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Abstract

An Approach to Reducing Bus Bunching

by

Joshua Michael Pilachowski

Doctor of Philosophy in Engineering

University of California, Berkeley

Professor Carlos F. Daganzo, Chair

The tendency of buses to bunch is a problem that was defined almost 50 years ago.
Since then, there has been a significant amount of work done on the problem; however, the
tendency of the current literature is either to only focus on the surface causes or to rely
on simulation to create results instead of model formulation. With GPS installed on many
buses throughout the world, the data is only being used for monitoring and informing the
user. This research proposes a new approach to solving the problem that uses the GPS data
to directly counteract the cause of the bunching by allowing the buses to cooperate with each
other and determine their speed based on relative position. A continuum approximation
model is presented as a tool to systematically analyze the behavior of the system and test
the proposed control. In order to validate the model and the control, a simulation tool is
used to model the system in a more realistic, discrete way. The control is shown to produce
bounded deviations in spacing consistent with those predicted by the model. The resulting
bus system will not bunch with only a small reduction in commercial speed.
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Chapter 1

Introduction

Modern transportation provides many modes as options for people’s daily travel
needs. Private modes (personal car, bicycle, walking) share similar features in that the user
defines most aspects of a trip and is responsible for the full operational and maintenance
cost of the mode. Public transportation is a unique mode in that the operational and
maintenance cost is shared by all users as well as subsidized in most cases by the government.
This shared cost creates a situation where the stakeholders have opposing objectives. The
question is how to provide reasonable transportation service for a diverse set of users and
desired trips without the cost of the service being too expensive. In order to do this, users’
trips are consolidated, both spatially along predefined bus routes and temporally at some
frequency of vehicle dispatch.

The time it takes a transit vehicle to travel a route can be broken into two parts:
time spent overcoming distance and time spent at stops. The time spent overcoming dis-
tance depends on the cruising speed of the vehicle, the speed at which it can move between
stops. This depends both on the physical capabilities of the vehicle as well as any external-
ities that can impede its progress, such as traffic congestion and traffic signals. The time
spent at stops can be broken into several parts. There is a fixed amount of time at each stop
that must be spent decelerating to a stop, opening and closing the doors, and then accel-
erating back to cruising speed. There is also an amount of time spent allowing passengers
to board and alight. The long-term average speed at which the vehicle can move, including
both the time spent traveling and stopped, is called the commercial speed. This is the
speed which transit schedules are based on and which a user experiences when traveling to
a destination. Because there is an amount of time lost with each stop, the more densely the
stops are placed, the slower the commercial speed of the mode will be. However, the total
time users spend on their trip also depends on how long it takes them to access a transit
stop from their origin, and how long it takes them to progress to their destination from
a transit stop. If stops are located too far apart, this time can outweigh the time savings
from having fewer stops. This is part of the trade-off that must be taken into account when
designing a transit network. The other part of the trade-off is determining frequency of
service. The headway, defined as the time between successive bus arrivals to a point in
space, determines the number of users served by each vehicle and how long users must wait
for a vehicle to arrive to a transit stop. Vehicles must be dispatched often enough that
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they do not become over crowded and users do not have to wait too long for one to arrive.
However, more vehicles are required to provide more frequent service and each additional
vehicle carries with it the cost of an operator as well as capital and maintenance costs.

All of these components are taken into account during the design process to provide
a certain level of service to the user. However, the actual level of service users experience
depends on the reliability of the system to operate as designed. Each component carries
with it some level of reliability, and when taken as a whole they determine how well the
system behaves. For example, having a dedicated right-of-way allows a vehicle to travel at a
constant speed uninterrupted by externalities between stops, and having a fixed dwell time
removes any randomness caused by random passenger arrivals at transit stops. Most heavy
rail systems have both of these features and so under ordinary circumstances have very high
reliability and schedule adherence. Most bus lines operate within general traffic and have
dwell times based on the number of users at each bus stop (even skipping stops when there
is no reason to stop). Because of this, bus transit can can have very low reliability.

1.1 The Bunching Problem

1.1.1 Why do buses bunch

In addition to being more susceptible to external disturbances, as the headways
between buses change from the designed value these disturbances are magnified over time
until buses can travel in pairs instead of evenly spaced. This effect is referred to as bunching.
The main cause for bunching comes from the fact that the time a bus spends at a bus stop
increases with the number of users that need to board and alight the bus. On most buses
the number of users boarding tends to control the time spent at a stop as there is only one
point of entry and users must interact with the driver to pay their fare. Additionally, the
expected number of users waiting to board at any bus stop generally increases with the time
between successive bus arrivals. These two properties in tandem cause a positive feedback
effect. If a bus is delayed or slowed a small amount so that the number of passengers waiting
at each bus stop is larger than expected, the bus will have to dwell longer, slowing it down
further. Similarly, a bus that is momentarily sped up will arrive to a bus stop sooner, and
have fewer passengers to board, speeding it up further. This effect grows exponentially over
time and if the space between two buses starts decreasing, they will eventually have little
or no space between them and start moving as one unit since they are serving the same
demand. If the number of buses on a route is fixed for most of the day and the length of a
route is constant, for every group of bunched buses, there will be locations along the route
not served by buses for long periods of time.

1.1.2 What effect does it have

Effect on transit users

When determining door-to-door travel time there are several parts of a trip to
consider. When using a private mode, individuals must access their vehicles, travel in their
vehicles to a parking area close to their destination, and then progress to their destination.
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In most cases, the access, travel, and egress times are able to be estimated with a reason-
able margin of error and individuals can arrive at their destination at their desired time.
When using public transit however there is an added component. Users are restricted to
a predetermined set of arrival times based on the schedule and/or the frequency of service
offered. Transit users must plan their trip taking this into account, and even if public transit
vehicles run perfectly on schedule, the earliness time at their destination before the desired
arrival time would be added to the time of the trip. In the case of constant headway service
without a schedule when the time of arrival is not known, users must budget a full headway
of waiting time to their expected trip time to be split between waiting for a vehicle and
arriving early at their destination.

Some transit modes, like heavy rail, operate on a designated right-of-way and
require strict centralized control for safety reasons. This allows deviations from the schedule
during everyday operation to be very small. If users know they can rely on a schedule to
accurately predict vehicle arrival they can plan their trip with very little wasted time.
However, with buses and other modes that operate within general traffic there are very few
if any controls to ensure schedule adherence. As a result, users must build in much more
buffer time to their trip to guarantee arrival to their destination by the desired time.

In addition to the increased waiting time experienced by users of a bus system,
there are other negative effects of bunching as well. Because demand served by a bus
is proportional to the time between bus arrivals to each stop, many more passengers are
served by late buses than by early buses. This compounds the frustration of having to wait
longer for a bus with having to then travel on a crowded bus. These crowded buses running
behind schedule also travel at a slower average speed because of the time spent boarding
and alighting an increased number of passengers, causing slower travel times.

Effect on the provider and society

As more and more people move toward urban areas, taxing the existing infrastruc-
ture, the role of public transportation as an efficient means of mass transportation continues
to increase. Additionally, with political pressure towards promoting more environmentally
friendly transportation options there is a growing awareness of public transportation as a
means to travel. There is a portion of the population that is captive and relies on public
transportation, regardless of the level of service. However, beyond this, agencies that pro-
vide public transportation are not guaranteed a mode share. In order to get people to ride,
transit must be fast, convenient, and reliable. Bus bunching negatively affects all three of
these qualities. If a bus line has a reputation for being unreliable, that is a disincentive for
users to ride the bus. Additionally, the commercial speed of a bus will decrease as it falls
behind schedule and must bear more of the passenger load.

If not enough people ride buses, two things can happen. Either the buses operate
with lower occupancy and higher fares, or service can be reduced. Since buses output more
emissions than private vehicles, they will be more polluting per user than private vehicles
if they are run at a low enough occupancy. This could nullify the environmental benefits
of transit. If fares are raised or service is reduced, those with no other option than to ride
the bus are negatively impacted and those who have a choice are more likely to choose a
different mode. Because transit is funded in part by the government, there is also the issue
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of wasting resources to provide a poorly performing and largely unused service.
Finally, there is an effect on the bus drivers. Depending on how far behind schedule

a bus is running, a driver may find their break time cut short or missed entirely. In addition,
there is often hostility towards drivers generated when a bus arrives to a bus stop late. These
can lead to dissatisfaction among the drivers and a hostile work environment.

