
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Towards Interpretability and Robustness of Machine Learning Models

Permalink
https://escholarship.org/uc/item/2bj9c0br

Author
Chen, Jianbo

Publication Date
2019

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2bj9c0br
https://escholarship.org
http://www.cdlib.org/

Towards Interpretability and Robustness of Machine Learning Models

by

Jianbo Chen

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Statistics

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Michael I. Jordan, Co-chair
Professor Martin J. Wainwright, Co-chair

Assistant Professor Thomas Courtade
Assistant Professor William Fithian

Fall 2019

Towards Interpretability and Robustness of Machine Learning Models

Copyright 2019
by

Jianbo Chen

1

Abstract

Towards Interpretability and Robustness of Machine Learning Models

by

Jianbo Chen

Doctor of Philosophy in Statistics

University of California, Berkeley

Professor Michael I. Jordan, Co-chair

Professor Martin J. Wainwright, Co-chair

Modern machine learning models can be difficult to probe and understand after they have
been trained. This is a major problem for the field, with consequences for trustworthiness,
diagnostics, debugging, robustness, and a range of other engineering and human interaction
issues surrounding the deployment of a model. Another problem of modern machine learning
models is their vulnerability to small adversarial perturbations to the input, which incurs a
security risk when they are applied to critical areas.

In this thesis, we develop systematic and efficient tools for interpreting machine learning
models and evaluating their adversarial robustness. Part I focuses on model interpretation.
We derive an efficient feature scoring method by exploiting the graph structure in data. We
also develop a learning-based method under an information-based framework. As an attempt
to leverage prior knowledge about what constitutes a satisfying interpretation in a given do-
main, we propose a systematic approach to exploiting syntactic constituency structure by
leveraging a parse tree for interpretation of models in the setting of linguistic data. Part II
focuses on the evaluation of adversarial robustness. We first propose a probabilistic frame-
work for generating adversarial examples on discrete data, and develop two algorithms to
implement it. We also introduce a novel attack method in the setting where the attacker has
access to model decisions alone. We investigate the robustness of various machine learning
models and existing defense mechanisms under the proposed attack method. In Part III, we
build a connection between the two fields by developing a method for detecting adversarial
examples via tools in model interpretation.

i

To my family

ii

Contents

Contents ii

1 Introduction 1
1.1 Model interpretation . 1
1.2 Adversarial robustness . 3
1.3 Contributions of this thesis . 5

I Interpretability 8

2 Efficient Model Interpretation for Structured Data 9
2.1 Introduction . 9
2.2 Background and preliminaries . 10
2.3 Methods . 13
2.4 Properties . 16
2.5 Experiments . 18
2.6 Proof of Main Theorems . 27
2.7 Discussion . 31

3 An Information-Theoretic Perspective on Model Interpretation 32
3.1 Introduction . 32
3.2 Our framework . 34
3.3 Our proposed method . 36
3.4 Experiments . 39
3.5 Proof of Theorem 1 . 46
3.6 Conclusion . 47

4 Model Interpretation for Linguistic Data 48
4.1 Introduction . 48
4.2 Least squares on parse trees . 49
4.3 Connection to coalitional game theory . 50
4.4 Detecting interactions . 52

iii

4.5 Experiments . 54
4.6 Discussion . 60

II Adversarial Robustness 61

5 Adversarial Examples for Discrete Data 62
5.1 Introduction . 62
5.2 Framework . 64
5.3 Methods . 65
5.4 Experiments . 69
5.5 Discussion . 75

6 A Query-Efficient Decision-Based Attack 77
6.1 Introduction . 77
6.2 Related work . 79
6.3 An optimization framework . 81
6.4 A decision-based algorithm based on a novel gradient estimate 84
6.5 Experiments . 91
6.6 Sensitivity analysis . 92
6.7 Proofs . 105
6.8 Discussion . 117

III Intersection 119

7 Detecting Adversarial Examples with Feature Attribution 120
7.1 Introduction . 120
7.2 Related Work . 121
7.3 Adversarial detection with feature attribution 123
7.4 Experiments . 126
7.5 Discussion . 133

8 Future Directions 134

Bibliography 136

iv

Acknowledgments

This thesis would not exist without the support of many people who have helped me during
the past four years.

The most valuable and fortunate thing in my Ph.D. study is that I have Michael I. Jordan
and Martin J. Wainwright as my advisors. Both of them have provided me with tremendous
support along my wonderful journey. I met Mike and Martin in their classes first, and decided
to seek their advising after that. Mike and Martin have given me full freedom to explore
my new ideas and investigate new directions, and have guided me to overcome failure and
difficulties in an encouraging and motivational manner. With their keen intellect and broad
knowledge, they are always ready to provide me with thoughtful suggestions when I am faced
with obstacles. I still remember how astonished I was when Mike suggested a connection
between two seemingly unrelated problems in two different fields, and when Martin located
the solution to a cutting edge problem at a book in the 90s on his shelf. These things
happened during many of our discussions. Not only have they advised me academically, but
they have also been my life mentors. Mike has provided countless thoughtful suggestions on
my career path. Martin has taught me it is never more important to maintain a balance
between life, family and work. Both of them have offered me multiple career opportunities
to explore my own interest, and are willing to spend time discussing trade-offs in my career
choice. Mike also holds parties at his home every semester. Surrounded by my group mates,
I often feel I have a second family.

I would also like to express my thanks to faculty and staff members in Statistics and
EECS. Will Fithian, a committee member in my qualifying exam and dissertation, has given
constructive suggestions on my projects in multiple hypothesis testing. Peter Bartlett’s group
meeting has equipped me with a theoretical understanding of neural networks and online
learning. I would like to thank Thomas Courtade, who was willing to be a committee member
in both the qualifying exam and the dissertation, and provided useful feedback. I also learned
a lot from lectures and courses given by many professors at Berkeley, including Michael I.
Jordan, Peter Bartlett, Chris Paciorek, Martin J. Wainwright, Ben Recht, Jitendra Malik,
and Alexei A. Efros. Staff members at the department of statistics have also supported me
throughout my graduate study. La Shana Porlaris and Mary Melinn are always ready to
resolve my various questions and problems when I have trouble.

I owe a lot to my collaborators as well. My research interest in model interpretation was
motivated by Prof. Le Song at Georgia Institute of Technology, who has shared many sharp
thoughts with me on several projects. The collaboration with Puyudi Yang, Prof. Jane-
Ling Wang at UC Davis and Prof. Cho-Jui Hsieh at UCLA aroused my research interests
in adversarial robustness. I am also fortunate to have worked with Aaditya Ramdas, from
whom I learned not only knowledge but also principled methodology in doing research.
Yelong Shen, Jianfeng Gao, Jingjing Liu and Xiaodong Liu have exposed me to research in
industry during my internship at Microsoft Research. I also have a very nice experience in
collaborating with my friend Mitchell Stern on feature selection, and with my friends and
senior fellows Lihua Lei and Cheng Ju on stochastic optimization.

v

I am so fortunate to have known many mentors and friends at Berkeley. I came to
Berkeley as an exchange student during my undergraduate study, where I spent a fruitful
semester. I met Prof. Yan Zhang and Prof. F. Alberto Grünbaum during my exchange study,
who have built up my confidence in applying for a Ph.D. program. I am also thankful to my
friends at Berkeley who have made my past four years colorful, in particular my academic
brothers and sisters in Mike and Martin’s groups such as Ashwin Pananjady, Yuchen Zhang,
Fanny Yang, Yuting Wei, Raaz Dwivedi, Billy Fang, Joe Borja, Nilesh Tripuraneni, Mitchell
Stern, and Koulik Khamaru, my roommate Haoran Tang, my senior fellows Cheng Ju, Lihua
Lei, Wenpin Tang, Siqi Wu, and my friends Yuting Ye, Da Xu, Xiao Li and many others.

I would not be at Berkeley without the support of my undergraduate advisors at the
University of Hong Kong. Prof. Guangyue Han’s reading group equipped me with knowledge
in stochastic differential equations, with whom I also spent a wonderful year on information
theory and network coding. Under the guidance of Prof. Ngaiming Mok, I had a fantastic
tour in the world of complex differential geometry. I finished my first research project in
statistics with Prof. Stephen Man Sing Lee, who is so patient and generous, and always
available for a discussion. He has cultivated my interest in statistics.

Last but not least, my family has made me who I am. The words cannot express my
thanks to my grandfather Shunxu Chen (陈顺序) , who taught me how to write my first
Chinese and English words, and my grandmother Fuying Wang (王福英) , who taught me
the first digits and the first equations in my life. Both of them have cultivated my interests
in art, science and mathematics since my childhood. I also owe numerous credits to my
parents Wei Chen (陈巍) and Fen Chen (陈奋) , who have never hesitated in supporting
my education. I would like to thank my aunt Miao Chen (陈苗) as well, who takes care
of me as if she were another Mom. All of them have devoted themselves to my growth
selflessly. Finally, I express my special thanks to my wife Puyudi Yang (杨璞玉迪) , who
keeps company with me in Shanghai, Hong Kong, Berkeley, Seattle and Chicago. Without
her love, support and care, I would not have the confidence and power to go through the
challenges and difficulties I met in the past seven years.

1

Chapter 1

Introduction

Interpretability and adversarial robustness are important criteria when a machine learning
model is applied in critical areas such as finance, medicine, criminal justice and transporta-
tion. Many complex models, such as random forests, deep neural networks, and kernel
methods, have been developed and employed to optimize prediction accuracy, which can
compromise their ease of interpretation and adversarial robustness.

This thesis aims to provide systematic and efficient tools for interpreting machine learning
models and evaluating their adversarial robustness. It further builds a connection between
the two fields via the application of tools in model interpretation to the detection of adver-
sarial examples.

1.1 Model interpretation

Modern machine learning models can be difficult to probe and understand after they have
been trained. This is a major problem for the field, with consequences for trustworthiness,
diagnostics, debugging, robustness, and a range of other engineering and human interaction
issues surrounding the deployment of a model.

There have been several lines of attack on this problem. One involves changing the model
design or training process so as to enhance interpretability. This can involve retreating to
simpler models and/or incorporating strong regularizers that effectively simplify a complex
model. In both cases, however, there is a possible loss of prediction accuracy. Models
can also be changed in more sophisticated ways to enhance interpretability; for example,
attention-based methods have yielded deep models for vision and language tasks that improve
interpretability at no loss to prediction accuracy [1–7].

Another approach treats interpretability as a separate problem from prediction, which
will be a focus of this thesis. Given a predictive model, an interpretation method yields, for
each instance to which the model is applied, a vector of importance scores associated with
the underlying features. The instancewise property means that this vector, and hence the
relative importance of each feature, is allowed to vary across instances. Thus, the importance

CHAPTER 1. INTRODUCTION 2

scores can act as an explanation for the specific instance, indicating which features are the key
for the model to make its prediction on that instance. Most of the stand-alone interpretation
methods approximate the model to be interpreted via a locally additive model in order to
explain the difference between the model output and some “reference” output in terms of
the difference between the input and some “reference” input. The coefficients of the locally
additive model are used as importance scores. Such methods are named as instancewise
feature importance scoring and feature attribution interchangeably throughout the thesis.
There are two main differences between various methods: the information being used for
approximation, and the criterion of a good approximation.

Based on whether the information involves model details, interpretation methods can be
classified as being model-agnostic or model-aware. Model-aware methods require additional
assumptions, or are specific to a certain class of models [8–13]. The majority of studies on
model-aware methods focus on neural network models, which are compositions of functions
with certain types, such as linear functions and nonlinear activations. For this type of
models, interpretation methods often seek to compose layerwise approximations, or construct
a gradient-based approximation. Model-agnostic methods can be applied in a black-box
manner to arbitrary models [14–21]. Such methods often draw multiple samples by masking
part of the features by some reference value for the given instance, and constructs the
linear model via aligning the output of the linear model and the output of the model to
be explained in a certain way. While model-aware methods require access to model details
and are relatively more inconvenient to implement in practice, model-agnostic methods often
suffer from query inefficiency. We will discuss how to improve the efficiency of model-agnostic
methods in Chapter 2 and Chapter 3.

The criterion for being a good local approximation of the original model also varies from
method to method. Such criteria outline the definition of importance, describe the properties
of importance scores, and even suggest potential applications of a method [14, 15]. A common
standard in testing the effectiveness of a method is human evaluation, such as the alignment
between human explanations and output scores from an interpretation method. However,
human evaluation may suffer from cost and variance among different human subjects, and
also rely on the design of experiments. A more sophisticated approach is to formalize the
set of criteria to be imposed, which are called axioms, and then mathematically derive the
method of distributing importance scores based on the provided rules. Recently, a handful
of axiomatic frameworks have been employed for the mathematical definition of a faithful
interpretation [12, 15–17, 21]. Common examples include the Shapley value [22] and the
Banzhaf value [23]. Such axiomatic frameworks are often rooted in economics and game
theory, originally proposed as an axiomatic characterization of a fair distribution of a total
surplus from all the players in a cooperative game. When they are applied to predictive
models, each feature is modeled as a player in the underlying game. There has not been a
consensus among researchers which axiomatic framework is the most appropriate for model
interpretation yet.

Interpretation methods have a variety of applications. They can help people build trust
in machine learning models, and help engineers and researchers delve into the black box of

CHAPTER 1. INTRODUCTION 3

Figure 1.1: An illustration of accessible components of the target model for each of the three
threat models. A white-box threat model assumes access to the whole model; a score-based
threat model assumes access to the output layer; a decision-based threat model assumes
access to the predicted label alone.

machine learning models. See a discussion of such applications in Lipton [24]. We discuss
an application of interpretation tools to the detection of adversarial examples in Chapter 7.

1.2 Adversarial robustness

Machine learning models have been shown to be vulnerable to adversarial examples—that
is, maliciously perturbed examples that are almost identical to original samples in human
perception, but cause models to make incorrect decisions [25]. The vulnerability of machine
learning models to adversarial examples implies a security risk in applications with real-world
consequences, such as self-driving cars, robotics, financial services, and criminal justice; in
addition, it highlights fundamental differences between human learning and existing machine-
based systems. The study of this phenomenon is carried out from two directions: evaluating
the adversarial robustness of a model by designing new algorithms for generating adversarial
examples, and improving the adversarial robustness by designing mechanisms to identify and
conquer adversarial examples.

1.2.1 Generating adversarial examples

Recent years have witnessed a flurry of research on the design of new algorithms for gener-
ating adversarial examples [25–40]. Adversarial examples can be categorized according to at
least three different criteria: the similarity metric, the attack goal, and the threat model.

For continuous inputs such as image data, commonly used similarity metrics are `p-
distances between adversarial and original examples with p ∈ {0, 2,∞}. For discrete inputs,
the number of distinct features, or the `0-distance, has been used to quantify the perturbation
size. For specific types of data, further constraints may be added to the perturbation, such

CHAPTER 1. INTRODUCTION 4

as linguistic coherence in text data. We remark here that all similarity metrics are only an
approximation of similarity as observed by humans. While they may be far from accurate, a
small value under those metrics often suggests the adversarial perturbation does not affect
the perception of human observers.

The goal of attack is either untargeted or targeted. The goal of an untargeted attack
is to perturb the input so as to cause any type of misclassification, whereas the goal of a
targeted attack is to alter the decision of the model to a pre-specific target class. Changing
the loss function allows for switching between two types of attacks [27–29].

Perhaps the most important criterion in practice is the threat model, of which there are
two primary types: white-box and black-box. See Figure 1.1 for an illustration of accessible
components of the target neural network classifier for different threat models. In the white-
box setting, an attacker has complete access to the model. The majority of work assumes the
target model is a neural network with continuous inputs. Under this setting, the generation
of adversarial examples is often formulated as an optimization problem, which is solved by
gradient-based methods either via treating misclassification loss as a regularization [25, 29]
or via tackling the dual as a constrained optimization problem [26, 27, 30]. In the black-box
setting, an attacker can only access outputs of the target model. Based on whether one
has access to the full probability or the label of a given input, black-box attacks are further
divided into score-based and decision-based. Score-based methods use zeroth-order gradient
estimation to craft adversarial examples for continuous inputs [32–34]. The most practical
threat model is that in which an attacker has access to decisions alone. A widely studied type
of the decision-based attack is transfer-based attack [35–37]. In recent work, decision-based
attacks relying neither on training data nor on the assumption of transferability have been
proposed for continuous inputs [33, 38, 40]. One limitation, however, is that they require a
relatively large number of model queries, rendering it impractical for real-world applications.
We propose HopSkipJumpAttack in Chapter 6, which leads to a significant improvement in
query efficiency.

1.2.2 Improving the adversarial robustness of machine learning
models

To improve the robustness of neural networks, the community adopts two directions. One
direction is adversarial defense, which tries to alter the training or design of the original
model, so as to defend against adversarial examples. The other direction is adversarial
detection, which focuses on detecting adversarial examples in the test stage, by identifying
the fundamental difference between original and adversarial examples.

Various approaches have been proposed to defend against adversarial attacks, including
adversarial training [26, 27, 30, 41, 42], distributional smoothing [43], defensive distilla-
tion [44], generative models [45], feature squeezing [46], randomized models [47–49], and
verifiable defense [50, 51]. These defenses often lead to loss of accuracy [52], or involve mod-
ifications in the training process of a model, which often require higher computational or

CHAPTER 1. INTRODUCTION 5

sample complexity [53].
Complimentary to the previous defending techniques, an alternative line of work focuses

on screening out adversarial examples in the test stage without touching the training of
the original model. To identify the underlying feature discriminating adversarial examples
from original examples, existing work has proposed to impose data transformations such as
principle component analysis [54–57], to train an alternative neural network or Gaussian
discriminant classifier to classify adversarial and original images [58–60], and to use ker-
nel density estimate (KD), Bayesian uncertainty (BU) [61], and Local Intrinsic Dimension
(LID) [62]. In Chapter 7, we discuss an attempt to apply tools developed for model interpre-
tation to the detection of adversarial examples, achieving superior performance to existing
detection methods across various attacks.

It is important to evaluate techniques for adversarial defense and detection under different
threat models. When a black-box threat model is assumed, decision-based attacks may be
employed. Decision-based attacks may be used as a simple and efficient first step to test the
effectiveness of defense and detection techniques when they are non-differentiable, as we will
discuss in Chapter 6. A second threat model is where an attacker has access to model details,
but does not have the knowledge of the defense mechanism. Finally, it is also important to
evaluate the technique under the setting where an attacker has complete access to both the
model and the defense mechanism.

1.3 Contributions of this thesis

This section highlights the contributions of this thesis. At a high level, we hope to address
several limitations of current research in model interpretation and adversarial robustness:

• Current model-agnostic interpretation methods fall short of query efficiency in com-
puting importance scores. In Chapter 2, we derive an efficient feature scoring method
by exploiting the graph structure in data. In Chapter 3, we propose a learning-based
method to construct a global explainer under an information-based framework.

• Current model-agnostic methods provide little opportunity to leverage prior knowledge
about what constitutes a satisfying interpretation in a given domain. In Chapter 4,
we propose to exploit syntactic constituency structure by leveraging a parse tree when
interpreting trained classification models in the setting of linguistic data sets.

• The majority of current algorithms for generating adversarial examples are applicable
to continuous data. In Chapter 5, we propose a probabilistic framework for generating
adversarial examples on discrete data and create two algorithms to implement it.

• Existing decision-based adversarial attacks require a large number of model queries. In
Chapter 6, we introduce HopSkipJumpAttack, which significantly improves the query
efficiency. We successfully apply our algorithm to several defense mechanisms, and
other machine learning models besides neural networks.

CHAPTER 1. INTRODUCTION 6

• In Chapter 7, we discuss an application of model interpretation to detecting adversarial
examples, achieving state-of-the-art performance against various types of attacks.

The first two chapters are devoted to developing query-efficient algorithms for model
interpretation. In Chapter 2, we focus on the settings in which a graph structure is appro-
priate for describing the relations between features in the data (e.g., chains for sequences
and grids for images), and distant features according to the graph have weak interaction. We
study feature scoring in the framework of Shapley value. By exploiting the underlying graph
structure, the number of model queries is reduced to linear—as opposed to exponential—in
the number of features.

In Chapter 3, we further reduce the query complexity by learning a feature selector to
exact a subset of features that are most informative for each given example. The selector
is trained to maximize the mutual information between selected features and the response
variable, where the conditional distribution of the response variable given the input is the
model to be explained. In the test stage, the selector directly outputs the subset of important
features, without evaluating the model to be interpreted.

In Chapter 4, we study the problem of interpreting trained classification models in the
setting of linguistic data sets. We assign least-squares-based importance scores to each word
of an instance by exploiting syntactic constituency structure. The proposed scores are related
to the framework of the Banzhaf value. We further develop a principled method for detecting
and quantifying interactions between words in a sentence, motivated by Cook’s distance [63],
a classical concept in linear regression.

The next two chapters address the generation of adversarial examples. We propose
two algorithms in Chapter 5 based on a probabilistic framework for adversarial attack on
discrete data. The first perturbation-based algorithm improves the state-of-the-art across
several widely-used language models, and the second learning-based algorithm provides a
scalable method for real-time generation of adversarial examples.

In Chapter 6, we develop HopSkipJumpAttack, a family of decision-based algorithms
based on a novel estimate of the gradient direction using binary information at the decision
boundary. We establish a convergence guarantee for the proposed attack, and demonstrate
that it requires significantly fewer model queries than existing attacks. We further show
that it also achieves competitive performance in attacking several widely-used defense mech-
anisms, and it can be used a tool for evaluating robustness of non-differentiable machine
learning models.

In Chapter 7, we investigate the application of tools in model interpretation to the de-
tection of adversarial examples. In particular, we introduce a new framework of adversarial
detection through thresholding a scale estimate of feature attribution scores. Through vast
experiments, our method achieves superior performances in distinguishing adversarial ex-
amples from popular attack methods on a variety of real data sets among state-of-the-art
detection methods.

CHAPTER 1. INTRODUCTION 7

Previously published work

This thesis is composed of previously published papers, which are joint work with several
other collaborators. Chapter 2 and Chapter 3 are modified from two papers with Le Song,
Martin J. Wainwright, and Michael I. Jordan respectively [19, 20]. Chapter 5 is based on
the work with Puyudi Yang, Cho-Jui Hsieh, Jane-Ling Wang, and Michael I. Jordan [64].
Chapter 6 is based on the work with Michael I. Jordan and Martin J. Wainwright [65].
Chapter 7 is based on the work with Puyudi Yang, Cho-Jui Hsieh, Jane-Ling Wang, and
Michael I. Jordan [66].

8

Part I

Interpretability

9

Chapter 2

Efficient Model Interpretation for
Structured Data

Instancewise feature scoring is a method for model interpretation, which yields, for each test
instance, a vector of importance scores associated with the feature vector. Methods based on
the Shapley score have been proposed as a fair way of computing feature attributions of this
kind, but incur an exponential complexity in the number of features for black-box models.
This combinatorial explosion arises from the definition of the Shapley value and prevents
these methods from being scalable to large data sets and complex models. We focus on
settings in which the data have a graph structure, and the contribution of features to the
target variable is well-approximated by a graph-structured factorization. In such settings, we
develop two algorithms with linear complexity for instancewise feature importance scoring
on black-box models. We establish the relationship of our methods to the Shapley value and
a closely related concept known as the Myerson value from cooperative game theory. We
demonstrate on both language and image data that our algorithms compare favorably with
other methods for model interpretation.

2.1 Introduction

In this chapter, we study instancewise feature importance scoring as a specific approach to
the problem of interpreting the predictions of black-box models. Given a predictive model,
such a method yields, for each instance to which the model is applied, a vector of importance
scores associated with the underlying features. The instancewise property means that this
vector, and hence the relative importance of each feature, is allowed to vary across instances.
Thus, the importance scores can act as an explanation for the specific instance, indicating
which features are the key for the model to make its prediction on that instance.

There is now a large body of research focused on the problem of scoring input features
based on the prediction of a given instance [see, e.g., 9, 10, 12, 14–17, 67]. Of most relevance
to this paper is a line of recent work [15–17] that has developed methods for model inter-

CHAPTER 2. EFFICIENT MODEL INTERPRETATION FOR STRUCTURED DATA10

pretation based on Shapley value [22] from cooperative game theory. The Shapley value was
originally proposed as an axiomatic characterization of a fair distribution of a total surplus
from all the players, and can be applied to predictive models, in which case each feature
is modeled as a player in the underlying game. While the Shapley value approach is con-
ceptually appealing, it is also computationally challenging: in general, each evaluation of a
Shapley value requires an exponential number of model evaluations. Different approaches to
circumventing this complexity barrier have been proposed, including those based on Monte
Carlo approximation [16, 17] and methods based on sampled least-squares with weights [15].

In this chapter, we take a complementary point of view, arguing that the problem of ex-
planation is best approached within a model-based paradigm. In this view, explanations are
cast in terms of a model, which may or may not be the same model as used to fit the data.
Criteria such as Shapley value, which are intractable to compute when no assumptions are
made, can be more effectively computed or approximated within the framework of a model.
We focus specifically on settings in which a graph structure is appropriate for describing the
relations between features in the data (e.g., chains for sequences and grids for images), and
distant features according to the graph have weak interaction during the computation of
Shapley values. We propose two methods for instancewise feature importance scoring in this
framework, which we term L-Shapley and C-Shapley ; here the abbreviations “L” and “C”
refer to “local” and “connected,” respectively. By exploiting the underlying graph structure,
the number of model evaluations is reduced to linear—as opposed to exponential—in the
number of features. We demonstrate the relationship of these measures with a constrained
form of Shapley value, and we additionally relate C-Shapley with another solution concept
from cooperative game theory, known as the Myerson value [68]. The Myerson value is
commonly used in graph-restricted games, under a local additivity assumption of the model
on disconnected subsets of features. Finally, we apply our feature scoring methods to sev-
eral state-of-the-art models for both language and image data, and find that our scoring
algorithms compare favorably to several existing sampling-based algorithms for instancewise
feature importance scoring.

2.2 Background and preliminaries

We begin by introducing some background and notation for instancewise feature importance
scoring and the Shapley value.

2.2.1 Importance of a feature subset

We are interested in studying models that are trained to perform prediction, taking as input
a feature vector x ∈ X ⊂ Rd and predicting a response or output variable y ∈ Y . We assume
access to the output of a model via a conditional distribution, denoted by Pm(·|x), that
provides the distribution of the response Y ∈ Y conditioned on a given vector X = x of
inputs. For any given subset S ⊂ {1, 2, . . . , d}, we use xS = {xj, j ∈ S} to denote the

CHAPTER 2. EFFICIENT MODEL INTERPRETATION FOR STRUCTURED DATA11

associated sub-vector of features, and we let Pm(Y | xS) denote the induced conditional
distribution when Pm is restricted to using only the sub-vector xS. In the corner case in
which S = ∅, we define Pm(Y | x∅) := Pm(Y). In terms of this notation, for a given feature
vector x ∈ X , subset S and fitted model distribution Pm(Y | x), we introduce the importance
score

vx(S) := Em
[
− log

1

Pm(Y | xS)

∣∣∣ x
]
,

where Em[· | x] denotes the expectation over Pm(· | x). The importance score vx(S) has a
coding-theoretic interpretation: it corresponds to the negative of the expected number of
bits required to encode the output of the model based on the sub-vector xS. It will be zero
when the model makes a deterministic prediction based on xS, and larger when the model
returns a distribution closer to uniform over the output space.

There is also an information-theoretic interpretation to this definition of importance
scores, as discussed in Chen et al. [19]. In particular, suppose that for a given integer k < d,
there is a function x 7→ S∗(x) such that, for all almost all x, the k-sized subset S∗(x) maxi-
mizes vx(S) over all subsets of size k; then we are guaranteed that the mutual information
I(XS∗(X), Y) between XS∗(X) and Y is maximized, over any conditional distribution that
generates a subset of size k given X. The converse is also true.

In many cases, class-specific importance is favored, where one is interested in seeing
how important a feature subset S is to the predicted class, instead of the prediction as a
conditional distribution. In order to handle such cases, it is convenient to introduce the
degenerate conditional distribution

P̂m(y | x) :=

{
1 if y ∈ arg max

y′
Pm(y′ | x),

0 otherwise.

We can then define the importance of a subset S with respect to P̂m using the modified score

vx(S) := Êm
[
− log

1

Pm(Y | xS)

∣∣∣ x
]
,

which is the expected log probability of the predicted class given the features in S.

Estimating the conditional distribution: In practice, we need to estimate—for any
given feature vector x̄ ∈ X—the conditional probability functions Pm(y | x̄S) based on
observed data. Past work has used one of two approaches: either estimation based on
empirical averages [16], or plug-in estimation using a reference point [15, 17].

Empirical average estimation: In this approach, we first draw a set of feature vector
{xj}Mj=1 by sampling with replacement from the full data set. For each sample xj, we define

a new vector x̃j ∈ Rd with components (x̃j)i equal to xji if i ∈ S and x̄i otherwise. Taking
the empirical mean of Pm(y | x̃j) over {x̃j} then provides an estimate of Pm(y | x̄S).

Plug-in estimation: In this approach, the first step is to specify a reference vector x0 ∈ Rd

is specified. We then define the vector x̃ ∈ Rd with components (x̃)i equal to xi if i ∈ S
and x0i otherwise. Finally, we use the conditional probability Pm(y | x̃) as an approximation

CHAPTER 2. EFFICIENT MODEL INTERPRETATION FOR STRUCTURED DATA12

to Pm(y | x̄S). The plug-in estimate is more computationally efficient than the empirical
average estimator, and works well when there exist appropriate choices of reference points.
We use this method for our experiments, where we use the index of padding for language
data, and the average pixel strength of an image for vision data.

2.2.2 Shapley value for measuring interaction between features

Consider the problem of quantifying the importance of a given feature index i for feature
vector x. A naive way of doing so would be by computing the importance score vx({i}) of
feature i on its own. However, doing so ignores interactions between features, which are
likely to be very important in applications. As a simple example, suppose that we were
interested in performing sentiment analysis on the following sentence:

It is not heartwarming or entertaining. It just sucks. (?)

This sentence is contained in a movie review from the IMDB movie data set [69], and it is
classified as negative sentiment by a machine learning model to be discussed in the sequel.
Now suppose we wish to quantify the importance of feature “not” in prediction. The word
“not” plays an important role in the overall sentence as being classified as negative, and thus
should be attributed a significant weight. However, viewed in isolation, the word “not” has
neither negative nor positive sentiment, so that one would expect that vx({“not”}) ≈ 0.

Thus, it is essential to consider the interaction of a given feature i with other features.
For a given subset S containing i, a natural way in which to assess how i interacts with the
other features in S is by computing the difference between the importance of all features
in S, with and without i. This difference is called the marginal contribution of i to S, and
given by

mx(S, i) := vx(S)− vx(S \ {i}). (2.1)

In order to obtain a simple scalar measure for feature i, we need to aggregate these marginal
contributions over all subsets that contain i. The Shapley value [22] is one principled way of
doing so. For each integer k = 1, . . . , d, we let Sk(i) denote the set of k-sized subsets that
contain i. The Shapley value is obtained by averaging the marginal contributions, first over
the set Sk(i) for a fixed k, and then over all possible choices of set size k:

φx(Pm, i) :=
1

d

d∑

k=1

1(
d−1
k−1

)
∑

S∈Sk(i)

mx(S, i). (2.2)

Since the model Pm remains fixed throughout our analysis, we frequently omit the depen-
dence of φx on Pm, instead adopting the more compact notation φx(i).

The concept of Shapley value was first introduced in cooperative game theory [22], and it
has been used in a line of recent work on instancewise feature importance ranking [15–17]. It
can be justified on an axiomatic basis [22, 70] as being the unique function from a collection
of 2d numbers (one for each subset S) to a collection of d numbers (one for each feature i) with
the following properties: (i) [Additivity] The sum of the Shapley values

∑d
i=1 φx(i) is equal

to the difference vx({1, . . . , d})−vx(∅). (ii) [Equal contributions] If vx(S∪{i}) = vx(S∪{j})

CHAPTER 2. EFFICIENT MODEL INTERPRETATION FOR STRUCTURED DATA13

for all subsets S, then φx(i) = φx(j). (iii) [Monotonicity] Given two models Pm and Pm,
let mx and m′x denote the associated marginal contribution functions, and let φx and φ′x
denote the associated Shapley values. If mx(S, i) ≥ m′x(S, i) for all subsets S, then we are
guaranteed that φx(i) ≥ φ′x(i). Note that all three of these axioms are reasonable in our
feature selection context.

2.2.3 The challenge with computing Shapley values

The exact computation of the Shapley value φx(i) takes into account the interaction of
feature i with all 2d−1 subsets that contain i, thereby leading to computational difficulties.
Various approximation methods have been developed with the goal of reducing complexity.
For example, Štrumbelj and Kononenko [16] proposed to estimate the Shapley values via
a Monte Carlo approximation built on an alternative permutation-based definition of the
Shapley value. Lundberg and Lee [15] proposed to evaluate the model over randomly sampled
subsets and use a weighted linear regression to approximate the Shapley values based on the
collected model evaluations.

In practice, such sampling-based approximations may suffer from high variance when
the number of samples to be collected per instance is limited. (See Section 2.5.6 for an
empirical evaluation.) For large-scale predictive models, the number of features is often
relatively large, meaning that the number of samples required to obtain stable estimates can
be prohibitively large. The main contribution of this paper is to address this challenge in a
model-based paradigm, where the contribution of features to the response variable respects
the structure of an underlying graph. In this setting, we propose efficient algorithms and
provide bounds on the quality of the resulting approximation. As we discuss in more detail
later, our approach should be viewed as complementary to sampling-based or regresssion-
based approximations of the Shapley value. In particular, these methods can be combined
with the approach of this paper so as to speed up the computation of the L-Shapley and
C-Shapley values that we propose.

2.3 Methods

In many applications, the features can be associated with the nodes of a graph, and we can
define distances between pairs of features based on the graph structure. Intuitively, features
distant in the graph have weak interactions with each other, and hence excluding those
features in the computation of Shapley value has little effect. For instance, each feature
vector x in sequence data (such as language, music etc.), can be associated with a line
graph, where positions too far apart in a sequence may not affect each other in Shapley
value computation; similarly, each image data is naturally modeled with a grid graph, such
that pixels that are far apart may have little effect on each other in the computation of
Shapley value.

CHAPTER 2. EFFICIENT MODEL INTERPRETATION FOR STRUCTURED DATA14

In this section, we propose modified forms of the Shapley values, referred to as L-Shapley
and C-Shapley values, that can be computed more efficiently than the Shapley value by
excluding those weak interactions in the structured data. We also show that under certain
probabilistic assumptions on the marginal distribution over the features, these quantities
yield good approximations to the original Shapley values.

More precisely, given feature vectors x ∈ Rd, we let G = (V,E) denote a connected graph
with nodes V and edges E ⊂ V × V , where each feature i is associated with a a node i ∈ V ,
and edges represent interactions between features. The graph induces a distance function
on V × V , given by

dG(`,m) = number of edges in shortest path joining ` to m. (2.3)

In the line graph, this graph distance corresponds to the number of edges in the unique path
joining them, whereas it corresponds to the Manhattan distance in the grid graph. For a
given node i ∈ V , its k-neighborhood is the set

Nk(i) := {j ∈ V | dG(i, j) ≤ k} (2.4)

of all nodes at graph distance at most k. See Figure 2.1 for an illustration for the 2D grid
graph.

(a) (b) (c)

Figure 2.1: In all cases, the red node denotes the target feature i. (a) Illustration of the k = 2
graph neighborhood N2(i) on the grid graph. All nodes within the shaded gray triangle lie
within the neighborhood N2(i). (b) A disconnected subset of N2(i) that is summed over in
L-Shapley but not C-Shapley. (c) A connected subset of N2(i) that is summed over in both
L-Shapley and C-Shapley.

We propose two algorithms for approximating Shapley value in which features that are
either far apart on the graph or features that are not directly connected have an accordingly
weaker interaction.

2.3.1 Local Shapley

In order to motivate our first graph-structured Shapley score, let us take a deeper look
at Example (?). In order to compute the importance score of “not,” the most important
words to be included are “heartwarming” and “entertaining.” Intuitively, the words distant
from them have a weaker influence on the importance of a given word in a document, and

CHAPTER 2. EFFICIENT MODEL INTERPRETATION FOR STRUCTURED DATA15

therefore have relatively less effect on the Shapley score. Accordingly, as one approximation,
we propose the L-Shapley score, which only perturbs the neighboring features of a given
feature when evaluating its importance:

Definition 1. Given a model Pm, a sample x and a feature i, the L-Shapley estimate of
order k on a graph G is given by

φ̂kx(i) :=
1

|Nk(i)|
∑

T3i
T⊆Nk(i)

1(|Nk(i)|−1
|T |−1

)mx(T, i). (2.5)

The coefficients in front of the marginal contributions of feature i are chosen to match the
coefficients in the definition of the Shapley value restricted to the neighborhood Nk(i). We
show in Section 2.4 that this choice controls the error under certain probabilistic assumptions.
In practice, the choice of the integer k is dictated by computational considerations. By the
definition of k-neighborhoods, evaluating all d L-Shapley scores on a line graph requires 22kd
model evaluations. (In particular, computing each feature takes 22k+1 model evaluations,
half of which overlap with those of its preceding feature.) A similar calculation shows that
computing all d L-Shapley scores on a grid graph requires 24k2d function evaluations.

2.3.2 Connected Shapley

We also propose a second algorithm, C-Shapley, that further reduces the complexity of
approximating the Shapley value. Coming back to Example (?) where we evaluate the
importance of “not,” both the L-Shapley estimate of order larger than two and the exact
Shapley value estimate would evaluate the model on the word subset “It not heartwarming,”
which rarely appears in real data and may not make sense to a human or a model trained on
real-world data. The marginal contribution of “not” relative to “It not heartwarming” may
be well approximated by the marginal contribution of “not” to “not heartwarming.” This
motivates us to proprose C-Shapley :

Definition 2. Given a model Pm, a sample x and a feature i, the C-Shapley estimate of
order k on a graph G is given by

φ̃kx(i) :=
∑

U∈Ck(i)

2

(|U |+ 2)(|U |+ 1)|U |mx(U, i), (2.6)

where Ck(i) denotes the set of all subsets of Nk(i) that contain node i, and are connected in
G.

The coefficients in front of the marginal contributions are a result of using Myerson
value to characterize a new coalitional game over the graph G, in which the influence of
disconnected subsets of features are additive. The error between C-Shapley and the Shapley
value can also be controlled under certain statistical assumptions. See Section 2.4 for details.

For text data, C-Shapley is equivalent to only evaluating n-grams in a neighborhood of
the word to be explained. By the definition of k-neighborhoods, evaluating the C-Shapley

CHAPTER 2. EFFICIENT MODEL INTERPRETATION FOR STRUCTURED DATA16

scores for all d features takes O(k2d) model evaluations on a line graph, as each feature takes
O(k2) model evaluations.

2.4 Properties

In this section, we study some basic properties of the L-Shapley and C-Shapley values.
In particular, under certain probabilistic assumptions on the features, we show that they
provide good approximations to the original Shapley values. We also show their relationship
to another concept from cooperative game theory, namely that of Myerson values, when the
model satisfies certain local additivity assumptions.

2.4.1 Approximation of Shapley value

In order to characterize the relationship between L-Shapley and the Shapley value in terms of
some conditional independence assumption between features, we introduce absolute mutual
information as a measure of dependence. Given two random variables X and Y , the absolute
mutual information Ia(X;Y) between X and Y is defined as

Ia(X;Y) = E
[∣∣∣ log

P (X, Y)

P (X)P (Y)

∣∣∣
]
, (2.7)

where the expectation is taken jointly over X, Y . Based on the definition of independence,
we have Ia(X;Y) = 0 if and only if X ⊥⊥ Y . Recall the mutual information [71] is defined as

I(X;Y) = E[log P (X,Y)
P (X)P (Y)

]. The new measure is more stringent than the mutual information

in the sense that I(X;Y) ≤ Ia(X;Y). The absolute conditional mutual information can
be defined in an analogous way. Given three random variables X, Y and Z, we define the
absolute conditional mutual information to be Ia(X;Y | Z) = E[| log P (X,Y |Z)

P (X|Z)P (Y |Z) |], where

the expectation is taken jointly over X, Y, Z. Recall that Ia(X;Y | Z) is zero if and only if
X ⊥⊥ Y |Z.

Theorem 1 and Theorem 2 show that L-Shapley and C-Shapley values, respectively, are
related to the Shapley value whenever the model obeys a Markovian structure that is encoded
by the graph. We leave their proofs to Section 2.6.

Theorem 1. Suppose there exists a feature subset S ⊂ Nk(i) with i ∈ S, such that

sup
U⊂S\{i},V⊂[d]\S

Ia(Xi;XV |XU , Y) ≤ ε; sup
U⊂S\{i},V⊂[d]\S

Ia(Xi;XV |XU) ≤ ε, (2.8)

where we identify Ia(Xi;XV |X∅) with Ia(Xi;XV) for notational convenience. Then the ex-
pected error between the L-Shapley estimate φ̂kX(i) and the true Shapley-value-based impor-
tance score φi(Pm, x) is bounded by 4ε:

EX |φ̂kX(i)− φX(i)| ≤ 4ε. (2.9)

In particular, we have φ̂kX(i) = φX(i) almost surely if we have Xi ⊥⊥ X[d]\S|XT and Xi ⊥⊥
X[d]\S|XT , Y for any T ⊂ S \ {i}.

CHAPTER 2. EFFICIENT MODEL INTERPRETATION FOR STRUCTURED DATA17

Theorem 2. Suppose there exists a neighborhood S ⊂ Nk(i) of i, with i ∈ S, such that
Condition 2.8 is satisfied. Moreover, for any connected subset U ⊂ S with i ∈ U , we have

sup
V⊂R(U)

Ia(Xi;XV |XU\{i}, Y) ≤ ε; sup
V⊂R(U)

Ia(Xi;XV |XU\{i}) ≤ ε, (2.10)

where R(U) := {i ∈ [d] − U : for any j ∈ U, (i, j) /∈ E}. Then the expected error between
the C-Shapley estimate φ̃kX(i) and the true Shapley-value-based importance score φi(Pm, x) is
bounded by 6ε:

EX |φ̃kX(i)− φX(i)| ≤ 6ε. (2.11)

In particular, we have φ̂dX(i) = φX(i) almost surely if we have Xi ⊥⊥ XR(U)|XU\{i} and
Xi ⊥⊥ XR(U)|XU\{i}, Y for any U ⊂ [d].

2.4.2 Relating the C-Shapley value to the Myerson value

Let us now discuss how the C-Shapley value can be related to the Myerson value, which
was introduced by Myerson [68] as an approach for characterizing a coalitional game over a
graph G. Given a subset of nodes S in the graph G, let CG(S) denote the set of connected
components of S. Thus, if S is a connected subset of G, then CG(S) consists only of S;
otherwise, it contains a collection of subsets whose disjoint union is equal to S.

Consider a score function T 7→ v(T) that satisfies the following decomposability condi-
tion: for any subset of nodes S, the score v(S) is equal to the sum of the scores over the
connected components of S:

v(S) =
∑

T∈CG(S)

v(T). (2.12)

For any such score function, we can define the associated Shapley value, and it is known as
the Myerson value on G with respect to v. Myerson [68] showed that the Myerson value is the
unique quantity that satisfies both the decomposability property, as well as the properties
additivity, equal contributions and monotonicity given in Section 2.2.2.

In our setting, if we use a plug-in estimate for conditional probability, the decompos-
ability condition (2.12) is equivalent to assuming that the influence of disconnected subsets
of features are additive at sample x, and C-Shapley of order k = d is exactly the Myerson
value over G. In fact, if we partition each subset S into connected components, as in the
definition of Myerson value, and sum up the coefficients (using Lemma 1 in Section 2.6),
then the Myerson value is equivalent to (2.6).

2.4.3 Connections with related work

Let us how methods useful for approximating the Shapley value can be used to speed up the
evaluation of approximate L-Shapley and C-Shapley values.

Sampling-based methods An alternative definition of the Shapley value defines the
contribution of a feature i as the average of the marginal contribution of i to its preceding
features over the set of all permutations of d features. Based on this definition, Štrumbelj

CHAPTER 2. EFFICIENT MODEL INTERPRETATION FOR STRUCTURED DATA18

Data Set Classes Train Samples Test Samples Average #w Model Parameters Accuracy

IMDB Review [69] 2 25,000 25,000 325.6 WordCNN 351,002 90.1%
AG’s News [72] 4 120,000 7,600 43.3 CharCNN 11,337,988 90.09%

Yahoo! Answers [72] 10 1,400,000 60,000 108.4 LSTM 7,146,166 70.84%

Table 2.1: A summary of data sets and models in three experiments. “Average #w” is the
average number of words per sentence. “Accuracy” is the model accuracy on test samples.

and Kononenko [16] propose a Monte Carlo approximation, based on randomly sampling
permutations. While L-Shapley is deterministic in nature, it is possible to combine it with
this and other sampling-based methods. For example, if one hopes to consider the interaction
of features in a large neighborhood Nk(i) with a feature i, where exponential complexity in
k becomes a barrier, sampling based on random permutation of local features may be used
to alleviate the computational burden.

Regression-based methods Lundberg and Lee [15] proposed to sample feature subsets
based on a weighted kernel, and carry out a weighted linear regression to estimate the Shapley
value. Strong empirical results were provided using the regression-based approximation,
referred to as KernelSHAP; see, in particular, Section 5.1 and Figure 3 of their paper. We
can combine such a regression-based approximation with our modified Shapley values to
further reduce the evaluation complexity of the C-Shapley values. In particular, for a chain
graph, we evaluate the score function over all connected subsequences of length≤ k; similarly,
on a grid graph, we evaluate it over all connected squares of size ≤ k × k.

2.5 Experiments

We evaluate the performance of L-Shapley and C-Shapley on real-world data sets involving
text and image classification. We compare L-Shapley and C-Shapley with several competi-
tive algorithms for instancewise feature importance scoring on black-box models, including
the regression-based approximation known as KernelSHAP [15], SampleShapley [16], and the
LIME method [14]. We emphasize that our focus is model-agnostic interpretation, and we
omit the comparison with methods requiring additional assumptions or specific to a certain
class models (e.g., [9, 10, 12, 73–75]). For all methods, we choose the objective to be the
log probability of the predicted class, and use the plug-in estimate of conditional probabil-
ity across all methods (see Section 2.2.1). We further evaluate the correlation of different
methods with the Shapley value directly in Section 2.5.3, and analyze the sensitivity of L-
Shapley and C-Shapley with the size of neighborhood in Section 2.5.4. Human evaluation
is carried out in Section 2.5.5. Section 2.5.6 evaluates the variance of of SampleShapley and
KernelSHAP in the setting where the sample size is linear in the number of features.

