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ABSTRACT OF THE DISSERTATION

Stabilization of a Tower of

Universal Deformation Rings
by

Geunho Gim
Doctor of Philosophy in Mathematics
University of California, Los Angeles, 2018

Professor Haruzo Hida, Chair

Given a p-adic absolutely irreducible residual representation of a Galois group with Mazur’s
finiteness condition ®,, we get a universal deformation ring in Mazur’s sense. Consider a tower
of intermediate field extensions from the base field and restrictions of the given representation
to each intermediate field. If all the restrictions are absolutely irreducible, we get a universal
deformation ring associated to each restriction. In this way, we get a tower of universal
deformation rings and the morphisms between them that are provided by universality. A
natural question to ask here is that whether the tower of universal deformation rings stabilize
or not, that is, whether the size of the universal deformation rings stops growing or grows
indefinitely over the tower. In this thesis, we answer this question in the case of cyclotomic

extensions of a number field.
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CHAPTER 1

Introduction

After the study of big Hecke algebras by Hida in the 1980s, Mazur conceived an idea of
studying universal deformation of a given Galois representation in his foundational work
[Maz89]. The theory turned out to be hugely successful as it became a key ingredient of the
proof of Fermat’s last theorem by A. Wiles in [TW95] and [Wil95]. Recently in [BK], G.
Bockle and C. Khare have proved that for a smooth projective curve X over a finite field
F, and its base change X to the algebraic closure F, of F,, and for a given m-dimensional
continuous representation of 7;(X) that is absolutely irreducible when restricted to 7 (X),
the tower of universal deformation rings given by restrictions to m (X xg, F4n) for n > 1 has
stabilization for certain family in it. (See Theorem 1.0.3 for details.) We explore if the same

phenomena occur in prime-to-p cyclotomic extensions of a number field with Galois group

isomorphic to Zy, X -+ X Zy,.

Let p be an odd prime. Let G be a profinite group satisfying Mazur’s finiteness condition @,

defined as the following.

(®,) For any finite index open subgroup H of G, H/([H, H], H) is finite.

Equivalently, for each finite index open subgroup H of GG, the maximal pro-p quotient of H
is topologically finitely generated. Let I be a finite field of characteristic p. We consider a

continuous, absolutely irreducible representation

p: G — GL,,(F)



for some m > 1. We will assume continuity for representations appearing in this thesis even
if it is not mentioned specifically. We fix a discrete valuation ring W which is Z,-free of finite
type with maximal ideal my, and F = W/my,. Denote C'N Ly, for the category of complete
noetherian local W-algebras with residue field F. The morphisms in C'N Ly are defined to
be local homomorphisms. For A € C'N Ly, two representations py, p2 : G — GL,,,(A) are
called strictly equivalent if there is an element x € 1+ M,,(my4) = ker(GL,,(A) — GL,,(F))

such that po(g) = wpi(g)z~" for all g € G. In this case, we denote p; & py.

Theorem 1.0.1 (Mazur). Let G be a profinite group with ®, and p : G — GL,,(F) be
a continuous, absolutely irreducible representation. Then, there exists a universal couple
(R, p) for R€ CNLy and p : G — GL,,(R) in the following sense. For any A € CN Ly
and a representation py : G — GL,,(A) with py mod my = p, there is a unique morphism

¢: R— Ain CNLy such that ¢ o p = py.

Proof. See [Maz89, Proposition 1]. O

We call p the universal deformation of p and R = R(p, W) the universal deformation ring.

We can consider this as the ring R representing the functor F5 : CN Ly — Sets defined by

F5(A)={p:G— GL,(A) | p mod my =p}/~

for A € CNLy so that F5(—) = Homenyg, (R, —). We call an element in F5(A) an A-

deformation of p.

Suppose we have a profinite group G' with ®,,, an absolutely irreducible representation

7 : G — GL,(F),



and a tower of subgroups {G,,}>2; of G such that G D G; D G2 2 ... D Go = N,G,. Note
that each subgroup G, satisfies ®, if G does. If we assume that ¢, is absolutely irreducible
for all n, then we get a family of universal couples {(R,, p,,) }r—; coming from {p|g, }rey by
Mazur’s theorem above. For N > n, we have p,|g, mod mg, = p|g,. By universality of Ry,
we get a morphism 0y, : Ry — R, in CN Ly, thus a tower of universal deformation rings

{(R,0nn)} A natural question to ask here is the following.

Question 1.0.2. Does the tower of universal deformation rings stabilize? In other words, is

there Ny such that Ry = Ry, for all N > Ny?

Recently, this question has been studied for the function field case by Bockle-Khare in [BK].

Theorem 1.0.3 (Bockle-Khare). Let X be a smooth projective curve of genus g over a finite
field B, of characteristic p. Let { be a prime distinct from p, and let X (resp. X,) be the
base change of X to T, (resp. Fyn). Let p: m(X) — GL,,(F) be a continuous representation
that is absolutely irreducible when restricted to 7w (X). For each n > 1, denote the universal
deformation in the sense of Mazur of plx,(x,) by pn : m(Xy) = GLy(Ry). Then, there exists
an ng prime to ¢ such that for any multiple of n of ng with n prime to ¢, the canonical

homomorphism R, — R,, is an isomorphism.

Proof. See [BK, Thereom 2.3]. O

In this thesis, we study the above problem in cyclotomic extensions of a number field case,

which was never studied before.

We fix an algebraic closure Q of Q. Let F be an abelian number field and S be a finite

set of primes of F' containing infinite places. Let F*¥ be the maximal extension of F in Q
3



unramified outside S. Then, G := Gal(F¥/F) is a profinite group satisfying ®,. We start

from a continuous, absolutely irreducible representation
p: G — GL,(F)

with a finite field F. Let F.,/F be the cyclotomic Z,, X - - - X Zj, -extension with intermediate
fields F,, for each n = (ni,...,n,) € Z%, satisfying Gal(F,/F) = Z/{{'7 x -~ X L[/} L.
We define G, := Gal(F®/F,) and suppose the restrictions p|q, are all absolutely irreducible.
Then, we get a tower of universal deformation rings { R, } from {p|s,} by Mazur’s theorem
above. We define N > n for N = (Ny,...,N,), n = (n1,...,n,) € Z%, if N; > n; for all

1 =1,...,r. In this case, we can ask the same question.

