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Dynamic speech representations in the human temporal lobe

Matthew K. Leonard and Edward F. Chang
Department of Neurological Surgery, University of California, San Francisco, 675 Nelson Rising
Ln., Room 535. San Francisco, CA 94158

Abstract

Speech perception requires rapid integration of acoustic input with context-dependent knowledge.

Recent methodological advances have allowed researchers to identify underlying information

representations in primary and secondary auditory cortex, and to examine how context modulates

these representations. We review recent studies that focus on contextual modulations of neural

activity in the superior temporal gyrus (STG), a major hub for spectrotemporal encoding. Recent

findings suggest a highly interactive flow of information processing through the auditory ventral

stream, including influences of higher-level linguistic and metalinguistic knowledge. Such

mechanisms may give rise to more abstract representations, such as those for words. We discuss

the importance of characterizing neural representations of context-dependent and dynamic patterns

of neural activity in the approach to speech perception research.

Introduction

How does the human brain generate phenomenologically rich representations of words from

the complex and noisy acoustic speech signal? This is not a new question, with many of our

current theories and observations heavily influenced by those nearly 140 years old [1,2]. In

this review, we consider the implications of progress that has been made in redefining the

issues central to speech perception. Recent advances have allowed researchers to examine

the functioning human brain with an unprecedented level of detail, with particular attention

to decoding the representations contained in speech-evoked neural responses [3–5], an

important step beyond localizing task-dependent activity. Combined with a growing and

productive interaction between linguistics and neuroscience [6], new recording and analysis

methods have created a pivotal moment for understanding the neural basis of speech

perception.

Organization of the ventral stream

Human neuroimaging and neurophysiology studies support the concept of an information

processing hierarchy for speech perception in the temporal lobe. Responses evoked by
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speech sounds, words, and sentences show activity that spreads primarily from posterior to

anterior temporal areas [7–14]. This dominant direction of information flow is supported by

anatomical connections between the superior temporal plane and anteroventral temporal

areas [15], and is commonly known as the ‘ventral stream’ for speech perception [16,17].

This contrasts with a distinct but related network that connects posterior superior temporal

areas to both ventral and dorsal frontal, as well as inferior parietal cortex, known as the

‘dorsal stream’ [18]. It is clear from numerous imaging studies that dorsal stream areas are

active during speech perception, however their exact functional roles are debated [19].

Most current conceptions of the speech perception system view the ventral stream as the

primary pathway for transforming acoustic sensory signals into abstract linguistic

representations such as phonemes and words. These theories posit a hierarchical flow of

information among temporal lobe regions that support largely discrete (albeit strongly

connected) aspects of linguistic encoding. Hickok & Poeppel's [16] dominant view argues

that frequency and amplitude information from primary auditory cortex (A1) is fed to the

posterior superior temporal gyrus (STG), which supports a spectrotemporal encoding of the

most fundamental features of the speech signal. Along the ventral stream, STG is connected

to the posterior superior temporal sulcus (STS), which encodes phonological-level processes

(e.g., phonemes). Finally, STS is directly connected to posterior middle temporal gyrus

(MTG) and inferior temporal sulcus (ITS), which are the “lexical interface”, where abstract

representations of words are stored [20,21]. This network is hypothesized to be largely

bilateral, particularly for lower-level aspects of acoustic and phonological processing

[16,22,23], although the extent and function of lateralized activity is debated [24].

As we review below, this conception finds strong support from a vast body of neuroimaging

studies, with particular convergence in superior temporal areas that are hypothesized to

support spectrotemporal and phonological processing. The primary goal of the present

review is to describe recent advances that provide important extensions of these findings,

particularly in the STG. We will argue that, in large part due to the nature of the processing

that occurs in this region and due to methodological advances, our understanding of the role

of STG in speech perception exceeds that of most other brain areas. Specifically, the ability

to decode neural activity along spectrotemporal, linguistic, and metalinguistic dimensions

means that STG is characterized according to its underlying representations, rather than its

differential responses to stimuli that vary along theoretically interesting dimensions (e.g.,

clear speech versus acoustic controls that maintain aspects of the spectrotemporal structure

of the input, but degrade intelligibility). We will present an argument that this level of

specificity is necessary, although difficult to achieve, if we wish to understand more abstract

linguistic representations, such as those for words.

