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Abstract The concept of liquid biopsy has emerged into the cancer lexicon to
describe detected alterations of tumor biomarkers within body fluids which reflect
the presence and the biology of cancer. This is typically performed by assessing
circulating tumor cells (CTCs), circulating tumor DNAs (ctDNAs), tumor-derived
extracellular vesicles (EVs), microRNAs (miRNAs), and proteins. Although plasma,
urine, and cerebral spinal fluid (CSF) are all viable biofluids, growing attention has
recently been cast on saliva. Saliva is readily available, can be obtained noninva-
sively, is easily collected and stored, and also demonstrates compelling pathophys-
iological association with systemic diseases. Importantly, saliva liquid biopsy
delivers the best clinical performance to detect ctDNAs in lung cancer patients. In
conjunction with validated biomarkers, and reliable and robust analytical detection
tools, saliva has the potential to pioneer a new landscape of real-time point-of-care
testing in personalized medicine. This chapter will review the salivaomics, the
disease-related biomarker properties of saliva, and the scientific advances in the
pathophysiological foundations which make saliva an ideal candidate for noninva-
sive liquid biopsy. Moreover, a novel liquid biopsy technology termed electric field-
induced release and measurement (EFIRM), which works in tandem with the
technological advances to extract crucial disease information in saliva, is reviewed.
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Abbreviations

AUC area under the curve
CSF cerebral spinal fluid
CSW cyclic square wave
CTC circulating tumor cell
ctDNA circulating tumor DNA
ddPCR droplet digital PCR
EFIRM electric field-induced release and measurement
EV extracellular vesicle
exRNA extracellular RNA
HNSCC head and neck squamous cell carcinoma
HPV human papiloma virus
HRP horseradish peroxidase
mRNA messenger RNA
miRNA microRNA
MVB multivesicular body
NGS next generation sequencing
NSCLC non-small cell lung carcinoma
OSCC oral squamous cell carcinoma
PCR polymerase chain reaction
piRNA piwi-interacting RNA
TMB tetramethylbenzidine

8.1 Introduction

Globally, cancer persists as a tremendous burden. It has been projected that 1.7
million new cancer cases will arise in the USA and 609,640 will result in death
(Siegel, Miller, & Jemal, 2018). Accordingly, there is an impetus to advance the
understanding of cancer biology, diagnosis, and therapeutic strategies. Optimizing
the methodologies for screening and early detection of developing lesions before
they reach an advanced stage is highly sought after by cancer therapy researchers.
For many cancer types, such as non-small cell lung carcinoma (NSCLC), the major
subtype of lung cancer, the current gold standard of the traditional tissue biopsy is
invasive, and requires that the lesion reaches a critical mass before it is detectable by
imaging modalities to warrant a surgical biopsy procedure (Ilié & Hofman, 2016).

An emerging concept, liquid biopsy, holds promise as an alternative to solid
tissue biopsy by identifying and detecting alterations in biofluids that may reflect the
presence of primary cancerous lesions. As the number of publications involving
liquid biopsy increases, the definition continues to evolve. Initially, it referred to the
diagnosis and characterization of a solid cancerous lesion by collecting and analyz-
ing CTCs from blood (Chatterjee, 2016). More recently, the definition of liquid
biopsy has been extended beyond CTCs in the blood to include other biomarkers that
reflect the presence of a tumor. Additionally, liquid biopsy now includes the analysis
of other biofluids besides blood. Urine, cerebral spinal fluid (CSF), and saliva are all
potential mediums where cancer-associated molecular targets can be found. The
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National Cancer Institute now defines liquid biopsy as “A test done on a sample of
blood to look for cancer cells from a tumor that are circulating in the blood or for
pieces of DNA from tumor cells that are in the blood” (National Cancer Institute,
2011). While plasma, urine, and CSF are all viable biofluid candidates, more recent
attention has been given to saliva. Saliva is readily available (0.5–1.5 l per day), can
be obtained noninvasively, is easily collected and stored, and demonstrates compel-
ling pathophysiological association with systemic diseases (Table 8.1).

Saliva is composed of secretions from three major glands (parotid, submandibu-
lar, and sublingual) and numerous minor salivary glands located throughout the oral
cavity. Secretions from minor glands, gingival cervical fluid, mucosal exudates,
microflora, and dislodgements form the oral-esophageal pathway also contributes to
the composition (Nonaka & Wong, 2017). The composition of saliva is described in
greater detail in Chap. 2 by Hernández and Taylor.

