as the τI → 0 limit as before. It can be simu-
lated by directly setting fX = uXJX + γXg and fP = uPJP + γXg. We note that physically
τI needs to be at least on the order of a period for a valid rotating wave approximation, and
a sinusoidal filter (which is an integration) needs to be applied anyway. However, it is still
insightful to study mathematically this proportional feedback limit of the above rotating
wave dynamics.

One can see that choosing uX = uP = −2
√
mωηk/~Vx results in a good cancellation of

the measurement noise VxdWX and VxdWP from Eq. 4.31. Fig. 4.4 compares the behavior of
a proportional and an integral control strategy with this strength. One can see the integral
control protocol has much more fluctuation, although both reach the target state. (For the
proportional control, there is a tiny amount of fluctuation due to the terms CxpdWP and
CxpdWX in Eq. 4.31, but it is invisible to the eye in these plots because Cxp is very small.)

The quality of the feedback can be quantified by the control error, which we define as

e =
√

E[mω(〈X〉 −Xg)2 + (〈P 〉 − Pg)2/(mω)]/(2~) (4.33)

in the long time limit (i.e., when e reaches a constant value). E means the expectation value,
which can be well approximated by averaging over many runs of simulation.

Analysis of the dependence on filter integration time τI shows that in this situation,
instead of having an optimal τI , the quality of the integral control decreases monotonically
with τI . Fig. 4.5 plots the relation between longtime control error e and filter time τI for
k = 0.01. (e scales as

√
τIk and is independent of η approximately.) The reason why the

proportional feedback outperforms the integral one is again that the former is better at noise
cancellation.

As we mentioned earlier, physically, integrals of the measurement record are needed to
obtain JX and JP in all feedback control protocols in this subsection. However, an engineered
true proportional feedback protocol with fixed delay can also stabilize the state to the target
state very well, as we now show.

4.3.3 x Control only without Rotating Wave Approximation

Let us come back to the original dynamics, Eq. 4.21 and 4.22, without the rotating wave
approximation. We assume the weak measurement condition, k � mω2/~, as usual. Under



CHAPTER 4. PI CONTROL 63

(a) Proportional control (b) Integral control

Figure 4.4: The evolution of X and P quadratures in the rotating frame of an oscillator
subject to an x feedback Hamiltonian. The plots show typical simulation trajectories of Eq.
4.31, the dynamics the under rotating wave approximation. The parameters of the oscillator
are as follows: η = 0.4, k = 0.01, γ = 0. Feedback strengths are uX = uP = −2

√
mωηk/~Vx.

The initial state is set to Xg = 10, Pg/(mω) = 10 and the target state is set to Xg = 6,
Pg/(mω) = 4. For the proportional control, τP = 0, and for the integral control, τI = 4T .

x control only, β = 0 and fx = 0. One can see from Eq. 4.22 that the only non-noisy
term involving α is −4ηkα〈x〉(t − τP )dt. However, this term is almost useless if τP = 0,
because x and p are roughly 90◦ out of phase with each other. Indeed, in the absence of γ,
the trajectories do not have any converging behavior if we do proportional x feedback with
zero delay. However, since 〈x〉(t − T/4) is roughly proportional to −〈p〉/(mω), therefore,
we would like to choose τP = T/4 as the delay. We follow the line of logic in Subsec. 4.3.1
to tune the strength and offset of the feedback to achieve noise cancellation. We find that
α ≈ −2Vxmω with fp = (γ − 4ηkα/(mω))pg gives near optimal behavior. The result is
shown in Fig. 4.6a.

Next, let us compare this time delayed proportional feedback strategy with integral strate-
gies. The sinusoidal filter mentioned in Sec. 4.3.2 can be reformulated in the following way
without invoking the rotating wave approximation.

The quadrature currents JX and JP are obtained with integration time τ ′I , as defined in
Eq. 4.28. Because JX and JP are proportional to X and P in the rotating frame,

Jp(t) =

√
mω

4kη~
(−mωJX(t) sin(ωt) + JP (t) cos(ωt)) (4.34)

is a good estimator of the momentum 〈p〉 in the lab frame. We can feedback on this p
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Figure 4.5: This plot shows the long time control error, e, vs. the integration time, τI .
τI = 0 means proportional control without delay. The parameters of the oscillator are as
follows: η = 0.4, k = 0.01, γ = 0. Feedback strengths are uX = uP = −2

√
mωηk/~Vx. e is

calculated by averaging over 20000 runs.

estimator by setting
fp ≈ −8kηVx(Jp − pg) + γpg, (4.35)

for best noise cancellation as usual.15 Also, we saw in Subsec. 4.3.2 that the long time
error increases monotonically with the integration time, so for best behavior we would like
to choose the smallest sensible τ ′I , i.e., τ ′I = T/2.16 Fig. 4.6b shows the dynamics under
integral feedback with the above near optimal parameter setting.

The performance of the proportional strategy with τP = T/4 (Fig. 4.6a) is comparable
to that of the integral feedback with τ ′I = T/2 (Fig. 4.6b). It is hard to judge which is
better from Fig. 4.6, and we need to calculate the long time error e. Fig. 4.7 shows that the
integral feedback is slightly better than the proportional one for a wide range of η. (e scales
as
√
k approximately for both strategies according to our simulation.) It can be understood

intuitively as follows: the average delay of the information coming from the integral is T/4,
the same as that from the proportional feedback. However, it is slightly advantageous to
have the tempered version of the noise injected through the feedback instead of in a single
shot, which gives the integral strategy the relative edge.

15This setting is this equivalent to uX = uP = −2
√
mωηk/~Vx under rotating wave approximation

mentioned in the last subsection.
16We also verified this monotonic increase in simulations without the rotating wave approximation.
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(a) Physically proportional control (b) Integral control

Figure 4.6: The evolution of X and P quadratures in the rotating frame of an oscillator
subject to an x feedback Hamiltonian without invoking the rotating wave approximation.
The parameters of the oscillator are as follows: m = 1, ω = 1, η = 0.4, k = 0.01, γ = 0.
The initial state is set to Xg = 10, Pg/(mω) = 10 and the target state is set to Xg = 6,
Pg/(mω) = 4. For the physically proportional control, τP = T/4, and for the integral control,
τ ′I = T/2. The chosen feedback strengths are very optimal for both.

4.3.4 Conclusion

We saw that for both control cases (x and p controls, or x control alone under the rotating
wave approximation) in the harmonic oscillator state stabilization problem, filtering the
current does not help. This behavior can be understood as follows. Our feedback can
effectively correct any incremental measurement noise. As far as the first moments of a
Gaussian state is concerned, the x measurement generates a translation (shift) in x and p. If
we have control over both x and p, this translation can be well compensated by a feedback.
Even if we only have an x control Hamiltonian, we effectively achieve control over both X
and P in the rotating frame by adjusting the phase of the fast oscillating x control pulse.
This manifests itself in the noise cancellation behavior that is common for the harmonic
oscillator state stabilization. Therefore, we are better off correcting the noise right away
rather than waiting for an integration to be done while noise accumulates.
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Figure 4.7: This plot shows the long time control error, e, vs. the measurement efficiency,
η, for both the physically proportional feedback and the integral feedback without invoking
the rotating wave approximation. The parameters of the oscillator are as follows: m = 1,
ω = 1, k = 0.02, γ = 0 and the target state is set to Xg = 6, Pg/(mω) = 4. For the
physically proportional control, τP = T/4, and for the integral control, τI = T/2. The error
e is calculated by averaging over 20000 runs.
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Chapter 5

Optimal Control Protocol Analysis:
an Example with Qubit Purification

1Finding an optimal control strategy is always insightful for understanding the potential and
limitations of quantum control. In optimality analysis, we usually relax many experimental
constraints and study what is the best strategy theoretically. In this section, we present a
simplified form of the verification theorem (Appendix 5.A) to examine the global optimality
of a control protocol. As an example, we study the effect of experimental imperfections
on the optimality of qubit purification protocols. Specifically, we find that the optimal
control solutions in the presence of detector inefficiency and non-negligible decoherence can
be significantly different from the known solutions to idealized dynamical models.

5.1 Introduction

Pure quantum states, states of systems with minimum classical uncertainty, are an ideal
resource for many tasks in quantum information processing, including teleportation, quan-
tum coding and error correction [80]. However, frequently the states of systems encountered
in the laboratory are mixed quantum states that contain classical uncertainty about var-
ious aspects of the particular physical system of interest. Ordinarily this uncertainty can
be removed, and the state purified, by an appropriate measurement or cooling procedure.
Such purification is often a first, and critical, step in many quantum information processing,
communication, and metrology protocols.

For many physical systems a measurement is properly treated as a finite timescale dy-
namical process as opposed to an instantaneous projective operation. In such systems, the
measurement timescale (the time taken to complete a measurement and collect enough in-
formation to distinguish between the possible classical outcomes) is long enough that one
can perform operations on the system during the measurement process. Such measurements
are referred to as weak measurements. Some examples of quantum information systems that

1The bulk of this chapter is adapted from Ref. [64].
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can operate in regimes of weak measurement are quantum dots monitored by quantum point
contacts [37], and cavity QED implementations in optics [45], or the solid-state [118].

In the case of purification implemented by a weak measurement, it is natural to ask
whether it is possible to accelerate the purification process by performing operations during
the measurement. Jacobs showed in Ref. [56, 57] that in an ideal scenario it is possible
to increase the instantaneous rate of purification by adding feedback operations that are
unitary rotations conditioned on the information collected by the weak measurement thus
far. Specifically, Jacobs showed that in the case of a single qubit with perfect efficiency
measurement, no decoherence, and arbitrarily strong feedback (what we will call the ideal
case), a feedback strategy that always maintains a two-level quantum system (qubit) in
an unbiased basis with respect to the constant measurement basis results a maximization
of the instantaneous rate of purification. We shall refer to this protocol as the unbiased
measurement protocol 2. Subsequently, Refs. [15, 104, 16] generalized this result and showed
that in the ideal case it is possible to utilize feedback to increase the instantaneous rate of
purification for arbitrary finite dimensional quantum systems. Wiseman and Ralph [128]
have noted that it is useful to separate two different goals in the task of quantum state
purification: the first goal, which we refer to as max purity, is that of maximizing the
average purity of the system at a given time, while the second goal, which we refer to as
min time, is that of minimizing the average time taken to achieve a given purity. These
authors show that Jacobs’ unbiased measurement strategy (which consequently maximizes
the instantaneous rate of purification) is advantageous for the max purity goal, while a
diagonal measurement strategy, which measures in the diagonal basis of the qubit state (and
requires no feedback), is better for the min time goal. In fact, Wiseman and Bouten [129]
later proved that in the ideal case the unbiased measurement strategy is the optimal one for
purifying qubits with the max purity goal and that the diagonal measurement strategy is
optimal for purifying qubits with the min time goal. This highlights another reason why
quantum state purification is an important problem in quantum control theory. It is one
of very few problems in this domain where questions of optimality can be constructively
addressed. In contrast to this situation for the state purification problem, the optimality of
most quantum feedback protocols cannot be assessed in a constructive manner.

All the above works address the problem of quantum state purification in the ideal case
where the measurements are of unit efficiency (i.e., where the measurement-induced state
disturbance is equally compensated by a gain in information about the state [126]) and the
feedback action is arbitrarily fast. Both idealizing assumptions must typically be relaxed in
realistic systems. In Ref. [39], Griffth et al. relax the arbitrarily fast feedback assumption
and consider the performance of both the unbiased measurement and diagonal measurement
protocols for purifying the state of a superconducting Cooper pair box qubit. More recently,
Combes and Wiseman [14] have analyzed the impact of a wider array of imperfections on
the unbiased measurement protocol for purification, including finite strength feedback, time
delay in the feedback loop, calibration errors, measurement inefficiency, and decoherence.

2It is implicit in the name that this protocol requires feedback to maintain the unbiased state.
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Both of these studies indicate that the acceleration of purification rate by feedback is severely
hampered by practical constraints.

In this work, we extend the study of quantum state purification by studying the op-
timality of purification protocols in the presence of key experimental imperfections. The
imperfections we consider are measurement inefficiency and extrinsic decoherence as a result
of environmental noise. Both these imperfections will be present in most quantum informa-
tion processing architectures. Hence it is important to consider their effects on purification,
and also to formulate optimal strategies for purification in their presence. We do not consider
the imperfections arising from finite strength feedback or time delay in the feedback loop,
since it is much more difficult to analyze optimality in the presence of these features. The
remainder of the paper is structured as follows. In section 2 we introduce the physical sys-
tem and dynamics we will analyze. In section 3, we find the time local optimal strategy for
purification in the presence of imperfections. Section 4 discusses the global optimality of the
locally optimal strategy for the max purity goal, using a simplified form of the verification
theorem (as part of our calculations we derive a simplified form of the verification theorem
[54] for verifying global optimality of control protocols, which is presented in appendix A).
We also compare the global optimality of the local strategy formulated here against other
known protocols. Then the global optimality of local strategy for the min time goal is
discussed in section 5. A summary and conclusions are presented in section 6.

5.2 Dynamics

We restrict our attention to the case of a quantum two-level system (qubit). Although this is
the simplest finite dimensional system, it is also the most relevant from a quantum informa-
tion perspective since physical implementations of qubits are the fundamental building blocks
for most quantum information tasks. In addition, to examine the effect of imperfections on
state purification, it suffices to examine the case of a qubit.

The system is subject to a weak, continuous measurement of an operator M with strength
k and efficiency η. In addition, we assume the qubit is coupled to a low temperature en-
vironment which induces relaxation and decoherence dynamics on the qubit. The master
equation describing the time evolution of a qubit with such dynamics is given by [9, 126]

dρ =γ1D[σ−]ρdt+ γφD[σz]ρ/2dt+D[
√

2kM ]ρdt+H[
√

2kηM ]ρdW, (5.1)

where ρ is the qubit density matrix, dW is a Wiener increment, and we have set ~ = 1.
The super-operators in this equation are defined as: D[A]ρ ≡ AρA† − 1

2
(A†Aρ+ ρA†A) and

H[A]ρ ≡ Aρ+ρA†−Tr[(A+A†)ρ]ρ. This equation is in a rotating frame with respect to a free
Hamiltonian of the form 1

2
ω(t)σz, and M and ρ should be interpreted in this rotating frame.