Early cortical auditory encoding

To examine the specific roles that STG plays in the speech perception hierarchy, it is

important to understand the inputs to this region. A large body of work has established

important aspects of sensory processing that occur in the ascending auditory system en route

to the primary auditory cortex in several mammalian species [25–27]. A1 in humans, located

on the posteromedial portion of Heschl's gyrus, is characterized by at least one major
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tonotopic axis [28]. An important aspect of this tonotopic organization is that A1 neuronal

populations show narrow spectral tuning [29,30], which combined with selectivity for

temporal features of the stimulus give rise to perceptual distinctions such as pitch [31,32].

Heschl's gyrus also encompasses non-core auditory regions, and exhibits frequency-specific

response characteristics indicative of both rate and temporal coding of auditory stimuli both

within and across neural populations [33]. In secondary auditory areas such as planum

temporale (PT), preferences for temporal features are significantly decreased relative to A1,

while spectral specificity is more finely tuned [32]. This spectral preference includes

complex multi-peak tuning at octave intervals [34], potentially allowing multiple stimulus

features to be integrated into distinct auditory objects. In sum, recent advances in optimizing

the spatiotemporal and frequency resolutions of human neural recording methodologies have

demonstrated in new detail that activity in primary and early secondary auditory areas

indicates highly specialized tuning for relevant stimulus features, however this does not

appear to be specialized for speech (see [35] for an excellent review comparing direct

neurophysiological responses from human and nonhuman primates).

Thus, two aspects of early cortical auditory processing are clear. First, A1 and surrounding

areas have been well-characterized, both in their responses to a wide variety of stimuli

(including speech), and also in the nature of the information that those responses represent.

Second, and perhaps most important for understanding the early cortical stages of speech

perception, is the fact that these areas do not show strictly linear responses that can be

characterized as faithful representations of the physical stimulus. As we shall see, if the goal

of the speech perception hierarchy is to reach abstracted representations of the input, it is

critical to understand that abstraction is not a feature that is unique to downstream regions in

the anterior and ventral temporal lobes.

Stimulus and linguistic representations in STG

Despite showing stimulus- and context- dependent modulations in neural activity, few

would argue that A1 exhibits responses that are specific to speech. In contrast, a major target

of primary auditory outputs is the STG, which is one of the best-characterized regions in the

speech perception system, and which shows responses that suggest the earliest stages of

speech-tuned representation. Like its upstream neighbors, STG is highly sensitive to the

spectrotemporal content of the acoustic signal. Recent studies have used

electrocorticography (ECoG), an invasive method in which electrodes are implanted directly

on the brain surface in humans, to understand how distinct neural populations in STG

respond to sound. The majority of these studies examine neural activity in the high-gamma

(∼70-200Hz) range [36], which is strongly correlated with multiunit spiking activity [37,38]

and the BOLD response in fMRI [39]. There are two major notable characteristics of

responses to sound in this region. Distinct STG neuronal populations encode the temporal

structure of non-speech acoustic input differently depending on the frequency content of the

signal [40]. Likewise, in the spectral domain, populations are selective (although generally

broadly-tuned) to ranges of frequencies [41]. Importantly, this selectivity is both amplitude-

invariant and malleable over a millisecond time scale, suggesting that spectrotemporally

complex stimuli may be encoded through cross-frequency integration mechanisms in

relatively local areas of cortex. Thus, studies that have examined STG responses to non-
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speech stimuli have demonstrated local selective responses that might give rise to population

activity that encodes the perception of spectrotemporally complex input.

