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Abstract

Epitaxial Growth, Nanofabrication, and Mass Transfer of InGaN Micro-LEDs for

Displays

by

David Hwang

High e�ciency III-nitride light-emitting diodes (LEDs) have drastically improved solid-

state lighting. They are sold in stores and are gradually replacing compact fluorescent

lightbulbs because they use less power and last longer. III-nitrides are on the cusp of

entering another market. As the size of mobile electronics shrink over time, display

technologies must also move to smaller form factors while maintaining high e�ciencies.

To achieve these goals, III-nitride LEDs are once again a candidate to overtake the state

of the art.

Incumbent technologies, such as liquid crystal displays (LCDs) and organic LED

(OLED) displays, have major issues with power e�ciency. A new technology, termed the

micro-LED (µLED) display, is poised to enter the market in the next few years. A µLED

display is made of inorganic LEDs (such as InGaN or AlGaInP) with dimensions typically

below 40 µm. µLED displays are promising due to higher luminance (brightness) than

OLEDs, wider viewing angles, and significantly higher energy e�ciencies.

In this thesis, advances in InGaN µLED epitaxial design, nanofabrication, and mass

transfer are discussed. Chapter 1 introduces the III-V families (arsenides, phosphides,

nitrides) and provides insight into µLED design. While the majority of IngaN µLEDs are

grown on sapphire or silicon, there are many reasons to explore homoepitaxial growth on

freestanding GaN (particularly on semipolar planes). Chapter 2 presents a comparison

of external quantum e�ciency (EQE) amongst various sized µLEDs and shows that high

EQEs (40-45%) are sustained as the size of the µLED drops. Reasons for e�ciency loss
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are presented and designs aimed at improving µLED e�ciencies are highlighted. Chapter

3 discusses the incorporation of tunnel junction contacts to µLEDs to enable new design

space (n-type mirrors and multiple active region growths). Chapter 4 examines ideas to

eliminate the drop of e�ciency with decreasing µLED size that incorporates a current

aperture and reduction of dry etch damage at the active region sidewall. Chapter 5

highlights a new mass transfer method that is applicable to µLEDs grown on freestanding

GaN, sapphire, or other substrates. Most of the commercial mass transfer techniques

today use laser lift-o↵ (LLO), which is incompatible with µLEDs grown on freestanding

GaN. The technique in Chapter 5 combines photoelectrochemical (PEC) etching and

transfer printing. With this method, red, green, and blue InGaN µLEDs have been

transferred from their growth substrates (sapphire and freestanding GaN) to the same

transparent and/or flexible substrates such as glass or acrylic without damage to the

µLED. This thesis reports the first demonstration of red, green, and blue µLEDs all with

an InGaN active region that have been transferred to the same substrate.
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Chapter 1

Introduction

1.1 Brief overview on displays

Display technologies surround our everyday lives. They feed information from our wrists

as smartwatches, live in our pockets as smartphones, entertain us in our homes as large

screen televisions, and flash advertisements on the street as store signs or digital bill-

boards. Displays may be as simple as monochromatic (or even black and white) indicators

or as complex as full-color (red, green, and blue, or RGB) displays. Full-color displays are

made of pixels that have three sub-pixels (red, green, and blue) as shown in Figure 1.1.

Beyond these applications, emerging technologies include near-eye displays (smartglasses

or contact lens displays) and 3D displays (light-field or holographic displays) [1]. While

many of these emerging displays have been portrayed in movies (advanced technologies

of superheroes or spies), they have been demonstrated in academic settings, prototyped,

or tested in the market.

Some of the earliest displays were cathode ray tubes (CRTs) from the late 1800s/early

1900s and were found in TVs and computer monitors amongst other applications. Inside

1



Opal

(a)

200 µm

(b)

Figure 1.1: A smartphone with the text “Opal” on the screen. (a) Optical photograph

and (b) optical micrograph of the display showing the RGB sub-pixels. Pixels are on the

order of 10-20 µm for a pitch of ⇠400 ppi.

the CRT is a vacuum tube with electron guns that served as the sources of light for the

display. Electrons are accelerated and deflected (by electrostatic or magnetic deflection)

towards RGB phosphor-coated screens. The electron guns are swept in a raster pattern

to form the desired image. CRTs were the dominant display technology until they were

replaced by liquid crystal displays (LCDs) around the early 2000s.

The light sources for LCDs are highly e�cient blue light-emitting diodes (LEDs) made

of GaN-based materials that are phosphor converted to white light. A strip of these white

LEDs serve as the backlight unit (BLU) for the LCD, which may be physically located on

the side of the display as in the case of TVs and computer monitors. This light is guided

through various films (optical polarizers, liquid crystals, color filters, etc) to an array of

pixels. Light is first guided through a polarizer to convert all of the randomly polarized

light into polarized light. This polarized light passes through liquid crystals, where the

orientation of the light may be rotated, and then goes through a second polarizer oriented
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90

�
from the first polarizer. Because of the numerous layers, LCDs have limitations ins

form factor (physically bulky) and energy e�ciency due to large losses in the layers (⇠3

to 5%). LCDs are “always on” because the BLU is always turned on; black screens are

produced when the second polarizer absorbs or blocks the polarized light passed through

the first polarizer and liquid crystals. Therefore, these black images still have some light

that leaks through them. Despite these shortcomings, LCDs still have a big presence in

television, computer monitor, and smartphone markets.

More recently, organic LED (OLED) displays entered the display market. Instead

of using BLUs as light sources, the light source of the OLED display pixels are the

OLEDs themselves. Thus, this type of display is self-emissive. OLED displays have been

advertised as having darker blacks, higher contrast ratios, and lower power consumption.

Pixels are only turned “on” when the individual OLEDs are turned on, so darker blacks

and higher contrast ratios are possible. Compared with LCDs, OLED displays have fewer

layers that absorb or block the light and thus have lower power consumption (⇠10-20%).

However, OLEDs have limited e�ciencies due to the light generation mechanisms of

OLED materials [2]. In OLEDs, electrons and holes recombine to form excitons, which

are bound carriers. Light is emitted when this excited state decays. Excitons may either

be in a singlet state (spin quantum number s = 0 with one spectral line) or triplet state

(spin quantum s = �1, 0, or +1 and three states), and the probabilities for a singlet and

triplet are 25% and 75%, respectively. In fluorescent organic molecules, decay of triplets

is forbidden quantum mechanically, so the internal quantum e�ciency (IQE) is limited

to 25%. Phosphorescent materials may generate light from both singlets and triplets, so

their e�ciencies may be higher [3–6].
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1.2 Motivation for inorganic µLED-based displays

High e�ciency III-nitride light-emitting diodes (LEDs) have already drastically improved

solid-state lighting and are steadily replacing compact fluorescent lightbulbs and other

illumination sources [7,8]. As the size of portable and mobile electronics shrink over time,

display technologies must also move to smaller form factors, reach ultra-high resolutions,

and have high brightnesses while maintaining high e�ciencies to prolong battery life. To

achieve these goals, III-nitride LEDs are once again a candidate to overtake the state of

the art.

µLEDs o↵er advantages over their large-area LED counterparts and over other types

of displays (namely, LCDs and OLED displays). By reducing the pixel size to the order

of micrometers, higher resolutions may be achieved as smaller pitches are possible. This

shrinking also leads to potential improvements in transparency, thinness, and flexibility.

µLED displays are self-emissive and only turn on pixels when needed. This emission

mechanism allows for the same dark blacks and high contrast ratios as OLED displays.

µLED displays o↵er higher luminance (brightness) levels, luminous e�cacies, and longer

lifetimes than their OLED counterparts [9, 10]. Several groups have fabricated single-

color µLED-based arrays with pixels dimensions as small as 12 µm [9–13]. This self-

emissive technology may be used in applications where high resolution, brightness, and

e�ciency are necessary, such as smartphones, smartwatches, head-mounted and near-eye

displays [14], and picoprojectors [15]. Luminances have reached levels on the order of

millions of nits [16], which is magnitudes of order higher than luminances OLEDs (⇠tens

of thousands of nits) [17].

To create µLED displays, pixel sizes must be reduced to 10 µm or smaller to increase

the resolution and lower the cost. Since the light source of a µLED display is the µLED,

a much higher number of µLEDs are needed than the number of LEDs required for LCD
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BLUs. While LED costs have been reduced to fractions of cents, the number of µLEDs

needed for large µLED displays is significant. Cost reduction may be done by decreasing

the µLED size (and increasing the number of µLEDs per epitaxial wafer).

The choice of materials to be used for the RGB µLEDs is shown in Figure 1.2. The

III-nitride family spans the entire visible spectrum by alloying GaN with InN or AlN, but

there is a large lattice constant mismatch associated with such alloying. On the other

hand, the III-phosphide family may span the yellow-green to red spectrum while staying

lattice matched with GaAs. One figure of merit that may inform the material selection

(and that has been used in the solid-state lighting field) is the external quantum e�ciency

(EQE). EQE is a measure of the light output power that escapes the LED divided by

the number of electrons that are injected into the LED. Conventional wisdom says that

red LEDs would be made out of AlGaInP, whereas green and blue LEDs would be made

out of InGaN. External quantum e�ciencies (EQEs) of inorganic LEDs have reached

50-60% for red AlGaInP LEDs [18], 40% for green InGaN LEDs [19], and 80-90% for

blue InGaN LEDs [20]. However, red AlGaInP µLEDs have been shown to su↵er from

dramatic drops in EQE (see Figure 1.3). [21,22], so the III-nitride system may be needed

to make a truly self-emissive full-color display. The following sections will briefly discuss

the two material systems.

1.3 Overview of AlGaInP/GaAs

In general, LED epitaxy requires semiconductors with a direct bandgap, p- and n-dopants

to form a p-n junction, and substrates with similar lattice constants to the semiconduc-

tor. Light emission from a direct bandgap semiconductor only requires an electron and

hole (two-body process). Light emission from an indirect bandgap semiconductor is a

phonon-assisted process because of the di↵erence in momentum (three-body). This three-
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Figure 1.2: Energy (eV) or wavelength (nm) versus lattice constant (

˚

A) for the III-N and

III-P systems. Figure © 2007 IEEE [23].

(a) (b)

Figure 1.3: EQE versus µLED size measured by (a) Royo et al. (Reprinted from [P. Royo,

R. P. Stanley, and M. Ilegems, J. Appl. Phys., 91, 2563 (2002)], with the permission of

AIP Publishing) [21] and (b) Oh et al. [22].
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body process is much less probable than a two-body process. For the conventional III-V

semiconductors (III-phosphide and III-arsenides), similar lattice constants between semi-

conductor and substrate are essential to minimize dislocations that serve as nonradiative

recombination sites. Dislocation densities above 10

4
cm

�2
lead to tremendous losses in

IQE [24]. The first red (and visible) LED was developed by Holonyak et al. in 1962

using GaAsP [25]. However, LEDs using GaAsP su↵ered from poor e�ciencies due to

lattice mismatch. Decades later, high e�ciency red LEDs using AlGaInP grown on GaAs

substrates were commercialized in the early 1990s [26–28]. AlGaInP and GaAs both have

the zinc blende crystal structure, which has a face-centered cubic (FCC) lattice.

(Al

x

Ga1�x

)

y

In1�y

P is lattice matched to GaAs when y=0.48. InGaP (x = 0) has a

direct bandgap (conduction band minimum is on the � valley), but AlInP (x = 1) has an

indirect bandgap (X valley). The crossover between direct and indirect bandgap occurs

around x = 0.55, which gives a bandgap of 2.24 eV or 553 nm. However, the densities of

states in the indirect valleys is higher than that in the gamma valley, so occupation of

indirect valleys is significant even below x = 0.55. Nevertheless, AlGaInP is usually the

material of choice for the yellow-orange-red regime.

Although AlGaInP is lattice matched to GaAs, GaAs is opaque and absorbs in the

visible spectrum. Many of the first LEDs kept the GaAs substrate (and have been referred

to as “absorbing substrate LEDs”), and their EQEs were limited to below 2% [29, 30].

To avoid this issue, “transparent substrate LEDs” were created. GaP is a transparent

substrate, but high quality AlGaInP cannot be grown on GaP due to its large mismatch.

To create transparent substrate LEDs, AlGaInP LEDs are wafer bonded to a GaP wafer,

and the GaAs is removed by a chemical etch [31–33]. Another major issue with AlGaInP

LEDs is the light extraction and internal loss of light, and eventually, chip-shaping led

to the state of the art red LED e�ciencies. Krames et al. created truncated-inverted-

pyramid (TIP) LEDs (Figure 1.4) by using angled dicing blades to improve the light
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extraction. These LEDs reached peak e�ciencies of 60.9% and 55% under pulsed and

continuous wave measurements, respectively (emission wavelength of 650 nm) [18].

Figure 1.4: (a) Photomicrograph of a TIP LED; (b) schematic cross section showing

means by which photons are redirected by total internal reflection (Reprinted from [M.

R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I.-H. Tan,

P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kish, M.

G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D.

Collins, Appl. Phys. Lett., 75, 2365 (1999)], with the permission of AIP Publishing) [18].

1.4 Overview of InGaN/GaN

GaN has the wurtzite crystal structure, which is hexagonal and shown in Figure 1.5.

The wurtzite structure is non-centrosymmetric and lacks inversion symmetry, has polar

bonds (gallium atoms bonded to nitrogen atoms), and has alternating layer of gallium

and nitrogen. Due to these alternating layers, the charges within the bulk cancel each

other out, but fixed sheet charges exist at the surface (negative at Ga face and positive

at N face). When c-plane GaN is grown (in the c-direction, or [0001]), a spontaneous

polarization exists in the [000

¯

1] direction, which leads to a polarization-induced electric

field. This alignment of growth direction with spontaneous polarization is why the c-

plane family {0001} is termed the polar plane. Nonpolar planes exist and are orthogonal

to c-plane. These nonpolar planes include the family of a-planes {11¯20} and the family
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of m-planes {10¯10}. These planes are charge neutral since each plane contains both

gallium and nitrogen atoms, and no polarization exists along the growth direction. In

between polar and nonpolar are the semipolar planes, which are planes that have at

least two nonzero h, i, or k Miller indices and a nonzero l Miller index. Some examples

include (11

¯

2), (20

¯

21), (20

¯

2

¯

1), (30

¯

31), and (30

¯

3

¯

1). These planes have reduced but nonzero

polarization fields.

Figure 1.5: Orientations of GaN: polar c-plane (0001) (blue), semipolar (20

¯

21) (purple),

semipolar (20

¯

2

¯

1) (green), and nonpolar m-plane (10

¯

10) (red). Figure © 2011 IEEE [34].

In addition to the spontaneous polarization, a piezoelectric polarization is induced by

strain of the lattice. One relevant example is when InGaN is grown on GaN. As InN has

a larger lattice constant than GaN, pseudomorphic growth of InGaN on GaN results in

compressive strain of the crystal. This strain leads to charge generation, which gives a

piezoelectric polarization in the [0001] direction (opposite of the spontaneous polariza-

tion direction). Piezoelectric polarization also exists when AlGaN is grown, but AlN has

a smaller lattice constant that produces tensile stress. A major consequence of the po-

larization is the quantum-confined Stark e↵ect (QCSE) [35]. The QCSE on InGaN/GaN

may be visualized by the band diagram in Figure 1.6. Absent any polarization and elec-

tric fields, the bands are flat (Figure 1.6(a)). The polarization induced electric field tilts

the bands, which spatially separates the electron and hole wavefunctions and reduces the

energy gap between the conduction band minimum and valence band maximum (Figure
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1.6(b)). These two e↵ects lead to a reduced probability of radiative recombination (pro-

portional to the square of the wavefunction overlap) and a red-shift of emission. However,

with higher injection current, the fields are screened by carriers (Figure 1.6(c)), and the

emission is blue-shifted.

GaN has been grown on a multitude of substrates either heteroepitaxially (silicon,

silicon carbide and sapphire) or homoepitaxially (on freestanding GaN). When grow-

ing on foreign substrates, a seed/nucleation layer is grown at low temperatures first

(500 � 600

�
C). The temperature is then raised to above 1000

�
C to coalesce the GaN.

When growing heteroepitaxially, threading dislocation densities (TDD) may reach the

order of 10

8
cm

�2
and higher. When growing on freestanding GaN, a nucleation layer is

unnecessary, and TDDs are of the order of 10

5 � 10

6
cm

�2
. Compared with the conven-

Figure 1.6: Schematic of band diagrams of InGaN quantum well/GaN barrier showing

the quantum-confined Stark e↵ect. (a) Flat bands without electric field, (b) tilted bands

with polarization e↵ects at low current, and (c) tilted bands at high current with screened

carriers.
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tional III-Vs (III-arsenides and III-phosphides), this dislocation density is tremendous,

but light emission is still possible.

For growth of InGaN LEDs on foreign substrates, growths have predominantly been

for c-plane although there have been studies on semipolar LEDs grown on silicon [36]

and sapphire [37, 38]. One of the major challenges facing LEDs is the green gap and

pushing to longer wavelengths with InGaN. For green, the highest EQE is around 42% [19]

and was achieved by tuning the morphology of the active region. AlGaN barriers were

incorporated to compensate for the strain generated by the InGaN and grown at higher

temperatures to smooth out the morphology.

Besides optimizing growth to minimize defects, semipolar planes may be used because

they have reduced polarization fields that lead to higher wavefunction overlap. Figure

1.7 shows that LEDs grown on (20

¯

2

¯

1) exhibited the most stable wavelength with current

density and the narrowest line widths (lowest full-width at half max (FWHM)) [39].

Furthermore, other semipolar planes may be able to reach even longer wavelengths and

enter the red regime. In general, emission wavelengths from InGaN grown on planes

with higher inclination angles from m-plane were higher than that of m-plane [40]. The

wavelengths of LEDs grown at the same temperature on (11

¯

22), (20

¯

21), and m-plane

were 490, 438, and 415 nm, respectively. The inclination angles (from m-plane) of those

planes are 32

�
, 15

�
toward +c-plane, and 0

�
, respectively.

1.5 Synopsis

This thesis will describe epitaxial growth, nanofabrication, and mass transfer of µLEDs

for display applications. The µLED e↵orts at UCSB started around 2014 (4 years before

time of press). Chapter 2 will detail the initial studies on µLED characterization. While

many groups have studied the size-dependence of optoelectronic properties, the absolute
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Figure 1.7: (a) Electroluminescence peak wavelength and (b) FWHM as functions of

current density for the green (20

¯

2

¯

1) single quantum well LED. Copyright 2013 The Japan

Society of Applied Physics [39].
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EQEs were low (below 10%). Chapter 2.2 shows that high EQEs (40 to 50%) were

sustained when reducing µLED dimensions from 100 µm to 10 µm. Reduction of EQE

was attributed to the increasing perimeter to surface area ratio. E↵ects of passivating

the sidewall with dielectric were also investigated to show that silicon oxide deposited by

atomic layer deposition (ALD) suppressed reverse leakage current and improved EQE.

Chapter 3 discusses the use of tunnel junction contacts for µLEDs. GaN tunnel junc-

tion contacts have been shown to add large voltage penalties to large area InGaN LEDs

because of incomplete activation. Activation is achieved by lateral di↵usion of hydrogen,

and since µLED dimensions are greatly reduced, activation may be possible. The use of

tunnel junctions is useful for growing multiple LED active regions (potentially monolithic

growth of di↵erent colored µLEDs) and for using n-type mirror contacts instead of tricky

p-type mirrors (terminating the surface with n-GaN instead of p-GaN).

Since the mesa sidewall is an important feature of the µLED, Chapter 4 proposes a

nanofabrication process that spatially separates the mesa sidewall and the active region

sidewall. A mesa is typically etched in order to contact the n-GaN. If a current aperture

is created to selectively confine holes to an area far from the mesa sidewall, less non-

radiative recombination may occur. Here, ion implantation was used to define this current

aperture, and other methods are suggested.

Finally, Chapter 5 presents a mass transfer method that is applicable not only to

heteroepitaxially grown µLEDs on sapphire but also to homoepitaxially grown µLEDs

on freestanding GaN substrates. All commercial techniques hitherto use a laser lift-

o↵ (LLO) method to release µLEDs from sapphire. There is much promise for µLEDs

grown on freestanding GaN, but LLO is incompatible with such µLEDs. The proposed

mass transfer process combines the use of lateral photoelectrochemical (PEC) etching

and transfer printing. With this technique, red, green, and blue InGaN µLEDs were

transferred to the same transparent and flexible acrylic substrate (see Figure 1.8 for a
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preview). This thesis o↵ers the first demonstration of red, green, and blue InGaN µLEDs

(neither AlGaInP nor phosphor-converted) transferred to the same substrate.