Here we have utilized the Born and Markov approximations of the noisy environment in order
to summarize its effects on the qubit as Markovian dephasing at rate γφ and relaxation at
rate γ1. Since the environment is considered to be at low temperature (kBT � ω), we only
consider its de-excitation (relaxation) effects on the qubit. The time-dependent measurement
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results, or measurement current, that generates conditioned evolution by Eqn. (5.1) can be
expressed as:

I(t) =
√
kTr[(M +M †)ρ(t)] + ξ(t)/

√
η. (5.2)

where ξ(t) = dW/dt in a white noise process. In this paper, we assume that the measurement
is along the computational basis axis, i.e. M = Jz = σz/2 (note that this M has no time
dependence in the rotating frame).

Finally, we add a time-dependent coherent rotation of the qubit, F (t), that constitutes
our feedback Hamiltonian. F (t) could be based on the measurement results up to t and
generates the following dynamics in addition to Eqn. (5.1) [126]:

[ρ̇]fb = −i[F (t), ρ]. (5.3)

We consider feedback of arbitrary strength for convenience, including infinite strength
feedback which is modeled as instantaneous unitary rotations at any time superposed on the
evolution given by Eqn. (5.1).3

Because of rotational invariance about the z axis, going away from the x− z plane does
not aid purification. Thus, without loss of generality, we may restrict our attention to the
Bloch vector components x and z, and consider the feedback rotation to be about the y axis.

Without feedback, the evolution of the Bloch vector components of the qubit (ρ = 1
2
(1 +

xσx + yσy + zσz)) is

dx = −(γ2 + k)xdt−
√

2kηxzdW, (5.4a)

dz = −(γ1 + γ1z)dt+
√

2kη(1− z2)dW, (5.4b)

where γ2 = γ1/2 + γφ and r =
√
x2 + z2.

Using Ito’s lemma [126], we can translate Eqn. (5.4) into the following dynamic equation
for the variable r =

√
x2 + z2, the length of the Bloch vector:

dr =[r(γ2 − γ1) + k(r − η

r
)]u2dt− γ1udt

+ [k(
η

r
− r)− γ2r]dt+

√
2kη(1− r2)udW, (5.5)

with u = z
r
. 4 Note that for u = ±1 we have z = ±r and the state lies on the z-axis.

For −1 < u < 1, the Bloch vector makes a non-zero angle with the z axis. The feedback

3Protocols that require “infinite” feedback strength may be approximated reasonably well in circuit QED
[118], where microwave rotations are significantly faster than other relevant timescales, namely, |F (t)| �
k, γ1, γφ.

4The apparent singularity at r = 0 can be removed by changing the state variable from r to the purity,
P , as we will see in Eqn. (5.7). However, because the qubit dynamics are more readily visualized in terms of
the Bloch vector r, and expressions look simpler in r, we will use r as our state variable for the greater part
of the presentation in this paper (in situations where the singularity does not affect our results). Numerical
calculations of Eqn. (5.5) are handled by setting u = −1 at the origin to avoid the singularity.
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control (which is a unitary rotation) does not affect the above dynamical equation for r,
but it does affect the dynamical equation for u (which is not shown here). However, the
assumption of arbitrary strength feedback simplifies the treatment since it implies that we
can set u arbitrarily by instantaneous rotation at any time. Therefore, we identify r as our
state variable and u(r, t) ∈ [−1, 1] as our control input in the above dynamics. Some of the
actual controls we consider for various optimality conditions below require infinite strength
feedback while others do not, and we will make this requirement explicit when relevant.

Finally, we also write down the special case of Eqn. (5.5) with no decoherence for later
convenience. That is, when γ1 = γφ = 0,

dr = k(r − η

r
)(u2 − 1)dt+

√
2kη(1− r2)udW. (5.6)

5.3 The Locally Optimal Strategy

In this section, we will formulate a locally optimal strategy that maximizes the instanta-
neous rate of purification in the presence of measurement inefficiency and decoherence. This
strategy is the generalization of the unbiased measurement protocol [56, 57] which is also a
locally optimal strategy, but was also shown to be globally optimal for purifying qubits with
the max purity goal, in the ideal case with no imperfections [129]. In the following sections,
we will analyze whether this locally optimal strategy is also globally optimal for any goal in
the presence of imperfections.

We begin by writing an equation of motion for the purity, which is defined as: P =
Tr[ρ2] = 1

2
(1 + r2). Using Ito’s lemma and Eqn. (5.5), we obtain the rate of change of purity

as

dP =[γ2 − γ1 + k(1− 2η + ηr2)]r2u2dt− γ1rudt

+ [kη − (γ2 + k)r2]dt+
√

2kη(1− r2)rudW. (5.7)

This equation consists of a deterministic quantity and a stochastic quantity that is propor-
tional to dW (t). The former gives the rate of change of average purity, 〈Ṗ 〉, since dW (t)
averages to zero. Here the angle brackets indicates an average over the stochastic noise pro-
cesses. Notice if write r in terms of P on the right hand side, r =

√
2P − 1, this equation can

be regarded as the dynamics for the state variable P . Maximizing the instantaneous average
purification rate, 〈Ṗ 〉 by choice of rotations around the y axis is equivalent to maximizing
the following quadratic function of u:

f(u) = [γ2 − γ1 + k(1− 2η + ηr2)]r2u2 − γ1ru. (5.8)

The control that maximizes this function can be considered a locally optimal strategy since
it maximizes the instantaneous rate of change in average purity, and we label it ulo(t). It is
not a priori clear that such a locally optimal strategy will be globally optimal for either the
max purity or min time purification goals, and we will investigate this issue in sections 4
and 5 below.
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5.3.1 Local optimality in the absence of decoherence

Consider γ1 = γφ = 0, in which case, f(u) → fno-decoherence(u) = k(1 − 2η + ηr2)r2u2. The
maximizers of this function are easily found and are summarized in Table 5.1. Interestingly,
the 1/2 < η < 1 case introduces a fragmentation of the locally optimal control strategy that
is not present in the ideal case (η = 1).5 Also, Table 5.1 shows that if η ≤ 1/2, the locally
optimal strategy is simply to measure diagonally by keeping the state of the qubit in the σz
basis, i.e., |u(t)| = 1. The simplest way to implement this diagonal measurement strategy
is to perform an initial instantaneous rotation to the z axis (since control is assumed to
be instantaneous and at no cost) and no successive feedback, and we will call this the no-
feedback diagonal measurement protocol. On the other hand, when η = 1, which is the ideal
case that was analyzed in Ref. [56] , we recover the unbiased measurement protocol as the
locally optimal strategy: u(t) = 0. This protocol keeps the qubit in an unbiased basis with
respect to the measurement, and u(t) = 0 =⇒ z(t) = 0 is maintained by strong rotations.

In the intermediate case where 1/2 < η < 1, a critical Bloch vector length emerges,
r∗ =

√
2− 1/η, around which the locally optimal strategy switches between the diagonal

measurement protocol and the unbiased measurement protocol. That is, when r < r∗ the
feedback-induced control u = 0 maximizes the rate of change of average purity, while when
r ≥ r∗, the strategy of diagonal measurement maximizes this quantity. We note that there
is a critical purity corresponding to the critical Bloch vector length, given simply by P ∗ =
1
2
(1 + r∗2) = 1

2
(3− 1/η).

A note is in order about the feedback nature of this locally optimal strategy. Obviously
|u(t)| = 1 requires no feedback since this corresponds to constant rate measurement along
a fixed axis (σz) and F (t) = 0. u(t) = 0 on the other hand requires maintaining the
Bloch vector along the x-axis despite measurement-induced fluctuations causing deviations
from this axis. To do this, as specified in Jacobs’ original unbiased measurement protocol
[56, 57, 14] the feedback Hamiltonian must be proportional to the measurement current:

F (t) =
√

2kη I(t)
x(t)

Jy. This is a conditioned rotation since it is inversely proportional to x(t),

the x projection of the Bloch vector at the current time instant.6 However, it should be noted
that this protocol does not require real-time state estimation to execute. This is because in
the presence of the feedback, when u(t) = 0, the evolution of the x component of the Bloch
vector is deterministic, since the feedback effectively cancels the stochastic component of
the evolution. In contrast, the locally optimal strategy when 1/2 < η < 1 requires a switch
between the diagonal measurement protocol and the unbiased measurement protocol when r
crosses r∗. In order to implement this, one requires a real-time estimate of the length of the
Bloch vector, r(t), which does not evolve deterministically when u 6= 0 as can be seen from
Eqn. (5.5). Furthermore, this optimal strategy requires one to rotate the state between the

5We note that Combes and Wiseman have previously suggested that such a fragmented, or switching,
strategy might be optimal in their study of purification under imperfections [14].

6Technically, this F (t) is an unbounded Hamiltonian since dW (t) is unbounded, and furthermore, the
initial state x(0) = 0. However, it has been shown that tempered approximations of this Hamiltonian suffice
to implement the unbiased measurement protocol [14].
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x and z axes as the Bloch vector length crosses r∗. More precisely, for r < r∗, the feedback
prescribed by the unbiased measurement protocol maintains the state on the x-axis (which
is unbiased with respect to the measurement along z-axis). When the Bloch vector length
increases to r > r∗, the locally optimal strategy prescribes a fast rotation of the state from
the x-axis to the z-axis (a π/2 σy rotation) followed by no feedback (unless r < r∗ again at
a late time due to the stochastic evolution of purity under diagonal measurement). These
operations require real-time state estimation in addition to rotations that take negligible
time. Such requirements make implementation of the locally optimal strategy challenging
when 1/2 < η < 1.

Table 5.1: The strategy that maximizes the instantaneous rate of increase of average purity
(the locally optimal strategy) when γ1 = γφ = 0. r∗ =

√
2− 1/η is the critical Bloch vector

length at which there is a discontinuous change in protocols when 1/2 < η < 1.

η ≤ 1/2 1/2 < η < 1 η = 1

ulo(r, t) ±1

{
0 , r ≤ r∗

±1 , r > r∗
0

To illustrate the behavior of purification in the case when 1/2 < η < 1, Fig. 5.1 shows
the average rate of change of purity as a function of the instantaneous purity under both
the unbiased measurement protocol and the diagonal measurement protocol. The rate of
purification decreases with the instantaneous purity for both protocols, but while this rate is
always positive for the diagonal measurement protocol, it can be negative for the unbiased
measurement protocol when the purity is large. This is the reason it is advantageous to
switch to the diagonal measurement protocol at large purity values. Physically, the reason
for this switch is that the feedback required for the unbiased measurement protocol is non-
ideal for inefficient measurement, and hence for Bloch vectors that are already large it is
preferential to switch off the non-ideal feedback.

Analytical solution for purity evolution when 1/2 < η < 1 When η < 1/2, the
locally optimal strategy is simply measurement along a fixed basis, and in this case an
analytical form for the probability distribution for r, the length of the Bloch vector, is easily
computed and given in section 4.1 below (since the evolution is simply diffusion along the
z-axis after a possible initial rotation to move the state to this axis). Similarly, when η = 1,
when the locally optimal strategy is the unbiased measurement protocol, an expression for
the probability distribution for r is given in Ref. [56] (not in closed form however). Here
we complete this characterization and calculate an analytical expression for the probability
evolution for r in the case of qubit evolution under the locally optimal strategy when 1/2 <
η < 1. Note that this case is significantly more complicated than the other two mentioned
above since it involves a switching of protocols around the point r∗.
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Figure 5.1: Average rate of change of purity as a function of instantaneous purity in the
presence of measurement inefficiency, for the diagonal measurement protocol (|u(r, t)| = 1)
and the unbiased measurement protocol (u(r, t) = 0). The point where the locally optimal
strategy switched between these protocols is indicated as P ∗. Parameters used for this plot
are k = 1, η = 0.8, and γ1 = γφ = 0.

Consider a known initial state of the qubit on the z-axis with r(0) = r0 (e.g., r0 = 0 when
ρ0 = I/2). The probability distribution function p(r, t) of the Bloch vector length at time t is
given by the following Fokker-Planck equation with the initial condition p(r, 0) = δ(r − r0):

∂

∂t
p(r, t) =− ∂

∂r
[k(

η

r
− r)θ(r∗ − r)p(r, t)]

+
∂2

∂r2
[kη(1− r2)2θ(r − r∗)p(r, t)], (5.9)

where θ(x) is the Heaviside step function.
First consider r0 ≥ r∗. In this case the locally optimal strategy implements the diagonal

measurement unless the random (diffusive) evolution results in r(t) ≤ r∗ at some future time
t. But when this happens the strategy switches to the unbiased measurement protocol which
deterministically increases purity until r(t+∆t) > r∗ and we are returned to the region where
the diagonal measurement protocol is preferred. Therefore, for this initial condition r will
not go below r∗ for a finite time. Hence we consider the following ansatz for the probability
distribution function for r:

p(r, t) = p1(t)δ(r − r∗) + p2(r, t)θ(r − r∗). (5.10)

Given this ansatz, the Fokker-Planck equation can be translated into the following set of
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equations with initial conditions p2(r, 0) = δ(r − r0) and p1(0) = 0:

rη(1− r2)2p2(r∗, t) = (η − r2)p1(t), (5.11a)

∂

∂r
[kη(1− r2)2p2(r, t)]|r∗ =

∂

∂t
p1(t), (5.11b)

∂

∂t
p2(r, t) =

∂2

∂r2
[kη(1− r2)2p2(r, t)]. (5.11c)

Note that in the region r > r∗ Eqn. (5.11)c is the Fokker-Planck equation. Eqn. (5.11)b
enforces probability conservation at the boundary r = r∗. This set of equations can be solved
by an appropriate change of variables: we calculate the solution explicitly in Appendix 5.C.
This analytical solution will be utilized when assessing global optimality in the section below.

