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ABSTRACT OF THE DISSERTATION

Efficient Latent Semantic Extraction from Cross Domain Data with Declarative Language

by

Mingda Li

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2020

Professor Junghoo Cho, Co-Chair

Professor Carlo Zaniolo, Co-Chair

With large amounts of data continuously generated by intelligence devices, efficient analysis of

huge data collections to unearth valuable insights has become one of the most elusive challenges

for both academia and industry. The key elements to establishing a scalable analyzing framework

should involve (1) an intuitive interface to describe the desired outcome, (2) a well-crafted model

that integrates all available information sources to derive the optimal outcome and (3) an efficient

algorithm that performs the data integration and extraction within a reasonable amount of time.

In this dissertation, we address these challenges by proposing (1) a cross-language interface for

a succinct expression of recursive queries, (2) a domain specific neural network model that can

incorporate information of multiple modality, and (3) a sample efficient training method that can

be used even for extremely-large output-class classifiers.

Our contributions in this thesis are thus threefold: First, for the ubiquitous recursive queries

in advanced data analytics, on top of BigDatalog and Apache Spark, we design a succinct and

expressive analytics tool encapsulating the functionality and classical algorithms of Datalog, a

quintessential logic programming language. We provide the Logical Library (LLib), a Spark MLlib-

like high-level API supporting a wide range of recursive algorithms and the Logical DataFrame

(LFrame), an extension to Spark DataFrame supporting both relational and logical operations.

The LLib and LFrame enable smooth collaborations between logical applications and other Spark

libraries and cross-language logical programming in Scala, Java, or Python. Second, we utilize
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variants of recurrent neural network (RNN) to incorporate some enlightening sequential informa-

tion overlooked by the conventional works in two different domains including Spoken Language

Understanding (SLU) and Internet Embedding (IE). In SLU, we address the problem caused by

solely relying on the first best interpretation (hypothesis) of an audio command through a series

of new architectures comprising bidirectional LSTM and pooling layers to jointly utilize the other

hypotheses’ texts or embedding vectors, which are neglected but with valuable information missed

by the first best hypothesis. In IE, we propose the DIP, an extension of RNN, to build up the in-

ternet coordinate system with the IP address sequences, which are also unnoticed in conventional

distance-based internet embedding algorithms but encode structural information of the network.

Both DIP and the integration of all hypotheses bring significant performance improvements for

the corresponding downstream tasks. Finally, we investigate the training algorithm for multi-class

classifiers with a large output-class size, which is common in deep neural networks and typically

implemented as a softmax final layer with one output neuron per each class. To avoid expensive

computing the intractable normalizing constant of softmax for each training data point, we analyze

the well-known negative sampling and improve it to the amplified negative sampling algorithm,

which gains much higher performance with lower training cost.
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CHAPTER 1

Introduction

1.1 Motivations

In the big data era, we have witnessed the rising demand of efficiently and conveniently ex-

tracting insights from large-scale data sets for decision making in different domains. The demand

has driven researchers to propose various neural network-based algorithms revolutionizing many

fields, ranging from image processing (He et al., 2016), natural language processing (Devlin et al.,

2018) to speech recognition (Amodei et al., 2016), etc. In addition, the big data analytics and ma-

chine learning platforms like PyTorch (Paszke et al., 2019), Tensorflow (Abadi et al., 2016) and

Apache Spark (Zaharia et al.) are continuously built up in open source and commercial markets, to

provide maximal flexibility and speed while implementing the analyzing pipeline with existing or

user-defined algorithms.

Although the huge success has been achieved, for the advanced analytics on scalable data sets,

there are still some challenges and ongoing efforts to tackle them, including:

• Excluded data. While great efforts have been dedicated to assimilate massive amounts of

data for analysing algorithms, only a tip of the big data iceberg has been utilized during

analysing. To make full use of the assimilated data, researchers design novel architectures of

algorithms like the bi-directional RNN (Graves et al., 2013) to exploit the backward informa-

tion, and involve more tasks for training like the masked language model and next sentence

prediction mentioned in Bert (Devlin et al., 2018).

In two of the fastest growing areas in computer science, the internet embedding and spo-

ken language understanding, we find some enlightening information not considered in the

existing analyzing pipeline, which makes the performance of corresponding downstream
1



tasks non-optimal. Currently, while embedding the internet structure, only a single source of

structural data among IP addresses like hop counts (Eriksson et al., 2008, 2009) is utilized

to build up the network coordinate system. We realize the IP address of the host in internet,

a sequence of bits, could provide a coarse indication of the location of the host, but is over-

looked by current internet embedding techniques. As for understanding the speech, only the

recognition result (hypothesis) of an input speech with highest ASR confidence score (Tur

and De Mori, 2011) or reranking score (Peng et al., 2013; Morbini et al., 2012) is relied and

transferred to the natural language understanding (NLU) module for domain or intent clas-

sification. We find the first best hypothesis can be noisy, while the other hypotheses can be

more similar to the ground-truth transcription of the speech. Driven by the above findings,

we would like to propose novel frameworks involving the unnoticed information for a better

performance in downstream tasks.

• Expensive computing. Among all the analysing algorithms, the neural networks with nu-

merous layers and parameters are recently widely utilized in different domains due to their

strength at learning features at different levels of data abstraction for a better decision mak-

ing. However, the training could be quite computationally expensive especially when the

final layer is a softmax layer for large-class classification (e.g. word embedding, graph em-

bedding), since the cost of standard training algorithm is proportional to the output class

size (e.g. size of words in a dictionary, nodes in a graph). To tackle the issue, a number of

techniques like, negative sampling (Mikolov et al., 2013a), hierarchical softmax (Morin and

Bengio, 2005), adaptive softmax (Bengio, 2008; Rawat et al., 2019) , are developed.

Negative sampling is one of the most popular techniques utilized in practice due to its sim-

plicity and efficiency. Experimental observations show that a larger negative sample size can

achieve a better downstream task performance. However, the training cost is more expensive

for a larger sample size. Could we get the best of the two worlds? This dream motivates us to

analyze the technique and further amplify the negative sampling to get a higher performance

with unchanged or even smaller sample size.

• Expressive power. Recursions are ubiquitous in advanced data analytics, such as graph an-

2



alytics, data mining algorithms. An efficient development of a complicated recursive algo-

rithm on the well-known data analytics platforms like Apache Spark requires deep under-

standing of the algorithm and platform’s libraries. To simplify the development, a renais-

sance of interest has been brought to Datalog, a declarative logic programming language, for

its succinct expression of recursions. Numerous of Datalog systems including DeALS (Yang

et al.), BigDatalog (Shkapsky et al., 2016), RaSQL (Gu et al., 2019) are built up but there is

still space for improvement on usability and interoperability.

Most of the conventional Datalog systems adopt the Datalog syntax, which requires a deep

understanding of logical programming. Recently, this is realized by RaSQL, which proposes

a simple extension of SQL syntax to improve the usability. However, for a wider audience

from data science community, should it be better to provide a data scientists’ familiar cross-

language API encapsulating a wide range of Datalog algorithms like Spark MLlib? For a

flexible developing, is it possible to support the logical operations within a DataFrame-like

data structure? These two questions stimulate us for a better Datalog-based data analytics

tool design.

1.2 Contributions

All the contributions of this thesis center around the aforementioned motivations and are sum-

marized as follows:

• We realize and experimentally show the structural information contained in IP addresses

for internet embedding and propose a deep learning based framework, DIP, to utilize the

information. To the best of our knowledge, DIP is the first framework to predict distance

(or hop count) to arbitrary IPs (even unknown hosts i.e., not contained in training data)

based only on the value of their IP address and routable prefix without any other domain

knowledge.

• We further explore the impact of deep learning in the network security area by using network

embeddings to learn IP maps for spoofing detection. We combine the DIP with the hop count
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filtering, a well-known map-based spoofing detection mechanism, which maps each IP to a

hop count value for one target IP address and is restricted to the detection on specific targets.

The new framework can help any Internet server detect packets spoofed with any IP address

without any additional measurements to that IP.

• We pioneer the spoken language understanding research on jointly utilizing all hypotheses

from ASR module. We investigate the exact matching between hypotheses and the ground-

truth transcription of the input speech, which reveals the value contained in the 2nd − nth

best hypotheses. To involve more than one hypothesis during NLU, we introduce a series

of simple yet efficient models and significantly improve the SLU system robustness to the

noises from ASR module.

• We take the effort to efficiently train the high computational cost large-class classifiers.

We propose a new sample-efficient training algorithm, amplified negative sampling (ANS).

We theoretically and experimentally demonstrate that the ANS leads to the higher-accuracy

model of a larger sample size without paying its high computational cost.

• Finally, we design a cross-language (Python, Scala, or Java) Datalog programming inter-

face with two important components, LLib and LFrame. LLib is a high-level logical library,

providing the encapsulation of a wide range of Datalog algorithms. LFrame is an extension

to DataFrame with the functionality of basic logical operations like definitions of recursive

rules. With running examples, we show the simplified development of recursive applications

and flexible collaborations between LLib or LFrame and existing Spark libraries.

1.3 Thesis Outline

In this dissertation, we mainly address three of the most important elements of the efficient

scalable data analyzing. We firstly explore how to make full use of all information while extract-

ing semantics and insights for decision making. More specifically, in Chapter 2: (a) We propose

the DIP, a variant of RNN, for establishing the network coordinate system via embedding the IP

address sequence. Compared to the coordinate system built on single source of structural data like
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latency or hop count, we demonstrate the superiority of DIP for unknown IPs; (b) We show the

spoofing detection, one of a wide range of problems the DIP framework can be applicable to, and

the benefits from DIP to significantly reduce the cost of achieving complete IP maps. In Chapter

3, we explore the value of unused ASR interpretations and numerous ways to integrate them in the

spoken language understanding system.

Secondly, we explore how a large-class classifier can be efficiently trained through a sample-

efficient training algorithm in Chapter 4. In the chapter, the intuition, theoretical and experimental

analysis of the developed algorithm, amplified negative sampling, are discussed. Then, we explore

how to design a succinct interface for advanced data analytics with superiority on recursion ex-

pressions in Chapter 5. We develop a high-level Datalog library, LLib, for simplified end-to-end

recursive application development with existing Datalog algorithms and a data structure, LFrame,

for flexibly defining the logic of a new recursive application. We finally conclude the dissertation

and discuss avenues for future work in Chapter 6.
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CHAPTER 2

Extracting Latent Information from Unused IP Addresses

In this chapter, we discuss IP addresses (IPs), the unused data in internet embedding domain by

illustrating (1) the reasons why IPs could reveal the structural information of nodes in the Internet,

(2) one approach to incorporate the IPs in the internet embedding and (3) one application which

the new embedding framework can be utilized in.

We firstly present DIP, a deep learning based framework to learn structural properties of

the Internet, such as node clustering or distance between nodes, from the IP addresses. Existing

embedding-based approaches use linear algorithms on a single source of data, such as latency or

hop count information, to approximate the position of a node in the Internet. In contrast, DIP com-

putes low-dimensional representations of nodes that preserve structural properties and non-linear

relationships across multiple, heterogeneous sources of structural information, such as IP, routing,

and distance information. Using a large real-world data set, we show that DIP learns representa-

tions that preserve the real-world clustering of the associated nodes and predicts distance between

them more than 30% better than a mean-based approach. Furthermore, DIP accurately imputes

hop count distance to unknown hosts (i.e., not used in training) given only their IP addresses and

routable prefixes. Our framework is extensible to new data sources and applicable to a wide range

of problems in network monitoring and security.

Then, we consider an important topic, spoofing defense, based on the full knowledge of the

internet structural properties. Map-based IP spoofing defenses associate source IPs to immutable

structural properties of the Internet, such as paths, hop counts, or neighbors to a target, and filter out

packets whose header information does not match the maps. Although accurate, existing methods

lack sufficient coverage. Network maps on AS border routers do not detect spoofed packets that

traverse unprotected networks. Host maps at the edge protect only against spoofed packets with
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source IPs known by the host. We propose to learn IP maps by constructing a structural model (or

embedding) of the Internet from a limited number of measurements. We study the feasibility of

learned IP maps by combining hop count filtering, a known map-based spoofing defense mecha-

nism that maps IPs to hop counts to a target, and DIP, a deep learning based learning algorithm

that computes vector representations of IPs that preserve hop count distance between them. Using

a large data set of hop counts between Internet hosts, we show that learned maps can detect packets

spoofed with almost any IP address and traversing any path using an embedding generated from

only a few thousand IP addresses and hop counts between them. In addition, our embeddings are

general: an Internet model trained for a set of hosts can be used by any other host to generate new

IP maps with little loss in accuracy.

2.1 Deep Learning IP Network Representations

2.1.1 Introduction

The ability to map, analyze, and understand the structure of the Internet helps network manage-

ment and operations by revealing opportunities for improvement or potential design flaws. For ex-

ample, accurately predicting the closest server is critical in peer selection and load balancing (Miao

et al., 2017). Knowing how remote IPs are clustered can help diagnose anomalous events such as

spoofing attacks (Jin et al., 2003). A holistic view of the network and its structure is essential

towards achieving the vision of self-driving networks (Feamster and Rexford, 2017).

Most previous attempts to uncover the Internet structure relying on active probing from multi-

ple vantage points using tools such as traceroute and ping (Levchenko et al., 2017; Spring et al.,

2003). Such techniques provide fine-grained introspection (i.e., can measure specific properties in

specific parts of the network, such as the latency of a path) but pose a significant cost in terms of

network overhead.

In contrast, embedding-based approaches use fewer, strategic measurements (Dabek et al.,

2004; Eriksson et al., 2008) or passive observations on network traffic (Eriksson et al., 2007) to

learn vector representations for the network end-hosts in a low-dimensional space. The representa-
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tions approximate the positions of hosts in the Internet and are used to recover structural network

properties, such as distance between nodes or clustering of nodes. However, the complexity of the

Internet and the sparse input data make it difficult to compute accurate representations. Oftentimes,

embedding approaches rely on additional data sources, which cannot be easily used in the embed-

ding process, to refine and tune the final embeddings. For example, several embedding methods

build representations based on distance-based metrics, such as latency or hop count, and then refine

(or even replace) the final representations using additional probes or static information such as AS

membership or routing information (Dabek et al., 2004; Eriksson et al., 2009).

The emergence of deep learning as a powerful tool to extract hidden features in data calls for

revisiting the problem of learning network representations through embedding. In particular, deep

learning techniques provide two key benefits. First, they allow multiple heterogeneous sources

of information as input, thereby identifying more accurately the relationships between multiple

sources of data that jointly contribute to a specific structural property (Karpathy and Fei-Fei, 2015;

Wang et al., 2018; Mikolov et al., 2013b). Second, deep neuron networks are extensible and can

easily incorporate additional sources of information by attaching more neurons, network layers,

or network branches (Wang et al., 2018). One can start with a model trained on the original com-

ponents and re-train it using only the newly added parts or data sources (Erhan et al., 2010). This

makes it easier for network operators to deploy, apply, or update neural network based models.

We propose DIP, a deep learning based framework to learn the structure of the Internet. DIP is

a ten-layer neural network1 that computes a low-dimensional vector representation for any node2

in the Internet given only its IP address and routable prefix. DIP preserves both local and global

structure: clustered nodes have similar representations and the distance between two representa-

tions approximates the hop count between the associated nodes.

We train our neural network using three heterogeneous data sets: hop count distances between

Internet nodes, the 32 bits IP address and inter-domain routable prefix information for each node.

1To avoid confusion and unless explicitly stated otherwise, we use network or Internet to refer to the physical IP
network and neural network to refer to the neural network we design to learn the structural properties of the physical
network

2We use node or (end-)host to denote any computer connected to the Internet and assigned an IP address.
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A key insight to train DIP is to first compute representations based on the IP and routing infor-

mation, thereby recovering structural information hidden in the IP values, and refine them using a

distance-based optimization. As the size of the routable prefix varies by IP, we first normalize the

IP and prefix data by representing an IPv4 address on 64, rather than, 32 bits. To capture structural

information encoded in the IP address value, we feed the eight bytes of the normalized IP sequen-

tially at each of the first eight layers of the neural network. We then use the last two layers to get

the hop count matrix and optimize the embedding distance prediction. With a trained DIP, we can

estimate distance between any two Internet hosts as long as we have their IPs, even if they are not

part of the training data.

Results on large real-world data sets of hop counts between thousands of IP addresses and 95

geographically distributed servers show that we can predict hop count distance between known

hosts (i.e., whose IP address were used in the training) with an absolute error of around 2 hops

and over 30% better than a mean-based method. We infer the distance between unknown IPs (i.e.,

not appearing in training data) with a small loss in accuracy compared to known IPs. In addition,

the representations learned by DIP preserve the real-world clustering of the associated hosts. The

accuracy of our model increases when we increase the training data set.

While our results are preliminary, they offer us a glimpse of the power of deep learning in

recovering structural properties of the Internet from sparse data. DIP is the first framework that can

estimate accurately the distance to any Internet host given only its IP address and routable prefix

without any distance data.

2.1.2 Background and Related Work

What is structure? Many properties can make up the structure of the Internet: connectivity

between IPs, routers, or networks; distance-based metrics such as hop count or latency; similarity-

based metrics such as the set of one’s neighbors in the connectivity graph; path-based properties

such as the sequence of routers on a path. Here, we focus on two specific properties that define

both the local and the global structure of a network: clustering of end-hosts and hop count based

distance between end-hosts.
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Figure 2.1: Cumulative distribution of (left) hop counts between pairs of host-server IPs that share
the first, first two, or first three bytes, and (right) standard deviation of hop count distribution
among groups of IPs sharing the first, first two, or first three bytes. The more similar two IPs are,
the closer they are and the more similar their distances to the same third IP are.

Network coordinate systems learn vector representations for participating nodes such that the

position of the node in the embedding approximates its position in the Internet. Most coordinate

systems build embeddings using a single source of structural data: latency measurements among

nodes or to predetermined landmark servers (Dabek et al., 2004; Ng and Zhang, 2002; Costa et al.,

2004; Pyxida; Zhao et al., 2011) or hop count information from passive traffic observations (Eriks-

son et al., 2008, 2009). Latency and hop count data is often sparse and cannot always be accurately

embedded in metric spaces. To overcome these issues, several approaches use out-of-band informa-

tion, such as location (Dabek et al., 2004) or routing (Eriksson et al., 2009) data, or perform active

measurements (Eriksson et al., 2008) to impute the missing data and detect clusters or distances.

Unlike them, we propose to train our embedding jointly using distances, routing information and

host IP values, thereby learning hidden structural features encoded in a node’s IPv4 address. With

a trained model, we are able to embed and find the hop count to any IP, without the participation

of its host.

Deep neural networks consist of multiple layers of interconnected neurons (LeCun et al.,

2015). A neuron aggregates multiple input values using local weights and biases, applies an activa-

tion function, and produces one or more numerical values as output. Given a training task, one can

define an objective function to evaluate the output of the entire neural network, e.g. , prediction er-

ror. Using gradient-based back-propagation algorithms to optimize the objective function (Kingma
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and Ba, 2014), neural networks automatically tune the weights and biases of each neuron to achieve

a better performance.

2.1.3 Learning Network Representations

DIP learns an embedding model that accurately reflects the structure of the Internet, i.e., pre-

serves node clustering and distances between nodes. The goal of learning is to minimize the pre-

diction error for the distance between any two nodes. The learned model is defined by the structure

of the neural network and the final values for the weights and biases of each neuron. Next, we

describe the data used in learning and how we construct the neural network.

2.1.3.1 Data Sources

IP addresses and routing information. The IP address of a host provides a coarse indication

of the location of the host in the Internet. To make routing scalable and fast, IP addresses are as-

signed hierarchically and divided into a network (or routable) part and a host (or local) part. The

routable part, usually expressed by an integer representing the number of bits (also called prefix),

tells routers how to route the packet through the core of the Internet towards the destination net-

work. Intuitively, IPs with the same routable prefix share a path towards them through the Internet

core and are more likely to be close to each other.

Hop counts. The hop count between two hosts represents the number of routers on the default

path between hosts. We use hop count, rather than latency, to measure the distance between two

hosts, as it can be easily extracted from the TTL value of a network packet (Jin et al., 2003),

without active measurements. In Section 2.1.5, we discuss how to extend the model using latency

measurements. Our hop count matrix is asymmetric and very sparse; it does not contain hop counts

between all IPs.
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2.1.3.2 IP Transformation

The key idea of our work is to use both local (IPs and routing information) and global (hop

counts) structural information to guide the embedding of network nodes. By utilizing deep learning

for embedding, we can identify and use hidden features encoded in the IP address of a given node.

