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ABSTRACT OF THE DISSERTATION

Deep 3D Embodied Visual Recognition

by

Tong He

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2021

Professor Stefano Soatto, Chair

Deep 3D embodied visual recognition refers to the scenarios where an autonomous agent needs

to achieve some designated tasks (driving, searching, grasping, etc) in a 3D environment. To

achieve the task at hand, the agent must have good geometric and semantic understandings

of the 3D objects/scenes around it, such as the intention of a pedestrian and the pose/shape

of an obstacle. In this thesis, I focus on driving-related problems. Methods for developing

a self-driving agent can be roughly classified into two types: multi-stage and end-to-end

models. 1) A typical multi-stage pipeline usually involves a series of steps such as perception,

planning, and control. My works are mostly related to the perception module, which includes

studying diverse 3D data representations (e.g., 3D bounding boxes, morphable skeleton

graphs, raw point clouds, parametric meshes, deep voxels, and implicit surface functions), and

supervised/self-supervised 3D representation learning strategies. Different 3D representations

and learning strategies have trade-offs among the requirements of the tasks, the availability

of the data annotation and the modeling tools. 2) The other thread of my research is aligned

with the end-to-end learned visual driving models, which utilize a single deep network to

process the sensor data (e.g., color images, LiDAR points) and estimate the low-level controls

such as brake, throttle, and steering angle. The goal is to learn an autonomous agent that

can generalize to various driving conditions, maps, and weather by imitation learning.
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CHAPTER 1

Introduction

We must perceive in order to move, but we must also move in order to perceive.

- James Jerome Gibson, The ecological approach to visual perception, 1979

To navigate in the 3D world or interact with the surrounding objects, an autonomous agent

must build some types of implicit or explicit 3D representations of the 3D objects and scenes

around it. Such representations usually carry both geometric and semantic attributes (shapes,

identities, affordances, etc.), and can inform the agent of the necessary knowledge that it

needs to achieve the task at hand. Based on the 3D perception results, the agent should learn

to proceed with its designated task in order to perceive more. An agent will get trapped in a

dead state and never be able to achieve its goal if it does not have the ability to move. For

example, a self-driving agent needs to maintain a positive speed in normal traffic situations

and push the brake at red traffic lights. As explained above, deep 3D embodied visual

recognition is a fundamental problem for any intelligent or autonomous agent. It involves

two main problems: 1) building a task-dependent suitable 3D object/scene representation, 2)

and learning how to move so as to achieve its goal.

Specifically, I focus on problems related to the driving scenarios. Depending on whether

the aforementioned two problems are addressed separately or jointly, the methods of learning

a self-driving agent can be roughly classified into two categories: multi-stage methods and

end-to-end models. A typical multi-stage pipeline usually has a sequence of modules such as

perception, planning, and control. Multi-stage pipelines are complicated engineering systems.
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Each individual module could be further broken down into many research problems. For

end-to-end models, all these different modules will be handled through a single deep neural

network. The network inputs are data captured by the sensors, such as color images or

LiDAR point clouds. The outputs are low-level control signals such as brake, throttle and

steering angle. Currently, end-to-end models are less favored by commercial self-driving

companies. Because compared with multi-stage systems, end-to-end models usually lack

interpretability and system redundancy for safety protection. But end-to-end methods are

expected to better handle complex driving situations that can not be effectively and explicitly

modeled by manually designed rules. End-to-end models have recently demonstrated their

usefulness on drones [LKR21], toy cars [CML18] and in driving simulators [DRC17], and

thus this research direction is getting increasingly more attention from both academia and

industry. Overall speaking, my Ph.D. research mainly focuses on the perception module of

multi-stage systems, and the end-to-end learned models for autonomous driving agents.

1.1 3D Object and Scene Perception

Methods for 3D object and scene perception can be discussed from different angles, such as

the trade-offs among diverse 3D data representations, or supervised and self-supervised 3D

representation learning approaches. Here we will look into this research topic following the

evolution of 3D data representations. Different representation methods should be determined

based on the requirement of the task, the availability of the data and the modeling tools. At

the early stage of 3D data based deep learning, some most often used representations include

3D bounding boxes [MAF17], 3D skeleton graphs [HS19] and spatially discretized voxels

[WZX16]. These methods enable efficient representations of 3D object poses and shapes via

commonly used computing kernels such as 2D or 3D convolutions and fully-connected layers

[HZR16, PGM19, ABC16]. But they usually suffer from limited modeling capacities and large

quantization errors when we are trying to encode objects with complex shapes and articulated
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parts, such as furniture or human bodies. Later, with the advance of PointNet and Graph

Neural Network [QSM17a, QYS17, DBV16], raw point clouds and (parametric) meshes are

becoming increasingly more favored by 3D deep learning researchers. Although points and

meshes are more flexible in modeling complex 3D shapes, they are still far from satisfaction

towards the goal of representing sophisticated surface topology and are not suitable for

unsupervised 3D representation learning. Acquiring high-quality and large-scale annotations

for 3D objects and scenes is nontrivial, and therefore unsupervised 3D representation learning

from multi-view images or video streams is a promising research direction. Recently, methods

based on deep voxels [STH19a], deep implicit surface functions [PFS19a] and neural radiance

field [MST20] have demonstrated unprecedented performance on many 3D computer vision

tasks, such as object and scene reconstruction, detection and novel view rendering. My

research works are tightly aligned with this evolution thread, covering diverse 3D data

representations, and both supervised and self-supervised learning methods.

1.2 End-to-End Visual Driving Policy Learning

The goal of end-to-end visual driving policy learning is to learn an autonomous driving agent,

that takes a color image and a turning signal as inputs, and directly estimates low-level

control signals. We use an open-source photorealistic driving simulator, CARLA [DRC17],

for agent training and evaluation. The simulator also contains other non-player agents such

as vehicles and pedestrians, and can quantitatively measure various driving infractions like

collision, driving out of the lane, breaking red traffic lights, and so on. After a driving model

is trained, it will be deployed into the simulator. The agent will start at a source location and

is expected to arrive at a specified destination. We evaluate its performance by measuring

the route success rate. A route is successful if the agent can reach the target location within

a certain time limit without any driving infractions. This is a challenging problem because

the self-driving agent needs to perceive the environment, predict the intention of surrounding
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agents, follow the traffic rules and keep moving towards its destination.

Our core method is based on behavior cloning, which is a type of imitation learning based

driving policy learning method [CML18]. Basically, we can build a training dataset that

consists of observation and action pairs collected from some expert agents. With such data,

then we will be able to train an autonomous agent by supervised learning. This is just a

vanilla version of the behavior cloning model. Researchers later found that we can leverage

some side tasks to construct auxiliary losses in order to learn representations that can better

generalize to different maps, weathers and driving conditions. For example, one of the most

often used side tasks is semantic segmentation and the simplest way is having a two-stage

driving model, where we first conduct semantic segmentation and then use the masks to learn

a visual driving agent [MDG18, HXS19, BCP20, BKO19]. However, this approach usually

suffers from propagation errors in estimating the side tasks. A more robust scheme than

two-stage is multi-task learning, where the agent is supervised to achieve the main driving

task and the side tasks jointly [XGY16, LMS18]. The latent embeddings of the learned agent

conceptually contain two types of information: main-task relevant and irrelevant information.

Ideally, we only want to learn the driving-relevant part. Because learning the main-task

irrelevant information means that we are forcing the model to solve additional problems that

are not useful for the core driving task.

Motivated by such analysis, we first train a privileged auto-driving agent that takes the

ground-truth side task annotation as input and estimates the low-level controls. By doing so,

the latent representations of the agent network are expected to encode squeezed main-task

relevant information from the side tasks. As for information that is irrelevant to the driving

task, it is expected to be excluded in these learned latent embeddings. We call this model the

squeeze network. Additionally, we will train a mimic network which contains the self-driving

agent that will be used at inference time. Its inputs only contain observations that are

available during inference, not including any ground-truth side task annotation. Besides

the control estimation losses, we also apply a latent embedding regularizer from the squeeze
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network to the mimic network. Therefore, the learned representations of the mimic network

can be regularized by the driving relevant information squeezed from the side tasks. Note

that while two-stage and multi-task pipelines are both trying to estimate the side tasks, our

squeeze-and-mimic method does not need to do so. We directly use the ground-truth side

task annotation as the input, and thus our model is free from side task estimation errors.

1.3 Organization of the Thesis

Chapter 2. We first study an ill-posed problem of monocular 3D vehicle detection [HS19].

The main idea is optimizing two-scale (i.e., fine and coarse scales) projection consistency

between the generated 3D hypotheses and their 2D pseudo-measurements. Specifically, we

use a morphable 3D skeleton graph to generate a fine-scaled representation of vehicle shape

and pose. To reduce its sensitivity to 2D landmarks, we jointly model the 3D bounding box

as a coarse representation which improves robustness. We also integrate three task priors,

including unsupervised monocular depth, a ground plane constraint and vehicle shape priors,

with forward projection errors into an overall energy function. Our method shows state-of-

the-art monocular 3D vehicle detection performance on the KITTI benchmark [GLU12].

Chapter 3. When representing objects with sophisticated shapes, 3D bounding boxes and

skeletons will suffer from limited modeling capacities and large approximation errors. In

contrast, meshes and point clouds can faithfully encode object surfaces. Our basic observation

is that surface-based geodesic topology provides strong cues for object semantic analysis

and geometric modeling. However, such mesh-based topology information is lost in point

clouds. Thus we introduce GeoNet [HHY19], a deep neural network trained to model the

intrinsic structure of surfaces represented as point clouds. We demonstrate that the learned

geodesic-aware latent features can capture the underlying surface topology of a point cloud,

and further benefit multiple point set analysis tasks, including point upsampling, normal

estimation, mesh reconstruction and non-rigid shape classification.
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Chapter 4 and 5. Since meshes and point clouds are usually sparsely distributed object

surface samples, it is difficult to reconstruct a complete 3D shape. Meanwhile, deep implicit

surface functions are based on dense occupancy fields, with which a watertight mesh of an

object can be directly reconstructed by the Marching Cubes algorithm. It motivates us to

propose hybrid 3D representations [HCJ20b, HXS21] that exploit the shape reconstruction

flexibility of deep implicit functions, and the topology modeling regularity of deep voxels

and parametric meshes. Particularly, we extract pixel-aligned appearance features from the

high-resolution input images and geometry-aligned spatial features from the underlying coarse

shape estimation. These features are passed into MLP-based deep implicit surface functions

for learning dense 3D occupancy fields. Our reconstructions achieve high quality and realism

across different views, e.g., both the visible and the occluded sides. We further propose to

decorrelate object poses in a canonical space, whose reconstructions are animatable by a

motion sequence and useful for downstream tasks such as VR/AR and robotic simulation.

Chapter 6. Besides learning supervised 3D representations, we also study self-supervised

methods leveraging large-scale unannotated videos/images. We present a novel view synthesis

method [HCJ20a] based upon latent voxel embeddings of an object, which encode both shape

and appearance information and are learned without explicit 3D occupancy supervision. Our

method uses an encoder-decoder architecture to learn such deep volumetric representations

from multi-view images. The core idea is lifting the input image features from the 2D plane

into a predefined 3D volume (i.e., voxel-shape autoencoder bottleneck), and then projecting

the latent voxel embeddings to a target camera pose and rendering a novel view. By enforcing

reconstruction losses on the predicted images, we can backpropagate gradients through this

encoder-decoder network and achieve self-supervised learning of the latent voxel features,

which could be used for novel-view prediction, 3D detection, robotic navigation, and etc.

Chapter 7. For end-to-end learned visual driving models, we describe a policy learning

approach [ZHL19] to map visual inputs to low-level controls conditioned on turning command.
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Our model leverages side tasks on semantics and object affordances via a learned representation

trained for driving. To learn this representation, we train a squeeze network to drive using

annotations for the side task as input. This representation encodes the driving-relevant

information associated with the side task while ideally throwing out side task-relevant but

driving-irrelevant nuisances. We then train a mimic network to drive using only images as

input and use the squeeze network’s latent representation to supervise the mimic network via

a mimicking loss. Notably, we do not aim to achieve the side task nor to learn features for it;

instead, we aim to learn, via the mimicking loss, a representation of the side task annotations

directly useful for driving. We test our learned self-driving agent in a photorealistic simulator

and demonstrate that it can generalize to various driving scenarios, maps and weathers.
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CHAPTER 2

Monocular 3D Vehicle Detection

2.1 Introduction

Objects are regions of three-dimensional (3D) space that can move independently as a whole

and have both geometric and semantic attributes (shapes, identities, affordances, etc.) in

the context of a task. In this paper, we focus on vehicle objects in driving scenarios. Given

an image, we wish to produce a posterior probability of vehicle attributes in 3D, or at least

some point-estimates from it.

Inferring 3D vehicles from a single image is an ill-posed problem since object attributes exist

in 3D but single images can only provide partial pseudo-measurements in 2D. Therefore, we

propose to solve this task by tackling two issues: (i) how to ensure 3D-2D consistency between

the generated 3D vehicle hypotheses and their corresponding 2D pseudo-measurements, which

requires strong 3D hypotheses generators as well as robust scoring mechanisms; (ii) how to

refine 3D hypotheses with task priors that can be integrated into an easy-to-optimize loss

function.

For the first problem, we use a joint modeling method that leverages two different 3D

hypotheses generation schemes: one serves as a coarse representation of vehicle shape and

pose while the other is fine-scaled. We design end-to-end trained deep networks to generate

3D hypotheses for each vehicle instance in the form of both 3D bounding box and morphable

wireframe model (a.k.a linear shape model). Shape and pose parameters will be adjusted

according to the 2D pseudo-measurements via an optimization approach. A wireframe
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model can determine shape and pose more precisely than a 3D bounding box, but it is very

sensitive to the 2D landmark measurements which can be easily affected by issues like partial

occlusions, shadow, low resolution, etc. Therefore, we jointly model the 3D bounding box

projection constraint to improve its robustness. We conduct ablation studies to demonstrate

benefits brought by jointly modeling the coarse and the fine-scaled 3D object pose and shape

representations.

For the second problem, we consider three constraints on vehicles. Cars should stay on

the ground plane, should look like a car, and should be at a reasonable distance from the

observation camera. The first argument serves as a supporting plane constraint for vehicles.

The second argument is a prior term for vehicle shapes. The last argument indicates that

vehicle translation in camera coordinates should be constrained by a monocular range map

of the current driving scene. These constraints are jointly modeled with 3D-2D consistency

terms in order to further improve vehicle shape and pose estimation.

In summary, in this paper we propose an approach for vehicle 3D shape and pose estimation

from a single image that leverages the coarse and the fine-scaled 3D hypotheses, as well as

multiple task priors, as shown in Fig. 2.2, for joint inference. Our contributions are:

• We propose and empirically validate the joint modeling of vehicles’ coarse and fine-

scaled shape and pose representations via two complementary 3D hypotheses generators,

namely 3D bounding box and morphable wireframe model.

• In our method, we model multiple priors of the 3D vehicle detection task into easy-to-

optimize loss functions. Such priors include unsupervised monocular depth, a ground

plane constraint and vehicle shape priors.

• We build an overall energy function that integrates the proposed two improvements

which improves the state-of-the-art monocular 3D vehicle detectors on the KITTI

dataset.
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Figure 2.1: Representative 3D detection results, shown as projections on the input images.

3D morphable shape models of each vehicle are colored in green. Dashed green lines are

occluded edges. For the 14 vertices of each morphable shape model, visible vertices are

colored in red and occluded ones in yellow. 2D bounding boxes are colored in blue.

Figure 2.2: Our system takes a single image as input, and generates vehicles’ 3D shape and

pose estimation in camera coordinates.
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2.2 Related Work

To produce rich descriptions of vehicles in 3D space, methods leveraging various data are

proposed, such as video, RGB-D, or RGB, among which RGB methods are most related to

our work.

Video methods: In [SC15, MSK17, CRU16, DFS17, FS18], temporal information is

explored for (moving) 3D objects localization by a recursive Bayesian inference scheme or

optimizing loss functions that are based on non-rigid structure-from-motion methods [THB03].

RGB-D methods: MV3D [CMW17] encodes lidar point clouds into multi-view feature

maps, which are fused with images, and uses 2D convolutions for 3D localization. In contrast,

F-PointNet [QLW18] directly processes lidar point clouds in 3D space using two variants

of PointNet [QYS17] for 3D object segmentation and amodal detection. Other methods

that also use lidar point clouds include [RS18, XAJ18]. 3DOP [CKZ15] exploits stereo point

clouds and evaluates 3D proposals via depth-based potentials.

RGB methods: Mono3D [CKZ16] scores 3D bounding boxes generated from monocular im-

ages, using a ground plane prior and 2D cues such as segmentation masks. Deep3DBox [MAF17]

recovers 3D pose by minimizing the reprojection error between the 3D box and the detected

2D bounding box of the vehicle. Task priors are not jointly modeled with 3D-2D innovation

terms. 3DVP [XCL15] proposes 3D voxel with occlusion patterns and uses a set of ACF

detector for 2D detection and 3D pose estimation. Its follow-up work, SubCNN [XCL17],

uses deep networks to replace the ACF detectors for view-point dependent subcategory clas-

sification. Active shape models are explored in [ZSS11, ZSS13, ZSS14a, ZSS14b] for vehicle

modeling. CAD models are rendered in [MXS15, CSC15] for 3D detection by hypotheses

sampling/test approaches using image features, such as HOG [DT05]. In the state-of-the-art

DeepMANTA [CCR17], vehicle pose is adjusted by 3D-2D landmark matching. These ap-

proaches only model either the coarse or the fine-scaled 3D shape and pose representation

of a vehicle, thus have limitations in accuracy and robustness. Moreover, task priors, such
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as monocular depth of the current driving scene, vehicle shape priors, supporting plane

constraints, etc., are only partly considered and not jointly optimized with forward projection

errors.

2.3 Methodology

We wish to infer the posterior distribution of object pose g ∈ SE(3) and shape S ⊂ R3,

given an image I, P (g, S|I), where SE(3) denotes the Euclidean group of rigid motions that

characterize the position and orientation of the vehicle relative to the camera, and shape

S is characterized parametrically for instance using a point cloud or a linear morphable

model. In Sec. 2.7 we describe all the modeling assumptions needed to arrive at a tractable

approximation of the posterior, maximizing which is equivalent to minimizing the weighted

sum:

E(g, S) = E2D3D + λ1ELP + λ2EMD + λ3EGP + λ4ES (2.1)

in which the first two terms indicate forward projection errors of the coarse and the fine-

scaled 3D hypotheses. The last three terms, respectively, represent constraints enforced via

unsupervised monocular depth, a ground plane assumption, and vehicle shape priors. In the

next few sections we formalize and introduce details of our inference scheme, as reflected in

the joint energy function Eq. (2.1), and how we generate the 3D hypotheses as well as the

2D pseudo-measurements via deep networks to facilitate its optimization.

2.3.1 Notation

We assume we are given a color image I : D ⊂ R2 → S2 sampled as a positive-valued matrix.

An axis-aligned subset b ⊂ D is called “2D bounding box”, and represented by the location

of its center (tx, ty) ∈ R2, and scales (ew, eh) ∈ R2
+, all in pixel units and represented in

exponential coordinates (w, h) to ensure positivity. We assume the camera is calibrated so

these can be converted to Euclidean coordinates. Equivalently, a 2D bounding box can be
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represented by an element of the scaled translation subgroup of the affine group in 2D:

gb =


ew tx

eh ty

1

 ∈ A(2). (2.2)

In space, we call a gravity-aligned parallelepiped B ⊂ R3 a 3D bounding box, resting on

the ground plane, whose shape is represented by three scales σ = (eL, eH , eW ) ∈ R3
+, again in

exponential coordinates to ensure positivity, and whose pose is represented by its orientation

θ ∈ [0, 2π) and position on the ground plane T ∈ R3 relative to the camera reference frame.

A 3D bounding box can also be represented as an element of the scaled translation subgroup

of the affine group in 3D:

gB = [R(θ), e4]


eL TX

eH TY

eW TZ

1

 ∈ A(3) (2.3)

where R(θ) is a rotation around Y by θ, so (R(θ), T ) ∈ SE(3), and eT4 = [0, 0, 0, 1]. Here

TY = 0 is the camera height from the ground plane. Assuming the ground plane is represented

by its (scaled) normal vector N ∈ R3, we describe it as the locus {T ∈ R3 | NTT = 1} (the

ground plane cannot go through the optical center). Therefore, the vector T is subject to the

constraint NTT = 1.

We call S ⊂ R3 a shape, represented by a set of K points1 Pk ∈ R3 in a normalized

reference frame. Note that p ∈ D ⊂ R2 are corresponding landmark points within the 2D

bounding box. Equivalently, S ∈ R3×K/A(3) is in the affine shape space [Ken84] of K points,

where the quotient is restricted to transformations of the form Eq. (2.3). Z : D ⊂ R2 → R+

is a depth map, that associates to each pixel (x, y) ∈ D a positive scalar Z(x, y).

1We overload the notation and use P for for points in space and probabilities. Which is which should be
clear from the context.
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2.3.2 Inference scheme

As shown in Fig. 2.2, the inference criterion we use combines a generative component, whereby

we jointly optimize the innovation (forward prediction error) between the projection of the 3D

hypotheses and the image pseudo-measurements, monocular depth map constraints, geometric

constraints (ground plane), in addition to penalizing large deformations of the shape prior.

In Sec. 2.7 we derive an approximation of the posterior of 3D pose and shape P (gB, S|I),

maximizing which is equivalent to minimizing the negative log:

− log[P (gb|gB)P (p|gB, S)P (Zb|TZ)P (T )P (S)] (2.4)

which is in accordance with Eq. (2.1). The first term is the 2D bounding box compatibility

with the projected 3D bounding box. It is a coarse statistic of the geometric innovation.

E2D3D = ∥gb − π(gB)∥ (2.5)

where the subscript suggests 2D/3D consistency, and π denotes the central perspective map,

assuming a calibrated camera. The second term is the fine-scaled geometric innovation, i.e.,

the distance between the predicted position of projected wireframe model vertices, and their

2D pseudo-measurements by a landmark detection network.

ELP =
K∑
k=1

∥pk − π(gBPk)∥22 (2.6)

where LP stands for landmark projection. To approximate the third term, we produce a

dense range map of the current driving scene via an unsupervised monocular depth map

estimation network.

EMD = ∥TZ − Zb∥ (2.7)

where MD means monocular depth, and Zb ∈ R is the average depth of an image crop

specified by (I, gb) : D ⊂ R2 → S2. The fourth term assumes a geometric constraint by the

ground plane, characterized by the normal vector N .

EGP = ∥NTT − 1∥ (2.8)
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in which GP indicates ground plane. As generic regularizers, we also assume small deforma-

tions (shape coefficients αn close to their mean) of the shape model.

ES =
N∑

n=1

∥αn −
1

N

∑
n

αn∥22 (2.9)

The overall loss function is the weighted sum, with multipliers λ:

E = E2D3D(gb, gB) + λ1ELP (p, gB, P ) + λ2EMD(Zb, T ) + λ3EGP (T ) + λ4ES(α) (2.10)

2.3.3 Mono3D++ network

Our inference scheme leverages independence assumptions to factor the posterior probability

into components, resulting in the compound loss described above. To initialize the minimiza-

tion of Eq. (2.10), we separate it into modules that are implemented as deep networks, which

is shown in Fig. 2.3. In the next paragraphs we describe each component in more details.

2D Bounding box. We use a one-stage detection architecture similar to SSD [LAE16] to

estimate a posterior over (a regular subsampling of) the set of bounding boxes, P (l, gb|I).

Before setting putative bounding boxes on latent feature maps at different scales, we fuse

feature maps from shallow and deep layers. It is shown in [RCL17] that this step can improve

both the semantic meaning and the resolution of the feature maps for better object detection.

HP,Q(lj, l̂i) + λd(gbj , ĝbi)χ(lj) (2.11)

where j = j(i) = argmaxj IoU(bj, b̂i). Here H denotes the cross-entropy between the true

class posterior P (l|I) and the model realized by our network Q(l̂|I), and d is a distance

in A(2) that sums the Euclidean distance of the translational terms and the exponential

coordinates of the scale terms, (w, h). Here i is the index of each putative bounding box

(a.k.a. “anchor box”) which is sampled with negative/positive sample ratio of 3:1 from a

larger group of regularly sampled anchor boxes on multiple latent feature maps. The index

j to be chosen to match i consists of a data association problem [BAD17]. We apply an
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Figure 2.3: The two-scale 3D hypotheses consist of the rotated and scaled 3D bounding

box and morphable wireframe model. The image pseudo-measurements include 2D bounding

boxes and landmarks. In our inference scheme, we use the hypotheses and the pseudo-

measurements to initialize the optimization of Eq. (2.10) and generate the final 3D pose and

shape estimation of a vehicle.

indicator function χ(·) before the bounding box coordinate regression term so that this loss

is only optimized for positive anchor boxes.

2D Landmark. We employ a stacked hourglass network [NYD16], with skip-connections, to

approximate the posterior of individual landmarks within each 2D bounding box P (pk|I, ĝb).

We use the mean-square error as loss.

1

K

K∑
k=1

||ŵk,i − wk,i||2 (2.12)

where ŵk,i ∈ R64×64 is the predicted heat map for the kth landmark and wk,i ∈ R64×64 is a

2D Gaussian with standard deviation of 1 pixel centered at the kth landmark ground truth

location. When a landmark is occluded or out of view, its ground truth heat map is set to all

zeros. Each vehicle is modeled by 14 landmarks.

3D Orientation and scale hypotheses. P (θ, σ|I, ĝb) is approximated by a deep network
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with ResNet backbone [HZR16], yielding Q(ĝB|I, ĝb) where I|ĝb is a (64×64) crop of the

(centered and re-scaled) image I ◦ ĝb−1. We design a joint loss with multi-scale supervision

for training pose and 3D scales.

HP,Q(θj, θ̂i) + λd(σj, σ̂i) (2.13)

where Q is an approximation of P (θ|I, ĝb), both of which are Von Mises distributions over

the discrete set {0, . . . , 359o}. We use a cross-entropy loss for orientation estimation. At

inference time, the MAP estimate θ̂i ∈ [0, 2π) is used as a vehicle’s azimuth estimation.