Now consider the alternative initial condition where r0 < r∗. In this case, the locally
optimal strategy implements the unbiased measurement protocol,which will deterministically
increase the purity of the qubit according to:

r(t) =
√
η − (η − r2

0)e−2kt (5.12)

This continues until the critical Bloch vector length is reached and the locally optimal strat-
egy then switches over to the diagonal measurement protocol. Let r(t∗) = r∗. Then, after t∗,
the non-deterministic diagonal measurement protocol is employed and we simply solve for
the qubit dynamics that this prescribes, i.e., solve Eqn. (5.11) for the distribution function
with the initial condition p2(r, t∗) = δ(r − r∗).

Together with the explicit characterizations of evolution under the locally optimal strate-
gies when η < 1/2 and η = 1 described above, this analytic characterization of the probability
distribution for the Bloch vector length now provides a complete picture of the evolution of
qubit purity under the locally optimal strategy for any measurement efficiency.

5.3.2 Local optimality in the presence of decoherence

In this subsection, we expand our analysis of locally optimal strategies that maximize the
instantaneous rate of increase of average purity to the case where decoherence is present.
Recall that the general expression for instantaneous average purification rate, which we want
to maximize, is given in Eqn. (5.8). For general γ1, γφ, and η, in order to maximize f(u) we
require:

ulo(r, t) =

{
−1 if γ1 + 2r[γ2 − γ1 + k(1− 2η + ηr2)] ≥ 0

γ1
2r[γ2−γ1+k(1−2η+ηr2)]

otherwise

For the explicit calculations in this work, we will focus on the most realistic situation,
where γ1 6= 0, γφ 6= 0, and η < 1.

Here, the counterpart of the regime where η ≤ 1/2 in the previous case of no decoherence
is the parameter space that yields ulo(r, t) ≡ −1. A sufficient condition for this is γφ + k(1−
2η) ≥ 0. In the presence of decoherence, the term −γ1ru in f(u) (see Eqn. (5.8)) ensures
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that u = +1 is no longer a maximizing control. Physically, this simply means that because
of uncontrollable relaxation (a T1 process), it is not advantageous to attempt to purify to
the excited state of the qubit. Instead, maintaining u = −1 =⇒ z < 0 is the locally
optimal strategy. Now to keep the z-component of the qubit negative, we must flip the
qubit (e.g., apply π rotation around y axis) whenever our σz measurement indicates that it
is positive. Therefore this control corresponds to simply having a constant σz measurement
(which induces diffusive motion along the z axis) that is interrupted by strong σy rotations
whenever z(t) > 0. Such a feedback protocol requires continuous real-time state estimation.
We shall refer to this strategy of maintaining the z-component of the qubit negative as the
negative diagonal measurement protocol.

The negative diagonal measurement protocol is expected to have better performance than
the no-feedback diagonal measurement protocol7 both locally and globally, as long as γ1 > 0.
The σz measurement has a chance of moving the qubit to the z > 0 region and when this
happens, the strong feedback rotation in the negative diagonal measurement protocol will
change the term −γ1z in Eqn. (5.7) to +γ1z, while keeping all others invariant. This will
generate a larger instantaneous purification rate. Therefore, for any noise realization dW (t),
the negative diagonal measurement protocol gives a trajectory that has a purity larger than
or equal to evolution under the no-feedback diagonal protocol at any time. We will see this
manifest in the numerical simulations assessing global optimality in sections 5.4 and 5.5.

In the parameter space where ulo(r, t) 6≡ 1, ulo(r, t) has complicated dependence on r.
We have plotted its value for a typical set of parameters in Fig. 5.4a. When the condition
γ1+2r[γ2−γ1+k(1−2η+ηr2)] ≥ 0 is not met, one must perform precise rotations around the
y axis so that u = γ1

2r[γ2−γ1+k(1−2η+ηr2)]
is maintained. This also requires continuous real-time

state estimation, and furthermore, requires precise knowledge of all the parameters in the
system. Executing this locally optimal strategy in the presence of decoherence is hence very
challenging from a practical standpoint.

The locally optimal strategy in the presence of decoherence is significantly more complex
than that in the absence of decoherence. As a result we have been unable to formulate an
analytical solution for the probability distribution of the Bloch vector length in this case.

5.4 Global Optimality for the max purity goal

In this section, we will consider the max purity purification goal, i.e., to maximize P (t) =
1
2

+ 1
2

∫ 1

0
drr2p(r, t) with a fixed purification time t, and ask whether the locally optimal

strategies formulated in the previous sections are globally optimal for this goal. We note that
in the ideal case (no decoherence and measurement efficiency η = 1) global optimality of the
locally optimal strategy (i.e., the unbiased measurement protocol when η = 1, γ1 = γφ = 0)
was proven in Ref. [129]. In the following subsections we investigate the extent of global
optimality in other parameter regimes.

7While the no-feedback diagonal measurement may come with an initial rotation to either +z or −z axis
in the decoherence free regime, we will choose the more advantageous initial rotation to the −z axis here.



CHAPTER 5. OPTIMAL CONTROL PROTOCOL ANALYSIS: AN EXAMPLE WITH
QUBIT PURIFICATION 77

5.4.1 No decoherence and η ≤ 1/2

In this regime, we found the locally optimal control to be u(r, t) ≡ ±1, which is the diagonal
measurement protocol. Here we use the verification theorem to prove that the locally optimal
solution is actually globally optimal. Appendix 5.A reviews the verification theorem [54] and
provides a simplified form that is useful for the present calculations. The verification theorem
provides a sufficient set of criteria to test the global optimality of a presumed solution. We
will use P instead of r as the state variable in this subsection to avoid complications deriving
from the r = 0 singularity in the dynamical equation for r (see Eqn. (5.5)). At the first
step, we need to calculate a cost function C(P, t), which is defined as the average impurity
〈L(T )〉 = 1 − 〈P (T )〉 at time T , given that the purity is P at time t. For an arbitrary
initial state, the no-feedback diagonal measurement protocol specifies an initial rotation of
the qubit to the z-axis and then simple measurement in the z-basis (no feedback). Since
the initial rotation is assumed to be instantaneous, the dynamics under this protocol is the
subsequent motion along the z axis. This density matrix evolution under measurement alone
can be solved with the method of linear quantum trajectories [55]. Given z(0+) = z0 (the 0+

time simply indicates the time after the instantaneous rotation to the z-axis), z(t) can be
written as:

z(R(t)) = tanh(arctanh(z0) +
√

2kηR(t)), (5.13)

where R(t) is a random variable whose distribution function at time t is given by:

p(R, t) = exp(
R2

2t
− kηt)

√
1− z2

0

2πt
· cosh(arctanh(z0) +

√
2kηR). (5.14)

We find the cost function C(P, t) using this distribution as

C(P, t) =
exp[−kη(T − t)]

√
2(1− P )√

8π(T − t)

·
∫ +∞

−∞
sech[arctanh(

√
2P − 1) +

√
2kηR] · exp[− R2

2(T − t)
]dR. (5.15)

The G function for our dynamics (5.7), defined in appendix 5.A, is related to the deriva-
tives of the cost function by:

G(P, t) =− k(2P − 1) · [4η(P − 1)2∂
2C

∂P 2
+ (1− 3η + 2ηP )

∂C

∂P
]u2

− k(1 + η − 2P )
∂C

∂P
. (5.16)

The derivatives ∂C
∂t

and ∂2C
∂P 2 are continuous over the interval [0, T ) as required by the ver-

ification theorem. The cost function in (5.15) gives the G function a nonnegative coefficient
in front of u2 (including the minus sign) for all P and t. The explicit form of this coefficient is
derived in Appendix 5.B. Therefore, u(P, t) ≡ ±1 are the maximizers of the G function, and
the verification procedure concludes that the corresponding diagonal measurement protocol
is globally optimal in this parameter regime.
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5.4.2 No decoherence and 1/2 < η < 1

In the regime 1/2 < η < 1, the locally optimal strategy combines the diagonal measurement
protocol and the unbiased measurement protocol, with a switch between these at a critical
Bloch vector length r∗. In this case, however, one can show that this locally optimal strategy
is not globally optimal. To do so, we can solve for average purity as a function of time and
compare it against the corresponding purity derived from other protocols. In section 5.3.1
we obtained an analytical form for the probability distribution for the Bloch vector length
as a function of time, p(r, t), when using the locally optimal strategy. With this distribution
function, the average purity, 〈P (t)〉, can be calculated by a simple integral.

Figures 5.2a and 5.2b show how the average purity evolves as a function of time (for
three different control strategies) in the absence of decoherence, with parameters chosen
so that r0 < r∗ and r0 > r∗, respectively. We have tested a wide range of parameter
values and the results are qualitatively the same throughout this regime of measurement
efficiency (1/2 < η < 1). With r0 < r∗, the locally optimal strategy initially outperforms the
diagonal measurement protocol as expected. However, the diagonal measurement protocol
(i.e., constant σz measurement) catches up later and purifies more effectively at late times.
The catch up time occurs before the Bloch vector length reaches r∗ using the locally optimal
strategy. When r0 ≥ r∗, Fig. 5.2b, the locally optimal strategy never outperforms the
diagonal measurement protocol 8.

The fact that there is a performance difference between the locally optimal strategy and
the diagonal measurement protocol when r0 ≥ r∗ needs some explanation. When r0 > r∗,
initially the locally optimal strategy is exactly the diagonal measurement protocol. However,
as time progresses, while the diagonal measurement protocol simply causes diffusion of r(t)
along the z-axis, the locally optimal strategy switches to the unbiased measurement protocol
if r(t) drops below r∗ at any future time. The subsequent deterministic increase of purity
caused by the unbiased measurement protocol results in r(t + ∆t) > r∗ again for some
small ∆t. Then the switch back to the diagonal measurement protocol causes diffusion of
r(t) again. The net result of this switching back-and-forth at the boundary is a build-up
of probability at r = r∗ at intermediate times. This concentration of probability weight at
r = r∗ gives rise to a smaller cumulative probability in the r > r∗ region than the diagonal
measurement protocol. This is illustrated in Fig. 5.3, which shows the time-development
of the probability distribution, p(r, t), when r0 > r∗ for both the locally optimal strategy
and the diagonal measurement protocol. This probability concentration at the boundary is
an interesting consequence of the switching behavior of the locally optimal strategy. This
example demonstrates that while protocol switching can lead to local optimality, it can be
detrimental to global optimality in some instances.

We also note that the unbiased measurement protocol eventually performs worse than
both of the other protocols (diagonal measurement and the locally optimal strategy), regard-
less of the initial state. This demonstrates that using the optimal strategy derived for perfect

8For very short times the difference between purities for the two protocols is within numerical error.
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Figure 5.2: Average purity vs. time in the case of no decoherence for the unbiased mea-
surement protocol, the locally optimal strategy, and the diagonal measurement protocol for
two different initial purities. The parameters used here are k = 1, η = 0.84 (r∗ = 0.9), and
γ1 = γφ = 0.

efficiency measurements η = 1 can be inappropriate if actually the measurement efficiency
is less than unity.

From the above analysis we conclude that, for the max purity goal, the locally optimal
strategy, which maximizes the rate of increase of average purity at any time instant, is also
globally optimal for both η ≤ 1/2 and η = 1. Therefore, feedback control is not helpful at all
for the max purity goal when η ≤ 1/2. Instead, the locally optimal strategy in this regime
is simple measurement. In contrast, in the regime 1/2 < η < 1, we cannot conclude that
any strategy is globally optimal.

5.4.3 In the presence of decoherence

We have not been able to apply the verification theorem to prove global optimality of the
locally optimal strategy for the max purity goal in any parameter regime in the presence
of decoherence. However, we speculate that in the parameter regime where the negative
diagonal measurement protocol is the locally optimal strategy (this regime is specified by
the inequality γ1 + 2r[γ2− γ1 + k(1− 2η+ ηr2)] ≥ 0,∀r), that it is also the global optimum.
This is because in this regime it is advantageous to cooperate with the relaxation process,
which also induces purification, and this is precisely what the negative diagonal measurement
protocol does. When the locally optimal strategy has a more complicated r dependence
(e.g., that in Fig. 5.4a), we numerically simulate the performance of the four different
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Figure 5.3: Behavior of the solution to the Fokker-Planck equation, Eqn. (5.9) at three
different times t, visualized by the distribution of s(t) = arctanh(r(t)) as the qubit evolves
under the locally optimal and the diagonal measurement protocols. Both protocols operate
on a qubit initially at the same purity, with r0 = 0.95. Parameters used are the same as in
Fig. 5.2, namely k = 1, η = 0.84 (r∗ = 0.9), and γ1 = γφ = 0.
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protocols we considered so far (using the Euler-Maruyama algorithm [59] for those protocols
involving stochastic integration). Fig. 5.4b shows the behavior of average purity as a function
of time for a typical set of parameters. The performance of the free evolution (with no
measurement at all) is also added for comparison, since the relaxation dynamics itself induces
purification. The negative diagonal measurement protocol is superior to the no-feedback
diagonal measurement protocol as expected. It also achieves greater values of purity than the
locally optimal strategy in the long run, similar to the situation found in the decoherence free
case. The locally optimal strategy is also superior to the no-feedback diagonal measurement
strategy.9 The above facts suggest that, in the presence of decoherence, qubit purification
measured by the max purity goal will always benefit from feedback, even though in the
absence of decoherence the corresponding preferred purification strategy may be no feedback
(at long times).

5.5 Global optimality for the min time goal

In this section, we consider the min time goal, i.e., to minimize −
∫ 0

1
tdq(t), where q(t) is the

probability of not reaching a fixed target Bloch vector length at time t. We will determine
whether the locally optimal strategies identified above are globally optimal in any parameter
regime for this goal.10

5.5.1 In the absence of decoherence

For the min time purification goal in the absence of decoherence, Wiseman and Bouten
proved that the diagonal measurement protocol is globally optimal for perfectly efficient
measurements, η = 1 [129]. We show here that in the absence of decoherence this is true
for all values of measurement efficiency η using the verification theorem. In this subsection,
we will again use P as the state variable, and r should be interpreted as a function of P ,
namely, r =

√
2P − 1.

Let rf be the final Bloch vector length that we want to achieve. The cost function C(P, t)
for this goal is the average remaining time of the first passage through rf (rf < 1), given
that the qubit is at r =

√
2P − 1 (r ≤ rf ) at time t. We took the approach given in Ref.