Although significantly more complex (both physically and behaviorally) than pure-tones and

clicks, it is possible to examine the nature of the spectrotemporal representation of speech in

the superior temporal lobe. Stimulus reconstruction methods have demonstrated a strong

correspondence between the speech spectrogram and distributed neural activity along the

posterior STG [4]. This relationship is particularly strong for the spectrotemporal aspects of

the acoustic input that are relevant for speech intelligibility, specifically temporal

modulation rates that correspond to syllable onsets and offsets.

A recent ECoG study explored how this spectrotemporal sensitivity relates to local tuning

for phonetic features. Mesgarani and colleagues played hundreds of sentences spoken by

hundreds of different speakers while neural activity was recorded from high-density grids

over STG [42]. The stimuli provided a large number of examples of all English phonemes,

which allowed the authors to examine the relative selectivity of each electrode to each

phoneme. They found that, rather than being selective to individual phonemes (e.g., /s/, /

m/, /k/), STG neural populations are tuned to particular acoustic features, such as fricatives,

nasals, and plosives. Vowels showed similar feature-based representations for low-back,

low-front, and high-front features, which were directly related to the encoding of formant

frequency variability, particularly the difference between F1 and F2. These results are

consistent with the view that individual phonemes are not represented by discrete spatial

points on the STG, but rather are represented by population neural activity defined by a

multidimensional feature space.

Data from multiple recording methods including fMRI, MEG, and ECoG has shown that

STG activity is sensitive to phonological manipulations of the speech signal that alter its

intelligibility. Numerous studies, particularly those pioneered by Scott [43] and Davis and

colleagues [44] have compared neural responses for speech to non-speech sounds that

preserve important spectral or temporal aspects of the signal [45–51]. Using a process called

noise-vocoding, in which the spectrogram is essentially smoothed in the spectral or temporal

axis, it has been demonstrated that left superior temporal areas are more sensitive to the

temporal content of speech, while the homologous right hemisphere regions are more

sensitive to the frequency content [50]. These results are in line with a provocative theory

put forward by Poeppel and colleagues on the mechanistic differences between the cerebral

hemispheres during speech perception [52]. These findings also suggest that abstract

representations such as phonemes arise from finely-tuned encoding of acoustic features in

local regions of the temporal lobe.

Recent advances in recording and multivariate analysis methods have provided more

detailed information about how neural activity is tuned in STG. Responses in this region

track important contrastive acoustic cues such as voice-onset time (VOT; [53]) and place of

articulation [54]. These findings are particularly important because they demonstrate that

STG is sensitive to acoustic cues that also reflect important linguistic distinctions. A well-

studied phenomenon in speech processing is categorical phoneme perception, in which a

linear continuum of speech sounds is perceived non-linearly. Several recent neuroimaging
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studies have localized this perceptual phenomenon to the lateral superior temporal cortex

[55–58], and one recent ECoG study provided a detailed examination of local STG activity

during a categorical phoneme perception task. Participants listened to a continuum of

synthesized speech sounds that ranged from /ba/ to /da/ to /ga/, by changing F2 onset in

linear stepwise increments [54] (Figure 1a). Across the population, neural activity patterns

were spatially distinct for the three stimulus categories, even within the space of only a

couple of centimeters (Figure 1b). Using multivariate classification methods, stimulus-

specific discriminability was observed in this activity (Figure 1c), suggesting that at the peak

of pattern dissimilarity across categories, certain perceptual contrasts arose from specific

neural populations. Interestingly, there was also evidence of organization along acoustic

sensitivities, as the representations of speech tokens were ordered according to F2 in one

dimension (see ordering along x-axis in Figure 1d), but the overall pattern was categorical in

two dimensions (Figure 1d), demonstrating that this perceptual phenomenon is encoded non-

linearly in the brain. These categorical effects were strongest at ∼110ms, essentially at the

same time as the peak response, suggesting that the representation occurs in situ or previous

to the STG, rather than through top-down influences of other brain regions.