1.2 Dissertation Overview

1.2.1 Main Contributions

The three main contributions of this research are: 1. To propose a control that
will mitigate the cause of bus bunching; 2. To demonstrate the feasibility of the control; 3.
To evaluate its performance.

1.2.2 Organization

The dissertation is organized as follows. Chapter 2 will discuss examples of the
current state of practice for avoiding bus bunching as well as review research pertaining to
bus bunching. Chapter 3 will present a framework for modeling the physics of bus behavior.
This framework will be used to explain the phenomenon of bus bunching. Chapter 4 will
propose a control for mitigating the cause of bus bunching. The framework presented in
Chapter 3 will be used to model the control and calculate expected results. Validation will
be provided through simulation. Chapter 5 will summarize the findings and discuss possible
future work.
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Chapter 2

Literature Review and Current

Practices

After a transit route has been designed and implemented, such that stop locations
and service frequencies are fixed, the only remaining objective for the transit agency should
be to provide their users door-to-door service as reliably as possible. The relevant compo-
nents of the trip are waiting time, travel time, and earliness. Lisco (1967) found that users
value their time spent waiting at two to three times more than their time spent traveling.
Mohring et al. (1987) expands this analysis by using ridership survey data from routes of-
fering their users a wide range of cost and frequency trade-offs. They find that peak period
users value their time spent waiting between 75%–130% of their household wage rate and
during the off peak value their time spent waiting between 60%–120% of their household
wage rate. They assume that nonwage earners make up most of the off peak demand con-
cluding that even though nonwage earners don’t value their waiting time as highly as wage
earners, it still carries a high value. This reinforces the idea that minimizing user’s waiting
time should be a priority for transit providers.

2.1 Reducing Trip Time

When users plan a trip they must take into account the amount of time spent
waiting, the amount of time spent traveling, and how early they will arrive at their desti-
nation. Users can minimize their total trip time by having accurate knowledge of when a
bus will arrive at their origin and destination bus stops. Transit agencies are responsible
for providing this information to users in some form.

2.1.1 Scheduled Bus Arrivals and Scheduled Headways

Most bus routes operate with predetermined time tables for each bus, available
publicly online and at most bus stops as a matrix of locations and scheduled times of arrival
at each location (e.g. actransit.org). From this a user can determine the expected time
between successive buses as well as an expected travel time between two locations along a
route. Many agencies provide online tools to aid users in planning trips (e.g. 511.org for the
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SF Bay Area) and Google has developed a service (Google transit) that references available
data from multiple transit agencies to aid users in planning trips across multiple modes.

Some rapid transit lines operate at constant headways with no published schedule
but rather a planned time between successive bus arrivals. Users must then rely on the
schedule of another parallel line or personal experience to determine travel time, though
there are examples of published expected travel time for headway based routes (Transport
for London). In order to avoid excessive waiting times, this strategy of running with con-
stant headways instead of scheduled arrival times is only useful for high frequency routes
when passengers arrive independently of expected bus arrival times. Arrivals have been
empirically shown to be uniform on high frequency routes. Jolliffe and Hutchinson (1975)
and Marguier and Ceder (1984) both determine this to be a frequency of at least a bus
every 12-13 minutes. Bowman and Turnquist (1981) also find that with smaller headways,
passenger arrival tends to be uniform.

2.1.2 Real Time Bus Location Information

Automatic Vehicle Location (AVL) devices have been used by transit agencies
for decades with varying levels of technological complexity. Older systems relied on fixed
location sensors that could track when a bus passed or would triangulate the location of
the vehicle using radio signals. Recently, Global Positioning Systems (GPS) have been
installed by many transit agencies around the world allowing them to continuously monitor
the location of their buses. Depending on the agency, this information is publicly available
both at bus stops and online for users. There have been several studies on predicting
expected arrival times based on GPS information. Jula et al. (2008) state that under mild
conditions, the errors in predicting travel times from GPS data are bounded. Jariasunant
et al. (forthcoming) offer a trip planner that finds an optimal path for a user using predicted
vehicle arrivals instead of scheduled arrivals and conclude that the accuracy of the travel
time of the resulting trip is marginally improved. The effect on users’ behavior of providing
real time bus arrival information has also been examined. Hickman and Wilson (1995)
simulate users who are given real time information of vehicle arrivals and travel times to
determine their route choice across modes. Their findings show that with route choice the
effect of real time information on door-to-door travel times and variability of trip times is
small. Ridho and Sumi (2009) show however that without route choice, communicating real
time bus arrival estimates to users via cellphones can reduce average waiting time by 44%
and reduce total trip times by up to 19%.

2.2 Increasing Reliability

Providing reliable service is much more important than providing users with system
information, though solutions are more complex. Bus bunching has been a well known
problem as long as there has been high enough transit demand to cause it. The cause was
first introduced by Newell and Potts (1964). As small random effects create deviations from
the desired headways between buses, the errors will grow over time. A bus with a larger
headway will on average have more passengers to board than a bus with a smaller headway.
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Therefore a bus with a large headway will be delayed longer at each bus stop increasing
the headway, and a bus with a small headway will be delayed less at each stop, decreasing
the headway. This also means that there is a greater chance that a random user will have
to wait for a bus with a larger headway than for one with a small headway. The result is
that the expected waiting time for users increases proportionally with variance in headways,
meaning that the more headways vary between buses, the longer the expected waiting time
is for passengers.

2.2.1 Metrics of Reliability

Before the general goal of increasing reliability can be approached, a metric for
reliability must be clearly defined. The two main indicators for bus performance are widely
accepted to be on-time performance and service regularity. Nakanishi (1997) examines New
York City’s performance indicator program and what each indicator actually measures. The
program defines on-time performance as the percentage of trips that depart from a time
point within 5 minutes of the scheduled departure time. Service regularity is defined as the
percentage of headways within 50% of the scheduled headway for headways of 10 minutes
or less. Nakanishi concluded that these indicators accurately portray the user experience
with transit. Senevirante (1990) proposes simulation as a method to compare the effect on
reliability of different operating strategies, and also uses the same indicators as a metric
of comparison. Bullock et al. (2005) show how GPS can be a cost effective method for
measuring the reliability and performance of bus systems. Strathman and Hopper (1993)
offer a review of many empirical studies on on-time performance and examine data from
Portland, Oregon’s bus system in order to identify factors which contribute to a decrease
in reliability. They find that reliability decreases during the PM peak period, with larger
headway variance, higher demand, and as buses travel along their routes. The amount of
experience a driver has is also shown to affect reliability.

2.2.2 Basic Slack and Holding Strategies

One of the first, and still widely used, strategies for increasing reliability is to insert
extra time, or slack, into a schedule as a buffer to prevent the propagation of disturbances.
Osuna and Newell (1972) and Newell (1974) both suggest and provide a mathematical
analysis of holding buses at predefined stops when they arrive ahead of schedule. However,
after admitting the complexity of the problem only a simple system with two vehicles is
modeled. Adamski (1996) presents a flexible dispatching and holding method and supports
computerized tools over more subjective human agents. Rossetti and Turitto (1998) examine
the difference between static and dynamic headway thresholds for whether or not to hold
a bus at a control point and conclude that setting the threshold at the scheduled headway
results in the lowest variance in headways, however this results in extra delay to passengers.
Dessouky et al. (2003) present a method for better predicting bus arrivals for use with
holding strategies; however this is a centralized control most useful for systems with large
headways and small slack times. Abkowitz and Tozzi (1987) offers a review of multiple
control strategies, including where and how to place control points and when to implement
a control.
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While holding strategies and slack time allow buses ahead of schedule to slow
down, it is also necessary to allow buses behind schedule a way to regain lost time. Ling
and Shalaby (2003) offer a method of using adaptive signal priority as a way to do this.
Ling and Shalaby (2005) then advance this idea by using computerized agents to not only
speed up buses behind schedule, but as a way to break up paired buses by impeding the
following bus. Sun and Hickman (2005) offer stop-skipping as a way to recover lost time
and find that the strategy is most productive in areas with a high density of stops.

2.2.3 Manipulation Strategies

Finnamore and Jackson (1978) provide a comprehensive summary of ways a bus
route can be adjusted and the effects of each action. To break up bunches, buses can be be
told to skip stops or depart from a control point early. In order to fill gaps in service, a bus
can travel out of service to an existing gap or an additional bus can be added to a route.