[128] to calculate this min time cost, and solved the Fokker-Planck equation with absorbing
boundary conditions at r = rf . If p(r, t) is the solution of this equation, then the probability
of not hitting the target rf by time t is q(t) =

∫ rf
−rf

p(r, t)dr. The average time of reaching

the boundary is then obtained from q(t) by integration, namely −
∫∞

0
tq̇(t)dt =

∫∞
0
q(t)dt.

9At least when the decoherence rates are not too small.
10We note that a convenient feature of the min time goal is that its evaluation does not depend on the

definition of purity used; any definition of purity as an increasing function of r is equivalent.
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(a) The locally optimal control

(b) The average purity vs. time (c) The average time vs. the target Bloch vector
length

Figure 5.4: Performance comparison of the free evolution, the locally optimal strategy, the
no-feedback diagonal measurement, the unbiased measurement, and the negative diagonal
measurement protocols in the presence of decoherence for initial condition ρ0 = I/2 (r0 = 0).
The chosen parameters are k = 1, η = 0.91, γ1 = 0.2, γ2 = 0.3. 5.4a plots the locally optimal
strategy for this chosen set of parameters. Notice the switch from the preferred negative
diagonal measurement control at small and large r values (ulo(r, t) = −1) to a more complex
preferred control (ulo(r, t) > −1) for intermediate values of r. 5.4b shows the average purity
(over 40,000 runs) vs. time and 5.4c shows the average purification time (over 20,000 runs)
as a function of the target Bloch vector length for the five protocols. The statistical variation
in the simulations is comparable to the line-width of the plots, so error bars are not explicitly
shown.
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After the initial rotation to the z-axis that the diagonal measurement protocol prescribes,
z(0+) = r. Then C(P, t) can be obtained as described above, and takes the form

C(P, t) = (rf × arctanh(rf )− r × arctanh(r))/2kη. (5.17)

Substituting this form into the G function, Eq. (5.16), results in the following expression for
the coefficient of u2:

1 +
1

2
(
r

η
− 1

r
)(arctanhr +

r

1− r2
), (5.18)

where r ∈ [0, rf ].
It can be shown that Eq. (5.18) is nonnegative if η = 1. Since it is a decreasing function

of η, the expression is also nonnegative for all η. The diagonal measurement protocol thus
maximizes the function G, and by the verification theorem (Appendix 5.A) it is globally
optimal. Therefore in the absence of decoherence, feedback is not beneficial for the min

time goal, regardless of the efficiency of measurement.

5.5.2 In the presence of decoherence

In the presence of decoherence we cannot prove global optimality of any of the protocols,
but we do have strong numerical evidence suggesting that the negative diagonal protocol is
globally optimal for the min time goal in the presence of relaxation. We numerically sim-
ulated the qubit purification under the locally optimal, the no-feedback diagonal, unbiased
measurement, and the negative diagonal measurement protocols with the Euler-Maruyama
algorithm for many combinations of parameters. In Fig. 5.4c we show results for one partic-
ular parameter combination, but qualitatively similar results are obtained for all parameter
regimes simulated. We find that the negative diagonal measurement protocol is always su-
perior to the other alternatives, particularly the locally optimal one and the no-feedback
diagonal one. Therefore, we speculate that the negative diagonal measurement protocol con-
stitutes the globally optimal strategy for the min time problem, regardless of decoherence
rates or measurement efficiency. We also conclude that feedback is likely advantageous for
the min time goal in the presence of decoherence.

5.6 Conclusions

Optimal feedback control can provide a crucial element of precision control in solid-state
quantum systems, where the measurement process typically requires a non-negligible time
to complete. In this work, we studied the optimality of feedback control protocols for qubit
purification in the presence of decoherence and with realistic detectors characterized by non-
ideal efficiency (η < 1). We considered the two control goals: (i) maximizing the average
purity at a target time (max purity) and (ii) minimizing the average time to reach a specific
purity threshold (min time).
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When environmental decoherence is negligible and the only source of decoherence is the
measurement back-action, we arrived at the following conclusions. For the max purity

goal and detector efficiency less than 1, we found that the globally optimal protocol is
significantly different from the unbiased measurement protocol that is known to be globally
optimal for this goal when η = 1 [129]. This underscores the fact that one should be careful
when extrapolating the optimality of feedback control protocols from idealized to realistic
scenarios. The diagonal measurement protocol, which is an initial rotation to the z-axis
followed by measurement in the z basis, is optimal when η ≤ 1/2, as analytically verified
by the verification theorem. The diagonal measurement protocol also performs very well
when 1/2 < η < 1, where indeed it outperforms the locally optimal protocol in the long
time limit. We were however unable to find the global optimal solution in this regime. In
contrast, the situation for the min time purification goal is quite different. Here the diagonal
measurement protocol is known to be the (globally) optimal solution for an ideal detector
[129]. In this work we showed that this optimality under the most ideal conditions holds for
all values of detector efficiency η, as long as no decoherence is present.

We then explored the effects of decoherence on the optimal feedback strategies in addition
to non-ideal (η < 1) detectors. The decoherence sources were modeled by independent
dephasing and relaxation processes under Markovian conditions. Here extensive numerical
simulations show that the negative diagonal measurement protocol, which is designed to
maintain the qubit in the negative segment of the z axis by strong feedback, outperforms
the other three feedback strategies (unbiased measurement, no-feedback diagonal, and locally
optimal) for the min time goal, and for the max purity goal in the long time limit. Similar
to the decoherence free case, there is a regime where the negative diagonal measurement
protocol is not locally optimal. (It typically happens when the measurement efficiency is
high and decoherence is weak.) Nevertheless, the negative diagonal measurement protocol
achieves better average purity than the locally optimal one after a certain time. The negative
diagonal measurement protocol’s good performance for both problems strongly suggests that
feedback is useful in the presence of decoherence.

An interesting aspect of the study presented here is the behavior of the locally optimal
protocol when 1/2 < η < 1, and in the absence of decoherence. This protocol involves
switching between two strategies, unbiased measurement and diagonal measurement, which
corresponds to a switching between regions where the purity increases ballistically and diffu-
sively, respectively. We demonstrated that this switching behavior results in a concentration
of probability (of purity) around the boundary that defines the switching behavior. This
novel aspect results directly from the dynamic switching of protocols and to the best of our
knowledge has not been explored in other quantum control contexts.

Overall, this work extends prior optimal control results in the quantum realm to include
realistic experimental conditions and shows that significant modifications of optimal feedback
control strategies can arise in the presence of decoherence. In future it will be interesting to
further extend these studies to analysis for qubits coupled to non-Markovian environments,
to determine how the detailed behavior of an environment may enter the optimal control
strategy.
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Appendix

5.A The Verification Theorem

In this appendix, we review the procedure for verifying the (global) optimality of a given
solution to a stochastic control problem. An introduction to this topic can be found in Ref.
[54].

Consider the general dynamical equation for a stochastic system:

dx = A(t,x,u(x, t))dt+ B(t,x,u(x, t))dW. (5.19)

Here the state of the system is given by the vector x, and the vector u(x, t)) denotes the
control inputs. (The region that bounds u(x, t) shall not depend on x or t.) The vectors A
and B are coefficients of the deterministic and stochastic parts of the dynamics, respectively.

The control objective is to minimize a cost, J :

J =

〈∫ T

0

L(x,u(x, s), s)ds+M(x(T ))

〉
, (5.20)

where L(x,u(x, t), t) is the cost rate, usually the consumed energy penalty, and M(x(T )) is
the cost of the final state at time T .

The cost function, C(x, t), is defined as the partial cost over the interval [t, T ], given that
the system is at state x at time t:

C(x, t) =

〈∫ T

t

L ds+M(x(T ))

〉
. (5.21)

To determine whether a given control protocol, uc(x, t), is optimal, one performs the
following three steps:

1. Integrate the equations of motion of the system to calculate the cost function, C(x, t),
for this protocol.

2. Check that C satisfies two continuity conditions:

∂C

∂t
and

∂2C

∂x2
(5.22)

are continuous. Here ∂2C/∂x2 denotes the matrix of second derivatives of C.
3. Determine whether or not v(x, t) = uc(x, t) is a maximizer of the following function

of v:

G(t,x,v) =− 1

2
Tr

[
B†(t,x,v)

∂2C

∂x2
B(t,x,v)

]
−A · ∂C

∂x
− L(t,x,v). (5.23)
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Note that one must check that uc(x, t) maximizes G separately at each time t and at
each value of x.

The above verification procedure provides a sufficient condition for a control strategy to
be optimal. In Ref. [54], the procedure has four steps, and we have removed the third step
by realizing that the Hamilton-Jacobi-Bellman equation is automatically satisfied if the uc

maximizes Eq. (5.23).
For a time-optimal control problem where the goal is minimizing the average time taken

for a function h(x(t), t) of the dynamical variables (and perhaps of time) to cross a fixed
threshold hc, the same three-step verification procedure still holds. Please note that the cost
function C(x, t) should be defined as the average remaining time it will take to cross the
threshold, given that the current time is t and current state is x. The corresponding function
G in step (3) is defined as

G(t,x,v) = −1

2
Tr

[
B†(t,x,v)

∂2C

∂x2
B(t,x,v)

]
−A · ∂C

∂x
. (5.24)

5.B The Coefficient of the u2 Term

In this appendix, we will prove that the coefficient of the u2 term in Eq. 5.16 is nonnegative
for all P ∈ [1

2
, 1], η ∈ [0, 0.5], k > 0, and T − t > 0 with C(r, t) given by Eq. 5.15.

The coefficient works out to be the following expression up to a positive factor:∫ +∞

−∞

{
2ηr(1− r2)sech2[arctanh(r) +

√
2kηR]

+ (r2 − η){r + tanh[arctanh(r) +
√

2kηR]}
}

· sech[arctanh(r) +
√

2kηR] exp(− R2

2(T − t)
)dR. (5.25)

First, we ignore η in the expression kη because it can always be absorbed by k, and
then we divide the above expression by η. It is easy to see that the resultant expression
is a decreasing function of η, because the following integral is nonnegative from symmetry
analysis: ∫ +∞

−∞
tanh[arctanh(r) +

√
2kηR]

· sech[arctanh(r) +
√

2kηR] exp(− R2

2(T − t)
)dR. (5.26)

Therefore, we only need to prove the positivity of Expression 5.25 for η = 1
2
. Expanding

the hyperbolic functions with the addition formulas yields the following expression for the
integrand:

2r5 + (2r2 − 1)(3r2 + 1) tanhR + r(5r2 − 3) tanh2R

2(1 + r tanhR)3
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·
√

1− r2sechR exp(− R2

2(T − t)
). (5.27)

Because an odd function of R contribute nothing to the integral, we only need to take into
account the even component of the integrand, which turns out to be the following expression
up to a positive factor:

(−6r7 + 16r5 − 8r3) tanh4R

+ (6r7 − 18r5 + 8r3) tanh2R + 2r5. (5.28)

From the properties of parabolic functions, it can be shown that the above expression, and
thus the even component of the integrand, is nonnegative for all R. Therefore, Expression
5.25 is nonnegative.

5.C Explicit Solution of Eq. (5.11)

Eqs. (5.11a) and (5.11b) can be combined to give a boundary condition for p2(r, t). Then
we would like to make a change of variables. Let r = tanh s (similarly for r∗ and r0), and let
p2(r, t) = sechs0e−kηt cosh3 sQ(s, t). Eq. (5.11) gets translated into the following equations
with the initial condition Q(s, 0) = δ(s− s0).

[−Q(s, t)− A ∂

∂s
Q(s, t) +B

∂

∂t
Q(s, t)]|s=s∗ = 0, (5.29a)

∂

∂t
Q(s, t) = kη

∂2

∂s2
Q(s, t), s > s∗, (5.29b)

where A = csch2s∗ coth s∗ and B = coth2 s∗/(kη).
If Q(s, t) is a solution to the above equations, it is easy to see that q(s, t) = −Q(s, t) −

A ∂
∂s
Q(s, t) + B ∂

∂t
Q(s, t) is a solution to the same heat equation (5.29b) with the boundary

condition (5.29a) replaced by q(s∗, t) = 0. We can express Q in terms of q as

Q(s, t) =− 1

A

∫ 0

−∞
exp(

x

A
)q(s+ x, t− Bx

A
)dx

+ exp(− s
A

)f(
B

A
s+ t), (5.30)

where f(x) is an arbitrary function of x.
The solution to the heat equation with no boundary is given by

Q0(s, t) =
1

2
√
πηkt

exp(−(s− s0)2

4ηkt
). (5.31)

Let q0(s, t) = −Q0(s, t)−A ∂
∂s
Q0(s, t)+B ∂

∂t
Q0(s, t). We set q(s, t) = q0(s, t)−q0(2s∗−s, t)

so it satisfies the heat equation and vanishes at s∗. In order for Q(s, t) in Eq. (5.30) to meet
the initial condition, we also need to set f(x) = D exp(AC+1

B
x), where
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C =
A−

√
A2 + 4Bηk

2Bηk
, (5.32a)

D =
2AC exp[C(s0 − 2s∗)]√

A2 + 4Bηk
. (5.32b)

It can be verified that the resulting Q(s, t) given by Eq. (5.30) is the desired solution.
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Chapter 6

Circuit QED

Cavity quantum electrodynamics (cavity QED) studies the interaction between photons con-
fined in a high quality cavity and atoms (or artificial atoms). The quantum nature of the
light and matter can be studied, demonstrated, and utilized in Cavity QED. In particular, a
cavity is a very sensitive device to control and measure a quantum state, where suppression
and enhancement of spontaneous decay, vacuum Rabi oscillations, light squeezing can all be
realized. Cavity QED is an excellent testbed for the theory of open quantum system and
measurement induced decoherence. Moreover, as photons in the cavity can mediate the cou-
pling between distance atoms, cavity QED provides a promising architecture for quantum
information processing and communication.