Together, these studies demonstrate that linguistic phenomena such as categorical phoneme

perception arise from neural sensitivity to acoustic features, primarily within the lateral

superior temporal cortex. Furthermore, these new approaches have extended what was

previously known about phonemic representations by showing that neural activity based on

low-level feature selectivity is modulated by higher-level linguistic knowledge and

experience to represent complex and increasingly abstract information.

Cognitive and linguistic modulation

The studies described thus far provide compelling evidence that STG is a major hub for

sublexical processing in the speech perception hierarchy. Like many other brain regions,

responses in STG are non-linear not only along physical stimulus dimensions (such as

categorical phoneme perception), but also according to complex cognitive contexts and task

demands. For example, several recent studies have demonstrated that STG activity is

powerfully modulated by the attentional constraints of the task [59–63]. One study showed

that the relatively fine-scale representation of both spectral and temporal acoustic

information in STG is highly dependent on whether the listener is attending to the content of

the speech stream [64] (Figure 2). In this study, participants listened to two speakers

simultaneously while ECoG was recorded (Figure 2a-b). The participants were asked to

report the content of just one of the speakers, thus attending to only part of the acoustic

input. Humans are known to be experts at solving this so-called ‘cocktail party problem’,

which is much more difficult for artificial speech recognition systems. The authors found

that, consistent with previous work, STG population activity encoded the fine

spectrotemporal details of the stimulus. However, while the attended speech stream was

robustly represented, it was as if the ignored speaker had not been heard at all (Figure 2c).

This striking result is another example of STG activity representing behaviorally-relevant

aspects of the stimulus through contextually modulatory activity.
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There is also extensive evidence that higher-level linguistic knowledge affects lower-level

speech processes. Neural responses along the temporal lobe, including posterior superior

temporal regions, are related to speech intelligibility [51,65–67], listener attention to

sublexical features [46], number of words (but not pseudowords) in a sentence [68],

congruency with a preceding semantic context [66,69], whether the stimulus is a known

word or a phonotactically legal pseudoword [70], and familiarity with the specific language

being heard [71,72]. In addition, the surrounding acoustic context (including coarticulation

and the size of the temporal integration window necessary to understand the input) can

impact perception [73,74]. This collection of work is consistent with models positing that

low- and high-level representations interact in real-time [75], although this is still a

contentious claim [76,77].

To summarize, a key feature of neural activity in STG that has been described in detail is

that it reflects a context-dependent spectrotemporal representation of speech. In this sense,

an area that is typically thought of as having a relatively low-level acoustic processing

function [16] actually encodes linguistically and behaviorally meaningful information. This

raises a series of important questions that we believe reflect a crucial turning point for the

neuroscience of speech perception.

Lexical representations in the ventral stream

The studies reviewed above suggest that activity in STG during speech perception is non-

deterministic. That is, it is not possible to predict activity with a high degree of precision

simply based on the physical characteristics of the stimulus. This principle is a defining

feature of abstract representations, and historically has made it rather difficult to study the

underlying representations of neural systems beyond early sensory cortices. It also makes it

potentially even more difficult to answer a fundamental question in speech perception: How

are sublexical representations combined across time and brain regions to form or access

abstract lexical representations? In the following section, we propose that recent

methodological and theoretical advances may allow us to tackle this question, which has

both scientific and clinically relevant applications.

Perhaps the most difficult aspect of this question is the fact that there is no agreed-upon

definition of a word. Recent work [78,79] has revived an old debate on what information

should be attributed to words in the mental lexicon. The problem is that there is simply too

much knowledge (semantic, syntactic, morphological, and broadly contextual) that is

attached to a given word in a given context. These attributions have even been extended to

include speaker identity [80], which is typically thought of as a paradigmatic example of

metalinguistic information particularly because the spectrotemporal features that define

speakers are less abstract even than a phoneme [81] (although even phoneme representations

have been shown to include speaker identity [82,83]).

