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ABSTRACT OF THE DISSERTATION

Modeling and Optimization of Accelerator-Rich Architectures

for Near Data Processing

by

Nazanin Farahpour

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2020

Professor Glenn Reinman, Chair

The exponential growth of the dataset size demanded by modern big data applications requires

innovative server architecture design for data centers. A server workload comprise of a diverse

set of data-intensive and compute-intensive applications. These applications often interact

with in-memory or in-storage datasets and their throughput is crucial to the user experience.

But today’s commodity hardware solutions which serve such applications, often follow a

compute-centric approach which lacks the adequate interconnection bandwidth for many of

these use-cases and leads to substantial data transfer latency and energy consumption. One

promising solution has been to offload part of the computation closer to the data medium.

Various Near data processing (NDP) techniques, while targeting data at different levels of

the memory hierarchy, share common benefits: higher aggregate bandwidth, concurrency in

access and mitigating the energy cost of moving data.

While prior work have shown many benefits of NDP accelerators, they have not solved

three of the main challenges: 1) Existing NDP accelerators are mostly early-stage prototypes

with limited capability of system configuration. Thus, researchers lack a practical way to

explore the design space and show the benefits of NDP techniques under different system

parameters and applications. 2) Focusing solely on one level of the memory hierarchy (one

of cache, main memory or storage) cannot provide a satisfying solution for the data center

servers which serve a diverse range of applications. A good understanding of application
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characteristics and exploring their suitability for NDP acceleration is missing. 3) It is common

to have variation in compute and memory requirements, even within different execution

phases of a single application. Thus, a single application could benefit from the collaboration

of different NDP accelerators, but the collective benefits has not been explored.

In this dissertation, We try to address these three challenges, by presenting a multi-level

acceleration platform that combines on-chip, near-memory and near-storage accelerators,

spanning all levels of the conventional memory hierarchy. Our simulation platform features

compute levels with adjustable memory/accelerator parameters, thus offering a broad spectrum

of acceleration options. To enable effective acceleration on various application pipelines, we

propose a holistic approach to coordinate between the compute levels, reducing inter-level

data access interference and asynchronous task flow control. To minimize the programming

efforts of using the platform, a uniform programming interface is designed to decouple the

configuration from the user application source code and allow runtime adjustments without

modifying the deployed application. We use our simulation platform to quantify the collective

performance and energy benefits of NDP in all levels of the memory hierarchy. We also

present an in-depth study of workload characteristics on various class of applications including

visual retrieval, database, finance and security to demonstrate that a proper application

mapping could avoid unnecessary data movements and achieve significant improvements to

performance and energy efficiency.
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CHAPTER 1

Introduction

Energy consumption has always been a major concern in designing systems from mobile

devices to servers in a data center. But, the recent growth in cloud computing and the advent

of hyper-scale data centers have made energy consumption an even more pressing issue. The

unprecedented amount of data being generated by people and IoT devices, are constantly

transferred, analyzed and maintained in these facilities. By 2020, data center electricity

consumption in US is projected to be around 140 billion KW-hours annually, the equivalent

annual output of 50 power plants [4].

As general-purpose multi-core scaling cannot be sustained due to the end of Dennard

scaling, industry-leading companies are incorporating specialized hardware accelerators into

their servers. Thus, the research on accelerator-rich architectures and general-purpose

accelerators are rapidly growing. There are several types of accelerators that are used in

data centers today such as ASICs (Application Specific Integrated Circuits), GPUs (Graphics

Processing Units) and FPGAs (Field Programmable Gate Arrays).

In particular, FPGAs have shown great potential in performance/energy efficiency of

clusters and data centers. Amazon has deployed F1 compute instances in its Elastic Compute

Cloud (EC2) [5]. F1 instances could feature multiple FPGAs and used for time-sensitive

cloud services. Microsoft’s Catapult [6] is another example of an FPGA system built for

accelerating large-scale workloads such as search engine and neural network. Since the

acquisition of Altera [7], Intel has introduced various CPU-FPGA acceleration platforms

(AgileX [8], XeonSP [9]) that connect the xeon processor and FPGA fabric in the same

package through a cache-coherent interface. Xilinx have also shifted their priority to data

center market and introduced Xilinx Versal ACAP [10] as an on-chip accelerator.
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Figure 1.1: Global data center traffic forecast (2016-2021) [1]

Despite energy efficiency of accelerators, a major contributor to the overall server energy

consumption is the off-chip memory hierarchy (40-50%) [11]. Figure 1.1 shows the estimated

global data center traffic for 2016-2021 [1]. The data is divided into four categories:

• Data center to user: Traffic that flows from the data center to end users through the

Internet or IP WAN (e.g. Web, email, streaming video).

• Data center to data: Traffic that flows from data center to data center (e.g. moving

data between clouds, or copying content to multiple data centers as part of a content

distribution network).

• Within data center: Traffic that remains within the data center, excludes traffic within

the rack (e.g. reading and writing data to storage, moving data from a development

environment to a production).

• the rack-local traffic: traffic that remains within a given server rack. Rack-local traffic

is approximately twice the size of the “within data center” volume.

The figure 1.1 shows that more than 90% of traffic is remaining local to the data center

2



and mostly comprise of read/write accesses to the storage. Data movement dominates the

energy consumption in today’s servers and it will continue to do so unless we change the

traditional compute-centric server model to a more data-centric one. In compute-centric

architectures, there are three major problems with memory and storage subsystem:

1. Slow scaling of chip pin-out and relatively weak memory/IO interfaces which

provide insufficient bandwidth for data movement. For instance in a typical DRAM, there

is often a reduction in available bandwidth of six orders of magnitude between the sense

amplifiers in RAS/CAS and the CPU edge. The same problem exist in storage level as well.

2. The lack of access concurrency across memory and IO interfaces, which degrades

the overall system throughput. The physical mismatch between internal and external

bandwidth of the disk, as well as the lack of access concurrency in the host file system

prevents the server from fully utilizing the disk performance.

3. Energy cost of moving data. Figure 1.2 shows how data movement dominates the

energy consumption in modern computing systems. The data is collected from a 20 mm

CMOS processor chip with 28 nm technology [2]. The figure shows that it takes about 20 pJ

to do a double-precision floating point operation such as multiply-accumulate. But it takes

more energy (26 pJ) to move the operands for the same operation for even 1 mm. Reading

and Writing from SRAM takes 50 pJ and accessing off-chip dram take 500 pJ. The reading

and writing from DRAM itself is in order of 1000x more than the arithmetic operation.

In contrast to a compute-centric model, in a data-centric compute model, data resides

in different storage levels within the memory hierarchy and compute engines surround the

data. Thus, compute engines can process the data without the need to move it across the

system. By mitigating the data movement cost, a data-centric system could benefit from

higher aggregate bandwidth and a more parallel access to memory hierarchy.

The potential benefits of data-centric computing have led to renewed research interest in

near data processing (NDP) architectures in recent years. A large number of near-memory

and near-storage accelerator models have been proposed and studied (detailed in chapter 2).

However, there are three main challenges remaining: First, most existing NDP accelerators

3
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Figure 1.2: Energy consumption for a double-precision multiply-accumulate instruction
running on a 28nm CMOS chip (as reported in [2])

are early-stage prototypes, and there is limited NDP devices on the market and they are

bound by a specific system configuration. This makes it harder for researcher to explore the

benefit of NDP systems under different configurations.

Second, there is not a clear understanding of type of applications that could benefit from

these systems. We expect to see heterogeneous server racks with one or more types of NDP

accelerators, being available for the server workload in the future and it is crucial to have a

methodology for accelerator selection.

Third, the interaction of the NDP resources and combining them to accelerate one

application has not been explored. A typical data analytic workload in a server consists

of multiple stages of computation, generally including a data filtering stage followed by a

more detailed analysis of an extracted subset of the data. Unfortunately, a large set of

existing research has focused on NDP solely on one level of the memory hierarchy (cache,

main memory or storage), while disregarding the potential benefits of having multiple NDP

levels for data-intensive application pipelines.
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1.1 Contributions

In this dissertation, we try to address the above challenges with following contributions:

In Chapter 3, we study the impact of near storage acceleration on a server workload, using

a hardware experimental board. We demonstrate that the host-side accelerator scheduling

schemes plays a key role in the performance benefits of near-storage accelerators. But we also

face the first challenge described above: limited system configuration and limited number

of hardware instances. This motivate us to present a cycle-accurate full-system simulation

platform for analyzing various accelerator and their attached memory modules. We extend the

PARADE [3] simulator (described in Section 2.6) to features compute levels with adjustable

memory/accelerator parameters, thus offering a broad spectrum of acceleration options.

In Chapter 4, we introduce ReACH, a multi-level computing platform that combines

on-chip, near-memory and near-storage accelerators, spanning all levels of the conventional

memory hierarchy. The compute hierarchy offers both distributed computational power

which potentially eliminates data movement, and the flexibility to adjust to the compute

and memory requirements of different applications. We propose software and hardware

infrastructure to coordinate between each compute level and managing resources. We use

our extended simulation platform to quantify the collective performance and energy benefits

of NDP in all levels of the memory hierarchy.

In Chapter 5, we characterize the modern data center applications and present a quantita-

tive model to determine when an application is more suitable for each acceleration hierarchy.

We analyze 18 benchmarks from 6 domains and create a guideline for both application

and hardware developers. We demonstrate that a proper application mapping could avoid

unnecessary data movements and achieve higher performance.
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CHAPTER 2

Background and Related Work

2.1 Conventional Server Architecture

Figure 2.1 depicts an example of a modern data center server. Its main components include

one or multiple CPUs, DRAM, PCIe switch, PCIe bus, multiple SSDs and Host/IO interface.

The CPU cores could access multiple SSDs concurrently through Host interface and PCIe

switch. The main limitation of the current server systems is the bandwidth mismatch between

the array of SSDs and the Host interface. The gap increases as we scale the number of SSDs.

Hence, big data applications that interact with large volumes of data resident in storage level

will incur a performance bottleneck.
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Figure 2.1: Conventional server architecture
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Figure 2.2: Memory architecture, the right socket has an imbalanced memory configuration

2.2 Server Memory Architecture

Similar to IO interface, today’s commodity servers have relatively sparse off-chip memory

bandwidth too. Figure 2.2 depicts a typical Xeon-based 2U sized chassis which features 4

memory channel per socket and each channel is shared between up to 3 dual inline memory

modules (DIMMs). The DIMMs on the same channel share the bandwidth to CPU and

increasing the number of DIMMs per channel (DPC) has significant impact on memory

frequency and overall bandwidth. However, performance is sometimes sacrificed for reaching

higher capacity for in-memory databases. Memory controllers decide how to interleave the

data among DIMMs, but usually they interleave the data in cache granularity (64 bytes)

between DIMMs of the same socket and the same row. This way, they improve the off-chip

bandwidth of the main memory to CPU. The right-side socket in Figure 2.2 depicts an

imbalanced DIMM configuration that has a low off-chip bandwidth to CPU. The single

DIMM in the last row of the memory channels has one-way interleave with 25% of the peak

bandwidth. This limitations are part of our motivations to analyze near-memory accelerators.

2.3 SSD Architecture

Figure 2.3 shows the hardware architecture of a modern SSD. Most modern SSDs contain

several packages of NAND flash memory for non-volatile data storage media. Each flash

package can be accessed in parallel and flash chips within the same package can be multiplexed

on the shared channel. Both chip and channel level parallelism allows an SSD to acheive a
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very high internal bandwidth (e.g. 16 GB/s). To communicate with the host system, SSDs

can use NVM Express (NVMe) protocol via the underlying system interconnect, like PCI

Express (PCIe) [12]. One PCIe lane can provide up to 1 GB/s bandwidth. High-end SSDs

commonly use 4 or 8 PCIe Gen.3 lanes [13], which implies that they could obtain about 4

to 8 GB/s of external bandwidth, which is lower than the internal bandwidth. The SSD

employs a large DRAM buffer (2GB) and embedded processors to handle the SSD firmware,

NVMe commands and flash translation layer table. The smallest granularity for accessing

flash memory is one page, which is around 4–16KB. Each NAND flash chip can read data

lower than 10µs [13], but the host side I/O stack latency is over 22µs [14]. This shows that

the latency of host-side I/O stack is the major bottleneck in performance of data-dependent

applications.

2.4 Compute-Centric Acceleration Platforms

2.4.1 PCIe-Attached Private-Memory Accelerators

The most common FPGA integration is to connect an FPGA board equipped with private

memory, to a CPU via PCIe (Figure 2.4a). Amazon EC2 F1 instances [5] and Microsoft

Catapult boards [6] use this way of integration because of its flexibility and easy plug-
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Figure 2.4: Compute-centric platforms

in. While these system offer high performance and energy efficiency for compute-intensive

applications, they are limited by the effective PCIe bandwidth and communication latency

between host CPU and FPGA. Any data transfer would require a PCIe-based direct memory

access from host memory to device private memory. If the data transfer size is small, PCIe

communication incurs significant overhead. These limitation hinder their performance on

real-time applications or application that require a lot of interaction with CPU. They are

best suitable for coarse-grained task which have an initial large payloads data transfers to the

device private memory, followed by data-reuse. The Xilinx Virtex Ultrascale+ FPGA family

have high-end FPGA boards with 346Mb on chip memory and 64GB on board DDR4 DIMM

memory. If a database is small enough to fit in on-chip memory or the on-board DRAM of a

PCIe-attached accelerator, it could significantly benefit from this accelerator. However, most

databases exceed these memory requirements.