2.5.1 Text Classification

Text classification is a classical problem in natural language processing, in which text doc-
uments are assigned to predefined categories. We study the performance of L-Shapley and

CHAPTER 2. EFFICIENT MODEL INTERPRETATION FOR STRUCTURED DATA19

0.00 0.05 0.10 0.15 0.20
Percent of Features Masked

12

10

8

6

4

2

LO
R

IMDB with Word-CNN

0.00 0.05 0.10 0.15 0.20
Percent of Features Masked

5

4

3

2

1

LO
R

AG's News with Char-CNN

0.00 0.05 0.10 0.15 0.20
Percent of Features Masked

3.5

3.0

2.5

2.0

1.5

1.0

0.5

LO
R

Yahoo! Answers with LSTM

Figure 2.2: The above plots show the change in log odds ratio of the predicted class as a
function of the percent of masked features, on the three text data sets. Lower log odds ratios
are better.

C-Shapley on three popular neural models for text classification: word-based CNNs [76],
character-based CNNs [72], and long-short term memory (LSTM) recurrent neural net-
works [77], with the following three data sets on different scales. See Table 2.1 for a summary.

IMDB Review with Word-CNN The Internet Movie Review Dataset (IMDB) is a
dataset of movie reviews for sentiment classification [69], which contains 50, 000 binary la-
beled movie reviews, with a split of 25, 000 for training and 25, 000 for testing. The word-
based CNN model is composed of a 50-dimensional word embedding, a 1-D convolutional
layer of 250 filters and kernel size three, a max-pooling and a 250-dimensional dense layer
as hidden layers. Both the convolutional and the dense layers are followed by ReLU as non-
linearity, and Dropout [78] as regularization. The model is trained with rmsprop [79]. The
model achieves an accuracy of 90.1% on the test data set.

AG’s news with Char-CNN The AG news corpus is composed of titles and descriptions
of 196, 000 news articles from 2, 000 news sources [72]. It is segmented into four classes, each
containing 30, 000 training samples and 1, 900 testing samples. The character-based CNN
has the same structure as the one proposed in Zhang, Zhao, and LeCun [72], composed of six
convolutional layers, three max-pooling layers, and two dense layers. The model is trained
with SGD with momentum 0.9 and decreasing step size initialized at 0.01. (Details can be
found in Zhang, Zhao, and LeCun [72].) The model reaches accuracy of 90.09% on the test
data set.

Yahoo! Answers with LSTM The corpus of Yahoo! Answers Topic Classification Dataset
is divided into ten categories, each class containing 140, 000 training samples and 5, 000 test-

CHAPTER 2. EFFICIENT MODEL INTERPRETATION FOR STRUCTURED DATA20

Method Explanation

Shapley It is not heartwarming or entertaining . It just sucks .

C-Shapley It is not heartwarming or entertaining . It just sucks .

L-Shapley It is not heartwarming or entertaining . It just sucks .

KernelSHAP It is not heartwarming or entertaining . It just sucks .

SampleShapley It is not heartwarming or entertaining . It just sucks .

Table 2.2: Each word is highlighted with the RGB color as a linear function of its impor-
tance score. The background colors of words with positive and negative scores are linearly
interpolated between blue and white, red and white respectively.

ing samples. Each input text includes the question title, content and best answer. The
network consists of a 300-dimensional randomly-initialized word embedding, a bidirectional
LSTM, each LSTM unit of dimension 256, and a dropout layer as hidden layers. The model
is trained with rmsprop [79]. The model reaches accuracy of 70.84% on the test data set,
close to the state-of-the-art accuracy of 71.2% obtained by character-based CNN [72].

We choose zero paddings as the reference point for all methods, and make 4 × d model
evaluations, where d is the number of words for each input. Given the average length of each
input (see Table 2.1), this choice controls the number of model evaluations under 1, 000,
taking less than one second in TensorFlow on a Tesla K80 GPU for all the three models. For
L-Shapley, we are able to consider the interaction of each word i with the two neighboring
words in N1(i) given the budget. For C-Shapley, the budget allows the regression-based
version to evaluate all n-grams with n ≤ 4.

The change in log-odds scores before and after masking the top features ranked by im-
portance scores is used as a metric for evaluating performance, where masked words are
replaced by zero paddings. This metric has been used in previous literature in model inter-
pretation [10, 15]. We study how the average log-odds score of the predicted class decreases
as the percentage of masked features over the total number of features increases on 1, 000
samples from the test set. Results are plotted in Figure 2.2.

On IMDB with Word-CNN, the simplest model among the three, L-Shapley, achieves
the best performance while LIME, KernelSHAP and C-Shapley achieve slightly worse per-
formance. On AG’s news with Char-CNN, L-Shapley and C-Shapley both outperform other
algorithms. On Yahoo! Answers with LSTM, C-Shapley outperforms the rest of the algo-
rithms by a large margin, followed by LIME. L-Shapley with order 1, SampleShapley, and
KernelSHAP do not perform well for LSTM model, probably because some of the signals
captured by LSTM are relatively long n-grams.

We also visualize the importance scores produced by different Shapley-based methods
on Example (?), which is part of a negative movie review taken from IMDB. The result is
shown in Table 2.2.

2.5.2 Image Classification

We carry out experiments in image classification on the MNIST and CIFAR10 data sets:

CHAPTER 2. EFFICIENT MODEL INTERPRETATION FOR STRUCTURED DATA21

0.00 0.05 0.10 0.15 0.20
Percent of Features Masked

14

12

10

8

6

4

2

0

LO
R

MNIST
KernelSHAP
SampleShapley
C-Shapley

0.00 0.05 0.10 0.15 0.20
Percent of Features Masked

10

8

6

4

2

0

LO
R

CIFAR-10
KernelSHAP
SampleShapley
C-Shapley

Figure 2.3: Left and Middle: change in log-odds ratio vs. the percent of pixels masked on
MNIST and CIFAR10. Right: top pixels ranked by C-Shapley for a “3” and an “8” mis-
classified into “8” and “3” respectively. The masked pixels are colored with red if activated
(white) and blue otherwise.

MNIST The MNIST data set contains 28 × 28 images of handwritten digits with ten
categories 0 − 9 [80]. A subset of MNIST data set composed of digits 3 and 8 is used for
better visualization, with 12, 000 images for training and 1, 000 images for testing. A simple
CNN model is trained on the data set, which achieves 99.7% accuracy on the test data set.
It is composed of two convolutional layers of kernel size 5×5 and a dense linear layer at last.
The two convolutional layers contain 8 and 16 filters respectively, and both are followed by
a max-pooling layer of pool size two.

CIFAR10 The CIFAR10 data set [81] contains 32× 32 images in ten classes. A subset of
CIFAR10 data set composed of deers and horses is used for better visualization, with 10, 000
images for training and 2, 000 images for testing. A convolutional neural network modified
from AlexNet [82] is trained on the subset. It is composed of six convolutional layers of kernel
size 3×3 and two dense linear layers of dimension 512 and 256 at last. The six convolutional
layers contain 48,48,96,96,192,192 filters respectively, and every two convolutional layers are
followed by a max-pooling layer of pool size two and a dropout layer. The CNN model is
trained with the Adam optimizer [83] and achieves 96.1% accuracy on the test data set.

We take each pixel as a single feature for both MNIST and CIFAR10. We choose the
average pixel strength and the black pixel strength respectively as the reference point for all
methods, and make 4× d model evaluations, where d is the number of pixels for each input
image, which keeps the number of model evaluations under 4, 000.

LIME and L-Shapley are not used for comparison because LIME takes “superpixels”
instead of raw pixels segmented by segmentation algorithms as single features, and L-Shapley
requires nearly sixteen thousand model evaluations when applied to raw pixels.1 For C-

1L-Shapley becomes practical if we take small patches of images instead of pixels as single features.

CHAPTER 2. EFFICIENT MODEL INTERPRETATION FOR STRUCTURED DATA22

Figure 2.4: Some examples of explanations obtained for the MNIST and CIFAR10 data sets.
The first row corresponds to the original images, with the rows below showing images masked
based on scores produced by C-Shapley, KernelSHAP and SampleShapley respectively. For
MNIST, the masked pixels are colored with red if activated (white) and blue otherwise.

Shapley, the budget allows the regression-based version to evaluate all n× n image patches
with n ≤ 4.

Figure 2.3 shows the decrease in log-odds scores before and after masking the top pixels
ranked by importance scores as the percentage of masked pixels over the total number of
pixels increases on 1, 000 test samples on MNIST and CIFAR10 data sets. C-Shapley consis-
tently outperforms other methods on both data sets. Figure 2.3 also shows two misclassified
digits by the CNN model. Interestingly, the top pixels chosen by C-Shapley visualize the
“reasoning” of the model: the important pixels to the model are exactly those which could
form a digit from the opposite class.

Figure 2.4 provides additional visualization of the results. By masking the top pixels
ranked by various methods, we find that the pixels picked by C-Shapley concentrate around
and inside the digits in MNIST. For SampleShapley and KernelSHAP, unactivated pixels in
MNIST are attributed nonzero scores when evaluated jointly with activated pixels. While
one could use post-processing by not choosing unactivated pixels, we choose to visualize the
original outputs from all algorithms for fairness of comparison. The C-Shapley also yields
the most interpretable results in CIFAR10. In particular, C-Shapley tends to mask the parts
of head and body that distinguish deers and horses, and the human riding the horse.

2.5.3 Rank correlation with the Shapley value

We address the problem of how the rank of features produced by various approximation
algorithms correlates with the rank produced by the true Shapley value. We sample a subset
of test data from Yahoo! Answers with 9-12 words, so that the underlying Shapley scores
can be accurately computed. We employ two common metrics, Kendall’s τ and Spearman’s
ρ [84], to measure the similarity (correlation) between two ranks.

CHAPTER 2. EFFICIENT MODEL INTERPRETATION FOR STRUCTURED DATA23

C-Sh
aple

y
L-Sh

aple
y

Kern
elSH

AP

Sam
pleS

hapl
ey

0.0

0.2

0.4

0.6

0.8

1.0

K
en

da
ll'

s
Ta

u

Kendall's Tau Correlation Coefficient

C-Sh
aple

y
L-Sh

aple
y

Kern
elSH

AP

Sam
pleS

hapl
ey

0.0

0.2

0.4

0.6

0.8

1.0

Sp
ea

rm
an

r'
s

R
ho

Spearman's Rank Correlation Coefficient

Figure 2.5: The box plots of Kendall’s τ and Spearman’s ρ between various algorithms (with
the same computational complexity) and the Shapley value. The red line and the dotted
blue line on each box are the median and the mean respectively. (Higher is better.)

1 2 3 4
Neighborhood Radius

0.0

0.2

0.4

0.6

0.8

1.0

K
en

da
ll'

s
Ta

u

L-Shapley

1 2 3 4 5
Neighborhood Radius

0.0

0.2

0.4

0.6

0.8

1.0
K

en
da

ll'
s

Ta
u

C-Shapley

1 2 3 4
Neighborhood Radius

0.0

0.2

0.4

0.6

0.8

1.0

Sp
ea

rm
an

r'
s

R
ho

L-Shapley

1 2 3 4 5
Neighborhood Radius

0.0

0.2

0.4

0.6

0.8

1.0

Sp
ea

rm
an

r'
s

R
ho

C-Shapley

Figure 2.6: Kendall’s τ and Spearman’s ρ between L-Shapley and the Shapley value, C-
Shapley and the Shapley value vs. the neighborhood radius. The red line and the dotted
blue line on each box are the median and the mean respectively. (Higher is better.)

The result is shown in Figure 2.5. The rank correlation between L-Shapley and the
Shapley value is the highest, followed by C-Shapley, consistent across both of the two metrics.
Given the limited length of each instance, the search space for sampling based algorithms
is relatively small. Thus there is only a slight performance gain of our algorithms over
KernelSHAP and SampleShapley.

CHAPTER 2. EFFICIENT MODEL INTERPRETATION FOR STRUCTURED DATA24

1 2 3 4 5
Neighborhood Radius

102

103

104

M
od

el
 E

va
lu

at
io

ns

Model Evaluations vs. Neighborhood Radius

L-Shapley
C-Shapley

Figure 2.7: Number of model evaluations vs. neighborhood radius (in log scale) on an
instance with ten features.

2.5.4 Sensitivity of L-Shapley and C-Shapley

We study the sensitivity of L-Shapley and C-Shapley to the radius of neighborhood on
the subsampled data from Yahoo! Answers in Section 2.5.3. We employ Kendall’s τ and
Spearman’s ρ [84] to measure the rank correlation between scores from the proposed methods
and the Shapley value2.

Figure 2.6 shows how Kendall’s τ and Spearman’s ρ between the proposed algorithms and
the Shapley value vary with the radius of neighborhood. We observe the bias of the proposed
algorithms decreases gradually with increasing neighborhood radius. Figure 2.7 plots the
number of model evaluations as a function of neighborhood radius for both algorithms, on
an example instance with ten features3. The complexity of L-Shapley grows exponentially
with the neighborhood radius while the complexity of C-Shapley grows linearly.

2.5.5 Evaluation with human subjects

We use human annotators on Amazon Mechanical Turk (AMT) to compare L-Shapley, C-
Shapley and KernelSHAP on IMDB movie reviews. We aim to address two problems: (i)
Are humans able to make a decision with top words alone? (ii) Are humans unable to make
a decision with top words masked?

We randomly sample 200 movie reviews that are correctly classified by the model. Each
review is assigned to five annotators. We ask humans on AMT to classify the sentiment of

2The nonparametric rank correlation is used instead of Pearson correlation coefficient because of the
violation of identical assumption across different instances

3Model evaluations can be easily paralleled on a modern GPU. Hence we plot the number of model
evaluations instead of real running time, which depends on the availability of computational resource.

CHAPTER 2. EFFICIENT MODEL INTERPRETATION FOR STRUCTURED DATA25

Algorithm Modification Consistency Standard Deviation Abs. Score Words Masked

Raw None 0.880 0.960 0.811 N/A
L-Shapley Selected 0.970 0.891 1.118 N/A

Masked 0.615 1.077 0.474 14.36%
C-Shapley Selected 0.990 0.500 1.441 N/A

Masked 0.830 0.778 0.743 14.75%
KernelSHAP Selected 0.960 0.627 1.036 N/A

Masked 0.660 0.818 0.492 31.60%

Table 2.3: Results of human evaluation. “Selected” and “Masked” indicate selected words
and masked reviews respectively. Results are averaged over 200 samples. (The best numbers
are highlighted.)

Figure 2.8: Interfaces of Amazon Mechanical Turk where annotators are asked to infer the
sentiment of the original reviews based on selected words and masked reviews.

texts into five categories: strongly positive (+2), positive (+1), neutral (0), negative (-1),
strongly negative (-2). See Figure 2.8 for an example interface.

Texts have three types: (i) raw reviews; (ii) top ten words of each review ranked by
L-Shapley, C-Shapley and KernelSHAP, where adjacent words, like “not satisfying or enter-
taining”, keep their adjacency if selected simultaneously; and (iii) reviews with top words
being masked. In the third type of texts, words are replaced with “[MASKED]” one after
another, in the order produced by the respective algorithms, until the probability score of
the correct class produced by the model is lower than 10%. We adopt the above design to
make sure the majority of key words sensitive to the model have been masked. On average,
around 14% of words in each review are masked for L-Shapley and C-Shapley, while 31.6%
for KernelSHAP.

We measure the consistency (0 or 1) between the true labels and labels from human
annotators, where a human label is positive if the average score over five annotators are
larger than zero. Reviews with an average score of zero are neither put in the positive nor
in the negative class. We also employ the standard deviation of scores on each review as a
measure of disagreement between humans. Finally, the absolute value of the average scores

CHAPTER 2. EFFICIENT MODEL INTERPRETATION FOR STRUCTURED DATA26

2d 4d 6d 8d 10d
Model Evaluations

0.0

0.2

0.4

0.6

0.8

1.0

K
en

da
ll'

s
Ta

u

Kendall's Tau
SampleShapley
KernelSHAP

2d 4d 6d 8d 10d
Model Evaluations

0.0

0.2

0.4

0.6

0.8

1.0

Sp
ea

rm
an

r'
s

R
ho

Spearmanr's Rho
SampleShapley
KernelSHAP

Figure 2.9: The box plots of average pairwise Kendall’s τ and Spearman’s ρ vs. the number
of model evaluations over 30 replicates. (Higher is better.) Dash lines (with green dots)
plots the mean, and the solid lines in box plots are medians. The number of features d varies
across different instances.

from five annotators is used as a measure of confidence of decision.
The results of the two experiments are shown in Table 2.3. We observe humans become

more consistent with the truth and more confident, and also have less disagreement with each
other when they are presented with top words. Among the three algorithms, C-Shapley yields
the highest performance in terms of consistency, agreement, and confidence. On the other
hand, when top words are masked, humans are easier to make mistakes and are less certain
about their judgement. L-Shapley harms the human judgement the most among the three
algorithms, although KernelSHAP masks two times more words. The above experiments
show that (i) Key words to the model convey an attitude toward a movie;, and (ii) Our
algorithms find the key words more accurately.

2.5.6 Variability of sampling based algorithms

We empirically evaluate the variance of SampleShapley and KernelSHAP in the setting where
the sample size is linear in the number of features. The experiment is carried out on the test
data set of IMDB movie reviews. For each method, we run 30 replications on every instance,
which generates 30 scores. Given the varied scalability of underlying Shapley values, we again
seek a nonparametric approach to measure the variability of sampling based algorithms. On
each instance, we compute the pairwise Kendall’s τ 4 and Spearman’s ρ among the 30 runs
of a single method. Then we use the average of

(
30
2

)
τs and ρs respectively as measures of

statistical dispersion5.

4τ -b version is used which can account for ties [84].
5The former can be linked to the variance when one models permutation with the Mallows Model. A

discussion can be found in [85]

CHAPTER 2. EFFICIENT MODEL INTERPRETATION FOR STRUCTURED DATA27

Figure 2.9 shows the variability of SampleShapley and KernelSHAP as a function of the
number of model evaluations. The ticks 2d, 4d, . . . on the x-axis are the number of model
evaluations, where d is the number of features which varies across different instances. As a
concrete example, on the rightmost box plot, KernelSHAP carries out 10d = 2, 000 model
evaluations on an instance with d = 200 features.

2.6 Proof of Main Theorems

In this section, we collect the proofs of Theorem 1 and Theorem 2.

2.6.1 Proof of Theorem 1

We state an elementary combinatorial equality required for the proof of the main theorem:

Lemma 1 (A combinatorial equality). For any positive integer n, and any pair of non-
negative integers with s ≥ t, we have

n∑

j=0

1(
n+s
j+t

)
(
n

j

)
=
s+ 1 + n

(s+ 1)
(
s
t

) (2.13)

Proof. By the binomial theorem for negative integer exponents, we have

1

(1− x)t+1
=
∞∑

j=0

(
j + t

j

)
xj.

The identity can be found by examination of the coefficient of xn in the expansion of
1

(1− x)t+1
· 1

(1− x)s−t+1
=

1

(1− x)s+1+1
. (2.14)

In fact, equating the coefficients of xn in the left and the right hand sides, we get
n∑

j=0

(
j + t

j

)(
(n− j) + (s− t)

n− j

)
=

(
n+ s+ 1

n

)
=
n+ s+ 1

s+ 1

(
n+ s

n

)
. (2.15)

Moving
(
n+s
n

)
to the right hand side and expanding the binomial coefficients, we have

n∑

j=0

(j + t)!

j!t!
· (n− j + s− t)!

(n− j)!(s− t)! ·
n!s!

(n+ s)!
=
n+ s+ 1

s+ 1
, (2.16)

which implies
n∑

j=0

(
n

j

)(
s

t

)/(
n+ s

j + t

)
=

n∑

j=0

n!

(n− j)!j! ·
s!

t!(s− t)! ·
((n+ s)− (j + t))!(j + t)!

(n+ s)!

=
n∑

j=0

(j + t)!

j!t!
· (n− j + s− t)!

(n− j)!(s− t)! ·
n!s!

(n+ s)!
=
n+ s+ 1

s+ 1
.

CHAPTER 2. EFFICIENT MODEL INTERPRETATION FOR STRUCTURED DATA28

Taking this lemma, we now prove the theorem. We split our analysis into two cases,
namely S = Nk(i) versus S ⊂ Nk(i). For notational convenience, we extend the definition of
L-Shapley estimate for feature i to an arbitrary feature subset S containing i. In particular,
we define

φ̂Sx(i) :=
1

|S|
∑

T3i
T⊆S

1(|S|−1
|T |−1

)mx(T, i). (2.17)

Case 1: First, suppose that S = Nk(i). For any subset A ⊂ [d], we introduce the shorthand
notation US(A) := A∩S and VS(A) := A∩Sc, and note that A = US(A)∪VS(A). Recalling
the definition of the Shapley value, let us partition all the subsets A based on US(A), in
particular writing

φX(i) =
1

d

∑

A⊆[d]
A3i

1(
d−1
|A|−1

)mX(A, i) =
1

d

∑

U⊆S
U3i

∑

A⊆[d]
US(A)=U

1(
d−1
|A|−1

)mX(A, i).

Based on this partitioning, the expected error between φ̂SX(i) and φX(i) can be written as

E
∣∣∣φ̂SX(i)− φX(i)

∣∣∣ = E

∣∣∣∣∣∣∣∣

1

|S|
∑

U⊆S
U3i

1(|S|−1
|U |−1

)mX(U, i)− 1

d

∑

U⊆S
U3i

∑

A⊆[d]
US(A)=U

1(
d−1
|A|−1

)mX(A, i)

∣∣∣∣∣∣∣∣
. (2.18)

Partitioning the set {A : US(A) = U} by the size of VS(A) = A ∩ Sc, we observe that

∑

A⊆[d]
US(A)=U

1(
d−1
|A|−1

) =

d−|S|∑

i=0

1(
d−1

i+|U |−1

)
(
d− |S|

i

)

=
(|S| − 1) + 1 + (d− |S|)

((|S| − 1) + 1)
(|S|−1
|U |−1

)

=
d

|S|
1(|S|−1
|U |−1

) ,

where we have applied Lemma 1 with n = d−|S|, s = |S|− 1, and t = |U |− 1. Substituting
this equivalence into equation (2.18), we find that the expected error can be upper bounded
by

E|φ̂SX(i)− φX(i)| ≤ 1

d

∑

U⊆S
U3i

∑

A⊆[d]
US(A)=U

1(
d−1
|A|−1

)E |mX(U, i)−mX(A, i)| , (2.19)

where we recall that A = US(A) ∪ VS(A).
Now omitting the dependence of US(A), VS(A) on A for notational simplicity, we now

CHAPTER 2. EFFICIENT MODEL INTERPRETATION FOR STRUCTURED DATA29

write the difference as

mX(A, i)−mX(U, i) = Em
[
log

Pm(Y |XU∪V)

Pm(Y |XU∪V \{i})
− log

Pm(Y |XU)

Pm(Y |XU\{i})
| X
]

= Em
[
log

P(Y,XU\{i})P(XU)P (XU∪V \{i})P (XU∪V , Y)

P(Y,XU)P(XU\{i})P (XU∪V)P (XU∪V \{i}, Y)
| X
]

= Em
[

log
P(Xi, XV | XU\{i}, Y)

P(Xi | XU\{i}, Y)P(XV | XU\{i}, Y)

− log
P(Xi, XV |XU\{i})

P(Xi|XU\{i})P(XV | XU\{i})
| X
]
.

Substituting this equivalence into our earlier bound (2.19) and taking an expectation over
X on both sides, we find that the expected error is upper bounded as

E|φ̂SX(i)− φX(i)| ≤ 1

d

∑

U⊆S
U3i

∑

A⊆[d]
US(A)=U

1(
d−1
|A|−1

)
{
E
∣∣∣∣log

P(Xi, XVS(A)|XU\{i}, Y)

P(Xi|XU\{i}, Y)P(XVS(A)|XU\{i}, Y)

∣∣∣∣

+ E
∣∣∣∣log

P(Xi, XVS(A)|XU\{i})

P(Xi | XU\{i})P(XVS(A)|XU\{i})

∣∣∣∣

}
.

Recalling the definition of the absolute mutual information, we see that

E|φ̂SX(i)− φX(i)| ≤ 1

d

∑

U⊆S
U3i

∑

A⊆[d]
US(A)=U

1(
d−1
|A|−1

)
{
Ia(Xi;XVS(A) | XU\{i}, Y)

+ Ia(Xi;XVS(A) | XU\{i})
}

≤ 2ε,

which completes the proof of the claimed bound.
Finally, in the special case that Xi ⊥⊥ X[d]\S|XT and Xi ⊥⊥ X[d]\S|XT , Y for any T ⊂ S,

then this inequality holds with ε = 0, which implies E|φ̂SX(i) − φX(i)| = 0. Therefore, we

have φ̂SX(i) = φX(i) almost surely, as claimed.

Case 2: We now consider the general case in which S ⊂ Nk(i). Using the previous argu-
ments, we can show

E|φ̂SX(i)− φkX(i)| ≤ 2ε, and E|φ̂SX(i)− φX(i)| ≤ 2ε.

Appylying the triangle inequality yields E|φ̂kX(i)− φX(i)| ≤ 4ε, which establishes the claim.

2.6.2 Proof of Theorem 2

As in the previous proof, we divide our analysis into two cases.

CHAPTER 2. EFFICIENT MODEL INTERPRETATION FOR STRUCTURED DATA30

Proof. Case 1: First, suppose that S = Nk(i) = [d]. For any subset A ⊂ S with i ∈ A, we
can partition A into two components US(A) and VS(A), such that i ∈ US(A) and US(A) is
a connected subsequence. VS(A) is disconnected from US(A). We also define

C = {U | i ∈ U,U ⊂ [d], U is a connected subsequence.} (2.20)

We partition all the subsets A ⊂ S based on US(A) in the definition of the Shapley value:

φX(i) =
1

d

∑

A⊆S
A3i

1(
d−1
|A|−1

)mX(A, i)

=
1

d

∑

U∈C

∑

A:US(A)=U

1(
d−1
|A|−1

)mX(A, i).

The expected error between φ̃
[d]
X (i) and φX(i) is

E|φ̃[d]
X (i)− φX(i)| = E

∣∣∣∣∣∣
1

d

∑

U∈C

2d

(|U |+ 2)(|U |+ 1)|U |mX(U, i)− 1

d

∑

U∈C

∑

A:US(A)=U

1(
d−1
|A|−1

)mX(A, i)

∣∣∣∣∣∣
.

(2.21)

Partitioning {A : US(A) = U} by the size of VS(A), we observe that

∑

A:US(A)=U

1(
d−1
|A|−1

) =

d−|U |−2∑

i=0

1(
d−1

i+|U |−1

)
(
d− |U | − 2

i

)

=
(|U |+ 1) + 1 + (d− |U | − 2)

((|U |+ 1) + 1)
(|U |+1
|U |−1

)

=
2d

(|U |+ 2)(|U |+ 1)|U | , (2.22)

where we apply Lemma 1 with n = d − |U | − 2, s = |U | + 1 and t = |U | − 1. From
equation (2.21), the expected error can be upper bounded by

E
∣∣∣φ̃[d]
X (i)− φX(i)

∣∣∣ ≤ 1

d

∑

U∈C

∑

A:US(A)=U

1(
d−1
|A|−1

)E |mX(U, i)−mX(A, i)| ,

where A = US(A)∪ VS(A). We omit the dependence of US(A) and VS(A) on the pair (A, S)
for notational simplicity, and observe that the difference between mx(A, i) and mx(U, i) is

mX(A, i)−mX(U, i) = Em
[
log

Pm(Y |XU∪V)

Pm(Y |XU∪V \{i})
− log

Pm(Y |XU)

Pm(Y |XU\{i})
| X
]

= Em
[
log

P(Y,XU\{i})P(XU)P (XU∪V \{i})P (XU∪V , Y)

P(Y,XU)P(XU\{i})P (XU∪V)P (XU∪V \{i}, Y)
| X
]

= Em
[

log
P(Xi, XV |XU\{i}, Y)

P(Xi|XU\{i}, Y)P(XV |XU\{i}, Y)

− log
P(Xi, XV |XU\{i})

P(Xi|XU\{i})P(XV |XU\{i})
| X
]
.

CHAPTER 2. EFFICIENT MODEL INTERPRETATION FOR STRUCTURED DATA31

Taking an expectation over X at both sides, we can upper bound the expected error by

E|φ̃[d]
X (i)− φX(i)| ≤ 1

d

∑

U∈C

∑

A:US(A)=U

1(
d−1
|A|−1

)(E
∣∣∣∣log

P(Xi, XVS(A)|XU\{i}, Y)

P(Xi|XU\{i}, Y)P(XVS(A)|XU\{i}, Y)

∣∣∣∣

+ E
∣∣∣∣log

P(Xi, XVS(A)|XU\{i})

P(Xi|XU\{i})P(XVS(A)|XU\{i})

∣∣∣∣)

=
1

d

∑

U∈C

∑

A:US(A)=U

1(
d−1
|A|−1

)(Ia(Xi;XVS(A)|XU\{i}, Y) + Ia(Xi;XVS(A)|XU\{i}))

≤ 2ε.

Let R(U) := [d] − U ∪ {max(u − 1, 1),min(u + l + 1, d)}. If we have Xi ⊥⊥ XR(U)|XU\{i}

and Xi ⊥⊥ XR(U)|XU\{i}, Y for any U ⊂ [d], then ε = 0, which implies E|φ̃[d]
X (i)− φX(i)| = 0.

Therefore, we have φ̃
[d]
X (i) = φX(i) almost surely.

Case 2: We now turn to the general case S ⊂ Nk(i) ⊂ [d]. Similar as above, we can
show

E|φ̃kX(i)− φ̂kX(i)| ≤ 2ε.

Based on Theorem 1, we have

E|φ̂kX(i)− φX(i)| ≤ 4ε.

Applying the triangle yields E|φ̃kX(i)− φX(i)| ≤ 6ε, which establishes the claim.

2.7 Discussion

We have proposed two new algorithms—L-Shapley and C-Shapley—for instancewise fea-
ture importance scoring, making use of a graphical representation of the data. We have
demonstrated the superior performance of these algorithms compared to other methods on
black-box models for instancewise feature importance scoring in both text and image classi-
fication with both quantitative metrics and human evaluation.

32

Chapter 3

Learning to Explain: An
Information-Theoretic Perspective on
Model Interpretation

We focus on instancewise feature importance scoring as a methodology for model interpre-
tation. The method proposed in this chapter further improves the efficiency over L-Shapley
and C-Shapley as no test-time model query is required.

Our approach is based on learning a feature selector to exact a subset of features that are
most informative for each given example. The selector is trained to maximize the mutual
information between selected features and the response variable, where the conditional dis-
tribution of the response variable given the input is the model to be explained. We develop
an efficient variational approximation to the mutual information, and show that the resulting
method compares favorably to other model explanation methods on a variety of synthetic
and real data sets using both quantitative metrics and human evaluation.

3.1 Introduction

In this chapter, we focus on instancewise feature importance scoring as a specific approach
for model interpretation. Given a machine learning model, instancewise feature importance
scoring asks for the importance score of each feature on the prediction of a given instance,
and the relative importance of each feature is allowed to vary across instances. Thus, the
importance scores can act as an explanation for the specific instance, indicating which fea-
tures are the key for the model to make its prediction on that instance. A related concept
in machine learning is feature selection, which selects a subset of features that are useful to
build a good predictor for a specified response variable [86]. While feature selection produces
a global importance of features with respect to the entire labeled data set, instancewise fea-
ture importance scoring measures feature importance locally for each instance labeled by the
model.

CHAPTER 3. AN INFORMATION-THEORETIC PERSPECTIVE ON MODEL
INTERPRETATION 33

Training Efficiency Additive Model-agnostic

Parzen [67] Yes High Yes Yes
Salient map [8] No High Yes No

LRP [9] No High Yes No
LIME [14] No Low Yes Yes

Kernel SHAP [15] No Low Yes Yes
DeepLIFT [10] No High Yes No

IG [12] No Medium Yes No
L2X Yes High No Yes

Table 3.1: Summary of the properties of different methods. “Training” indicates whether a
method requires training on an unlabeled data set. “Efficiency” qualitatively evaluates the
computational time during single interpretation. “Additive” indicates whether a method
is locally additive. “Model-agnostic” indicates whether a method is generic to black-box
models.

Existing work on interpreting models approach the problem from two directions. The
first line of work computes the gradient of the output of the correct class with respect to the
input vector for the given model, and uses it as a saliency map for masking the input [8, 87].
The gradient is computed using a Parzen window approximation of the original classifier if
the original one is not available [67]. Another line of research approximates the model to
be interpreted via a locally additive model in order to explain the difference between the
model output and some “reference” output in terms of the difference between the input and
some “reference” input [9, 10, 12, 14, 15, 88]. Ribeiro, Singh, and Guestrin [14] proposed the
LIME, methods which randomly draws instances from a density centered at the sample to
be explained, and fits a sparse linear model to predict the model outputs for these instances.
Shrikumar, Greenside, and Kundaje [10] presented DeepLIFT, a method designed specifically
for neural networks, which decomposes the output of a neural network on a specific input by
backpropagating the contribution back to every feature of the input. Lundberg and Lee [15]
used Shapley values to quantify the importance of features of a given input, and proposed
a sampling based method “kernel SHAP” for approximating Shapley values. [12] proposed
Integrated Gradients (IG), which constructs the additive model by cumulating the gradients
along the line between the input and the reference point. Essentially, the two directions both
approximate the model locally via an additive model, with different definitions of locality.
While the first one considers infinitesimal regions on the decision surface and takes the first-
order term in the Taylor expansion as the additive model, the second one considers the finite
difference between an input vector and a reference vector.

In this chapter, our approach to instancewise feature importance scoring is via mutual
information, a conceptually different perspective from existing approaches. We define an
“explainer,” or instancewise feature selector, as a model which returns a distribution over
the subset of features given the input vector.

For a given instance, an ideal explainer should assign the highest probability to the subset
of features that are most informative for the associated model response. This motivates
us to maximize the mutual information between the selected subset of features and the

CHAPTER 3. AN INFORMATION-THEORETIC PERSPECTIVE ON MODEL
INTERPRETATION 34

X XS

S

E

Figure 3.1: The graphical model of obtaining XS from X.

response variable with respect to the instancewise feature selector. Direct estimation of
mutual information and discrete feature subset sampling are intractable; accordingly, we
derive a tractable method by first applying a variational lower bound for mutual information,
and then developing a continuous reparametrization of the sampling distribution.

At a high level, the primary differences between our approach and past work are the
following. First, our framework globally learns a local explainer, and therefore takes the
distribution of inputs into consideration. Second, our framework removes the constraint of
local feature additivity on an explainer. These distinctions enable our framework to yield
a more efficient, flexible, and natural approach for instancewise feature importance scoring.
In summary, our contributions in this work are as follows (see also Table 3.1 for systematic
comparisons):
• We propose an information-based framework for instancewise feature importance scor-

ing.
• We introduce a learning-based method for instancewise feature selection, which is both

efficient and model-agnostic.
Furthermore, we show that the effectiveness of our method on a variety of synthetic and
real data sets using both quantitative metric and human evaluation on Amazon Mechanical
Turk.

3.2 Our framework

We now lay out the primary ingredients of our general approach. While our framework is
generic and can be applied to both classification and regression models, the current discussion
is restricted to classification models. We assume one has access to the output of a model as
a conditional distribution, Pm(· | x), of the response variable Y given the realization of the
input random variable X = x ∈ Rd.

CHAPTER 3. AN INFORMATION-THEORETIC PERSPECTIVE ON MODEL
INTERPRETATION 35

3.2.1 Mutual information

Our method is derived from considering the mutual information between a particular pair
of random vectors, so we begin by providing some basic background. Given two random
vectors X and Y , the mutual information I(X;Y) is a measure of dependence between
them; intuitively, it corresponds to how much knowledge of one random vector reduces
the uncertainty about the other. More precisely, the mutual information is given by the
Kullback-Leibler divergence of the product of marginal distributions of X and Y from the
joint distribution of X and Y [71]; it takes the form

I(X;Y) = EX,Y
[
log

pXY (X, Y)

pX(X)pY (Y)

]
,

where pXY and pX , pY are the joint and marginal probability densities if X, Y are continuous,
or the joint and marginal probability mass functions if they are discrete. The expectation
is taken with respect to the joint distribution of X and Y . One can show the mutual
information is nonnegative and symmetric in two random variables. The mutual information
has been a popular criteria in feature selection, where one selects the subset of features that
approximately maximizes the mutual information between the response variable and the
selected features [89, 90]. Here we propose to use mutual information as a criteria for
instancewise feature selection.

3.2.2 How to construct explanations

We now describe how to construct explanations using mutual information. In our specific
setting, the pair (X, Y) are characterized by the marginal distribution X ∼ PX(·), and a
family of conditional distributions of the form (Y | x) ∼ Pm(· | x). For a given positive integer
k, let ℘k = {S ⊂ 2d | |S| = k} be the set of all subsets of size k. An explainer E of size k
is a mapping from the feature space Rd to the power set ℘k; we allow the mapping to be
randomized, meaning that we can also think of E as mapping x to a conditional distribution
P(S | x) over S ∈ ℘k. Given the chosen subset S = E(x), we use xS to denote the sub-vector
formed by the chosen features. We view the choice of the number of explaining features k
as best left in the hands of the user, but it can also be tuned as a hyper-parameter.

We have thus defined a new random vector XS ∈ Rk; see Figure 3.1 for a probabilistic
graphical model representing its construction. We formulate instancewise feature selection
as seeking explainer that optimizes the criterion

max
E

I(XS;Y) subject to S ∼ E(X). (3.1)

In words, we aim to maximize the mutual information between the response variable from
the model and the selected features, as a function of the choice of selection rule.

It turns out that a global optimum of Problem (3.1) has a natural information-theoretic
interpretation: it corresponds to the minimization of the expected length of encoded message
for the model Pm(Y | x) using Pm(Y |xS), where the latter corresponds to the conditional
distribution of Y upon observing the selected sub-vector. More concretely, we have the

CHAPTER 3. AN INFORMATION-THEORETIC PERSPECTIVE ON MODEL
INTERPRETATION 36

following:

Theorem 3. Letting Em[· | x] denote the expectation over Pm(· | x), define

E∗(x) := arg min
S

Em
[
log

1

Pm(Y | xS)

∣∣∣ x
]
. (3.2)

Then E∗ is a global optimum of Problem (3.1). Conversely, any global optimum of Prob-
lem (3.1) degenerates to E∗ almost surely over the marginal distribution PX .

The proof of Theorem 3 is left to Section 3.5. In practice, the above global optimum is
obtained only if the explanation family E is sufficiently large. In the case when Pm(Y |xS) is
unknown or computationally expensive to estimate accurately, we can choose to restrict E
to suitably controlled families so as to prevent overfitting.

3.3 Our proposed method

A direct solution to Problem (3.1) is not possible, so that we need to approach it by a
variational approximation. In particular, we derive a lower bound on the mutual information,
and we approximate the model conditional distribution Pm by a suitably rich family of
functions.

3.3.1 Obtaining a tractable variational formulation

We now describe the steps taken to obtain a tractable variational formulation.

A variational lower bound: Mutual information between XS and Y can be expressed
in terms of the conditional distribution of Y given XS:

I(XS;Y) = E
[

log
Pm(XS, Y)

P(XS)Pm(Y)

]
= E

[
log

Pm(Y |XS)

Pm(Y)

]

= E
[

logPm(Y |XS)
]

+ Const.

= EXES|XEY |XS

[
logPm(Y |XS)

]
+ Const.

For a generic model, it is impossible to compute expectations under the conditional distri-
bution Pm(· | xS). Hence we introduce a variational family for approximation:

Q :=
{
Q | Q = {xS → QS(Y |xS), S ∈ ℘k}

}
. (3.3)

Note each member Q of the familyQ is a collection of conditional distributions QS(Y |xS), one
for each choice of k-sized feature subset S. For any Q, an application of Jensen’s inequality

CHAPTER 3. AN INFORMATION-THEORETIC PERSPECTIVE ON MODEL
INTERPRETATION 37

yields the lower bound

EY |XS
[logPm(Y |XS)] ≥

∫
Pm(Y |XS) logQS(Y |XS)

= EY |XS
[logQS(Y |XS)],

where equality holds if and only if Pm(Y |XS) and QS(Y |XS) are equal in distribution. We
have thus obtained a variational lower bound of the mutual information I(XS;Y). Prob-
lem (3.1) can thus be relaxed as maximizing the variational lower bound, over both the
explanation E and the conditional distribution Q:

max
E,Q

E
[

logQS(Y | XS)
]

such that S ∼ E(X). (3.4)

For generic choices Q and E , it is still difficult to solve the variational approximation (3.4).
In order to obtain a tractable method, we need to restrict both Q and E to suitable families
over which it is efficient to perform optimization.

A single neural network for parametrizing Q: Recall that Q = {QS(· | xS), S ∈
℘k} is a collection of conditional distributions with cardinality |Q| =

(
d
k

)
. We assume

X is a continuous random vector, and Pm(Y | x) is continuous with respect to x. Then
we introduce a single neural network function gα : Rd × [c] → [0, 1] for parametrizing Q,
where [c] = {0, 1, . . . , c− 1} denotes the set of possible classes, and α denotes the learnable
parameters. We define QS(Y |xS) := gα(x̃S, Y), where x̃S ∈ Rd is transformed from x by
replacing entries not in S with zeros:

(x̃S)i =

{
xi, i ∈ S,
0, i /∈ S.

When X contains discrete features, we embed each discrete feature with a vector, and the
vector representing a specific feature is set to zero simultaneously when the corresponding
feature is not in S.

3.3.2 Continuous relaxation of subset sampling

Direct estimation of the objective function in equation (3.4) requires summing over
(
d
k

)
combi-

nations of feature subsets after the variational approximation. Several tricks exist for tackling
this issue, like REINFORCE-type Algorithms [91], or weighted sum of features parametrized
by deterministic functions of X. (A similar concept to the second trick is the “soft attention”
structure in vision [1] and NLP [92] where the weight of each feature is parametrized by a
function of the respective feature itself.) We employ an alternative approach generalized
from Concrete Relaxation (Gumbel-softmax trick) [93–95], which empirically has a lower
variance than REINFORCE and encourages discreteness [96].

The Gumbel-softmax trick uses the concrete distribution as a continuous differentiable
approximation to a categorical distribution. In particular, suppose we want to approximate
a categorical random variable represented as a one-hot vector in Rd with category probability

CHAPTER 3. AN INFORMATION-THEORETIC PERSPECTIVE ON MODEL
INTERPRETATION 38

p1, p2, . . . , pd. The random perturbation for each category is independently generated from
a Gumbel(0, 1) distribution:

Gi = − log(− log ui), ui ∼ Uniform(0, 1).

We add the random perturbation to the log probability of each category and take a temperature-
dependent softmax over the d-dimensional vector:

Ci =
exp{(log pi +Gi)/τ}∑d
j=1 exp{(log pj +Gj)/τ}

.

The resulting random vector C = (C1, . . . , Cd) is called a Concrete random vector, which we
denote by

C ∼ Concrete(log p1, . . . , log pd).

We apply the Gumbel-softmax trick to approximate weighted subset sampling. We would
like to sample a subset S of k distinct features out of the d dimensions. The sampling scheme
for S can be equivalently viewed as sampling a k-hot random vector Z from Dd

k := {z ∈
{0, 1}d |∑ zi = k}, with each entry of z being one if it is in the selected subset S and being
zero otherwise. An importance score which depends on the input vector is assigned for each
feature. Concretely, we define wθ : Rd → Rd that maps the input to a d-dimensional vector,
with the ith entry of wθ(X) representing the importance score of the ith feature.

We start with approximating sampling k distinct features out of d features by the sam-
pling scheme below: Sample a single feature out of d features independently for k times.
Discard the overlapping features and keep the rest. Such a scheme samples at most k
features, and is easier to approximate by a continuous relaxation. We further approxi-
mate the above scheme by independently sampling k independent Concrete random vectors,
and then we define a d-dimensional random vector V that is the elementwise maximum of
C1, C2, . . . , Ck:

Cj ∼ Concrete(wθ(X)) i.i.d. for j = 1, 2, . . . , k,

V = (V1, V2, . . . , Vd), Vi = max
j
Cj
i .

The random vector V is then used to approximate the k-hot random vector Z during training.
We write V = V (θ, ζ) as V is a function of θ and a collection of auxiliary random vari-

ables ζ sampled independently from the Gumbel distribution. Then we use the elementwise
product V (θ, ζ)�X between V and X as an approximation of X̃S.

3.3.3 The final objective and its optimization

After having applied the continuous approximation of feature subset sampling, we have
reduced Problem (3.4) to the following:

max
θ,α

EX,Y,ζ
[

log gα(V (θ, ζ)�X, Y)
]
, (3.5)

where gα denotes the neural network used to approximate the model conditional distribution,
and the quantity θ is used to parametrize the explainer. In the case of classification with c

CHAPTER 3. AN INFORMATION-THEORETIC PERSPECTIVE ON MODEL
INTERPRETATION 39

classes, we can write

EX,ζ
[c∑

y=1

[Pm(y | X) log gα(V (θ, ζ)�X, y)
]
. (3.6)

Note that the expectation operator EX,ζ does not depend on the parameters (α, θ), so that
during the training stage, we can apply stochastic gradient methods to jointly optimize
the pair (α, θ). In each update, we sample a mini-batch of unlabeled data with their class
distributions from the model to be explained, and the auxiliary random variables ζ, and we
then compute a Monte Carlo estimate of the gradient of the objective function (3.6).

3.3.4 The explaining stage

During the explaining stage, the learned explainer maps each sample X to a weight vector
wθ(X) of dimension d, each entry representing the importance of the corresponding feature
for the specific sample X. In order to provide a deterministic explanation for a given sample,
we rank features according to the weight vector, and the k features with the largest weights
are picked as the explaining features.

For each sample, only a single forward pass through the neural network parametrizing
the explainer is required to yield explanation. Thus our algorithm is much more efficient
in the explaining stage compared to other model-agnostic explainers like LIME or Kernel
SHAP which require thousands of evaluations of the original model per sample.