Cavity QED has been demonstrated with both optical photons [46] and microwave pho-
tons [91]. In the microwave regime, one typically integrates an artificial atom and a microwave
resonator into circuits, which can potentially be made scalable using semiconductor fabrica-
tion technology. This scheme is called circuit QED, the main topic of this chapter. Circuit
QED has several advantages over optical cavity QED. First, the coupling between the arti-
ficial atom and photons can be made much larger due to small volume of the resonator and
large effective dipole of the artificial atom. Second, the coupling has less fluctuation because
the atom can be fixed in space rather than floating in the cavity. Third, it is much easier
to put multiple atoms in the cavity, which allows for multi-qubit gates and entanglement
generation [136].

In Sec. 6.1 we are going to see how quantum states can be measured and controlled
in a circuit QED system. Sec. 6.2 and 6.3 explore two popular choices of artificial atoms,
superconducting qubits and quantum dots. The derivation of the quantum capacitance of
a qubit using linear response theory and its application to a quantum dot charge qubit are
my independent work. For the rest of the chapter, I will abbreviate an ‘artificial atom’ with
just an ‘atom’.
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6.1 Measurement and Control in Circuit-QED

Electromagnetic resonators have experimentally been built in 1D [6], 3D [1], out of large
Josephson junctions [71], and out of lumped LC circuits [69]. Let us look at the 1D trans-
mission line design as an example. Let l be the length of the line and Rl, Ll, Gl, Cl be
the resistance, inductance, conductance, and capacitance per unit length. The characteristic
impedance of the transmission line is defined as [90]

Z0 =
Rl + iωLl
Gl + iωCl

, (6.1)

and the complex propagation constant is defined as [90]

γ =
√

(Rl + iωLl)(Gl + iωCl). (6.2)

If the transmission line carries a load of impedance ZL at one end, its impedance measured
from the other end is given by [90]

Zin = Z0
ZL + Z0tanhγl

Z0 + ZLtanhγl
. (6.3)

This formula tells us that a nearly lossless (low Rl and low Gl) transmission line exibits an
impedance resonance behavior when the length l is about an integer multiple of a quarter
wavelength and the line is terminated with high (ZL � Z0 and Zin ≈ Z0/tanh(γl)) or
low (ZL � Z0 and Zin ≈ Z0tanh(γl)) impedance. For a resonator terminated with low
impedance shown in Fig. 6.1, a high impedance resonance (i.e. a sharp peak in Zin) will be
seen when l is around a quarter wavelength.1 Such resonance will be assumed for the rest of
this chapter.

The behavior of a cavity near resonance can be approximated by a parallel LC resonator
(with inductance Lr and capacitance Cr) as shown in Fig. 6.2 [102]. In cavity QED, the
effect of the atom coupled to the cavity can be approximated by an additional quantum
capacitance. This capacitance, which depends on the state of the atom, will shift the reso-
nance frequency slightly up or down. A measurement pulse sent through the resonator can
detect the frequency shift and therefore indirectly probe the state of the atom. A control
pulse can also be sent through the resonator to modify the state of the atom. Let us see
mathematically how this system works.

Let us model the atom as a two-level system, i.e., a qubit. This model provides a good
approximation when other eigenstates are far away from or have little coupling with the
lowest two. Let us first treat the resonator classically and denote the voltage across the
electrodes connected with the qubit by Vr. We will use the following linear coupling model
for the total Hamiltonian of the qubit in the presence of the cavity:

H(t) =
1

2
~ωaσz + (q0I + qxσx + qzσz)Vr(t), (6.4)

1Becuase the current goes to zero at the antinodes.
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Figure 6.1: Schematics of a circuit QED setup with a quarter wave length transmission line
resonator. The right end of the resonator, where measurement and control pulses are sent in
and reflected, is coupled to a quantum dot. The left end of the resonator is terminated with
a large capacitor which is effectively a short circuit under AC. (Courtesy of Thorsten Last.)

where ωa is the qubit frequency, and q0, qx, and qz are the coupling constants. (The σy
coupling can always be made zero by a basis rotation.)2

Let H0 = 1
2
~ωaσz be the unperturbed Hamiltonian and H ′(t) = −QVr(t) be the per-

turbation, where Q = −q0I − qxσx − qzσz. Q has the obvious interpretation of the charge
operator.

We will denote operators in the interaction picture with a subscript I. Near resonance, the
qubit will go through Rabi oscillations. However, in the dispersive regime, where ~|ωd−ωa| �
|qx|Vr0, the state of the qubit will only be perturbed slightly by the cavity. Assuming
Vr(t) = Vr0 cos(ωdt) is turned on at time zero, linear response theory tells us:

δ 〈Q(t)〉 =
1

i~

∫ t

0

〈[QI(t), H
′
I(t
′)]〉0 dt′

=
i

~

∫ t

0

〈[QI(t), QI(t
′)]〉0 Vr(t

′)dt′.

(6.5)

where 〈〉0 means the average with respect to the initial thermal equilibrium state.
The commutator in the above expression works out to be:

[QI(t), QI(t
′)] =

(
2iq2

x sin[ωa(t− t′)] 2qxqz[exp(iωat
′)− exp(iωat)]

2qxqz[− exp(−iωat
′) + exp(−iωat)] −2iq2

x sin[ωa(t− t′)]

)
.

(6.6)
In thermal equilibrium, ρ ∝ exp(−1

2
β~ωaσz), and 〈σx〉0 = 〈σy〉0 = 0. Therefore,

〈[QI(t), QI(t
′)]〉0 = 2iq2

x sin[ωa(t− t′)] 〈σz〉0 . (6.7)

2qx/e can be interpreted as the lever arm, which is commonly used in the community.
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Figure 6.2: Lumped LC model of a resonator coupled to an atom near a high impedance
resonance.

We have thus obtained an expression for δ 〈Q(t)〉, and we immediately see the cavity
perceives the qubit as a capacitance:

C(ωd) ≡
δ 〈Q(ωd)〉
Vr(ωd)

=
2q2
xωa 〈σz〉0

~(ω2
d − ω2

a)
. (6.8)

The sign of this capitance depends on which state the qubit is in.
In the adiabatic limit where the driving frequency approaches zero, the above capacitance

formula becomes

C(0) = −2q2
x 〈σz〉0
~ωa

. (6.9)

It agrees with the naive capacitance formula C = ∂2E
∂V 2

r
, where E denotes an eigenvalue of the

qubit Hamiltonian Eq. 6.4 (depending also on the state the qubit is in).3

3We would like to comment here that the naive capacitance formula does not always give the correct
result. If we had a quadratic term σzV

2
r in the qubit Hamiltonian, the naive capacitance formula fails to

agree with the correct prediction given by the linear response theory.
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Let ωr = 1√
LrCr

be the frequency of the bare resonator. The frequency shift due to an

additional C(ωd) would be
∆ω

ωr
≈ −C(ωd)

2Cr
. (6.10)

We are able to detect this frequency shift in most cavity QED experiments.
Next we will reformulate the cavity QED system in the second quantization picture.

Assume a single photon mode ωr is involved in the resonator. The voltage Vr(t) in Eq. 6.4
becomes the following operator after quantization:

Vr =

√
~ωr
2Cr

(a† + a), (6.11)

where a is the annihilation operator for the photon modes in the resonator.
We define the detuning of the qubit from cavity by ∆ = ωa − ωr. If ∆ � ωr, we can

apply the rotating wave approximation and neglect the highly oscillatory part of the coupling
Hamiltonian. Then the Hamiltonian describing the entire system is reduced to the following
Jaynes-Cummings model:

HJC =
1

2
~ωaσz + ~ωr(a†a+

1

2
) + ~g(a†σ− + aσ+), (6.12)

where the last term represents the coupling between the qubit and photons, and the coupling
constant g is

g = qx

√
ωr

2~Cr
. (6.13)

Let us explore the Jaynes-Cummings Hamiltonian a little further. Although the energy
levels can be solved in a closed form [60], we will still use perturbation theory (by treating g as
a small constant), which gives us more physical intuition. The eigenstates of the unperturbed
Hamiltonian can be written as |g, n〉 and |e, n〉, where ‘g’(‘e’) indicates ground(excited) state
of the qubit and n denotes the number of photons in the cavity.

In the case of zero detuning (∆ = 0), the two states with n quanta, |e, n− 1〉 and |g, n〉,
have the same energy in the absence of the coupling. The degeneracy of this n quanta pair is
lifted by 2g

√
n in the presence of the coupling, as shown in Fig. 6.3a. The eigenstates become

(|e, n− 1〉 ± |g, n〉)/
√

2, which entangle the atom and photons. Rabi oscillations between
|e, n− 1〉 and |g, n〉 will be observed if the initial state is either of these two unperturbed
eigenstates. The oscillation between |e, 0〉 and |g, 1〉 is called the vacuum Rabi oscillation,
which has frequency g/π.

In the dispersive limit where |∆| � |g|, the eigenstates, which are perturbed to first order
in g, display a small amount of entanglement between the atom and the photons, while
the energies are perturbed to second order in g. It is instructive to apply the dispersive
transformation U = exp

[
(aσ+ − a†σ−)g/∆

]
to the Jaynes-Cummings Hamiltonian and keep

terms up to second order in g [6]:
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(a) ∆ = 0 (b) ∆� g

Figure 6.3: Energy spectrum of the Jaynes-Cummings Hamiltonian in (a) zero detuning and
(b) large detuning [6].

UHJCU
† ≈ ~(ωr +

g2

∆
σz)(a

†a+
1

2
) +

1

2
~ωaσz. (6.14)

This is known as the ‘dressed’ basis and the Hamiltonian is diagonal now! The spectrum
can then be interpreted in two ways. i) The cavity shifts the atomic transition frequency
by (n + 1/2)g2/∆ depending on the number of photons4. ii) The atom ‘pulls’ the cavity
frequency by ±g2/∆ depending on its energy level. We also note that this shift in the
second quantization picture agrees with prediction Eq. 6.10 when ∆� ωr, the regime for a
valid rotating wave approximation.

The nature of the above dispersive coupling allows us to perform quantum non-demolition
(QND) measurements of the qubit by probing the photons (and vice versa). In circuit QED,
the photon states can be probed by sending in a pulse and measuring the phase of the reflected
beam. The frequency response is shown in Fig. 6.4, where the phase interpolates between
π and 0 in a frequency window of roughly κ, where κ is the decay rate of the cavity due to
the measurement port. Because the state of the qubit changes the effective frequency and
therefore the spectrum of the resonator, its state information can be revealed by measurement
of the reflected phase. Let us formulate this scheme in the weak measurement language.

In the interaction frame of the photons, Eq. 6.14 can be written as

H = Ha +
g2

∆
a†aσz, (6.15)

where Ha is the intrinsic Hamiltonian for the atom. Under a measurement pulse that is in
resonance with the cavity, the driving Hamiltonian can be written as

Hd = iE(a− a†), (6.16)

4This effect is called the (AC) Stark shift
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Figure 6.4: State dependent reflected phase of a resonator measurement pulse vs. its angular
frequency (ωd − ωr) in the qubit ground (blue) and excited (red) states, as well as the bare
resonator spectrum (dashed) [102].

where the amplitude E is related to the power of the pulse P by
√
κP/ωr [24].

Let us perform a homodyne detection of the phase quadrature of the reflected pulse.
Then the SME describing the evolution of the atom plus cavity becomes

dρ = −i[H +Hd, ρ] + κD[a]ρdt+
√
ηκH[−ia]ρdW (6.17)

This SME is basically the same as Eq. 2.60 in Chap. 2 and so is the derivation. Here, we
introduced the measurement efficiency η, which represents the percentage of the photons
that are detected by the homodyne apparatus.

In the bad-cavity limit(κ�
√
Eg2/∆), we can adiabatically eliminate the photon modes

and obtain a SME for the atom only (after some lengthy algebra). The adiabatic elimination
exploits the fact that high damping makes the cavity dynamics much faster than the atom
dynamics, and photons always reach steady states prescribed by the atom. The atomic SME
after this treatment becomes [24]:

dρa = −i[Ha +
g2

∆
|α|2σz, ρa]dt+ 2kD[σz]ρadt+

√
2ηkH[σz]ρadW, (6.18)

where the effective measurement efficiency k = 2g4|α|2/(κ∆2), and α = −2E/κ gives the
coherent state of the cavity, |α〉, in the absence of the atom. This SME represents exactly a
weak σz measurement of the qubit whose strength can be tuned by E.

For real systems, we also need to add qubit decoherence processes to the above dynamics.
(We will briefly mention these noise channels when we study specific qubit designs in the
next two sections.) Let γ be the decoherence rate of the qubit. Strong coupling regime is
reached if g > k and g > γ. It basically means the interaction strength is stronger than the
decoherence rates so the characteristic interaction phenomena such as Rabi oscillations can
be observed.
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6.2 Superconducting Qubits

Superconducting quantum computing is a promising implementation of quantum informa-
tion technology that involves nano-fabricated superconducting electrodes coupled through
Josephson junctions. The amazing non-dissipative flow in superconductors gives macroscopic
coherent states that can be used to store quantum information. Non-superconduting quan-
tum states realized so far are all essentially microscopic, and can be much harder to control
and measure. Superconducting qubits can be easily coupled to each other and to resonators
via electric field [8, 79] or magnetic flux [32], and the DiVincenzo criteria [23] for quan-
tum computing can potentially be satisfied with this implementation. The circuit model of
quantum computation, quantum adiabatic computing, and quantum annealing are all being
attempted with superconducting qubits. With the help of resonators, we can demonstrate
coupling multiple qubits [21], continuous weak measurement [41], creation of flying qubits
[48], initial state purification [78], and stabilization of the qubit Rabi state via quantum
feedback [118].

Sec. 6.2.1 briefly reviews how superconductors and Josephson junctions work, and in the
next few sections we are going to analyze different qubit designs.

6.2.1 Superconductors and Josephson Junctions

A superconducting phase is Bose-Einstein condensates of Cooper pairs. Cooper pairs are
bosonic quasiparticles that are composed of two electrons with opposite spins and momenta
bound together by phonon mediated electron-electron interaction. The presence of an energy
gap ∆ in quasiparticle excitations forbids dissipative current flow. According to Ginzburg-
Landau theory, the macroscopic coherent state in a superconductor can be described by
an order parameter ψ(r) =

√
n(r) exp(iφ(r)). The order parameter satisfies the Ginzburg-

Laudau equation, which leads to many correct predictions like the zero magnetic field and
electric current inside (i.e., away from the surface of) a superconductor [34].