Question 1.0.4. Is there Ny € Z5, such that Ry = Ry, for all N > Ny?

We will prove the following result.

Theorem 1.0.5. Let the notations be as above and suppose that S is the exact set of primes

of F' above fy ---{,.00.

1. (m =1) The tower {R,,} defined above stabilizes.

2. (m >2) Let ad(p) be the (m* — 1)-dimensional adjoint representation of p and suppose
that

m2—1
ad(p) = @ &
i=1

for some characters & : G — F*. Also suppose that (F*) % /Q is abelian for all i.
Then, the tower {R,} stabilizes.

Note 1.0.6. There are a plenty of instances that ad(p) is of the form above and yet p is
absolutely irreducible. See Corollary 6.1.3.



This thesis is organized as follows.

In Chapter 2, we review the basic properties of universal deformation rings and study the

tower of universal deformation rings.

In Chapter 3, we give the explicit form of universal deformation rings in 1-dimensional case,

and prove the stabilization of the tower.

In Chapter 4, we prove a key lemma (Lemma 4.2.5) which gives an equivalence condition

with stabilization of the tower of universal deformation rings.

In Chapter 5, we use the key lemma to prove (Theorem 5.1.6) a criterion for stabilization
in the case m = 2. This is used (Theorem 5.2.4) to show stabilization of certain towers of

p-ordinary universal deformation rings.

In Chapter 6, we return to the general m-dimensional case. A stabilization result (Theorem

6.2.1) is obtained by an argument similar to the one used for Theorem 5.1.6.



CHAPTER 2

Universal Deformation Rings

2.1 Notations

We will use the following notations throughout the thesis unless otherwise stated.

For a number field F', let O be the ring of integers of F'. For a prime v of F, let F,, (resp.
Op,) be the v-completion of F' (resp. Op) and let (7)\F = H Op. Let Ap be the adele ring

of F'and Cp = A5 /F* be the idele class group of F. Let F, = HF“ and F , = I_IFUX,Jr
v|oo v]oo

where F, =R or C and F", =R, = (0,00) or C* depending on v.

Let Clg be the class group of F' and for an ideal 2 of F', let

{ideals of F' prime to 2}
{(a) |« € F, o, =1 mod AOp,, for all v | A}

Clp(2) =

be the ray class group of F' modulo (. In the above definition, 2 could formally contain an
archimedean place v, and in that case a, = 1 means «, is positive. For a principal ideal (a)

with a € F, we write Clp(a) for short instead of Clg((a)).

For a local ring R, we denote mp for the maximal ideal of R. We also denote C'N Lg for the

category of complete noetherian local R-algebras.

For two r-tuples n = (ny,...,n,) and N = (NVy,..., N,) of non-negative integers, we say



n<Nifn, <N;foralli=1,...,r.

2.2 A Tower of Universal Deformation Rings

Let F' be a number field. We fix distinct odd prime ¢ and p. Let F,/F be the cyclotomic
Z-extension such that Gal(F,/F) = Z/("Z for all n > 1 and F, = UF” Let S be the

finite set of primes of F' above ¢ and infinite places, and F* /F be the maximal unramified
extension outside S. Note that G := Gal(F*¥/F) satisfies ®,, and so does the subgroup
G, = Gal(F¥/F,) for all n.

Theorem 2.2.1 (Frobenius reciprocity). Let G be a profinite group and H be an open
subgroup of finite index. Let K be an algebraically closed field and suppose (G : H) is prime
to char(K). If x and p are representations of H and G on K, then

Indf(x) 2 p
as a direct summand with multiplicity m if and only if
P‘H 2 X

with multiplicity m.

Proof. See [Macb1, Theorem 47]. O

Theorem 2.2.2 (Mackey). Let G be a profinite group and H be a normal open subgroup of
finite index. Let p be an absolutely irreducible representation of H. For o € G, we define p°
by p°(h) = p(cho™") for h € H. Then, Ind$, p is absolutely irreducible if and only if p°’s are

disjoint with no common irreducible factors for all o € G.
7



Proof. See [Macb1, Theorem 6’]. O

Lemma 2.2.3. Let G be a profinite group and H be a normal open subgroup of finite index.
Suppose A = G/H is cyclic of order d. We take a representation m : H — GL,,(A) for a

complete noetherian local algebra A and assume the following two conditions.

1. m mod my s absolutely irreducible.

2. Tr(m) = Tr(n%) for all o € G.

Then, m can be extended to a representation of G into GL,,(B) for a local A-algebra B which

is A-free of rank at most d.

Proof. See [H2, Corollary 4.37]. O

Lemma 2.2.4. Let G be a profinite group with a normal subgroup H of finite indexr and K
be a field. Let p: G — GL,,(K) be a representation for some m > 1. If G/H is solvable of

order prime to m, then the absolute irreducibility of p is equivalent to that of p|g.

Proof. Tt suffices to assume that G/H is cyclic of prime power order ¢" for n > 1 and ¢ { m.

The general case can be deduced from induction.

Suppose p is absolutely irreducible but p|g is not. Let p; be one of the absolutely irreducible
direct summand of p|z and let H C G be the stabilizer of p;. Then, p; extends to H' possibly
onto a finite extension K’'/K by the lemma above. Note that p|ys contains the extension
p1 of p1, so H C G. Since G acts on the irreducible factors of p|y transitively, those of

plg are all distinct by the definition of H'. By Mackey’s theorem, Indg, p1 is irreducible.

8



Since p; C p|ar, we have p C Ind%, p; by Frobenius reciprocity. This implies Ind%, p; = p by

irreducibility of p, thus
(| (G: H') | dim(Ind$, py) = dim p = m,

which is a contradiction. O

From the above lemma, if p is absolutely irreducible, then so is p|g, for all n. By Mazur’s
theorem, we have universal couples (R, p,,) for all n where R, = R,(p|c,,W) € CNLy
and p,, : G, = GL,,(R,). For n < N, note that (p,|¢,) mod mg, = p|c,. By universality
of Ry, we get a morphism Ry — R, in C'NLy, thus the following tower of universal

deformation rings.

=
N
1
2

Question 2.2.5. Does the tower of universal deformation rings stabilize, i.e., is there N,

such that Ry = Ry, for all N > Ny?

We consider a slightly more general situation. Let ¢4, ..., ¢, be distinct odd primes different

from p and F' be a number field.