Salivary glands are highly vascularized and are composed of epithelial cells
enriched with transporters and channels which provide a conducive environment
for molecule exchange between blood and saliva (Gröschl, 2008). Trans blood to
salivary pathways of hormones and cytokines have been described using passive and
active transport mechanisms through transporters or passage through lipophilic
layers of capillaries and glandular epithelial cells (Gröschl, 2008). Due to this
proximity to the blood circulation and the predilection for molecule exchange,
pathological biomarkers can appear in saliva. Saliva is therefore a practical sample
type for liquid biopsy as that reflects systemic health.

8.2 Salivaomics

Salivaomics is the study of saliva and all its -omics constituents, contents, functions,
and related techniques. Historically, in 2004, the transcriptome in saliva of stage
T1/T2 oral squamous cell carcinoma (OSCC) patients was first examined and

Table 8.1 Considerations of utilizing saliva as a sample type for liquid biopsy

Advantages Disadvantages

• Saliva contains biomarkers that can be used
for clinical liquid biopsy (e.g. ctDNA EGFR
mutation).
• Collection method is easy and noninvasive.
• Patients can self-collect repeatedly.
• Biomarkers are stable when stored properly
(e.g. !80 "C for RNA, protein, ctDNA) (Hen-
son & Wong, 2010).

• Inherent salivary proteins (e.g., amylase) may
compete with selected biomarker proteins
during analysis (Henson & Wong, 2010).
• Production and composition of saliva are
influenced by circadian rhythm (Henson &
Wong, 2010). Note: inherent to all biofluids.
• Patient’s unstimulated (basal) and stimulated
(during mastication) salivary state affect the
tonicity and pH balance of saliva (Chap. 2. By
Hernández and Taylor).
• Complicated sample processing (e.g.,
addition of RNase inhibitor and serin protease
inhibitor (SUPERase· In™ is a trademark.
Aprotinin and PMFS are serine protease
inhibitor) are required to protect salivary
constituents) (Henson & Wong, 2010).
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compared with equivalent healthy controls, showing that 1679 extracellular RNAs
(exRNAs) exhibited significantly differential expression levels (Li, St. John et al.,
2004). Subsequently, a proteomic study showed there was a 20–30% similarity
between salivary and plasma proteomes, suggesting that saliva predominantly con-
tains proteins synthesized in the salivary gland along with proteins originating in the
blood or lymph sources (Yan et al., 2009). Furthermore, genomic analysis revealed
that 30% of salivary exRNAs originate from the host and 70% are derived from oral
microbiota (Bonne &Wong, 2012; Looi, Zakaria, Osman, & Jamal, 2012). Analysis
of microgram amounts of protein from oral swabs has resulted in over 3700
quantified human proteins (Grassl et al., 2016). These findings provided initial
evidence that saliva could be used to differentiate between health and disease and
solidified the study of salivaomics as an independent field.

Since saliva is not a homogenous substance, the study of all its components;
genomics, epigenomics, transcriptomics, proteomics, metabolomics, and
microbiomics are all key components that make up salivaomics. This section will
cover the three major—omic groups of salivaomics that are associated with cancer
liquid biopsy, RNA (transcriptomics), circulating tumor DNA (genomics), and
protein (proteomics).

8.2.1 Salivary Extracellular RNA (exRNA)

Since many different RNA types are present in saliva, the transcriptomic profile of
saliva is complex. Saliva contains mRNAs, microRNAs (miRNAs), and other small
noncoding RNAs (e.g., piwi-interacting RNAs). Thus far, a major focus in salivary
transcriptomic work has been on describing the mRNA and miRNA alterations that
differentiate the patients from the healthy subjects (Han et al., 2018; Park, Li, Yu,
Brinkman, & Wong, 2006). The salivary transcriptome was first described using
high-density microarray technology. This revealed a transcriptomic profile that was
highly fragmented with coding and noncoding gene transcripts originating from both
the host and oral microbiota (Li, Zhou, St. John, & Wong, 2004; Park et al., 2006,
2007; Spielmann & Wong, 2011).