2.4.2 Shared-memory On-chip Accelerators

Unlike FPGA DRAM, the host-side DRAM capacity could be much higher than 64 GB. To

leverage the higher memory bandwidth and capacity, a closer server-FPGA integration has

been proposed that couples the CPU and FPGA into a single package and provides a shared

memory, cache-coherent interface to allow seamless data access to CPU cache or memory

without the redundant host to device memory copy or DMA (Figure 2.4b). Recently, Intel
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has introduced two such on-chip FPGA platforms (AgileX [8], XeonSP [9]) that connect the

Xeon processor and FPGA fabric in the same package through a cache-coherent interface.

This is possible thanks to Intel’s Embedded Multi-die Interconnect Bridge (EMIB) and

UltraPath Interconnect (UPI) links that could provide 41.2 GB/s to CPU cache. Xilinx have

also introduced Versal ACAP [10] as an FPGA-based SoC. Versal ACAP connects to host

CPU using Cache Coherent Interconnect for Accelerators (CCIX) link that could achieve up

to 100 GB/s to CPU cache [15]. Moreover, with capability of swapping partial bitstreams

in sub-millisecond, the Versal ACAP could be utilized by multiple real-time applications

simultaneously. However, once the working set exceeds the on-chip cache capacity, the

acceleration is limited by memory access latency and off-chip bandwidth.

2.5 Data-Centric Acceleration Platforms

2.5.1 Near-memory Accelerators

Emerging memory technology and advancements in 3D stacking are considered as the true

enabler of processing close to the memory. The stacking of logic die and memory using

through-silicon via (TSV) allows lower memory access latency and higher bandwidth. High

bandwidth Memory (HBM) [16] from AMD and Hynix, and Samsung’s Wide I/O [17] are

the memory industries competing 3D memory products. The logic die which contains the

dedicated memory controller could encompass simple SIMD cores or an embedded FPGA

chip for data analysis. However, WideIO is used for Mobile SoC systems and HBM is costly

to populate the server memory and replace conventional DDR4. Thus, We focus on near-

memory accelerators for conventional DRAM architecture. Today’s high-end servers have

limited memory channels per socket and multiple DIMMs share the same memory channel

which limits the overall bandwidth to the CPU. Near memory accelerators help to achieve a

lower latency and a higher bandwidth to DIMMs sharing the same memory channel. For

instance, Copacobana [18] builds FPGA modules directly into DIMMs. AIM [19] places FPGA

modules between the DIMM and the memory network, making the design noninvasive to the

existing memory controller, memory bus and DIMMs. Contutto [20] prototypes such idea by
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plugging accelerators in DIMM slots in a POWER8 machine and shows acceleration with

end-to-end experiments. RAMON [21] provide the hardware support for data partitioning at

the memory controller to balance the bandwidth load in heterogeneous systems. Our work is

most similar to AIM (Figure 2.5a). We also use a similar technique to RAMON to reduce

access interference in our compute hierarchy (Chapter 4).

2.5.2 In-Storage Accelerators

In Section 2.1 and 2.3, we discuss two main limitations of the modern storage systems: the

bandwidth gap between Host interface and array of SSDs, and the gap between internal

and external bandwidth of a single SSD. While near-storage accelerators could tackle the

former problem, the solution to latter one is in-storage acceleration. The idea of in-storage

acceleration has recently redrawn considerable attentions [22–25]. This is mainly because

an NVM-based SSD normally has a very high internal bandwidth, exceeding its external

bandwidth to host by factors of 2x to 4x. Therefore, processing data in storage might be able

to achieve a higher performance and save more energy than transferring them all the way

to the host CPU. Most existing work such as SmartSSD [22], Active Disk [23], Biscuit [25]

and Summariser [24] utilize the embedded cores in a modern SSD to avoid data movement.
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However, this embedded cores are not able to saturate the high internal bandwidth of the

storage. To achieve a higher performance, work like Minerva [26] utilize FPGA as in-storage

accelerators. But integrating FPGA into an SSD controller comes with its own challenges:

FPGA chip with limited resource, data fragmentation, interacting with FTL for block address

translation. The near-storage accelerators, on the other hand, are more practical and require

no internal SSD modifications. While our work focus on near-storage acceleration, the

presented techniques and simulation platform can be extended to in-storage accelerators as

well.

2.5.3 Near-Storage Accelerators

Unlike in-storage accelerators, near-storage accelerators are more practical and non-invasive

to existing server architectures. They also integrate better with conventional dis-aggregated

storage servers where front-end computing nodes are separated from network-attached storage

systems. Employing near-storage acceleration offloads the CPU load into array of SSDs

and provides a higher aggregated host interface (or network) bandwidth. Several studies in

NVM-based near-storage accelerators have been reported recently in academia and industry.

Projects such as IBM Netezza [27], Mobiveil [28], Willow [29] and BlueDBM [30] place FPGA

units between the flash controller and the host IO interface, providing reconfigurabity while

avoiding unnecessary energy consumption on data movement. In Chapter 3, we study an

FPGA-based near-storage experimental board (Fig 2.5b).

2.6 Simulation Infrastructure

Studying near-storage accelerators using hardware experimental boards in Chapter 3 gives us a

glimpse into potential of NDP accelerator-rich architectures, but limited accelerator instances

and system configurations makes the design space exploration challenging. Therefore, we

employ a cycle-accurate full-system simulation platform in Chapter 4 as a tool for designing

and modeling our NDP accelerators. Figure 2.6 illustrates the PARADE simulator [3] which

is a cycle-accurate simulator for modeling accelerator-rich architectures, built upon gem5 [31].
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The legacy PARADE simulator introduces the accelerator simulation modules that can be

automatically generated through a high-level synthesis (HLS) description of the accelerator.

Each accelerator in PARADE has a scratchpad-memory (SPM) and Direct-Memory Access

(DMA) module and adopts the three stage accelerator execution model (load-compute-store)

and double-buffering. Moreover, a global accelerator manager (GAM) and light-weight

interrupt is supported to enable efficient interactions between cores and accelerators. A

customized network-on-chip (NoC) is used to loosely couple all the cores, accelerator modules,

LLC and memory interface.

To design a new accelerator, users only need to provide a HLS C description with clock

frequency, pipeline initiation interval and pipeline depth. The automation tool chain in

PARADE will encode the information into an accelerator simulation module. Meanwhile,

a set of software APIs will be generated so that the new accelerator can be invoked from

simulator benchmarks.

After extensive modification in accelerator interface, GAM scheduling and profiling tools,

we extend the legacy PARADE simulator to support metered memory modules. The metered

memory module has configurable characteristics (bandwidth, access latency and granularity)

and can be connected to different ports of the NoC router, similar to Figure 2.7. The

accelerator SPM interface has the option to go through the normal cache hierarchy or
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bypass the cache and interact directly with the attached metered-memory. This way, we

could simulate the behaviour of near-memory and near-storage accelerators. During system

initialization, various accelerator modules get connected to NoC ports and interface with

either L2 cache modules or metered memory. The GAM keeps track of the near-memory and

near-storage ports and distribute the task based on the benchmark description.
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CHAPTER 3

Performance Analysis of FPGA-based Near-Storage

Acceleration

3.1 Introduction

The increasing demand on power-efficient computing in today’s data centers, has sparked a

growing number of CPU-FPGA acceleration platforms that can be reconfigured to accelerate

a broad class of applications with orders-of-magnitude performance/watt gains. Attaching

FPGAs as an IO-attached accelerator (section 2.4.1) is the most conventional way to deploy

accelerators in the systems, especially for compute-intensive applications in which the CPUs

are the bottleneck of these systems. While performance gain and energy efficiency of these

architectures are promising, their applicability is constrained by the working set size not

exceeding the accelerator’s private DRAM capacity.

A typical server workload could comprise a diverse set of compute- and data-intensive

applications [32]. These applications often interact with in-memory or in-storage datasets and

their throughput is crucial to the user experience. The benefits of conventional accelerators

are limited by the efficiency of data movement in the IO stack. For this reason, server

architects are proposing a more data-centric acceleration scheme by moving the compute

elements closer to the data. In this work, we employ a near-storage accelerator to study the

impact of near data processing on server workloads.

We use a near-SSD FPGA experimental board provided by our industry collaborators. 1

We target content-based image retrieval (CBIR) as a proof-of-concept application where

1The experimental board is provided by Memory Solutions Lab, Samsung Semiconductor INC.
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Figure 3.1: (1) Data flow in OpenCL framework and (2) Revised data flow in near-SSD
platform with P2P connection of SSD to FPGA’s device DRAM

moving computation closer to data is vitally important. We analyze the bottleneck of CBIR

application and the performance of near-storage acceleration platform. We also discuss what

is the best way to schedule consecutive accelerator calls on this platform.

3.2 Near-SSD Experimental Board

Our Near-SSD custom board includes a Xilinx VCU1525 FPGA board [33], an NVMe SSD [13],

a PCIex4 connection to host Xeon CPU and a PCIex4 connection to SSD. It also includes an

on-board switch that implements a peer to peer (P2P) connection between FPGA device

DRAM and SSD. The on-board switch is controlled through host application. It allows the

host CPU to access the SSD directly through direct memory access (DMA) requests or have

a P2P connection between SSD and device DRAM.

We used SDAccel development environment and OpenCL framework to implement our

accelerator [33]. Our OpenCL framework is slightly enhanced by Xilinx to include program-

ming interface for P2P connection between device and SSD. Therefore, our custom board is

capable of acting as a general PCIe-attached accelerator as well as a near-storage accelerator.

This behavior could easily be controlled through the host software interface.

Figure 3.1 illustrate the two versions of data flow that is available to our experimental

board through on-chip switch and enhanced OpenCL software interface. In a traditional

OpenCL framework, the data for FPGA processing has to be completely copied from SSD to
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Figure 3.2: The general pipeline of billion-scale CBIR systems. We offload stages 4 and 5 to
near-SSD FPGA.

host DRAM and then to device DRAM. But, in our revised framework, there is no implicit

copying. The data buffer for device DRAM is assigned to a memory-mapped virtual buffer

that is associated with a file in SSD device and during the FPGA processing the data buffer

accesses the storage as needed and bypasses the host DRAM completely.

3.3 Case Study: Content-based Image Retrieval

Content-based image retrieval (CBIR), which identifies relevant images from large-scale image

databases based on the representation of visual content, has attracted increasing attention

in recent two decades. Modern image retrieval systems [34, 35] have to search through

billion-scale databases in several milliseconds to respond to user queries. This imposes strict

demands on the efficiency of the algorithm as well as the underlying system architecture.

17



void find_nearest_neighbors(int neighbor_cells[], float query[], int rows, 
int size, int result[], float dists[], int K)

{ 

float* dataset = new float[rows*size];

struct points* p = new struct points [rows];

load_burst(neighbor_cells,dataset,rows,size);

// computes Euclidean distance of all datapoints from query

for (i = 0; i < rows; i++) {

p[i].ind = i;

p[i].val = Euclidean_dist(dataset + i * size, query, size);

}

// partial-sort all distances while keeping their index

PartialSort(p, 0, K, rows);

// write top-k in the result

for (j = 0; j < K; j++) {

result[j] = p[j].ind;

dists[j] = p[j].val;

}

}

Easy to accelerate 
and scale out

Figure 3.3: The software algorithm for step 4 and 5 of CBIR

A typical billion-scale CBIR system consists of an off-line and an on-line stage. During an

offline stage, CBIR system converts all images into features and clusters them using methods

such as kmeans and kdtree. Each cluster is then represented by a centroid or hierarchy of

centroids. Figure 3.2 illustrates the major steps in online stage of the CBIR system. In the

on-line stage, user query images are batched in the front-end interface ( 1 ) and transformed

into feature vector using the same feature extraction method as in the off-line stage( 2 ).

The indexing structure generated in the off-line stage is leveraged to retrieve a short-list of

candidate feature vectors that are likely to be close to the user query( 3 ). These candidate

vectors are then retrieved from the storage ( 4 ) and are reranked based on their computed

distance to the user query( 5 ). Lastly, the original images corresponding to the k-nearest

feature vectors are retrieved from the database( 6 ). We describe the CBIR stages in more

details in Chapter 4. But in this work, we focus on steps 4 and 5.

The Figure 3.3 shows the high-level function written for this part of the application. The

neighbor cells is the ID short-list of closest centroids to the query. The function first loads

the candidate vectors from storage and then computes their similarity distance and partially

sort the result to find the top K closest vectors. For a billion-scale CBIR system, the feature
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Figure 3.4: The host bandwidth utilization during run time of multi-threaded CBIR

database can be distributed among an array of SSDs and multiple threads can call load burst

function concurrently, causing a contention in host IO-interface. However, the part of the

function in red box is easy to offload to near-storage accelerator and linearly scale out as the

number of SSDs increases.

