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The magnitudes of dynamically triggered earthquakes 

by 

Stephen Hernandez 

Abstract Large dynamic strains carried by seismic waves are known to trigger seismicity 

far from their source region. It is unknown, however, whether surface waves trigger only 

small earthquakes, or whether they can also trigger large, societally significant 

earthquakes. To address this question, we use a mixing model approach in which total 

seismicity is decomposed into 2 broad subclasses: “triggered” events initiated or 

advanced by far-field dynamic strains, and “untriggered” spontaneous events consisting 

of everything else. The b-value of a mixed data set, bMIX, is decomposed into a weighted 

sum of b-values of its constituent components, bT and bU. For populations of earthquakes 

subjected to dynamic strain, the fraction of earthquakes that are likely triggered, fT, is 

estimated via inter-event time ratios and used to invert for bT. The confidence bounds on 

bT are estimated by multiple inversions of bootstrap resamplings of bMIX and fT. For 

Californian seismicity, data are consistent with a single-parameter Gutenberg-Richter 

hypothesis governing the magnitudes of both triggered and untriggered earthquakes. 

Triggered earthquakes therefore seem just as likely to be societally significant as any 

other population of earthquakes. 

 

 

  

 

 



vi	  	  

Acknowledgments 

I would like to thank Emily Brodsky and Nicholas van der Elst for their guidance and 

extensive conversations that made this thesis possible.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1	  	  

The magnitudes of dynamically triggered earthquakes 

by 

Stephen Hernandez 

Transient strains delivered by large amplitude seismic waves are frequently associated 

with seismicity rate increases in the far-field at both active margins and stable plate 

interiors [Hill et. al., 1993; Velasco et. al., 2008]. This triggering phenomenon is 

frequently attributed to dynamic stresses since static stresses decay quickly at such large 

distances (≥2-3 fault lengths) [King et. al., 1994]. One of several outstanding problems 

associated with remote dynamic triggering is whether the magnitudes of triggered 

earthquakes are significantly different from the magnitudes of ambient seismicity. For 

instance, Parsons and Velasco [2011] investigated whether large (M≥7) events are 

capable of dynamically triggering other large (5≤M≤7) earthquakes in the far-field, and 

found that they were unable to observe near-instantaneous triggering of large events in 

the far-field. This conclusion was somewhat upended by the 2012 Sumatra-East Indian 

Ocean earthquake, which triggered a clear increase in magnitude 5+ earthquakes over 

several days [Pollitz et al., 2012]. Statistical interpretations of seismicity suggest that 

even when the initial triggered earthquakes are small, a cascade of events drawn from a 

single magnitude distribution can culminate in large, societally significant earthquakes 

[Ogata, 1988; Felzer et. al., 2002; Felzer et. al., 2004]. With this prospect in mind, we 

seek to determine if populations of earthquakes that include many remotely triggered 

events have a different mean magnitude than those that contain very few triggered 

earthquakes.  
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 This article begins with an overview of earthquake frequency-magnitude 

distributions, followed by a discussion of a mixing model that relates the observable b-

value of a mixed group of triggered and untriggered earthquakes, bMIX, to the parameter 

of interest (the b-value of the triggered events, bT). Utilizing this model requires 

constructing populations of earthquakes with an inferred fraction of triggered events. We 

proceed to form groups of earthquakes that have been affected by dynamic strains of 

similar amplitude. We measure the fraction of triggered events in each of these groups 

using an inter-event time statistic and invert for bT.  

 

Earthquake Magnitude Distributions 

 The magnitude-frequency distribution of earthquakes over broad swaths of 

regions and time can be represented by the cumulative Gutenberg-Richter (GR) 

distribution  

 

                                                                     (1) 

 

where a and b are constants, N(m) is the number of earthquakes with magnitude greater 

than m, and m≥MC, with MC the magnitude of completeness of the catalog [Ishimoto and 

Iida, 1939; Gutenberg and Richter, 1942]. The Aki-Utsu maximum likelihood estimator 

for the parameter b is 

 

                                                                  (2) 

log10 (N(m)) = a − b ⋅m

b = log10 (e)
〈M 〉 −MC
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where ⟨M⟩ is the mean magnitude [Aki, 1965; Utsu, 1965].  