P (σ|I, ĝb, θ) is estimated jointly with azimuth in the same network using the L1 distance

d(σj, σ̂i). Empirically, we found that imposing the orientation loss on the intermediate feature

map and the size loss on the last layer generates better results than minimizing both losses

on the same layer.

Shape hypotheses. The 3D morphable shape model is learnt using 2D landmarks via an

EM-Gaussian method [THB03, KTC15]. The hypothesis is that 3D object shapes are confined

to a low-dimensional basis of the entire possible shape space. Therefore, the normalized

3D shape Sm ∈ R3K×1 of each vehicle instance can be factorized as the sum of the mean

shape S̄ ∈ R3K×1 of this category deformed using a linear combination of N basis shapes,

Vn ∈ R3K×1. For each car, the orthographic projection constraint between its 3D shape Sm

and 2D landmarks pk,m is constructed as:

pk,m = cmRm(Pk,m + tm) + ζk,m (2.14)

Sm = S̄ +
N∑

n=1

αn,mVn (2.15)

ζk,m ∼ N(0, σ2I2×2), αn,m ∼ N(0, 1), RT
mRm = I3×3 (2.16)

in which cm ∈ R2×2 is the scaling factor of the orthography (para-perspective projection).

Rm ∈ R2×3 and tm ∈ R3×1 are the orthographic rotation and translation of each object

instance in the camera coordinate, respectively. Pk,m ∈ R3×1 represents the kth 3D landmark

in Sm.
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Monocular depth. P (Z|I) is learned from stereo disparity, converted to depth using

camera calibration. Similar to vehicle landmark detection, we use an hourglass network,

with skip-connections, to predict per-pixel disparity [GAB17]. The left view is input to the

encoder, and the right view used as supervision for appearance matching at multiple output

scales of the decoder. The total loss is accumulated across four output scales combining three

terms. One measures the quality of image matching, one measures disparity smoothness,

and the last measures left/right disparity consistency. Next we describe each term relative

to the left view. Each term is replicated for the right view to enforce left-view consistency.

Appearance is measured by

1

D

∑
a,b

β
1− SSIM(I lab, Ĩ

l
ab)

2
+ (1− β)||I lab − Ĩ lab||1 (2.17)

which combines single-scale SSIM [WBS04] and the L1 distance between the input image I l and

its reconstruction Ĩ l obtained by warping Ir using the disparity dr with a differentiable image

sampler from the spatial transformer network [JSZ15]. Disparity smoothness is measured by

1

D

∑
a,b

|∂xdlab|e−||∂xIlab|| + |∂ydlab|e−||∂yIlab|| (2.18)

which contains an edge-aware term depending ∂I [HKJ13]. Finally, left/right consistency is

measured using the L1 norm.

1

D

∑
a,b

∥dlab − drab−dlab
∥1. (2.19)

2.4 Implementation Details

It takes about one week to train the 2D bounding box network, and two hours for the

orientation/3D scale network on KITTI with 4 TITAN-X GPUs. The landmark detector

is trained on Pascal3D. The training process for the monocular depth estimation network

is unsupervised using KITTI stereo-pairs, which takes around 5 to 12 hours depending on

the amount of data available. In theory, these deep networks could be unified into a single
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Method 3DVP 3DOP Mono3D
GoogLenet

DeepMANTA

VGG16

DeepMANTA
Mono3D++

Type Mono Stereo Mono Mono Mono Mono

Time 40 s 3 s 4.2 s 0.7 s 2 s 0.6 s

Table 2.1: Inference time comparisons against a paragon set of both monocular and stereo

methods.

1 meter 2 meters 3 meters

Method Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

3DVP 45.6 / - 34.3 / - 27.7 / - 65.7 / - 54.6 / - 45.6 / - - / - - / - - / -

SubCNN 39.3 / - 31.0 / - 26.0 / - 70.5 / - 56.2 / - 47.0 / - - / - - / - - / -

Mono3D - / 46.0 - / 38.3 - / 34.0 - / 71.0 - / 59.9 - / 53.8 - / 80.3 - / 69.3 - / 62.7

GoogLenet DeepMANTA 70.9 / 65.7 58.1 / 53.8 49.0 / 47.2 90.1 / 89.3 77.0 / 75.9 66.1 / 67.3 - / - - / - - / -

VGG16 DeepMANTA 66.9 / 69.7 53.2 / 54.4 44.4 / 47.8 88.3 / 91.0 74.3 / 76.4 63.6 / 67.8 - / - - / - - / -

Mono3D++ 80.6 / 80.2 67.7 / 65.1 56.0 / 54.6 93.3 / 92.7 83.0 / 80.8 71.8 / 70.5 95.0 / 95.4 86.7 / 85.4 76.2 / 75.9

Table 2.2: 3D localization comparisons with monocular methods on KITTI val1/val2 by

ALP of 1, 2 and 3 meters thresholds for 3D box center distance.

1 / 2 / 3 meters

Method Type Easy Moderate Hard

Mono3D++ Mono 80.2 / 92.7 / 95.4 65.1 / 80.8 / 85.4 54.6 / 70.5 / 75.9

3DOP Stereo 78.6 / 87.4 / 89.5 66.9 / 80.0 / 84.2 59.4 / 71.9 / 76.0

Table 2.3: 3D localization comparisons with the state-of-the-art stereo method by ALP

under 3D box center distance thresholds of 1, 2 and 3 meters. Note that our method only

uses a single image for inference, while 3DOP needs stereo-pairs.

one and trained jointly, but this is beyond our scope here. Learning the morphable shape

model takes about 2.5 minutes using 2D vehicle landmarks. At inference time, we use the

Ceres solver [AMO] to optimize the weighted loss Eq. (2.10). On average it converges in 1.5

milliseconds within about 15 iterations. Detailed timing comparisons are shown in Tab. 2.1.
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2.5 Experiments

We evaluate our method on the KITTI object detection benchmark. This dataset contains

7, 481 training images and 7, 518 test images. To facilitate comparison with competing

approaches, we isolate a validation set from the training set according to the same protocol

of [XCL15, XCL17, CCR17] called (train1, val1), and the same used by [CKZ15, CKZ16,

CCR17] called (train2, val2). We report results using five evaluation metrics: three for 3D and

two for 2D localization. For the former, we use average localization precision (ALP) [XCL15],

average precision based on 3D intersection-over-union (IoU), AP3D, and bird’s eye view based

average localization precision, APloc [GLU12]. Although 2D localization is not our goal, as

a sanity check we also measure average precision (AP) and average orientation similarity

(AOS).

ALP is based on the distance between the center of the detected 3D boxes and the

annotated ground truth. A 3D detection is correct if the distance is below a threshold.

AP3D is computed from the IoU of 3D bounding boxes. APloc is obtained by projecting the

3D bounding boxes to the ground plane (bird’s eye view) and computing the 2D IoU with

ground truth. Note that while ALP only measures distance between centers, both AP3D and

APloc jointly evaluate a vehicle’s translation, orientation and 3D scales. AOS measures 2D

orientation relative to ground truth.

The paragon set for our experiments consists of 3DVP [XCL15], SubCNN [XCL17],

Mono3D [CKZ16], 3DOP [CKZ15] and DeepMANTA [CCR17]. While 3DOP is the state-of-

the-art stereo method, the rest are monocular. Among the monocular methods, DeepMANTA

is the current state-of-the-art. Also related to our method for monocular 3D vehicle detection

is Deep3DBox [MAF17], which however used different evaluation metrics from the ones above,

thus preventing direct comparison. For object 2D orientation and bounding box evaluation,

we also compare with Faster-RCNN [RHG15] as well as Deep3DBox.
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Figure 2.4: Recall/3D localization precision curves for 1 meter (left), 2 meters (middle)

and 3 meters (right) precision on KITTI val2. Solid lines are our results. Dashed lines are

Mono3D. Dash-dot lines are 3DOP, which uses stereo-pairs at inference time.

2.5.1 3D localization

We use ALP with distance thresholds of 1, 2 and 3 meters in Tab. 2.2 including both val1

and val2. Our method improves the state-of-the-art monocular method, DeepMANTA, by

10.5% on average. Even though our method is monocular, we compare to the stereo method

3DOP using val2 in Tab. 2.3. Surprisingly, we outperform 3DOP on “easy" and “moderate”

cases and is comparable on “hard" case. Detailed comparisons by precision/recall curves are

shown in Fig. 2.4. We outperform the monocular by large margins and is better than the

stereo in some cases.

2.5.2 3D detection and birds’ eye view localization

We use AP3D with 3D IoU thresholds of 0.25, 0.5 and 0.7, as well as APloc with 2D IoU

thresholds of 0.5 and 0.7. Tab. 2.4 shows comparisons with both monocular and stereo

methods using val2. Our method surpasses all monocular ones uniformly. Though the

monocular setting is more challenging than the stereo one due to the lack of depth, our

method still outperforms 3DOP by about 39% to 61% on AP3D with IoU threshold of 0.7.

Tab. 2.5 shows comparison on APloc with both monocular and stereo using val2. Again, our
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3D IoU 0.25 / 0.50 / 0.70

Method Type Easy Moderate Hard

Mono3D Mono 62.9 / 25.2 / 2.5 48.2 / 18.2 / 2.3 42.7 / 15.5 / 2.3

Mono3D++ Mono 71.9 / 42.0 / 10.6 59.1 / 29.8 / 7.9 50.5 / 24.2 / 5.7

3DOP Stereo 85.5 / 46.0 / 6.6 68.8 / 34.6 / 5.1 64.1 / 30.1 / 4.1

Table 2.4: Comparisons on AP3D under different 3D IoU thresholds with both monocular

and stereo methods.

2D IoU 0.50 / 0.70

Method Type Easy Moderate Hard

Mono3D Mono 30.5 / 5.2 22.4 / 5.2 19.2 / 4.1

Mono3D++ Mono 46.7 / 16.7 34.3 / 11.5 28.1 / 10.1

3DOP Stereo 55.0 / 12.6 41.3 / 9.5 34.6 / 7.6

Table 2.5: Comparisons on APloc under different 2D IoU thresholds with both monocular

and stereo methods.

results surpass monocular ones uniformly. Even if compared with the stereo method, we gain

around 21% to 33% relative improvement on APloc under 0.7 IoU.

2.5.3 Ablation studies

In Tab. 2.6, 2.7 and 2.8 we use val1 and val2 with ALP, AP3D and APloc to validate our joint

modeling of the coarse and the fine-scaled 3D hypotheses, as well as task priors. “v1” indicates

our inference scheme at initialization; “v2” only models the coarse geometric innovation

and a ground plane constraint; “v3” adds the fine-scaled geometric innovation and vehicle

shape priors. Best results are achieved by our overall model “v4”, which further considers

unsupervised monocular depth. Due to the page limit, extended comparisons over different

threshold values are reported in Sec. 2.7.
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Method Easy Moderate Hard

v1 13.6 / 16.9 12.2 / 13.3 11.3 / 12.5

v2 68.5 / 68.2 58.3 / 57.5 50.8 / 47.6

v3 76.1 / 73.2 64.5 / 60.2 53.6 / 50.0

v4 80.6 / 80.2 67.7 / 65.1 56.0 / 54.6

Table 2.6: Ablation studies on val1/val2 by ALP under 3D box center distance threshold of

1 meter.

Method Easy Moderate Hard

v1 10.50 / 11.50 8.75 / 8.99 9.02 / 16.43

v2 68.33 / 58.50 55.00 / 49.96 49.17 / 45.09

v3 71.39 / 66.59 59.06 / 54.88 50.59 / 48.26

v4 79.45 / 71.86 62.76 / 59.11 52.79 / 50.53

Table 2.7: Ablation studies on val1/val2 by AP3D with 3D IoU threshold of 0.25.

Method Easy Moderate Hard

v1 2.06 / 2.27 2.30 / 2.27 2.29 / 2.36

v2 37.27 / 30.18 27.48 / 24.82 23.67 / 21.49

v3 42.68 / 37.25 32.12 / 28.50 25.84 / 24.14

v4 50.50 / 46.68 36.85 / 34.32 29.05 / 28.13

Table 2.8: Ablation studies on val1/val2 by APloc under 2D IoU threshold of 0.5.

2.5.4 2D detection and orientation

As a sanity check, the 2D detection AP and AOS are also evaluated with monocular and stereo

methods. Our estimation is on par with the state-of-the-art results. Detailed comparisons

are included in Sec. 2.7.
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Figure 2.5: Typical issues (e.g. partial occlusions, shadow, low resolution) that affect 2D

vehicle landmark measurements.

2.5.5 Qualitative results

Fig. 2.1 shows representative outputs of our method, including cars at different scales, 3D

shapes, poses and occlusion patterns. Fig. 2.5 illustrates typical issues addressed by jointly

modeling a vehicle’s coarse and fine-scaled 3D shape and pose representations. When vehicle

landmarks suffer from partial occlusions, shadow or low resolution, we can still leverage 2D

bounding boxes in order to enforce the two-scale geometric innovation constraints.

2.5.6 Generalization

Although not our focus here, chairs share similar constraints to vehicles like the two-scale 3D

hypotheses innovation, a ground plane assumption, shape priors, etc. Thus to demonstrate

the generality of our method, we also test on chairs and report results in Sec. 2.7.

2.5.7 Failure modes

In Fig. 2.6 we illustrate some failure cases, which include field of view truncation, causing the

bounding box projection constraint E2D3D in the overall energy to enforce the 3D bounding

box’s 2D projection to be within the truncated 2D box measurement. Failures can also

occur due to inaccurate orientation estimation, and under-representation in the training set
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Figure 2.6: Failure cases caused by field of view truncation, inaccurate orientation or 3D

scale estimation.

(oversized SUV) which causes the normalized morphable wireframe model to be rescaled by

incorrect 3D size estimation.

2.6 Discussion

We have presented a method to infer vehicle pose and shape in 3D from a single RGB image

that considers both the coarse and the fine-scaled 3D hypotheses, and multiple task priors,

as reflected in an overall energy function Eq. (2.10) for joint optimization. Our inference

scheme leverages independence assumptions to decompose the posterior probability of pose

and shape given an image into a number of factors. For each term we design a loss function

that is initialized by output from deep network as shown in Fig. 2.3. Our method improves

the state-of-the-art for monocular 3D vehicle detection under various evaluation settings.

2.7 Additional Results

2.7.1 More qualitative demos

In Fig. 2.9, Fig. 2.10 and Fig. 2.11 we show 3D vehicle detection results on KITTI test set,

val1 and val2, respectively. Moreover, results on chairs are shown in Fig. 2.8 in order to

25



demonstrate the generality of our method.

2.7.2 More quantitative benchmarks

Ablation Studies. In Tab. 2.10, 2.11 and 2.12 we use val1 and val2 with ALP, AP3D and

APloc to validate our joint modeling of the coarse and the fine-scaled 3D hypotheses, as

well as task priors. “v1” indicates our inference scheme at initialization; “v2” only models

the coarse geometric innovation and a ground plane constraint; “v3” adds the fine-scaled

geometric innovation and vehicle shape priors. Best results are achieved by our overall model

“v4”, which further considers unsupervised monocular depth.

2D Detection and Orientation. As a sanity check, in Tab. 2.13 the 2D detection AP and

AOS are evaluated on KITTI test set with monocular and stereo methods. Our results are

on par with the state-of-the-art results.

2.7.3 Morphable wireframe model

Each vehicle instance is represented by 14 landmarks. In Tab. 2.9, we explain the landmarks.

In Fig. 2.7, we visualize the normalized morphable wireframe model under three types of

deformations.

2.7.4 Modeling assumptions

2.7.4.1 Overview

The goal is to approximate P (gB, S|I). Maximizing this posterior is equivalent to minimizing

the negative log as below:

−log[P (gb|gB)P (p|gB, S)P (Zb|TZ)P (T )P (S)] (2.20)

For notation definitions, please refer to the main paper. The corresponding overall energy

function is defined as:

E = E2D3D(gb, gB) + λ1ELP (p, gB, P ) + λ2EMD(Zb, T ) + λ3EGP (T ) + λ4ES(α) (2.21)
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Vehicle Part Notation Landmark Position

Wheels

wlf left-front wheel center

wrf right-front wheel center

wlt left-tail wheel center

wrt right-tail wheel center

Headlights
hl left headlight center

hr right headlight center

Taillights
tl left taillight center

tr right taillight center

Side mirrors
ml left-side mirror

mr right-side mirror

Roof corners

rlf left-front roof corner

rrf right-front roof corner

rlt left-tail roof corner

rrt right-tail roof corner

Table 2.9: The 14 landmarks that constitute the 3D morphable wireframe model.

where the first two terms indicate forward projection errors of the coarse and the fine-scaled 3D

hypotheses. The last three terms, respectively, represent constraints enforced via unsupervised

monocular depth, a ground plane assumption, and vehicle shape priors.

2.7.4.2 Derivation

We start with the goal, which is the posterior P (gB, S|I), and marginalize cars’ 2D bounding

box gb. ∫
P (gB, S|I, gb)P (gb|I)dgb (2.22)

where we use a 2D detection deep network to approximate the second term in the integration.

Note that gB consists of (θ, σ, T ). Thus the first term can be written as:

P (θ, σ|I, gb)P (T, S|I, gb, θ, σ) (2.23)

in which the first term is approximated by a deep network that jointly estimates vehicle

orientation and 3D scale. Next, we marginalize the second term with respect to the 2D
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Right view Front viewTop view
Figure 2.7: In different rows we show the 3D morphable wireframe model under different

types of deformations. The left column is the right view. The middle column is the top view.

The right column is the front view.

landmarks, assuming that given a cropped image, the 2D landmarks are independent of the

azimuth and the scale. ∫
P (T, S|I, gb, θ, σ, p)P (p|I, gb)dp (2.24)

The second term in the integration is approximated by a landmark detection network. The

first term will be marginalized with respect to the average depth Zb of a cropped image

specified by I and gb. We assume that given a cropped image, Zb is independent of (θ, σ, p).∫
P (T, S|I, gb, θ, σ, p, Zb)P (Zb|I, gb)dZb

(2.25)

where we use an unsupervised monocular depth estimation network to approximate the

second term in the integration. Now we apply Bayes’ rule to the first term.

P (T, S|I, gb, θ, σ, p, Zb) =
P (T, S, I, gb, θ, σ, p, Zb)

P (I, gb, θ, σ, p, Zb)
(2.26)
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Since the goal here is to maximize the posterior, multiplicative factors (e.g. the denominator)

that do not depend on (T, S) do not affect the solution and can be ignored in the optimization.

To decompose the numerator into a tractable form, we make following assumptions:

• The image I, the azimuth θ and the scale σ all follow uniform prior distribution. The

numerator of Eq. (2.26) can then be written as:

P (I)P (θ)P (σ)P (T, S, gb, p, Zb|I, θ, σ) (2.27)

• The translation T has ground plane prior.

P (I)P (θ)P (σ)P (T )P (S, gb, p, Zb|I, θ, σ, T ) (2.28)

• The shape S has minimum deformation prior.

P (I)P (θ)P (σ)P (T )P (S)P (gb, p, Zb|I, θ, σ, T , S) (2.29)

• Given the 3D bounding box gB, the 2D bounding box gb is independent of the image I

and the shape S.

P (I)P (θ)P (σ)P (T )P (S)P (gb|gB)P (p, Zb|I, θ, σ, T , S, gb) (2.30)

• Given the 3D bounding box gB and the shape S, the 2D landmarks p are independent

of the image I and the 2D bounding box gb.

P (I)P (θ)P (σ)P (T )P (S)P (gb|gB)P (p|gB, S)P (Zb|I, θ, σ, T , S, gb, p) (2.31)

• Given the position of the bounding box along the Z-axis, TZ , the average depth Zb of

that vehicle’s reprojection region is independent of the rest of the variables.

P (I)P (θ)P (σ)P (T )P (S)P (gb|gB)P (p|gB, S)P (Zb|TZ) (2.32)

Based on the assumptions above, maximizing Eq. (2.32) is equivalent to minimizing the

negative log in Eq. (2.20).
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Figure 2.8: 3D detection on chairs in the SUN-RGBD dataset. Depth is only used for

visualization. 3D chair skeletons in green. 2D bounding boxes in blue.

2.7.4.3 Optimization

We have decomposed the posterior of pose and shape given an image into a number of factors:∫∫∫
P (gb|I)P (θ, σ|I, gb)P (p|I, gb)P (Zb|I, gb)P (T, S|I, gb, θ, σ, p, Zb)dgbdpdZb

(2.33)

in which a 2D detection network is used to approximate P (gb|I). P (θ, σ|I, gb) is estimated

via a deep network which jointly predicts vehicle orientation and 3D scale and P (p|I, gb) is

learned by a landmark detection network. For P (Zb|I, gb), we use an unsupervised monocular

depth estimation network. The network outcome is used as initialization for maximizing

the last posterior in the integration Eq. (2.33), which is equivalent to minimizing an overall

energy function in Eq. (2.21). We apply a Cholesky factorization based solver to solve this

nonlinear optimization problem. In theory, the same energy could be optimized end-to-end to

fine-tune the weights of every neural network component, but this is beyond our scope here.
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Figure 2.9: 3D detection results on KITTI test set, shown as projections on the input

images. 3D morphable shape models of each vehicle are colored in green. Dashed green lines

are occluded edges. For the 14 vertices of each morphable shape model, visible vertices are

colored in red and occluded ones in yellow. 2D bounding boxes are colored in blue.
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Figure 2.10: 3D detection results on KITTI val1.
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Figure 2.11: 3D detection results on KITTI val2.
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1 meter 2 meters 3 meters

Method Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

v1 13.6 / 16.9 12.2 / 13.3 11.3 / 12.5 40.6 / 43.6 33.7 / 34.0 30.5 / 36.3 63.3 / 67.7 52.7 / 53.3 51.0 / 49.3

v2 68.5 / 68.2 58.3 / 57.5 50.8 / 47.6 89.4 / 87.8 79.8 / 76.0 69.5 / 66.5 93.8 / 93.9 85.2 / 83.6 75.5 / 74.4

v3 76.1 / 73.2 64.5 / 60.2 53.6 / 50.0 91.2 / 90.5 81.1 / 78.4 70.5 / 68.7 94.0 / 94.4 85.3 / 84.7 75.7 / 75.2

v4 80.6 / 80.2 67.7 / 65.1 56.0 / 54.6 93.3 / 92.7 83.0 / 80.8 71.8 / 70.5 95.0 / 95.4 86.7 / 85.4 76.2 / 75.9

Table 2.10: Ablation studies on val1/val2 by ALP with multiple 3D box center distance

thresholds.

3D IoU=0.25 3D IoU=0.5 3D IoU=0.7

Method Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

v1 10.50 / 11.50 8.75 / 8.99 9.02 / 16.43 1.27 / 1.59 1.05 / 1.55 0.98 / 1.29 0.76 / 0.38 0.70 / 0.38 0.70 / 0.38

v2 68.33 / 58.50 55.00 / 49.96 49.17 / 45.09 31.13 / 25.86 24.49 / 21.21 19.89 / 17.66 7.30 / 8.11 5.44 / 6.51 5.11 / 6.40

v3 71.39 / 66.59 59.06 / 54.88 50.59 / 48.26 38.55 / 33.66 27.92 / 24.79 22.12 / 19.97 10.24 / 7.72 7.27 / 5.45 6.10 / 4.83

v4 79.45 / 71.86 62.76 / 59.11 52.79 / 50.53 43.09 / 41.98 30.53 / 29.77 23.96 / 24.23 14.42 / 10.64 10.75 / 7.89 8.03 / 5.66

Table 2.11: Ablation studies on val1/val2 by AP3D with multiple 3D IoU thresholds.

2D IoU=0.5 2D IoU=0.7

Method Easy Moderate Hard Easy Moderate Hard

v1 2.06 / 2.27 2.30 / 2.27 2.29 / 2.36 0.76 / 0.40 0.70 / 0.42 0.70 / 0.41

v2 37.27 / 30.18 27.48 / 24.82 23.67 / 21.49 11.40 / 11.40 9.05 / 9.52 7.29 / 8.03

v3 42.68 / 37.25 32.12 / 28.50 25.84 / 24.14 14.25 / 10.92 10.79 / 8.86 8.94 / 6.94

v4 50.50 / 46.68 36.85 / 34.32 29.05 / 28.13 20.21 / 16.71 13.63 / 11.47 11.24 / 10.12

Table 2.12: Ablation studies on val1/val2 by APloc with multiple 2D IoU thresholds.

AP AOS

Method Type Easy Moderate Hard Easy Moderate Hard

3DVP Mono 81.46 75.77 65.38 81.02 74.59 64.11

Faster-RCNN Mono 87.90 79.11 70.19 - - -

SubCNN Mono 90.75 88.86 79.24 90.61 88.43 78.63

3DOP Stereo 90.09 88.34 78.79 88.56 85.81 76.21

Mono3D Mono 90.27 87.86 78.09 89.00 85.83 76.00

Deep3DBox Mono 90.47 88.86 77.60 90.39 88.56 77.17

DeepMANTA Mono 97.25 90.03 80.62 97.19 89.86 80.39

Mono3D++ Mono 90.59 89.88 80.61 90.41 89.23 79.60

Table 2.13: Comparisons with monocular and stereo methods by 2D detection AP and AOS

on KITTI test set. 34



CHAPTER 3

Point Cloud Deep Geodesic Representation Learning

3.1 Introduction

Determining neighborhood relationship among points in a point cloud, known as topology

estimation, is an important problem since it indicates the underlying point cloud structure,

which could further reveal the point cloud semantics and functionality. Consider the red

inset in Fig. 3.1: the two clusters of points, though seemingly disconnected, should indeed

be connected to form a chair leg, which supports the whole chair. On the other hand, the

points on opposite sides of a chair seat, though spatially very close to each other, should not

be connected to avoid confusing the sittable upper surface with the unsittable lower side.

Determining such topology appears to be a very low-level endeavor but in reality it requires

global, high-level knowledge, making it a very challenging task. Still, from the red inset in

Fig. 3.1, we could draw the conclusion that the two stumps are connected only after we learn

statistical regularities from a large number of point clouds and observe many objects of this

type with connected elongated vertical elements extending from the body to the ground. This

motivates us to adopt a learning approach to capture the topological structure within point

clouds.