One of the primary goals of liquid biopsy is to use it as a screening tool for early
detection of cancer. Thus, there is merit in discovering viable biomarkers in saliva
that signal disease. Transcriptome analysis of saliva from OSCC patients revealed
that mRNA biomarkers (DUSP1, H3F3A, IL1B, IL8, OAZ1, S100P, and SAT)
exhibited at least a 3.5-fold elevation in saliva from OSCC patients (Li, St John,
et al., 2004). Upon using four of the candidate RNA biomarkers (IL1B, OAZ1,
SAT, and IL8) and a cutoff of 50% with a logistic regression model, 91%
sensitivity and 91% specificity was determined with an area under the curve
(AUC) of 0.95.

In the saliva of pancreatic cancer patients, a similar approach was used, and
salivary candidate exRNA biomarkers KRAS, MBD3L2, ACRV1, and DPM1 were
deemed associated with the early stage resectable pancreatic ductal
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adenocarcinomas. Using these markers, investigators could differentiate pancreatic
cancer patients from non-cancer subjects (chronic pancreatitis and healthy control),
yielding an AUC of 0.971 with 90.0% sensitivity and 95.0% specificity (Zhang,
Farrell et al., 2010).

Similarly, in breast cancer a combination of eight (CSTA, TPT1, IGF2BP1,
GRM1, GRIK1, H6PD, MDM4, and S100A8) salivary exRNAs and one proteomic
marker (CA6) could discriminate between saliva samples of patients and control
group with 83% sensitivity and 97% specificity (Zhang, Xiao, et al., 2010).

Ovarian cancer salivary transcriptome analysis identified four upregulated and
sixteen downregulated exRNAs (Lee, Kim, Zhou, Kim, & Wong, 2012). Using five
salivary exRNA biomarkers from the discovery phase (AGPAT1, B2M, IER3, IL1B,
and BASP1) could differentiate healthy controls from patients with 85.7% sensitivity
and 91.4% specificity. Using a similar approach, salivary exRNA markers (CCNI,
FGF19, GREB1, FRS2, and EGFR) could be used to separate lung cancer and
control with 93.75% sensitivity and 82.81% specificity with an AUC of 0.925.

Another discriminatory salivary exRNA target in salivary liquid biopsy is
miRNAs. miRNAs are a class of 21–25 nucleotide long noncoding RNAs that
play major roles in the regulation of gene expression and other processes (Ha &
Kim, 2014). Recently, miRNAs have been identified in exosomes, membrane-bound
vesicles 40–100 nm in diameter, released directly from the plasma membrane
(Zhang et al., 2015). Exosomal miRNAs have been shown to regulate oncogenic
and tumor suppressor genes (Chen, Liang, Zhang, Zen, & Zhang, 2012). There are
vast differences in the miRNA profile between normal cells and cancer cells (Lin &
Gregory, 2015).

In an analysis of miRNAs in plasma of head and neck squamous cell carcinoma
(HNSCC) patients, elevated levels of miR-21 and miR-24 were detected in plasma
from HNSCC patients (Hsu et al. 2012; Lin et al. 2010). Moreover, amplified
miR-31 was detected in the plasma of HNSCC patients and was observed to have
reduced after tumor resection, suggesting its tumor origin (Liu et al. 2010).
Overexpression of miR-106b cluster and underexpression of miR-375 have been
associated with HNSCC, and miR-451 appears to resurface during HNSCC recur-
rence (Hui et al., 2010). Similarly, a high expression of circulating miR-142,
miR-186, miR-195, miR-374b, and miR-574 was reported (Summerer et al., 2015).

In the examination of saliva, lower levels of miR-125a and miR-200a were seen
in saliva samples of OSCC patients (Park et al., 2009). In one study examining
miRNAs for salivary gland tumors, miR-132, miR-15b, miR-140, and miR-223 had
a distinguishing ability of 69% sensitivity and 95% specificity with an AUC of 0.90
(Matse et al., 2013). In another study, saliva from patients with esophageal cancer
identified miR-144, miR-451, miR-98, miR-10b, and miR-363 as differentiable
markers (Du & Zhang, 2017). The novelty in their study was they proposed a
regulation network pathway in which the miRNA targets were involved in onco-
genesis of the esophageal cancer. miRNAs appear to demonstrate greater stability in
saliva compared to mRNAs and thus may be a viable alternative target for salivary
liquid biopsy (Gallo, Tandon, Alevizos, & Illei, 2012).
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Furthermore, piwi-interacting RNAs (piRNAs), the largest class of small long
noncoding RNA molecules (26–31 nucleotides) are present in saliva (Bahn et al.,
2015). Their activity has been linked with epigenetic and posttranscriptional gene
silencing. Due to their size, piRNAs are able to pass through cell membranes easily
and avoid degradation compared to longer RNAs (Han, Li et al., 2017). Salivary
piRNAs present another exRNA biomarker source for salivary liquid biopsy.