3.3.1 Software Profiling

In this section, we study whether nearest-neghbor function in Figure 3.3 could saturate the

bandwidth of a single attached SSD. We run a multi-threaded CBIR application on host CPU

(16 threads and 1024 queries). We eliminated the feature extraction part and focus on the rest

of the pipeline. Figure 3.4 illustrates the host IO bandwidth. The initial delay in access to the

storage is due to batch-based short-list retrieval. The figure shows that 16 thread could easily

saturate the host-side bandwidth. The limitation would be worse in case of multiple SSDs.

We offload the nearest-neighbor (KNN) function of the application to near-SSD experimental

board. We also decided that short-list retrieval needs to be accelerated, but we leave the

discussion to Chapter 4.
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3.4 Hardware Accelerator Design

Our KNN application is implemented in C++ and then compiled into binary files using

Vivado High-Level Synthesis (HLS) tool chain. The OpenCL framework is used for writing

the host which includes programming the device, setting the P2P switch, setting arguments

for the kernel, and launching the kernel.

A high-level design of our KNN kernel is depicted in Figure 3.5. We use maximum

bit-width, PE duplication and double-buffering techniques to improve the throughput of

our kernel. The query vector is placed in a shift-register and shared among n processing

elements (PEs). The database vectors are interleaved among multiple block RAMs (BRAMs)

for concurrent access in each cycle. The main difference of the this KNN kernel from previous

implementations is having partial sort functionality. The main reason we could have a

partial sort module is because the CBIR feature vectors have between 64-1024 elements. So,

distance computation can surpass the run time of partial sorting. Thus, sorting could run

concurrent to distance computation of next batch. Our partial sort module receives the

distance values and their indices and every two cycle, push one of them to the top of the sort

queue. There are two arrays of swap modules in the sort queue. In odd cycles, the right-side

swap modules make comparison and in the even cycles, the left-side swap modules make

comparison. Alternatively, we could have two instances of partial sort module that each keep

track of K nearest neighbour. This way we double the throughput of partial sort. In our
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experiment, we use vectors with 128 dimensions and 128 PEs and 2 partial sort modules.

3.5 Evaluation

In this section, we compare the performance of our FPGA kernel under four different conditions

and software execution. We keep the kernel binary file fixed, but we modify the host interface

code to emulate PCIe-attached and near-storage accelerators. For each acceleration option, we

also change the accelerator scheduling scheme between in-order and out-of-order executions.

When we use in-order scheduling, the host will wait until the current kernel execution task is

done, before loading the next chunk of data. The in-order scheduling is useful for applications

with data-dependency (e.g. hash look-up and graph processing) and application like KNN

could always use out-of-order scheduling to overlap the data movement for current query from

SSD with kernel execution of a previous query. But, we wanted to compare both scheduling

schemes. In PCIe-attached version, the candidate points are first loaded from SSD to host

DRAM and then Device DRAM. In Near-SSD version, a virtual buffer is memory-mapped

from SSD to Device DRAM directly.

Figure 3.6 shows the KNN speed-up as we increase the number of queries. The single
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instance of near-storage accelerator has 15× speed-up over software and ∼ 2× over simple

PCIe-attached acceleration. But it has limited performance benefit compared to out-of-order

PCIe-attached acceleration (∼ 15%), because overlapping kernel execution and data movement

masks a portion of the benefits that single-instance near-storage accelerator provides. One

observation from the result is that out-of-order scheduling benefits PCIe-attached acceleration

more than near-storage acceleration, because it could overlap the delay of loading data from

SSD to host DRAM with previous kernel execution. Another observation is that DRAM to

DRAM DMA bandwidth is actually higher than the SSD to DRAM bandwidth. So, in some

cases the PCIe-attached accelerator surpass the speed-up of near-storage accelerator, when

there is locality in the accessed chunks of database.

3.6 Conclusion

With single instance of near-storage accelerator, the performance benefits of KNN kernel is

limited regardless of the kernel scheduling scheme. Because the overhead of host DRAM

to device DRAM data movement is partially overlapped with execution. If we increase the

number of SSDs, near-storage accelerators and the queries, the gap between the performance

of PCIe-attached accelerator and near-storage accelerator will grow. Moreover, the KNN

software execution is only 40%-60% of the overall CBIR execution time and we should consider

accelerating other portions of the application as well. Therefore, in Chapter 4 we introduce

a cycle-accurate simulation platform that could simulate multiple number of near-storage

accelerators and help us study the end-to-end performance of CBIR application.
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CHAPTER 4

ReACH: A Reconfigurable Accelerator Compute

Hierarchy

4.1 Introduction

As power and energy efficiency become the primary motivators in today’s data centers,

industry-leading companies are shifting toward incorporating FPGAs into their servers.

Microsoft and Amazon have pioneered the large-scale deployment of FPGAs in cloud services [5,

6] and nowadays FPGA is becoming an standard component of the cloud infrastructures.

Therefore, it is crucial for server architects to choose the best server-FPGA integration that

matches the server workload, memory/IO requirements and power budget.

A server workload can be comprised of both compute-intensive and memory-bound

applications. In fact, it is common to have variations in compute and memory requirements,

even within different execution phases of a single application. Content-Based Image Retrieval

(CBIR), which identifies relative images from large-scale image databases using visual content,

is one example of such an application [34,35]. A large number of data analytics applications like

CBIR have working sets that span several hundreds of gigabytes of data. These applications

often scan, join, and summarize large volumes of data, and their throughput is crucial to

user experience [36].

As we show later in section 4.6, using conventional CPU-side FPGA acceleration on

these applications would reduce the run time and compute energy, but the total energy

savings would be limited by data movement cost (energy spent on the memory hierarchy and

interconnects). To give an example, Figure 4.11 shows the energy distribution of a CBIR
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system using on-chip FPGA acceleration. The energy breakdown shows that after FPGA

acceleration, 79% of the total remaining energy cost is due to data movement.

Another important limitation in conventional systems is the bandwidth gap between

the host and attached memory/disk modules. Today’s commodity servers have relatively

sparse off-chip memory bandwidth, as well as limited IO interface bandwidth. A typical

Xeon-based, 2U sized chassis features 4 memory channels per socket and each channel is

shared between up to 3 dual inline memory modules (DIMMs). The same problem exist

in the IO interface. The host-side PCIe bandwidth to storage hierarchy is theoretically

16GB/s which downgrades to about 12GB/s due to inefficiency in the host IO software

stack [37]. Since the number of SSD slots in a typical host server could be up to 16 and a

single disk latency and bandwidth is continuously improving, the performance bottleneck is

moving towards the host-side IO interface. The bandwidth gap is even wider in data centers

with dis-aggregated storage servers that communicates volumes of data through the network

between host server and storage servers. These constraints hinder the effectiveness of on-chip

accelerators on communication-bound data analytics workload, where these accelerators are

only suitable to perform part of the work and must coordinate with CPU, memory modules,

IO stack and network interface in the system for data movement.

To overcome these issues, prior studies have proposed deploying accelerators near the data

medium (memory or disk modules) to distribute computation into memory or disk modules

as a way of both exploiting the available internal bandwidth and avoiding the movement

of data across chip boundaries [19, 20, 27, 30, 38, 39]. Unfortunately, a large set of existing

research has solely focused on only one level of the memory hierarchy (cache, main memory

or storage), while disregarding the potential benefits of having multiple levels of near data

processing for communication-bound application pipelines.

In this work, we present ReACH, a reconfigurable accelerator compute hierarchy that

combines on-chip, near-memory, and near-storage accelerators that cross all levels of the

conventional memory hierarchy. Each acceleration hierarchy provides distinct compute and

memory capabilities, offering a broad spectrum of acceleration options. On-chip cache-

coherent accelerators are most suitable for compute-intensive workloads or applications that
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require frequent interactions with the host CPU. Near-memory accelerators are suitable

for parallelizable tasks with a large memory footprint and a high bandwidth requirement.

Near-storage accelerators are suitable for streaming-like applications with simple tasks that

are IO-intensive and heavily rely on storage bandwidth.

To enable effective acceleration on various application pipelines, we propose a hardware-

based global accelerator manager (GAM) that serves as a master to all accelerator hierarchies.

Rather than relying on CPU cores to interact with accelerators directly, ReACH opts for

a more centralized task scheduling and control flow, assuming the accelerators across the

memory hierarchy are coarse-grained and can run for a long time. The hardware and software

co-design of GAM enables programmers to use conventional synchronous programming,

while handling asynchronous task flow in the compute hierarchy. ReACH provides hardware

support for data partitioning to limit the inter-task memory interference and pipelines the

data movement and processing in all levels of the compute hierarchy.

We experimentally deploy a billion-scale content-based image retrieval (CBIR) system

on ReACH. Based on our simulation results, a proper application mapping eliminates data

movement and achieves 4.5× throughput and 51% energy improvements. To show the

flexibility of the compute hierarchy, we further implement two alternative CBIR pipelines in

our platform and evaluate their performance and accuracy. The main contributions of this

paper are:

• Propose a compute hierarchy that combines on-chip, near-memory, and near-storage

accelerators (Section 4.2).

• Design a hardware-based global accelerator manager for coordinating between compute

levels, reducing inter-task memory access interference and providing asynchronous task

flow control (Section 4.2.4).

• Introduce a uniformed library-based programming interface that decouples the user

application from the system configurations of the ReACH for seamless use of the

hierarchy (Section 4.3).
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Figure 4.1: Overview of ReACH

• Demonstrate real-world application examples that could benefit from the hierarchy

and quantify the performance and energy gains based on cycle-accurate simulation

(Section 4.6).

4.2 Overview of ReACH

In this section, we describe the architecture of the ReACH system. While our compute

engines are based on FPGA accelerators, the compute hierarchy is not dependent on a specific

type of accelerator logic: they could, for example, be general-purpose cores, GPUs, ASIC

accelerators, or CGRAs. This work focuses on FPGAs due to their improved performance

per watt ratio versus CPUs and GPUs, since low power is critical for near-memory and

near-storage acceleration where power/thermal constraints are more stringent.

A high-level organization of our compute hierarchy is depicted in Figure 4.1. ReACH

includes multiple cores, an on-chip global accelerator manager (GAM) and reconfigurable

accelerators attached to each level of the memory hierarchy. FPGA modules in each compute

level have their own specific set of resources based on the power/area constraints of the

attached memory level. While on-chip accelerator has the largest area and most resources

(e.g. DSP, FF, BRAM, LUT), near-memory accelerators have to use a more power-efficient
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embedded FPGA module. Even though a single near-memory accelerator is not as powerful

as an on-chip accelerator, the shortcomings are balanced by each DIMM having its own

dedicated near-memory FPGA module. As a result, near-memory accelerators can provide

higher aggregated computation capability and higher aggregated bandwidth from main

memory to accelerators. The near-storage FPGA module has power/thermal constraints

similar to near-memory one, but in addition to an embedded FPGA module, it also requires

a small dedicated DRAM buffer to act as a cache for accelerator parameters, to limit disk

accesses and exploit the parameter’s reuse ratio.

With careful hardware/software co-design in the global accelerator manager (GAM),

ReACH can automatically handle the execution flow in the compute hierarchy and asyn-

chronously pipeline the data transferring and execution between compute levels, while allowing

user to write host applications with traditional synchronous coding style. The detailed descrip-

tion of each compute level and GAM is presented in this section. The software infrastructure

is described in Section 4.3.
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4.2.1 On-chip Accelerator

Figure 4.2 illustrates our on-chip hardware accelerator with CPU cores and GAM, all tied

together with a high-bandwidth network-on-chip (NoC), which provides a cache-coherent

interface between all elements and main memory. To enable closer logical integration to the

host cores, virtual memory capabilities are supported by implementing TLBs and page table

walkers for the accelerator [40].

On-chip FPGA accelerators often have higher clock frequencies and larger area to work

with in order to keep up with the host cores and cache hierarchy, as is the case in Xilinx

Versal ACAP [10]. Therefore, it can achieve high performance improvements by designing

better FPGA kernels and utilizing the high-bandwidth access to cache. However, once the

working set exceeds the on-chip cache capacity, the acceleration is limited by memory access

latency and off-chip bandwidth.

4.2.2 Near-Memory Accelerator

While the performance of on-chip accelerators are bounded by the main memory bandwidth

when data has to be fetched from off-chip, and little locality can be exploited, near-memory

accelerators overcome the limit of narrow memory channels and achieve low-latency and

high-bandwidth memory access by moving the compute engine closer to the main memory.
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Figure 4.4: The throughput gap between the host PCIe bandwidth and the distributed SSD
bandwidth. This gap grows as we scale-up the SSD units in the system.