3.4 Experiments

We carry out experiments on both synthetic and real data sets. For all experiments, we
use RMSprop [95] with the default hyperparameters for optimization. We also fix the step
size to be 0.001 across experiments. The temperature for Gumbel-softmax approximation
is fixed to be 0.1. Codes for reproducing the key results are available online at https:

//github.com/Jianbo-Lab/L2X.

3.4.1 Synthetic Data

We begin with experiments on four synthetic data sets:
• 2-dimensional XOR as binary classification. The input vector X is generated from a

10-dimensional standard Gaussian. The response variable Y is generated from P (Y =
1|X) ∝ exp{X1X2}.
• Orange Skin. The input vector X is generated from a 10-dimensional standard Gaussian.

The response variable Y is generated from P (Y = 1|X) ∝ exp{∑4
i=1X

2
i − 4}.

• Nonlinear additive model. Generate X from a 10-dimensional standard Gaussian. The
response variable Y is generated from P (Y = 1|X) ∝ exp{−100 sin(2X1)+2|X2|+X3 +
exp{−X4}}.

https://github.com/Jianbo-Lab/L2X
https://github.com/Jianbo-Lab/L2X

CHAPTER 3. AN INFORMATION-THEORETIC PERSPECTIVE ON MODEL
INTERPRETATION 40

Taylor
Saliency

DeepLIFT SHAP LIME L2X

101

102

103

Cl
oc

k
tim

e
(s

)

Clock time for various methods
Orange skin
XOR
Nonlinear additive
Feature switching

Figure 3.2: The clock time (in log scale) of explaining 10, 000 samples for each method. The
training time of L2X is shown in translucent bars.

• Switch feature. Generate X1 from a mixture of two Gaussians centered at ±3 respec-
tively with equal probability. If X1 is generated from the Gaussian centered at 3, the
2 − 5th dimensions are used to generate Y like the orange skin model. Otherwise, the
6− 9th dimensions are used to generate Y from the nonlinear additive model.

The first three data sets are modified from commonly used data sets in the feature
selection literature [97]. The fourth data set is designed specifically for instancewise feature
importance scoring. Every sample in the first data set has the first two dimensions as true
features, where each dimension itself is independent of the response variable Y but the
combination of them has a joint effect on Y . In the second data set, the samples with
positive labels centered around a sphere in a four-dimensional space. The sufficient statistic
is formed by an additive model of the first four features. The response variable in the third
data set is generated from a nonlinear additive model using the first four features. The last
data set switches important features (roughly) based on the sign of the first feature. The
1−5 features are true for samples with X1 generated from the Gaussian centered at −3, and
the 1, 6− 9 features are true otherwise.

We compare our method L2X (for “Learning to Explain”) with several strong existing al-
gorithms for instancewise feature importance scoring, including Saliency [8], DeepLIFT [10],
SHAP [15], LIME [14]. Saliency refers to the method that computes the gradient of the
selected class with respect to the input feature and uses the absolute values as importance
scores. SHAP refers to Kernel SHAP. The number of samples used for explaining each in-
stance for LIME and SHAP is set as default for all experiments. We also compare with a
method that ranks features by the input feature times the gradient of the selected class with
respect to the input feature. Shrikumar, Greenside, and Kundaje [10] showed it is equiva-
lent to LRP [9] when activations are piecewise linear, and used it in Shrikumar, Greenside,
and Kundaje [10] as a strong baseline. We call it “Taylor” as it is the first-order Taylor

CHAPTER 3. AN INFORMATION-THEORETIC PERSPECTIVE ON MODEL
INTERPRETATION 41

Taylor
Saliency

DeepLIFT SHAP LIME L2X

2

4

6

8

10
M

ed
ia

n
ra

nk
XOR

Taylor
Saliency

DeepLIFT SHAP LIME L2X

2

4

6

8

10

M
ed

ia
n

ra
nk

Orange skin

Taylor
Saliency

DeepLIFT SHAP LIME L2X

2

4

6

8

10

M
ed

ia
n

ra
nk

Nonlinear additive

Taylor
Saliency

DeepLIFT SHAP LIME L2X

2

4

6

8

10

M
ed

ia
n

ra
nk

Feature switching

Figure 3.3: The box plots for the median ranks of the influential features by each sample,
over 10, 000 samples for each data set. The red line and the dotted blue line on each box is
the median and the mean respectively. Lower median ranks are better. The dotted green
lines indicate the optimal median rank.

approximation of the model.
Our experimental setup is as follows. For each data set, we train a neural network model

with three hidden dense layers. We can safely assume the neural network has successfully
captured the important features, and ignored noise features, based on its error rate. Then we
use Taylor, Saliency, DeepLIFT, SHAP, LIME, and L2X for instancewise feature importance
scoring on the trained neural network models. For L2X, the explainer is a neural network
composed of two hidden layers. The variational family is composed of three hidden layers.
All layers are linear with dimension 200. The number of desired features k is set to the
number of true features.

The underlying true features are known for each sample, and hence the median ranks
of selected features for each sample in a validation data set are reported as a performance
metric, the box plots of which have been plotted in Figure 3.3. We observe that L2X
outperforms all other methods on nonlinear additive and feature switching data sets. On
the XOR model, DeepLIFT, SHAP and L2X achieve the best performance. On the orange
skin model, all algorithms have near optimal performance, with L2X and LIME achieving
the most stable performance across samples.

We also report the clock time of each method in Figure 3.2, where all experiments were
performed on a single NVidia Tesla k80 GPU, coded in TensorFlow. Across all the four
data sets, SHAP and LIME are the least efficient as they require multiple evaluations of the
model. DeepLIFT, Taylor and Saliency requires a backward pass of the model. DeepLIFT
is the slowest among the three, probably due to the fact that backpropagation of gradients

CHAPTER 3. AN INFORMATION-THEORETIC PERSPECTIVE ON MODEL
INTERPRETATION 42

Truth Model Key words

positive positive Ray Liotta and Tom Hulce shine in this sterling example of brotherly
love and commitment. Hulce plays Dominick, (nicky) a mildly mentally
handicapped young man who is putting his 12 minutes younger, twin
brother, Liotta, who plays Eugene, through medical school. It is set in
Baltimore and deals with the issues of sibling rivalry, the unbreakable
bond of twins, child abuse and good always winning out over evil. It
is captivating, and filled with laughter and tears. If you have not yet
seen this film, please rent it, I promise, you’ll be amazed at how such a
wonderful film could go unnoticed.

negative negative Sorry to go against the flow but I thought this film was unrealistic,
boring and way too long. I got tired of watching Gena Rowlands long
arduous battle with herself and the crisis she was experiencing. Maybe
the film has some cinematic value or represented an important step for
the director but for pure entertainment value. I wish I would have
skipped it.

negative positive This movie is chilling reminder of Bollywood being just a parasite of
Hollywood. Bollywood also tends to feed on past blockbusters for fur-
thering its industry. Vidhu Vinod Chopra made this movie with the
reasoning that a cocktail mix of deewar and on the waterfront will bring
home an oscar. It turned out to be rookie mistake. Even the idea of the
title is inspired from the Elia Kazan classic. In the original, Brando is
shown as raising doves as symbolism of peace. Bollywood must move
out of Hollywoods shadow if it needs to be taken seriously.

positive negative When a small town is threatened by a child killer, a lady police officer
goes after him by pretending to be his friend. As she becomes more and
more emotionally involved with the murderer her psyche begins to take
a beating causing her to lose focus on the job of catching the criminal.
Not a film of high voltage excitement, but solid police work and a good
depiction of the faulty mind of a psychotic loser.

Table 3.2: True labels and labels predicted by the model are in the first two columns. Key
words picked by L2X are highlighted in yellow.

for Taylor and Saliency are built-in operations of TensorFlow, while backpropagation in
DeepLIFT is implemented with high-level operations in TensorFlow. Our method L2X is
the most efficient in the explanation stage as it only requires a forward pass of the subset
sampler. It is much more efficient compared to SHAP and LIME even after the training time
has been taken into consideration, when a moderate number of samples (10,000) need to be
explained. As the scale of the data to be explained increases, the training of L2X accounts
for a smaller proportion of the over-all time. Thus the relative efficiency of L2X to other
algorithms increases with the size of a data set.

3.4.2 IMDB

The Large Movie Review Dataset (IMDB) is a dataset of movie reviews for sentiment clas-
sification [69]. It contains 50, 000 labeled movie reviews, with a split of 25, 000 for training
and 25, 000 for testing. The average document length is 231 words, and 10.7 sentences. We
use L2X to study two popular classes of models for sentiment analysis on the IMDB data
set.

CHAPTER 3. AN INFORMATION-THEORETIC PERSPECTIVE ON MODEL
INTERPRETATION 43

Truth Predicted Key sentence

positive positive There are few really hilarious films about science fiction but this one
will knock your sox off. The lead Martians Jack Nicholson take-off is
side-splitting. The plot has a very clever twist that has be seen to be
enjoyed. This is a movie with heart and excellent acting by all. Make
some popcorn and have a great evening.

negative negative You get 5 writers together, have each write a different story with a
different genre, and then you try to make one movie out of it. Its
action, its adventure, its sci-fi, its western, its a mess. Sorry, but this
movie absolutely stinks. 4.5 is giving it an awefully high rating. That
said, its movies like this that make me think I could write movies, and
I can barely write.

negative positive This movie is not the same as the 1954 version with Judy garland and
James mason, and that is a shame because the 1954 version is, in my
opinion, much better. I am not denying Barbra Streisand’s talent at
all. She is a good actress and brilliant singer. I am not acquainted with
Kris Kristofferson’s other work and therefore I can’t pass judgment on
it. However, this movie leaves much to be desired. It is paced slowly,
it has gratuitous nudity and foul language, and can be very difficult
to sit through. However, I am not a big fan of rock music, so its only
natural that I would like the judy garland version better. See the 1976
film with Barbra and Kris, and judge for yourself.

positive negative The first time you see the second renaissance it may look boring. Look
at it at least twice and definitely watch part 2. it will change your view
of the matrix. Are the human people the ones who started the war? Is
ai a bad thing?

Table 3.3: True labels and labels from the model are shown in the first two columns. Key
sentences picked by L2X highlighted in yellow.

Explaining a CNN model with key words

Convolutional neural networks (CNN) have shown excellent performance for sentiment anal-
ysis [76, 98]. We use a simple CNN model on Keras [99] for the IMDB data set, which is
composed of a word embedding of dimension 50, a 1-D convolutional layer of kernel size
3 with 250 filters, a max-pooling layer and a dense layer of dimension 250 as hidden lay-
ers. Both the convolutional and the dense layers are followed by ReLU as nonlinearity, and
Dropout [78] as regularization. Each review is padded/cut to 400 words. The CNN model
achieves 90% accuracy on the test data, close to the state-of-the-art performance (around
94%). We would like to find out which k words make the most influence on the decision of
the model in a specific review. The number of key words is fixed to be k = 10 for all the
experiments.

The explainer of L2X is composed of a global component and a local component (See
Figure 2 in Yang et al. [64]). The input is initially fed into a common embedding layer
followed by a convolutional layer with 100 filters. Then the local component processes
the common output using two convolutional layers with 50 filters, and the global component
processes the common output using a max-pooling layer followed by a 100-dimensional dense
layer. Then we concatenate the global and local outputs corresponding to each feature, and
process them through one convolutional layer with 50 filters, followed by a Dropout layer

CHAPTER 3. AN INFORMATION-THEORETIC PERSPECTIVE ON MODEL
INTERPRETATION 44

[78]. Finally a convolutional network with kernel size 1 is used to yield the output. All
previous convolutional layers are of kernel size 3, and ReLU is used as nonlinearity. The
variational family is composed of an word embedding layer of the same size, followed by
an average pooling and a 250-dimensional dense layer. Each entry of the output vector V
from the explainer is multiplied with the embedding of the respective word in the variational
family. We use both automatic metrics and human annotators to validate the effectiveness
of L2X.

Post-hoc accuracy. We introduce post-hoc accuracy for quantitatively validating the ef-
fectiveness of our method. Each model explainer outputs a subset of features XS for each
specific sample X. We use Pm(y | X̃S) to approximate Pm(y | XS). That is, we feed in the
sample X to the model with unselected words masked by zero paddings. Then we compute
the accuracy of using Pm(y | X̃S) to predict samples in the test data set labeled by Pm(y | X),
which we call post-hoc accuracy as it is computed after instancewise feature selection.

Human accuracy. When designing human experiments, we assume that the key words
convey an attitude toward a movie, and can thus be used by a human to infer the review
sentiment. This assumption has been partially validated given the aligned outcomes provided
by post-hoc accuracy and by human judges, because the alignment implies the consistency
between the sentiment judgement based on selected words from the original model and that
from humans. Based on this assumption, we ask humans on Amazon Mechanical Turk
(AMT) to infer the sentiment of a review given the ten key words selected by each explainer.
The words adjacent to each other, like “not good at all,” keep their adjacency on the AMT
interface if they are selected simultaneously. The reviews from different explainers have
been mixed randomly, and the final sentiment of each review is averaged over the results of
multiple human annotators. We measure whether the labels from human based on selected
words align with the labels provided by the model, in terms of the average accuracy over 500
reviews in the test data set. Some reviews are labeled as “neutral” based on selected words,
which is because the selected key words do not contain sentiment, or the selected key words
contain comparable numbers of positive and negative words. Thus these reviews are neither
put in the positive nor in the negative class when we compute accuracy. We call this metric
human accuracy.

The result is reported in Table 3.4. We observe that the model prediction based on only
ten words selected by L2X align with the original prediction for over 90% of the data. The
human judgement given ten words also aligns with the model prediction for 84.4% of the
data. The human accuracy is even higher than that based on the original review, which is
83.3% [64]. This indicates the selected words by L2X can serve as key words for human to
understand the model behavior. Table 3.2 shows the results of our model on four examples.

CHAPTER 3. AN INFORMATION-THEORETIC PERSPECTIVE ON MODEL
INTERPRETATION 45

Figure 3.4: The above figure shows ten randomly selected figures of 3 and 8 in the validation
set. The first line include the original digits while the second line does not. The selected
patches are colored with red if the pixel is activated (white) and blue otherwise.

IMDB-Word IMDB-Sent MNIST
Post-hoc accuracy 0.908 0.849 0.958
Human accuracy 0.844 0.774 NA

Table 3.4: Post-hoc accuracy and human accuracy of L2X on three models: a word-based
CNN model on IMDB, a hierarchical LSTM model on IMDB, and a CNN model on MNIST.

Explaining hierarchical LSTM

Another competitive class of models in sentiment analysis uses hierarchical LSTM [77, 100].
We build a simple hierarchical LSTM by putting one layer of LSTM on top of word embed-
dings, which yields a representation vector for each sentence, and then using another LSTM
to encoder all sentence vectors. The output representation vector by the second LSTM is
passed to the class distribution via a linear layer. Both the two LSTMs and the word em-
bedding are of dimension 100. The word embedding is pretrained on a large corpus [101].
Each review is padded to contain 15 sentences. The hierarchical LSTM model gets around
90% accuracy on the test data. We take each sentence as a single feature group, and study
which sentence is the most important in each review for the model.

The explainer of L2X is composed of a 100-dimensional word embedding followed by a
convolutional layer and a max pooling layer to encode each sentence. The encoded sentence
vectors are fed through three convolutional layers and a dense layer to get sampling weights
for each sentence. The variational family also encodes each sentence with a convolutional
layer and a max pooling layer. The encoding vectors are weighted by the output of the
subset sampler, and passed through an average pooling layer and a dense layer to the class
probability. All convolutional layers are of filter size 150 and kernel size 3. In this setting,
L2X can be interpreted as a hard attention model [2] that employs the Gumbel-softmax
trick.

Comparison is carried out with the same metrics. For human accuracy, one selected
sentence for each review is shown to human annotators. The other experimental setups are
kept the same as above. We observe that post-hoc accuracy reaches 84.4% with one sentence
selected by L2X, and human judgements using one sentence align with the original model
prediction for 77.4% of data. Table 3.3 shows the explanations from our model on four
examples.

CHAPTER 3. AN INFORMATION-THEORETIC PERSPECTIVE ON MODEL
INTERPRETATION 46

3.4.3 MNIST

The MNIST data set contains 28× 28 images of handwritten digits [80]. We form a subset
of the MNIST data set by choosing images of digits 3 and 8, with 11, 982 images for training
and 1, 984 images for testing. Then we train a simple neural network for binary classification
over the subset, which achieves accuracy 99.7% on the test data set. The neural network is
composed of two convolutional layers of kernel size 5 and a dense linear layer at last. The
two convolutional layers contains 8 and 16 filters respectively, and both are followed by a
max pooling layer of pool size 2. We try to explain each sample image with k = 4 image
patches on the neural network model, where each patch contains 4 × 4 pixels, obtained by
dividing each 28 × 28 image into 7 × 7 patches. We use patches instead of raw pixels as
features for better visualization.

We parametrize the explainer and the variational family with three-layer and two-layer
convolutional networks respectively, with max pooling added after each hidden layer. The
7× 7 vector sampled from the explainer is upsampled (with repetition) to size 28× 28 and
multiplied with the input raw pixels.

We use only the post-hoc accuracy for experiment, with results shown in Table 3.4. The
predictions based on 4 patches selected by L2X out of 49 align with those from original
images for 95.8% of data. Randomly selected examples with explanations are shown in
Figure 3.4. We observe that L2X captures most of the informative patches, in particular
those containing patterns that can distinguish 3 and 8.

3.5 Proof of Theorem 1

Proof. Forward direction: Any explanation is represented as a conditional distribution of
the feature subset over the input vector. Given the definition of S∗, we have for any X, and
any explanation E : S|X,

ES|XEm[logPm(Y |XS)|X] ≤
Em[logPm(Y |XS∗(X))|X].

In the case when S∗(X) is a set instead of a singleton, we identify S∗(X) with any distribution
that assigns arbitrary probability to each elements in S∗(X) with zero probability outside
S∗(X). With abuse of notation, S∗ indicates both the set function that maps every X to a
set S∗(X) and any real-valued function that maps X to an element in S∗(X).

Taking expectation over the distribution of X, and adding E logPm(Y) at both sides, we
have

I(XS;Y) ≤ I(XS∗ ;Y)

for any explanation E : S|X.
Reverse direction: The reverse direction is proved by contradiction. Assume the

optimal explanation P (S|X) is such that there exists a set M of nonzero probability, over

CHAPTER 3. AN INFORMATION-THEORETIC PERSPECTIVE ON MODEL
INTERPRETATION 47

which P (S|X) does not degenerates to an element in S∗(X). Concretely, we define M as

M = {x : P (S /∈ S∗(x)|X = x) > 0}.
For any x ∈M , we have

ES|XEm[logPm(Y |XS)|X = x] <

Em[logPm(Y |XS∗(x))|X = x], (3.7)

where S∗(x) is a deterministic function in the set of distributions that assign arbitrary
probability to each elements in S∗(x) with zero probability outside S∗(x). Outside M , we
always have

ES|XEm[logPm(Y |XS)|X = x] ≤
Em[logPm(Y |XS∗(x))|X = x] (3.8)

from the definition of S∗. As M is of nonzero size over P (X), combining Equation 3.7 and
Equation 3.8 and taking expectation with respect to P (X), we have

I(XS;Y) < I(XS∗ ;Y), (3.9)

which is a contradiction.

3.6 Conclusion

We have proposed a framework for instancewise feature importance scoring via mutual in-
formation, and a method L2X which seeks a variational approximation of the mutual infor-
mation, and makes use of a Gumbel-softmax relaxation of discrete subset sampling during
training. To our best knowledge, L2X is the first method to realize real-time interpretation
of a black-box model. We have shown the efficiency and the capacity of L2X for instancewise
feature importance scoring on both synthetic and real data sets.

48

Chapter 4

LS-Tree: Model Interpretation When
the Data Are Linguistic

In this chapter, we study the problem of interpreting trained classification models in the
setting of linguistic data sets. The framework developed in this chapter provides a guide-
line for incorporating into importance scores the prior knowledge about what constitutes
a satisfying interpretation in a given domain. It also outlines a framework for quantifying
the importance of interactions between words, going beyond the focus of previous chapters
where importance scores are assigned to single features.

Leveraging a parse tree, we propose to assign least-squares-based importance scores to
each word of an instance by exploiting syntactic constituency structure. We establish an
axiomatic characterization of these importance scores by relating them to the Banzhaf value
in coalitional game theory. Based on these importance scores, we develop a principled method
for detecting and quantifying interactions between words in a sentence. We demonstrate
that the proposed method can aid in interpretability and diagnostics for several widely-used
language models.

4.1 Introduction

While the generality of the stand-alone approach to interpretation is appealing, current
methods provide little opportunity to leverage prior knowledge about what constitutes a
satisfying interpretation in a given domain. Such interpretive capabilities are available most
notably in the setting of natural-language processing (NLP), where there is an ongoing effort
to incorporate linguistic structure (syntactic, semantic and pragmatic) in machine learning
models. Such structure can be brought to bear in the model construction, the interpretation
of a model, or both. For example, Socher et al. [102] introduced a recursive deep model to
understand and leverage compositionality in tasks such as sentiment detection. Lei, Barzilay,
and Jaakkola [103] proposed to use a combination of two modular components, generator
and encoder, to explicitly generate rationales and make prediction for NLP tasks.

CHAPTER 4. MODEL INTERPRETATION FOR LINGUISTIC DATA 49

Compositionality, expressed in the rules used to construct a sentence from its constituent
expressions, is an important property of natural language. While current interpretation
methods fall short of quantifying compositionality directly, there has been a growing interest
in investigating the manner in which existing deep models capture the interactions between
constituent expressions that are critical for successful prediction [13, 18, 103, 104]. However,
existing approaches generally fall short of providing a systematic, quantitative treatment of
interactions, and the generality to be applied to arbitrary models.

In the current chapter, we focus on the model-agnostic interpretation of NLP models.
Our approach quantifies the importance of words by leveraging the syntactic structure of
linguistic data, as represented by constituency-based parse trees. In particular, we develop
the LS-Tree value, a procedure that provides instance-wise importance scores for a model
by minimizing the sum-of-squared residuals at every node of a parse tree for the sentence in
consideration. We provide theoretical support for this by relating it to the Banzhaf value in
coalitional game theory [23].

Our framework also provides a seedbed for studying compositionality in natural language.
Based on the LS-Tree value, we develop a novel method for quantifying interactions between
sibling nodes on a parse tree captured by the target model, by exploiting Cook’s distance in
linear regression [63]. We show that the proposed algorithm can be used to analyze several
aspects of widely-used NLP models, including nonlinearity, the ability to capture adversative
relations, and overfitting. In particular, we carry out a series of experiments studying four
models—a linear model with Bag-Of-Word features, a convolutional neural network [76], an
LSTM [77], and the recently proposed BERT model [105].

4.2 Least squares on parse trees

For simplicity, we restrict ourselves to classification. Assume a model maps a sentence to a
vector of class probabilities. We use f to denote the function that maps an input sentence
x = (x1, . . . , xd) to the log-probability score of a selected class. Let 2[d] denote the power set
of [d] := {1, 2, . . . , d}. The parse tree maps the sentence to a collection of subsets, denoted
as ℘ ⊂ 2[d], where each subset S ∈ ℘ contains the indices of words corresponding to one
node in the parse tree. See Figure 4.1 for an example. By abuse of notation, we use f(S) to
denote the output of the model evaluated on the words with indices S, with the rest of the
words replaced by zero paddings or some reference placeholder. We call v : ℘→ R defined
by v(S) := f(S) − f(∅) a characteristic function, which captures the importance of each
word subset to the prediction.

We seek the optimal linear function on the Boolean hypercube to approximate the char-
acteristic function on℘, and use the coefficients as importance scores assigned to each word.
Concretely, we solve the following least squares problem:

min
ψ∈Rd

∑

S∈℘
[v(S)−

∑

i∈S

ψi]
2, (4.1)

CHAPTER 4. MODEL INTERPRETATION FOR LINGUISTIC DATA 50

0 2 98

heartwarmingisIt

1

.

7

3

6

not

4

entertaining

5

or

0: it; 2: is; 4: not; 5: heartwarming;
1: it is not heartwarming or entertaining. ;
3: is not; 6: heartwarming or entertaining;
7: or; 8: entertaining; 9: . .

Figure 4.1: An example parse tree. Top left shows how each node corresponds to a word
subset. Color indicates the direction and strength of interaction as assigned by Algorithm 1.
Red is used for the direction of positive class, and blue otherwise.
where component ψi of the optimal ψ is the importance score of the word with index i.
We refer to the map from (℘, v) to the solution of Equation (4.1) as the LS-Tree value,
because it results from least squares (LS) on parse trees, and can be considered as a value
in coalitional game theory.

4.3 Connection to coalitional game theory

In this section, we give an interpretation of the LS-Tree value from the perspective of coali-
tional game theory.

Model interpretation has been studied using tools from coalitional game theory [15–17,
20]. We build on this line of research by considering a restriction on coalitions induced by
the syntactic structure of the input.

Let ℘ ⊂ 2[d] be the collection of word subsets constructed from the parse tree. Taking
each word as a player, we can define a coalitional game between d words in a sentence as a
pair (℘, v), where ℘ ⊂ 2[d] enforces restrictions on coalition among players and v : ℘→ R
with v(∅) = 0 is the characteristic function defined by the model evaluated on each coalition.
A value is a mapping that associates a d-dimensional payoff vector ψ(℘, v) to each game
(℘, v), each entry corresponding to a word. The value provides rules which give allocations
to each player for any game.

The problem of defining a fair value in the setting of full coalition (when ℘ = 2[d])
has been studied extensively in coalitional game theory [22, 23]. One popular value is the
Banzhaf value introduced by Banzhaf III [23]. For each i ∈ [d] it defines the value:

φi(2
[d], v) =

1

2d−1

∑

S⊂N\i

[v(S ∪ i)− v(S)].

CHAPTER 4. MODEL INTERPRETATION FOR LINGUISTIC DATA 51

The Banzhaf value can be characterized as the unique value that satisfies the following four
properties [106]:

i) Symmetry: If v(S ∪ i) = v(S ∪ j) for all S ⊂ [d] \ {i, j}, we have φi(2
[d], v) = φj(2

[d], v).
ii) Dummy player property: If v(S ∪ i) = v(S) + v(i) for all S ⊂ [d] \ i, we have

φi(2
[d], v) = v(i).
iii) Marginal contributions: For any two characteristic functions v, w such that v(S∪ i)−

v(S) = w(S ∪ i)− w(S) for any S ⊂ [d], we have φi(2
[d], v) = φi(2

[d], w).
iv) 2-Efficiency: If i, j ∈ [d] merges into a new player p, then φp(2

[d]\{i,j}∪p, vij) =
φi(2

[d], v) + φj(2
[d], v), where vij(S) := v(S) if p /∈ S and vij(S) := v(S \ p ∪ i ∪ j) oth-

erwise, for any S ⊂ [d] \ {i, j} ∪ p.
These properties are natural for allocation of importance to prediction in model inter-

pretation. Symmetry states that two features have the same allocation if their marginal
contributions to feature subsets are the same. The dummy property states that a feature
is allocated the same amount as the contribution of itself alone if its marginal contribution
always equals the model evaluation on its own. The linear model yields such an example.
Marginal contributions states that a feature which has the same marginal contribution be-
tween two models for any word subset has the same amount of allocation. 2-Efficiency states
that allocation of importance is immune to artificial merging of two features.

To employ game-theoretic concepts such as the Banzhaf value in the interpretation of NLP
models, we need to recognize that arbitrary combinations of words are not likely to be ac-
cepted as valid interpretations by humans. We might wish to start with a set of combinations
that are likely to be interpretable by humans, and can be obtained via human-interpretable
data, and then define the worth of other combinations of words via extrapolation. It turns
out that the LS-Tree value as defined in the previous section can be interpreted as exactly
such an extrapolation, where each node of the parse tree represents an interpretable word
combination:

Theorem 4. Suppose a value ψ coincides with the Banzhaf value φ for any game of full coali-
tion, and for every game (℘, v) with restricted coalition, it is consistent under the addition
of an arbitrary subset S /∈ ℘:

ψ(℘, v) = ψ(℘ ∪ {S}, v′), (4.2)

where v′ is defined as v′(T) = v(T) for T 6= S and v′(S) =
∑

i∈S ψi(℘, v). Then ψ coincides
with the LS-Tree value.

Proof. It was shown in Hammer and Holzman [107] that the Banzhaf value assigns to each
player i the corresponding coefficient in the best linear approximation of v. That is,

φ(2[d], v) = arg min
ψ∈Rd

∑

S⊂[d]

[v(S)−
∑

i∈S

ψi]
2.

Based on the proof of Theorem 3.3 in Katsev [108],1 it follows directly that ψ∗, as is defined

1The original theorem is established for the solution to Problem (4.3) with the efficiency constraint that∑
i∈[d] xi = v([d]). But the same proof follows for the unconstrained version.

CHAPTER 4. MODEL INTERPRETATION FOR LINGUISTIC DATA 52

by Equation (4.3), is the unique value that coincides with v → ψ∗(2[d], v) with full coalition
and is consistent under the addition of an arbitrary subset:

ψ∗(℘, v) = arg min
ψ∈Rd

∑

S∈℘
wS[v(S)−

∑

i∈S

ψi]
2. (4.3)

Taking wS ≡ 1, the theorem is established.

4.4 Detecting interactions

We aim to detect and quantify interactions between words in a sentence that have been
captured by the target model. While there are exponentially many possible interactions
between arbitrary words, we restrict ourselves to the ones permitted by the structure of
language. Concretely, we focus on interactions between siblings, or nodes with a common
parent, in the parse tree. As an example, node 3 in Figure 4.1 represents interaction between
“is,” “not” and “heartwarming or entertaining.”

We define interaction as deviation of composition from linearity in a given sentence. As
a result, all non-leaf nodes in the tree are expected to admit zero interaction for a linear
model. The above definition suggests that interaction can be quantified by studying how
the inclusion of a common parent representing the interaction affects the coefficients of the
linear approximation of the model.

Cook’s distance is a classic metric in linear regression that captures the influence of
a data point [63]. It is defined as a constant multiple of the squared distance between
coefficients after a data point is moved, where the distance metric is defined by the data
matrix X ∈ Rn×d:

Di = Const. · (β̂(i) − β̂)TXTX(β̂(i) − β̂),

where β̂(i) and β̂ are the least-squares estimate with the ith data point deleted and the original
least-squares estimate respectively. A larger Cook’s distance indicates a larger influence of
the corresponding data point.

In our setting, the data matrix X is a Boolean matrix where each row corresponds to a
node in the tree, and an entry is one if and only if the word of the corresponding index lies
in the subtree of the node. To capture the interaction of a non-leaf node i (corresponding
to some S ∈ ℘), it does not suffice to only delete the corresponding row, because all of its
ancestor nodes contain the segment represented by the node as well. To deal with this issue,
we compute the distance between the least-squares estimate with the rows corresponding to
the node and all of its ancestors deleted, and the least-squares estimate with only the rows
corresponding to the ancestors deleted:

Di = d(β̂(≥i), β̂(>i)), (4.4)

where β̂(≥i), β̂(>i) denote the estimates with all ancestors, including and excluding node i,
deleted. Cook’s distance d(a, b) = aTXTXb no longer has its statistical meaning here, as the
normality assumption of the linear model no longer holds. A natural choice is the Euclidean

CHAPTER 4. MODEL INTERPRETATION FOR LINGUISTIC DATA 53

distance d1(a, b) :=
√
aT b, which was also introduced by Cook [63]. One drawback of the

Euclidean distance is that it is unable to capture the direction of interaction. When this is
an issue, we may use a signed distance: d2(a, b) :=

∑
i(bi− ai), which sums up the influence

of introducing the extra row on every coefficient of the linear model. We call the score
defined by d1 and d2 absolute and signed LS-Tree interaction scores respectively, as they are
constructed from the LS-Tree value.

We propose an iterative algorithm to efficiently compute the interaction of each node
on a tree with n := |℘| nodes. As a first step, n model evaluations are performed, one
evaluation for each node. For a node i, we denote as Ch(i) the set of its children, X(≥i)
and X(>i) the data matrices excluding the ancestors of i, further excluding and including i
itself respectively, and xTj the row corresponding to node j. The interaction score of each

j ∈ Ch(i) is a function of β̂(>j) − β̂(≥j). Denote Aj = XT
(≥j)X(≥j). For each non-leaf node j,

Aj is of full rank and thus invertible. We show how A−1j and β̂≥j can be computed from A−1i
and β̂≥i. In fact, with an application of the Sherman-Morrison formula [109], we have

β̂(>j) = (XT
(≥j)X(≥j) + xTj xj)

−1(XT
(≥j)Y(≥j) + xTj Yj)

= (I −
(XT

(≥j)X(≥j))
−1xjx

T
j

1 + xTj (XT
(≥j)X(≥j))−1xj

)β̂(≥j)

+
(XT

(≥j)X(≥j))
−1xjYj

1 + xTj (XT
(≥j)X(≥j))−1xj

= (I −
A−1j xjx

T
j

1 + xTj A
−1
j xj

)β̂(≥j) +
A−1j xjYj

1 + xTj A
−1
j xj

. (4.5)

Rearranging the terms in Equation (4.5), we have

β̂(≥j) = β̂(>j) − A−1j xj[Yj − xTj β̂(>j)]. (4.6)

With another application of the Sherman-Morrison formula, we have

A−1j = (XT
(≥i)X(≥i) − xjxTj)−1

= A−1i +
A−1i xjx

T
j A
−1
i

1− xTj A−1i xj
. (4.7)

For leaf nodes, the entry of β̂(≥j) corresponding to j is set to zero, with the remaining

entries equal to those of β̂(>j). This is a result of the minimal Euclidean norm solution of
Problem 4.1, obtained from the pseudoinverse of Aj. Consequently, the (signed) interaction
score of a leaf equals the model evaluation on the leaf alone.

We summarize the derivation in Algorithm 1, which traverses the parse tree from root to
leaves in a top-down fashion to compute the interaction scores of each node. As the number
of nodes in a parse tree is linear in the number of words, Algorithm 1 is of complexity O(d3),
plus the complexity of parsing the sentence, which is O(d) in our experiments, and O(d)
model evaluations. Figure 4.1 shows how Algorithm 1 assigns signed interaction scores to a
given example.

CHAPTER 4. MODEL INTERPRETATION FOR LINGUISTIC DATA 54

Algorithm 1 LS-Tree Interaction Detection

Require: Model f .
Require: Sentence x.
Ensure: LS-Tree value; interaction score.

Find the parse tree T of x.
Find the collection of subsets ℘ corresponding to the parse tree.
for each node i in T do

Compute the model evaluation v(S) for the corresponding subset S.
end for
Compute LS-Tree value β̂ for words via least squares.
Find the root r of T .
Recursion(v, ℘, r, (XTX)−1, β̂)

Algorithm 2 Recursion

Require: v,℘, node j, A−1i , β̂(≥i)
if j is not a leaf then

Compute A−1j , β̂(≥j), Dj via Equation (4.7) and Equation (4.6).
for each child c in of j do

Recursion(v, ℘, c, A−1j , β̂(≥j))
end for

else
Assign Dj with v(j) or |v(j)|.

end if

4.5 Experiments

We carry out experiments to analyze the performance of four different models: Bag of
Words (BoW), Word-based Convolutional Neural Network (CNN) [76], bidirectional Long
Short-Term Memory network (LSTM) [77], and Bidirectional Encoder Representations from
Transformers (BERT) [105], across three sentiment data sets of different sizes: Stanford
Sentiment Treebank (SST) [102], IMDB Movie reviews [69] and Yelp reviews Polarity [72].
For an instance with multiple sentences, we parse each sentence separately, and introduce an
extra node as the common parent of all roots. Interactions between sentences are not consid-
ered in our experiments. The code for replicating the experiments is available anonymously
on GitHub: https://github.com/Anonymous-Alien/LS-tree.

BoW fits a linear model on the Bag-of-Words features. Both CNN and LSTM use a 300-
dimensional GloVe word embedding [110]. The CNN is composed of three 100-dimensional
convolutional 1D layers with 3, 4 and 5 kernels respectively, concatenated and fed into a
max-pooling layer followed by a hidden dense layer. The LSTM uses a bidirectional LSTM
layer with 128 units for each direction. BERT pre-trains a deep bidirectional Transformer [7]

https://github.com/Anonymous-Alien/LS-tree

CHAPTER 4. MODEL INTERPRETATION FOR LINGUISTIC DATA 55

Data Set Classes Train Size Test Size Avg. Len. BoW CNN LSTM BERT

SST 2 6,920 872 19.7 0.82% 0.85% 0.85% 0.93%
IMDB 2 25,000 25,000 325.6 0.94% 0.90% 0.88% 0.93%
Yelp 2 560,000 38,000 136.2 0.94% 0.95% 0.96% 0.97%

Table 4.1: Statistics of the three data sets, together with the test accuracy of the four models.

BERT BoW Category Correlation Depth

Even if you do n’t think kissinger’s any more
guilty of criminal activity than most contemporary
statesmen, he’d sure make a courtroom trial great
fun to watch.

Even if you don’t think kissinger’s any more guilty
of criminal activity than most contemporary
statesmen, he’d sure make a courtroom trial great
fun to watch.

Positive 0.173 11

The problem with this film is that it lacks focus. The problem with this film is that it lacks focus. Negative 0.939 1

Funny but perilously slight. Funny but perilously slight. Positive 0.938 4

Table 4.2: Examples from SST with BERT and BoW. Correlation with linear coefficients
and depth of the top node are listed. The top two words ranked by the LS-Tree value, and
by the linear coefficients, are colorized.

on a large corpus of text by jointly conditioning on both left and right context in all layers.
It has achieved state-of-the-art performance on a large suite of sentence-level and token-level
tasks. See Table 4.1 for a summary of data sets and the accuracies of the four models.

We use the Stanford constituency parser [111–114] for all the experiments. It is a
transition-based parser that is faster than chart-based parsers yet achieves comparable ac-
curacy, by employing a set of shift-reduce operations and making use of non-local features.

4.5.1 Deviation from linearity

We quantify the deviation of three nonlinear models from a linear model via the proposed
LS-Tree value and interaction scores, both for specific instances and on a data set.

The LS-Tree value can be interpreted as supplying the coefficients of the best linear model
used to approximate the target model locally for each instance. The correlation between the
LS-Tree value and the global linear model with Bag of Words (BoW) features can be used as
a measure of nonlinearity of the target model at the instance. Table 4.2 shows three examples
in SST, correctly classified by both BERT and BoW. BERT has low and high correlations
with linear models at the first and second examples in Table 4.2 respectively. In particular,
the top keywords, as ranked by the LS-Tree value, are different between two models.

The average of correlation with BoW across instances can be used as a measure of nonlin-
earity on a certain data set. The average correlation of BoW, CNN, LSTM and BERT with
a linear model is shown in Table 4.3, which indicates that BERT is the most nonlinear model
among the four. CNN is more nonlinear than LSTM on IMDB but comparably nonlinear
on SST and Yelp.

Correlation alone may not suffice to capture the nonlinearity of a model. For example,
the third sentence in Table 4.2 has a relatively high correlation, but the bottom left parse

CHAPTER 4. MODEL INTERPRETATION FOR LINGUISTIC DATA 56

BoW CNN LSTM BERT

SST 1.000 0.591 0.580 0.465
IMDB 1.000 0.442 0.552 0.321
Yelp 1.000 0.683 0.684 0.476

Table 4.3: Average correlation of the LS-Tree values with linear coefficients. The average
correlation is comparable across different models on the same data set.

contemporaryany statesmeneven make, .to-LRB-you criminalmoredo sure's watchmost 'dif courtroomthan he a greatkissinger -RRB- ofguiltyn't trialactivity funthink thatthis is it focus .the lackswithproblem film funny perilously .but slight

Figure 4.2: Visualization of parse trees of examples in Table 4.2. Nodes are colorized based
on the signed interaction scores, red for the direction of positive class, and blue otherwise.

1 2 3 4 5 6 7 8 9 10

Top Nodes
1.0

1.5

2.0

2.5

3.0

3.5

De
pt

h

Avg. Depth vs. # Top Nodes (SST)

1 2 3 4 5 6 7 8 9 10

Top Nodes
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

De
pt

h

Avg. Depth vs. # Top Nodes (IMDB)

1 2 3 4 5 6 7 8 9 10

Top Nodes
1.0

1.5

2.0

2.5

3.0

3.5

De
pt

h

Avg. Depth vs. # Top Nodes (Yelp)

BoW CNN LSTM BERT

(a)

Histogram of Intersection Scores
Test
Train

Test Train

(b)

Figure 4.3: (a) Average depth of top nodes as the number of the selected top nodes varies.
(b) The histogram of intersection scores with train and test data for BERT on SST.

tree in Figure 4.2 indicates that the top interaction ranked by the signed interaction score is
the node combining “funny” with “but perilously slight.” This indicates the BERT model
has captured the adversative conjunction, which BoW is not capable of. The ability to
capture closer-to-the-top nodes in a parse tree is an indication of nonlinearity of the model.
To quantify this ability, we define the depth of a node in the parse tree as the maximum
distance of the node from the bottom:

Depth(i) =

{
1 + maxc∈Ch(i) Depth(c) if Ch(i) 6= ∅,
1 otherwise.

For a linear model, all non-leaf nodes have zero interaction, and thus the top-ranked nodes
are of depth 1, until all leaves with positive weights are enumerated. The higher the depth
of top-ranked nodes, the more nonlinear a model is at a specific instance.

The average depths of top nodes ranked by interaction scores across instances can be
used as a measure of the nonlinearity of the model on that data set. Figure 4.3a compares
the average depths across BoW, CNN, LSTM and BERT on the three data sets, with top

CHAPTER 4. MODEL INTERPRETATION FOR LINGUISTIC DATA 57

Dataset Model Avg. Score not but yet though although even though whereas except despite in spite of

SST

BoW 0.153 0.000(6.318) 0.000(0.079) 0.000(2.005) 0.000(0.865) 0.000(2.222) 0.000(0.000) -(-) 0.000(4.280) 0.000(3.519) 0.000(0.000)
CNN 0.634 1.673(4.592) 1.694(1.444) 0.568(0.959) 0.213(0.735) 0.915(0.462) 0.626(0.407) -(-) 0.948(1.175) 1.452(4.270) 2.119(1.943)

LSTM 0.79 1.746(2.580) 1.502(0.453) 1.449(2.368) 1.153(1.094) 0.338(0.197) 1.794(0.998) -(-) 2.353(3.835) 1.256(1.818) 0.590(0.624)
BERT 1.238 1.714(4.383) 2.148(1.760) 1.669(3.120) 1.525(3.268) 1.741(3.256) 1.885(2.092) -(-) 1.156(3.331) 1.160(2.998) 0.864(2.352)

IMDB

BoW 0.038 0.000(2.683) 0.000(0.263) 0.000(2.210) 0.000(1.473) 0.000(1.710) 0.000(0.000) 0.000(3.604) 0.000(1.342) 0.000(0.132) -(-)
CNN 0.424 1.050(0.819) 3.442(0.021) 1.689(0.295) 0.922(0.085) 1.036(0.071) 1.175(0.467) 0.469(1.064) 1.590(4.067) 0.363(0.434) -(-)

LSTM 0.126 0.960(3.087) 2.222(0.524) 1.500(0.238) 0.611(0.087) 0.492(1.270) 0.944(0.683) 1.222(3.865) 1.294(4.008) 0.286(0.508) -(-)
BERT 1.159 1.616(2.057) 3.390(1.800) 1.644(1.152) 1.371(2.061) 1.735(2.123) 1.457(1.557) 0.285(0.430) 1.421(2.060) 1.518(2.241) -(-)

Yelp

BoW 0.035 0.000(8.488) 0.000(1.015) 0.000(3.553) 0.000(1.664) 0.000(1.128) 0.000(0.000) 0.000(0.536) 0.000(0.367) 0.000(1.213) -(-)
CNN 0.161 2.287(3.467) 2.454(0.932) 0.516(0.043) 0.988(0.435) 0.889(0.075) 0.789(0.621) 0.286(0.671) 0.522(2.529) 0.423(0.889) -(-)

LSTM 0.224 2.173(5.950) 1.712(1.676) 0.988(2.065) 0.984(1.310) 0.706(1.194) 0.559(0.483) 1.395(1.793) 0.344(1.408) 0.514(1.153) -(-)
BERT 0.746 1.384(2.106) 2.448(0.658) 0.781(0.184) 1.336(0.953) 0.596(0.615) 1.019(0.880) 0.095(0.162) 0.331(0.074) 1.041(0.414) -(-)

Table 4.4: Scores with and without parentheses are for nodes containing adversative words
alone and their parents where the adversative relation takes place respectively.

Sentence Meaning BoW CNN LSTM BERT

... He said he couldn’t help. We had to walk
while the snow blew in our faces. When we
were almost there, we saw the shuttle pull out
with the smoking shuttle driver in it, driving in
the opposite direction, away from us. I can not
believe how rude they were.

during the time that 0.000(0.338) 0.781(0.300) 1.761(0.839) 0.062(0.092)

... I ordered a cappuccino. It tasted like milk
and no coffee. I was exceptionally disappointed.
So while the place has a great reputation, even
they can screw it up if they don t pay attention
to detail, and at this level they should never
screw it up. I had a better cup at Martys Market
for crying out loud!

whereas (indicating a contrast) 0.000(0.338) 1.142(0.300) 2.155(0.839) 2.167(0.092)

Usually asking the server what is her favorite
dish gets you a pretty good recommendation,
but in this case, it was crap! The smoked brisket
had that discoloration that happens to meat
when it’s been sitting out for a while. And it
wasn’t even tender!! Am I asking for too much?

a period of time 0.000(0.338) 0.206(0.300) 0.465(0.839) 0.082 (0.092)

Table 4.5: The word “while” in different contexts. Scores with and without parentheses are
for nodes containing “while” alone and their parents respectively.

k = 1, 2, . . . , 10 words selected. BoW is used as a baseline whose non-leaf nodes have zero
interaction scores. We use the absolute interaction scores here to capture all interactions, no
matter whether they are in the same or opposite direction of prediction. BERT is still the
most capable of capturing deeper interactions, followed by CNN and LSTM. CNN turns out
to be a more nonlinear model than LSTM on Yelp, which was not captured by correlation.

