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ABSTRACT OF THE THESIS
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Professor Michael Edward Alfaro, Chair

Utilizing the comparative method at massive analytic scales requires the acquisition of large sam-

ples of characters for taxa across the tree of life. When data acquisition approaches are limited,

studies may subsequently constrain their analysis to a particularly conserved group of taxa to avoid

issues of incomplete sampling at larger phylogenetic scales. The inherent difficulty associated

with obtaining large datasets imposes a data bottleneck for studying comparative macroevolution

through deep time scales. Having access to powerful and flexible artificially intelligent approaches

for data acquisition and pre-processing are therefore important for facilitating larger scales of anal-

ysis. Machine learning provides unprecedented opportunities to exploit massive datasets. The sub-

sequent development of deep learning applications specialized for automating cumbersome human

tasks is possible given that these models learn over time to perform such tasks with accuracy simi-

lar to that of a human observer. Deep learning is a branch of machine learning that holds enormous

potential for ecologists and evolutionary biologists in an era of research becoming increasingly
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reliant on big data. These tools can streamline data extraction from field observations and record-

ings, in addition to uncovering complex patterns in dense multivariate datasets. Here, I focus

on leveraging deep learning as a toolkit for image segmentation. This toolkit, Sashimi, provides

a reproducible, rapid, and automated approach for pre-processing digitized images of organisms

necessary for downstream analyses of visual phenotypes — such as color patterns — at massive

phylogenetic scales.
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EPIGRAPH

There’s lots of ways to be as a person, and some people express their deep appre-

ciation in different ways, but one of the ways that I believe people express their

appreciation to the rest of humanity is to make something wonderful and put it out

there. And you never meet the people, you never shake their hands, you never hear

their story or tell yours, but somehow, in the act of making something with a great

deal of care and love, something is transmitted there. And it’s a way of expressing

to the rest of our species our deep appreciation. So, we need to be true to who we

are and remember what’s really important to us. — Steve Jobs
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Abstract
1.	 Digitized specimens are an indispensable resource for rapidly acquiring big data-

sets and typically must be pre-processed prior to conducting analyses. One crucial 
image pre-processing step in any image analysis workflow is image segmentation, 
or the ability to clearly contrast the foreground target from the background noise 
in an image. This procedure is typically done manually, creating a potential bot-
tleneck for efforts to quantify biodiversity from image databases. Image segmen-
tation meta-algorithms using deep learning provide an opportunity to relax this 
bottleneck. However, the most accessible pre-trained convolutional neural net-
works (CNNs) have been trained on a small fraction of biodiversity, thus limiting 
their utility.

2.	 We trained a deep learning model to automatically segment target fish from im-
ages with both standardized and complex, noisy backgrounds. We then assessed 
the performance of our deep learning model using qualitative visual inspection 
and quantitative image segmentation metrics of pixel overlap between reference 
segmentation masks generated manually by experts and those automatically pre-
dicted by our model.

3.	 Visual inspection revealed that our model segmented fishes with high precision 
and relatively few artifacts. These results suggest that the meta-algorithm (Mask 
R-CNN), in which our current fish segmentation model relies on, is well suited 
for generating high-fidelity segmented specimen images across a variety of back-
ground contexts at rapid pace.

4.	 We present Sashimi, a user-friendly command line toolkit to facilitate rapid, au-
tomated high-throughput image segmentation of digitized organisms. Sashimi is 
accessible to non-programmers and does not require experience with deep learn-
ing to use. The flexibility of Mask R-CNN allows users to generate a segmentation 
model for use on diverse animal and plant images using transfer learning with 
training datasets as small as a few hundred images. To help grow the taxonomic 
scope of images that can be recognized, Sashimi also includes a central database 
for sharing and distributing custom-trained segmentation models of other unrep-
resented organisms. Lastly, Sashimi includes both auxiliary image pre-processing 
functions useful for some popular downstream color pattern analysis workflows, 
as well as a simple script to aid users in qualitatively and quantitatively assessing 
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1  | INTRODUC TION

Image pre-processing is a fundamental step for any image 
analysis workflow (Gonzalez & Woods,  2002; Pennekamp & 
Schtickzelle, 2013), including those for surveying disease in fisheries 
production, studying animal behaviour, and quantifying phenotypic 
and morphological diversity (Alfaro et  al.,  2019; Yao et  al.,  2013). 
Nearly every image analysis workflow requires image segmentation, 
the process of accurately distinguishing the foreground (target) of 
the image from the background environmental noise in the image 
(Gonzalez & Woods, 2002; Pennekamp & Schtickzelle, 2013). Even 
in the best cases where the target is surrounded by a near uniform 
background, automated algorithms for image segmentation may 
require manual adjustment, whereas noisy backgrounds with low 
signal-to-noise ratios may preclude the use of tools in commercial 
packages such as Adobe Photoshop. As comparative studies in biol-
ogy move towards more comprehensive sampling of the tree of life, 
the demands for approaches yielding fast, reliable and reproducible 
data collection increase. Computer vision techniques provide one 
means for accurate and scalable image pre-processing in biology 
(Lürig et al., 2021; Muñoz & Price, 2019; Porto & Voje, 2020).