Let F../F be the cyclotomic Zy, X --- X Zy,-extension. For every r-tuple n = (nq,...,n,) of
non-negative integers, there is a unique field F,, such that Gal(F,,/F) = Z/{*Z X - - - X L]0 7

and F, = U F,. Let S be a finite set of primes of F' containing primes above /1, ..., ¢, and in-

finite places? and F®/F be the maximal unramified extension outside S. Let 7 : G — GL,,(F)
be an absolutely irreducible representation, then similarly by the lemma above and Mazur’s
theorem we get universal couples (R, p,) for all r-tuple n = (ny,...,n,) of nonnegative
integers. For two r-tuples n = (ny,...,n,) and N = (Ny,..., N,), we definen < N if n; < N;
for all = 1,...,r. By universality of Ry, we get a morphism Ry — R, in CN Ly and a

tower of universal deformation rings like above. We can ask the same question in this case.

Question 2.2.6. Does the tower of universal deformation rings stabilize, i.e., is there an

r-tuple Ny such that Ry = Ry, for all N > Ny?

Note 2.2.7. The above question has never been studied in the case where the base field is a
number field. In the function field case, however, some general result has been proven by

Bockle-Khare in [BK].

Note 2.2.8. In the above, we started from the cyclotomic Zg, X - -+ X Zy, -extension Fy,/F and
the representation p unramified outside S, which is the exact set of primes of F above /1, ... ¢,
and infinite places. But we can allow p to have ramification outside S by the following
argument. Let p : Gal(Q/F) — GL,,(F) be an absolutely irreducible representation. Let
Ram(p) be the set of primes of F' where p is ramified. Let ¢y, ..., gs be rational primes below
Ram(p)\ S and S’ be the set of primes of F' above {1, ...,¢,,q,...,qs and infinite places. Let
F! JF be the cyclotomic Zg, X « -+ X Zy, X Ly, X -+ X Lg,-extension, then we have F,, C F._.
Let ' = Gal(F¥'/F), then we can regard 7 : G' — GL,,(F) and ask the same stabilization
question for F!_/F and the tower {(R,, p,,)} where n covers (r + s)-tuples of non-negative
integers. If the stabilization of universal deformation rings occurs in F. /F, we would get

the stabilization for the smaller tower F,,/F as well. This argument shows that to prove

10



stabilization of universal deformation rings for any representation p : Gal(Q/F) — GL,,(F)
unramified outside a finite set of primes over any cyclotomic Zy, X - -+ X Zy -extension F,,/F,

it is enough to assume that p is unramified outside primes above ¢4, ..., ¢, and infinite places.

11



CHAPTER 3

1-dimensional Cases

In this chapter we consider 1-dimensional representations and their universal deformation
rings. We will use the explicit forms of universal deformation rings to prove stabilization of a

tower of universal deformation rings.

3.1 Explicit Forms of Universal Deformation Rings

Let F' be a number field and suppose that F//Q is abelian. Let p, ¢y, ..., ¢, be distinct odd
rational primes and let S be the set of primes of F' above /1,..., ¢, and infinite places. Let
F be a finite field of characteristic p. We fix a discrete valuation ring W which is Z,-free
of finite type with maximal ideal my, and F = W/my,. Denote CN Ly, for the category of
complete noetherian local W-algebras with residue field F. The morphisms in CN Ly, are

defined to be local homomorphisms.

We start from a character

p:G—TF~"
for G := Gal(FS/F). Let F,/F be the cyclotomic Zg, X - - - X Zy -extension with F, = U F,
where Gal(F,/F) = Z/(1'7Z x --- X Z[0"Z for each n = (ny,...,n,) € Z3,. Let G, :=
Gal(F*/F,) C G for each n € 7. Unlike the general m-dimensional case, we can get the

explicit forms of universal deformation rings in this case.

12



Theorem 3.1.1. For each r-tuple n = (ny,...,n,) of non-negative integers, let I, , be the
mazimal p-abelian extension of F, inside FS. We define p: G — W by the composition
of p and the Teichmuller lift F* — W*. We also define R, = WI[|Gal(F,,/F,)]] and
p, . Gn — RX by p,(9) = plg)g where G is the class of g € Gy in the quotient group
Cal(F,,/F,) = G,/ Gal(F®/F,,). Then, (Ry,p,) is a universal couple for p|g, .

Proof. Suppose we have A € CN Ly, and a character x : G,, — A™ with y mod m4 = 7lg, -
We can regard p : G — AX by using the structure morphism W>* — A*. Consider

pflx : G, = A*. Since 571X mod my = 1, it assumes values in 1 +my C A*. Since 1 +my

is p-abelian, 571)( factors through the maximal p-abelian quotient Gal(F,, ,/F,).

~—1

G, = Gal(FS/F,) -2 A~

| ]

Gal(F,,/F,) —— 1+my

We define ¢ : R, = W][[Gal(F,,/F,)]] = A as follows. For a € Gal(F,,/F,), choose
h € G, = Gal(F¥/F,) with h = a. Let ¢(a) = (5_lx)(h), then this is well-defined by the

previous argument. We can extend this linearly to R,,. Note that for g € G,,,

~ ~ ~1

(60 p,)(9) = 0(p(9)7) = p(9)0(@) =pl9)p  (9)x(9) = x(9)

by definition. This shows that ¢ o p,, = x and (R,, p,,) is a universal couple. O

13



3.2 Stabilization of a Tower of Universal Deformation Rings

Let n, N be r-tuples of non-negative integers with n < N. By universality, we get a morphism

Onn : Ry — R,. Note that since FixF,,/Fx is p-abelian, we have Fy F,, , C Fiy .

Since Fy/F, is a prime-to-p extension, we have Gal(FyF, ,/Fy) = Gal(F,,/F,). Thus
we have the map Gal(Fy,/Fy) — Gal(FyF,,/Fy) — Gal(F,,/F,) and this induces the
surjective morphism Oy, : Ry = W[[Gal(Fy,/Fn)]] = W([[Gal(F,,/F.)]] = R,. Therefore,
in 1-dimensional cases, we get stabilization of a tower of universal deformation rings if and

only if the size of Gal(F},,/F},) is bounded for n > ny with fixed ny.

Note that the size of Gal(F,,,/F,) is equal to that of p-part of the ray class group of F,,
defined by Clg, ((1°---(;°00). We will use the following lemma to measure the size of p-part

of the class group.