Our design is based on accelerator-interposed memory (AIM) [19]. As shown in Figure 4.3,

an AIM module is introduced to interface with the memory network and the commodity

DRAM DIMM, making it a noninvasive design to existing components in the system. Each

AIM module contains an embedded FPGA accelerator that can be customized and controlled

by the GAM, an AIMbus interface that allows inter-DIMM communication, a configuration

filter for accelerator commands coming from the memory channel, and a memory access filter

to forward memory responses to local accelerator, remote accelerator via AIMbus or the host

CPU via the memory channel.

This near-memory accelerator is generally treated as a co-processor and executes only

when an application kernel is launched by the host CPU on the AIM module. Once a kernel is

launched, the host memory controller hands over the control of a DIMM to the AIM module

connected to it. The AIM module effectively enforces a closed-row policy when accessing the

DRAM, so that the host memory controller can assume all rows are in precharge state when

the control is handed back. This minimizes the amount of synchronization and data sharing

that takes place between the host CPU and AIM modules, which is vital to the efficiency of

near-memory acceleration.

As DRAMs and the memory channel are typically designed to offer high capacity and
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bandwidth and utilize the large aggregated bandwidth.

low-latency, near-memory accelerators must avoid complex designs to work with the tight

timing and power requirements of the DRAM standard. As a result, the FPGA accelerators

are less powerful than the on-chip ones, but have lower memory access latency and can

achieve higher aggregated bandwidth through parallel processing using multiple instances.

4.2.3 Near-Storage Accelerator

The disk internal bandwidth and latency has improved more than two orders of magnitudes

in recent years and emerging non-volatile memory technologies have the potential to achieve

near-memory bandwidth and latency. However, the host/disk IO interconnect throughput

has not improved at the same rate and the system bottleneck is moved from Disk to IO

interconnect. In an example system shown in Figure 4.4, the internal storage bandwidth

can be as high as 204GB/s with 24 SSDs (solid state disks) attached through PCIe switch,

while the host-side PCIe bandwidth is only 16GB/s. This bandwidth gap becomes even more

substantial as we scale up the SSD units in the system. Therefore, the collective bandwidth

of the array of SSD is underutilized.

Instead of improving the I/O interconnect throughput to bridge the gap, we move compute

engines closer to the storage by connecting an FPGA accelerator to each SSD unit via a local
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PCIe link (Figure 4.5). Figure 4.6 illustrate the internal architecture of our near-storage

accelerator. In addition to the user accelerator function unit (the prgrammable logic, DMA

and SPM units), the FPGA accelerator has a host interface to receive accelerator commands,

an FPGA-SSD interface to transfer data from/to the local SSD unit, and a control logic

that filters the conventional disk access from accelerator commands. The pass-through logic

allows the IO requests intended for the disk to pass with minimal overhead.

Similar to near-memory accelerators, near-storage accelerators are treated as coprocessors

attached to the storage. They are designed to handle an entire computation kernel, eliminating

the need for costly synchronizations with the host CPU. The FPGA chosen here must work

with the cost and power budget of the server with respect to the number of SSD units in

the system. The FPGA requires a private DRAM buffer to limit the number of IO access to

attached storage unit. Near-storage accelerators work best for applications with reduction

operations, where the data size is ideally reduced by orders of magnitude before data is

transferred to the upper levels of the memory hierarchy.

4.2.4 Global Accelerator Manager

To efficiently coordinate between hardware accelerators in the compute hierarchy and free

CPU cores from managing resources, we propose using an on-chip hardware-based global
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accelerator manager (GAM) to 1) receive job requests for accelerators from cores; 2) distribute

tasks within each job to available accelerators; 3) track the tasks currently running or waiting

to run on accelerators, their start time and estimated execution time; 4) initiate data transfers

between dependent tasks; and 5) interrupt the host core when the requested job is completed.

Figure 4.7 shows the micro-architecture of GAM that enables this capability. GAM

features a simple scheduling queue, a progress tracking table, a small buffer table and TLB,

and a status queue interfacing with rest of the system. The ReACH host-side runtime

environment creates a series of job requests according to the job description of the host

application. These job requests are sent to GAM in form of ACC command packets through

the GAM driver ( 7a ). GAM breaks each job into multiple tasks (called task groups) that

may or may not assigned to same compute level. For instance, for a CNN inference job on a

batch of query images, the job request is actually a series of tasks, each associated with one

of the Conv-ReLu, Pool or FCN layers of the CNN model; all tasks in a task group share the

same software thread id, but not necessarily the same target compute level. As an example,

all layers of the inference job could be assigned to on-chip accelerator, or it could be divided

to run all convolution layers using on-chip accelerator and all fully-connected layers using

the near-memory accelerators. Each job goes through the GAM scheduling queue ( 7d ) and

get assigned to their target platform’s dedicated queue and their input/output buffers are
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allocated and their address is stored in the buffer table ( 7c ).

With multiple levels of accelerators, the GAM keeps track of the running accelerators

using a progress table ( 7e ). When a target hardware is set free from previous task, GAM

invokes the next task from the queue by sending the command request to the target hardware.

GAM acts as master to all accelerators and since memory/storage modules cannot send

acknowledgement to GAM upon finishing of a task, it is GAM’s responsibility to send status

request packets ( 7b ) to each running accelerator when the estimated runtime of a task

finishes. If a task is done, the returned status packet will have the memory region address

for the output of the task that could be forwarded to input buffers of all dependent tasks

through DMA requests. If the task is not finished, new wait time value will be updated in

the progress table.

If a job involves multiple compute levels, the GAM breaks the job into tasks to be assigned

to different levels and makes sure results produced by one compute level can be fed to other

levels. For near-memory accelerators, the GAM forces a write back in order to send the input

data that were previously cached to the accelerators in memory. For near-storage accelerators,

the GAM initiates PCIe transfer to send input data to the SSD-attached accelerators.

The GAM enables coarse-grained pipelining between different compute levels by allowing

accelerators at different levels to work on different tasks at the same time. The accelerator

tasks are intentionally designed to be small enough to exploit task-level parallelism but large

enough to amortize the data transfer overhead. Also, the GAM assigns tasks from the next

job to accelerators without waiting for all the tasks in the previous job to complete. This

reduces idle time and improves the pipeline efficiency.

4.3 Programming ReACH

4.3.1 Software Infrastructure

Figure 4.8 presents the software stack of ReACH. To minimize the programming effort of

using the compute hierarchy, a library-based accelerator programming model inspired by [3] is

33



User Application

ACC Libs
ReACH 

API

ReACH Runtime Library User Space

Kernel SpaceGAM Driver
File 

System
FPGA 

Drivers
MC 

manager

ReACH Config 

ACC templates

Figure 4.8: Software stack of ReACH

provided. For any new accelerator, once a compute kernel is carefully designed and generated

for a specific compute level, the FPGA bitstream alongside a kernel-specific driver and data

flow graph would be stored as an accelerator template. The ReACH runtime library

provides a comprehensive set of pre-optimized templates that are ready to deploy on FPGA

devices. The library also has a general accelerator API that shows a uniform view of all

FPGA resources regardless of their compute-level.

Listing 4.1: A Snippet of ReACH Host API (ReACH.h)

enum Level {OnChip , NearMem , NearStor , CPU}

enum StreamType {BroadCast , Collect , Pair}

ReACH::ACC RegisterAcc(string template , Level l)

ReACH::Buffer <typename T> CreateFixedBuffer(string real_path , Level dst ,

int size)

ReACH::Stream <typename T> CreateStream(Level src , Level dst , StreamType

type , int size , int depth)

Listing 4.1 shows a snippet of ReACH host API written in C++. An application developer

could use this API and optimized templates to write a ReACH config file and instantiate

a meta accelerator, consisting of on-chip, near-memory and near-storage accelerators and all

the required buffers and communication streams for it. These APIs enable users to 1) register
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an accelerator at each compute level, 2) create buffers at each level with data initialized from

the file system, and 3) create buffers that can be transferred from source level to destination

level using broadcast (one to all), collect (all to one), and pair (one to one) patterns.

Listing 4.2: ReACH Configuration (config.h)

#include <ReACH.h>

struct ImgData {...};

struct TopK {...};

ReACH::Buffer <float > vgg_param = CreateFixedBuffer("./ vgg16_param", OnChip

, size);

ReACH::Buffer <float > db0 = CreateFixedBuffer("./ feature_db0",NearStor ,

DB0_size);

ReACH::Buffer <float > db1 = CreateFixedBuffer("./ feature_db1",NearStor ,

DB1_size);

ReACH::Stream <ImgData > Input =

CreateStream(CPU , Onchip , Pair , Img_size*Batch , depth);

ReACH::Stream <float > features =

CreateStream(OnChip , NearStor , Broadcast , feat_size*batch , depth);

ReACH::Stream <TopK > Result =

CreateStream(NearStor , CPU , Collect , batch*K*sizeof(int),depth);

ReACH::ACC cnn = RegisterAcc("VGG16 -VU9P", OnChip);

cnn.setArgs(0,Input);

cnn.setArgs(1, vgg_param);

cnn.setArgs(2,Features);

ReACH::ACC knn0 = RegisterAcc("KNN -ZCU9", NearStor);

knn0.setArgs(0,Features);

knn0 ,setArgs(1,db0);

knn0.setArgs(2,Result);

ReACH::ACC knn1 = RegisterAcc("KNN -ZCU9", NearStor);

knn1.setArgs(0,Features);

knn1.setArgs(1,db1);

knn1.setArgs(2,Result);
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Listing 4.2 shows an example config file for ReACH that instantiates a simplified CBIR

meta accelerator using only on-chip and near-storage accelerators. ReACH config file contains

the initial setup of the application for ReACH, such as initialization of physical accelerators

(ReACH:ACC ), allocation of each accelerator’s memory region (ReACH:Buffer) and commu-

nication buffers between compute levels (ReACH::Stream). The main goal in ReACH is to

limit data movement across the hierarchy during runtime of an application pipeline. So, it

is important to formally define the fixed regions of the memory space where data would be

sedentary and regions of the address space to be defined as communication buffer, so the

intermediate result could be stored. The programming style of the config file is similar to

OpenCL standard, where users can create buffers and streams, register accelerators, and

associate the buffers and streams with accelerator kernel arguments.

Listing 4.3: Host Application Accelerator Calls (host.cpp)

#include <config.h>

while (Input.enqueue(new_query_batch)){

cnn.execute(threadId);

Features.broadcast ();

knn0.execute(threadId);

knn1.execute(threadId);

Result.collect ();

// process(Result.dequeue ());

}

Listing 4.3 shows the host code to describe the flow of the application during run time

using accelerator-specific API. Users simply need to call corresponding APIs to execute the

accelerator and initiate the data transfer. We decided to separate ReACH configurations

from the application host source code, because it allows the user application to (1) be as

abstract as possible, (2) be portable across different ReACH systems and (3) allow GAM to

balance the hardware resources during runtime. The ReACH runtime library also contains

a GAM driver and a user interface that can translate the template execute function into

communication packets to be sent to GAM. The kernel synthesis report—which includes
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pipeline initiation interval, depth and iterations, and frequency—is also used to update the

GAM accelerator table with timing estimates of the new kernel. For an arbitrary application

pipeline, the programmer could utilize the APIs to write codes with software pipelining of

accelerators. During runtime of application, the accelerators could be invoked using function

execute from the API. The core would offload the work to GAM to be scheduled for an

available accelerator.

4.3.2 GAM Scheduling

Based on the ReACH config file, the runtime library calls the GAM driver to setup the

memory regions for on-chip and near-memory accelerators. Initially the physical address space

range is shared between CPU, on-chip accelerator and the near-memory accelerators. Since

near-memory accelerators block accesses to the their attached DIMMs during kernel execution

time, GAM reorganizes the memory space between the three components, by modifying the

memory controller (MC) registers. The MCs that are connected to near-memory channels

will divide the data in tile granularity specified by accelerator template, while the MCs that

are connected to CPU/on-chip accelerator will interleave data with cache granularity for

higher aggregated bandwidth to chip. The reorganization and isolation of the memory space

for both compute levels helps decrease the access interference and give both accelerators

their bandwidth requirements. The stream buffer defined for communication between two

compute levels is actually a pair of queues allocated in the memory space of both source and

destination compute levels. If the stream is broadcast type, the destination queue needs to

be duplicated for each accelerator instance of that compute level. If the stream is collect

type, all the source accelerators need to have a copy of the queue. Only GAM could request

enqueue and dequeue operations for the stream buffers.

Figure 4.9 describe what happens in ReACH configuration:

1. ReACH runtime library sends the accelerator templates and buffer descriptions to

GAM.

2. GAM detects the accelerator type and performs corresponding operations.
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(a) On-chip Acc: GAM launches the required kernel into on-chip Acc, update its

table with the acc ID. It also sends DMA requests to load the required data (in

buffers or streams) by on-chip accelerator into DRAM region for CPU, with high

interleaving among channels.

(b) Near-memory Acc: GAM launches kernel into near-memory modules by writing

into configuration filter of the them. It also updates the memory interleaving

based on the tile size of the kernels. Finally, GAM sends DMA requests to load

the required data by near-memory accelerators and divides it between DIMMs; if

the source data of a stream is in cache, GAM further forces the cache write back

to memory.

