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Abstract of the Dissertation

Particle Manipulation in Viscous Streaming

by

Kwi Tae Chong

Doctor of Philosophy in Mechanical Engineering

University of California, Los Angeles, 2013

Professor Jeff Eldredge, Chair

The necessity of micromanipulation to separate, focus and transport discrete ob-

jects on a microscopic scale has emerged in recent years in areas from assisted

fertilization to precision machining. This work explores the manipulation of mi-

croparticles suspended in viscous streaming flow. Streaming is a steady large-scale

circulatory flow generated by the nonlinear interaction of the primary oscillatory

motion. The first part of the study focuses on particle transport and trapping in

the streaming flow generated by a single oscillating cylinder. The streaming flow

is obtained by asymptotic expansion from previous work and the resulting velocity

field is used to integrate the Maxey-Riley equation with the Saffman lift for the

motion of an inertial spherical particle immersed in this flow. It is found that in-

ertial particles spiral inward and become trapped inside one of the four streaming

cells established by the cylinder oscillation, regardless of the particle size, density

and flow Reynolds number. It is shown that the Faxén correction terms divert the

particles from the fluid particle trajectories, and once diverted, the Saffman lift

force is most responsible for effecting the inward motion and trapping. Results

compare favorably with previous experiments.

We extend this study to various arrangements of oscillating probes. High

fidelity computations are used to simulate the flow field to capture particle trans-

port. It is shown that, by controlling the sequence of starting and stopping the
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oscillation of individual probes, inertial particles can be transported in a pre-

dictable manner between trapping points. In order to reduce the considerable

expense of generating the flow field, we also explore the use of steady Stokes flow

to serve as an approximate surrogate for the flow between probes. The bound-

ary conditions for this flow are obtained by matching with the inner Stokes layer

solution in the asymptotic expansion for small amplitude. Finally, the practical

characteristics of transport by streaming are discussed.

Overall, this study reveals that viscous streaming is an effective mechanism

with which to manipulate small particles. To the best of my knowledge, this

work is the first to investigate inertial particle trapping and transport in viscous

streaming theoretically and computationally.
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CHAPTER 1

Introduction

Techniques for separating, focusing and transporting small-sized particles in an

aqueous environment have matured in recent years, motivated primarily by tech-

nology needs such as drug delivery, cell processing and microfluidic devices. This

techniques, so called micromanipulation, can be categorized largely into direct

contact methods and non contacting methods. The direct contact methods can be

classified further into aspirating type [59, 75, 64] and pressing type [60, 92, 86, 39].

Since these method directly contact with the object they may place a undesirable

mechanical stress on delicate object such as living cells, which can affect the mea-

surement of the object and even adversely affect the functionality of the object.

On the other hand the non contacting system is able to orientate, transport

and manipulate the object without physical contact with the object. Some of

the most notable and effective methods are based on lasers [3, 51, 13], ultrasonics

[29, 27], dielectrophoresis [31, 55] and inertial hydrodynamic effects [20, 21]. An-

other appealing option for particle manipulation is based on the notion of steady

streaming. A streaming flow is a relatively weak but large-scale steady response

of a fluid to non-linear interactions – the Reynolds stresses – in a primary oscilla-

tory flow. Such a flow can arise in both viscous and acoustic environments. The

promise of such a flow for trapping and manipulating microparticles has recently

been demonstrated by a number of recent studies [44, 45, 40, 47, 48, 84, 46]. These

recent works demonstrate the excellent opportunities for particle manipulation us-

ing streaming flows.
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In this work, we are interested in obtaining a deeper understanding of the

behavior of a canonical streaming flow (the flow generated by an oscillating cir-

cular cylinder), and particularly, the interaction of small inertial particles with

such a flow. Though it is known that particles can be trapped by the streaming,

relatively little is known about the nature or conditions under which this trap-

ping is possible. Here, our objective is to provide more physical intuition and to

determine the dependence on various parameters, such as Reynolds number, and

particle size and relative density. Based on this inertial particle trapping mecha-

nism by streaming flow generated by oscillating object, inertial particle transport

between oscillating cylinders will be investigated using high-fidelity computational

simulations or approximated flows of Boundary Element Method.

1.1 Non-Contacting micromanipulation

The non-contacting micromanipulation can be largely categorized into laser-based

system, ultrasonic system and dieletrophoresis system. The non-contacting system

has a noticeable advantage over direct-contact systems in a sense that since they

do not directly contact with the objects they do not place a undesirable mechanical

stress on the objects which has a adverse effect on living cells and perturbs the

cell behavior. This system however inherently relies on conditions far outside the

physiological range for living cells resulting from a tightly focused laser beam or

high-frequency ultrasonic energy and their effects on the cell behavior and viability

are still disputable. Moreover this system is generally sophisticated and the control

over systems can be complicated by variations in the physical properties [45].