4.5.2 Adversative relations

Adversative words are those which express opposition or contrast. They often play an im-
portant role in determining the sentiment of an instance, by reversing the sentiment of a
preceding or succeeding word, phrase or statement. We focus on four types of adversative
words: negation that reverses the sentiment of a phrase or word (e.g., “not”), adversa-
tive coordinating conjunctions that express opposition or contrast between two statements
(e.g., “but” and “yet”), subordinating conjunctions indicating adversative relationship (e.g.,
“though,” “although,” “even though,” and “whereas”), prepositions that precede and govern
nouns adversatively (e.g., “except,” “despite” and “in spite of”).

CHAPTER 4. MODEL INTERPRETATION FOR LINGUISTIC DATA 58

In most cases, adversative words only function if they interact with their preceding or
succeeding companion. In order to verify whether models are able to capture the adversative
relationship, we examine the LS-Tree interaction scores of the parent nodes of these words.

We extract all instances that contain any of the above adversative words. Then for each
word in an instance, we compute the interaction score of the corresponding node with the
word alone, and that of its parent node. A high interaction score on the node with the
adversative word alone indicates the model inappropriately attributes to the word itself a
negative or positive sentiment. A high interaction score on the parent node indicates the
model captures the interaction of the adversative word with its preceding or succeeding
component. To compare across different models, we further compute the average interaction
score of a generic node across all instances, and report the ratio of average interaction scores
of specific nodes to the average score of a generic node for respective models.

Table 4.4 reports the results on three data sets. We observe the ability of capturing
adversative relation for different models varies across data sets. BERT takes the lead in
capturing adversative relations on SST and IMDB, perhaps with the help of BERT’s pre-
training process on a large corpus, but CNN and LSTM catch up with BERT on Yelp,
which has a larger amount of training data. On the other hand, all models assign a high
score on nodes with adversative words alone. This may result from the uneven distribution
of adversative words like “not” among the positive and negative classes. An additional
observation is that BERT has the highest score for a generic node on average across three
data sets, indicating that BERT is the most sensitive to words and interactions on average.

Some words have different meanings in different contexts. It is interesting to investigate
whether a model can distinguish the same word under different contexts. The word “while”
is such an example. Table 4.5 shows three Yelp reviews that include “while.” It can be
observed that the scores of the parent nodes of “while” is higher than average when “while”
contains an adversative meaning, but lower otherwise. This observation holds across CNN,
LSTM and BERT, with the sharpest distinction on BERT.

4.5.3 Detecting overfitting

Overfitting happens when a model captures sampling noise in training data, while failing
to capture underlying relationships between the inputs and outputs. Overfitting can be a
problem in modern machine learning models like deep neural networks, due to their expressive
nature. To mitigate overfitting, one often splits the initial training set into a training and a
validation set, and uses the latter to obtain an estimate of the generalization performance
[115]. This leads to a waste of training data, depriving the model of potential opportunities
to learn from the labelled validation data. We observe that the LS-Tree interaction scores
can be used to construct a diagnostic for overfitting, one which is solely computed with
unlabelled data.

Figure 4.3b shows the histograms of absolute interaction scores on small subsets of train-
ing and test data of SST, for an overfitted BERT model. The scores are more spread out on
test data than those on training data. In fact, we have observed that this phenomenon holds

CHAPTER 4. MODEL INTERPRETATION FOR LINGUISTIC DATA 59

0 5 10 15 20 25 30 35 40

Epoch
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Lo
ss

Loss vs. Epoch (CNN)

0 5 10 15 20 25 30

Epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Lo
ss

Loss vs. Epoch (LSTM)

0 2 4 6 8

Epoch
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Lo
ss

Loss vs. Epoch (BERT)

0 5 10 15 20 25 30 35 40

Epoch
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Va
ria

nc
e

Variance vs. Epoch (CNN)

0 5 10 15 20 25 30

Epoch
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Va
ria

nc
e

Variance vs. Epoch (LSTM)

0 2 4 6 8

Epoch
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Va
ria

nc
e

Variance vs. Epoch (BERT)

Train Test

0 5 10 15 20 25 30 35 40

Epoch

0.0

0.2

0.4

0.6

0.8

1.0

P
-v

a
lu

e

P-value vs. Epoch (CNN)

P-value

α = 0.5

0 5 10 15 20 25 30

Epoch

0.0

0.2

0.4

0.6

0.8

1.0

P
-v

a
lu

e

P-value vs. Epoch (LSTM)

P-value

α = 0.5

0 2 4 6 8

Epoch

0.0

0.2

0.4

0.6

0.8

1.0

P
-v

a
lu

e

P-value vs. Epoch (BERT)

P-value

α = 0.5

Figure 4.4: The three figures in Line 1 plot training and test loss of CNN, LSTM, BERT
respectively. The figures in Line 2 plot the corresponding average variance of interaction
scores across instances over training and test sets. The figures in Line 3 show p-values of
permutation tests of 50, 000 iterations with 300 randomly selected instances in training and
test sets respectively.

true on average across instances for a overfitted model. In particular, interaction scores of
test instances have a larger variance on average than those of training instances when the
model is overfitted, but comparable otherwise. The observation can also be generalized to
other types of neural networks, including CNN and LSTM. We show in Figure 4.4 the aver-
age variance on training and test sets for CNN, LSTM and BERT models against training
epochs, together with the loss curves. We observe that overfitting occurs when the variances
between training and test sets differ.

The observation suggests we may use the difference of average variances of interaction
scores between training and test sets as a diagnostic for overfitting. In particular, a per-

CHAPTER 4. MODEL INTERPRETATION FOR LINGUISTIC DATA 60

mutation test can be carried out under the null hypothesis of equal average variance. The
resulting p-values are plotted against the number of training epochs in the third line of
Figure 4.4. It can be observed that p-values fall below the significance level of 0.05 when
overfitting occurs, which suggests the rejection of the null hypothesis as an early stopping
criterion in training.

4.6 Discussion

We have proposed the LS-Tree value as a fundamental quantity for interpreting NLP models.
This value leverages a constituency-based parser so that syntactic structure can play a role
in determining interpretations. We have also presented an algorithm based on the LS-Tree
value for detecting interactions between siblings of a parse tree. To the best of our knowledge,
this is the first model-interpretation algorithm to quantify the interaction between words for
arbitrary NLP models. We have applied the proposed algorithm to the problem of assessing
the nonlinearity of common neural network models and the effect of adversative relations on
the models. We have presented a permutation test based on the LS-Tree interaction scores
as a diagnostic for overfitting.

61

Part II

Adversarial Robustness

62

Chapter 5

Greedy Attack and Gumbel Attack:
Generating Adversarial Examples for
Discrete Data

We present a probabilistic framework for studying adversarial attacks on discrete data. Based
on this framework, we derive a perturbation-based method, Greedy Attack, and a scalable
learning-based method, Gumbel Attack, that illustrate various tradeoffs in the design of
attacks. We demonstrate the effectiveness of these methods using both quantitative metrics
and human evaluation on various state-of-the-art models for text classification, including
a word-based CNN, a character-based CNN and an LSTM. As an example of our results,
we show that the accuracy of character-based convolutional networks drops to the level of
random selection by modifying only five characters through Greedy Attack.

5.1 Introduction

Robustness to adversarial perturbation has become an extremely important criterion for
applications of machine learning in security-sensitive domains such as spam detection [116],
fraud detection [117], criminal justice [118], malware detection [119], and financial markets
[120]. Although it is not surprising that some small perturbations can change the prediction
of an ML model, it is nontrivial to find those perturbations. For instance, random sampling
usually cannot find those adversarial examples. Therefore, systematic methods for generating
adversarial examples by small perturbations of original input data, also known as “attack,”
have been developed to operationalize this criterion and to drive the development of more
robust learning systems [25, 26, 121].

Most of the work in this area has focused on differentiable models with continuous input
spaces [25–27]. In this setting, the proposed attack strategies add a gradient-based perturba-
tion to the original input, resulting in a dramatic decrease in the predictive accuracy of the
model. This finding demonstrates the vulnerability of deep neural networks to adversarial

CHAPTER 5. ADVERSARIAL EXAMPLES FOR DISCRETE DATA 63

Attack Methods Training Efficiency Success rate Black-box
Saliency [8] No High Medium No

Projected FGSM [122] No High Low No
Delete 1-score [18] No Low High Yes

DeepWordBug [123] No Low Medium Yes
Greedy Attack No Low Highest Yes
Gumbel Attack Yes High Medium Yes

Table 5.1: Methods comparisons. “Efficiency”: computational time and model evaluation
times. “Black-box”: applicability to black-box models. See Section 5.4 for details.

examples in tasks like image classification and speech recognition.
We focus instead on adversarial attacks on models with discrete input data, such as text

data, where each feature of an input sample has a categorical domain. For simplicity, we will
limit ourselves to untargeted attack in this chapter. While gradient-based approaches are not
directly applicable to this setting, variations of gradient-based approaches have been shown
effective in differentiable models. For example, Li et al. [104] proposed to locate the top
features with the largest gradient magnitude of their embedding, and Papernot et al. [122]
proposed to modify randomly selected features of an input through perturbing each feature by
signs of the gradient, and project them onto the closest vector in the embedding space. Dalvi
et al. [121] attacked such models by solving a mixed integer linear program. Gao et al. [123]
developed scoring functions applicable for sequence data, and proposed to modify characters
of the features selected by the scoring functions. Attack methods specifically designed for
text data have also been studied recently. Jia and Liang [124] proposed to insert distraction
sentences into samples in a human-involved loop to fool a reading comprehension system.
Samanta and Mehta [125] added linguistic constraints over the pool of candidate-replacing
words. [126] applied a gradient-based technique to attack sequence-to-sequence models.

We propose a systematic probabilistic framework for generating adversarial examples for
models with discrete input. The framework is a two-stage process, where the key features to
be perturbed are identified in the first stage and are then perturbed in the second stage by
values chosen from a dictionary. We present two instantiations of this framework—Greedy
Attack and Gumbel Attack. Greedy Attack evaluates models with single-feature perturbed
inputs in two stages, while Gumbel Attack learns a parametric sampling distribution for
perturbation. Greedy Attack achieves higher success rate, while Gumbel Attack requires
fewer model evaluations, leading to better efficiency in real-time or large-scale attacks. Both
attacks assume a score-based threat model. Table 5.1 systematically compares our methods
with other methods.

In summary, our contributions in this work are as follows:

• We propose a probabilistic framework for adversarial attacks on models with discrete
data.

• We show that Greedy Attack achieves state-of-the-art attack success rates across var-

CHAPTER 5. ADVERSARIAL EXAMPLES FOR DISCRETE DATA 64

X X̂

Gi

α

Ỹ

d

X X̃

θ φG

H

Ỹ

Figure 5.1: The left and right figures show the graphical models of the first and second stage
respectively. Parameters α, θ and φG are specific to Gumbel Attack (Algorithm 4).

ious kinds of models.

• We propose Gumbel Attack as a scalable method with low model-evaluation complex-
ity.

• We observe that character-based models in text classification are particularly vulner-
able to adversarial attack.

5.2 Framework

We assume a model in the form of a conditional distribution, Pm(Y | x), for a response Y ,
supported on a set Y , given a realization of an input random variable X = x ∈ Wd, where
W := {w0, w1, . . . , wm} is a discrete space such as the dictionary of words or the space of
characters. We assume there exists w0 ∈ W that can be taken as a reference point with no
contribution to classification. For example, w0 can be the zero padding in text classification.
Let x̃ denote a perturbation of the input variable x. The goal of the adversarial attack
is to turn a given input x into x̃ through small perturbations, in such a way that Ỹ = 1
given x̃, where Ỹ is the indicator of a successful attack: Ỹ | x̃, x := 111{arg maxy Pm(y | x̃) 6=
arg maxy Pm(y | x)}. We restrict the perturbations to k features of x, and approach the
problem through two stages. In the first stage, we search for the most important k features
of x. In the second stage, we search for values to replace the selected k features:

First stage: x̂ = arg max
a∈S1(x,k)

P(Ỹ = 1|a, x), (5.1)

Second stage: x̃ = arg max
a∈S2(x̂,x)

P(Ỹ = 1|a, x), (5.2)

where S1(x, k) := {a ∈ Wd | ai ∈ {xi, w0} for all i, d(a, x) ≤ k} is a set containing all the
elements that differ from x by at most k positions, with the different features always taking
value w0, and S2(x̂, x) := {a ∈Wd | ai = x̂i if x̂i = xi; ai ∈W′ otherwise}. Here, we denote
by xi, ai, x̂i the ith feature of x, a, x̂, by d(a, x) the count of features different between a and
x, and by W′ ⊆W a sub-dictionary of W chosen by the attacker.

These two objectives are computationally intractable in general. We thus further propose
a probabilistic framework to reformulate the objectives into a more tractable objective, as

CHAPTER 5. ADVERSARIAL EXAMPLES FOR DISCRETE DATA 65

shown in Figure 5.1. Let G be a random variable in Dd
k := {z ∈ {0, 1}d :

∑
zi ≤ k}, the

space of d-dimensional zero-one vectors with at most k ones, and let φ : Wd × Dd
k → Wd

be a function such that φ(x, g)i = xi if gi = 0 and φ(x, g)i = w0 if gi = 1. In the first
stage, we let X̂ = φ(X,G) where G is generated from a distribution conditioned on X.
We further add a constraint on P(G|X), by defining k identical random one-hot random
variables G1, G2, . . . , Gk ∈ Dd

1 conditioned on X, and letting Gi := maxs{Gs
i}, with Gi and

Gs
i being the ith entries of the variables G and Gs respectively. We aim to maximize the

objective P(Ỹ = 1 | X̂,X) over the distribution of G given X, the probability of successful
attack obtained by merely masking features:

max
P(G|x)

EX [P(Ỹ = 1 | X̂,X)], s.t. X̂ = φ(X,G), Gs i.i.d.∼ P(· | X), Ỹ ∼ P(Ỹ | X̂,X). (5.3)

The categorical distribution P(Gs | x) yields a rank over the d features for a given x. We
define φG : Wd → Pk([d]) to be the deterministic function that maps an input x to the
indices of the top k features based on the rank from P(Gs | x): φG(x) = {i1, . . . , ik}.

In the second stage, we introduce a new random variable H = (H1, . . . , Hd) with each

H i being a one-hot random variable in D
|W′|
1 := {z ∈ {0, 1}|W′| :

∑
zi = 1}. Let Pk([d]) be

the set of subsets of [d] of size k. Let ψ : Wd × (D
|W′|
1)d × Pk([d])→Wd be a function such

that ψ(x, h, φG(x))i is defined to be xi if i /∈ φG(x), and is the value in W′ corresponding
to the one-hot vector hi otherwise. The perturbed input is X̃ := ψ(X,H, φG(X)), where
H is generated from a distribution conditioned on X. We add a constraint on P(H | X)
by requiring H1, . . . , Hd to be independent of each other conditioned on X. Our goal is to
maximize the objective P(Ỹ = 1 | X̃,X) over the distribution of H given X:

max
P(H|x)

EX,G[P(Ỹ = 1|X̃,X)], s.t. X̃ = ψ(X,H, φG(X)), H ∼ P(·|X), Y ∼ P(Ỹ |X̃,X).

(5.4)

For a given input x, the categorical distribution P(H i | x) yields a rank over the values in W′
to be chosen for each feature i. The perturbation on x is carried out on the top k features
φG(x) = {i1, . . . , ik} ranked by P(Gs | x); each chosen feature is is assigned the top value in
W′ selected by P(H is | x).

5.3 Methods

In this section we present two instantiations of our general framework: Greedy Attack and
Gumbel Attack.

5.3.1 Greedy Attack

We motivate Algorithm 3, Greedy attack, as optimizing the lower bounds of Problem (5.3)
and Problem (5.4). To solve Problem (5.3), we decompose the objective conditioned on a

CHAPTER 5. ADVERSARIAL EXAMPLES FOR DISCRETE DATA 66

single instance x as:

EG|X [P(Ỹ = 1 | X̂,X) | x] =
d∑

i=1

P(G1 = ei | x)EG(1)|X,G1 [P(Ỹ = 1 | X̂,X) | x, ei],

where ei denote the d-dimensional one-hot vector whose ith component is 1, and G(1) :=
(G2, . . . , Gk). We claim the objective in Problem 5.3 conditioned on a single instance x can
be lower bounded as

max
P(G|x)

EG|X [P(Ỹ = 1 | X̂,X) | x]

≥ max
P(G1|x)

d∑

i=1

(
P(G1 = ei | x) max

P(G(1)|x,ei)
E[P(Ỹ = 1 | X̂,X) | x, ei]

)

≥ max
P(G1|x)

d∑

i=1

P(G1 = ei | x)P(Ỹ = 1 | x(i)). (5.5)

In fact, let ∨ denote the elementwise maximum of k random vectors. We have

max
P(G(1)|x,ei)

E[P(Ỹ = 1 | X̂,X) | x, ei] = max
P(G(1)|x,ei)

E[P(Ỹ = 1 | φ(X,∨{ei, G(1)}), X) | x, ei]

≥ P(Ỹ = 1 | φ(x,∨{ei, G2 = ei, . . . , G
k = ei}))

= P(Ỹ = 1 | x(i)).
where the first equality follows from the definition of X̂, and the inequality follows from
degenerating P(G(1)|x, ei). The lower bound (5.5) is maximized when

P(G1 = ei | x) ∝ P(Ỹ = 1 | x(i)). (5.6)

Similarly, we decompose the objective in Problem (5.4) by conditioning on H i1 and invoking
the independence between G and H conditioning on X. Using a similar argument, we arrive
at

max
P(H|x,g)

EH|X,G[P(Ỹ = 1 | X̃,X) | x, g]

= max
P(Hi1 |x,g)

|W′|∑

j=1

P(H i1 = ej | x, g) max
P(H(i1)|x,ej)

EH(i1)|X,G,Hi1 [P(Ỹ = 1 | X̃,X) | x, ei]

≥ max
P(Hi1 |x,g)

|W′|∑

j=1

P(H i1 = ej | x, g)P(Ỹ = 1|x(i1→wj)). (5.7)

The lower bound (5.7) is maximized when

P(H i1 = ej | x, g) ∝ P(Ỹ = 1 | x(i1→wj)). (5.8)

The same applies to i2, . . . , ik. The algorithm Greedy Attack is built up from Equation (5.6)
and Equation (5.8) in a straightforward manner. See Algorithm 3 for details.

While Greedy Attack is proposed in its most generic form, it is flexible to incorporate

CHAPTER 5. ADVERSARIAL EXAMPLES FOR DISCRETE DATA 67

linguistic coherence for natural language tasks. GloVe [110] is a widely used unsupervised
learning algorithm to obtain vector representation of words. The Euclidean distance between
two vector embeddings provides an effective method for measuring the semantic similarity
of the corresponding words. Throughout experiments, we restrict the candidate pool in the
second stage of Greedy Attack to words close to the original word in terms of the Euclidean
distance of the corresponding vector embeddings, so as to keep the semantic meaning of the
entire sentence.

Algorithm 3 Greedy Attack

Input: Model Pm(Y | x).
Input: Sample x ∈Wd.
Input: k, number of features to change.
Input: W′, sub-dictionary.
Output: Modified x.
for i = 1 to d do

Compute P(Ỹ |x(i)).
end for
i1, . . . , ik = Topk(P(Ỹ |x(i))di=1).
for s = 1 to k do

xis ← arg max
w∈W′

P(Ỹ |x(is→w)).
end for

Algorithm 4 Gumbel Attack

Input: Model Pm(Y | x).
Input: k, number of features to change.
Input: A data set D = {xi} (for train-
ing).
Input: A data set D′ to be attacked.
Input: W′, sub-dictionary.
Output: Modified data set D̃′.
Train Pα(G|X) on D.
Train Pθ(H|X) on D given Pα(G|X).
for x in D′ do

i1, . . . , ik = Topk(Pα(G|x))
for s = 1 to k do

xis ← arg max
w∈W′

Pα(H is|g, x)

end for
Add the modified x to D̃′.

end for

5.3.2 Gumbel Attack

Algorithm 3 evaluates the original model O(d+k · |W′|) times for each sample. In the setting
where one would like to carry out the attack over a massive data set D′, Greedy Attack can
be infeasible due to the high cost of model evaluations. Assuming that the original model is
differentiable and each sample in D′ is generated from a common underlying distribution, an
alternative approach to solve Problem (5.3) and Problem (5.4) is to parametrize P(G | x) and
P(H | x) and optimize the objectives over the parametric family directly on a training data
set from the same distribution before the adversarial attack. An outline of this approach is
described in Algorithm 4. We describe the training process in detail below.

In the presence of k categorical random variables in Equation (5.3) and Equation (5.4),
direct model evaluation requires summing over dk terms and |W′|k terms respectively. A
straightforward approximation scheme is to exploit Equations (5.5) and (5.7), where we

CHAPTER 5. ADVERSARIAL EXAMPLES FOR DISCRETE DATA 68

assume the distribution of hidden nodes G and H is well approximated by greedy methods.
Nonetheless, this still requires d+ |W′|k model evaluations for each training sample. Several
approximation techniques exist to further reduce the computational burden; e.g., one can
take a weighted sum of features parametrized by deterministic functions of X, similar to
the soft-attention mechanism [1, 2, 92], and REINFORCE-type algorithms [91]. We instead
propose a method based on the “Gumbel trick” [93, 95], combined with the approximation
of the objective proposed in Greedy Attack on a small subset of the training data. This
achieves better performance with lower variance and higher model evaluation efficiency in
our experiments.

The Gumbel trick involves using a Concrete random variable, introduced as a differ-
entiable approximation of a categorical random variable, which has categorical probability
p1, p2, . . . , pd and is encoded as a one-hot vector in Rd. The Concrete random variable C,
denoted by C ∼ Concrete(p1, p2, . . . , pd), is a random vector supported on the relaxed sim-
plex ∆d := {z ∈ [0, 1]d :

∑
i zi = 1}, such that Ci ∝ exp{(log pi + εi)/τ}, where τ > 0 is the

tunable temperature, and εj := − log(− log ui), with ui generated from a standard uniform
distribution, defines a Gumbel random variable.

In the first stage, we parametrize P(Gs | x) by its categorical probability pα(x), where

pα(x) = ((pα(x))1, (pα(x))2, . . . , (pα(x))d),

and approximate G by a random variable U defined from a collection of Concrete random
variables:

U = (U1, . . . , Ud), Ui = max
s=1,...,k

{Cs
i },

where Cs i.i.d.∼ Concrete (pα(x)) for s = 1, . . . , k. We write U = U(α, x, ε) as it is a function
of the parameters α, input x and auxiliary random variables ε. The perturbed input X̂ =
φ(X,G) is approximated by

X̂ ≈ U �X, with (U �X)i := (1− Ui) ·Xi + Ui · w0,

where we identify Xi, w0 and wj with their corresponding embeddings for notation conve-
nience.

In the second stage, we parametrize P(H | x) by another family qθ(x) = {(qθ)ij, i =
1, . . . , d; j = 1, . . . , |W′|}, and approximate each H i by a Concrete random variable

V i ∼ Concrete
(
(qθ)i1, . . . , (qθ)i|W′|

)
.

The perturbed input X̃ = ψ(X,H, φG(x)) is approximated by replacing the is feature with
a weighted sum of the embeddings of w ∈ W′ with entries of V is as weights, for each is in
φG(x):

ψ(X,H, φG(X)) ≈ V �φG X,
where

(V �φG X)i :=

{∑
wj∈W′ V

i
j · wj if i ∈ φG(X),

Xi otherwise.

CHAPTER 5. ADVERSARIAL EXAMPLES FOR DISCRETE DATA 69

Data Set Classes Train Samples Test Samples Average #w Model Parameters Accuracy

IMDB Review [69] 2 25,000 25,000 325.6 WordCNN 351,002 90.1%
AG’s News [72] 4 120,000 7,600 278.6 CharCNN 11,337,988 90.09%

Yahoo! Answers [72] 10 1,400,000 60,000 108.4 LSTM 7,146,166 70.84%

Table 5.2: Summary of data sets and models. “Average #w” is the average number of words
per sample. “Accuracy” is the model accuracy on test samples.

The final objectives of Gumbel attack on a data set D become the following:

max
α

1

|D|
∑

x∈D

log f(U(α, x, ε)� x),

max
θ

1

|D|
∑

x∈D

log f(V (θ, x, ε)�φG x),

where we define f(x) := P(Ỹ = 1 | x) for notational convenience. Note that ε is an
auxiliary random variable independent of the parameters. In the training stage, we can
apply stochastic gradient methods directly to optimize the two objectives, where a mini-
batch of unlabelled data and auxiliary random variables are jointly sampled to compute a
Monte Carlo estimate of the gradient. In the attack stage, one directly perturbs incoming
samples from a massive data set D′ based on the trained samplers Pα(G|X) and Pθ(H|X),
with no cost on model evaluation. A high-level sketch of the two-stage Gumbel attack is
shown in Algorithm 4.

5.4 Experiments

We evaluate the performance of our algorithms in attacking three text classification models,
including a convolutional neural network (CNN) and a Long Short-Term Memory (LSTM)
network. See Table 5.2 for a summary of the data and models used, and supplementary
material for model details. During the adversarial attack, inputs are perturbed at their
respective feature levels, and words and characters are units for perturbation for word and
character-based models respectively. We compare Greedy Attack and Gumbel Attack with
the following methods:

• Delete-1 Score [18]: Mask each feature with zero padding, use the decrease in the
predicted probability as the score of the feature, and mask the top-k features as un-
known.

• DeepWordBug [123]: For each feature, compute a linear combination of two scores,
with the first score evaluating a feature based on its preceding features, and the second
based on its following features. Weights are selected by the user.

• Projected FGSM [26, 122]: Perturb a randomly selected subset of k features by
replacing the original word w with a w′ in the dictionary such that ‖sgn(emb(w′) −
emb(w)) − sgn(∇f)‖ is minimized, where emb(w) is the embedding of w, and ∇f is
the gradient of the predicted probability with respect to the original embedding.

CHAPTER 5. ADVERSARIAL EXAMPLES FOR DISCRETE DATA 70

• Saliency [8, 127]: Select the top k features by the gradient magnitude, defined as the
l1 norm of the gradient with respect to the features’ embeddings, and mask them as
unknown.

• Saliency-FGSM: Select the top k features based on the Saliency map, and replace
each of them using projected FGSM.

5.4.1 Word-based models

We use two word-based models: a word-based CNN network [76] and a word-based LSTM
network [77]:

• IMDB with a word-CNN: We use the Large Movie Review Dataset (IMDB) for
sentiment classification [69]. It contains 50, 000 binary labeled movie reviews, with
a split of 25, 000 for training and 25, 000 for testing. The word-based CNN model
consists of a 50-dimensional word embedding, a 1-D convolutional layer of 250 filters
and kernel size 3, a max-pooling and a 250-dimensional dense layer as hidden layers.
Both the convolutional and the dense layers are followed by ReLU as nonlinearity, and
Dropout [78] as regularization. The model is trained with rmsprop [79] for five epochs.
Each review is padded/cut to 400 words. The model achieves accuracy of 90.1% on
the test data set.

• Yahoo! Answers with an LSTM: We use the ten-category corpus Yahoo! Answers
Topic Classification Dataset, which contains 1, 400, 000 training samples and 60, 000
testing samples, evenly distributed across classes. Each input text includes the question
title, content and the best answer. An LSTM network is used to classify the texts.
The network consists of a 300-dimensional randomly-initialized word embedding, a
bidirectional LSTM, each with dimension 256, and a dropout layer as hidden layers.
The model is trained with rmsprop [79]. It achieved an accuracy of 70.84% on the test
data set, close to the state-of-the-art accuracy of 71.2% obtained by character-based
CNN [72].

For greedy attack, we try to improve its linguistic coherence by using a candidate pool
of similar words for the replacement in the second stage. We first calculate the distribution
of Euclidean distance between the corresponding GloVe embeddings for each pair of words.
Under the assumption that a closer distance between embeddings implies closer semantic
meaning, we limit the candidate pool in the second stage of Greedy Attack to words whose
distance to the original word is within 5% quantile of the distribution.

For Gumbel Attack, we use the 500 words with the highest frequencies as the dictionary
W′ of replacing words. We parametrize the identifier pα(x) and perturber qθ(x) with the
model structure plotted in Figure 5.2, which consists of a local information component
and a global information component. The input is initially fed into a common embedding
layer and a 100-filter convolutional layer. Then the local component processes the common
output through two 50-filter convolutional layers with, and the global component processes

CHAPTER 5. ADVERSARIAL EXAMPLES FOR DISCRETE DATA 71

...

...

Conv-1d’s

local

global

Conv-1d, Pooling, Dense

Figure 5.2: Model structure of Gumbel Attack. The same structure is used across three data
sets. The input is fed into a common embedding followed by a conv layer. Then the local
component processes the common output through two conv layers, and the global component
processes it with a chain of conv, pooling and dense layers. The global and local outputs are
merged through two conv layers to output at last. See supplementary material for details.

the common output through a max-pooling layer followed by a 100-dimensional dense layer.
Then we concatenate the global output to local outputs corresponding to each feature, and
process them through a 50-filter convolutional layer, followed by a Dropout layer and a
convolutional network with kernel size 1 to output. All previous convolutional layers are of
kernel size 3, and ReLU is used as nonlinearity. The identifier and the perturber are trained
separately on the training data, by rmsprop [79] with step size 0.001.

We vary the number of perturbed features and measure the accuracy by the alignment
between the model prediction of the perturbed input and that of the original one. The same
metric was used [123, 125]. The success rate of attack can be defined as the inconsistency
with the original model: 1− accuracy.

The average accuracy over test samples is shown in Figure 5.3. Greedy Attack performs
the best among all methods across both word-based models. Gumbel Attack performs well
on IMDB with Word-CNN but has lower success rate than Saliency-Projected FGSM on
Yahoo! Answers with LSTM. Examples of successful attacks are shown in Table 5.3.

5.4.2 Character-based models

We carry out experiments on the AG’s News corpus with a character-based CNN [72]. The
AG’s News corpus consists of titles and description fields of 196, 000 news articles from 2, 000
news sources [72]. It is categorized into four classes, each containing 30, 000 training samples
and 1, 900 testing samples. The character-based CNN has the same structure as the one
proposed in Zhang, Zhao, and LeCun [72]. It consists of six convolutional layers, three max
pooling layers, and two dense layers. The alphabet dictionary used is of size 69. The model

CHAPTER 5. ADVERSARIAL EXAMPLES FOR DISCRETE DATA 72

1 2 3 4 5
Words

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

y

IMDB with Word-CNN

1 2 3 4 5
Words

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

y

Yahoo! Answers with LSTM

1 2 3 4 5 6 7 8 9 10
Characters

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

y

AG's News with Char-CNN

Figure 5.3: The drop in accuracy as the number of perturbed features increases on three
data sets.

is trained with SGD with decreasing step size initialized at 0.01 and momentum 0.9. (Details
can be found in Zhang, Zhao, and LeCun [72].) The model reaches accuracy of 90.09% on
the test data set.

For Greedy Attack, the dictionary for the replacing character W′ is chosen to be the
entire alphabet. For Gumbel Attack, the model structure and training are exactly the same
as those for word-based models.

Figure 5.3 shows how the alignment of model prediction, given the original data and
the perturbed data, changes with the number of characters perturbed by various methods.
Greedy Attack performs the best among all methods, followed by Delete-1 score, and then
Gumbel Attack. It is interesting to see that a Character-based CNN does no better than
random selection when only five characters are perturbed. Examples of successful attacks
are shown in Table 5.3.

5.4.3 Efficiency

The efficiency of generating adversarial examples becomes an important factor for large-
scale data. We evaluate the clock-time efficiency of various methods. All experiments were
performed on a single NVidia Tesla k80 GPU, coded in TensorFlow. Figure 5.4 shows the
average clock time for perturbing one sample for various methods. Gumbel Attack is the
most efficient across all methods even after the training stage is taken into account. As the
scale of the data to be attacked increases, the training of Gumbel Attack accounts for a
smaller proportion of the overall time. Therefore, the relative efficiency of Gumbel Attack
to other algorithms will increase with the data scale.

CHAPTER 5. ADVERSARIAL EXAMPLES FOR DISCRETE DATA 73

Data Set Class New Class Perturbed Texts

IMDB

Negative Positive

I have read each and every one of Baroness Orczys Scarlet Pim-
pernel books. Counting this one, I have seen 3 pimpernel movies.
The one with Jane Seymour and Anthony Andrews i preferred
greatly to this. It goes out of its way for violence and action,
occasionally completely violating the spirit of the book. I dont
expect movies to stick directly to plots, i gave up being that ide-
alistic long ago, but if an good (excellent) movie of a book has
already been made, dont remake it with a tv movie that includes
excellent actors and nice costumes, but a barely decent script.
Sticking with the 80s version....Rahne

Positive Negative

Begotten is black and white distorted images. It looks like it could
have come from the nineteenth century. However, the sound is
crystal clear, minus the sync and the addition of calm nature
sounds.This movie was very critical of the struggles of lives (life).
It shows a single mother and child in a violent world that thrives
on the innocent. The mother is very oblivious to her surroundings.
This leads to lots of torture, pain, and death. You may watch
it many times and see different symbolisms, plot devices, and
basically what does it mean?.If you appreciate art in movies then
you will love it. Otherwise, dont bother.

Yahoo!

Entertainment,
Music

Sports
what are some really good dave matthews cup (band) songs ants
marching n marching though would probably be my favorite or
the first one i would recommend

Family,
Relationships

Health
im diet (bored) so whats a good prank so i can do it on my friends
go to their house and dump all the shampoo outta the bottle and
replace it with yogurt yup i always wanted to do that let me know
how it works out haha

AG’s News

Sports Sci & Tech

DEFOE DRIVES SPURS HOMEJermain Defoe underlined his
claims for an improved contract as he inspired Tottenham to a
2 0 win against 10 man Middlesbrough. New sx\\\ Martin Jol,
who secured his first win in charge, may have been helped

Sci & Tech Business
Oracle Moves To Monthly Patch ScheduleAn alert posted on the
company’s y)c tite outlined the patches that should be posted to
fix numerous security holes in a number of aiplications.

Business World
Howard Stern moves radio show to SkriusShopk jock Howard
Stern announced Wednesday he’s taking his radio show off the
public airwaves and over to Sirius satihlhte radio.

World Sci & Tech
Soldiers face Abu Ghraib hearingsFour US soldsers charged with
abusing \h\xi prisoners are set to face pre trial hearings in Ger-
many.

Table 5.3: Single-word-perturbed examples of Greedy and Gumbel attacks on IMDB (Word-
CNN) and Yahoo! Answers (LSTM), where red words are the replacing words and the
blue words are the original words; five-character-perturbed examples of Greedy and Gumbel
attacks on AG’s News (Char-CNN), where replacing characters are colored with red.

5.4.4 Transferability

An intriguing property of adversarial attack is that examples generated for one model may
often fool other methods with different structures [25, 26]. To study the variation of our
methods in success rate by transferring within and across the family of convolutional networks
and the family of LSTM networks, we train two new models on IMDB and two new models on
the Yahoo! Answers respectively. For the IMDB data set, we trained another convolutional
network CNN2, differing from the original one by adding more dense layers, and an LSTM
that is the same as the one used for the Yahoo! Answers data set. For the Yahoo! Answers

CHAPTER 5. ADVERSARIAL EXAMPLES FOR DISCRETE DATA 74

Figure 5.4: The average clock time (on a log scale) of perturbing one input sample for each
method. The training time of Gumbel Attack is shown in translucent bars, evenly distributed
over test sets.

data set, we train a new LSTM model LSTM2, which is one-directional with 256 memory
units, and uses GloVe [110] as a pretrained word embedding. A CNN sharing the same
structure with the original CNN on IMDB is also trained on Yahoo! Answers.

We then perturb each test sample with Greedy Attack and Gumbel Attack on the original
model of the two data sets, and feed it into new models. The results are shown in Figure 5.5.
Greedy Attack achieves comparable success rates for attack on Yahoo! Answers, but suffers
a degradation of performance on the IMDB data set. Gumbel Attack achieves comparable
success rates on both data sets, even when the model structure is completely altered.

5.4.5 Human evaluation

We address the problem whether small perturbations of adversarial examples in text classi-
fication alter human judgment. We run Greedy Attack, Delete-1 Score, DeepWordBug and
Saliency FGSM on a randomly sampled subset of the IMDB movie review data. On each
instance, we increase the number of words to be perturbed until the prediction of the model
changes. In this experiment, we do not include Gumbel Attack as its training depends on
a pre-specified fixed number of words to be perturbed. Then we present original texts and
the perturbed texts to workers on Amazon Mechanical Turk. Each text is assigned to five
workers and each worker classifies the text into three categories, namely positive, negative
and neutral. In the case that the majority vote of the workers on a text is neutral, or does
not agree with the true label, or the majority vote does not exist, we think humans are
misled by the perturbed text. We report accuracy as the average consistency with the truth.

CHAPTER 5. ADVERSARIAL EXAMPLES FOR DISCRETE DATA 75

1 2 3 4 5
Words

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

y

Transferability on IMDB

Original (Greedy)

CNN2 (Greedy)

LSTM (Greedy)

Original (Gumbel)

CNN2 (Gumbel)

LSTM (Gumbel)

1 2 3 4 5
Words

0.2

0.4

0.6

0.8

A
cc

u
ra

y

Transferability on Yahoo! Answers
Original (Greedy)

CNN (Greedy)

LSTM2 (Greedy)

Original (Gumbel)

CNN (Gumbel)

LSTM2 (Gumbel)

Figure 5.5: Transferability results. Solid lines: accuracy on the original models. Dotted
lines: accuracy on the new models.

Algorithm Human Accuracy Avg. # of Words Perturbed

Raw 89.0% 0.000
Greedy Attack 84.4% 2.120
Delete-1 Score 77.1% 18.160
Saliency FGSM 80.7% 9.200
DeepWordBug 81.6% 25.816

Table 5.4: First human evaluation: perturb until success.

The result is reported in Table 5.4. Greedy attack perturbs the least number of words on
average. As a result, human is least sensitive to Greedy Attack.

To evaluate the performance of Gumbel Attack, we present the original texts and the
perturbed texts on IMDB and AG’s News, as generated by Gumbel Attack, to workers
on Amazon Mechanical Turk. Gumbel Attack is fixed to perturb two words on IMDB
and ten characters on AG’s News. The accuracy of neural networks drops by 25% and
46% respectively. For each data set, 200 samples that are successfully attacked by Gumbel
Attack are used. On the IMDB movie review data, human accuracy drops from 83.3% on the
original samples to 75.8% on adversarial samples from Gumbel Attack. On character-based
models, the accuracy of human judgements stays at comparable levels, with 93.3% on the
original samples and 91.2% on the perturbed samples

5.5 Discussion

We have proposed a probabilistic framework for generating adversarial examples on discrete
data and have created two algorithms to implement it. Greedy Attack improves the state-of-
the-art across several widely-used language models, and Gumbel Attack provides a scalable
method for real-time generation of adversarial examples. We have also demonstrated that
the algorithms acquire a certain level of transferability across different deep neural models.

CHAPTER 5. ADVERSARIAL EXAMPLES FOR DISCRETE DATA 76

Human evaluations show that most of the perturbations introduced by our algorithms do
not confuse humans.

77

Chapter 6

HopSkipJumpAttack: A
Query-Efficient Decision-Based Attack

The goal of a decision-based adversarial attack on a trained model is to generate adversarial
examples based solely on observing output labels returned by the targeted model. We de-
velop HopSkipJumpAttack, a family of algorithms based on a novel estimate of the gradient
direction using binary information at the decision boundary. The proposed family includes
both untargeted and targeted attacks optimized for `2 and `∞ similarity metrics respectively.
Theoretical analysis is provided for the proposed algorithms and the gradient direction es-
timate. Experiments show HopSkipJumpAttack requires significantly fewer model queries
than Boundary Attack. It also achieves competitive performance in attacking several widely-
used defense mechanisms. Moreover, we show it achieves competitive performance on a wide
variety of classifiers in addition to neural networks, including linear models built on top
of the Scale Invariant Feature Transform (SIFT) and the Histogram of Oriented Gradients
(HOG), tree-based models including gradient boosted trees and random forests, k-nearest
neighbors and kernel methods.

6.1 Introduction

In this chapter, we focus on the decision-based threat model introduced in Chapter 1, in
which an attacker has access to decisions alone. A widely studied type of the decision-based
attack is transfer-based attack. However, transfer-based attack often requires a carefully-
designed substitute model, or even access to part of the training data. Moreover, they
can be defended against via training on a data set augmented by adversarial examples from
multiple static pre-trained models [41]. In recent work, decision-based attacks relying neither
on training data nor on the assumption of transferability have been proposed [33, 38, 40],
which achieve comparable performance with state-of-the-art white-box attacks such as C&W
attack [29]. One limitation, however, is that they require a relatively large number of model
queries, rendering it impractical for real-world applications.

CHAPTER 6. A QUERY-EFFICIENT DECISION-BASED ATTACK 78

It is more realistic to evaluate the vulnerability of a machine learning system under the
decision-based attack with a limited budget of model queries. Online image classification
platforms often set a limit on the allowed number of queries within a certain time period. For
example, the cloud vision API from Google currently allow 1,800 requests per minute. Query
inefficiency thus leads to clock-time inefficiency and prevents an attacker from carrying out
large-scale attacks. A system may also be set to recognize the behavior of feeding a large
number of similar queries within a small amount of time as a fraud, which will automatically
filter out query-inefficient decision-based attacks. Last but not least, a smaller query budget
directly implies less cost in evaluation and research. Query-efficient algorithms help save
the cost of evaluating the robustness of public platforms, which incur a cost for each query
made by the attacker. It also helps facilitate research in adversarial vulnerability, as such a
decision-based attack which does not require access to model details may be used as a simple
and efficient first step in evaluating new defense mechanisms, as we will see in Section 6.6.2.

Another advantage of decision-based attack is its applicability to other models besides
neural networks. While adversarial examples for neural networks are attracting growing
attention, relatively fewer efforts are put into the evaluation of robustness for other im-
age classifiers, such as linear models built on top of image feature extractors including
the Scale Invariant Feature Transform (SIFT) [128] and the Histogram of Oriented Gradi-
ents (HOG) [129], tree-based models including decision trees, random forests, and gradient
boosted trees, k-nearest neighbors (KNN) and kernel methods. The main obstacle towards
attacking these models is that most of these models, except kernel methods, are not dif-
ferentiable with respect to the input, which makes it impossible to directly apply existing
white-box methods designed for neural networks.

In this chapter, we study decision-based attacks for continuous inputs under an optimiza-
tion framework, and propose a novel family of algorithms for generating both targeted and
untargeted adversarial examples that are optimized for minimum distance with respect to
either the `2-distance or `∞ distance. The family of algorithms are based on a novel asymp-
totically unbiased estimate of gradient direction at the decision boundary, which solely relies
on access to model decisions. The error of the estiamte at the boundary is characterized
with a deviation bound. We also discuss ways to control the error when the estimate is
used with deviation from the boundary. The family of algorithms is iterative in nature, with
each iteration involving three steps: estimation of the gradient direction, step-size search via
geometric progression, and boundary search via a binary search. We refer to the algorithm
as HopSkipJumpAttack1. We establish the convergence of our algorithm under certain mild
conditions.

In the experimental section, we demonstrate the superior efficiency of our algorithm
over several state-of-the-art decision-based attacks through extensive experiments. Through
the evaluation of several defense mechanisms such as defensive distillation, region-based

1A hop, skip, and a jump originally referred to an exercise or game involving these movements dating
from the early 1700s, but by the mid-1800s it was also being used figuratively for the short distance so
covered.

CHAPTER 6. A QUERY-EFFICIENT DECISION-BASED ATTACK 79

classification, and adversarial training, we suggest our attack can be used as a simple and
efficient first step for researchers to evaluate new defense mechanisms. Finally, we show our
algorithm works effectively on a wide range of models besides neural networks, without the
trouble of accessing model details or adjusting hyper-parameters. The experimental results
suggest several widely used classifiers, such as linear models based on SIFT and HOG, tree-
based models and kernel methods, can be vulnerable to decision-based attacks.

6.2 Related work

6.2.1 Decision-based attacks

Most related to our work is the Boundary Attack method introduced by Brendel, Rauber,
and Bethge [38]. Boundary Attack is an iterative algorithm based on rejective sampling,
initialized at an image that lies in the target class. At each step, a perturbation is sampled
from a proposal distribution, which reduces the distance of the perturbed image towards the
original input. If the perturbed image still lies in the target class, the perturbation is kept.
Otherwise, the perturbation is dropped. Boundary Attack achieves performance comparable
to state-of-the-art white-box attacks on deep neural networks for image classification. The
key obstacle to its practical application is, however, the demand for a large number of
model queries. In practice, the required number of model queries for crafting an adversarial
example directly determines the level of the threat imposed by a decision-based attack. One
source of inefficiency in Boundary Attack is the rejection of perturbations which deviate from
the target class. In our algorithm, the perturbations are used for estimation of a gradient
direction.

Several other decision-based attacks have been proposed to improve efficiency. Brun-
ner et al. [39] introduced Biased Boundary Attack, which biases the sampling procedure by
combining low-frequency random noise with the gradient from a substitute model. Biased
Boundary Attack is able to significantly reduce the number of model queries. However, it
relies on the transferability between the substitute model and the target model, as with other
transfer-based attacks. Our algorithm does not rely on the additional assumption of trans-
ferability. Instead, it achieves a significant improvement over Boundary Attack through the
exploitation of discarded information into the gradient-direction estimation. Ilyas et al. [33]
proposed Limited attack in the label-only setting, which directly performs projected gradient
descent by estimating gradients based on novel proxy scores. Cheng et al. [40] introduced
Opt attack, which transforms the original problem to a continuous version, and solves the
new problem via randomized zeroth-order gradient update. Our algorithm approaches the
original problem directly via a novel gradient-direction estimate, leading to improved query
efficiency over both Limited Attack and Opt Attack. The majority of model queries in Hop-
SkipJumpAttack come in mini-batches, which also leads to improved clock-time efficiency
over Boundary Attack.