Figure 1.8: Optical photograph of red, green, and blue µLEDs on the same transparent

and flexible substrate (acrylic) electrically lit up. The active region of the µLEDs were
comprised of InGaN and not AlGaInP. See Chapter 5 for details of growth and fabrication.
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Chapter 2

Initial Studies on Blue InGan µLEDs

2.1 Motivation for µLEDs

As discussed in Chapter 1, incumbent technologies (LCDs and OLED displays) are unable

to meet requirements for future and emerging displays. These displays are likely to

penetrate mobile and portable electronics markets, including smartphones, smartwatches,

head-mounted and near-eye displays (for virtual reality (VR) or augmented reality (AR)

applications), and picoprojectors. In these applications, some requirements include high

brightnesses (high light output), low power consumption (high e�ciencies), directionality

(narrow emission patterns), ultra-high resolution (small pixels and small pixel pitches)

and flexible form factor, to name a few. Ultra-high resolutions require that the light-

emitting pixel sizes be reduced to around 10 µm or smaller. Academic interest in µLEDs

has been steadily increasing since the year 2000. One of the first groups to study µLEDs

is that of Professor Hong Xing Jiang at Kansas State University (currently at Texas Tech

University) [11,41–44]. Early work showed that an array of connected µLEDs could emit

more light than a conventional large-area LEDs and advocated for the use of µLEDs
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for solid-state lighting [41]. As shown in Figure 2.1, an array of small 10 µm diameter

LEDs was fabricated to cover the same area as a 300 µm ⇥ 300 µm LED. Soon after,

Jiang et al. created microdisplays for high resolution viewing or projection [42]. Several

other groups have also fabricated single-color µLED-based arrays with pixel dimensions

as small as 12 µm [9–13]. Many of these works dealt with the integration of single-color

µLED arrays with Si CMOS technology and driving architectures.

Figure 2.1: (a) SEM and (b) optical microscope images of approximately 200 intercon-

nected µLEDs situated in an area of 300⇥ 300 µm2
. Reprinted from [S. X. Jin, J. Li, J.

Y. Lin, and H. X. Jiang, Appl. Phys. Lett., 77, 3236 (2000)] with the permission of AIP

Publishing [41].

In addition to the aforementioned display demonstrations, more fundamental studies

aiming to characterize the performance of individual µLEDs have also been done. Com-

monly discussed attributes of µLEDs over their large-area counterparts include improved

thermal management [45], enhanced light extraction [41,46], operation at higher current

densities [47], and faster turn-on speeds [43] (which lends their use to visible light com-

munication [48]). Despite these benefits, surface recombination at small dimensions has
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been noted as a source of reduced quantum e�ciencies (both internal quantum e�ciency

(IQE) and external quantum e�ciency (EQE)) across the III-V family of compound

semiconductors. For red AlGaInP LEDs, Royo et al. [21] and Oh et al. [22] fabricated

devices and showed that the internal quantum e�ciencies (IQEs) and external quantum

e�ciencies (EQEs) dropped as much as 5x with decreasing size. For blue InGaN LEDs,

there have been some experimental [49, 50] and theoretical [51, 52] studies. Olivier et al.

showed a ⇠30% drop in EQE from a 100 µm diameter LED to a 10 µm diameter LED,

although their e�ciencies were very low (below 10%) [50]. In these experimental studies,

the µLED measurements were done on chip. Silver p-contact mirrors were deposited on

top of the mesa, and light output was measured out the backside of the sapphire sub-

strate with a broad area photodetector. With this method, only a fraction of the light

was collected by the photodetector. Bulashevich et al. created a hybrid LED model

to study current spreading, heat transfer, carrier injection, and recombination and fit

experimental data from the literature [51]. Their findings showed that surface recombi-

nation may actually reduce the maximum wall-plug e�ciency by 5-7 percentage points.

Konoplev et al. predicted more uniform current distribution in smaller LEDs (and more

current crowding in large LEDs) and higher surface recombination for smaller LEDs [52].

Since smaller µLEDs have larger perimeter to area ratios, the e↵ects at the sidewall

becomes significantly more important. Chapter 2.2 shows the e↵ects of µLED size while

sustaining high EQEs. µLEDs were packaged and measured in a calibrated integrating

sphere to collect all the light emitted from the chip. Chapter 2.3 further analyzes the

quantum e�ciencies of the µLEDs of Chapter 2.2 by using the ABC model for IQE.

The B coe�cient was assumed to be independent of size and carrier density, and A and

C coe�cients were extracted by curve fitting. Chapter 2.4 will discuss some sidewall

passivation to provide further improvements to µLED designs. Finally, Chapter 2.5 will

summarize the results of this chapter and provide future directions to improve InGaN
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µLEDs. Since the sidewall becomes a critical feature with diminishing size, suggestions

on how to minimize or even prevent nonradiative recombination at the sidewall will be

o↵ered.

2.2 Sustained high EQE of InGaN µLEDs

2.2.1 Experimental design

Standard III-nitride LED structures were grown by metalorganic chemical vapor depo-

sition (MOCVD) on patterned sapphire substrates (PSS) [53]. Figure 2.2(a) shows the

epitaxial structure and completed device fabrication. The growth consisted of a 1.4 µm

unintentionally doped (UID) GaN template layer; 4 µm of Si-doped n-GaN; a 30-period

Si-doped superlattice (SL) with 3 nm In0.03Ga0.97N and 3 nm GaN, which was then

capped with 20 nm of UID GaN. The active region consisted of 6 multiple quantum wells

(MQWs) with 2.4 nm InGaN wells and 22 nm GaN barriers with emission at 447 nm.

The barriers were grown in two steps in order to smooth out the morphology. 3 nm of

GaN were grown at the same temperature as the InGaN wells followed by 19 nm grown

at a temperature 50

�
C hotter than that of the InGaN. This increase in temperature in-

creased the Ga adatom mobility so that any V-defects that originated from the InGaN

wells were closed. After the high temperature GaN barrier was grown, the temperature

was ramped back down 50

�
C to grow the low temperature GaN barrier and InGaN well.

Above the active region was a 26 nm Mg-doped AlGaN electron blocking layer (EBL); a

120 nm Mg-doped p-GaN layer; and a 17 nm Mg-doped p+-GaN contact layer.

After MOCVD growth, µLED structures of six varying areas were processed. Table

2.1 lists the device geometries of the devices that ranged from 10⇥ 10 µm2
(10

�4
mm

2
in

area) to 100⇥100 µm2
(0.01 mm

2
), and Figure 2.2(a) shows the structures. First, 100 nm
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Patterned sapphire substrate

UID GaN

n-GaN

AlGaN EBL

p-GaN

p+-GaN

30x InGaN/GaN SL

ITO

6x InGaN/GaN MQW, λ = 447 nm

(n) Al/Ni/Au

(p) Al/Ni/Au

ODR

(a)

(b) (c)

10 µm 50 µm

ODR Al/Ni/Au

n-pad p-pad

Figure 2.2: (a) Cross-sectional schematic of the epitaxially grown layers and processed

devices. (b) Top-down optical micrograph of the processed device geometry for the 10⇥10

µm2
device and (c) 100⇥ 100 µm2

device. Figure from Hwang et al. [53]

Table 2.1: µLED Geometries

µLED dimensions Perimeter Mesa area Perimeter/area

(µm2
) (µm) (µm2

) (µm�1
)

10⇥ 10 40 100 0.4

20⇥ 20 80 400 0.2

40⇥ 40 160 1,600 0.1

60⇥ 60 240 3,600 0.0

¯

6

80⇥ 80 320 6,400 0.5

100⇥ 100 400 10,000 0.04

indium tin oxide (ITO) was deposited using electron beam (e-beam) evaporation to form

a transparent p-contact. Square mesas were defined by using a reactive ion etch (RIE)

to etch down through the ITO (using methane, hydrogen, and argon chemistry) to the

n-GaN (using SiCl4 at a bias of 200 W). An omnidirectional reflector (ODR) with 95.5%

reflectance at 450 nm was deposited via ion beam deposition. The ODR consisted of

alternating layers of silicon dioxide (SiO2) and tantalum pentoxide (Ta2O5) with a final

layer of aluminum oxide (Al2O3). Specifically, the seven layer dielectric was composed of

304.1 nm SiO2, 121.4 nm Ta2O5, 355.7 nm SiO2, 59.0 nm Ta2O5, 89.8 nm SiO2, 53.5 nm
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Ta2O5, and 59.5 nm Al2O3. Common n- and p-metal contacts and wire-bonding pads of

700/100/1000 nm Al/Ni/Au were deposited by e-beam evaporation. To keep the light-

emitting area proportional between the di↵erent-sized µLEDs, the metal covered 10%

of the mesa area in all cases. As shown in Figures 2.2(b)-(c), the ODR was deposited

on the n-GaN to serve as a reflective layer underneath the contact pads and also came

up over the sides of the mesa to prevent an electrical short between the p-contact metal

and the n-GaN. The µLEDs were singulated into 0.7 ⇥ 0.7 mm

2
die and packaged by

dicing, mounting onto silver headers, wire bonding, and encapsulating in transparent

silicone with a refractive index of 1.41. The µLEDs were tested under continuous wave

conditions in a calibrated integrating sphere.

2.2.2 Forward voltage of µLEDs

The dependence of forward voltage on drive current is plotted in Figure 2.3. Figure

2.3(a) shows that the forward voltage increased with device size. This increase can be

explained by the larger areas of the µLEDs. The most resistive components of the devices

were the ITO and p-GaN, and their areas were equal to the mesa size. With more area

and volume of these layers, the spreading resistance increased. Consequently, Figure

2.3(b) shows that smaller µLEDs could be operated at higher current densities at a given

voltage.

2.2.3 Optical results of µLEDs

Figure 2.4 shows EQE curves for each of the six µLEDs. The three largest µLEDs followed

approximately the same trends, as did the three smallest µLEDs. The larger devices had

higher EQEs than the smaller µLEDs but also had larger droop. These results can be

understood by looking at the various contributors to the EQE, such as the IQE and
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Figure 2.3: (a) Dependence of voltage on current density for the six di↵erent µLEDs
(legend describes the mesa edge length). (b) Current density of the µLEDs at 3.5 V. The

colors of the symbols correspond to the legend in (a). Figure from Hwang et al. [53].

extraction e�ciency.

The structures were designed so that the metal coverage of the mesa was 10% in

all sizes. This coverage ensured the light extraction e�ciencies were similar so that the

trends in EQE would be the same for IQE. IQE may be described with the ABC model:

⌘
internal

, IQE =

Bn2

An+Bn2
+ Cn3

(2.1)

The A coe�cient describes nonradiative recombination (e.g. Shockley-Read Hall recombi-

nation), the B coe�cient describes bimolecular radiative recombination, the C coe�cient

describes Auger recombination, and n is the carrier density.

Figure 2.5 conveys the e↵ects of size on IQE. The peak EQEs shown in Figure 2.5(a)
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Figure 2.4: Dependence of EQE on current injection (legend describes the mesa edge

length). Figure from Hwang et al. [53].
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Figure 2.5: (a) Peak EQE, (b) current density at the peak EQE, and (c) e�ciency droop

at 900 A/cm

2
of the µLEDs. The colors of the symbols correspond to the legend in Figure

2.4. Figure from Hwang et al. [53].
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were similar, ranging from 40.2% to 48.6%. The lower peak EQEs of the smaller µLEDs

were a result of lowered IQE, which can be attributed to sidewall damage from dry

etching. As shown in Table 2.1, the perimeter to area ratio was much larger for the

smaller geometries. More exposed perimeter led to more sidewall damage, which caused

more non-radiative recombination. In local areas around the perimeter, the e↵ective A

coe�cient may have increased (a more detailed description will be discussed in Chapter

2.3). With increased nonradiative recombination, the peak EQE was shifted to higher

current densities, and Figure 2.5(b) demonstrates this e↵ect. The current densities for the

smallest and largest µLEDs at the peak EQE were 26 and 10 A/cm

2
, respectively. Part

of this nonradiative recombination may have been due to surface recombination. The

surface recombination velocity of InGaN is on the order of 10

4
cm/s compared with 10

5

cm/s for AlGaInP [54]. Furthermore, the minority carrier di↵usion length for InGaN is on

the scale of hundreds of nanometers, whereas that of AlInGaP is micrometers. Because of

these materials properties, ultra-small AlInGaP µLEDs may experience significant drops

in EQE as the size diminishes, whereas InGaN µLEDs do not. Figure 2.5(c) shows the

smaller µLEDs have lower e�ciency droop. The droop at 900 A/cm

2
from the peak EQE

for the smallest and largest µLEDs were 45.7% and 56.0%, respectively. This phenomenon

can be explained by more uniform current spreading in the smaller devices since there

was less area over which to spread the current. More uniform current spreading allows

for more uniform light emission across the entire mesa. However, when current crowding

occurs, some areas of the mesa will appear dim and light is not emitted in equal intensity.

Therefore, the current density was higher in some areas and lower in others, leading to

inhomogeneous light emission. This issue was exacerbated with increased current, so the

e�ciency drooped even more at high current densities.

The current spreading of the di↵erent µLEDs is illustrated in optical micrographs

of µLED electroluminescence (EL) in Figure 2.6. Each row of images represents one
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µLED size, and the resulting emission pattern is shown when current densities of 0.1

(left image), 1 (middle), and 10 A/cm

2
(right) were injected into the µLED. For the

larger sizes, the current crowded around the edges of the mesa, so that the areas near the

metal cross were dim. At small current densities of 0.1 A/cm

2
, the e↵ect was pronounced

for the 100⇥ 100 µm2
device. For µLEDs with edges of 40 µm and smaller, the current

was able to e↵ectively spread and produce photons across the entire mesa.

100 µm

80 µm

60 µm

40 µm

20 µm

10 µm

1 A/cm20.1 A/cm2 10 A/cm2

50 µm

Figure 2.6: Optical micrographs of the µLED emission patterns at 0.1 (left), 1 (middle),

and 10 A/cm

2
(right). The scale bar indicates 50 µm and is the same for all images.

Figure from Hwang et al. [53].

To evaluate the light extraction e�ciency contribution to EQE, Monte Carlo ray

tracing was done in Synopsys LightTools using the materials properties in Table 2.2. The

results confirmed there was at most a di↵erence of 1.7 percentage points in extraction

e�ciencies (86.4% to 88.1%) between the sizes. As expected, the loss in layers such as

24



ITO, p-GaN, and n-GaN increased as the areas (and thus, the volume) of the devices

increased due to their large coe�cients of absorption. Smaller µLEDs should have more

sidewall extraction than larger µLEDs because of the higher perimeter to area ratio.

However, in this device scheme, the n-contact surrounded the mesa (see Figures 2.2(b)-

(c)), which may then absorb the light emitted from the sidewalls so the increase in

sidewall extraction was not large. Therefore, the light extraction e�ciencies of all the

devices were within 2 percentage points as shown in Table 2.3. Because the µLEDs were

processed from the same epitaxial wafer, these results further support that the reduction

in peak EQE with smaller sizes is not due to light extraction but likely from sidewall dry

etching damage.

Table 2.2: Materials Properties

Material Refractive Index, n Absorption Coe�cient, ↵ (cm

�1
)

ITO 2 1000

n-GaN 2.5 7

p-GaN 2.5 100

Al 0.48 1.33⇥ 10

6

Ni 1.62 7.50⇥ 10

5

Au 1.47 5.18⇥ 10

5

Table 2.3: Extraction E�ciencies

LED Edge Length (µm) Extraction E�ciencies (%)

10 86.4

20 87.8

40 88.1

60 87.7

80 87.2

100 86.9
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2.2.4 Summary

In summary, we have shown that high EQEs may be maintained when decreasing the

size of a InGaN/GaN µLED from 0.01 mm

2
to 10

�4
mm

2
. The peak EQEs of the largest

and smallest µLEDs were 48.6% and 40.2%, respectively. The sidewall damage was more

noticeable for the smaller µLEDs with larger perimeter to area ratios, as can be seen by

the increased current density corresponding to the peak EQE (26 and 10 A/cm

2
for the

largest and smallest µLED, respectively). While the larger µLEDs had higher EQEs, the

current spreading for the smaller µLEDs was better, so the e�ciency droop at 900 A/cm

2

was smaller for the smaller µLEDs. Ray tracing modeling revealed that the extraction

e�ciencies were similar for all the sizes, so the drop in EQE was due to sidewall damage.

With these results, ultra-small µLEDs on the scale of 10 ⇥ 10 µm2
may be used for

high-resolution applications while achieving high e�ciency.

2.3 ABC modeling

2.3.1 General description and mathematical formulation

The ABC model is described briefly in Section 2.2.3 by Equation 2.1 and illustrates how

the IQE behaves with carrier density. The relationship between carrier density, n, and

current density, J , is shown in Equation 2.2:

J = q · w · (An+Bn2
+ Cn3

), (2.2)

where q is the charge of an electron in Coulombs and w is the total quantum wells’

thickness. At low carrier densities, the A coe�cient dominates, and at high carrier

densities, the C coe�cient dominates. For conventional large-area LEDs, peak EQEs
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typically occur around 1-2 A/cm

2
, which is in the low carrier density regime where SRH

recombination dominates. The B coe�cient is assumed to be independent of current

density and size, so a bulk value of B is used for fitting di↵erently sized µLEDs. A

typical value for B is 10

�11
cm

3
/s; A and C coe�cients are on the order of 10

7 � 10

8

s

�1
and 10

�31
cm

6
/s, respectively [55–57]. To extract A and C coe�cients, experimental

data may be fit with a polynomial. First, Equations 2.1 and 2.2 may be used to derive

an expression for n:

Bn2
= IQE · (AN +BN2

+ CN3
)

n =

s
IQE · J
q · w · B (2.3)

Taking the inverse of IQE then gives:

1

IQE

=

An+Bn2
+ Cn3

Bn2

=

A

B
· 1
n
+

C

B
· n+ 1, (2.4)

which gives a relationship between the inverse of IQE and carrier density. Measured data

relating current density and EQE may now be transformed to a relationship between n

and IQE (since EQE = IQE⇥⌘extraction), and A and C values may be fit to Equation 2.4.

2.3.2 Extraction of A and C coe�cients

To extract the A and C coe�cients of the µLEDs fabricated in Chapter 2.2, the EQE

curves were first smoothed by a Gauss filter to remove noise. The fits were plotted over

the original data points in Figure 2.7. Current density was converted to carrier density by

Equation 2.3 and assuming a total quantum well thickness of w = 15 nm (each individual
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quantum well was ⇠2.4 nm, and there were six wells). IQE was obtained by multiplying

EQE by extraction e�ciency (see Table 2.3).

Figure 2.7: EQE curves smoothed by Gauss filter. The open blue circles are experimental

data points, and the solid red lines are fits.

Figure 2.8 shows a plot of the inverse of IQE versus carrier density. Equation 2.4

was fit to the data by varying A and C. At low carrier density, the first term,

A

B

· 1
n

,

dominated, and the behavior looked like y =

m

x

+ 1, where m was related to the A

coe�cient. At high carrier density, the second term,

C

B

· n, dominated, and the curve

became linear with y = n · x + 1, where n was proportional to the C coe�cient. Using

the extracted A and C coe�cients from the fits in Figure 2.8, the expected IQE may be

plotted using Equation 2.1. The resulting IQEs are shown in Figure 2.9 along with the

experimental IQEs (experimentally measured EQEs divided by extraction e�ciencies).
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The fits generally followed the experimental data at high carrier densities (> 5 ⇥ 10

19

cm

�3
, above peak EQE). However, the fits strayed from the measured data points below

1 ⇥ 10

19
cm

�3
. These disparities originated from the lack of clear data at low current

densities (see Figure 2.7). The original data was noisy, and some of the behavior was lost

in the smoothing process. The light output powers of the smaller µLEDs were typically in

the range of microwatts, so obtaining more data points at low current densities requires

more sensitive measurement systems. The measurements were taken in a large 500 mm

diameter integrating sphere (Instrument Systems ISP 500). Lower light output values

may be obtained by using a more sensitive photodetector and/or a smaller integrating

sphere.