8.2.2 Salivary Genomics

8.2.2.1 Circulating Tumor DNA

It was reported that blood from cancer patients have higher concentrations of
circulating DNA as compared to healthy individuals (Stroun, Anker, Maurice, &
Gahan, 1977). Further work from Stroun et al. revealed that DNA could be extracted
from the plasma of cancer patients and their source from cancer cells could be
determined by strand stability (Stroun et al., 1989). This work shaped and defined
the concept of circulating tumor DNA (ctDNA)—the subset of circulating cell-free
DNA that can potentially be used as a genetic “fingerprint” for a primary tumor.

ctDNA is believed to originate from tumor cells undergoing apoptosis or necrosis
thereby releasing DNA strands into the systemic circulation (Jahr et al., 2001).
Pathogenic and physiological processes such as phagocytosis and exocytosis may
also contribute (Thierry, El Messaoudi, Gahan, Anker, & Stroun, 2016). Typically,
remnant DNA in the blood is degraded by nucleases and eliminated by the liver,
spleen, and kidneys (Barra et al., 2015). ctDNA is often described to be roughly
180–200 base pair in length which is characteristic of the apoptotic process and
corresponds to the inter-nucleosomal length of DNA that is wrapped around the
nucleosome including the linker segment (Diaz & Bardelli, 2014). Recently, it has
been shown that ultrashort single-stranded cell-free DNA is present in plasma, which
alludes to the possibility that a similar nucleic acid demographic may appear in
saliva (Burnham et al., 2016).

A large-scale study on multiple cancer types including HNSCC demonstrated that
increasing concentration of ctDNA is associated with advancing stage of disease
(Bettegowda et al., 2014). It is not clear if ctDNA promotes carcinogenesis or is
merely a by-product of cellular waste disposal as a result of apoptosis. However,
there is evidence that ctDNA can promote cancer by transfecting healthy cells
(García-Olmo et al., 2010). Laboratory methods for the assessment of ctDNA
include allele-specific polymerase chain reaction (PCR), droplet digital PCR
(ddPCR), and next generation sequencing (NGS) (Han, Wang, & Sun, 2017).
These methods are predominantly PCR-based and have varying strengths and
limitations and are mainly used in probing plasma ctDNA. At our laboratory, an
emerging electrochemical platform of liquid biopsy named electric field-induced
release and measurement (EFIRM) has been developed. This procedure can detect
and quantify the ctDNA in saliva of NSCLC patients with superior performance as
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compared to the current technologies of ddPCR and NGS (Pu et al., 2016; Wei et al.,
2014).

In an intriguing study, the saliva from 93 HNSCC patients was analyzed for
human papilloma virus (HPV) DNA and/or somatic mutations related to HNSCC. In
patients with tumors in the oral cavity, ctDNAs were detected in saliva with 100%
concordance to tissue biopsy as compared to saliva-ctDNA concordance in patients
from the oropharynx (47%), larynx (70%), and hypopharynx (67%) (Wang et al.,
2015).

8.3 Salivary Proteomics

The saliva proteome is the first salivaomics constituent advocated for salivary
biomarker development. An NIDCR/NIH-funded collaborative effort between The
Scripps Research Institutes in San Diego, the University of California San Francisco,
and the University of California Los Angeles resulting in an annotated catalog of
1166 proteins in salivary proteome of healthy individuals (Denny et al., 2008). This
was then deposited into an open access Saliva Proteome Knowledge Base (Ai,
Smith, & Wong, 2010). Additionally, a three-dimensional peptide fractionation
technique was used to generate a deeper data set including 2340 proteins involved
in integral functions in the oral cavity (Bandhakavi, Stone, Onsongo, Van Riper, &
Griffin, 2009). Functional analysis shows salivary proteins occupy a higher propor-
tion of metabolic and catabolic processes compared with plasma (Loo, Yan,
Ramachandran, & Wong, 2010). This may be a clinical advantage of probing saliva
if this particular subtype of proteins is oncogenically relevant (Schulz, Cooper-
White, & Punyadeera, 2013).