A Josephson junction consists of two pieces of superconductors separated by a weak
tunnel barrier. It is usually represented in a circuit diagram by a crossed square as in Fig.
6.5. Let φ be the phase difference between the two superconductor order parameters; let V
and I be the voltage and current across the tunnel barrier. The electric property of such a
junction is described by the famous Josephson effect:

I = Ic sinφ, (6.19a)

φ̇ =
2πV

Φ0

. (6.19b)

Here the constant Ic is the called the critical current, which depends only on the property of
the junction, and Φ0 = h/2e is the magnetic flux quantum. One can immediately see that a
Josephson junction behaves like a non-linear inductor (V = LJ İ) with inductance

LJ =
Φ0

2πIc cosφ
. (6.20)
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The energy of the Josephson junction can be written as

EJ(φ) =

∫
V Idt = −EJ cosφ, (6.21)

where EJ = IcΦ0/2π is the Josephson energy.
The magnetic flux through a superconducting loop is only allowed to be an integer mul-

tiple of the flux quantum, i.e., Φ = nΦ0. If the loop is intercepted by one or more Josephson
junctions, the flux quantization condition becomes

φ+ 2πΦ/Φ0 = 2πn, (6.22)

where φ is the total phase drop across all Josephson junctions.

6.2.2 Charge qubits

Let us look at a simple superconducting qubit design called as a Cooper pair box, also known
as a charge qubit [8, 79]. A Josephson junction EJ is connected to a capacitor C and biased
with a voltage Vg, shown in Fig. 6.5. The Cooper pair box refers to the island indicated by
the dotted line.

Figure 6.5: Circuit diagram for a charge qubit.

The Lagrangian of the system can be written as

L = Ec(φ̇)− EJ(φ) =
1

2
C(V − ~

2e
φ̇)2 + EJ cosφ. (6.23)

The conjugate momentum for φ is

p =
∂L
∂φ̇

= −~C
2e

(V − ~
2e
φ̇) = ~n, (6.24)
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where n is the number of Cooper pairs that have tunneled across the junction. Therefore,
we enforce the canonical quantization condition

[φ, n] = i (6.25)

and write the Hamiltonian for the system as

H = pφ̇− L = EC(n− ng)2 − EJ cosφ, (6.26)

where EC = 4e2/2C and ng is the number of Cooper pairs due to the voltage bias.
We note that

e±iφ |n〉 = |n± 1〉 , (6.27)

which is a direct consequence of the commutation relation [96]. We can then rewrite the
Hamiltonian in the charge basis as

H =
∑
n

[
EC(n− ng)2 |n〉 〈n| − EJ

2
(|n〉 〈n+ 1|+ |n+ 1〉 〈n|)

]
. (6.28)

We require EC � EJ for a charge qubit. We typically bias the system at the charge
degeneracy point ng = 1/2, where the lowest two states |n = 0〉 and |n = 1〉 have the same
energy in the absence of the EJ term. Near such a degeneracy point, we can employ the
two-level approximation and simplify the Hamiltonian to

H ≈ −1

2
EC(1− 2ng)σz −

1

2
EJσx. (6.29)

At exactly the sweet spot (ng = 1/2), the energy levels are insensitive to ng to the first
order. Therefore charge noise, which means any noise that affects the charge ng across the
capacitor, is suppressed. However, dephasing due to second order charge noise may still be
strong [61].

We can couple the charge qubit to a resonator via an additional capacitor Cg, where the
charge ng is determined by the voltage across the resonator electrodes. The total Hamiltonian
for the entire system can be found in Ref. [6].

6.2.3 Phase qubits and Flux qubits

The circuit diagram for a phase qubit is shown in Fig. 6.6a, and we require EC � EJ .
(Typically EJ/EC ∼ 104.) R models the dissipation of the system and is ignored for now.
The circuit is biased with an external current I. The Hamiltonian of the system can be
written as

H = −EC∂2
φ − EJ

(
cosφ+

I

Ic
φ

)
(6.30)

in the phase space [136]. This represents the Hamiltonian of a quantum particle in a tilted
washboard potential shown in Fig. 6.6b. We will bias I at a little bit below the critical current
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Figure 6.6: (a) Circuit diagram and (b) washboard potential for a phase qubit [136].

Ic (typically 0.95Ic-0.98Ic) so there remain only a few quantized energy levels around each
local minimum [136]. This choice of bias makes sure the potential is very anharmonic and
the energy levels are non-equidistant. The tunneling out of the first two levels in a given
potential through the barrier is still small enough that they can be taken as qubit states
[136]. The qubit can be controlled by adding an oscillatory component to the bias current.
A phase qubit has weak sensitivity to charge and flux noise by design.

The circuit diagram for a typical flux qubit is very similar to the charge qubit except
that we remove the voltage bias and add a flux Φx through the loop, taking into account the
self-inductance L of this (Fig. 6.7a) [32]. A flux qubit also works in the EC � EJ regime.
The Hamiltonian can be written in the phase basis as [136]

H = −EC∂2
φ − EJ cosφ+ EL(φ− φx)2/2. (6.31)

Here φx = 2πΦx/Φ0 is the reduced flux through the loop and EL = Φ2
0/4πL is the inductive

energy scale. If φx = π, the potential energy exhibits a symmetric double well shape and
has two degenerate local minima (Fig. 6.7b). These two minima correspond to persistent
circulating currents in opposite directions. They form a qubit space well-separated from
higher energy levels. At the exact φx = π sweet point, true energy eigenstates are equal su-
perpositions of the states with oppositely circulating currents and are insensitive to magnetic
field fluctuations. A flux qubit has low sensitivity to charge noise and medium sensitivity to
critical current noise by design.

There is also an alternative design for a flux qubit that involves a superconducting loop
with negligible inductance but three Josephson junctions, shown in Ref. [119].
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Figure 6.7: (a)Circuit diagram and (b)double well potential for a flux qubit [136].

6.2.4 Transmon qubit

The circuit diagram for a transmon qubit is the same as that for the charge qubit but with
EC � EJ . The Hamiltonian for the system is again described by Eq. 6.26. Its spectrum as
a function of ng is shown in Fig. 6.8. We pick the sweet spot ng = 1/2 to operate the qubit
around as usual.

Although small charge noise is suppressed near the sweet spot, large charge fluctuation
is always present and is directly related to the energy dispersion relation [61]. In particular,

εm ≡ Em(ng = 1/2)− Em(ng = 0) (6.32)

gives the peak-to-peak value for the charge dispersion of the mth energy level [61]. In the
large EJ/EC limit, it can be approximated by [61]

εm ' (−1)mEC
24m+5

m!

√
2

π

(
EJ

2EC

)m
2

+ 3
4

e−
√

8EJ/EC , (6.33)

which decreases exponentially with
√
EJ/EC .

In order to operate the transmon as a qubit, we need a reasonably large anharmonicity.
The relative anharmonicity is defined as [61]

αr =
E12 − E01

E01

(6.34)

evaluated at ng = 1/2. In the large EJ/EC limit, it can be approximated by [61]

αr ≈ −(8EJ/EC)−1/2. (6.35)
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Figure 6.8: Eigenenergies Em (first three levels, m=0,1,2) of the qubit Hamiltonian Eq. 6.26
as a function of the effective offset charge ng for different ratios EJ/EC [61].

Now we come to the central idea behind a transmon qubit design. The exponential
decrease of charge fluctuation and power law decrease of anharmonicity with EJ/EC allows
us to achieve a relatively small charge sensitivity and relatively large anharmonicity with
a medium large EJ/EC (typically around 102). Also, when the transmon qubit is charge
coupled to a resonator, the coupling strength goes like (EJ/EC)1/4 [61], which can be tuned
strong enough for control and measurement.

Ref. [61] showed that the circuit QED system with a transmon qubit can be approximated
by Eq. 6.14 in the dispersive limit.
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6.2.5 Summary

Transmon qubits have excellent performance. Upto 2012, transmons in 3D cavities have been
fabricated with coherence times approaching 100µs, which could fit in 103 − 104 quantum
operations (assuming 10 − 100ns single-qubit and two-qubit gate time.) [103, 95]. There
are a number of other innovative qubit designs like quantronium, fluxonium, and hybrid
qubits that are also very promising. For superconducting qubits, we are in a stage where
simple QND measurements and error correction can be performed and we are aiming at
implementing logical memory with longer lifetime than physical qubits [20]. Although much
advancement in science and technology is still needed, there seems to be no physical principle
that may bound the scalability of superconducting qubits.

6.3 Quantum Dot Qubits

The ability to trap individual electrons in semiconductor quantum dots has lead to great
progress towards enabling full quantum manipulation of their charge and spin in nanoscale
solid state devices [125, 40, 137]. In particular there has been much interest in realizing
charge [42, 105, 123] and spin qubits [40, 137, 87, 73] in lateral double quantum dots due
to the ability to tune the qubit energy splitting via an electrostatic gate controlling the
tunnel coupling between the individual quantum dots [125, 42]. Readout of quantum dots
has traditionally been performed by direct current transport measurements, either through
the double quantum dots [125], or by using an auxiliary current-biased quantum point contact
(QPC) to monitor the charge state [40, 137]. More recently, embedding the QPC in a LC tank
circuit with a resonant frequency of ∼100-400 MHz has enabled faster, single-shot readout
by non-dispersively monitoring the loss on resonance [137, 94]. In this section, I will briefly
describe the theory behind charge and spin qubits.

6.3.1 Charge qubits

A lateral quantum dot utilizes semiconductor heterostructures and lithographically patterned
gate electrodes to create a electron confinement potential in 3D. Fig. 7.2 shows the layout
of a lateral double quantum dot designed in UC Berkeley. A typical double well potential is
shown in Fig. 6.9.

For computational purpose, charge states can be labeled by (nL, nR), where nL and nR
denotes the number of electrons in the left and right dots. The charge states are electric
dipole coupled to the resonator. For both experimental and theoretical simplicity, we choose
a qubit space spanned by (0, 1) and (1, 0) states of a single electron. The energy eigenstates
of qubit, |ψ−〉 and |ψ+〉, are superpositions of (0, 1) and (1, 0).

Physically, the Hamiltonian for a single electron confined by a static potential V0(r) can
be written as

Ĥ ′0 =
p2

2m
− eV0(r). (6.36)
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Figure 6.9: A double well potential and its lowest energy states.

|ψ−〉 and |ψ+〉 are in fact the lowest two eigenstates of this Hamiltonian (see the next chapter
for a numerical example). Let ~ω be the energy splitting between them.

Let Vr(t) be the AC voltage across the two resonator electrodes as usual. Vr(t) sets
an electric potential V (r, t) across the dot region, and the electron feels the perturbation
Ĥ ′ = −eV (r, t). If we project the full Hamiltonian, Ĥ ′0 + Ĥ ′, onto the qubit subspace, we
obtain Eq. 6.4 with

q0 =
1

2Vr(t)

(〈
ψ+

∣∣∣ Ĥ ′(t) ∣∣∣ψ+

〉
+
〈
ψ−

∣∣∣ Ĥ ′(t) ∣∣∣ψ−〉) , (6.37a)

qx =
1

Vr(t)

〈
ψ+

∣∣∣ Ĥ ′(t) ∣∣∣ψ−〉 , (6.37b)

qz =
1

2Vr(t)

(〈
ψ+

∣∣∣ Ĥ ′(t) ∣∣∣ψ+

〉
−
〈
ψ−

∣∣∣ Ĥ ′(t) ∣∣∣ψ−〉) . (6.37c)

Because we can always choose real wavefunctions for the electrons, there is no σy com-

ponent, and q0, qx, and qz are taken to be real. It is clear that Ĥ ′(t) ∝ Vr(t), so these q
coefficients only depend on the geometry and the material, but not on time.

The coupling strength and the resonator frequency shift can then be calculated with the
method described in Sec. 6.1. The maximal coupling strength g achievable from this electric
dipole interaction is on the order of tens of MHz for a typical circuit-QED setup. Please
refer to Sec. 7.3 for detailed calculation in a specific case.

Charge states are subject to strong decoherence due to the electron-phonon coupling.
The decoherence rates are estimated to be tens to hundreds of MHz [86, 42], which makes
it very difficult to protect quantum information. The coupling between charge states and
resonators have been demonstrated with GaAs/AlGaAs quantum dots, but there is no con-
clusive evidence that the strong coupling regime is achieved in this system [30, 114, 120].
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6.3.2 Spin qubits

Spin states generally enjoy much longer coherence time than charge states and they are a
very promising candidate for quantum information processing. Two most popular imple-
mentations are single electron spin qubits and singlet-triplet qubits. We will follow Nori’s
analysis [50] and see how a single electron spin in a quantum dot can be coupled to photons
in a resonator.

We would like to have the spin to be electrically instead of magnetically coupled to the
resonator because the direct magnetic dipole coupling strength is very weak (∼ 100Hz at
best [100], and much weaker than the electric coupling estimated in the previous section).
However, the electric field is naturally decoupled from the spin degree of freedom, and we
need to somehow mix spin and spatial degrees of freedom before we can achieve this coupling.

To use a single spin qubit in a double quantum dot, an external in-plane strong magnetic
field is used to split the spin degeneracy. In addition, we either apply a non-uniform local
magnetic field or utilize the spin-orbit coupling in GaAs/InAs to achieve the mixing. The
former scheme can be realized by integrating a micro-meter size ferromagnet on top of the
double quantum dot device, resulting in a stray magnetic field that has a position dependent
out-of-plane component (Fig. 6.10) [88, 89].

Figure 6.10: Top and cross-sectional views of a lateral quantum dot device consisting of four
metallic gates (yellow, labeled L, P, R and T) and two ferromagnetic strips (blue) patterned
at the surface of a semiconductor heterostructure developed at Tarucha’s group. The thick
arrows indicate the direction of the external magnetic field B0 and magnetization M . The
origin is fixed to the quantum dot position. [88]

The Hamiltonian describing the electron in the absence of the resonator coupling can be
written as [50]

H0 = HDQD +HZ +HSO, (6.38)
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where HDQD is due to the dot confinement potential, HZ = 1
2
gµBB · σ is the Zeeman

energy, and HSO is the spin orbit mixing Hamiltonian. Also, Ĥ ′ = −eV (r, t) describes the
Hamiltonian due to the AC voltage across the resonator electrodes as usual.