2.2.4 Strategies with Real Time Information

Eberlein et al. (2001) comment on the lack of research using real-time data and
present an algorithm for finding the optimal holding strategy when real-time information
on headways is available, concluding that the solution is very dependent on bus headways
and is most effective with one control point at the dispatching station. Daganzo (2009)
proposes a holding strategy based on real time headways at multiple locations along a
route. He shows that by using his strategy, as long as the random noise inserted into the
system is bounded, headways will be bounded as well. Chandrasekar and Chin (2002) offer
the idea of speed control without schedule constraints as a viable control method. They
propose a binary speed control such that a bus will run at maximum speed when far behind
the bus ahead and at a slower speed when closer to the bus ahead. They also propose
using transit signal priority to advance a bus behind schedule. This control is analyzed
by simulation using PARAMICS software but without an analytical model. The results
suggest that decentralized speed control is a workable solution.

2.3 Current Practices

2.3.1 Practices in US Metropolitan Areas

Peng et al. (2008) gives a comprehensive review of strategies in use in major US
cities. The information was gathered by survey. Seattle, Los Angeles, Boston, Portland,
San Antonio, and Washington D.C. all have AVL on 99%-100% of their buses. The AVL
ranges from fixed location sensors to onboard GPS depending on when AVL systems were
installed. The refresh rate of the AVL data also varies up to 5 minutes between data points.
St. Louis and New York City both have AVL installed on only a small portion of their
bus fleet as of the date of the survey, however New York has plans to increase their AVL
coverage.

The most common practice is to notify operators when they are running early or
late, or if they are in danger of bunching. Operators can be to told to skip parts of their
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route or suspend service if they get too far behind schedule. In addition, buses can be
inserted into a route where large gaps are located. Buses ahead of schedule are then held
at control points.

2.3.2 Bus Rapid Transit

Another approach to improving reliability of a bus system is to reduce the severity
of the perturbations that can affect the components of a bus’ travel time. There are several
ways to do this, all of which speed up bus trips, that fall under the general term of Bus
Rapid Transit (BRT). Giving a bus a dedicated lane allows it to travel without being
delayed by general traffic. Installing Transit Signal Priority (TSP) systems allow buses to
avoid stopping at many traffic signals. Preboarding ticketing systems and aligned platforms
reduce the amount of time each passenger takes to board a bus. All of these components
reduce the amount of randomness that can be added to a bus’ trip which results in less
control needed to provide on-time performance and service regularity. Well known examples
of BRT are in Curitiba, Bogata, and Seoul. While many cities in the US make use of different
aspects of BRT, full implementation is rare.

2.4 Discussion

2.4.1 Gaps in Current Research

The majority of studies examining transit performance and offering possible strate-
gies for mitigation are entirely empirically based. Without a physical model to explain how
the system responds to a control it is difficult to calibrate or predict how a given system will
respond. The main focus of controls is holding strategies. This allows for an easier imple-
mentation since the control is restricted to predefined locations along a route, however this
allows more time for errors to propagate through the system. Because errors from desired
headways grow exponentially over time, a longer time between control points allows more
damage to the system overall. While many proposed strategies make use of real time data,
only Chandrasekar and Chin (2002) study a continuous control, but only with an analysis
of simulated data. There is no systematic analysis of real time control until Daganzo (2009)
and the proposed control is headway based and limited in response by the frequency of
control points.

2.4.2 Deficiencies in Current Practice

While AVL units are widespread allowing real time monitoring of buses, there
seems to be very little methodical use of the data for improving reliability. The two main
uses of the data are informing users of estimated bus arrivals and allowing agencies to know
the on-time performance of their buses. The actual controls tend to only be implemented
when bunching has already occurred instead of using preventive measures. As a result,
methods to restore service can have a negative affect on users. Dwelling for unknown periods
of time at transit stops or skipping stops or potions of the route can cause confusion or
frustration. Heavy rail systems use real time data for continuous control and as a result have
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very high reliability. This however, to this author’s knowledge, has not been implemented
for bus systems because of the complexity added by traveling in mixed traffic.

Additionally, most agencies control their system from a central location. A decen-
tralized control allowing for buses to act independently would produce an easier implemen-
tation and quicker response.
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Chapter 3

Model and Analysis of Bus Travel

This chapter will present a framework for modeling bus travel. The framework
will assume certain aspects of the system are continuous over time and space to allow for a
systematic analysis. The model will then be used to analyze the behavior of an uncontrolled
bus system. The continuum assumptions will then be relaxed and a simulation tool used to
validate the results in a more realistic setting.

3.1 Definitions and Assumptions

3.1.1 Route Definition and Assumptions

In order to model the operation of a system of buses along a route, the physical
traits that describe the route and the designed level of service set by the agency must be
defined. These are declared as constants and will be denoted by capital letters throughout
the formulation.

Physical Characteristics

The route is considered to be a loop with length, L. Deployment and retraction
of buses are be allowed to happen anywhere along the route. For simplicity the route is
homogeneous, with uniform demand along the route defined as a demand rate density, Λ,
measured in passengers generated per unit of time per unit of distance along the route, and
uniform stop density along the route, K, measured in bus stops per unit of distance. The
number of stops along a route KL is an integer.

Service Characteristics

There are N buses deployed on the route, indexed n = 1, 2, ..., N , resulting in a
desired equilibrium spacing, S = L

N
. N is always an integer. While N (and therefore S)

may change over a long period of time, it is constant on the short term and is considered as
such for the formulation. The average cruising speed of a bus in traffic, affected by traffic
signals and congestion, is defined as V . The equilibrium commercial speed, E, is the average
speed at which a bus travels, including stops, when buses are spaced evenly along the route.
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This speed determines the travel time passengers experience while on the bus, assuming
equilibrium spacing. The frequency of service is defined by an equilibrium headway, H,
between bus arrivals at any given stop. The headway between successive bus arrivals is
determined by the spacing between two consecutive buses divided by the commercial speed
of a bus. When buses are evenly spaced, the resulting headways are equal to the equilibrium
headway.

H =
S

E
(3.1)

The headway is considered to be short enough so that users arrive uniformly to bus stops
and there is no need for a scheduled timetable of arrivals.

At equilibrium, the amount of dwell time per boarding passenger added to a bus’
travel time, B, is calculated as the sum of the time required for a passenger to board a
bus, b, and the loss time per passenger generated at each stop, τ , in order to decelerate to
a stop, open and close the doors, and accelerate back to cruising speed. The dwell time is
calculated as:

B = b +
τK

HΛ
≈ b +

τKE

SΛ
(3.2)

This assumes that buses stop at each bus stop regardless of demand, a valid assumption for
routes with high frequency and demand with evenly spaced buses.

3.1.2 Bus Definitions and Assumptions

Relationships Between Trajectories

The position of bus n at time t is defined as xn,t where x is the distance measured
along the route in the direction of travel from a predefined point (a terminal location or a
control point). The position can be determined at near real time with GPS devices installed
in the buses. The process of doing this is discussed in Greenfeld (2002). The trajectory
of bus n is then the set of xn,t over all t. Because the route is a loop, any arithmetic
pertaining to position or bus index is modular and is denoted with ⊕ for addition and ⊖
for subtraction. Bus n ⊖ 1 refers to the bus in front of bus n and bus n ⊕ 1 refers to the
bus behind bus n. Position is restricted to the range xn,t ∈ [0, L). The spacing sn,t of bus
n at time t is defined as the distance measured along the route between bus n and the bus
in front of it n ⊖ 1:

sn,t = xn⊖1,t ⊖ xn,t (3.3)

When calculating spacing, ⊖ refers to subtraction modulo L. Initial conditions are set such
that:

sn,0 = S (3.4)

It is assumed that buses will not pass one another on a route so that sn,t is always positive.
Spacing is shown graphically in Figure 3.1 as the distance between two consecutive trajec-
tories at a point in time. Because the length of the route is fixed, the sum of spacings over
all buses is constant:

N
∑

n=1

sn,t = L∀t (3.5)
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Figure 3.1: Trajectory Relationship

The headway hn,t of bus n at time t at some location is defined as the time that has
passed since bus n ⊖ 1 was at the location in question. Headway is shown graphically in
Figure 3.1 as the time between two consecutive trajectories at a point in space. There is no
corresponding conservation for the sum of headways.