The Laser-based micromanipulation was firstly proposed as a optical tweezer

by Ashkin [3]. He showed that the Micron-sized particles was accelerated and

trapped in optical potential wells using the radiation pressure force from a tightly

focused laser beam. If the laser beam hits the sphere particle, the laser beam
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undergos deflection and reflection and these results in radiation pressure forces,

which drive the particle in the direction of net radiation pressure force. Therefore,

the sphere particle can be trapped when the laser beam hits the sphere from both

direction, which results in zero net force. Although this Laser system is best-

known and most widely used method, the particle can only be manipulated after

the position of particle is identified and there exist limitation of particle sized

since the wavelength of laser beam should be similar to the particle diameter.

However the ultrasonic system differs by two or more orders of magnitude

in particle size [27]. The acoustical tweezer is a representative of a ultrasonic

micromanipulation system. Wu [89] used two collimated focused ultrasonic (3.5

MHz) beams generated from transducers propagating along opposite directions,

which generated force potential well. He observed that a latex particle of 270−µm

diameter or clusters of frog eggs can be trapped in the potential well. He showed

that by axially or laterally moving either one of the transducers the potential

well and hence the trapped objects can easily be moved. He also presented that

the clusters of frog eggs can readily be maneuvered by changing the frequency of

the transducer. The work of Wu [89] is based on two ultrasonic standing wave

with same frequency. This method makes it difficult to localize small objects

at the desired point as many nodes and anti-nodes are usually generated inside

the standing wave [91]. Yamakoshi [91] used two traveling ultrasonic waves with

opposite phases of 0 and π radian which generate an acoustic black line with zero

acoustics power in front of the boundary of the two ultrasonic transducers. This

acoustic black line modulates the acoustic field spatially and hence generate the

acoustical radiation force which trap the particles.

Nieuwenhuis et al. [55] represented microfluidic devices that can sort particles

based on dielectrophoresis that is the phenomenon which a particle in non-uniform

electric field experiences a force proportional to the gradient of this electric field.

In this device the particles in fluid is sent into either left or right branch based on
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the dielectrophoresis. They also focused on the optimized layout of the sorters to

make dielectrophoretic flow-through particle sorter suitable for higher flow speed.

1.2 Hydrodynamic micromanipulation

Due to the complexity of experiment and the extreme physiological conditions for

living cells of the methods described above there is continuing need to develop the

alternative micromanipulation. It was observed that the alternative micromanip-

ulation is made feasible through viscous streaming. Figure 1.1 depicts a vorticella

which is common to freshwater ponds and streams. The vorticella creates vortical

structures around it’s bell by continuously beating its cilia to introduce vortex

flow and direct the food into bell. The enhancement of molecular exchange rate

by a beating surface-mounted flagella [76] and the mixing property of vorticella

and thereby the fabrication of micromixer in microchannel using a vorticella [?]

was studied. These studies imply that transporting and mixing a particle in fluid

is made possible through changing the fluid boundary.

Lutz et al. [44, 45] created streaming eddies around a cylinder fixed in a

microchannel through which fluid was oscillated, and showed that particles both

lighter and heavier than the surrounding fluid could be trapped inside the stream-

ing eddies; Lieu et al. [40] recently characterized the trapping in the vicinity of

other obstacles, and a cavity, as well. These studies also showed that trapping

was less effective when the particle was much much smaller than the cylinder.

Marmottant and Hilgenfeldt [47] exhibited controlled vesicle deformation and

lysis using a single oscillating microbubble mounted on the wall of a microchannel.

The shear force on the vesicles due to the streaming flow was strong enough to

deform and rupture them. They also demonstrated microparticle transport based

on a controlled fluid motion created through combinations of oscillating bubbles

[46, 48]. Wang et al. [84] have recently demonstrated the size-selective trapping
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Figure 1.1: Schematic of vorticella [83].

and release of microparticles through a superposition of bubble-induced streaming

and Poiseuille flow.

These studies also imply that the experiments in the researches are simple and

easy to implement and experimental condition is moderate, which means that

viscous streaming generated by oscillating the fluid boundary can avoid the com-

plexity of experimental systems and create survivable physiological conditions for

living cells and do not perturb the cell behavior and thereby make the microma-

nipulation feasible. The viscous streaming is closely reviewed in next section.