 The Gutenberg-Richter distribution is a representation of the exceedance 

probabilities for a given range of magnitudes. For constant a-value, differences in b-value 

represent differences in the relative hazard of large earthquakes in different regions. 

Characterizing and identifying differences in b-values has implications for both hazard 

analysis and the physical mechanisms of earthquake nucleation [Frohlich and Davis, 

1993; Utsu, 1999; Schorlemmer et. al., 2005]. Other parameterizations of the frequency-

magnitude distribution are possible, including a truncated distribution that includes 

maximum magnitude as a free parameter [Holschneider et al., 2011]. However, resolving 

a multivariate distribution requires even more data than resolving differences in mean 

magnitude. As will be shown below, resolving even mean magnitude differences is at the 

limit of the current data resolution and so no more complex model is warranted by the 

data. 

 

Mixing Model  

 Suppose a sequence of earthquake magnitudes, Mi
mix, exists such that it is 

composed entirely of either triggered, Mj
T, or untriggered, Mk

U, events. The sum of 

magnitudes of the mixed (composite) catalog can be expressed as 

 

                                                        (3) 
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where nT and nU are the total number of triggered and untriggered observations, and ntot = 

nT + nU. Equation (3) can be recast as a weighted sum of the means of the individual 

components 

 

                                               (4) 

 

where fT = nT/ntot. Finally, since the Aki-Utsu equation (equation (2)) relates the b-value 

of a given dataset to the mean magnitude of that dataset, it is trivial to show that 

 

                                                            (5) 

 

In this formulation, we are assuming that the minimum magnitude of completeness is 

equivalent for both subcatalogs, MT and MU. Application of a maximum likelihood 

methodology yields similar results [Kijko and Smit, 2012; Appendix A]. In practice, we 

impose 2 regularity conditions to stabilize the inversion and to produce physically 

meaningful results: the denominator in equation (5) must be greater than 0 and fT must be 

greater than 0 (i.e., nT greater than 0). For fT greater than 0, the denominator is greater 

than 0 if bU/bMIX > 1 - fT. 

To use equation (5), we need to construct populations of earthquakes with 

differing fractions triggered and then perform two distinct tasks: (1) measure bMIX in the 

combined population and (2) determine the fraction of triggered events.  Additionally, we 

Mmix = fT ⋅ MT + (1− fT ) ⋅ MU

bT =
fT ⋅bU

bU
bMIX

+ fT −1
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need to find a group of earthquakes with a very low fraction of triggering in order to 

estimate the untriggered b-value bU. 

 We will accomplish all of these goals by capitalizing on the previous observation 

that the fraction of triggered events in the far-field is a well-defined function of the peak 

amplitude of the seismic waves, i.e., larger amplitude waves trigger more events [van der 

Elst and Brodsky, 2010]. Therefore, we can construct groups of earthquakes that 

immediately follow dynamic strains from distant earthquakes. The groups of earthquakes 

following large amplitude shaking will have a large (and measurable) triggered fraction, 

fT, and can be used in conjunction with equation (5) to measure the b-value of triggered 

earthquakes, bT. Those following small or extremely distant earthquakes will have a very 

low triggered fraction and can be used to approximate bU. Note that this definition of the 

untriggered population may include many earthquakes that are triggered by other, 

unidentified local mainshocks. It has been proposed elsewhere that the fraction of locally 

triggered events catalog-wide is large and so essentially any group of earthquakes will 

contain aftershocks [Marsan et. al., 2008]. However, for the purpose of this study we are 

asking if a group of identifiable, remotely triggered events has magnitude behavior that is 

distinct from other groups of earthquakes. This is a key question for both operational 

forecasting and physical understanding of the dynamic triggering process.  