Our primary goals in this paper are to develop representations of point cloud data that are

informed by the underlying surface topology as well as object geometry, and propose methods

that leverage the learned topological features for geodesic-aware point cloud analysis. The

representation should capture various topological patterns of a point cloud and the method
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Figure 3.1: Our method takes a point cloud as input, and outputs representations used

for multiple tasks including upsampling, normal estimation, mesh reconstruction, and shape

classification.

of leveraging these geodesic features should not alter the data stream, so our representation

can be learned jointly and used in conjunction with the state-of-the-art baseline or backbone

models (e.g. PU-Net, PointNet++ [YLF18, QSM17a, QYS17, CHL18]) that feed the raw

data through, with no information loss to further stages of processing.

For the first goal, we propose a geodesic neighborhood estimation network (GeoNet) to

learn deep geodesic representations using the ground truth geodesic distance as supervision

signals. As illustrated in Fig. 3.2, GeoNet consists of two modules: an autoencoder that

extracts a feature vector for each point and a geodesic matching (GM) layer that acts as a

learned kernel function for estimating geodesic neighborhoods using the latent features. Due

to the supervised geodesic training process, intermediate features of the GM layer contain

rich information of the point cloud topology and intrinsic surface attributes. We note that

the representation, while trained on geodesic distances, does not by construction produce
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Figure 3.2: GeoNet: geodesic neighborhood estimation network.

geodesics (e.g. symmetry, triangle inequality, etc.). The goal of the representation is to

inform subsequent stages of processing of the global geometry and topology, and is not to

conduct metric computations directly.

For the second task, as shown in Fig. 3.3, we propose geodesic fusion schemes to integrate

GeoNet into the state-of-the-art network architectures designed for different tasks. Specifically,

we present PU-Net fusion (PUF) for point cloud upsampling, and PointNet++ fusion (POF)

for normal estimation, mesh reconstruction as well as non-rigid shape classification. Through

experiments, we demonstrate that the learned geodesic representations from GeoNet are

beneficial for both geometric and semantic point cloud analyses.

In summary, in this paper we propose an approach for learning deep geodesic-aware

representations from point clouds and leverage the results for various point set analyses. Our

contributions are:

• We present, to the best of our knowledge, the first deep learning method, GeoNet, that

ingests point clouds and learns representations which are informed by the intrinsic

structure of the underlying point set surfaces.

• To demonstrate the applicability of learned geodesic representations, we develop network

fusion architectures that incorporate GeoNet with baseline or backbone networks for

geodesic-aware point set analysis.

• Our geodesic fusion methods are benchmarked on multiple geometric and semantic

point set tasks using standard datasets and outperform the state-of-the-art methods.
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3.2 Related Work

We assume our input is a point cloud, which can be obtained by multiple-view geometry, single

image depth estimation [MSK12, HZ03, GAB17, WHS19, FWS19] or collected from various

sensors (e.g. depth camera, Lidar, etc.). We mainly review traditional graph-based methods

for geodesic distance computation, as well as general works on point cloud upsampling, normal

estimation, and non-rigid shape classification, as we are unaware of other prior works on

point cloud-based deep geodesic representation learning.

Geodesic distance computation. There are two types of methods: some allow the

path to traverse mesh faces [SS86, MMP87, CH90, GH97, SSK05, XW09, CWW13] for

accurate geodesic distance computation, while others find approximate solutions via shortest

path algorithms constrained on graph edges [Dij59, Flo62, Joh77]. For the first type, an

early method [SS86] suggests a polynomial algorithm of time O(n3logn) where n is the

number of edges, but their method is restricted to a convex polytope. Based on Dijkstra’s

algorithm [Dij59], [MMP87] improves the time complexity to O(n2logn) and extends the

method to an arbitrary polyhedral surface. Later, [CH90] proposes an O(n2) approach using

a set of windows on the polyhedron edges to encode the structure of the shortest path set.

By filtering out useless windows, [XW09] further speeds up the algorithm. Then [CWW13]

introduces a heat method via solving a pair of standard linear elliptic problems. As for

graph edge-based methods, typical solutions include Dijkstra’s [Dij59], Floyd-Warshall [Flo62]

and Johnson’s algorithms [Joh77], which have much lower time complexity than the surface

traversing methods. For a 20000-vertex mesh, computing its all-pair geodesic distances can

take several days using [XW09] while [Joh77] only uses about 1 minute on CPU. When a mesh

is dense, the edge-constrained shortest path methods generate low-error geodesic estimates.

Thus in our work, we apply [Joh77] to compute the ground truth geodesic distance.

Point upsampling. Previous methods can be summarized into two categories. i)

Optimization based methods [ABC03, LCL07, HLZ09], championed by [ABC03], which
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interpolates a dense point set from vertices of a Voronoi diagram in the local tangent

space. Then [LCL07] proposes a locally optimal projection (LOP) operator for point cloud

resampling and mesh reconstruction leveraging an L1 median. For improving robustness to

point cloud density variations, [HLZ09] presents a weighted LOP. These methods all make

strong assumptions, such as surface smoothness, and are not data-driven, and therefore have

limited applications in practice. ii) Deep learning based methods. To apply the (graph)

convolution operation, many of those methods first voxelize a point cloud into regular

volumetric grids [WSK15, WZX16, HLH17, DQN17] or instead use a mesh [DBV16, YSG17].

While voxelization introduces discretization artifacts and generates low resolution voxels

for computational efficiency, mesh data can not be trivially reconstructed from a sparse

and noisy point cloud. In [YWS19, YS18] a sparse point cloud is reprojected onto a range

map and modeled as a 2.5D inpanting problem. To directly upsample a 3D point cloud,

PU-Net [YLF18] learns multilevel features for each point and expands the point set by a

multibranch convolution unit in feature space. But PU-Net is based on Euclidean space and

thus does not leverage the underlying point cloud surface attributes in geodesic space, which

we show in this paper are important for upsampling.

Normal estimation. A widely used method for point cloud normal estimation is to

analyze the variance in a tangential plane of a point and find the minimal variance direction

by Principal Component Analysis (PCA) [HDD92, Jol11]. But this method is sensitive to

the choice of the neighborhood size, namely, large regions can cause over-smoothed surfaces

and small ones are sensitive to noises. To improve robustness, [GG07, CP05, AB99] propose

to fit higher-order shapes. However, methods described above all require careful parameter

tuning at the inference time and only estimate normal orientation up to sign. Thus, so far

robust estimation for oriented normal vectors using traditional methods is still challenging,

especially across different noise levels and shape structures. There are only few data-driven

methods that are able to integrate normal estimation and orientation alignment into a

unified pipeline [GKO18, QYS17]. They take a point cloud as input and directly regress
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Figure 3.3: PU-Net (top) and PointNet++ (bottom) geodesic fusion architectures.

oriented normal vectors, but these methods are not designed to learn geodesic topology-based

representations that capture the intrinsic surface features for better normal estimation.

Non-rigid shape classification. Classifying the point cloud of non-rigid objects of-

ten consists of two steps: extracting intrinsic features in geodesic space and applying a

classifier (e.g. SVM, MLP, etc.). Some commonly used features include wave kernel signa-

tures [ASC11], heat kernel signatures [SOG09], spectral graph wavelet signatures [MLH16],

Shape-DNA [RWP06], etc. For example, DeepGM [LH18] uses geodesic moments and stacked

sparse autoencoders to classify non-rigid shapes, such as cat, horse, spider, etc. The geodesic

moments are feature vectors derived from the integral of the geodesic distance on a shape,

while stacked sparse autoencoders are deep neural networks consisting of multiple layers of

sparse autoencoders. However, the above methods all require knowing graph-based data,

which is not available from widely used sensors (e.g. depth camera, Lidar, etc.) for 3D data

acquisition. Though PointNet++ [QYS17] is able to directly ingest a point cloud and conduct

classification, it is not designed to model the geodesic topology of non-rigid shapes and thus

its performance is inferior to traditional two-step methods which heavily reply on the offline

computed intrinsic surface features.

40



3.3 Methodology

3.3.1 Notation

χ = {xi} denotes a point set with xi ∈ Rd and i = 1, . . . , N . Although the problem

and the method developed are general, we focus on the case d = 3 using only Euclidean

coordinates as input. A neighborhood subset within radius r from a point xi is denoted

Br(xi) = {xj|dE(xi, xj) ≤ r} where dE(xi, xj) ∈ R is the Euclidean (embedding) distance

between xi and xj. The cardinality of Br(xi) is K. The corresponding geodesic distance

set around xi is called Gr(xi) = {gij = dG(xi, xj)|xj ∈ Br(xi)} where dG ∈ R means the

geodesic distance. Our goal is to learn a function f : xi 7→ Gr(xi) that maps each point to

(an approximation of) the geodesic distance set Gr(xi) around it.

3.3.2 Overview of the method

We introduce GeoNet, a network trained to learn the function f defined above. It consists of

an autoencoder with skip connections, followed by a multi-scale Geodesic Matching (GM)

layer, leveraging latent space features {ψ(xi)} ⊆ R3+C of the point set. GeoNet is trained in

a supervised manner using ground truth geodesic distances between points in the set χ. To

demonstrate the applicability of learned deep geodesic-aware representations from GeoNet,

we test our approach on typical tasks that require understandings of the underlying surface

topology, including point cloud upsampling, surface normal estimation, mesh reconstruction,

and non-rigid shape classification. To this end, we leverage the existing state-of-the-art

network architectures designed for the aforementioned problems. Specifically, we choose

PU-Net as the baseline network for point upsampling and PointNet++ for other tasks. The

proposed geodesic fusion methods, called PU-Net fusion (PUF) and PointNet++ fusion

(POF), integrate GeoNet with the baseline or backbone models to conduct geodesic-aware

point set analysis.
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3.3.3 Geodesic neighborhood estimation

As illustrated in Fig. 3.2, GeoNet consists of two modules: an autoencoder that extracts a

feature vector ψ(xi) for each point xi ∈ χ and a GM layer that acts as a learned geodesic

kernel function for estimating Gr(xi) using the latent features.

Feature Extraction. We use a variant of PointNet++, which is a point set based

hierarchical and multi-scale function, for feature extraction. It maps an input point set χ to

a feature set {φ(xi)|xi ∈ χ̃} where φ(xi) ∈ R3+C̃ is a concatenation of the xyz coordinates

and the C̃ dimensional embedding of xi, and χ̃ is a sampled subset of χ by farthest-point

sampling. To recover features {ψ(xi)} for the point cloud χ, we use a decoder with skip

connections. The decoder consists of recursively applied tri-linear feature interpolators, shared

fully connected (FC) layers, ReLU and Batch Normalization. The resulting (N, 3 +C) tensor

is then fed into the GM layer for geodesic neighborhood estimation.

Geodesic Matching. We group the latent features ψ(xi) into neighborhood feature

sets Frl(xi) = {ψ(xj)|xj ∈ Brl(xi)}, under multiple radius scales rl. At each scale rl we set

a maximum number of neighborhood points Kl, and thus produce a tensor of dimension

(N,Kl, 3+C). The grouped features, together with the latent features, are sent to a geodesic

matching module, where ψ(xi) is concatenated with ψ(xj) for every xj ∈ Brl(xi). The

resulting feature ξij ∈ R3+2C becomes the input to a set of shared FC layers with ReLU,

Batch Normalization and Dropout. As demonstrated in [HLJ15], the multilayer perceptron

(MLP) acts as a kernel function that maps ξij to an approximation of the geodesic distance,

ĝij. Finally, the GM layer yields Grl(xi) for each point of the input point cloud χ. We use a

multi-scale L1 loss Lgeo =
∑

l Lgeol to compare the ground truth geodesic distances to their

estimates:

Lgeol =
∑
xi∈χ

∑
xj∈Brl

(xi)

|gij − ĝ(xi, xj)|
NKl

(3.1)
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Figure 3.4: Representative results of geodesic neighborhood estimation. Red dots indicate

the reference point and stars represent target points selected for the purpose of illustration.

Points in dark-purple are closer to the reference point than those in bright-yellow. Shortest

paths between the reference point and the target point in euclidean space are colored in

sky-blue. Topology-based geodesic paths are in pink.

3.3.4 Geodesic fusion

To demonstrate how the learned geodesic representations can be used for point set analysis,

we propose fusion methods based on the state-of-the-art (SOTA) network architectures for

different tasks. For example, PU-Net is the SOTA upsampling method and thus we propose

PUF that uses PU-Net as the baseline network to conduct geodesic fusion for point cloud

upsampling. With connectivity information provided by the estimated geodesic neighborhoods,

our geodesic-fused upsampling network can better recover topological details, such as curves

and sharp structures, than PU-Net. We also present POF leveraging PointNet++ as the

fusion backbone, and demonstrate its effectiveness on both geometric and semantic tasks

where PointNet++ shows the state-of-the-art performance.

PU-Net Geodesic Fusion. A PUF layer, as illustrated in Fig. 3.3 (top), takes a (N, d)

point set as input and sends it into two branches: one is a multi-scale Euclidean grouping layer,

and the other is GeoNet. At each neighborhood scale rl, the grouped point set Brl(xi) is fused

with the estimated geodesic neighborhood Grl(xi) to yield Srl(xi) = {(xj, gij)|xj ∈ Brl(xi)}
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with (xj, gij) ∈ Rd+1. Then the (N,Kl, d+ 1) fused tensor is fed to a PointNet to generate a

(N,Cl) feature tensor which will be stacked with features from other neighborhood scales.

The remaining layers are from PU-Net. As indicated by the red rectangles in Fig. 3.3, the

total loss has two weighted terms:

L = Lgeo + λLtask (3.2)

where Lgeo is for GeoNet training Eq. (3.1), λ is a weight and Ltask, in general, is the loss

for the current task that we are targeting. In this case, the goal is point cloud upsampling:

Ltask = Lup(θ) where θ indicates network parameters. PUF upsampling takes a randomly

distributed sparse point set χ as input and generates a uniformly distributed dense point

cloud P̂ ⊆ R3. The upsampling factor is α = |P |
|χ| :

Lup(θ) = LEMD(P, P̂ ) + λ1Lrep(P̂ ) + λ2 ∥θ∥2 (3.3)

in which the first term is the Earth Mover Distance (EMD) between the upsampled point set

P̂ and the ground truth dense point cloud P :

LEMD(P, P̂ ) = min
ϕ:P̂→P

∑
pi∈P̂

∥pi − ϕ(pi)∥2 (3.4)

where ϕ : P̂ → P indicates a bijection mapping.

The second term in Eq. (3.3) is a repulsion loss which promotes a uniform spatial

distribution for P̂ by penalizing close point pairs:

Lrep(P̂ ) =
∑
pi∈P̂

∑
pj∈P̃i

η(∥pi − pj∥)ω(∥pi − pj∥) (3.5)

where P̃i is a set of k -nearest neighbors of pi, η(r) = −r penalizes close pairs (pi, pj), and

ω(r) = e−r2/h2 is a fast-decaying weight function with some constant h [HLZ09, LCL07].
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PointNet++ Geodesic Fusion. Fig. 3.3 (bottom) illustrates the PointNet++ based

fusion pipeline. Due to task as well as architecture differences between PU-Net and Point-

Net++, we make following changes to PUF to design a suitable fusion strategy that leverages

PointNet++. First, for multi-scale grouping, we use the learned geodesic neighborhoods

Ĝr(xi) instead of Euclidean ones. Geodesic grouping brings attention to the underlying

surfaces as well as structures of the point cloud. Second, while the PUF layer fuses estimated

Ĝr(xi) = {ĝij = d̂G(xi, xj)|xj ∈ Br(xi)}, where ĝij ∈ R, of each neighborhood point set Br(xi)

into the backbone network, the POF layer uses the latent geodesic-aware features ξ̃ij ∈ RC̃

extracted from the second-to-last FC layer in GeoNet. Namely, ξ̃ij is an intermediate high-

dimensional feature vector from ξij to ĝij via FC layers, and therefore it is better informed

of the intrinsic point cloud topology. Third, in PointNet++ fusion we apply the POF layer

in a hierarchical manner, leveraging farthest-point sampling. Thus, the learned features

encode both local and global structural information of the point set. The total loss for POF

also has two parts: One is for GeoNet training and the other is for the task-at-hand. We

experiment on representative tasks that can benefit from understandings of the topological

surface attributes. We use the L1 error for point cloud normal estimation:

Lnormal =
∑
xi∈χ

3∑
j=1

∣∣∣n(j)
i − n̂(xi)

(j)
∣∣∣

3N
(3.6)

in which ni ∈ R3 is the ground truth unit normal vector of xi, and n̂(xi) ∈ R3 is the

estimated normal. We then use the normal estimation to generate mesh via Poisson surface

reconstruction [KH13a]. To classify point clouds of non-rigid objects, we use cross-entropy

loss:

Lcls = −
S∑

c=1

yclog(pc(χ)) (3.7)

where S is the number of non-rigid object categories, and c is class label; yc ∈ {0, 1} is a

binary indicator, which takes value 1 if class label c is ground truth for the input point set.

pc(χ) ∈ R is the predicted probability w.r.t. class c of the input point set.
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K-3 K-6 K-12 Euc GeoNet

v1

r ⩽ 0.1 8.75 8.97 9.04 9.06 5.67

r ⩽ 0.2 16.22 17.33 17.90 18.16 9.25

r ⩽ 0.4 15.15 16.80 17.88 18.95 9.75

v2

r ⩽ 0.1 11.71 11.49 11.55 11.57 7.06

r ⩽ 0.2 19.22 17.76 18.28 18.56 9.74

r ⩽ 0.4 21.03 17.19 18.20 19.44 10.04

v3

r ⩽ 0.1 13.28 14.23 14.62 14.78 10.86

r ⩽ 0.2 14.85 17.27 18.54 19.49 13.61

r ⩽ 0.4 13.48 16.10 17.72 19.68 14.73

Table 3.1: Neighborhood geodesic distance estimation MSE (x100) on the heldout ShapeNet

training-category samples. We compare with KNN-Graph based shortest path methods under

different choices of K values. Euc represents the difference between Euclidean distance and

geodesic distance. MSE(s) are reported under multiple radius ranges r. v1 takes uniformly

distributed point sets with 512 points as input, and v2 uses randomly distributed point

clouds. v3 is tested using point clouds that have 2048 uniformly distributed points.

3.4 Implementation Details

For GeoNet training, the multiscale loss Lgeol is enforced at three radius ranges: 0.1, 0.2 and

0.4. We use Adam [KB14] with learning rate 0.001 and batchsize 3 for 8 epochs. To train the

geodesic fusion networks, we set the task term weight λ as 1, and use Adam with learning

rate 0.0001 and batchsize 2 for around 300 to 1500 epochs depending on the task and the

dataset.

3.5 Experiments

We put GeoNet to the test by estimating point cloud geodesic neighborhoods. To demonstrate

the applicability of learned deep geodesic-aware representations, we also conduct experiments
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K-3 K-6 K-12 Euc GeoNet

v1
r ⩽ 0.1 8.81 9.01 9.05 9.06 7.52

r ⩽ 0.2 11.84 12.88 13.49 13.75 11.44

v2
r ⩽ 0.1 10.52 10.21 10.25 10.26 8.94

r ⩽ 0.2 15.02 12.99 13.59 13.86 11.69

v3
r ⩽ 0.1 11.82 12.39 12.65 12.75 10.88

r ⩽ 0.2 11.80 12.84 13.55 14.50 12.26

Table 3.2: Geodesic neighborhood estimation MSE (x100) on the leftout ShapeNet categories.

v1 takes uniformly distributed point sets with 512 points as input, and v2 uses randomly

distributed point clouds. v3 is tested using point clouds that have 2048 uniformly distributed

points.

Figure 3.5: Point cloud upsampling comparisons with PU-Net. The input point clouds have

512 points with random distributions and the upsampled point clouds have 2048 points. Red

insets show details of the corresponding dashed region in the reconstruction.

on down-stream point cloud tasks such as point upsampling, normal estimation, mesh

reconstruction and non-rigid shape classification.
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Figure 3.6: Top-k mean square error (MSE) of upsampled points that have large errors, for

the heldout training-category samples (red) and the leftout ShapeNet categories (green).

Figure 3.7: Mesh reconstruction results on the Shrec15 (left) and the ShapeNet (right)

datasets using the estimated normal by PointNet++ and our method POF. GT presents

mesh reconstructed via the ground truth normal. We also visualize POF normal estimation

in the fourth and the last columns.

Figure 3.8: Point set normal estimation errors. Blue indicates small errors and red is for

large ones.
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MSE EMD CD

Training
PU-Net 7.14 8.06 2.72

PUF 6.23 7.62 2.46

Leftout
PU-Net 12.38 11.43 3.98

PUF 9.55 8.90 3.27

Table 3.3: Point cloud upsampling results on both the heldout training-category samples

and the unseen ShapeNet categories. MSE(s) (x10000) are scaled for better visualization.

3.5.1 Geodesic neighborhood estimation

In Tab. 3.1 (v1) we show geodesic distance set, Gr(xi), estimation results on the ShapeNet

dataset [CFG15a] using point clouds with 512 uniformly distributed points. Mean-squared

errors (MSE) are reported under multiple radius scales r w.r.t. xi ∈ χ. GeoNet demonstrates

consistent improvement over the baselines. Representative results are visualized in Fig. 3.4.

Our method captures various topological patterns, such as curved surfaces, layered structures,

inner/outer parts, etc.

Generality. We test GeoNet’s robustness under different point set distributions and

sizes. In Tab. 3.1 (v2) we use point clouds with 512 randomly distributed points as input.

We also test on dense point sets that contain 2048 uniformly distributed points in Tab. 3.1

(v3). Our results are robust to different point set distributions as well as sizes. To show the

generalization performance, in Tab. 3.2 we report results on the leftout ShapeNet categories.

Our method performs better on unseen categories, while KNN-Graph based shortest path

approaches suffer from point set distribution randomness, density changes and unsuitable

choices of K values.

3.5.2 Point cloud upsampling

We test PUF on point cloud upsampling and present results in Tab. 3.3. We compare against

the state-of-the-art point set upsampling method PU-Net on three metrics: MSE, EMD as
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⩽ 2.5◦ ⩽ 5◦ ⩽ 10◦ ⩽ 15◦

PCA 6.16±0.01 14.85±0.02 27.16±0.17 34.17±0.28

PointNet++ 12.81±0.18 33.37±0.92 61.58±2.02 75.49±1.95

POF 16.26±0.30 39.02±1.09 66.98±1.46 79.66±1.21

Table 3.4: Point cloud normal estimation accuracy (%) on the Shrec15 dataset under

multiple angle thresholds.

⩽ 2.5◦ ⩽ 5◦ ⩽ 10◦ ⩽ 15◦

Training

PCA 5.33 10.11 18.52 24.82

PointNet++ 30.68 43.19 55.91 62.30

POF 32.04 45.02 57.52 63.62

Leftout

PCA 5.24 10.59 18.99 25.17

PointNet++ 17.35 28.82 43.26 51.17

POF 19.13 31.83 46.22 53.78

Table 3.5: Point cloud normal estimation accuracy (%) on the ShapeNet dataset for both

heldout training-category samples and leftout categories.

well as the Chamfer Distance (CD). Our method outperforms the baseline under all metrics

by 9.25% average improvement on the heldout training-category samples. Since geodesic

neighborhoods are better informed of the underlying point set topology than Euclidean ones,

PUF upsampling produces less outliers and recovers more details in Fig. 3.5, such as curves

and sharp structures.

Generality. To analyze outlier robustness (i.e. points with large reconstruction errors),

we plot top-k MSE in Fig. 3.6. Our method generates fewer outliers on both the heldout

training-category samples and the unseen categories. We also report quantitative results on

the leftout categories in Tab. 3.3. Again, PUF significantly surpasses the state-of-the-art

upsampling method PU-Net under three different evaluation metrics.
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Figure 3.9: Normal estimation and Poisson mesh reconstruction results by POF using dense

point clouds with 8192 points.

3.5.3 Normal estimation and mesh reconstruction

For normal estimation we apply PointNet++ geodesic fusion, POF, then we conduct Poisson

mesh reconstruction leveraging the estimated normals. Quantitative results for normal

estimation on the Shrec15 dataset and the ShapeNet dataset are given in Tab. 3.4 and

Tab. 3.5, respectively. We compare our method with the traditional PCA algorithm as well as

the state-of-the-art deep learning method PointNet++. Our results outperform the baselines

by around 10% relative improvement. In Fig. 3.8, we visualize typical normal estimation

errors, showing that PointNet++ usually fails at high-curvature and complex-surface regions.

For further evidence, we visualize Poisson mesh reconstruction in Fig. 3.7 using the estimated

normals.

Generality. In Tab. 3.5 we evaluate normal estimation performance on the leftout

ShapeNet categories. Our method has higher accuracy over competing methods under

multiple angle thresholds. Though trained with point clouds of 2048 points, POF is also

tested on denser input. In Fig. 3.9 we take point clouds with 8192 points as input, and

visualize the normal estimation and mesh reconstruction results, which shows that our method

generalizes to dense point clouds without re-training and produces fine-scaled mesh.
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Input feature Accuracy (%)

PointNet++ XYZ 73.56

POF XYZ 94.67

DeepGM Intrinsic features 93.03

Table 3.6: Point cloud classification of non-rigid shapes on the Shrec15 dataset.

Gaussian Noise Level

0.8% 0.9% 1.0% 1.1% 1.2%

PointNet++ 70.54 69.27 67.83 65.66 62.38

POF 91.89 90.93 89.40 87.72 84.98

Table 3.7: Noisy point clouds classification accuracy (%). We add Gaussian noise of 0.8%

to 1.2% of unit ball radius.

3.5.4 Non-rigid shape classification

Results of non-rigid shape classification are reported in Tab. 3.6. While POF and PointNet++

only take point cloud-based xyz Euclidean coordinates as input, DeepGM requires offline

computed intrinsic features from mesh data in the ground truth geodesic metric space.

Though using less informative data, our method has higher classification accuracy than other

methods, which further demonstrates that the proposed geodesic fusion architecture, POF, is

suitable for solving tasks that require understandings of the underlying point cloud surface

attributes.

Generality. We add Gaussian noise of different levels to the input and conduct noisy

point clouds classification. Comparisons are shown in Tab. 3.7. POF outperforms PointNet++

under several noise levels. Our method also demonstrates better noise robustness. It shows a

10.24% decrease in relative accuracy at the maximum noise level, while PointNet++ decreases

by up to 15.20%.
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Figure 3.10: Failure cases of geodesic neighborhood estimation for stick-shaped objects

(e.g. rocket, knife, etc.) which have large ratios between length and width/height. Red dots

indicate the reference point. Points in dark-purple are closer to the reference point than those

in bright-yellow.