1.3 Viscous Streaming

The study of steady streaming dates to Lord Rayleigh, who found the existence of

a steady flow in Kundt’s tube [66]. Early experimental studies of viscous stream-

ing in the vicinity of a circular cylinder (and other obstacles) were conducted by

Andrade [1], who mounted the cylinder in an apparatus through which air was

driven sinusoidally. Smoke was used to visualize the cloverleaf pattern of stream-

ing cells. Schlichting [74] examined the same flow, generated in this case by an
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Figure 1.2: (Left) Lagrangian streamlines (top half) and instantaneous

Stokes-layer vorticity (bottom half) of canonical streaming pattern for Re ≫ 1 and

Res ≪ 1 (here, Re = 80). (Right) Streaming regimes (adapted from Wang[85]).

oscillating cylinder in an otherwise quiescent medium. His study was notable for

providing a theoretical analysis of the flow, based on an expansion in the ratio

ϵ of small oscillation amplitude A to cylinder radius R. The analysis was per-

formed in a reference frame attached to the oscillating body, so that the fluid

at infinity is in uniform oscillation. Schlichting matched the inner flow solution

– in which the relevant length scale is the thickness of the oscillatory (Stokes)

boundary layer, δAC = (ν/Ω)1/2, where ν is kinematic viscosity and Ω is angular

frequency of oscillation – with a corresponding expansion of the outer flow. The

leading-order outer potential flow drives the Stokes layer near the cylinder, which

applies a second-order correction to the outer flow due to displacement, which in

turn affects the boundary layer at the next order, and so on. It is useful to note

that the thickness of the Stokes layer is directly related to the Reynolds number

based on cylinder radius: δAC/R = 1/Re1/2, where Re = ΩR2/ν.

The steady component of the flow enters at second order, driven by the mean

Reynolds stress of the leading-order Stokes layer. This steady flow is divided into
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four equal quadrants about the cylinder by the axis of oscillation and the axis

transverse to this oscillation (see the left panel of Figure 1.2, which also depicts the

vorticity in the Stokes layer). Each quadrant exhibits a streaming cell, segregated

from the outer flow by a dividing streamline at distance δDC off the surface of

the cylinder. The Reynolds stresses decay exponentially with distance from the

cylinder surface, so the fluid outside the boundary layer is set in steady motion

indirectly, effectively dragged along by the inner flow. The composite of these

inner and outer flows represents the streaming flow.

Schlichting’s analysis provided an intuitive understanding of the flow that sub-

sequent analyses have improved upon, but not significantly altered. Wang [85]

argued that body curvature, which Schlichting neglected, should have an impor-

tant influence on the boundary layer behavior; however, this influence is only felt

at second order and higher in the oscillatory portion, and third order and higher

in the steady portions of the flow, as revealed by Wang’s matched asymptotic

analysis. Holtsmark et al. [30] also performed an asymptotic expansion in small

amplitude ratio, but did not treat the inner and outer flows separately; rather,

they solved for the entire flow about the cylinder at each order of accuracy. The re-

sults of Holtsmark et al. [30] contain those of Schlichting [74] and Wang [85] when

one carries out an expansion of these results in powers of Re−1/2, assuming that

Re ≫ 1; however, the Holtsmark group’s result holds equally well for moderate

and small Re, for which the oscillatory boundary layer is absent. Raney, Corelli,

and Westervelt [65], and later Bertelsen, Svardal, and Tjotta [7], corrected each

of these results for the Stokes drift, which accounts for the difference between

the steady Lagrangian streamlines (the mean paths followed by fluid particles)

and the Eulerian streamlines (which are obtained from the mean streamfunction).

Since most experimental measurements of the flow are based on tracking the mo-

tion of passive tracer particles, the Stokes drift is inherent to such experimental

results. As is apparent from the experiments from Holtsmark et al. [30], and
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corroborated by the drift-corrected theory [7], the relative thickness, δDC/R, of

the inner streaming cell exhibits a complex dependence on the Reynolds number,

growing progressively larger as Re gets smaller and without bound as Re → 37.

Note that δDC/δAC > 1 at all Reynolds numbers, as the left panel of Figure 1.2

indicates at the particular case of Re = 80.

Though the Reynolds number, Re, defines the size of the driving mecha-

nism (the Stokes layer), the streaming flow itself is characterized by a streaming

Reynolds number, Res = ΩA2/ν. Its role is clear from the fact that the charac-

teristic velocity of the streaming flow is Vs = ϵΩA, so Res = VsR/ν. Each of the

analyses above was based on the assumption that Res ≪ 1, whereupon the steady

streaming flow beyond the inner layer is essentially Stokes flow (through second

order). However, when Res ≫ 1, this outer flow exhibits its own boundary layer

structure, with a characteristic thickness of order R/Re1/2s . Since δAC = R/Re1/2

and Res = ϵ2Re, then this second boundary layer is much thicker than the Stokes

layer (and the inner streaming cell, δDC). Both Riley [68] and Stuart [77] re-

vealed the existence of such a double boundary layer structure at large streaming

Reynolds number. Riley used matched asymptotic expansions of the inner and

outer regions, while Stuart adopted a generalization of a series expansion method

by Fettis [24].