Figure 2.8: Carrier density vs 1/IQE. The open blue circles are experimental data points,

and the solid red lines are fits from varying A and C coe�cients (assuming a constant

value of B = 10

�11
cm

3
/s).
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Figure 2.9: Carrier density vs IQE with fitted A and C coe�cients. The open blue circles

are experimental data points, and the solid red lines are expected IQEs from the ABC

model.

The values for A and C coe�cients are plotted for the di↵erent sizes of µLEDs in

Figure 2.10, and the trends were consistent with work reported in the literature [57]. As

the µLED size decreased (and the perimeter to area ratio increased), the A coe�cient

nearly doubled (7.83⇥ 10

7
to 1.29⇥ 10

8
s

�1
for the 100⇥ 100 and 10⇥ 10 µm2

devices,

respectively) and indicated that the A coe�cient was dependent on the µLED size. The

irregularity in the trend from the 40⇥40 and 60⇥60 µm2
devices stemmed from the error

of fitting 1/IQE versus carrier density. This analysis reemphasized the conclusion from

Chapter 2.2: the sidewall is a significant area of concern for µLEDs. The dependence of

SRH recombination (and surface recombination) hinges on µLED size, so special attention

must be paid to those exposed surfaces. On the other hand, the C coe�cient exhibited a
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lesser dependence of µLED size as it ranged only from 2.06⇥10

�31
to 2.60⇥10

�31
cm

6
/s.

One would expect a significant increase in C coe�cient as the µLED size increased to the

size of conventional broad-area LEDs. With larger LEDs, current spreading becomes a

more significant issue, so nonuniform current (or carrier) distributions will incite localized

pockets of high current (carrier) density [52]. Consequently, CN3
will dominate the

nonradiative recombination as more Auger recombination occurs.

Figure 2.10: Extracted A (a) and C (b) coe�cients for the di↵erent µLED sizes.
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2.3.3 Limitations of ABC modeling

The ABC model is used to merge experimental and theoretical works, but may not

be totally trustworthy as a predictive tool [55, 56]. There are many shortcomings and

limitations of the ABC model that arise from assumptions. The model assumes uniform

current and carrier distributions as well as independence of the A, B, and C coe�cients

from carrier density (that A, B, and C are constants). However, materials properties of

III-nitrides and imperfections of III-nitride growth invalidate those assumptions.

Uniform current and carrier distributions are unlikely to occur in InGaN LEDs for

various reasons. First, current crowding from lateral contact schemes, for example, would

cause nonuniform injection. Furthermore, previous work in the literature has shown

that current crowding depends on injection current densities [58, 59]. Secondly, carrier

localization e↵ects exist from the well-known phenomenon of compositional fluctuations

of indium across the epitaxy. Thirdly, injection of quantum wells is likely inhomogeneous.

It is widely postulated that holes only make it to the top quantum well (closest to

the p-GaN), again causing nonuniform carrier distributions. Finally, the A, B, and C

coe�cients likely depend on carrier density. In c-plane InGaN devices, spontaneous and

piezoelectric field screening increases at high carrier density, which would change A, B,

and C.

2.4 Sidewall passivation in µLEDs

As previously mentioned, the sidewall is a significant source of loss for µLEDs. Dangling

bonds, vacancies/point defects, or damage from dry etches may lead to carrier leakage,

which would reduce the number of carriers available for radiative recombination and total

light output (a reduction of B coe�cient). To address this loss, sidewall passivation may
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be done with dielectrics. In this section, the e↵ects of dielectric deposition methods on

the optical and electrical properties of µLEDs will be discussed [60].

2.4.1 Experimental design

The epitaxial structure and processing of µLEDs herein are the same as in Chapter 2.2.

50 nm of SiO2 were deposited by atomic layer deposition (ALD) directly after the mesa

etch and before the metal contact deposition. The dielectric was then etched in some

areas to open a window of p-GaN for metal contacts. This etch was done either by dry

etching with inductively coupled plasma (ICP) or wet HF etching. The labels, “ALD-

ICP” and “ALD-HF,” will be used to distinguish between those two processes. For

comparison, µLEDs without sidewall passivation were co-processed and will be referred

to as the “Reference” sample.

2.4.2 Optical e↵ects of sidewall passivation

The optical e↵ects of the sidewall passivation are shown in Figure 2.11. Electrolumines-

cence (EL) images of the processed µLEDs illustrated the di↵erences between each of

the methods. For the µLEDs with ALD deposited SiO2, the light emission across the

surface was uniform (see the second and third columns of Figure 2.11(a)). By contrast,

the reference µLEDs showed dimmer areas in the center of the mesas (first column).

Furthermore, Figure 2.11(b) showed the light output power of the µLEDs with sidewall

passivation was higher for the 20⇥ 20 µm2 µLEDs than that of the µLEDs without pas-

sivation. This increase translated to higher EQE for the µLEDs with ALD deposited

SiO2. Figure 2.12 showed the EQEs for 20⇥ 20 and 100⇥ 100 µm2 µLEDs. The sidewall

passivation for larger µLEDs was not critical, as the peak EQEs for the 100 ⇥ 100 µm2

µLEDs were similar for both the reference and ALD devices (41% for ALD-HF, 38%
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Figure 2.11: Influence of sidewall passivation on optical e↵ects (a) Electroluminescence

images of the µLEDs at 1 A/cm

2
and (b) light output power measurements for 20 ⇥ 20

µm2 µLEDs. Figure from Wong et al. [60].
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for ALD-PECVD, and 40% for Reference). However, the influence of passivation was

enhanced for smaller µLEDs, since the peak EQEs for the ALD-HF and ALD-PECVD

samples were ⇠143% and ⇠130% higher than that of the reference device. The loss of

carriers to sidewall leakage (instead of radiatively recombining) was reduced with SiO2

deposition, but the passivation did not completely solve the issue. Comparing the two

di↵erently sized devices showed that the peak EQE of the 20⇥ 20 µm2 µLEDs was still

⇠80% of that of the 100 ⇥ 100 µm2 µLEDs. This e�ciency loss indicated nonradiative

recombination occurring at the sidewall was not completely resolved.

2.4.3 Electrical e↵ects of sidewall passivation

Passivation also served to reduce sidewall leakage current. The leakage current induced

by reverse bias at -4V (normalized by light emission area) is shown in Figure 2.13. Leak-

age current was suppressed with ALD deposition of SiO2, but the amount of suppression

varied with the deposition method. The ALD-HF devices showed a reduction in cur-

rent of two orders of magnitude compared with the smaller reference devices, while the

ALD-ICP devices had a reduction of only about half or one order of magnitude. The

(a) (b)

Figure 2.12: Dependence of EQE on current injection for (a) 100 ⇥ 100 µm2
and (b)

20 ⇥ 20 µm2
devices with di↵erent sidewall passivation methods. Figure from Wong et

al. [60].
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lessened e↵ectiveness of the ALD-ICP passivation technique can be illustrated in the

cross-sectional secondary electron microscope (SEM) image in Figure 2.14. The ITO on

the µLEDs that had the SiO2 etched by ICP also seemed to be roughened and etched.

The exposed ITO (left side of image) was thinner than the covered ITO (right side) and

may have reduced the current spreading. In contrast, the ITO on µLEDs was una↵ected

by the HF wet etch. Although the ALD-HF technique was more e↵ective than the ALD-

ICP technique, the trend of decreased leakage current with increasing µLED size showed

the passivation still was not enough to completely recover the sidewall damage.

Figure 2.13: Dependence of leakage current at -4 V on the dimensions of µLEDs with

di↵erent sidewall passivation methods. Figure from Wong et al. [60].

2.4.4 Summary

To summarize, the optical and electrical performance of µLEDs may be improved with

sidewall passivation using ALD to deposit SiO2. Optically, the light emission pattern
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Figure 2.14: Cross sectional scanning electron microscopy image of ITO layer after ex-

posing to ICP etch. The left side was exposed to ICP etch to remove SiO2 and the right

side was covered by photoresist during the etch. Figure from Wong et al. [60].
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across the mesa became more uniform, and the EQEs of smaller µLEDs (below 20 ⇥ 20

µm2
) were enhanced compared with those without sidewall passivation (33% and 24% for

the ALD-HF and reference samples, respectively). Electrically, the sidewall passivation

also reduced the amount of leakage current under reverse bias. The use of HF instead

of ICP to etch the SiO2 prevented unintentional etching of exposed ITO and gave the

lowest leakage current of all other techniques.

2.5 Future directions to improve µLED e�ciencies

µLEDs are poised to enter the display market but still require improvements in e�ciency,

and a deeper understanding of the loss mechanisms is needed. As shown in Chapters

2.2�2.3, the ABC model has limitations in understanding A,B, and C coe�cients and

may not be an accurate enough model. The loss of carriers to surface recombination is

detrimental to smaller µLEDs, and the extraction of A and C coe�cients has limited

meaning. A more direct measurement of carrier energy would highlight the transport of

carriers in the µLED structure. Recent work at UCSB has focused on the direct observa-

tion of Auger-generated hot electrons emitted into vacuum [56,61]. These electroemission

studies measure the electron energy, and the energy electron distribution curves (EDCs)

can provide some evidence as to where leakage might be occurring. To collect the elec-

trons, the p-GaN surface is covered with cesium so there is a negative electron a�nity

and the conduction band minimum lies above the vacuum level. The electron energies

may be accounted for by various processes: high energy electrons created by Auger re-

combination in the QWs that populate di↵erent valleys of the conduction band; carriers

that overshoot or overflow the QWs; or low energy electrons from photoemission that

were reabsorbed near the surface.

Specialized structures are necessary in order to fit the samples into the measurement
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setup and conduct these measurements. 1⇥ 1 cm

2
pieces are fabricated with µLEDs in

the center as shown in Figure 2.15. To collect electrons, the top or emitting surface of

the µLEDs must be p-GaN. All other areas must be covered with metal contacts or SiO2

in order to preserve uniform electric fields or to block electron emission in the field. This

measurement system may then be done with various sized µLEDs to see how the EDCs

change with size. In addition, the e↵ects of dry etches and sidewall treatments may also

be measured.

Figure 2.15: Optical photograph of specialized device to emit electrons out of a top

p-GaN surface for measurement in a customized tool for electroemission spectroscopy.

Various dry etches and sidewall treatments have also been discussed. The µLEDs

reported in this chapter had mesas etched with 200W of power in RIE. Lower power

damages may be investigated, which would lower the etch rate. Post-etch recovery has

been tried using various annealing studies as well [62–64]. Other passivation techniques

involve wet etching with KOH or encapsulation with dielectric [65, 66]. Another direc-

tion is the passivation of the sidewall. While SiO2 and SiNx are commonly used, other

materials such as AlN, Al2O3, Ga2O3 may be used since these materials are native to the
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III-nitride family.

Finally, since the sidewall is a source of problems, designs that move the sidewall of

the active region far away from any etch damage may minimize any losses. Ideally, a wet

etch would remove etch damage from plasma-based dry etches, but wet etching of GaN

is extremely di�cult (see Chapter 5 for more details). Nevertheless, creating a current

aperture is an important direction to consider. Rather than recovering sidewall damage,

these quasi-mesaless designs would remove damage at the most important interface of

the µLED. To create this current aperture, the p+-GaN outside the light-emitting area

would need to be rendered resistive. Options to insulate this layer include damaging

p-GaN with plasma, ion implanting with Al or other species, or oxidizing the p-GaN to

create resistive Ga2O3. This current aperture method will be covered in more detail in

Chapter 4.
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Chapter 3

µLEDs with Tunnel Junction

Contacts Grown by MOCVD

3.1 Background on III-nitride tunnel junctions

In standard III-nitride LED devices, the lossiest parts are typically on the p-side, and the

losses arise from poor conductivity and optical absorption loss. p-GaN is highly resisitve,

and ohmic contacts are di�cult to achieve even with degenerate doping of GaN (typically

with Mg). Metal stacks of palladium or nickel are typically used, and specific contact

resistances on the order of 10

�5
to 10

�4
⌦ · cm2

may be achieved [67–69]. However,

these metals are opaque and have low reflectances. Thus, transparent conducting oxides

(TCOs) such as indium tin oxide (ITO) or zinc oxide (ZnO; less commonly used than ITO)

are required to spread the current across the entire surface of the LED [70]. However,

these layers still yield electrical and optical losses. To reduce those losses, a tunnel

junction contact may be used on the p-side.

The general working principle of a tunnel junction contact is shown by the band
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(a) (b)

Figure 3.1: Electrical band diagram of a tunnel junction contact to p-GaN operated (a)

at zero bias and (b) in reverse bias (-3V). When operated in reverse bias, the tunnel

junction contact injects holes into p-GaN.

diagram in Figure 3.1. The tunnel junction exists at the interface between n-GaN and

p-GaN. At zero bias (Figure 3.1(a)), the depletion width is rather high, but in reverse bias

(Figure 3.1(b)), the depletion width decreases, which increases the tunneling probability.

Thus, electrons from the valence band maximum of the p-GaN tunnel to the conduction

band minimum of the n-GaN, which is e↵ectively an injection of holes. In order for this

tunnel junction contact to be e↵ective in a III-nitride LED, there should be highly doped

p++
- and n++

-GaN layers in order to get a small depletion width. The dependence of

the zero bias depletion width on carrier levels is shown below in Equation 3.1,

W =

s
2 · ✏ · E

g

q

✓
1

N
A

+

1

N
D

◆
(3.1)

where ✏ is the permittivity (✏ = ✏0 · ✏r; ✏0 is the permittivity of free space and ✏
r

for GaN

is 8.9), E
g

is the band gap, q is the charge of an electron, N
A

is the acceptor concen-

tration, and N
D

is the donor concentration. One of the major challenges in the GaN
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material system is low p-doping and low hole concentrations. Although the magnesium

concentration may be doped in the 10

20
to 10

21
cm

�3
levels, the ionized acceptor levels

are typically only a few percent so that N
A

is in the 10

18
to 10

19
cm

�3
range. The typical

ionization energy of Mg in GaN is around 250 meV [71, 72]. Considering the fact that

the room temperature energy, kT (product of Boltzmann constant and temperature), is

approximately 25.8 meV, this Mg ionization energy is quite high. On the other hand, a

typical donor dopant in GaN is Si. The typical ionization energy of Si in GaN is between

17 to 23 meV [73,74], and these dopants are almost completely ionized. Figure 3.2 shows

the change in depletion widths for varying carrier levels (note: the absolute widths shown

are only the ideal case; experimentally, the depletion widths are likely larger). Even at

carrier concentrations of 10

19
cm

�3
, the zero bias depletion width is ⇠ 26 nm.

Figure 3.2: Change of depletion width with carrier concentrations at (a) zero bias and

(b) reverse bias (-3V).
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3.1.1 Issues with MOCVD grown tunnel junctions

Despite the large depletion widths (which Simon et al. predicted to be too large for

substantial tunneling current [75]), III-nitride TJ contacts have been grown by MOCVD

since 2001 [75–78]. The main issues have been that the voltage penalty (di↵erence in

voltage when using a tunnel junction contact versus a standard p-contact to GaN, e.g.

ITO, Pd/Au, etc) has been between 1.0 to 3.2V and that the light output power has been

very low (early works only reported light output powers in arbitrary units and without

any quantum e�ciency values). The high voltage penalty was likely due to re-passivation

of the p-GaN during the tunnel junction growth. As-grown p-GaN is resistive because

hydrogen from the reactor will form Mg-H complexes that passivate the acceptors. To

activate the acceptors, the material must be annealed at 600

�
C for 15 minutes to drive

out the hydrogen [79–81]. For LED structures with p-GaN at the surface, the hydrogen

is driven out through the surface. However, when growing n-GaN on top of p-GaN to

form a tunnel junction, this activation is prohibited since n-GaN is a di↵usion barrier to

hydrogen [82]. It appears that these early attempts at tunnel junctions su↵ered from high

voltage because of this incomplete activation. Another issue is the magnesium memory

e↵ect [83]. Excess magnesium lingering in the reactor may di↵use into n-GaN layers and

compensate for silicon, reducing the concentration of donors available. Various methods

to address the Mg di↵usion into n-GaN include doing a surface treatment [83], inserting

an AlN layer to supress the di↵usion of magnesium [84, 85], or using flow modulation

epitaxy [86].

More recently, tunnel junction contacts to III-nitride LEDs have demonstrated im-

proved operating voltages by activating via lateral di↵usion of hydrogen [87,88]. However,

for large area LEDs, lateral di↵usion was not the complete solution as areas near the cen-

ter of the LEDs were still dark (see Figure 3.3). The lower left image was of a reference

44



Figure 3.3: Emission regions of the LEDs with the tunnel junctions activated under

various thermal annealing conditions and of the standard LED. Copyright 2013 The

Japan Society of Applied Physics [87].

Figure 3.4: Current-voltage characteristics of the LEDs with the tunnel junction annealed

under various temperatures for 30 min and for the standard LED. Copyright 2013 The

Japan Society of Applied Physics [87].
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LED without a tunnel junction, and light was emitted across the surface. The other

images were of LEDs with tunnel junction contacts, and a large proportion of the mesa

was still dark. Consequently, the voltage was significantly worse, as shown in Figure

3.4. Some groups have also done bandgap engineering to take advantage of the large

polarization in c-plane GaN. Inserting an InGaN layer [89–91] induced an electric field

in the same direction of the built-in and applied fields, increasing the overall field and

tunneling probability.

To prevent the re-passivation of p-GaN, LEDs with tunnel junctions have also been

grown either entirely by molecular beam epitaxy (MBE) [92] or with a hybrid MBE-

MOCVD method, where the LED was grown up to the p-GaN layer by MOCVD and the

n-GaN tunnel junction contact was grown by MBE [93–96]. The advantage of using MBE

to grow the n-GaN tunnel junction contact was that there was no hydrogen present in

the chamber, so re-passivation of the p-GaN was avoided. These MBE-grown devices still

faced issues with increased voltage from the tunnel junction, although Krishnamoorthy

et al. demonstrated voltages for their tunnel junction LEDs that were comparable with

their reference LEDs [93].

3.1.2 Motivation for µLEDs with tunnel junction contacts

The use of tunnel junction contacts in µLEDs allows for new design space when trying

to build light sources for displays. First, terminating the epitaxial structure with n-

GaN instead of p-GaN allows for the use of n-type metal contacts and mirrors. As

referenced in Chapter 3.1, ohmic p-type metal contacts are limited. For µLEDs that

emit out of one side, silver contacts must be used to maintain high reflectance. While

LED and solid-state lighting companies have adopted Ag mirrors to create flip-chip LEDs,

the creation of ohmic and long-lasting Ag contacts are quite problematic and di�cult
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because of issues with adhesion and thermal instability. Proper di↵usion barriers must

be incorporated so that any Ag intermixing with other metals is eliminated or else the

reflectance will be drastically reduced. Various Ag-containing metal stacks also include

islands (

˚

A) of Ni, Pt, etc to form an ohmic contact to p-GaN [97–100]. Such stacks

require a very precise deposition of the island contact, a subsequent anneal to form

an ohmic contact, and deposition of a di↵usion barrier to prevent outdi↵usion of Ag.

Various reasons for the anneal include the formation of NiO near the surface to create

an ohmic contact; outdi↵usion of Ga atoms from the p-GaN to the Ag layer to leave Ga

vacancies (Ga vacancies are shallow acceptors, so the net hole concentration increases

[101]). Furthermore, Ag migration is a significant issue that a↵ects the lifetime of devices.

By incorporating a tunnel junction contact, Ag is no longer needed as a mirror, since

n-type metal contacts/mirrors may be used. For instance, Al has been shown by Yonkee

et al. to reach peak EQE and wall-plug e�ciency of 76% and 73%, respectively [95]. Al

can reach a reflectance of 85% (or higher if combined with an omnidirectional mirror)

and has low contact resistances in the 10

�6
⌦ · cm2

range.