Machine learning, and especially deep learning algorithms, which 
permit the identification and classification of complex patterns in 
noisy environments (Carranza-Rojas et al., 2017; Cheng et al., 2017; 
Gomez Villa et al., 2017; Joly et al., 2016; Lee et al., 2018; Marques 
et al., 2018; Norouzzadeh et al., 2018; Qin et al., 2016; Raitoharju 
et al., 2016; Salman et al., 2016; Wäldchen & Mäder, 2018a, 2018b; 
Wäldchen et  al.,  2018; Weinstein,  2018; Willis et  al.,  2017), hold 
enormous promise for image processing in organismal biology 
(Christin et al., 2019; Muñoz & Price, 2019). Deep learning is a sub-
set of machine learning using multilayered neural networks (Christin 
et al., 2019)—models inspired by biological nervous and visual sys-
tems (Cadieu et  al.,  2014; Felleman & Van Essen,  1991; Hubel & 
Wiesel,  1962; LeCun et  al.,  2015; Olden et  al.,  2008). Neural net-
works ‘learn’ via an iterative process of training and updating inter-
nal model parameters (weights) as a function of the magnitude of 
error between the expected output and the model's output. The 
overarching goal of training a neural network is to iteratively min-
imize the error between model output and expected output by op-
timally adjusting model weights and reaching model convergence, 
such that the trained neural network generalizes well to novel input 
data. Model weights are adjusted to minimize error on each subse-
quent run using an algorithm called stochastic gradient descent with 
backpropagation (LeCun et al., 1989; Rumelhart et  al.,  1995). This 
approach optimizes the magnitude of change for model weights 

between each iteration to prevent against rapid model divergence or 
delayed model convergence.

Convolutional neural networks (CNNs) are one class of neu-
ral networks generalizable to problems in computer vision (see 
Christin et al., 2019; LeCun et al., 2015 for a review). Deep learn-
ing with CNNs has become the dominant approach for mostly any 
computer vision task requiring object detection/recognition (LeCun 
et al., 2015). CNNs work by creating feature maps across multiple 
layers, with abstraction exponentially increasing across each subse-
quent layer in the network; the changes in abstraction reveal the 
unfolding of meaningful knowledge from input image data—which 
ultimately are transformed into high-level image information in 
fully connected layers—and produce classification labels as output 
(Kozma et al., 2018).

Convolutional neural networks yield impressive performance for 
tasks relying on biological vision and perceptual processing, such 
as image recognition and classification (Krizhevsky et al., 2017) and 
have revealed promising utility for automating data collection ap-
proaches for studies in ecology and evolutionary biology at substan-
tially greater speeds than manual approaches (Christin et al., 2019; 
Lürig et al., 2021; Norouzzadeh et al., 2018; Schneider et al., 2019). To 
illustrate, deep learning with CNNs has been successful for ecologi-
cal applications, including the automated identification of sea turtles 
(Gray et al., 2018) and segmentation of cetaceans (Gray et al., 2019) 
with field imaging from drones, in addition to acquiring location and 
behavioural data from camera-traps (Schneider et al., 2018). CNNs 
have also revealed performance similar to that of humans on vi-
sual image recognition tasks (He et  al.,  2015), such as automating 
disease screening and detection on chest radiographs (Lakhani & 
Sundaram, 2017) and traffic-sign detection for autonomous vehicles 
(Zhu et al., 2016). Despite the impressive performance and flexibility 
afforded by neural networks, CNNs are still prone to classification 
errors in scenarios that would be trivial for a human classifier and 
thus do not principally outperform human vision on image recogni-
tion tasks (Firestone, 2020; He et al., 2015).

Pre-trained CNNs provide enormous potential for users to im-
plement deep learning applications out-of-the-box without addi-
tional training. The utility of pre-trained CNNs out-of-the-box is 
constrained by how relevant the novel input data are to the data the 
CNN was originally trained on. For instance, ImageNet comprises 
more than 14 million high-resolution images across nearly 22,000 
categories and is often used as a starting point for recognition tasks 
with deep learning (Deng et al., 2009; Krizhevsky et al., 2017). Using 
a CNN pre-trained on ImageNet, interested users could implement 
a machine vision task without needing to train an entire neural 

segmentation model performance for complementary sets of automatically and 
manually segmented images.

K E Y W O R D S

automation, big data, convolutional neural network, deep learning, high-throughput, image 
segmentation, mask R-CNN, reproducibility
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network from the ground up. Although, model performance may be 
weak if the contents of input images are distantly related or com-
pletely underrepresented amongst training images contained within 
ImageNet. Out-of-the-box, the utility of popular approaches like 
ImageNet are limited for applications in ecology and evolutionary bi-
ology. Nearly 50% of categories in ImageNet are man-made objects, 
and whereas animals represent approximately 40% of ImageNet cat-
egories (Baker et al., 2018), the biodiversity represented is naturally 
imbalanced with respect to species abundance, availability of pho-
tographs, and a lack of representative contexts for rare occurrences 
(Beery et al., 2020; Chao, 1989; Krizhevsky et al., 2017; Schneider 
et al., 2020; Van Horn et al., 2018). Given that the hierarchical cat-
egorization of ImageNet is not systematically aligned to any sort 
of phylogenetic classification scheme, CNNs trained on ImageNet 
should not be expected to perform well in recognizing much of the 
biodiversity across the tree of life directly out-of-the-box without 
additional training.

High-fidelity image segmentation is a unique problem in com-
puter vision and is further constrained by the taxonomic imbalance 
of biodiversity in readily accessible, annotated datasets for training 
neural networks to perform segmentation. For image segmentation 
to work, the neural network must not only successfully recognize 
the presence or absence of a target in an image but also must isolate 
the specific pixels encapsulating that target (He et al., 2017). Region 
Based Convolutional Neural Networks (R-CNNs) assist in accom-
plishing this task by scanning across an image and extracting regions 
of interest to predict bounding boxes delineating the object from the 
background (Girshick et al., 2014). Mask R-CNN is one popular meta-
algorithm, which extends the R-CNN to predict high-resolution 
segmentation masks (i.e. pixel boundaries indicating where the 
identified target object meets the background pixels), and can per-
form instance-level segmentation, or the ability to identify separate 
occurrences of a target object within an image (Abdulla, 2017; He 
et al., 2017). To accomplish this type of high-fidelity image segmen-
tation, the R-CNN must be trained on carefully constructed segmen-
tation masks, which are cartesian coordinates that form a polygonal 
contour mask around the region of interest across a training data-
set. This makes using the widely implemented ImageNet database 
less effective for high-resolution image segmentation with Mask R-
CNN, given that the annotations provided in ImageNet are strictly 
four-coordinate bounding box annotations, which reflect the ap-
proximate location of a target object within an image. Rather, the 
Microsoft Common Objects in Context (COCO) dataset provides de-
tailed segmentation mask annotations for common objects in their 
natural contexts (Lin et al., 2014). Although, COCO out-of-the-box 
is still limited for segmentation tasks of unrepresented biodiversity 
given that COCO is highly anthropocentrically biased towards do-
mesticated species and other terrestrial tetrapods (e.g. bird, cat, dog, 
cow, horse, mouse, sheep, zebra, giraffe, elephant, bear). The current 
lack of readily available image datasets with high-resolution image 
segmentation mask annotations limits how biologists can accessibly 
engage with deep learning applications to rapidly process images for 