Saliva proteins such as histatins, statherin, acidic proline rich proteins (PRPs),
basic non-glycosylated PRPs are prone to degradation (Helmerhorst & Oppenheim,
2007). Careful considerations must therefore be taken to prevent skewing of down-
stream analysis of the potential protein biomarkers including other extracellular
RNAs and possibly ctDNA that may be present. Preemptive strategies have been
developed, published, and curated in order to stabilize the salivary proteins with
protease inhibitors and preserve their integrity (Xiao & Wong, 2012).

Presently, the majority of proteomics in cancer biomarkers discovery utilize
high-throughput mass spectrometry to identify salivary proteins associated with
specific cancers. Breast cancer is a well-studied cancer in terms of salivary proteins.
Elevations in EGF (Navarro et al., 1997), c-erbB-2 (Streckfus, Bigler, Dellinger
et al., 2000), and CA15-3 (Streckfus, Bigler, Tucci, & Thigpen, 2000) were dem-
onstrated in the saliva of breast cancer patients compared to healthy subjects.
Salivary detection of CA15-3 is of particular interest because the same elevation
of CA15-3 occurs in serum of patients (Duffy, Shering, Sherry, McDermott, &
O’Higgins, 2000). CA15-3 is a transmembrane glycoprotein, frequently
overexpressed and glycosylated in cancer. It appears to contribute to cell adhesion
involved in metastasis (Duffy et al., 2000). In fact, it has been approved as an
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FDA-approved biomarker to track the metastatic progression of breast cancer in
serum (Füzéry, Levin, Chan, & Chan, 2013).

Another set of breast cancer salivary biomarker, VEGF, EGF, and CEA was
analyzed in saliva of breast cancer patients by testing their predictive power indi-
vidually or in combination revealing that VEGF and EGF leading to a combined
83% sensitivity and 74% specificity with an AUC of 0.84 (Brooks et al., 2008). CA6,
another salivary candidate protein, demonstrated the ability to differentiate between
cancer and healthy controls in saliva (Zhang, Xiao, et al., 2010). Lung resistant
protein in saliva was observed to present at higher concentrations in Stage 1 breast
cancer patients exhibiting the ability to detect the disease at its early stages (Wood &
Streckfus, 2015). Liu et al. using 9 candidate salivary lectins with alterations in
salivary glycopatterns can predict the presence of Stage 1 breast cancer with an
accuracy of 0.902 in a double-blind cohort (Liu et al., 2018).

Salivary proteomic biomarker development for OSCC revealed that M2BP,
MRP14, CD59, catalase, and profilin were associated and with a regression model
which achieved 90% sensitivity and 83% specificity with a predication rate of 85%
(AUC ¼ 0.93) (Hu et al., 2008). In other studies IL-8, M2BP, and IL-1B were
discovered as viable biomarkers. IL-8 and M2BP, however, showed better statistical
distinction compared to control groups (Elashoff et al., 2012; Hu et al., 2008; Li, St
John, et al., 2004). Analysis of the whole saliva from three HNSCC patients with
LC–MS/MS revealed alpha-1-B-glycoprotein and complement factor B as unique
proteins in cancer (Ohshiro et al., 2007). Additionally, using 2D DIGE analysis and
subsequent mass spectrometry showed that beta-fibrin, S100 calcium-binding, trans-
ferrin, immunoglobulin heavy chain constant region gamma, and cofilin-1 were
increased in HNSCC patients (Dowling et al., 2008). Studies in tongue cancer
patients revealed that salivary adenosine deaminase activity may be a good
differentiator between healthy and control subjects (Rai, Kaur, Jacobs, & Anand,
2011). Another group utilized selected reaction monitoring (SRM) tandem mass
spectrometry to observe that C1R, LCN2, SLPI, FAM49B, TAGLN2, CFB, C3,
C4B, LRG1, and SERPINA1 proteins are elevated in the saliva of OSCC patients
and that, in particular, CFB, C3, C4B, SERPINA1, and LRG1 were associated an
increased risk for developing OSCC (Kawahara et al., 2016).