Parts of a Trajectory

As explained in Chapter 1, the path of a bus can be broken into two main parts:
time spent traveling between stops and time dwelling at stops. The behavior of a bus at a
stop is broken down into its component parts in Figure 3.2. (1) The bus approaches a stop
at speed V ; (2) decelerates to a stop; (3) the doors open; (4) passengers board; (5) the doors
close; (6) the bus accelerates back to speed V ; (7) and leaves at speed V . The time spent
decelerating and accelerating can be approximated with a time spent traveling at speed V
and loss time spent dwelling at the stop as illustrated by the dashed line in Figure 3.2.
This allows bus trajectories to be accurately represented as piecewise linear with only two
speeds: V when moving, and 0 when at a stop. The loss time spent boarding, (4), is equal
to the number of passengers who need to board multiplied by b. The loss time associated
with a stop, τ , presented earlier is the sum of all other loss times. The trajectory of a bus
will alternate between these two speeds every time it arrives at a stop, many times over the
course of a route.
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Figure 3.2: Parts of a Trajectory

3.2 Continuous Approximation Model

With perfect information (bus stop locations, arrival of passengers to bus stops,
traffic conditions, driver behavior, etc.) it would be possible to accurately model the tra-
jectory of a bus. However, most of that information is unobtainable in real time and the
resulting model would be very complicated and wouldn’t provide many insights. Instead,
trajectories can be smoothed out by approximating all the components of the route in a
continuous manner. The loss times of passenger loading and bus stops would continually act
on the speed of the bus instead of being concentrated at discrete bus stops. The resulting
trajectory would model the commercial speed of a bus. The commercial speed of the bus is
defined as the average speed of a bus over a distance D, where D is long enough to include
the effect of several stops (Figure 3.3). The commercial speed determines travel time for
passengers and the amount of time a bus needs to travel the length of the route.

However, the commercial speed of a bus is not necessarily constant over the length
of the route. It was discussed earlier that a bus with a larger spacing will travel slower
because it must serve more passengers and that a bus with a smaller spacing will travel
faster because it has fewer passengers to serve. Therefore the commercial speed of a bus
is dependent on the spacing, which is continuously changing. By calculating the average
speed of a bus with the assumption that the passenger demand generated by the spacing
during a single time step was held constant over a longer time, the result could be thought
of as the instantaneous commercial speed of that bus for that time step.

3.2.1 Instantaneous Commercial Speed

The instantaneous commercial speed, vn,t, of bus n at time t is defined using a
continuous approximation (CA) model that will accurately model the behavior of the system
on a long scale. Whereas the actual trajectory of a bus will have periods of dwelling when
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the bus is at a stop or cruising between stops, the CA trajectory of a bus will continually
move during each time step at the instantaneous commercial speed. The CA trajectory is
defined as the set of yn,t over all t where yn,t is the CA location of bus n at time t determined
by the rule:

yn,t+∆t = yn,t + vn,t∆t (3.6)

Because the CA trajectory of a bus is modeled to approximate the behavior of a real
trajectory, the behavior of the spacing between two CA trajectories should be a good
approximation for the behavior of the spacing between two actual trajectories. With this
assumption we can model spacing such that:

sn,t ≈ yn⊖1,t ⊖ yn,t (3.7)

It is also assumed that vn,t is slow changing over time and that nearby buses have similar
commercial speeds. This allows the headway of a bus to be approximated with knowledge
of spacing.

hn,t ≈
sn,t

vn,t

(3.8)

This is advantageous because spacing can be easily known in real time from GPS data
whereas headway cannot.

As described earlier, the trajectory of a bus can be approximated as piecewise
linear with two possible speeds. As such, the average speed of the bus, va, over a distance,
D, can be calculated as the ratio between the distance traveled and the sum of the expected
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time spent cruising, tc, and the expected time spent dwelling at stops, td:

va =
D

tc + td
(3.9)

Because trajectories are assumed to be piecewise linear, the trajectory can be redrawn by
grouping the periods with the same slope without changing the average speed as shown in
Figure 3.3. The expected time spent cruising is equal to the distance traveled divided by
the cruising speed of the bus:

tc =
D

V
(3.10)

The time spent dwelling depends on the expected number of passengers produced over
D since the last bus passed and can be visualized as the area between two consecutive
trajectories over D times the demand rate density and the loss time per passenger (Figure
3.4). With the assumption that commercial speeds are similar between buses, the expected
time spent dwelling is td = DΛBhn,t. With Equation 3.8 this can be approximated as:

td ≈ DΛBsn,t

vn,t

(3.11)

By substituting Equations 3.10 and 3.11 into Equation 3.9 we can define the result as the
instantaneous commercial speed, which is independent of D.

va ≈
(

1

V
+

ΛBsn,t

vn,t

)−1

≈ vn,t (3.12)
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This can be simplified to:
vn,t ≈ V (1 − ΛBsn,t) (3.13)

which describes the commercial speed of the bus as a proportion of the cruising speed
decreasing linearly as spacing increases. This is a formulation of the behavior described
earlier: as spacing (and proportionally headway) increases, more passengers arrive, causing
the bus to dwell longer and commercial speed to decrease.

By substituting the desired spacing S for sn,t in Equation 3.13, the equilibrium
commercial speed, E, the commercial speed at which buses travel when evenly spaced, is
found to be:

E = V (1 − ΛBS) (3.14)

By substituting Equation 3.14 into Equation 3.1, the equilibrium headway, H, is found to
be:

H =
S

V (1 − ΛBS)
(3.15)

This result can be substituted into Equation 3.2 in order to define the average dwell time
per passenger, B, in terms of system constants, assuming that the bus stops at every stop:

B =
bΛS + τKV

ΛS + τKV ΛS
(3.16)

When Λ and/or H is large enough that the chance of a bus arriving to a stop with no
passengers desiring to board or alight is very small, then buses will stop at every stop and
this is a good approximation for loss time per passenger. However, as the probability of a
bus skipping a stop grows larger, the effect of τ can overwhelm b and the resulting B can
be unreasonably large. The expected number of people, p, waiting to board a bus at a stop
is given by:

E(p) =
HΛ

K
(3.17)

Given uniform demand, the expected number of people waiting to alight at a stop is the
same and assumed to be independent. Assuming Poisson arrivals, the probability of p = 0
is equal to:

P(p = 0) = e−
HΛ
K (3.18)

Therefore the probability of a bus stopping at a bus stop and incurring loss time τ is given
by:

P(stopping) = 1 − e−
2HΛ

K (3.19)

Substituting Equation 3.15 for H gives:

P(stopping) = 1 − e
− 2SΛ

KV (1−ΛBS) (3.20)

Because the time penalty for a bus stop is not experienced if it is skipped, the values τ in
Equation 3.16 will be multiplied by Equation 3.20, giving an equation for the average dwell
time per passenger without assuming that a bus will stop at every stop:

B =
bΛS + τKV

(

1 − e
− 2SΛ

KV (1−ΛBS)

)

ΛS + τKV ΛS
(

1 − e
− 2SΛ

KV (1−ΛBS)

) (3.21)
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An explicit formula for B cannot be found, however B can be determined numerically. It
is noted that when τ = 0, B = b.

Because there is a desired spacing S, it is useful to define a state variable, ξn,t that
is the deviation of the spacing of bus n at time t from the desired spacing:

ξn,t = sn,t − S (3.22)

Following from Equation 3.5, the sum of deviations over all buses is equal to zero:

N
∑

n=1

ξn,t = 0∀t (3.23)

By replacing sn,t with (S + ξn,t) in Equation 3.13 and combining the result with Equation
3.14, commercial speed can be expressed as a difference from equilibrium commercial speed,
changing linearly with the deviation from desired spacing.

vn,t ≈ E − V ΛBξn,t (3.24)

The slope V ΛB is equal to the approximate rate at which the instantaneous commercial
speed decreases from an increase in spacing. This is shown in Figure 3.5.

3.2.2 Trajectories

During a time step, ∆t, a bus can be expected to advance a distance of vn,t∆t.
There is also expected to be some random noise effect on the distance traveled caused by



19

fluctuations in passenger arrivals and traffic effects. The noise, νn,t, experienced by bus n
during the time step starting at time t is assumed to be normally distributed with variance
σ2

0 for a time step t0. For a time step, ∆t, the variance would be:

σ2
∆t = σ2

0

∆t

t0
(3.25)

The resulting CA position of bus n at time t + ∆t is equal to:

yn,t+∆t = yn,t + vn,t∆t + νn,t = yn,t + E∆t − V ΛB∆tξn,t + νn,t (3.26)

When the deviation from the desired spacing, ξn,t,is zero and there is no random noise,
νn,t = 0, it is easy to see that a bus will travel at the equilibrium commercial speed.