The various streaming regimes in the ϵ–Re parametric space were nicely sum-

marized in a figure by Wang [85], which is presented in somewhat modified form

here in the right panel of Figure 1.2. The streaming theories all fall to the left of

ϵ = O(1), as the right side of this line involves large-amplitude motions, which, for

Re ≫ 1 generate wake flows that resist analytical description, and for Re . 1 are

governed by quasi-steady Stokes flow. The regime of small streaming Reynolds

number lies below the line that diagonally transects the figure.
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1.4 Preview of Paper

In this work, we are primarily focused on the behavior of inertial particles (par-

ticles of finite size whose density may differ from that of the surrounding fluid)

in streaming flows for which Res . 1, ϵ ≪ 1, and Re = O(10) – that is, the

cases for which the theoretical treatment of Holtsmark et al. [30] is valid. We will

assume that the particle is a rigid sphere, and sufficiently small such that its ‘slip’

Reynolds number, Rep = a|w|/ν (the Reynolds number based on the velocity of

the particle relative to the local undisturbed flow, w, and particle radius, a) and

shear Reynolds number, ReG = a2G/ν (the Reynolds number based on the veloc-

ity gradient, G) are both much less than unity. The translation of a rigid sphere

in this regime was originally treated separately by Basset [4], Boussinesq [9] and

Oseen [57] (and hence the equation governing its dynamics is sometimes called

the ‘BBO’ equation). Later, Maxey and Riley [49] proposed a corrected equation

of motion for a small rigid sphere in a nonuniform flow. We will make use of

the equation derived in this latter work, including the Saffman lift force term [73]

(and refer to it from hereon as the Maxey–Riley, or simply ‘MR’ equation) in

order to calculate trajectories of inertial particles in the flows predicted by the

Holtsmark solution, and in the flows obtained from high-fidelity or approximated

simulations.

The problem statement of this study as well as basic solutions of governing

equation (Holtsmark solution) will be presented in chapter 2. Also the change of

reference frame to an oscillating circular cylinder in a quiescent flow (This frame,

in contrast to the one in which the cylinder is fixed in an oscillating flow, will

enable opportunities for studying particle transport between multiple oscillators

of possibly different frequencies.) and Lagrangian system correcting the Eulerian

system with Stokes drift will be described in chapter 2. Streaming flow generated

by multiple cylinder from high-fidelity simulation and approximated simulation is
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described and validated in chapter 3. The Maxey–Riley equation for integrating

inertial particle trajectory is also described in the same chapter.

Inertial particle trapping wil be examined in chapter 4. The transient behavior

of the inertial particle in the streaming cell, and the trapping speed and equilib-

rium trajectory will be examined in this section. Inertial particle transport inside

and outside of Stokes layer with modified Maxey–Riley equation will be described

in chapter 5. The conclusion and future works will be followed in chapter 6.

Most works of chapter 2 and 4 are based on the paper by Chong et al. [35].
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CHAPTER 2

Problem Statement

In this chapter, I first consider the motion of inertial particles in a flow generated

by a single two-dimensional circular cylinder of radius R that undergoes rectilinear

sinusoidal oscillations along the x axis with amplitude A and angular frequency

Ω as shown in figure 2.1,

X(t) = exA sinΩt, (2.1)

in a quiescent incompressible medium of uniform density ρf and kinematic viscos-

ity ν. The y axis represents the transverse direction in the plane of the cylinder

cross-section, and the z axis is parallel to the cylinder axis. A particle has radius

a and density ρp, where it is assumed that a is much smaller than the radius of

the oscillating cylinder. However, for the purpose of mathematical simplicity and

robustness, this solution will be derived by modifying the flow generated by a

circular cylinder in an oscillatory free stream.

It is important to consider the wide range of time scales of this problem. Iner-

tial particles are transported approximately at the characteristic (drift-corrected)

speed of the streaming flow, Vs = ϵΩA, around a cell of characteristic size δDC .

Though this size varies with Reynolds number, as described above, it remains

O(R) over a wide range of Re. Thus, the convective time for a particle to orbit

the streaming cell is of order δDC/Vs ∼ R/(ϵΩA) = 1/(ϵ2Ω), or ϵ−2 periods of

oscillation, and to discern long-term behavior of the particle, many such orbits

must be captured. So in practice, particle trajectories must be computed over

hundreds to thousands of oscillation cycles.
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Figure 2.1: Oscillating two-dimensional cylinder of radius R with amplitude A.