Analysis of lung cancer saliva samples revealed that three proteins (HP, AZGP1,
and CALPR) were higher in lung cancer patients compared to healthy controls.
Logistic regression analysis of the diagnostic screening potential for theses bio-
markers elicited a result of 88.5% sensitivity and 92.3% specificity (AUC ¼ 0.90)
(Xiao et al., 2012). Recently, using an exosome and microvesicle isolation approach
coupled with LC–MS/MS-based label-free quantification showcased that four sali-
vary exosome/microvesicle associated proteins (BPIFA1, CRNN, MUC5B, and
IQGAP) were dysregulated in lung cancer patients (Sun et al., 2018).

In gastric cancer, four salivary proteins (mass-to-charge ratio (m/z) 1472.78,
2936.49, 6556.81, and 7081.17) identified by mass spectrometry appeared differ
between gastric cancer and control groups (Wu, Wang, & Zhang, 2009). Xiao et al.
identified 519 proteins in the saliva of gastric cancer patients and the data suggest
that 48 proteins demonstrated a significantly different gastric profile in gastric cancer
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patients (Xiao et al., 2016). From these 48, six proteins (CSTB, TPI1, DMBT1,
CALML3, IGH, and IL1RA) were selected as a gastric cancer screening verified
with ELISA demonstrating downregulating. Regression model analysis depicted that
by using three proteins as a screening protocol (CTSB, TPI1, and DMBT1) would
have an 85% sensitivity and 80% specificity (AUC ¼ 0.930).

For ovarian cancer, CA125 is elevated in the saliva discriminating between
malignant and benign groups with an 81.3% sensitivity (Chen, Schwartz, & Li,
1990). More recently, 25 overexpressed and 19 underexpressed ( p < 0.05) proteins
between healthy controls and cancer patients were uncovered by fluorescence-based
2D-DIGE coupled with matrix-assisted laser desorption/ionization-time of flight
Mass Spectrometry. Discriminatory candidate salivary proteins Lipocalin-2,
indoleamine-2, 3-dioxygenase1 (IDO1), and S100A8 were identified and validated
using western blotting and ELISA and when validated with 40 ovarian cancer
patients and 40 control patients revealing a combined sensitivity of 87.5% and
specificity of 86.7% with an ROC of 0.93 (Tajmul et al., 2018).

These proteomic association studies show the vast potential for cancer prediction
and that salivary protein can provide for translational applications. Further work
must be performed to validate these candidate proteomic biomarkers in prospective
clinical trials adherent to the PRoBE (prospective-specimen-collection and retro-
spective-blinded-evaluation) design in a specific clinical context of use (Pepe et al.,
2001).

8.4 Biological Mechanisms of Salivary Exosomes

Recent exploration of salivary genomics, transcriptomics, and proteomics have
uncovered associated respective biomarkers source with disease phenotypes. Yet,
little is known of the pathophysiological relationship with the distal cancer. How
these biomarkers biologically arrive in the saliva is largely unknown. For diseases
like pancreatic, gastric, and ovarian cancers, since the neoplastic lesion is geograph-
ically distant from salivary glands, it is unclear if the biomarkers that are detectable
in the saliva are a by product of the tumor or a specific component of the patho-
physiological process.

One mechanism in which these biomarkers may migrate/traffic into the saliva is
through extracellular vesicles (EVs) transportation. Traditionally, EVs are organized
and distributed into three subgroups based on size: exosomes, microvesicles, and
apoptotic bodies (Kalra et al., 2012). Exosomes range from 30 to 100 nm in size and
1.13–1.19 g/mL in density (Théry, Amigorena, Raposo, & Clayton, 2006) and were
first isolated from saliva in 2008 (Ogawa, Kanai-Azuma, Akimoto, Kawakami, &
Yanoshita, 2008). Traditionally, exosomes are isolated through density gradient or
sucrose cushion by ultracentrifugation at 100,000 $ g (Théry et al., 2006). Addi-
tional methods, however, such as polymer-assisted precipitation (Niu, Pang, Liu,
Cheng, & WSB, 2017), immunoaffinity-based capture beads (Sharma et al., 2018),
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immunoaffinity-based microfluidic chips (He & Zeng, 2016), and acoustic fluidic
chips (Wu et al., 2017) have surfaced with promising capabilities.

In order to reduce the aforementioned variabilities of saliva during collection, it
may be ideal to focus on studying the isolated EVs secreted by cancer cells present in
the saliva. The term saliva-exosomics is used to describe the integration of various
-omics approaches (e.g. genomics, transcriptomics, or proteomics) to examine the
presence and function of salivary exosomes and exosome-related biomarkers that
emerge in the setting of oral and systemic diseases (Nonaka & Wong, 2017).