3.2.3 Deviation from Desired Spacing

Substituting Equation 3.26 for buses n and n − 1 into Equation 3.7 shows how
spacing changes over time with deviations from the desired spacing.

sn,t+∆t ≈ sn,t − V ΛB∆tξn⊖1,t + V ΛB∆tξn,t + νn⊖1,t − νn,t (3.27)

Subtracting the desired spacing, S, from each side and combining terms results in the state
equation for the system in terms of the state variable, ξn,t.

ξn,t+∆t ≈ −V ΛB∆tξn⊖1,t + (1 + V ΛB∆t)ξn,t + νn⊖1,t − νn,t (3.28)

By defining β = V ΛB∆t and combining the noise terms that affect the spacing of bus n as
ϕn,t = νn⊖1,t − νn,t, Equation 3.28 can be rewritten in the simple form:

ξn,t+∆t ≈ −βξn⊖1,t + (1 + β)ξn,t + ϕn,t (3.29)

3.3 Analysis of Continuum Model

Vector Notation

The state equation 3.29 is of the same form as the one studied in Daganzo (2009)
and so the same formulation can be used to examine the stability of the system. By
introducing constants f0 = (1 + β), f1 = −β, and fj = 0 for all other integers, Equation
3.29 can be rewritten as:

ξn,m∆t ≈
N

∑

j=1

fn⊖jξj,(m−1)∆t + ϕn,(m−1)∆t (3.30)

the stochastic part of which is a convolution. Using boldface for vectors and ∗ as the
convolution operator, Equation 3.30 can be rewritten as:

ξt+∆t ≈ f ∗ ξ(m−1)∆t + ϕ(m−1)∆t (3.31)
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where f is the kernel of the convolution. By substituting ξt in the RHS of Equation 3.31
with its expression according to Equation 3.31, the result is:

ξm∆t ≈ f ∗ (f ∗ ξ(m−2)∆t + ϕ(m−2)∆t) + ϕ(m−1)∆t (3.32)

Continuing this process with the logic in Daganzo (2009) and using f |j as notation for the
kernel created by convolving f with itself j times, the resulting equation in terms of ξ0 is:

ξm∆t ≈ f |mξ0 +

m−1
∑

j=0

f |j ∗ ϕ(m−j)∆t (3.33)

Equations 3.4 and 3.22 set ξ0 = 0 which removes the first term, however Equation 3.33 can
be used to examine the behavior of a system with any initial conditions. Using fi|j as the
ith term of f |j , Equation 3.33 can be rewritten in scalar form as:

ξn,m∆t ≈
∑

i

fi|mξi,0 +
m−1
∑

j=0

∑

i

fi|jϕn⊖i,(m−j)∆t (3.34)

By decomposing the noise term, ϕn⊖1,(m−j)∆t back into the individual noise components
(νn⊖2,(m−j)∆t − νn⊖1,(m−j)∆t) and combining terms with the same νn,t the result is:

ξn,m∆t ≈
∑

i

fi|mξi,0 +

m−1
∑

j=0

∑

i

(fi|j − fi⊖1|j)νn⊖i,(m−j)∆t (3.35)

Because (1 + β) is greater than 1, as m → ∞, fi|m will go to infinity or negative
infinity as will fi|m − fi−1|m. This means that deviations from desired spacing will go to
infinity or negative infinity depending on how they are perturbed, however realistically ξ is
bounded below by −S and above by L − S where ξ = −S means a bus has bunched with
the bus in front of it and ξ = L−S means all buses are bunched behind that bus. There is
no easy way to solve for the distribution of the time to bunching, however it is the solution
of setting Equation 3.34 equal to −S. It can however be modeled by simulation.

Matrix Notation

Because the model has a fixed number of buses operating on a loop, it is possible
to rewrite Equations 3.31–3.33 in matrix notation, removing the need for the modular
arithmetic used in Equation 3.30.

By defining F as an N × N matrix with terms F(i, j) = fi⊖j and Φ as an N × N
matrix Φ(i, j) = 1 for j = i ⊖ 1; Φ(i, j) = −1 for j = i and Φ(i, j) = 0 for all others the
equations can be rewritten as:

ξm∆t ≈ Fξ(m−1)∆t + Φν(m−1)∆t (3.36)

ξm∆t ≈ F(Fξ(m−2)∆t + Φν(m−2)∆t) + Φν(m−1)∆t (3.37)

ξm∆t ≈ Fmξ0 +
m−1
∑

j=0

FjΦν(m−1)∆t (3.38)
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Figure 3.6: Simulation Tool Flow Chart

3.4 Microscopic Simulation Tool

In order to test the continuous model in a more realistic discrete setting it is
necessary to use simulation to model the more complicated trajectories that actual buses
travel. The main difference between the CA model and the simulation is the discretization
of the effect of bus stops on buses. By generating passenger arrivals at discrete locations
and only allowing a bus to be delayed by passengers at these locations, the bunching effect
is reduced. Therefore the CA model is more conservative, and any result that holds for it,
should hold in a simulated environment. The effect of traffic and other external disturbances
remains constant between the CA model and the simulation.

The microscopic simulation tool was programmed in Microsoft Visual Studio 2005
using Microsoft Visual Basic .NET Framework 2.0. The code for the simulation tool can
be found in the Appendix. The flow of information in the simulation is shown in Figure
3.6. The user inputs are described in Section 3.4.1, the file outputs are described in Section
3.4.2, and the simulation itself is described in Section 3.4.3.

3.4.1 Simulation Inputs

The inputs for the simulation are divided into three categories.

Route Characteristics

The route is defined to have length, L. Passenger arrivals are defined by either
a uniform stop density, K, and arrival demand rate density, Λ, or an input file with bus
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stop locations and an origin/destination table. The effect of traffic and other external
disturbances on the speed of the bus are defined by a normally distributed random variable,
ν with a mean of 0, an standard deviation σ0, and a time of effect t0.

Service Characteristics

The number of buses, N , serving the route is defined. The buses are defined by a
cruising speed, V , and passenger capacity. The dwell times are defined by a fixed loss time
for each bus stop, τ , and the time to board a passenger, b.

Control Definition

The cruising speed of the buses can be set to be dynamic or static. This will be
defined in further detail in the next Chapter.

3.4.2 Simulation Outputs

The outputs for the simulation are divided into two categories.

Bus data

The location and the cruising speed of each bus is recorded for every bus for every
time step. From this data spacing, headway, and commercial speed can be calculated.

Passenger Data

The origin and destination for every passenger is recorded. Each passenger’s trip
time is recorded, including time of generation, time of boarding, and time of alighting. From
this data waiting time, travel time, and door to door time can be calculated.

3.4.3 Simulation Logic

Initial Conditions

After the user tells the simulation to start, empty buses are given initial positions
along the route and bus stops are initialized with no queues. By default the initial bus
positions are evenly spaced along the route. Bus Stop locations are defined by the user.

Passenger Generation

In order to approximate Poisson passenger arrivals, each arrival event is modeled
as a Bernoulli random variable. Because passenger generation is modeled as a demand
rate density (passenger arrivals per unit of time per unit of distance), each Bernoulli trial
represents the probability of a passenger arriving at a bus stop during a time step and
generated from a range of positions along the route (Figure 3.7). The simulation uses a
time step of one second and a range of 1

10km. This is repeated for each destination according
to the demand values in the Origin/Destination table. Whenever an arrival is generated it
is added to the back of the passenger queue of the closest bus stop.
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Bus Movement

During a time step each bus is determined to be either moving or dwelling. A
bus is determined to be dwelling if its movement during a time step passes a bus stop and
there are passengers waiting at a that bus stop or passengers on the bus with a destination
of that bus stop. Once it is determined that a bus needs to stop it dwells for the loss
time associated with a stop. All passengers waiting at the bus stop then board while all
passengers at their destination alight. The position of a bus while dwelling remains constant.
Once all passengers have been served, the bus starts moving again.

The position of a moving bus is updated based on two parameters. First the
position is increased by the distance covered by traveling at the defined cruising speed for
a time step. The position is then modified by the random noise variable representing the
effect of traffic and other external disturbances.