3.5.5 Failure modes

Failure cases of geodesic neighborhood estimation are shown in Fig. 3.10. Due to large ratios

between length and width/height, after normalizing a stick-shaped object (e.g. rocket, knife,

etc.) into a unit ball we need high precision small values to represent its point-pair geodesic

distance along the width/height sides. Since stick-shaped objects like rocket and knife only

take up a small portion of the training data, GeoNet tends to make mistakes for heldout

samples from these categories at inference time. Using an anistropic normalization might

alleviate this issue but is challenging in practice as the principal directions would have to

be estimated. We have not found additional failure cases, and quantitative improvements

continue to take effect due to rich surface-based topological information learned during the

geodesic-supervised training process.
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3.6 Discussion

We have presented GeoNet, a novel deep learning architecture to learn the geodesic space-

based topological structure of point clouds. The training process is supervised by the ground

truth geodesic distance and therefore the learned representations reflect the intrinsic structure

of the underlying point set surfaces. To demonstrate the applicability of such a topology

estimation network, we also propose fusion methods to incorporate GeoNet into computational

schemes that involve the standard backbone architectures for point cloud analysis. Our

method is tested on both geometric and semantic tasks and outperforms the state-of-the-art

methods, including point upsampling, normal estimation, mesh reconstruction and non-rigid

shape classification. For future works we will move on to complicated scenes where an

approximated mesh might need to be computed first in order to conduct the geodesic distance

supervised training for GeoNet.

3.7 Additional Results

More results on geodesic neighborhood estimation, point cloud upsampling, normal estimation

and mesh reconstruction are shown in Fig. 3.11, Fig. 3.12, Fig. 3.13 and Fig. 3.14.
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Figure 3.11: Geodesic Neighborhood Estimation. Representative results of geodesic

neighborhood estimation using point clouds with 2048 points of uniform distribution. Red

dots indicate the reference point. Points in dark-purple are closer to the reference point than

those in bright-yellow. Held-out samples from the ShapeNet training categories are above

the line and leftout categories are below the line.
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Figure 3.12: Point Cloud Upsampling. Representative results of point cloud upsampling.

The input point clouds have 512 points with random distributions and the upsampled point

clouds by our method, PUF, have 2048 points. Held-out samples from the ShapeNet training

categories are above the line and leftout categories are below the line.
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Figure 3.13: Normal Estimation and Mesh Reconstruction. Representative results

of point cloud normal estimation and Poisson mesh reconstruction on the ShapeNet dataset.

We test on input point clouds that have 8192 points though our method, POF, is trained

using point clouds with 2048 points. Held-out samples from the ShapeNet training categories

are above the line and leftout categories are below the line.
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Figure 3.14: Normal Estimation and Mesh Reconstruction. Representative results

of point cloud normal estimation and Poisson mesh reconstruction on the Shrec15 dataset.

We test on input point clouds that have 8192 points though our method, POF, is trained

using point clouds with 2048 points.
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CHAPTER 4

Single Image-based 3D Shape Reconstruction

4.1 Introduction

Image based modeling is enabling new forms of immersive content production, particularly

through realistic capture of human performance. Recently, deep implicit modeling techniques

delivered a step change in 3D reconstruction of clothed human meshes from monocular images.

These implicit methods train deep neural networks to estimate dense, continuous occupancy

fields from which meshes may be reconstructed e.g. via Marching Cubes [LC87b].

Reconstruction from a single view is an inherently under-constrained problem. The

resulting ambiguities are resolved by introducing assumptions into the design of the implicit

surface function; the learned function responsible for querying a 3D point’s occupancy by

leveraging feature evidence from the input image. Prior work extracts either a global image

feature [MON19b, PFS19b, CZ19a, LZP19], or pixel-aligned features (PIFu [SHN19b]) to

drive this estimation. Neither approach takes into account fine-grain local shape patterns,

nor seek to enforce global consistency to encourage physically plausible shapes and poses

in the reconstructed mesh. This can lead to unnatural body shapes or poses, and loss of

high-frequency surface details within the reconstructed mesh.

This paper contributes Geo-PIFU: an extension of pixel-aligned features to include three

dimensional information estimated via a latent voxel representation that enriches the feature

representation and regularizes the global shape of the estimated occupancy field. We augment

the pixel-aligned features with geometry-aligned shape features extracted from a latent voxel
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Figure 4.1: Pipeline. Our method extracts latent 3D voxel and 2D pixel features from a

single-view color image. The extracted features then are used to compose geometry and pixel

aligned features wrt. each query point P for occupancy estimation through an implicit surface

function. At training time, we enforce losses on both the coarse occupancy volume and the

estimated query point occupancy values. Note that the blue color 3D convolution decoder

for generating the coarse occupancy volume is only needed at training time to supervise the

latent voxel features.

feature representation obtained by lifting the input image features to 3D. These voxel features

naturally align with the human mesh in 3D space and thus can be trilinearly interpolated

to obtain a query point’s encoding. The uniform coarse occupancy volume losses and the

structure-aware 3D U-Nets architecture used to supervise and generate the latent voxel

features, respectively, both help to inject global shape topology robustness / regularities

into the voxel features. Essentially, the latent voxel features serve as a coarse human shape

proxy to constrain the reconstruction. Figure 7.2 summarises our proposed adaptation (see

upper branch) to reconstruct a clothed human mesh from a single-view image input using a

geometry and pixel aligned implicit surface function. Our three technical contributions are:

1. Geometry and pixel aligned features. We fuse geometry (3D, upper branch) and pixel

(2D, lower branch) aligned features to resolve local feature ambiguity. For instance, query
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points lying upon similar camera rays but on the front or back side of an object are reprojected

to similar pixel coordinates resulting in similar interpolated 2D features. Incorporating

geometry-aligned shape features derived from our latent voxel feature representation resolves

this ambiguity, leading to clothed human mesh reconstructions with rich surface details.

2. Global shape proxy. We leverage the same latent voxel feature representation as a

coarse human shape proxy to regularize reconstruction and encourage plausible global human

shapes and poses; crucial given the requirement to hallucinate the unobserved rear of the

imaged object. This improves the plausibility of the estimated character shape and pose with

accurate ground truth 3D alignment, and reduces mesh artifacts like distorted hands and

feet.

3. Scale of Evaluation. We extend the evaluation of deep implicit surface methods to the

DeepHuman dataset [ZYW19a]: 5436 training meshes, 1359 test meshes — 10 times larger

then the private commercial dataset used in PIFu. The leading results on this dataset are

generated by voxel and parametric mesh representations based methods. No deep implicit

function method has been benchmarked on it before.

We show that Geo-PIFu exceeds the state of the art deep implicit function method

PIFu [SHN19b] by 42.7% reduction in Chamfer and Point-to-Surface Distances, and 19.4%

reduction in normal estimation errors, corresponding to qualitative improvements in both

local surface details and global mesh topology regularities.

4.2 Related Work

Our method is most directly related to the use of deep implicit function representations for

single-view mesh reconstruction. For context, we will also briefly review on explicit shape

representations.
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4.2.1 Implicit Surface Function

Occupancy Networks [MON19b], DeepSDF [PFS19b], LIF [CZ19a] and DIST [LZP19] pro-

posed to use global representations of a single-view image input to learn deep implicit surface

functions for mesh reconstruction. They demonstrated state-of-the-art single-view mesh

reconstruction results on the ShapeNet dataset [CFG15b] of rigid objects with mostly flat

surfaces. However, the global representation based implicit function does not have dedicated

query point encodings, and thus lacks modeling power for articulated parts and fine-scale sur-

face details. This motivates later works of PIFu [SHN19b] and DISN [XWC19]. They utilize

pixel-aligned 2D local features to encode each query point when estimating its occupancy

value. The alignment is based on (weak) perspective projection from query points to the image

plane, followed by bilinear image feature interpolation. PIFu for the first time demonstrated

high-quality single-view mesh reconstruction for clothed human with rich surface details,

such as clothes wrinkles. However, PIFu still suffers from the feature ambiguity problem and

lacks global shape robustness. Another two PIFu variations are PIFuHD [SSS20] and ARCH

[HXL20]. PIFuHD leverages higher resolution input then PIFu through patch-based feature

extraction to accommodate GPU memory constraints. ARCH combines parametric human

meshes (e.g. SMPL [LMR15]) with implicit surface functions in order to assign skinning

weights for the reconstructed mesh and enable animations. Both methods require more

input / annotations (e.g. 2× higher resolution color images, SMPL registrations) than PIFu.

Note that PIFuHD, ARCH and Geo-PIFu focus on different aspects and are complementary.

If provided with those additional data, our method can also integrate their techniques to

further improve the performance. Another related work that also utilizes latent voxel features

for implicit function learning is IF-Net [CAP20], but its problem setting is different from

ours. While IF-Net takes partial or noisy 3D voxels as input, (Geo)-PIFu(HD) and ARCH

only utilize a single-view color image. Thus, IF-Net has access to "free" 3D shape cues of

the human subject. But Geo-PIFu must achieve an ill-posed 2D to 3D learning problem.

Meanwhile, Geo-PIFu needs to factorize out pixel domain nuisances (e.g. colors, lighting) in
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order to robustly recover the underlying dense and continuous occupancy fields.

4.2.2 Explicit Shape Models

Explicit shape models can be classified by the type of 3D shape representation that they

use: voxel, point cloud or (parametric) mesh [VCR18a, JMT18a, LKL18, FSG17, YHH19,

HHY19, GFK18, WZL18, RHP17, LMR15, KBJ18a, ZYW19a, APT19a]. Here we only review

some representative works on single-view clothed human body modeling and reconstruction.

BodyNet [VCR18a] leverages intermediate tasks (e.g. segmentation, 2D/3D skeletons) and

estimates low-resolution body voxel grids. A similar work to BodyNet is VRN [JMT18a], but

it directly estimates occupancy voxels without solving any intermediate task. Voxel-based

methods usually are constrained by low resolution and therefore struggle to recover shape

details. Driven by data efficiency and topology modeling flexibility of point clouds, several

methods [LKL18, FSG17, YHH19] propose to estimate point coordinates from the input

image. The drawback is that generating a mesh with fine-scale surface details by Poisson

reconstruction [KBH06] requires a huge number of point estimations. In order to directly

generate meshes, Atlas-Net [GFK18] uses deep networks to deform and stitch back multiple

flat-shape 2D grids. However, the reconstructed meshes are not water-tight because of the

stitching hole artifacts. Pixel2Mesh [WZL18] generates water-tight meshes by progressively

deforming a sphere template. But the empirical results show that mesh-based methods

produce overly smooth surfaces with limited surface details due to shape flexibility constraints

of the template. Parametric shape models like SMPL [LMR15], BlendSCAPE [HLR12],

etc are also useful for directly generating human meshes. For example, [KBJ18a, PZZ18,

KPD19a, KPB19a, PKD19] estimate or fit the shape and pose coefficients of a SMPL model

from the input image. Note that these parametric human body models are usually designed to

be “naked", ignoring clothes shapes. Recently, methods that leverage hybrid explicit models

are also proposed to combine the benefits of different shape representations. DeepHuman

[ZYW19a] and Tex2Shape [APT19a] combine SMPL with methods of voxel refinement and
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mesh deformation, respectively, for single-view clothed human mesh reconstruction. One issue

of using parametric body shapes is non-trivial data annotation (e.g. registering SMPL models

with ground-truth clothed human meshes), which is not needed in deep implicit surface

function-based methods. Another problem is propagation error: wrong SMPL estimation can

cause additional errors in its afterward steps of local surface refinement.

4.3 Methodology

Continuous occupancy fields map each 3D point inside it to a positive or negative occupancy

value dependent on the point is inside the target mesh or not. We encode surface as the

occupied / unoccupied space decision boundary of continuous occupancy fields and apply the

Marching Cube algorithm [LC87b] to recover human meshes. Occupancy values are denoted

by σ ∈ R. Points inside a mesh have σ > 0 and outside are σ < 0. Thus, the underlying

surface can be determined at σ := 0. In this work the goal is to learn a deep implicit function

f(·) that takes a single-view color image I : D ⊂ R2 → R3 and coordinates of any query

point P ∈ R3 as input, and outputs the occupancy value σ of the query point: f | (I, P ) 7→ σ.

The training data for learning the implicit surface function consists of (image, query point

occupancy) pairs of {I, σ(P )}. More specifically, we densely sample training query points

on the mesh and generate additional samples by perturbing them with Gaussian noise. In

the following sections, we introduce the formulation of our deep implicit function in Section

4.3.1 and explain our training losses in Section 4.3.2. Implementation details are provided in

Section 4.4.

4.3.1 Geo-PIFu

As shown in Figure 7.2, we propose to encode each query point P using fused geometry (3D,

upper branch) and pixel (2D, lower branch) aligned features. Our method, Geo-PIFu, can be

formulated as:
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fθ(T (ξω(I), P ),B(ψµ(I), π(P )), Z(P ))) := σ (4.1)

The implicit surface function is denoted by fθ(·) and implemented as a multi-layer perceptron

with weights θ. For each query point P , inputs to the implicit function for occupancy σ(P )

estimation include three parts: geometry-aligned 3D features T (ξω(I), P ), pixel-aligned 2D

features B(ψµ(I), π(P )), and the depth Z(P ) ∈ R of P . They compose the aligned features

wrt. P .

4.3.1.1 Geometry-aligned Features

First we explain geometry-aligned features T (ξω(I), P ) in Equation (4.1). Here ξω(·) are 3D

U-Nets [JBA17] that lift the input image I into 3D voxels of latent features. The networks

are parameterized by weights ω. To extract geometry-aligned features from ξω(I) wrt. a

query point P , we conduct multi-scale trilinear interpolation T based on the xyz coordinates

of P . This interpolation scheme is inspired by DeepVoxels [STH19a, HCJ20a] and IF-Net

[CAP20]. It is important to notice that these voxel features naturally align with the human

mesh in 3D space and thus can be trilinearly interpolated to obtain a query point’s encoding.

Specifically, we trilinearly interpolate and concatenate features from a point set Ω determined

around P .

Ω :=
{
P + ni | ni ∈ d ·

{
(0, 0, 0)T , (1, 0, 0)T , (0, 1, 0)T , (0, 0, 1)T ...

}}
(4.2)

Here ni ∈ R3 is a translation vector defined along the axes of a Cartesian coordinate with step

length d ∈ R. For convenience, we will use trilinear interpolation to indicate our multi-scale

feature interpolation scheme T for the rest of the paper. Not like global image features

and pixel-aligned features, as discussed in Section 7.1, geometry-aligned features provide

dedicated representations for query points that directly capture their local shape patterns

and tackle the feature ambiguity problem. Since computation cost of latent voxel features
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learning is usually a concerned issue, we emphasize that our latent voxel features are of

low resolution (C-8, D-32, H-48, W-32), in total 393216. In comparison, the latent pixel

features resolution is (C-256, H-128, W-128), in total 4194304. More discussion on the model

parameter numbers is provided in the experiment section.

4.3.1.2 Pixel-aligned Features

Pixel-aligned features are denoted as B(ψµ(I), π(P )) in Equation (4.1), where π represents

(weak) perspective camera projection from the query point P to the image plane of I.

Then pixel-aligned features can be extracted from the latent pixel features ψµ(I) by bilinear

interpolation B at the projected pixel coordinate π(P ). Image features mapping function ψµ(·)

is implemented as 2D U-Nets with weights µ. While geometry-aligned features, by designs of

network architectures and losses, are mainly informed of coarse human shapes, pixel-aligned

features focus on extracting high-frequency shape information from the single-view input, such

as clothes wrinkles. In Section 4.5.2 we conduct ablation studies on single-view clothed human

mesh reconstruction using individual type of features. The results empirically demonstrated

these claimed attributes of geometry and pixel aligned features.

4.3.2 Training Losses

Next we explain the losses used in training the geometry and pixel aligned features, as well

as the deep implicit surface function.

4.3.2.1 Coarse occupancy volume loss

To learn latent voxel features ξω(I) ∈ Rm×s1×s2×s3 that are informed of coarse human shapes,

we use a 3D convolution decoder and a sigmoid function to estimate a low-resolution occupancy

volume V̂ (I) ∈ R1×d×h×w. We use extended cross-entropy losses [JBA17] for training.
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Figure 4.2: Left: the DeepHuman dataset contains various clothes and poses. Right: the

dataset used in PIFu consists of mostly upstanding poses.

Lgeo = − 1

|V̂ |

∑
i,j.k

γV i,j.k log V̂ i,j,k + (1− γ)(1− V i,j,k) log(1− V̂ i,j,k), with V̂ (I) = νρ(ξω(I)) (4.3)

The ground truth coarse occupancy fields V ∈ R1×d×h×w are voxelized from the corre-

sponding high-resolution clothed human mesh. (i, j.k) are indices for the (depth, height,

width) axes, and γ is a weight for balancing losses of grids inside / outside the mesh. νρ(·)

represents the 3D convolution decoder and the sigmoid function used for decoding the latent

voxel features ξω(I). As shown in Figure 7.2, this 3D convolution decoder is only needed at

training time to provide supervision for the latent voxel features. At inference time, we just

maintain the latent voxel features for trilinearly interpolating geometry-aligned 3D features.

Compared with learning dense continuous occupancy fields, this coarse occupancy volume

estimation task is easier to achieve. The learned voxel features are robust at estimating

shapes and poses for the visible side and also hallucinating plausible shapes and poses for

the self-occluded invisible side. This is critical when the human has complex poses or large

self-occlusion. Meanwhile, using structure-aware 3D U-Nets to generate these voxel-shape

features also helps inject shape regularities into the learned latent voxel features.
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4.3.2.2 High-resolution query point loss

The deep implicit surface function is learned by query point sampling based sparse training.

It is difficult to directly estimate the full spectrum of dense continuous occupancy fields, and

therefore, at each training step, we use a group of sparsely sampled query points (e.g. 5000

in PIFu and Geo-PIFu) to compute occupancy losses. As shown in Equation (4.1) as well

as Figure 7.2, for each query point P the deep implicit function utilizes geometry and pixel

aligned features to estimate its occupancy value σ̂. We use mean square losses in training.

Lquery =
1

Q

Q∑
q=1

(σq − σ̂q)
2 (4.4)

The number of sampled query points at each training step is Q and the index is q. The

ground-truth occupancy value of a query point P is σ. The total losses used in Geo-PIFu

are L = Lgeo +Lquery. Following [MGK19, PKK19] we adopt a staged training scheme of the

coarse occupancy volume loss and the high-resolution query point loss. While Lgeo is designed

to solve a discretized coarse human shape estimation task, Lquery utilizes sparse query samples

with continuous xyz coordinates and learns high-resolution continuous occupancy fields of

clothed human meshes. Experiments in Section 4.5.2 demonstrated that the query point loss

is critical for learning high-frequency shape information from the input image, and enables

the deep implicit surface function to reconstruct sharp surface details.

4.4 Implementation Details

We use PyTorch [PGM19] with RMSprop optimizer [TH12] and learning rate 1e− 3 for both

losses. We stop the 3D decoder training after 30 epochs and the implicit function training

after 45 epochs using AWS V100-6GPU. The learning rate is reduced by a factor of 10 at

the 8th, 23th and 40th epochs. We use a batch of 30 and 36 single-view images, respectively.

For each single-view image, we sample Q = 5000 query points to compute Lquery. The step
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Figure 4.3: Single-view clothed human mesh reconstruction. Our results have less shape

artifacts and distortions than PIFu. Besides improved global regularities and better alignment

with ground truth, our meshes also contain more accurate and clear local surface details than

DeepHuman and PIFu. DeepHuman can generate physically plausible topology benefiting

from the voxelized SMPL model, but is incapable of capturing rich surface details due to

limited voxel resolutions. Meanwhile, PIFu lacks global robustness when reconstructing

meshes of complex poses and large self-occlusion.

length d for multi-scale tri-linear interpolation is 0.0722 and we stop collecting features at

2× length. The balancing weight γ of Lgeo is 0.7.

4.5 Experiments

We compare Geo-PIFu against other competing methods on single-view clothed human

mesh reconstruction in Section 4.5.1. To understand how do the learned 3D-geometry and

2D-pixel aligned features impact human mesh reconstruction, we also show ablation studies on
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individual type of features and different feature fusion architectures in Section 4.5.2. Failure

cases and effect of 3D generative adversarial network (3D-GAN) training are discussed in

Section 4.5.3. More qualitative results and network architecture details can be found in

Section 4.7.

Dataset We use the DeepHuman dataset [ZYW19a]. It contains 5436 training and 1359

test human meshes of various clothes and poses. In comparison, the dataset used by PIFu

[SHN19b] only has 442 training and 54 test meshes of mostly upstanding poses. Mesh

examples are shown in Figure. 4.2. More importantly, our dataset is public and the meshes

are reconstructed from cheap RGB-D sensors, while the PIFu dataset is private commercial

data well-polished by artists. This means that our results can all be reproduced and the

mesh collection procedures can be easily expanded to other domain-specific scenarios to

obtain more human meshes (e.g. basketball players). Another critical difference is that we

support free camera rotation when rendering the training and test images, as shown in the

input column of Figure 4.3. In contrast, PIFu images are all rendered with zero elevation

and in-plane rotation, namely the camera is always facing upright towards the mesh. In

brief, our dataset is public and has more diversities in human subjects, poses, clothes and

rendering angles. Therefore, our dataset is more challenging to learn and less likely to cause

over-fitting on upstanding human poses and horizontal camera angles than the dataset used

in PIFu. The downside of the DeepHuman dataset is that it lacks high quality texture maps

for photo-realistic rendering, which might hurt model generalization on in-the-wild natural

images.

Metrics To evaluate reconstructed human meshes, we compute Chamfer Distance (CD)

and Point to Surface Distance (PSD) between the reconstructed mesh and the ground truth

mesh. While CD and PSD focus more on measuring the global quality of the mesh topology,

we also compute Cosine and L2 distances upon the mesh normals to evaluate local surface

details, such as clothes wrinkles. These metrics are also adopted in PIFu for human mesh

reconstruction evaluation.
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Mesh Normal

CD PSD Cosine L2

DeepHuman 11.928 11.246 0.2088 0.4647

PIFu 2.604 4.026 0.0914 0.3009

Ours 1.742 1.922 0.0682 0.2603

Table 4.1: Benchmarks. These methods are all trained with the same DeepHuman dataset

for fair comparisons. To evaluate global topology accuracy of meshes, we report CD (×10000)

and PSD (×10000) between the reconstructed human mesh and the ground truth mesh. We

also compute Cosine and L2 distances for the input view normals to measure fine-scale surface

details, such as clothes wrinkles. Small values indicate good performance. Our approach

outperforms the competing methods, demonstrating the global / local advantages of utilizing

geometry and pixel aligned features for deep implicit surface function learning.

Method Parameter Size
Mesh Normal

CD PSD Cosine L2

PIFu 15604738 10.571 9.285 0.1422 0.4141

PIFuHD 387049625 9.489 9.349 0.1228 0.3776

Table 4.2: Benchmarks. These two models are evaluated using pre-trained weights provided

by their authors. Parameter size of Geo-PIFu is 30616954 (12 times smaller than PIFuHD).

Competing Methods Recently DeepHuman [ZYW19a], PIFu [SHN19b] and PIFuHD

[SSS20] have demonstrated SOTA results on single-view clothed human mesh reconstruction.

1) DeepHuman integrates the benefits of parametric mesh models and voxels. It first

estimates and voxelizes a SMPL model [LMR15] from a color image, and then refines the

voxels through 3D U-Nets. To improve surface reconstruction details, they further estimate

a normal map from the projected voxels and use the estimated normals to update the

human mesh. DeepHuman shows large improvement over both parametric shapes and voxel

representations. Therefore we compare Geo-PIFu against it. Note that this is not a fair
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comparison, because DeepHuman requires registered SMPL parametric meshes as additional

data annotation.

2) PIFu leverages pixel-aligned image features to encode each query point for implicit surface

function-based continuous occupancy fields learning. This method is most related to our

work since we both use implicit surface function for 3D shape representation. Note that PIFu

and Geo-PIFu have the same requirement of color image inputs and ground-truth training

meshes.

3) PIFuHD is built upon PIFu with higher resolution inputs than all other competing

methods and than our method. It also uses offline estimated front/back normal maps to further

augment input color images. These additional modules make PIFuHD a parameter-heavy

model (see Table 4.2).

4.5.1 Single-view Reconstruction Comparisons with State-of-the-art

Global Topology Results of CD / PSD between the recovered human mesh and the ground

truth mesh are provided in the left column of Table 4.1. As explained in the metrics

sections, these two metrics focus more on measuring the global quality of the mesh topology.

Our results surpass the second best method PIFu by 42.7% relative error reduction on

average. Such improvement indicates that human meshes recovered by our method have

better global robustness / regularities and align better with the ground truth mesh. These

quantitative findings as well as analysis have also been visually proved in Figure 4.3. Our

mesh reconstructions have fewer topology artifacts and distortions (e.g. arms, feet) than

PIFu, and align better with the ground truth mesh than DeepHuman. Moreover, we include

results of pre-trained models released by PIFu and PIFuHD in Table 4.2, because the latter

has not yet released its training scripts. Under the same training data, PIFuHD achieves lower

relative improvement over PIFu than Geo-PIFu. Note that the two ideas of PIFuHD (using

sliding windows to ingest high resolution images, and offline estimated front/back normal

maps to further augment input color images) are both add-on modules wrt. (Geo)-PIFu.
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Figure 4.4: Left to right: mesh reconstruction results of exp-a, b, e in Table 4.3. This

comparison shows that mesh reconstructions using only the 3D geometry features have better

global topology regularities and ground truth alignment, but contain fewer local surface

details than meshes reconstructed from only the 2D pixel features. The best global / local

performances are achieved when two types of representations are jointly used for deep implicit

surface function learning.

Given high resolution images and offline estimated normal maps, one might combine PIFuHD

with Geo-PIFu for further improved local surface details and global topology robustness. But

this is out of the scope of our work.

Local Details Besides improved global topology, our mesh reconstruction results contain

more local surface details such as clothes wrinkles. The ability of capturing fine-scale surface

details is quantitatively measured in the right column of Table 4.1. We compute Cosine

and L2 distances between the input view normals of the reconstructed mesh and those

of the ground truth mesh. Our approach improves over the second best method PIFu by

19.4% relative error reduction on average. To further explain the improved global and local

performances of our method, we conduct ablation studies on individual type of features and

different feature fusion architectures in the next section.