(c) Near-storage Acc: GAM launches kernel into near-storage modules by a user-

defined NVMe command. It also receives the meta-data of storage files that are

defined as fixed buffers of the accelerator; for those stream data that are in cache

or memory, GAM forces the data write back to storage.

3. After updating the ACC table with empty task queues, GAM acknowledges the CPU

that the data and accelerators are ready to receive tasks.
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Figure 4.10: Content-based image retrieval system pipeline

4.4 Case Study: CBIR Overview

We introduce the CBIR application briefly in Chapter 3. We use CBIR as a target application

where data movement plays a vital role in application performance. In this section, we

describe the stages of CBIR in more details. Figure 4.10 illustrates the application pipeline

with three main kernels.

1. Feature extraction: User query images are first transformed into fixed-length

feature vectors using a pre-trained convolutional neural network (CNN) followed by a PCA

compression. CNN is the most compute-intensive kernel of the pipeline while requiring the

least amount of memory among all steps. So, the on-chip accelerator can potentially achieve

higher performance because 1) it has more resources to exploit parallelism and efficient

routing and 2) on-chip SRAM provides low access to on-chip PEs.

Short list retrieval: To avoid exhaustive search on billion-scale databases, CBIR extract

a short-list of cluster IDs that correspond to the centroids that are the closest to the query.

These centroids are data points produced using clustering methods such as kd-trees or k-means

during the off-line stage, so that the search space can be pruned at query time. At query

time, the distances between the query and the centroids is computed using matrix-matrix

operations.

Rerank: After short-list retrieval, we traverse the clusters and collects data points from
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Table 4.1: The overview of memory/compute requirements of each CBIR pipeline stage and
their corresponding mapping to ReACH levels 

 

Stage Memory Requirement Compute Requirement ReACH Mapping 

Feature 
extraction 

552 MB, 12.5 MB 
CNN model parameter,  peak intermediate layer 

High 
Convolutional neural network 

 
On-chip 

 

Short-list 
retrieval 

~2.2 GB 
Cluster centroids and cell info 

Medium 
Matrix-matrix multiplication 

 
Near-memory 

 

Rerank 
~335 GB 
1 billion feature vectors 

Low 
Matrix-vector multiplication 

 
Near-storage 

 

Revers 
lookup 

 

200 TB – 2 PB 
1 billion images 

High 
Database access 

 
N/A 

 
 
 
 
 
 
 

Stage Memory Requirement Compute Requirement ReACH Mapping 

Face 
detection 

~125 GB 
Compressed video per camera per day 

Medium 
Viola-jones algorithm 

 
Near-storage 

 

Face 
tracking 

3.9 MB, 157 KB 
Reference and current frame, classifier parameters 

Low 
Kanade-Lucas-Tomasi (KLT) 
tracker 

 
Near-storage 

 

Feature 
extraction  

20 MB, 0.59 MB 
CNN model parameter, data size per 100 face 
tracklets. 

High 
Convolutional neural network 

 
On-chip 

 

Face 
Recognition 

 

~1 GB 
Feature and image database of 100K known 
individual 

Medium 
Matrix-matrix multiplication 

 
Near-memory 

 
 

these clusters to form a candidate list. Rerank computes the similarity distances between the

query and the data points within this candidate list. We use euclidean distance computation

and partial sorting for this step.

To meet the strict timing constraints, some prior work adopt approximated methods such

as hashing and product quantization in order to fit the working set into main memory of a

single server node. While these methods could still benefit from multiple level of compute

hierarchy (on-chip and near-memory), the overall accuracy of the result degrades significantly

and therefore, it is not the focus of our design. But we will discuss the performance accuracy

trade-off of these methods in Section 4.6.5.

4.4.1 Application Mapping

We target a CBIR system with 1 billion images. Each image is converted to a 96-dimension

feature vector using VGG-16 [41] neural network and PCA compression. All feature vectors

are preprocessed using k-means algorithm, generating a list of cluster centroids. The incoming

user query images are first batched in the feature extraction and short-list retrieval steps,

and then distributed according to their short-lists.

Table 4.1 summarizes the memory/compute requirement of the major kernel within each

CBIR pipeline stage, as well as our proposed kernel-accelerator mapping. The user query
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image batch is first cached on-chip and then, converted to a batch of feature vectors by the

on-chip feature extraction accelerators using the parameters entirely in on-chip SRAM. After

the GAM is notified of the completion of the first step, it hands the feature vector batch to

the near-memory short-list retrieval accelerators. These accelerators perform matrix-matrix

multiplications between the incoming feature vectors and cluster centroids distributed between

accelerator-attached DIMMs. Then, the GAM transfers individual query vector along with its

retrieved short-list to the near-storage rerank accelerators. The rerank accelerators gathers

dataset vectors from SSDs, computes distance to the query and perform a partial sort. Finally,

the top K images are retrieved from the original image database and returned to the host.

As we can see from the figure, the only data movement required is the user query vector and

retrieved short-list. Other than that, the pipeline potentially touches several hundreds of

data without actually moving any of them across the memory hierarchy.

4.5 Experimental Setup

Performance evaluation. To evaluate the performance of ReACH, we extend the open

source cycle-accurate accelerator-rich architecture simulator PARADE [3] to model accelera-

tors near the DRAM and SSD. We evaluate a system with on-chip accelerators attached to

coherent shared cache, accelerators attached to the main memory, and accelerators attached

to SSDs. Our on-chip accelerator is modeled based on Xilinx Virtex Ultrascale+ VU9P

FPGA [42] and is coherently attached to CPU using a cache-coherent interconnect. Our

near-memory accelerator is modeled after AIM [19] where an embedded Zynq Ultrascale+

ZCU9EQ FPGA is placed between each DRAM DIMM and the memory bus. An AIMbus

connects each AIM module to enable inter-DIMM communication. The near-storage accelera-

tor is configured as the same Zynq Ultrascale+ ZCU9EQ FPGA with a 1GB DRAM buffer

and a PCIe link connecting to the SSD instance. Table 4.2 summarizes the configuration of

the system.

Table 4.3 shows the list of kernels designed for our experiment: including convoluational

neural network (CNN), matrix multiplication (GeMM), and k nearest neighbors (KNN). It
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Table 4.2: Experimental setup of the compute hierarchy system
Component Parameters

CPU
1 X86-64 OoO core @ 2GHz
8-wide issue, 32KB L1, 2MB shared L2

Memory Controller 2 MCs, 64/64-entry read/write request queue, FR-FCFS
Memory System DDR4 DIMMs, 4 for near-memory accelerators and 4 for on-chip accelerator
Storage System 4 NVMe SSD attached with PCIe gen3x16
On-chip Accelerator Virtex Ultrascale+ [42] with 100 GB/s connection to shared cache
Near-Memory Accelerator Zynq Ultrascale+ [42] , 18 GB/s bandwidth to DDR4 DRAM and AIMbus
Near-Storage Accelerator Zynq Ultrascale+ [42] with 1GB DRAM , 12GB/s effective bandwidth to NVMe SSD

Table 4.3: FPGA utilization, frequency and power for each accelerator

FPGA Kernel
Utilization
(FF,LUT,DSP,BRAM)

Kernel
Freq

Power (W)

Xilinx Virtex
Ultrascale+
XCVU9P

CNN 85E4(36%), 95E4(81%), 3078(45%), 1814(42%) 273 MHz 25
GeMM 56E4(24%), 32E4(27%), 2188(32%), 3326(77%) 273 MHz 22.13
KNN 23E4(10%), 73E4(10%), 128(2%), 3628(84%) 200 MHz 14.14

Xilinx Zynq
Ultrascale+
ZCU9EQ

CNN 19E4(36%), 16E4(27%), 1916(76%), 1674(92%) 200 MHz 5.19/6.13
GeMM 6E4(11%), 18E4(31%), 958(38%), 656(36%) 150 MHz 5.3/8
KNN 8E4(16%), 35E4(60%), 64(3%), 1456(80%) 150 MHz 2.4/3.8

also lists the FPGA utilization, kernel frequency and the estimated power for each kernel.

There are two numbers for Zynq FPGA power which represent the power for near-memory

and near-storage accelerator respectively. The near-storage accelerator has a small DRAM

buffer and interface that increase the dynamic power compared to near-memory accelerator.

We compare the compute hierarchy against the baseline system which only has the on-chip

FPGA accelerator. The three steps of the CBIR application is individually designed and

optimized for both Virtex Ultrascale+ and Zynq Ultrascale+. Then, the required parameters

for simulation such as kernel frequency, initiation interval, pipeline depth and iterations are

extracted from the synthesis result and plugged into our ReACH simulator.

Energy evaluation. To estimate the energy consumption of ReACH, we use SDAccel [43]

environment’s post-routing power reports to estimate the power consumption of the on-chip

accelerator. The reports are further used along with Xilinx Power Estimator (XPE) tool [44]

to estimate the power for near-memory and near-storage accelerators, by adjusting the

operating frequency, utilization and on-board resources. While on-chip accelerator has one

instance, for near-memory and near-storage, we vary the number of DIMMs or SSD instances

that are paired with FPGA modules. Table 4.4 shows a summary of tools and references we
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Table 4.4: Energy model tools and references
Component Reference
FPGA Accelerators Xilinx SDAccel 2019.1 [43] and XPE power calculator [44]
Cache CACTI 6.5 [45]
DRAM Micron DDR4 Power Calculator [46]
Storage NVMe SSDs [47] with PCIe Gen3x16 interfaces
Interconnect Host/IO interface switch [48], PCIe links [12]

and Memory channels [49]

used for our energy analysis. We estimate the energy consumption for all other components

of the baseline system and ReACH architecture, except for the CPU power as it would be

dependent on the workload running on the CPU and is almost idle in our case.

CBIR setup. For the CBIR pipeline simulation, we use a batch of 16 image queries. We

preprocess the database image feature vectors with k-means to obtain 1000 cluster centroids.

These centroids will later be used to retrieve the short-list for each query. In the final rerank

step, we compare each query against 4096 data points based on the short-list to make the

simulation time manageable. Overall retrieval accuracy is evaluated using a software pipeline

that implements the same exact algorithms chosen by the hardware.

4.6 Evaluation Result

Table 4.1 summarizes the memory/compute requirement of the major kernel within each

CBIR pipeline stage. The details of CBIR pipeline are in section 4.4. Each image batch is

first converted to a batch of 96-dimensional feature vectors (feature extraction). These vectors

are used as query to retrieve the closest images from the database. The query vectors are

first compared with a list of cluster centroids to find a few candidate clusters in the database

(short-list retrieval). Then, the query vectors needs to be compared with vectors in each

candidate cluster and find the top closest matches (rerank).

To illustrate the limitations of compute-centric acceleration approach, we analyze the

energy distribution between components of the system during on-chip acceleration of CBIR

pipeline in Section 4.6.1. We discuss the performance and energy cost of each CBIR kernel at

various compute levels of ReACH in Section 4.6.2. Then we implement an end-to-end CBIR
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Figure 4.11: The energy consumption breakdown for accelerating CBIR pipeline using on-chip
accelerator

pipeline only using accelerators at one compute level at a time and compare their performance

and energy efficiency in Section 4.6.3. To demonstrate the effectiveness of ReACH and the

proposed application mapping, in Section 4.6.4, we present the result for the end-to-end

CBIR with proper application mapping to all compute levels of ReACH. We compare the

latency/throughput of query response and give a detailed breakdown of energy spent on each

system component while running CBIR on ReACH system. To demonstrate the flexibility

of ReACH, we also implement three different CBIR pipelines using different levels of the

compute hierarchy and discuss their performance and accuracy.

4.6.1 Energy Breakdown for On-chip Acceleration of CBIR Pipeline

To better understand the shortcomings of the on-chip accelerator, we implemented the

end-to-end CBIR pipeline using only the on-chip FPGA. We used an optimized kernel for

each step of the pipeline and do not account for the partial reprogramming delay, since

today’s FPGA technology can reduce this delay to sub-millisecond which is appropriate for

latency-sensitive applications [10]. Figure 4.11 shows the total energy consumption for one

batch of data, when accelerating the end-to-end pipeline on chip. It also shows a distribution

of energy across system components, as well as different steps of the CBIR pipeline. In

this implementation, 80% of the total energy cost is due to the data movement across the

memory hierarchy. In fact, 52% of the total cost is for data movements of Rerank step. The
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Figure 4.12: Runtime and energy consumption comparison of the feature extraction step
using near memory and near storage accelerators. Numbers are normalized to that of the
on-chip accelerator.

data accessed in disk is only used once but incurs a large portion of DRAM and Disk energy

consumption. In our subsequent experiments, we analyze if moving the computation near the

data medium (DRAM or disk) will help reduce the energy cost and help with performance

improvements. The on-chip implementation is our baseline model while comparing various

acceleration options.