3.5 Simulation Analysis

In order to simulate the time it takes for the uncontrolled system to bunch, the
following inputs were used: L = 24 km; K = 1 stop/km; Λ = 50 pax/hr·km; σ0 = 0.086
km; t0 = 1 min; N = 8 buses; V = 30 km/hr; τ = 30 sec/stop; b = 4 sec/pax. This results
in an equilibrium commercial speed of 25 km/hr.

The Simulation Tool was run 10 times with the above inputs. In order to com-
pare, the Monte Carlo method was used to simulate 10 runs using the CA model given in
Equation 3.29 with the same inputs and time step as the simulation. For both simulations,
the minimum spacing is graphed over time in Figure 3.8 with a spacing of zero representing
a bunching event. In every case bunching occurred and deviations increased. However,
the simulated CA model bunched sooner than the discrete simulation in every case. This
suggests that the CA model is more difficult to control than the discrete simulation. There-
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Figure 3.8: Time Until Bunching for an Uncontrolled System
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fore, a control method that would work with the continuous model should also work for the
simulation.

The advantage of the CA model formulated in this chapter is that it allows system-
atic analysis of a complex system so that a control can be designed. It however makes several
continuum assumptions of how demand affects the system. The simulation tool allows these
assumptions to be lifted and the system examined in a more realistic environment.

The methodology and simulation tool presented in this chapter will be used to
examine the effect of a proposed control in Chapter 4.
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Chapter 4

Determination of a Control

The main cause of bunching is simply that buses with larger spacings travel slower
than buses with smaller spacings (Figure 3.5.) Regardless of any external effects or dis-
turbances, as the spacing in front of a bus increases, the commercial speed of the bus
decreases, and a decrease in spacing causes an increased commercial speed. In general,
spacings between buses tend to move away from the desired spacing instead of towards it.
The question posed is, by changing the relationship between spacing and commercial speed,
can the tendency of buses to bunch be alleviated?

4.1 Intuition of Control

To achieve equal spacing, buses should tend towards the desired spacing instead of
away from it. In order to do this, the current relationship between spacing and commercial
speed must be changed so that an increase in spacing corresponds to an increase in commer-
cial speed. The commercial speed shown in Figure 3.5 corresponds to the highest cruising
speed of a bus, and so represents an upper bound on the commercial speed that a bus can
achieve for a given deviation from the desired spacing. Therefore, in order to achieve faster
commercial speeds with larger spacings, the cruising speed of a bus must be decreased as
spacing decreases. There is however a trade-off. Decreasing the cruising speed may increase
reliability of service, but it will also decrease the average commercial speed of the system.
This will cause longer travel times for passengers and possibly require more buses to provide
the same frequency of service. The concept of slowing down a bus to increase reliability
is not new though. Described in Section 2.2.2, the strategy of adding extra time to a bus’
expected run time is commonly used. This dissertation however proposes a more efficient
way of achieving this with the goal of providing a certain level of reliability while providing
the fastest commercial speed possible.

4.2 Control Formulation in the CA Model

The control formulation is based on a commercial speed definition of the form given
in Equation 3.24. In order to have buses tend toward the desired spacing, the commercial
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Figure 4.1: Simple Control Rule

speed should increase with deviation from desired spacing. Using a prime to denote variables
under control, a simple commercial speed control rule would be:

v′n,t = E + αξn,t (4.1)

where α is the desired rate at which commercial speed would increase with an increase
in spacing. The commercial speed however is constrained above by Equation 3.24, the
commercial speed achieved by cruising at the maximum speed. Thus the control rule is in
effect:

v′n,t = E + min {αξn,t,−V ΛBξn,t} (4.2)

as shown by the thick line of Figure 4.1. The point of intersection of the two equations is
ξn,t = 0, meaning that a bus with a large spacing will travel uncontrolled, and therefore
with a spacing that continues to grow, and a bus with a small spacing will travel slower
than it can. This will only remove the bunching effect for buses with smaller spacings and
it will result in an overall average speed lower than B.

4.2.1 Slowing the Buses

In order to control buses with a spacing larger than the desired spacing, the com-
mercial speed rule must be decreased so that the point of intersection occurs to the right of
the equilibrium spacing (Figure 4.2). The reduced commercial speed control rule would be:

v′n,t = E − δ + αξn,t (4.3)
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Figure 4.2: Reduced Control Rule

where δ is defined to be the reduction in commercial speed at equilibrium spacing. When all
buses are equally spaced, the controlled equilibrium commercial speed will be E′ = E − δ.

The constraint on commercial speed results in a range where the linear control
rule is valid:

ξn,t ≤
δ

α + V ΛB
(4.4)

Using this reduced commercial speed control rule, while the condition in Equation 4.4
holds, a bus with a large spacing can still tend back toward equilibrium. However, if
spacing becomes too large, the commercial speed will become constrained, the bus will
travel uncontrolled and will not be able to catch up. This means the system is not robust
to large disruptions.

4.2.2 Two-Way Cooperation

This problem can be avoided by recognizing that the spacing between two buses
is affected by the speed of both buses. Therefore, if a bus’ spacing is too large, it can be
reduced by speeding up the bus and/or by slowing down the bus in front. In the same way,
if a bus’ spacing is too small, it can be increased by slowing down the bus and/or speeding
up the bus in front. By enabling such two-way cooperation, the control takes advantage of
the fact that a bus can affect the spacing in front and behind it. The proposed two-way
commercial speed control rule is:

v′n,t = E − δ + αξn,t − αξn⊕1,t (4.5)
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The constraint for where this linear control rule is valid becomes:

ξn,t ≤
δ − α(ξn,t − ξn⊕1,t)

V ΛB
(4.6)

which depends on the difference between the spacing in front of a bus and the spacing
behind it. When all buses are equally spaced, the controlled equilibrium commercial speed
will be E′ = E − δ. This will also be the commercial speed of a bus with equal spacing in
front and behind. In effect, each bus will tend to center itself between the bus in front of it
and the bus behind it. At equilibrium, this condition will be true for all buses. This is the
control rule upon which the rest of the analysis will be based.

4.2.3 Defining the Cruising Speed

The commercial speed given by the control rule can be obtained by defining a
cruising speed for the driver. Equation 3.13 gives the relationship between the cruising speed
and the resulting instantaneous commercial speed for any given spacing. By substituting
the control rule in Equation 4.5 for the commercial speed in Equation 3.13, the cruising
speed, c′n,t, necessary to achieve the control rule can be determined:

c′n,t ≈
v′n,t

1 − ΛBsn,t

=
E − δ + αξn,t − αξn⊕1,t

1 − ΛBsn,t

(4.7)

By substituting Equation 3.14 for E, Equation 3.22 for sn,t, and with some manipulation, an
equation for the cruising speed to achieve the control rule as a difference from the maximum
cruising speed, V , in terms of the state variable is found to be:

c′n,t ≈ V +
−δ + (α + V ΛB)ξn,t − αξn⊕1,t

(1 − ΛBS) − ΛBξn,t

(4.8)

Notice that the constraint given in Equation 4.6 is consistent with constraining c′n,t ≤ V .

4.2.4 State Equation under Control

The following formulation assumes the constraint on cruising speed holds and that
the desired cruising speed given by the control for a bus can be achieved. The conditions for
this assumption and the resulting behavior when it is not met will be discussed in Section
4.5.

Using the CA trajectory definition given in Equation 3.26, the CA position of bus
n at time t under control is equal to:

y′n,t+∆t = y′n,t + v′n,t∆t + νn,t = y′n,t + E′∆t + αξn,t − αξn⊕1,t + νn,t (4.9)

Substituting Equation 4.9 for buses n and n − 1 into Equation 3.7 shows how
spacing changes over time while under the control.

s′n,t+∆t ≈ sn,t + α∆tξn⊖1,t − 2α∆tξn,t + α∆tξn⊕1,t + νn⊖1,t − νn,t (4.10)

Subtracting the desired spacing, S, from each side and combining terms results in the state
equation for the controlled system in terms of the state variable.