We perform several transformations on the input, guided by observations on real network data.

IP normalization. Because the routable information is tied to an IP address, we combine the IP

and prefix values when feeding them to the neural network. To keep the size of the input constant

and independent on the prefix size, we generate a normalized IP address for each regular IP. The

process of normalization is depicted in Figure 2.2. We divide each IP into the network and the host

parts. We pad the end of the network part and the beginning of the host part with zero to obtain

two four-byte values. We concatenate the values and get the eight bytes normalized IP. Further, for

easier processing, we represent each byte of the input in one-hot vector format (256 dimensions),

e.g. , a one and the rest are 0s, where the 1’s position is the value of the byte (0 to 255).

Sequential feeding. IP addresses are assigned hierarchically and encode structural information

of the network. To better understand how the hierarchical assignment affects node clustering, we

perform two experiments on a data set of hop counts between 95 geographically distributed servers

and ten million IP addresses of end hosts. Section 2.1.4.1 describes the data in more detail.

First, we group all pairs of host-server IPs according to whether they share (within the pair)

the first byte, first two bytes, or first three bytes. We show the all-to-all hop counts between pairs

in each of the three groups in Figure 2.1(left). The more similar two IP addresses are, the closer

they are in terms of number of hops. Second, we group separately hosts and servers according to

whether they share the first one, two, or three bytes and generate the hop count distribution for

each pair of host-server groups that share the same prefix. We present the standard deviation for

each pair in Figure 2.1(right). The smaller the standard deviation is, the more similar the distances

are. This means that the more similar two IPs are, the more likely they have the same hop count to

another node.

As shown in Figure 2.1, an IP address can help learn node representations that capture the

network structure. The more bytes of an IP address we know, the better we can constrain the
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192.168.133.130/20  = 11000000.10101000.1000 0101.10000010
network (20b) host (12b)

11000000.10101000.10000000.00000000.00000000.00000000.00000101.10000010
normalized network (32b) normalized host (32b)

B0 B1 B2 B3 B4 B5 B6 B7

Figure 2.2: Generating a normalized IP address for 192.168.133.130/20.

representation we assign to it. In addition, the more significant bytes of an IP address have a higher

influence on the position of the associated host relative to other hosts. Therefore, the key is to

capture the sequential correlation among the bytes of an IP address.

2.1.3.3 Network Construction

Driven by the insight gained in the previous section, we develop DIP, a deep neural network

that computes vector representations of network hosts based on their IP addresses and the hop

counts to other hosts. The design of DIP, depicted in figure 2.3, is similar to that of a recurrent

neural network (Mikolov et al., 2010), where new data is processed in the context provided by

previous data (e.g. , like processing natural language). We explain the details below. Even though

the figure and our explanation refer to the input as one-hot vectors (e.g. , a normalized IP is rep-

resented as a vector of size 8x256=2,048), in reality the inputs are matrices (i.e., the number of

IP addresses times 2,048). Because our hop count data (see Section 2.1.4.1) is between separate

end-hosts (sources) and servers (destinations) and because distances in the Internet are not always

symmetric, we choose to feed the source and destination IPs separately in the neural network.

Intermediate IP representation. As mentioned earlier, to get the most out of the format and

value of an IP address towards building a representative embedding for its host, we should treat

each byte separately. The more significant bytes can provide a context for how to interpret the

less significant bytes. Thus, we choose to input each byte of the normalized IP (a 256-dimension

one-hot vector Bi∈{0,...,7}
256×1 ) separately at each layer of the network. The input of layer i is the con-
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Figure 2.3: The neural network used for training our embedding model. The first eight layers
receive the normalized IP addresses as input and compute the IP representations. The ninth layer
estimates the hop count between two IP addresses and the tenth layer measures the model error.
Elements in red are input. For simplicity we depict the input as one-dimensional vectors (one
normalized IP); in reality, all inputs are matrices.

catenation of byte i with the output of the previous layer (except for the first layer). This

Input =


i = 0 Bi=0

256×1

i ∈ {1, ...,7} concat( f i−1
d×1,B

i
256×1)

(2.1)

where d is the dimension of the final IP representation and concat represents the vector concatena-

tion operation.
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At each layer, the activation function f is given by:

f i =



i = 0
so f tsign(wi=0

d×256 ×

Bi=0
256×1 +bi=0

d×1)

i ∈ {1, ...,7}

so f tsign(wi∈{1,...,7}
d×(256+d) ×

concat(Bi∈{1,...,7}
256×1 , f i−1

d×1) +

bi∈{1,...,7}
d×1 )

(2.2)

where wi∈{0,...,7}
d×(256+d) are weights and bi∈{0,...,7}

d×1 ) are biases; the softsign function is f (x) = 1
1+|x| .

Initially, we assign random values to all weights and zeros to all biases. We employ softsign as the

activation function for the ease of training, as softsign is more robust to saturation compared to

other popular activation functions, such as sigmoid and tanh.

Intermediate distance estimation. We use the first eight layers of the neural network to pro-

cess each of the eight bytes of the input normalized IP address. The output of the eighth layer is the

intermediate vector representation for each IP address in the input data. We then use the last two

layers to estimate how good the representation is. First we compute the estimated hop counts given

by the current representation using an Euclidean distance. Given two matrices Hh×d and Ss×d stor-

ing the intermediate representations for the h hosts and s servers separately, the estimated distance

matrix is:

Disth×s = Euclidean(Hh×d,Ss×d) (2.3)

Error reduction. Finally, we compare the estimated hop counts with the real hop counts matrix

Dh×s to compute the cost as the mean difference of hop-counts. As the real hop count matrix is

sparse, we compare only the valid entries:

Cost =
∑

h
i=1 ∑

s
j=1W (i, j)(||rHi∈{1,..,h}

d×1 − r
S j∈{1,..,s}
d×1 ||−D(i, j))

count o f non− zeroD(i, j)
(2.4)

D(i, j) represents the value of the element at ith row and jth column in matrix D. r
Hi∈{1,..,h}
d×1 and

r
S j∈{1,..,s}
d×1 are rows in the matrices Hh×d and Ss×d , and correspond to the representation of a host or
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server in the embedding space. W is a binary (0-1) matrix whose elements are defined as:

W (i, j) =


0 D(i, j) == 0

1 D(i, j) 6= 0
(2.5)

To minimize the cost, we utilize the Adam algorithm, a gradient descent based back-propagation

method (Kingma and Ba, 2014), which is able to automatically tune the learning rate during the

training process.

2.1.4 Evaluation

2.1.4.1 Data and Methodology

We use a large data set of network hop counts from the Ark project (Ark IPv4). The data con-

tains hop count information from 95 geographically distributed servers to ten million IP addresses

that cover all routable prefixes in the Internet. We use data collected by Ark during Jun 2015.

For each IP in the data, we look up the routable prefix and normalize it using the steps in Sec-

tion 2.1.3.2. Due to the cost of monitoring a large number of IPs, not all servers have hop counts

for all ten million IPs. Our hop count matrix is incomplete and contains valid entries for only 29%

of the pairs. We extract IP prefix information from Routeviews data (RouteViews) and use a default

value of 24 for missing prefixes.

We build a prototype for DIP using TensorFlow. We train the neural network using several

smaller data sets obtained by randomly sampling 1,000, 10,000, and 100,000 IPs from the original

data and keeping only the hop counts to them. Sampling increases the sparsity of the data: less than

15% of the entries in the smaller data sets are valid. We also vary the number of servers and the

dimensionality of the embedding space. Intuitively, having fewer IPs or servers may not provide

sufficient constraints to learn accurate representations and lead to an underfit model. Increasing

the number of dimensions can reveal more hidden features, invisible at lower dimensions, but

may lead to overfitting. Each training session has 2,500 iterations, i.e., passes through the neural

network to update the weights and biases. We use a GPU server with four 3.5GHz quad-core Intel
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Figure 2.4: (left) Cumulative distribution of cluster similarity, computed using IP vector represen-
tations, for prefix-based and end-host random clusters; (right) Cumulative distributions of absolute
distance estimation errors for DIP and mean. DIP representations preserve real-world prefix-based
clustering and predict distances accurately.

Xeon processors and 128GB of RAM. We generate testing sets by randomly sampling the original

data and preserving the previously trained parameters for embedding arbitrary IP via its address

(e.g. , the weights and biases of each byte/layer).

2.1.4.2 Embedding Accuracy

Clustering. First, we assess how well DIP preserves the clustering of hosts in the original

IP space. For this, we group all IPs first according to their routable prefix and then at random.

For each cluster we compute an embedding similarity metric, defined as the ratio between the

average distance between all pairs of IP representations in the cluster and the maximum distance

across all clusters. The lower the similarity value, the closer to each other the IPs of a cluster

are in the embedding space. Figure 2.4(left) shows the similarity distribution for prefix-based and

random clusters. Each IP representations is a 140-dimensional vector and computed after training

the network using 10,000 IP addresses and 95 servers. Our embedding preserves the clustering of

the original IP space well.

Distance prediction. To assess the quality of distance prediction, we first look at previous

embedding mechanisms. Network coordinate approaches (Dabek et al., 2004; Ng and Zhang, 2002)

are not directly comparable as they embed latencies between strategically chosen pairs of nodes,
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DIP Mean
known IPs new IPs known IPs new IPs

Number of IPs
1,000 2.16 (1.86) 2.89 (2.38) 2.99 (2.44) 3.27 (2.51)

10,000 2.15 (1.79) 2.68 (2.34) 3.00 (2.40) 3.04 (2.43)
100,000 2.06 (1.76) 2.29 (2.00) 2.98 (2.40) 2.97 (2.40)
Number of servers

12 2.79 (2.25) 3.03 (2.47) 3.21 (2.54) 3.28 (2.62)
24 2.39(2.14) 2.60 (2.25) 2.90 (2.36) 2.97 (2.42)
48 2.34 (2.05) 2.75 (2.27) 2.99 (2.39) 3.02 (2.40)
95 2.15 (1.79) 2.68 (2.34) 3.00 (2.40) 3.04 (2.43)

Embedding dimension
110 2.28 (1.93) 2.80 (2.39) 3.00 (2.42) 3.04 (2.43)
140 2.15 (1.79) 2.68 (2.34) 3.00 (2.42) 3.04 (2.43)
170 2.19 (1.86) 2.72 (2.33) 3.00 (2.42) 3.04 (2.43)

Table 2.1: Absolute mean error (standard deviation between brackets) of distance prediction of DIP
and mean, for both known and new IPs, when varying the number of IPs, the number of servers
and the embedding dimension. The default values are 10,000 IPs, 95 servers, and 140 dimensions.

while we rely on hop count information from passively observed traffic. Eriksson et al. (Eriksson

et al., 2009) propose a matrix factorization based algorithm to predict hop count information but

first build baseline representations of the monitoring servers using an all-to-all hop count matrix.

We lack complete hop count information among servers and build our embedding directly from

incomplete server-to-host distances. Therefore, we compare against a mean estimation approach,

where we predict a host-to-server distance as the mean of all valid distances to the same server.

We look at how well our embedding estimates the hop count value between a host and a server.

We first consider only the IP addresses used in the training process (i.e., known IPs). For this, we

train a model using 90% of all host-server pairs and use the remaining 10% for testing. Figure 2.4

(right) compares the absolute error between estimated and real hop count for DIP and mean for the

10,000 IPs data set on 140 dimensions. DIP predicts distances with a mean absolute error of around

two hops (23% mean relative error) and reduces the error of the mean estimation by almost 30%.

Table 2.1 presents the average absolute error and standard deviation for hop count estimation for

embeddings trained with different number of hosts, servers, or dimensions. As expected, increasing

the the number of IPs, servers, or the dimensionality reduces the absolute error. We also trained

models with parameters outside the ranges presented in the table but found no improvement.

New IPs. An important feature of DIP is its ability to impute hop count values to arbitrary
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nodes based on their IP address. New IPs are IP addresses not used in the training process and that

DIP has never seen before. Figure 2.4 (right) and Table 2.1 show that DIP approximates distance

to new IPs with high accuracy. The distance prediction error is only around half a hop more than

that for known IPs. To the best of our knowledge, DIP is the first framework to predict hop counts

to arbitrary hosts based only on the value of their IP address and routable prefix and without any

other domain knowledge.

2.1.5 Discussion: Limitations and Opportunities

We discuss several future applications and directions of using deep learning to understand and

capture the Internet structure.

Extensions. An important benefit of using neural networks for learning the structure of the

Internet is that they can be extended easily for other data sources. Similarly to previous embedding

approaches (Dabek et al., 2004; Ng and Zhang, 2002), we could use latency measurements instead

of, or in addition to, hop counts. This would require simply changing the cost estimation part

of the neural network (last two layers). While gathering latency measurements is expensive as it

introduces traffic into the network, the ability of our approach to work with sparse data can limit

the cost necessary to obtain the measurements.

Furthermore, AS membership information could help find more accurate representations as

many ASes cover limited areas in the network and provide a coarse indication of locality (Eriksson

et al., 2009). To add AS membership information, we could either extend the shape of our input

vectors (by adding two bytes for AS number) or adapt the cost estimation layers to use AS data in

estimating error, similarly to Eriksson et al. (Eriksson et al., 2009).

Applications. Building a model that accurately predicts structural properties of the Internet

has several applications. Knowing the distance to remote IPs can help selecting a load balancing

server or an overlay peer more efficiently and without having to perform expensive measurements.

Understanding how nodes are clustered can make the transmission of video or large files faster by

using close-by CDN nodes. DIP can be a passive defense mechanism against IP spoofing attacks,

where malicious users change the source IP of attack packets to avoid identification and subvert
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authentication. By comparing the predicted distance according to the spoofed source IP to the real

distance (extracted from a packet’s TTL field), one could verify whether the packet is spoofed

or not (Jin et al., 2003). This idea inspires our next research work introduced in the next section

(Learning IP Maps for Network Spoofing Detection).

Limitations and future work. Our current approach uses structural information embedded

in the value of IP addresses, routing data, and distances between nodes, but does not consider

the actual physical links between nodes on the Internet (i.e., the Internet physical topology).

Adding topology would further constrain the embedding, since it is well known that the Inter-

net is not a metric space and latency or hop count distances cannot always be embedded in metric

spaces (Dabek et al., 2004). We plan to extend our framework using graph embedding algorithms

to take advantage of physical topology information (Wang et al., 2016a).

While our preliminary experiments focused on accuracy, the performance of building an em-

bedding model is equally important. Training a model with 100,000 addresses and 95 servers on our

16-core GPU server takes a few hours, indicating that we may need to train models incrementally

when resources are constrained (Bruzzone and Prieto, 1999). For example, in a live deployment,

we envision reconstructing our model every few days to capture the changes in topology triggered

by the dynamic Internet. We are currently studying ways to incrementally add or update models

without rebuilding from scratch.

Because our data is sparse, not even the best embedding may be able to recover all structural

properties. While we show that our results are reasonably accurate, even when we have less than

15% of all distances available, getting more data is clearly helpful (Eriksson et al., 2009). We plan

to use active monitoring techniques (e.g. , traceroute) to collect more information for the training

phase. Knowing the IPs and connectivity of routers in the network would make the training data

set richer and constrain the representation of end-hosts further.
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2.2 Learning IP Maps for Network Spoofing Detection

2.2.1 Introduction

Spoofing the source IP address of network packets is a mechanism frequently used in denial-

of-service attacks (Chen et al., 2008; Spoofing-ps). IP spoofing can both hide the true source of

the attack, thereby subverting IP-based firewalls and authentication mechanisms, and force legit-

imate hosts to redirect malicious traffic, thereby amplifying the effects of the attack (DDoS in-

cident). In 2018 alone, IP spoofing was the vehicle for several high-profile, terabyte-size DDoS

attacks (Cloudflare; DDoS incident).

There are two types of defenses against spoofing attacks. Active methods encrypt connec-

tions (Frankel and Krishnan, 2011), probe suspicious IPs (Feng et al., 2005), or mark legitimate

packets with unique identifiers (Bremler-Barr and Levy, 2005; Yaar et al., 2006). They come at the

expense of bandwidth, latency, or computation overhead (Shue et al., 2005). Passive (or map-based)

defenses construct explicit offline maps between IPs and immutable structural network properties,

such as paths (Park and Lee, 2001; Duan et al., 2008), neighboring networks (Ferguson and Senie,

2000; Killalea, 2000; Baker and Savola, 2004), or hop counts (Wang et al., 2007) and filter packets

whose header information does not match the maps.

Passive map-based defenses have little detection overhead and are less intrusive than active

defenses, but pose a significant construction cost. Measuring the network properties associated

with each IP is a long and tedious process that requires intrusively probing other hosts, querying

routing tables, or passively waiting to receive sufficient traffic (Jin et al.). In addition, as network

properties are different for every vantage point, maps computed for a location cannot be easily

transferred to a different location and must be recomputed.

We propose to learn a structural model (or embedding) of the Internet and use the model to

predict, rather than explicitly compute, IP maps. Learning instead of measuring network properties

could significantly reduce the cost of achieving complete host IP maps while making them more

general. First, training a network embedding requires only a small set of ground truth information,

such as distances between IPs (e.g. , hop counts, latencies) (Dabek et al., 2004; Lumezanu et al.,
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2007; Eriksson et al., 2009). This reduces the amount of data necessary a priori for constructing

a good map, thereby reducing the construction cost. Second, network embeddings are general and

can be used to predict associations between any IP and its local network properties, even when the

IP was not part of the training.

We study the feasibility of using network embeddings to learn IP maps for spoofing detection.

Towards this goal, we present and build a learning-based spoofing detector that combines DIP,

our previous deep learning based network embedding algorithm (Li et al., 2018a,b) and hop count

filtering, and a popular host-based spoofing detection mechanism (Jin et al.). Hop count filtering

compares the hop count information of packets arriving at a target server to the known hop count

value from the packets’ IP source to the target. It considers a packet spoofed if the two values do

not match. Rather than build an explicit map of known IP-to-hop-count associations, we use DIP to

learn a network embedding that preserves hop count distance between IPs. Using the embedding,

we predict with high accuracy the hop count between any two IPs and identify when a packet is

spoofed.

We analyze the coverage, accuracy, and cost of our learning-based detector. We show that

learning, instead of explicitly computing IP maps, dramatically increases the detection coverage

over spoofed sources and targets. Our learning-based detector needs hop count information from

only around 1,000 IPs to several targets to build a model that can help detect spoofing from most

of the Internet. Although, not as accurate as the original hop count filtering in detecting packets

spoofed with previously known IPs (i.e., to which the hop count is known), ours is the first map-

based detector to identify spoofing with unknown IPs (i.e., for which the hop count to the target is

not known). It can also be used to detect spoofing to new targets, not part of the training process,

with only a small loss in accuracy. In addition, learning an embedding is fast: even with almost

three million hop counts from 100,000 IPs, it takes less than an hour to learn an embedding that

can predict maps for any IP address.

This work brings two contributions. First, we introduce a framework to help any Internet server

detect packets spoofed with any IP address without any additional measurements to that IP. This

represents a major shift from previous map-based spoofing detection mechanisms, who are either

restricted to specific targets or to detect packets spoofed with known IPs. Although our method
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does not yet achieve by itself the accuracy necessary for a real-world deployment, it nevertheless

shows that learning, rather than measuring, network properties could be an important piece in the

spoofing detection puzzle.

Second, our work explores the impact of deep learning in the network and security operations

decision making. As AI moves beyond just being the word du jour and increasingly becomes

an integral part of the network, it is important to understand the trade-offs between its cost and

benefits (Sommer and Paxson, 2010). It is precisely such a trade-off that we analyze in our work:

while learning IP maps for spoofing detection can ease the task of administrators and help build

complete maps much faster, it may decrease the detection accuracy. Understanding this balance

can lead to better and more protected networks.

2.2.2 Towards Learned Maps for Spoofing Detection

Map-based spoofing defense mechanisms associate IP addresses with immutable network prop-

erties that are difficult to modify by attackers. Packets that carry information (i.e., in headers)

not matching the map are dropped. Unlike active spoofing defense methods that encrypt con-

nections (Frankel and Krishnan, 2011) or probe suspicious IPs (Feng et al., 2005), map-based

approaches are less intrusive and do not introduce additional traffic. To be effective, map-based

detection must provide coverage: given a random attacker, protect any target against attack packets

spoofed with any IP address.