Lemma 3.2.1. The following sequence is exact

I] k.~ Cle, (65 £200) — Cli, (00) — 1
NA

14



for each n > 1 where v covers primes in F,, dividing {1 --- ¢, in the first term.

Proof. We define U(47"---07") = {x € 5F:X |z =1 (mod ¢}"--- ")} for n > 1 and

v=uwr--em= 1] Ok
m V4

fU'M Lyeery T

with primes v in F},. Note that we have a surjection
AFJEXU(R)% s — A, /FXOR (F)%, . = Clr, ()

with kernel H OF, - Since

Ap [EXU(Fa)soq = Im AL JEXU" - - 67)(Fa)oot

r

T

= lim Clp, (6" £"0)

= Clp, (67 - £200),

we get the desired exact sequence. O
Let’s consider the p-part of the exact sequence in the lemma above.

Theorem 3.2.2 (Friedman). Let py,...,ps be distinct prime numbers, k a finite abelian
numpber field, and K the cyclotomic Zy, X - - - X Zy, -extension of k. For N = (ny,...,n,) € 73,
there is a unique field ky such that k C ky C K and [ky : k] = Hp? For a prime {, we

s

15



define e by €e§V||hkN where hy,, is the class number of ky. Then,

1. for 04 py---p,, ey is constant for N > 0,

2. for € = p;, there exist integers \; > 0 and v;, independent of N, such that eX, = X\in; +v;
for N >0,

3. the pi-part of the class group Cly,, is isomorphic to (Qy,/Zy,)™.

Proof. See [Fri82]. O

Since F'/Q is abelian, the size of p-part of Clp, is constant for n > 0 by the theorem above.

Note that since the sizes of
Clp,(00) = A}, [FXO*(Fo)% 4

and

Clp, = A}, [FXO*(F,)}

[e.9]

differ by a power of 2, they have the same p-part.

Now we will prove that the size of p-part of the first term in Lemma 3.2.1 is also bounded for
n > 0. We need to check two things. First, we will show that there are only finitely many
primes in F, dividing ¢4, ..., ¢, so that the number of terms in the product is bounded for
all r-tuples n. Second, we will also prove that the size of p-part of (’);mv is bounded for all n

and v. Both claims are proved as follows.

16



Lemma 3.2.3. Let F' be a number field and (1, ... L. be rational primes. Let F/F be the
cyclotomic Zy, X - -+ X Zy,-extension. Then for any prime in F, there are only finitely many

primes in F.o that divides .

Proof. Let F' = F(pese, prege, - - - 5 o) 2 Fioo. We will prove a stronger result that there are
only finitely many primes in F’ that divides [. Let Dy C Gal(F'/F) be the decomposition
group of . Since the number of primes in F’ over [ equals the index (Gal(F'/F) : Dy), we

need to show that this index is finite.

Suppose [ is above a rational prime ¢ ¢ {¢,...,(.}. Then, Dy C Gal(F'/F) C Ly X XLy
is generated by ¢/ for some f > 1. Since the projection of (¢/) to each component Z; has

infinite order, the index (Gal(F'/F) : Dy) is finite.

Suppose [ is above a rational prime ¢ € {¢y,...,¢,.}, say £ = ¢1. In this case, the inertia at ¢ is
isomorphic to an open subgroup of Z;* and after taking quotient by the inertia of Gal(F"/F),

Dy is generated by a power of £. Thus, the same argument works. O]

Lemma 3.2.4. The size of p-part of O;n,v 18 bounded for all n and v.

Proof. Suppose r = 1 and let £ = ¢;. We can regard the p-part of (’);M as the intersection
Op, » N iy inside the fixed algebraic closure Qy. Note that the residue field of Op, v is Fy for
all n and v. Since there’s a one-to-one correspondence between Op, , N pipee and FyM prypee € F,,

the size of p-part of Op,  is bounded.

Now let r > 2 and choose a prime v in F), such that v | £;. Then the size of p-part of O;H,U

is bounded by that of Fy, (g, . .., feee) N prpee F,, because the residue field of Op, , is

17



contained in Fy, (e, . . . , peee ). We will show that Fy, (peese, . . ., preee ) NFe, (p1p ) C Fy, is finite.

Fo, (preges - - -, pese) Foy (1pe=)

/ FZ1 \
Fo, (prege, -+ s peze) N F oy, (papeo

IF

1

Note that Gal(Fe, (pege, - - - , peze) Ny, (ptpe ) /Fr,) is a subquotient of

Gal(Fe, (pege - - - s pee) [Fey) = Zgy X -+ X Ly,

and is also that of

Gal(Ffl (MP‘”)/Ffl) — Z;

Therefore, Gal(Fy, (ptege, - . - , peee ) NFe, (p1po ) /Fy, ) has to be finite. This shows that the p-part

of O, , is bounded for all n = (ni,...,n,) € Z%, and all primes v | ¢, in F},,. The same
argument works for primes v dividing /5, ..., ¢,. O]

The above two lemmas combined with Lemma 3.2.1 prove the followings.

Proposition 3.2.5. Let F' be an abelian number field and F.,/F be the cyclotomic Z,, X
+ X Ly, -extension. For each n = (ny,...,n,) € 7%, we have an intermediate field F;, such

that Gal(F,/F) = ZJU1'Z x --- X /" 7. Then, the size of p-part of Clg, ({7 - €:°00) is
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bounded for n > 0.

Theorem 3.2.6. Let F' be an abelian number field and F, | F be the cyclotomic Zg, X - - - X Zy, -
extension. Le S be the set of primes of F' above {1 ---{.00. Let F be a finite field of
characteristic p which is different from (1,... (.. Let G = Gal(F®°/F) and

p:G—TF~"

be a character. We fix a discrete valuation ring W which is Z,-free of finite type with residue
field F. Let (R, p,) be the universal couple corresponding to pla, for alln = (ny,...,n,) €
75y where G, = Gal(F*/F,) with Gal(F,/F) = Z/0" 7 x --- x ZJ{™ 7. Then the tower of
universal deformation rings {R,} corresponding to {p|a,} stabilizes, i.c., there is Ny € 7%,

such that for all N > Ny we have Ry = Ry, .