ξ′n,t+∆t ≈ α∆tξn⊖1,t + (1 − 2α∆t)ξn,t + α∆tξn⊕1,t + νn⊖1,t − νn,t (4.11)
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4.3 Analysis of Controlled System

Recall the convolution kernel in Section 3.3. By introducing constants f ′
−1 = α∆t,

f ′
0 = (1 − 2α∆t), f ′

1 = α∆t, and f ′
j = 0 for all other integers and using the formulation in

Section 3.3 the deviation for bus n at time m∆t can be written as:

ξm∆t ≈ f ′
|mξ0 +

m−1
∑

j=0

f ′
|j ∗ ϕ(m−j)∆t (4.12)

or in scalar notation as:

ξn,m∆t ≈
∑

i

f ′
i|mξi,0 +

m−1
∑

j=0

∑

i

(f ′
i|j − f ′

i⊖1|j)νn⊖i,(m−j)∆t (4.13)

By defining F′ as an N ×N matrix with terms F′(i, j) = fi⊖j and F′
⊖1 as an N ×N matrix

with terms F′
⊖1(i, j) = F′(i ⊖ 1, j), Equation 4.12 can be rewritten in matrix notation as:

ξm∆t ≈ F′mξ0 +
m−1
∑

j=0

(F′j − F
′j
⊖1)ν(m−1)∆t (4.14)

Recognizing that f ′ is a p.m.f., the repeated convolution of f ′ will also be a p.m.f. If there
were an infinite number of buses along the loop, the coefficients of f ′ would approach the
normal distribution as m∆t increased. However, since the number of buses is finite and
they are located along a loop, the coefficients of f ′ should approach a uniform distribution
with probability of N−1 as m∆t increases.

Because f ′
i|m tends toward the constant N−1 as m increases, for large enough m,

the first term of Equation 4.13, representing the effect of the initial conditions of the system,
can be rewritten as:

N−1
∑

i

ξi,0 (4.15)

Equation 3.23 states that the sum of deviations over all buses is zero, therefore as m
increases, the effect of the initial conditions on the current state of the system goes to zero
as long as the cruising speed constraint holds.

Setting the initial condition term to zero results in an equation for deviation from
desired spacing of the same form as the equation for deviation from ideal headway analyzed
in Daganzo (2009). Taking the variance of Equation 4.13 results in a variance amplification
of the noise term of:

k2
ξ,m∆t =

m−1
∑

j=0

Qj where Qj =
∑

i

(f ′
i|j − f ′

i⊖1|j)
2 (4.16)

For the case of infinite buses along an infinite loop, the results given in Daganzo
should hold and the variance of ξn,t should be bounded. For the case with a discrete
number of buses, Equation 4.16 was calculated over a large number of time steps and fit
to the reciprocal of the variance of the kernel: Var(f ′) = 2α∆t. The result shows the
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deviation from desired spacing to be approximately Gaussian wither bound on the variance
amplification of:

k2
ξ ≈ (2α∆t)−1 (4.17)

Given a variance of νn,t from Equation 3.25, the variance of ξ, σ2
ξ , is expected to be:

σ2
ξ ≈ σ2

0

2αt0
(4.18)

4.4 Determination of Control Variables

In order for the analysis to be valid, the constraint given in Equation 4.6 must
hold. By solving for δ, the minimum reduction in commercial speed, δ′ for the constraint
to hold can be found for given deviations, ξn,t, and ξn⊕1,t.

δ′ ≈ (α + V ΛB)ξn,t − αξn⊕1,t (4.19)

While all ξn,t are identically distributed with a mean of 0 and standard deviation given
in Equation 4.18, there is expected to be some negative covariance in consecutive bus’
deviation, since the action of a bus will have opposite effects on the spacing in front and
the spacing behind. Taking the variance of both sides of Equation 4.19 results in:

Var(δ′) ≈ (α + V ΛB)2Var(ξ) − α2Var(ξ) + 2(α2 + αV ΛB)Cov(ξn, ξn⊕1) (4.20)

Because ξn and ξn⊕1 are identically distributed, the covariance between the two can be
approximated as Cov(ξn, ξn⊕1) ≈ ρVar(ξ) where ρ is the correlation between consecutive
deviations. For systems with more than 2 buses, the correlation coefficient, ρ, is expected
to be in the range −0.50 < ρ < 0.15 which will be verified from simulation results. This
is because in a system with at least three buses, a single bus is only one of two buses to
determine spacing. Using this relationship and substituting Equation 4.18 results in:

var(δ′) ≈
(

(2 − 2ρ)α + (2 − 2ρ)V ΛB + (V ΛB)2α−1
) σ2

0

2t0
(4.21)

To ensure that the linear control rule is valid 99% of the time, 3 standard deviations of δ′

are used resulting in a safe commercial speed reduction of:

δ ≈ 3
(

(2 − 2ρ)α + (2 − 2ρ)V ΛB + (V ΛB)2α−1
)

1
2

σ0√
2t0

(4.22)

Equations 4.18 and 4.22 provide a relationship between the control inputs, α and
δ, and the resulting variance in deviation from equilibrium, σ2

ξ . This relationship can be
used by a transit agency in order to calibrate the control to their priorities. If the priority
is to obtain the fastest commercial speed while avoiding bunching, then the value of α that
minimizes Equation 4.21 is:

α∗ ≈ V ΛB√
2 − 2ρ

(4.23)
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This gives an minimum reduction in commercial speed of:

δ∗ ≈ 3σ0

√

(

2
√

2 − 2ρ + (2 − 2ρ)
) V ΛB

2t0
(4.24)

For ρ ∈ (−0.50, 0.15), this will range from 4.40σ0

√

V ΛB
t0

< δ∗ < 5.39σ0

√

V ΛB
t0

If instead, a bound on variance is desired, Equation 4.18 will provide the necessary
α and Equation 4.22 will give the needed reduction in commercial speed, δ.

4.5 Non-Linear Behavior of System

If the differential between the spacing of two buses becomes too large, the con-
straint in Equation 4.6 will no longer hold and the behavior of the system becomes non-
linear. While it is too complex to analytically model the non-linear system as a whole,
the behavior of a single bus under the non-linear conditions can be examined and insights
derived.

The non-linear conditions occur when bus n has a large enough spacing in front
and a small enough spacing behind to cause the control cruising speed to be larger than V .
In this case, the bus will no longer be able to speed up enough to overcome the bunching
effect. However, these conditions will cause the bus in front, n ⊖ 1, under the control rule
to slow down. The resulting commercial speeds are:

v′n,t ≈ E − V ΛBξn,t (4.25)

v′n⊖1,t ≈ E − δ + αξn⊖1,t − αξn,t (4.26)

This results in a state equation for bus n of:

ξn,t+∆t ≈ α∆tξn⊖1,t + (1 − α∆t + V ΛB∆t)ξn,t − δ∆t + νn⊖1,t − νn,t (4.27)

In order for the bus to recover, the deviation must decrease over time such that ξn,t+∆t −
ξn,t < 0. Rearranging Equation 4.27 to express the decrease in deviation over time and
grouping positive and negative terms gives:

ξn,t+∆t − ξn,t ≈ (α∆tξn⊖1,t + V ΛB∆tξn,t + νn⊖1,t) − (α∆tξn,t + δ∆t − νn,t) (4.28)

In order for the deviation to decrease over time, the following condition must hold:

α∆tξn,t + δ∆t − νn,t > α∆tξn⊖1,t + V ΛB∆tξn,t + νn⊖1,t (4.29)

In order for this to hold, α should be larger than V ΛB and the deviation needs to decrease
to within the linear region before bus n ⊖ 1 slowing down causes αξn⊖1,t > δ. If, however,
the spacing of bus n ⊖ 1 is small, bus n should be able to recover.
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parameter range

N [3,20]
V [km/hr] [25,60]
Λ [pax/km·hr] [10,100]
τ [sec] 0 or 30
b [sec/pax] 2 or 4
S [km/bus] [2,6]
K/S [stops/bus] 2, 4 or 8
σ2
0

t0
[km2/hr] 0.1 or 0.4

α/V Λb 0.5, 1 or 2
ρ -0.25
δ [km/hr] Equation 4.22
∆t [sec] 5 or 20

Table 4.1: Simulation Parameters

4.6 Simulation Results

The simulation tool presented in Section 3.4 was used to run 200 simulations
with parameters chosen at random from Table 4.1. Each simulation was run for 8 hours
of simulated time. Control parameter α is chosen proportional to the constants given in
Equation 4.23 and δ is calculated from Equation 4.22. For each simulation, the expected
variance in ξ, equivalent to the variance in spacing, is calculated according to Equation
4.18. The calculated variance is plotted versus the actual variance from the simulation
output in Figure 4.3 for simulations where τ = 0. From this figure, the variance given in
Equation 4.18 is shown to be a good predictor for the more realistic simulated case, and
an upper-bound for most of the simulations. Given the conservative assumptions this is a
very encouraging result. In all cases, the simulation results show clearly that the proposed
control is successful in preventing bunching. A representative sample from a simulation is
shown in Figure 4.4. The minimum and maximum spacing over all buses is plotted for each
time step. The calculated mean is plotted as the straight solid line and the calculated 99%
bounds on spacing, S ± 3σξ are plotted as the straight dashed lines. The spacings are often
within 10% of the mean and are never outside the 99% bounds. The values of ρ from the
simulations are shown in Figure 4.5 and shown to be mainly negative and in the expected
range given in Section 4.4.