Network maps. Network-based maps reside on AS border routers and pair IPs to the incoming

network interface (Baker and Savola, 2004; Duan et al., 2008) or with keys inserted in the packet

by an upstream trusted party (Bremler-Barr and Levy, 2005). Such maps have the potential to

provide complete coverage, if installed pervasively by all ASes. However, their deployment has

been slow. Recent measurements performed by CAIDA (Spoofing-state) show that around 25% of

all ASes allow spoofed traffic to traverse them. Until all networks deploy network-based detection,

the Internet is susceptible to spoofing. A likely cause for the incomplete coverage is the misaligned

economic incentives (Lone et al., 2017): the cost to deploy network maps is high and supported by

each AS, while the benefit is incremental and spread to the entire Internet.
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Host maps. Host-based detection aligns the incentives by pushing the onus of detection to-

wards the edge of the network. Hosts3, rather than routers, build and maintain IP maps and benefit

immediately from them. Most notably, several solutions build maps between IPs and hop count

values to the target, relying on hop count data as a measure of the network topology (Wang et al.,

2007; Jin et al.). Hop counts can be easily derived from the IP TTL field, whose value depends on

the network infrastructure (i.e., every router decrements the value before forwarding the packet)

and cannot be easily forged by an attacker.

By pushing map computation to the edge, host-based maps decentralize the spoofing detection

process and may see decreased coverage. First, their detection is limited to packets spoofed with

IPs to which the target knows the hop count. They fail in detecting packets spoofed with IPs un-

known4 to the target. As attackers rely on surprise and obfuscation, they often use random spoofed

addresses that can be from anywhere, even from non-routable ranges (Cloudflare). Increasing cov-

erage by building complete maps is difficult. Passively collecting hop counts from incoming traffic

is not likely to provide a large coverage (Jin et al.), while actively probing all IPs is expensive,

intrusive, and time-consuming (Ark IPv4). Second, host maps are location specific. A map associ-

ating IPs with hop counts to a target is only useful for that target and cannot be transferred to other

hosts, even if they are part of the same network.

Learned host maps. We propose to learn IP-to-hop-count mappings, instead of extracting

them from incoming packets. A natural solution is to first learn representations of IPs in a vector

space and then estimate the distance (i.e., hop count) between IPs as the distance between their

representations. Network embedding methods can easily compute IP representations in Euclidean

spaces from a limited set of latency or hop count information (Dabek et al., 2004; Ng and Zhang,

2002; Costa et al., 2004; Pyxida; Eriksson et al., 2009). However, they are limited to the hosts part

of the training set and cannot generate representations or hop counts for other hosts. This means

that they cannot be used to estimate hop counts for, and thereby detect packets spoofed with, IP

3Throughout the chapter, we interchangeably refer to the server that deploys host-based maps as host, end-host,
target, destination, or victim.

4We consider an IP address unknown to a target if the target does not know the hop count to it. Existing host-based
maps cannot detect packets spoofed with an unknown IP address.
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addresses unknown to a target.

The emergence of learning frameworks that preserve structural network properties such as

distances or clustering among nodes offers an alternative to build explicit host-based IP maps

from passive or active measurements (Li et al., 2018a; Wang et al., 2016b). Deep learning based

embeddings use several data sets, i.e., distances, routing information and host IP values, to learn

IP representations. Because they learn hidden structural features encoded in a node’s IP address,

they could generate representations for any node, given only its IP address (Li et al., 2018a). In

addition, deep learning algorithms are easily extensible and adaptable when new or updated data

is available.

Figure 2.5 presents a visual representation of the benefits of learning-based spoofing detection.

Unlike network maps, which detect only spoofed packets traversing protected ASes (left diagram),

or explicit host maps, which detect only packets spoofed with IP sources known by the host (middle

diagram), learned host maps can detect packets spoofed with unknown IPs (right diagram). The

host uses a learned structural model of the Internet to estimate a specific network property, e.g.

hop count information, associated with the source IP of an incoming packet and decide whether

the packet is spoofed or not. In the next section, we describe a learning-based spoofing detector

combining hop count filtering with the DIP network embedding framework.

2.2.3 Learning-Based Spoofing Detection

To illustrate the benefits of a learning-based spoofing detector, we propose a prototype detection

framework based on the hop count filtering method first introduced by Wang et al. (Jin et al.).

Our prototype consists of two main components: an offline IP map learning module (to learn IP

representations and estimate hop counts between IPs) and a spoofing detector (to detect spoofed

traffic). We describe both modules next and study their effectiveness in the next section.

2.2.3.1 IP Map Learning

In a previous work, we introduced DIP, a deep learning framework that uses hop count in-

formation between network host to learn an embedding of the Internet (Li et al., 2018a). Using a
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Figure 2.5: Map-based spoofing detection. Network maps detect only spoofed packets traversing
protected ASes (colored in green). Host maps detect only packets spoofed with IPs present in the
map (also colored in green). Learned host maps have the ability to detect all packets because they
learn missing map entries. The paths in the diagrams indicate the apparent source of the packet
(the spoofed source). In reality, all packets originate from the attacker.

small data set of IP addresses, their prefix information, and hop counts among them, DIP computes

a vector representation of each IP in a high-dimensional Euclidean space. The algorithm ensures

that representations reflect hop counts between hosts: the Euclidean distance between two repre-

sentations estimates the hop count between the associated IPs. We briefly describe DIP below and

refer the reader to the work of Li et al. (2018a,b) for more details.

The training data for DIP includes the IP addresses and hop counts among them. The IP ad-

dresses are hierarchical sequences which contain two parts, i.e. network (routable, routing prefix)

and host (local) part. For example, for a 32-bit IPv4 address 192.167.2.17/24, the number 24 means

the first 24 bits form the routable prefix, which can indicate the identification of the subnet. The

rest 8 bits will be the local information for this IP address within the subnet. The hop count be-

tween two IPs represents the total number of intermediate devices (e.g. routers) that a data package

needs to pass. We use it as the distance between two IPs and the training objective is to estimate the

hop count between two IPs. The utilized hop count matrix is actually very sparse and asymmetric.

During training, we will not pre-filling any value to the matrix to avoid introducing noises. We will

measure the loss only when the hop count information exists.

The DIP is designed to exploit the above mentioned information efficiently with a variant of
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recurrent neural networks to capture the structure encoded in the value of an IP address (i.e., net-

work part and host part provide an implicit hierarchy of IPs). According to the definition of the

network and host part, we can find it is actually more significant to use the network part expressing

the structural position. However, for IP addresses, their network parts can have different sizes. The

network part’s size can be any value from 0 to 32 (IPv4). Similarly, the number of bits contained

in the host part varies. Hence, before feeding in the IP addresses, we will normalize them by: 1)

Divide the 32 bits into network and host parts; 2) For the n bits in network parts, we pad in 32−n

0s at the end; 3) For the 32−n bits in the host parts, we pad in n 0s at the beginning. Then, we can

get two four-byte normalized values.

With the two four-byte values, we can convert their each byte’s numerical value to a one-hot

vector (256 dimensions). The reason to use one-hot vector is we think there is no relationship like

natural ordering or neighboring between different values of byte. For example, there are three hosts

with the second byte equalling 156, 192, 15. We cannot easily say that the first two hosts are nearer

to each other compared to the third because the difference between 156 and 192 is smaller. So we

would like to regard the byte value as categorical data and use one-hot vector to represent.

By two experiments result shown in Figure 1 of Li et al. (2018a), we find the more bytes for

an IP address, the better we can constrain the representation of the IP. This shows the sequential

information contained by the IP addresses. So, in each layer of DIP, we feed the one-hot vector of

the eight bytes from the normalized IP separately and use the structure similar to Recurrent Neural

Network to capture the sequential information. Suppose the 8 bytes are Bi, i ∈ 0, ...,7, where each

B is actually converted to a one-hot vector of 256 dimensions. The input for the first layer of DIP

will be B0. Via the formula:

h0 = activate(W0×B0 +bias0) (2.6)

we can get the hidden output of the first layer. The activate function can be either so f tsign, tanh

or sigmoid. In our experiments, we use so f tsign for an easy and efficient training.

Then, for the following layers, the hidden output of the last layer will participate into the input
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of the current layer.

hi = activate(Wi× [Bi,hi−1]+biasi), i ∈ 1, ..,7 (2.7)

The [Bi,hi−1] means to concatenate the current input and the last hidden state. Then, by the h7, we

can add another feedforward layer to convert the h7 to h8 and estimate the hop count by:

hop− count = Euclidean(h8,source,h8,destination), (2.8)

which utilizes the source and destination IPs’ hidden representation for estimation. During learn-

ing, the trainable parameters include the Wi, biasi where i ∈ 0, ...,7 and the final layer’s parameters

to convert h7 to h8. Since we think the first 4 bytes, which is the normalized network part of the IP

address, are more significant for structural information. We will assign a higher initial value for the

Wi when i ∈ 0, ...,3 and a smaller value for the Wi when i ∈ 4, ..,7. This will enhance the influence

of the first four layers and weaken the influence of the second four layers. The learning will be

supervised: at each iteration of the algorithm, the representations are refined towards minimizing

the error between estimated hop counts (computed from the Euclidean distance between two rep-

resentations) and real hop counts. All the previous mentioned formulas and steps are simplified

version for the processes described in Li et al. (2018a). If you need more detailed information,

please check the Li et al. (2018a).

The advantage of DIP compared to traditional network embedding approaches is that it incor-

porates structural information encoded in the value of an IP address towards learning their position

in a vector space. Learning from the value of an IP address is critical for our purpose. The learned

model can be used to generate representations for any IP, even if it was not part of the training

set or we do not have distance information to it. This, in turn, increases the coverage of our spoof-

ing detection. We are not limited to the information from IP maps anymore; missing associations

between IPs and hop counts can be easily estimated from the learned model. In addition, embed-

ding models are general: they can be transferred to and immediately used by other hosts, without

additional retraining, thereby reducing the overall cost of achieving global detection.
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Figure 2.6: The learning-based spoofing detector uses an embedding of the Internet to estimate
hop count information to any IP address and detect when the IP is used as the spoofed source of an
attack packet.

Notwithstanding its advantages, DIP suffers from the same limitation as previous network em-

bedding methods (Dabek et al., 2004; Ng and Zhang, 2002; Costa et al., 2004; Pyxida; Eriksson

et al., 2009): Internet hop counts do not form a metric space (e.g. , they violate the triangle inequal-

ity (Lumezanu et al., 2007)) and cannot be embedded accurately into an Euclidean space. DIP is

able to predict distances between Internet nodes with a mean absolute error of 2.06 hops, after

being trained on distances between around 15,000 pairs of nodes. The error increase is small (from

2.06 hops to 2.29 hops) when we consider distances to IPs not used in the training, and therefore

unknown to the targets. Detecting spoofed packets based on imprecise hop count information may

lead to incorrect decisions. To minimize the number of missed spoofed packets, we must allow a

margin of error when comparing the estimated and real hop counts. In Section 2.2.4, we show that

spoofing detection still works when the hop count estimations are not exact and discuss how to

select the detection threshold.

2.2.3.2 Spoofing Detector

The spoofing detector is deployed on a potential target and consists of the learned map, packet

processor, hop count extractor, and detector (Figure 2.6). The packet processor extracts the source

IP and TTL values from an incoming packet. It then computes the hop count information from the

TTL, using the algorithm described by Wang et al. (Wang et al., 2007). The hop count estimator
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Method Description

network maps Complete coverage if all ASes deploy network maps; currently 25%
of ASes are unprotected (Spoofing-state); cost of building maps is
high (Lone et al., 2017).

host maps Coverage limited to the IPs with known hop count to the host: potentially
covering packets spoofed with 95% of all IPs (Jin et al.), if map contains
all IP addresses; maps cannot be transferred and need to be explicitly com-
puted by each host; cost of building maps is high (Jin et al.; Ark IPv4).

learned host
maps Limited by the accuracy of embedding; covering packets spoofed with

around 70% of all IPs, even when the IP is unknown to the host; em-
bedding models can be transferred and do not need to retrained; cost of
building maps is low.

Table 2.2: Map-based spoofing detection methods.

uses an existing embedding model (i.e., built offline using IP and hop count data from legitimate

packets) to compute a representation for the packet’s source IP and estimate the hop count to the

target. The detector compares the real and estimated hop counts to the target. If the difference

between them is greater that a pre-specified threshold, we consider the packet spoofed and raise an

alert. To save future computation, all estimated hop counts and IP representations are saved into

a cached learned map. When packets from an IP present in the map arrive at the target, we use

information from the map without recomputing the hop count value.

2.2.4 Evaluation

We evaluate the feasibility of learning-based spoofing detection as follows. First, we analyze

what coverage we can achieve compared to detectors based on exact maps, such as hop count

filtering. Second, we simulate spoofing and measure how well we detect spoofed packets under

various scenarios. Finally, we look at the cost of building a detector. Table 2.2 contains a summary

of our findings.

Data. We use a large data set of network hop counts collected by the Ark project (Ark IPv4)

during June 2015. The data contains hop count information from 96 geographically distributed

servers to ten million IP addresses that cover all routable prefixes in the Internet. Because moni-
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toring a large number of IPs is costly, not all servers have hop counts for all ten million IPs. Our

hop count matrix is incomplete and contains entries for only 29% of the pairs. Furthermore, due to

privacy issues, the last eight bits of each IP were zeroed out after collection. Although this makes

the set of possible spoofed sources more general, it also helps us learn more robust models, as

there are likely more servers monitoring the same /24 prefix than the same single IP address, i.e.,

the number of hop counts per IP is higher.

It is possible that the hop counts collected by Ark are to routers on the path, rather than the

end host itself. This can happen when routers, and not the target, reply to the monitoring packets.

As our detection algorithm is intended for the edge of the network, training with router IPs and

hop counts may bias the results. It is difficult to determine precisely which response comes from a

router. To minimize the potential bias, we use a simple heuristic based on the fact that many router

IPs are not part of advertised BGP prefixes. Using this heuristic, we filter out around 1.2% of the

IPs in our data.

Methodology. We build a prototype spoofing detector using TensorFlow and Python, reimple-

menting the learning in DIP (Li et al., 2018a) and hop count filtering (Jin et al.). We train the neural

network offline using several smaller data sets obtained by randomly sampling 1,000, 10,000, and

100,000 IPs from the original data and keeping only the hop counts to them. Sampling increases

the sparsity of the data: less than 15% of the entries in the smaller data sets are valid. We train our

spoofing detector for 1,000 iterations on a server with four 3.5GHz quad-core Intel Xeon proces-

sors and 128GB of RAM.

Assumptions. We assume a single attacker, randomly placed in the Internet, with no knowledge

about network structure around the spoofing target or the spoofed IP. This means that the attacker

cannot use information about hop count to the target to avoid detection. We also assume that the

hop count information is static and does not change. In Section 2.2.5, we discuss what happens

when we relax these assumptions.

Goals and non-goals. Our main goal is to evaluate the feasibility of learned maps for detecting

spoofed network packets and to inform future decisions of security operators or researchers. We

use an existing embedding algorithm, DIP (Li et al., 2018a) to learn hop count information between
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Figure 2.7: Coverage for (left) exact and learned maps for 1,000 source IP addresses, and (right)
learned maps for the same sources used in training (labeled “1/1”), ten times as many sources
(“1/10”), and a hundred times as many sources (“1/100”). The bars represent the error of a learning-
based spoofing detector, for each target, in hop counts. Learning-based spoofing detectors adapt
well to new sources with little loss of coverage.

IPs, and study its interaction with hop count filtering (Jin et al.). A non-goal is to evaluate the DIP

embedding accuracy. For a detailed study, we refer the reader to the DIP chapter (Li et al., 2018a),

which analyzes the embedding accuracy when varying various learning parameters and in contrast

to other distance prediction mechanisms.

2.2.4.1 Coverage

The limited range of hop count values (i.e., 0 to 255) means that no hop-count-based spoofing

detector can achieve perfect detection. To understand the limits of detection, we define the coverage

of each target as the expected fraction of source IPs that can be unambiguously identified when

spoofed by a random attacker. In other words, the coverage represents the probability that a packet

spoofed with a random IP by a random attacker is detected by the target.

Exact maps. Before studying learning-based maps, we analyze the boundaries of what exact

hop count based maps can achieve. Hop count filtering (Jin et al.) identifies packets as spoofed

when the packet hop count does not match the known hop count associated with the source address.

If the attacker spoofs a packet with an IP address that has the same hop count to the target as the
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attacker IP, hop count filtering cannot detect the attack. To compute the coverage of exact maps,

we repeatedly select a source IP at random as the attacker for each target, calculate the fraction

of IPs that share the same hop count to the target as the attacker and subtract the value from 1.

Figure 2.7(left) shows the distribution of coverage for all targets in our data set. We consider 1,000

IPs; results for other data sets are similar. Focus only on the line labeled exact maps for now. Most

targets have a coverage of at least 0.8.

An important observation is that exact maps are not necessarily limited to detecting traffic

spoofed with IPs that have communicated with the target in the past. They are efficient in detecting

attacks spoofed with any IP, as long as the target knows the hop count to the IP. Oftentimes, IPs

that are part of the same prefix, especially for smaller prefixes, share the same hop count to a target.

Our data set already contains at most one IP per /24 prefix to ensure it does not underestimate the

performance of exact maps.

Learned maps. As described in Section 2.2.3, learning maps introduces errors in estimating

hop count values. Any learning-based spoofing detector needs to account for those errors in identi-

fying spoofing. First, for each target, we compute the average error between real and estimated hop

counts from all sources to the target. We use hop counts from 1,000 IPs to the 96 servers to learn the

embedding. Then, similarly to above, we select an IP at random from the 1,000 IPs in the training

set as the attacker and compute the fraction of IPs whose hop count is within the estimation error of

the hop count from attacker to target. We subtract this value from 1 to obtain the coverage for the

learned map of each target. This captures the probability that learned maps detect packets spoofed

with a random IP from a random attacker. Note that here we select an IP from the training set as

the attacker to compute source coverage for known IPs and compare with exact maps. Below, we

re-do the analysis for unknown IPs, that are not from the training set. Figure 2.7(left) shows that

the coverage of learned maps is lower than that of exact maps when considering the same set of

source IPs. On the average, a target could detect spoofed packets only 70% of the time, compared

to 90% of the time with exact maps.

The power of learned maps lies in estimating hop counts to IPs that are not in the training set.

We increase the number of source IPs to which we estimate hop counts to 10,000 and 100,000 (10,

respectively 100 times more than the training set) and show the coverage in Figure 2.7(right). Even
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when we increase the number of IPs 10- or 100-fold (lines labeled “1/10”, respectively “1/100”)

compared to the training set, the coverage does not decrease much. In comparison, the coverage of

exact maps for any unknown IPs is 0. Thus, learned maps offer an immense benefit when protecting

against spoofing carried with IPs not known to the target.

Summary. IP-to-hop-count maps learned via deep learning embedding are less accurate than

exact maps extracted from incoming traffic, when evaluated on IPs to which the host knows the

hop count. However, learned maps dramatically outperform exact maps on unknown IPs.

2.2.4.2 Accuracy

We define the sensitivity of the detector as the fraction of detected spoofed packets out of

all spoofed packets, and the specificity as the fraction of correctly identified legitimate packets

out of all legitimate packets. Sensitivity (also known as recall or true positive rate) represents the

probability of detecting a spoofed packet and specificity (also known as selectivity or true negative

rate) captures the probability of not raising a false alert. Unlike coverage, which gives a measure

of how well the detector can do for a randomly spoofed IP at any target, sensitivity and specificity

measure the accuracy of the detector in a realistic scenario, given both legitimate and spoofed

packets.

We set up the experiment as follows. We use the 10,000 IP data set for both training and

detection. We simulate packets arriving from each of the 10,000 IPs at random and introduce

spoofing with an average rate of 0.01 (one spoofed packet for every 100 packets). For each spoofed

packet, we generate a fake hop count value at random from a normal distribution with a mean of

15 and standard deviation of 5. We chose these values as they match the distribution of hop counts

in our data set. We measure sensitivity and specificity as averages across all targets in a specific

experiment.