Another benefit of using tunnel junction contacts is that multiple active regions emit-

ting at di↵erent wavelengths may be monolithically grown as shown in Figure 3.5. Kowsz

et al. demonstrated monolithically integrated optically pumped yellow quantum wells on

top of electrically injected blue wells on freestanding semipolar GaN [102]. In that case,

polarized white light emission was measured by electrically contacting the blue wells

to excite yellow emission from the above wells (polarized light is possible on semipolar

orientations of GaN due to the separation of valence bands from light and heavy holes;

c-plane has substantially less optical polarization because the valence bands are closer

together). By tailoring the processing, both sets of quantum wells may be separately

contacted electrically so there would be more precise control of the wavelength. This

epitaxial structure has many major growth challenges to overcome though. In the case
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Figure 3.5: Cross-sectional schematic of an epitaxial structure with tunnel junction con-

tacts enabling two active region InGaN growths (blue and green).

of µLED displays, the ideal structure would be to have all red, green, and blue quantum

wells grown on the same wafer. As of now, this idea is still very much a research e↵ort.

The growth of high quality, e�cient green wells is di�cult because of the high indium

content required. Although there has been much progress by Alhassan et al. at UC

Santa Barbara [19, 103], the green gap still exists. Going to longer wavelengths beyond

green is even more challenging, but the answer may lie in strain engineering (this topic

is beyond the scope of this thesis). Despite these challenges, monolithically grown RGB

LEDs may be advantageous to solving mass transfer issues.
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3.2 Application of tunnel junctions to µLEDs

As discussed in Chapter 3.1.1, the lateral di↵usion of hydrogen in a large-area LED is

prohibitive to activating through the top surface. However, the smaller dimensions of

µLEDs seem more suitable for this lateral di↵usion. This section will detail the epitaxy,

fabrication, and characterization of these tunnel junction µLEDs [104].

3.2.1 Design of MOCVD epitaxy

The epitaxial structure of the tunnel junction was split into two growths as shown in

Figure 3.6. The first LED growth was the same as the LED structure grown in Chapter

2.2. After the p++
-GaN growth, the sample was removed from the MOCVD reactor. A

first activation was done at 600

�
C in air for 15 minutes to activate the p-GaN through

di↵usion of hydrogen out of the top surface. Following this activation, a surface treatment

was done to prepare for the tunnel junction regrowth. This treatment served to remove

excess magnesium at the surface to minimize di↵usion of Mg into the neighboring n++
-

GaN, which would compensate the donors. The surface treatment consisted of immersion

in ultraviolet-ozone (UVO) in a PR-100 UV-Ozone Photoreactor for 15 minutes followed

by a one minute dip in bu↵ered hydrofluoric acid (BHF). This treatment was done two

more times for a total of three cycles. UVO treatment is commonly used to remove

surface organics prior to regrowth, and the BHF improved the operating voltage of the

µLEDs.

Following the treatment, samples were reloaded into the MOCVD reactor to grow

the tunnel junction layers. The regrowth consisted of a 10 nm Si-doped n++
-GaN tunnel

junction contact layer where the silicon concentration was varied, a 400 nm Si-doped

n-GaN current spreading layer ([Si]= 2.0 ⇥ 10

19
cm

�3
), and a 10 nm Si-doped n+

-GaN
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Figure 3.6: Cross-sectional schematic of the epitaxial structure showing the first LED

growth and the tunnel junction contact regrowth.

contact layer ([Si]= 5.6 ⇥ 10

19
cm

�3
). The Si source was disilane, and three di↵erent

flow rates of the disilane (3 sccm, 6 sccm, and 10 sccm) were used to vary the silicon

concentration of the n

++
-GaN tunnel junction contact. The doping concentrations were

measured by secondary ion mass spectroscopy (SIMS). Figure 3.7(a) shows the concen-

trations of silicon in the n++
-GaN tunnel junction layer were 7.0 ⇥ 10

19
cm

�3
(3 sccm

disilane), 1.1⇥ 10

19
cm

�3
(6 sccm), and 1.7⇥ 10

20
cm

�3
(10 sccm). Figure 3.7(b) shows

the e↵ect of the surface treatment on the magnesium concentration. When the sample

was taken out of the MOCVD reactor and treated with UVO and BHF, the surface con-

centration of the magnesium dropped by more than one half from 1.2 ⇥ 10

20
cm

�3
to

5.1⇥ 10

19
cm

�3
.

3.2.2 Fabrication of tunnel junctions µLEDs

The fabrication of the tunnel junction µLEDs (referred to as “TJ µLEDs”) closely fol-

lowed that of the µLEDs in Chapter 2.2. µLEDs of varying areas (from 2.0 ⇥ 10

�5
to

0.01 mm

2
) were fabricated into the geometry shown in Figure 3.8. For the TJ µLEDs,

the processing was simplified because a transparent p-contact was no longer required.
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(a)

(b)

Figure 3.7: Doping concentrations of (a) Si as a function of disilane flow and (b) Mg with

and without surface treatment. Figure from Hwang et al. [104].

First, square mesas were patterned by etching through to the bottom n-GaN layer using

silicon tetrachloride in a reactive ion etch (RIE) chamber. To activate the p-GaN and

drive out hydrogen, the µLEDs were annealed at 700

�
C for 30 minutes under 80%/20%

N2/O2 (air) ambient. As discussed in Chapter 3.1.1, n-GaN is a barrier to hydrogen

di↵usion [82], so because the p-GaN was covered by the tunnel junction, the activation

was done by lateral di↵usion of hydrogen through the sidewalls of the mesas (see Figure

3.8(a)). An omnidirectional reflector (ODR) that consisted of alternating layers of silicon

dioxide, tantalum pentoxide, and a capping layer of aluminum oxide was deposited by ion

beam deposition. Common n-metal contacts and wire-bonding pads using 700/100/700

nm Al/Ni/Au were deposited by electron beam evaporation. The metal covered 10% of

the mesa area in all sizes of µLEDs. The ODR was deposited both on the bottom n-GaN

and the top (tunnel junction) n-GaN to isolate the p- and n-side. The ODR also served

to reflect light that might be absorbed by the metal contacts. To compare the TJ µLEDs

with standard µLEDs, a parallel process was done with indium tin oxide. This process
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had the added steps of depositing 130 nm of ITO and etching the ITO before etching the

n-GaN. TJ LED-1, -2, and -3 had silicon concentrations of 7.0⇥ 10

19
(3 sccm disilane),

1.1⇥ 10

20
(6 sccm), and 1.7⇥ 10

20
cm

�3
(10 sccm), respectively.
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Figure 3.8: (a)-(b) Cross-sectional schematic of the processed LEDs. (c) Secondary

electron microscope image of a 5⇥ 5 µm2 µLED.

After fabrication, on-wafer testing was done to collect current density-voltage char-

acteristics. Optical micrographs of the µLED electroluminescence were taken to look at

current spreading and to see if the p-GaN was activated by lateral di↵usion. The µLEDs

were then singulated into 0.75 ⇥ 0.75 mm

2
die and packaged by mounting onto silver

headers, wire bonding, and encapsulating in silicone (refractive index of 1.41). Testing

was done under continuous wave conditions in a calibrated integrating sphere.
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3.2.3 Electrical results

The electroluminescence emission of the µLEDs are shown in Figure 3.9. Comparing

with the standard µLEDs and the work from Kuwano et al., the TJ µLEDs in Figure 3.9

appeared to be activated across the mesa. There were no visible dark spots in the center

of the mesa as there were in Figure 3.3. However, because of the much smaller dimensions

of these µLEDs, the images may be misleading. The forward voltage characteristics in

Figure 3.10 indicated there were areas that were not completely activated. Figure 3.10(a)

plots the current density versus operating forward voltage of three di↵erent sized µLEDs

(5⇥5, 60⇥60, and 100⇥100 µm2
) for the standard µLEDs with ITO and the TJ µLEDs

with the highest Si doping, TJ µLED-3. The turn-on voltages were the lowest for the

standard µLEDs for all sizes. Furthermore, voltages of the standard µLEDs were similar

for all the di↵erent sizes and were within 0.15 V. Figure 3.10(b) illustrates another way to

analyze the forward voltage at 20 A/cm

2
for all samples and plots the average voltage at

20 A/cm

2
(with error bars shown; values were averaged over three to four data points).

The curves showed the turn-on voltages of all three TJ µLEDs increased with µLED

size and were higher than the standard µLEDs. The operating voltage also decreased

substantially with increased Si doping, which will be discussed next.

The increase in voltage with µLED area for the TJ µLEDs can be explained by ana-

lyzing four sources of resistance within the µLED (see Figure 3.11): (1) contact resistance

from Al/Ni/Au to the n++/n/n+
-GaN layers; (2) the spreading resistance in the n-GaN

current spreading layer; (3) the barrier at the tunnel junction interface between n++/p++
-

GaN; and (4) the resistance within the p-GaN layer. Between the three TJ LEDs, the

nominal doping of the top n+
-GaN contact layer and the n-GaN spreading layer was the

same, while the doping of the n+
-GaN tunnel junction contact layer was varied. Based

on circular transmission line model (CTLM) measurements, average specific contact re-
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Standard TJ LED-1 TJ LED-3TJ LED-2

5 µm

20 µm

40 µm

60 µm

80 µm

100 µm

40 µm

Figure 3.9: Electroluminescence images of µLEDs at 1 A/cm

2
.

(a)

(b)

(a)

(b)(a) (b)

Figure 3.10: (a) Dependence of voltage on injection current density for various sized

µLEDs for the standard LED (orange) and TJ LED-3 (blue). (b) Voltage at an injection

current density of 20 A/cm

2
for the standard LED (orange squares), TJ LED-1 (red

circles), TJ LED-2 (green upward triangles), and TJ LED-3 (blue downward triangles).

Figure from Hwang et al. [104].
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Figure 3.11: Breakdown of the di↵erent sources of resistance.

sistances for TJ µLED-1, -2, and -3 were 3.1⇥ 10

�6
, 2.4⇥ 10

�6
, and 8.1⇥ 10

�7
⌦ · cm2

,

respectively. At an injection current density of 20 A/cm

2
, this di↵erence in specific

contact resistance results in a voltage di↵erence of 0.046 mV. Therefore, the voltage con-

tributions from the metal contact resistance and current spreading resistances (sources

(1) and (2) of Figure 3.11) were negligible.

The main sources of resistances came from the tunnel junction barrier and the p-

GaN. Since the activation mechanism was lateral di↵usion of hydrogen, the centers of the

µLEDs may not have been completely activated. For the smaller µLEDs compared with

the larger ones, a larger percentage of the µLED area was activated because the lateral

di↵usion length for hydrogen was smaller. Areas that were not completely activated

(e.g. areas with partial passivation of Mg acceptors by hydrogen) would add resistance

due to both sources (3) and (4) of Fig. 3.11. Incompletely activated p-GaN would

have lower carrier (hole) concentrations, which would increase the depletion width (see

Fig. 3.2) and would also have higher resistances within the p-GaN layer. The added

resistances were reflected in the higher forward voltages as the area increased for a given

TJ condition (Fig. 3.10(b)). The voltage penalty of the tunnel junction, which is the

di↵erence in voltage between the TJ µLED and the standard µLED additional voltage,

also changed between di↵erently doped samples. For a given size at 20 A/cm

2
amongst

the TJ µLEDs, the voltage penalty decreased with higher doping of the n++
-GaN TJ

layer. This improvement was expected because the depletion width decreases with higher
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doping. As the doping increased from 7.0 ⇥ 10

19
to 1.1 ⇥ 10

20
to 1.7 ⇥ 10

20
cm

�3
(TJ

µLED-1, -2, -3, respectively), the additional voltage from the TJ dropped from 2.02 to

1.05 to 0.60 V for the 5⇥ 5 µm2 µLED, from 2.86 to 1.61 to 0.91 V for the 60⇥ 60 µm2

µLED, and from 4.86 to 3.52 to 1.62 V for the 100⇥ 100 µm2 µLED. By increasing the

doping 2.4 times, the TJ voltage penalty dropped by at least threefold. In addition to

the absolute values of the voltage, the spread of the voltage at 20 A/cm

2
was reduced

with increasing silicon doping.

The importance of the surface treatment prior to the tunnel junction regrowth is

shown in Figure 3.12(a). The forward voltage at 20 A/cm

2
for the 5⇥ 5 µm2 µLED was

reduced from 5.48 to 4.28 V with the surface treatment, and similar reductions occurred

for the larger µLEDs. Prior work by Yonkee et al. on hybrid MBE-MOCVD tunnel

junction LEDs also showed improvements in voltage with acidic surface treatments and

observed drops in both the oxygen and magnesium concentrations [95].

3.2.4 Optical results

The EQE behavior as a function of current density for the 40 ⇥ 40 and 100 ⇥ 100 µm2

µLEDs is shown in Fig. 3.13. The three TJ µLEDs had higher peak EQEs and lower

droop than the standard µLED, which may be attributed to more uniform current spread-

ing on both the p- and n-sides as well as a more optically transparent layer (n-GaN versus

ITO) [86, 96]. Furthermore, since the TJ µLEDs went through a surface treatment, the

Mg concentration was lower. Because of this reduction, there may be less free carrier

absorption from the Mg [105, 106]. As the ionization energy for Mg in p-GaN is high,

there was a high concentration of non-ionized acceptor atoms, which had holes bound to

them. These holes were not available to contribute to conductivity but enabled optical

absorption by introducing empty states above the valence band edge. In the same vein,
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(a)

(b)

Figure 3.12: E↵ect of surface treatment on operating voltage and current. (a) Voltage at

20 A/cm

2
for the µLEDs without surface treatment (orange triangles) and with treatment

(blue squares). (b). Current density versus forward voltage for the 5⇥ 5 µm2
device.

the ITO thickness was not optimized for µLED performance. Thick films of ITO are

typically used for higher current spreading but are also more absorbing. For µLEDs of

these dimensions, thinner films of ITO may potentially be used without worsening the

electrical performance. The peak EQEs of all the TJ µLEDs ranged from 30.6% to 33.7%,

as was expected since the activated areas should have been similar. The standard µLED

had a peak EQE of 25.3%. The droop of the TJ µLEDs at 50 A/cm

2
ranged from 5.6%

to 9.5%, which was lower than that of the standard µLED, which varied from 12.4%

to 16%. This trend of similar EQEs for the TJ µLEDs held between the 40 ⇥ 40 and

100⇥ 100 µm2
devices and was also seen with the other sized µLEDs.

57



Figure 3.13: EQE as a function of current density for the 40 ⇥ 40 (dotted lines) and

100⇥ 100 µm2
(solid lines) µLED. Figure from Hwang et al. [104].

3.3 Reduction of tunnel junction voltage penalty

The biggest question remaining from Chapter 3.2 is why there is a dependence of voltage

on µLED size. From Kuwano et al. [87] and Figure 3.9, it seemed that µLEDs would

be the perfect application of the lateral di↵usion of hydrogen. The results of Chapter

3.2 reject that hypothesis though. These results suggest there is a barrier to lateral

di↵usion that traps the hydrogen within the p-GaN layer. This section proposes various

possibilities and highlights experimental results aimed at removing the barrier.

3.3.1 Barrier to lateral activation formed via dry etch

To activate tunnel junction µLEDs, a mesa was first etched with chlorine-based chemistry

assisted by Ar plasma with either a RIE or ICP tool. The e↵ects of this dry etch and

plasma exposure on p-GaN has been studied by Cao et al. [107]. First, a comparison

between exposure of either Ar or H2 plasma was studied. Two parameters of the ICP
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were varied: the source power (or ion flux incident on the sample) or rf chuck power

(average ion energy). The main findings were that as the source power or rf chuck power

were increased, the forward turn on and breakdown voltages increased. Furthermore,

since Ar

+
ions are heavier than H

+
2 ions, Ar-based plasmas created more damage. A

loss of N2 near the surface also introduced nitrogen vacancies, NV, which act as shallow

donors. A large concentration of NV (if comparable to hole concentrations) would then

result in type conversion of the p-GaN to n-GaN up to a depth of about 400

˚

A. A wet

etch in heated NaOH at 100

�
C removed some of the damaged material and restored the

electrical properties of the initial film.

Another comparison was done looking at chlorine-based etches [108]. The study found

that Cl2/Ar ICP etches also induced type conversion and damage to a depth of 500

˚

A.

Annealing between 700 to 800

�
C would partially recover the electrical properties but

not completely (breakdown voltage was recovered to 70% of its initial value). Annealing

higher than 800

�
C led to nitrogen vacancies, which was detrimental since it induced type

conversion. Furthermore, annealing at these high temperatures may be damaging to

InGaN LEDs, as decomposition or di↵usion of GaN/InGaN is more probable at these

temperatures. Once again, a wet etch in NaOH at 100

�
C would also remove some damage,

but a combination of an anneal between 700-800

�
C and a follow up wet etch in heated

NaOH yielded more complete recovery.

Motivated by the use of annealing and wet chemical etching, Yang 2009 et al. studied

the use of annealing and wet chemical treatments on InGaN-based LEDs [109]. The wet

chemical treatment was done with KOH, which etched away plasma-damaged sidewalls.

This treatment suppressed surface leakage currents but also attacked metal contacts and

increased the forward turn-on voltage. The best electrical results (recovery of turn on and

breakdown voltages) were using both an anneal at 700

�
C and wet chemical treatment

in ammonium sulfide. Sulfide passivation with ammonium sulfide, (NH4)2S, removed
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unstable native oxides and formed GaS [110]. These Ga-S bonds have been shown to

reduce surface recombination in GaAs and remove Fermi level pinning at the surface.

The treatment has also been shown to be e↵ective for InP passivation.

Referring back to work by Neugebauer et al. [82], di↵usion of hydrogen in n-GaN

is prohibited. Thus, the dry etch used in the formation of µLED mesas was creating a

barrier to hydrogen di↵usion. Physical plasma damage and type conversion need to be

treated in order to achieve low voltage tunnel junction µLEDs.

3.3.2 Barrier removal methods

To deal with the barrier induced by the dry etch, a combination of annealing and chem-

ical treatment was done. To study the e↵ects of the chemical treatment, three samples

were fabricated: standard µLEDs using 40 nm of ITO, tunnel junction µLEDs without

a chemical treatment, and tunnel junction µLEDs with a chemical treatment. For the

tunnel junction µLEDs with chemical treatment, the samples were first placed in con-

centrated KOH (approximately 12M) heated at 80

�
C for 30 minutes before the anneal.

Then, both tunnel junction µLEDs underwent an activation anneal (700

�
C for 30 min-

utes in air) that also doubled as an anneal to recover electrical properties. The standard

µLEDs did not undergo an anneal after the mesa etch.

Figure 3.14 shows the average forward voltages at 20 A/cm

2
for all three samples.

As expected, the standard µLEDs hovered around 3.1 to 3.2V and did not change with

µLED size. The TJ µLEDs without the chemical treatment showed similar behavior

as in Figure 3.10, where the voltage increased with size. Furthermore, the voltages for

each size spanned a wide range (standard deviation as large as 0.64V), signifying non-

uniform hole concentration across the mesa. This inhomogeneity would occur if the

sidewall perimeter had di↵erent levels of plasma-induced damage or type conversion. In
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this case, di↵erent levels of hydrogen would di↵use out of the p-GaN, leaving a spread of

hole concentrations across the mesa. Another explanation for the spread would also be

epitaxial non-uniformities that resulted in di↵erent dopings across the mesa. However,

these epitaxial non-uniformities were present in the standard sample as well, which did

not exhibit the spread. Thus, the spread was likely due to the barrier at the perimeter.

Finally, the average voltage of the TJ µLEDs with the chemical treatment was in between

the other two samples. The voltages were lower than the TJ µLEDs without chemical

treatment and were within a tighter range (standard deviation of 0.25V compared with

0.64V). This data showed that the chemical treatment did help with the barrier at the

sidewall since the voltage was lowered, but the size dependence was still present and the

barrier was not completely eliminated.

Figure 3.14: Voltage at an injection current density of 20 A/cm

2
for standard µLEDs

with ITO (blue circles), TJ µLEDs without chemical treatment (red diamonds), and TJ

µLEDs with chemical treatment (yellow triangles).
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3.4 Summary and future work

In summary, we have shown that InGaN µLEDs with tunnel junction contacts may

be grown solely by MOCVD. Electroluminescence images showed light emission across

the mesa, but the forward voltages indicated incomplete activation. An analysis of the

voltages of di↵erent Si-doped tunnel junction contacts confirmed that the higher doped

tunnel junctions had lower voltage. However, there was still a dependence of the voltage

on the µLED size. The voltage penalty of the tunnel junction for the smallest µLED at

20 A/cm

2
ranged from 0.60V to 2.02 V for the samples with highest and lowest doping

levels, respectively. The peak external quantum e�ciencies (EQE) for the tunnel junction

LEDs were around 34% and were similar for all the doping levels, while the peak EQE

of the standard LED was 25%. The cause of the incomplete activation arose from an

activation barrier at the perimeter of mesa due to type conversion from dry etch damage.