CHAPTER 6. A QUERY-EFFICIENT DECISION-BASED ATTACK 80

6.2.2 Zeroth-order optimization

Zeroth-order optimization refers to the problem of optimizing a function f based only on
access to function values f(x), as opposed to gradient values ∇f(x). Such problems have
been extensively studied in the convex optimization and bandit literatures. Flaxman, Kalai,
and McMahan [130] studied one-point randomized estimate of gradient for bandit convex
optimization. Agarwal et al. [131] and Nesterov and Spokoiny [132] demonstrated that faster
convergence can be achieved by using two function evaluations for estimating the gradient.
Duchi et al. [133] established optimal rates of convex zeroth-order optimization via mirror
descent with two-point gradient estimates. Zeroth-order algorithms have been applied to the
generation of adversarial examples under the score-based threat model [32–34]. Subsequent
work [134] proposed and analyzed an algorithm based on variance-reduced stochastic gradient
estimates.

We formulate decision-based attack as an optimization problem. A core component of
our proposed algorithm is a gradient-direction estimate, the design of which is motivated by
zeroth-order optimization. However, the problem of decision-based attack is more challenging
than zeroth-order optimization, essentially because we only have binary information from
output labels of the target model, rather than function values.

6.2.3 Robustness of image classifiers besides neural networks

While the robustness of neural networks has been widely studied, relatively less attention is
paid to other machine learning models. Most of the existing work focuses on a specific class
of models and requires access to model details. Papernot, McDaniel, and Goodfellow [36]
proposed to attack decision trees and KNNs by greedy search over the tree structure and
attacking a smoothed variant of nearest neighbor classifiers respectively. Kantchelian, Tygar,
and Joseph [135] proposed to craft adversarial examples for tree ensembles via mixed integer
programming, which was later improved by Chen et al. [136] via formulating the robustness
verification of tree ensembles as a max-clique problem. Wang et al. [137] proposed a quadratic
programming formulation for attacking nearest neighbor classifiers. Yang et al. [138] recently
proposed a region-based attack that applies to classifiers with convex polyhedra as decision
regions, such as tree-based models and nearest neighbor classifiers.

We study the performance of decision-based attack against a wide class of mdoels, in-
cluding linear models such as logistic regression and support vector machine, kernel support
vector machine, k-nearest neighbors (KNN), tree-based models such as random forests, and
gradient boosted trees, and feature extracters for natural images, including the Scale Invari-
ant Feature Transform (SIFT) [128], the Histogram of Oriented Gradients (HOG) [129]. To
our best knowledge, we are the first to study black-box attack against KNN, random forests,
SIFT and HOG features without access to model details or training data.

CHAPTER 6. A QUERY-EFFICIENT DECISION-BASED ATTACK 81

6.3 An optimization framework

In this section, we describe an optimization framework for finding adversarial instances for
an m-ary classification model of the following type. The first component is a discrimi-
nant function F : Rd → Rm that accepts an input x ∈ [0, 1]d and produces an output
y ∈ ∆m := {y ∈ [0, 1]m |∑m

c=1 yc = 1}. The output vector y = (F1(x), . . . , Fm(x)) can be
viewed as a probability distribution over the label set [m] = {1, . . . ,m}. Based on the func-
tion F , the classifier C : Rd → [m] assigns input x to the class with maximum probability—
that is,

C(x) := arg max
c∈[m]

Fc(x).

We study adversaries of both the untargeted and targeted varieties. Given some input
x?, the goal of an untargeted attack is to change the original classifier decision c? := C(x?)
to any c ∈ [m]\{c?}, whereas the goal of a targeted attack is to change the decision to some
pre-specified c† ∈ [m]\{c?}. Formally, if we define the function Sx? : Rd → R via

Sx?(x′) :=





max
c6=c?

Fc(x
′)− Fc?(x′) (Untargeted)

Fc†(x
′)−max

c 6=c†
Fc(x

′) (Targeted)
(6.1)

then a perturbed image x′ is a successful attack if and only if Sx?(x′) > 0. The boundary
between successful and unsuccessful perturbed images is

bd(Sx?) :=
{
z ∈ [0, 1]d | Sx?(z) = 0

}
.

As an indicator of successful perturbation, we introduce the Boolean-valued function φx? :
[0, 1]d → {−1, 1} via

φx?(x′) := sign (Sx?(x′)) =

{
1 if Sx?(x′) > 0,

−1 otherwise.

This function is accessible in the decision-based setting, as it can be computed by querying
the classifier C alone. The goal of an adversarial attack is to generate a perturbed sample
x′ such that φx?(x′) = 1, while keeping x′ close to the original sample x?. This can be
formulated as the optimization problem

min
x′

d(x′, x?) such that φx?(x′) = 1, (6.2)

where d is a distance function that quantifies similarity. Standard choices of d studied in
past work [26, 28, 29] include the usual `p-norms, for p ∈ {0, 2,∞}.

6.3.1 An iterative algorithm for `2 distance

Consider the case of the optimization problem (6.2) with the `2-norm d(x, x?) = ‖x− x?‖2.
We first specify an iterative algorithm that is given access to the gradient ∇Sx? . Given
an initial vector x0 such that Sx?(x0) > 0 and a stepsize sequence {ξt}t≥0, it performs the

CHAPTER 6. A QUERY-EFFICIENT DECISION-BASED ATTACK 82

update

xt+1 = αtx
? + (1− αt)

{
xt + ξt

∇Sx?(xt)

‖∇Sx?(xt)‖2

}
, (6.3)

where ξt is a positive step size. Here the line search parameter αt ∈ [0, 1] is chosen such that
Sx?(xt+1) = 0—that is, so that the next iterate xt+1 lies on the boundary. The motivation
for this choice is that our gradient-direction estimate in Section 6.4 is only valid near the
boundary.

We now analyze this algorithm with the assumption that we have access to the gradient
of Sx? in the setting of binary classification. We make two assumptions for establishing the
convergence of our algorithm.
Assumption A Assume that the function Sx? is twice differentiable with a locally Lipschitz
gradient, meaning that there exists L > 0 such that for all x, y ∈ {z : ‖z−x?‖2 ≤ ‖x0−x?‖2},
we have

‖∇Sx?(x)−∇Sx?(y)‖2 ≤ L‖x− y‖2, (6.4)

where x0 is the initialization point.
Assumption B We assume the gradient is bounded away from zero on the boundary: there
exists a positive c > 0 such that ‖∇Sx?(z)‖ > c for any z ∈ bd(Sx?).

The above two assumptions hold for several common machine learning models, such as
logistic regression, neural networks, and kernel SVMs in binary classification. In experiments,
we also show the algorithm works for the setting when the function Sx? is differentiable almost
everywhere, such as tree-based models, KNNs, SIFT and HOG. A theoretical study of its
convergence will be delayed to future work.

We analyze the behavior of the updates (6.3) in terms of the angular measure

r(xt, x
?) := cos∠ (xt − x?,∇Sx?(xt))

=

〈
xt − x?, ∇Sx?(xt)

〉

‖xt − x?‖2‖∇Sx?(xt)‖2
,

corresponding to the cosine of the angle between xt−x? and the gradient∇Sx?(xt). Note that
the condition r(x, x?) = 1 holds if and only if x is a stationary point of the optimization (6.2).
The following theorem guarantees that, with a suitable step size, the updates converge to
such a stationary point:

Theorem 5. Under Assumption A and Assumption B, suppose that we compute the up-
dates (6.3) with step size ξt = ‖xt − x?‖2t−q for some q ∈

(
1
4
, 1
2

)
. Then there is a universal

constant c such that

0 ≤ 1− r(xt, x?) ≤ c
1

t
1
2
−q

for all iterations t = 1, 2, (6.5)

In particular, the algorithm converges to a stationary point of problem (6.2).

Theorem 5 suggests a scheme for choosing the step size in the algorithm that we present
in the next section. An experimental evaluation of the proposed scheme is carried out in
Section 6.6. The proof of the theorem is constructed by establishing the relationship between

CHAPTER 6. A QUERY-EFFICIENT DECISION-BASED ATTACK 83

the objective value d(xt, x
?) and r(xt, x

?), with a second-order Taylor approximation to the
boundary. See Section 6.7.1 for details.

6.3.2 Extension to `∞-distance

We now describe how to extend these updates so as to minimize the `∞-distance. Consider
the `2-projection of a point x onto the sphere of radius αt centered at x?:

Π2
x?,αt

(x) := arg min
‖y−x?‖2≤αt

‖y − x‖2 = αtx
? + (1− αt)x. (6.6)

In terms of this operator, our `2-based update (6.3) can be rewritten in the equivalent form

xt+1 = Π2
x?,αt

(
xt + ξt

∇Sx?(xt)

‖∇Sx?(xt)‖2

)
. (6.7)

This perspective allows us to extend the algorithm to other `p-norms for p 6= 2. For
instance, in the case p = ∞, we can define the `∞-projection operator Π∞x?,α. It performs a
per-pixel clip within a neighborhood of x?, such that the ith entry of Π∞x?,α(x) is

Π∞x?,α(x)i := max {min{x?i , x?i + c} , xi − c},
where c := α‖x − x?‖∞. We propose the `∞-version of our algorithm by carrying out the
following update iteratively:

xt+1 = Π∞x?,αt

(
xt + ξtsign(∇Sx?(xt))

)
, (6.8)

where αt is chosen such that Sx?(xt+1) = 0, and “sign” returns the element-wise sign of a
vector. We use the sign of the gradient for faster convergence in practice, similar to previous
work [26, 27, 30].

6.3.3 Connection to existing white-box attacks

In this subsection, we discuss the connection between our proposed updates (6.7) and (6.8),
and existing white-box attacks.

Connecting the update (6.7) to penalty methods A common approach to the con-
strained problem (6.2) is to approximate it with a penalty function formulation [139]:

min
x

1

2
‖x− x?‖22 − ρSx?(x), (6.9)

for a carefully chosen penalty parameter ρ. A similar relaxation has been proposed in
previous work in adversarial attacks [25, 29].

CHAPTER 6. A QUERY-EFFICIENT DECISION-BASED ATTACK 84

At the tth step, the update of gradient descent is

xt+1 = xt − αt((xt − x?)− ρt∇Sx?(xt))

= αtx
? + (1− αt)

(
xt +

ρt
1− αt

∇Sx?(xt))
)

= Π2
x?,αt

(
xt +

ρt‖∇Sx?(xt)‖2
1− αt︸ ︷︷ ︸

ξt

∇Sx?(xt)

‖∇Sx?(xt)‖2

)
,

where we rewrite the gradient update as a weighted average of the original sample x? and the
t-th update xt perturbed along the direction of ∇Sx?(xt) with an appropriately chosen size
ξt. This has exactly the same form as our proposed update, Equation (6.6). However, the
hyperparameters αt and ρt in previous work [25, 29] are often chosen via hyperparameter
tuning or fixed as constant. Here, we choose choose αt so that xt+1 is at the boundary
S(xt+1) = 0, which is a requirement to use our proposed gradient estimate to be introduced
in Section 6.4.

Connecting the update (6.8) to projected gradient descent In the untargeted case,
each update of Basic Iterative Method proposed by Kurakin, Goodfellow, and Bengio [27] is
of the form

xt+1 = Clipx?,αt
{xt + ξtsign(∇xJ(xt, ctrue))}, (6.10)

where J is the cross-entropy loss with respect to the true label c? = C(x?). The operator
Clipx?,α performs per-pixel clip within the α-neighborhood of the corresponding pixel of
x?. As pointed out by Madry et al. [30], the Basic Iterative Method can be interpreted as
projected gradient descent in the `∞-norm.

We observe that the clip operator coincides with the `∞-projection operator Π∞x?,α. The
cross entropy loss J is a monotonic function of Sx? , and so introduces only a scaling difference
between ∇J and ∇Sx? . As a consequence, apart from the choice of αt, each update (6.8) of
our algorithm has the same form as the Basic Iterative Method. On the other hand, we need
to choose αt carefully so that xt+1 lies at the boundary for gradient-direction estimation.

6.4 A decision-based algorithm based on a novel

gradient estimate

We now extend our procedures to the decision-based setting, in which we have access only to
the Boolean-valued function φx?(x) = sign(Sx?(x))—that is, the method cannot observe the
underlying discriminant function F or its gradient. In this section, we introduce a gradient-
direction estimate based on φx? when xt ∈ bd(Sx?) (so that Sx?(xt) = 0 by definition). We
proceed to discuss how to approach the boundary. Then we discuss how to control the error
of our estimate with a deviation from the boundary. We will summarize the analysis with a
decision-based algorithm.

CHAPTER 6. A QUERY-EFFICIENT DECISION-BASED ATTACK 85

6.4.1 At the boundary

Given an iterate xt ∈ bd(Sx?) we propose to approximate the direction of the gradient
∇Sx?(xt) via the Monte Carlo estimate

∇̃S(xt, δ) :=
1

B

B∑

b=1

φx?(xt + δub)ub, (6.11)

where {ub}Bb=1 are i.i.d. draws from the uniform distribution over the d-dimensional sphere,
and δ is small positive parameter. (The dependence of this estimator on the fixed centering
point x? is omitted for notational simplicity.)

The perturbation parameter δ is necessary, but introduces a form of bias in the estimate.
Our first result controls this bias, and shows that ∇̃S(xt, δ) is asymptotically unbiased as
δ → 0+.

Theorem 6. For a boundary point xt, suppose that Sx? has L-Lipschitz gradients in a
neighborhood of xt. Then the cosine of the angle between ∇̃S(xt, δ) and ∇Sx?(xt) is bounded
as

cos∠
(
E[∇̃S(xt, δ)],∇Sx?(xt)

)
≥ 1− 9L2δ2d2

8‖∇S(xt)‖22
. (6.12)

In particular, we have

lim
δ→0

cos∠
(
E[∇̃S(xt, δ)],∇Sx?(xt)

)
= 1, (6.13)

showing that the estimate is asymptotically unbiased as an estimate of direction.

We remark that Theorem 6 only establishes the asymptotic behavior of the proposed estiamte
at the boundary. This also motivates the boundary search step in our algorithm to be
discussed in Seciton 6.4.2. The proof of Theorem 6 starts from dividing the unit sphere into
three components: the upper cap along the direction of gradient, the lower cap opposite
to the direction of gradient, and the annulus in between. The error from the annulus can
be bounded when δ is small. See Section 6.7.2 for the proof of this theorem. As will be
seen in the sequel, the size of perturbation δ should be chosen proportionally to d−1; see
Section 6.4.3 for details.

To characterize the error in the estimate in a more accurate mannar, we provide a tail
bound for the deviation of estimate from the direction of gradient. Before that, we introduce
the following tail bound which characterizes the deviation of the estimate from its expected
value.

Lemma 2. For any s > 0, the Monte Carlo estimate ∇̃S(xt, δ) satisfies the following tail
bound

P
(
‖∇̃S(xt, δ)− E[∇̃S(xt, δ)]‖ ≥ s

)
≤ 2(d+ 1) exp

(
− Bs2

8 + 4s

)
.

The above lemma is proved by a direct application of the Bernstein bound for random
matrices [140, 141]. Incorporating the bias with nonzero δ characterized in Theorem 6 into
Lemma 2, we have the following result:

CHAPTER 6. A QUERY-EFFICIENT DECISION-BASED ATTACK 86

Theorem 7. For a boundary point xt, suppose that Sx? has L-Lipschitz gradients in a
neighborhood of xt. Then the following tail bound can be established for the cosine of the
angle between ∇̃S(xt, δ) and ∇Sx?(xt). For any a ∈ (0, 1), when δ is chosen such that

δ < ‖∇Sx? (xt)‖
3L(d−1)

√
a
π

, we have

P
(

cos∠
(
E[∇̃S(xt, δ)],∇Sx?(xt)

)
< 1− a

)
≤ 2(d+ 1) exp

{
− Ba

32π + 8
√
aπ

}
.

Remark 1. Theorem 7 suggests the probability of deviation of the Monte Carlo estimate from
the true gradient direction is exponentially small in the size of random directions B, with a
linear dimension dependence. The size of perturbation δ should be chosen proportionally to
d−1.

When we only have access to output labels of a model, we replace the true gradient in
the update (6.3) by its estimate

xt+1 = αtx
? + (1− αt)

{
xt + ξt

∇̃Sx?(xt)

‖∇̃Sx?(xt)‖2

}
. (6.14)

By incorporating the tail bound on the estimate into the proof of Theorem 5, we can establish
the updates 6.14 converges almost surely. More concretely, we have the following result:

Theorem 8. Under Assumption A and Assumption B, suppose that we estimate the gra-
dient with batch size B = Ω(t1−2q), and we compute the updates (6.14) with the step size

ξt = ‖xt − x?‖2t−q for some q ∈
(
1
4
, 1
2

)
. Then there exist universal constants C, C̃, Cδ such

that for sufficiently large t, when δt < Cδt
−0.5+q, we have

P
(

1− r(xt, x?) > C
1

t
1
2
−q

)
≥ 1− 2(d+ 1) exp

(
− C̃Bt−1+2q

)
. (6.15)

In particular, the algorithm converges to a stationary point of problem (6.2) almost surely.

Remark 2. Theorem 8 suggests the batch size B should be chosen at the scale of B =
Ω(t1−2q). It also suggests a trade-off in choosing the size of q. A smaller q would lead to a
larger batch size to ensure convergence. On the other hand, xt converges to a saddle point
faster if we increase q towards 1

2
. Intuitively, this is because a more accurate estimate of the

direction of gradient is required if we uses a larger step size, and a larger step size results in
a faster convergence rate when the estimate is accurate enough.

The proofs of Lemma 2, Theorem 7 and Theorem 8 are available in Section 6.7.3, 6.7.4
and 6.7.5 respectively.

6.4.2 Approaching the boundary

The proposed estimate (6.11) is only valid at the boundary. We now describe how we
approach the boundary via a binary search. Let x̃t denote the updated sample before the

CHAPTER 6. A QUERY-EFFICIENT DECISION-BASED ATTACK 87

operator Πp
x,αt

is applied:

x̃t := xt + ξtvt(xt, δt), such that (6.16)

vt(xt, δt) =

{
∇̂S(xt, δt)/‖∇̂S(xt, δt)‖2, if p = 2,

sign(∇̂S(xt, δt)), if p =∞,
where ∇̂S will be introduced later in equation (6.20), as a variance-reduced version of ∇̃S,
and δt is the size of perturbation at the t-th step.

We hope x̃t is at the opposite side of the boundary to x so that the binary search can
be carried out. Therefore, we initialize at x̃0 at the target side with φx?(x̃0) = 1, and set
x0 := Πp

x,α0
(x̃0), where α0 is chosen via a binary search between 0 and 1 to approach the

boundary, stopped at x0 lying on the target side with φx?(x0) = 1. At the t-th iteration, we
start at xt lying at the target side φx?(xt) = 1. The step size is initialized as

ξt := ‖xt − x?‖p/
√
t, (6.17)

as suggested by Theorem 5 in the `2 case, and is decreased by half until φx?(x̃t) = 1, which
we call geometric progression of ξt. Having found an appropriate x̃t, we choose the projection
radius αt via a binary search between 0 and 1 to approach the boundary, which stops at
xt+1 with φx?(xt+1) = 1. See Algorithm 5 for the complete binary search, where the binary
search threshold θ is set to be some small constant.

Algorithm 5 Bin-Search

Require: Samples x′, x, with a binary function φ, such that φ(x′) = 1, φ(x) = 0, threshold
θ, constraint `p.

Ensure: A sample x′′ near the boundary.
Set αl = 0 and αu = 1.
while |αl − αu| > θ do

Set αm ← αl+αu

2
.

if φ(Πx,αm(x′)) = 1 then
Set αu ← αm.

else
Set αl ← αm.

end if
end while
Output x′′ = Πx,αu(x′).

6.4.3 Controlling errors of deviations from the boundary

Binary search never places xt+1 exactly onto the boundary. We analyze the error of the
gradient-direction estimate, and propose two approaches for reducing the error.

CHAPTER 6. A QUERY-EFFICIENT DECISION-BASED ATTACK 88

Figure 6.1: Intuitive explanation of HopSkipJumpAttack. (a) Perform a binary search to
find the boundary, and then update x̃t → xt. (b) Estimate the gradient at the boundary
point xt. (c) Geometric progression and then update xt → x̃t+1. (d) Perform a binary search,
and then update x̃t+1 → xt+1.

Appropriate choice of the size of random perturbation First, the size of random
perturbation δt for estimating the gradient direction is chosen as a function of image size d
and the binary search threshold θ. This is different from numerical differentiation, where
the optimal choice of δt is at the scale of round-off errors (e.g., [142]). Below we characterize
the error incurred by a large δt as a function of distance between x̃t and the boundary, and
derive the appropriate choice of ξt and δt. In fact, with a Taylor approximation of Sx? at xt,
we have

Sx?(xt + δtu) = Sx?(xt) + δt
〈
∇Sx?(xt), u

〉
+O(δ2t).

At the boundary Sx?(xt) = 0, the error of gradient approximation scales at O(δ2t), which is
minimized by reducing δt to the scale of rooted round-off error. However, the outcome xt of
a finite-step binary search lies close to, but not exactly on the boundary.

When δt is small enough such that second-order terms can be omitted, the first-order
Taylor approximation implies that φx?(xt + δtu) = −1 if and only if xt + δtu lies on the
spherical cap C, with

C :=
{
u |
〈 ∇Sx?(xt)

‖∇Sx?(xt)‖2
, u
〉
< −δ−1t

Sx?(xt)

‖∇Sx?(xt)‖2

}
.

On the other hand, the probability mass of u concentrates on the equator in a high-
dimensional sphere, which is characterized by the following inequality [143]:

P(u ∈ C) ≤ 2

c
exp{−c

2

2
},where c =

√
d− 2Sx?(xt)

δt‖∇Sx?(xt)‖2
. (6.18)

A Taylor expansion of xt at x′t := Π2
∂(xt) yields

Sx?(xt) = ∇Sx?(x′t)
T (xt − x′t) +O(‖xt − x′t‖22)

= ∇Sx?(xt)
T (xt − x′t) +O(‖xt − x′t‖22).

CHAPTER 6. A QUERY-EFFICIENT DECISION-BASED ATTACK 89

Algorithm 6 HopSkipJumpAttack

Require: Classifier C, a sample x, constraint `p, initial batch size B0, iterations T .
Ensure: Perturbed image xt.

Set θ (Equation (6.19)).
Initialize at x̃0 with φx?(x̃0) = 1.
Compute d0 = ‖x̃0 − x?‖p.
for t in 1, 2, . . . , T − 1 do

(Boundary search)
xt = Bin-Search(x̃t−1, x, θ, φx? , p)
(Gradient-direction estimation)
Sample Bt = B0

√
t unit vectors u1, . . . , uBt .

Set δt (Equation (6.19)).
Compute vt(xt, δt) (Equation (6.16)).
(Step size search)
Initialize step size ξt = ‖xt − x?‖p/

√
t.

while φx?(xt + εtvt) = 0 do
ξt ← ξt/2.

end while
Set x̃t = xt + ξtvt.
Compute dt = ‖x̃t − x?‖p.

end for
Output xt = Bin-Search(x̃t−1, x, θ, φx? , p).

By the Cauchy-Schwarz inequality and the definition of `2-projection, we have

|∇Sx?(xt)
T (xt − x′t)|

≤ ‖∇Sx?(xt)‖2‖xt − Π2
∂(xt)‖2

≤
{
‖∇Sx?(xt)‖2θ‖x̃t−1 − x?‖p, if p = 2,

‖∇Sx?(xt)‖2θ‖x̃t−1 − x?‖p
√
d, if p =∞.

This yields

c = O(
dqθ‖x̃t−1 − x?‖p

δt
),

where q = 1−(1/p) is the dual exponent. In order to avoid a loss of accuracy from concentra-
tion of measure, we let δt = dqθ‖x̃t−1 − x?‖2. To make the approximation error independent
of dimension d, we set θ at the scale of d−q−1, so that δt is proportional to d−1, as suggested
by Theorem 6. This leads to a logarithmic dependence on dimension for the number of
model queries. In practice, we set

θ = d−q−1; δt = d−1‖x̃t−1 − x?‖p. (6.19)

A baseline for variance reduction in gradient-direction estimation Another source
of error comes from the variance of the estimate, where we characterize variance of a random

CHAPTER 6. A QUERY-EFFICIENT DECISION-BASED ATTACK 90

vector v ∈ Rd by the trace of its covariance operator: Var(v) :=
∑d

i=1 Var(vi). When xt
deviates from the boundary and δt is not exactly zero, there is an uneven distribution of
perturbed samples at the two sides of the boundary:

|E[φx?(xt + δtu)]| > 0,

as we can see from Equation (6.18). To attempt to control the variance, we introduce a
baseline φx? into the estimate:

φx? :=
1

B

B∑

b=1

φx?(xt + δub),

which yields the following estimate:

∇̂S(xt, δ) :=
1

B − 1

B∑

b=1

(φx?(xt + δub)− φx?)ub. (6.20)

It can be easily observed that this estimate is equal to the previous estimate in expectation,
and thus still asymptotically unbiased at the boundary: When xt ∈ bd(Sx?), we have

cos∠
(
E[∇̂S(xt, δ)],∇Sx?(xt)

)
≥ 1− 9L2δ2d2

8‖∇S(xt)‖22
,

lim
δ→0

cos∠
(
E[∇̂S(xt, δ)],∇Sx?(xt)

)
= 1.

Moreover, the introduction of the baseline reduces the variance when E[φx?(xt+δu)] deviates
from zero. In particular, the following theorem shows that whenever |E[φx?(xt + δu)]| =

Ω(B−
1
2), the introduction of a baseline reduces the variance.

Theorem 9. Defining σ2 := Var(φx?(xt + δu)u) as the variance of one-point estimate, we
have

Var(∇̂S(xt, δ)) < Var(∇̃S(xt, δ))(1− ψ),

where

ψ =
2

σ2(B − 1)

(
2BE[φx?(xt + δu)]2 − 1

)
− 2B − 1

(B − 1)2
.

See Section 6.7.6 for the proof. We also present an experimental evaluation of our gradient-
direction estimate when the sample deviates from the boundary in Section 6.6, where we
show our proposed choice of δt and the introduction of baseline yield a performance gain in
estimating gradient.

6.4.4 HopSkipJumpAttack

We now combine the above analysis into an iterative algorithm, HopSkipJumpAttack. It
is initialized with a sample in the target class for untargeted attack, and with a sample
blended with uniform noise that is misclassified for targeted attack. Each iteration of the
algorithm has three components. First, the iterate from the last iteration is pushed towards
the boundary via a binary search (Algorithm 5). Second, the gradient direction is estimated

CHAPTER 6. A QUERY-EFFICIENT DECISION-BASED ATTACK 91

0K 5K 10K 15K 20K 25K

Number of Queries

10−2

10−1

100

101

` 2
D

is
ta

n
ce

Comparison of Step Size Schemes

Figure 6.2: Comparison of various choices of step size.

via Equation (6.20). Third, the updating step size along the gradient direction is initialized
as Equation (6.17) based on Theorem 5, and is decreased via geometric progression until
perturbation becomes successful. The next iteration starts with projecting the perturbed
sample back to the boundary again. The complete procedure is summarized in Algorithm 6.
Figure 6.1 provides an intuitive visualization of the three steps in `2. For all experiments,
we initialize the batch size at 100 and increase it with

√
t linearly, so that the variance of the

estimate reduces with t. When the input domain is bounded in practice, a clip is performed
at each step by default.

6.5 Experiments

In this section, we carry out experimental analysis of HopSkipJumpAttack. We carry out an
experimental evaluation on the gradient direction estimate and the scheme of choosing step
sizes. We compare the efficiency of HopSkipJumpAttack with several previously proposed
decision-based attacks on image classification tasks. In addition, we evaluate the robustness
of three defense mechanisms under our attack method. All experiments were carried out on
a Tesla K80 GPU, with code for the experiments to be made publically available.

CHAPTER 6. A QUERY-EFFICIENT DECISION-BASED ATTACK 92

10−
3 δ
∗
t

10−
2 δ
∗
t

10−
1 δ
∗
t δ

∗
t 101 δ

∗
t 102 δ

∗
t 103 δ

∗
t

Size of Perturbation δt

−0.1

0.0

0.1

0.2

0.3

0.4

C
os

in
e

of
th

e
A

n
gl

e
w

it
h

G
ra

d
ie

nt

Cosine of the Angle with Gradient vs. Size of Perturbation δt

∇̂S
∇̃S

Figure 6.3: Box plots of the cosine of the angle between the proposed estimates and the true
gradient.

6.6 Sensitivity analysis

In this section, we carry out experiments to evaluate the hyper-parameters suggested by our
theoretical analysis. We use a 20-layer ResNet [144] trained over CIFAR-10 [81]. We run
the `2-optimized HopSkipJumpAttack over a subset of randomly sampled images.

Choice of step size We compare several schemes of choosing step size at each step. The
first scheme is suggested by Theorem 5: at the t-th step, we set ξt = ‖xt − x?‖2/

√
t, which

we call “Scale with Distance (Sqrt. Decay).” We include the other two scales which scale
with distance, “Scale with Distance (Linear Decay)” with ξt = ‖xt− x?‖2/t and “Scale with
Distance (No Decay)” with ξt = ‖xt − x?‖2. We then include “Grid Search,” which searchs
step sizes over a log-scale grid, and chooses the step size that best controls the distance with
the original sample after projecting the updated sample back to the boundary via binary
search. Finally, we include constant stepsizes at ξt = 0.01, 0.1, 1.0. For all schemes, we
always use geometric progression to decrease the step size by half until φx?(x̃t) = 1 before
the next binary search step.

Figure 6.2 plots the median distance against the number of queries for all schemes. We
observe that the scheme suggested by Theorem 5 achieves the best performance in this exper-
iment. Grid search costs extra query budget initially but eventually achieves a comparable
convergence rate. When the step size scales with the distance but with inappropriately cho-
sen decay, the algorithm converges slightly slower. The performance of the algorithm suffers
from a constant step size.

Choice of perturbation size and introduction of baseline We now study the ef-
fectiveness of the proposed perturbation size and baseline for estimating gradient direction
when the sample deviates from the boundary. In particular, we focus on the choice of δt and
the introduction of baseline analyzed in Section 6.4. Gradient direction estimation is carried

CHAPTER 6. A QUERY-EFFICIENT DECISION-BASED ATTACK 93

Distance Data Model Objective
Model Queries

1K 5K 20K
BA Opt HSJA BA Opt HSJA BA Opt HSJA

`2

MNIST CNN
Untargeted 6.14 6.79 2.46 5.45 3.76 1.67 1.50 2.07 1.48
Targeted 5.41 4.84 3.26 5.38 3.90 2.24 1.98 2.49 1.96

CIFAR10
ResNet

Untargeted 2.78 2.07 0.56 2.34 0.77 0.21 0.27 0.29 0.13
Targeted 7.83 8.21 2.53 5.91 4.76 0.41 0.59 1.06 0.21

DenseNet
Untargeted 2.57 1.78 0.48 2.12 0.67 0.18 0.21 0.28 0.12
Targeted 7.70 7.65 1.75 5.33 3.47 0.34 0.35 0.78 0.19

CIFAR100
ResNet

Untargeted 1.34 1.20 0.20 1.12 0.41 0.08 0.10 0.14 0.06
Targeted 9.30 12.43 6.12 7.40 8.34 0.92 1.61 4.06 0.29

DenseNet
Untargeted 1.47 1.22 0.25 1.23 0.34 0.11 0.12 0.13 0.08
Targeted 8.83 11.72 5.10 6.76 8.22 0.75 0.91 2.89 0.26

ImageNet ResNet
Untargeted 36.86 33.60 9.75 31.95 13.91 2.30 2.71 5.26 0.84
Targeted 87.49 84.38 71.99 82.91 71.83 38.79 40.92 53.78 10.95

`∞

MNIST CNN
Untargeted 0.788 0.641 0.235 0.700 0.587 0.167 0.243 0.545 0.136
Targeted 0.567 0.630 0.298 0.564 0.514 0.211 0.347 0.325 0.175

CIFAR10
ResNet

Untargeted 0.127 0.128 0.023 0.105 0.096 0.008 0.019 0.073 0.005
Targeted 0.379 0.613 0.134 0.289 0.353 0.028 0.038 0.339 0.010

DenseNet
Untargeted 0.114 0.119 0.017 0.095 0.078 0.007 0.017 0.063 0.004
Targeted 0.365 0.629 0.130 0.249 0.359 0.022 0.025 0.338 0.008

CIFAR100
ResNet

Untargeted 0.061 0.077 0.009 0.051 0.055 0.004 0.008 0.040 0.002
Targeted 0.409 0.773 0.242 0.371 0.472 0.124 0.079 0.415 0.019

DenseNet
Untargeted 0.065 0.076 0.010 0.055 0.038 0.005 0.010 0.030 0.003
Targeted 0.388 0.750 0.248 0.314 0.521 0.096 0.051 0.474 0.017

ImageNet ResNet
Untargeted 0.262 0.287 0.057 0.234 0.271 0.017 0.030 0.248 0.007
Targeted 0.615 0.872 0.329 0.596 0.615 0.219 0.326 0.486 0.091

Table 6.1: Median distance at various model queries. The smaller median distance at a given
model query is bold-faced. BA and HSJA stand for Boundary Attack and HopSkipJumpAt-
tack respectively.

out at perturbed images at the ith iteration, for i = 10, 20, 30, 40, 50, 60. We use the cosine
of the angle between the gradient-direction estimate and the truth gradient of the model as
a metric.

Figure 6.3 shows the box plots of two gradient-direction estimates as δt varies among
0.01δ∗t , 0.1δ

∗
t , δ
∗
t , 10δ∗t , 100δ∗t , where δ∗t = 10

√
dθ‖x̃t−1 − x?‖2 is our proposed choice. We

observe that our proposed choice of δt yields the highest cosine of the angle on average.
Also, the baseline in ∇̂S further improves the performance, in particular when δt is not
chosen optimally so that there is severe unevenness in the distribution of perturbed images.

6.6.1 Efficiency evaluation

Baselines We compare HopSkipJumpAttack with three state-of-the-art decision-based at-
tacks: Boundary Attack [38], Limited Attack [33] and Opt Attack [40]. We use the imple-
mentation of the three algorithms with the suggested hyper-parameters from the publicly
available source code online. Limited Attack is only included under the targeted `∞ setting,
as in Ilyas et al. [33].

CHAPTER 6. A QUERY-EFFICIENT DECISION-BASED ATTACK 94

0K 2K 4K 6K 8K 10K

Number of Queries

100

101

` 2
D

is
ta

n
ce

Untargeted `2 (MNIST, CNN)

0K 2K 4K 6K 8K 10K

Number of Queries

100

101

` 2
D

is
ta

n
ce

Targeted `2 (MNIST, CNN)

0K 2K 5K 7K 10K

Number of Queries

10−1

100

2× 10−1

3× 10−1

4× 10−1

6× 10−1

` ∞
D

is
ta

n
ce

Untargeted `∞ (MNIST, CNN)

0K 2K 5K 7K 10K

Number of Queries

10−1

100

2× 10−1

3× 10−1

4× 10−1

6× 10−1

` ∞
D

is
ta

n
ce

Targeted `∞ (MNIST, CNN)

0K 5K 10K 15K 20K 25K

Number of Queries

10−2

10−1

100

101

` 2
D

is
ta

n
ce

Untargeted `2 (CIFAR10, ResNet)

0K 5K 10K 15K 20K 25K

Number of Queries

10−2

10−1

100

101

` 2
D

is
ta

n
ce

Targeted `2 (CIFAR10, ResNet)

0K 5K 10K 15K 20K 25K

Number of Queries

10−3

10−2

10−1

100

` ∞
D

is
ta

n
ce

Untargeted `∞ (CIFAR10, ResNet)

0K 5K 10K 15K 20K 25K

Number of Queries

10−3

10−2

10−1

100

` ∞
D

is
ta

n
ce

Targeted `∞ (CIFAR10, ResNet)

0K 5K 10K 15K 20K 25K

Number of Queries

10−2

10−1

100

101

` 2
D

is
ta

n
ce

Untargeted `2 (CIFAR10, DenseNet)

0K 5K 10K 15K 20K 25K

Number of Queries

10−2

10−1

100

101

` 2
D

is
ta

n
ce

Targeted `2 (CIFAR10, DenseNet)

0K 5K 10K 15K 20K 25K

Number of Queries

10−3

10−2

10−1

100

` ∞
D

is
ta

n
ce

Untargeted `∞ (CIFAR10, DenseNet)

0K 5K 10K 15K 20K 25K

Number of Queries

10−3

10−2

10−1

100

` ∞
D

is
ta

n
ce

Targeted `∞ (CIFAR10, DenseNet)

Figure 6.4: Median distance versus number of model queries on MNIST with CNN, and
CIFAR-10 with ResNet and DenseNet from top to bottom rows. 1st column: untargeted `2.
2nd col.: targeted `2. 3rd col.: untargeted `∞. 4th col.: targeted `∞.

Data and models For a comprehensive evaluation of HopSkipJumpAttack, we use a wide
range of data and models, with varied image dimensions, data set sizes, complexity levels of
task and model structures.

The experiments are carried out over four image data sets: MNIST, CIFAR-10 [81],
CIFAR-100 [81], and ImageNet [145] with the standard train/test split [99]. The four data
sets have varied image dimensions and class numbers. MNIST contains 70K 28×28 gray-scale
images of handwritten digits in the range 0-9. CIFAR-10 and CIFAR-100 are both composed
of 32× 32× 3 images. CIFAR-10 has 10 classes, with 6K images per class, while CIFAR-100
has 100 classes, with 600 images per class. ImageNet has 1, 000 classes. Images in ImageNet
are rescaled to 224 × 224 × 3. For MNIST, CIFAR-10 and CIFAR-100, 1, 000 correctly
classified test images are used, which are randomly drawn from the test data set, and evenly
distributed across classes. For ImageNet, we use 100 correctly classified test images, evenly
distributed among 10 randomly selected classes. The selection scheme follows Metzen et al.
[60] for reproducibility.

We also use models of varied structure, from simple to complex. For MNIST, we use
a simple convolutional network composed of two convolutional layers followed by a hidden
dense layer with 1024 units. Two convolutional layers have 32, 64 filters respectively, each of
which is followed by a max-pooling layer. For both CIFAR-10 and CIFAR-100, we train a

CHAPTER 6. A QUERY-EFFICIENT DECISION-BASED ATTACK 95

0K 5K 10K 15K 20K 25K

Number of Queries

10−2

10−1

100

101

` 2
D

is
ta

n
ce

Untargeted `2 (CIFAR100, ResNet)

0K 5K 10K 15K 20K 25K

Number of Queries

10−2

10−1

100

101

` 2
D

is
ta

n
ce

Targeted `2 (CIFAR100, ResNet)

0K 5K 10K 15K 20K 25K

Number of Queries

10−3

10−2

10−1

100

` ∞
D

is
ta

n
ce

Untargeted `∞ (CIFAR100, ResNet)

0K 5K 10K 15K 20K 25K

Number of Queries

10−3

10−2

10−1

100

` ∞
D

is
ta

n
ce

Targeted `∞ (CIFAR100, ResNet)

0K 5K 10K 15K 20K 25K

Number of Queries

10−2

10−1

100

101

` 2
D

is
ta

n
ce

Untargeted `2 (CIFAR100, DenseNet)

0K 5K 10K 15K 20K 25K

Number of Queries

10−2

10−1

100

101

` 2
D

is
ta

n
ce

Targeted `2 (CIFAR100, DenseNet)

0K 5K 10K 15K 20K 25K

Number of Queries

10−3

10−2

10−1

100

` ∞
D

is
ta

n
ce

Untargeted `∞ (CIFAR100, DenseNet)

0K 5K 10K 15K 20K 25K

Number of Queries

10−3

10−2

10−1

100

` ∞
D

is
ta

n
ce

Targeted `∞ (CIFAR100, DenseNet)

0K 5K 10K 15K 20K 25K

Number of Queries

10−1

100

101

102

` 2
D

is
ta

n
ce

Untargeted `2 (ImageNet, ResNet)

0K 5K 10K 15K 20K 25K

Number of Queries

10−1

100

101

102

` 2
D

is
ta

n
ce

Targeted `2 (ImageNet, ResNet)

0K 5K 10K 15K 20K 25K

Number of Queries

10−3

10−2

10−1

100

` ∞
D

is
ta

n
ce

Untargeted `∞ (ImageNet, ResNet)

0K 5K 10K 15K 20K 25K

Number of Queries

10−3

10−2

10−1

100

` ∞
D

is
ta

n
ce

Targeted `∞ (ImageNet, ResNet)

Figure 6.5: Median distance versus number of model queries on CIFAR-100 with ResNet,
DenseNet, and ImageNet with ResNet from top to bottom rows. 1st column: untargeted `2.
2nd col.: targeted `2. 3rd col.: untargeted `∞. 4th col.: targeted `∞.

20-layer ResNet [144] and 121-layer DenseNet [146] respectively, with the canonical network
structure [99]. For ImageNet, we use a pre-trained 50-layer ResNet [144]. All models achieve
close to state-of-the-art accuracy on the respective data set. All pixels are scaled to be in the
range [0, 1]. For all experiments, we clip the perturbed image into the input domain [0, 1]
for all algorithms by default.

Initialization For untargeted attack, we initialize all attacks by blending an original image
with uniform random noise, and increasing the weight of uniform noise gradually until it is
misclassified, a procedure which is available on a widely-used python package, Foolbox [147],
as the default initialization of Boundary Attack. For targeted attack, the target class is
sampled uniformly among the incorrect labels. An image belonging to the target class is
randomly sampled from the test set as the initialization. The same target class and a
common initialization image are used for all attacks.

Metrics The first metric is the median `p distance between perturbed and original samples
over a subset of test images, which was commonly used in previous work, such as Carlini and
Wagner [29]. A version normalized by image dimension was employed by Brendel, Rauber,
and Bethge [38] for evaluating Boundary Attack. The `2 distance can be interpreted in the

CHAPTER 6. A QUERY-EFFICIENT DECISION-BASED ATTACK 96

0 2 4 6
`2 Distance

0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
es

s
R

at
e

1K 1K 1K

2K

2K

2K

10K 10K 10K

Untargeted `2 (MNIST, CNN)

0 2 4 6
`2 Distance

0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
es

s
R

at
e

1K 1K 1K

2K

2K

2K

10K

10K
10K

Targeted `2 (MNIST, CNN)

0.0 0.1 0.2 0.3 0.4 0.5
`∞ Distance

0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
es

s
R

at
e

1K 1K 1K

2K

2K 2K

10K

10
K

10K

Untargeted `∞ (MNIST, CNN)

0.0 0.1 0.2 0.3 0.4 0.5
`∞ Distance

0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
es

s
R

at
e

1K 1K 1K 1K

2K

2K 2K 2K

10K

10
K 10K

10
K

Targeted `∞ (MNIST, CNN)

0.0 0.5 1.0 1.5 2.0
`2 Distance

0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
es

s
R

at
e

1K

1K 1K

5K

5K

5K

25K 25K 25K

Untargeted `2 (CIFAR10, ResNet)

0.0 0.5 1.0 1.5 2.0
`2 Distance

0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
es

s
R

at
e

1K 1K 1K

5K

5K

5K

25K
25K

25K

Targeted `2 (CIFAR10, ResNet)

0.00 0.05 0.10 0.15 0.20
`∞ Distance

0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
es

s
R

at
e

1K

1K
1K

5K

5K

5K

25K 25K
25K

Untargeted `∞ (CIFAR10, ResNet)

0.00 0.05 0.10 0.15 0.20
`∞ Distance

0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
es

s
R

at
e

1K 1K 1K 1K

5K

5K 5K 5K

25K 25K

25K
25K

Targeted `∞ (CIFAR10, ResNet)

0.0 0.5 1.0 1.5 2.0
`2 Distance

0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
es

s
R

at
e

1K

1K

1K

5K

5K

5K

25K 25K 25K

Untargeted `2 (CIFAR10, DenseNet)

0.0 0.5 1.0 1.5 2.0
`2 Distance

0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
es

s
R

at
e

1K 1K 1K

5K

5K

5K

25K 25K

25K

Targeted `2 (CIFAR10, DenseNet)

0.00 0.05 0.10 0.15 0.20
`∞ Distance

0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
es

s
R

at
e

1K

1K

1K

5K

5K

5K

25K 25K
25K

Untargeted `∞ (CIFAR10, DenseNet)

0.00 0.05 0.10 0.15 0.20
`∞ Distance

0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
es

s
R

at
e

1K 1K 1K 1K

5K

5K
5K

5K

25K 25K

25K

25K

Targeted `∞ (CIFAR10, DenseNet)

Figure 6.6: Success rate versus distance threshold for MNIST with CNN, and CIFAR-10
with ResNet, DenseNet from top to bottom rows. 1st column: untargeted `2. 2nd column:
targeted `2. 3rd column: untargeted `∞. 4th column: targeted `∞.

following way: Given a byte image of size h×w×3, perturbation of size d in `2 distance on the
rescaled input image amounts to perturbation on the original image of dd/

√
h× w × 3∗255e

bits per pixel on average, in the range [0, 255]. The perturbation of size d in `∞ distance
amounts to a maximum perturbation of d255 · de bits across all pixels on the raw image.

As an alternative metric, we also plot the success rate at various distance thresholds for
both algorithms given a limited budget of model queries. An adversarial example is defined
a success if the size of perturbation does not exceed a given distance threshold. The success
rate can be directly related to the accuracy of a model on perturbed data under a given
distance threshold:

perturbed acc. = original acc.× (1− success rate). (6.21)

Throughout the experiments, we limit the maximum budget of queries per image to 25,000,
the setting of practical interest, due to limited computational resources.

Results Figure 6.4 and 6.5 show the median distance (on a log scale) against the queries,
with the first and third quartiles used as lower and upper error bars. For Boundary, Opt and
HopSkipJumpAttack, Table 6.1 summarizes the median distance when the number of queries
is fixed at 1,000, 5,000, and 20,000 across all distance types, data, models and objectives.