downstream image analysis workflows without additional training. 
On the other hand, COCO can be used as a backbone for training 
new image segmentation models of underrepresented organisms 
provided its prior experience being trained to segment terres-
trial tetrapods. This procedure is called transfer learning (Razavian 
et al., 2014), which is the process of using an already trained neu-
ral network as a starting point for training a model to be used on 
a new and/or unrelated task (Yosinski et al., 2014). With transfer 
learning, the R-CNN can use its learned features from prior training 
on COCO's nearly 328,000 image dataset and efficiently general-
ize to segment novel categories of stimuli (e.g. fish) with only a few 
hundred training examples. Without transfer learning, a significantly 
larger training dataset of many thousands of examples, at minimum, 
may be necessary as neural networks typically overfit on small train-
ing datasets (i.e. those comprised of only a few hundred examples) 
when no prior task experience is supplied (Gray et  al.,  2019). We 
use transfer learning with pre-trained COCO weights to successfully 
automate image segmentation of fishes currently unrepresented 
within COCO out-of-the-box.

Here, we present Sashimi, a user-friendly toolkit that facilitates 
the rapid execution of accurate, high-throughput image segmen-
tation of digitized organisms—requiring no extensive program-
ming nor deep learning implementation experience to use. Our 
software implements Matterport's (Abdulla,  2017) Mask R-CNN 
(He et al., 2017) implementation with a custom fish segmentation 
model trained using transfer learning (Razavian et al., 2014) against 
the 328,000 image COCO dataset (Lin et al., 2014). We focus 
on fish because they present a wide gamut of phenotypes and 
color and pattern diversity (Alfaro et al., 2019; Losey et al., 2003; 
Marshall,  2000; Marshall et  al.,  2003a, 2003b; Salis et  al.,  2018, 
2019) and because machine learning approaches have recently 
been applied to the problem of identifying and measuring fishes 
(e.g. Baloch et al., 2017; Garcia et al., 2020; Qin et al., 2016; Yao 
et al., 2013; Yu et al., 2020). Our toolkit provides five key contri-
butions: (a) ‘plug-and-play’ reproducible, automated segmentation 
of fish images in complex backgrounds directly out-of-the-box, 
(b) a central database for sharing and distributing custom-trained 
segmentation models of other underrepresented organisms to 
use within the toolkit, (c) the ability to quickly specify an organ-
ism of interest to segment from the animal classes already included 
in COCO without needing to modify the codebase, (d) additional 
image pre-processing tools for popular color pattern analysis work-
flows, such as colordistance (Weller & Westneat, 2019), pavo (Maia 
et al., 2013, 2019) or patternize (Van Belleghem et al., 2018) and (e) 
built-in qualitative and quantitative image segmentation accuracy 
and diagnostic tools directly compatible with the segmentation 
outputs from Sashimi. We assessed our approach by qualitatively 
and quantitatively comparing automatically and manually seg-
mented fish images across a range of image backdrop complexity. 
We then discuss the strengths and limitations of our approach for 
processing fish images and consider how this approach can be ex-
tended to other branches of the tree of life.
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2  | MATERIAL S AND METHODS

The Sashimi toolkit is freely available via GitHub (https://github.
com/Shawn​Tyler​Schwa​rtz/sashimi).

2.1 | Mask R-CNN architecture

Our software implements the Mask R-CNN architecture 
(Abdulla, 2017; He et al., 2017), an extension of the Faster R-CNN 
(Ren et al., 2017) algorithm for generating regions of interest. Mask 
R-CNN not only detects a target object in an image but also rapidly 
detects the pixel-level target region of interest, outputting a high-
resolution segmentation contour reflecting the specific boundaries 
of the location of the target object within the image.

2.2 | Model training dataset acquisition

Our dataset comprises 910 images, sampled across seven pheno-
typically disparate reef fish families, randomly divided into training 
and validation sets (ntrain = 720, nvalidation = 190; approximately 80% 
train, 20% validation). We acquired standardized digitized speci-
mens from J.E. Randall's fish images (N  =  747; ntrain  =  598, nvalida-

tion = 149) distributed through the Bishop Museum (http://pbs.bisho​
pmuse​um.org/image​s/JER/) and more naturalistic images with noisy 
backgrounds (N = 163; ntrain = 122, nvalidation = 41) from iNaturalist 
(https://www.inatu​ralist.org/). Examples of the types of images in-
cluded in model training are shown in Figure 1.

2.3 | Model training procedure

We first used the VGG Image Annotator Version 1.0.6 (https://www.
robots.ox.ac.uk/~vgg/softw​are/via/via-1.0.6.html; Dutta et al., 
2016) to manually annotate pixel coordinates to create precise po-
lygonal mask contours directly around the fish body boundary (i.e. 
where the foreground pixels of the target fish body meet those of 
the background). We intentionally assigned all segmentation masks 
for each image a class label name corresponding to the general bio-
logical name of the organism (e.g. ‘fish’). Given that our intention is 
to build broad, organism-specific models one-by-one, we suggest 
building organism-specific training sets where all segmentation con-
tours across images are labelled the same name (i.e. ‘whale’). We 
then used these coordinates to train a model using transfer learning 
(Razavian et al., 2014) with the COCO pre-trained weights (Lin et al., 
2014), a ResNet-101 (a CNN with 101 layers; He et al., 2016) and a 
Feature Pyramid Network (a generic feature extractor for detecting 
objects across scales; Lin et al., 2017) backbone. Despite COCO not 
containing any images nor segmentation mask annotations of marine 
organisms, we opted to use the pre-trained COCO model weights 
to help make our custom fish segmentation model generalizable for 
broader recognition and segmentation of a phenotypically diverse 

gamut of fish images—similar to the Gray et al. (2019) implementa-
tion of Mask R-CNN for automating cetacean species identification 
and length estimation.