It is also important to note the wide range of length scales of this problem.

Vorticities are generated in thin Stokes layer of size δAC = R/Re1/2 and diffused

throughout the inner streaming cell of size O(R). Inertial particles are transported

inside inner streaming cell and over distance between oscillating cylinders of size

O(R/ϵ). Hence, it is difficult but also important to consider wide range of time

scales as well as length scales in order to correctly solve this problem.

The solution for the flow generated about a circular cylinder in an oscillatory

free stream is derived in the following sections, and follows the derivation presented

by Holtsmark et al. [30]. However, this earlier work contains errors in the second-

order oscillatory part of the solution, and I correct these errors here. I also include

a derivation of the Stokes drift of fluid particles in this flow. Then, in the last

section, I discuss how this solution is modified when the reference frame is changed

to one in which the cylinder is in motion and the fluid at rest at infinity. This

reference frame is ultimate one in which inertial particles are manipulated in a

flow field generated by oscillating object.
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2.1 Governing Equation and Boundary Condition

As mentioned above, the flow field is obtained in a reference frame in which the

cylinder is at rest and the fluid at infinity is in uniform oscillatory motion in the

x direction, with velocity U(t) = −AΩcos(Ωt). Then this solution is modified to

the reference frame in which the cylinder is oscillating in a quiescent fluid in the

following section. We seek the solution of the two-dimensional vorticity transport

equation,
∂

∂t
(∇2ψ) + u · ∇(∇2ψ) = ν∇4ψ (2.2)

subject to the conditions

ψ = 0,
∂ψ

∂r
= 0 at r = R, ψ → −AΩr sin θ cosΩt as r → ∞, (2.3)

where the polar velocity components are defined as

ur =
1

r

∂ψ

∂θ
, uθ = −∂ψ

∂r
. (2.4)

From hereon, the variables are scaled by R and Ω. We thereby arrive at the

dimensionless form of the problem

∇2

(
∇2 − Re

∂

∂t

)
ψ = Reu · ∇

(
∇2ψ

)
, (2.5)

and

ψ = 0,
∂ψ

∂r
= 0 at r = 1, ψ → −ϵr sin θ cos t as r → ∞. (2.6)

We introduce an asymptotic expansion in ϵ for the streamfunction,

ψ = ϵψ1 + ϵ2ψ2 +O(ϵ3), (2.7)

and thereby develop a hierarchy of problems for ψ1, ψ2, etc. We will restrict our

attention here to the first two,

∇2

(
∇2 − Re

∂

∂t

)
ψ1 = 0, (2.8)

ψ1 = 0,
∂ψ1

∂r
= 0 at r = 1, ψ1 → −r sin θ cos t as r → ∞
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and

∇2

(
∇2 − Re

∂

∂t

)
ψ2 = Reu1 · ∇

(
∇2ψ1

)
, (2.9)

ψ2 = 0,
∂ψ2

∂r
= 0 at r = 1, ψ2 → 0 as r → ∞.

2.1.1 First-order solution

The equation (2.8) for the first-order streamfunction is linear and homogeneous,

and consists of a superposition of solutions of the two-dimensional Laplace equa-

tion and heat equation. This first-order solution comprises the forcing – via

Reynolds stresses – for the second-order equation (2.9). It is interesting to note

that, if the oscillatory motion of the cylinder were changed in sign (i.e. phase-

shifted by π), the second-order motion would be unaffected.

The solution of (2.8) can be written as

ψ1(r, θ, t) = Re
(
Ψ1(r)e

−it
)
sin θ. (2.10)

where the radial dependence can be split into two parts

Ψ1(r) = Ψ
(1)
1 (r) + Ψ

(2)
1 (r), (2.11)

each of which represents the homogeneous solution of one of the two differential

operators in (2.8); Ψ
(1)
1 is the radial dependence of the solution of the Laplace

equation and Ψ
(2)
1 of the heat equation. After applying boundary conditions,

these solutions are, respectively,

Ψ
(1)
1 (r) = −r − C

r
, (2.12)

Ψ
(2)
1 (r) =

2H
(1)
1 (γr)

γH
(1)
0 (γ)

= r

[
H

(1)
0 (γr)

H
(1)
0 (γ)

+
H

(1)
2 (γr)

H
(1)
0 (γ)

]
, (2.13)

where C = H
(1)
2 (γ)/H

(1)
0 (γ). Note that H

(1)
1 and H

(2)
1 are the first-order Hankel

functions of the first and second kind, respectively, and γ = (iRe)1/2. When
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Figure 2.2: Instantaneous contour of (a) streamline (b) vorticity for First-order

solution at tΩ = π/4

streamfunction is expressed in the inertial reference frame (in which the cylinder

is in motion and the fluid at rest at infinity), the first term in (2.12) is cancelled

by the first-order modification in the change of reference frame equation (2.31).