4.5.2 Ablation Studies

Geometry vs. Pixel Aligned Features In our method, the implicit function utilizes

both the geometry-aligned 3D features and the pixel-aligned 2D features to compose query
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Mesh Normal

CD PSD Cosine L2

a. Ours-geometry 2.293 2.629 0.0864 0.3164

b. Ours-pixel 2.604 4.026 0.0914 0.3009

c. Ours-late-3D 1.753 1.930 0.0675 0.2598

d. Ours-late-both 1.677 1.868 0.0764 0.2767

e. Ours-early-3D 1.742 1.922 0.0682 0.2603

Table 4.3: Ablation studies. To analyze impact of the learned latent voxel, pixel features, we

report human mesh reconstruction results that use individual type of features and the fused

features. Small values indicate good performance. Exp-a, b evaluate meshes reconstructed

from solely 3D geometry or 2D pixel features, respectively. Exp-c, d, e are results based on

different feature fusion architectures for the geometry and pixel aligned features. Note that

exp-b is the same as PIFu in Table 4.1, just named differently. Because essentially PIFu

is a degenerate case of our method which only extracts pixel-aligned representations when

learning implicit surface functions. Our results in the benchmarks are generated by the exp-e

configuration. More analysis is in Section 4.5.2.

point encodings for occupancy estimation. To understand the advantages of our method, we

separately show the impact of these two different types of features on clothed human mesh

reconstruction. Results are reported in exp-a, b of Table 4.3. Ours-geometry and ours-pixel

reconstruct human meshes using solely the 3D geometry or 2D pixel features, respectively.

Exp-a shows significant improvement over exp-b in PSD, indicating that meshes reconstructed

from 3D geometry features have better global topology robustness / regularities. This is

attributed to global structure-aware 3D U-Net architectures and uniform coarse occupancy

volume losses used to generate and supervise the latent voxel features. Visual comparisons in

Figure 4.4 also verified this argument. However, meshes of exp-a are overly smooth lacking

local surface details. This means that 2D pixel features focus more on learning high-frequency

shape information such as clothes wrinkles. Moreover, by comparing exp-a, b with exp-e in
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Table 4.3 and Figure 4.4, we observe that the best global and local performances are achieved

only when 3D geometry and 2D pixel features are fused. Namely, the fused features contain

the richest shape information wrt. each query point for implicit surface function-based dense,

continuous occupancy fields learning.

Feature Fusion Architectures Knowing that the integrated representations lead to the

best mesh reconstruction performance, we now further explore different 3D / 2D feature

fusion architectures. Results are reported in exp-c, d, e of Table 4.3. Exp-c Ours-late-3D

applies several fully connected (FC) layers upon the geometry-aligned 3D features before

concatenating them with the pixel-aligned 2D features. Exp-d Ours-late-both applies separate

FC layers on both the geometry and pixel aligned features before concatenating them. Exp-e

Ours-early-3D directly concatenate the 3D / 2D features, as shown in Figure 7.2. Comparisons

on CD, PSD, Cosine and L2 normal distances mean that the mesh reconstruction results

are not quite sensitive to the fusion architectures. All these different feature fusion methods

demonstrate clear improvement over exp-a, b which only use a single type of features for

human mesh reconstruction. In our main benchmark results we use the configuration of exp-e

for its balanced mesh and normal reconstruction performances and its simple implementation.

4.5.3 Failure Cases and Adversarial Training

Typical failure cases are shown in Figure 4.5. Plot-a is our method. Plot-b, c are meshes

reconstructed from solely the 2D pixel features or the 3D geometry features, respectively. We

have demonstrated in Figure 4.4 and Table 4.3 that mesh topology artifacts and wrong poses

can be corrected leveraging global shape regularities from the geometry-aligned 3D features.

However, in cases where 2D, 3D features (i.e. plot-b, c) both fail to generate correct meshes,

the fused features (i.e. plot-a) will still lead to failures. To address this problem, we turn to

3D generative adversarial networks (3D-GAN). The implicit surface function training is based

on sparse query points sampling and thus non-trivial to enforce 3D-GAN supervision directly

on the whole continuous occupancy fields. Fortunately, the 3D U-Net based latent voxel
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Figure 4.5: Typical failure cases. Plot-a is our method utilizing the early fusion based

geometry and pixel aligned features. Plot-b, c are meshes reconstructed from solely the

latent pixel or voxel features, respectively. Plot-d is similar to plot-c, but uses latent voxel

representations trained jointly with coarse occupancy volume losses and 3D-GAN losses.

When the latent pixel and voxel features, separately, both lead to human meshes with severe

artifacts, the fused features struggle to correct all of these shape distortions. Further analysis

on plot-d is presented in Section 4.5.3.

features are trained with coarse occupancy volume losses and naturally fit with voxel-based

3D-GAN losses. Human meshes reconstructed using only the 3D geometry features learned

with both coarse occupancy volume losses and 3D-GAN losses are shown in plot-d of Figure

4.5. Its performances on the DeepHuman benchmark are: CD (2.464), PSD (3.372), Cosine

(0.1298), L2 (0.4148). Comparing with plot-c, we do observe that "lumps" before the body’s

belly no longer exist but the mesh exhibits a new problem of having "honeycomb" structures.

This phenomenon is also observed in the voxel-based 3D-GAN paper [WZX16]. Moreover,

when we fuse such "honeycomb" 3D geometry features with the 2D pixel features to construct

aligned query point features, the implicit surface function training fails to converge. We plan

to have more studies on this issue as future work.

4.6 Discussion

We propose to interpolate and fuse geometry and pixel aligned query point features for deep

implicit surface function-based single-view clothed human mesh reconstruction. Our method
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of constructing query point encodings provides dedicated representation for each 3D point

that captures its local shape patterns and resolves the feature ambiguity problem. Moreover,

the latent voxel features, which we generate by structure-aware 3D U-Nets and supervise with

coarse occupancy volume losses, help to regularize the clothed human mesh reconstructions

with reduced shape and pose artifacts as well as distortions. The large-scale benchmark (10×

larger then PIFu) and ablation studies demonstrate improved global and local performances

of Geo-PIFu than the competing methods. We also discuss typical failure cases and provide

some interesting preliminary results on 3D-GAN training to guide future work directions.

4.7 Additional Results
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Figure 4.6: Single-view clothed human mesh reconstruction. Our results have less shape

artifacts and distortions than PIFu. PIFu lacks global robustness when hallucinating invisible-

side meshes of complex poses and large self-occlusion. Besides improved global regularities

and better alignment with ground truth, our meshes also contain more accurate and clear

local surface details than PIFu.
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Figure 4.7: Single-view clothed human mesh reconstruction of our method Geo-PIFu.
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CHAPTER 5

Image-based Animatable 3D Shape Reconstruction

5.1 Introduction

Digital humans have become an increasingly important building block for numerous AR/VR

applications, such as video games, social telepresence [ORF16, LSS18] and virtual try-

on. Towards truly immersive experiences, it is crucial for these avatars to obtain higher

level of realism that goes beyond the uncanny valley [MMK12]. Building a photorealistic

avatar involves many manual works by artists or expensive capture systems under controlled

environments [CCS15, GLD19, PTX21], limiting access and increasing cost. Therefore, it is

vital to revolutionize reconstruction techniques with minimal prerequisite (e.g., a selfie) for

future digital human applications.

Recent human models reconstructed from a single image combine category-specific data

prior with image observations [ZBX20, JNV20, XWL21]. Among which, template-based

approaches [KBJ18b, KPB19b, XZT19, APT19b, BTT19a] nevertheless suffer from lack of

fidelity and difficulty supporting clothing variations; while non-parametric reconstruction

methods [SHN19a, ZYW19b, SSS20, HCJ20b], e.g., using implicit surface functions, do not

provide intuitive ways to animate the reconstructed avatar despite impressive fidelity. In the

recent work ARCH [HXL20], the authors propose reconstructing non-parametric human model

using pixel-aligned implicit functions [SHN19a] in a canonical space, where all reconstructed

avatars are transformed to a common pose. To do so, a parametric human body model is

exploited to determine the transformations. By transferring skinning weights, which encode
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Input            Posed Reconstruction             Avatar Reconstruction

Figure 5.1: Given an image of a subject in arbitrary pose (left), our method could generate

photorealistic avatars in both the posed input space (middle) as well as auto-rigged canonical

space (right).

how much each vertex is influenced by the transformation of each body joint, from the

underling body model, the reconstruction results are ready to animate. However, we observe

that the advantages of a parametric body model and pixel-aligned implicit functions are not

fully exploited.

In this paper we introduce ARCH++, which revisits the major steps of animatable avatar

reconstruction from images and addresses the limitations in the formulation and representation

of the prior work. First, current implicit function based methods mainly use hand-crafted

features as the 3D space representation, which suffers from depth ambiguity and lacks human

body semantic information. To address this, we propose an end-to-end geometry encoder based

on PointNet++ [QSM17a, QYS17], which expressively describes the underlying 3D human

body. Second, we find the unposing process to obtain the canonical space supervision causes

topology change (e.g., removing self-intersecting regions) and consequently the articulated

reconstruction fails to obtain the same level of accuracy in the original posed space. Therefore,

we present a co-supervising framework where occupancy is jointly predicted in both the
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posed and canonical spaces, with additional constraints on the cross-space consistency. This

way, we benefit from both: supervision in the posed space allows the prediction to retain

all the details of the original scans; while canonical space reconstruction can ensure the

completeness of a reconstructed avatar. Last, image-based avatar reconstruction often suffers

from degraded geometry and texture in the occluded regions. To make the problem more

tractable, we first infer surface normals and texture of the occluded regions in the image

domain using image translation networks, and then refine the reconstructed surface with a

moulding-inpainting scheme.

In the experiments, we evaluate ARCH++ on photorealistically rendered synthetic images

as well as in-the-wild images, outperforming prior works based on implicit functions and

other design choices on public benchmarks.

The contributions of ARCH++ include: 1) a point-based geometry encoder for implicit

functions to directly extract human shape and pose priors, which is efficient and free from

quantization errors; 2) we are the first to point out and study the fundamental issue of

determining target occupancy space: posed-space fidelity vs. canonical-space completeness.

Albeit ignored before, we outline the pros and cons of different spaces, and propose a co-

supervising framework of occupancy fields in joint spaces; 3) we discover image-based surface

attribute estimation could address the open problem of view-inconsistent reconstruction

quality. Our moulding-inpainting surface refinement strategy generates 360◦ photorealistic

3D avatars. 4) our method demonstrates enhanced performance on the brand new task of

image-based animatable avatar reconstruction.

5.2 Related Work

Template-based reconstruction utilizes parametric human body models, e.g., SCAPE [ASK05]

and SMPL [LMR15] to provide strong prior on body shape and pose to address ill-posed prob-

lems including body estimation under clothing [YFH16, ZPB17] and image-based human shape
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reconstruction [BKL16, LRK17, KBJ18b, GK19, KPD19b, XJS19, KPB19b, XZT19]. While

these works primarily focus on underling body shapes without clothing, the template-based rep-

resentations are later extended to modeling clothed humans with displacements from the mini-

mal body [PPH17], or external clothing templates [BTT19b], from 3D scans [YFH18, PPH17],

videos [AMX18, HXZ20], and a single image [AMB19, BTT19b, JZH20]. As these approaches

build clothing shapes on a body template mesh, the reconstructed models can be easily

driven by pose parameters of the parametric body model. To address the lack of details with

limited mesh resolutions, recent works propose to utilize 2D UV maps [LCT18, APT19b].

However, as a clothing topology can significantly deviate from the underling body mesh and

its variation is immense, these template-based solutions fail to capture clothing variations in

the real world.

Non-parametric capture is widely used to capture highly detailed 3D shapes with an

arbitrary topology from multi-view systems under controlled environments [MBR00, BSB07,

VBM08, TNM08, GSA09, VPB09, FP10, WVT12, TNM09, MNT12]. Recent advances of

deep learning further push the envelope by supporting sparse view inputs [GVC18, HLC18],

and even monocular input [LXS20]. For single-view clothed human reconstruction, direct

regression methods demonstrate promising results, supporting various clothing types with

a wide range of shape representations including voxels [VCR18b, JMT18b], two-way depth

maps [GFM19, SLH19], visual hull [NSH19], and implicit functions [SHN19a, SSS20, HCJ20b].

In particular, pixel-aligned implicit functions (PIFu) [SHN19a] and its follow-up works [SSS20,

HCJ20b] demonstrate impressive reconstruction results by leveraging neural implicit func-

tions [MON19a, CZ19b, PFS19a] and fully convolutional image features. Unfortunately,

despite its high-fidelity results, non-parametric reconstructions are not animation-ready due

to missing body part separation and articulation. Recently, IF-Net [CAP20] exploits partial

point cloud inputs and learns implicit functions using latent voxel features. Compared with

image-based avatar reconstruction, completion from points can leverage directly provided

strong shape and pose cues, and thus skip learning them from complex images.
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Hybrid approaches combine template-based and non-parametric methods and allow us

to leverage the best of both worlds, namely structural prior and support of arbitrary topology.

Recent work [BST20] shows that using SMPL model as guidance significantly improves

robustness of non-rigid fusion from RGB-D inputs. For single-view human reconstruction,

Zheng et al. first introduce a hybrid approach of a template-model (SMPL) and a non-

parametric shape representation (voxel [ZYW19b] and implicit surface [ZYL21]). These

approaches, however, choose an input view space for shape modeling with reconstructed body

parts potentially glued together, making the reconstruction difficult to animate as in the

aforementioned non-parametric methods. The most relevant work to ours is ARCH [HXL20],

where the reconstructed clothed humans are ready for animation as pixel-aligned implicit

functions are modeled in an unposed canonical space. However, such framework fundamentally

leads to sub-optimal reconstruction quality. We achieve significant improvement on accuracy

and photorealism by addressing the hand-crafted spatial encoding for implicit functions, the

lack of supervision in the original posed space, and the limited fidelity of occluded regions.

5.3 Methodology

Our proposed framework, ARCH++, uses a coarse-to-fine scheme, e.g., initial reconstruction

by learning joint-space implicit surface functions (see Fig. 5.2), and then mesh refinement in

both spaces (see Fig. 5.3).

5.3.1 Joint-Space Implicit Surface Reconstruction

Semantic-Aware Geometry Encoder. The spatial feature representation of a query point

is critical for deep implicit function. While the pixel-aligned appearance feature via Stack

Hourglass Network [NYD16] has already demonstrated its effectiveness in detailed clothed

human reconstruction by prior works [SHN19a, SSS20, HXL20, HCJ20b], an effective design

of point-wise spatial encoding has not yet been well studied. The extracted geometry features
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Figure 5.2: Overview of the initial joint-space implicit surface reconstruction. This procedure

includes three components: i) semantic-aware geometry encoder, ii) pixel-aligned appearance

encoder and iii) joint-space occupancy estimator. See text for detailed explanation.

should be informed of the semantics of the underlying 3D human body, which provide strong

priors to regularize the overall dressed people shape.

The spatial encoding methods used previously include hand-crafted features (e.g., RBF [HXL20])

and latent voxel features [CAP20, HCJ20b, ZYL21]. The former is constructed based on

Euclidean distances between a query point and the body joints, ignoring the shapes. The

voxel-based features capture both shape and pose priors of a parametric body mesh. Compared

with the hand-crafted features, the end-to-end learned voxel features are better informed of

the underlying body structures but often constrained by GPU memory sizes and suffer from

quantization errors due to low spatial resolution. To effectively encode the shape and pose

priors without losing any precision, we propose a novel semantic-aware geometry encoder that

extracts point-wise spatial encodings. Essentially a parametric body mesh can be sampled

into a point cloud and fed into PointNet++ [QSM17a, QYS17] to learn point-based spatial

features, which have several advantages over both hand-crafted RBF features and voxel-based

ones. Our method encodes both shape and pose priors from parametric shapes without

computation overhead and quantization errors caused by the mesh voxelization process.

Additional detailed statistical comparisons on points v.s. voxels in representing 3D shapes
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are reported in [GFM19].

Given a parametric body mesh estimated and deformed by [XZT19, HXL20], we use

a PointNet++ [QSM17a, QYS17] based semantic-aware geometry encoder to learn the

underlying 3D human body prior. We sample N0 (e.g., 7324) points from the body mesh

surfaces and feed them into the geometry encoder for spatial feature learning, that is,

fpn : {xi0}
N0
i=1 7→ {xj1, h

j
1}

N1
j=1, {x

k
2, h

k
2}

N2
k=1, {x

l
3, h

l
3}

N3
l=1, (5.1)

where xi0 ∈ R3 is a point sampled from the parametric body mesh. The PointNet++ based

encoder utilizes fully-connected layers and neighborhood Max-Pooling to extract semantic-

aware geometry features h ∈ R32 of a point. It also applies Furthest Point Sampling to

progressively down sample the points N1 = 2048, N2 = 512, N3 = 128 to extract latent

features with increasing receptive fields. For example {xj1} is a down sampled point set with

size N1, and hj1 ∈ R32 is the learned feature w.r.t. each point.

As illustrated in Fig. 5.2, for any query point pa ∈ R3 in the canonical space we obtain its

point-wise spatial encoding fg ∈ R96 via inverse L2-norm kernel based feature interpolation,

followed by query coordinates concatenated Multi-layer Perceptrons (MLP). Particularly,

we extract these features from different point set densities-j, k, l to construct concatenated

features fg = (f j
g ⊕fk

g ⊕f l
g) that are informed of multi-scale structures. For example, f j

g ∈ R32

is defined as:
f jg (pa, {x

j
1, h

j
1}) = MLP(pa ⊕

∑
m

∥pa − xm1 ∥−2

S(pa, {xj1, h
j
1})

hm1 ),

S(pa, {xj1, h
j
1}) =

∑
m

∥pa − xm1 ∥−2 ,

(5.2)

where the index m is determined by finding the K nearest neighbors among the point set {xj1}

w.r.t. the query point. Empirically we found setting K = 3 obtains fair performance. The

features extracted at other point set densities fk
g , f

l
g ∈ R32 are obtained similarly leveraging

{xk2, hk2} and {xl3, hl3}, respectively.

Pixel-Aligned Appearance Encoder. We share the same architecture design as [SHN19a,

SSS20, HXL20, HCJ20b] to map an input image I ∈ R512×512×3 into the latent feature maps
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ψµ(I) ∈ R128×128×256 via a Stacked Hourglass Network [NYD16] with weights µ. To obtain

appearance encoding fa ∈ R256 of any query point pb ∈ R3 in the posed space, we project

it back to the image plane based on a camera model of weak perspective projection, and

bilinearly interpolate the latent image features:

fa(pb, I) = B(ψµ(I), π(pb)), (5.3)

where B(·) indicates the differentiable bilinear sampling operation, and π(·) means weak

perspective camera projection from the query point pb to the image plane of I.

Joint-Space Occupancy Estimator. While most non-parametric and hybrid methods

use the posed space as the learning and inference target space, ARCH instead reconstructs the

clothed human mesh directly in a canonical space where humans are in a normalized A-shape

pose. Different choices of the target space have pros and cons. The posed space is naturally

aligned with the input pixel evidence and therefore the reconstructions have high data fidelity

leveraging the direct image feature correspondences. Thus, many works choose to reconstruct

a clothed human mesh in its original posed space (e.g., PIFu(HD) [SHN19a, SSS20], Geo-

PIFu [HCJ20b], PaMIR [ZYL21]). However, in many situations the human can demonstrate

complex poses with self-intersection (e.g., hands in the pocket, crossed arms) and cause a

"glued" mesh that is difficult to articulate. Meanwhile, canonical pose reconstruction offers us

a rigged mesh that is animation ready (via its registered A-shape parametric mesh [HXL20]).

The problem of using the canonical space as the target space is that when we warp the mesh

into its posed space there could be artifacts like intersecting surfaces and distorted body parts

(see Fig. 5.6). Thus, the reconstruction fidelity of the warping obtained canonical-to-posed

space mesh will degenerate. To maintain both input image fidelity and reconstruction surface

completeness, we propose to learn the joint-space occupancy distributions.

We use a joint-space defined occupancy map O to implicitly represent the 3D clothed

human under both its original posed space and a rigged canonical space:

O = {(pa, pb, oa, ob) : pa, pb ∈ R3, −1 ≤ oa, ob ≤ 1}, (5.4)

87



where oa, ob denote the occupancy for points pa and pb. A point in the posed space is pb and

its mapped counterpart in the canonical space is pa = SemDF(pb). The semantic deformation

mapping (SemDF) between the original posed and the rigged canonical spaces is enabled by

nearest neighbor-based skinning weights matching between pb and the estimated underlying

parametric body mesh [HXL20].

To enable mesh reconstruction in joint spaces, we use both point-wise spatial features

fg ∈ R96 that are informed of semantic full-body structures, and pixel-aligned features

fa ∈ R256 that encode human front-view appearances:

oa = Fθ(fg ⊕ fa), ob = Fβ(fg ⊕ fa), (5.5)

where θ, β are network weights of the MLP-based deep implicit surface functions. To

reconstruct avatars from the dense occupancy estimations in two spaces, we use Marching

Cube [LC87a] to extract the isosurface at oa = τ and ob = τ (e.g., τ = 0), respectively.

The network outputs oa, ob are supervised by the ground truth joint-space occupancy ôa, ôb,

depending on whether a posed space query point pb and its corresponding canonical space

point pa are inside the clothed human meshes or not. Though pa, pb are a pair of mapped

points their ground-truth occupancy values are not the same in all cases. For example, a

point outside and close to the hand of a parametric body could has ôb > 0 and ôa < 0 if the

original mesh in posed space has self-contact (e.g., hands in the pocket). Namely, the SemDF

defines a dense correspondence mapping between the two spaces but their occupancy values

are not necessarily the same. Therefore, naively learning the distribution in one space and

then warping the reconstruction into another pose can cause mesh artifacts (see Fig. 5.6).

This motivates us to model two space occupancy distributions jointly in order to maintain

both canonical space mesh completeness and posed space reconstruction fidelity.
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Figure 5.3: Overview of the mesh refinement steps. Our approach refines the initially

estimated joint-space meshes from Fig. 5.2 using estimated normals and textures.
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5.3.2 Mesh Refinement

We further refine the reconstructed meshes in joint spaces by adding geometric surface details

and photorealistic textures. As illustrated in Fig. 5.3, we propose a moulding-inpainting

scheme to utilize the front and back side normals and textures estimated in the image space.

This is based on the observation that direct learning and inference of dense normal/color

fields using deep implicit functions as [HXL20] usually leads to over-smooth blur patterns

and block artifacts (see Fig. 5.5). In contrast, image space estimation of normal and

texture maps produces sharp results with fine-scale details, and is robust to human pose and

shape changes. These benefits are from well-designed 2D convolutional deep networks (e.g.,

Pix2Pix [IZZ17, WLZ18]) and advanced (adversarial) image generation training schemes

like GAN, with perceptual losses. The image-space estimated normal (and texture) maps

could be used in two different ways. They can be used as either direct inputs into the Stack

Hourglass as additional channels of the single-view image, or moulding-based front and back

side mesh refinement sampling sources. In the experiments, we conduct ablation studies on

these two schemes (i.e., early direct input, late surface refinement) and demonstrate that our

moulding-based refinement is better at maintaining fine-scale surface details across different

views (see Fig. 5.8).

Posed Space. For the clothed human mesh obtained by Marching Cube in the original

posed space, we conduct visibility tracing to determine if a vertex V ∈ R3 should be projected

onto the front or the back side to bilinearly sample the normal/texture maps. Essentially, this

is a moulding-based mesh refinement process for surface details and textures enhancement.

We first conduct normal refinement. Note that for vertices whose unrefined normals n ∈ R3

are near parallel (i.e., within ε degrees) to the input image plane, we project them onto both

the front and the back side normal maps Ifn , Ibn ∈ R512×512×3. We could then compute the

refined surface normals n′ ∈ R3 via a linear blend fusion:

n′ = χ(1− α′)B(Ifn , π(V )) + χ(α′)B(Ibn, π(V )),

α′ = (90◦ + ε− α)/(2ε),
(5.6)
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where α is the angle between the unrefined normal and the forward camera raycast, and α′

is the normalized value of α. Again, B(·) indicates the bilinear sampling operation. The

indicator function χ(·) determines the blending weights of sampled normals from the front

and the back sides:

χ(α′) = min(max(α′, 0), 1) (5.7)

This simple yet effective fusion scheme creates a normal-refined mesh with negligible

blending boundary artifacts. With the refined surface normals we can further apply Poisson

Surface Reconstruction [KH13b] to update the mesh topology but in practice we find this

unnecessary since the moulding-refined avatar can already satisfy various AR/VR and novel-

view rendering applications. This bump rendering idea is also used in DeepHuman [ZYW19b]

but they only refine meshes using the front views. We further conduct the texture refinement

in a similar manner but use the refined normals to help determine the linear blending weights

of boundary vertices. Our moulding-based front/back normal and texture refinement method

yields clothed human meshes that look photorealistic at different viewpoints with full-body

surface details (e.g., clothes wrinkles, hairs).

Canonical Space. The reconstructed canonical space avatar is rigged and thus can

be warped back to its posed space and then refined via the same pipeline described above.

However, a unique challenge for canonical avatar refinement is that mesh reconstructions in

this space might contain unseen surfaces under the posed space. For example, in the third row

of Fig. 5.5, the folded arm is in contact with the chest in the posed space but unfolded in the

canonical space. Therefore, we do not have direct normal/texture correspondences of the chest

regions of the canonical mesh. To address this problem, we render the front and the back side

images of the canonical mesh with incomplete normal and texture, and treat it as an inpainting

task. This problem has been well studied using deep neural networks [YTA20, YLY18] and

patch matching based methods [BSC00, BSF09, HKA14]. We use PatchMatch [BSF09] for

its robustness. As demonstrated in the last two columns of Fig. 5.5, compared to directly

regressing point-wise normal and texture, our inpainting-based results obtain sharper details
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and fewer artifacts.

5.3.3 Training Losses

The training process involves learning deep networks for two goals: joint-space occupancy

estimation with Lo, and normal/texture estimation with Ln and Lt. Specifically, Lo is the

occupancy regression loss of our joint-space deep implicit functions, and Ln,Lt are image

translation losses of the normal, texture estimation networks.