CHAPTER 6. A QUERY-EFFICIENT DECISION-BASED ATTACK 97

0.0 0.5 1.0 1.5 2.0
`2 Distance

0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
es

s
R

at
e

1K

1K

1K

5K

5K

5K

25K 25K 25K

Untargeted `2 (CIFAR100, ResNet)

0.0 0.5 1.0 1.5 2.0
`2 Distance

0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
es

s
R

at
e

1K 1K 1K

5K

5K 5K

25K

25K

25K

Targeted `2 (CIFAR100, ResNet)

0.00 0.05 0.10 0.15 0.20
`∞ Distance

0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
es

s
R

at
e

1K

1K

1K

5K

5K 5K

25K 25K
25K

Untargeted `∞ (CIFAR100, ResNet)

0.00 0.05 0.10 0.15 0.20
`∞ Distance

0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
es

s
R

at
e

1K 1K 1K 1K

5K

5K 5K 5K

25K

25K

25K
25K

Targeted `∞ (CIFAR100, ResNet)

0.0 0.5 1.0 1.5 2.0
`2 Distance

0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
es

s
R

at
e

1K

1K

1K

5K

5K

5K
25K 25K 25K

Untargeted `2 (CIFAR100, DenseNet)

0.0 0.5 1.0 1.5 2.0
`2 Distance

0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
es

s
R

at
e

1K 1K 1K

5K

5K 5K

25K

25K

25K

Targeted `2 (CIFAR100, DenseNet)

0.00 0.05 0.10 0.15 0.20
`∞ Distance

0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
es

s
R

at
e

1K

1K

1K

5K

5K 5K

25K 25K
25K

Untargeted `∞ (CIFAR100, DenseNet)

0.00 0.05 0.10 0.15 0.20
`∞ Distance

0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
es

s
R

at
e

1K 1K 1K 1K

5K

5K 5K 5K

25K
25K

25K 25K

Targeted `∞ (CIFAR100, DenseNet)

0 10 20 30
`2 Distance

0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
es

s
R

at
e

1K
1K

1K

5K

5K

5K

25K 25K 25K

Untargeted `2 (ImageNet, ResNet)

0 10 20 30
`2 Distance

0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
es

s
R

at
e

1K 1K 1K 5K 5K 5K

25K

25K

25K

Targeted `2 (ImageNet, ResNet)

0.0 0.1 0.2 0.3 0.4
`∞ Distance

0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
es

s
R

at
e

1K

1K 1K

5K

5K 5K

25K 25K

25K

Untargeted `∞ (ImageNet, ResNet)

0.0 0.1 0.2 0.3 0.4
`∞ Distance

0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
es

s
R

at
e

1K 1K 1K 1K

5K

5K 5K 5K

25K

25
K

25
K

25K

Targeted `∞ (ImageNet, ResNet)

Figure 6.7: Success rate versus distance threshold for CIFAR-100 with ResNet, DenseNet,
and ImageNet with ResNet from top to bottom rows. 1st column: untargeted `2. 2nd
column: targeted `2. 3rd column: untargeted `∞. 4th column: targeted `∞.

Figure 6.6 and 6.7 show the success rate against the distance threshold. Figure 6.4 and 6.6
contain results on MNIST with CNN, and CIFAR-10 with ResNet, Denset, subsequently
from the top row to the bottom row. Figure 6.5 and 6.7 contain results on CIFAR-100 with
ResNet and DenseNet, and ImageNet with ResNet, subsequently from the top row to the
bottom row. The four columns are for untargeted `2, targeted `2, untargeted `∞ and targeted
`∞ attacks respectively.

With a limited number of queries, HopSkipJumpAttack is able to craft adversarial ex-
amples of a significantly smaller distance with the corresponding original examples across
all data sets, followed by Boundary Attack and Opt Attack. As a concrete example, Ta-
ble 6.1 shows that untargeted `2-optimized HopSkipJumpAttack achieves a median distance
of 0.559 on CIFAR-10 with a ResNet model at 1, 000 queries, which amounts to below 3/255
per pixel on average. At the same budget of queries, Boundary Attack and Opt Attack only
achieve median `2-distances of 2.78 and 2.07 respectively. The difference in efficiency becomes
more significant for `∞ attacks. As shown in Figure 6.6, under an untargeted `∞-optimized
HopSkipJumpAttack with 1,000 queries, all pixels are within an 8/255-neighborhood of the
original image for around 70% of adversarial examples, a success rate achieved by Boundary
Attack only after 20,000 queries.

By comparing the odd and even columns of Figure 6.4-6.7, we can find that targeted

CHAPTER 6. A QUERY-EFFICIENT DECISION-BASED ATTACK 98

HopSkipJumpAttack takes more queries than the untargeted one to achieve a comparable
distance. This phenomenon becomes more explicit on CIFAR-100 and ImageNet, which have
more classes. With the same number of queries, there is an order-of-magnitude difference
in median distance between untargeted and targeted attacks (Figure 6.4 and 6.5). For `2-
optimized HopSkipJumpAttack, while the untargeted version is able to craft adversarial
images by perturbing 4 bits per pixel on average within 1,000 queries for 70% − 90% of
images in CIFAR-10 and CIFAR-100, the targeted counterpart takes 2,000-5,000 queries.
The other attacks fail to achieve a comparable performance even with 25,000 queries. On
ImageNet, untargeted `2-optimized HopSkipJumpAttack is able to fool the model with a
perturbation of size 6 bits per pixel on average for close to 50% of images with 1, 000 queries;
untargeted `∞-optimized HopSkipJumpAttack controls the maximum perturbation across all
pixels within 16 bits for 50% images within 1, 000 queries. The targeted Boundary Attack
is not able to control the perturbation size to such a small scale until after around 25, 000
queries. On the one hand, the larger query budget requirement results from a strictly more
powerful formulation of targeted attack than untargeted attack. On the other hand, this is
also because we initialize targeted HopSkipJumpAttack from an arbitrary image in the target
class. The algorithm may be trapped in a bad local minimum with such an initialization.
Future work can address systematic approaches to better initialization.

As a comparison between data sets and models, we see that adversarial images often have
a larger distance to their corresponding original images on MNIST than on CIFAR-10 and
CIFAR-100, which has also been observed in previous work (e.g., [29]). This might be because
it is more difficult to fool a model on simpler tasks. On the other hand, HopSkipJumpAttack
also converges in a fewer number of queries on MNIST, as is shown in Figure 6.4. It does not
converge even after 25, 000 queries on ImageNet. We conjecture the query budget is related
to the input dimension, and the smoothness of decision boundary. We also observe the
difference in model structure does not have a large influence on decision-based algorithms, if
the training algorithm and the data set keep the same. For ResNet and DenseNet trained on
a common data set, a decision-based algorithm achieves comparable performance in crafting
adversarial examples, although DenseNet has a more complex structure than ResNet.

As a comparison with state-of-the-art white-box targeted attacks, C&W attack [29]
achieves an average `2-distance of 0.33 on CIFAR-10, and BIM [27] achieves an average
`∞-distance of 0.014 on CIFAR-10. Targeted HopSkipJumpAttack achieves a comparable
distance with 5K-10K model queries on CIFAR-10, without access to model details. On
ImageNet, targeted C&W attack and BIM achieve an `2-distance of 0.96 and an `∞-distance
of 0.01 respectively. Untargeted HopSkipJumpAttack achieves a comparable performance
with 10, 000 − 15, 000 queries. The targeted version is not able to perform comparably as
targeted white-box attacks when the budget of queries is limited within 25, 000.

Visualized trajectories of HopSkipJumpAttack optimized for `2 distances along varied
queries on CIFAR10 and ImageNet can be found in Figure 6.8. On CIFAR-10, we observe
untargeted adversarial examples can be crafted within around 500 queries; targeted Hop-
SkipJumpAttack is capable of crafting human indistinguishable targeted adversarial exam-
ples within around 1, 000− 2, 000 queries. On ImageNet, untargeted HopSkipJumpAttack is

CHAPTER 6. A QUERY-EFFICIENT DECISION-BASED ATTACK 99

Untargeted `2 Attack Targeted `2 Attack
Trajectories on CIFAR-10

Untargeted `2 Attack Targeted `2 Attack
Trajectories on ImageNet

Figure 6.8: Visualized trajectories of HopSkipJumpAttack for optimizing `2 distance on
randomly selected images in CIFAR-10 and ImageNet. 1st column: initialization (after
blended with original images). 2nd-9th columns: images at 100, 200, 500, 1K, 2K, 5K, 10K,
25K model queries. 10th column: original images.

able to craft good adversarial examples with 1, 000 queries, while targeted HopSkipJumpAt-
tack takes 10, 000− 20, 000 queries.

6.6.2 Defense mechanisms under decision-based attacks

We investigate the robustness of various defense mechanisms under decision-based attacks.

Defense mechanisms Three defense mechanisms are evaluated: defensive distillation,
region-based classification, and adversarial training. Defensive distillation [44], a form of
gradient masking [37], trains a second model to predict the output probabilities of an existing
model of the same structure. We use the implementaion provided by Carlini and Wagner [29]
for defensive distillation. The second defense, region-based classification, belongs to a wide
family of mechanisms which add test-time randomness to the inputs or the model, causing
the gradients to be randomized [148]. Multiple variants have been proposed to randomize the
gradients [47, 149–152]. We adopt the implementation in Cao and Gong [149] with suggested
noise levels. Given a trained base model, region-based classification samples points from the
hypercube centered at the input image, predicts the label for each sampled point with the
base model, and then takes a majority vote to output the label. Adversarial training [26,
27, 30, 41] is known to be one of the most effective defense mechanisms against adversarial
perturbation [148, 153]. We evaluate a publicly available model trained through a robust
optimization method proposed by Madry et al. [30].

CHAPTER 6. A QUERY-EFFICIENT DECISION-BASED ATTACK 100

0 2 4 6
`2 Distance

0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
es

s
R

at
e

1K 1K

2K

2K

10K

10
K

50K 50K

`2 Attack against Defensive Distillation

HopSkipJump

Boundary

C&W (`2)

DeepFool

0 2 4 6
`2 Distance

0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
es

s
R

at
e

1K 1K

2K

2K

10K

10
K

50K 50K

`2 Attack against Region-based Classification

HopSkipJump

Boundary

BPDA

DeepFool

0 2 4 6
`2 Distance

0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
es

s
R

at
e

50K 50K

1K

1K

2K

2K

10K
10K

`2 Attack against Adversarial Training

HopSkipJump

Boundary

C&W (`2)

DeepFool

0.0 0.2 0.4 0.6
`∞ Distance

0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
es

s
R

at
e

1K
1K

2K

2K

10K

10K

50K

50K

`∞ Attack against Defensive Distillation

HopSkipJump

Boundary

C&W (`∞)

FGSM

0.0 0.1 0.2 0.3 0.4 0.5
`∞ Distance

0.0

0.2

0.4

0.6

0.8

1.0
S

u
cc

es
s

R
at

e

1K 1K

2K

2K

10K

10K

50K

50K

`∞ Attack against Region-based Classification

HopSkipJump

Boundary

BPDA

FGSM

0.0 0.1 0.2 0.3 0.4 0.5
`∞ Distance

0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
es

s
R

at
e

`∞ Attack against Adversarial Training

HopSkipJump

Boundary

BIM

FGSM

0.28 0.29 0.30 0.31 0.32
0.00

0.05

0.10

0.15

1K

1K

2K

2K

10
K

10
K

50K

50
K

Figure 6.9: Success rate versus distance threshold for a distilled model, a region-based clas-
sifier and an adversarially trained model on MNIST. Blue, magenta, cyan and orange lines
are used for HopSkipJumpAttack and Boundary Attack at the budget of 1K, 2K, 10K and
50K respectively. Different attacks are plotted with different line styles. An amplified figure
is included near the critical `∞-distance of 0.3 for adversarial training.

Baselines We compare our algorithm with state-of-the-art attack algorithms that require
access to gradients, including C&W Attack [29], DeepFool [31] for minimizing `2-distance,
and FGSM [26], and BIM [30, 154] for minimizing `∞-distance. For region-based classifica-
tion, the gradient of the base classifier is taken with respect to the original input.

We further include methods designed specifically for the defense mechanisms under
threat. For defensive distillation, we include the `∞-optimized C&W Attack [29]. For region-
based classification, we include backward pass differentiable approximation (BPDA) [148],
which calculates the gradient of the model at a randomized input to replace the gradient at
the original input in C&W Attack and BIM. All of these methods assume access to model
details or even defense mechanisms, which is a stronger threat model than the one required
for decision-based attacks. We also include Boundary Attack as a decision-based baseline.

For HopSkipJumpAttack and Boundary Attack, we include the success rate at three
different scales of query budget: 2K, 10K and 50K, so as to evaluate our method both
with limited queries and a sufficient number of queries. We find the convergence of Hop-
SkipJumpAttack becomes unstable on region-based classification, resulting from the diffi-
culty of locating the boundary in the binary search step when uncertainty is increased near
the boundary. Thus, we increase the binary search threshold to 0.01 to resolve this issue.

Results Figure 6.9 shows the success rate of various attacks at different distance thresh-
olds for the three defense mechanisms. On all of the three defenses, HopSkipJumpAttack

CHAPTER 6. A QUERY-EFFICIENT DECISION-BASED ATTACK 101

Data
Model

LR L-SVM K-SVM KNN RF GBT SIFT HOG

MNIST 0.926 0.918 0.945 0.971 (3) 0.947 0.967 0.880 0.899
b-CIFAR10 0.606 0.576 0.626 0.601 (50) 0.610 0.683 0.625 0.660
CIFAR10 0.405 0.389 N/A N/A 0.355 0.502 0.349 0.495

Table 6.2: Accuracy of different models on natural test images for the three data sets.

demonstrates similar or superior performance compared to state-of-the-art white-box attacks
with sufficient model queries. Even with only 1K-2K model queries, it also achieves accept-
able performance, although worse than the best white-box attacks. With sufficient queries,
Boundary Attack achieves a comparable performance under the `2-distance metric. But it
is not able to generate any adversarial examples when the number of queries is limited to
1, 000. We think this is because the strength of our batch gradient direction estimate over
the random walk step in Boundary Attack becomes more explicit when there is uncertainty
or non-smoothness near the decision boundary. We also observe that Boundary Attack does
not work in optimizing the `∞-distance metric for adversarial examples, making it difficult to
evaluate defenses designed for `∞ distance, such as adversarial training proposed by Madry
et al. [30].

On a distilled model, when the `∞-distance is thresholded at 0.3, a perturbation size pro-
posed by Madry et al. [30] to measure adversarial robustness, HopSkipJumpAttack achieves
success rates of 86% and 99% with 1K and 50K queries respectively. At an `2-distance of 3.0,
the success rate is 91% with 2K queries. HopSkipJumpAttack achieves a comparable perfor-
mance with C&W attack under both distance metrics with 10K-50K queries. Also, gradient
masking [37] by defensive distillation does not have a large influence on the query efficiency
of HopSkipJumpAttack, indicating that the gradient direction estimate is robust under the
setting where the model does not have useful gradients for certain white-box attacks.

On region-based classification, with 2K queries, HopSkipJumpAttack achieves success
rates of 82% and 93% at the same `∞- and `2-distance thresholds respectively. With 10K-50K
queries, it is able to achieve a comparable performance to BPDA, a white-box attack tailored
to such defense mechanisms. On the other hand, we observe that HopSkipJumpAttack
converges slightly slower on region-based classification than itself on ordinary models, which
is because stochasticity near the boundary may prevent binary search in HopSkipJumpAttack
from locating the boundary accurately.

On an adversarially trained model, HopSkipJumpAttack achieves a success rate of 11.0%
with 50K queries when the `∞-distance is thresholded at 0.3. As a comparison, BIM has a suc-
cess rate of 7.4% at the given distance threshold. The success rate of `∞-HopSkipJumpAttack
transfers to an accuracy of 87.58% on adversarially perturbed data, close to the state-of-the-
art performance achieved by white-box attacks.2 With 1K queries, HopSkipJumpAttack also
achieves comparable performance to BIM and C&W attack.

2See https://github.com/MadryLab/mnist_challenge

https://github.com/MadryLab/mnist_challenge

CHAPTER 6. A QUERY-EFFICIENT DECISION-BASED ATTACK 102

0 1 2 3 4
2 Distance

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

MNIST (2)

0 1 2 3 4
2 Distance

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Binary CIFAR-10 (2)

0 1 2 3 4
2 Distance

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

CIFAR-10 (2)

0.0 0.1 0.2 0.3 0.4
 Distance

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

MNIST ()

0.0 0.1 0.2 0.3 0.4
 Distance

0.0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy
Binary CIFAR-10 ()

0.0 0.1 0.2 0.3 0.4
 Distance

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

CIFAR-10 ()

Figure 6.10: Accuracy of various models on adversarial examples at different distance thresh-
olds. The accuracy of random guess is shown with the dotted gray line.

6.6.3 Robustness of other common image classifiers under
decision-based attack

We study the robustness of several other common image classifiers, including logistic regres-
sion (LR), linear support vector machine (L-SVM), kernel support vector machine (K-SVM),
k-nearest neighbors (KNN), random forest (RF), gradient boosted trees (GBT), scale invari-
ant feature transform (SIFT), and histogram of oriented gradients (HOG). Among them, LR,
L-SSVM, and K-SVM are differentiable with respect to the input, while KNN, RF, GBT,
SIFT, and HOG are nondifferentiable with respect to the input. LR, L-SVM, K-SVM, KNN,
and RF are implemented in scikit-learn; GBT is implemented in LightGBM, and SIFT and
HOG are implemented in OpenCV.
Logistic Regression (LR): The logistic regression constructs a linear model between raw
pixels and the log-odds of output classes. `2 regularization is added to the linear coefficients,
with the penalty parameter chosen to be 1.
Linear Support Vector Machine (L-SVM): The linear SVM is a linear model of raw
pixels trained with a hinge loss plus an `2 regularization on the linear coefficients. We choose
the penalty parameter to be 10−5, and use multiple one-vs-rest classifiers for multi-class data.
Kernel Support Vector Machine (K-SVM): Kernel SVM replaces the dot product
between linear coefficients and raw pixels by a kernel function, and fits a nonlinear model
with a hinge loss plus an `2 regularization by applying the kernel trick. We use the RBF
kernel, choose the penalty parameter to be 1, and use multiple one-vs-rest classifiers for
multi-class data.

CHAPTER 6. A QUERY-EFFICIENT DECISION-BASED ATTACK 103

Distance Data Objective
Model

LR L-SVM K-SVM KNN RF GBT SIFT HOG

`2

MNIST
Untargeted 0.63 0.48 1.35 2.79 0.01 0.08 1.69 0.30
Targeted 1.09 0.83 2.08 3.19 0.05 1.34 2.42 1.36

b-CIFAR10 Targeted 0.20 0.05 1.43 1.09 0.04 0.31 0.15 1.16

CIFAR10
Untargeted 0.44 0.03 N/A N/A 0.06 0.18 0.10 0.77
Targeted 1.17 0.10 N/A N/A 0.19 2.63 1.56 2.31

`∞

MNIST
Untargeted 0.047 0.039 0.099 0.263 0.002 0.014 0.155 0.043
Targeted 0.087 0.064 0.161 0.304 0.029 0.152 0.218 0.249

b-CIFAR10 Targeted 0.005 0.001 0.039 0.054 0.022 0.075 0.010 0.075

CIFAR10
Untargeted 0.013 0.001 N/A N/A 0.029 0.073 0.010 0.049
Targeted 0.034 0.003 N/A N/A 0.096 0.155 0.088 0.151

Table 6.3: Median distance between adversarial examples and the corresponding original
examples for different image classifiers, distance types, data sets, and objectives.

K-Nearest Neighbors (KNN): The k-nearest neighbors algorithm classifies an input by
a plurality vote of the k nearest neighbors of a given input, in terms of the `2 distance in
the raw pixel space. The number of neighbors k is chosen by cross validation, which is 3 for
MNIST and 50 for binary CIFAR-10.
Random Forests (RF): The algorithm for training random forests applies bootstrap ag-
gregating to tree learners. We include ten trees in the forest, and use the Gini impurity as
split criterion. For each split,

√
d randomly selected features are used.

Gradient Boosted Trees (GBT): Gradient boosting trees take each decision tree as a
weak learner, and combine multiple trees iteratively into a single strong learner. We use
a learning rate of 0.05 to boost 100 trees. For each tree, we set the minimum number of
samples in each leaf to be 10, use 70% of randomly selected d features, and use 70% randomly
sampled data.
Scale Invariant Feature Transform (SIFT): The scale-invariant feature transform (SIFT)
detect and describe local features in images by extracting keypoints and compute its de-
scriptors. K-means clustering with K = 2, 000 is performed for keypoint features of all the
training images. A histogram is built for the frequency of occurrences of cluster centers for
each image. A linear SVC with penalty parameter 1 is fit on histogram representations of
the training data.
Histogram of Oriented Gradients (HOG): The histogram of oriented gradients counts
occurrences of gradient orientation in localized portions of an image. A linear SVC with
penalty parameter 1 is fit on histogram representations of the training data.

We carry out the experiments on three data sets, MNIST, binary CIFAR-10 and CIFAR-
10. For binary CIFAR-10, we reduce classification on CIFAR-10 to a binary classification
problem by keeping images of cat and dog alone. We include the binary CIFAR-10 because
fitting K-SVM and KNN on CIFAR-10 causes memory error on a c5.xlarge node with 8GB
memory. Table 6.2 shows the accuracy of various classifiers on the three data sets.

HopSkipJumpAttack is applied to the generation of adversarial examples. Both untar-

CHAPTER 6. A QUERY-EFFICIENT DECISION-BASED ATTACK 104

Figure 6.11: Pairs of original and corresponding adversarial images under targeted `2 attack.
Attacks are against LR, L-SVM, K-SVM, KNN, RF, GBT, SIFT and HOG respectively from
the top row to the bottom row. The leftmost five columns are on MNIST, the middle five
columns are on binary CIFAR-10, and the rightmost five columns are on CIFAR-10.

geted and targeted attacks with `2 and `∞ constraints are carried out. For untargeted attack,
we run HopSkipJumpAttack for 27 iterations across all models and data sets, which amount
to a budget of 10, 000 model queries. For targeted attack, we initialize from three different
images at the target class when attacking a single image, so as to prevent the algorithm from
being trapped in a bad local minimum. From each initialization, we run HopSkipJumpAt-
tack for 45 iterations, which amount to a budget of 20, 000 model queries. The smallest
perturbation among all initializations is reported.

The accuracy of various models on adversarial examples in the test set at various distance
thresholds for the three data sets is plotted in Figure 6.10. We observe that most of the
image classifiers being tested are vulnerable to decision-based attack. On MNIST, the left
column of Figure 6.10 shows that all models except KNN performs comparably or worse
than random guess (10%) under `2 perturbation of size 2, or `∞ perturbation of size 0.3.
On binary CIFAR-10, all models achieve an accuracy worse than random guess (50%) at `2
perturbation of size 1, or `∞ perturbation of size 0.03 (approximately 8/255). On CIFAR-10,
all models except GBT and HOG achieve an accuracy worse than random guess (50%) at `2
perturbation of size 1, or `∞ perturbation of size 0.03 (approximately 8/255). KNN, GBT
and HOG are the most robust against HopSkipJumpAttack among all image classifiers.

We also report the median distance between adversarial and original images in Table 6.3
as another metric. Similar to the observation made previously, we find all models are vulner-
able to untargeted decision-based attack. On the other hand, several models yield a certain
level of robustness against targeted decision-based attack. KNN requires an `∞ perturbation
of size 0.304 on average, or an `2 perturbation of size 3.19 on MNIST, and GBT and HOG
requires a median `∞ distance of size 0.155 and 0.151, or a median `2 distance of size 2.63
and 2.31 for targeted perturbation on CIFAR-10.

The visualization of adversarial examples for different models under targeted `2 attack
are shown in Figure 6.11. On MNIST, differences between original and adversarial images
against KNN (the fourth row) and HOG (the bottom row) can sometimes be observed by
human. As an example, we can clearly see the digit “4” on the fourth row has been perturbed
towards “9”. We may also observe noisy pixels on adversarial examples for GBT for binary

CHAPTER 6. A QUERY-EFFICIENT DECISION-BASED ATTACK 105

CIFAR-10 and CIFAR-10. Under most circumstances, humans are able to tell the true label
of an adversarial image generated by HopSkipJumpAttack.

While HopSkipJumpAttack is able to generate human-indistinguishable adversarial ex-
amples on these models, we also note that convergence of our algorithm cannot be directly
established by Theorem 8 for KNN, RF, GBT, SIFT, and HOG, because of their non-
differentiability with respect to the input. A meaningful future direction is to characterize
the property of our algorithm theoretically on these models.

Given the observation that KNN and HOG are comparably more robust to adversarial
perturbation, it is also worth investigating whether they can be combined into state-of-the-
art image classifiers such as deep neural networks, so as to improve their performance under
adversarial perturbation.

6.7 Proofs

For notational simplicity, we use the shorthand S ≡ Sx? throughout the proofs.

6.7.1 Proof of Theorem 5

Proof. For notational simplicity, let us denote τt := ξt/‖∇S(xt)‖2, so that the update (6.3)
at iterate t can be rewritten as

xt+1 = αtx
? + (1− αt)(xt + τt∇S(xt)). (6.22)

Recalling our step size choice ξt = ηt‖xt − x?‖ with ηt := t−q, we have τt = ηt
‖xt−x?‖
‖∇S(xt)‖ .

The squared distance ratio is

‖xt+1 − x?‖22
‖xt − x?‖22

=
‖(1− α)(τt∇S(xt) + xt − x?)‖22

‖xt − x?‖22
. (6.23)

By a second-order Taylor series, we have

0 =
〈
∇S(xt), xt+1 − xt

〉
+

1

2
(xt+1 − xt)THt(xt+1 − xt), (6.24)

where Ht = ∇2S(βxt+1 + (1 − β)xt) for some β ∈ [0, 1]. Plugging equation (6.22) into
equation (6.24) yields

〈
∇S(xt), −αvt + τt∇S(xt)

〉
+

1

2
(−αvt + τt∇S(xt))

THt(−αvt + τt∇S(xt)) = 0, (6.25)

where we define vt := xt − x? + τt∇S(xt). This can be rewritten as a quadratic equation
with respect to α:

vTt Htvtα
2 − 2∇S(xt)

T (I + τtHt)vtα +∇S(xt)
T (τ 2t Ht + 2τtI)∇S(xt) = 0. (6.26)

CHAPTER 6. A QUERY-EFFICIENT DECISION-BASED ATTACK 106

Solving for α yields

α =
∇S(xt)

T (τ 2t Ht + 2τtI)∇S(xt)

2∇S(xt)T (I + τtHt)vt
· 2

1 +
√

1− vTt Htvt∇S(xt)T (τ2t Ht+2τtI)∇S(xt)
(∇S(xt)T (I+τtHt)vt)2

(6.27)

≥ ∇S(xt)
T (τ 2t Ht + 2τtI)∇S(xt)

2∇S(xt)T (I + τtHt)vt
. (6.28)

In order to simplify the notation, define ∇t := ∇S(xt) and dt := xt − x?, which leads to

α ≥ ∇T
t (1

2
τ 2t H + τtI)∇t

∇T
t (I + τtH)(dt + τt∇t)

.

Hence, we have

(1− α)2 ≤
(

1− ∇T
t (1

2
τ 2t Ht + τtI)∇t

∇T
t (I + τtHt)(dt + τt∇t)

)2

=
(1

2
τ 2t ∇T

t Ht∇t +∇T
t dt + τt∇T

t Htdt

τt∇T
t ∇t + τ 2t ∇T

t Ht∇t +∇T
t dt + τt∇T

t Htdt

)2

≤
(1

2
τ 2t L‖∇t‖2 +∇T

t dt + τtL‖dt‖‖∇t‖
(τt + 1

2
τ 2t L)‖∇t‖2 +∇T

t dt + τtL‖dt‖‖∇t‖
)2

=
(rt + (1

2
η2t + ηt)L

‖dt‖2
‖∇t‖2

ηt + rt + (1
2
η2t + ηt)L

‖dt‖2
‖∇t‖2

)2

≤
(rt + ηt · 32L

‖dt‖2
‖∇t‖2

rt + ηt · (1 + 3
2
L ‖dt‖2‖∇t‖2)

)2
.

where

rt =
〈xt − x?,∇S(xt)〉
‖xt − x?‖2‖∇S(xt)‖2

=
〈dt,∇t〉
‖dt‖2‖∇t‖2

. (6.29)

Let κt := 3
2
L ‖dt‖2‖∇t‖2 . Then we have κt is bounded:

κt ≤
3

2
L
‖x0 − x?‖2

c
. (6.30)

Equation (6.23) and the bound on (1− α)2 yield

‖xt+1 − x?‖22
‖xt − x?‖22

= (1− α)2 ·
(τ 2t ‖∇S(xt)‖2 + 2τt〈∇S(xt), xt − x?〉

‖xt − x?‖2
+ 1
)

(6.31)

= (1− α)2 · (η2t + 2ηtrt + 1) (6.32)

≤
(rt + ηtκt
rt + ηt(1 + κt)

)2
· (η2t + 2ηtrt + 1). (6.33)

We will show the convergence of rt to 1 in two steps. In the first step, we show λt := ηt
rt
→ 0

by contradiction. In the second step, we establish the convergence rate of rt to 1 based on
the result of the first step.

CHAPTER 6. A QUERY-EFFICIENT DECISION-BASED ATTACK 107

Assume there exists a subsequence λti of λt that is bounded away from 0, such that
λti > c1 for some constant c1. (Note that we always have rt > 0 as xt is on the target side
of the boundary for any t.)

Define θt :=
(

rt+ηtκt
rt+ηt(1+κt)

)2
· (η2t + 2ηtrt + 1). Then we have

θti ≤
(1 + c1κt

1 + c1(1 + κt)

)2
· (η2ti + 2ηti + 1). (6.34)

As ηti → 0, there exists a constant c2 > 0 such that θti < 1− c2 for i large enough.
Because θt is an increasing function of rt, we have

θt ≤
(1 + ηtκt

1 + ηt(1 + κt)

)2
· (η2t + 2ηt + 1) (6.35)

=
1 + 2ηt + 2κtηt +O(η2t)

1 + 2ηt + 2κtηt +O(η2t)
(6.36)

= 1 +O(t−2q). (6.37)

The product of 1 + t−2q over t from 1 to ∞ is finite when q > 1
4
:

Π∞t=1(1 + t−2q) = exp{
∞∑

t=1

log(1 + t−2q)} (6.38)

≤ exp{
∞∑

t=1

t−2q} <∞. (6.39)

Therefore, we have

Π∞t=1θt ≤ Π∞i=1θti · Π∞t=1(1 +O(t−2q)) = 0, (6.40)

which implies xt converges to x?, a contradiction. Therefore, λt → 0 as t→∞.
Now we can establish the convergence of rt to 1. We expand θt as

θt =
(1 + 2λtκt + λ2tκ

2
t)(η

2
t + 2ηtrt + 1)

1 + 2λt(1 + κt) + λ2t (1 + κt)2
(6.41)

=
1 + 2λtκt + λ2tκ

2
t + 2λtr

2
t

1 + 2λtκt + λ2t (κt + 1)2 + 2λt
+
η2t (4κt + (1 + λtκt)

2 + 2λtκ
2
t)

1 + 2λtκt + λ2t (κt + 1)2 + 2λt

≤ 1 + 2λtκt + λ2tκ
2
t + 2λtr

2
t

1 + 2λtκt + λ2tκ
2
t + 2λt

+ η2t (4κt + (1 + λtκt)
2 + 2λtκ

2
t)

≤ 1− 2λt(1− r2t)
1 + 2λtκt + λ2tκ

2
t + 2λt

+ η2t (4κt + 2) (6.42)

≤ 1− λt(1− r2t) + η2t (4κt + 2), (6.43)

where Inequality (6.42) holds for large enough t. As the product of θt over t is positive, we
have

∞∑

t=1

log θt = log Π∞t=1θt > −∞. (6.44)

CHAPTER 6. A QUERY-EFFICIENT DECISION-BASED ATTACK 108

Given that η2t (4κt + 2) = Θ(t−2q), Equation (6.44) is equivalent to
∞∑

t=1

λt(1− r2t) <∞, (6.45)

which implies λt(1− r2t) = o(t−
1
2).

As rt ≤ 1 and ηt = t−q, we have λt = O(t−q) and hence we have 1− rt = o(t−
1
2
+q).

6.7.2 Proof of Theorem 6

The idea of the proof is to divide the unit sphere into three components: the upper cap
along the direction of gradient, the lower cap opposite to the direction of gradient, and the
annulus in between.

Proof. Let u be a random vector uniformly distributed on the sphere. By Taylor’s theorem,
for any δ ∈ (0, 1), we have

S(xt + δu) = δ∇S(xt)
Tu+

1

2
δ2uT∇2S(x′)u. (6.46)

for some x′ on the line between xt and xt + δu, where we have made use of the fact that
S(xt) = 0. As the function S has Lipschitz gradients, we can bound the second-order term
as

|1
2
δ2uT∇2S(x′)u| ≤ 1

2
Lδ2. (6.47)

Let w := 1
2
Lδ. By the Taylor expansion and the bound on the second order term by

eigenvalues, when ∇S(xt)
Tu > w, we have

S(xt + δu) ≥ δ∇S(xt)
Tu+

1

2
δ2uT∇2S(x′)u

≥ δ(∇S(xt)
Tu− 1

2
Lδ) > 0.

Similarly, we have S(xt + δu) < 0 when ∇S(xt)
Tu < −w. Therefore, we have

φx(xt + δu) =

{
1 if ∇S(xt)

Tu > w,

−1 if ∇S(xt)
Tu < −w.

We expand the vector∇S(xt) to an orthogonal bases in Rd: v1 = ∇S(xt)/‖∇S(xt)‖2, v2, . . . , vd.
The random vector u can be expressed as

u =
d∑

i=1

βivi,

where β is uniformly distributed on the sphere. Denote the upper cap as E1 := {∇S(xt)
Tu >

w}, the annulus as E2 := {|∇S(xt)
Tu| < w}, and the lower cap as E3 := {∇S(xt)

Tu < −w}.
Let p := P(E2) be the probability of event E2. Thus we have P(E1) = P(E3) = (1 − p)/2.
By symmetry, for any i 6= 1, we have

E[βi | E1] = E[βi | E3] = 0.

CHAPTER 6. A QUERY-EFFICIENT DECISION-BASED ATTACK 109

Therefore, the expected value of the estimator is

E[φx(xt + δu)u] =
(
E[φx(xt + δu)u | E1] + E[φx(xt + δu)u | E3]

)
· (1− p)/2+

E[φx(xt + δu)u | E2] · p

= (E[
d∑

i=1

βivi | E1] + E[−
d∑

i=1

βivi | E3]) · (1− p)/2 + E[φx(xt + δu)u | E2] · p

=
(
E[β1v1 | E1] + E[−β1v1 | E3]

)
· (1− p)/2 + E[φx(xt + δu)u | E2] · p

= p ·
(
E[φx(xt + δu)u | E2]−

1

2
E[β1v1 | E1]−

1

2
E[−β1v1 | E3]

)
+

E[β1v1 | E1] + E[−β1v1 | E3]

Exploiting the above derivation, we bound the difference between E[|β1|v1] = E|β1|
‖∇S(xt)‖2∇S(xt)

and E[φx(xt + δu)u]. In fact, we have

‖E[φx(xt + δu)u]− E[|β1|v1]‖2 ≤ p
∥∥∥E[φx(xt + δu)u | E2]−

1

2
E[β1v1 | E1]−

1

2
E[−β1v1 | E3]

∥∥∥
2

(6.48)

+
∥∥∥E[|β1|v1 | E1] + E[|β1|v1 | E3]− E[|β1|v1]

∥∥∥
2

≤ 2p+ p = 3p, (6.49)

which yields

cos∠ (E[φx(xt + δu)u],∇S(xt)) ≥ 1− 1

2

(3p

E|β1|
)2
. (6.50)

We can bound p by observing that 〈 ∇S(xt)‖∇S(xt)‖2 , u〉
2 is a Beta distribution B(1

2
, d−1

2
):

p = P(|∇S(xt)
Tu| < w)

= P
(
〈 ∇S(xt)

‖∇S(xt)‖2
, u〉2 ≤ w2

‖∇S(xt)‖22

)

=

∫ w2

‖∇S(xt)‖22

0

x−
1
2 (1− x)

d−3
2

B(1
2
, d−1

2
)

dx

≤ 2w

B(1
2
, d−1

2
)‖∇S(xt)‖2

.

CHAPTER 6. A QUERY-EFFICIENT DECISION-BASED ATTACK 110

Plugging into Equation (6.50), we get

cos∠ (E[φx(xt + δu)u],∇S(xt))

≥ 1− 18w2

(E|β1|)2B(1
2
, d−1

2
)2‖∇S(xt)‖22

≥ 1− 9L2δ2

2(2/(d− 1))2‖∇S(xt)‖22
= 1− 9L2δ2(d− 1)2

8‖∇S(xt)‖22
We also observe that

E∇̃S(xt, δ) = E[φx(xt + δu)u].

As a consequence, we have established

cos∠
(
E[∇̃S(xt, δ)],∇S(xt)

)
≥ 1− 9L2δ2(d− 1)2

8‖∇S(xt)‖22
.

Taking δ → 0, we get

lim
δ→0

cos∠
(
E[∇̃S(xt, δ)],∇S(xt)

)
= 1.

6.7.3 Proof of Lemma 2

Proof. Recall that ∇̃S(xt, δ) = 1
B

∑B
b=1 φx?(xt + δub)ub, where ub’s are i.i.d. uniformly dis-

tributed unit random vectors. Define vb := φx?(xt + δub)ub − E[∇̃S(xt, δ)]. We have that
{vb}Bb=1 is an i.i.d. sequence of zero-mean random vectors such that

‖vb‖2 ≤ ‖φx?(xt + δub)ub‖2 + ‖E[∇̃S(xt, δ)]‖2
≤ 1 + 1 = 2.

The covariance matrix Σ of vb is

Σ = E[vbv
T
b]− E[vb]E[vb]

T

= E[ubu
T
b]− E[vb]E[vb]

T

� Id,

where Id is the identity matrix, and A � B for two matrices A,B if and only if B − A is
positive semi-definite. By applying Bernstein’s inequality for random matrices [140] to the
(d+ 1)-dimensional symmetric matrices [

0, vTb
vb,0d

]
,

CHAPTER 6. A QUERY-EFFICIENT DECISION-BASED ATTACK 111

we can obtain the following Bernstein-type inequality on random variable ‖∑B
b=1 vb‖2 (See

Exercise 6.13 of Wainwright [141])

P
(
‖ 1

B

B∑

b=1

vb‖ ≥ s
)
≤ 2(d+ 1) exp

(
− Bs2

8 + 4s

)
. (6.51)

That is,

P
(
‖∇̃S(xt, δ)− E[∇̃S(xt, δ)]‖ ≥ s

)
≤ 2(d+ 1) exp

(
− Bs2

8 + 4s

)
. (6.52)

6.7.4 Proof of Theorem 7

Proof. For notational simplicity, we denote ∇̃t := ∇̃S(xt, δ) and∇t = ∇S(xt). By definition,
we have

cos∠
(
∇̃t,∇Sx?(xt)

)
= 1− 1

2

∥∥∥ ∇̃t

‖∇̃t‖
− ∇t

‖∇t‖
∥∥∥
2

. (6.53)

By repeated application of triangle inequality, we have for any constant k,
∥∥∥ ∇̃t

‖∇̃t‖
− ∇t

‖∇t‖
∥∥∥ =

1

‖∇t‖
∥∥∥∇̃t
‖∇t‖
‖∇̃t‖

− ∇t

∥∥∥

≤ 1

‖∇t‖
(∥∥∥k∇̃t −∇t

∥∥∥+
∥∥∥∇̃t
‖∇t‖
‖∇̃t‖

− k∇̃t

∥∥∥
)

=
1

‖∇t‖
(∥∥∥k∇̃t −∇t

∥∥∥+
∣∣∣‖∇t‖ − ‖k∇̃t‖

∣∣∣
)

≤ 2

‖∇t‖
∥∥∥k∇̃t −∇t

∥∥∥

≤ 2

‖∇t‖
(
k
∥∥∥∇̃t − E[∇̃t]

∥∥∥+
∥∥∥kE[∇̃t]−∇t

∥∥∥
)

(6.54)

In the proof of Theorem 6 (Equation (6.49)), we have established that
∥∥∥E[∇̃t]−

√
2

π

∇t

‖∇t‖
∥∥∥ ≤ 3Lδ(d− 1)

2‖∇t‖
.

As a result, letting k :=
√

π
2
‖∇t‖, we get

∥∥∥ ∇̃t

‖∇̃t‖
− ∇t

‖∇t‖
∥∥∥ ≤
√

2π
∥∥∥∇̃t − E[∇̃t]

∥∥∥+

√
π

2

3Lδ(d− 1)

‖∇t‖
. (6.55)

CHAPTER 6. A QUERY-EFFICIENT DECISION-BASED ATTACK 112

Combining Equation (6.53) and Inequality (6.55), we have

P
(

cos∠
(
E[∇̃S(xt, δ)],∇Sx?(xt)

)
< 1− a

)

= P
(∥∥∥ ∇̃t

‖∇̃t‖
− ∇t

‖∇t‖
∥∥∥ >
√

2a
)

≤ P
(√

2π
∥∥∥∇̃t − E[∇̃t]

∥∥∥+

√
π

2

3Lδ(d− 1)

‖∇t‖
>
√

2a
)

≤ 2(d+ 1) exp
{
−

B
(√

a
π
− 3Lδ(d−1)

2‖∇t‖

)2

8 + 4
(√

a
π
− 3Lδ(d−1)

2‖∇t‖

)
}
,

where the last inequality follows from Lemma 2 when 3Lδ(d−1)
2‖∇t‖ <

√
a
π
. When δ < ‖∇t‖

3L(d−1)
√

a
π
,

we have 3Lδ(d−1)
2‖∇t‖ < 1

2

√
a
π
, and therefore

P
(

cos∠
(
E[∇̃S(xt, δ)],∇Sx?(xt)

)
< 1− a

)
≤ 2(d+ 1) exp

{
− Ba

32π + 8
√
aπ

}
.

6.7.5 Proof of Theorem 8

Proof. For notational simplicity, let us denote τt := ξt/‖∇S(xt)‖2 and ut := ‖∇S(xt)‖
‖∇̂S(xt)‖

∇̂S(xt),

so that the update (6.3) at iterate t can be rewritten as

xt+1 = αtx
? + (1− αt)(xt + τtut). (6.56)

Recalling our step size choice ξt = ηt‖xt − x?‖ with ηt := t−q, we have τt = ηt
‖xt−x?‖
‖∇S(xt)‖ . The

squared distance ratio is

‖xt+1 − x?‖22
‖xt − x?‖22

=
‖(1− α)(τtut + xt − x?)‖22

‖xt − x?‖22
. (6.57)

By a second-order Taylor series, we have

0 =
〈
∇S(xt), xt+1 − xt

〉
+

1

2
(xt+1 − xt)THt(xt+1 − xt), (6.58)

where Ht = ∇2S(βxt+1 + (1 − β)xt) for some β ∈ [0, 1]. Plugging equation (6.56) into
equation (6.58) yields

〈
∇S(xt), −αvt + τtut

〉
+

1

2
(−αvt + τtut)

THt(−αvt + τtut) = 0, (6.59)

where we define vt := xt − x? + τtut. This can be rewritten as a quadratic equation with
respect to α:

vTt Htvtα
2 − 2(τtu

T
t Htvt +∇S(xt)

Tvt)α + (τ 2t u
T
t Htut + 2τt∇S(xt)

Tut) = 0. (6.60)

CHAPTER 6. A QUERY-EFFICIENT DECISION-BASED ATTACK 113

Solving for α yields

α =
0.5τ 2t u

T
t Htut + τt∇S(xt)

Tut
∇S(xt)Tvt + τtuTt Htvt

· 2

1±
√

1− vTt Htvt(τ2t u
T
t Htut+2τt∇S(xt)Tut)∇S(xt)

(τtuTt Htvt+∇S(xt)T vt)

(6.61)

≥ 0.5τ 2t u
T
t Htut + τt∇S(xt)

Tut
∇S(xt)Tvt + τtuTt Htvt

. (6.62)

The above inequality is true for large enough t when
〈
ut, ∇S(xt)

〉
> 0, which is true for

small enough δt > 0 based on the definition of ∇̂S. In order to simplify the notation, define
∇t := ∇S(xt), ∇̃t := ∇̂S(xt, δt), and dt := xt − x?, which leads to

α ≥ 0.5τ 2t u
T
t Htut + τt∇T

t ut
∇T
t vt + τtuTt Htvt

.

Define the error εt := ut −∇S(xt). We have

(1− α)2 =
(1

2
τ 2t u

T
t Htut +∇T

t dt + τtu
T
t Htdt

τt∇T
t ut + τ 2t u

T
t Htut +∇T

t dt + τtuTt Htdt

)2

≤
(1

2
τ 2t L‖∇t‖2 +∇T

t dt + τtL‖dt‖‖∇t‖
(τt + 1

2
τ 2t L)‖∇t‖2 +∇T

t dt + τtL‖dt‖‖∇t‖+ τt‖∇t‖∇T
t εt

)2

=
(rt + (1

2
η2t + ηt)L

‖dt‖
‖∇t‖

ηt + rt + (1
2
η2t + ηt)L

‖dt‖
‖∇t‖ + ηt

〈 ∇t

‖∇t‖ , εt
〉
)2

≤
(rt + ηt · 32L

‖dt‖
‖∇t‖

rt + ηt · (1 + 3
2
L ‖dt‖‖∇t‖) + ηt

〈 ∇t

‖∇t‖ , εt
〉
)2
.

where

rt =
〈xt − x?,∇S(xt)〉
‖xt − x?‖2‖∇S(xt)‖2

=
〈dt,∇t〉
‖dt‖2‖∇t‖2

. (6.63)

Let κt := 3
2
L ‖dt‖2‖∇t‖2 . Then we have κt is bounded:

κt ≤
3

2
L
‖x0 − x?‖2

c
. (6.64)

Equation (6.57) and the bound on (1− α)2 yield

‖xt+1 − x?‖22
‖xt − x?‖22

= (1− α)2 ·
(τ 2t ‖∇t‖2 + 2τt〈ut, dt〉

‖dt‖2
+ 1
)

= (1− α)2 · (η2t + 2ηtrt + 1 + 2ηt
〈
εt,

dt
‖dt‖

〉
)

≤
(rt + ηtκt

rt + ηt(1 + κt) + ηt
〈 ∇t

‖∇t‖ , εt
〉
)2
· (η2t + 2ηtrt + 1 + 2ηt

〈
εt,

dt
‖dt‖

〉
). (6.65)

CHAPTER 6. A QUERY-EFFICIENT DECISION-BASED ATTACK 114

By Cauchy Inequality, we have
∣∣∣
〈 ∇t

‖∇t‖
, εt
〉∣∣∣ ≤ ‖εt‖ = ‖∇t‖ ·

∥∥∥ ∇̃t

‖∇̃t‖
− ∇t

‖∇t‖
∥∥∥, and

∣∣∣
〈 dt
‖dt‖

, εt
〉∣∣∣ ≤ ‖εt‖ = ‖∇t‖ ·

∥∥∥ ∇̃t

‖∇̃t‖
− ∇t

‖∇t‖
∥∥∥

In the proof of Theorem 7, we have established that for any a > 0, when δt <
a‖∇t‖

3L(d−1)
√
2π

, we

have

P
(∥∥∥ ∇̃t

‖∇̃t‖
− ∇t

‖∇t‖
∥∥∥ > a

)
< exp

{
− Ba2

64π + 8a
√

2π

}
. (6.66)

We will show the bound the deviation of rt from 1 in two steps. In the first step, we show
λt := ηt

rt
→ 0 by contradiction. In the second step, we establish the deviation bound based

on the result of the first step.
Assume there exists a subsequence λti of λt that is bounded away from 0, such that

λti > c1 for some constant c1. (Note that we always have rt > 0 as xt is on the target side of

the boundary for any t.) Define θt :=
(

rt+ηtκt

rt+ηt(1+κt)+ηt

〈
∇t
‖∇t‖

, εt

〉
)2
·(η2t +2ηtrt+1+2ηt

〈
εt,

dt
‖dt‖

〉
).