The velocity components associated with this first-order streamfunction are

ur,1 = Re
(
Ur,1(r)e

−it
)
cos θ (2.14)

and

uθ,1 = Re
(
Uθ,1(r)e

−it
)
sin θ, (2.15)

where Ur,1 = Ψ1/r and Uθ,1 = −dΨ1/dr. It is straightforward to show (using

recurrence relations for Hankel functions) that

Ur,1(r) = −1− C

r2
+
H

(1)
0 (γr)

H
(1)
0 (γ)

+
H

(1)
2 (γr)

H
(1)
0 (γ)

, (2.16)

Uθ,1(r) = 1− C

r2
− H

(1)
0 (γr)

H
(1)
0 (γ)

+
H

(1)
2 (γr)

H
(1)
0 (γ)

. (2.17)

Figure 2.2 is a instantaneous contour of streamline and vorticity at tΩ = π/4

for first-order solution in (2.11) and depicts primary oscillatory flow corresponding
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to the boundary conditions, which is oscillatory at infinity and no flow through at

the surface of cylinder. This primary oscillating flow is combination of potential

flow around circular cylinder (Ψ
(1)
1 of Laplace equation) and rotational flow dif-

fused by vorticity generated on the surface of cylinder (Ψ
(2)
1 of the heat equation).

2.1.2 Second-order solution

The first-order solution can now be used to evaluate the forcing term in RHS of

equation (2.9) for ψ2.

Reu1 · ∇
(
∇2ψ1

)
= Re

(
f0(r) + g0(r)e

−i2t
)
sin 2θ (2.18)

where

f0(r) =
iRe2

4

1

r

(
Ψ1

dΨ
(2)∗
1

dr
−Ψ

(2)∗
1

dΨ1

dr

)
, (2.19)

and

g0(r) = − iRe2

4r

(
Ψ

(1)
1

dΨ
(2)
1

dr
−Ψ

(2)
1

dΨ
(1)
1

dr

)
. (2.20)

It can be verified that this leads to a second-order solution of the form

ψ2(r, θ, t) = Re
(
Ψs

2(r) + Ψ2(r)e
−i2t
)
sin 2θ, (2.21)

where the radial dependence of the steady solution is

Ψs
2(r) = − r4

48

∫ ∞

r

f0(τ)

τ
dτ +

r2

16

∫ ∞

r

τf0(τ) dτ

+
1

16

(∫ r

1

τ 3f0(τ) dτ +

∫ ∞

1

f0(τ)

τ
dτ − 2

∫ ∞

1

τf0(τ) dτ

)
(2.22)

+
1

r2

(
− 1

48

∫ r

1

τ 5f0(τ) dτ −
1

24

∫ ∞

1

f0(τ)

τ
dτ +

1

16

∫ ∞

1

τf0(τ) dτ

)
.
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Figure 2.3: Contour of (a) streamline (b) vorticity for second-order steady so-

lution and instantaneous contour of (c) streamline (d) vorticity for second-order

oscillatory solution at tΩ = π/4

The radial dependence of the oscillatory portion is

Ψ2(r) =
iπ

4λ2H
(1)
1 (λ)

(
H

(1)
2 (λr)

∫ r

1

τK2(λτ)g0(τ) dτ

+K2(λr)

∫ ∞

r

τH
(1)
2 (λτ)g0(τ) dτ

)
(2.23)

+
1

λ3H
(1)
1 (λ)

[(
H

(1)
2 (λr)− r−2H

(1)
2 (λ)

)∫ ∞

1

g0(τ)

τ
dτ

+r−2

∫ ∞

1

τH
(1)
2 (λτ)g0(τ) dτ

]
− 1

4λ2

(
r2
∫ ∞

r

g0(τ)

τ
dτ − r−2

∫ ∞

1

g0(τ)

τ
dτ + r−2

∫ r

1

τ 3g0(τ) dτ

)
,
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Figure 2.4: Mean vorticity along 45 degree line from 2nd order steady solution

(blue solid line) and matched asymptotic analysis of Schlichting (black dot).

where λ =
√
2γ, K2(λτ) = H

(1)
1 (λ)H

(2)
2 (λτ) − H

(2)
1 (λ)H

(1)
2 (λτ). We note that

(2.24) corrects errors in the solution presented by Holtsmark et al. [30].