Sharma, Gillespie, Palanisamy, and Gimzewski (2011) showed direct release of
exosomes from oral cancer cells in saliva. In pursuit of the mechanistic tumor
salivary exosomal axis, an orthotopic pancreatic cancer mouse model was developed
by injecting a pancreatic cancer cell line (Panc02) into the pancreas of a syngeneic
mouse (Lau et al., 2013). It was observed that exosome biogenesis could be inhibited
by stable transfection of the dominant-negative form of GTPase Rab11 (DN-Rab11).
When exosome biogenesis is suppressed by knocking down Rab11 in the Panc02
cells, the salivary transcriptome signature of mice injected with those genetically
modified cells was ablated, compared to control tumor-bearing mice. This suggests a
mechanistic link between pancreatic exosome biogenesis and the transportation/
trafficking/migration of the exosomes to salivary glands and presentation of the
disease exRNA profile in saliva.

Yang et al. developed a human lung cancer cell (H460) model expressing hCD63-
GFP (an exosome marker) by injecting H460 cells into the chest cavity of immuno-
compromised mice (Yang, Wei, Schafer, & Wong, 2014). Human GAPDH mRNA
was identified in hCD63 + GFP+ exosome-like microvesicles in saliva of the tumor-
bearing mice. This finding suggests that human tumor cell-specific mRNA encased
in exosome-like microvesicle can be transported from the organ of pathology (lung)
to the salivary gland and into saliva.

More recently, Katsiougiannis et al. used a rodent model to show that saliva
possess immunoregulatory properties (Katsiougiannis, Chia, Kim, Singh, & Wong,
2017). Saliva from Panc02-injected mice was collected and orally administered into
non-tumor bearing control mice. NK cell activation markers, CD69 and NKG2D,
were shown to significantly decrease when tumor saliva was gavaged into non-tumor
bearing mice. Contrastingly, when saliva collected from mice injected with exosome
biogenesis-suppressed Panc02 cells (DN-Rab11 transfected) was orally adminis-
tered to non-tumor bearing mice, the NK activation markers were not affected. These
findings depict an immunological relevance to exosome migration from the primary
tumor site.

These physiological studies begin to shine light on the relevance of salivary
exosomes and their capability to alter and regulate remote sites in the body
(Fig. 8.1). Saliva-exosomics presents a new landscape and new horizon of saliva
biology that is just being explored.
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8.5 EFIRM and Saliva Liquid Biopsy

An impactful engagement of saliva liquid biopsy is in the intensely research land-
scape of liquid biopsy to detect actionable mutation in biofluids, where lung cancer is
the major organ site being explored where three actionable mutations (L858R, Exon
19 deletion, and T790M) in the epidermal growth factor receptor (EGFR) gene can
be drugged and impact on the progress free survival of NSCLC patients (Wei, Yang,
& Wong, 2013).

Our group has developed a novel liquid biopsy technology termed electric field-
induced release and measurement method (EFIRM). This non-PCR-based electro-
chemical platform utilizes a capture probe that is complementary to a ctDNA target
is designed and then immobilized on the surface of a gold electrode by encapsulating
it in a conducting polymer matrix. After the immobilization of the capture probe on
the surface of the electrode, the saliva specimen is placed on the surface of the
electrode and a cyclic square wave (CSW) is applied. This CSW is designed to
specifically lyse the exosomal structure that encapsulates the ctDNA sequence and
aids in the DNA hybridization process. EFIRM can disrupt exosomes to release
mRNAs and proteins in a similar manner as triton lysis (Wei et al., 2013). Following
the incubation of the target sequence to the capture probe, a detector probe that is
also complementary to the ctDNA is hybridized. This detector probe is biotinylated
at its terminal end, which is then complexed to a streptavidin-horseradish peroxidase

Fig. 8.1 Potential biological mechanism for exosomes trafficking between salivary gland and distal
tumor sites. Exosomes (not drawn to scale) are released by distant cancer cells (e.g., in the lung or
pancreas) through multivesicular body (MVB) and enter the circulation. Exosomes may be up taken
into salivary gland cells through endocytosis or membrane fusion and later released into the saliva.
Exosomes have been shown to contain cancer-derived miRNAs, mRNAs, genomic DNAs, and
proteins which can be isolated and assayed in saliva
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(HRP). The final output signal is determined by measuring a current generated by a
tetramethylbenzadine-HRP reaction which proportionally reflects the amount of
detector probe and target present in the saliva sample (Fig. 8.2).