Varying threshold. Figure 2.8 (left) shows the specificity and sensitivity as we vary the de-

tection threshold. For a threshold of two hops, which is the average training estimation error, we

obtain an overall sensitivity of around 0.75, which is consistent with the expected coverage from

Figure 2.7 (left). However, a high sensitivity also results in a low specificity: while we detect most
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Figure 2.8: Detector accuracy under various scenarios. (left) We run detection on the same targets
used in training and vary the detection threshold; increasing the threshold reduces sensitivity and
improves specificity; (right) We perform detection using both training targets and new targets not
used in the training process; we set the detection threshold to two hops (the average estimation
error of the model); as we vary the ratio between training and detection targets, the sensitivity for
the new targets is comparable to that of the training targets, while the specificity is lower; “all”
indicates that we perform training and detection on all targets, therefore there are no new targets.

spoofed packets, we do so at the expense of tagging the majority of legitimate packets as spoofed.

Modifying the detection threshold adjusts the trade-off: we find that the best balance between sen-

sitivity and specificity is when the threshold is just above three hops.

Summary. Learning maps can trade-off high accuracy in detecting spoofed traffic with a high

rate of false positives. This indicates that learning maps could be an important part of a bigger

framework for spoofing detection, which could process the false alarms faster or dynamically ad-

just the detection threshold to control their rate.

2.2.4.3 Model Transfer

To understand whether our learned model is general and can be transferred to new hosts, we

split the data set into two disjoint sets, such that the targets in each set are disjoint. We train a model

using only the targets in the first set and then run detection on both sets. Our goal is to understand

how the detector performance for a target changes when we use a model learned for other targets.

We consider three different splits: the number of targets in each set is the same (“1/1” split), the
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number of training targets is four times larger (“4/1” split) and, the training targets are four times

fewer (“1/4” split). We set the detection threshold at two hops and compute the average sensitivity

and specificity for spoofing detection on each set across all splits.

Figure 2.8 (right) presents the results. The sensitivity of targets not part of the training process

is comparable to that of those targets used in training, showing that our models are transferable to

new targets with little loss in accuracy. This reduces the cost of global deployment as new targets

do not need to gather training data and build their own models. An interesting observation from

Figure 2.8 is that the specificity of new targets is lower than for training targets: raising false alerts

is more likely on hosts not part of the training.

Summary. Maps learned at a single location are transferable to other servers in the Internet

with little loss in accuracy. This is because maps are learned based on structural network properties

that are the same from every vantage point and do not depend on specific locations.

2.2.4.4 Performance

Training a representative embedding does not require significant resources. Learning a model

with hop counts from 100,000 IPs to 96 servers takes about one hour on a server with four 3.5GHz

quad-core Intel Xeon processors and 128GB of RAM (Table 2.3). Each model takes less than 5MB

of memory and thus is easily transferable over the network. Detection is fast as well. Using the

same machine used for training, and given an IP packet, we are able to decide whether the packet

is spoofed or not in under a millisecond. While running the detector at line speed on a network

gateway instead of a powerful GPU machine may reduce these numbers, recent deep learning

platforms, such as Net2Vec (Gonzalez et al., 2017), that are able to capture and process packets at

60Gbps can make deployment easier and faster.

2.2.5 Discussion: Limitations and Opportunities

Accuracy trade-off. Our detector trades off accuracy for generality. Low specificity may be

unacceptable for many operators, who would still need to sift through alerts to identify legiti-

mate packets incorrectly identified as spoofed. In practice, we envision that our approach works in
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Number of source IPs 1,000 10,000 100,000

Time to train (min) 1 6 58

Size of model (MB) 4.5 4.5 4.5

Table 2.3: Performance of training for data sets containing hop count information from 96 servers
to 1,000, 10,000, and 100,000 IPs. Each data set is sparse, with only about 15% of all entries
available.

conjunction with network-based maps and host maps built from passive measurements to offer a

comprehensive and cost-efficient spoofing detection solution.

Non-metric Internet. Paths between Internet hosts are dictated by routing policies and AS

peering agreements, and are not always shortest in terms of hop counts. Estimating the hop count

between two hosts as the Euclidean distance between their embeddings does not capture the intri-

cacies of Internet routing and may introduce errors. We are working on reducing these errors in

two ways. First, we plan to introduce AS membership as an additional data set in the deep learning

framework. Knowing to which AS a host belongs to can help constrain its possible positions in

the embedding space. Second, we plan to add IP addresses and hop counts to routers on the path

between a source and a destination. While a perfect metric embedding of Internet hop counts is

impossible (Lumezanu et al., 2007), we can reduce the learning error and better predict anomalies.

Furthermore, we are exploring non-metric embeddings. It is possible to learn structural em-

beddings of the Internet that estimate other network properties helpful in spoofing detection. For

example, graph embeddings preserve local and remote network structure features such as first- and

second-order neighbors (Wang et al., 2016b). We are investigating how to use such mechanisms to

devise spoofing detectors that avoid the shortcomings of hop based spoofing detection.

Dynamic Internet. The dynamic nature of the Internet with frequent misconfigurations, out-

ages, or policy changes means that hop counts or IP addresses may also change (Cunha et al.,

2011; Padmanabhan et al., 2016). If this happens, we may need to retrain the embedding model to

reflect the updated values. A practical deployment would passively listen to incoming legitimate

traffic, or selectively probe IPs from learned maps, and update existing maps to reflect new hop

count values. We are currently working on how to re-train our model to learn a more accurate hop

count estimation in the presence of new hop count data.
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Asymmetric Internet. Internet routing may not always be symmetric (John et al., 2010). Due

to ISP routing practices, the direct and reverse route between two nodes may be different, resulting

in potentially different hop count measurements between the same pair of nodes. Because we

compute hop count information from TTL values decremented exclusively by routers on the direct

path between source IPs and targets, our detection is not impaired by the routing asymmetry.

Bootstrapping. Learning a representative structural model of the Internet requires hop count

measurements from many vantage points. Not all enterprises have access to many geographically

distributed monitors to collect hop count data for the initial model training. There are two possibili-

ties to generate learned maps in such scenarios. First, one could use third-party measurement data,

such as that provided by CAIDA (Ark IPv4), to train a descriptive model and generate learned

maps. Second, an enterprise could deploy a model already trained in another location. As we

showed in Section 2.2.4.3, our models are transferable with little loss in accuracy.

Attack types. We assumed a spoofing attack carried by a random attacker without any knowl-

edge of the network topology. In reality, some attackers may be able to obtain information about

the network that could help subvert the defense. For example, if an attacker controls multiple bots,

it can send the attack from the bots that have a more popular hop count value to the target. This

maximizes the likelihood of passing by our filter as there are more IP addresses with which to

spoof the source. Furthermore, if the attacker learns the hop count between the spoofed IP and the

target, it can also spoof the TTL field of the attack packets, inserting a value that corresponds to the

learned hop count. In this case, no hop count filtering can detect the attack. To learn the hop count

between two arbitrary hosts, one can use DIP (Li et al., 2018a), the same framework we employ,

or the algorithm described by Barford et al. (Eriksson et al., 2009). However, both mechanisms

require coordination and control of multiple geographically distributed servers, available only to

more complex attackers.

2.3 Conclusion

We used deep learning to learn vector representations for nodes in the Internet based on their IP

address, routing information, and a sparse hop count distance matrix. Deep learning helps uncover
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hidden features in the input data and recover structural properties of the Internet, such as node

clusters or distances between nodes. Our experiments on a large real-world data set show that our

embeddings can recover most distances, even to arbitrary hosts, with two hops absolute error, even

when the training data is sparse. Using the deep learning framework in network spoofing detection,

we found the learning-based network coordinate system (DIP) could dramatically increase the

detection coverage. For any Internet server’s received packets spoofed with any IP address, the

DIP-based spoofing detection mechanism could determine whether the packets are spoofed or not

with acceptable accuracy.
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CHAPTER 3

Extracting Latent Information from Unused Speech

Interpretations

In this chapter, we describe the second to n-th best interpretations of a speech, the unused data

in spoken language understanding (SLU) domain by introducing (1) reasons why the second to

n-th best interpretations of a speech could help understanding, (2) approaches to include those

interpretations in SLU systems and (3) downstream tasks which could benefit from incorporating

those interpretations.

In a modern SLU system, the natural language understanding (NLU) module takes interpre-

tations of a speech from the automatic speech recognition (ASR) module as the input. The NLU

module usually uses the first best interpretation of a given speech in downstream tasks such as

domain and intent classification. However, the ASR module might misrecognize some speeches

and the first best interpretation could be erroneous and noisy. Solely relying on the first best inter-

pretation could make the performance of downstream tasks non-optimal especially when the ASR

model does not perform well. To address this issue, we introduce a series of simple yet efficient

models in Li et al. (Li et al., 2020) for improving the understanding of semantics of the input

speeches by collectively exploiting the n-best speech interpretations from the ASR module.

3.1 Introduction

Currently, voice-controlled smart devices are widely used in multiple areas to fulfill various

tasks, e.g. playing music, acquiring weather information and booking tickets. The SLU system em-

ploys several modules to enable the understanding of the semantics of the input speeches. When

there is an incoming speech, the ASR module picks it up and attempts to transcribe the speech.
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An ASR model could generate multiple interpretations for most speeches, which can be ranked

by their associated confidence scores. Among the n-best hypotheses, the top-1 hypothesis is usu-

ally transformed to the NLU module for downstream tasks such as domain classification, intent

classification and named entity recognition (slot tagging). Multi-domain NLU modules are usually

designed hierarchically (Tur and De Mori, 2011). For one incoming utterance, NLU modules will

firstly classify the utterance as one of many possible domains and the further analysis on intent

classification and slot tagging will be domain-specific.

In spite of impressive development on the current SLU pipeline, the interpretation of speech

could still contain errors. Sometimes the top-1 recognition hypothesis of ASR module is ungram-

matical or implausible and far from the ground-truth transcription (Peng et al., 2013; Jyothi et al.,

2012). Among those cases, we find one interpretation exact matching with or more similar to tran-

scription can be included in the remaining hypotheses (2nd−nth).

To illustrate the value of the 2nd−nth hypotheses, we count the frequency of exact matching and

more similar (smaller edit distance compared to the 1st hypothesis) to transcription for different

positions of the n-best hypotheses list. Table 3.1 exhibits the results. For the explored dataset,

we only collect the top 5 interpretations for each utterance (n = 5). Notably, when the correct

recognition exists among the 5 best hypotheses, 50% of the time (sum of the first row’s percentages)

it occurs among the 2nd − 5th positions. Moreover, as shown by the second row in Table 3.1,

compared to the top recognition hypothesis, the other hypotheses can sometimes be more similar

to the transcription.
Table 3.1: Spoken recognition quality distribution of the n best hypotheses.

n Best Rank Position 2nd 3rd 4th 5th

Match 19% 14% 10% 7%

Prob (better than 1st best) 22% 17% 16% 15%

Over the past few years, we have observed the success of reranking the n-best hypotheses

(Peng et al., 2013; Charniak and Johnson, 2005; Morbini et al., 2012; Dikici et al., 2012; Sak

et al., 2011b, 2010, 2011a; Collins et al., 2005; Chan and Woodland, 2004) before feeding the

best interpretation to the NLU module. These approaches propose the reranking framework by

involving morphological, lexical or syntactic features (Sak et al., 2011a; Collins et al., 2005; Chan
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Table 3.2: Motivating example: comparison of ASR n-Best hypotheses with the corresponding
transcription.

Transcription 1st best 2nd best 3rd best

play muse play news play muse play mus

track on bose check on bowls check on bose track on bose

harry porter how porter how patter harry power

and Woodland, 2004), speech recognition features like confidence score (Peng et al., 2013; Morbini

et al., 2012), and other features like number of tokens, rank position (Peng et al., 2013). They are

effective to select the best from the hypotheses list and reduce the word error rate (WER) (Oba

et al., 2007) of speech recognition.

Those reranking models could benefit the first two cases in Table 3.2 when there is an utterance

matching with transcription. However, in other cases like the third row, it is hard to integrate the

fragmented information in multiple hypotheses.

This chapter proposes various methods integrating n-best hypotheses to tackle the problem.

To the best of our knowledge, this is the first study that attempts to collectively exploit the n-best

speech interpretations in the SLU system. This chapter serves as the basis of our n-best-hypotheses-

based SLU system, focusing on the methods of integration for the hypotheses. Since further im-

provements of the integration framework require considerable setup and descriptions, where jointly

optimized tasks (e.g. transcription reconstruction) trained with multiple ways (multitask (Caruana,

1997), multistage learning (Gong et al., 2013)) and more features (confidence score, rank position,

etc.) are involved, we leave those to a subsequent article.

This chapter is organized as follows. Section 3.2 introduces the Baseline, Oracle and Direct

models. Section 3.3 describes proposed ways to integrate n-best hypotheses during training. The

experimental setup and results are described in Section 3.4. Section 3.5 contains conclusions and

future work.
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3.2 Baseline, Oracle and Direct Models

3.2.1 Baseline and Oracle

The preliminary architecture is shown in Fig. 3.1. For a given transcribed utterance, it is firstly

encoded with Byte Pair Encoding (BPE) (Sennrich et al., 2015), a compression algorithm splitting

words to fundamental subword units (pairs of bytes or BPs) and reducing the embedded vocabulary

size. Then we use a BiLSTM (Schuster and Paliwal, 1997) encoder and the output state of the

BiLSTM is regarded as a vector representation for this utterance. Finally, a fully connected Feed-

forward Neural Network (FNN) followed by a softmax layer, labeled as a multilayer perceptron

(MLP) module, is used to perform the domain/intent classification task based on the vector.

Figure 3.1: Baseline pipeline for domain or intent classification.

For convenience, we simplify the whole process in Fig.3.1 as a mapping BM (Baseline Map-

ping) from the input utterance S to an estimated tag’s probability p(t̃), where p(t̃)← BM(S). The

Baseline is trained on transcription and evaluated on ASR 1st best hypothesis (S = ASR 1st best).

The Oracle is trained on transcription and evaluated on transcription (S = Transcription). We name

it Oracle simply because we assume that hypotheses are noisy versions of transcription.

3.2.2 Direct Models

Besides the Baseline and Oracle, where only ASR 1-best1 hypothesis is considered, we also

perform experiments to utilize ASR n-best hypotheses during evaluation. The models evaluating

with n-bests and a BM (pre-trained on transcription) are called Direct Models (in Fig. 3.2):

• Majority Vote. We apply the BM model on each hypothesis independently and combine the

predictions by picking the majority predicted label, i.e. Music.

1We use ASR n-best hypotheses or n-bests to denote the top n interpretations of a speech, and the 1,5-best standing
for the top 1 or 5 hypotheses.
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Figure 3.2: Direct models evaluation pipeline.

• Sort by Score. After parallel evaluation on all hypotheses, sort the prediction by the corre-

sponding confidence score and choose the one with the highest score, i.e. Video.

• Rerank (Oracle). Since the current rerank models (e.g., (Peng et al., 2013; Charniak and

Johnson, 2005; Morbini et al., 2012)) attempt to select the hypothesis most similar to tran-

scription, we propose the Rerank (Oracle), which picks the hypothesis with the smallest edit

distance to transcription (assume it is the a-th best) during evaluation and uses its corre-

sponding prediction.

3.3 Integration of N-Best Hypotheses

All the above mentioned models apply the BM trained on one interpretation (transcription).

Their abilities to take advantage of multiple interpretations are actually not trained. As a further

step, we propose multiple ways to integrate the n-best hypotheses during training. The explored

methods can be divided into two groups as shown in Fig. 3.3. Let H1,H2, ...,Hn denote all the

hypotheses from ASR and bpHk,i ∈BPs denotes the i-th pair of bytes (BP) in the kth best hypothesis.

The model parameters associated with the two possible ways both contain: embedding ebp for pairs

of bytes, BiLSTM parameters θ and MLP parameters W,b.

3.3.1 Hypothesized Text Concatenation

The basic integration method (Combined Sentence) concatenates the n-best hypothesized text.

We separate hypotheses with a special delimiter (<SEP>). We assume BPE totally produces m
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Figure 3.3: Integration of n-best hypotheses with two possible ways: 1) concatenate hypothesized
text and 2) concatenate hypothesis embedding.

BPs (delimiters are not split during encoding). Suppose the nth hypothesis has j pairs. The entire

model can be formulated as:

(h1, ...,hm)← BiLST Mθ (bpH1,1, ...,bp<sep>, ...,bpHn, j) (3.1)

p(t̃) = σ(W [h1b,hm f ]+b) (3.2)

In Eqn. 3.1, the connected hypotheses and separators are encoded via BiLSTM to a sequence of

hidden state vectors. Each hidden state vector, e.g. h1, is the concatenation of forward h1 f and

backward h1b states. The concatenation of the last state of the forward and backward LSTM forms

the output vector of BiLSTM (concatenation denoted as [, ]). Then, in Eqn. 3.2, the MLP module

defines the probability of a specific tag (domain or intent) t̃ as the normalized activation (σ ) output

after linear transformation of the output vector.

3.3.2 Hypothesis Embedding Concatenation

The concatenation of hypothesized text leverages the n-best list by transferring information

among hypotheses in an embedding framework, BiLSTM. However, since all the layers have access

to both the preceding and subsequent information, the embedding among n-bests will influence

each other, which confuses the embedding and makes the whole framework sensitive to the noise
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in hypotheses.

As the second group of integration approaches, we develop models, PoolingAvg/Max, on the

concatenation of hypothesis embedding, which isolate the embedding process among hypotheses

and summarize the features by a pooling layer. For each hypothesis (e.g., ith best in Eqn. 3.3 with j

pairs of bytes), we could get a sequence of hidden states from BiLSTM and obtain its final output

state by concatenating the first and last hidden state (hout puti in Eqn. 3.4). Then, we stack all the

output states vertically as shown in Eqn. 3.5. Note that in the real data, we will not always have a

fixed size of hypotheses list. For a list with r (< n) interpretations, we get the embedding for each

of them and pad with the embedding of the first best hypothesis until a fixed size n. When r ≥ n,

we only stack the top n embeddings. We employ hout put1 for padding to enhance the influence of

the top 1 hypothesis, which is more reliable. Finally, one unified representation could be achieved

via Pooling (Max/Avg pooling with n by 1 sliding window and stride 1) on the concatenation and

one score could be produced per possible tag for the given task.

(hHi,1, ...,hHi, j)← BiLST Mθ (bpHi,1, ...,bpHi, j) (3.3)

hout puti = [hHi,1b, hHi, j f ] (3.4)

hout puts =





hout put1

...

hout putr


r−bests


hout put1

...

 Padding with hout put1



(3.5)

hall = Pooling(hout puts) (3.6)

p(t̃) = σ(Whall +b) (3.7)
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3.4 Experiments

3.4.1 Dataset

We conduct our experiments on ∼ 8.7M annotated anonymised user utterances. They are an-

notated and derived from requests across 23 domains.

3.4.2 Performance on Entire Test Set

Table 3.3 shows the relative error reduction (RErr)2 of Baseline, Oracle and our proposed

models on the entire test set (∼ 300K utterances) for multi-class domain classification. We can see

among all the direct methods, predicting based on the hypothesis most similar to the transcription

(Rerank (Oracle)) is the best.

Table 3.3: Micro and Macro F1 score for multi-class domain classification.

Category Model RErr(%)

Baseline 0.00

Integration

PoolingAvg 14.29

PoolingMax 13.20

Combined Sentence 11.67

Direct

Sort by Score 1.85

Majority Vote 1.64

Rerank (Oracle) 3.71

Oracle 27.04

As for the other models attempting to integrate the n-bests during training, PoolingAvg gets

the highest relative improvement, 14.29%. It as well turns out that all the integration methods

outperform direct models drastically. This shows that having access to n-best hypotheses during

training is crucial for the quality of the predicted semantics.
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Table 3.4: Performance comparison for the subset (∼ 19%) where ASR first best disagrees with
transcription.

Category Model RErr(%)

Baseline 0.00

Integration

PoolingAvg 24.67

PoolingMax 26.23

Combined Sentence 19.23

Direct

Sort by Score 9.95

Majority Vote 7.59

Rerank (Oracle) 7.25

Oracle 53.02

Table 3.5: Performance comparison for the subset (∼ 81%) where ASR first best agrees with
transcription.