What, then, is the nature of the underlying representation of stored lexical information in the

brain? Nearly all models of speech perception include a lexical level of representation,

which is the ultimate target of lower-level acoustic-phonetic and phonemic inputs [75,84–
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86]. However, it is unclear what information is attributed to the lexicon, and if such

information should include the contextual content described above.

To date, the neural data on the lexicon have not resolved this question. As previously

discussed, most current theories posit a “lexical interface” where abstractword

representations are stored [16,20]. This includes distinct areas that are hypothesized to play

different roles in representing discrete, yet interconnected aspects of lexical items (e.g.,

lexical-semantics, lexical phonology, articulatory representations). Numerous studies

(reviewed in [20,21]) have compared responses to known real words and phonotactically

legal but unfamiliar pseudowords to derive a network centered primarily in posterior MTG

and temporal-parietal areas that respond more strongly to familiar word forms. It has been

shown that these responses show specificity for certain lexical characteristics, such as being

modulated by lexical frequency [87]. Indeed, lexical access itself is strongly modulated by

word frequency [88], suggesting a distributed representation of word-level knowledge.

Morphological complexity and grammatical category also appear to be integral aspects of

word representations, as they dynamically modulate neural activity along the left

hemisphere ventral stream [89].

These studies approach the problem of identifying the characteristics of lexical

representation through a clever and unique conceit: If it looks like a word, and acts like a

word, it is probably a word. Recent work by Gaskell and colleagues has shown that the

acquisition of novel spoken word forms is influenced by existing knowledge of language-

specific morphological rules [90]. Word learning paradigms also offer the opportunity to

measure changes in neural responses to newly acquired forms over time. Scalp EEG

responses to unfamiliar words rapidly become more like those of known words, even with a

passive listening task [91]. Still, in such cases, it is unclear what aspects of lexical

processing are represented in the temporal lobe regions that show such changes.

One of the most compelling signatures of lexical processing can be found in changes to the

structure of the entire mental lexicon when new items are added. A recent study by

Gagnepain et al. found that the introduction of a novel form (‘formubo’) changes the activity

evoked by familiar words (‘formula’) in left superior temporal cortex [86]. These changes

occur at the level of the phoneme sequence representations, where the authors propose that a

temporal predictive coding scheme compares the real-time phonemic input to a likelihood

density function derived from stored word representations. The difference between the

bottom-up and top-down representations is the prediction error, which is reflected in the

neural signal recorded at the scalp. The ability to adapt the structure of the mental lexicon so

rapidly likely not only underlies humans' uncanny ability to learn new words throughout the

lifespan, but also reflects the distributed, multilevel hierarchical organization of lexical

information in the brain. We believe it will prove useful to apply decoding methods that

have successfully uncovered speech representations in STG [3,4,54] to these aspects of

neural activity that reflect the characteristics of words at both sub-lexical and abstract levels.

While this approach may be viewed as looking for indirect signs of words in the brain, as

opposed to direct encoding of acoustic features in STG, lexical representations may be

sufficiently complex, abstract, and context-dependent that such an analogous signal simply

may not exist.
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Gagnepain et al. interpret their findings in a Bayesian predictive coding framework, which

has become a very popular (if controversial) mechanistic explanation for neural processing

of sequential input [92], including robust recognition of spoken words [93,94]. In general,

evidence is accumulating to suggest that the basic principles of neural computations are

statistical in nature [95,96]. In the auditory domain, low-level responses are highly

dependent on the predictability of both local [97] and longer-term event probabilities

[98,99]. Even if the primary currency of neural computation turns out not to be prediction

error, as advocated by the strong predictive coding argument, the notion that neural

representations (including abstract lexical responses) are emergent from contextually-driven

integration of low-level input and higher-level predictions is attractive because it allows a

large amount of knowledge to reside in the mental lexicon. This is consistent with the non-

deterministic nature of representations in higher order auditory areas like STG, and points to

fundamental neural processing mechanisms that integrate bottom-up input with knowledge

about the world that is stored as statistical distributions (rather than static objects).