Current clinical practice to detect signature EGFR ctDNA for NSCLC is ddPCR
and NGS with performance ranges from 60–80% concordance with biopsy
genotyping (Cohen et al., 2018; Newman et al., 2014; Phallen et al., 2017). The
EFIRM technology detected signature oncogenic EGFR mutations in plasma and
saliva of NSCLC patients, in two blinded clinical studies, with near-perfect concor-
dance with biopsy genotyping (96–100%) (Pu et al., 2016; Wei et al., 2014).

Fig. 8.2 Schematic steps of the EFIRM Assay. (a) An electric field is applied polymerizing pyrrole
in order to embed a capture probe specific for a cancer biomarker onto a gold electrode. (b)
Complementary biomarker target is added and hybridizes with capture probe. (c) Complementary
biotinylated detector probe hybridizes with target. (d) HRP (Horseradish peroxidase)-conjugated
streptavidin binds to biotin on detector probe. (e) and (f) A subsequent layer of anti-streptavidin
antibody and streptavidin-HRP amplify the signal. 3,30,5,50-Tetramethylbenzidine (TMB) substrate
is added to generate a current through a reaction with HRP. The current is read by the gold electrode
which represents the relative biomarker abundance
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8.6 Consideration and Future Outlook

Scientific and translational advances have established saliva as a sample type for
omics-based biomarker development and liquid biopsy applications. Salivaomics
and saliva-exosomics have mechanistically connected salivary glands with network-
ing of personalized omics constituents from systemic origins. At this time, while
many discovered salivary biomarkers remain to be definitively validated, it is
foreseeable that as reliability and robustness of salivary biomarkers continue to be
strengthened and their biological relevance uncovered, saliva liquid biopsy will
become a major factor in many clinical applications.

Liquid biopsy will be a valid drug selection tool, treatment monitoring, and
detection of acquire resistance mutations in cancer patients. In HNSCC, analyzing
both saliva and plasma may be optimal for effective screening and monitoring of
cancer (Nonaka & Wong, 2018). In NSCLC, detecting (L858R and Exon19 dele-
tion) ctDNA targets with EFIRM could potentially be used to guide therapeutic
decisions for specific tyrosine kinases inhibitors (Wei et al., 2014). The
two-mutation assay has been shown to be feasible and therefore expanding the
number of targets is needed. For example, T790M, another EGFR mutation, is
responsible for 50% of acquired resistance to first-generation tyrosine kinase inhib-
itors if detected, its presence would indicate the use of a third-generation osimertinib
(Inal, Yilmaz, Piperdi, Perez-Soler, & Cheng, 2015). Recently, patients been
presenting ostimertinib resistant-associated C797S mutation which at this time has
no therapeutic options (Wang, Tsui, Liu, Song, & Liu, 2016). Accordingly, if
salivary liquid biopsy detects the levels of different mutations (e.g. L858R to
T790M to C797S), it can monitor the progression of disease.

Fig. 8.3 Potential of liquid biopsy in clinical practice. Sampling of biofluids for liquid biopsy can
provide monitoring of patient disease progression or efficacy of pharmaceutical interventions.
Point-of-care monitoring of liquid biopsy provides clinical information to the health provider
with lower turn around time compared to traditional invasive tissue-biopsy and mutation analysis
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Additionally, salivary liquid biopsy can be a viable tool for high-risk population
screening. Due to the ease of use and noninvasive nature it may be possible to screen
a large population for the possibility of disease. This screening information will lead
to subsequent examinations and diagnostic tests that can pinpoint the exact nature of
the disease sooner compared to traditional invasive tissue-biopsy and mutation
analysis (Fig. 8.3).

The future outlook is promising, however, crucial tasks in the future will be to
verify, validate biomarkers, and elucidate the biological interaction between primary
tumors and their presence in the salivary milieu. Many biomarkers will need to
undergo large-scale prospective double-blinded clinical trials to be definitively
validated in a clinical context of uses. In parallel, establishing and developing
robustness novel technologies will be essential to bringing salivary liquid biopsy
to the forefront of modern medicine.
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