Category Model RErr(%)

Baseline 0.00

Integration

PoolingAvg 3.56

PoolingMax -0.38

Combined Sentence 4.50

Direct

Sort by Score -8.269

Majority Vote -3.19

Rerank (Oracle) 0.00

Oracle 0.00

3.4.3 Performance Comparison among Various Subsets

To further detect the reason for improvements, we split the test set into two parts based on

whether ASR first best agrees with transcription (ignore difference with wake words of hypothe-

ses) and evaluate separately. Comparing Table 3.4 and Table 3.5, obviously the benefits of using

multiple hypotheses are mainly gained when ASR 1st best disagrees with the transcription. When

ASR 1st best agrees with transcription, the proposed integration models can also keep the perfor-

mance. Under that condition, we can still improve a little (3.56%) because, by introducing multiple

ASR hypotheses, we could have more information and when the transcription/ASR 1st best does

2The RErr for a model m is calculated by comparing the relative difference between 100%−MicroF1m and 100%−
MicroF1Baseline.
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not appear in the training set’s transcriptions, its n-bests list may have similar hypotheses included

in the training set’s n-bests. Then, our integration model trained on n-best hypotheses as well has

clue to predict. The series of comparisons reveal that our approaches integrating the hypotheses are

robust to the ASR errors and whenever the ASR model makes mistakes, we can outperform more

significantly.

3.4.4 Improvements on Different Domains and Different Numbers of Hypotheses

Among all the 23 domains, we choose 8 popular domains for further comparisons between the

Baseline and the best model of Table 3.3, PoolingAvg. Fig. 3.4 exhibits the results. PoolingAvg

consistently improves the accuracy for all 8 domains.

In the previous experiments, the number of utilized hypotheses for each utterance during eval-

uation is five, which means we use the top 5 interpretations when the size of ASR recognition list

is not smaller than 5 and use all the interpretations otherwise. Changing the number of hypotheses

while evaluation, Fig. 3.5 shows a monotonic increase with the access to more hypotheses for the

PoolingAvg and PoolingMax (Sort by Score is shown because it is the best achievable direct model

while the Rerank (Oracle) is not realistic). The growth becomes gentle after four hypotheses are

leveraged.
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Figure 3.4: Improvements on important domains.
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Figure 3.5: The influence of different amount of hypotheses.

3.4.5 Intent Classification

Table 3.6: Intent classification for three important domains.

Domain Metric Shopping Knowledge Communication

Baseline

RErr (%)

0.0 0.0 0.0

Oracle 47.63 40.28 32.89

PoolingAvg 25.55 25.00 11.92

Since another downstream task, intent classification, is similar to domain classification, we just

show the best model in domain classification, PoolingAvg, on domain-specific intent classification

for three popular domains due to space limit. As Table 3.6 shows, the margins of using multiple

hypotheses with PoolingAvg are significant as well.

3.5 Conclusion

This chapter improves the SLU system robustness to ASR errors by integrating n-best hypothe-

ses in different ways, e.g. the aggregation of predictions from hypotheses or the concatenation of

hypothesis text or embedding. We can achieve significant classification accuracy improvements

over production-quality baselines on domain and intent classifications, 14% to 25% relative gains.

The improvement is more significant for a subset of testing data where ASR first best is different
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from transcription. We also observe that with more hypotheses utilized, the performance can be

further improved. In the future, we aim to employ additional features (e.g. confidence scores for

hypotheses or tokens) to integrate n-bests more efficiently, where we can train a function f to ob-

tain a weight for each hypothesis embedding before pooling. In addition, since more improvements

are from the disagree part, which indicates the integration model is more helpful for low-quality

hypotheses. We want to discuss, if the quality of hypotheses gets improved by a better ASR rec-

ognizing algorithm or some cleaning techniques on hypotheses (our datasets are raw recognition

results from ASR without further cleaning), the change of the benefits brought by our integration

model and how to improve the design for this condition. Another direction is using deep learning

framework to embed the word lattice (Liu et al., 2014) or confusion network (Hakkani-Tür et al.,

2006; Tur et al., 2002), which can provide a compact representation of multiple hypotheses and

more information like times, in the SLU system.
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CHAPTER 4

Efficient Training with Amplified Negative Sampling

In this chapter, we discuss the training of expensive multi-class classifiers with a large output-

class size, which are widely utilized in different domains including word embedding, graph em-

bedding and the previously introduced Internet embedding and SLU domains.

We propose a new sample-efficient training method, called amplified negative sampling, for

efficient training large output-class multi-class classifiers. Our method jumps out of the framework

of softmax approximation and directly approaches the optimum convergence point of the learning

algorithm. Our proposed method is based on our analysis of the well-known negative sampling

technique (Mikolov et al., 2013c) and is designed for (1) higher performance in the general task

and (2) lower training computational cost. Our experiments on real-world datasets demonstrate

that our proposed method leads to sampling cost savings with performance boost compared to the

standard technique.

4.1 Introduction

In this work,we provide a novel sample-efficient method for training a multi-class classifier

C : X → Y (X : input features, Y : output class labels) when the output-class size is large, say, |Y |=

50,000. Typically, when a classifier is modeled as a neural network, the final layer is implemented

as a softmax layer with one output neuron per each output class label y∈Y , making it prohibitively

expensive to train even for a reasonably large output-class size. To address this computational

challenge, a number of techniques have been proposed, such as hierarchical softmax (Morin and

Bengio, 2005), negative sampling (Mikolov et al., 2013a), adaptive softmax (Bengio, 2008) and

its variants (Rawat et al., 2019; Blanc and Rendle, 2017; Grave et al., 2017; Chen et al., 2015;
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Bai et al., 2017). Due to its simplicity and efficiency, negative sampling is one of the most popular

techniques used in practice (Mikolov et al., 2013c; Wang et al., 2017; Grover and Leskovec, 2016a;

Barkan and Koenigstein, 2016). In particular, it is widely utilized in many embedding frameworks,

such as word embedding (Mikolov et al., 2013c), graph embedding (Grover and Leskovec, 2016a;

Wang et al., 2017), and product-user embedding (Barkan and Koenigstein, 2016).

The key idea behind negative sampling is as follows: Given a training data point (xi,yi), the

standard training algorithm updates the weights of the output neurons for all y’s ∈ Y , not just for

the training label yi, making the training cost proportional to the output-class size |Y |. Negative

sampling avoids this high cost by adjusting the weights for (1) the given training label, y = yi

(“the positive sample”) and (2) just a few y’s that are randomly sampled from Y −{yi} (“negative

samples”). Clearly, taking a few negative samples reduces the training cost by several orders of

magnitudes when the output class size is large.

In general, it is reported that using a larger negative sample size leads to better downstream

performance. For example, when Mikolov used negative sampling to embed words into high-

dimensional vectors in (Mikolov et al., 2013c), he reported between 2-15% increase in downstream

task performance when he used the 15 negative samples (k = 15) compared to 5 negative samples

(k = 5). Unfortunately, the training cost of k = 15 is three times as large as that of k = 5, making its

use significantly less appealing in practice. For instance, since training on a larger corpus generally

improves the downstream performance as well, it may be the case that using a smaller k on a larger

corpus may be just as good as or even better than using a larger k on a smaller corpus. This is

the primary topic of this chapter. Is it possible to get the best of both worlds? Can we achieve a

higher-quality model trained on a larger k without paying its training cost?

In this chapter, we give our answer to this question by finding a surprisingly simple yet effective

modification to the negative sampling technique, named amplified negative sampling. Compared to

the standard negative-sampling technique, our proposed technique can be used to either (1) improve

the prediction accuracy of the trained model for the same training cost or (2) lower the training

cost for the same prediction accuracy. We demonstrate the effectiveness of our proposed technique

through extensive experiments on real-world data sets.
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In summary, we make the following contributions in this chapter: (i) We propose amplified neg-

ative sampling, a simple yet effective modification to the widely-used negative-sampling technique

that can improve its accuracy and lower its training cost based on our rigorous mathematical anal-

ysis. (ii) We compare the effectiveness of our proposed technique with standard negative sampling

by conducting an extensive set of experiments on real-world data sets. Our results show that the

effectiveness of our technique is in line with our theoretical prediction and can often be twice as

sample efficient as the standard technique.

The rest of this chapter is organized as follows. In Section 4.3, we formally describe the multi-

class classification problem and review the standard negative sampling technique. Then in Section

4.4, we propose amplified negative sampling and give the rigorous mathematical analysis of the

method. In Section 4.5, we present the results of our experiments. We review related work in

Section 4.2 and wrap up the chapter in Section 4.6.

4.2 Related Work

Softmax has been widely used in various models. In large output class classification problem,

the intractable normalizing constant of softmax function will slow down the computation effi-

ciency greatly. There are three major types of strategies have been investigated by the research

community, including sampled softmax(Bengio, 2008), hierarchical softmax(Morin and Bengio,

2005) and spherical softmax(Vincent et al., 2015). We are not aiming to approximate the softmax

function. This work makes one related yet distinct contribution: an efficient training method based

on negative sampling strategy for a large classifier. The (Ruiz et al., 2018) share a similar scope

with us which is not targeting on softmax approximation. Since the amplifying factor is distribu-

tion agnostic, this method actually can be applied to all the sampling-based softmax approximation

method(Blanc and Rendle, 2017; Rawat et al., 2019).

Sampled Softmax This category contains the method which generates a subset of negative

samples to avoid the high overhead of full negative sampling. Among this category, one class

of methods try to generate samples from the softmax distribution. An adaptive sampling method

was proposed by Bengio (Bengio, 2008) inspired by the importance sampling. Another prominent
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example is the negative sampling (Mikolov et al., 2013a) which uses a simple noisy distribution to

generate negative samples. TAPAS (Bai et al., 2017) uses a two pass scheme to generate samples

from two different size candidate pools to reduce the sample overhead. Hashing method (Bakhtiary

et al., 2015; Vijayanarasimhan et al., 2014) is also applied to either find the closest class or partial

computation. (Rawat et al., 2019). Another class of methods instead focus on the sampled loss,

including Noisy Contrastive Estimation(NCE) (Gutmann and Hyvärinen, 2010) by assuming the

partition as an extra parameter to be computed during the computation and Adversarial Contrastive

Estimation(ACE) (Bose et al., 2018) and (Schroff et al., 2015; Mussmann et al., 2017) selects the

hardest negative examples.

Hierachical Softmax Hierarchical softmax was introduced in (Goodman) by utilizing the

cluster structure to reduce the computation cost of softmax function. Bengio (Morin and Bengio,

2005) extend it into the tree structure. Due to the different inference procedure, the hierarchical

softmax need extra steps to update the tree structure and maintain its property. Various method are

proposed to stabilize this process such as class similarity, frequency binning and other optimization

techniques. Zweig did some experiments to compare various tree structures.

Spherical softmax and kernel method The spherical softmax was proposed in (Vincent et al.,

2015; De Brébisson and Vincent, 2015) which use quadratic function to replace the exponential

function and enable faster computation of the gradients. However, these method seems not quite

stable when the output label size is large. Kernel-based methods are also explored in (Blanc and

Rendle, 2017; Rawat et al., 2019). These works introduces quadratic kernel and random Fourier

features which show very promising results.

4.3 Framework

In this section, we briefly go over the general problem formulation of multi-class classifier

learning and negative sampling to introduce key notation used in this chapter.
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4.3.1 Preliminaries

We are given a dataset D = {(x1,y1),(x2,y2),...,(xn,yn)}, where xi ∈ X is an input feature and

yi ∈ Y is an output class label. We assume a discrete space of feature values xi and output labels

yi, such that xi and yi take an integer value between 1 ≤ xi ≤ m and 1 ≤ yi ≤ m. The multi-class

classifier learning problem is to find a classifier C : X→Y that returns the correct label yi given the

input feature xi: yi =C(xi). Due to noise in the dataset and the uncertainty in predicting the correct

label, this problem is often formulated as finding a conditional probability distribution P(y|x) from

the dataset D, which is interpreted as the probability that the correct output label is y given the

input feature x.

Note that this formulation encompasses not just the multi-class classifier learning problem, but

also most of the “data embedding” problems, such as word embedding (Mikolov et al., 2013a,c),

graph embedding (Grover and Leskovec, 2016b), and item embedding (Barkan and Koenigstein,

2016). For example, the well-known skip-gram model for word2vec (Mikolov et al., 2013c) falls

under this formulation by defining a context word as an input feature xi and any target word that

appears near the context word as an output label yi.

Learning the conditional probability function f (x,y) = P(y|x) from the dataset D is done by

assuming a parameterized hypothesis space fθ (x,y) = Pθ (y|x), where the hypothesis space fθ :

(x,y)→ [0,1] is a space of differentiable functions parameterized by θ ∈ Rd . Among all possible

parameters θ ∈ Rd , an optimal parameter θ ∗ is chosen to minimize the loss function L( fθ ,D),

where L( fθ ,D) captures the “loss of fθ ” or the difference between fθ and D. Multiple definitions

of the loss function L( fθ ,D) are used in practice, including L1, L2, and cross entropy:

L1 : ∑
(xi,yi)∈D

∑
y∈Y
|1(y = yi)− fθ (xi,y)| (4.1)

L2 : ∑
(xi,yi)∈D

∑
y∈Y

(1(y = yi)− fθ (xi,y))2 (4.2)

LCE :− ∑
(xi,yi)∈D

∑
y∈Y

[1(y = yi) log fθ (xi,y)

+(1−1(y = yi)) log(1− fθ (xi,y))] (4.3)
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Here, 1(y = yi) is an indicator function that takes the value 1 if y = yi and 0 otherwise. In order

to make our discussion concrete, we primarily assume L2 as our loss function in the rest of this

chapter and simply state the result of our analysis for the other loss functions.

The gradient-descent method is often utilized to identify the parameter θ ∗ that minimizes the

loss function L( fθ ,D). Given the definition of the L2 loss function, its gradient is:

∇θ L2( fθ ,D) =−2 ∑
(xi,yi)∈D

[
∑
y∈Y

(1(y = yi)− fθ (xi,y))∇θ fθ (xi,y)

]
(4.4)

Note that the inner summation of the above equation makes its computation prohibitively expen-

sive: For each training data (xi,yi) ∈ D, we take the inner sum over every output label y ∈ Y , not

just the training label yi.1 This makes the computational cost proportional to the output class size

|Y |. We refer to the training method that computes the full gradient of Equation 4.4 as full-gradient

training.

4.3.2 Negative Sampling

Negative sampling is a technique that tries to reduce the high computational cost of full-gradient

training. The idea of negative sampling was originally proposed in 2010 as Noisy Contrastive Es-

timation (NCE) (Gutmann and Hyvärinen, 2010), which was generalized for natural language

processing by Mihn in (Mnih and Teh, 2012). It was used as part of the word2vec computa-

tion (Mikolov et al., 2013a), which led to a wide adoption for general vector-embedding prob-

lems (Grover and Leskovec, 2016a; Barkan and Koenigstein, 2016; Grover and Leskovec, 2016b).

The basic idea of negative sampling can be summarized as follows: Given a training data

(xi,yi), we refer to yi as the “positive sample” and all other label y∈Y−{yi} as “negative samples.”

Full-gradient training sums up the gradients from (1) the positive sample yi and (2) all negative

samples y(6= yi). Negative sampling, instead, sums up the gradients from (1) the positive sample yi

and (2) just a few randomly-selected negative samples y ∈ Y −{yi}.

1In certain cases, this sum over every y ∈Y is implicitly added to the hypothesis space fθ (x,y). For example, when
implemented as a neural network, the final layer is typically implemented as a softmax layer with one neuron per
output label, which has the same effect as summing over ever y ∈ Y .
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More precisely, we use NEG-k(i) to represent the k randomly-chosen negative samples for the

ith training data (xi,yi). That is, NEG-k(i) is a size-k random subset of Y −{yi}. Negative sampling

then approximates the L2 loss function L2( fθ ,D) as follows:

L2( fθ ,D)

= ∑
(xi,yi)∈D

[
∑
y∈Y

(1(y = yi)− fθ (xi,y))2

]
(4.5)

= ∑
(xi,yi)∈D

(1(y = yi)− fθ (xi,y))2

∣∣∣∣∣
y=yi

+ ∑
y∈Y−{yi}

(1(y = yi)− fθ (xi,y))2

]
(4.6)

≈ ∑
(xi,yi)∈D

[
(1− fθ (xi,yi))

2 + ∑
y∈NEG-k(i)

fθ (xi,y)2

]
(4.7)

From Equation 4.5 to 4.6, the sum over y ∈ Y is expanded into the sum of y = yi and y ∈ Y −{yi}.

From Equation 4.6 to 4.7, the sum over all negative samples y ∈ Y −{yi} is approximated by

the sum over NEG-k(i). Clearly, this approximation can decrease the cost of computing the loss

function significantly when |Y | is large, which is the key reason for its efficiency. But what is the

accuracy of this approximation? Will we still be able to get the same accurate model despite this

approximation? If not, what is its exact impact? The next section will show the answers for those

issues.

4.3.3 Optimal Model of Negative Sampling and Full-gradient Model

In this section, we investigate the achievable optimal model of the NEG-k(i) and compare it

with the model training with all Y −{yi} negative samples (Full-gradient) to see how accurate the

NEG-k(i) can approximate. For a better explanation, we use #(x) to represent the number of times

that the input feature value x appears in the training data D and #(x,y) to represents the number of
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times that the feature-and-label-value pair (x,y) appears in D. More formally,

#(a) = |{(x,y) ∈ D | x = a}|

#(a,b) = |{(x,y) ∈ D | x = a and y = b}|

When we select the k negative samples for the ith training data (xi,yi), NEG-k(i), we assume that

a negative sample y ∈ Y −{yi} is sampled with replacement with probability py. Two popular

choices of the sampling probability py are (1) the uniform distribution py = c for some constant

c and (2) according to the frequency of y in D. Our results are stated with the generic symbol py

without making any explicit assumption on the sampling distribution. With this notation, we now

could show the analysis to the negative sampling.

Theorem 1 (Optimal Model of Negative Sampling). When the hypothesis space fθ has sufficient

capacity,2 the optimal model fθ∗ trained with k negative samples is the following with high proba-

bility:

• For L1 loss: fθ ∗(x,y) = 1

(
#(x,y)
#(x) >

k·py
k·py+1

)
• For L2 or cross-entropy loss: fθ ∗(x,y) =

#(x,y)
k·py[#(x)−#(x,y)]+#(x,y)

That is, for example, let θ ∗t be the parameter that minimizes the L1 loss function after t training

epochs. Then for any ε > 0,

lim
t→∞

P
(∣∣∣∣ fθ ∗t (x,y)−1

(
#(x,y)
#(x)

>
k · py

k · py +1

)∣∣∣∣< ε

)
= 1,

where 1(a > b) is an indicator function whose value is 1 if a > b and 0 otherwise.3 Similar state-

ments can be made for L2 and cross entropy loss functions.

While for the Full-gradient model training with all the negative samples instead of only k

samples, we can get a corollary as follows.

2By having sufficient capacity, we mean that the hypothesis space has an independently adjustable parameter per
every discrete (x,y) value pair following the assumption of (Goldberg and Levy, 2014).

3More precisely, 1(a > b) may take any value between 0 to 1 when a = b.

59



Corollary 1.1 (Full-Gradient Model). When the hypothesis space fθ has sufficient capacity, the

respective optimal models trained with the full-gradient method are the following:

• For L1 loss: fθ ∗(x,y) = 1

(
#(x,y)
#(x) > 1

2

)
• For L2 or cross-entropy loss: fθ ∗(x,y) =

#(x,y)
#(x)

Note that the theorem and corollary mentioned above are achievable global optimal model but

it does not guarantee that the global optimal can be always achieved in practice. In our another

work, we provide a rigorous mathematical analysis and proof to the Theorem 1, the Corollary 1.1

and more extended corollaries. For this chapter, we do not show the analysis as we focus proposing

a more efficient sample-based training method based on the Theorem 1 and the Corollary 1.1. In

next section, we will show the design of the new sample-efficient training method and the analysis

for it.

4.4 Amplified Negative Sampling

Our analysis and some related works like PMI (Levy and Goldberg, 2014) have shown that

the optimal model trained with the full-gradient method is equivalent to the maximum likelihood

estimator fθ∗(x,y) =
#(x,y)
#(x) while the model from negative sampling is not. Assuming that the

dataset D is a representative sample from the true underlying distribution P(y|x) (that is, P(y|x)≈
#(x,y)
#(x) ) we can expect that full-gradient training are likely to result in a better model than negative

sampling for a classification task.