4.6.2 Performance and Energy Cost for Each Stage at Different Compute Level

Feature extraction. The main kernel of feature extraction step is a convolutional neural

network, that is pre-optimized for each ReACH level. Figure 4.12 illustrates the runtime and

energy consumption for CNN implemented using near-memory and near-storage accelerators.

The result is normalized to on-chip accelerator’s run time and energy cost. The initial network

parameters are stored in DRAM for both on-chip and near-memory accelerators and for

near-storage accelerators, the parameters are pre-loaded in private device DRAM and each

instance has their own copy. For on-chip accelerator, the parameteres are interleaved in

cache granularity between different memory channels for higher bandwidth to CPU and

on-chip accelerator, But they need to be continuous and tiled for near-memory accelerators.

The feature extraction workload has a high data-reuse ratio and could benefit from a large

reconfigurable fabric for placements of PEs that share concurrent access to a large SPM. Thus,
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Figure 4.13: Runtime and energy consumption comparison of the short-list retrieval step
using near memory and near storage accelerators. Numbers are normalized to that of the
on-chip accelerator.

when comparing a single instance of CNN in each compute level, the on-chip accelerator has

a clear advantage over others thanks to larger area, operating frequency and high-bandwidth

access to last-level cache (7-10x). As the number of instances grow, the collective performance

of near-memory accelerators surpass the on-chip one. However, on-chip accelerator has the

best overall energy.

Shortlist Retrieval. A similar runtime/energy comparison on the short-list retrieval

step is illustrated in Figure 4.13. The on-chip accelerator performance is bounded by the

bandwidth of loading data from DRAM as they do not fit in on-chip SRAM. The near-memory

accelerator achieves better performance when there is 2 or more instances, due to the support

of AIMbus and higher aggregated DRAM bandwidth. It also achieves up to 40-60% energy

reduction compared to on-chip accelerator. For near-storage accelerator, accessing centroids

through PCIe bus limits the performance and energy reduction. The near-storage accelerator

has slightly higher runtime as the near-memory accelerator, because the latency of device

DRAM access is more than the latency of DIMM access.

Rerank. Figure 4.14 shows the rerank stage runtime/energy comparison of all imple-

mentations. The rerank stage, uses KNN to find the closest images to query. KNN is an

IO-intensive streaming application with a simple compute unit and no data reuse. As the

input data can only be stored in the storage, on-chip and near-memory accelerators all have
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Figure 4.14: Runtime and energy consumption comparison of the Rerank step using near
memory and near storage accelerators. Numbers are normalized to that of the on-chip
accelerator.

to fetch data from the SSDs via PCIe. As a consequence, the performance is heavily limited

by the I/O bandwidth, which is quickly saturated as we add more near-memory accelerators.

The near-memory accelerator achieves speedup but reaches a plateau when having more than

8 instances. This plateau is clearly due to high latency and limited bandwidth of host/IO

interface. Moving data would also incur significant energy overhead on host/IO interface

and host DRAM. On the contrary, the near-storage accelerators allow us to expose the full

bandwidth of SSDs, so that higher aggregated bandwidth can be easily achieved by scaling

up the number of FPGA-SSD units in the system and each accelerator can be kept busy. The

Rerank step could save up to 60% of its energy cost by moving from on-chip to near-storage

acceleration.

4.6.3 Overall Performance and Energy Efficiency using Single Compute Level

As described in Table 4.2, our experimental setup has 8 DRAM DIMMs and 4 NVMe SSDs.

We use this setup for our energy estimations, so we scale the number of our near-memory

accelerators from 1 to 2 and 4. The other half of the DIMMs are reserved for CPU and on-chip

accelerator. Figure 4.15 shows the run time and energy cost for end-to-end implementation of

CBIR pipeline using a single compute level at a time. The on-chip accelerator is our baseline

and has one instance.
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Figure 4.16: The performance and energy consumption of CBIR running on ReACH compared
to onchip, near memory and near storage acceleration

When comparing on-chip with single instance of near-memory and near-storage accelerator

for CBIR, on-chip accelerator performs better due to the powerful on-chip FPGA. But as

we scale the number of near-data processing units to 4, we see higher performance and

energy gains in CBIR pipeline. This shows that near-memory and near-storage accelerators

are most effective when they benefit from aggregated bandwidth of their attached memory

modules. While short-list retrieval and rerank stages benefit from offloading tasks to near-data

processing units, feature extraction stage has to be modified to match the decentralized

compute levels. Instead of working on batch of images, each near-data processing unit works

on a single image and uses duplicated parameters. This is one of the limitations of moving

an entire application pipeline near the storage; not all parts of an application could benefit

from distribution and decentralization.
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4.6.4 Performance/Energy efficiency after Proper Mapping

To reach even higher performance and energy efficiency, we propose to use a combination

of on-chip, near-memory and near-storage accelerator in concert with each other, to do

the computation. The optimized mapping is presented in Section 4.4.1: feature extraction

uses on-chip accelerators, short-list retrieval uses near memory accelerators, and rerank uses

near storage accelerators. As we discussed in Section 4.2.4, GAM assigns new tasks to each

compute level as soon as the resources become available without waiting for the whole job to

be finished, so the query processing throughput mainly depends on the longest stage of the

pipeline, not the total run time of all stages. We compare the query latency, throughput and

energy consumption of CBIR pipeline with 4 different acceleration options in Figure 4.16.

As shown in Figure 4.16, the throughput of ReACH improves 4.5x compared to on-chip

acceleration only, when we map the application pipeline to multiple compute levels. We

also see 2.2x improvement in query response latency due to proper mapping of CBIR stages.

From the energy standpoint, the proper mapping achieves the highest energy efficiency, with

50% energy reduction compared to the baseline on-chip accelerator. The energy reduction

mainly comes from lower SSD access time and lower usage of main memory to maintain the

streaming data, as well as decrease in interconnect energy.

4.6.5 ReACH Flexibility

CBIR alternative 1: compressed vectors. In modern software CBIR systems, sometimes

throughput is favored over recall accuracy. Some prior studies adopt techniques such as code

book or product quantization to further compress the feature vector, so that the size of all

database vectors can fit in the main memory of a single server-class machine and the rerank

step becomes more efficient with a smaller vector size [34, 35]. The downside, however, is the

overall retrieval accuracy is penalized by the feature vector compression.

To support a CBIR pipeline using approximate nearest neighbor methods, we map the

feature extraction kernel to the on-chip accelerator, and map both short-list retrieval and

rerank kernels to the near-memory accelerator, leaving the near-storage accelerators unused.
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Note that these kernels need to implement or be aware of the compression method, making

them different than those in our evaluated pipeline. During runtime, the GAM makes sure

the data flow from on-chip to near-memory accelerators but not to near-storage ones by

invoking proper accelerators with the location of the input data in the memory.

CBIR alternative 2: linear search. At the other end of the trade-off is the linear search

approach, where each query vector is compared against the entire list of data points using

full vectors representation. This approach provides 100% accuracy and often serves as the

ground truth in prior research. However, the amount of comparison and data movement

required in this approach makes it prohibitive for software system implementations with

quality-of-service constraints.

To deploy a CBIR pipeline with linear search, we simply skip the short-list retrieval step.

After the feature extraction is completed by the on-chip accelerators, the GAM initiates PCIe

transfer to directly push query vectors to the near-storage accelerators for linear scan.

Results for different CBIR implementations. Figure 4.17(a) presents the execution

time comparison between the three CBIR algorithms deployed. The linear search approach

takes almost 1000x longer to finish due to it exhaustive computation on the entire database.

The execution time of the exact vector approach (compute hierarchy) is on par with the

compressed vector approach, even though compressed vector allows fitting all compressed

vectors in DRAM and thus the computation is expected to be more efficient. The reason is

that the compressed vector approach has to compare a lot more data points against each

query in the rerank step in order to compensate for the overall retrieval accuracy, which

offsets the saved execution time.

Figure 4.17(b) illustrates the execution time breakdown of the three algorithms deployed.

The linear search approach is completely dominated by the rerank step as it does not have

a short-list retrieval step and the data size of the rerank step is too big. The exact vector

and compressed vector have more balanced distribution, while the compressed vector spends

more time on rerank to improve accuracy. Overall, the retrieval accuracy of linear search,

exact vector and compressed vector are 100%, 94% and 50% in the top 10 retrieved results.
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Figure 4.17: Execution time comparison of the three different algorithms deployed. From
left to right is the compute hierarchy with exact vectors, compressed vectors and the linear
search approach that skips the short-list retrieval step. The y-axis is in log scale.

4.7 Conclusion

In this work, we present ReACH, a reconfigurable accelerator compute hierarchy that combines

on-chip, near-memory and near-storage accelerators, spanning all levels of the conventional

memory hierarchy. We propose a holistic approach to coordinate between each compute

level and managing resources. To minimize the programming efforts of using the compute

hierarchies, a uniform programming interface is designed to decouple the ReACH configuration

from the user application source code and allow runtime adjustments without modifying the

deployed application. We experimentally deploy a billion-scale content-based Image Retrieval

system on ReACH and demonstrate that based on user concern of the best throughput or

most energy-efficient, a proper application mapping eliminates unnecessary data movement

and achieves 4.5x throughput gain while reducing energy consumption by 52% compared

to an on-chip acceleration. In summary, the compute hierarchy offers both distributed

computational power which potentially eliminates data movement, and the flexibility to

adjust to the compute and memory requirements of different applications and different

trade-off points within the same application pipeline.
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CHAPTER 5

Near Data Processing Platform Selection using Fast

Performance Modeling

5.1 Introduction

In Chapter 4, we introduced ReACH, a new server architecture and a distributed computing

platform comprise of on-chip, near-memory and near-storage accelerators. We demonstrate

that the FPGA-based compute resources could collaborate together using a global accelerator

manager (GAM) and a uniformed programming interface, in order to enhance the performance

and energy efficiency of a data analytics pipeline. Each data center server could incorporate

one or many of these FPGAs at different compute hierarchy levels to match its workload

intensity. A server workload includes diverse set of data-intensive and compute-intensive

application [32]. A number of these applications are presented in Table 5.1. These applications

share the compute hierarchy and their throughput is crucial to the user experience. Thus, it

is important to have a methodology to select the best compute level for each application.

In this Chapter, we present an in-depth analysis of applications’ qualitative and quanti-

tative attributes to derive an accurate performance model that could answer the following

questions: (1) could all applications dealing with in-storage/in-memory datasets benefit from

a data-centric acceleration? (2) How would the performance change for each application, as

we change the accelerator type and system configuration? The model could be used by the

programmer or GAM in order to load-balance the accelerators. Our benchmark suite includes

widely-deployed accelerators from the Xilinx Vitis Library [50] and few of our own. We analyze

18 benchmarks from 6 domains and create a guideline for both application and hardware

developers. Unlike prior work on performance estimation and workload characterization,
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Table 5.1: Benchmark List

Domain Kernel Functionality Freq (MHz) bitwidth Access pattern
Search KMP Find all occurrence of a pattern in each file 300 512 Sequential

KNN Find the closest vectors in a dataset to a given vector 250 1024 Sequential
Security AES-ENC File encryption using a 256-bit cipher code 273 512 Sequential

AES-DEC File decryption using a 256-bit cipher code 273 512 Sequential
Database Select Filtering rows of a table based on compare operator 400 512 Sequential

PHJ Partition Hash Join two table into one 182 512 Scatter-Sequential
Aggregate Grouping multiple rows of a table 193 512 Sequential
Partition Partition one table’s rows into clusters 200 512 Scatter
Combine-2Col Merge two columns of a table into one column 200 1024 Gatter
Snappy High-throughput data compression method 380 256 Sequential
Sort Sort rows of table based on bitonic/merge tree sort 220 512 Scatter-Sequential

Vision EqualizeHist Improve contrast in the image or video 200 512 Tiled
Viola-Jones Face detection through Frames 273 512 Tiled
FFT2D Transform an Img between spatial/frequency domain 250 512 Sequential
Conv Convolution for a given 3D kernel 250 512 Tiled
GeMM Dense Matrix-Matrix multiplication 250 512 Tiled

Finance Black Scholes Stock option price prediction 344 256 Sequential
Swaption Swaption prices using Monte Carlo simulation 250 256 Sequential

1

[51–53], we take into account all kernel-specific characteristics, study three NDP acceleration

schemes and target a broader range of application domains.

5.2 Workload Characterization

Table 5.1 shows the diverse set of application domains and FPGA kernels that we use for our

evaluation. Selecting a compute level for an FPGA kernel is not trivial and depends on the

application use-case as well as the kernel characteristics. To give a simple example, a GeMM

kernel is used for matrix multiplication of A and B in two different use cases.

1. DimA = DimB = 1024 × 1024 squared matrices.

2. DimA = (65536 × 128), DimB = (128 × 128).

They both have same number of floating-point operations, but their working-set-size (12MB

vs 64 MB) and tile reuse ratio (8 to 1) are different. These characteristics play a role in

selecting their compute level.
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Based on the goal of minimizing and amortizing data movement cost for a long period of

time, there are a few application-specific and kernel-specific characteristics that help choose

the best acceleration platform.