An anneal and chemical treatment were done to remove the barrier, and this treatment

reduced the forward voltage and narrowed the spread of voltages for each size. However,

the barrier was not completely removed as the voltage still increased with µLED size.

The use of tunnel junctions for µLEDs is still attractive to create multiple LED

stacks on one wafer or to terminate the epitaxial stack with n-GaN to use n-type mirrors

and contacts. However, before widespread adoption, the voltage penalty needs to be

addressed. One direction is to increase the silicon doping of the n++
-GaN tunnel junction

layer above 3.0 ⇥ 10

20
cm

�3
. To incorporate more silicon, the disilane flow may be

increased as shown in Figure 3.15. Up until 30 sccm disilane, there is a near-linear

increase of silicon incorporation. However, past 30 sccm, the concentration saturates

and dips. At this point, the solid solubility of Si in GaN has been reached. Figure 3.16

shows optical micrographs of the surface, and silicon precipitates are visible in the case

of the films grown with 40 sccm disilane. One way to overcome this limit and increase
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the doping concentration is to use delta doping.

Figure 3.15: Si concentration of n-GaN grown by MOCVD as a function of disilane flow.

20 sccm 30 sccm 40 sccm

Figure 3.16: Optical micrographs of the surface of n-GaN layers with disilane flows of

20, 30, and 40 sccm.

Another optimization would be the p-GaN doping. As shown in Figure 3.2, at a high

enough donor concentration, any variation in hole concentration has a more significant

e↵ect on depletion width (e.g. tunneling probability). The as-grown magnesium concen-

tration must be increased because the surface treatment that is done before the tunnel
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junction regrowth halves the concentration. A balance must be struck, because higher

p-doping decreases the depletion width but also leads to more free carrier absorption.

In addition to n- and p-doping, the insertion of an InGaN polarization layer would help

with tunneling. As Takasuka et al. showed, a graded high indium content In0.4Ga0.6N

layer collapsed the voltage of the tunnel junction LED to their standard LED [91]. The

growth and characterization of high indium content InGaN is not trivial and must be

done precisely. One example growth be to grow the LED with a terminating p-InGaN

layer, remove the epitaxy from the reactor for a surface treatment, and regrow the n-type

layer. In this method, the indium content of that terminating p-layer is hard to determine

as there will be desorption of the indium during the cool down. Nevertheless, this InGaN

layer insertion is promising.

Finally, and perhaps most importantly, the activation barrier at the mesa sidewall

needs to be addressed. Although anneals at 900

�
C have shown to be e↵ective in the

literature, the temperature is too high for InGaN µLEDs. At high temperatures, de-

composition of GaN and di↵usion of indium is possible. The (NH4)2S treatment seems

promising [110], but a wet chemical etch may not solve the entire issue.
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Chapter 4

µLEDs with Current Apertures

4.1 Current aperture options

As discussed in Chapter 2, the e�ciency drop with decreasing µLED size stems from

the presence of a surface and associated dry etch damage (see Figure 2.4). This sidewall

creates defect states or dangling bonds that serve as sinks for carriers and nonradiative

recombination. µLED designs that are “mesaless” (those without a sidewall) or that

have the sidewall far from the light-emitting region may circumvent this loss. The best

way to achieve this design is to use a current aperture and only inject carriers to the

desired light-emitting region. In the III-nitride system, one may take advantage of the

high resistance of p-GaN to create this aperture. The terminating layers of a µLED

are typically p+-GaN and p-GaN as shown in Figure 4.1. Current may be confined by

rendering areas of the p+-GaN resistive. Once that area is resistive, all current will

be injected only to the conductive (non-damaged) p+-areas. Furthermore, because of

the high resistance of p-GaN, there will be very little lateral current spreading. Thus,

radiative recombination will only occur where current is injected.
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Figure 4.1: Schematic of a current aperture with a selectively damaged p+-GaN region.

To create this aperture, the p+-GaN must be damaged in some way. A few methods

of creating this current aperture include plasma damage, oxidation of the p-GaN into p-

Ga2O3, or ion implantation with various species. Exposure to high density Ar, H2, or O2

plasma introduces shallow donor states in the form of nitrogen vacancies (also discussed

in Chapter 3.3) to compensate for holes near the surface of the p-GaN [107, 111]. Cao

et al. showed that the plasma decreased the p-GaN conductivity, but the e↵ects may

be reversed by annealing or wet chemical etching. Another method is to oxidize the

GaN, which has been done by dry oxidation in air [112–114] or by a photoenhanced wet

oxidation [115]. Dry oxidation done at low temperatures such as 450

�
C yielded incredibly

slow rates (almost immeasurable) and thus needed to be done at elevated temperatures

such as 800 and 900

�
C. Still, the oxidation rate was still as slow as 20 nm/hour. The

photoenhanced wet oxidation method utilized a UV light source (253.7 nm mercury

source) and phosphorus acid solution with pH between 3 and 4. The oxidation rate was

224 nm/hour, 10 times faster than the dry oxidation rate. A third method is to use

ion implantation, which has been studied to introduce dopants or to create electrically

insulated layers and current blocking layers [116–123]. Commonly used implant species

include silicon, magnesium, hydrogen, oxygen, and aluminum. Huang et al. selectively

implanted LED films with hydrogen to avoid light being emitted below the p-metal

contact that would eventually be absorbed by the metal [124]; Kim et al. implanted with

nitrogen to achieve a similar purpose [125]. When p-GaN is implanted with hydrogen,
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the insulation may be reversed by annealing (similar to activating as-grown p-GaN by

driving out hydrogen from Mg-H complexes). Other groups have used silicon to insulate

p-type regions [126, 127]. Consequently, Meyaard et al. created mesaless LEDs [127] by

creating an isolation region between p- and n-GaN. Finally, Leonard et al. ion implanted

nonpolar vertical-cavity surface-emitting lasers (VCSELs) with aluminum to improve

lateral confinement and to decrease the threshold current density [128].

Among these methods, ion implantation may be most suitable to fabricate µLEDs.

Plasma treatment may not completely make the p-GaN electrically resistive (or else high

bias powers are required), and the e↵ects are also reversible. The use of plasma may

also damage the quantum wells, since the free radicals may penetrate through to the

InGaN layers. Dry oxidation is unsuitable because it requires extensive times at high

temperatures. These oxidation temperatures above 800

�
C may harm the InGaN quantum

wells. Photoenhanced wet oxidation seems promising but will require precise masking so

that areas with dimensions of tens of micrometers are protected and left as p-GaN. In

this work, µLEDs were fabricated with current apertures defined by ion implantation of

aluminum. Chapter 4.2 will detail the conditions for ion implantation of Al into GaN,

Chapter 4.3 will highlight the nanofabrication process and design of experiments, and

Chapter 4.4 will show preliminary results. Future work and directions will be discussed

in Chapter 4.5.

4.2 Modeling of ion implantation conditions

Ion implantation is a method where impurity atoms are ionized and accelerated through

an electric field to strike and enter the target. The ion energies and doses typically

range from 1 � 100s of keV and 10

11� 10

16
cm

�2
, respectively. When the ion penetrates

the semiconductor crystal, it goes through electronic or nuclear stopping. Electronic
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stopping occurs when the incident ion interacts with and is scattered by the electron

cloud of the host atoms. Although a single Coulombic interaction is fairly weak due to

the large mass di↵erence between an ion and electron, several hundred thousands of these

interactions may occur. On the other hand, nuclear stopping occurs when the incident

ion collides with the target atoms. In this case, a significant amount of kinetic energy may

be transferred from the high energy incident ion to the atom’s nucleus. Consequently,

the nucleus may further distort the crystal lattice by colliding with neighboring nuclei.

Thus, one concern with ion implantation is the damage caused, which is exhibited as

point defects such as vacancies. This damage may sometimes be repaired by a subsequent

anneal, in which the displaced atoms are supplied enough thermal energy to di↵use back

to their crystal sites.

When a semiconductor is ion implanted, there is a skewed Gaussian distribution of

ions because of the scattering events. The projected range is the depth reached by the

maximum concentration. The longitudinal straggle is a measure of the additional distance

that ions travel within the stopping material (in the same direction of the incident ion

beam), and the lateral range and straggle are along the direction normal to the ion

beam. To estimate the implantation depths, Stopping Range of Ions in Matter (SRIM)

software was used [129]. SRIM is a Monte Carlo simulation that calculates the electronic

and nuclear stopping events to produce the longitudinal/lateral projected ranges and

straggles. Figure 4.2 is an example of the data produced by SRIM for an implant of Al

into GaN at a dose of 10

15
cm

�2
and an energy of 20 keV. The depth of the implant may

be varied by changing the implant energy, which also changes the shape of the profile.

Figure 4.3(a) plots the Al concentration versus depth into GaN while varying the implant

energy, and Figure 4.3(b) shows the projected range and straggles versus implant energy.

For the smallest implant energy modeled (10 keV), the majority of the Al ions only

penetrated a few tens of nm of GaN, whereas the highest energy (150 keV) dose reached
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a depth of a few hundred nm.

Figure 4.2: Example data output from SRIM.

To verify the SRIM modeling, freestanding c-plane GaN substrates were implanted

with Al at a dose of 10

15
cm

�2
at an incident angle of 7

�
. Al concentrations were then

measured by secondary ion mass spectroscopy (SIMS). Figure 4.4 and Table 4.1 show

the calculated and experimental Al profiles were in good agreement. The calculated and

experimental projected ranges were within 0.7 nm of each other for all implant energies,

although the experimental data showed a larger straggle (tail) of Al into the semicon-

ductor. These tails were likely due to channeling of the ions. Channeling occurs when

ions travel through paths that have fewer scattering events. To avoid the implantation

of ions into channels, the crystal may be rotated a few degrees (typically 7

�
).

To see the e↵ects of the anneal on the Al profile, implanted samples were annealed and
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Figure 4.3: SRIM models of Al implanted into GaN with a dose of 10

15
. (a) Al concen-

tration profiles and (b) projected range, longitudinal straggle, and lateral straggle versus

implant energy.

Figure 4.4: Comparison of Al profiles between calculated and experimental data for Al

implanted at energies of (a) 50 keV and (b) 100 keV.
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Table 4.1: Calculated (SRIM) versus Experimental (SIMS) Projected Ranges

Implant Energy (keV) Calculated Rp (nm) Measured Rp (nm)

20 19.3 10.2

50 40.0 39.3

100 93.0 93.8

measured in SIMS. After ion implantation, the GaN substrates were annealed at 700

�
C

for 30 minutes in air. Figure 4.5 shows the anneal does not cause the Al to move around.

However, the samples became more transparent, so the anneal allowed for defects to be

repaired. This increase in transparency can be seen from Figure 4.6(a)-(b).

Figure 4.5: Comparison of Al profiles between calculated and experimental data.
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Figure 4.6: Optical micrographs showing samples after (a) ion implantation and (b)

annealing. The anneal increases the transparency of the implanted regions.

4.3 Nanofabrication of µLEDs with ion implanted

current apertures

To process µLEDs with ion implanted current apertures, standard µLED processing was

followed but with a few additional steps at the beginning. The epitaxial structure was

the same as those in Chapter 2. The first step was to implant the films with Al only in

areas outside of the mesa, leaving an area that defined the µLED. To contact the n-GaN,

a mesa was subsequently etched. To understand the e↵ect of the current aperture, the

distance from the light-emitting area (the µLED) to the edge of the mesa, X, was varied

from 2, 5, 10 and 20 µm as shown in Figure 4.7. For larger values of X, there should be

less nonradiative recombination at the sidewall surface; however, this additional volume

meant more light may be absorbed or trapped. After the mesa etch, the dielectric was

deposited to cover the sidewall and some of the mesa surface as well. The dielectric

needed to cover the mesa surface because the subsequent p-metal deposition surrounded

the mesa and sidewalls. Without the dielectric, the p- and n-GaN would be shorted.

µLED structures of six varying areas were processed (circles with diameters of 2, 5,
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Figure 4.7: Cross-sectional schematic of µLED with ion implanted current aperture.

10, 20, 60, and 100 µm). First, a hardmask was deposited for the ion implantation. The

hardmask metal and thickness were determined by SRIM. Up to energies of 200 keV, the

Al penetrated to a depth of 300 nm, so a metal stack of 20 nm Ti and 500 nm of Au

was deposited. Samples were sent to Leonard Kroko, Inc. for implantation with Al at a

dose of 10

15
cm

�2
at 20 keV with an incident angle of 7

�
. At this energy, Al should only

penetrate past the p+-GaN and only a few tens of nm into the p-GaN. After the implant,

the hardmask was removed with Transene Gold Etchant TFA and Titanium Etchant

TFTN. However, since the alignment marks were made of the same metal, they had to

be covered with photoresist. After the hardmask removal, the samples were annealed at

700

�
C for five minutes in air to recover the damage from the implantation.

The mesa was etched by RIE using Cl2. Figure 4.8(a) shows light emission from the

inner circles, which defined the µLED area. The outer, concentric circle was the mesa (p-

GaN), and the yellow area was the field (n-GaN). The dielectric deposition was defined by

a self-aligned process rather than a separate lithographically defined process so that the

mesa coverage was minimized. If the dielectric deposition were lithographically defined,

then the dielectric may have covered too much area, and the p-contact area would have

been significantly limited. For example, the best alignment would cause the SiN to come

in 0.5 - 1 µm over the mesa surface. For a 10 µm diameter µLED, that would leave

a circular area with a diameter of 9�9.5 µm for the p-metal. Since there is very little
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lateral current spreading in p-GaN, light would only be emitted where the p-metal sat.

Thus, only 81%�90% of the entire µLED area would emit light (81% is a result of taking

the area of a 9 µm circle divided by the area of a 10 µm circle). To avoid this loss of

area, a bi-layer resist (LOL2000 and SPR220-3.0) was used for the mesa etch. The first

layer (LOL2000) was a thermal resist, which allowed for undercut. To get conformal

coverage, SiN was deposited by sputter with the gun tilted. With this method, silicon

nitride would be deposited on top of the mesa wherever the LOL2000 was undercut. A

SEM image of the SiN coverage is shown in Figure 4.8(b). The p-contact, 20 nm Pd and

300 nm Au, was deposited via electron beam with a planetary stage. The planetary stage

Figure 4.8: (a) Fluorescence micrograph showing light emission from the active region,

(b) SEM image of dielectric coverage over the sidewall and atop the mesa surface, and

(c) Optical micrograph of µLEDs with ion implanted current apertures.
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was essential to get sidewall coverage. Finally, 20 nm Ti and 300 nm Au were deposited

as the n-contact. Figure 4.8(c) shows a top-down view of the final device.

4.4 Preliminary results

After fabrication, on-wafer measurements were taken by probing the metal contacts on

top of the µLEDs. Backside light emission was measured through the sapphire substrate

with a large-area photodetector. Figure 4.9 shows the current density versus voltage

characteristics for the 10 µm, 20 µm, 60 µm, and 100 µm diameter µLED. The legend

indicates the distance between the mesa sidewall and the edge of the implanted region

(the X = 0 case had no ion implantation and served as a standard). For the electrical

characteristics, there was no apparent trend for the di↵erent distances (X values) as was

expected. The current should be confined to the non-ion implanted region, so the extra

volume of material outside of the µLED should not matter.

For the optical e↵ects of the ion implanted current aperture, there were a few com-

peting e↵ects. For smaller values of X (the µLED sidewall was closer to the dry etched

mesa sidewall), the distance a carrier needed to di↵use to the sidewall was smaller (and

increased the amount of non-radiative recombination). For larger X values though, there

was more volume of material surrounding the µLED that absorbed the light. Figure 4.10

shows the e↵ects of the X values on light output. For the smaller sized µLEDs (10 and

20 µm), the standard processing (no ion implantation) yielded the most light emission.

Light output power was the lowest for the case of X = 2 µm and increased for higher

values of X. This trend showed that more non-radiative recombination occurred when the

mesa sidewall was closer to the µLED. For the 20 µm diameter µLED, the light output

for the X = 20 µm case almost recovered to the µLED without ion implantation, and

the light output for the µLEDs with X = 2, 5, and 10 µm were the same. However, the
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Figure 4.9: Current density versus voltage characteristics for ion implanted µLEDs, where
X is the distance between the mesa sidewall and the active region. µLED diameters

include (a) 10, (b) 20, (c) 60, and (d) 100 µm.
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Figure 4.10: Light output power versus current density characteristics for ion implanted

µLEDs, where X is the distance between the mesa sidewall and the active region. µLED
diameters include (a) 10, (b) 20, (c) 60, and (d) 100 µm.

e↵ect of larger absorbing volume dominated for larger sized µLEDs, and the light output

power decreased with increasing X values. Since the perimeter was a lot less significant

in larger µLEDs (as shown in Chapter 2), the amount of non-radiative recombination at

the peripheral surface was less significant.
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4.5 Summary and future work

µLEDs with an ion implanted current aperture were fabricated and measured. The

initial hypothesis was that the current aperture would remove the sidewall of the dry

etched mesa from the µLED and increase the light output power. However, the µLEDs

without ion implantation showed the highest light output power (and thus, e�ciency)

for each size. This loss of e�ciency may have come from the damage created by the

ion implantation. During ion implantation, ions traveled in all directions, so the lateral

straggle of the ion would cause damage closer to the µLED by creating vacancies and

other point defects (non-radiative recombination sites). This lateral straggle was di�cult

to measure and control, so other methods may be needed to improve the e�ciencies of

small µLEDs.

As discussed in Chapter 4.1, other methods to create a current aperture involve

damaging the p+-GaN. Instead of inducing plasma damage or oxidation to define current

flow, p-metal may be selectively deposited on the p+-GaN to define the µLED area. For

instance, if the p-metal is deposited in a 20 µm diameter circle, then light would only

be emitted from this circle because of the limited lateral current spreading. With this

method, the optical guiding e↵ects must be considered. Dry etched mesas may be formed

in a similar fashion as done in Chapter 4.4.
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Chapter 5

Mass Transfer of III-Nitride µLEDs

Enabled by PEC Lifto↵

5.1 Introduction

5.1.1 Definition of mass transfer

Self-emissive, full-color (red, green, and blue, or RGB) displays are made of pixels. Each

pixel is composed of individual red, green, and blue sub-pixels. For organic LED (OLED)

displays, the di↵erent colors may be selectively placed or deposited by inkjet printing or

thermal evaporation using a shadow mask [130]. These fabrication methods allow for

roll-to-roll processing and high throughput. On the other hand, µLED-based displays

face di�culties in manufacturing. An essential part of assembling such a full-color µLED

display is mass transfer. As of now, there is no simple way to monolithically grow all three

colors on the same wafer or with the same material system (e.g. InGaN or AlGaInP).

Therefore, the individual colored µLEDs must first be processed from separate red, green,
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and blue epitaxial wafers and then assembled. The process of arranging RGB sub-pixels

is referred to as mass transfer. For the purpose of this discussion, mass transfer may

be broken into two components (see Figure 5.1): (1) release of µLEDs from its growth

substrate and (2) the transfer and assembly of those µLEDs. For conventional, large-

area LEDs (0.1 to 1 mm

2
) that comprise LED lightbulbs today, mass transfer is done by

pick-and-place technology where a machine picks up an LED die using a vacuum hole

and moves it to its necessary position. The size of the µLEDs that would be used in a

display (10

�5
to 10

�4
mm

2
) is much too small for pick-and-place as the vacuum holes are

too large.

Figure 5.1: Schematic of generalized mass transfer process.

5.1.2 Review and limitations of mass transfer methods

To understand the curent state of industrial mass transfer processes, a basic review of the

materials systems and growth methods used to create µLEDs is necessary. The emissive

layer in red µLEDs is usually quarternary (Al

x

Ga1�x

)1�y

In

y

P heteroepitaxially grown
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on GaAs substrates by MOCVD. AlGaInP is lattice matched to GaAs, which reduces

the dislocation density. In the red regime, AlGaInP is a direct bandgap material (the

conduction band minimum is from the � valley) but undergoes a crossover and becomes

indirect around 550 nm (CB minimum is of the X valley). Nevertheless, AlGaInP is

a good material candidate for the deep red regime (see Chapter 1 for a more detailed

discussion on AlGaInP).