For the simulations where τ > 0 sec, the effect of discrete stops on the behavior
of the simulated system will be more pronounced and the CA model is expected to less
accurately model the behavior of the system. Averaging the loss time per stop over all
boarding passengers can result in B >> b. Using this value to determine the optimal
control parameters may over control the system under these conditions. Figure 4.6 gives
the calculated variance plotted versus the actual variance from the simulation output for
simulations where τ = 30 sec. While the variance calculated from the CA model remains a
good predictor and an upper-bound for many of the simulated runs, there are many runs
with a much smaller variance than expected. This supports the expectation of the calculated
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Figure 4.3: Comparison of Calculated and Simulated Standard Deviation of ξ, τ = 0s
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Figure 4.5: Simulated Range of Covariance Coefficient

optimal control parameters over controlling the system. However bunching is still avoided
in all cases.

4.7 Final Remarks

The control presented in this chapter overcomes the effect of bunching by allowing
buses that have a larger spacing to move faster than buses with a smaller spacing. This
can be done by determining a desired cruising speed for a driver and allowing buses to co-
operate with neighboring buses to achieve even spacing. To do this requires a reduction in
commercial speed, however the trade-off between commercial speed and variance in spacing
is defined so that a transit agency can determine a level of control based on their priorities.
The control is defined using assumptions to simplify the system, however by using a sim-
ulation tool to lift some of the assumptions, the relationships presented in the model are
shown to be good estimates.
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Figure 4.6: Comparison of Calculated and Simulated Standard Deviation of ξ, τ = 30s
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Chapter 5

Conclusions

This final chapter summarizes the findings from this dissertation and proposes
future work based on the ideas presented.

5.1 Summary of Findings

In order to provide reliable service to users, buses should be evenly spaced along
a route. However, it is well known that when a bus system is uncontrolled, fluctuations in
passenger arrivals and external disturbances can trigger a bunching effect, causing buses to
pair and the spacings between buses to be very uneven.

In this dissertation a continuum approximation model was presented as a system-
atic tool to examine the behavior of a bus system. By assuming the effect of passenger
generation on the commercial speed of a bus is continuous, the speed and position of buses
over time can be approximated. Using this model a control is proposed to overcome the
bunching effect and allow buses to maintain equal spacing by determining the speed of
each bus depending on its relative location to neighboring buses. The control is shown
to produce bounded variance in spacing such that deviations from equal spacings will not
grow unbounded and buses will not bunch. Additionally, a relationship between the control
parameters and the resulting variance in spacing was determined.

A simulation tool was created in order to test the system with with discrete bus
stops. The continuous model was expected to provide an upper bound because of the
conservative assumptions made. A large number of simulations were run with random
system constants and control parameters and the variances predicted by the model were
shown to be good estimates for the more realistic simulation.

5.2 Future Work

There are several directions of research in which the ideas presented in this dis-
sertation can be continued. They can be generally grouped into two categories: further
refinement of the model and proposed control presented in this dissertation, and develop-
ment of the proposed control towards implementation.
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5.2.1 Refinement of Theory

Relaxation of Homogeneity Assumptions

The model and simulation presented in this dissertation assume uniform service
and demand in space and time. While this is an idealized condition, it is not realistic.
A localized spike in demand or an area of traffic congestion can disrupt the operation of
a bus line even under control. If the disruption is large enough, there is a chance that
equilibrium operation cannot be regained just through the control. By modeling demand
as a function over time and space and allowing the control parameters to be dynamic, the
effect of localized disruptions can better mitigated.

Better Understanding of the Non-Linear Control

In this dissertation the parameter for reducing the commercial speed of the bus, δ,
is determined such that the system operates for the most part where the linear control rule
is valid. However, because of the two-way cooperation, the system is still expected to be
stable for some conditions when the linear control rule is not valid. By reducing δ towards 0,
the commercial speed of the system can be increased, though at the cost of higher variance
of spacing. Though difficult to analyze mathematically, the behavior of the system in this
state can be easily analyzed through simulation.

Developing Better Controls

This dissertation presents a feasible, simple control that prevents the bunching
of buses and requires only knowledge of the positions of the buses at any time. This is
done through the use of conservative assumptions that may not accurately portray the
discreteness of the system. Since the control can only affect a bus while it is moving, routes
where a bus spends a large amount of time dwelling (because of large demand or high
stop frequency) can not take full advantage of the control. Because the CA model assumes
passenger demand as continuously affecting the system, routes with a lower density of stops
may be over-controlled and travel slower than necessary.

By developing more complicated controls that recognize the discreteness of the
system and require more information, a better understanding of the system and therefore
a better control over the system can be achieved.

5.2.2 Implementation of Control

Necessary Infrastructure

In order to implement the proposed control on a bus route, each bus serving the
route requires a certain amount of hardware. A GPS unit is required to determine the
location of the bus as well as communication equipment capable of transmitting the infor-
mation to neighboring buses. This can be done directly between buses or by transmitting
the information to and from a central server. Each bus will then need a computer able to
input the GPS data and determine the cruising speed for the driver according to the control
algorithm. It is essential to have this equipment on all buses serving the route.
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Drivers

It will be necessary to develop an interface to communicate the desired cruising
speed to the driver in a safe, non-distracting way. Additionally, drivers must be trained and
encouraged to use the control.
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Appendix A

Glossary of Symbols

Physical Characteristics

L – Route length [km]
Λ – Demand Rate Density [pax/hr·km]
K – Stop Density [stop/km]

Service Characteristics

N – Number of Buses [bus]
S – Desired Equilibrium Spacing [km]
V – Average Cruising Speed in Traffic [km/hr]
E – Equilibrium Commercial Speed [km/hr]
H – Equilibrium Headway [hr]
b – Loss Time per Passenger (boarding) [hr/pax]
τ – Loss Time per Stop [hr/stop]
B – Loss Time per Passenger (boarding + stop) [hr/pax]

State Variables and Indices

n – Bus Index [bus]
t – Time Index [hr]
xn,t – Position of Bus [km]
sn,t – Spacing of Bus [km]
yn,t – CA Position of Bus [km]
hn,t – Headway of Bus [hr]
vn,t – Instantaneous Commercial Speed of Bus [km/hr]
ξn,t – Deviation from Equilibrium Spacing [km]
νn,t – Traffic Noise Random Variable [km]
t0 – Time of Effect for νn,t [hr]
σ2

0 – Variance of νn,t for time t0 [km2]
ϕn,t – Sum of Noise Terms Affecting a Spacing [km]
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Analysis Variables

D – Distance Traveled [km]
va – Average Speed for a distance D [km/hr]
tc – Time Spent Cruising for a Distance D [hr]
td – Time Spent Dwelling for a Distance D [hr]
i – Bus Index [bus]
∆t – Time Step [hr]
m – Time Step Index
j – Time Step Index
β – Bunching Coefficient [hr−1]
fi – Convolution Coefficient
F – f Matrix
Φ – ν Matrix
ρ – Correlation Coefficient for Consecutive ξ
k2

ξ – Variance Amplification

σ2
ξ – Variance of Deviation (and Spacing) [km2]

∆d – Passenger Generation Distance Step [km]

Control Variables

α – Slope of Control [hr−1]
δ – Reduction in Commercial Speed of Control [km/hr]
E′ – Controlled Equilibrium Commercial Speed [km/hr]
v′n,t – Controlled Instantaneous Commercial Speed of Bus [km/hr]
c′n,t – Controlled Cruising Speed of Bus [km/hr]
y′n,t – Controlled CA Position of Bus [km]
s′n,t – Controlled Spacing of Bus [km]
ξ′n,t – Controlled Deviation from Equilibrium Spacing [km]
δ′ – Minimum δ to Maintain Linear Control (99% CI) [km/hr]
α∗ – α to Minimize δ [hr−1]
δ∗ – Minimum δ [km/hr]
f ′

i – Controlled Convolution Coefficient
F – f ′ Matrix