Then we have

θti =
(1 + λtiκti

1 + λti(1 + κti) + λti
〈 ∇t

‖∇t‖ , εti
〉
)2
· (η2ti + 2ηtirti + 1 + 2ηti

〈
εti ,

dti
‖dti‖

〉
)

≤ C ·
(1 + λtiκti

1 + λti(1 + κti) + λti
〈 ∇t

‖∇t‖ , εti
〉
)2

≤ C ·
(1 + c1κti

1 + c1(1 + κti)− c1‖εti‖
)2

for some fixed constant C. By Equation (6.66) and B =
√
t, there exists some constant t0,

such that for any ti > t0,

P
(
‖εti‖ <

1

2

)
> 0. (6.67)

When ‖εti‖ < 1
2
, we have

θti ≤ C ·
(1 + c1κti

1 + c1(0.5 + κti)

)2
< 1− c2, for some c2 ∈ (0, 1).

Moreover, for large enough t, we always have θt ≤ 1 +Ct−2q for some given constant C. By
the independence between εti with i = 1, 2, . . . , we have that for any small constant s > 0,
there exists T such that with nonzero probability, we have

T∏

t=1

θt ≤
∏

ti<T

θti ·
T∏

t=1

(1 + Ct−2q) ≤
∏

ti<T

(1− c2) ·
T∏

t=1

(1 + Ct−2q) < s,

which implies xt converges to x?, a contradiction. Therefore, λt → 0 as t→∞.

CHAPTER 6. A QUERY-EFFICIENT DECISION-BASED ATTACK 115

Now we can establish the deviation bound. We expand θt as

θt =
(1 + 2λtκt + λ2tκ

2
t)(η

2
t + 2ηtrt + 1 + 2ηt

〈
εt,

dt
‖dt‖

〉
)

1 + 2λt(1 + κt) + λ2t (1 + κt)2 + λ2t
〈 ∇t

‖∇t‖ , εt
〉2

+ 2λt
〈 ∇t

‖∇t‖ , εt
〉
(1 + λt(1 + κt))

=
1 + 2λt(r

2
t + κt + rt

〈
εt,

dt
‖dt‖

〉
) + o(ηt) +O(λ2t)

1 + 2λt(1 + κt +
〈 ∇t

‖∇t‖ , εt
〉
) +O(λ2t)

= 1−
2λt(1− r2t + (

〈 ∇t

‖∇t‖ , εt
〉
− rt

〈
εt,

dt
‖dt‖

〉
) + o(ηt) +O(λ2t)

1 + 2λt(1 + κt +
〈 ∇t

‖∇t‖ , εt
〉
)

As the product of θt over t is positive, we have
∞∑

t=1

log θt = log Π∞t=1θt > −∞. (6.68)

Equation (6.68) implies there exists a positive constant C, such that

1− θt ≤ C · t− 1
2 . (6.69)

Let the event E be

E :=
{∣∣∣
〈 ∇t

‖∇t‖
, εt
〉
− rt

〈
εt,

dt
‖dt‖

〉
)
∣∣∣ > 1

4
C · t−0.5+q

}
∪
{〈 ∇t

‖∇t‖
, εt
〉
< −1

}

By Equation (6.66), for large t, when δt <
Ct−0.5+q

24L(d−1)
√
2π

, we have

P
(
E
)
≤ P

(
2
∥∥∥ ∇̃t

‖∇̃t‖
− ∇t

‖∇t‖
∥∥∥ > Ct−0.5+q

4‖∇t‖
)

≤ 2(d+ 1) exp
{
−

B
(
Ct−0.5+q

8‖∇t‖

)2

64π + 8
√

2π
(
Ct−0.5+q

8‖∇t‖

)
}

= 2(d+ 1) exp
{
−B · C2t−1+2q

64‖∇t‖2(64π +
√

2πCt−0.5+1/‖∇t‖)
}

≤ 2(d+ 1) exp
(
− C̃Bt−1+2q

)
,

for some fixed constant C̃. When E is false, we have

θt ≤ 1− 2λt(1− r2t −
1

4
C · t−0.5+q). (6.70)

Inequality (6.69) and Inequality (6.70) jointly yield that rt ≥ 1− 1
4
C ·t−0.5+q with probability

at least 1− 2(d+ 1) exp
(
− C̃Bt−1+2q

)
.

6.7.6 Proof of Theorem 9

Proof. For notational simplicity, we denote ξb := φx(xt + δub), and ξ̄ = 1
B

∑B
b=1 ξb = φx. We

use ξ, u to denote i.i.d. copies of ξb and ub respectively. The variance of the estimate with

CHAPTER 6. A QUERY-EFFICIENT DECISION-BASED ATTACK 116

the baseline is

Var(∇̂S(xt, δ))

= E
〈
∇̂S(xt, δ)− E∇̂S(xt, δ), ∇̂S(xt, δ)− E∇̂S(xt, δ)

〉

=
1

(B − 1)2

〈 B∑

b=1

ξbub −
B − 1

B
E[ξu]− ξ̄ub,

B∑

b=1

ξbub −
B − 1

B
E[ξu]− ξ̄ub

〉

=
1

(B − 1)2

B∑

a,b=1

〈
ξaua − E[ξu]− (ξ̄ua −

1

B
E[ξu]), ξbub − E[ξu]− (ξ̄ub −

1

B
E[ξu])

〉

When a 6= b, the summand can be simplified by independence of ua, ub and independence
of ξaua, ξbub. In fact,

E
〈
ξaua − E[ξu]− (ξ̄ua −

1

B
E[ξu]), ξbub − E[ξu]− (ξ̄ub −

1

B
E[ξu])

〉

= −2E
〈
ξaua − E[ξu], ξ̄ub −

1

B
E[ξu]

〉
+ E

〈
ξ̄ua −

1

B
E[ξu], ξ̄ub −

1

B
E[ξu]

〉

= −2E
〈
ξaua − E[ξu],

ξa + ξb
B

ub −
1

B
E[ξu]

〉
+

E
〈ξa + ξb

B
ua −

1

B
E[ξu],

ξa + ξb
B

ub −
1

B
E[ξu]

〉

= − 2

B
Eξ2a
〈
ua, ub

〉
− 2E

〈
ξaua − E[ξu],

ξb
B
ub −

1

B
E[ξu]

〉
+

E[
(ξa + ξb)

2

B2
〈ua, ub〉]−

2

B
E[ξu]E[

ξb
B
ub] +

1

B2
‖E[ξu]‖22

= 0 + 0 + (
2

B2
− 2

B2
+

1

B2
)‖E[ξu]‖22

=
1

B2
‖E[ξu]‖22.

When a = b, each summand becomes:

E
∥∥∥ξaua − E[ξu]− (ξ̄ua −

1

B
E[ξu])

∥∥∥
2

2

= E
∥∥∥ξaua − E[ξu]

∥∥∥
2

2
− 2E

〈
ξaua − E[ξu], ξ̄ua −

1

B
E[ξu]

〉
+

E‖ξ̄ua −
1

B
E[ξu]‖22

= E
∥∥∥ξaua − E[ξu]

∥∥∥
2

2
− 2E

〈
ξaua, ξ̄ua

〉
+

2

B
‖E[ξu]‖22 + E‖ξ̄ua‖22−

2

B
〈E[ξ̄ua],E[ξu]〉+

1

B2
‖E[ξu]‖22

= E
∥∥∥ξaua − E[ξu]

∥∥∥
2

2
− 2E[ξ̄ξa] + Eξ̄2 +

2B − 1

B2
‖E[ξu]‖2.

CHAPTER 6. A QUERY-EFFICIENT DECISION-BASED ATTACK 117

Therefore, the variance can be written as

Var(∇̂S(xt, δ)) =
1

(B − 1)2

B∑

a=1

(
E
∥∥∥ξaua − E[ξu]

∥∥∥
2

2
− 2E[ξ̄ξa] + Eξ̄2+

(
2

B
− 1

B2
)‖E[ξu]‖2

)
+
‖Eξu‖22
B(B − 1)

=
B2Var(∇̃S(xt, δ))

(B − 1)2
− BE[ξ̄2]

(B − 1)2
+

(3B − 2)‖E[ξu]‖22
B(B − 1)2

≤ B2Var(∇̃S(xt, δ))

(B − 1)2
− BE[ξ̄2]

(B − 1)2
+

3B − 2

B(B − 1)2
. (6.71)

The middle term can be expanded as

− B

(B − 1)2
E[ξ̄2]

= − B

(B − 1)2

B∑

a,b=1

E[ξaξb]

= − 1

(B − 1)2B
(B · 1 +B(B − 1) · (2Eξ − 1)2)

= − 1

(B − 1)2
− 4

B − 1
(Eξ − 1

2
)2)

Plugging into Equation (6.71), we get

Var(∇̂S(xt, δ)) ≤
B2

(B − 1)2
Var(∇̃S(xt, δ)) +

2

B(B − 1)
(1− 2B(E[ξ]− 1

2
)2)

= Var(∇̃S(xt, δ))
{

1 +
2B − 1

(B − 1)2
− 2

σ2(B − 1)

(
2B(E[ξ]− 1

2
)2 − 1

)}
.

When E[ξ] satisfies (E[ξ]− 1
2
)2 > 1

2B
(1 + 2B−1

2B−2σ
2), we have

2B − 1

(B − 1)2
<

2

σ2(B − 1)
(2B(E[ξ]− 1

2
)2 − 1),

which implies Var(∇̂S(xt, δ)) < Var(∇̃S(xt, δ)).

6.8 Discussion

We have proposed a family of query-efficient algorithms based on a novel gradient-direction
estimate, HopSkipJumpAttack, for decision-based generation of adversarial examples, which
is capable of optimizing `2 and `∞-distances for both targeted and untargeted attacks. Con-
vergence analysis has been carried out given access to the gradient. We have also provided
analysis for the error of our Monte Carlo estimate of gradient direction, which comes from

CHAPTER 6. A QUERY-EFFICIENT DECISION-BASED ATTACK 118

three sources: bias at the boundary for a nonzero perturbation size, bias of deviation from
the boundary, and variance. Theoretical analysis has provided insights for selecting the step
size and the perturbation size, which leads to a hyperparameter-free algorithm. We have
also carried out extensive experiments, showing HopSkipJumpAttack compares favorably to
several state-of-the-art decision-based attack methods in query efficiency. It also achieves
competitive performance on several defense mechanisms. We also show HopSkipJumpAttack
successfully attacks several common image classifiers in addition to neural networks, includ-
ing non-differentiable ones such as k-nearest neighbors, tree ensembles, SIFT and HOG.

Given the fact that HopSkipJumpAttack is able to craft a human-indistinguishable adver-
sarial example within a realistic budget of queries, it becomes important for the community
to consider the real-world impact of decision-based threat models. We have also demon-
strated that HopSkipJumpAttack is able to achieve comparable or even superior performance
to state-of-the-art white-box attacks on several defense mechanisms, under a much weaker
threat model. In particular, masked gradients, stochastic gradients, and non-differentiability
are not barriers to our algorithm. Because of its effectiveness, efficiency, and applicability to
non-differentiable models, we suggest future research on adversarial defenses may evaluate
the designed mechanism against HopSkipJumpAttack as a first step.

One limitation of all existing decision-based algorithms, including HopSkipJumpAttack,
is that they require evaluation of the target model near the boundary. They may not work
effectively by limiting the queries near the boundary. We have also observed that it still
takes tens of thousands of model queries for HopSkipJumpAttack to craft imperceptible
adversarial examples with a target class on ImageNet, which has a relatively large image
size. Future work may seek the combination of HopSkipJumpAttack with transferred attack
to resolve these issues.

119

Part III

Intersection

120

Chapter 7

ML-LOO: Detecting Adversarial
Examples with Feature Attribution

Deep neural networks obtain state-of-the-art performance on a series of tasks. However,
they are easily fooled by adding a small adversarial perturbation to the input. The pertur-
bation is often imperceptible to humans on image data. We observe a significant difference
in feature attributions between adversarially crafted examples and original examples. Based
on this observation, we introduce a new framework to detect adversarial examples through
thresholding a scale estimate of feature attribution scores. Furthermore, we extend our
method to include multi-layer feature attributions in order to tackle attacks that have mixed
confidence levels. As demonstrated in extensive experiments, our method achieves supe-
rior performances in distinguishing adversarial examples from popular attack methods on
a variety of real data sets compared to state-of-the-art detection methods. In particular,
our method is able to detect adversarial examples of mixed confidence levels, and transfer
between different attacking methods. We also show that our method achieves competitive
performance even when the attacker has complete access to the detector.

7.1 Introduction

Deep neural networks have achieved state-of-the-art performance on a variety of tasks, in-
cluding image classification, object detection, speech recognition and machine translation.
However, they have been shown to be vulnerable to adversarial examples. This incurs a
security risk when DNNs are applied to sensitive areas such as finance, medicine, criminal
justice and transportation. Adversarial examples are inputs to machine learning models that
an attacker constructs intentionally to fool the model [155]. Szegedy et al. observed that
a visually indistinguishable perturbation in pixel space to the original image can alter the
prediction of a neural network. Later, a series of papers [26–39] designed more sophisticated
methods for the worst-case perturbation within a restricted set, often a small Lp ball with
p = 0, 2,∞.

CHAPTER 7. DETECTING ADVERSARIAL EXAMPLES WITH FEATURE
ATTRIBUTION 121

While a line of work tries to explain why adversarial examples exist [26, 156–158], a
comprehensive analysis of underlying reasons has not yet been attained, largely because deep
neural networks have complex functional forms such that mathematical characterizations are
difficult to obtain. On the other hand, there has been a growing interest in developing tools
for tackling the black-box nature of neural networks, among which feature attribution is a
widely studied approach [8–10, 12, 14–18, 20, 24, 67, 104]. Given a predictive model, such
a method outputs, for each instance to which the model is applied, a vector of importance
scores associated with the underlying features. Feature attribution has been used to improve
transparency and fairness of machine learning models [14, 17].

In this chapter, we investigate the application of feature attribution to detecting adver-
sarial examples. In particular, we observe that the feature attribution map of an adversarial
example near the boundary always differs from that of the corresponding original example.
A motivating example is shown in Figure 7.1, which demonstrates images in CIFAR-10 to be
fed into a residual neural network and the corresponding feature attribution from Leave-One-
Out (LOO) [18]. The latter interprets decisions from a neural model by observing the effects
on the model of erasing each pixel of input before and after the worst-case perturbation
by a C&W attack. While the perturbation on the original image is visually imperceptible,
the feature attribution is altered drastically. We further observe that the difference can be
summarized by simple statistics that characterize feature disagreement, which are capable of
distinguishing adversarial examples from natural images. We conjecture that this is because
adversarial attacks tend to perturb samples into an unstable region on the decision surface.

The above observation led to an effective method for detecting adversarial examples
near the decision boundary. On the other hand, there also exist adversarial examples in
which the model has high confidence [29]. Previous work has observed that several state-of-
the-art detection methods are vulnerable to such attacks [148, 159]. However, we observe
an interesting phenomenon: middle layers of neural networks still contain information on
uncertainty even for high-confidence adversarial examples. Based on this observation, we
generalize our method to incorporate multi-layer feature attribution, where attribution scores
for intermediate layers are computed without incurring extra model queries.

In numerical experiments, our method achieves superior performance in detecting adver-
sarial examples generated from popular attack methods on MNIST, CIFAR-10 and CIFAR-
100 among state-of-the-art detection methods. The proposed method is also capable of
detecting mixed-confidence adversarial examples, transferring between adversarial examples
of different confidence levels, and adversarial examples generated by various types of attacks.
We further show that the proposed method performs competitively under the setting where
the attacker has complete access to the detector.

7.2 Related Work

In this section, we review related work in feature attribution, adversarial attack, adversarial
defense and detection.

CHAPTER 7. DETECTING ADVERSARIAL EXAMPLES WITH FEATURE
ATTRIBUTION 122

Feature attribution A variety of methods have been proposed to assign feature attribu-
tion scores. For each specific instance where the model is applied, an attribution method
assigns an importance score for each feature, by approximating the target model via a linear
model locally around the instance. One popular class of methods assumes the differentia-
bility of the model, and propagates the prediction to features through gradients. Examples
include direct use of gradient (Saliency Map) [8], Layer-wise Relevance Propagation (LWRP)
[9] and its improved version DeepLIFT [10], and Integrated Gradients [12].

Another class is perturbation-based and thus model-agnostic. Given an instance, multiple
perturbed samples are generated by masking different groups of features with a pre-specified
reference value. The feature attribution of the instance is computed according to the pre-
diction scores of a model on these samples. Popular perturbation based methods include
Leave-One-Out [18, 160], LIME [14] and KernelSHAP [15].

It has been observed in Ghorbani, Abid, and Zou that gradient-based feature attribution
maps are sensitive to small perturbations. Adversarial attack to feature attribution is de-
signed to characterize the fragility. On the contrary, robustness of an attribution method has
been observed on a robust model. In fact, Yeh et al. observed that gradient based explana-
tions of an adversarially trained network are less sensitive, and Chalasani et al. established
theoretical results for the robustness of attribution map on an adversarially trained logistic
regression. These observations indicate that the sensitivity of a feature attribution might be
rooted in the sensitivity of the model, instead of the attribution method. This motivates the
detection of adversarial examples via attribution methods.

Adversarial attack Adversarial attacks try to alter, with minimal perturbation, the pre-
diction of an original instance from a given model, which leads to adversarial examples.
Adversarial examples can be categorized as targeted or untargeted, depending on whether
the goal is to classify the perturbed instance into a given target class or an arbitrary class dif-
ferent from the correct one. Attacks also differ by the type of distance they use to characterize
minimal perturbation. `∞, `0, and `2 distances are the most commonly used distances. Fast
Gradient Sign Method (FGSM) by Goodfellow, Shlens, and Szegedy is an efficient method
to minimize the `∞ distance. Kurakin, Goodfellow, and Bengio and Madry et al. proposed
`∞-PGD (BIM), an iterative version of FGSM, which achieves a higher success rate with a
smaller size of perturbation. DeepFool presented by Moosavi-Dezfooli, Fawzi, and Frossard
minimizes `2 distance through an iterative linearization procedure. Carlini and Wagner pro-
posed effective algorithms to generate adversarial examples for each of the three distances.
In particular, Carlini and Wagner proposed a loss function that is capable of controlling the
confidence level of adversarial examples. The Jacobian-based Saliency Map Attack (JSMA)
by [28] is a greedy method for perturbation with `0 metric. Recently, several black-box ad-
versarial attacks that solely depend on probability scores or decisions have been introduced.
Chen et al. and Ilyas et al., Ilyas, Engstrom, and Madry introduced score-based methods
using zeroth-order gradient estimation to craft adversarial examples. Brendel, Rauber, and
Bethge introduced Boundary Attack, as a black-box method to minimize the `2 distance,

CHAPTER 7. DETECTING ADVERSARIAL EXAMPLES WITH FEATURE
ATTRIBUTION 123

that does not need access to gradient information and relies solely on the model decision.
We demonstrate in our experiments that our method is capable of detecting adversarial ex-
amples generated by these attacks, regardless of the distance, confidence level, or whether
the gradient information is used.

Adversarial defense and detection To improve the robustness of neural networks, var-
ious approaches have been proposed to defend against adversarial attacks, including adver-
sarial training [26, 27, 30, 41, 42], distributional smoothing [43], defensive distillation [44],
generative models [45], feature squeezing [46], randomized models [47–49], and verifiable de-
fense [50, 51]. These defenses often involve modifications in the training process of a model,
which often require higher computational or sample complexity [53], and lead to loss of
accuracy [52].

Complimentary to the previous defending techniques, an alternative line of work focuses
on screening out adversarial examples in the test stage without touching the training of
the original model. Data transformations such as PCA have been used to extract features
from the input and layers of neural networks for adversarial detection [54–56]. Alternative
neural networks are used to classify adversarial and original images [58–60]. Feinman et al.
proposed to use kernel density estimate (KD) and Bayesian uncertainty (BU) in hidden
layers of the neural network for detection. Ma et al. observed Local Intrinsic Dimension
(LID) of hidden-layer outputs differ between the original and adversarial examples. Lee
et al. obtained the class conditional Gaussian distributions with respect to lower-level and
upper-level features of the deep neural network under Gaussian discriminant analysis, which
result in a confidence score based on the Mahalanobis distance (MAHA), followed by a
logistic regression model on the confidence scores to detect adversarial examples. Through
vast experiments, we show that our method achieves comparable or superior performance
than these detection methods across various attacks. Furthermore, we show that our method
achieves competitive performance for attacks with a varied confidence level, a setting where
the other detection methods fail to work [148, 159].

Most related to our work, Tao et al. proposed to identify neurons critical for individual
attributes to detect adversarial examples, but their method is restricted to models in face
recognition. Instead, our method is applicable across different types of image data. Zhang et
al. proposed to identify adversarial perturbations by training a neural network on the saliency
map of inputs. However, their method depends on additional neural networks, which are
vulnerable to white-box attacks when attackers perturb the image to fool the original model
and the new neural network simultaneously. As we will show in experiments, our method
achieves competitive performance under white-box attacks.

7.3 Adversarial detection with feature attribution

We motivate our method by an observation on feature attribution with and without ad-
versarial perturbation. Then we discuss metrics to quantify the dispersion in attribution.

CHAPTER 7. DETECTING ADVERSARIAL EXAMPLES WITH FEATURE
ATTRIBUTION 124

Figure 7.1: The first row shows the original CIFAR-10 examples and their corresponding
feature attributions. The second row shows the adversarial examples and their corresponding
feature attributions. The third row plots the histograms of the original and adversarial
feature attributions.

Finally, we extend our method to the multi-layer version for detecting adversarial examples
with mixed confidence levels.

7.3.1 Feature attribution before and after perturbation

Assume that the model is a function f : Rd → [0, 1]C which maps an image x of dimension
d = h × w × c to a probability vector f(x) of dimension C, where C is the number of
classes. A feature attribution method φ maps an input image x ∈ Rd to an attribution
vector of the same shape as the image: φ(x) ∈ Rd, such that the i-th dimension of φ(x)
is the contribution of feature i in the prediction of the model on the specific image x. We
suppress the dependence of φ on the model f for notational convenience. We focus on the
leave-One-Out (LOO) method [18, 160] throughout the paper, which assigns to each feature
the reduction in the probability of the selected class when the feature in consideration is
masked by some reference value, e.g. 0. Denoting the example with the i-th feature masked
by 0 as x(i), LOO defines φ as

φ(x)i := f(x)c − f(x(i))c, where c = arg max
j∈C

f(x)j. (7.1)

Adversarial attacks aim to change the prediction of a model with minimal perturbation
of a sample, so that human is not able to detect the difference between an original image
x and its perturbed version x′. Yet we observed that φ is sensitive to the small difference
between x and x′. Figure 7.1 shows the attribution maps φ(x), φ(x′) with the original image
x and its adversarially perturbed counterpart x′ by C&W attack. Even with human eyes,

CHAPTER 7. DETECTING ADVERSARIAL EXAMPLES WITH FEATURE
ATTRIBUTION 125

0.0 0.1 0.2 0.3 0.4
0

100

200

300

400

500

600

700
Histogram of Original vs Adversarial IQR

Original
Adversarial

0.0 0.1 0.2 0.3 0.4
0

100

200

300

400

500

600

Histogram of Original vs Adversarial STD
Original
Adversarial

0.0 0.1 0.2 0.3 0.4
0

100

200

300

400

500

600

700

Histogram of Original vs Adversarial MAD
Original
Adversarial

Figure 7.2: Histogram of dispersion measures

we can observe an explicit difference in the attribution maps of the original and adversarial
images. In particular, adversarial images have a larger dispersion in its importance scores, as
demonstrated in Figure 7.1. We comment here that our proposed framework of adversarial
detection via feature attribution is generic to popular feature attribution methods, such as
Integrated Gradients. LOO achieves the best performance among all attribution methods
across different data sets.

7.3.2 Quantify the dispersion in feature attribution maps

Motivated by the apparent differences in the distributions of importance scores between the
original and adversarial images, as demonstrated in Figure 7.1, we propose to use measures of
statistical dispersion in feature attribution to detect adversarial examples. In particular, we
tried standard deviation (STD), median absolute deviation (MAD), which is the median of
absolute differences between entries and their median, and interquartile range (IQR), which
is the difference between the 75th percentile and the 25th percentile among all entries of
φ(x) ∈ Rd:

IQR(φ(x)) = Qφ(x)(0.75)−Qφ(x)(0.25),

where Qφ(x)(p) : = min{β :
#{i : φ(x)i < β}

d
≥ p}.

We observe there is a larger dispersion, which we call feature disagreement, between fea-
ture contribution to a model for an adversarially perturbed image. The difference is universal
across different images. Figure 7.2 compares the histograms of these three dispersion mea-
sures of feature attributions for ResNet on natural test images from CIFAR-10 with those on
adversarially perturbed images, where the adversarial perturbation is carried out by C&W
Attack. We can see there is a significant difference in the distributions of STD, MAD and
IQR between natural and adversarial images. A majority of adversarially perturbed images
have a larger dispersion in feature attribution than an arbitrary natural image, besides the
corresponding original images. We propose to distinguish adversarial images from natural
images by thresholding the IQR of feature attribution maps. While all the three measures
yield competitive performance for adversarial detection, we stick to IQR for the rest of the
paper, which is robust and has a slightly superior performance among the three.

CHAPTER 7. DETECTING ADVERSARIAL EXAMPLES WITH FEATURE
ATTRIBUTION 126

7.3.3 Extension to multi-layer LOO: detection of attacks with
mixed confidence levels

Carlini and Wagner proposed the following objective to generate adversarial images with
small `2 perturbation.

min
w
‖x′ − x‖2 + αmax{F (x)ytrue − max

j 6=ytrue
F (x′)j + c, 0}, (7.2)

where x′ = 0.5(tanh(w) + 1), F maps an image to logits, ytrue = arg maxF (x) is the orig-
inal label, and c is a hyperparameter for tuning confidence. Adversarial images with high
confidence can be obtained by assigning a large value to c. The loss can be modified to gen-
erate `∞ constrained perturbation at different confidence levels as well [30]. Recently, Lu,
Chen, and Yu and Athalye, Carlini, and Wagner observed that LID has a poor performance
when faced with adversarial examples at various confidence scales. In our experiments, a
similar phenomenon is observed for several other state-of-the-art detection methods, includ-
ing KD+BU and MAHA, as is shown in Figure 7.4. This suggests that characterization of
adversarial examples in related work may only hold true for adversarial examples near the
decision boundary. IQR of feature attribution map, unfortunately, suffers from the same
problem.

To detect adversarial images with mixed confidence levels, we generalize our method to
capture dispersion of feature attributions beyond the output layer of the model. For an
adversarial example within a small neighborhood of its original example in the pixel space
but achieving a high confidence at the output layer in a different class from the original one,
the feature representation deviates away from that of its original example gradually along the
layers. Thus, we expect neurons of middle layers contain uncertainty that can be captured
by a feature attribution map. We denote the map from input to an arbitrary neuron n of
an intermediate layer of the model by fn : Rd → R. The feature attribution of neuron n is
defined as φfn(x) : Rd → Rd, such that the i-th entry quantifies the contribution of feature
i to neuron n. For Leave-One-Out (LOO), we have

φfn(x)i = fn(x)− fn(x(i)).

To coordinate the scale difference between different neurons, we fit a logistic regression
for the dispersion of feature attribution from different neurons on a hold-out training set to
distinguish adversarial images from original images. The multi-layer extension of our method
is called ’ML-LOO’.

7.4 Experiments

We present an experimental evaluation of ML-LOO, and compare our method with several
state-of-the-art detection methods. Then we consider the setting where attacks have different
confidence levels. We further evaluate the transferability of various detection methods on an
unknown attack. Finally, we evaluate the performance of our method under the white-box
attacker who knows the existence of our detector.

CHAPTER 7. DETECTING ADVERSARIAL EXAMPLES WITH FEATURE
ATTRIBUTION 127

Data Model Metric
Attacks

C&W `∞-PGD FGSM
KD+BU LID MAHA ML-LOO KD+BU LID MAHA ML-LOO KD+BU LID MAHA ML-LOO

MNIST CNN

AUC 0.893 1.000 0.957 1.000 0.766 0.902 0.736 1.000 0.744 0.780 0.967 1.000
TPR (FPR@0.01) 0.23 0.99 0.94 0.98 0.09 0.32 0.01 0.99 0.01 0.09 0.54 0.99
TPR (FPR@0.05) 0.46 0.99 0.94 0.98 0.28 0.58 0.12 0.99 0.15 0.23 0.92 0.99
TPR (FPR@0.10) 0.55 0.99 0.94 0.98 0.34 0.72 0.29 0.99 0.24 0.40 0.94 0.99

CIFAR10

ResNet

AUC 0.623 0.990 0.962 0.995 0.834 0.970 0.958 0.999 0.673 0.972 0.770 0.997
TPR (FPR@0.01) 0.01 0.55 0.57 0.86 0.54 0.52 0.41 0.96 0.04 0.29 0.04 0.82
TPR (FPR@0.05) 0.09 0.98 0.95 0.98 0.61 0.85 0.86 0.98 0.20 0.82 0.16 0.99
TPR (FPR@0.10) 0.22 0.99 0.95 0.99 0.62 0.91 0.91 0.98 0.29 0.93 0.38 0.99

DenseNet

AUC 0.679 0.958 0.966 0.977 0.955 0.952 0.768 0.997 0.790 0.706 0.829 1.000
TPR (FPR@0.01) 0.06 0.30 0.48 0.33 0.69 0.51 0.03 0.99 0.17 0.04 0.00 0.99
TPR (FPR@0.05) 0.13 0.79 0.91 0.84 0.74 0.84 0.23 0.99 0.28 0.12 0.29 0.99
TPR (FPR@0.10) 0.22 0.91 0.94 0.98 0.80 0.88 0.31 0.99 0.41 0.23 0.51 0.99

CIFAR100

ResNet

AUC 0.637 0.717 0.945 0.967 0.855 0.984 0.966 0.999 0.773 0.985 0.875 1.000
TPR (FPR@0.01) 0.07 0.00 0.00 0.33 0.59 0.69 0.48 0.94 0.39 0.48 0.12 0.99
TPR (FPR@0.05) 0.16 0.01 0.52 0.70 0.61 0.94 0.82 0.99 0.49 0.89 0.43 0.99
TPR (FPR@0.10) 0.29 0.01 0.80 0.92 0.64 0.96 0.92 0.99 0.56 0.99 0.57 0.99

DenseNet

AUC 0.567 0.727 0.916 0.958 0.549 0.732 0.947 0.971 0.577 0.751 0.951 0.974
TPR (FPR@0.01) 0.02 0.07 0.00 0.07 0.01 0.00 0.00 0.21 0.01 0.01 0.00 0.31
TPR (FPR@0.05) 0.17 0.15 0.61 0.66 0.14 0.01 0.70 0.75 0.17 0.06 0.77 0.81
TPR (FPR@0.10) 0.22 0.26 0.84 0.88 0.20 0.04 0.91 0.96 0.23 0.18 0.93 0.94

Data Model Metric
Attacks

JSMA DeepFool Boundary
KD+BU LID MAHA ML-LOO KD+BU LID MAHA ML-LOO KD+BU LID MAHA ML-LOO

MNIST CNN

AUC 0.886 1.000 0.976 1.000 0.901 1.000 0.869 1.000 0.905 1.000 0.991 1.000
TPR (FPR@0.01) 0.30 1.00 0.87 0.99 0.32 1.00 0.04 1.00 0.32 1.00 0.79 1.00
TPR (FPR@0.05) 0.46 1.00 0.94 1.00 0.43 1.00 0.36 1.00 0.45 1.00 0.98 1.00
TPR (FPR@0.10) 0.51 1.00 0.95 1.00 0.57 1.00 0.59 1.00 0.55 1.00 0.98 1.00

CIFAR10

ResNet

AUC 0.614 0.986 0.941 0.981 0.618 0.990 0.981 0.994 0.676 0.990 0.967 0.997
TPR (FPR@0.01) 0.01 0.49 0.45 0.46 0.01 0.57 0.60 0.89 0.03 0.64 0.60 0.92
TPR (FPR@0.05) 0.10 0.98 0.87 0.82 0.10 0.99 0.96 0.96 0.20 0.99 0.94 0.99
TPR (FPR@0.10) 0.21 0.99 0.90 0.99 0.24 0.99 0.96 0.99 0.38 0.99 0.94 0.99

DenseNet

AUC 0.645 0.937 0.947 0.964 0.646 0.976 0.977 0.976 0.700 0.983 0.981 0.980
TPR (FPR@0.01) 0.04 0.14 0.41 0.12 0.03 0.34 0.51 0.24 0.05 0.58 0.62 0.31
TPR (FPR@0.05) 0.10 0.67 0.68 0.72 0.09 0.90 0.95 0.82 0.12 0.93 0.91 0.89
TPR (FPR@0.10) 0.18 0.86 0.88 0.96 0.17 0.98 0.97 0.98 0.23 0.98 0.96 0.98

CIFAR100

ResNet

AUC 0.600 0.740 0.907 0.964 0.610 0.714 0.953 0.970 0.635 0.732 0.956 0.972
TPR (FPR@0.01) 0.00 0.01 0.00 0.42 0.06 0.00 0.00 0.41 0.07 0.01 0.00 0.49
TPR (FPR@0.05) 0.12 0.14 0.49 0.70 0.14 0.01 0.56 0.74 0.16 0.07 0.61 0.78
TPR (FPR@0.10) 0.27 0.24 0.77 0.91 0.29 0.01 0.87 0.94 0.30 0.15 0.94 0.93

DenseNet

AUC 0.567 0.727 0.916 0.958 0.549 0.732 0.947 0.971 0.577 0.751 0.951 0.974
TPR (FPR@0.01) 0.02 0.07 0.00 0.07 0.01 0.00 0.00 0.21 0.01 0.01 0.00 0.31
TPR (FPR@0.05) 0.17 0.15 0.61 0.66 0.14 0.01 0.70 0.75 0.17 0.06 0.77 0.81
TPR (FPR@0.10) 0.22 0.26 0.84 0.88 0.20 0.04 0.91 0.96 0.23 0.18 0.93 0.94

Table 7.1: Performance of detection methods on different data sets, models and attack
methods.

7.4.1 Known attacks

We compare our method with state-of-the-art detection algorithms including LID [62], Ma-
halanobis (MAHA) [57], and KD+BU [61], on three data sets: MNIST, CIFAR-10 and
CIFAR-100, with the standard train/test split [99]. We used a convolutional network com-
posed of 32-filter convolutional layers followed by a hidden dense layer with 1024 units for
MNIST. Each convolutional layer was followed by a max-pooling layer. For both CIFAR-10
and CIFAR-100, we trained a 20-layer ResNet [144] and 121-layer DenseNet [146] respec-
tively. For each data set, we generated 2,000 adversarial examples from correctly classified
test images by each attacking method. Among them, 1,000 adversarial images with the
corresponding 1,000 natural images were used for the training process of LID, Mahalanobis
and our method. Results are reported for the other 1,000 adversarial images with the cor-
responding natural images. We consider the following attacking methods, grouped by the

CHAPTER 7. DETECTING ADVERSARIAL EXAMPLES WITH FEATURE
ATTRIBUTION 128

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

FGSM (CIFAR-10, ResNet)

LID (AUC: 0.972)
MAHA (AUC: 0.770)
KD+BU (AUC: 0.673)
ML-LOO (AUC: 0.997)

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

JSMA (CIFAR-10, ResNet)

LID (AUC: 0.986)
MAHA (AUC: 0.941)
KD+BU (AUC: 0.614)
ML-LOO (AUC: 0.981)

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

C&W (CIFAR-10, ResNet)

LID (AUC: 0.990)
MAHA (AUC: 0.962)
KD+BU (AUC: 0.623)
ML-LOO (AUC: 0.995)

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

DeepFool (CIFAR-10, ResNet)

LID (AUC: 0.990)
MAHA (AUC: 0.981)
KD+BU (AUC: 0.618)
ML-LOO (AUC: 0.994)

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e
BOUNDARY (CIFAR-10, ResNet)

LID (AUC: 0.990)
MAHA (AUC: 0.967)
KD+BU (AUC: 0.676)
ML-LOO (AUC: 0.997)

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

L -PGD (CIFAR-10, ResNet)

LID (AUC: 0.970)
MAHA (AUC: 0.958)
KD+BU (AUC: 0.834)
ML-LOO (AUC: 0.999)

Figure 7.3: ROC curves of detection methods on CIFAR-10 with ResNet

norms they are optimized for:

• L∞: FGSM [26], L∞-PGD [27, 30].

• `2: C&W [29], DeepFool [31], Boundary Attack [38].

• `0: JSMA [28].

Let true positive rate (TPR) be the proportion of adversarial images classified as adversarial,
and false positive rate (FPR) be the proportion of natural images classified as adversarial.
We report area under the curve (AUC) of the ROC curve as the performance evaluation as
well as the true positive rates by thresholding FPR at 0.01,0.05 and 0.1, as it is practical to
keep misclassified natural images at a low proportion.

The results are reported in Table 7.1, and the ROC curves on CIFAR-10 with ResNet are
shown in Figure 7.3. ML-LOO shows superior performance over the other three detection
methods across different data sets, models for all attacks optimized for `2 and `∞ distances.
By controlling FPR at 0.1, our method is able to find over 95% adversarial examples gener-
ated by most existing attacks.

7.4.2 Attacks with varied confidence levels

Lu, Chen, and Yu and Athalye, Carlini, and Wagner observed that LID fails when the
confidence level of adversarial examples generated from C&W attack varies. We consider
adversarial images with varied confidence levels for both `2 and `∞ attacks. We use C&W at-
tack for optimizing `2 distance, and adjust the confidence hyperparameter c in Equation (7.2)

CHAPTER 7. DETECTING ADVERSARIAL EXAMPLES WITH FEATURE
ATTRIBUTION 129

Data Model Metric
Attacks

C&W MIX C&W LC C&W HC
KD+BU LID MAHA ML-LOO KD+BU LID MAHA ML-LOO KD+BU LID MAHA ML-LOO

CIFAR10 ResNet

AUC 0.620 0.649 0.640 0.840 0.623 0.445 0.641 0.711 0.829 0.816 0.966 0.988
TPR (FPR@0.01) 0.04 0.01 0.03 0.25 0.01 0.00 0.01 0.12 0.52 0.23 0.51 0.87
TPR (FPR@0.05) 0.17 0.06 0.14 0.42 0.09 0.06 0.10 0.21 0.59 0.43 0.90 0.94
TPR (FPR@0.10) 0.28 0.19 0.21 0.59 0.22 0.11 0.16 0.34 0.60 0.62 0.93 0.97

Data Model Metric
Attacks

`∞-PGD-MIX `∞-PGD-LC `∞-PGD-HC
KD+BU LID MAHA ML-LOO KD+BU LID MAHA ML-LOO KD+BU LID MAHA ML-LOO

CIFAR10 ResNet

AUC 0.753 0.812 0.813 0.953 0.606 0.578 0.578 0.767 0.834 0.935 0.962 0.996
TPR (FPR@0.01) 0.20 0.10 0.11 0.60 0.01 0.01 0.01 0.09 0.54 0.26 0.46 0.89
TPR (FPR@0.05) 0.37 0.36 0.45 0.77 0.12 0.07 0.04 0.23 0.61 0.67 0.89 0.98
TPR (FPR@0.10) 0.46 0.41 0.56 0.84 0.25 0.17 0.12 0.33 0.62 0.85 0.91 0.99

Table 7.2: Top: Performance of detection methods trained with C&W-MIX and tested on
C&W-LC, C&W-HC and C&W-MIX. Bottom: Performance of detection methods trained
with `∞-PGD-MIX and tested on `∞-PGD-LC, `∞-PGD-HC and `∞-PGD-MIX.

to achieve mixed confidence levels. To achieve adversarial examples optimized for `∞ dis-
tance, we use `∞-PGD for optimizing `∞ distance, and vary the constraint ε for different
confidence levels.

C&W Attack for optimizing `2 distance We consider three settings for C&W attack,
low-confidence (C&W-LC), mixed-confidence (C&W-MIX) and high-confidence (C&W-HC).
We set the confidence parameter c = 0 for C&W-LC and c = 50 for C&W-HC. For mixed-
confidence C&W attack, we generate adversarial images from C&W attack with the confi-
dence parameter in Equation (7.2) randomly selected from {1, 3, 5, · · · , 29} when generating
an adversarial image, so that the distribution of confidence levels for adversarial images is
comparable with that of original images. The confidence levels of images under the three
settings, along with confidence levels of original images are shown in Figure 7.4. The con-
fidence level in Figure 7.4 is defined as − log(1− p), where p is the probability score of the
predicted class.

We carried out the experiments on ResNet trained on CIFAR-10 using 1, 000 adversarial
images generated from the mixed-confidence C&W attack, together with the corresponding
original images, as the training data for LID, Mahalanobis, KD+BU, and our method. We
test the detection methods on a different set of original and adversarial images generated from
three versions: low-confidence C&W attack (c = 0), high-confidence C&W attack (c = 50),
and the mixed-confidence C&W attack. Table 7.2 (Top) and Figure 7.4 (Left) show TPRs
at different FPR thresholds, AUC, and the ROC curve. Mahalanobis, LID and KD+BU fail
to detect adversarial examples of mixed-confidence effectively, while our method performs
consistently better for adversarial images across the three settings.

L∞-PGD for optimizing `∞ distance L∞-PGD [30], also named as BIM [27], searches
for adversarial examples by iteratively updating the original image with the following:

xN+1 = Clipx,ε{xN + αsign(∇XJ(xN , ytrue))}, (7.3)

CHAPTER 7. DETECTING ADVERSARIAL EXAMPLES WITH FEATURE
ATTRIBUTION 130

0 10 20 30 40 50
Confidence Level

0

25

50

75

100

125

150

175

200
Histogram of Confidence

C&W-LC
C&W-HC
C&W-MIX
Original

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

C&W-MIX (CIFAR-10, ResNet)

LID (AUC: 0.649)
MAHA (AUC: 0.640)
KD+BU (AUC: 0.620)
ML-LOO (AUC: 0.840)

0 10 20 30 40 50 60 70
Confidence Level

0

5

10

15

20

25

30

35

40

Histogram of Confidence
L -PGD-LC
L -PGD-HC
L -PGD-MIX
Original

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

L -PGD-MIX (CIFAR-10, ResNet)

LID (AUC: 0.812)
MAHA (AUC: 0.813)
KD+BU (AUC: 0.753)
ML-LOO (AUC: 0.953)

Figure 7.4: The left two figures plot the histogram of confidence levels of C&W-LC, C&W-
HC, and C&W-MIX, and the ROC curves of detection methods under C&W-MIX attack.
The right two figures plot the histogram of confidence levels of `∞-PGD-LC, `∞-PGD-HC,
and `∞-PGD-MIX, and the ROC curves of detection methods under `∞-PGD-MIX attack.

where ytrue is the original class, J is the cross-entropy loss, and Clip operator clips an image
elementwise to an ε-neighborhood. For mixed-confidence `∞-PGD attack, we generated
adversarial images from `∞-PGD with different confidence levels by randomly selecting the
constraint ε in Equation (7.3) from {1, 2, 3, 4, 5, 6, 7, 8}/255. The confidence levels of images
from mixed-confidence `∞-PGD attack are shown in Figure 7.4.

We used 1, 000 adversarial images generated from the mixed-confidence `∞-PGD, together
with their corresponding original images, as the training data for all detection methods. We
report the results on adversarial images generated from three versions: high-confidence `∞-
PGD (ε = 0.03), low-confidence `∞-PGD (ε = 0.005), and the mixed-confidence `∞-PGD
that is used to generate the training data. The corresponding original images are different
from the training images. Table 7.2 (Bottom) and Figure 7.4 (Right) show TPRs at different
FPR thresholds, AUC, and the ROC curve. Mahalanobis, LID and KD+BU fail to detect
adversarial examples of mixed-confidence effectively, while our method performs significantly
better across the three settings.

7.4.3 Transferability

In this experiment, we evaluate the transferability of different methods by training detection
methods on adversarial examples generated from one attacking method and carry out the
evaluation on adversarial examples generated from different attacking methods. We trained
all methods on adversarial examples generated by C&W attack and carried out the evaluation
on adversarial examples generated by the rest of the attacking methods.

Experiments are carried out on MNIST, CIFAR-10, and CIFAR-100 data sets. AUC and
TPRs at different FPR thresholds are reported in Table 7.3. All methods trained on C&W
attack are capable of detecting adversarial examples generated from an unknown attack,
even when the optimized distance is `∞, or the attack is not gradient-based. The same
phenomenon has been observed in Lee et al. as well. This indicates attacks might share
some common features. Our method yields a slightly higher AUC consistently, and has a
significantly higher TPR when FPRs are controlled to be small.