As has been described throughout this thesis, the emissive layers of blue and green

µLEDs are made from the III-nitride family. The range of the bandgap of InN alloyed

with GaN spans the entire visible spectrum, so the wavelength of the emitted light may

be changed with the indium composition of In

x

Ga1�x

N. The epitaxial growth of these

films by MOCVD may be done as heteroepitaxy (on sapphire, silicon, silicon carbide)

or as homoepitaxy (on freestanding GaN). The most commonly available commercial

InGaN LEDs today are grown on sapphire.

The lifto↵ and release of µLEDs from their host substrate (part 1 of Figure 5.1) de-

pends on the material system and growth substrate. The III-phosphides/III-arsenides

family is relatively chemically reactive, so many wet etches are available [131]. On the

other hand, GaN is much more chemically robust, and wet chemical etches are signifi-

cantly limited [132, 133]. Lifto↵ techniques include laser lift-o↵ (LLO) or incorporating

a sacrificial layer (via hydrogen implantation or growth of ZnO).

LLO has been used to remove thin GaN films from sapphire since the 1990s (pioneering

work was done by Wong [134] and Kelly [135]). Delmdahl et al. proposed the use of LLO

to lift o↵GaN LEDs from sapphire substrates and have developed line beam processing for

large area LLO [136,137]. LLO takes advantage of the di↵erence in absorption coe�cient

between dissimilar materials by using a light source to irradiate a a selected layer. For

lifting o↵ GaN from sapphire, a light source with energy larger than the bandgap of GaN

but smaller than the bandgap of sapphire (⇡10 eV) is chosen. Three common sources
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include a KrF excimer laser (� = 248 nm), a XeCl excimer laser (� = 308 nm), and a

third-harmonic neodymium-doped yttrium aluminum garnet (Nd:YAG) laser (� = 355

nm). The sapphire substrate is transparent (non-absorbing) to these wavelengths, and the

lasers are above the absorption edge of GaN. The lifto↵ occurs by thermal decomposition

of GaN when the laser irradiates the film (illustrated in Figure 5.2(a)-(b)). Ueda et

al. calculated that the local temperature needs to be greater than 850

�
C for GaN to

decompose into Ga and N according to the following reaction:

2GaN(s) ! 2Ga(l) + N2(g) (5.1)

Once the laser irradiation is done, residual Ga droplets are removed by heating the sample

above the melting temperature of Ga (30

�
C), and the lift-o↵ is complete (Figure 5.2(c)).

Figure 5.2: Schematic of laser-lifto↵ process.
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LLO has traditionally only been possible for heteroepitaxially grown GaN; for GaN

on GaN LEDs, there is no interface to absorb the laser energy. Iida et al. demonstrated

the use of LLO of GaN UV-LEDs grown on freestanding GaN by creating In droplets

instead of Ga [138]. After the sacrificial InGaN layer is grown, n-GaN and n-AlGaN layers

are grown at elevated temperature (1040

�
C), which thermally decomposes the sacrificial

InGaN to metallic In droplets. After the droplets are formed, the sample is irradiated

with visible light using a second-harmonic Nd:YAG laser (� = 532nm), and the substrate

is removed.

Other methods to lifto↵ InGaN µLEDs include the formation of sacrificial layers.

SmartCut™ is a commercial technology by Soitec and Sumitomo that uses ion implan-

tation of hydrogen [139]. The method follows what was developed by Bruel in 1995

for making silicon on insulator (SOI) wafers [140] and relies on surface blistering and

layer splitting induced by hydrogen implantation. This method has also been adapted

to GaN [141, 142], and buckling on GaN has been studied intensively in the litera-

ture [121,143]. Another method includes the growth of ZnO as a sacrificial layer because

it can be etched away with HCl. ZnO films are either deposited by RF magnetron sput-

tering [144, 145] or pulsed laser deposition [146], and GaN/InGaN layers are grown by

MOCVD. To lifto↵ the LED films, a HCl dip will etch away the ZnO.

The actual transfer and assembly mechanisms (part 2 of Figure 5.1) have received

much more attention commercially. The leading methods include a MEMS-based pick

and place system (developed by Luxvue and acquired by Apple in Silicon Valley) [147];

transfer printing with a PDMS stamp (demonstrated on III-V devices by Professor John

Rogers’ group in Illinois and commercialized by X-Celeprint) [148–150]; and a “Solid

Printing” technique invented by VueReal in Waterloo, Canada that revealed a 6000 ppi

display at the Society for Information Display’s (SID) Display Week 2017 [151,152].

As discussed in Chapter 1, µLEDs grown on freestanding GaN substrates o↵er many
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advantages for µLEDs. They have narrower emission linewidths, smaller blue-shifts with

increasing current (more stable colors), and the potential to reach longer wavelengths.

Thus far, no technique has proven itself to be compatible for such µLEDs grown on

freestanding GaN. The most widely used technique for lifto↵ of µLEDs has been LLO for

GaN on sapphire (likely adopted by Apple, X-Celeprint, VueReal, etc), and while LLO

has been shown to work for freestanding GaN, it has not been proven in a commercial

setting. This chapter will detail the development on lateral PEC undercut and transfer

printing. We also demonstrate for the first time red, green, and blue InGaN µLEDs

transferred onto a single flexible and transparent acrylic substrate.

5.2 Background of PEC lifto↵ process

5.2.1 Overview of PEC lifto↵ enabled mass transfer process

This chapter is predominantly concerned with developing a lifto↵ and release technique

compatible with freestanding GaN substrates and will detail the front-end of creating light

sources for a RGB µLED display (the back-end of integration with CMOS technology

and driving architecture will not be discussed). The process includes MOCVD growth

(Section 5.3.1), nanofabrication (Section 5.3.2), lifto↵ and release from the substrate via

lateral PEC etching (Section 5.3.3), and transfer printing µLEDs onto a new substrate

(Section 5.3.4). Customized growths are necessary in order to grow a sacrificial layer of

violet InGaN multi-quantum wells (MQWs) below the µLEDs. Nanofabrication processes

must be tailored to be compatible with the PEC etch conditions, which include prolonged

exposure to UV light and potassium hydroxide, KOH. This method has been shown

to work for all freestanding GaN substrates (e.g. c-plane [153], semipolar [154, 155],

and nonpolar [156, 157]) and other substrates such as sapphire [158]. The remainder of
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Section 5.2 will describe the background of PEC etching and an application of PEC lifto↵

to large-area LEDs (while not related to µLEDs, this work served as the backbone to

developing the µLED mass transfer technique).

5.2.2 History and principle of PEC etching

In the LED industry, PEC etching is typically used as a top-down roughening mechanism.

Roughening of the nitrogen face (N-face) of GaN drastically improves the light extraction

of c-plane GaN LEDs by increasing the escape cone through which light may escape a

medium [159–162]. Cones in the shape of a hexagonal pyramid are formed on N-face

when GaN is immersed in KOH, as shown in Figure 5.3. A higher magnification image

of a single cone is shown in Figure 5.4. The {10¯1¯1} planes are preferentially etched by

KOH compared to the {000¯1} planes. Theoretically, the angle between the two planes is

58.4

�
, and Ng et al. measured the angle to be between 58 � 60

�
. This preferential etch

implies that the {000¯1} surfaces have the lowest surface energy.

Figure 5.3: SEM micrographs of an N -face GaN surface etched by a KOH-based PEC

method. (a) 2-min etching and (b) 10-min etching. Copyright 2004 The Japan Society

of Applied Physics [159].

While the N-face is readily roughened in KOH, the Ga-face remains chemically inert
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Figure 5.4: (a) A high magnification SEM image of a single hexagonal pyramid on top of

the sapphire substrate. (b) Schematic drawing of the pyramid shown with the six {10¯1¯1}
facets and the angle between the edge and base of the pyramid. Reprinted from [H. M.

Ng, N. G. Weimann, A. Chowdhury, J. Appl. Phys., 94, 650 (2003)] with the permission

of AIP Publishing [160].

and is not etched. The chemical reaction that occurs is [163]:

2GaN + 3H2O
KOH���! Ga2O3 + 2NH3 (5.2)

Before this reaction can occur, hydroxide ions need to attack a Ga atom and be adsorbed

on the �c surface (Figure 5.5a-b). Gallium oxide is formed and dissolved in KOH, so

etching occurs (Figure 5.5c-d). This process repeats itself on N-face. For Ga-face, the first

atomic Ga layer can be removed by the oxidation and dissociation step. However, once

that layer is removed, the resulting N-terminated surface has multiple dangling bonds.

There is a large repulsion between OH

�
and the dangling bonds, so the adsorption of

OH

�
onto Ga does not occur. However, for N-face GaN, there is only one dangling bond,

so the OH

�
attack is possible.

Top-down PEC etching of GaN was first demonstrated by Minsky et al. who used

a He-Cd laser emitting at 325 nm in both HCl and KOH solutions [164]. Khare et

al. detailed work on both the dopant- [165] and bandgap-selective [166] nature of PEC

etching of GaAs. PEC etching combines the use of a light source to generate carriers

86



Figure 5.5: “Schematic diagrams of the cross sectional GaN film viewed along the [

¯

1

¯

120]

direction for �c GaN to explain the mechanism of the selective etching.” Reprinted from

[D. Li, M. Sumiya, and S. Fuke, J. Appl. Phys., 90, 4219 (2001)] with the permission of

AIP Publishing [163].
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within a material that then reacts chemically with the material to be etched. For III-V

semiconductors, the chemical reactions proceed as follows according to Van de Ven and

Nabben’s studies [167]:

h⌫ ! e�
cb

+ h+
vb

(5.3)

AB + 6h+
vb

! A

3+
+ B

3+
(5.4)

Ox + ne�
cb

! Red (5.5)

In reaction 5.3, carriers are generated by a light source. The generated holes then oxidize

III-V semiconductor (represented by AB) to form A and B in the 3+ oxidation state

(dissociative reaction 5.4). The generated electrons reduce the oxidizing agent in the

electrolytic solution (represented by Ox and Red). For PEC etching of GaN, the sample

is immersed in an oxidizing electrolyte solution such as KOH. Metal deposited on the

sample serves as the cathode where electrons will be extracted and reduction occurs.

Holes oxidize the material to a soluble form in the electrolyte, and then the electrolyte

dissociates the formed oxide. The actual chemical reactions proceed as follows [168]:

h⌫ ! e�
cb

+ h+
vb

(5.6)

2GaN + 6h+
vb

+ 6OH

� ! Ga2O3 + 3H2O +N2 " (5.7)

Ga2O3 + 6OH

� ! 2GaO

3�
3 + 3H2O (5.8)

The oxidized Ga metal reacts with the hydroxide group to form gallium oxide, and the

oxidized nitrogen becomes N2 gas, as shown in reaction 5.7. The formed oxide is then

dissolved in KOH (reaction 5.8). The reactions of GaN in HCl are unpublished, but it is

hypothesized that gallium trichloride (GaCl3) is formed and then dissolved.

According to the above chemical reactions, the actual etching catalyst is a hole.
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For complete etching to occur, holes must be confined in the appropriate area of the

material. This condition makes PEC etching a dopant-selective technique [169,170]. The

band structures of an n-type and p-type semiconductor immersed in oxidizing solution

are shown in Figure 5.6. The bands bend up or down because there is a surface state that

pins the Fermi level. Unoccupied dangling bonds of gallium pin the Fermi level between

0.5 eV below the conduction band and around mid-gap (the position is based on the

Ga/N ratio) [171]. Therefore, in n-type material, the bands bend upwards towards the

interface, so holes are confined at the surface. The formation of gallium oxide occurs at

the semiconductor/electrolyte interface, and etching proceeds there. In p-type material,

the bands bend downwards, so holes are swept away from the interface and etching is

greatly reduced. E↵orts have been made to etch p-GaN utilizing the internal electric

fields of GaN [172], but PEC etching has been mostly applied to n-GaN.

Figure 5.6: Band bending of n-GaN/electrolyte vs. p-GaN/electrolyte [170].

Youtsey et al. studied the surface morpologies of etched GaN samples (smooth vs

rough) and concluded that the smoothness of the resulting surface depends on the regime

in which the etch operates - either a generation-limited regime or a di↵usion-limited

regime [173]. Photocurrent was measured with an ammeter, and Figure 5.7 plots the

photocurrent as a function of KOH concentration. In situations with low light intensity

(in this figure, roughly below 10 mW/cm

2
), a linear dependence of photocurrent on

illumination can be seen. This linear portion is the generation-limited regime, where
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the etch rate is proportional to the carrier generation rate. At higher intensities, the

photocurrent saturates, and the di↵usion-limited regime is entered, where the etch rate

depends on the rate at which carriers di↵use to the surface.

Figure 5.7: Variation of photocurrent with light intensity for di↵erent KOH solution

concentrations. Reprinted from [C. Youtsey, I. Adesida, L. T. Romano, and G. Bulman,

Appl. Phys. Lett., 72, 560 (1998)] with the permission of AIP Publishing [173].

Smooth etching (rms roughness of 1.5 nm) was observed in the di↵usion-limited

regime, where this is a saturation of photocurrent (high light intensities and low KOH

concentration). In this regime, local variations in intensity do not significantly change

the photocurrent or etch rate, so a smooth surface is obtained. When etching in the

generation-limited regime (low light intensities or high KOH concentration), very rough

morphologies were observed. These trends were seen for vertical (top-down) etching but

may not be applicable to lateral etching in small dimensions.

The undercut etch rates and profiles of di↵erent InGaN layers were investigated by

Haberer et al. [174]. Three di↵erent sacrificial layers were grown by MOCVD: a 300 nm

In0.04Ga0.96N post, a 3 period In0.04Ga0.96N/GaN (100 nm/20 nm) superlattice, and a 5.5

period In0.04Ga0.96N/In0.09Ga0.91N (20 nm/20nm) superlattice. The samples were etched

in a 0.23 M HCl solution with constant stirring. The etch profiles and corresponding band

digrams are shown in Figure 5.8. The etching of the 300 nm thick InGaN layer was slow
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and nonuniform, since there was little hole confinement (Figure 5.8a and d). In this layer,

holes are likely to recombine without etching. In the InGaN/GaN superlattice (Figure

5.8b and e), the undercut is more visible, but the etch is still nonuniform. Finally, in the

InGaN/InGaN superlattice (Figure 5.8c and f), etching was faster and more uniform. The

InGaN/InGaN superlattice had the greatest hole confinement due to large piezoelectric

fields.

5.2.3 Application of PEC lifto↵ to large-area flip-chip LEDs

An example of using PEC lifto↵ on c-plane InGaN LEDs was demonstrated to create

large-area flip-chip LEDs and remove the freestanding GaN substrate [153]. The LED

structures were grown by metalorganic chemical vapor deposition (MOCVD) on free-

standing c-plane GaN substrates from Sciocs Company Limited with a threading dislo-

cation density of approximately 4 ⇥ 10

6
cm

�2
. The epitaxial structure for the flip-chip

LEDs, shown in Figure 5.9(a), consisted of 1.5 µm n-GaN; a sacrificial layer with 6 mul-

tiple quantum wells (MQWs) with 2.5 nm InGaN wells and 7 nm GaN barriers with

emission at 430 nm; a 3 µm n-GaN interlayer; an active region with 6 MQWs of 2.5 nm

InGaN wells and 7 nm GaN barriers with emission at 440 nm; a 10 nm Mg-doped AlGaN

electron blocking layer (EBL); a 110 nm Mg-doped p+-GaN layer; and a 20 nm p++
-GaN

contact layer. Test samples for characterizing the PEC undercut etch were also grown

by MOCVD on freestanding c-plane GaN substrates. The epitaxial structure consisted

of 1.5 µm n-GaN; a sacrificial layer with 6 MQWs with 2.5 nm InGaN wells and 7 nm

GaN barriers with emission at 430 nm; a 110 nm Mg-doped p+-GaN layer; and a 20 nm

p++
-GaN contact layer.

The LED samples were processed into mesas that were defined using an inductively

coupled plasma (ICP) dry etch. The total LED area was 0.1 mm

2
. The etch went
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Figure 5.8: SEM cross section of (a) a 300 nm In0.04Ga0.96N post (b) a 3

period In0.04Ga0.96N/GaN (100 nm/20 nm) superlattice, (c) and a 5.5 period

In0.04Ga0.96N/In0.09Ga0.91N (20 nm/20nm) superlattice. Band structures (d) of the struc-

ture in (a), (e) of the structure in (b), and (f) of the structure in (c). Reprinted from

[E. D. Haberer, R. Sharma, A. R. Stonas, S. Nakamura, S. P. DenBaars, and E. L. Hu,

Appl. Phys. Lett., 85, 762 (2004)] with the permission of AIP Publishing [174].
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Figure 5.9: Cross-sectional schematic of (a) the as-grown epitaxial structure, (b) a par-

tially processed sample after wafer-bonding and before PEC etching, and (c) a completely

processed sample with p-GaN down and the N-face of n-GaN up. Figure from Hwang et
al. [153].

through the active region MQWs and stopped in the n-GaN interlayer. 100 nm of SiN

x

were deposited using plasma-enhanced chemical vapor deposition (PECVD) to cover the

sidewalls of the active region. A p-contact consisting of 50/500 nm Pd/Au was deposited

by electron beam evaporation. This top Au layer also served as a bonding pad for

subsequent flip-chip bonding. The sidewalls of the sacrificial MQWs were then exposed

by a second dry etch right outside the first mesa. Finally, a cathode of 20/100 nm Ti/Au

was deposited in the field outside the mesas to facilitate PEC etching. During PEC

etching, this cathode served to extract electrons into solution. As illustrated in Figure

5.9, the sidewalls of the active region were protected by SiN

x

, while the sidewalls of the

sacrificial layer were exposed for PEC undercut etching.

A flip-chip submount was prepared by depositing 20/1000 nm of Ti/Au onto a sap-

phire wafer. This submount and the sample were etched in O2 plasma at 300 torr and

100 W for 3 minutes to remove organic residue and prepare for flip-chip bonding. The
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submount and sample were bonded using a flip-chip die bonder at a force of 300 N at

330

�
C for 1 minute, resulting in a bonded sample configuration shown in Figure 5.9(b).

The bonded sample was placed in 1 M KOH with backside illumination for 5 hours for

PEC undercut etching. The light source was an LED array emitting at 405 nm. This

process resulted in the removal of the freestanding GaN substrate and the transfer of the

LEDs to the submount. A final n-contact consisting of 20/1000 nm Ti/Au was deposited,

resulting in the structure shown in Figure 5.9(c).

After n-contact deposition, LED 1 was examined by optical microscopy and scanning

electron microscopy (SEM) and packaged without further roughening of the surface. LED

2 was intentionally roughened to improve light extraction. LED 2 was etched in heated

KOH at 75

�
C with no illumination for 10 minutes, examined by optical microscopy and

SEM, etched for another 15 minutes, examined again, and packaged. Packaging included

dicing, mounting onto silver headers, wire-bonding, and encapsulating in silicone with a

refractive index of 1.4.

The key components of the structure for PEC lifto↵ were the sacrificial MQWs and

n-GaN interlayer. The undercut etch was carried out by electron-hole pairs that were

photogenerated in the sacrificial MQWs by an above band-gap light source. Holes were

confined in this n-i-n structure and reacted with KOH to oxidize the sacrificial layer,

which was then dissociated (and e↵ectively etched) in KOH. Figure 5.10 illustrates the

etch behavior of the sacrificial region. Bright-field optical and fluorescence images of the

n-i-n-p test samples described above were taken to show the time progression of the etch.

Mesas were patterned on the test samples to expose the sacrificial layer. At the onset

of the etch, the bright-field image showed an unetched mesa (Figure 5.10(a)), and the

fluorescence image showed emission from the sacrificial layer (Figure 5.10(d)). As time

progressed, the etch front proceeded to undercut the mesa, as shown in the bright-field

images (Figure 5.10(b)-(c)). At corresponding areas in the fluorescence images (Figure
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5.10(e)-(f)), the sacrificial region was black, indicating the MQWs had been etched.

Figure 5.10: (a-c) Bright-field optical and (d-f) fluorescence images of mesa structures

after 1 minute (a, d), 10 minutes (b, e), and 45 minutes (c, f) of PEC undercut etching

in 1 M KOH with a 405 nm LED array. Figure from Hwang et al. [153].