We based training on Matterport's open-source implementation 
of Mask R-CNN (Abdulla, 2017) using a desktop computer equipped 
with a GeForce RTX 2080 GPU. We trained our model for 160 ep-
ochs over three stages. Stage 1 (epochs 1–40) trained the network 
heads, stage 2 (epochs 41–120) fine-tuned ResNet-101 layers stage 
4 and up, and stage 3 (epochs 121–160) fine-tuned all layers. Training 
stages 1 and 2 used a learning rate of 0.001, whereas stage 3 used 
a learning rate of 0.0001. All training stages had a weight decay of 
0.0001, learning momentum of 0.9, and used image augmentation 
by flipping 50% of the images in the left-right orientation to increase 
the robustness of the neural network. Model training took approxi-
mately 8 hr to complete.

2.4 | Automated segmentation pipeline

The Sashimi command line interface allows users to automatically 
extract and segment target images in common image formats. 
Sashimi supports the extraction of multiple targets from a single 
image; however, the analysis pipeline described here focused on im-
ages of single specimens in lateral view, a common use case for color 
pattern analysis. Within Sashimi, users can specify the path to their 
image folder for batch processing, save images with a transparent 
background, assess segmentation accuracy and train new organism-
specific segmentation models. The full instructions and options are 
provided on the GitHub repository.

2.5 | Sashimi online model repository

We constructed a website to serve as a repository for the fish seg-
mentation model (presented here) and future, community generated 
organismal segmentation models (https://sashi​mi.shawn​tyler​schwa​
rtz.com). We aim to inspire other biologists interested in automated 
segmentation to create pre-trained models for their organism(s) of 
interest and share them to the Sashimi online database for the rest 
of the community to use and build upon. All models will be open-
source and available to download, and users can submit requests to 
share new models, which will be evaluated before becoming publicly 
available.

2.6 | Evaluating fish segmentation model efficacy

2.6.1 | Qualitative image segmentation evaluation

We qualitatively assessed the performance of the current fish 
segmentation model by visually inspecting segmented outputs 
and reporting the visible strong and weak characteristics of these 
outputs.
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2.6.2 | Quantitative image segmentation 
evaluation metrics

We evaluated the performance of our fish image segmentation model 
using four common metrics for assessing semantic segmentation ac-
curacy: pixel accuracy, Equation 1; mean accuracy, Equation 2; mean 
intersection over union (IoU), Equation 3; and frequency-weighted 
IoU, Equation 4 (Long et al., 2015). The IoU approach is commonly 
used for instance segmentation tasks, with values >50% generally 
indicative of good detection (Gray et al., 2019; He et al., 2017). Here, 
we let nij be the number of pixels of class i predicted to belong to 

class j, ti = ∑
jnij be the total number of pixels of class i, and ncl be 

the number of different classes. We computed each metric using the 
reference (‘ground truth’) segmentation contours (images we manu-
ally annotated with high precision) and the predicted segmentation 
masks from our custom-trained model (Figure  2) on our randomly 
selected validation image dataset, which included 41 images of fish 
in naturalistic and noisy backgrounds from iNaturalist and 149 stand-
ardized fish images from J.E. Randall's collection. We also report seg-
mentation metric results for a test dataset of 60 novel images in the 
online Supporting Information. Additionally, we compared the results 
of a color pattern analysis workflow from an earlier study (Alfaro 

F I G U R E  1   Examples of wide visual phenotypic and morphological diversity, as well as variation in image background complexity, which 
constitute a subset of the fish images used to train the fish segmentation model presented here in the current study
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F I G U R E  2   Examples of the predicted segmentation masks from our custom-trained fish segmentation model, reference segmentation 
contours (expert, high-precision manual segmentation mask annotations) and the superimposed image of the predicted and ground truth 
reference masks (dark grey regions indicate regions of the reference fish mask that were not captured by the model) for each respective 
source image
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et al., 2019) using manual and automatically segmented images (see 
Supporting Information for Background, Methods, and Results).

2.7 | Statistics

All statistics were performed using JASP (version 0.11.1; Love 
et  al.,  2019). We ran a 2 (Source: iNaturalist, Randall)  ×  4 (Metric: 

pixel accuracy, mean accuracy, mean IoU, frequency-weighted IoU) 
repeated-measures analysis of variance (ANOVA) to test for differ-
ences in image segmentation accuracy between manually annotated 
(reference) and Mask R-CNN generated segmentation mask con-
tours for validation images from iNaturalist (complex backgrounds) 
and J.E. Randall's collection (relatively uniform backgrounds).

3  | RESULTS

3.1 | Qualitative image segmentation evaluation

Fishes segmented with our custom Mask R-CNN fish segmenta-
tion model were generally similar to manually segmented fishes. In 
most cases, we observed high performance for images automatically 
segmented by deep learning, regardless of whether individuals of a 
particular genera were included in the training dataset (Figure  3), 
suggesting that the model generalizes well to novel fish species. We 
found a small number of cases where the model performed poorly, 
particularly when presented with elongate parts of the body. For 
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F I G U R E  3   Examples of fish images that were automatically segmented using Sashimi. Segmented organisms presented here are from the 
following families: Apogonidae, Gobiidae, Labridae, Pomacentridae and Serranidae. The model was trained on taxa sampled from families 
labelled with an asterisk (*)

7



2348  |    Methods in Ecology and Evolu
on SCHWARTZ and ALFARO

example, long dorsal spines, anal flags and long rostra were some-
times clipped (Figures 4 and 5a). We also observed wavy patterns for 
pixels along the boundaries of some fishes and small patches of stray 
background pixels (Figures 5b and 6).