Indeed, this is the general trend reported in the literature – not just for classification tasks

but also for embedding tasks where negative sampling is frequently used. For example, when

Mikolov used negative sampling to embed words into high-dimensional vectors in (Mikolov et al.,

2013c), he reported noticeable accuracy increase in the word-analogy-task performance when he

used k = 15 compared to k = 5.4 Unfortunately, the training cost of using k negative samples is

proportional to k, making the use of a higher k value unappealing in practice; since training on a

4For embedding tasks, the ultimate goal is to obtain vector representations of words that lead to high accuracy for
downstream tasks. For this reason, obtaining the MLE model may not necessarily be “better.” However, in a relatively
small range of k, it is generally observed that higher k leads to better downstream task performance as well.
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larger corpus generally increases the embedding quality as well, one may prefer using a smaller k

on a larger corpus than using a larger k on a smaller corpus, assuming that it is bound by the same

computational cost. This is where our study of amplified negative sampling started. Can we obtain

the high quality model of higher k for the low computational cost of lower k? Can we get the best

of the both worlds? We now explain how this can be achieved using amplified negative sampling.

Amplifying Factor. The key idea behind our amplified negative sampling comes from Theo-

rem 1. From its analytic form, we observe that the optimal model fθ∗(x,y) depends only on the

negative-sample size k, not on how the samples are obtained. Given this, can we use one negative

sample multiple times during training, pretending that it is the result from multiple random sam-

pling? More formally, what will happen if we change the loss function L( fθ ,D) of Equation 4.7

(standard negative sampling) to the following?

L2( fθ ,D)= ∑
(xi,yi)∈D

[
(1− fθ (xi,yi))

2 +β ∑
y∈NEG-k(i)

fθ (xi,y)2

]
(4.8)

Note that Equation 4.8 is different from Equation 4.7 just by a constant factor β of the second term.

We refer to β as a amplifying factor, since its intended role is to artificially “amplify” the effect of

the negative samples NEG-k(i) by making its size look larger than they really are. Surprisingly, the

following corollary shows that adding a amplifying factor produces this exact outcome.

Corollary 1.2 (Amplified Negative Sampling). When the hypothesis space fθ has sufficient capac-

ity, the respective optimal models trained with k negative samples with amplifying factor β under

the three loss functions are the following with high probability:

• For L1 loss: fθ ∗(x,y) = 1

(
#(x,y)
#(x) >

β ·k·py
β ·k·py+1

)
• For L2 loss: fθ ∗(x,y) =

#(x,y)
β ·k·py[#(x)−#(x,y)]+#(x,y)

• For cross-entropy loss:

fθ ∗(x,y) =
#(x,y)

β ·k·py[#(x)−#(x,y)]+#(x,y)

Note that the factor k in Theorem 1 is replaced with βk in Corollary 1.2. That is, the amplifying

factor β makes the optimal model trained with NEG-k effectively identical to the one from NEG-

βk! Simply by multiplying a constant β to the loss function, we get the optimal model from a

much larger sample size.
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Proof for Corollary 1.2: We assume a discrete domain of input data D, where each data point

(x,y) ∈D is an integer value pair of 1≤ x≤m and 1≤ y≤ l. Within the discrete domain, the most

general parameterization of the function fθ (x,y) is to assign an independent parameter per every

pair of values (x,y) within 1 ≤ x ≤ m and 1 ≤ y ≤ l. We use the symbol θab to represent these

parameters, i.e., fθ (a,b) = θab for 1≤ a≤m and 1≤ b≤ l, where θab can take any value in [0,1].

Given the notation, the L2 loss function of negative sampling is:

L2( fθ ,D) = ∑
(x,y)∈D

[
(1− fθ (x,y))2 + ∑

y′∈NEG-k(x,y)
fθ (x,y′)2

]
(4.9)

= ∑
(x,y)∈D

[
(1−θxy)

2 + ∑
y′∈NEG-k(x,y)

θ
2
xy′

]
(4.10)

Now, the L2 loss function for amplified negative sampling is

L2( fθ ,D) = ∑
(x,y)∈D

[
(1− fθ (x,y))2 +β ∑

y′∈NEG-k(x,y)
fθ (x,y′)2

]
(4.11)

Since the only difference from standard negative sampling ( 4.9) is the coefficient β of the

second summation, we can show that

∂L2( fθ ,D)
∂θab

P−→ #(a,b)(−2)(1−θab)+ [#(a)−#(a,b)]β k pb 2θab
(4.12)

as t→ ∞. By setting ∂L2
∂θab

= 0, we can show that

θ ∗t,ab
P−→ #(a,b)

β k pb[#(a)−#(a,b)]+#(a,b) as t→ ∞. (4.13)

The proof for other loss functions can be done similarly.

Computational Cost of Amplified Negative Sampling. Note that both the standard negative

sampling and our amplified negative sampling are sampling methods that are independent of the

particular choice of the training method. They simply provide a straightforward recipe for selecting

a few negative samples and incorporating them in the computation of the loss function. Therefore,

62



both the standard and the amplified versions use the same training algorithm,5 making their al-

gorithmic and computational complexity identical. That is, as long as they use the same negative

sample set NEG-k, their computational costs are (almost) identical.6 At the same time, our math-

ematical analysis indicates that even though the same negative samples are used, the amplified

version is likely to produce a significantly more accurate model than the standard version by the

factor β . In the later experiment section, we evaluate the validity of this analytical result both in

terms of the computational cost and the model accuracy through an extensive set of experiments

on real-world datasets.

Amplifying Factor vs Learning Rate. Conceptually, our amplifying factor may look similar to

the learning rate used for the gradient-descent algorithm; at epoch t, the gradient-descent algorithm

updates the parameter θ from the current value θt to the new value θt+1 via the the following

equation:

θt+1 = θt +α ·∇θ L( fθ ,D), (4.14)

where α , the learning rate, controls how quickly and reliably the updates converge. As we can

see from Equation 4.8, our amplifying factor β is also multiplied to (a part of) the loss function,

so it indeed plays a role very similar to the learning rate. The only difference is that α is multi-

plied to the entire loss function L( fθ ,D) while β is multiplied to its negative-sample terms only

∑y∈NEG-k(i) fθ (xi,y)2. Interestingly, our analysis and later experiments show that this seemingly

minor change leads to an enormous difference in terms of the final trained model.

Optimal Amplifying Factor and Model Quality. The similarity of the learning rate and the

amplifying factor raises another interesting question. How big a amplifying factor can we safely

use? It is well known that a higher learning rate generally leads to a faster convergence rate initially,

but it makes the training process less stable at a later stage. Will using a large amplifying factor

lead to similar behaviour? Or will it always be better to use a larger amplifying factor? Our analysis

indicates that the optimal value of β might be β = 1
kpy

since this value leads to the MLE model.

The results from our experiments do not provide a single answer to this question. In the ex-

5Perhaps, the most popular choice is the stochastic-gradient descent algorithm

6The amplified version has the overhead of multiplying β compared to the standard version, but this cost negligible
in practice.
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periments conducted with our own code, where we measure the model accuracy in terms of the

difference of the trained model from MLE, we observe that using a large amplifying factor always

produces a model closer to MLE. It also does not introduce much instability to the training pro-

cess all the way from 1 through β = 1
kpy

. In the experiments conducted with existing codes for

other downstream tasks, we observe that using a amplifying factor up to β = 3 reduces the training

time and improves downstream-task performance, but starting from β > 3, we sometimes observe

reduced downstream-task performance. This may be due to the fact that downstream-tasks perfor-

mance does not necessarily correlate with how well our model estimates the conditional probability

P(y|x). Given these two results, we find using a reasonably small amplifying factor, say β = 3, may

be a safe choice in general; it reduces training time significantly and improves downstream-task

performance.

In our experiments, we also explored a few other directions, including (1) decaying the am-

plifying factor over epochs similarly to decaying the learning rate, (2) dynamically setting the

amplifying factor based on the “loss value” of the negative sample similarly to the idea of im-

portance sampling and (3) early stopping, where we stop using the amplifying factor after a few

epochs. We find that these changes do not introduce a meaningful difference to the results.

4.5 Experiments

The primary goal of this section is to experimentally investigate the following two issues: (1)

Does the result of our analysis hold in practice? We want to examine how well our theoretical

results match with experiments. We also want to experimentally explore a few questions raised in

this chapter, including the choice of the optimal amplifying factor and the difference between the

learning rate and the amplifying factor. (2) Does amplified negative sampling help other down-

stream tasks as well? The performance of other downstream tasks may not necessarily depend on

how accurately the trained model captures the conditional probability P(y|x), so we want to ex-

perimentally check whether amplified negative sampling has positive effects on other downstream

tasks or not.

In the Section (Model Accuracy and Training Efficiency) 4.5.1, we explore the first issue by
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measuring the difference between the maximum likelihood estimator (MLE) P̃(y|x) = #(x,y)
#(x) and

the models trained with (a) full-gradient training (b) negative sampling and (c) amplified negative

sampling. The results of our experiments show that the conclusions of our analysis hold in practice

to a surprising degree of accuracy. They also show that the learning rate and the amplifying factor

have vastly different effects on the trained model. In the subsection (Experiments on Other Down-

stream Tasks) 4.5.2, we investigate the second issue by running experiments on downstream tasks:

word-analogy tasks (Mikolov et al., 2013a). Here, we observe that amplified negative sampling

leads to improved performance on downstream tasks as well.

In summary, our experimental results strongly indicate that there really is not much downside

to using amplified negative sampling; as long as we use a reasonably small amplifying factor, say

β = 3, amplified negative sampling leads to lower training time and higher model accuracy.

4.5.1 Model Accuracy and Training Efficiency

Experimental Settings. In this subsection, we experimentally compare four training algo-

rithms, full-gradient training (FullGrad), 5 negative samples (Neg5), 5 negative samples with the

amplifying factor 3 (Neg5-Amplify3), and 15 negative samples (Neg15), under three different loss

functions, L1, L2, and cross entropy. For the choice of the hypothesis space fθ (x,y) and the training

set, we use a setting similar to (Mikolov et al., 2013a). That is, as our hypothesis space we use the

skip-gram model of (Mikolov et al., 2013a) with a 100-dimensional hidden layer. As our dataset,

we use a subset of Text8 corpus from (Mikolov et al., 2013a) by extracting the first 75,000 words

and applying the same min count filter of 5 in (Mikolov et al., 2013a).7 We use the stochastic-

gradient descent (SGD) with the batch size of 500 as the training algorithm. All our experiments

use the window size 3 and the learning rate 0.025 unless noted otherwise. All other parameter

settings are the same as in (Mikolov et al., 2013a). All results reported are the average of three

independent runs with identical settings. All codes were implemented using PyTorch v1.0.1.

Model Accuracy and Convergence Rate. In Figure 4.1, we compare the model accuracy

7Using a subset of Text8 here is due to the high training cost of FullGrad and our desire to keep the training time
at a manageable level. In our next experiments on other downstream tasks, we run report our results from experiments
on much larger datasets.
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and convergence rate when the model is trained with the four algorithms (FullGrad, Neg5, Neg5-

Amplify3, Neg15) under the L2 loss function.8 In the graph, the horizontal axis corresponds to

the stochastic-gradient-descent training batch steps (with roughly 70 steps corresponding to one

training epoch) and the vertical axis corresponds to the average absolute difference between the

trained model fθ∗(x,y) and MLE P̃(y|x) = #(x,y)
#(x) , i.e., ∑(x,y)∈D

1
|D|

∣∣∣ fθ∗(x,y)− #(x,y)
#(x)

∣∣∣.
From the graph, a few things are clear: (1) Full-gradient training converges to MLE. Even at

epoch 1 (step 70), the mean absolute difference of FullGrad is close to zero, indicating that it

converged to MLE. (2) The amplifying factor β effectively “increases” the negative sample size

by the factor β in terms of model accuracy. The mean absolute difference of Neg5-Amplify3 and

Neg15 are the same at every training step — they overlap so closely and it is difficult to tell them

apart in the graph — indicating that they both converge to the same model at the same rate. This

result is what our theoretical analysis predicts: (k = 15,β = 1) leads to the same optimal model

as (k = 5,β = 3). (3) A model trained on larger k approximates MLE better. The mean absolute

difference of Neg15 is significantly smaller than that of Neg5.

Training Time and Computational Cost. In Figure 4.2, we compare the training time of the

four algorithms. The horizontal axis corresponds to training epochs and the vertical axis corre-

8While we performed experiments under all three loss functions, we report the results only from L2 here. The
conclusions from other loss functions are essentially the same.
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sponds to training time, which roughly captures the computational cost of each algorithm. The

vertical axis is logarithmic; since the training time of FullGrad is two orders of magnitude larger

than others, its result is not visible in the same graph otherwise. From the graph, we again observe

what is predicted by our analysis. The training time of Neg5-Amplify3 is practically the same

as that of Neg5. That is, Neg5-Amplify3 works almost like Neg5 in terms of its training time and

computational cost, but it works almost like Neg15 in terms of its model accuracy and convergence

rate! Amplified negative sampling indeed gives the best of both worlds.

Learning Rate vs Amplifying Factor. In Figure 4.3, we compare the effect of using different

learning rates and amplifying factors. The graph is from training the model using Neg15 under

L1 loss. The curve labeled as S LR is obtained by multiplying the default learning rate of 0.025

by a factor between 10 and 1,000. The curve labeled as S Amplify is obtained by including the

amplifying factor β between 10 and 1,000. The vertical axis is again in the logarithmic scale

due to the high difference between the two curves and represents the model accuracy (the mean

absolute difference from MLE) at the given learning rate/amplifying factor. From the graph, we see

that changing the learning rate and changing the amplifying factor lead to vastly different results.

As we increase the learning rate, the trained model diverges further away from MLE. When we

increase the amplifying factor, however, the trained model stays close to MLE all the way through

β = 100. Only after β > 100, the model starts to diverge and becomes unstable. This result is

consistent with our analysis; according to Corollary 1.2, amplifying converges to MLE at β ≈ 140

under the current setting,9 so its divergence beyond β > 140 is expected.

4.5.2 Experiments on Other Downstream Tasks

In the previous set of experiments, we investigated the effect of amplified negative sampling on

the trained model in terms of its difference from MLE. In the next set of experiments, we investigate

its effect on downstream tasks: word-analogy tasks. In all our experiments, we compare the results

from Neg5, Neg5-Amplify3, and Neg15 at training epoch 3.

9Amplified negative sampling converges to MLE when βkpy = 1. Given k = 15 and the uniform probability py ≈
1/2000 for this experiment, βkpy = 1 at β ≈ 140.
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Word2vec: Word analogy. This test is conducted with the CBOW model trained on the Text8

corpus (Mikolov et al., 2013c) using the code downloaded from (Word2vec, 2019) after we add

amplifying code. The performance is evaluated by the 14 word-analogy tasks in (Mikolov et al.,

2013c). We use the default parameter settings of the downloaded code.

In Table 4.1 we show the accuracy of Neg5, Neg5-Amplify3, and Neg15 for the first 5 word-

analogy semantic tasks of (Mikolov et al., 2013c). From the results, the trend is clear: the per-

formance of Neg5-Amplify3 is higher than Neg5 and is close to Neg15. In Table 4.2, we show

the training times of Word2vec. We can find the training time of Neg5-Amplify is close to Neg5

and is significantly smaller than that of Neg15. In the cases of Word2vec, the difference is by a

factor 2. From our experiments, we observe the general trend: The downstream-task performance

of Neg5-Amplify3 is close to Neg15 while its training cost is close to Neg5.

Table 4.1: Word-analogy semantic-task top-1 accuracy.

Task Name Neg5 Neg5-Amplify3 Neg15

capital-common-countries 38.14 43.02 47.43

capital-world 24.66 29.34 32.14

city-in-state 15.17 17.29 14.93

currency 15.72 22.26 22.21

family 56.86 60.30 64.27

Table 4.2: Training time (seconds).

Model Neg5 Neg5-Amplify3 Neg15

Word2vec 17.35 17.37 36.93
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4.6 Conclusion

In this chapter, we proposed amplified negative sampling, a new sample-efficient method for

training multi-class classifiers with a large output-class size. Our proposed method was based on

our rigorous mathematical analysis. Our extensive set of experiments demonstrated that amplified

negative sampling gives us the best of both worlds: It leads to the higher-accuracy model of a larger

sample size without paying its high computational cost. Given its simplicity, and experimental ef-

fectiveness, we believe our proposed method will be an important extension to the widely-popular

technique that results in meaningful improvements in practice.
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CHAPTER 5

Expressive Library for Recursive Queries: LLib and LFrame

In this chapter, we focus on designing a succinct expressing interface to facilitate complex data

analysis, especially the recursive algorithms, which are commonly utilized to develop applications

in various domains including graph data analytics, language models, etc.

Due to the ever-increasing volume of data, there is an urgent need to provide expressive and ef-

ficient tools to support Big-Data analytics. The declarative logical language BigDatalog has proven

very effective at expressing concisely graph, machine learning, and knowledge discovery applica-

tions via recursive queries that execute with superior performance and scalability on Apache Spark.

To help data scientists benefit from these advances in full synergy with Spark’s rich libraries and

programming environs, we develop the Spark DataFrame extension LFrame and the Logical Algo-

rithm Library LLib.

LLib provides a wide range of Datalog algorithms written using BigDatalog on Apache Spark.

LLib encapsulates complex logic-based algorithms into high-level APIs, which simplify the de-

velopment and provide a unified interface akin to the one of Spark MLlib. As a fully compatible

DataFrame-based API, LLib enables the integrated utilization of LLib applications and new Dat-

alog queries with existing Spark functions, such as those provided by MLlib and Spark SQL.

To facilitate the development of new applications not contained in LLib, our system provides an

LFrame-based programming interface to Datalog. LFrame objects convert directly to and from

DataFrame objects to support both relational operations and logic-based operations. In addition,

both LLib and LFrame support interoperability with multiple programming languages, whereby

users can now express succinctly powerful recursive queries in Scala, Java, or Python. As a result,

BigDatalog becomes a very attractive software development tool in the Apache Spak ecosystem.

This chapter utilizes several running examples to demonstrate the power and versatility of LLib
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and LFrame.

5.1 Introduction

In the era of big data, the demand for flexible analytics on large-scale data has driven re-

searchers to build various general-purpose user-friendly platforms like Apache Spark (Zaharia

et al., 2012), AsterixDB (Alsubaiee et al., 2014), Pig (Olston et al., 2008), Hive (Thusoo et al.,

2009), etc. Among these systems, Spark is getting more and more attractive due to its efficient

in-memory computation and abundant APIs (i.e. Spark SQL, GraphX, MLlib and SparkR) for

sophisticated analytics to extract rich information encapsulated in the data.

However, for iterative applications like identifying transitive closures or connected components

of millions of vertexes, there are no dedicated designs for optimization among recursions in Spark.

For more sophisticated recursive analytics, the programming needs deep understanding and exten-

sive knowledge of the platform. To solve these issues, researchers have attempted to implement

Datalog (Consens and Mendelzon, 1990) systems.

Datalog, a well known logical programming language with superior expressive power on re-

cursive algorithms, consists of a set of rules and facts. The DeALS project of UCLA (Yang et al.)

implements a unified Datalog programming language and provides a parallel evaluation on multi-

core machines. For the distributed logical computing on clusters, the BigDatalog (Shkapsky et al.,

2016) system is further developed on Spark. While considering the SQL programming customs,

the Recursive-aggregate-SQL (RaSQL) (Gu et al., 2019) is proposed as a simple extension of Spark

SQL for Datalog.

This torrent of Datalog platforms, however, underscores the needs to make Datalog as an inte-

gral part of data processing pipeline and provide high-level APIs to simplify the development. In

those systems, one Datalog application run independently as one job with input rules and datasets.

It requires much programming for users to convert the output of one Datalog program to the re-

quired input of another Datalog program. Similarly, the collaboration with other libraries like ma-

chine learning (MLlib), graph computation (GraphX) in Spark is inconvenient. Also, it is necessary

for users to learn about Datalog or get used to a SQL extension (RaSQL) when they actually want
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a simple function wrapping all the logic of a common Datalog algorithm.