5.2.1 Application-Specific Characteristics

There could be multiple FPGA kernels designed for a given task. However, there are certain

attributes that are more dependent on the use-case of an application rather than the FPGA

kernel itself, which play a role in ruling out a compute level.

1) Memory Capacity Requirement : The data size that is potentially accessed, modified or

generated by the same application’s threads over a long period of time.

2) Working Set Size (WSS): We define WSS as the subset of the memory capacity which is

required to process a single application call. For instance, a query processing engine equipped

with Join, Aggregate and Partition FPGA kernels, might receive consecutive queries that

target dozens of SQL tables, while working on a single table (or two) for each query. We

consider the entire database size as the memory capacity and size of the requested database

tables per query as the working set size.

3) Input/Output Data flow : If an application data flow never requires access to the

storage level, then we would certainly rule out a near-storage acceleration. Similarly, if the

application requires an in-situ manipulation of data (read-modify-write), then we would favor

the near-storage or near-memory accelerators.

4) Data Reduction Ratio (γ): The main performance motivation of near-data processing

is to leverage a higher internal bandwidth, so if an application output size is the same as its

input, the application speed-up will be bound to the interconnection bandwidth for output.

Figure 5.1 shows the reduction ratio γ of our applications. An applications with γ = 1, would

be either compute-bounded or interconnect-bounded.
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Figure 5.1: The ratio of the kernel’s input to its output. The Y-axis is in log scale.
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Figure 5.2: The analytical peak bandwidth of the kernel, if not bound by the attached
memory bandwidth. The Y-axis is in log scale.

5.2.2 Kernel-Specific Characteristics

For a given FPGA kernel, there is plenty of useful information that can be extracted from

the kernel and its high-level synthesis, which help us derive a performance model.

1) Kernel Freq, Initiation Interval and input/output bit-width: which help us compute the

maximum analytical bandwidth. This way, we can determine if a kernel would ever saturate

the bandwidth of the attached module. bwpeak = datawidth× Freq/II. Figure 5.2 shows

the peak bandwidth per FPGA kernel. Applications like ENC and Viola-Jones have a low
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peak bandwidth and will not benefit from running near storage.

2) Attached memory access pattern: which helps us estimate the effective physical band-

width utilization of the attached memory. Sequential access with large burst size result in

higher effective bandwidth than scatter or gather patterns. The effective bandwidth of a tiled

access depends on the tile row size.

3) Multipass over the data (α): Maximum analytical bandwidth does not take into account

the number of passes over the input data. So, realistically the system throughput could be

much lower than the kernel bandwidth. (α) is the number of extra passes over the input data.

4) Intermediate data size (β): Similar to multiple passes over the input data, another

contributing factor to the throughput is the generated intermediate data.

5.3 Performance Model

In this section, we present an execution model for in-storage datasets based on features from

section 5.2.1 and 5.2.2. The assumption is that the WSS could fit in the main memory, but

the initial input is resident in storage level. If a dataset is accessed regularly, the initial load

from storage becomes amortized and insignificant. Regardless of the compute level, all of our

FPGA-based accelerators have an internal scratchpad memory (SPM) and use the Xilinx

AXI stream interface [54] to communicate with the attached memory level. The AXI stream

interface supports a maximum bus bit-width of 4096. But using a built-in data-width and

clock rate conversion, the AXI4 IP can support various DDR or flash module connections.

Table 5.1 summarize some of the characteristics that we use in our performance model. We

adopt a three stage accelerator execution model (load-compute-store) and double-buffering

in SPM. The three stages can be scheduled to run concurrently. Therefore, each compute

level l follows this equation:

T (l) = Max(Tload(l), Tcomp(l), Tstore(l)) (5.1)

The kernel execution time is bounded by one of the terms Tload, Tcomp, or Tstore (Equa-
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tion 5.1). For near-storage accelerator:

Tload(ns) =
Din

bwnvm

+
αDin

bwnvm

+
βDin

bwddr

(5.2)

Tcomp(ns) =
(1 + α + β).Din

datawidth
× II

Freq
(5.3)

Tstore(ns) =
Dout

bwhostIO

=
Din

γ × bwhostIO

(5.4)

where α is number of extra passes over the data, and β is the relative size of intermediate

data generated compared to initial input. The α and β are algorithm-dependant and is

collected manually. In future work, we plan to support automation through software profiling.

The near-storage accelerator uses its own DRAM buffer as caching for intermediate variables.

γ is the data reduction ratio, discussed in section 5.2.1. II is the initiation interval which

is the number of cycles that the FPGA kernel takes to process one input of datawidth size.

The II shows the computational intensity of a kernel. A kernel with II = 1 has a low

computational intensity and adding more resources and PEs to the FPGA provides no extra

benefit. But kerels with II = n could benefit from having up to n PEs that share the data.

bwnvm is the collective bandwidth of the NVM channels that feed data to SSD controller.

bwddr is the local DRAM buffer bandwidth. bwhostIO is the effective bandwidth of the host/IO

interface.

For near-memory accelerators, all data except the initial load from storage is accessed

through the attached memory module. Therefore,

Tload(nm) =
Din

bwhostIO

+
αDin

PE × bwddr

+
βDin

PE × bwddr

(5.5)

Tcomp(nm) =
(1 + α + β)Din

datawidth
× II

Freq × PE
(5.6)

Tstore(nm) =
Din

γ × bwddr × PE
(5.7)

If a workload consist of multiple subsequent queries accessing the same dataset (e.g.
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multiple database select operations after a hash join operation on two tables), the α will

increase.

The On-chip accelerator’s bandwidth to shared memory is limited by number of memory

channels and their effective bandwidth: bwDRAM = nch × bwch. For simplicity, we assume

bwch = bwddr The total execution time for on-chip accelerator is the maximum of the three

stage:

Tload(oc) =
Din

bwhostIO

+
αDin

nch × bwddr

+
βDin

bwcc

(5.8)

Tcomp(oc) =
(1 + α + β)Din

datawidth
× II ′

Freq
(5.9)

Tstore(oc) =
Din

γ × bwddr × nch

(5.10)

bwcc is the interconnect bandwidth between CPU and the on-chip accelerator, which is

considered the effective cache bandwidth. Please note that initiation interval of the kernel is

defined as II ′, because on-chip accelerator has more FPGA resource compared to one instance

of near-memory or near-storage accelerator. But more resource could only decrease the

original II, if it was more than 1. This also means that on-chip accelerators disproportionately

benefits the kernels with high computational intensity.

5.4 Evaluation

The system configuration consists of one on-chip FPGA, four DDR4 DIMMs and four NVMe

SSDs (each connected to one near-memory/near-storage chip). There is only one near-storage

PE working on the data at a given time. Due to their tight integration with memory/flash

modules, the near-memory and near-storage accelerator have higher thermal/power constraints.

Thus, they have less resources (e.g. BRAM, LUT) to implement large PEs. To keep the

analysis consistent with this assumption, we consider an embedded FPGA chip from Xilinx

Zynq ultrascale+ family for near-memory and near-storage accelerators. Please note that we

are not using the whole SoC board and target the reconfigurable fabric only. For on-chip
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accelerator, we consider resources similar to a high-end Xilinx Virtex Ultrascale+ FPGA

board. Based on resource utilization of our kernels, we assume the on-chip FPGA could fit up

to 8 PEs of each kernel compared to one PE per near-memory and near-storage accelerator.

The PEs could only help if the computational intensity is high enough. Table 5.2 shows the

bandwidth parameters.

Table 5.2: System configuration

Parameter bwhostIO bwnvm bwddr bwcc

Bandwidth (GB/s) 12.18 16 17.9 100

Throughput for in-storage dataset. Figure 5.3 shows the throughput of each application

for a single input file based on the configuration in Table 5.2. Table 5.3 also shows which

stage of the pipeline is the limiting factor during each kernel’s execution.

Based on Table 5.3, there are 3 applications that are bound by load stage. This means

that they can saturate the SSD bandwidth and benefit from near-storage acceleration: KMP,

KNN and Select. They have a low computational intensity, high peak-bandwidth and high

reduction ratio. There are two applications that are bound by store stage in near-storage

acceleration: Partition and Combine. These applications have a low computational intensity,

but since there is no reduction from input to output, they are bound by host/IO interconnect.

There is no distinction between acceleration options for these applications. All other kernels

are bound by compute stage. Among these applications, kernels with very high computational

intensity (e.g. ENC, DEC, Hist, VJ, GeMM) favors the on-chip acceleration, while others

could benefit from near-memory acceleration (e.g. PHJ, Aggr, Bsch). The factor that

makes a distinction between on-chip and near-memory acceleration is data reuse ratio and

computational intensity.

Throughput for in-memory dataset. Figure 5.4 shows the throughput of each application

when data is resident in main memory. Based on Table 5.3, there are 8 applications in

near-memory compute level, that are bound by load stage when data is resident in storage.

Figure 5.4 shows that when data is resident in main memory, these applications benefit greatly

from the distributed accelerator in near-memory compute level. The other 10 applications in
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Table 5.3: The performance bottleneck of three acceleration schemes

FPGA kernel Near-storage Near-memory On-chip File size (GiB)

KMP load load load 10
KNN load load load 10

AES-ENC comp comp comp 4
AES-DEC comp comp comp 4

Select load load load 4
PHJ comp comp comp 5
Aggr comp load comp 4
Part store load load 4

Combine store load load 4
Snappy comp comp comp 4

Sort comp comp comp 8

Hist comp comp comp 1
VJ comp comp comp 1

FFT comp load load 1
Conv comp comp comp 1

GeMM comp comp load 1

Black Scholes comp load comp 1
Swaption comp comp comp 1
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Figure 5.3: Throughput of applications for in-storage dataset
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our benchmark list are compute-bound applications. With exception of PHJ and Swaption,

the compute-bound applications benefit from on-chip acceleration more than the near-memory

acceleration. Partition Hash Join application, requires multiple pass over the original dataset

and even though it is compute-intensive, it benefits from distributed acceleration and in-situ

access over the dataset. Kernels FFT and Swaption has similar throughput for on-chip and

near-memory acceleration. This means that they have a medium computational intensity

that does not benefit from more PEs in on-chip accelerator.
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Figure 5.4: Throughput of applications for in-memory dataset

5.4.1 User Guideline

The important takeaway points from the model is discussed here.

For in-storage datasets, 1) Applications with high reduction ratio and high peak bandwidth,

generally map well to a near-storage accelerator. 2) For applications that are interconnect-

bound (e.g. partition, combine), the throughput is ultimately bound by the near-storage

accelerator’s performance. Therefore, there will be no benefit in processing the data out of

storage. Meanwhile, by keeping the computation near storage, we could consolidate multiple

kernels (e.g. Combine+Aggr, PHJ+select) which collectively result in a reduction in output.
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3) For applications that are compute-bound, on-chip and near-memory accelerators are more

effective. Partition Hash Join has irregular access patterns to the hash table. Therefore, it

benefits more from near-memory acceleration.

For in-memory datasets, 1) Data-intensive applications map well to the distributed near-

memory acceleration platform. 2) Compute-intensive applications map well to the on-chip

accelerator, unless the computational intensity is not high enough to benefit from all the

PEs on chip. 3) Applications with multiple pass over the data benefit from near-memory

acceleration, whereas applications with intermediate data benefit from near-cache acceleration.

5.5 Conclusion

In this work, we present an in-depth analysis of applications’ qualitative and quantitative

attributes to derive an accurate performance model. The model could be used inside the

Global Accelerator Manager (GAM) to make dynamic decisions on where to map new assigned

applications. Based on our analysis, applications from the search domain and some of the

database operators (simple kernels with no data reuse and a high reduction ratio), benefit

the most from mapping to near-storage accelerators. For compute-bound applications such

as in security, finance and vision domains, it helps to stream the data to a more powerful

on-chip accelerator. For interconnect-bound applications, the throughput is ultimately bound

by the near-storage accelerator’s performance, but if the data is accessed through continuous

queries, there is huge benefit in moving it to main memory for near-memory acceleration.
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CHAPTER 6

Conclusion

Data movement has become a fundamental issue in today’s compute-centric server architec-

tures. One promising solution has been to integrate NDP accelerators near data medium

to distribute computation into memory or disk modules, as a way of both exploiting the

available internal bandwidth and avoiding the movement of data across chip boundaries.

Therefore, FPGA-based near data processing has been a growing topic in both industry

and academic research. We believe that in near future, data centers will feature racks of

heterogeneous servers equipped with one or more types of NDP accelerators, to effectively

enhance their system efficiency for the diverse set of common server workloads.

A server workload is comprised of both compute-intensive and data-intensive applications.

In fact, it is common to have variations in compute and memory requirements, even within

different execution phases of a single application. Multiple NDP accelerators within a system

could be used to accelerate independent applications or coordinate to work on different kernels

within the same application pipeline. Unfortunately, a large set of existing research has

solely focused on only one level of the memory hierarchy (cache, main memory or storage),

while disregarding the potential benefits of having multiple levels of near data processing for

communication-bound application pipelines.