 

Data and Analysis Method 

 Event location, depth, origin time, and magnitude are extracted for the period 01 

Jan 2009 to 01 Jan 2014. This period was chosen because of a California-wide change in 

the definition of ML, implemented in 2008 for hypocenters cataloged by the Southern 
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California Seismic Network (SCSN, network code CI) and in January 2009 for seismicity 

within the Northern California Seismic Network (NCSN, network code NC) [Hutton, 

2010; Tormann et. al., 2010; Uhrhammer et. al., 2011]. Data with network codes NC and 

CI were accessed from the Advanced National Seismic System (ANSS) Catalog (last 

accessed Jan. 2014, http://www.ncedc.org/). Events with depth greater than 30 km and 

magnitude less than MC=1.8 are discarded to yield a complete and uniform catalog within 

the state of California vicinity (32 < Lat. < 42, -124 < Lon. < -114). Data from Nevada 

(NN code) is purposefully excluded from the ANSS search because of systematic 

differences in magnitude determination [Uhrhammer et. al., 1996]. The b-value and 95% 

confidence level, generated via 1000 bootstrap resamplings, for the combined CI and NC 

seismicity is 0.86 ± 0.01.  

 In order to identify earthquake populations with strong triggering, we need to 

estimate the local peak ground velocity from a distant earthquake. We make this estimate 

by inverting a surface wave magnitude regression appropriate at both regional and 

teleseismic distances. Our target catalog is partitioned into ~1300 spatial nodes with 

accompanying seismicity within a 5 km radius (Figure 1). This grid scale encompasses 

approximately the same area as the 0.1°x0.1° grids selected in van der Elst and Brodsky 

[2010]. For each node, we loop through a global catalog of 'test triggers.' Events with 

magnitude MW>5 from the ANSS catalog qualify for inclusion as a test trigger. Depths 

are limited to those shallower than 50 km because of their greater relative efficiency at 

generating surface waves. Additionally, each global test trigger must be at least 200 km 

from a local node. At the reference period of T=20 seconds,  
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                                    (6) 

where Aµ is the zero-to-peak amplitude in microns, Δ is the epicentral distance in degrees 

[Russell, 2006]. The parameter fc corrects for the zero-phase third-order Butterworth filter 

applied to the data and is equal to 0.03·(Δ−1/2). Since equation (6) is an empirically 

derived regression, we do not actually apply any filters to any seismic waveforms; we 

simply replace the MS value in the equation with the MW for the test trigger given in the 

catalog. Although MS and MW are not strictly the same quantity, the MW scale has been 

calibrated to approximate the MS scale for values less than ~MW=8 (the point where MS 

begins to saturate) [Kanamori, 1977]. Finally, we estimate strain, ε, by assuming ε = 

V/CS, where V is the particle velocity (approximately equal to 2·π·f·A [Aki and Richards, 

2002], with A inverted from equation (6)) and CS is the surface wave group velocity (3.5 

x 109 µm/s for Rayleigh waves). Second order effects due to depth, rupture directivity, 

and radiation pattern are not captured by these regressions and can result in errors as high 

as 1 order of magnitude in extreme cases, but the global average curve will accurately 

predict the average strain of a large group of potential triggering events.   

For a group of target areas that have experienced given amplitudes of shaking we 

can measure the inter-event time ratio, or R, as a proxy for measuring the fractional rate 

change [van der Elst and Brodsky, 2010]. The time ratio is defined as 

 

                                                              (7) 

 

MS = log10 (Aµ )+
1
2
⋅ log10 (sin(Δ))+ 0.0031⋅ Δ − log10 ( fc )+ 2.57

R ≡ t2
t1 + t2
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where t1 and t2 are times to the first earthquakes before (with magnitude M1) and after 

(with magnitude M2) the arrival of seismic energy from some potential far-field trigger 

(Figure 2). In the absence of triggering the population of R-values will be distributed 

according to the standard uniform distribution with µ=0.5 and σ2=1/12. In the presence of 

triggering, there will be a slight bias toward small values of t2, leading to a larger 

proportion of small R-values and therefore a deflection of the mean value of R, R̄ , to less 

than 0.5. 