3.2 | Quantitative image segmentation 
evaluation metrics

All 190 validation images had mean IoU scores >50% (M = 93.8%, 
SD = 1.4%, minimum = 87.5%, maximum = 96.9%), indicating excellent 

model-predicted segmentation masks compared to manually drawn 
reference masks. Comparing across image segmentation metrics and 
image sources, we found a significant main effect of evaluation met-
ric on accuracy, F(1.79, 336.75) = 739.53, padj. < 0.001, suggesting 
that independent of image source (iNaturalist, J.E. Randall), accuracy 
metrics varied significantly from one another (Figure  7). We also 
found a significant main effect of image source, F(1, 188) = 60.70, 
p < 0.001, such that regardless of accuracy metric, images from iNat-
uralist were generally segmented with higher accuracy (M = 96.5%, 
SD = 1.1%) than were J.E. Randall's images (M = 95.2%, SD = 0.8%), 
t(188) = 7.79, Cohen's d = 0.57, padj. < 0.001. Lastly, we uncovered a 

F I G U R E  4   Butterflyfishes (‘Source image’) that were digitized by manual segmentation (‘Human’) from Alfaro et al. (2019) and by deep 
learning (with both the pre-trained COCO weights only and our custom-trained model built upon the pre-trained COCO weights). Prediction 
confidence for classification labels from the pre-trained COCO weights only model is presented in parentheses following the classification 
labels (which were only displayed when model prediction confidence was ≥5%)

et al.,
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significant interaction between accuracy metric and image source, 
F(1.79, 336.75)  =  118.24, padj.  <  0.001. Bonferroni-corrected post 
hoc paired-sample t-tests for the significant main effect of metric re-
vealed frequency-weighted IoU to be significantly less than pixel and 
mean accuracy, but significantly higher than mean IoU. Additionally, 
pixel accuracy was significantly higher than both mean accuracy and 
mean IoU, and mean accuracy was significantly higher than mean 
IoU (Table  1; post hoc comparisons for the significant interaction 
are presented in Supporting Information Table  S1). Segmentation 
metrics for the novel test dataset revealed the same overall pattern 
of results reported here for the validation dataset (see Supporting 
Information Tables  S2 and S3). Sashimi and manually segmented 
images also yielded statistically similar inferences of color pattern 
(Supporting Information Tables S4 and S5).

4  | DISCUSSION

Our custom-trained model exhibited strong performance in seg-
menting fish images in standardized and natural settings (Figures 4 
and 7). The high segmentation accuracy we obtained results from 

the Mask R-CNN meta-algorithm's ability to successfully adapt to 
most computer vision tasks (He et al., 2017). In general, segmenta-
tion of standardized images compares favourably to manual segmen-
tation, preserving gross and fine morphological features necessary 
for many kinds of morphometric analyses. Some body shapes did 
challenge the model, possibly rendering these automatically seg-
mented images as unsuitable for measurement of the most elon-
gate fin spines or of species with extreme rostral elongation, such 
as Forcipiger butterflyfishes (Figure 6a). We suspect that additional 
training datasets comprised of fishes with extreme morphologies 
would improve fidelity of edge contour predictions. Although, im-
ages segmented under the current model yield similar results to a 
manual workflow for color pattern analysis (Supporting Information) 
and are likely to have sufficient fidelity for a wide range of applica-
tions in ecology and evolution. These results highlight the potential 
of R-CNNs for biological applications (He et al., 2017) and extend 
the range of this approach for identifying fishes across lab and field 
conditions (Garcia et al., 2020; Qin et al., 2016; Salman et al., 2016; 
Yu et al., 2020).

Despite the potential of deep learning, existing barriers to im-
plementing these tools are substantial for non-specialists. A review 

F I G U R E  5   (a) Butterflyfishes of the 
genus Forcipiger, which are characterized 
by distinct dorsal spines and long snouts 
(rostrums), that were digitized either by 
manual segmentation or by our custom-
trained fish segmentation model. (b) 
Examples of automatically segmented 
fish images with small patches of 
stray background pixels that were not 
completely captured by our current model

(a)

(b)
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reflecting the lack of accessible tools for non-programmers recom-
mends that ecologists and evolutionary biologists should consult 
with computer scientists before adopting these approaches, high-
lighting the lack of user-friendly tools for deep learning (Christin 
et al., 2019). The lack of user-friendly tools for bridging the ‘last mile’ 
connecting the enormous power of R-CNNs to biologists working 

across the diversity of the tree of life likely explains the limited use of 
deep learning algorithms within ecology and evolution. We believe 
that Sashimi can help bridge this gap and allow non-specialists to 
develop powerful pipelines for image analysis.

Some limitations may arise when attempting to utilize Mask 
R-CNN for a novel group of organisms. Specifically, one might ob-
serve poor model performance for novel input images visually devi-
ating from those primarily comprising the original training dataset. 
Generalizability in model performance will ultimately depend on the 
variation of the examples supplied during model training. To remedy 
this problem, ecologists and evolutionary biologists should carefully 
select both common and rarer examples of digitized organismal im-
ages reflecting a diverse set of appearances, backdrops, and contexts. 
Gathering images representing high phenotypic and contextual visual 
diversity should help enhance model generalizability and perfor-
mance in most cases. Over and above training dataset construction is 
considering the iterative nature of model training required to achieve 
performance suitable for one's specific needs. For instance, if an 
ecologist aims to segment the bodies of organisms for a color pattern 
analysis, images with small visual artifacts along the boundaries of 
the body should not expectedly impact downstream analytical goals. 
However, a morphometric analysis aiming to measure landmarks on 
regions at the edge of the body may require more fine-grained model 
tuning such that predicted segmentation masks more carefully ex-
tract the foreground pixels from the background pixels at the bound-
aries of the target. Such model training may require hundreds or even 
thousands of relevant example images and may possibly require addi-
tional generations of training. Users should also consider the quality 
of their supplied mask annotations for training dataset images. Care 
should be taken during manual annotation to ensure coordinates re-
flect a smooth boundary delineating the background pixels from the 
foreground pixels, rather than a more jagged, rough approximation 
of the target's location within the image. In sum, users interested in 
refining the model for different use cases should anticipate iteratively 
training models with different sized training datasets and parameters 
until suitable performance is achieved.