Note 3.2.7. Note that the stabilization may not occur in non-cyclotomic Zy, X --- X Zg,-

extensions since we used Friedman’s theorem which works only for cyclotomic extensions.
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CHAPTER 4

The Key Lemma

In this chapter, we prove a theorem that provides an equivalent condition for the stabilization

of a tower of universal deformation rings.

4.1 Adjoint Representations

We first recall the definition of an adjoint representation.

Definition 4.1.1. Let G be a profinite group and p : G — GL,,(K) be a representation to
a field K. Let G act on M,,(K) by conjugation, i.e., g- A = p(g)Ap(g)~" for A € M,,(K).
We denote M,,(K) by Ad(p) as an m?-dimensional G-module by the G-action defined above.
The trace zero subspace of M,,(K), which has dimension m? — 1, is stable under this action.
We call this m? — 1 dimensional G-module the adjoint representation of p and denote it by

ad(p).

We will write Ad or ad for short when the base representation is obvious.

4.2 The Key Lemma

We start from the following general result regarding the base change of universal deformation

rings.
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Lemma 4.2.1. Let G be a profinite group that satisfies Mazur’s finiteness condition ®, and
let F be a finite field of characteristic p. Let p: G — GL,,(IF) be a continuous representation
and let H < G be a normal open subgroup. Suppose that

1. Pl is absolutely irreducible,
2. the restriction map H'(G,ad) — H'(H,ad) is an isomorphism,

3. the restriction map H*(G,ad) — H*(H,ad) is injective.

Let R = Rg(p,W), Ry = Ry(P|lu, W) be the universal deformation rings. Then the

canonical homomorphism m : Ry — Rg is an isomorphism.

Proof. See [BK, Lemma 2.1]. O

Let F be a number field p, ¢y, ..., ¢, be distinct odd rational primes. Let F./F be the
cyclotomic Zy, X - -+ X Zy,-extension. For each n = (ny,...,n,) € Z;O, we have F,, C F

such that Gal(F,,/F) = Z/{T*Z X --- x /" Z and F., = U F,. Let S be the set of primes

of F above ¢ --- {00 and let F*° /F be the maximal unramified extension outside S. We

define G = Gal(F®/F), Go = Gal(F®/F.), and G,, = Gal(F®/F,) < G for each n € 7.

Lemma 4.2.2. Let F be a finite field of characteristic p, and p : G — GL,,,(F) be an abso-
lutely irreducible representation. Suppose that dimp H' (G, ad) is finite. Then, there exists

n € 25, such that

1. the restriction map H'(Gy,ad) — H* (G, ad) is an isomorphism,
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2. the restriction map H*(Gy,ad) — H*(G,,ad) is injective.

for all N > n.

Proof. We first assume that r = 1 and let £ = ¢;. We follow the proof of [BK, Theorem 2.3].

We have the following spectral sequence
EY = H(Gn/Goo, H (G, ad)) = H'™(G,,ad)

for all n. Since the quotient G,,/G has cohomological dimension 1, we get a short exact

sequence

0— EY' o HI - E% -0

for all n. Choose a topological generator v of Gal(F/F) = Z,, then we can rewrite the

above exact sequence by
0— HI NG, ad) /(1 — ") = HI(Gp,ad) — H (Guo,ad)” — 0

for j > 1 where H'™ (G, ad)/(1 —~4"") = H ™ (Gu,ad) /(1 — 4" YHI ™ (G4, ad) for short,
and H;(Gw, ad)'yen is the fixed part of H?(Gu, ad) by the action of (y*") = Gal(Fy/F,) <

Gal(F/F). For given N > n, we consider the following commutative diagram

0 —— HI™ (Gu,ad) /(1= +") —— HI(Gy,ad) —— HI(Gu,ad)” —— 0

I | |

0 —— B (Guoyad)/(1 =7 — HI(Gy,ad) —— H(Gu,ad) — 0
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where ¢ is the inclusion and 7 is induced from 1+~ +~%" +... + fyéN’en. Since ad is finite
of characteristic p # ¢ and H'(G, ad) is finite dimensional, we can choose big enough n so
that 4*" is unipotent as an action on H (G, ad). Considering that the number of summands
in 7 is £, which is prime to p, we can conclude that 7 is an isomorphism for j = 1,2. Also
this tells us that ker(1 — ") = ker((1 — 4" )7) = ker(1 — 4", thus ¢ is also an isomorphism
for j = 1.

This proves that the restriction map in the middle is an isomorphism for 7 = 1 and is an

injection for j = 2.

For the general case of r > 2, we can take a topological generator v of Gal(F/F) =

Zy, X -+ X Zy, and we can construct the same commutative diagram as above. The number
of summands in 7 is then the product of powers of ¢, ..., /., which is still prime to p. So the
same proof works in general. O]

The two lemmas above and Lemma 2.2.4 prove the following.

Proposition 4.2.3. Let F' be a number field and p, l1, ..., L, be distinct odd rational primes.
Let Foo /| F be the cyclotomic Zy, X -+ X Zy,-extension with F,, = UF” where Gal(F, /F) =
ZITL X - X LT for no= (na,...,n,) € Z5,. Let S be the set of primes of F above
(y---L.00. Let F be a finite field of characteristic p and p : Gal(F°/F) — GL,,(F) be an
absolutely irreducible representation for m > 1. Then, we get a tower of universal deformation
rings {R,} associated with {p|ca(rs,/r,)}. Suppose that dimg HY (G, ad) is finite. Then,
there exists Ny € 25y such that the canonical homomorphism Ry — Ry, is an isomorphism

for all N > Ny, i.e., the tower of universal deformation rings {R,} stabilizes.

In fact, we can also prove that the assumption we used is actually an equivalent condition for

stabilization of a tower of universal deformation rings. Recall that each universal deformation
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ring R, is in C'N Ly, for fixed W.

Lemma 4.2.4. For a universal deformation ring R,,, we define
tR,w = Hom]p(t}}in/w, IF)
where th, = mpg, /(Mm% +my). Then, we have
tr,w = HY(G,,ad)

for all n. The space tg,w is called the tangent space of Spec(Ry,)w at my .

Proof. See [H2, Lemma 2.29). O

Lemma 4.2.5. We use the same notations as above. Let F be a finite field of characteristic
p and p: G — GL,,(F) be an absolutely irreducible representation. Then, the followings are

equivalent.

1. dimp H* (G, ad) is finite.