Let xy-plane be the heterostructure interface and x axis be the direction where the
quantum dot is elongated. The mixing Hamiltonian can be expressed as [50]

HSO =
αBR
~

(σxPy − σyPx) + αIσzx (6.39)

where the first term represents the Rashba spin-orbit coupling [93] and the second term
presents the effect of the inhomogeneous magnetic field whose gradient is roughly uniform
[89].

Let us assume the energy scale of HZ is smaller than HDQD. The two lowest energy
eigenstates of H0 in the absence of HSO can be written as |g, ↓〉 and |g, ↑〉. The presence
of HSO perturbed the true eigenstates states, |ψ−〉 and |ψ+〉, from |g, ↓〉 and |g, ↑〉. As a
result of the spin-orbit mixing in |ψ−〉 and |ψ+〉, qx in Eq. 6.37, which is responsible for the
spin-photon coupling, is non-zero.

Nori calculated the coupling strength employing the four-state approximation [50]. Let
L be the interdot distance, a be the radius of the single dot ground state wave function,
and S be the wavefunction overlap between the left and right dot. The spin-orbit coupling
parameter is defined as

λx =
αBRLS

a2
√

1− S2
(6.40)

and the spin-resonator coupling strength works out to be [50]

g ≈ −2eEL(
iαIL

ε0
+
λxεZ
ε20

), (6.41)

where E is the vaccumn electric field in the dot regime, and εZ is the Zeeman energy.
With the above formula, the spin-resonator coupling strength due to the inhomogeneous

field is estimated to be around 0.5MHz for both Si and GaAs/InAs quantum dots, while the
strength due to Rashba coupling is around 50kHz for GaAs and 1MHz for InAs [50]. However,
the environmental nuclear spins generally cause significant inhomogeneous broadening in III-
V quantum dots and strong coupling is hard to achieve. In isotopically enriched Si, however,
electron spin decoherence rates on the order of 1Hz have been experimentally observed [116].
Although the spin-orbit coupling results in additional decoherence due to phonons, it is
estimated to be much smaller than the coupling strength 0.5MHz [50, 88]. Therefore, a
Si quantum dot with an inhomogeneous magnetic field can potentially achieve the strong
coupling regime and appears to be a feasible way to go forward [50].
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Chapter 7

A Prototype Circuit QED with
Double Quantum Dot

7.1 Introduction

1This chapter describes a unique design for a microwave resonator coupled double quantum
dot in Si, with the goal of integrating the cQED architecture with semiconducting qubits.
The design and fabrication of the quantum dot was performed by Cheuk Chi Lo and Steven
Wang under the supervision of Eli Yablonovich and Jeffrey Bokor at UC Berkeley. The
resonator and measurement circuit was developed by Andrew Schmidt and Edward Henry
under the supervision of Irfan Siddiqi. I performed the numerical simulation of the physical
system, presented in Sec. 7.3.

The coupling is very similar to that reported in previous resonator-coupled GaAs/AlGaAs
double quantum dots [30, 114], with the resonator conductors connected to the double dot
plunger gates so that the microwave voltage directly couples to the Fermi levels, and hence
the charge states, of the dots. Our quantum dot is an electrostatically gate defined, silicon
metal-oxide-semiconductor (MOS) structure utilizing accumulation mode field effect to cre-
ate a two-dimensional electron gas (2DEG). This allows for lithographically fabricated accu-
mulation gates to determine where the 2DEG will exist in the substrate and keep it spatially
decoupled from the microwave resonator, limiting high frequency loading from the 2DEG
conductivity and capacitance. In contrast, the chemically defined 2DEG in GaAs/AlGaAs
heterostructures must be etched away before fabricating the resonator. Using Si also elim-
inates piezoelectric acoustic phonon coupling [135] which has been implicated in loss and
limiting coherence times in GaAs/AlGaAs devices [42, 114, 120]. Finally, Si has the poten-
tial for long spin coherence due to small spin-orbit coupling [137, 135] and the possibility to
eliminate the nuclear spin bath by isotopic purification [117]; singlet-triplet spin qubits in
Si/SiGe [73] without purification have T ∗2 an order of magnitude longer than in the typical
GaAs [87] devices.

1The bulk of this chapter is adapted from Ref. [99].
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While the double-dot/resonator coupling is via the qubit electric dipole moment, the ul-
timate goal is to couple the semiconductor electron spin degrees of freedom to the resonator.
In 28Si, electron spins have lifetimes approaching ∼1s [137, 132, 117, 75]. At an estimated
coupling rate of ∼100 Hz [100], directly coupling the electron spin magnetic field to the
resonator is nearly impossible for cQED. Instead, our design would employ electric dipole
spin resonance (EDSR) [97, 81, 89], using a strong magnetic field gradient [89] to couple an
electron spin to the resonator. Using EDSR in this manner to couple a spin in a semicon-
ductor double quantum to a microwave resonator has been analyzed in ref. [50], where the
authors found that isotopically purified silicon is the only material capable of achieving the
strong coupling limit of cQED. The precise technique to add the field gradient is itself not
a trivial fabrication process and is left for future work. The first steps towards using EDSR
to couple the spin to a microwave resonator have recently been demonstrated by using the
microwave resonator to readout the spin state of a double quantum dot in InAs nanowires
via strong spin-orbit EDSR [85].

The layout of this chapter is as follows. In Section 7.2 describes the device geometry
and fabrication details. In Section 7.3 discusses the numerical simulations that were used
to guide device design. Section 7.4 contains the results of experimental characterization of
device functionality and Section 7.5 contains a brief summary and conclusions.

7.2 Device Layout and Fabrication Process

Fig. 7.1 is an optical image of our resonator-coupled double quantum dot at the largest length
scales of the device. The short dashed blue box outlines the microwave resonator, which is
a shorted, 6 GHz quarter-wavelength section of coplanar stripline (CPS). The long dashed
green box outlines the shorting termination. This is actually a ∼50 pF capacitor which is a
short at 6 GHz, but is an open at low frequencies allowing us to individually DC bias each
resonator conductor. This is distinct from refs [30, 114], which do not use the resonator
conductors to apply DC biases. At the electric field antinode, the resonator conductors
become the left and right plunger gates of each quantum dot, which are within the solid red
box. The ‘X’ shaped structure within this box are the two metal-oxide accumulation gates
beneath which the 2DEG is located at the semiconductor-oxide interface. These gates are
labeled TR and TL in Fig. 7.2a. This is a standard MOS geometry with mobile electrons
for the 2DEG coming from the n-type degenerately doped ohmic contacts. A positive bias
on these gates accumulates the 2DEG. The ohmic contacts are labeled 1-4 in Fig. 7.1. RF1

and RF2 are the wire bond pads for the microwave carrier, which is coupled to the resonator
via finger capacitors and differentially excited with a 180◦ microstrip ring hybrid. This
differential excitation puts the full resonator voltage drop across the two plunger gates, so
that the Fermi level in one dot oscillates in the direction opposite to the Fermi level in the
other dot. These bond pads are large to minimize inductance. Also visible in the figure are
several aluminum wire bonds. They are attached to a much smaller set of bond pads for the
DC biases. The thin size of the leads from these pads to the rest of the device is to increase
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Figure 7.1: (color online) Large scale view of the device. The electron confinement gates are
located within the red solid box and are not visible on this scale. The ‘X’ within this box
are the two accumulation gates creating the 2DEG. Inside the short dashed blue box lies the
CPS resonator and the coupling capacitors for the microwave wire bond feed. Within the
long dashed green box lies the ∼50pF shorting capacitor that is the bias tee combining the
DC PL and PR bias voltage with the microwave carrier.

the series inductance and choke out any residual high frequency noise.
Fig. 7.2a shows a SEM micrograph image of the accumulation metal-oxide gates, false-

colored in red and labeled TR and TL, that determine the location of the 2DEG in the
vicinity of the quantum dot electron confinement gates. The resonator conductors are false
colored-blue and are also the plunger gates for the two dots, PL and PR. The resonator
conductors are well decoupled from the 2DEG as shown by the spatial separation in this
figure. The inset focuses on these confinement gates, with a length scale very similar to that
successfully used in previous Si quantum dots [105, 115, 49].

The confinement gates are a mostly standard set of quantum dot confinement gates;
however, the plunger gates controlling the dot charge states are unique in that they are
operated in accumulation mode at positive bias. Their vertical orientation should reduce the
capacitive division of the applied bias, as observed in another Si MOS double quantum dot
with accumulation mode plunger gates [63]. This should help maximize the coupling of the
ground state quantum voltage fluctuations of the resonator differential mode into the double
dot. The depletion side gates are labeled LT,B and RT,B, and the U gate controls the tunnel
coupling between the left and right dots. The QPC gates are QL,R

Other than Ref. [63], the plunger gates in Si MOS and Si/SiGe double quantum dots that
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Figure 7.2: (color online) (a) SEM of the electron confinement gates and the 2DEG accu-
mulation gates, which are false colored red. The plunger gates PR and PL are false colored
blue, and emphasize the spatial decoupling of the microwave resonator from the 2DEG. The
inset SEM details the electron confinement gates. (b) A schematic cross section of the MOS
accumulation structure in this device. (not to scale)

we are aware of operate in depletion mode. We do not use a global top gate to accumulate
the 2DEG like other existing Si device designs [137, 123, 73, 132, 115, 49, 133], because
we cannot have this top gate overlap with the plunger gates, or the quantum dots. The
plunger gates are also the microwave resonator conductors, and if the plunger and top gates
overlapped this would not only lead to resistive loss by the reservoir electrons, but also create
an additional capacitive load, both severely degrading resonator performance. A global top
gate that is deposited to be non-overlapping would first require depositing an insulating oxide
layer followed by an additional metal layer that is aligned with nanometer scale precision
above the quantum dot gates, resulting in additional fabrication complexity.

The devices are fabricated from commercially available Si wafers from Topsil that are
float-zone grown in the 〈100〉 orientation, n-type with room temperature resistivity in excess
of 10 kΩ-cm. Fabrication begins with ion-implantation of the phosphorous donors in the
ohmic contact regions. These must be degenerately doped beyond the metal-insulator tran-
sition to ensure device operation below liquid He temperatures. This is followed by creation
of the 100nm thick SiO2 gate oxide barrier by dry thermal oxidation at 1000◦C. Next, this
oxide on the ohmic contacts is etched away with hydrofluoric acid (HF) and metal contacts
are deposited consisting of 5nm Ti on the bare Si surface and 40nm Au on top for the wire
bond pads. After this is the electron-beam write for the metal lithography, defining the
gates, resonator conductors, metal leads and wire bond pads. With the exception of the
ohmic contacts, all other metal is 20nm thick Al deposited in a custom built electron-beam
evaporator designed for fabrication of superconducting qubits [78, 118]. Finally the shunting
capacitor is finished with 200nm thick plasma enhanced chemical vapor deposited (PECVD)
SiO2 dielectric and a 50nm thick Al upper capacitor plate. A schematic cross section of the
device, showing the metal-oxide structures but excluding the shorting capacitor is shown in



CHAPTER 7. A PROTOTYPE CIRCUIT QED WITH DOUBLE QUANTUM DOT 110

2.5 

1.5 

0.5 

x1011cm-2

0 

0.3 

0.6 

V

250 nm

a b

100 nm

c

d e

2.3 2.3

1.82

0.5 0.5

2.1 2.1

-0.5 -0.5

-8 8 x10-3 nm-3/2 -8 8 x10-3 nm-3/2

T
L

T
R

U

L
B

L
T

R
T

R
B

P
L

P
R

Figure 7.3: (color online) Numerical simulations (see text for details) (a) 2DEG induced
at the Si-SiO2 interface (b) Interface electrostatic potential. (c) Applied gate bias voltages
setting boundary conditions. (d) Ground state wave function envelope for the region in the
black dashed box in (b). (e) First excited state wave function envelope.

Fig. 7.2b, emphasizing that all the confinement and accumulation gates are defined in a
single metal layer. The final step is a forming gas anneal to reduce the interface trap density.

Similar MOS devices built using these fabrication techniques are measured to have a
mobility of 10,000 -15,000 cm2/V s at 4.2K [65]. This is comparable to previous Si MOS
quantum dots [132, 137].
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7.3 Numerical Simulations

To simulate the device we first find the electrostatic confinement potential for an electron
by numerically and self consistently solving Poission’s equation with the accumulated 2DEG
charge density given in the semiclassical Thomas-Fermi approximation [2, 51]:

∇ · (κ∇φ(r)) =− 4πρ2DEG(r)

ρ2DEG(r) =− e m
∗
t

π~2
(EF − E0)δ(z) EF > E0

ρ2DEG(r) = 0 EF < E0

Here κ is the material-dependent dielectric constant, φ(r) is the electrostatic potential,
ρ2DEG is the 2DEG charge density, m∗t is the Si transverse electron effective mass, EF is the
Fermi energy, and E0 is the energy of the bottom of the lowest 2DEG subband. The Si-SiO2

interface is at z = 0 and perpendicular to the z direction, and by using δ(z) we are ignoring
the spatial extent of the wave function in the direction of confinement. Since field-effect
2DEGs in Si-SiO2 are typically within ∼5nm of the interface and are of the same order in
extent [2], this is a very good approximation. The space, oxide, and interface charges are
ignored, as are issues of valley physics. The final valley degeneracy is lifted by the electric
field and the interface, but the magnitude of the splitting depends very sensitively on the
atomic-level interface details [2, 137, 133]. Thus we are using a free electron envelope function
description of the electron wavefunction. E0 implicitly depends on φ(r), essentially because
the gate bias must bend the conduction band below EF before the 2DEG can form. The
result is that a threshold bias VT [2, 111] must be applied before the 2DEG forms; this was
measured to be 1.2-1.4V before transport occurs in our devices. The commercial program
COMSOL Multiphysics was used [77] for the numerical solution. The resulting 2DEG density
is shown in Fig. 7.3(a) for the applied gate bias boundary conditions shown in Fig 7.3(c).