Overall, Sashimi provides an extensible toolkit for automating 
and evaluating image segmentation performance using the power-
ful deep learning meta-algorithm, Mask R-CNN (He et al., 2017). As 
studies in ecology and evolutionary biology continue to move to-
wards analyses of phenotype at massive phylogenetic scales (e.g. 
Baliga & Mehta,  2019; Chang & Alfaro,  2016; Price et  al.,  2019; 
Rabosky et  al.,  2018), having a toolkit which aims to simplify and 
streamline the image segmentation procedure from start-to-finish 
will help to eliminate the bottleneck between the rapid acquisi-
tion and slow extraction of meaningful data by (a) facilitating high-
throughput image segmentation, (b) easing the foregoing technical 
barriers potentially prohibiting biologists from taking advantage of 
the power of deep learning image pre-processing for their studies, 
(c) making model diagnostic metrics and visualization accessible 
with the ‘click-of-a-button’ and (d) promoting open-access shar-
ing of clade-specific models to facilitate reproducible and efficient 

F I G U R E  6   Image segmentation of novel fish images in their 
natural contexts with noisy backdrops using our custom-trained 
fish segmentation model
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organismal image pre-processing workflows in a future of big data 
research in integrative biology (Muñoz & Price, 2019).
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F I G U R E  7   Bar plot of four common 
image segmentation evaluation metrics: 
pixel accuracy (PxAcc, Equation 1), 
mean accuracy (MeanAcc, Equation 2), 
mean intersection over union (MeanIoU, 
Equation 3) and frequency-weighted 
intersection over union (FreqIoU, Equation 
4) by image source (iNaturalist, J.E. 
Randall). Error bars represent ±1 SE of the 
mean

TA B L E  1   Post hoc comparisons for the main effect of evaluation 
metric

Comparison t(188) padj. Cohen's d

FreqIoU < MeanAcc −14.39 <0.001 −1.04

FreqIoU > MeanIoU 9.03 <0.001 0.66

FreqIoU < PxAcc −46.87 <0.001 −3.40

MeanAcc > MeanIoU 43.92 <0.001 3.19

MeanAcc < PxAcc −11.49 <0.001 −0.83

MeanIoU < PxAcc −46.04 <0.001 −3.34

Note: Student's t test. Bonferroni-corrected (for multiple 
comparisons) post hoc paired-sample t-tests comparing the four 
image segmentation validation metrics; pixel accuracy (PxAcc, 
Equation 1), mean accuracy (MeanAcc, Equation 2), mean intersection 
over union (MeanIoU, Equation 3) and frequency-weighted 
intersection over union (FreqIoU, Equation 4). Cohen's d does not 
correct for multiple comparisons
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Table S1. Post hoc comparisons for the interaction between accuracy metric and image source 
(validation set). 

Comparison t(188) padj. Cohen’s d 

FreqIoU, iNat > 
FreqIoU, Randall 14.839 < .001 1.077 

 FreqIoU, iNat > 
MeanAcc, iNat 4.035 0.002 0.293 

FreqIoU, iNat - 
MeanAcc, Randall 2.318 0.590 0.168 

FreqIoU, iNat > 
MeanIoU, iNat 16.331 < .001 1.185 

FreqIoU, iNat > 
MeanIoU, Randall 17.004 < .001 1.234 

FreqIoU, iNat < PxAcc, 
iNat -11.407 < .001 -0.828 

FreqIoU, iNat - PxAcc, 
Randall -0.771 1.000 -0.056 

FreqIoU, Randall < 
MeanAcc, iNat -11.836 < .001 -0.859 

FreqIoU, Randall < 
MeanAcc, Randall -32.078 < .001 -2.327 

FreqIoU, Randall - 
MeanIoU, iNat -2.687 0.212 -0.195 
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FreqIoU, Randall > 
MeanIoU, Randall 5.547 < .001 0.402 

FreqIoU, Randall < 
PxAcc, iNat -23.327 < .001 -1.692 

FreqIoU, Randall < 
PxAcc, Randall -39.993 < .001 -2.901 

MeanAcc, iNat - 
MeanAcc, Randall -0.685 1.000 -0.050 

MeanAcc, iNat > 
MeanIoU, iNat 12.296 < .001 0.892 

MeanAcc, iNat > 
MeanIoU, Randall 14.001 < .001 1.016 

MeanAcc, iNat < 
PxAcc, iNat -15.442 < .001 -1.120 

MeanAcc, iNat < 
PxAcc, Randall -3.774 0.005 -0.274 

MeanAcc, Randall > 
MeanIoU, iNat 9.834 < .001 0.713 

MeanAcc, Randall > 
MeanIoU, Randall 37.625 < .001 2.730 

MeanAcc, Randall < 
PxAcc, iNat -10.806 < .001 -0.784 

MeanAcc, Randall < 
PxAcc, Randall -7.914 < .001 -0.574 

MeanIoU, iNat > 
MeanIoU, Randall 4.852 < .001 0.352 
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MeanIoU, iNat < 
PxAcc, iNat -27.739 < .001 -2.012 