As the lateral undercut proceeded, the N-face of the n-GaN interlayer was exposed to

KOH and unintentional roughening occurred. The n-GaN interlayer was grown relatively

thick (3 µm) to allow for this concurrent roughening. If the sample was left in solution

for too long, the vertical roughening would have reached the active region and etched the

MQWs.

The surfaces of the fabricated flip-chip LEDs were studied by SEM and optical mi-

croscopy. Figure 5.11(a) shows the e↵ect of unintentional roughening on LED 1, which

was not etched in heated KOH. The surface had sparsely distributed hexagonal pyra-

mids with most feature sizes smaller than 200 nm. Figures 5.11(b) and 5.11(c) show the

surfaces of LED 2 after 10 and 25 minutes of roughening in heated KOH, respectively.

Compared with LED 1, LED 2 had more densely packed pyramids with most feature sizes
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between 400 and 650 nm after 25 minutes. The percentage of flat area also decreased

with longer immersion in KOH. For LED 1, about 70% of the area was flat. For LED

2, the percentage decreased from 30% with 10 minutes of roughening to 10% with 25

minutes of roughening. The e↵ects of roughening can be seen in the optical micrographs

in Figure 5.11(d)-(f), where the roughest sample appeared black because it e↵ectively

scattered the visible light from the microscope objective.

Previous studies [175] reported that the density of the pyramids was correlated with

the TDD. Since the density of the pyramids for GaN grown on sapphire was on the same

order as the threading dislocation densities (TDD), it was postulated that pyramids

formed around dislocations. For this study, the TDD of the bulk GaN substrate was 10

6

cm

�2
, while the densities were 5.4 ⇥ 10

8
cm

�2
, 3.6 ⇥ 10

9
cm

�2
, and 1.0 ⇥ 10

9
cm

�2
for

LED 1, LED 2 with 10 minutes of roughening, and LED 2 with 25 minutes of roughening,

respectively. These densities indicate that the formation of the pyramids is not initiated

Figure 5.11: (a-c) SEM and (d-f) optical micrographs of the surfaces of LED 1 after 0

minutes of thermal roughening (a, d), LED 2 after 10 minutes of roughening (b, e), and

LED 2 after 25 minutes of roughening (c, f). Figure from Hwang et al. [153].
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solely by threading dislocations. This non-dislocation related etch behavior has also been

reported previously [176].

Figure 5.12(a) shows the I-V curves for LEDs 1 and 2 after flip-chip processing. LED

1 had a turn-on voltage below 3.5 V. LED 2 had a higher turn-on voltage due to variations

across the wafer from growth. The I-V curve of LED 2 was comparable before and after

processing. The peak emission wavelength of both LEDs was around 432 nm with a

full-width half max (FWHM) of 15 nm (Figure 5.12(b)). The e↵ects of roughening on

LED performance are shown in Figure 5.12(c)-(d). The LEDs had areas of 0.1 mm

2
, so

1 mA corresponded to a current density of 1 A/cm

2
. At the peak EQE (at a current

density of 36 A/cm

2
), the output power and EQE were 10.3 mW and 9.9%, respectively,

for LED 1 and 14.6 mW and 14.1%, respectively for LED 2. Roughening resulted in a

42% improvement in output power and EQE.

Although this work proved the feasibility of using PEC lifto↵ for creating TFFC LEDs

from epitaxial layers grown on freestanding c-plane GaN substrates, there are several

changes that could be made to improve device performance. Incorporating a Ag-based

p-contact would significantly improve the extraction e�ciency, as the Pd/Au p-contact

that was used above had a relatively low reflectivity. Ray tracing simulations show at

least a 3x improvement in the extraction e�ciency when using a Ag-based p-contact

instead of a Pd/Au p-contact. Using a SiC submount instead of sapphire would improve

heat extraction due to its higher thermal conductivity.

5.3 PEC lifto↵ enabled mass transfer

PEC lifto↵ was applied as the release method to RGB µLEDs grown on di↵erent sub-

strates, and transfer was achieved by transfer printing with a PDMS stamp. RGB µLEDs

were grown, fabricated, and transfer printed onto a single substrate. Blue epitaxy was
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(a)

(c) (d)

+42.5%

(b)

Figure 5.12: (a) I-V curve for LEDs 1 and 2 after flip-chip processing. 1 mA of current

corresponds to a current density of 1 A/cm

2
. (b) Electroluminescence spectra showing

a peak wavelength around 432 nm with a FWHM of 15 nm. (c) Dependence of light

output power on current. (d) Dependence of EQE on current. An improvement of 42.5%

is seen in output power and EQE with roughening. Figure from Hwang et al. [153].
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grown on c-plane, green on freestanding (20

¯

21) semipolar GaN (15

�
inclined from m-

plane), and red on freestanding (11

¯

22) semipolar GaN (32

�
inclined from m-plane). As

mentioned in Section 5.2, PEC undercut requires a sacrificial layer that has a bandgap

below that of the light source. In this work, InGaN/GaN MQWs that emit between 405

and 420 nm are used.

5.3.1 MOCVD growth

For c-plane GaN (blue epitaxy), while the lateral PEC etch is proceeding, the KOH will

also vertically roughen the N-face of n-GaN. Thus, a thick (2-3 µm) interlayer of n-GaN

must be grown, or else the vertical roughening may etch away the active region MQWs.

Such a thick structure requires precise control of the morphology, or the LED epitaxy

will be dotted with V-defects. Figure 5.13 shows examples of unoptimized epitaxy that

leads to undesired surfaces. If these V-defects originate from the sacrificial MQWs and

propagate to the p-GaN, shorting becomes an issue. When the p-metal is deposited on

the p-GaN surface, the metal could follow the V-defect down to the n-GaN and cause

a short path that bypasses the MQWs (e.g. no light is emitted). To smoothen out the

morphology, the V-defects must be closed as soon as they appear, or they will continue

to grow.

V-defects on c-plane GaN arise from di↵erent growth conditions when growing InGaN

versus GaN [177]. A cross-section of a V-defect is shown in Figure 5.14. InGaN is

grown at a lower temperature than GaN (700 to 900

�
C compared with 1000 to 1200

�
C),

so the surface di↵usion of indium is limited, and the defect morphology is kinetically

governed. The dark gray layers of Figure 5.14 are InGaN quantum wells, and the thicker

white layers are the GaN barriers. During the growth, the growth rate of the GaN

was di↵erent in the V-defect than outside of the defect (the GaN layer is much thinner
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Figure 5.13: Undesired morphologies of c-plane InGaN/GaN growth shown by (a) optical

photograph, (b) optical micrograph, and (c) atomic force microscope.

Figure 5.14: Cross-sectional schematic of a V-defect. Reprinted from [X. H. Wu, C. R.

Elsass, A. Abare, M. Mack, S. Keller, P. M. Petro↵, S. P. DenBaars, and J. S. Speck,

Appl. Phys. Lett., 72, 692 (1998)] with the permission of AIP Publishing [177]
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inside the V-defect) and caused pit-like morphology. To close the pits and smooth out

the morphology, the surface mobility of Ga adatoms must be increased while growing the

quantum barrier. Changes to the growth conditions that will increase the surface mobility

include increasing the growth temperature (giving the atoms more energy to di↵use),

decreasing the V/III ratio (the ratio of N atoms to Ga atoms), decreasing the growth rate

(giving the atoms more time to di↵use and fill in the defect), and/or changing the carrier

gas to hydrogen. When increasing the growth temperature, care must be taken to protect

the quantum wells. If the temperature is ramped directly after growing the quantum well,

indium may desorb from the surface or di↵use through other layers, lowering the final

emission wavelength and intensity. To protect the wells, a thin (2-5 nm) GaN barrier/cap

should be grown at the same temperature before ramping the temperature. For the high

temperature barrier, the carrier gas may also be switched to hydrogen to help planarize

the surface (the quantum wells should be grown in nitrogen or else the indium will be

etched away). Figure 5.15 shows the structure, smooth morphologies are of the growth,

and evidence of the intact quantum wells provided by photoluminescence.

Figure 5.15: PEC LED growth (for c-plane on sapphire): (a) Cross-sectional schematic

of the epitaxy, (b) optical photograph image of the smooth surface, (c) 10⇥10 µm2
AFM

scan of the surface, and (d) photoluminescence of the two MQWs.
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Above the sacrificial quantum wells were the active regions. For the blue (⇠ 441

nm) c-plane µLEDs grown on sapphire, 6-period MQWs were grown at a temperature

between 850-900

�
C (the same epitaxy as that detailed in Chapter 2). For green (⇠ 529

nm) and red (⇠ 641 nm) epitaxy, freestanding semipolar GaN substrates were used

((20

¯

21) and (11

¯

22), respectively). The active regions were both 2-3 nm thick single

quantum wells grown at temperatures between 750-800

�
C. Although the wavelength of

the red epitaxy was over 100 nm greater than that of the green epitaxy, the growth

temperature of the InGaN quantum well was similar. In general, planes that have greater

inclination angles fromm-plane exhibit longer wavelength emission (although many other

growth issues come into play) [39, 40]. Thus, epitaxy grown on (11

¯

22) displayed higher

electroluminescence wavelengths than that grown on (20

¯

21) even though the growth

temperatures were similar.

5.3.2 Nanofabrication design: requirements and design rules

The end result of the fabrication is to have patterned µLEDs that are ready to be undercut

but still anchored to the wafer through some breakable features. The µLEDs will emit

light down through the substrate with n- and p-metals on the top surface. The areas

to be undercut should have the full LED epitaxy (n-GaN, active region MQWs, EBL,

and p-GaN). In order to PEC etch and transfer print, the final processed device needs

to have the following features: exposed sacrificial wells to allow for KOH to contact the

wells for PEC etching; anchors to hold the µLEDs onto the sample during PEC lifto↵ so

they do not float away in solution; thin structures that can be snapped o↵ mechanically;

dielectric to protect the active region wells from being etched and to cover sacrificial

wells in areas that are not supposed to be etched; a PEC metal contact to faciliate PEC

etching; and p- and n-contacts. Furthermore, all the materials need to be chemically

102



Figure 5.16: (a) Optical micrograph of PEC etched devices showing the 20 µm wide

µLED, the 100 µm mesa, and PEC etching of the vertical columns through the thin

anchors. (b) Optical micrograph of broken dielectric (highlighted with the white arrow)

and (c) SEM image of areas with lifted dielectric through which KOH may seep (circled

in red).

resistant to KOH and compatible with prolonged exposure to UV light.

The processing of this epitaxy is similar to the µLED processing of Chapter 2 but

with the added steps described above and more stringent design rules. The first three

lithographies are to: (1) etch the first mesa to expose the active region MQWs and define

the µLED area; (2) etch the second mesa to expose the sacrificial MQWs and pattern

the anchors to hold the µLEDs to substrate; and (3) deposit a dielectric to protect the

active region MQWs and the sacrificial MQWs at the anchors. The first lithography and

mesa etch are straightforward, but careful attention should be paid to the design of the

second mesa etch. Figure 5.16(a) shows that the width of the first mesa is 20 µm (for a

20 µm diameter µLED), but the n-GaN circle on which the µLED sits is 100 µm (this

extra area is for metal contacts and testing purposes; in a final manufacturing design,

this circle may be much smaller). The total PEC undercut width is thus 100 µm (or 50
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µm, since the etch will proceed from all directions). Although the dielectric will cover

the columns (shown vertically in Figure 5.16(a)), the KOH will seep through the two

thin anchors connecting the µLEDs to the columns (see the cloud-like patterns in Figure

5.16(a)). Therefore, the width of the columns should be at least 1.5x the width of the

n-GaN mesa to ensure the column is not fully etched. In addition to the geometry of the

patterns, the deposition of the dielectric must be characterized properly. If the stress of

the dielectric is tensile, there may be areas where the dielectric lifts up or even breaks o↵

as shown in Figure 5.16(b)-(c). Consequently, KOH will also etch these exposed areas,

and the µLEDs will no longer be anchored.

After the third lithography and dielectric deposition, a number of routes are available

to complete the processing with varying degrees of practicality and feasibility (shown

in Figure 5.17). Each route has its own limitations regarding compatibility with PEC

etching and are described herein. The first method is to deposit all the metals (PEC, p-,

n-contacts) before PEC etching. With this method, any lithography and processing post-

PEC etch and post-transfer printing is minimized. Processing prior to the undercut and

transfer relaxes any tight alignment tolerances that are required. However, this exposes

the metal contacts to KOH, so the metal must be chemically resistant. Aluminum was

used in the standard µLED processing of Chapter 2, but Al is easily etched away in

KOH so alternative contacts must be used. A second method is similar to the first but

with an additional step of protecting the metal from KOH exposure with a dielectric like

silicon nitride. In this case, the tight restriction of metals is relaxed and Al may be used

again. A drawback of this method is the removal of the dielectric. In addition to the

dielectric that protects the metal from KOH, there are also dielectrics already on the

µLED (for instance, the dielectric that passivates the sidewall and electrically insulates

the p- and n-GaN). Removing the dielectric that protects the metal would also strip the

other dielectrics that are necessary for the µLED.
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Figure 5.17: Process flow options for the PEC lifto↵ enabled mass transfer.

A third method is to deposit the p- and n- metals after transfer printing. Any metals

may be used (e.g. silver, if a mirror wanted to be incorporated), but there are a few

potential problems. The biggest issue is that once the µLEDs have been transferred,

their alignment and periodicity may be perturbed. In this case, it would be di�cult or

impossible to accurately deposit the metals. In addition, although PEC etching does not

significantly etch GaN, the top surface of the p-GaN may be roughened. This roughness

may a↵ect adhesion or contact resistance of the p-contact. Instead of depositing metals

after transferring, a fourth method would be to deposit the p- and n- metals after PEC

etching but before transfer printing. With the µLEDs still on the sample, the periodicity

of the patterns remains. However, the µLEDs are now a lot more physically fragile as

they are only held by two thin anchors. Any mechanical disturbance to the µLEDs (e.g.

sonication of the samples in solvent (which is done during solvent cleaning), depositing

photoresist and spinning the sample, or metal lifto↵) may cause the anchors to break o↵
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and the µLEDs to float away in solution.

Figure 5.18: Process overview: Optical micrograph of (a) mesa 1 and 2 etches, (b)

dielectric deposition on the vertical columns (appears green in the image), (c) magnified

image of µLED with dielectric, (d) final device structure of µLEDs that are ready to be

released from the substrate, and (e) magnified optical micrograph. (f) SEM image of the

µLED, (g) cross-sectional schematic of the processed device, and (h) Depth profile of the

µLED taken across the white arrow in (d).

Considering the advantages and disadvantage of each route, the first option made

most sense to test the PEC etch and transfer print process. Although the contact metals

may be a↵ected by KOH, the limitations of the other methods (loss of periodicity, physical

instability, etc) would have added unnecessary troubleshooting when trying to make a

proof of concept. Figure 5.18 details the process flow. 40 nm of heated indium tin oxide

was blanket deposited. Then, circular mesas were patterned by etching through the ITO

with a reactive ion etch (RIE) chemistry of methane, hydrogen, and argon (4/20/10 sccm
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of MHA at 75 mTorr with a bias of 370V) and through to the n-GaN with a RIE etch

using Cl2. The total etch depth was about 1.1 µm. A second mesa etch was done with

a 2.2 µm RIE etch. The first etch stopped at the n-GaN interlayer, and the second etch

went down to the bottom n-GaN layer to expose the sidewalls of the sacrificial MQWs

(Figure 5.18(a)). Next, dielectric was deposited by ion beam deposition (IBD) to cover

the columns and to passivate the sidewalls of the µLEDs. Either 500 nm of SiN or

the omnidirectional reflector detailed in Chapter 2 (a seven layer alternating stack of

SiO2 and Ta2O5 capped with Al2O3) may be used as the dielectric (Figure 5.18(b)-(c)).

Finally, a common PEC, n-, and p-contact of 20 nm Ti/1000 nm Au was deposited.

Figure 5.18(d)-(f) shows the 20 µm diameter µLED covered with Ti/Au and an annular

n-contact atop the n-GaN. Figure 5.18(g)-(h) shows the cross-section and height profile

of a µLED.

5.3.3 PEC lifto↵

Figure 5.19(a) shows the PEC etch station. A 405 nm LED array (spectrum in Figure

5.19(b)) emitted light, which was focused through a magnifying lens, onto the µLEDs

in 0.5M KOH at room temperature. The power density of the LED array was 8.68

mW/cm

2
. Other sources may be used, such as a 405 nm laser diode. Considerations

Figure 5.19: (a) Optical photograph of the PEC setup and (b) photoluminescence spec-

trum of 405 nm LED array.
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in choosing a source include the power density and the emission profile. High power

densities increase the generation rate of electrons and holes in the sacrificial layer, but

the etch rate saturates above a certain power density [173]. The emission profile, or spot

size, also a↵ects the uniformity of the etch as the intensity (and carrier generation) will

vary across the sample. Laser diodes have much smaller spot sizes than LED arrays but

have higher power densities. Optimization of the etch rate may be done to balance the

two competing e↵ects.

Figure 5.20: Fluorescence images of (a) the c-plane µLEDs before PEC etching in 0.5M

KOH and (b) test structures on the same sample after 165 minutes of PEC etching. SEM

images of the mesa sidewall (c) before and (d) after the etch showing the sacrificial layer.

After 165 minutes of PEC etching, the sacrificial MQWs were etched through. Before

the etch, fluorescence from the sacrificial MQWs may be seen in Figure 5.20(a). After

the etch was completed, those sacrificial MQWs were etched through and only the yel-

low fluorescence of the GaN remained in the test structures shown in Figure 5.20(b).

SEM images before and after the PEC etch in Figure 5.20(c)-(d) show the formation of

hexagonal pyramids on the N-face of the n-GaN as a result of exposure to KOH. For the
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semipolar samples, the interface was much flatter as there was little to no roughening.

Once the PEC etch was done, there was an air gap between the n-GaN of the LED and

the n-GaN below the sacrificial MQWs except at the vertical columns. The µLEDs were

released from the substrate and ready to be transfer printed.

5.3.4 Transfer printing of µLEDs

To transfer the µLEDs, an elastomeric stamp was used. This stamp was made out of

PDMS and could be used as a temporary substrate for the µLEDs. To make the stamp,

the PDMS base was mixed with a curing agent (10:1 ratio of base to curing agent) and

poured onto a flat surface (such as a silicon wafer or a plastic petri dish). The PDMS

was cured at room temperature for 16 hours and then at 65

�
C for one hour. To make

a handle for the PDMS, glass slides were cleaned in acetone, isopropyl alcohol, and

deionized water. The glass slide surface was treated in a UV ozone photoreactor for 10

minutes to increase the hydrophilicity of the glass surface and promote adhesion to the

PDMS. The PDMS was then cut into a trapezoidal prism as shown in Figure 5.21. The

Figure 5.21: Images of (a) µLEDs sandwiched between the growth substrate and PDMS,

(b) µLEDs transferred to PDMS. (c)-(d) Optical micrographs of µLEDs transferred to

PDMS.
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PDMS stamp was slowly lowered onto the µLED surface and left on the sample for five

to ten minutes to allow the surface of the PDMS to wet the µLEDs. One end of the glass

slide was quickly pushed down to mechanically break o↵ the anchors of the µLEDs and

transfer them to the PDMS. Figure 5.21(b)-(d) shows the µLEDs on the surface of the

PDMS.

Once the µLEDs were on the PDMS, they must be transferred to a final substrate. In

this case, the µLEDs were transferred to a glass slide. The glass slide was also cleaned in

solvent and treated in with UV ozone. In order to transfer the µLEDs, an adhesion layer,

Norland NOA61, was deposited on the glass slide. NOA61 is a clear, polyurethane based

photopolymer that cures (and crosslinks) under UV light and has a refractive index of

1.56. NOA61 was spin-coated onto a glass slide at 2000 rpm for one minute. The PDMS

stamp (with the µLEDs) was slowly lowered onto the NOA61-coated glass slide as shown

in Figure 5.22(a) until the NOA61 wetted the µLEDs. Once stable, a UV-A lamp was

used to cure the NOA61 for 1.5 hours. Once the cure was done, the NOA61 was hardened

and bonded to the µLED. This bond was stronger than the bond between the µLEDs

and the PDMS stamp, so the PDMS stamp could be slowly peeled o↵ the µLEDs until

the µLEDs were transferred to the glass substrate (Figure 5.22(b)-(c)).