The velocity components of the second-order solution are, correspondingly,

ur,2 = Re

(
2Ψs

2

r
+

2Ψ2

r
e−i2t

)
cos 2θ (2.24)

and

uθ,2 = −Re

(
dΨs

2

dr
+

dΨ2

dr
e−i2t

)
sin 2θ. (2.25)

Figure 2.3(a) is a second-order steady solution describing and clearly portraits

one of the clover shape streaming cells circulating around the center of streaming

cell in each quadrant. This streamline as a Eulerian solution is not a mean path

of fluid particle which is a Lagrangian solution in section 2.3. Second-order oscil-

latory solution depicts instantaneous streamline at tΩ = π/4 in figure 2.3(c) and

each vorticity contour is shown in figure 2.3(b) and (d) respectively.

It is interesting to note that this steady portion of the flow has an associated
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vorticity field that decays algebraically with distance, in contrast to the expo-

nential decay of the oscillatory part of the flow. Though it is difficult to show

this with the solution (2.23) presented here, the matched asymptotic analysis of

Schlichting[74] reveals that the mean vorticity is ωz ∼ 3ϵ2r−2 sin 2θ as r → ∞.

This reflects the fact that the dominant steady streaming in the outer region is

Stokes flow, and therefore a solution of ∇2ωz = 0. Vorticity of 2nd order steady

solution (blue solid line) exhibits decaying in order of O(r−2) as matched asymp-

totic analysis of Schlichting (black dot line) in figure 2.4.

2.2 Change of Reference Frame

Ultimately, I seek the flowfield in a reference frame in which the cylinder is in

oscillatory motion and the fluid is at rest at infinity, which I term the ‘inertial’

reference frame in this paper. It is important to note that a fixed position in

this frame appears to be in motion in the cylinder-fixed reference frame used

to obtain the solution of Holtsmark et al. [30]. However, it is more natural to

evaluate the solution at a fixed position in this latter frame. I need to account

for this discrepancy, and as I will see, this leads to both a first- and second-

order correction when reconciling the two frames. It is important that I carry

out this analysis, because the motion of a particle with different density from the

surrounding fluid will, in general, undergo a slightly different motion relative to

the cylinder in the two different scenarios.

Let us denote the position of a fixed point in the inertial reference frame by

x = (x, y) and the same point mapped to the cylinder-fixed reference frame by

ξ(t) = (ξ(t), η(t)). They are simply related by

ξ(t) = x−X(t), (2.26)

where here, in dimensionless form, X(t) = exϵ sin t. It is straightforward to show

that, in a non-inertial frame in purely translational motion, the Navier–Stokes

19



equations are unmodified (except for an addition to the pressure field) [58]. The

streamfunction, when evaluated at ξ(t), is related to its counterpart in the inertial

reference frame (denoted by ψ̃) by

ψ(ξ(t), t) = ψ̃(x, t)−
(

d

dt
X(t)× x

)
· ez = ψ̃(x, t)− ϵy cos t (2.27)

Equation (2.27) can be used directly to transform the solution of Holtsmark et

al. [30] to the inertial reference frame. However, it is enlightening to consider the

effect of this change of frame in the context of the asymptotic expansion. Because

the oscillations are assumed to be small, the streamfunction in the cylinder-fixed

frame – when evaluated sufficiently far from the cylinder so that the modulated

point remains outside the perimeter – can be expanded about the mean position,

ξ, of the moving evaluation point,

ψ(ξ(t), t) = ψ(ξ, t) + (ξ(t)− ξ) · ∇ψ(ξ, t)) +O(|ξ(t)− ξ|2). (2.28)

However, by (2.26), ξ = x. That is, the mean location of the mapped point in the

cylinder-fixed frame has the same nominal coordinates as the point in the inertial

frame. Thus, I simply have

ψ(ξ(t), t) = ψ(x, t)− ϵ sin t
∂

∂x
ψ(x, t) +O(ϵ3). (2.29)

(The leading order of the omitted terms reflects that these terms are linearly

related to ψ, which itself has leading order ϵ.) Thus, the relationship between

streamfunction in the two frames – evaluated at the same nominal (fixed) location

in each frame – can be written as

ψ̃(x, t) = ψ(x, t) + ϵy cos t− ϵ sin t
∂

∂x
ψ(x, t) +O(ϵ3). (2.30)

Introducing the asymptotic expansion for ψ,

ψ̃(x, t) = ϵ (ψ1(x, t) + y cos t) + ϵ2
(
ψ2(x, t)− sin t

∂

∂x
ψ1(x, t)