This dissertation is an effort towards addressing some of the challenges limiting the wide

adoption of NDP accelerators and exploring their collective benefits for a common class of

server applications. we present ReACH, a Reconfigurable Accelerator Compute Hierarchy

that combines on-chip, near-memory, and near-storage accelerators, spanning all levels of

the conventional memory hierarchy. Each memory level has a reconfigurable accelerator

chip attached to it, which provides distinct compute and memory capabilities and offers a
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broad spectrum of acceleration options. Our simulation platform features fully adjustable

memory/accelerator parameters, allowing effective design space exploration. We believe that

the key to wide adoption of NDP accelerators lies in a proper runtime scheduilng support

and well-defined programming interface. Rather than relying on CPU cores to interact with

accelerators directly, we propose a hardware-based global accelerator manager (GAM) to

coordinate between the compute levels, reducing inter-level data access interference and

asynchronous task flow control. At the software level, we propose a holistic software stack

to minimize the programming efforts of using the ReACH system: a uniform programming

interface is designed to decouple the ReACH configuration from the user application source

code and allow runtime adjustments without modifying the deployed application. We

demonstrate that proper application mapping eliminates unnecessary data movement and

achieves significant throughput gain and energy reduction. There still remains a number of

challenges and research directions for widespread adoption of NDP accelerators:

First, our platform provides pre-optimized accelerator templates and a transparent pro-

gramming interface that allows the programmer to easily conjoin various NDP accelerators

through communication buffers. However, it still heavily relies on the application programmer

to make the decision on which part of the application needs to be offloaded to which NDP

accelerator. It would be beneficial to investigate automated profiling and compiler-based

mechanisms that could decide what portion of software code needs to be replaced by NDP

accelerator calls. In chapter 5, we proposed a performance model that could guide the pro-

grammer or the global accelerator manager for runtime adjustment of accelerator resources.

The model requires application-specific parameters that could only be collected through

application profiling. Integrating the performance model with the GAM and automating the

parameter extraction would enable a better resource management.

Second, determining an effective data mapping mechanism for near-memory accelerators

is another important research direction. Offloading task to near-storage accelerators are more

straight-forward than near-memory accelerators, as the task gets scheduled for near-storage

accelerator attached to the physical storage unit of the target data. But for near-memory

accelerators, the initial data mapping plays an important role in efficiency of the computation.
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Our GAM support a simple batch-based data mapping schemes in main memory level by

utilizing the internal registers of the memory controller to divide the loaded data in contiguous

regions and in batch granularity. For more sophisticated data mapping, we still require the

programming effort and initial data manipulation. It is important to develop better static

and adaptive data mapping mechanisms and utilize them in the memory controllers level.

Third, we focused on near-memory accelerators for conventional DRAM modules, but

as the DRAM scaling becomes more difficult, there is a need for investigating near-memory

accelerators for emerging non-volatile memory technologies that will replace DRAM in near

future. This includes phase-change memory (PCM) [55], memristors [56], and 3D-stacked

memory products such as high-bandwidth memory (HBM) [16] and WideIO [17]. The main

memory level is shifting toward a more hybrid architecture that would contain combination

of these modules. This opens the door for new NDP acceleration techniques.

In summary, the approaches described in this dissertation demonstrate the need for and

benefits of accelerator-rich architectures with multiple levels of near data processing. The

proposed hardware and software solutions are some initial steps towards the wide adoption

of NDP accelerators and more efficient server architectures.

65



REFERENCES

[1] “Cisco global index, 2016-2021 white paper,” https://newsroom.cisco.com/press-release-
content?type=webcontentarticleId=1908858, 2018.

[2] W. Dally, “Challenges for future computing systems. keynote,” 2015.

[3] J. Cong, Z. Fang, M. Gill, and G. Reinman, “Parade: A cycle-accurate full-system
simulation platform for accelerator-rich architectural design and exploration,” in ICCAD,
2015.

[4] “Scaling up energy efficiency across the data center industry.”
https://www.nrdc.org/sites/default/files/data-center-efficiency-assessment-IP.pdf,
2014.

[5] “Amazon ec2 f1 instance,” https://aws.amazon.com/ec2/instance-types/f1/, 2018.

[6] D. Chiou, “The microsoft catapult project,” in IISWC, 2017.

[7] “Intel to start shipping xeons with fpgas in early 2016.” www.eweek.com/servers/intel-
to-start-shipping-xeons-with-fpgas-in-early-2016.html, 2016.

[8] “with agilex intel gets a coherent fpga strategy,”
https://www.nextplatform.com/2019/04/02/with-agilex-intel-gets-a-coherent-fpga-
strategy, 2019.

[9] “Intel xeon scalable processor 6138p,” https://www.eejournal.com/article/intel-delivers-
xeon-scalable-processor-6138p-with-arria-10-gx-1150-fpga/, 2018.

[10] “Versal: The first adaptive compute acceleration platform (acap).”
https://www.xilinx.com/support/documentation/white-papers/wp505-versal-acap.pdf,
2019.

[11] C. Lefurgy, K. Rajamani, F. Rawson, W. Felter, M. Kistler, and T. W. Keller, “Energy
management for commercial servers,” Computer, Dec 2003.

[12] B. Loop and Z. Yang, “Pcie nvme* ssd in smaller form factors,” in Flash Memory
Summit, 2016.

[13] “Samsung nvme ssd 960 pro,” https://www.samsung.com/us/computing/memory-
storage/solid-state-drives/ssd-960-pro-m-2-512gb-mz-v6p512bw/, 2019.

[14] A. M. Caulfield, T. I. Mollov, L. A. Eisner, A. De, J. Coburn, and S. Swanson,
“Providing safe, user space access to fast, solid state disks,” SIGPLAN Not., vol. 47, no. 4,
p. 387–400, Mar. 2012. [Online]. Available: https://doi.org/10.1145/2248487.2151017

[15] “An introduction to ccix,” https://www.synopsys.com/designware-ip/technical-
bulletin/introduction-ccix-2017q3.html, 2017.

66



[16] D. U. Lee, K. W. Kim, K. W. Kim, H. Kim, J. Y. Kim, Y. J. Park, J. H. Kim, D. S.
Kim, H. B. Park, J. W. Shin, J. H. Cho, K. H. Kwon, M. J. Kim, J. Lee, K. W. Park,
B. Chung, and S. Hong, “25.2 a 1.2v 8gb 8-channel 128gb/s high-bandwidth memory
(hbm) stacked dram with effective microbump i/o test methods using 29nm process and
tsv,” in 2014 IEEE International Solid-State Circuits Conference Digest of Technical
Papers (ISSCC), Feb 2014.

[17] J. Kim, C. S. Oh, H. Lee, D. Lee, H. R. Hwang, S. Hwang, B. Na, J. Moon, J. Kim,
H. Park, J. Ryu, K. Park, S. K. Kang, S. Kim, H. Kim, J. Bang, H. Cho, M. Jang,
C. Han, J. LeeLee, J. S. Choi, and Y. Jun, “A 1.2 v 12.8 gb/s 2 gb mobile wide-i/o dram
with 4×128 i/os using tsv based stacking,” IEEE Journal of Solid-State Circuits, Jan
2012.

[18] S. Kumar, C. Paar, J. Pelzl, G. Pfeiffer, and M. Schimmler, “Breaking ciphers with
copacobana–a cost-optimized parallel code breaker,” in International Workshop on
Cryptographic Hardware and Embedded Systems. Springer, 2006.

[19] J. Cong, Z. Fang, M. Gill, F. Javadi, and G. Reinman, “Aim: accelerating computational
genomics through scalable and noninvasive accelerator-interposed memory,” in MEMSYS,
2017.

[20] B. Sukhwani, T. Roewer, C. L. Haymes, K.-H. Kim, A. J. McPadden, D. M. Dreps,
D. Sanner, J. Van Lunteren, and S. Asaad, “Contutto: a novel fpga-based prototyping
platform enabling innovation in the memory subsystem of a server class processor,” in
MICRO-50, 2017.

[21] M. D. Marino and K. Li, “Ramon: Region-aware memory controller,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 26, no. 4, pp. 697–710, 2018.

[22] J. Do, Y.-S. Kee, J. M. Patel, C. Park, K. Park, and D. J. DeWitt, “Query processing
on smart ssds: opportunities and challenges,” in SIGMOD, 2013.

[23] S. Cho, C. Park, H. Oh, S. Kim, Y. Yi, and G. R. Ganger, “Active disk meets flash: A
case for intelligent ssds,” in ICS, 2013.

[24] G. Koo, K. K. Matam, H. Narra, J. Li, H.-W. Tseng, S. Swanson, M. Annavaram et al.,
“Summarizer: trading communication with computing near storage,” in MICRO-50, 2017.

[25] B. Gu, A. S. Yoon, D.-H. Bae, I. Jo, J. Lee, J. Yoon, J.-U. Kang, M. Kwon, C. Yoon,
S. Cho et al., “Biscuit: A framework for near-data processing of big data workloads,” in
ISCA-43, 2016.

[26] A. De, M. Gokhale, R. Gupta, and S. Swanson, “Minerva: Accelerating data analysis
in next-generation ssds,” 2013 IEEE 21st Annual International Symposium on Field-
Programmable Custom Computing Machines, pp. 9–16, 2013.

[27] M. Singh and B. Leonhardi, “Introduction to the ibm netezza warehouse appliance,” in
Proceedings of the 2011 Conference of the Center for Advanced Studies on Collaborative
Research. IBM Corp., 2011, pp. 385–386.

67



[28] “Mobiveil announces fpga-based ssd platform.” http://www.marketwired.com/press-
release/- 2228973.htm.

[29] S. Seshadri, M. Gahagan, M. S. Bhaskaran, T. Bunker, A. De, Y. Jin, Y. Liu, and
S. Swanson, “Willow: A user-programmable ssd.” in OSDI, 2014.

[30] S.-W. Jun, M. Liu, S. Lee, J. Hicks, J. Ankcorn, M. King, S. Xu, and Arvind, “Bluedbm:
An appliance for big data analytics,” in ISCA-42, 2015.

[31] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness,
D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5 simulator,” ACM SIGARCH
Computer Architecture News, vol. 39, no. 2, pp. 1–7, 2011.

[32] A. K. Mishra, J. L. Hellerstein, W. Cirne, and C. R. Das, “Towards characterizing
cloud backend workloads: Insights from google compute clusters,” SIGMETRICS
Perform. Eval. Rev., vol. 37, no. 4, p. 34–41, Mar. 2010. [Online]. Available:
https://doi.org/10.1145/1773394.1773400

[33] X. Inc., “Xilinx virtex ultrascale+ fpga vcu1525,” https://www.xilinx.com/
products/boards-and-kits/vcu1525-a.html, 2017.

[34] A. Babenko and V. Lempitsky, “Efficient indexing of billion-scale datasets of deep
descriptors,” in CVPR, 2016.

[35] H. Jégou, R. Tavenard, M. Douze, and L. Amsaleg, “Searching in one billion vectors:
re-rank with source coding,” in ICASSP, 2011.

[36] N. Elgendy and A. Elragal, “Big data analytics: A literature review paper,” in Advances
in Data Mining. Applications and Theoretical Aspects. Springer International Publishing,
2014, pp. 214–227.

[37] Z. Ruan, T. He, and J. Cong, “INSIDER: designing in-storage computing system for
emerging high-performance drive,” in 2019 USENIX Annual Technical Conference,
USENIX ATC 2019, Renton, WA, USA, July 10-12, 2019. USENIX Association, 2019,
pp. 379–394.

[38] L. Woods, Z. István, and G. Alonso, “Ibex: an intelligent storage engine with support
for advanced sql offloading,” Proceedings of the VLDB Endowment, vol. 7, no. 11, pp.
963–974, 2014.

[39] S. F. Yitbarek, T. Yang, R. Das, and T. Austin, “Exploring specialized near-memory
processing for data intensive operations,” in Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2016. IEEE, 2016, pp. 1449–1452.

[40] J. Cong, Z. Fang, Y. Hao, and G. Reinman, “Supporting address translation for
accelerator-centric architectures,” in HPCA-23, 2017.

[41] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image
recognition,” arXiv preprint arXiv:1409.1556, 2014.

68



[42] X. Inc., “Ds890, ultrascale architecture and product data sheet, v 3.10.” 2019.

[43] “Xilinx sdx.” www.xilinx.com/products/design-tools/software-zone/sdaccel.html, 2019.

[44] X. Inc., “Xilinx power estimator user guide ug440,” 2017.

[45] N. Muralimanohar, R. Balasubramonian, and N. Jouppi, “Optimizing nuca organizations
and wiring alternatives for large caches with cacti 6.0,” in MICRO, 2007.

[46] “Micron ddr4 sdram system-power calculator,” https://www.micron.com/support/tools-
and-utilities/power-calc, 2018.

[47] “Seagate nytro 5910 nvme ssd,” https://www.seagate.com/enterprise-storage/nytro-
drives/, 2017.

[48] “64-lane 16-port pci express system interconnect switch,”
https://www.idt.com/document/dst/89pes64h16-data-sheet, 2017.
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