Prior work has shown that measurements of R̄ can be used to estimate rate 

changes induced by static stresses near a mainshock [Felzer and Brodsky, 2005] or 

changes in response to dynamic stresses like the passage of transient surface waves [van 

der Elst and Brodsky, 2010].   In particular,  

 

                                                  (8) 

 

where δλ = (λ2 - λ1)/λ1, and λ1 and λ2 are the rates of seismicity before and after the arrival 

of the purported trigger [van der Elst and Brodsky, 2010, equation (2)]. For the purpose 

of utilizing equation (5), we need to measure the fraction of a dataset comprised of 

triggered earthquakes.  

While the time period between 2009 and 2014 has homogeneous magnitude 

determination procedures, the data length (5 years) is less than ideal for generating a 

robust fractional rate change curve a la van der Elst and Brodsky [2010]. We remedy this 

situation by using an alternate, longer, time period to estimate fractional rate change from 

1984 – 2014 (Figure 3).  

R = 1
δλ

⋅[(δλ +1) ⋅ ln(δλ +1)−δλ]
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Fractional rate change 

 Inverting for bT from the mixing model equation (equation (5)) requires an 

estimate of the fraction of the data attributed to triggered earthquakes, or fT.  For a given 

source volume with a distribution of faults, we model the seismicity of the volume as a 

Poisson process with an average intensity parameter λ. Dynamic strains traveling through 

a source volume can activate faults and induce a step change in the intensity parameter 

from λ1 to λ2. For a stepwise homogenous Poisson process, we define the fractional rate 

change induced by some far-field trigger as 

 

                                                        (11) 

 

Over one pre-trigger recurrence interval (time τ = λ1
-1), the expected number of 

earthquakes in the post-trigger aftermath is nafter = δλ+1 (the number expected in the 

recurrence interval prior to the test trigger is nbefore =  λ1· λ1
-1=1). We can therefore define 

fT as 

 

                       (12) 

 

The mean of a sample of R-values from the longer catalog (Figure 3) is used to estimate 

δλ (via equation (8)) and fT (via equation (12)).  

The finite length of an earthquake catalog introduces a bias in the calculation of R 

values. Unequal conditioning of t1s and t2s (Figure 2) can be introduced as the test trigger 

δλ = λ2 − λ1
λ1

fT =
nT
ntot

= ntot − nU
ntot

=
nafter − nbefore

nafter
= (δλ +1)−1

δλ +1
= δλ
δλ +1
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time moves away from the middle of the local catalog. We remove this bias by truncating 

our local catalog to windows symmetric about the arrival time of each test trigger. Once 

fT has been estimated for each group of earthquakes with similar values of dynamic 

strain, we then measure the composite b-value (bMIX) and proceed to infer a range of 

values for bT  that is consistent with the data. 

 

Sampling Biases and Results 

Aftershock Shielding Effect 

The final requirement to infer bT is a measurement of bU, the reference 

background seismicity parameter. We initially attempted to define bU using events from 

the population of M1 events. In that case, we supposed that the magnitude of the event 

immediately preceding the arrival of dynamic stress was an accurate representation of the 

steady-state distribution of magnitudes in a system unperturbed by far-field transient 

waves. However, we found that over the entire range of strain, the bias-corrected M1 

population shows a consistently higher b-value (corresponding to a lower mean 

magnitude) than its equivalent population of bias-corrected M2 magnitudes (Figure 4). 

This is not an effect of finite time windowing, but rather stems from the clustering of 

earthquakes into aftershock sequences. We therefore call this the aftershock shielding 

effect. Figure 5 shows a schematic diagram demonstrating the origin of the systematic 

offset of magnitudes between the M1s and M2s. When a larger than average earthquake 

occurs, it tends to generate aftershocks. The time to the first earthquake in this aftershock 

sequence tends to be shorter than the time to the first earthquake that preceded the 

mainshock. Seismic waves from a distant earthquake are thus much less likely to fall 
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within the latter interval than the former. This means that a large magnitude local 

mainshock is systematically biased to be labeled an `M2’ versus an `M1.’ The large 

mainshock is shielded from being labeled an M1 by its ensuing aftershocks. 

Foreshock Shielding Effect 

 The presence of foreshocks induces a similar shielding effect. In Figure 3, the b-

values of the M2 data are systematically larger than the b-value of the overall catalog 

(~0.86). Since foreshock sequences follow an Inverse Omori Law, as far-field triggers 

approach the time of a local mainshock, they may fall within the rate increases (in an 

average sense) that precede the local mainshock.  