In this chapter, we focus on making the Datalog module as the first-class citizen in Spark, that

can easily collaborate with Spark libraries. We proposes LLib, wrapping all key Datalog algorithms

with a unified interface for adding new ones, and LFrame, the DataFrame extension supporting the

logical operations. LLib and LFrame are implemented on BigDatalog and Spark. They can support

multiple programming languages, such as Python, Scala and Java. The wide audience of Spark

community should be familiar with the interface of LLib (like Spark MLlib) and LFrame (like

Spark DataFrame). With LFrame and LLib, data scientists could have access to the data manip-

ulated in Datalog applications and continuously do subsequent processing like machine learning

algorithm within one job. This ecosystem makes the end-to-end developing Datalog algorithms

with a high-level API (LLib) possible. For a user-defined recursive application outside LLib, with

LFrame, it can be as friendly as Pandas (McKinney et al.)/Spark DataFrame.

Our contributions can be concluded as following:

• Usability. Both LLib and LFrame are tailored to data scientists and support multiple pro-

gramming languages including Python, Scala and Java. In addition, LLib provides functions

for a wide range of typical Datalog algorithms and makes it possible for the end-to-end

recursive development with high-level APIs.

• Interoperability. LLib is the DataFrame-based API, which takes the DataFrames as the input

and generates also DataFrames. This facilitates the collaborations between LLib applications

and Spark MLlib, Spark SQL or GraphX. As for LFrame, we provide the functions for flex-

ible conversions between the DataFrame and LFrame, which also smooth the collaborations

between LFrame-basesd algorithms and Spark libraries. Both LLib and LFrame make the

Datalog module as an integral part of data processing pipeline.

• Extendability and flexibility. In LLib, there is a template and several utility functions to help

contributing extra Datalog algorithms. We also allow user-defined Datalog function on LLib

to wrap any possible Datalog algorithm. LFrame data structure is associated with various

general Datalog operations to develop any recursive algorithm.
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The chapter is organized as follows. Section 5.2 reviews the basics about the Datalog language

and related platforms including Apache Spark, BigDatalog and RaSQL. Section 5.3 describes the

working paradigm of LLib, user-defined Datalog functions and the collaborations with other Spark

libraries. Section 5.4 presents the conversion between LFrame and DataFrame, the basic unary

and N-ary operations supported by LFrame, and some examples by LFrame. Section 5.5 demon-

strates our design to support multi-language programming. Section 5.6 discusses the performance

overhead. Section 5.7 draws conclusion and maps out plans for future work.

5.2 Preliminaries

5.2.1 Datalog

A Datalog application is comprised of a finite set of rules. Each rule r is formed as H ←

l1, l2, ...ln, where H is the head of r, l1..n (the body) are literals and the← means implication. The

literals (l1..n) are positive or negated atoms. One atom (H or li) can be formed as p(t1, .., tk), where

p is a predicate and (t1, .., tk) terms can be variables, constants or functions. So, the r is a rule to

infer H. However, if r does not have the body l1, l2, ...ln, it becomes the fact, which corresponds

to a tuple in a relation . The comma separating literals means the logical conjunction (AND). To

evaluate a Datalog application, we need a query indicating which predicate to evaluate.

Next, we will illustrate a classic example in Datalog, single source shortest path (SSSP), with

more terms covered below. The SSSP is to calculate the length of shortest paths from one source

vertex to all other vertices in a graph with weighted edges.

Query 1 - Single source shortest path (SSSP).
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1 : database({ warc(A : integer, B : integer, Cost : integer) }).

2 : sp(B, mmin <C >)← B = {startvertex}, C = 0.

3 : sp(B2, mmin <C >)← sp(B1,C1), warc(B1,B2,C2), C =C1+C2.

4 : result(B, min <C >)← sp(B,C).

5 : query result(T,C).

As shown in Query 1 line 1, the input relation (base relation) is warc with the schema (A:integer,

B:integer, Cost:integer). One fact of this relation can be warc(1, 2, 5), which shows the cost

from the vertex 1 to 2 is 5. The database is a keyword specifying the base relation. In the first

rule (line 2), it initializes the shortest distance from the source vertex to itself as 0, where the

“{startvetex}” can allow user to input the source vertex ID. The second rule (line 3) recursively

produces all the minimum distances for all possible paths from source node to another node. The

monotonic aggregate (Zaniolo et al., 2019; Das et al., 2019), mmin is utilized, which allows the

aggregation inside the recursion when set containment is satisfied. The mmin will get a new lower

value with a larger set of possible paths. And a normal aggregate min is finally exploited (line 4)

to obtain the minimum cost path. The fifth line denotes the predicate (relation), result(T,C) will

be evaluated and become the output of the application.

5.2.2 Related Platforms: Apache Spark, BigDatalog and RaSQL

Apache Spark. Apache Spark is a DISC system with various modules like Spark SQL (Arm-

brust et al., 2015b), MLlib (Meng et al., 2016) and GraphX (Gonzalez et al., 2014) to support

analytics on structured data, machine learning algorithms and graph computation algorithms re-

spectively. All the Spark applications are eventually represented by a series of transformations and

actions on Resilient Distributed Datasets (RDDs) (Dean and Ghemawat, 2004), the main abstrac-

tion provided by Spark. The operators like groupBy and filter are lazily evaluated until an output

action like count trigger evaluations on RDDs. In this way, before execution, the Spark Optimizer

can design a better physical plan by avoiding some duplicate computation or pipelining opera-
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tions. RDDs in Spark are actually Python or Java objects stored in memory and can be processed

in parallel. The RDD is fault-tolerant due to its lineage. The lineage graph of RDDs records the

transformations applied to them, which facilitates the tracking and debugging through data trans-

formations (Gulzar et al., 2017; Interlandi et al., 2018). The Spark has attracted wide audiences

from database community due to its high usability (Armbrust et al., 2015a) and continuously opti-

mized query planner (Li et al., 2018c).

BigDatalog. With the popularity of Spark and the benefits for recursive query evaluation and

optimization brought by Datalog, the new requirements have been re-emerged to support the Dat-

alog programming on Spark. As far as we can find, BigDatalog (Shkapsky et al., 2016) is the first

platform implementing DeALS, a Datalog platform, on Spark. It supports the execution of recur-

sive operations on multi-core machines and clusters. BigDatalog also proposes optimizations on

physical planning for recursive queries to obtain performance improvement.

RaSQL. BigDatalog enables development of Datalog on Spark, but users should get used to

the Datalog syntax. With the continuing popularity of SQL, it is beneficial to design a language

similar to SQL for Datalog queries. RaSQL (Gu et al., 2019) proposes a new language following

and extending SQL standards, and utilizes some novel optimizations on fixpoint operators for the

Datalog platform built on Apache Spark.

5.2.3 Spark MLlib and DataFrame

MLlib is the machine learning library of Spark. It consists of classification and regression

algorithms. Users can flexibly build a pipeline of a sequence of algorithms to process data with

the abundant libraries in MLlib. The pipeline could span across data cleaning, model initialization,

training, prediction, and evaluation.

DataFrame is a popular facility for data scientists and has been supported by various trendy

data analytics platforms and languages such as Spark, Pandas (McKinney et al., 2010), R, etc. It is

utilized as a data structure and the data stored there is organized in rows and columns like a table in

Excel. This increases the visibility of development for non-expert users. The supported operations

for the DataFrame are similar to the relational algebra, but are exposed as pre-defined functions
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like libraries of Java, Python, etc.

5.3 LLib

In this section, we discuss LLib, which works in a similar way as MLlib to develop Datalog

applications. It does not require users to be familiar with logical programming. LLib contains a

wide spectrum of recursive applications including graph algorithms (Transitive Closure, i.e. TC),

temporal database queries (Interval Coalesce), financial applications (MLM), machine learning

algorithms (Logistic Regression), etc. The data analysts could easily take one Datalog algorithm

as one step within their complex data processing process, which is more flexible than the previous

Datalog programming interfaces.

5.3.1 Working Paradigms Comparison: LLib, BigDatalog and RaSQL

LLib grants the access to the processed data to users through the Spark DataFrame, which

greatly reduces the required boilerplate code and improves the readability. In this part, we would

like to firstly provide a high level picture of the differences while working on two popular Spark-

based distributed Datalog platforms (BigDatalog and RaSQL) and our LLib.

As shown in Figure 5.1 (a) about Transitive Closure application, the previous Datalog programs

are made up of (1) source data file(s), which should follow a determined format, (2) a query file

following RaSQL or BigDatalog syntax, (3) a standardized program (script) to execute the query

on the source data, and (4) a set of arguments to guide the execution. This is a general-purpose

design for all potential applications that can be expressed by a combination of rules running on

several data files, but it causes a troublesome programming considering the following aspects.

• Learning new language. Users are required to learn the syntax of Datalog or an extension of

SQL while they actually want to use a well-wrapped Datalog function.

• Data preparation. For each application on the previous platforms, the required data need to

follow a determined format. It costs extra time for the data preparation.
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(a) The composition of TC application on custom Datalog platforms.

(b) LLib paradigm

Figure 5.1: Working paradigm comparison between existing Spark-Based Datalog platforms and
LLib.

• Isolation from other applications. The development mode of the original logical program-

ming works in a way like a black box. Users provide data and rules to standardize program

and get results. They only have access to the generated file and can hardly involve prepro-

cessing or subsequent processing.

To tackle those issues, we develop the DataFrame-core LLib as shown in Figure 5.1 (b), where

Datalog applications are seamlessly integrated into the data processing pipeline. Within an LLib-

based application, there can be many steps made up of the permutations of regular DataFrame

operations, MLlib’s ML algorithms and LLib’s Datalog algorithms. Users do not need to manually

program to connect s1...sn by preparing Datalog input data or persisting and loading Datalog exe-

cution results for subsequent processing. Later in next subsection, we will describe the underlying

architecture and working pipeline of LLib through a running example, Transitive Closure.
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5.3.2 LLib Processing Pipeline and Underlying Architecture

5.3.2.1 Working Session and Acquiring Data

In LLib, the first step is to construct a working environment for the Datalog queries and li-

braries. We respect the customs of building Spark Session and exploit the similar way as following

(with Transitive Closure, i.e. TC as a running example):

Example 1.1 - Transitive closure with LLib: Working session.

session = LLibSession.builder().appName(“TC”).master(“local[∗]”).getOrCreate()

schema = StructType(List(StructField(“Point1”, IntegerType, true),

StructField(“Point2”, IntegerType, true)))

d f = session.read. f ormat(“csv”).option(“header”,“ f alse”).schema(schema).load(“arc.csv”)

LLibSession synthesizes the Spark environment and the special designs for logical programming.

Within the same session, users are free to utilize existing Spark libraries like data loading functions

to create a DataFrame df (line 4) or our Datalog libraries i.e. LLib or LFrame.

5.3.2.2 Initializing an Executable Object of LLib and Mapping the Schema

Initialization: In LLib, the pipeline of the data processing for a typical application is wrapped

to an executable object, which users can initialize and set parameters of. In Example 1.2, we ini-

tialize a transitive closure object tc with the TC library, which is pre-defined and included in the

LLib. Then, we can set the property by built-in functions.
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Example 1.2 - Transitive closure with LLib: Initializing TC.

import edu.ucla.cs.wis.bigdatalog.spark.LLib.TC

val tc = new TC()

tc.setDirection(FromCol = ”Node1”,ToCol = ”Node2”)

Query 2 - Transitive closure.

database(arc(From : integer,To : integer)).

tc(From,To)← arc(From,To).

tc(From,To)← tc(From,T mp),arc(T mp,To).

query tc(From,To).

Schema Mapping: Among the built-in functions, all the libraries are required to contain one

function setDirection for schema mapping. This is necessary because we want a more general de-

sign to accept DataFrames with various schemas as the input. One attribute may have different

names in different DataFrames. With schema mapping, we could know the corresponding rela-

tionship between input DataFrame’s attributes and the attributes in our library’s computing logic.

For example, Query 2 is a set of Datalog rules used by the transitive closure of our library. We

have two attributes, From and To, in the arc table. The two attributes can be called differently like

(Node1, Node2) as shown in the df initialized in Example 1.1. The mapping between (From, To)

and (Node1, Node2) can be provided by the setDirection function as shown in the third line of

Example 1.2. If there is a long mapping list for attributes, we can store the mapping information

within a hash table.

Schema Recovering: While processing the data with our library, we need the mapping infor-

mation. But after processing, the output data’s format should be consistent. There is one mechanism
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to rollback the schema. At the beginning of data processing, we store the schema of the input data.

Then, in the end, we could use the pre-stored schema to recover.

5.3.2.3 Execution and Persistence

With the executable object and imported data, the execution and persistence can be merely

a one-line execution with a pre-defined function (run, genDF or genRDD) in LLib. These three

functions can support basic requirements to operate data and store the result to a variable or a file.

As shown in Example 1.3, the function run is to run the logical programming and persist the result

directly to the target address. If users would like to do subsequent processing, it can output the data

into a DataFrame or RDD as shown in second and third line of the Example 1.3.

Example 1.3 - Transitive closure with LLib: Execution and persistence.

tc.run(d f ,out put = ”File”,session)

val d f New = tc.genDF(d f ,session)

val rddNew = tc.genRDD(d f ,session)

These three functions are implemented for each library of LLib. They expect the input data (df)

and the environment (session) as inputs. The session information is needed for during execution,

we want the program running in an environment with ability to support logical programming.

5.3.2.4 Multiple Data Sources

The previous TC example operates on only one relation, however there are many applications

requiring more than one relation, which brings changes to the pipeline. We illustrate the Multi

Level Market (MLM) Bonus as a typical Datalog application (MLM, 2008) acquiring more than

one dataset. The application is to calculate the bonus for members of a hierarchical structural Multi

Level Marketing organization. In the organization, new members are recruited by and get products

from old members (sponsors). One member’s bonus is based on his own sales and a proportion
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of the sales from the people directly or indirectly recruited by him. The scale of the proportion is

user-defined.

There are two relations in MLM Bonus, including the sponsor and sales. The sponsor relation

describes the recruiting relationship among members, while the sales relation records the profits

for each member. In Datalog syntax, the base case should be calculating the member’s bonus by

the sales table. And the recursive rule is to calculate the bonus based on the basic profits and the

profits derived from the downstream members.

With the help of LLib, users could implement MLM Bonus by a pre-defined class in LLib

ignoring the complex logic. The program can be as easy as follows.

Example 2 - LLib with more than one input relation: Multi Level Market Bonus.

val MLM = new MLM()

MLM.setDirection(MCol = ”Member”,Pro f itCol = ”Bonus”)

MLM.setSecDirection(MCol = ”Member1”,M2Col = ”Member2”)

MLM.run(Array(d f Sales,d f Sponsor),out put = ”resMLM”,session)

Suppose we already have the two relations stored in dfSales and dfSponsor. In the first line, we

build an executable object of MLM. Then, we set the schema mappings for two relations in the

next two lines. To operate the data and persist to resMLM file, we use the forth line with the

run function. The run function of previous TC application only expects one relation as the input.

While dealing with multiple relations, we aggregate the relations in an array as the input. The

schema mapping is implemented by adding a new function for the second relation. However, it is

possible to maintain the schema mapping for each relation in a hash function (hr) and use another

hash function with the relation’s name as the key and the schema mapping information (the hash

function, hr) as the value.
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5.3.3 LLib Categories and an Example of Machine Learning with LLib

The supported common Datalog algorithms and utilities in LLib can be categorized into five

groups including the graph algorithms (Connected Components, Count Paths, etc.), machine learn-

ing algorithms (Linear Regression, Logistic Regression, etc.), financial applications (MLM Bonus,

Bill of Materials, etc.), temporal database queries (like Interval Coalesce) and other applications.

Although the machine learning algorithms already exist in Spark MLlib, we also provide the Dat-

alog version in LLib because in our another work, it has been proven that the Datalog implemen-

tation can bring performance boost.

The working pipelines of all those libraries are unified and similar to the previous introduced

TC and MLM example in Section 5.3.2. Here, we describe one machine learning example (Exam-

ple 3) to train a linear regression model with LLib as following. In this example, the training data is

stored in the verticalized format (a format often used for sparse data processing), whose schema is

(item, column, value, prediction). The item represents the training instance. The column and value

record each item’s feature ID and feature value, while the prediction is the estimated value. To train

on the loaded DataFrame (dfTrain), we could simply establish a training object lr, which wraps all

the computation rules for a Datalog version of linear regression. We can also set the properties

like learning rate or initial values of parameters before training. And the trained model (parameters

values) could be either stored to a file (lr.run) or to a DataFrame (lr.genDF) for further usage. It can

be observed that the LLib’s machine learning library usage is as succinct as the usage of machine

learning libraries in Spark MLlib.
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Example 3 - Training of Linear Regression model with LLib.

// Import data.

var vs = StructType(List(StructField(”item”, IntegerType, true),

StructField(”column”, IntegerType, true),StructField(”value”,DoubleType, true),

StructField(”prediction”, IntegerType, true)))

var d f Train = spark.read. f ormat(”csv”).schema(vs).load(”dataV ”)

// Training on the input relation d f .

import edu.ucla.cs.wis.bigdatalog.spark.LLib.LL LinearRegression

val lr = new LL LinearRegression().setMaxIter(10).setLearningRate(lr = 0.01).setInitial(0)

lr.run(d f Train,out put = ”model.out”,session)

5.3.4 Extension of LLib

Besides a wide range of custom recursive algorithms, LLib also provides a unified template,

TempLib, to follow when followers contribute new algorithms. TempLib contains abundant utility

functions to facilitate development and some requirements to follow. With the template, the imple-

mentation becomes quite uncomplicated. As long as users have the Datalog rules for the algorithm,

they can add their own algorithm by doing minor changes to the existing codes for algorithms like

TC.

5.3.5 Collaboration with Other Applications

The input and output relations in LLib can be both DataFrames, which makes it possible to add

a preprocessing algorithm which generates the input DataFrames or a subsequent processing algo-
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rithm which takes the DataFrame generated from LLib. LLib allows users to exploit the Datalog

application as a simple step at any place of their processing pipelines. In this section, we illus-

trate with a concrete example to show the collaborations between LLib and other applications like

Spark MLlib or Spark DataFrame Operations. The showed LLib application is the MLM Bonus

application mentioned previously, and we want to use the linear regression library from MLlib to

get the relation between the bonus and the working days for a member. To save space, we do not

show the process to build the session (LLibSession), and load input relations (dfSales, dfSponsor,

dfWorkTime). The dfWorkTime stores the working days for each member. With MLM class from

LLib, we could get the dfRes storing the bonus for each member. Joining the result relation with

the dfWorkTime on the member column will generate a new relation with columns of the day

and bonus. The Linear Regression function from MLlib could train on the result DataFrame. In

this example, we can find the LLib is able to collaborate fluently with other operations in Spark

like MLlib (LinearRegression), DataFrame Operations (join). Similarly, the collaboration among

multiple Datalog applications is also possible.
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Example 4 - Collaboration between LLib and other Spark libraries.

val MLM = new MLM()

MLM.setDirection(MCol = ”Member”,Pro f itCol = ”Bonus”)

MLM.setSecDirection(MCol = ”Member1”,M2Col = ”Member2”)

val d f Res = Delivery.genDF(Array(d f Sales,d f Sponsor),session)

val d f Res = d f Res. join(d fWorkTime)

val parsedData = d f Res.rdd.map(row =>

LabeledPoint(row.getAs[Int](”Days”),Vectors.dense((row.getAs[Int](”Bonus”)))))

val numIterations = 10

val stepSize = 0.00000001

val model = LinearRegressionWithSGD.train(parsedData,numIterations,stepSize)

model.save(session.sparkContext,”scalaLinearRegressionWithSGDModel”)

5.3.6 User Defined Datalog Function

While developing, users may want to define one function (user-defined function) for once and

call it many times for modular programming. To serve the user-defined datalog function (UDDF),

we provide two general classes, SingleTableUDDF and MultipleTablesUDDF, which wrap the nec-

essary components to execute the Datalog queries on single relation or multiple relations. While

utilizing the two classes to specify new Datalog functions, the only required information are Data-

log rules and the schema of the basic table (or input table).
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5.4 LFrame

DataFrame, a widely used data structure, is always supported in different data analytic facilities

like Spark SQL, Python, but not in Datalog platforms. In this section, we propose a DataFrame-like

object, LFrame, wrapping the Datalog transactions and the common DataFrame transactions.