Conclusions

We have discussed evidence that representations of speech information cannot be

understood in a strictly linear or deterministic hierarchical framework, even for

spectrotemporal representations in STG. This presents a challenge for understanding more

complex and abstract forms of representation such as words (Box 1), but it also potentially

provides a means for major advances in neurolinguistics that parallel those in sensory

neuroscience. We believe that machine learning and dynamical systems approaches,

combined with high spatial and temporal resolution neuroimaging and neurophysiological

recordings will facilitate these advances, since they allow researchers to gain insights into

the neural codes that generate the representations we are ultimately interested in. These

approaches have proved useful for decoding neural activity in sensory and spectrotemporal

brain areas, and their application to higher-order processes like lexical encoding may be

achievable if we attempt to decode the characteristics and properties of words and the

mental lexicon, rather than the specific signatures of static representations.

Nearly two decades of human brain mapping have led to an unprecedentedly detailed view

of the brain bases of speech and language. Now, as we begin to understand some of the more

fundamental principles of neural computation, both at the single neuron and network levels,

it is becoming possible to move beyond attempts to flesh out the Wernicke-Geschwind

model, and instead reconsider some of its basic assumptions. We believe the next five years

will be an exciting and productive time for speech neuroscience, which will begin to provide

both intellectual and practical benefits beyond what has been possible in the past.
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Box 1

Outstanding Questions

• How is sublexical information integrated over time to allow lexical access to

occur?

• How are dynamic, context-dependent representations encoded for abstract

stimulus categories such as words?

• How is the structure of individual words and the mental lexicon in general

encoded in local and network-level neural activity?

• How does the auditory ventral stream for speech allow these local networks to

communicate with one another?

• What level of resolution (spatial, temporal, spectral) is necessary to be able to

observe the dynamics of these networks?
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Highlights

• Recent methodological advances reveal underlying information representations

• Spectrotemporal regions such as STG show strong context-dependent responses

• Contextual modulation occurs both in situ and through interactive connectivity

between regions

• Context-dependent representations may give rise to abstract representations of

words

• Multivariate and machine learning statistics will help uncover how sounds

transforms into words
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Figure 1. Speech Representation in Human STG
(a) Speech sounds synthesized along an acoustic continuum (stimuli 1-14, small increases in

the second formant [arrow]) are perceived categorically, and not linearly with stimulus

change in behavioral testing (identification). (b) Spatial topography of evoked potentials

recorded directly from the cortical surface of STG using ECoG for each sound class is

highly distributed and complex. (c) A neural confusion matrix plots the pair-wise

dissimilarity of neural patterns using a multivariate classifier. (d) Multidimensional scaling

shows that these response patterns are organized in discrete clustered categories along both

acoustic and perceptual sensitivities. Adapted from [54].
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Figure 2. Attention strongly modulates STG representations of spectral and temporal speech
content
(a) During high-density ECoG recording, participants listened to two speech streams either

alone or simultaneously and were cued to focus on a particular call sign (‘tiger’ or ‘ringo’)

and to report the color/number combination (e.g., ‘green five’) associated with that speaker.

(b) The acoustic spectrogram of the mixed speech streams shows highly overlapping energy

distributions across time. (c) Neural population-based reconstruction of the spectrograms for

speaker 1 (blue) and speaker 2 (red), when participants heard each speaker alone (shaded

area) or in the mixed condition (outline). Results demonstrate that in the mixed condition,

attention to a particular speaker results in a spectrotemporal representation in STG as if that

speaker were heard alone. Adapted from [64].
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