ETAS Simulation 

 We can reproduce both of these shielding effects in an epidemic-type aftershock 

model (ETAS) [Ogata, 1998]. Following the procedure of Brodsky [2011], we produced 

a synthetic catalog with a b value of 1 and measured the magnitude distribution of the 

events prior and after randomly selected times. We found for 100 simulations that the M1 

b-value = 1.22±0.04 and the M2 b-value = 1.0±0.03, with 1 standard deviation reported. 

As discussed in Brodsky [2011], standard ETAS simulations have too few 

foreshocks (relative to aftershocks) compared to the observations. This disparity is due to 

either completeness problems or a physical propensity for foreshocks. The 

overabundance of foreshocks is an interesting issue in itself, however, here we are only 

concerned with its effect on the sampling of magnitudes. Therefore, since the standard 

ETAS simulation using standard parameters only reproduced the aftershock shielding and 

did not explain the deviation of the M1s in the observations, we performed an additional 

set of modified ETAS simulations that mimic the large fraction of foreshocks.  To 
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illustrate the foreshock abundance of real catalogs, a fraction of the aftershocks were 

randomly assigned to occur as foreshocks, i.e., the sign of the time from the mainshock is 

reversed. We emphasize that this adaptation of the ETAS model is employed simply as a 

tool to investigate the effects of foreshocks on selection of earthquakes.  If 25% of the 

aftershocks are turned into foreshocks, the observed aftershock to foreshock ratio was 

close to the catalog values (~2) and the observed M1 b-value = 1.19±0.03 (1 std.) and the 

M2 b-value = 1.10±0.04 (1 std.), which offset approximately .1 and .2 units from the 

catalog wide b value. These offsets from the catalog wide value match in a bulk sense the 

offsets observed in actual data (Figure 4). We conclude from this exercise that the offsets 

between the M1 and M2 populations can be explained as a natural consequence of the 

effect of earthquake foreshock and aftershock sequences on selecting earthquakes.  No 

more elaborate hypothesis about triggered magnitudes is necessary.  

Because of the sampling biases mentioned above, the most meaningful reference 

magnitudes must also come from the M2 data set. We take the values of M2 corresponding 

to the lowest fractional rate changes  (i.e., ε ~ 10-9) to represent the parameter bU, equal to 

1.02 (Figure 4). Next we apply the mixing model to bMIX data to extract bT from the 3 

observable variables: bMIX, bU, and fT. Figure 6 shows the results of the bT inversion for 

the combined catalog. At face value, these observations suggest that b-values of data with 

high percentage of triggered earthquakes are on average larger (i.e., smaller magnitude) 

than the b-values of untriggered or spontaneous seismicity. Error bars are derived from 

5000 bootstrap resamplings (sampling with replacement) of the M2 values in each 

amplitude bin [Efron and Tibshirani, 1994]. The errors associated with these 
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measurements indicate, however, that these differences are insignificant and cannot be 

distinguished from background seismicity. 

 

Implications 

Our results indicate there are no discernible differences between the magnitude 

distributions of data sets that likely contain a high proportion of triggered events, versus 

data sets that do not contain high proportions of triggered events. The observed 

composite b-values (bMIX, black curve in Figure 4) show no significant variation with 

respect to calculated peak dynamic strains (Figure 4). The small variations that do exist 

do not show a monotonic trend with the fraction of likely triggered events in the 

population, meaning that this conclusion is not likely to change with increased statistical 

resolution. Inverting for bT directly using a mixing model does not alter these conclusions 

(Figure 6).  

These interpretations are significantly different than that of Parsons and Velasco 

[2011] who suggested that dynamically triggered earthquakes are preferentially small. 