The resulting electrostatic potential at the Si-SiO2 interface is shown in Fig. 7.3(b).
The thin white lines in this figure are equipotential lines with 5 mV spacing, and we find
electrostatic potential maxima below the two plunger gates PL,R. Multiplying by the electron
charge −e, these become potential energy minima of ∼20 meV for confining electrons in the
quantum dots. The double quantum dot ground and first excited state energies and wave
function envelopes are found within the effective mass approximation [2, 51] by subsequently
using COMSOL to numerically solve Schrödinger’s equation with this electrostatic potential
energy, again using the anisotropic effective mass of silicon. The ground state wave function
envelope is shown in Fig. 7.3(d) for the region within the black dashed line in Fig. 7.3(b),
and shows the bonding symmetry. The first excited state envelope for the same region is
shown in Fig. 7.3(e). This clearly shows the anti-bonding symmetry. The energy difference
between ground and first excited state is 3 GHz. This number is a rough order of magnitude
estimate, and we anticipate that fine tuning of the U gate will be required to set the desired
operating point.
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Figure 7.4: (color online) Transport characterization of electron confinement. (a) Current
resonances as function of plunger gate bias forming honeycomb charge stability regions. (b)
QPC conductance as a function of left plunger gate bias showing single electron charing
events (arrows). (c) Inconsistent honeycombs over large plunger gate bias ranges.

At the charge degeneracy point, the Jaynes-Cummings Hamiltonian with qubit frequency
ωa, resonator frequency ωr, and qubit-resonator coupling g is

HJC =
1

2
~ωa +

1

2
~ωra

†a+ ~g(a†σ− + aσ+).

Here, a† creates a resonator photon, and σ+/− are the qubit Pauli operators. g is given
by Eq. 6.13, reproduced below:

g = qx

√
ωr

2~Cr
. (7.1)

Aforementioned simulation with the confining potential and electron wavefunction produces
qx ≈ 10−21 − 10−20[C]. Our resonator can be modeled with Lr = 1.7nH and Cr = 0.42pF,
which gives maximally achievable coupling strength g/~ ≈ 10MHz for a single electron in
the dot. Also, at charge degeneracy, this coupling term g is the roughly same for both charge
double quantum dot and Cooper pair box qubits [6, 12] with similar geometry. A g/~ value
of 10-50 MHz is observed for charge coupling in III-V double quantum dots [30, 114, 85], the
same order of magnitude as observed for Cooper pair boxes [121, 48]. Because both III-V and
Si double quantum dots have similar α = qx/e [115, 49, 63, 7, 31, 114, 101] and similar Cr
and ωr owing to similar planar transmission line structures, we expect the charge coupling
in our Si device to have the same order of magnitude.

7.4 Experimental Characterization

All experiments were performed in an Oxford Instruments Triton cryogen-free dilution re-
frigerator at temperatures below 15 mK. All low frequency measurement wiring is filtered at
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the mixing chamber, first through a lossy Eccosorb CR124 100 MHz low pass filter, which
has been demonstrated to attenuate frequencies up to 40GHz [108]. This is followed by a
surface mount RC π low pass filter with a 1kHz cutoff.

To test the ability to confine charge, we made a series of DC electronic transport mea-
surements in a device similar to the one in Figs 7.1-7.2a. Figure 7.4(a) shows a plot of
current through the device on a log scale as a function of bias voltage on the left and right
plunger gates PL,R. Ohmic contacts 1 and 4 form the source and drain with bias voltage
of 100 µV in a standard AC lock-in technique at 13Hz using a Stanford Research Systems
SR810. Overlaid on top of this is the a honeycomb charge stability diagram expected for
transport through a double quantum dot in Coulomb blockade [125, 137] and analysis of this
yields plunger gate capacitances of 7-8 aF.

The left QPC is biased by applying a 1 nA current bias to ohmics 1-2, while a bias
voltage on QL brings this channel close to pinch-off. The QPC conductance measured with
the same lock-in technique above is shown in Figure 7.4(b) as a function of left plunger PL

voltage. Red arrows mark peaks due to charging events in the left dot, which are repeatable.
Figures 7.4(a)-(b) indicate that our double quantum dot is indeed exhibiting single electron
charging.

However, when we try to measure the charge stability from transport through the dots
over a wider range of gate bias, we find the current resonances shown in Fig 7.4(c). We
cannot get consistent honeycomb patterns over a large bias range. A qualitative explanation
for this is given in the Summary, Sec. 7.5.

In Fig 7.4(a), gates TR,L, QR,L were biased at 4 V, while LT,B, RT,B, and U were at 1
V. In Fig 7.4(c), TR,L, QR,L were at 4 V, LT,B, RT,B at 1.2V, and U was at 0.95 V. For
Fig 7.4(b), these gates were in a different bias regime. TL was 4.5 V, and QL was 401.5mV
below TL to put the QPC near pinch-off. The side gates LT,B, RT,B were at -1.5V to shut
off transport from the quantum dot to the 2DEG, and U was also at -1.5V to isolate the
two dots. The negative biases on these confinement gates required the larger compensating
plunger gate voltages in Fig 7.4(b).

Microwave measurements of the resonator were made in reflection using a vector network
analyzer (VNA). The incoming microwaves are thermalized by attenuators with values of 20
dB at 4K, 20dB at the still, and 20 dB at base temperature on the mixing chamber. From
there they are sent though a circulator to reflect off the device and on return pass through
an additional isolator to a NbTi superconducting coaxial line. This line sends the signal to a
Low Noise Factory LNF-LNC4 8A HEMT amplifier at 4K. Fig. 7.5(a) shows measurements
of the reflected amplitude at -150 dBm input power, including the overall system gain, and
Fig. 7.5(b) shows the phase. The bond pads were connected to a 180◦ hybrid for differential
excitation via 1 cm wire bonds connected to RF1,2 in Fig. 7.1. This adds series inductance,
modifying the complex impedance away from the Lorentzian approximation for a resonator.
Assuming the wire bond impedance is purely reactive, we fit the real part of the reflection,
removing the time delay so that the reflection data is measured with respect to resonator.
The resulting fit to a Lorentzian is very good, as shown in Fig. 7.5(c) for -150 dBm. From the
fit we extract a resonant frequency f0 of 5.511 GHz, which is down from the 6 GHz set by the
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transmission line length due to the reactive loading of the wire bonds and coupling capacitors.
The resonator Q of 307 breaks down to an external Qext of 411 and an internal Qint of 1210,
so that the resonator is over-coupled. This Q translates to a half-power bandwidth of 18
MHz, which would allow measurement of fast charge dynamics.

The power dependence of Qint is plotted in Fig. 7.5(d) from -150 dBm to -70 dBm.
Using n̄ = 4PinQ

2/(Qext~ω0), where Pin is the steady state input power, this corresponds to
an average photon number n̄ of order 0.01 to 106. Over this range Qint is observed to climb
from 1210 to 1530. To demonstrate that this loss is due to the PECVD SiO2 dielectric in
the shorting capacitor, we have fabricated a device with this capacitor replaced by an Al
shorting stub and measure Qint to be above 10,000 at -150 dBm for a Qext of 2000. This
PECVD SiO2 internal loss and internal loss power dependence is far less than previously
reported for LC resonator capacitors [72] or for coplanar waveguide (CPW) transmission
line resonators [82]. This may be due to the fact that for our devices the shorting capacitor
is at a voltage node where the resonator voltage is minimal, but more comprehensive work
is required to demonstrate this.

7.5 Summary

We have designed and developed a fabrication process for a Si double quantum dot coupled to
a microwave resonator. We have performed simple numerical simulations to verify dot charge
confinement, and estimate the double dot - resonator vacuum coupling strength. We have
fabricated test devices and characterized the quantum dot charge confinement through DC
transport measurements and the microwave resonator spectrum with a VNA. The resonant
frequency is 5.511GHz with Qint/Qext = 3 in the overcoupled regime, while the total Q = 307
gives a line width of 18 MHz. The over-coupling allows for pulsed time-domain detection of
dispersive resonant frequency shifts in the phase of a homodyne measurement. The fastest
resolvable phase change is ∼60 ns, set by the inverse line width, which is well within the
charge relaxation T1 seen in Si charge qubits [123].

The DC transport measurements demonstrate charge confinement for the device, but Fig.
7.4(c) shows that the charge stability honeycombs are not found over a wide enough gate
bias range. One explanation for this is that the 2DEG accumulation gates TL,R become too
narrow where they come near the confinement gates LT,B and RT,B, as shown between the
arrows in Fig 7.6(d), so that the 2DEG in fact becomes sub two-dimensional in this region.
Then our double quantum dot, with honeycomb current resonances shown schematically in
Fig. 7.6(a) is in series with short, sub 2D channels with regions of allowed and forbidden
conductance, shown schematically in Fig. 7.6(c), and the resulting total series conductance
is shown schematically in Fig. 7.6(c). This is a very qualitative representation of the data
in Fig. 7.4(c). A detailed experimental study of sub 2D reservoir behavior is given in Ref.
[76] and its analysis the context of other quantum dot transport phenomena is given in [27].

In hindsight, this problem can be identified in the 2DEG density simulation shown in
Fig. 7.3(a) by noting that the 2DEG density drops and becomes non-uniform over very
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short lengths where TL,R narrow at the gap between the confinement gates LT,B and RT,B.
However, due to the use of the semi-classical Thomas-Fermi approximation the lowering of
dimensionality is not properly captured. The solution to this is to make the narrow part
of the gates, shown between the Fig. 7.6(d) arrows, wider to ∼300nm, or ∼30 times the Si
transverse effective mass Thomas-Fermi screening length [2, 51].

After this, there is more non-trivial testing to be done. One test is to demonstrate that
the double dot can be completely depleted of electrons, so that the few-electron regime can
be reached, followed by showing that the splitting of the lowest two valleys is large, similar
to the 100-750µV measured in previous Si MOS quantum dots [137, 2, 133]. Both of these
are necessary for spin manipulation of Si double dot devices. Simultaneously with this is
demonstration of dispersive readout of the honeycomb charge stability diagrams with the
microwave resonator, as done previously in III-V devices [30, 114, 85]. Attempts will be
made to make a simple charge qubit and use the resonator for dispersive readout in pulsed
time-domain experiments.

The primary distinguishing feature about our prototype, is that at the time of submission
of this manuscript, it is the first resonator coupled double quantum dot using silicon as the
semiconductor host material, in a geometry suitable for dispersive, quantum non-demolition
cQED measurements [6, 13, 21, 41, 48, 78, 118] and an attempt to reach the resonator-qubit
strong coupling regime of cQED [121, 6, 50, 12] . While we do not prescribe a path for
adding the magnetic field gradient to achieve EDSR [89] enabled spin-resonator cQED [50]
coupling, the single metal layer defining the double quantum dot is an excellent starting
point on top of which to fabricate additional magnetic nanostructures.
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Figure 7.5: (color online) Microwave resonator reflection coefficient data (a) Magnitude,
including overall gain of the measurement chain. (b) Phase (c) Real part, with time delay
adjusted to adjust reference to input plane of resonator. The fit is to a Lorentzian. (d)
Power dependence of the internal quality factor, characterizing resonator internal losses.
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Figure 7.6: (color online) Schematic representation for the failure to achieve consistent long
range honey combs with sweeps of plunger gate bias. (a) Cartoon of the double quantum dot
honeycomb current peaks as a function of gate bias. (b) Cartoon of the sub two- dimensional
conductance in the region marked by arrows in (d), giving regions of allowed conductance,
marked in yellow, surrounded by regions of forbidden conductance. (c) Cartoon of what
transport measurements of (a) and (b) in series would look like. (d) The region of the
accumulation gate marked with the yellow arrows is where the 2DEG becomes sub two-
dimensional.
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Chapter 8

Conclusions

Research in quantum information science has made many breakthroughs as well as exposed
many challenges over the past two decades or so. In this thesis, we explored three important
topics in this field: open quantum systems, quantum feedback control, and circuit-QED.

The theory of open quantum systems helps us understand and fight against the quan-
tum dissipation channels. We discussed both the Lindblad master equation approach to
Markovian systems and the HEoM approach to non-Markovian systems. We used controlled
relaxation for a qubit as an example to demonstrate the potential of the HEoM approach
for controlling non-Markovian systems. Armed with HEoM, we may also be able to answer
many other reachability and controllability questions for open quantum systems. In addi-
tion, we illustrated ways to unravel HEoM, which might be a valuable step towards making
simulations more efficient. More generally, effectively solving an open quantum system with
a non-Gaussian bath is still a very challenging problem.

Motivated by recent advances in realization of real-time feedback control in circuit quan-
tum electrodynamics systems [118], we formulated the theory of PI control which can be
more effective than direct feedback control but is still feasible to implement experimentally.
We demonstrated its application in two-qubit entanglement generation under ideal condi-
tions and harmonic oscillator state stabilization. Further investigation taking into account
experimental imperfections like non-zero temperature and various decoherence channels for
the two-qubit entanglement generation problem is desired. In addition to PI control, we also
demonstrated ways to come up with and to verify optimal control strategies, which are the-
oretically illuminating and also important. We studied qubit purification with a Markovian
bath as an example, but we also would like to know the optimal control strategies for many
other systems and for different types of baths as well.

We reviewed the circuit-QED scheme for a quantum information processor in the last
part of this thesis. Circuit-QED with superconducting qubits has been the most fruitful
experimentally so far. However, we also see that the scheme with quantum dot electron
spins in isotopically purified silicon coupled to resonator photons via an inhomogeneous
magnetic field can potentially reach the strong coupling regime and is very promising as
well. Adding micro-magnets on top of our silicon quantum dot to create an inhomogeneous
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magnetic field needs many more engineering efforts and is worthy of future research. On
the theory side, more complete analysis of the spin decoherence rate in the presence of field
gradient is desired. Research on circuit-QED based architecture of quantum information
processor remains to be of great importance. In particular, combining spin qubits that have
long coherence with superconducting qubits that have fast gates in a hybrid quantum circuit
seems to be a great solution [62].
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