Joint-space Occupancy Estimation. The deep implicit function training is based

on query point sampling and supervised occupancy regression with Tanh output layers.

We randomly sample mesh points pa, pb in two spaces and then add diagonal Gaussian

perturbation with a standard deviation of 5 cm to increase the sample coverage of close-to-

surface regions in space. In each training iteration we sample 20480 pairs of query points

(pa, pb), with predicted occupancy (oa, ob). The joint-space occupancy regression loss contains

three terms:

Lo(oa, ob) = Locc
o (oa) + Locc

o (ob) + Lcon
o (oa, ob), (5.8)

where Locc
o (oa),Locc

o (ob) denote the Smooth L1-Loss between the estimated occupancy values

and their ground truth in the canonical and the posed spaces, respectively. Lcon
o (oa, ob) is a

contrastive loss regularizing the occupancy consistency between the two spaces, that is,

Lcon
o (oa, ob)=


|oa − ob|, if ôa = ôb,

λ1max(λ2 − |oa − ob|, 0), otherwise,
(5.9)

where λ1 and λ2 are two parameters to adjust the penalty of inconsistent joint-space

groundtruth pairs. Those pairs usually exist around the self-intersecting regions and need

to be down-weighted due to the errors in canonical space supervision. Empirically, we set

λ1 = 0.1 and λ2 = 0.3.

Mesh Refinement. We consider the image-space normal and texture estimation as

an image-to-image translation task. Given an input image I, our task is to learn the front
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Components
Posed Space Canonical Space Mean

Normal ↓ P2S ↓ Chamfer ↓ Normal ↓ P2S ↓ Chamfer ↓ Normal ↓ P2S ↓ Chamfer ↓

Posed Sup. Only 0.037 0.674 0.787 0.087 1.898 1.597 0.062 1.286 1.192

Canonical Sup. Only 0.039 0.716 0.838 0.046 0.606 0.997 0.043 0.661 0.917

Joint 0.037 0.662 0.789 0.045 0.620 0.988 0.041 0.641 0.825

Joint + GeoEnc 0.033 0.495 0.614 0.040 0.471 0.819 0.036 0.483 0.717

Joint + GeoEnc + Refine 0.031 0.495 0.614 0.039 0.471 0.819 0.035 0.483 0.717

Table 5.1: Ablation studies on the effectiveness of ARCH++ proposed components in both

spaces: posed vs. canonical. Best scores are in bold. Rows are target reconstruction spaces,

columns are evaluation spaces. The first row means using the posed space as the target

space (e.g., PIFu, PIFuHD, Geo-PIFu, PaMIR), whose reconstruction can be warped into

the canonical space via a registered parametric body to compute evaluation metrics in both

spaces. The second row means direct supervision and reconstruction in the canonical space,

followed by warping into the posed space (e.g., ARCH). The rest rows are based on our

joint-space co-supervision and reconstruction scheme.

normal map Ifn , the back normal map Ibn and the back side texture map Ibt ∈ R512×512×3. Note

we assume the input image can be directly used as the front texture map. Inspired by the

demonstrated superior results of Pix2Pix [IZZ17, WLZ18], we define the training losses as:

Ln(I
f
n , I

b
n)=Lrec

n (Ifn)+Lrec
n (Ibn)+Lvgg

n (Ifn) + Lvgg
n (Ibn),

Lt(I
b
t )=Lrec

t (Ibt ) + Lvgg
t (Ibt ) + Ladv

t (Ibt ),
(5.10)

where Lrec(·) denotes the L1 distance reconstruction loss, Ladv(·) means the generative adver-

sarial loss and Lvgg(·) is the VGG-perceptual loss proposed by [JAF16]. In the experiments,

we found that the generative adversarial loss Ladv(·) counteracts to performance in the normal

map estimation task and thus we only enforce this loss term upon the back side texture map.

One explanation is that the normal map space is more constrained and has fewer variations

than the texture map, and therefore adversarial training does not fully show its effectiveness

in this case.
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5.4 Implementation Details

We implement our framework using PyTorch and conduct the training with one NVIDIA

Tesla V100 GPU. The proposed deep neural networks are trained with RMSprop optimizer

with a learning rate starting from 1e-4. We use an exponential learning rate scheduler to

update it every 3 epochs by multiplying with the factor 0.1 and terminate the training after

12 epochs.

5.5 Experiments

In this section, we present the experimental settings, result comparisons and ablation studies

of ARCH++.

5.5.1 Datasets

We adopt the dataset setting from [HXL20, SSS20]. Our training dataset consists of 375

3D scans from RenderPeople dataset [REN] and 205 3D scans from AXYZ dataset [SR].

These watertight human meshes have various clothes styles as well as body shapes and poses.

Our testing set includes 37 scans from RenderPeople dataset [REN], 192 scans from AXYZ

dataset, 26 scans from BUFF dataset [ZPB17], and 2D images from Internet public domains,

representing clothed people with a large variety of complex clothes. The subjects in the

training dataset are mostly in standing pose, while the subjects in the test dataset contain

various poses including sitting, twisted and standing, as well as self-glued and separated

limbs. We use Blender and 38 environment maps to render each scan under different natural

lighting conditions. For each 3D scan, we generate 360 images by rotating a camera around

the mesh with a step size of 1 degree. These RenderPeople images are used to train both the

occupancy estimation and the image translation networks.

We generate ground truth clothed human meshes in the canonical pose using the method
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Methods
RenderPeople BUFF

Normal ↓ P2S ↓ Chamfer ↓ Normal ↓ P2S ↓ Chamfer ↓

BodyNet [VCR18b] 0.26 5.72 5.64 0.31 4.94 4.52

VRN [JMT18b] 0.12 1.42 1.60 0.13 2.33 2.48

SiCloPe [NSH19] 0.22 3.81 4.02 0.22 4.06 3.99

IM-GAN [CZ19b] 0.26 2.87 3.14 0.34 5.11 5.32

PIFu [SHN19a] 0.11 1.45 1.47 0.13 1.68 1.76

PIFuHD [SSS20] 0.11 1.37 1.43 0.13 1.63 1.75

ARCH [HXL20] 0.04 0.74 0.85 0.04 0.82 0.87

ARCH++ [Ours] 0.03 0.50 0.61 0.03 0.58 0.61

Table 5.2: Quantitative results and comparisons of normal, P2S and Chamfer errors between

posed reconstruction and ground truth on RenderPeople and BUFF datasets. Best scores are

in bold.

introduced in [HXL20]. Note that the warping process between the posed and the canonical

spaces inevitably contain model noises (e.g., self-contact region artifacts, skinning weights

nearest neighbor discontinuities), which motivates our joint-space co-supervision and recon-

struction scheme.

5.5.2 Results and Comparisons

We use the same metrics as [SHN19a, SSS20, HXL20] for quantitative evaluation of the

reconstructed meshes. We report the average point-to-surface Euclidean distance (P2S) and

the Chamfer distance in centimeters, as well as the L2 normal re-projection errors. The two

state of the art methods for our main comparisons are PIFuHD [SSS20] and ARCH [HXL20],

both are built upon PIFu [SHN19a] with improvements in different aspects. PIFuHD ingests

1Our results (green boxes) have fewer reconstruction artifacts (e.g., incorrect normal directions, mesh
distortion) than ARCH (red boxes).
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Figure 5.4: We intentionally hide the method names for you to have a fair comparison on

your own (please zoom in). The answers are1.

high-resolution images in a sliding window manner to achieve rich surface reconstruction

details. ARCH leverages nearest neighbor-based linear blend skinning weights and hand-

crafted RBF features to reconstruct animatable avatars in a canonical space. In addition to

these two most related methods, we also include multiple prior methods [VCR18b, JMT18b,

NSH19, CZ19b, SHN19a] and report the benchmark results on the RenderPeople and the

BUFF datasets in Tab. 5.2. ARCH++ [Ours] results outperform the second best method

ARCH by large gaps.

The visual comparisons in Fig. 5.5 and Fig. 5.4 further explain the advantages of our

improvement. PIFuHD suffers from shape distortions due to lacking shape and pose priors

provided by the end-to-end geometry encoder. Note that PIFuHD is incapable of reconstruct

canonical space avatars and lacks texture estimation. ARCH reconstructions tend to be over

smooth and blurry. Its recovered mesh normal and texture also have several block artifacts.

Additionally, both methods fail to hallucinate plausible back-side surface details like clothes

wrinkles, hairs, etc. In comparison, our approach achieves photorealistic and animatable

reconstructions in joint spaces and across different viewpoints. We further show our results

on Internet images in Fig. 5.9.
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Input PIFu ARCH Ours PIFuHD ARCH Ours ARCH Ours

Figure 5.5: Qualitative comparisons against the state-of-the-art methods [SHN19a, SSS20,

HXL20]. The first column is input. Column 2-4, 5-7 are color and shape reconstruction

results, respectively, in the posed space. The last two columns are canonical space avatar

reconstructions. Our method handles arbitrary poses with self-contact and occlusions robustly,

and reconstructs a higher level of details than existing methods.

5.5.3 Ablation Studies

Joint Space Reconstruction. To further understand the impact of the proposed methods,

we present ablation studies in Tab. 5.1. The first three rows demonstrate the effectiveness

of joint-space co-supervision, achieving balanced performances on both the posed and the

canonical space mesh reconstructions. Choosing the posed space as the reconstruction target

space (e.g., PIFu, PIFuHD, Geo-PIFu, PaMIR) can cause missing surfaces and topology

distortions in the posed-to-canonical space warped meshes (see Fig. 5.6). Meanwhile, choosing
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Variants Normal ↓ P2S ↓ Chamfer ↓

Depth [SHN19a] 0.047 0.78 0.93

RBF [HXL20] 0.042 0.74 0.85

End-to-end Voxel [HCJ20b, ZYL21] 0.034 0.52 0.63

End-to-end Point 0.033 0.50 0.61

Table 5.3: Ablation studies on different types of geometry encoders.

Input Posed Recon. 
Cano. Space Joint Recon. Joint Recon.Cano. Recon.

Posed Space

Figure 5.6: Ablation studies on the reconstruction space. Single-space reconstruction shows

artifacts of either mesh surface over-stretching or intersecting surfaces when warping from

one space to another. Our joint-space reconstruction obtains balanced performance of both

high reconstruction completeness under the canonical space and high input image fidelity

under the posed space.

the canonical space as the target space (e.g., ARCH) can cause self-intersecting meshes with

broken manifold as well as body part un-natural deformations in the canonical-to-posed space

warped meshes. In contrast, our co-supervision and joint-space inference methods achieve

both reconstruction fidelity in the posed space and body mesh completeness in the canonical

space.

Geometry Encoding. As shown in Tab. 5.1, we observe further error reduction

leveraging the end-to-end learned point-wise spatial encodings. The prior method ARCH

uses handcrafted RBF features that only model the pose prior of parametric body mesh

skeletons, ignoring the mesh shape. In comparison, our point-based features are informed of

both pose and shape priors of the underlying parametric body model w.r.t. a clothed human
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Input RBF E2E PointE2E Voxel
Figure 5.7: Ablation studies on geometry encoding. Learned spatial features capture both

pose and shape priors of the underlying parametric models and thus enable mesh reconstruction

with more surface details than the handcrafted RBF features. Meanwhile, results of the

voxel-based features are noisier than the point-based ones due to mesh quantization (i.e.,

voxelization) errors.

OS Reg.Input Baseline IS Input IS Reg.
Figure 5.8: Ablation studies on normal refinement : Object-space Regression (OS Reg.),

Image-space Input (IS Input) and Image-space Regression (IS Reg.). Our method IS Reg.

leads to rich reconstruction details (e.g., clothes wrinkles) in all views.
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Figure 5.9: An application of digital human capture from photos.

Variants Posed ↓ Canonical ↓ Mean ↓

Baseline 0.033 0.040 0.037

Object-space Regression [HXL20] 0.032 0.041 0.037

Image-space Input [SSS20] 0.032 0.038 0.035

Image-space Regression 0.031 0.039 0.035

Table 5.4: Ablation studies on different ways of normal refinement.
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mesh, and thus improve the surface reconstruction quality. We further implement the learned

volumetric spatial feature encodings used in Geo-PIFu and PaMIR as an alternative encoder

and inject into our framework for direct comparisons. The results are shown in Tab. 5.3

and Fig. 5.7. While both types of end-to-end spatial features outperform the hand crafted

RBF features, our point-based feature extraction method does not suffer from computation

overhead and mesh quantization errors of the voxel-based approach.

Normal Refinement. While single-image based direct inference of human meshes with

rich surface details at both the front and the back side remains an open question, some

empirical observations and prior works indicate that normal estimation is a relatively easier

task and can help refine the reconstructions. In Tab. 5.4 and Fig. 5.8 we experiment on three

principle ways of leveraging the estimated normals for mesh reconstructions with refined

surface details. Among these normal refinement methods, our front/back-side image space

normal regression and moulding-based surface refinement approach outperforms other variants.

Object-space normal regression is adopted in ARCH and is based on learning deep implicit

functions of spatial normal fields. It fails to generate rich back side details and sometimes

causes block artifacts as shown in the fourth row of Fig. 5.5. Image-space input is used in

PIFuHD. It concatenates the color image input with estimated image-space normal maps

and feeds them into Stack Hourglass for feature extraction. While this method achieves the

same level of quantitative performance as our mesh refinement approach, its visual results are

not as sharp as ours at both the front and the back sides. A degenerated case of our mesh

refinement method is studied before in DeepHuman where they only estimate front-view

normal maps and therefore lack reconstruction details at the back side.

5.6 Discussion

In this paper, we revisit the major components in existing deep implicit function based 3D

avatar reconstruction. Our method ARCH++ produces results which have high-level fidelity
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and are animation-ready for many AR/VR applications. We conduct a series of comparisons

with and analysis on the state of the art to validate our findings. For future works, we plan

to incorporate environment information (e.g., lighting, affordance) to further understand the

body pose and appearance, and address current limitations.
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CHAPTER 6

Learning Self-Supervised Deep Voxel Representation

6.1 Introduction

A physical scene is far more complex than any number of images of it, so it is challenging to

just “reconstruct it”. The question of how to evaluate a model of a scene depends on whether

one has access to additional sensors (e.g. tactile), or prior knowledge (e.g. scale of objects).

In the absence of any side information, one often utilized measure of quality of a model built

from data is its ability to predict data that the model can generate [AMH78, Ast79]. Hence,

view synthesis is a critical step in building and evaluating models of physical scenes from

images. There are also practical ramifications of novel-view synthesis to video compression,

graphics rendering and reinforcement learning. Before deep learning, novel-view synthesis

was either approached as a pipeline of motion estimation, sparse reconstruction, topology

estimation, meshing, and texture mapping [KLT06], or directly by resampling the plenoptic

function [GGS96]. More recently, Sitzmann et al. [STH19a] proposed DeepVoxels – an

approach employing a 3D grid of persistent features integrated over input images along with

2D lifting and projection networks.

We learn 3D voxel embeddings of object shape and appearance based on image patches,

whose pose can be directly controlled to generate novel views at high resolution. Our method

is based on DeepVoxels [STH19a], but with improved rendering quality leveraging a series of

enhancements and a simple yet effective implementation trick of 3D embeddings sampling.

Specifically, DeepVoxels++ is different from DeepVoxels in four aspects:
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Figure 6.1: Rendering results of our model have sharper details (e.g. text, fine-grained

shapes) and fewer artifacts (e.g. aliasing, holes) than DeepVoxels [STH19a].

1. Low-complexity patch modelling. We adopt a patch-based training and inference

scheme that halves the 2D U-Net parameters used in image feature extraction and neural

rendering. It reduces the complexity of large image context modeling (e.g. 512×512×3 full

image vs. 128×128×3 small patch) by learning local patterns, and enables image modeling

as well as rendering at high resolution in sliding window manner.

2. View-dependent voxel feature transformations. Viewpoint changes can cause

perspective transformations in the images (see Fig. 6.3). We directly learn view-dependent

feature transformation kernels in the lifting/projection steps to model such perspective effect.

We transform the features from input patches to the 3D voxel embeddings and then from the

voxels to output patches based on the relative voxel-camera poses. We demonstrate this idea

on objects of diffuse reflection, delicate shapes and limited training views.

3. Recurrent-concurrent voxel feature aggregation. We aggregate 3D voxel embeddings

utilizing both recurrent gated-fusion and concurrent max-pooling. It differs from existing

works which treat multi-view images as a sequence and solely rely on recurrent networks

[TCF19, STH19a, CVG14]. Our method increases surface coverage of an object during each

iteration of voxel feature aggregation and improves data utilization rate. For example, our

104



model can outperform DeepVoxels [STH19a] under different training data size configurations.

4. Frustum representation sufficient sampling. Sampling the 3D voxel embeddings into

a frustum of the target pose is a critical step in decoding the learned volumetric representation

into a rendered image. We empirically found that sufficient frustum sampling is a simple

yet effective implementation trick to alleviate the issue of limited voxel resolution, reduce

blurring artifacts, and preserve sharp details. It enforces the voxel feature learning process

which in turn helps encode fine-scale details in the learned 3D voxel embeddings.

Overall, our approach improves over DeepVoxels [STH19a] upon the visual quality of

novel-view rendering at various poses (by up to 33% SSIM error reduction and 22% PSNR

performance boost). We use the same 360◦ novel-view synthesis benchmarks as [STH19a],

which contain 512×512 color images of delicate shapes and textures. In contrast, other

object based novel-view synthesis methods [ZTS16, PYY17, SHL18, OTW19] mainly use the

256×256 ShapeNet images that consist of mostly mono-color flat surfaces and do not evaluate

rendering results at 360◦ densely sampled poses.

6.2 Related Work

Our work is related to multiple fields in 3D computer vision and graphics: image-based

modeling, deep learning for view generation, 3D representation learning and neural-rendering,

and deep learning with feature structure constraints.

Image-based modeling Image-based modeling and rendering techniques [KLT06] are

the early approaches to the novel view synthesis problem. Modern approaches, such as

[HAS17, HPT18, PZ17], are able to obtain high-quality results even for challenging scenarios

with hand-held cameras. However these methods usually require multiple steps to (soft)

reconstruct the object or learn image blending weights, and therefore they are prone to

accumulative errors. They do not take full advantage of large scale multi-view datasets for

3D latent embedding learning and (adversarial) image generation training from the learned
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Figure 6.2: DeepVoxels++ pipeline. Red: view-dependent patch feature extraction from V

views. Blue: 3D voxel embeddings aggregation with recurrent gated-fusion and concurrent

max-pooling. Green: view-dependent image patch rendering. The networks are trained

jointly with L1 image reconstruction losses upon rendered views.

embeddings.

Deep learning for view generation With the advent of deep convolutional neu-

ral networks (CNNs), data-driven methods are gaining popularity for novel view genera-

tion [FNP16, JKM17, ZTS16, MGK19, YWW18, PYY17, SHL18, ZTF18, FBD19, STH19a,

SZW19, TZ19, STB19, TZT18]. The early methods overlook inherent 3D object struc-

tures/constraints and rely heavily on optical flow estimation [ZTS16] and generative adver-

sarial networks [YWW18]. The former can maintain fine details in generated images while

the latter are good at handling large pose changes for view synthesis. There are also hybrid

approaches that combine the benefits of both sides [PYY17, SHL18]. However, these methods

usually lack a learned latent representation of the object that is geometrically persistent, and

thus tend to produce inconsistent images across output poses [STH19a, STH19b].

3D representation learning and rendering 3D representation learning and neural-

rendering with deep networks is a problem studied in 3D Deep Learning. Various approaches

have been proposed using point clouds [QSM17b], implicit neural functions [SZW19], voxel

grids [KHM17], multi-plane images [MSO19, ZTF18, FBD19, STB19, KWR16], and etc. We
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follow the line of work using voxel grids [KHM17, TCF19, OTW19, STH19a] which offer

a geometrically persistent structure to integrate visual information across multiple poses

around the object. In particular Sitzmann et al. [STH19a] demonstrate promising results for

novel-view rendering utilizing a learned deep voxel representation. In this work, we achieve

greatly improved visual quality for 360◦ novel-view synthesis than [STH19a] via a series

of enhancements on feature extraction, transformation and aggregation, and a simple yet

effective implementation trick of voxel embeddings sufficient sampling when rendering images.

Learning with feature structure constraints Our work is also related to the emerging

direction of introducing explicit structure constraints upon deep features to data-driven deep

networks [YRY15, WGT17, NLT19, XCJ19]. For example, Worrall et al. [WGT17] impose a

3×3 rotation matrix constraint on high-dimensional features by length dividing and sub-vector

multiplication to learn an interpretable representation for rotation/scaling factors. In this

work, we propose to learn voxel feature transformation kernels conditioning on the relative

voxel-camera poses. The learned kernels are used to model perspective transformations of

the observed/rendered images induced by viewpoint changes under diffuse reflectance.

6.3 Methodology

Our model, DeepVoxels++, learns latent 3D voxel embeddings using color images of an object

from multiple viewpoints. Our deep network architecture can be perceived as: an encoder-

decoder with a geometrically consistent voxel feature space as the latent representation. As

shown in Fig. 6.2, the architecture comprises three stages that are trained jointly by 2D

view prediction without any 3D occupancy supervision: (encoder) view-dependent feature

extraction from image patches, (bottleneck) recurrent-concurrent aggregation of lifted features

to form the latent 3D voxel embeddings, (decoder) view-dependent patch rendering. At test

time we only need the learned voxel embeddings (bottleneck) and the view-dependent patch

neural-rendering network (decoder) for novel-view synthesis.
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The training data of each object consists of M multi-view images {Ii, gi}Mi=1, where Ii

is a 512×512×3 image captured at a pose gi. At training time, the multi-view images are

sampled into tuples of {Si, T
0
i , T

1
i }

M
i=1. During each training step, the networks are updated

with L1 reconstruction losses upon the predicted target views {(T̂ 0
j , T̂

1
j )}Vj=1, accepting

multiple source images {Sj}Vj=1 as input. We aggregate information from V (e.g. 1, 4, 8,

and etc.) views concurrently during training, making use of 3D-GRU and max-pooling

at the bottleneck stage. This training methodology is to ensure large coverage of the

object surface within each recurrent-concurrent step of 3D voxel embeddings aggregation. A

degenerate case is DeepVoxels, which only conducts recurrent aggregation (strictly V = 1);

i.e. without concurrent consideration of views. The previous training strategy induces single-

view observation caused latent voxel feature update bias, and thus has low data utilization

efficiency.

6.3.1 View-dependent patch feature extraction

To learn deep 3D voxel embeddings from multi-view images, we first sample image patches

from training images in sliding window manner. We then extract 2D feature maps from the

set of image patches and accumulate these features in voxel space of pre-defined resolution,

via view-dependent feature lifting.

Patch feature extraction We subdivide each source image Si into small-size patches

{P n
i }Nn=1 via a sliding window with overlaps. Patches are encoded via a 2D U-Net with skip

connections for feature extraction: P n
i 7→ F n

i . For very large images, if GPU memory sizes

prohibit training on all N patches at one pass, we can sample a subset {P n
i }N

′

n=1. In our exper-

iments, we randomly sample 80% patches, but note the possibility of sampling heuristically

e.g. sampling patches containing high-frequency/fine-scale content more frequently [SQA15].

Compared with the full-image based prior methods, the patch-based scheme enables our

method to better learn (and render) local image patterns.

View-dependent feature lifting We first define a s×s×s cubic voxel space for aggregating
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Figure 6.3: A voxel that encodes a paral-

lelogram pattern looks different at two poses

due to perspective projection effects under

diffuse reflectance.

Figure 6.4: Pseudo-depth maps visual-

ized using estimated frustum visibility values.

Our results are sharper than DeepVoxels and

have less artifacts.

feature patch lifting obtained voxel-shape features Xi ∈ Rc×s×s×s. Next, we project each

voxel onto the feature patches {F n
i }N

′

n=1 and conduct differentiable bilinear feature sampling

to get the lifted voxel features. The projection operation, approximated via a pin-hole camera

model, is also differentiable. Note that the intrinsic matrix K ∈ R3×3 wrt. the image patches

P n
i has to be rectified to get Kr in order to correctly map world-coordinate locations onto the

extracted feature patches F n
i . Because an image patch and its corresponding feature patch

have different sizes.

Kr =


αfx αcx

βfy βcy

1

 (6.1)

where (fx, fy, cx, cy) belong to K. Kr is the rectified intrinsic matrix used in voxel projection,

and (α, β) are (width, height) ratios between F n
i and P n

i .

The voxel space used to accumulate the lifted features Xi is typically of low resolution

(e.g. 32×32×32). Therefore, each voxel can be thought of modeling a local surface region of

the object, as illustrated in Fig. 6.3. It explains the motivation for perspective projection
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effect modeling by voxel feature transformations during the lifting (and projection) steps. We

apply learned convolutional feature transformation kernels A(·) ∈ Rc×c×1×1×1 on the lifted

features Xi.

X̄i = A(G(gi))⊛Xi (6.2)

in which X̄i ∈ Rc×s×s×s are the transformed features and ⊛ represents 3D convolution

operation. As shown in Fig. 6.2, the kernel estimation network A(·) is implemented as

several 3D convolution layers that take relative voxel-camera poses G(gi) ∈ R6×s×s×s as input

and estimate convolutional feature transformation kernels. The reason why G(gi) is a 3D

shape tensor is because each entry of it consists of the relative voxel-camera translation

and the camera pose rotation vector. Note that voxels has different relative voxel-camera

translations but share the same camera rotation vector. We adopt this encoding format of

relative voxel-camera poses based on empirical studies.

6.3.2 Recurrent-concurrent voxel feature aggregation

The lifted and transformed features X̄i from one source image Si only provide a single-view

observation of the object at pose gi. To learn holistic 3D voxel embeddings Z ∈ Rc×s×s×s

we need to integrate features extracted from all the training views, which have about 500

images and thus cannot be aggregated into the voxels at one time. We address this challenge

by aggregating {X̄k
j }Vj=1 from V different views within each iteration (indexed by k) of voxel

representation updates, via both recurrent gated-fusion and concurrent max-pooling. Note

that the prior methods only integrate features from a single-view into Z at each feature

update iteration, and therefore suffer from single-view observation bias. Our aggregation

approach provides a large surface coverage of the object during each voxel representation

update and improves data utilization rate.