2. The tower of universal deformation rings {R,} stabilize.

Proof. By the proposition above, the first statement implies the second one. Conversely,
suppose that the tower of universal deformation rings { R,,} stabilize, i.e., there is Ny € Z%,

such that Ry = Ry, for all N > Ny. Then, we have

HI(GN,CLd) = tRN/W = tRn/W = Hl(Gn, CLd)
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by the lemma above. Note that any cocycle 0 € H'(G,ad) extends to G,, for some n

because G is discrete and ad is finite. Thus we have
HY(Goo, ad) = liﬂHl(Gn, ad) = H' (G y,,ad),

by the assumption. Note that Ry, is noetherian because G, satisfies @, (See [H2, Proposition

2.30].) Thus, H'(Goo, ad) = H' (G, ad) = tgy sw is finite dimensional. O
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CHAPTER 5

2-dimensional Cases

In this chapter, we will show that we get the stabilization of a tower of universal deformation
rings if we start from an induced representation with certain conditions. We use the same

notation as in previous chapters unless stated otherwise.

5.1 Stabilization of a Tower of Universal Deformation Rings

Let K, F' be number fields with [K : F| =2 and p, ¢4, ..., ¢, be distinct rational primes. Let
F be a finite field of characteristic p and ¢ : Gal(Q/K) — F* be a continuous character.

Then, we consider the representation
p=1Indf ¢ : Gal(Q/F) — GLy(F)

induced from ¢. We assume that p is absolutely irreducible. Let S be the set of primes
of F' over {;---{.00 and suppose that p is unramified outside S. Thus we can regard

7: Gal(FS/F) — GLy(F).

Let F/F be the cyclotomic Z;, x --- X Zy,-extension, then for each n = (ny,...,n,) € Z%,
we have an intermediate field F,, with Gal(F,/F) = Z/{*Z x --- x Z/{77Z. Define
G, = Gal(F*/F,), then we get universal couples (R, p,,) from p|q, for each n by Lemma

2.2.4 and Mazur’s theorem.
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Definition 5.1.1. We define ¢ by

¢ (9) = d(g)d(cge™)

for ¢ € Gal(Q/F) inducing a nontrivial automorphism on K.

Lemma 5.1.2. If the character ¢ defined above has order 2, then it has an extension

¢ :Gal(Q/F) — F* which also has order 2.

Proof. Since ¢ has order 2, it is Gal(K/F)-invariant. Thus, it extends to Gal(Q/F)
by [H2, Corollary 4.37]. The coefficient field of the extension is intact as the induced

representation is dihedral modulo center. Since Gal(@ker(ad(p)) /F) is dihedral of order 4, there

is no element of order 4. This proves that ¢ has to be quadratic. O

Lemma 5.1.3. For p and ¢ defined above, suppose that ¢ has order 2. Then we have

ad(p) = ad(Ind ¢) = x Do ® P x

r)

where x 1s the quadratic character defined by the symbol (

Proof. Let G = Gal(Q/F) and H = Gal(Q/K) < G. We realize p = Indk(¢) as a 2 x 2
diagonal matrix with diagonal entries ¢ and 51 when restricted to H. We choose an element
s € G\ H inducing a non-trivial automorphism of F' as an anti-diagonal matrix. This follows
from the matrix form of induced representation, i.e., an element in p(G) is diagonal and an
element in p(G \ H) is anti-diagonal. Let G act on My(F) by conjugation from p. Let D
(resp. A) be the subspace of diagonal (resp. anti-diagonal) matrices in My(F). By the above

shape, we can see that D and A are stable under the conjugate action of p on Ms(F). We can
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further decompose D as a direct sum of S and S” where S is the subspace of scalar matrices

and S’ is that of matrices of the form diag(a, —a) for a € F.

My(F)=D®dA=SadS5 dA.

It is easy to see that the conjugation by p acts as trivial on S and as y on S’. Let N+t
(resp. N7) be the upper-nilpotent subspace (resp. the lower-nilpotent subspace) in A. The
conjugation by 7 interchanges these two subspaces. The subgroup H acts on NT by ¢

while it acts on N~ by (¢ )~'. This shows that the action of 7 on A is isomorphic to Ind ¢ .

This proves that we have

Ad(p) = Ad(Indk. ¢) =1 @ x © Indk ¢,

and

ad(p) = x ® Indf ¢ .

Also by the previous lemma, ¢ has an extension ¢ and we get

Indy ¢ = 3 o x,

which completes the proof. O]

We will show that dimy H*(G,,, ad(p)) is bounded for n > 0, thus the tower {R,} stabilize
by Lemma 4.2.5. We have

HY(G,ad(p) = H (G x) @ HNGoo& ) @ H' (G )

by the above lemma. Let ¢ € {x,¢ ,¢ x}. For each ¢ : G, — F*, we define a finite
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extension F$/F), so that ker & = Gal(F*/F%).

Theorem 5.1.4 (Inflation-restriction sequence). Let G be a group, H a normal subgroup of

G and A an abelian G-group. Then we have the following exact sequence.
0— HYG/H,A") - HYG,A) — H'(H, A" — H*(G/H, A") - H*(G, A)

where A" = HO(H, A) for an H-group A.

We will apply the theorem above to G = Gal(F°/F,), H = Gal(F°/F%) and a G-group
A =T =T(¢) defined by the action of GG, on F by £&. We get the following exact sequence

0 — H'(im¢, FOIF/ED) o Y (Gal(FS/F,),F) — HY(Gal(FS/FS), F)m¢

2 (im¢, FGal(FS/Fﬁ))

from the theorem where im ¢ = Gal(F$/F,) = G/H. Since |[im¢| is prime to p and |F| is a

power of p, we get

This shows

HY(G,,&) = HY (Gal(F®°/F,),F) = H'(Gal(F®°/F$),F)™¢

by exactness of the sequence. Note that the action of Gal(F°/F¢) on F is trivial by definition
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of FS. Thus, we get

HY(Gal(F®/F%),F) = Hom(Gal(F*/F%),F).
Since F¥ = (F%)¥ and F is a p-group, we get

[Hom(Gal(F*/Fy), F)| = |Clpe (67 -+ £2700), |

where Clpe (€7 -+ £°00), is the maximal p-quotient of Cly¢(£7°---£°00). Note that FS =
FEF, for all n, thus FS /F¢ is also a cyclotomic Z,, x --- x Z, -extension. Suppose that
F¢/Q is abelian for all £ € {x,¢ ,¢ x}.