MeanIoU, iNat < 
PxAcc, Randall -12.923 < .001 -0.938 

MeanIoU, Randall < 
PxAcc, iNat -25.492 < .001 -1.849 

MeanIoU, Randall < 
PxAcc, Randall -45.540 < .001 -3.304 

PxAcc, iNat > PxAcc, 
Randall 7.717 < .001 0.560 

Note. Student’s t-test. Bonferroni-corrected (for multiple comparisons) post hoc paired-samples t-
tests comparing the four image segmentation validation metrics; pixel accuracy (PxAcc, Eq. 1), 
mean accuracy (MeanAcc, Eq. 2), mean intersection over union (MeanIoU, Eq. 3), and frequency 
weighted intersection over union (FreqIoU, Eq. 4), from either iNaturalist (iNat) or J.E. Randall’s 
fish photos collection (Randall). Cohen’s d does not correct for multiple comparisons. Significant 
comparisons are bolded  
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Quantitative Image Segmentation Evaluation Metrics for Novel Test Set 

 We constructed a test dataset of 60 novel images (i.e., all images were new images not 

included in the original training/validation datasets): 30 images were J.E. Randall’s fish images in 

left-lateral view on a uniform black backdrop, and 30 images were naturalistic images of fishes in 

various views on complex noisy backdrops. All 60 novel test images had mean IoU scores greater 

than 50% (M = 94.7%, SD = 1.1%, minimum = 91.8%, maximum = 96.9%), indicating excellent 

model-predicted segmentation masks compared to manually drawn reference masks. Comparing 

across image segmentation metrics and image sources, we found a significant main effect of 

evaluation metric on accuracy, F(1.42, 82.60) = 344.65, padj. < .001, suggesting that independent 

of image source (iNaturalist, J.E. Randall), accuracy metrics varied significantly from one another. 

We also found a significant main effect of image source, F(1, 58) = 65.19, p < .001, such that 

regardless of accuracy metric, images from iNaturalist were generally segmented with higher 

accuracy (M = 96.9%, SD = .7%) than were J.E. Randall’s images (M = 95.5%, SD = .5%), t(58) 

= 8.07, Cohen’s d = 1.04, padj. < .001. Lastly, we uncovered a significant interaction between 

accuracy metric and image source, F(1.42, 82.60) = 55.38, padj. < .001. Bonferroni-corrected post 

hoc paired-samples t-tests for the significant main effect of metric revealed frequency weighted 

IoU to be significantly less than pixel and mean accuracy, but significantly higher than mean IoU. 

Additionally, pixel accuracy was significantly higher than both mean accuracy and mean IoU, and 

mean accuracy was significantly higher than mean IoU (Table S2).  
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Table S2. Post hoc comparisons for the main effect of evaluation metric (test set). 

Comparison t(58) padj. Cohen’s d 

FreqIoU < MeanAcc -3.58 .004 -.46 

FreqIoU > MeanIoU 7.66 < .001 .99 

FreqIoU < PxAcc -19.91 < .001 -2.57 

MeanAcc > MeanIoU 18.19 < .001 2.35 

MeanAcc < PxAcc -9.38 < .001 -1.21 

MeanIoU < PxAcc -35.05 < .001 -4.53 

Note. Student’s t-test. Bonferroni-corrected (for multiple comparisons) post hoc paired-samples t-
tests comparing the four image segmentation validation metrics; pixel accuracy (PxAcc, Eq. 1), 
mean accuracy (MeanAcc, Eq. 2), mean intersection over union (MeanIoU, Eq. 3), and frequency 
weighted intersection over union (FreqIoU, Eq. 4). Cohen’s d does not correct for multiple 
comparisons 
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Table S3. Post hoc comparisons for the interaction between accuracy metric and image source 
(test set). 

Comparison   t(58)  padj. Cohen’s d  

FreqIoU, iNat > FreqIoU, Randall   12.809  < .001 1.654  

FreqIoU, iNat > MeanAcc, iNat   3.487  0.017 0.450  

FreqIoU, iNat - MeanAcc, Randall   2.762  0.185 0.357  

FreqIoU, iNat > MeanIoU, iNat   12.296  < .001 1.587  

FreqIoU, iNat > MeanIoU, Randall   14.597  < .001 1.884  

FreqIoU, iNat < PxAcc, iNat   -10.040  < .001 -1.296  

FreqIoU, iNat - PxAcc, Randall   -0.192  1.000 -0.025  

FreqIoU, Randall < MeanAcc, iNat   -10.430  < .001 -1.347  

FreqIoU, Randall < MeanAcc, Randall   -14.727  < .001 -1.901  

FreqIoU, Randall < MeanIoU, iNat   -4.420  < .001 -0.571  

FreqIoU, Randall - MeanIoU, Randall   2.620  0.268 0.338  

FreqIoU, Randall < PxAcc, iNat   -19.658  < .001 -2.538  

FreqIoU, Randall < PxAcc, Randall   -19.058  < .001 -2.460  

MeanAcc, iNat - MeanAcc, Randall   0.383  1.000 0.049  

MeanAcc, iNat > MeanIoU, iNat   8.809  < .001 1.137  

MeanAcc, iNat > MeanIoU, Randall   12.218  < .001 1.577  

MeanAcc, iNat < PxAcc, iNat   -13.527  < .001 -1.746  

MeanAcc, iNat - PxAcc, Randall   -2.571  0.317 -0.332  

MeanAcc, Randall > MeanIoU, iNat   5.626  < .001 0.726  
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MeanAcc, Randall > MeanIoU, Randall   17.347  < .001 2.239  

MeanAcc, Randall < PxAcc, iNat   -9.612  < .001 -1.241  

MeanAcc, Randall < PxAcc, Randall   -4.331  < .001 -0.559  

MeanIoU, iNat > MeanIoU, Randall   6.208  < .001 0.801  

MeanIoU, iNat < PxAcc, iNat   -22.336  < .001 -2.884  

MeanIoU, iNat < PxAcc, Randall   -8.581  < .001 -1.108  

MeanIoU, Randall < PxAcc, iNat   -21.446  < .001 -2.769  

MeanIoU, Randall < PxAcc, Randall   -21.678  < .001 -2.799  

PxAcc, iNat > PxAcc, Randall   6.657  < .001 0.859  

Note. Student’s t-test. Bonferroni-corrected (for multiple comparisons) post hoc paired-samples t-
tests comparing the four image segmentation validation metrics; pixel accuracy (PxAcc, Eq. 1), 
mean accuracy (MeanAcc, Eq. 2), mean intersection over union (MeanIoU, Eq. 3), and frequency 
weighted intersection over union (FreqIoU, Eq. 4), from either iNaturalist (iNat) or J.E. Randall’s 
fish photos collection (Randall). Cohen’s d does not correct for multiple comparisons. Significant 
comparisons are bolded  
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Color Pattern Analysis Comparison 