Recurrent gated-fusion We first use 3D-GRU [CVG14] to separately fuse each single-view
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Figure 6.5: Novel-view synthesis results of DeepVoxels++ on objects with large viewpoint

changes and complex shape/texture patterns. Our model is proposed for diffuse objects but

we also show a few preliminary results on objects with specularities and shadows.

obtained X̄k
j into the holistic 3D voxel embeddings Zk−1 that are obtained from the previous

training iteration: Zk
j = GRU(X̄k

j , Z
k−1). The 3D object representation Z is modeled as

the hidden voxel embeddings of 3D-GRU and will be recurrently updated when more views

come in. At the first round of voxel aggregation, we initialize Z0 with zeros. However, within

each step of voxel embedding update, recurrent gated-fusion only aggregates features from a

single-view observation. To tackle the single-view update bias, we further utilize a multi-view

based max-pooling operation upon the 3D voxel embeddings.

Concurrent max-pooling Now we need to aggregate a set of deep voxel embeddings {Zk
j }Vj=1

obtained separately by recurrent gated-fusion from V > 1 views. Inspired by Multi-view

CNN [SMK15], we use the max-pooling operation: Zk = Max(Zk
1 , Z

k
2 , ..., Z

k
V ). Max(·) means
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applying max-pooling operations along the first dimension (i.e. the feature channel) of the

3D voxel embeddings Zk
j ∈ Rc×s×s×s. The obtained latent voxel representation Zk (i.e. the

3D-GRU hidden embedding at the k-th iteration) will be passed into the next iteration of

recurrent-concurrent voxel feature update until the end of training.

6.3.3 View-dependent patch rendering

Rendering a target image T|gm from the 3D voxel embeddings Z(k)
(j)

1 at any given pose gm

around the object involves three steps: view-dependent frustum feature sampling, depth

dimension reduction and patch-based neural rendering.

View-dependent frustum sampling For each target camera pose gm, we define a d×h×w

frustum space to enclose the s×s×s cubic voxels where the volumetric embeddings Z are

saved. While voxels are usually of low spatial resolution (e.g. 32×32×32) due to GPU size

constraint, the rendering visual quality from these deep voxel embeddings can be substantially

improved by sufficient frustum sampling. Namely, we utilize large 2D sampling sizes h×w

(e.g. 128×128 vs. 32×32). The depth axis d is collapsed when rendering image patches.

We found that this is a simple yet effective implementation trick for deep voxels-based high

quality view synthesis. Ablation studies in the experiments section support this argument

(see Fig. 6.7 and Tab. 6.3). Specifically, we can map the frustum into the voxel space by

inverse-perspective projection and sample the transformed voxel features Z̄ ∈ Rc×s×s×s by

differentiable trilinear interpolation.

Z̄ = B(G(gm))⊛ Y (Z) (6.3)

here Y (·) is a 3D U-Net that further refines the 3D voxel embeddings Z. As shown in Fig. 6.3,

we need to conduct voxel feature transformations at both lifting and projection steps due

1During training gradients are back-propagated to Zk
j . At test time we use the converged Z for rendering.

We use Z for convenience from here.
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Figure 6.6: 3D voxel embeddings ag-

gregation: only-recurrent vs. recurrent-

concurrent.

Figure 6.7: Frustum representation sam-

pling sizes: small (32×32) vs. large

(128×128).

to the corresponding perspective projection effect in the observed/rendered images. Thus,

similar to Eq. 6.2, we use a kernel estimation network B(·) to directly take the relative voxel-

camera poses G(gm) ∈ R6×s×s×s as input and estimate convolutional feature transformation

kernels. B(·) is also implemented as several 3D convolution layers. The sufficiently sampled

frustum features from Z̄ are denoted as F|gm ∈ Rc×d×h×w. Note that, as per Eq. 6.1, we use a

rectified camera intrinsic matrix when conducting inverse-perspective projection for frustum

representation sufficient sampling. In this case, scaling factors (α, β) are (width, height)

ratios between the frustum and the target image.

Depth dimension reduction Rather than directly utilizing the frustum representation

F|gm for patch neural-rendering, we follow [STH19a] and first collapse it into depth dimension

reduced features H|gm ∈ Rc×h×w by weighted average feature pooling upon the depth dimen-

sion: H|gm = Avg[F|gm ⊗O(F|gm)]|dim=1. Here Avg[·]|dim=1 indicates weighted average feature

pooling along the second dimension (i.e. depth) of the c×d×h×w input tensor. ⊗ means

element-wise multiplication with broadcasting between F|gm ∈ Rc×d×h×w and O(·) ∈ R1×d×h×w.

O(·) is implemented as a 3D U-Net with skip connections, whose output can be treated as
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frustum visibility estimation wrt. a viewpoint gm and adds interpretability to the rendering

process. Because it enables the computation of pseudo-depth maps which explain several

rendering artifacts of the prior methods (see Fig. 6.4). Specifically, inaccurate visibility

estimation, induced by incorrectly up-weighting (in)visible surfaces and empty space within

the frustum, can cause DeepVoxels’ rendering artifacts like aliasing and holes.

Patch-based neural rendering The final step of the model is to render patches from

H|gm . Recall that during the encoder stage, we explained the benefits of patch-based feature

extraction (subsec. 6.3.1). During the decoding step we conduct patch-based neural rendering,

for the same purposes of utilizing fewer 2D U-Net parameters, reducing the complexity of large

image context modeling and being able to model/render images at high resolution. Similar to

patch-based feature extraction, we subdivide H|gm into small-size feature patches {hn}Nn=1 by

a sliding window with overlaps, and then conduct patch neural rendering using a 2D U-Net

with skip connections: hn 7→ P n. At training time, we apply random sampling to retain N ′

feature patches (e.g. 80% of N) to save GPU memory. We use L1 reconstruction losses upon

rendered image patches to enable joint training for the complete network architectures as

shown in Fig. 6.2.

L(P̂n, Pn) =

∑N
′

n=1

∑
a,b

∥∥∥P̂n
a,b − Pn

a,b

∥∥∥
1

N ′ ∗D
(6.4)

where P̂ n is a rendered image patch and P n is a ground-truth patch. (a, b) are pixel indices

within an image patch and D is the pixel number of a patch. At test time, we composit all

N rendered patches {P̂ n}Nn=1 into the target image raster, and crop overlapped regions. The

stitched patches comprise the final 512×512 color rendered image T̂|gm .

6.4 Implementation Details

We implement our approach using PyTorch [PGC17]. The networks are trained with the

ADAM optimizer [KB14] using an initial learning rate of 0.0004. For different benchmark
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Vase Pedestal Chair Cube Mean

Method PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM

Nearest Neighbor 23.26 / 0.92 21.49 / 0.87 20.69 / 0.94 18.32 / 0.83 20.94 / 0.89

Tatarchenko et al. [TDB15] 22.28 / 0.91 23.25 / 0.89 20.22 / 0.95 19.12 / 0.84 21.22 / 0.90

Worrall et al. [WGT17] 23.41 / 0.92 22.70 / 0.89 19.52 / 0.94 19.23 / 0.85 21.22 / 0.90

Pix2Pix [IZZ17] 26.36 / 0.95 25.41 / 0.91 23.04 / 0.96 19.69 / 0.86 23.63 / 0.92

Neural Volumes [LSS19] 20.39 / 0.84 36.47 / 0.99 35.15 / 0.99 26.48 / 0.96 29.62 / 0.95

DeepVoxels [STH19a] 27.99 / 0.96 32.35 / 0.97 33.45 / 0.99 28.42 / 0.97 30.55 / 0.97

Ours 32.91 / 0.98 38.93 / 0.98 40.87 / 0.99 36.51 / 0.99 37.31 / 0.99

Table 6.1: 360◦ novel-view synthesis benchmark of objects with diffuse reflectance. Higher

values of PSNR and SSIM indicate better rendering quality. Our method DeepVoxels++

surpasses DeepVoxels and other competing methods by large margins.

Figure 6.8: Normalized azimuth-elevation PSNR maps on Cube. Horizontal: [0◦, 360◦]

azimuth. Vertical: [0◦, 100◦] elevation. Black dots are the training poses. Colored spiral lines

are the test pose trajectories. Red color means large PSNR value and blue means small.

These plots showcase smooth viewpoint interpolation paths between training views (i.e. black

dots), showing consistent improvement over DeepVoxels across different novel views.

objects, we use the same set of hyper-parameters and stop the training at 400 epochs, which

takes about 4 days.
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V Vase Pedestal Chair Cube Mean PSNR Mean SSIM

1 27.99 32.35 33.45 28.42 30.55 0.97

4 30.30 34.64 35.97 31.97 33.22 0.98

8 29.45 35.54 37.79 31.65 33.61 0.98

Table 6.2: Better rendering quality can be achieved when more multi-view images V are

aggregated in each round of recurrent-concurrent latent 3D voxel embedding updates.

6.5 Experiments

We evaluate DeepVoxels++ on 360◦ novel-view synthesis benchmarks against several compet-

ing methods: a Nearest Neighbor baseline, Tatarchenko et al. [TDB15], Worrall et al. [WGT17],

Pix2Pix [IZZ17], Neural Volumes [LSS19], SRN [SZW19] and DeepVoxels [STH19a]. To add

interpretability of our model, we also conduct ablation studies to reveal the impact of our

series of enhancements.

6.5.1 Dataset and metrics

For fairness of comparison, we use the same dataset and evaluation metrics (e.g. the Structural

Similarity Index (SSIM), the Peak Signal-to-noise Ratio (PSNR)) as DeepVoxels [STH19a].

The dataset contains 512×512 color images of delicate shapes and appearance (e.g. pedestal,

vase). For each object, the dataset has about 500 training images and 1000 test views as

ground truth. The test views are densely sampled from a 360◦ spiral curve enclosing the object

at different angles and distances, for evaluating smoothness and fidelity as the viewpoint

changes. This contrasts with recent object based novel-view synthesis papers which mainly

use the 256×256 ShapeNet image dataset. ShapeNet lacks the aforementioned appearance

complexity, and does not evaluate novel-view rendering results at densely sampled test poses.

Though not the purpose of our method, we also show a few results on objects with specular

reflectance and shadows in order to shed light on future work.
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6.5.2 Evaluating 360◦ novel view synthesis

Once trained on multi-view images of an object, we no longer requires those views at test

time as reference-view input; a requirement of some recent methods [ZTS16, PYY17, SHL18].

Rather, we can directly use the learned 3D voxel embeddings Z to render high-resolution

images at novel views. Tab. 6.1 shows our method DeepVoxels++ to outperform DeepVoxels

[STH19a] by 22% PSNR improvement and 33% SSIM error reduction. Both DeepVoxels

and Neural Volumes [LSS19] are based on (deep) voxel representations. Our method also

surpasses a recent implicit neural representation method SRN [SZW19] but it only reported

mean results: 33.03 PSNR, 0.97 SSIM. We further visualize normalized azimuth-elevation

PSNR maps in Fig. 6.8 to prove that our improvement is due to consistently improved

rendering quality across 1000 dense test views of the object, not caused by over-fitting at

certain viewpoints that are close to the training data. This capability to smoothly interpolate

between training views at high fidelity contrasts with DeepVoxels.

Figs. 6.1 and 6.5 present rendering results on diverse objects. While the competing

methods and our approach are proposed for and benchmarked on objects of diffuse reflectance,

in the figures we also show some preliminary results on specularity and shadow modeling. Our

rendered images contain sharper details and fewer rendering artifacts such as blur, aliasing

and holes than DeepVoxels.

6.5.3 Ablation studies

Voxel feature aggregation Previous deep voxel methods [TCF19, STH19a] use 3D-

GRU [CGC15, HS97] for image-based modeling by adopting a structured voxel space as the

hidden embedding and treating hundreds of multi-view images of an object as a video sequence.

However, this type of single-view based sequential update manner can cause inefficiency

and bias of 3D voxel embeddings learning. Because it imposes an ordering on viewpoints

and biases training when only a single-view observation is aggregated during each recurrent
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Sampling sizes h×w Vase Pedestal Chair Cube Mean PSNR Mean SSIM

32×32 27.16 27.93 32.99 27.35 28.86 0.95

64×64 30.30 34.64 35.97 31.97 33.22 0.98

128×128 32.62 38.75 38.73 35.35 36.36 0.99

Table 6.3: Frustum representation sufficient sampling from the low spatial resolution deep

voxels can substantially improve the 360◦ novel-view synthesis performance.

step. Inspired by Multi-view CNN [SMK15], we address these challenges by conducting

voxel feature aggregation at two different dimensions jointly: recurrent gated-fusion and

concurrent max-pooling. This provides a large surface coverage of the object during each

iteration of voxel feature updates and improves data utilization rate. Results in Tab. 6.2

verify our arguments. Fig. 6.6 further demonstrates that our aggregation method helps to

reduce DeepVoxels’ rendering artifacts such as aliasing and holes. Better rendering quality

and faster training can be achieved with more views aggregated by max-pooling in each round

of voxel feature updates, which is most effective when view number increases from 1 to 4

and starts to become less effective when it reaches 8 views. Thus, in our benchmark results

we use 4 views considering the trade-off between performance gains and GPU memory size

constraints.

Frustum sufficient sampling To decode the learned 3D voxel embeddings and render an

image at a target pose gm, we need to first project the deep voxel features into a frustum. As

explained in subsec. 6.3.3 the projection procedure essentially is feature sampling from the

voxel space to the frustum space. Tab. 6.3 and Fig. 6.7 show that while voxels are usually of

32×32×32 low spatial resolution due to GPU memory constraints, sufficient frustum sampling

can substantially improve the visual quality of rendered images with sharper details than

DeepVoxels. The frustum representation sampling sizes are determined by height/width of the

depth dimension reduced frustum feature maps. We use 128×128 sampling sizes in our main

results. Frustum representation sufficient sampling is a simple yet effective implementation
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2D U-Net parameters (M)

Method Mean PSNR Feature extraction Neural rendering

Full-image 36.36 92.2 108.9

Patch 36.99 40.3 56.9

Table 6.4: Our patch-based scheme reduces the complexity of large image context modeling

and improves the rendering results by learning local shape patterns.

Method Vase Pedestal Chair Cube Mean PSNR Mean SSIM

Without 26.05 29.84 28.89 25.19 27.49 0.93

With 25.76 30.83 29.45 25.43 27.87 0.94

Table 6.5: Comparisons between without/with voxel feature transformations. With the

learned feature transformation kernels, we achieve better performance on objects of delicate

shapes (e.g. pedestal, chair) and limited training views (e.g. 30 images).

trick that addresses the low voxel resolution problem. One explanation is that though

voxels have low spatial resolution, they contain high dimensional latent 3D embeddings,

encoding objects’ appearance and shape information. Meanwhile, the differentiable trilinear

interpolation-based frustum sufficient sampling enforces strong supervision on the deep voxel

features (i.e. rich gradient signals), and eventually helps to encode more fine-scale details

into the learned latent 3D embeddings.

Low-complexity patch modeling The patch-based training/inference scheme has multiple

advantages over the previous full-image based one, which are also demonstrated in other

problems like point-cloud upsampling [YLF18], image restoration [PE15]. Besides reducing

the complexity of modeling large image context and therefore improving fine-scale patch

synthesis quality (see Tab. 6.4), our approach requires only half the 2D U-Net parameters

used in image feature extraction and neural rendering of prior methods due to small-size

input. Furthermore, the patch-based scheme enables us to model and render images of
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high resolution at low GPU memory cost, whereas full-image based methods are not easily

trainable. Though small patch sizes enable the network to reduce its receptive field and

capture local shape patterns, too small sizes can harm the learning and rendering results

due to lacking sufficient image context. Therefore, there is a sweet spot of patch sizes. We

tested 3 different patch sizes on Cube (512x512, 128x128, 64x64) and the PSNR/SSIM

are: 35.35/0.992, 36.27/0.993, 32.08/0.980. We kept the 128x128 patch size as our default

configuration.

View-dependent voxel feature transformation Fig. 6.3 illustrates how 3D voxel embed-

dings that encode shape and appearance of an object’s local surface plane can be mapped

to different patterns, due to the corresponding perspective projection effect induced by

viewpoint changes. Such perspective transformation in the observed/rendered images is

explicitly modeled via learned feature transformation kernels from relative voxel-camera

poses. In contrast, previous methods rely on voxel volume changes caused by vantage point

changes to infer view-dependency. But voxel volume differences are constrained by low voxel

spatial resolutions and only implicitly reflect viewpoints. Tab. 6.5 shows that explicit voxel

feature transformation modeling is critical for objects with delicate shapes (e.g. pedestal)

and limited training views (e.g. 30 images), where voxel volume changes are less continuous

and less effective to model the corresponding perspective transformation caused by viewpoint

changes under diffuse reflectance.

Number of training views While DeepVoxels requires around 500 multi-view images to

learn faithful 3D voxel embeddings of an object, DeepVoxels++ can learn to synthesize high

fidelity novel views even with a limited number of training images. In Tab. 6.6, we experiment

on full-size, 1/3, 1/16 and 1/48 training data. Our method outperforms DeepVoxels in all

conditions, demonstrating promising results for real-world applications where only few images

are available for 3D object representation learning and novel view synthesis. For example,

camera rig-based image capture systems.
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Training data sizes

Method full 1/3 1/16 1/48

DeepVoxels 30.55 28.09 26.06 19.35

Ours 37.31 33.34 27.87 20.71

Table 6.6: Our model surpasses DeepVoxels under different data size configurations by large

gaps in mean PSNR. The results indicate that DeepVoxels++ is data efficient.

6.6 Discussion

We have proposed a novel view modeling and rendering technique that learns latent 3D

voxel embeddings from multi-view images of an object without 3D occupancy supervision.

Our approach outperforms previous deep voxel-based methods by large margins on 360◦

novel-view synthesis benchmarks. We show that our results contain more fine-scale details

and less rendering artifacts than DeepVoxels [STH19a]. We also conduct multiple ablation

studies to show the impact of our series of improvements in achieving this enhanced rendering

fidelity.

Although the benchmark mainly evaluates objects with diffuse reflectance, our proposed

method of learning voxel feature transformation kernels potentially can also model other

view-dependent effects (e.g. specularity) besides image-plane perspective transformations of

diffuse surfaces. We demonstrate some preliminary visual results for specularity and shadow

modeling in Fig. 6.5. But it is worth considering extending the current dataset with objects

of non-Lambertian reflectance and conducting evaluations under various lighting situations.

Novel-view rendering for non-rigid objects leveraging dynamic volumes is another challenging

and important problem. In brief, future work could consider various scenarios that are not

explicitly modeled or extensively evaluated by the current deep voxel-based methods, such as

lighting and specular reflectance, multi-object scenes, dynamic objects and so on.
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CHAPTER 7

End-to-End Visual Driving Policy Learning

7.1 Introduction

Driving is a complex endeavor that consists of many sub-tasks such as lane following, making

turns, and stopping for obstacles. A traditional strategy to tackle this complexity is to split the

driving policy into two stages: perception (i.e. estimating a manually chosen representation

of the scene) and control (i.e. outputting low-level controls using hand-coded rules). Though

this approach is interpretable with easy-to-diagnose failures, it suffers from various issues:

the representations may be suboptimal and difficult to estimate while hand-coded rules

may struggle to handle the full range of driving scenarios [SSS16, LWY18, SSG18]. These

drawbacks motivate academia to explore learning approaches for driving as they are not

restricted by hand-coded decisions. A major challenge for learning approaches is obtaining a

useful representation. A simple approach is to directly learn a driving model that maps from

image to low-level control. Though this approach is easy to implement, it suffers from poor

generalization due to overfitting to nuisances [LMS18, CSL19].

To improve generalization, various approaches (Fig. 7.1) propose to leverage complex side

tasks such as semantic segmentation which provide driving-relevant contextual knowledge in

an easily accessible form (i.e. without photometric nuisances). The most straightforward of

these approaches is the two-stage approach [MDG18, HXS19, BCP20, BKO19] (Fig. 7.1a),

which learns to achieve the side task and then uses the output from the side task to estimate

controls. However, this method suffers from errors in directly estimating the complex side
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Figure 7.1: Approaches for leveraging side tasks for driving. I, S, and A represent the

image, side task annotations, and low-level controls; Z, ZS
I , and ZA

S , latent representation,

mimicked features, and the squeezed encoding of the side task annotations. Dashed arrows,

depending on direction, represent branches or supervision used only during training. Unlike

other methods that aim to achieve the side task (two-stage, multi-task) or learn features for

it (feature mimic), our method, SAM, learns only driving-relevant context from the side task

annotations by directly feeding them as input during training. Also, note that SAM does

not suffer from side task estimation errors encountered by other methods because we never

explicitly estimate any side task annotations during training/inference.

task, leading to unrecoverable failures in the driving policy.

To avoid these estimation errors at test time, multi-task learning approaches [XGY16,

LMS18] (Fig. 7.1b) do not estimate the side task at test time but instead incorporate

driving-relevant context by training a shared representation to achieve both the side task

and the main driving task. However, they suffer from the fact that the side task is distinct

from the main task (i.e. side task-main task mismatch), and hence, there exists information

relevant to the side task but not to the main task. For example, the side task of semantic

segmentation encourages the learned representation to be informative for every pixel’s class

label, but knowing such pixel-wise information is unnecessary for driving. Instead, what

is more important is knowing that an obstacle of a certain class is in front of the agent.

Hence, as multi-task approaches aim to achieve both the side task and the driving task, they

encourage the representation to contain side task-relevant but driving-irrelevant nuisances,

hurting performance.
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Feature mimicking [HML] (Fig. 7.1c) incorporates contextual information while reducing

the reliance on ground-truth annotations for the side tasks (side task annotations) by proposing

instead to mimic features of a network (pre)trained to achieve the side task. However, this

method suffers from a similar issue (side task-main task mismatch) to multi-task methods: as

feature mimicking encourages the representation, via the mimicked features, to be informative

for achieving the side task, it encourages the learning of side task relevant but driving-

irrelevant nuisances. Moreover, all these previous methods (Fig. 7.1) inevitably suffer from

side-task estimation errors during training/inference as they rely on training models to

explicitly estimate the side task.

In contrast with previous approaches, we propose a method (Fig. 7.1d) that effectively

leverages the side task for conditional driving policy learning without trying to achieve the

side task or learn features trained to do so. Instead, we aim to learn a representation of the

side task annotations that is directly useful for driving. We first train a squeeze network to

drive using ground-truth side task annotations as input and extract its deep features. As

these features are trained only for driving and not to achieve the side task, they contain only

driving-relevant knowledge and not the side task-relevant but driving-irrelevant nuisances.

However, we cannot use the squeeze network to drive as ground-truth side task annotations

are unavailable at test time. To train a driving policy that does not require these annotations

while still leveraging the side task, we train a mimic network to drive using only image

and self-speed as input while pushing it to learn the squeeze network’s embedding via a

mimicking loss. Hence, the mimicking loss encourages the mimic network’s representation to

learn only the driving-relevant context associated with the side task. Our overall approach,

squeeze-and-mimic networks (SAM ), leverages the side task in an effective way to train a

conditional driving policy without achieving the side task or learning features for it, avoiding

the pitfalls of previous methods such as estimation errors and learning side task relevant but

driving-irrelevant nuisances.

We note that for all the aforementioned methods (Fig. 7.1), the side tasks should not
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discard important driving-relevant information contained in the image input. Indeed, they

should contain this information in an easily accessible form (i.e. without photometric

nuisances) so that the intermediate representation can easily learn this information. Two

important yet complementary types of information are object class, useful for tasks like lane

following, and braking behavior. Hence, for our choice of side task annotations, we select

semantic segmentation and stop intention values, which indicate whether to stop for different

types of obstacles such as pedestrians, traffic lights, or cars.

We test our agent on online benchmarks using the photorealistic CARLA simulator

[?]. Furthermore, we find previous benchmarks lacking as we do not think one should be

rewarded for reaching the destination while driving through red lights or into the opposite

lanes. Therefore we introduce a more realistic evaluation protocol that rewards successful

routes only if they do not violate basic traffic rules. To summarize, our main contributions

are as follows:

• a method for conditional driving policy learning that leverages a side task and learns

only driving-relevant knowledge from its annotations, avoiding the pitfalls of existing

methods that aim to achieve the side task or learn features for it.

• the combination of complementary side tasks: semantic segmentation, which provides

basic class concepts for subtasks like lane following, and stop intentions, which provide

causal information linking braking to hazardous driving scenarios. While both tasks

lead to improvement over the baseline, we show that the best performance is achieved

only when they are used jointly.

• an evaluation protocol, Traffic-school, that fixes the flaws of prior benchmarks. Though

CARLA reports various driving infractions, these statistics are scattered and hard to

analyze. Thus, previous benchmarks usually compute the route success rate, but they

ignore several risky driving behaviors. In contrast, our protocol sets a high standard

for the autonomous agent, penalizing previously ignored infractions such as violating
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red lights and running into the sidewalk.

7.2 Related Work

Autonomous driving has drawn significant attention for several decades [Pom88, LMB05,

SBS10]. Generally, there exist three different approaches to driving: modular, direct percep-

tion, and end-to-end learning.

Modular pipelines form the most popular approach [Ull80, PCY16, Fra17, DC91], sep-

arating driving into two components: perception modules [GLS13, HS19, ?] that estimate

driving-related side tasks and control modules. Recently, [MDG18, HXS19, BCP20, BKO19]

use semantic segmentation and environment maps as side task annotations in a modular

pipeline. However, these annotations are complex and high-dimensional. To simplify the

annotations and alleviate the annotation burden, a recent work LEVA [BCP20] proposes to

use coarse segmentation masks. The mentioned modular approaches have the advantage of

outputting interpretable representations in the form of estimated side task annotations (per-

ception outputs), allowing for the diagnosis of failures. However, they suffer from perception

and downstream control errors, and use manually chosen representations that are potentially

suboptimal for driving.

Direct perception [Gib79] methods similarly separate the driving model into two parts,

but unlike modular approaches, they avoid complex representations, opting for compact

intermediate representations instead. [CSK15] and [SSG18] (CAL) both train a network

to estimate affordances (distance to vehicle, center-of-lane, etc.) linked to controls, for car

racing and urban driving, respectively. Similar to modular approaches, the intermediate

representation is hand-crafted, with no guarantees that it is optimal.