Lemma 5.1.5. dimy H'(G,,, &) is bounded for n > 0.

Proof. By Proposition 3.2.5, the size |Cly¢(€7° -+ £°00),| is bounded for n > 0. Since

[H' (G, €)] = [HN(Gal(F®/F), F)™¢| < |[H (Gal(F*/Fy),F)| = |Clye (652 £2700),,
we get the desired result. O
Theorem 5.1.6. Let K, F, p = Ind% ¢ : Gal(F®/F) — GLy(F) be as defined above. Suppose

that ¢ has order 2 and F¢ is abelian over Q for ¢ = x, ¢ ,é x. Then the tower of universal
deformation rings {R,} defined on Fy,/F stabilize.

Proof. By Lemma 5.1.3 and Lemma 5.1.5,

dimg H'(Gpoad) = Y dimg H'(G,,,€)
celxd b X
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is bounded for n >> 0. Now we use the fact that H' (G, ad) = ling(Gn, ad) and apply
Lemma 4.2.5. ! O]

5.2 p-ordinary Cases

In this section, we will allow our starting representation p and deformations of it to have
ramification at p and consider p-ordinary universal deformation rings instead of full universal

deformation rings. We will start by reviewing basic definitions first.

5.2.1 p-ordinary Universal Deformation Rings

Let F be an abelian number field and p, ¢4, ..., ¢, be distinct odd rational primes. Let S
be the set of primes of F' above pl; - - - £,00. We start from an absolutely irreducible Galois
representation

p: Gal(F®/F) — GLy(F)

for some finite field I of characteristic p. Note that unlike the case in the previous section, we
allow p to have ramification at p. We fix a discrete valuation ring W finite free over Z, with
W/my, = F and consider the category of complete noetherian local W-algebras C'N Ly,. For
each A € CN Ly, we consider deformations p : Gal(F®/F) — GLy(A) with pmod my =5
satisfying

€ X
(ord) p|p, = ’ 5 with 0, unramified, e, ramified, and €, ramified
p

where D, is the decomposition group at a prime p of F' above p.

Definition 5.2.1. We call a deformation p : Gal(F*°/F) — GLy(A) of 7 p-ordinary if it

satisfies (ord) for p | p.
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Theorem 5.2.2 (Mazur). Consider the functor ]:grd : CN Ly — Sets defined by
]-"grd(A) = {p: Gal(F®/F) — GLy(A) | pmod m, = p,p satisfies (ord)}/ ~

for A € CNLy,. Then, this functor is representable and we have a universal couple (R, p™ -
Gal(F®/F) — GLy(RY)) in the sense that for p € fgrd(A) there exists a unique morphism
Gp - R — A in CN Ly such that ¢p 0 P~ p.

Proof. See [H2, Theorem 3.30]. O

The ring R°™ in the theorem above is called a p-ordinary universal deformation ring. The
Calois group G := Gal(F*/F) acts on M,(F) by conjugation and the trace zero subspace is
stable under this action. We call this Galois module of dimension 3 the adjoint representation

ad(p) of p. We will write ad(p) by ad for short. We fix a prime p of F' above p.

The underlying space

V =V(ad) ={T € Endp(V (p)) | tr(T) = 0}
has a three-step filtration 0 C V;f CV,” €V where

Vy (ad) = {T € V(ad) | T(Vi(ep)) € Vi(ep)}

and

V,"(ad) ={T €V, (ad) | T(V;(e,)) = 0}.

32



€ *
We take a base of V(p) so that p|p, = ’ , then we have

inside M;(F). We define the adjoint Selmer group Selg(ad) by

Selp(ad) = ker | HY(G,ad) = l_IH1 (Dp7 %) ;
plp P

and H' (G, ad) := Selg(ad) C H' (G, ad).

O

Let F,,/F be the cyclotomic Zg, X --- X Zy -extension, then similarly we have universal

couples (R, p°) for each n € 7%y and a tower of p-ordinary universal deformation rings

{R°"*}. We can ask the same question as before.

Question 5.2.3. Does the tower of p-ordinary universal deformation rings { R} stabilize?

5.2.2 Stabilization of a Tower of p-ordinary Universal Deformation Rings

We follow the same notation as in the previous section.

Let G = Gal(F®/F) and define A = F[X]/[X?] € CNLy. We write ¢ for the class [X] € A
so that A = Fle] and €* = 0. We fix a deformation p : G — GLy(Fe]) where p mod mg(j = p.
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Write p = p & u)e for u), : G — My(F). Define u, = u,p " with u,(g) = ) , then

we get tr(u,) = 0 because

) 1+ae  be
1 =det(pp ") = det =1+ (a+d)e
ce 1+4de

gives a +d = 0. Thus, we can regard u, : G — ad.

Let g, h € G, then we have

p(gh) +u,(gh)e = p(gh)

thus

This shows

u,(gh) = u,(gh)p(gh)™
= (p(g)u,(h)p(g) " p(h) " +u,(9)p(g) "

= gup(h) + up(ﬂ);

ie., u,: G — adis a 1-cocycle.

Conversely, starting from a cocycle u : G — ad, we can reverse the steps to get p: G —

GLy(F[e]) such that u = u,,.
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Let K, F' be number fields with [K : F] = 2. We consider an induced representation
p=Indk ¢ : Gal(F®/F) — GLy(F)
from a character ¢ of Gal(Q/K). Suppose p is p-ordinary. Note that we have
HY(G, ad) = H(G.x) © H'(G,3 ) ® H'(G, v)

—~

where y, ¢ are defined as in the previous section.

01
Note that we have an element ¢ € G with p(c) = . Since c acts as 1 on the subspace
10
T , 0y :
while ¢ acts as —1 on the subspace as an action of G on ad, we
xz 0 —y 0

have the following decomposition of trace-zero subspace of My (IF)

0 vy

D

c —a 0 —a z 0 —y 0

where the action of G on each component on the right-hand side coincides with the characters

X,® ,¢ X respectively. (See the proof of Lemma 5.1.3.)