CHAPTER 7. DETECTING ADVERSARIAL EXAMPLES WITH FEATURE
ATTRIBUTION 131

Data Model Metric
Attacks

`∞-PGD DeepFool FGSM
KD+BU LID MAHA ML-LOO KD+BU LID MAHA ML-LOO KD+BU LID MAHA ML-LOO

CIFAR10 ResNet

AUC 0.753 0.763 0.818 0.879 0.618 0.990 0.962 0.992 0.673 0.610 0.730 0.796
TPR (FPR@0.01) 0.20 0.08 0.14 0.21 0.01 0.56 0.61 0.72 0.04 0.07 0.06 0.04
TPR (FPR@0.05) 0.37 0.35 0.45 0.48 0.10 0.96 0.94 0.96 0.20 0.17 0.22 0.14
TPR (FPR@0.10) 0.46 0.45 0.60 0.65 0.24 0.98 0.94 0.99 0.29 0.23 0.34 0.37

Data Model Metric
Attacks

JSAM Boundary
KD+BU LID MAHA ML-LOO KD+BU LID MAHA ML-LOO

CIFAR10 ResNet

AUC 0.614 0.984 0.957 0.984 0.676 0.991 0.964 0.994
TPR (FPR@0.01) 0.01 0.43 0.44 0.45 0.03 0.56 0.60 0.82
TPR (FPR@0.05) 0.10 0.93 0.91 0.91 0.20 0.99 0.95 0.97
TPR (FPR@0.10) 0.21 0.98 0.94 0.99 0.38 0.99 0.95 0.99

Table 7.3: Performance of detection methods trained with C&W and transferred to `∞-PGD,
FGSM, JSMA, Boundary and DeepFool.

7.4.4 White-box evaluation

The previous experiments are carried out in a “gray-box” threat model, where the attacker
has access to the model details such as gradients, but does not have access to the design of
the detector. The “white-box” setting assumes a stronger threat model, where an attacker
knows exactly how our detector is constructed and its parameters. Such a setting is often
missing in previous study of adversarial detection. Previous work such as LID and KD+BU
has been shown to fail under this setting [148, 153]. We evaluate the performance of ML-LOO
in this setting.

We carried out the white-box attack on CIFAR-10 with the ResNet. The attacker aims
to optimize the following objective

min
w
L(x′) = ‖x′ − x‖2 + c1LC&W(x′) + c2LDET(x′),

where x′ = 0.5(tanh(w) + 1), the C&W loss LC&W = max{F (x)ytrue , 0}, and LDET aims at
controlling the statistic used by the detector, which will be defined differently under different
scenarios below. For each image, we increase c2 gradually until adversarial images cannot
be detected (at FPR=0.05) at all. For each c2, c1 is selected via binary search. The loss
is minimized with Adam [83]. Under this scheme, the generated examples are expected to
fool the detector, and we aim to check whether it fools the original model at an acceptable
perturbation size as well. We will evaluate three variants of ML-LOO, including the simplest
output layer standard deviation (SD) thresholding, ML-LOO (SD), and ML-LOO (IQR). We
measure the performance by the success rate on the original model, the detector, and the
rate of fooling both simultaneously. We also report the average `2 distance between original
and successful adversarial images. The results are summarized in Table 7.4.

In the first scenario, we evaluate the robustness of the single-layer variate of ML-LOO
(SD) to demonstrate the power of our attacker design, which only thresholds the SD of the
probability of the predicted class alone. We define the detector loss as L1

DET := max{SD(φ(x′))−
τ, 0}, which penalizes SD(φ(x′)) over attribution scores if it is larger than τ . The threshold
τ is chosen to keep the FPR at 0.05 when detecting adversarial examples generated by gray-
box C&W attack from natural images. When LOO over all pixels is intractable, we sample
pixels to estimate the SD. The attacker always fool the detector. However, the success rate

CHAPTER 7. DETECTING ADVERSARIAL EXAMPLES WITH FEATURE
ATTRIBUTION 132

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

C&W to L -PGD (CIFAR-10, ResNet)

LID (AUC: 0.763)
MAHA (AUC: 0.818)
KD+BU (AUC: 0.753)
ML-LOO (AUC: 0.879)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

C&W to DeepFool (CIFAR-10, ResNet)

LID (AUC: 0.990)
MAHA (AUC: 0.962)
KD+BU (AUC: 0.618)
ML-LOO (AUC: 0.992)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

C&W to FGSM (CIFAR-10, ResNet)

LID (AUC: 0.610)
MAHA (AUC: 0.730)
KD+BU (AUC: 0.673)
ML-LOO (AUC: 0.796)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

C&W to JSMA (CIFAR-10, ResNet)

LID (AUC: 0.984)
MAHA (AUC: 0.957)
KD+BU (AUC: 0.614)
ML-LOO (AUC: 0.984)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

C&W to BOUNDARY (CIFAR-10, ResNet)

LID (AUC: 0.991)
MAHA (AUC: 0.964)
KD+BU (AUC: 0.676)
ML-LOO (AUC: 0.994)

Figure 7.5: Transferability of detection methods trained with C&W attack and tested on
`∞-PGD, FGSM, JSMA, Boundary and DeepFool.

Detector None SD ML-LOO(SD) ML-LOO(IQR)
Succ. rate on Model 100% 93% 52% 58%

Succ. rate on Detector N/A 100% 100% 78%
Succ. rate on Both 100% 93% 52% 36%
Avg. `2 distance 0.31 0.43 1.23 1.07

Table 7.4: Performance under the white-box attacks.

of fooling the original model decreases from 100% to 93%, and the average distance increases
from 0.31 to 0.43.

In the second scenario, We use ML-LOO (with SD) as the detector (a Logistic Regression
(LR) applied to SD of multi-layer feature attributions). The white-box attack in the first
setting fails to fool this detector completely. Therefore, we define the detector loss as

L2
DET := max{

∑

n

wnSD(φfn(x))− τ, 0},

where n loops over neurons of selected layers, φfn(x) is the attribution score at neuron n,
and wn is the corresponding learned coefficients. The threshold τ is still chosen at FPR =
0.05. The success rate of fooling the model decreases from 100% to 52%, and the average
distance increases to 1.23. In the third scenario, we evaluate ML-LOO (IQR), which is non-
differentiable. However, there is an approximately linear relationship between SD and IQR
under the normality assumption [166], which suggests that we can apply the same detector
loss L2

DET with the transformed threshold at FPR = 0.05, and the transformed coefficients
learned in ML-LOO (IQR). The attacker achieves worse performance. In particular, only
78% generated images fool the detector, with a 58% success rate of fooling the model (over
all the examples) and an average distance of 1.07.

We observe that ML-LOO (IQR) achieves competitive performance even under the strongest
white-box threat model. The white-box attack fails to fool the model and the detector simul-
taneously for 64% of test images. The average size of successful perturbations also increases
by over three times. We expect ML-LOO works better under a white-box attack for adver-
sarially trained models with larger certified radii.

CHAPTER 7. DETECTING ADVERSARIAL EXAMPLES WITH FEATURE
ATTRIBUTION 133

7.5 Discussion

In this chapter, we introduce a new framework to detect adversarial examples with multi-
layer feature attribution, by capturing the scaling difference of feature attribution scores
between the original and adversarial examples. We show that our detection method outper-
forms other state-of-the-art methods in detecting various kinds of attacks. It also displays
strong performance in detecting adversarial examples of varied confidence levels, in detecting
transferred examples from other attacks, and when an attacker has complete access to the
detector.

134

Chapter 8

Future Directions

In this thesis, we have discussed a range of different problems in model interpretation and
adversarial robustness, such as the design of query-efficient algorithms and the leverage of
prior knowledge in model-agnostic model interpretation, the generation of adversarial exam-
ples for discrete data, the query-efficient decision-based generation of adversarial examples,
and the application of model interpretation to detecting adversarial examples. There are
many problems that still remain open in these two fields.

One critical problem is to quantify the uncertainty in the feature importance scores
in model interpretation. Current approaches yield a vector of importance scores with the
underlying features for each instance. Due to the limitation of computational budget, there
can be uncertainty in the procedure of producing these scores for many existing methods.
Thus, it may be more realistic to have an interval estimate of the truth values. One potential
solution is to associate a hypothesis test with each feature, and seek existing procedures
in statistics (e.g., [167]) to provide error rate control and quantify uncertainty in feature
attribution. When there is a graph structure in the data, such as a parse tree in linguistic
data, the framework built in Ramdas et al. [168] can be exploited for false discovery rate
control.

Another problem is about the trade-off between different axiomatic frameworks of a
faithful interpretation. This directly leads to a critical question: which framework should
one use in practice? The answer might vary from application to application. The choice not
only depends on underlying axioms [see, e.g., 22, 169], but may also go beyond philosophical
preferences. The ease of implementation and the existence of an efficient and accurate
approximation of true scores can all be important factors. A detailed discussion on such
issues is needed for popularizing tools in model interpretation within the research community
and beyond.

It is also important to investigate the application of tools in model interpretation to areas
beyond detection of adversarial examples. A potential direction is on privacy-preserving
machine learning. In privacy-sensitive fields such as medical science, a critical criterion
of a trained model is whether it preserves the privacy of training data [170]. The statistic
constructed in Chapter 7 may be used a tool to distinguish whether a data point has appeared

CHAPTER 8. FUTURE DIRECTIONS 135

in the training data for models which do not preserve privacy.
One limitation of all existing decision-based algorithms for generating adversarial exam-

ples, including HopSkipJumpAttack, is that they require evaluations of the target model
near the boundary. A potential defense mechanism against these algorithms is to limit the
queries near the boundary. We have also observed that it still takes tens of thousands of
model queries for HopSkipJumpAttack to craft imperceptible adversarial examples with a
target class on ImageNet, which has a relatively large image size. Future work may seek the
combination of HopSkipJumpAttack with transferred attack to resolve these issues.

A potential exciting application of decision-based algorithms is to evaluate the robustness
of human vision systems. With a carefully-designed interface, HopSkipJumpAttack may be
used to craft “adversarial examples” for human eyes. However, it requires a careful control
in the range of temporal exposures and the number of similar images within a short time
period, so as to disrupt short-term memory that may lead to dependence between consecutive
decisions on similar images. Such a study may provide a deeper understanding in the human
vision system and its similarity and difference with current machine learning algorithms.

The methods developed in this thesis may also provide some insights for other areas.
The framework developed in Chapter 3 might be adapted for learning generative models
with discrete inputs. The framework of the Banzhaf value for a game where there is a
graph structure among players in Chapter 4 may be used as a mathematical model for some
problems in economy. The algorithm developed in Chapter 6 essentially projects an arbitrary
point onto a manifold embedded in Euclidean space, without access to the gradient of the
manifold. Thus it may have a broader range of applications, such as serving as a retraction
map for optimization on manifolds.

136

Bibliography

[1] Jimmy Ba, Volodymyr Mnih, and Koray Kavukcuoglu. “Multiple Object Recognition
with Visual Attention”. In: Proceedings of the International Conference on Learning
Representations (ICLR). 2015.

[2] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhudi-
nov, Rich Zemel, and Yoshua Bengio. “Show, attend and tell: Neural image caption
generation with visual attention”. In: International Conference on Machine Learning.
2015, pp. 2048–2057.

[3] Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and Daan Wier-
stra. “DRAW: A recurrent neural network for image generation”. In: arXiv preprint
arXiv:1502.04623 (2015).

[4] Kan Chen, Jiang Wang, Liang-Chieh Chen, Haoyuan Gao, Wei Xu, and Ram Nevatia.
“ABC-CNN: An attention based convolutional neural network for visual question
answering”. In: arXiv preprint arXiv:1511.05960 (2015).

[5] Zichao Yang, Xiaodong He, Jianfeng Gao, Li Deng, and Alex Smola. “Stacked atten-
tion networks for image question answering”. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 2016, pp. 21–29.

[6] Huijuan Xu and Kate Saenko. “Ask, attend and answer: Exploring question-guided
spatial attention for visual question answering”. In: European Conference on Com-
puter Vision. Springer. 2016, pp. 451–466.

[7] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. “Attention is all you need”. In: Advances
in Neural Information Processing Systems. 2017, pp. 5998–6008.

[8] K. Simonyan, A. Vedaldi, and A. Zisserman. “Deep Inside Convolutional Networks:
Visualising Image Classification Models and Saliency Maps”. In: Proceedings of the
International Conference on Learning Representations (ICLR). 2014.

[9] Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-
Robert Müller, and Wojciech Samek. “On pixel-wise explanations for non-linear classi-
fier decisions by layer-wise relevance propagation”. In: PloS One 10.7 (2015), e0130140.

BIBLIOGRAPHY 137

[10] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. “Learning Important Fea-
tures Through Propagating Activation Differences”. In: ICML. Vol. 70. Proceedings
of Machine Learning Research. PMLR, June 2017, pp. 3145–3153.

[11] Andrej Karpathy, Justin Johnson, and Li Fei-Fei. “Visualizing and Understanding Re-
current Networks”. In: International Conference on Learning Representations. 2016.

[12] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. “Axiomatic Attribution for Deep
Networks”. In: International Conference on Machine Learning. 2017, pp. 3319–3328.

[13] F. Godin, K. Demuynck, J. Dambre, W. De Neve, and T. Demeester. “Explain-
ing Character-Aware Neural Networks for Word-Level Prediction: Do They Discover
Linguistic Rules?” In: Proceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing (EMNLP). ACL. Brussels, Belgium, 2018, pp. 3275–
3284.

[14] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “Why should I trust you?:
Explaining the predictions of any classifier”. In: Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. ACM. 2016,
pp. 1135–1144.

[15] Scott M Lundberg and Su-In Lee. “A Unified Approach to Interpreting Model Predic-
tions”. In: Advances in Neural Information Processing Systems 30. Ed. by I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett.
Curran Associates, Inc., 2017, pp. 4765–4774. url: http://papers.nips.cc/paper/
7062-a-unified-approach-to-interpreting-model-predictions.pdf.

[16] Erik Štrumbelj and Igor Kononenko. “An Efficient Explanation of Individual Classi-
fications using Game Theory”. In: Journal of Machine Learning Research 11 (2010),
pp. 1–18.

[17] Anupam Datta, Shayak Sen, and Yair Zick. “Algorithmic transparency via quanti-
tative input influence: Theory and experiments with learning systems”. In: Security
and Privacy (SP), 2016 IEEE Symposium on. IEEE. 2016, pp. 598–617.

[18] Jiwei Li, Will Monroe, and Dan Jurafsky. “Understanding neural networks through
representation erasure”. In: arXiv preprint arXiv:1612.08220 (2016).

[19] Jianbo Chen, Le Song, Martin Wainwright, and Michael Jordan. “Learning to Explain:
An Information-Theoretic Perspective on Model Interpretation”. In: International
Conference on Machine Learning. 2018, pp. 882–891.

[20] Jianbo Chen, Le Song, Martin J. Wainwright, and Michael I. Jordan. “L-Shapley
and C-Shapley: Efficient Model Interpretation for Structured Data”. In: International
Conference on Learning Representations. 2019.

[21] Jianbo Chen and Michael I Jordan. “LS-Tree: Model Interpretation When the Data
Are Linguistic”. In: arXiv preprint arXiv:1902.04187 (2019).

http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf

BIBLIOGRAPHY 138

[22] Lloyd S Shapley. “A value for n-person games”. In: Contributions to the Theory of
Games 2.28 (1953), pp. 307–317.

[23] John F Banzhaf III. “Weighted voting doesn’t work: A mathematical analysis”. In:
Rutgers L. Rev. 19 (1964), p. 317.

[24] Zachary C Lipton. “The mythos of model interpretability”. In: arXiv preprint arXiv:1606.03490
(2016).

[25] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian Goodfellow, and Rob Fergus. “Intriguing properties of neural networks”. In: In-
ternational Conference on Learning Representations. 2014.

[26] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. “Explaining and har-
nessing adversarial examples”. In: Proceedings of the International Conference on
Learning Representations. 2015.

[27] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. “Adversarial machine learning
at scale”. In: International Conference on Learning Representations. 2017.

[28] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik,
and Ananthram Swami. “The limitations of deep learning in adversarial settings”. In:
2016 IEEE European Symposium on Security and Privacy. IEEE. 2016, pp. 372–387.

[29] Nicholas Carlini and David Wagner. “Towards evaluating the robustness of neural
networks”. In: 2017 IEEE Symposium on Security and Privacy. IEEE. 2017, pp. 39–
57.

[30] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. “Towards Deep Learning Models Resistant to Adversarial Attacks”.
In: International Conference on Learning Representations. 2018.

[31] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. “Deepfool:
a simple and accurate method to fool deep neural networks”. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 2016, pp. 2574–2582.

[32] Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. “Zoo: Ze-
roth order optimization based black-box attacks to deep neural networks without
training substitute models”. In: Proceedings of the 10th ACM Workshop on Artificial
Intelligence and Security. ACM. 2017, pp. 15–26.

[33] Andrew Ilyas, Logan Engstrom, Anish Athalye, and Jessy Lin. “Black-box Adversar-
ial Attacks with Limited Queries and Information”. In: International Conference on
Machine Learning. 2018, pp. 2142–2151.

[34] Andrew Ilyas, Logan Engstrom, and Aleksander Madry. “Prior Convictions: Black-
box Adversarial Attacks with Bandits and Priors”. In: International Conference on
Learning Representations. 2019.

BIBLIOGRAPHY 139

[35] Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song. “Delving into transferable
adversarial examples and black-box attacks”. In: Proceedings of the International
Conference on Learning Representations. 2017.

[36] Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow. “Transferability in machine
learning: from phenomena to black-box attacks using adversarial samples”. In: arXiv
preprint arXiv:1605.07277 (2016).

[37] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik,
and Ananthram Swami. “Practical black-box attacks against machine learning”. In:
Proceedings of the 2017 ACM on Asia Conference on Computer and Communications
Security. ACM. 2017, pp. 506–519.

[38] Wieland Brendel, Jonas Rauber, and Matthias Bethge. “Decision-Based Adversarial
Attacks: Reliable Attacks Against Black-Box Machine Learning Models”. In: Inter-
national Conference on Learning Representations. 2018.

[39] Thomas Brunner, Frederik Diehl, Michael Truong Le, and Alois Knoll. “Guessing
Smart: Biased Sampling for Efficient Black-Box Adversarial Attacks”. In: arXiv preprint
arXiv:1812.09803 (2018).

[40] Minhao Cheng, Thong Le, Pin-Yu Chen, Huan Zhang, JinFeng Yi, and Cho-Jui Hsieh.
“Query-Efficient Hard-label Black-box Attack: An Optimization-based Approach”. In:
International Conference on Learning Representations. 2019.

[41] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and
Patrick McDaniel. “Ensemble Adversarial Training: Attacks and Defenses”. In: Inter-
national Conference on Learning Representations. 2018.

[42] Xuanqing Liu and Cho-Jui Hsieh. “Rob-GAN: Generator, Discriminator, and Ad-
versarial Attacker”. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. 2019.

[43] Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, Ken Nakae, and Shin Ishii. “Dis-
tributional smoothing with virtual adversarial training”. In: arXiv preprint arXiv:1507.00677
(2015).

[44] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami.
“Distillation as a defense to adversarial perturbations against deep neural networks”.
In: 2016 IEEE Symposium on Security and Privacy. IEEE. 2016, pp. 582–597.

[45] Yang Song, Taesup Kim, Sebastian Nowozin, Stefano Ermon, and Nate Kushman.
“PixelDefend: Leveraging Generative Models to Understand and Defend against Ad-
versarial Examples”. In: International Conference on Learning Representations. 2018.

[46] Weilin Xu, David Evans, and Yanjun Qi. “Feature Squeezing: Detecting Adversarial
Examples in Deep Neural Networks”. In: 25th Annual Network and Distributed System
Security Symposium, NDSS 2018, San Diego, California, USA, February 18-21, 2018.
2018.

BIBLIOGRAPHY 140

[47] Xuanqing Liu, Minhao Cheng, Huan Zhang, and Cho-Jui Hsieh. “Towards robust neu-
ral networks via random self-ensemble”. In: Proceedings of the European Conference
on Computer Vision (ECCV). 2018, pp. 369–385.

[48] Mathias Lecuyer, Vaggelis Atlidakis, Roxana Geambasu, Daniel Hsu, and Suman
Jana. “Certified robustness to adversarial examples with differential privacy”. In:
IEEE Symposium on Security and Privacy. 2019.

[49] Xuanqing Liu, Yao Li, Chongruo Wu, and Cho-Jui Hsieh. “Adv-BNN: Improved Ad-
versarial Defense through Robust Bayesian Neural Network”. In: International Con-
ference on Learning Representations. 2019.

[50] Eric Wong and J Zico Kolter. “Provable defenses against adversarial examples via
the convex outer adversarial polytope”. In: International Conference on Machine
Learning. 2018.

[51] Krishnamurthy Dvijotham, Sven Gowal, Robert Stanforth, Relja Arandjelovic, Bren-
dan O’Donoghue, Jonathan Uesato, and Pushmeet Kohli. “Training verified learners
with learned verifiers”. In: arXiv preprint arXiv:1805.10265 (2018).

[52] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Alek-
sander Madry. “There is no free lunch in adversarial robustness (but there are unex-
pected benefits)”. In: arXiv preprint arXiv:1805.12152 (2018).

[53] Ludwig Schmidt, Shibani Santurkar, Dimitris Tsipras, Kunal Talwar, and Aleksander
Madry. “Adversarially robust generalization requires more data”. In: Advances in
Neural Information Processing Systems. 2018, pp. 5019–5031.

[54] Xin Li and Fuxin Li. “Adversarial examples detection in deep networks with con-
volutional filter statistics”. In: Proceedings of the IEEE International Conference on
Computer Vision. 2017, pp. 5764–5772.

[55] Arjun Nitin Bhagoji, Daniel Cullina, Chawin Sitawarin, and Prateek Mittal. “En-
hancing robustness of machine learning systems via data transformations”. In: 2018
52nd Annual Conference on Information Sciences and Systems (CISS). IEEE. 2018,
pp. 1–5.

[56] Dan Hendrycks and Kevin Gimpel. “Early methods for detecting adversarial images”.
In: International Conference on Learning Representations. 2017.

[57] Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. “A simple unified framework
for detecting out-of-distribution samples and adversarial attacks”. In: Advances in
Neural Information Processing Systems. 2018, pp. 7167–7177.

[58] Kathrin Grosse, Praveen Manoharan, Nicolas Papernot, Michael Backes, and Patrick
McDaniel. “On the (statistical) detection of adversarial examples”. In: arXiv preprint
arXiv:1702.06280 (2017).

[59] Zhitao Gong, Wenlu Wang, and Wei-Shinn Ku. “Adversarial and clean data are not
twins”. In: arXiv preprint arXiv:1704.04960 (2017).

BIBLIOGRAPHY 141

[60] Jan Hendrik Metzen, Tim Genewein, Volker Fischer, and Bastian Bischoff. “On de-
tecting adversarial perturbations”. In: International Conference on Learning Repre-
sentations. 2017.

[61] Reuben Feinman, Ryan R Curtin, Saurabh Shintre, and Andrew B Gardner. “Detect-
ing adversarial samples from artifacts”. In: arXiv preprint arXiv:1703.00410 (2017).

[62] Xingjun Ma, Bo Li, Yisen Wang, Sarah M. Erfani, Sudanthi Wijewickrema, Grant
Schoenebeck, Michael E. Houle, Dawn Song, and James Bailey. “Characterizing Ad-
versarial Subspaces Using Local Intrinsic Dimensionality”. In: International Confer-
ence on Learning Representations. 2018.

[63] R Dennis Cook. “Detection of influential observation in linear regression”. In: Tech-
nometrics 19.1 (1977), pp. 15–18.

[64] Puyudi Yang, Jianbo Chen, Cho-Jui Hsieh, Jane-Ling Wang, and Michael I Jordan.
“Greedy attack and Gumbel attack: Generating adversarial examples for discrete
data”. In: arXiv preprint arXiv:1805.12316 (2018).

[65] Jianbo Chen, Michael I Jordan, and Martin J Wainwright. “HopSkipJumpAttack: a
query-efficient decision-based adversarial attack”. In: arXiv preprint arXiv:1904.02144
(2019).

[66] Puyudi Yang, Jianbo Chen, Cho-Jui Hsieh, Jane-Ling Wang, and Michael I Jor-
dan. “ML-LOO: Detecting Adversarial Examples with Feature Attribution”. In: arXiv
preprint arXiv:1906.03499 (2019).

[67] David Baehrens, Timon Schroeter, Stefan Harmeling, Motoaki Kawanabe, Katja
Hansen, and Klaus-Robert Müller. “How to explain individual classification deci-
sions”. In: Journal of Machine Learning Research 11 (2010), pp. 1803–1831.

[68] Roger B Myerson. “Graphs and cooperation in games”. In: Mathematics of Operations
Research 2.3 (1977), pp. 225–229.

[69] Andrew L Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and
Christopher Potts. “Learning word vectors for sentiment analysis”. In: Proceedings of
the 49th Annual Meeting of the Association for Computational Linguistics. Associa-
tion for Computational Linguistics. 2011, pp. 142–150.

[70] H Peyton Young. “Monotonic solutions of cooperative games”. In: International Jour-
nal of Game Theory 14.2 (1985), pp. 65–72.

[71] Thomas M Cover and Joy A Thomas. Elements of Information Theory. John Wiley
& Sons, 2012.

[72] Xiang Zhang, Junbo Zhao, and Yann LeCun. “Character-level convolutional networks
for text classification”. In: Advances in Neural Information Processing Systems. 2015,
pp. 649–657.

[73] Andrej Karpathy, Justin Johnson, and Li Fei-Fei. “Visualizing and understanding
recurrent networks”. In: arXiv preprint arXiv:1506.02078 (2015).

BIBLIOGRAPHY 142

[74] Hendrik Strobelt, Sebastian Gehrmann, Hanspeter Pfister, and Alexander M Rush.
“Lstmvis: A tool for visual analysis of hidden state dynamics in recurrent neural
networks”. In: IEEE transactions on visualization and computer graphics 24.1 (2018),
pp. 667–676.

[75] W James Murdoch and Arthur Szlam. “Automatic rule extraction from long short
term memory networks”. In: arXiv preprint arXiv:1702.02540 (2017).

[76] Yoon Kim. “Convolutional Neural Networks for Sentence Classification”. In: Proceed-
ings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP). 2014, pp. 1746–1751.

[77] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In: Neural
Computation 9.8 (1997), pp. 1735–1780.

[78] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. “Dropout: A simple way to prevent neural networks from overfitting”.
In: The Journal of Machine Learning Research 15.1 (2014), pp. 1929–1958.

[79] Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Neural Networks for Machine
Learning-Lecture 6a-Overview of mini-batch gradient descent.

[80] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. “Gradient-based
learning applied to document recognition”. In: Proceedings of the IEEE 86.11 (1998),
pp. 2278–2324.

[81] Alex Krizhevsky. “Learning multiple layers of features from tiny images”. In: (2009).

[82] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classification with
deep convolutional neural networks”. In: Advances in Neural Information Processing
Systems. 2012, pp. 1097–1105.

[83] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”.
In: Proceedings of the International Conference on Learning Representations (ICLR).
2015.

[84] Maurice Kendall. Rank Correlation Methods. 4th ed. Charles Griffin, London, 1975.

[85] Yunlong Jiao and Jean-Philippe Vert. “The Kendall and Mallows kernels for per-
mutations”. In: IEEE transactions on pattern analysis and machine intelligence 40.7
(2018), pp. 1755–1769.

[86] Isabelle Guyon and André Elisseeff. “An introduction to variable and feature selec-
tion”. In: Journal of machine learning research 3.Mar (2003), pp. 1157–1182.

[87] J.T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller. “Striving for Sim-
plicity: The All Convolutional Net”. In: ICLR (workshop track). 2015. url: http:
//cia.informatik.uni-freiburg.de/Publications/2015/DB15a.

[88] Pieter-Jan Kindermans, Kristof Schütt, Klaus-Robert Müller, and Sven Dähne. “In-
vestigating the influence of noise and distractors on the interpretation of neural net-
works”. In: arXiv preprint arXiv:1611.07270 (2016).

http://cia.informatik.uni-freiburg.de/Publications/2015/DB15a
http://cia.informatik.uni-freiburg.de/Publications/2015/DB15a

BIBLIOGRAPHY 143

[89] Shuyang Gao, Greg Ver Steeg, and Aram Galstyan. “Variational Information Maxi-
mization for Feature Selection”. In: Advances in Neural Information Processing Sys-
tems. 2016, pp. 487–495.

[90] Hanchuan Peng, Fuhui Long, and Chris Ding. “Feature selection based on mutual
information criteria of max-dependency, max-relevance, and min-redundancy”. In:
IEEE Transactions on pattern analysis and machine intelligence 27.8 (2005), pp. 1226–
1238.

[91] Ronald J Williams. “Simple statistical gradient-following algorithms for connectionist
reinforcement learning”. In: Machine Learning 8.3-4 (1992), pp. 229–256.

[92] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. “Neural Machine Transla-
tion by Jointly Learning to Align and Translate”. In: arXiv e-prints abs/1409.0473
(Sept. 2014).

[93] Eric Jang, Shixiang Gu, and Ben Poole. “Categorical reparameterization with gumbel-
softmax”. In: stat 1050 (2017), p. 1.

[94] Chris J Maddison, Daniel Tarlow, and Tom Minka. “A* sampling”. In: Advances in
Neural Information Processing Systems. 2014, pp. 3086–3094.

[95] Chris J Maddison, Andriy Mnih, and Yee Whye Teh. “The concrete distribution: A
continuous relaxation of discrete random variables”. In: arXiv preprint arXiv:1611.00712
(2016).

[96] Colin Raffel, Thang Luong, Peter J Liu, Ron J Weiss, and Douglas Eck. “Online
and linear-time attention by enforcing monotonic alignments”. In: arXiv preprint
arXiv:1704.00784 (2017).

[97] Jianbo Chen, Mitchell Stern, Martin J Wainwright, and Michael I Jordan. “Kernel
Feature Selection via Conditional Covariance Minimization”. In: Advances in Neural
Information Processing Systems 30. 2017, pp. 6949–6958.

[98] Ye Zhang and Byron Wallace. “A Sensitivity Analysis of (and Practitioners’ Guide
to) Convolutional Neural Networks for Sentence Classification”. In: Proceedings of
the Eighth International Joint Conference on Natural Language Processing (Volume
1: Long Papers). Vol. 1. 2017, pp. 253–263.

[99] François Chollet et al. Keras. https://github.com/keras-team/keras. 2015.

[100] Jiwei Li, Minh-Thang Luong, and Dan Jurafsky. “A hierarchical neural autoencoder
for paragraphs and documents”. In: arXiv preprint arXiv:1506.01057 (2015).

[101] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. “Dis-
tributed representations of words and phrases and their compositionality”. In: Ad-
vances in Neural Information Processing Systems. 2013, pp. 3111–3119.

https://github.com/keras-team/keras

BIBLIOGRAPHY 144

[102] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning,
Andrew Ng, and Christopher Potts. “Recursive deep models for semantic composition-
ality over a sentiment treebank”. In: Proceedings of the 2013 conference on Empirical
Methods in Natural Language Processing (EMNLP). ACL. 2013, pp. 1631–1642.

[103] Tao Lei, Regina Barzilay, and Tommi Jaakkola. “Rationalizing Neural Predictions”.
In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language
Processing (EMNLP). ACL. 2016, pp. 107–117.

[104] Jiwei Li, Xinlei Chen, Eduard Hovy, and Dan Jurafsky. “Visualizing and Understand-
ing Neural Models in NLP”. In: Proceedings of NAACL-HLT. 2016, pp. 681–691.

[105] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. “BERT: Pre-
training of Deep Bidirectional Transformers for Language Understanding”. In: arXiv
preprint arXiv:1810.04805 (2018).

[106] Andrzej S Nowak. “On an axiomatization of the Banzhaf value without the additivity
axiom”. In: International Journal of Game Theory 26.1 (1997), pp. 137–141.

[107] Peter L Hammer and Ron Holzman. “Approximations of pseudo-Boolean functions;
applications to game theory”. In: Zeitschrift für Operations Research 36.1 (1992),
pp. 3–21.

[108] Ilya Katsev. “The Least Square Values for Games with Restricted Cooperation”. In:
Game Theory and Management. 2011, p. 117.

[109] Jack Sherman and Winifred J Morrison. “Adjustment of an inverse matrix correspond-
ing to a change in one element of a given matrix”. In: The Annals of Mathematical
Statistics 21.1 (1950), pp. 124–127.

[110] Jeffrey Pennington, Richard Socher, and Christopher Manning. “Glove: Global vectors
for word representation”. In: Proceedings of the 2014 conference on Empirical Methods
in Natural Language Processing (EMNLP). ACL. 2014, pp. 1532–1543.

[111] Yoav Goldberg and Joakim Nivre. “A dynamic oracle for arc-eager dependency pars-
ing”. In: Proceedings of COLING 2012 (2012), pp. 959–976.

[112] Kenji Sagae and Alon Lavie. “A classifier-based parser with linear run-time complex-
ity”. In: Proceedings of the Ninth International Workshop on Parsing Technology.
ACL. 2005, pp. 125–132.

[113] Yue Zhang and Stephen Clark. “Transition-based parsing of the Chinese treebank
using a global discriminative model”. In: Proceedings of the 11th International Con-
ference on Parsing Technologies. ACL. 2009, pp. 162–171.

[114] Muhua Zhu, Yue Zhang, Wenliang Chen, Min Zhang, and Jingbo Zhu. “Fast and
accurate shift-reduce constituent parsing”. In: Proceedings of the 51st Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers). Vol. 1.
2013, pp. 434–443.

BIBLIOGRAPHY 145

[115] Selmer C Larson. “The shrinkage of the coefficient of multiple correlation.” In: Journal
of Educational Psychology 22.1 (1931), p. 45.

[116] Gianluca Stringhini, Christopher Kruegel, and Giovanni Vigna. “Detecting spammers
on social networks”. In: Proceedings of the 26th annual computer security applications
conference. ACM. 2010, pp. 1–9.

[117] Sushmito Ghosh and Douglas L Reilly. “Credit card fraud detection with a neural-
network”. In: System Sciences, 1994. Proceedings of the Twenty-Seventh Hawaii In-
ternational Conference on. Vol. 3. IEEE. 1994, pp. 621–630.

[118] Richard A Berk and Justin Bleich. “Statistical procedures for forecasting criminal
behavior”. In: Criminology & Public Policy 12.3 (2013), pp. 513–544.

[119] J Zico Kolter and Marcus A Maloof. “Learning to detect and classify malicious
executables in the wild”. In: Journal of Machine Learning Research 7.Dec (2006),
pp. 2721–2744.

[120] David West. “Neural network credit scoring models”. In: Computers & Operations
Research 27.11-12 (2000), pp. 1131–1152.

[121] Nilesh Dalvi, Pedro Domingos, Sumit Sanghai, Deepak Verma, et al. “Adversarial
classification”. In: Proceedings of the tenth ACM SIGKDD international conference
on Knowledge discovery and data mining. ACM. 2004, pp. 99–108.

[122] Nicolas Papernot, Patrick McDaniel, Ananthram Swami, and Richard Harang. “Craft-
ing adversarial input sequences for recurrent neural networks”. In: Military Commu-
nications Conference, MILCOM 2016-2016 IEEE. IEEE. 2016, pp. 49–54.

[123] Ji Gao, Jack Lanchantin, Mary Lou Soffa, and Yanjun Qi. “Black-box Generation of
Adversarial Text Sequences to Evade Deep Learning Classifiers”. In: arXiv preprint
arXiv:1801.04354 (2018).

[124] Robin Jia and Percy Liang. “Adversarial Examples for Evaluating Reading Compre-
hension Systems”. In: Proceedings of the 2017 Conference on Empirical Methods in
Natural Language Processing. 2017, pp. 2021–2031.

[125] Suranjana Samanta and Sameep Mehta. “Towards Crafting Text Adversarial Sam-
ples”. In: arXiv preprint arXiv:1707.02812 (2017).

[126] Minhao Cheng, Jinfeng Yi, Huan Zhang, Pin-Yu Chen, and Cho-Jui Hsieh. “Seq2sick:
Evaluating the robustness of sequence-to-sequence models with adversarial examples”.
In: arXiv preprint arXiv:1803.01128 (2018).

[127] Bin Liang, Hongcheng Li, Miaoqiang Su, Pan Bian, Xirong Li, and Wenchang Shi.
“Deep Text Classification Can be Fooled”. In: arXiv preprint arXiv:1704.08006 (2017).

[128] David G Lowe. “Distinctive image features from scale-invariant keypoints”. In: Inter-
national journal of computer vision 60.2 (2004), pp. 91–110.

BIBLIOGRAPHY 146

[129] N Danal. “Histgram of Oriented Gradients for Human Detection”. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. 2005, pp. 886–
893.

[130] Abraham D Flaxman, Adam Tauman Kalai, and H Brendan McMahan. “Online
convex optimization in the bandit setting: gradient descent without a gradient”. In:
Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms.
SIAM. 2005, pp. 385–394.

[131] Alekh Agarwal, Dean P Foster, Daniel J Hsu, Sham M Kakade, and Alexander
Rakhlin. “Stochastic convex optimization with bandit feedback”. In: Advances in
Neural Information Processing Systems. 2011, pp. 1035–1043.

[132] Yurii Nesterov and Vladimir Spokoiny. “Random gradient-free minimization of convex
functions”. In: Foundations of Computational Mathematics 17.2 (2017), pp. 527–566.

[133] John C Duchi, Michael I Jordan, Martin J Wainwright, and Andre Wibisono. “Opti-
mal rates for zero-order convex optimization: The power of two function evaluations”.
In: IEEE Transactions on Information Theory 61.5 (2015), pp. 2788–2806.

[134] Sijia Liu, Bhavya Kailkhura, Pin-Yu Chen, Paishun Ting, Shiyu Chang, and Lisa
Amini. “Zeroth-order stochastic variance reduction for nonconvex optimization”. In:
Advances in Neural Information Processing Systems. 2018, pp. 3731–3741.

[135] Alex Kantchelian, JD Tygar, and Anthony Joseph. “Evasion and hardening of tree en-
semble classifiers”. In: International Conference on Machine Learning. 2016, pp. 2387–
2396.

[136] Hongge Chen, Huan Zhang, Duane Boning, and Cho-Jui Hsieh. “Robust Decision
Trees Against Adversarial Examples”. In: International Conference on Machine Learn-
ing. 2019, pp. 1122–1131.

[137] Lu Wang, Xuanqing Liu, Jinfeng Yi, Zhi-Hua Zhou, and Cho-Jui Hsieh. “Evaluating
the Robustness of Nearest Neighbor Classifiers: A Primal-Dual Perspective”. In: arXiv
preprint arXiv:1906.03972 (2019).

[138] Yao-Yuan Yang, Cyrus Rashtchian, Yizhen Wang, and Kamalika Chaudhuri. “Adver-
sarial Examples for Non-Parametric Methods: Attacks, Defenses and Large Sample
Limits”. In: arXiv preprint arXiv:1906.03310 (2019).

[139] Jan A Snyman. Practical Mathematical Optimization. Springer, 2005.

[140] Joel A Tropp. “User-friendly tail bounds for sums of random matrices”. In: Founda-
tions of computational mathematics 12.4 (2012), pp. 389–434.

[141] Martin J Wainwright. High-Dimensional Statistics: A Non-Asymptotic Viewpoint.
Vol. 48. Cambridge University Press, 2019.

[142] David Kincaid, David Ronald Kincaid, and Elliott Ward Cheney. Numerical Analysis:
Mathematics of Scientific Computing. Vol. 2. American Mathematical Soc., 2009.

BIBLIOGRAPHY 147

[143] Michel Ledoux. The Concentration of Measure Phenomenon. 89. American Mathe-
matical Soc., 2001.

[144] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Identity mappings in
deep residual networks”. In: European conference on computer vision. Springer. 2016,
pp. 630–645.

[145] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. “ImageNet: A Large-Scale
Hierarchical Image Database”. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2009.

[146] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. “Densely
connected convolutional networks”. In: Proceedings of the IEEE conference on com-
puter vision and pattern recognition. 2017, pp. 4700–4708.

[147] Jonas Rauber, Wieland Brendel, and Matthias Bethge. “Foolbox: A Python tool-
box to benchmark the robustness of machine learning models”. In: arXiv preprint
arXiv:1707.04131 (2017).

[148] Anish Athalye, Nicholas Carlini, and David Wagner. “Obfuscated Gradients Give a
False Sense of Security: Circumventing Defenses to Adversarial Examples”. In: Inter-
national Conference on Machine Learning. 2018, pp. 274–283.

[149] Xiaoyu Cao and Neil Zhenqiang Gong. “Mitigating evasion attacks to deep neural net-
works via region-based classification”. In: Proceedings of the 33rd Annual Computer
Security Applications Conference. ACM. 2017, pp. 278–287.

[150] Guneet S. Dhillon, Kamyar Azizzadenesheli, Jeremy D. Bernstein, Jean Kossaifi, Aran
Khanna, Zachary C. Lipton, and Animashree Anandkumar. “Stochastic activation
pruning for robust adversarial defense”. In: International Conference on Learning
Representations. 2018.

[151] Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. “Certified Adversarial Robustness via
Randomized Smoothing”. In: International Conference on Machine Learning. 2019,
pp. 1310–1320.

[152] Cihang Xie, Jianyu Wang, Zhishuai Zhang, Zhou Ren, and Alan Yuille. “Mitigat-
ing Adversarial Effects Through Randomization”. In: International Conference on
Learning Representations. 2018.

[153] Nicholas Carlini and David Wagner. “Adversarial examples are not easily detected:
Bypassing ten detection methods”. In: Proceedings of the 10th ACM Workshop on
Artificial Intelligence and Security. ACM. 2017, pp. 3–14.

[154] Alexey Kurakin, Ian J Goodfellow, and Samy Bengio. “Adversarial Examples in
the Physical World”. In: Artificial Intelligence Safety and Security. Chapman and
Hall/CRC, 2018, pp. 99–112.

[155] Ian Goodfellow, Nicolas Papernot, Sandy Huang, Yan Duan, and Peter Abbeel. “At-
tacking Machine Learning with Adversarial Examples”. In: Open AI Blog (2017).

BIBLIOGRAPHY 148

[156] Thomas Tanay and Lewis Griffin. “A boundary tilting persepective on the phe-
nomenon of adversarial examples”. In: arXiv preprint arXiv:1608.07690 (2016).

[157] Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. “Analysis of classifiers’ robustness
to adversarial perturbations”. In: Machine Learning 107.3 (2018), pp. 481–508.

[158] Alhussein Fawzi, Seyed-Mohsen Moosavi-Dezfooli, and Pascal Frossard. “Robustness
of classifiers: from adversarial to random noise”. In: Advances in Neural Information
Processing Systems. 2016, pp. 1632–1640.

[159] Pei-Hsuan Lu, Pin-Yu Chen, and Chia-Mu Yu. “On the limitation of local intrinsic
dimensionality for characterizing the subspaces of adversarial examples”. In: arXiv
preprint arXiv:1803.09638 (2018).

[160] Matthew D Zeiler and Rob Fergus. “Visualizing and understanding convolutional
networks”. In: European conference on computer vision. Springer. 2014, pp. 818–833.

[161] Amirata Ghorbani, Abubakar Abid, and James Zou. “Interpretation of neural net-
works is fragile”. In: arXiv preprint arXiv:1710.10547 (2017).

[162] Chih-Kuan Yeh, Cheng-Yu Hsieh, Arun Sai Suggala, David Inouye, and Pradeep
Ravikumar. “How Sensitive are Sensitivity-Based Explanations?” In: arXiv preprint
arXiv:1901.09392 (2019).

[163] Prasad Chalasani, Somesh Jha, Aravind Sadagopan, and Xi Wu. “Adversarial Learn-
ing and Explainability in Structured Datasets”. In: arXiv preprint arXiv:1810.06583
(2018).

[164] Guanhong Tao, Shiqing Ma, Yingqi Liu, and Xiangyu Zhang. “Attacks meet inter-
pretability: Attribute-steered detection of adversarial samples”. In: Advances in Neu-
ral Information Processing Systems. 2018, pp. 7728–7739.

[165] Chiliang Zhang, Zuochang Ye, Yan Wang, and Zhimou Yang. “Detecting Adversarial
Perturbations with Saliency”. In: 2018 IEEE 3rd International Conference on Signal
and Image Processing (ICSIP). IEEE. 2018, pp. 271–275.

[166] JP Royston. “Algorithm AS 177: Expected normal order statistics (exact and approx-
imate)”. In: Journal of the royal statistical society. Series C (Applied statistics) 31.2
(1982), pp. 161–165.

[167] Yoav Benjamini and Yosef Hochberg. “Controlling the false discovery rate: a practical
and powerful approach to multiple testing”. In: Journal of the Royal statistical society:
series B (Methodological) 57.1 (1995), pp. 289–300.

[168] Aaditya Ramdas, Jianbo Chen, Martin J Wainwright, and Michael I Jordan. “A
sequential algorithm for false discovery rate control on directed acyclic graphs”. In:
Biometrika 106.1 (Jan. 2019), pp. 69–86. issn: 0006-3444. doi: 10.1093/biomet/
asy066.

[169] Pradeep Dubey and Lloyd S Shapley. “Mathematical properties of the Banzhaf power
index”. In: Mathematics of Operations Research 4.2 (1979), pp. 99–131.

http://dx.doi.org/10.1093/biomet/asy066
http://dx.doi.org/10.1093/biomet/asy066

BIBLIOGRAPHY 149

[170] Rakesh Agrawal and Ramakrishnan Srikant. “Privacy-preserving data mining”. In:
ACM Sigmod Record. Vol. 29. 2. ACM. 2000, pp. 439–450.

	Contents
	Introduction
	Model interpretation
	Adversarial robustness
	Contributions of this thesis

	Interpretability
	Efficient Model Interpretation for Structured Data
	Introduction
	Background and preliminaries
	Methods
	Properties
	Experiments
	Proof of Main Theorems
	Discussion

	An Information-Theoretic Perspective on Model Interpretation
	Introduction
	Our framework
	Our proposed method
	Experiments
	Proof of Theorem 1
	Conclusion

	Model Interpretation for Linguistic Data
	Introduction
	Least squares on parse trees
	Connection to coalitional game theory
	Detecting interactions
	Experiments
	Discussion

	Adversarial Robustness
	Adversarial Examples for Discrete Data
	Introduction
	Framework
	Methods
	Experiments
	Discussion

	A Query-Efficient Decision-Based Attack
	Introduction
	Related work
	An optimization framework
	A decision-based algorithm based on a novel gradient estimate
	Experiments
	Sensitivity analysis
	Proofs
	Discussion

	 Intersection
	Detecting Adversarial Examples with Feature Attribution
	Introduction
	Related Work
	Adversarial detection with feature attribution
	Experiments
	Discussion

	Future Directions
	Bibliography