Figure 5.22: Images of (a) µLEDs sandwiched between PDMS and a glass substrate, (b)

µLEDs transferred to a glass substrate. (c) Optical micrographs of µLEDs transferred to

a glass substrate.
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5.3.5 Optoelectronic results

After processing (before PEC etching and transfer printing), on-wafer measurements

were taken to collect current density versus voltage characteristics as well as wavelength

spectra. Figure 5.23(a)-(c) displays the red, green, and blue µLEDs on their native

growth substrate. The J-V characteristics in Figure 5.23(d) indicated optimization of

the semipolar growths were needed. Low voltage (< 3 V at 20 A/cm

2
) green devices

on (20

¯

21) without the sacrificial layer below had been fabricated previously, but the p-

GaN contact growth conditions needed to be optimized. The growths of these semipolar

Figure 5.23: µLED characteristics on-wafer (before PEC etching): Optical photographs

of the (a) red, (b) green, and (c) blue µLEDs; (d) current density versus voltage charac-

teristics; and wavelength spectrum at various current densities for the (e) red, (f) green,

and (g) blue µLEDs.
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devices is outside the scope of this thesis. The wavelength shift of these µLEDs due to

the quantum-confined Stark e↵ect (QCSE) is illustrated in Figure 5.23(e)-(f). The peak

wavelength of the blue µLED had the least shift of 22 nm from 1 A/cm

2
to 1000 A/cm

2
.

Both the green and red µLEDs had significant shifts of 74 nm and 59 nm, respectively,

over the same current density range. The semipolar (20

¯

2

¯

1) plane has a much more stable

wavelength (compared with (20

¯

21) and (11

¯

22)), but there are growth issues associated

with growing higher indium compositions, such as black triangular defects [178].

Throughout the PEC etch and transfer process, the µLEDs were tested to measure

current versus voltage and voltage versus light output power characteristics. Measure-

ments were taken after fabrication and before PEC etching; after PEC etching; and after

transferring to glass. Figure 5.24 shows the blue µLEDs were transferred intactly from

sapphire to a PDMS temporary substrate to a final glass substrate. The J-V charac-

teristics indicated that the voltage and series resistance remained low throughout the

Figure 5.24: Blue µLED characteristics on-wafer, after PEC etching, and after transfer

printing to glass: (a) Current density versus voltage characteristics, (b) light output

power versus current density, (c) wavelength spectrum, and (d)-(f) optical photographs

of µLED on glass displaying the transparency (scale bar is the same in (d)-(f)).
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process. One of the earlier concerns with this process was that the exposure of the p-

and n-metals to KOH would a↵ect the conductivity of the metals, but the J-V curves

suggested the contacts were still robust. The quality of the quantum wells and light

emission was retained throughout this process as shown in Figure 5.24(b)-(c). The light

output power behavior was the same before and after transferring the µLEDs. The drop

in power after PEC etching (orange curve marked with ‘x’s) was due to the air gap that

was introduced between the quantum wells and the sapphire substrate. This air gap in-

duced reflection at the n-GaN/air interface and the air/sapphire interface. However, the

light output power was recovered when that air gap was removed and the µLEDs were

transferred to the NOA61-coated glass substrate. The peak wavelength and full-width

at half-max (FWHM) also remained the same at 443 nm and 14 nm, respectively.

Figure 5.25: Optical photographs of µLEDs on acrylic (not turned on) demonstrating

the (a) transparency and (b)-(d) flexibility. The acrylic substrate is 46.5mm ⇥ 23.5mm.

With this method, µLEDs may be transferred to a wide range of substrates, such as

acrylic (Figure 5.25). The limitation lies in the adhesion between the desired substrate

and the adhesion layer (NOA61 in this case). The adhesive is spin-coated and needs to
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create a uniform layer across the substrate so that the µLEDs will be seated properly

on the substrate. If there are adhesion issues, surface cleaning of the substrate (such as

solvent cleaning, UV ozone treatment, and/or annealing) or even choosing di↵erent NOA

products may improve the adhesive properties.

Figure 5.26 demonstrates the versatility of the method and its applicability to dif-

ferent growth substrates. Red, green, and blue µLEDs were transferred onto the acrylic

from (11

¯

22) GaN, (20

¯

21) GaN, and c-plane sapphire, respectively. The µLEDs may be

electrically turned on while the substrate was flat (Figure 5.26(a)-(f)) and when bent (Fig-

ure 5.26(g)-(i)) without degradation. The optoelectronic characteristics remained similar

to those in Figure 5.23. Furthermore, Figure 5.27(a)-(c) demonstrates that µLEDs of

all three colors were on the same substrate, while the wavelengths of the µLEDs at 20

A/cm

2
are shown in Figure 5.27(d). This ability to transfer onto the same substrate

is vital for making full-color displays. Monolithic displays do not require mass trans-

fer and are thus much simpler to fabricate. This PEC lifto↵ method allows for release

of µLEDs from both sapphire and freestanding GaN substrates. Sapphire is the main

workhorse of the LED industry and will still dominate the InGaN market for the fore-

seeable future. However, given its unique advantages of reduced polarization and longer

wavelength emission, freestanding GaN may emerge as the substrate of choice for green

(and even red) µLEDs. As there is currently no proven technology for release of µLEDs

from freestanding GaN, the process invented in this chapter may prove to be significant

for future display technologies.
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Figure 5.26: Optical photographs of RGB µLEDs on acrylic. The acrylic substrate is

46.5mm ⇥ 23.5mm.
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Figure 5.27: (a)-(c) Optical photographs of µLEDs turned on and (d) Wavelength spectra

of RGB µLEDs at 20 A/cm

2
.
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Chapter 6

Looking Forward

6.1 Summary of thesis

This dissertation has covered the µLED ideas and research e↵orts undertaken at the

University of California, Santa Barbara. The motivation behind Chapter 2 came from a

simple question: “What happens to the e�ciency of InGaN µLEDs as the size shrinks?”

The question arose from discussions about the drastic drop of e�ciency of red AlGaInP

µLEDs. At the time, there had not been much in the research literature to back up this

claim about AlGaInP, but it seemed common knowledge to those in the LED industry.

This question prompted the experiment laid out in Chapter 2.2 and a large majority of

the µLED work throughout the dissertation. Although other research groups had done

similar studies, their work was inconclusive as their measurements showed poor EQEs

below 10%. The main findings of Chapter 2.2 showed that high e�ciencies (40 � 50%)

may be sustained (with some loss) as the µLED dimension decreased from 100 µm to 10

µm [53]. The loss of e�ciency was attributed to surface recombination at the sidewall,

which prompted an experiment on sidewall passivation. Sidewalls passivated with SiO2
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deposited by ALD improved the EQE and suppressed reverse leakage current [60].

Around the same time, other researchers at UCSB (mainly Drs. Erin Young, John

Leonard, and Benjamin Yonkee) et al. demonstrated tunnel junctions grown by a hybrid

MOCVD/MBE method [94–96,179]. These projects prompted a review of tunnel junction

work grown by MOCVD [87]. Tunnel junction contacts for µLEDs are desirable to allow

for n-type metal contacts and multiple active region growths on the same wafer. The

issue with MOCVD grown tunnel junctions had primarily been the activation mechanism

of the buried p-GaN (lateral di↵usion of hydrogen was not able to completely activate

large area LEDs). The dimensions of µLEDs seemed more suitable for achieving complete

activation. Chapter 3 detailed the growth and fabrication of µLEDs with tunnel junction

contacts [104]. However, there was still a voltage penalty as the smallest 5⇥5 µm2 µLEDs

still had an additional 1 V compared with µLEDs without tunnel junctions. The voltage

penalty seemed to arise from a di↵usion barrier at the sidewall. Chemical treatments

and anneals were done to remove the barrier, but the voltage penalty still existed. This

di↵usion barrier is still a large issue for µLEDs with tunnel junction contacts.

Chapter 4 outlined a way to overcome the drop in e�ciency with µLED size. Since

the loss was due to surface recombination at the sidewall, the active region sidewall was

physically separated from the physical mesa sidewall. Current apertures were designed to

electrically confine current and define µLED areas. The current apertures were created

by implanting areas outside of the µLED with Al ions. The implantation was successful

in defining µLED areas, but there was a larger loss of e�ciency with size. This loss

may have been due to to the damage induced by the implant and a reduced extraction

e�ciency. However, the “mesa-less” design seems to be the best way to keep µLED

e�ciencies high.

Chapter 5 presented a new mass transfer method that combined PEC lifto↵ and

transfer printing. The advantage of this technique is that it is compatible with µLEDs
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grown on freestanding GaN substrate. While the majority of LEDs and µLEDs use GaN

on sapphire (or silicon and silicon carbide), µLEDs on freestanding GaN o↵er advantages

of narrow emission linewidths, stable wavelengths (with current), and longer wavelength

emission that may reach the red regime. This method was successful in transferring red,

green, and blue InGaN µLEDs to a flexible and transparent acrylic substrate.

6.2 Future directions and potential solutions

It is truly an exciting time for µLED research and development. There are many di-

rections in which to continue µLED work. For the tunnel junction project, solving the

voltage penalty is the biggest problem. Incorporating InGaN tunnel junctions (rather

than GaN) will help reduce the tunneling barrier by taking advantage of the polariza-

tion within those layers. However, the most pressing issue is the di↵usion barrier at the

sidewall. Dry etching results in type conversion (p-type to n-type) at the very edge,

and that n-GaN prevents complete di↵usion of hydrogen out of the sidewalls. Chemical

treatments may not be e↵ective in removing this barrier, but further regrowth on the

sidewall after etching the mesa may help recover the p-GaN. However, the regrowth is

not trivial and requires careful design.

A more promising research direction is addressing the nonradiative recombination at

the sidewall that lowers the e�ciencies. Sidewall passivation with di↵erent materials such

as AlN or even GaN by sputter deposition (or for a more complex method, MOCVD) may

be promising. On the other hand, a selective MOCVD growth method would eliminate

the dry etch from the process. A selective growth of full µLED structures in the desired

areas may prevent traps at the sidewall. However, the growth is complicated by faceting of

the sidewalls. The µLED dimensions are small enough that faceting would be significant.

Furthermore, there may still be surface recombination issues and sidewall passivation
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might be necessary. Other directions include continuing with ion implantation to define

current apertures. It is unclear whether the lower e�ciencies of the ion implanted µLEDs

in Chapter 4 were a result of a lowered extraction e�ciency, a lowered IQE, or both.

Further characterization of the implanted regions combined with ray tracing modeling

would elucidate whether the implantation was reducing only the extraction e�ciency or

the IQE as well.

Indubitably, companies have already answered some of these questions and developed

solutions. However, the µLED field is still very young, and there will be much more

exciting work to be done. The applications are wide-ranging and may still be in the

heads of inventors and dreamers. µLEDs will have a profound impact on the way we

receive, use, and transmit information in the world.
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Growth of semipolar (2021) GaN layers on patterned silicon (114) 1 o↵ by Metal

Organic Vapor Phase Epitaxy. J. Cryst. Growth, 419:88–93, 2015.

[37] Michel Khoury, Hongjian Li, Leah Y. Kuritzky, Asad J. Mughal, Philippe DeMierry,

Shuji Nakamura, James S. Speck, and Steven P. DenBaars. 444-nm InGaN light-

emitting diodes on low-defect-density (11-22) GaN templates on patterned sap-

phire. Appl. Phys. Express, 10:106501, 2017.

[38] Hongjian Li, Michel Khoury, Bastien Bonef, Abdullah I. Alhassan, Asad J. Mughal,

Ezzah Azimah, Muhammad E.A. Samsudin, Philippe De Mierry, Shuji Naka-

mura, James S. Speck, and Steven P. DenBaars. E�cient Semipolar (11-22) 550

nm Yellow/Green InGaN Light-Emitting Diodes on Low Defect Density (11-22)

GaN/Sapphire Templates. ACS Appl. Mater. Interfaces, 9(41):36417–36422, 2017.

[39] Yuji Zhao, Sang Ho Oh, Feng Wu, Yoshinobu Kawaguchi, Shinichi Tanaka, Kenji

Fujito, James S. Speck, Steven P. DenBaars, and Shuji Nakamura. Green Semipolar

(20-2-1) InGaN Light-Emitting Diodes with Small Wavelength Shift and Narrow

Spectral Linewidth. Appl. Phys. Express, 6(6):062102, jun 2013.

[40] Yuji Zhao, Qimin Yan, Chia-Yen Huang, Shih-Chieh Huang, Po Shan Hsu, Shinichi

Tanaka, Chih-Chien Pan, Yoshinobu Kawaguchi, Kenji Fujito, Chris G. Van de

Walle, James S. Speck, Steven P. DenBaars, Shuji Nakamura, and Daniel Feezell.

Indium incorporation and emission properties of nonpolar and semipolar InGaN

quantum wells. Appl. Phys. Lett., 100(20):201108, 2012.

124



[41] S. X. Jin, J. Li, J. Y. Lin, and H. X. Jiang. InGaN/GaN quantum well intercon-

nected microdisk light emitting diodes. Appl. Phys. Lett., 77(20):3236, 2000.

[42] H. X. Jiang, S. X. Jin, J. Li, J. Shakya, and J. Y. Lin. III-nitride blue microdisplays.

Appl. Phys. Lett., 78(9):1303–1305, 2001.

[43] S. X. Jin, J. Shakya, J. Y. Lin, and H. X. Jiang. Size dependence of III-nitride

microdisk light-emitting diode characteristics. Appl. Phys. Lett., 78(22):3532–3534,
2001.

[44] Z. Y. Fan, J. Y. Lin, and H. X. Jiang. III-nitride micro-emitter arrays: development

and applications. J. Phys. D. Appl. Phys., 41:094001, 2008.

[45] Zheng Gong, Shirong Jin, Yujie Chen, Jonathan McKendry, David Massoubre,

Ian M. Watson, Erdan Gu, and Martin D. Dawson. Size-dependent light output,

spectral shift, and self-heating of 400 nm InGaN light-emitting diodes. J. Appl.
Phys., 107(1):013103, jan 2010.

[46] C. W. Jeon, H. W. Choi, and M. D. Dawson. Fabrication of matrix-addressable

InGaN-based microdisplays of high array density. IEEE Photonics Technol. Lett.,
15(11):1516–1518, 2003.

[47] S Lu, W Liu, Z H Zhang, S T Tan, Z Ju, Y Ji, X Zhang, Y Zhang, B Zhu, Z Kyaw,

N Hasanov, X W Sun, and Hilmi Volkan Demir. Low thermal-mass LEDs: size

e↵ect and limits. Opt. Express, 22(26):32200–32207, 2014.

[48] Jonathan J. D. McKendry, R.P. Green, A.E. Kelly, Zheng Gong, B. Guilhabert,

David Massoubre, E. Gu, and M. D. Dawson. High-Speed Visible Light Commu-

nications Using Individual Pixels in a Micro Light-Emitting Diode Array. IEEE
Photonics Technol. Lett., 22(18):1346–1348, 2010.

[49] Pengfei Tian, Jonathan J D McKendry, Zheng Gong, Benoit Guilhabert, Ian M.

Watson, Erdan Gu, Zhizhong Chen, Guoyi Zhang, and Martin D. Dawson. Size-

dependent e�ciency and e�ciency droop of blue InGaN micro-light emitting diodes.

Appl. Phys. Lett., 101(23):231110, dec 2012.

[50] François Olivier, Sauveur Tirano, Ludovic Dupré, Bernard Aventurier, Christophe
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T Niermann, M Narodovitch, and M Lehmann. All metalorganic chemical vapor

phase epitaxy of p/n-GaN tunnel junction for blue light emitting diode applications.

Appl. Phys. Lett., 110(10):102104, mar 2017.

[89] Zi-Hui Zhang, Swee Tiam Tan, Zabu Kyaw, Yun Ji, Wei Liu, Zhengang Ju, Namig

Hasanov, Xiao Wei Sun, and Hilmi Volkan Demir. InGaN/GaN light-emitting diode

with a polarization tunnel junction. Appl. Phys. Lett., 102(19):193508, may 2013.

[90] Mitsuru Kaga, Takatoshi Morita, Yuka Kuwano, Kouji Yamashita, Kouta Yagi,

Motoaki Iwaya, Tetsuya Takeuchi, Satoshi Kamiyama, and Isamu Akasaki. GaInN-

Based Tunnel Junctions in n-p-n Light Emitting Diodes. Jpn. J. Appl. Phys.,
52(8S):08JH06, aug 2013.

[91] Daiki Takasuka, Yasuto Akatsuka, Masataka Ino, Norikatsu Koide, Tetsuya

Takeuchi, Motoaki Iwaya, Satoshi Kamiyama, and Isamu Akasaki. GaInN-based

tunnel junctions with graded layers. Appl. Phys. Express, 9(8):4–7, 2016.

[92] M. Malinverni, Denis Martin, and N. Grandjean. InGaN based micro light emitting

diodes featuring a buried GaN tunnel junction. Appl. Phys. Lett., 107(5):051107,
2015.

[93] Sriram Krishnamoorthy, Fatih Akyol, and Siddharth Rajan. InGaN/GaN tun-

nel junctions for hole injection in GaN light emitting diodes. Appl. Phys. Lett.,
105(14):141104, oct 2014.

[94] Erin C. Young, Benjamin P. Yonkee, Feng Wu, Sang Ho Oh, Steven P. DenBaars,

Shuji Nakamura, and James S. Speck. Hybrid tunnel junction contacts to III-nitride

light-emitting diodes. Appl. Phys. Express, 9(2):022102, feb 2016.

[95] Benjamin P. Yonkee, Erin C. Young, Changmin Lee, John T. Leonard, Steven P.

DenBaars, James S. Speck, and Shuji Nakamura. Demonstration of a III-nitride

edge-emitting laser diode utilizing a GaN tunnel junction contact. Opt. Express,
24(7):7816, apr 2016.

[96] Benjamin P. Yonkee, Erin C. Young, Steven P. DenBaars, Shuji Nakamura, and

James S. Speck. Silver free III-nitride flip chip light-emitting-diode with wall

plug e�ciency over 70% utilizing a GaN tunnel junction. Appl. Phys. Lett.,
109(19):191104, nov 2016.

[97] Ho Won Jang and Jong Lam Lee. Low-resistance and high-reflectance

Ni/Ag/Ru/Ni/Au ohmic contact on p-type GaN. Appl. Phys. Lett., 85(19):4421–
4423, 2004.

[98] Ho Won Jang, Jun Ho Son, and Jong-Lam Lee. Formation of High-Quality Ag-

Based Ohmic Contacts to p-Type GaN. J. Electrochem. Soc., 155:H563, 2008.

129



[99] Jun Ho Son, Yang Hee Song, Hak Ki Yu, and Jong Lam Lee. E↵ects of Ni cladding

layers on suppression of Ag agglomeration in Ag-based Ohmic contacts on p-GaN.

Appl. Phys. Lett., 95(6):1–4, 2009.

[100] Munsik Oh and Hyunsoo Kim. High-e�ciency GaN-based light-emitting diodes

fabricated with identical Ag contact formed on both n- and p-layers. Opt. Express,
21(18):20857–20862, 2013.

[101] P. Boguslawski, E. L. Briggs, and J. Bernholc. Native defects in gallium nitride.

Phys. Rev. B, 51(23):17255–17258, 1995.

[102] Stacy J. Kowsz, Erin C. Young, Benjamin P. Yonkee, Christopher D. Pynn,

Robert M. Farrell, James S. Speck, Steven P. DenBaars, and Shuji Nakamura. Us-

ing tunnel junctions to grow monolithically integrated optically pumped semipolar

III-nitride yellow quantum wells on top of electrically injected blue quantum wells.

Opt. Express, 25(4):3841, 2017.

[103] Abdullah I. Alhassan, Erin C. Young, Ahmed Y. Alyamani, Abdulrahman Albadri,

Shuji Nakamura, Steven P. DenBaars, and James S. Speck. Reduced-droop green

III-nitride light-emitting diodes utilizing GaN tunnel junction. Appl. Phys. Express,
11(4), 2018.

[104] David Hwang, Asad Mughal, Matthew S. Wong, Abdullah I. Alhassan, Shuji Naka-

mura, and Steven P. DenBaars. Micro-light-emitting diodes with III-nitride tunnel

junction contacts grown by metalorganic chemical vapor deposition. Appl. Phys.
Express, 11, 2018.

[105] Emmanouil Kioupakis, Patrick Rinke, André Schleife, Friedhelm Bechstedt, and
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