For a 1-cocycle u € H'(G, ad), we have

kS
u| Iy =
0 0
because p-ordinarity assumption shows (2, 2)-component of the above matrix is zero and the

fact that tr(u) = 0 shows (1, 1)-component is zero as well. By comparing this shape with the

decomposition of ad above, we can conclude that each component must be zero, i.e., u|;, = 0.
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Theorem 5.2.4. Let the notations same as above. Let F, | F be the cyclotomic Zg, X+ -+ X Zy, -
extension and {R°™} be the tower of p-ordinary universal deformatzon rings associated to
p over Fy/F. Suppose that F* are abelian over Q for € € {x,¢ ,¢ x}. Then the tower
{R Y} stabilizes.

—~

Proof. Let S C S be the set of primes of F' above £, - --£,00. For each £ € {x,¢ ,¢ x}, we

have

Holrd(G7 ad) = ngd(Gal(FS,/F)7 ad)

since any cocycle u € H'(G,ad) is unramified at p by the above argument. By The-
orem 5.1.6, we know that dimg H*(Gal(F?' /F,),ad) is bounded for n > 0, thus so is
(Gal(E?'/F,), ad). This shows dimg H.
(G, ad) is finite. O

dimp H, G, ad) is also bounded for n > 0, thus
ord

ord

Note 5.2.5. Note that without assuming p-ordinarity, the tower of full universal deformation

rings could grow indefinitely when we allow ramification at p.
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CHAPTER 6
General m-dimensional Cases

In this chapter, we will start from an m-dimensional representation induced from a character
just like in 2-dimensional case. We will need to impose certain conditions on the induced
representation to have stabilization of a tower of universal deformation rings. We use the

same notation as in previous chapters unless stated otherwise.

6.1 Induced Representations

We start the section by the following lemma.

Lemma 6.1.1. Let G be a profinite group and H be a normal subgroup with cyclic quotient
G/H. Suppose A := G/H is of order m. Let o € A be a generator. For a character
¢: H = py, of order m and 7 € A, we define ¢" : H — i, by

¢"(h) = o(Th7 ")

for h € H and T € G with projected image 7 € A. Then, we have
m—1 _
Ad(Indf ¢) = @) Indf; ¢~
i=0

where <b"i’1 = ¢"i¢’1.
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m—1

Proof. Since Ind$ ¢|y = @ ¢°", we have

=0

m—1

Ad(Ind§ ¢)lw = P "~
i,j=0
On the other hand, we have
m—1 ) m—1 _ )
Dind o =
i=0 i,j=0
m—1 _ _
= P ¢ = Ad(nd§ 6) |
i,j=0

since (i,7) — (i 4+ j,j) gives an automorphism of (Z/mZ)?. This shows Ad(Ind% ¢) and

m—1

@ Ind$ ¢”' ! have the same trace on H, and also on G \ H as they are both zero. Since
i=0
the traces of two representations match on GG, they agree on G as well. O]

Proposition 6.1.2. Let M/F be a cyclic extension of degree m > 1 with (o) = Gal(M/F).
Let ¢ : Gal(Q/M) — 1,(Q) be a character of order m such that Q" = M = MF with
F'/F cyclic of order m which is disjoint from M/F, and Gal(M'/F) = Z/mZ x Z/mZ.
Then, there exists a finite order character ¢ of Gal(Q/M) such that € = ¢° . Also Indk, ¢

s absolutely irreducible.

Proof. Since we have £7 = &, £ extends to a character E: Gal(Q/F) — um2(Q) by [H2,
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Corollary 4.37]. Note that & has order m because Gal(M'/F) = (Z/mZ)?. Then for z € A},

we have

£(x) = (o Nygyp)(z) = E(za” - 27" ) = €(z)™ =1

if we regard € as a character of AZ. This shows £|¢, = 1 for the idele class group Cp = A5/ F*
of F. Note that we have Cr = ker(c — 1 : Cyy — C)) by Hilbert’s theorem 90. Since
¢ vanishes on CF, it factors through im(c — 1 : Cy; — C)y), thus extends to a character

¢ of Oy such that ¢7 1 = ¢, We can regard ¢ as a character of Gal(Q/M) by class field theory.

Since ¢° = ¢¢ and € is fixed by o, we can show that (b"i = £'¢ by induction. This shows
that gb"i are all distinct for i = 0,...,m — 1 because £ has order m. By [Mac51, Theorem 6],

Ind}; ¢ is absolutely irreducible. O

The lemma and the proposition above prove the following.

Corollary 6.1.3. Under the same notation in the above, we have

m—1
Ad(Ind}; ¢) = P &x7

4,7=0

for the character x : Gal(Q/F) — i, such that ker y = Gal(M/F).

Note 6.1.4. Note that Lemma 5.1.3 is a special case of the above corollary.

6.2 Stabilization of a Tower of Universal Deformation Rings

We use the same notations as in Proposition 6.1.2. Let I be a finite field of characteristic p

with (p,m) = 1 which is big enough so that can regard the characters £ and ¢ defined above
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to have values in F*.

Let ¢q,...,¢, be distinct odd rational primes such that (¢;--- /., pm) = 1. Let S be the set

of primes of F' above ¢y - - - {,00. We start from the induced representation
p=Ind}, ¢ : Gal(F°/F) — GL,,(F)

defined in Proposition 6.1.2. We consider the cyclotomic Zy, X --- X Zy, -extension F.,/F and
the tower of universal deformation rings { R, } for n € ZZ,. Note that by Lemma 2.2.4 and

Proposition 6.1.2, universal deformation rings R,, exist for all n.

Theorem 6.2.1. Let p: Gal(F®/F) — GL,,(F) be defined as above and assume that M'/Q

is abelian. Then, the tower of universal deformation rings {R,} stabilizes.

Proof. Since ad(p) C Ad(p), we can write ad as a direct sum of m* — 1 characters by Corollary

6.1.3. Then, the proof is similar to that of Theorem 5.1.6.

Note that you can regard M’ as a composite of two Z/mZ-extensions defined by characters 8
and x each. Thus by assuming M’'/Q is abelian, it implies that the splitting fields F¢ and
FX of E and y are abelian over Q. Thus, so is F' €X' for all 1, 7. This shows that we can apply
the proof of Theorem 5.1.6 similarly. O

Note 6.2.2. Once we have a suitable definition of p-ordinarity in m-dimensional case, we
could prove the stabilization of the tower of p-ordinary universal deformation rings from a m-
dimensional representation by using similar arguments in Section 5.2 by using decomposition

of ad by m? — 1 components.
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