End-to-end methods [Pom88, LMB05, SBS10, BTD16] learn a direct mapping from image

to control and are most related to our work. CIL [CML18] builds upon offline behavioral

cloning, solving the ambiguity problem at traffic intersections by conditioning on turning
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commands. [CSL19] analyzes issues within the CIL approach and proposes an improved

version, CILRS. However, both methods fail to generalize to dense traffic and suffer from

the covariate shift between offline training data and closed-loop evaluation. To reduce

this covariate shift, various methods collect data online using DAgger [RGB11] imitation

learning [CZK19, PBO20] or reinforcement learning (RL) [YPW17, LWY18, TWM19, OPB20].

Recently, [TWM19] combines RL with a feature extractor pretrained on affordance estimation

while LSD [OPB20] combines RL with a multimodal driving agent trained via mixture of

experts. However, the above methods all use online training, which is expensive and unsafe

and can be performed only in simulation [?]. Due to these drawbacks, we focus on offline

methods as offline and online methods are not directly comparable.

Previous methods have also leveraged side task annotations to improve generalization

and acquire context knowledge. As discussed in the Introduction and shown in Fig. 7.1,

the two-stage, multi-task and feature mimic methods [BCP20, XGY16, LMS18, HML] all

suffer from side task estimation errors and tend to learn driving-irrelevant nuisances (side

task-main task mismatch). We overcome these issues by never aiming to achieve the side

task; instead, we mimic a representation squeezed from side task annotations and trained for

driving. Similar to our method, LBC [CZK19] also mimics a driving agent. However, this

agent, unlike ours, takes expensive 3D side task annotations as input. Moreover, LBC and

SAM use different methods of mimicking: LBC mimics the agent’s controls while SAM mimics

the agent’s embeddings. Hence, our method directly encourages the model’s representation to

contain driving-related context associated with the side task while LBC does not. To illustrate

the benefits of our mimicking method, we also test SAM using LBC’s control mimicking.

7.3 Methodology

The overall pipeline of our method SAM (squeeze-and-mimic networks) is shown in Fig.

7.2. The goal of conditional driving policy learning is to learn a policy (I,m, c) 7→ a
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Figure 7.2: Architecture overview of our squeeze and mimic networks. Both use a three-

branch structure. (Left) Squeeze network: processes semantic segmentation, stop intention

values, and self-speed in separate branches and feeds their concatenated representation to a

command-conditioned driving module. (Right) Mimic network: has a similar structure but

takes in only RGB image and self-speed. (Arrow) l2 loss is enforced between the segmentation

and intentions embeddings of the squeeze network and those of the ResNet branches, which

each take in image, of the mimic network.

that outputs low-level controls a given image I, self-speed m, and turning command c =

{follow, left, right, straight}. Low-level continuous controls a = (b, g, s) consist of brake b,

gas g, and steering angle s.

For our method, we additionally leverage side task annotations S = (χ, ξ), in particular

semantic segmentation χ and stop intention values ξ provided by the CARLA simulator,

to train a conditional driving policy. The stop intentions ξ = (v, p, l) ∈ [0, 1]3 indicate how

urgent it is for the agent to brake in order to avoid hazardous traffic situations such as collision

with vehicles, collision with pedestrians, and red light violations, respectively. They are like

instructions given by a traffic-school instructor, which inform you of the causal relationships

between braking and different types of dangerous driving scenarios, complementing the

semantic segmentation χ, which contains concepts of object class identity for tasks like

lane following. Hence, the training dataset for our method consists of temporal tuples

{It,mt, ct, χt, ξt, at}Tt=1, collected from a rule-based autonomous driving agent with access to
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all internal state of the CARLA driving simulator.

In our method SAM, we first squeeze the side task annotations St, consisting of segmenta-

tion masks χt and three-category stop intentions ξt = (vt, pt, lt), into a latent representation

(χ′
t, ξ

′
t) containing driving-relevant info and not driving-irrelevant nuisances by training a

squeeze network to drive using side task annotations, self-speed, and turning command as

input: (St,mt, ct) 7→ at. We then train a mimic network (It,mt, ct) 7→ at to drive with no

access to side task annotations while encouraging this network’s embedding (χ̂′
t, ξ̂

′
t) to mimic

the squeeze network’s embedding. Notably, the squeeze network does not take image as input;

this is so that its latent representation, which is used to supervise the mimic network, does

not contain photometric nuisances from the image.

7.3.1 Squeeze Network

The task of our squeeze network is to squeeze the ground-truth segmentation masks χt and

three-category stop intentions ξt = (vt, pt, lt) into a representation that contains contextual

driving information but with nuisances removed. Such a representation will later be used to

supervise the mimic network via a mimicking loss. As shown in Fig. 7.2, the squeeze network

uses a three-branch architecture for estimating controls at = (bt, gt, st). The first branch

uses a ResNet34 backbone to squeeze the segmentation mask input, which provides concepts

of object class useful for tasks like lane following. We use the middle fully-connected (FC)

branch to process the three-category stop intentions, which complement the segmentation

mask by informing the agent of the causal relationships between braking behaviors and the

presence of objects in the context of safe driving. The lower FC branch ingests self-speed,

which provides context for speeding up / slowing down [CSL19].

The latent feature vectors from the three branches are concatenated and fed into a driving

module, composed of several FC layers and a conditional switch [CML18] that chooses one

out of four different output branches depending on the given turning signals ct. The four

output branches share the same network architecture but with separately learned weights.
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We use ℓ1 losses for training:

Lcontrol = λ1|b̂t − bt|+ λ2|ĝt − gt|+ λ3|ŝt − st| (7.1)

where (b̂t, ĝt, ŝt) are estimated controls of brake, throttle, steering angle respectively, and

(bt, gt, st) are ground-truth controls. λi’s are weights for loss terms.

7.3.2 Mimic Network

The mimic network does not have direct access to side task annotations, but instead observes

a single RGB image It, self-speed measurement mt, and high-level turning command ct and

mimics the squeeze network’s latent embedding to learn driving-relevant context without

learning driving-irrelevant nuisances. Its goal is also to estimate low-level controls at, for

which it also adopts a three-branch network. The first and the second branches are now both

ResNet34 backbones, pretrained on ImageNet, that separately take in image It and output

latent embeddings (χ̂′
t, ξ̂

′
t). We adopt separate branches as this separation aids mimicking the

embeddings of the segmentation masks, which are pixel-wise and provide object class identity,

and of the intention values, which are global and provide causal links between braking and

dangerous situations, respectively.

When training the mimic network, as illustrated in Fig. 7.2, besides applying the ℓ1

control loss (Eq. (7.1)), we enforce ℓ2 mimicking losses with weights λ′
i to encourage the

mimic network’s embeddings (χ̂
′
t, ξ̂

′
t) to mimic the squeeze network’s embeddings (χ

′
t, ξ

′
t) of

the side task annotations:

Lmimic = λ
′

1

∥∥∥χ̂′

t − χ
′

t

∥∥∥2

2
+ λ

′

2

∥∥∥ξ̂′

t − ξ
′

t

∥∥∥2

2
. (7.2)

The mimicking and control losses are combined to learn a driving policy: L = Lcontrol+Lmimic.
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7.4 Implementation Details

We implement our approach using CARLA 0.8.4 [?]. To train both the squeeze and mimic

networks, we use a batch size of 120 and the ADAM optimizer with initial learning rate 2e-4.

We use an adaptive learning rate schedule, which reduces the learning rate by a factor of 10

if the training loss has not decreased in 1000 iterations. We use a validation set for early

stopping, validating every 20K iterations and stopping training when the validation loss stops

decreasing.

Regarding time complexity, our mimic network demonstrates real-time performance (59

FPS) on a Nvidia GTX 1080Ti. Training the squeeze network takes 10 hours on a Nvidia

GTX 1080Ti while the mimic network trains in 1 day on a Nvidia Titan Xp.

7.5 Experiments

We demonstrate the effectiveness and generalization ability of our method by evaluating

it on standard closed-loop evaluation benchmarks. In section 4.1, we compare our model

against a suite of competing approaches. Concerned about the fact that multiple driving

infractions are not penalized in existing benchmarks, we then introduce a more realistic new

evaluation standard Traffic-school in section 4.2. In addition, in sections 4.3 and 4.4, we

conduct ablation studies on the strategy for leveraging the side task and individual types

of side task annotations. For all benchmarks, we evaluate in four combinations of towns,

which differ in road layout and visual nuisances, and weathers to test generalization: training

conditions, new weather, new town, and new town/weather.

7.5.1 Comparison with State-of-the-Art on CARLA

We first test our method on the NoCrash and Traffic-light benchmarks [CSL19]. For NoCrash,

we also include, for completeness, results for LSD [OPB20], LBC [CZK19], and LEVA [BCP20]
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even though they are not directly comparable to our method. LSD [OPB20] uses online

training, which is unsafe, and hence, is dependent on a driving simulator, while our method

uses only offline training, avoiding these drawbacks. LBC [CZK19] also uses online training

and in addition uses expensive ground-truth 3D maps, collecting which requires “accessing

the ground-truth state of the environment,” which “is difficult in the physical world” [CZK19].

In contrast, our method uses only 2D segmentation and stop intentions. Finally, LEVA

uses different pretraining (using MS-COCO segmentation dataset) and a significantly larger

architecture (∼100M parameters for LEVA vs. ∼45M for our model). For fair comparisons,

in Tab. 7.1, we also test LEVA (see “efficient seg") and LBC (see “control mimic") using

comparable backbones and the same dataset as SAM.

NoCrash We report results on the NoCrash benchmark in Tab. 7.1, where the metric is

navigation success rate in three different levels of traffic: empty, regular, and dense. A route

is considered successful for NoCrash only if the agent reaches the destination within the time

window without crashing. Though the second-best CILRS outperforms the other comparable

baselines, our method, with average error 28%, still achieves a relative failure rate reduction of

30% over CILRS, which has average error 40%. In particular, our method achieves especially

large performance gains over CILRS in new town and under regular and dense traffic. These

gains demonstrate the effectiveness of both our choice of side task annotations (semantic

segmentation for basic class concepts and stop intentions to aid braking) and our method

of leveraging them. We also note that our method outperforms MT [LMS18] (a multi-task

method), control mimic, and efficient seg. This comparison illustrates the advantages of

our method over other methods of using the side task annotations; our method learns only

driving-relevant context associated with the side task. On the other hand, multi-task learning,

efficient seg, and control mimic suffer from learning driving-irrelevant nuisances, perception

errors, and not directly imbuing the representation with contextual knowledge, respectively.

Traffic-light Results are shown in Tab. 7.2. As NoCrash does not directly penalize running

red lights, [CSL19] proposes the Traffic-light benchmark to analyze traffic light violation
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Training New weather New town New town/weather
Mean

Method Empty Regular Dense Empty Regular Dense Empty Regular Dense Empty Regular Dense

Comparable Baselines

CIL [CML18] 79± 1 60± 1 21± 2 83± 2 55± 5 13± 4 48± 3 27± 1 10± 2 24± 1 13± 2 2± 0 36± 0.7

CAL [SSG18] 81± 1 73± 2 42± 3 85± 2 68± 5 33± 2 36± 6 26± 2 9± 1 25± 3 14± 2 10± 0 42± 0.8

MT [LMS18] 84± 1 54± 2 13± 4 58± 2 40± 6 7± 2 41± 3 22± 0 7± 1 57± 0 32± 2 14± 2 36± 0.8

Efficient seg* [BCP20] 100 ± 0 82 ± 1 38 ± 5 80 ± 2 72 ± 3 23 ± 3 91 ± 1 58 ± 3 15 ± 4 68 ± 3 47 ± 5 19 ± 6 58 ± 1.0

Control mimic* [CZK19] 100 ± 0 84 ± 1 31 ± 3 99 ± 1 76 ± 6 27 ± 6 84 ± 1 47 ± 2 11 ± 3 83 ± 3 51 ± 1 10 ± 2 59± 0.9

CILRS [CSL19] 97± 2 83± 0 42± 2 96± 1 77± 1 39± 5 66± 2 49± 5 23± 1 66± 2 56± 2 24± 8 60± 1.0

SAM 100 ± 0 94 ± 2 54 ± 3 100 ± 0 89 ± 3 47 ± 5 92 ± 1 74 ± 2 29 ± 3 83 ± 1 68 ± 7 29 ± 2 72 ± 0.9

Listed for Completeness

LSD [OPB20] N/A N/A N/A N/A N/A N/A 94± 1 68± 2 30± 4 95± 1 65± 4 32± 3 N/A

LEVA [BCP20] N/A N/A N/A N/A N/A N/A 87± 1 82± 1 41± 1 79± 1 71± 1 32± 5 N/A

LBC [CZK19] 100 ± 0 99 ± 1 95 ± 2 100 ± 0 99 ± 1 97 ± 2 100 ± 0 96 ± 5 89 ± 1 100 ± 2 94 ± 4 85 ± 1 96 ± 0.6

Table 7.1: Results on NoCrash [CSL19] benchmark. Empty, regular and dense refer to

three levels of traffic. We show navigation success rate (%) in different test conditions.

Due to simulator randomness, all methods are evaluated 3 times. Bold indicates best

among comparable methods. Italics indicate best among all methods, including those whose

results are provided solely for completeness such as LSD [OPB20], LEVA [BCP20], and

LBC [CZK19]. Note that LSD [OPB20] and LEVA [BCP20] report results only on the new

town. We also include comparable baselines (marked with *), efficient seg and control mimic,

for LEVA [BCP20] and LBC [CZK19]. The average error for our model SAM is 28%, which

is 30% better than the next-best CILRS, 40%, in terms of relative failure reduction.

Train Town New Town
Mean

Method Train weather New weather Train weather New weather

CILRS [CSL19] 59± 2 32± 1 43± 1 35± 2 42± 0.8

SAM 97 ± 0 96 ± 1 81 ± 1 73 ± 1 87 ± 0.4

Table 7.2: Traffic light success rate (percentage of not running the red light). We compare

with the best comparable baseline CILRS.

behavior using the NoCrash empty setting (no dynamic agents). The metric is traffic-light

success rate, i.e. the percentage of times the agent crosses a traffic-light on green. The traffic

light success rate of our model SAM (87%) is more than twice as high as CILRS (42%). Our
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Training New weather New town New town/weather
Mean

Method Empty Regular Dense Empty Regular Dense Empty Regular Dense Empty Regular Dense

CILRS [CSL19] 11± 2 12± 1 13± 2 2± 2 7± 2 7± 1 2± 1 7± 1 4± 1 0± 0 7± 1 2± 2 6± 0.4

SAM 90 ± 2 79 ± 1 43 ± 5 83 ± 3 73 ± 1 39 ± 4 46 ± 2 39 ± 3 12 ± 2 15 ± 3 25 ± 2 14 ± 0 47 ± 0.8

Table 7.3: The newly proposed Traffic-school benchmark provides a more solid evaluation

standard than both the old CARLA and NoCrash, Tab. 7.1, benchmarks, which are flawed

due to not penalizing infractions such as red light or out-of-road violations. On our new

benchmark, a route is considered successful only if the agent arrives at the destination within a

given time without a) crashing, b) traffic light violation, c) out-of-road infraction. Under this

more realistic evaluation protocol, our results, in all conditions, surpass the best comparable

baseline CILRS.

improved traffic light performance demonstrates the effectiveness of both our stop intentions

and our method of leveraging them: the stop intentions inform the agent to stop for red

lights while our method learns the context associated with them.

7.5.2 A More Realistic Evaluation Protocol: Traffic-school

To resolve the flaws of previous benchmarks, we propose the Traffic-school benchmark, which

shares the same routes and weathers as NoCrash with a more restrictive evaluation protocol.

In previous benchmarks, multiple driving infractions such as red light violations (ignored by

NoCrash) and out-of-lane violations are ignored when judging whether a route is successfully

finished. In the Traffic-school benchmark, we do not ignore such infractions; a route is

considered a success only if the agent reaches the destination while satisfying the following

requirements: a) no overtime, b) no crashes, c) no traffic light violation, d) no running into the

opposite lane or sidewalk. As shown in Tab. 7.3, under this more realistic evaluation protocol,

our results (47%) outperform the best comparable baseline CILRS (6%), showing that our

method learns the driving-related context and not the nuisances associated with side tasks.

In particular, effectively leveraging the semantic segmentation and stop intentions boosts
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our performance for staying in the lane and stopping for red lights (Tab. 7.2), infractions

previously ignored but tested by Traffic-school.

7.5.3 Ablation Studies about Squeeze-and-Mimic Networks

To demonstrate the effectiveness of our method of using side task annotations, we conduct

an ablation study on different methods of leveraging side tasks for driving (Tab. 7.4). We

compare against alternative methods for driving policy learning [MDG18, BKO19, XGY16,

LMS18, HML], depicted in Fig. 7.1, using the same side tasks and comparable backbones.

We also compare against baselines that do not use side tasks.

Two-stage-(F) We apply an intuitive strategy (Fig. 7.1a) of utilizing two separately trained

modules: a) perception networks, b) driving networks. The perception networks are trained

for segmentation masks and stop intention values estimation. In the second step, the driving

networks use the same architecture as the squeeze network and take estimated segmentation

masks and stop intentions as input for low-level controls estimation. For two-stage, we directly

take the learned weights from the squeeze network as the driving network. Note that the

squeeze network is trained with ground-truth segmentation masks and stop intention values.

Thus, for two-stage-F, we fine-tune the driving network on the estimated segmentation masks

and stop intentions. Using either variant, we note that this strategy suffers from perception

errors, which cannot be recovered from.

Multi-task We apply a similar multi-task training strategy (Fig. 7.1b) as [XGY16] and

MT [LMS18] but with our side tasks. On the same latent feature vectors where we enforce

mimicking losses in our SAM method, we now train decoders to estimate segmentation masks

and stop intentions as side tasks. The motivation is that by simultaneously supervising these

side tasks, the learned features contain driving-relevant context such as lane markings and

other agents and are more invariant to environmental changes like buildings, weather, etc.

However, the downside of this side task supervision is that it encourages the learned features

to contain side task-relevant but driving-irrelevant nuisances.
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Training weather New weather
Mean

Method Empty Regular Dense Empty Regular Dense

SAM-NM 65 ± 3 36 ± 1 9 ± 2 42 ± 3 31 ± 2 7 ± 3 31.7 ± 1.0

Res101-NM 70 ± 3 44 ± 2 13 ± 4 50 ± 2 33 ± 1 7 ± 3 36.2 ± 1.1

Two-stage 92 ± 1 50 ± 3 12 ± 1 81 ± 2 41 ± 6 9 ± 3 47.5 ± 1.3

Two-stage-F 90 ± 2 57 ± 4 13 ± 1 79 ± 3 42 ± 4 8 ± 2 48.2 ± 1.2

Feature mimic 90 ± 1 62 ± 2 18 ± 1 79 ± 2 58 ± 2 15 ± 5 53.7 ± 1.0

Multi-task 91 ± 0 62 ± 2 17 ± 2 83 ± 1 65 ± 6 16 ± 2 55.7 ± 1.2

SAM 92 ± 1 74 ± 2 29 ± 3 83 ± 1 68 ± 7 29 ± 2 62.5 ± 1.4

Table 7.4: Comparison of alternative methods that leverage the side task on NoCrash.

We show navigation success rate in the new town. Though two-stage-(F), multi-task, and

feature mimic improve over the aforementioned non-distillation models by large gaps, they

still perform worse than our SAM model, showing that among multiple alternatives of using

the segmentation masks and stop intention values, our method performs best.

Feature mimic Inspired by [HML], we construct a feature mimicking baseline (Fig. 7.1c)

using our side tasks. Instead of mimicking the embeddings of a squeeze network trained to

drive (SAM), we now mimic the embeddings of networks trained for semantic segmentation

and stop intentions estimation. Similar to multi-task learning, feature mimicking also imbues

the learned features with driving-relevant context but suffers from learning side task-relevant

but driving-irrelevant nuisances.

No mimicking We also compare against two baselines that do not use side tasks, SAM-NM

and Res101-NM, to analyze the impact of effectively leveraging the side tasks via our method.

For both models, we simply use ℓ1 losses for estimating low-level controls without enforcing

the mimicking losses. SAM-NM uses the same two-ResNet architecture as SAM. As using

two separate branches to process the image may be suboptimal in the no-mimicking case,

we also compare to Res101-NM, a single-ResNet baseline that has a comparable number of

network parameters.

From Tab. 7.4, we see that our method outperforms the alternative approaches leveraging
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the side task. It outperforms multi-task and feature mimic, showing that it effectively learns

a representation that contains only the driving-relevant information associated with the side

task and not the nuisances. In addition, it outperforms two-stage-(F), avoiding the perception

errors that plague two-stage methods. Finally, we note that all methods using the side tasks

outperform the no-mimicking baselines, showing that our choice of side tasks (segmentation

masks, stop intentions) is effective for improving generalization and providing driving-relevant

context.

7.5.4 Ablation Studies about the Chosen Side Task Annotations

We now conduct a careful ablation study to understand the impact of the chosen individual

types of annotations. We analyze the influence of only utilizing one type of knowledge for

mimicking: segmentation masks or stop intentions. We have also conducted ablation studies

on the importance of each individual category of stop intention values, vehicle, pedestrian

and traffic light, and found that the best performance is achieved when all three categories of

intentions are used.

We use two different types of knowledge from the squeeze network for mimicking. Seg-

mentation masks provide the mimic network with some simple concepts of object identities

and therefore help the agent to learn basic driving skills like lane following and making

turns. Meanwhile, stop intentions inform the agent of different hazardous traffic situations

that require braking such as getting close to pedestrians, vehicles, or red lights. In Tab. 7.5

we conduct ablation studies mimicking each type of information separately. Both types of

knowledge separately bring performance gains, but the best results are achieved only when

they are used jointly due to their complementary nature.
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Training weather New weather
Mean

Mimicking source Empty Regular Dense Empty Regular Dense

Only stop intention 86 ± 2 47 ± 3 8 ± 4 73 ± 3 53 ± 6 9 ± 5 46.0 ± 1.7

Only seg. mask 93 ± 1 50 ± 4 8 ± 4 85 ± 1 52 ± 7 7 ± 3 49.2 ± 1.6

Both 92 ± 1 74 ± 2 29 ± 3 83 ± 1 68 ± 7 29 ± 2 62.5 ± 1.4

Table 7.5: Comparison of mimicking different types of knowledge. We show navigation

success rate in the new town on NoCrash. Only stop intention and only segmentation mask

both improve upon the SAM-NM no-mimicking baseline, 31.7%, in Tab. 7.4. The best results

are achieved by mimicking both types of embedding knowledge jointly.

7.6 Discussion

We propose squeeze-and-mimic networks, a method that encourages the driving model to

learn only driving-relevant context associated with a side task while discarding nuisances.

We accomplish this by first squeezing the complementary side task annotations, semantic

segmentation and stop intentions, using a squeeze network trained to drive. We then mimic

this network’s representation to train the mimic network. Our method achieves state-of-the-

art on various CARLA simulator benchmarks, including our newly proposed Traffic-school,

which fixes previous benchmarks’ flaws. In particular, SAM outperforms other approaches

that also use side tasks.

However, our approach is not without limitations. Though it handles turning commands,

it currently does not handle situations requiring negotiating with other agents such as lane

changing and high-way merging, a potential topic for future work. Sensor fusion with LiDAR

to further improve dense traffic performance could be another interesting direction.
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CHAPTER 8

Future Work

With the rapid growth of the autonomous driving industry (Waymo, Cruise, Nuro, etc.) and

the development of machine learning and deep learning techniques (transformers [VSP17],

contrastive learning [CKN20], neural radiance fields [MST20], etc.), deep 3d embodied visual

recognition is becoming an increasingly more important research area. There are many

promising research directions under the wide scope of 3D object and scene understandings

and autonomous agent policy learning. We only show a glimpse into the future by discussing

some of the valuable problems from different angles.

3D Shape Representations. The evolution of 3D object and scene representations has

gone a long way from simple 3D voxels and skeleton graphs to deep implicit surface functions.

The pursue of efficient and expressive 3D shape representations is still an ongoing mission.

Some important problems to be considered include 1) multi-granularity implicit function

designs for hierarchical and efficient representation/reconstruction of 3D shapes; 2) articulated

parts modeling with semantic-aware implicit surface functions; 3) curriculum training for

fast/robust learning of the dense occupancy or signed distance fields, and so on.

Multi-Modality Fusion in Time. Multi-modality data fusion in time (e.g., sequential

point clouds and color images) is critical for the development of 3D object detection and

autonomous agent systems. Most of the prior works on 3D detection either are based on a

single timestamp or adopt naive early/late fusion schemes for multi-modality fusion, which

only have marginal improvements over the LiDAR only baselines [SWC21, YZK21]. With the

recent advance of various attention mechanisms and transformer-based fusion architectures
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[DCX21, PCG21], multi-modality fusion across time embraces new possibilities.

Self-Supervised Learning on 3D Data. The main-stream methods can be classified into

two categories. 1) View prediction-based methods. DeepVoxels [STH19a] and Nerf [MST20]

showed that we can learn deep 3D representations directly from multi-view images and the

learned representations can be used to generate new data samples. As the next step, it would

be interesting to study how can we extend these neural radiance/voxel-based methods to the

modeling of dynamic objects and scenes. It is also critical to study what can we do with the

learned deep 3D representations (besides view prediction), such as self-driving agent control

estimation [HLL19]. 2) Contrastive learning on large-scale point clouds is also a promising

research direction. Contrastive learning has been widely applied on 2D images to learn an

image-based global representation from un-annotated in the wild images [HFW20]. But for

3D data, such as LiDAR point clouds, we care more about point-wise deep features that carry

both local geometry information and awareness of wide receptive field context. Therefore it

poses a new requirement of point-wise contrastive learning in order to unsupervisedly extract

meaningful features from point clouds [XGG20].

3D Transformer-based Backbones. Transformers demonstrated good context modeling

abilities for natural languages and 2D images leveraging self/cross-attention mechanisms

[DCL18, DBK20]. For 3D data understanding at scale (e.g., point clouds), besides using

PointNet and Graph Neural Network [QSM17a, SGT09], transformers open new research

opportunities to design backbones that can effectively and efficiently learn from large-scale

point cloud data. Some recently published works include Point Transformer [ZJJ21], Voxel

Transformer [MXN21] and so on. The design of the transformer-based 3D data backbones is

also tightly connected with the study of self-supervised representation learning strategies.

Because we know that the modeling capacities of attention-based transformer models can be

most unveiled by large-scale training on unannotated data.
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