These studies differ in fundamental ways. For instance, the statistical treatment here 

includes greater than 400 examples of potential triggers for each data set, including some 

very weak triggers, and deals explicitly with the fact that any observed group of 

earthquakes is a mixture of triggered and untriggered events via our mixing model. The 

previous work had 205 examples of very strong triggering. Secondly, the R-statistic uses 

an optimized, adaptive time window to measure rate changes and therefore is inherently 

more sensitive than the counting method of Parsons and Velasco. Finally, we focus on 

small earthquakes as diagnostic of the magnitude distribution; this contrasts with the 
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approach of Parsons and Velasco where only 5 < MW < 7 events are examined. The 

advantage of this paper’s approach is that larger numbers ensure statistical robustness 

since larger magnitude earthquakes are intrinsically rare and may not be expected to be 

observed during a short time interval. 

It has recently been argued that the 2012 MW8.7 strike-slip earthquake off the 

coast of Sumatra remotely triggered large (MW>5.0) earthquakes along the circum-Pacific 

boundary in the days following the passage of mainshock surface waves [Pollitz et. el., 

2012]. If larger magnitude earthquakes have distinct physical nucleation mechanisms our 

approach has no bearing on them. Thus far, there is little direct evidence of a distinct 

process controlling the magnitude of large earthquakes, therefore a separate process 

governing large earthquakes could be a relatively unlikely possibility, but one that must 

remain open nonetheless. 

 

Conclusions 

We find that the statistical evidence for fundamentally different underlying 

distributions between triggered and untriggered earthquakes is weak. This strongly 

supports the idea that the magnitudes of triggered and untriggered earthquakes are 

randomly drawn from a single parameter GR distribution, at least for moderate 

magnitudes. Therefore, remotely triggered earthquakes are likely to be as large as any 

other group of seismicity. However, since the total number of triggered events is small, 

the probability of observing a remotely triggered large earthquake is accordingly small. 

In summary, we have opted for large numbers in our statistical treatment and arrived at 
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conclusions distinct from prior efforts. This suggests that the question of the magnitude 

distribution of dynamically triggered events is still an open problem. 

 

 

 

Figure 1: 1298 nodes with seismicity greater than magnitude 1.8 and occurring after 01 Jan 2009. Hues are 

scaled to data density. Seismicity outside of California and with less than 2 data points within a 5 km radius 

of the spatial node are not analyzed. Thick black line is the coast.  
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Figure 2: Schematic cartoon of hypothetical synthetic data from a single grid node, demonstrating the 

procedure for measuring R values. The vertical black dashed line is the approximate arrival time of seismic 

energy from one far-field event, i.e., ‘test trigger’. In this hypothetical example, a symmetric window of ±1 

day (24 hours) is imposed. In practice, we impose a symmetric window of ±2 years. 
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Figure 3: Triggering intensity (fractional rate change, δλ) for the ANSS California seismicity between 

1984 – 2014, with magnitude of completeness 2.1. 2 year symmetric windows about each test trigger were 

applied, and an R ratio determined. For narrow amplitude bins, the mean R ratio was converted to a 

fractional rate change via Equation 8. 
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Figure 4: b-values for the M1 and M2 populations of data as a function of peak dynamic strain. Both curves 

show b-values higher than the catalog-wide value (magenta curve). The persistent static offset between the 

two curves is due to the aftershock shielding effect (see text for details).  
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Figure 5:  Schematic diagram for the origin of the systematic offset of magnitudes between the M1s and 

M2s. Teleseismic waves arriving in our target catalog are represented by black arrows. For each far field 

event, a unique R-ratio is calculated and an M1 and M2 within the local catalog are identified. When a local 

mainshock occurs, the time to the next event is, on average, substantially reduced as aftershocks tend to 

cluster in time and space. It is therefore unlikely that teleseismic surface waves will arrive in the time 

interval between the local mainshock and its first local aftershock. Therefore, the large local mainshocks in 

a target catalog are rarely designated as M1s, and almost always designated M2s. Hence, the systematic 

offset in magnitudes between the two datasets. We call this the aftershock shielding effect. 
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Figure 6: bT as inverted from Eq. (5) for combined catalog. The horizontal line corresponds to an estimate 

of bU based on data from the strain measurements smaller than 1x10-9. Error bars derived from 5,000 

bootstraps indicate the triggered b-values (bT) are insignificantly different from our reference bU.  
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