5.4.1 Conversion from DataFrame to LFrame

To endow a DataFrame with the ability of logical operations, we build a bridge for converting

a DataFrame to LFrame. As shown in Example 4.1 below, the entry point of the application using

LFrame is the LLibSession, same as the one in LLib, which makes it possible to use both LLib and

LFrame within one execution environment. The session can load the data to a DataFrame variable

df, but the df cannot execute any logical transaction. To construct an LFrame variable with the

df, a built-in function wrapperDF in LLibSession can be utilized with the session and df as input

arguments.

Example 5.1 - Development with LFrame: Conversion from DataFrame to LFrame.

val session = LLibSession.builder().appName(”LFrame”).master(”local[∗]”).getOrCreate()

var schema = StructType(List(StructField(”Parent”, IntegerType, true),

StructField(”Child”, IntegerType, true)))

var d f = session.read. f ormat(”csv”).option(”header”,” f alse”).schema(schema).load(”sg”)

var l f rame = LLibSession.wrapperDF(d f ,session)

5.4.2 LFrame: Unary Operation

The constructed LFrame in the Example 4.1 could support various Datalog operations that can

be categorized to unary operations and N-ary operations. The unary operation only involves one

LFrame object each time. With the lframe, we implement the SG application as following to show
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the typical unary operations.

Example 5.2 - Development with LFrame: Unary operations with SG application.

1 : l f rame = l f rame.registerCurLFrame(”l f rame1(Parent : integer,Chile : integer)”)

2 : l f rame = l f rame.rules(”sg(X ,Y )← l f rame1(Parent,X), l f rame1(Parent,Y ),X = Y ”)

3 : l f rame = l f rame.rules(”sg(X ,Y )← rel(A,X),sg(A,B),rel(B,Y )”)

4 : l f rame = l f rame.rules(”sg(X ,Y )← sg(X ,Y )”)

5 : l f rame = l f rame.delRule(3)

6 : l f rame = l f rame.query(”sg(X ,Y )”)

7 : // Execution and persistence.

8 : l f rame.run(out put = ”SG”)

9 : val d f Res = l f rame.genDF()

10 : val rddRes = l f rame.genRDD()

11 : // Normal DataFrame operations.

12 : l f rame.nonRecursive().where(”X < 10”).select(”X”).collect(). f oreach(println)

There are five categories of unary operations included in the above example.

• Registering one LFrame as a base relation. In line 1, the registerCurLFrame is to register

the lframe as a base relation so that the Datalog rules can utilize it as a given dataset. While

registering, users are free to rename the dataset’s columns and LFrame will map the columns

according to the order of appearance.

• Appending (or removing) rules. The main body (line 2 to 4) of a Datalog program is a

finite set of rules. To state the rules, the function called ”rules” can be exploited. Whenever
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the function is utilized, a new rule will be appended to the existing rule sets owned by the

lframe. If one rule is wrongly appended, it can be removed by the delRule (line 5) function

using its index. The provided index variable can be an array to remove more than one rule.

• Specifying the output relation. To evaluate the application, the query function (line 6) assists

to point out the output relation, which is the sg relation in the SG. The generated result

LFrame will store the output dataset in the schema specified in query, (X, Y).

• Lazy execution and persistence. In DataFrame, the evaluation is lazy. Similarly, the LFrame’s

evaluation is lazy until the run action is triggered. As shown in the second part of the code

(line 8 to 10), the run function will store the result relation to a file and if a user wants to

restore to a DataFrame or RDD, genDF or genRDD function can be considered.

• Non-recursive transactions. The design of LFrame is to wrap both the Datalog transac-

tions and the normal DataFrame transactions. When a normal DataFrame transaction is re-

quired, like the line 12 shows, the nonRecusive function will convert LFrame to the normal

DataFrame for all the DataFrame operators afterwards.

Compare the LFrame and DataFrame, we can find they work in analogous ways but LFrame can

support more operations. A more compact way to express the transactions from line 2 to 7 is to list

them back to the lframe one by one like in line 15.

5.4.3 LFrame: N-ary Operation

In the previous SG example, only one relation is contained in the Datalog application, while in

this section, we illustrate the transaction (registerMoreDFs) embroiling more relations like the join

operator of the relational database. We adopt the MLM Bonus application as a running example

(introduced in Example 2), for it contains both the sales and the sponsor relations.

Example 5.3 - Development with LFrame: N-ary operations with MLM Bonus application.
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1 : var l f Sales = DatalogLibSession.wrapperDF(d f Sales,session)

2 : l f Sales = l f Sales.registerCurDF(”sales(Member : integer,Bonus : integer)”)

3 : l f Sales = l f Sales.registerMoreDFs(otherDF = Array(d f Sponsor),

4 : registers = Array(”sponsor(Member1 : integer,Member2 : integer)”))

5 : l f Sales = l f Sales.rules(”bonus(M,msum < (M,B)>)

6 : ← sales(M,P),B = (P∗0.1)”)

7 : l f Sales = l f Sales.rules(”bonus(M1,msum < (M2,B)>)

8 : ← bonus(M2,B2),sponsor(M1,M2),B = (B2∗0.5)”)

9 : l f Sales = l f Sales.query(”bonus(M,B)”)

10 : l f Sales.run(out put = ”bonus”)

In the example, we do not show the process of establishing the execution environment (ses-

sion) or loading data to DataFrame to save space. We have two DataFrame objects dfSales and

dfSponsor. The dfSales is converted to an LFrame object with Datalog functionalities encapsu-

lated. To exploit the relation as the base relation, the registerCurDF function is exploited in line 2.

To involve more datasets (dfSponsor), the registerMoreDFs function (line 3) is utilized. The input

parameters include an array of DataFrames to be registered and another array of schemas exploited

to register them. The two arrays are ordered and have one-to-one correspondence. Thereupon, the

rules can take these DataFrames as the base relations to use. To construct the rule sets, the rules

function is adopted multiple times. Eventually, the output relation specified by query function will

be stored to the address contained in the run function (line 9 to 10).
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5.5 Multi-language Programming

To make our interface more appealing, we consider supporting multiple programming lan-

guages including Python, Scala and Java. The LLib and LFrame is written in Scala and so Scala is

the default interface. Since Java is interoperable with Scala, it is relatively simple to support Java

LLib (JLLib) and Java LFrame (JLFrame). The remaining gaps between Scala and Java version

are mainly the conversions of data collections. We bridge these gaps via using collections known

by both languages in Scala implementation and using the implicit converting mechanism in Scala.

For the Python version of LLib (PLLib) and LFrame (PLFrame), we utilize Py4J (Dagenais,

2009), a bridge between Java and Python language, and design a Removal and Recovery mecha-

nism to transfer complex objects with schema information. With the gateway module, Py4J enables

the Python interpreter to transfer objects to or access objects from the JVM. Follow the previous

design, both the PLLib and PLFrame should support operations on PySpark DataFrame layer. But

for the DataFrame object, which is complex and contains schema information, the Py4J can hardly

transfer it. We design a Removal and Recovery mechanism, where the transferred DataFrame in

PySpark will be converted to a common data collection type acceptable by both Java and Python

languages. Then, during execution in Java, we could infer the schema or directly get the schema

from users. For example, the PLFrame supports the operation to register a relation, which allows

users to provide the schema information of the relation. Since the interfaces of Python and Java are

designed similarly, we do not show more examples.

5.6 Performance Overhead

With LLib or LFrame, users can conveniently exploit existing Datalog algorithm or develop

new recursive algorithm during the data processing pipeline. We believe the convenience is not

based on huge performance sacrifice. We perform experiments on several custom Datalog algo-

rithms on a machine with Ubuntu 14.04 LTS, an Intel i7-4770 CPU (3.40GHz, 4 core/8 thread),

32GB memory and a 1 TB 7200 RPM hard drive. The conducted experiments include SSSP, Reach,

Connected Components (CC) and Same Generation (SG). SSSP is introduced previously in Query
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1. Reach is to find all nodes which are reachable from a given source node. Connected Components

is to identify the connected components of a graph. And Same Generation looks for the pairs of

nodes in a tree-like structure with the same distance to a common ancestor.

Table 5.1: Execution time comparison for typical Datalog algorithms.

Algorithm Dataset BD (s) LLib (s) RelDiff(%) Dataset BD (s) LLib (s) RelDiff(%)

SSSP

RMAT-1M

19.64 21.2 7.94

RMAT-4M

61.5 64.3 4.55

Reach 6.9 7.9 14.49 15.07 16.7 10.82

CC 12.7 13.42 5.67 36.63 38.6 5.38

SG Grid-150 18.07 18.95 4.87 Grid-250 36.72 38.28 4.25

The exploited datasets include RMAT-1M, RMAT-4M, Grid-150 and Grid-250. RMAT-1M and

RMAT-4M are synthetic graphs generated with GTgraph generator (Bader and Madduri, 2006)

using parameters (a, b, c) = (0.45, 0.25, 0.15). RMAT-n (n =1, 4 Million) contains n nodes and 10n

directed edges with uniform integer weights range from [0,100). Grid-150 is a 151 by 151 grid with

45,300 edges and Grid-250 is a 251 by 251 grid with 125,500 edges. Comparing the BigDatalog

(BD) (Shkapsky et al., 2016) and LLib execution time in Table 5.1, we can find the performance

overhead brought by LLib is always minor. The overhead could come from steps like DataFrame

schema mapping and recovering for a general design. With a larger dataset (e.g. RMAT-4M or

Grid-250), there is a trend of relatively smaller overhead considering the RelDiff.

5.7 Conclusion

In this chapter, we have shown the LLib to encapsulate typical Datalog algorithms, which fol-

lows the data scientists’ customs and requires less logical programming expertise. For the possible

extensions of LLib, we provide not only a unified template for normalizing the contribution, but

also some utilities to simplify the extending process. With some running examples, we demonstrate

the benefit of designing the LLib as a DataFrame-based API is that the Datalog algorithm can flex-

ibly collaborate with other Spark operations. For the audience who has more logical programming

experience and would like to design their own applications, we also provide an LFrame API con-

taining both logical and DataFrame-based operations. A simple conversion function between the

DataFrame and LFrame is also provided. Both LFrame and LLib make the Datalog as an integral
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part of data processing pipeline and are implemented to support general programming languages

like Python, Scala and Java. Moving forward, we have plenty of data processing algorithms and

logical oeprations to add for the LLib and LFrame separately. For example, the feature extraction

(Ramı́rez-Gallego et al., 2017) or data cleaning (Wang et al., 2016c) or entity extraction (Wang

et al., 2019, 2020) algorithms for preprocessing. Further plans call for the implementation of both

our interfaces on other distributed platforms and across various platforms in ways akin to those of

the polystore system (Duggan et al., 2015).
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CHAPTER 6

Conclusions and Future Work

In this dissertation, we have presented models to extract information with involvement of un-

used data for the optimal downstream task performance. We also discussed the approaches to

improve the efficiency of developing analytics algorithms with complex recursions and training

large-class classifiers for the big data. In this section, we will wrap up the dissertation and suggest

some avenues for future research.

In Chapter 2, we discussed the way to include the IP address sequences in the internet embed-

ding by deep learning, which we found could tackle the issue of missing information for locating

unknown IP addresses and provide sufficient coverage of protected networks in denial-of-service

attacks. We discovered the hidden structural information encoded in a node’s IPv4 address. To

extract the encoded information, we designed a deep learning based framework, DIP, which is a

ten-layer neural network and a variant of RNN. During the training of DIP, we jointly utilized the

IP address, hop count and routing information and used the distance estimation as the objective.

With experiments on test data, we found the learned embedding vectors could preserve the real-

world clustering of the associated nodes and predict distance between them accurately. Moreover,

for unknown hosts, DIP could accurately impute hop count distance to them merely by their IP ad-

dresses and routable prefixes. These findings inspired us to apply DIP on hop count filtering based

spoofing detection, a classical framework in network security. We reviewed the previous design

of spoofing detection with the explicitly computed IP maps, the collection of immutable structural

network properties among IPs like hop counts. Since DIP could learn the embedding of internet

and predict the structural properties of arbitrary IPs, the DIP-based detection mechanism could

save the time of measuring the structural properties to build up IP maps and increase the coverage

of protected hosts.
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In Chapter 3, we discussed the way to include the 2nd-nth best hypotheses generated by ASR

module in SLU pipeline, which we found could improve the SLU system robustness to ASR er-

rors. In a conventional SLU system, the ASR module transcribes the input speech to sentences

(hypotheses) and the hypothesis with highest confidence score will be transferred to natural lan-

guage understanding module. We argued that solely relying on the best hypothesis could be erro-

neous, which could be revealed from the spoken recognition quality distribution. We reviewed the

existing approaches to utilize n hypotheses, among which the reranking model is the most pop-

ular one. With motivating examples, we demonstrated the condition that reranking model cannot

figure out. To tackle the issue, we tried integrating the hypothesized texts and embedding vectors

in numerous models. Among the developed models, the PoolingAvg, which concatenated the em-

bedding vectors and used a average pooling layer to generate a unified vector, outperformed all the

others. The PoolingAvg achieved significant classification accuracy improvement for downstream

tasks including domain classification and intent classification. We also observed that with more

hypotheses combined, the performance could be further improved.

In Chapter 4, we addressed the expensive computational cost to train a large-class classifier

for a big data set. When a classifier is modeled as a neural network, it is always represented by a

softmax layer. The softmax layer training is the main reason for the high cost due to its intractable

normalization constant. We gave a thorough overview of the negative sampling, hierarchical soft-

max, adaptive softmax to approximate the softmax. We proposed the amplified negative sampling

by introducing the amplifying factor to the known negative sampling. With experiments on real-

world datasets and tasks, we showed the efficiency of the amplified negative sampling on both the

sampling cost savings and performance boosting.

In Chapter 5, we demonstrated an expressive interface for succinct development of complex

analytics with recursions. We introduced the superiority of Datalog systems on expressing recur-

sive queries and overviewed the latest Datalog systems, including BigDatalog, RaSQL. Although

much effort has been taken to optimize the scalable logical operations within distributed Datalog

environment and to design a better interface to extend the expressive power, there is still space to

improve the usability considering ”normal” data analysts. We provide the cross-language libraries,

i.e. LLib and LFrame. The LLib, similar to Spark MLlib, encapsulates common Datalog applica-
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tions for an end-to-end development. The LFrame, an extension to Spark DataFrame, supported

both relational and logical operations. With running examples, we showed the interface helped data

scientists efficiently develop succinct recursive analyzing algorithms with a familiar environment.

All together, we are really excited about all the progress made in the big data analytics systems

and algorithms and glad to be able to contribute to this. We do think there is still a long way to go

and would like to point out the avenues for future research in our mind.

The first direction is to use more available but unused information. In the dissertation, we intro-

duce the unrecognized information in conventional algorithms of two domains, however we believe

this is common in other domains. Here, we would like to keep sharing our other observations of

the two domains and hope these could encourage more upcoming research works in those areas or

more.

As for the SLU, the first type of information can be helpful is the acoustic-model information

like confidence score, which is ignored in our current hypotheses integration models but shown

to be informative in other speech applications (Kumar et al., 2014; Fiscus, 1997). The recognized

hypotheses from ASR module are associated with confidence scores, which tell the quality of each

hypothesis. The confidence scores exist in different layers, for example, the confidence score of ith

best hypothesis or the confidence score of the jth word in the ith best hypothesis. The PoolingAvg

approach treats each hypothesis equally although the quality of the hypotheses actually varies.

We thus need to consider a new design to hierarchically involve the multi-layer acoustic-model

information for a more efficient integration. The second direction is to use deep learning framework

on word lattice (Liu et al., 2014) or confusion network (Hakkani-Tür et al., 2006; Tur et al., 2002).

The hypotheses are derived from the word lattice or confusion network, so they may contain more

information like times.

As for the internet embedding, since we have proposed the DIP and the neural network can

be easily extended for other data sources, we could use the other latency measurements (Dabek

et al., 2004) more than hop counts by simply changing the cost function of the DIP. In addition,

the AS membership information could provide a coarse indication of locality of IPs (Eriksson

et al., 2009). We could adapt the AS membership as another estimating error within the internet
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embedding algorithm.

The second direction is to consider multi-task learning. Besides involving the extra informa-

tion, there is also opportunity to consider more relevant tasks by multi-task learning (MTL), which

generalizes the learned model and broadcasts the knowledge among multiple fields. MTL (Zhang

and Yang, 2017; Liu et al., 2019; Caruana, 1997) is a widely used machine learning paradigm for

training multiple related tasks in the same time. The superiority of MTL is to avoid overfitting and

transfer knowledge. This could inspire us to add more tasks for the model training. For example,

in SLU, we can consider a new task to reconstruct the ground-truth transcription using the hy-

potheses. The common tasks for hypothesis embedding model are natural language understanding

tasks (domain or intent classification or slot filling), while the transcription reconstruction can help

recover the error contained in hypotheses for a better understanding.

The third direction is to consider multi-platform data analytics. Our LLib and LFrame could

support data scientists’ familiar development with multiple programming languages, while another

need to support multi-platform programs keeps increasing. For example, while detecting abnor-

mal exchanges of stock market with real-time platforms such as Spark Streaming (Zaharia et al.,

2013), users may be interested in retrieving historical stock data stored in a NoSQL databases like

MongoDB (Chodorow, 2013). To support the cross-storage-system queries, the ploystore (Duggan

et al., 2015) architecture was proposed. Following this trend, for more succinct recursive query

analysis, we could try to build a Datalog-based polystore system, which should be extensible to

various platforms like Spark, MongoDB, etc.

I hope this dissertation could inspire the research in deep learning and scalable data analytics.

Furthermore, I hope the embedding approaches, training algorithms and libraries constructed could

contribute to both academic and industrial applications.
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Sak, H., Saraçlar, M., and Güngör, T. (2011b). Discriminative reranking of asr hypotheses with

morpholexical and n-best-list features. 2011 IEEE Workshop on Automatic Speech Recognition

and Understanding, pages 202–207. 41

Schroff, F., Kalenichenko, D., and Philbin, J. (2015). Facenet: A unified embedding for face recog-

nition and clustering. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 815–823. 55

Schuster, M. and Paliwal, K. K. (1997). Bidirectional recurrent neural networks. IEEE Transac-

tions on Signal Processing, 45(11):2673–2681. 43

Sennrich, R., Haddow, B., and Birch, A. (2015). Neural machine translation of rare words with

subword units. arXiv preprint arXiv:1508.07909. 43

Shkapsky, A., Yang, M., Interlandi, M., Chiu, H., Condie, T., and Zaniolo, C. (2016). Big data

analytics with datalog queries on spark. In Proceedings of the 2016 International Conference

on Management of Data, pages 1135–1149. ACM. 3, 71, 75, 91
107



Shue, C., Shin, Y., Gupta, M., and Choi, J. Y. (2005). Analysis of ipsec overheads for vpn servers.

In 1st IEEE ICNP Workshop on Secure Network Protocols, 2005. (NPSec). 21

Sommer, R. and Paxson, V. (2010). Outside the closed world: On using machine learning for

network intrusion detection. In Proceedings of the 2010 IEEE Symposium on Security and

Privacy. 23

Spearman, C. (1904). The proof and measurement of association between two things. American

journal of Psychology, 15(1):72–101.

Spoofing-ps. Port scanning techniques and the defense against them.

https://www.sans.org/reading-room/whitepapers/auditing/port-scanning-techniques-defense-70.

21

Spoofing-state. State of IP Spoofing. https://spoofer.caida.org/summary.php. 23, 30

Spring, N., Mahajan, R., and Anderson, T. (2003). Quantifying the Causes of Path Inflation. In

ACM Sigcomm. 7

Thusoo, A., Sarma, J. S., Jain, N., Shao, Z., Chakka, P., Anthony, S., Liu, H., Wyckoff, P., and

Murthy, R. (2009). Hive: a warehousing solution over a map-reduce framework. Proceedings of

the VLDB Endowment, 2(2):1626–1629. 71

Tur, G. and De Mori, R. (2011). Spoken language understanding: Systems for extracting semantic

information from speech. John Wiley & Sons. 2, 41

Tur, G., Wright, J., Gorin, A., Riccardi, G., and Hakkani-Tür, D. (2002). Improving spoken lan-

guage understanding using word confusion networks. In Seventh International Conference on

Spoken Language Processing. 51, 95

Vijayanarasimhan, S., Shlens, J., Monga, R., and Yagnik, J. (2014). Deep networks with large

output spaces. arXiv preprint arXiv:1412.7479. 55
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