From an ecological and evolutionary perspective, color pattern conspicuousness plays a 

critical role in the diversification of visual systems, signaling, and defensive behavior (Barlow 

1972; Neudecker 1989; Domeier & Colin 1997; Marshall 2000; Losey et al. 2003; Marshall et al. 

2003a; Marshall et al. 2003b; Randall 2005; Cheney et al. 2009; Salis et al. 2018), in addition to 

speciation processes (Bellwood et al. 2015; Bellwood, Goatley & Bellwood 2017; Salis et al. 2018; 

Alfaro et al. 2019; Hemingson et al. 2019; Salis et al. 2019). To better understand the evolution 

and divergence of organismal coloration and patterning, color pattern analysis has become 

increasingly common in ecological and evolutionary studies due to conceptual advances and the 

availability of new software tools (Endler 2012; Maia et al. 2013; Endler, Cole & Kranz 2018; 

Van Belleghem et al. 2018; Maia et al. 2019; Weller & Westneat 2019; Van Den Berg et al. 2020). 

These software approaches typically require input images with transparent (or 

artificially/uniformly colored) backgrounds to ensure that color pattern metrics are not influenced 

by similar, overlapping background pixels. As such, a common first step in color pattern analysis 

is image segmentation. This step is usually performed by hand, creating a potential bottleneck for 

larger scale analyses of color pattern. 

Here, we compared an analysis of butterflyfish color pattern that used manual image 

segmentation from prior work (Alfaro et al. 2019) and compared color pattern geometry metrics 

of these manually segmented reef fishes to automatically segmented images of the same fishes 

with the custom fish segmentation model presented with Sashimi. Ninety-six of J.E. Randall’s 

images of butterflyfishes were obtained from the Bishop Museum 

(http://pbs.bishopmuseum.org/images/JER/) and were segmented both manually by experts and 

automatically by Sashimi. Color pattern analyses were subsequently conducted in pavo (Version 
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2.0.0; Maia et al. 2013; Maia et al. 2019). For color pattern quantification, images were 

subsampled using a 100 × 100 pixel grid and RGB values were used to compute color distances 

within each color region as a proxy for photoreceptor curves and spectral data. Two color 

measurements (Eqs. S1, S2) and luminance (Eq. S3) were computed for each color region 

according to Endler (2012) and were then used to compute Euclidean distances between regions 

to estimate chromatic and achromatic boundary strengths. The color pattern geometry variables 

computed and used in analyses here were: overall transition density (m), aspect ratio (A), scaled 

Simpson color class diversity (Jc), scaled Simpson transition diversity (Jt), and mean chromatic 

(m_dS) and achromatic (m_dL) boundary strength. 

! − #
! + # (&1) 

# − )
# + ) (&2) 

! + # + ) (&3) 

 

 

Results 

We compared the results of color pattern geometry variables from an earlier study (Alfaro 

et al. 2019) using manual and Sashimi segmented images with a multivariate analysis of variance 

(MANOVA) to test whether the two image segmentation workflows generated similar values for 

the color pattern geometry descriptors. We found no significant effect of method of generating the 

segmented image (manually by hand, automatically by deep learning) for any of the color pattern 

geometry variables (all ps > .05; bolded in Table S4). Descriptive statistics for each color pattern 
23



geometry variable for images segmented manually by hand and automatically by deep learning are 

presented in Table S5.  
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Table S4 

MANOVA: Pillai Test  
Cases  df  Approx. F  Trace Pillai  Num df  Den df  p  

(Intercept)   1   7034.802   0.996   6   185.000   < .001   
method   1   1.708   0.052   6   185.000   0.121   
Residuals   190               
 

Follow-up ANOVAs 

ANOVA: m  
Cases  Sum of Squares  df  Mean Square  F  p  

(Intercept)   3.457   1   3.457   1810.285   < .001   
method   0.005   1   0.005   2.605   0.108   
Residuals   0.363   190   0.002         
 
  

ANOVA: A  
Cases  Sum of Squares  df  Mean Square  F  p  

(Intercept)   245.472   1   245.472   4760.218   < .001   
method   0.010   1   0.010   0.203   0.653   
Residuals   9.798   190   0.052         
 
  

ANOVA: Jc  
Cases  Sum of Squares  df  Mean Square  F  p  

(Intercept)   75.000   1   75.000   9075.140   < .001   
method   0.027   1   0.027   3.320   0.070   
Residuals   1.570   190   0.008         
 
  

ANOVA: Jt  
Cases  Sum of Squares  df  Mean Square  F  p  

(Intercept)   70.664   1   70.664   6747.701   < .001   
method   0.011   1   0.011   1.078   0.300   
Residuals   1.990   190   0.010         
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ANOVA: m_dS  
Cases  Sum of Squares  df  Mean Square  F  p  

(Intercept)   3.086   1   3.086   640.887   < .001   
method   7.083e -5   1   7.083e -5   0.015   0.904   
Residuals   0.915   190   0.005         
 
  

ANOVA: m_dL  
Cases  Sum of Squares  df  Mean Square  F  p  

(Intercept)   166.760   1   166.760   7280.861   < .001   
method   0.015   1   0.015   0.641   0.424   
Residuals   4.352   190   0.023         
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Table S5 

Descriptive Statistics for Color Pattern Geometry Variables 
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