)
+O(ϵ3). (2.31)
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Figure 2.5: Instantaneous contour of (a) streamline (b) vorticity for First-order

solution at tΩ = π/4 in a inertial reference frame

Thus, in order to compute the streamfunction in the inertial frame, the first-

order streamfunction obtained by Holtsmark et al. [30] is modified by a term

removing the velocity at infinity, and the second-order streamfunction is effectively

corrected by the leading-order effect of the modulated field sampled by the moving

evaluation point. The resulting streamfunction and velocity field for first-order

solution is

Ψ
(1)
1 (r) = −C

r
, (2.32)

Ψ
(2)
1 (r) =

2H
(1)
1 (γr)

γH
(1)
0 (γ)

= r

[
H

(1)
0 (γr)

H
(1)
0 (γ)

+
H

(1)
2 (γr)

H
(1)
0 (γ)

]
, (2.33)

and

Ur,1(r) = −C

r2
+
H

(1)
0 (γr)

H
(1)
0 (γ)

+
H

(1)
2 (γr)

H
(1)
0 (γ)

, (2.34)

(2.35)

Uθ,1(r) = −C

r2
− H

(1)
0 (γr)

H
(1)
0 (γ)

+
H

(1)
2 (γr)

H
(1)
0 (γ)

. (2.36)

While the first-order vorticity field in figure 2.5(b) is similar to the one without

inertial reference frame modification in figure 2.2(b) first-order streamline in in-
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Figure 2.6: Contour of (a) streamline (b) vorticity for second-order steady so-

lution and instantaneous contour of (c) streamline (d) vorticity for second-order

oscillatory solution at tΩ = π/4 in inertial reference frame

ertial reference frame as shown in figure 2.5(a) is different from the one in figure

2.2(a) in that the velocity at infinity is removed.

The second-order reference frame correction in (2.31) can be expressed in a

complex form similar to the expressions for ψ1 and ψ2. We can show, using the

decomposition (2.10) and rotating the x-derivative to polar coordinates, that the

correction is

− sin t
∂ψ1

∂x
= −Re

[
i

4

(
Ψ1

r
− dΨ1

dr

)(
1− e−i2t

)]
sin 2θ. (2.37)

This correction has the same azimuthal dependence as the second-order stream-
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function (2.21), and contributes both a mean and an oscillatory part (at twice

the forcing frequency). In other words, the corrected form of the second-order

streamfunction in the inertial reference frame can be obtained by making the

replacements

Ψs
2 → Ψs

2 −
i

4
(Ur,1 + Uθ,1) , Ψ2 → Ψ2 +

i

4
(Ur,1 + Uθ,1) . (2.38)

The second-order velocity components are correspondingly corrected. Figure 2.6

represent second-order oscillatory solutions in inertial reference frame for (a)

steady streamline, (b) steady vorcity, (c) oscillatory streamline and (d) oscilla-

tory vorticity at tΩ = π/4.

2.3 Lagrangian and Eulerian System

The steady portion of the streamfunction solved for in the previous section rep-

resents the mean Eulerian streamlines of the flow, as depicted in Figure 2.3(a).

Fluid particles do not follow these streamlines in the mean, however. The velocity

U of a fluid particle can be expressed in terms of the fluid velocity as

U(t) = u(x0 +

∫ t

0

U dτ, t) (2.39)

where x0 is the location of the fluid particle at t = 0. Over one cycle, the excursion

of the fluid particle from x0 is small, and it is therefore possible to expand about

this point:

U(t) ≈ u(x0, t) +

∫ t

0

U dτ · ∇u(x0, t) (2.40)

Then, we can one again write the asymptotic expansions in ϵ for the fluid velocities,

u = ϵu1 + ϵ2u2, (2.41)

U = ϵU 1 + ϵ2U 2, (2.42)
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and substitute them into equation (2.40) and order in powers of ϵ. As a result,

we obtain

U 1 = u1 (2.43)

U 2 = u2 +

∫ t

0

u1 dτ · ∇u1 (2.44)

We define the temporal mean, (·), in this work over one period of oscillation as

f(t) =
1

T

∫ t+T

t

f(τ) dτ. (2.45)

Note that u1, and thus U 1, has zero mean. However, the mean of (2.44) is

U 2 = u2 +

∫ t

0

u1 dτ · ∇u1. (2.46)

Thus, the mean second-order motion of the fluid particle (that is, the leading-

order mean motion) requires a correction: the Stokes drift. One can show, using

the incompressibility of u1 and the relation g
∫ t
f dτ = −f

∫ t
g dτ for periodic

functions f and g, that this correction can be written as∫ t

0

u1 dτ · ∇u1 =
1

2
∇×

(
u1 ×

∫ t

0

u1 dτ

)
. (2.47)

Thus, the correction to streamfunction is readily available, and one can define

the Lagrangian streamfunction – which defines the mean integral curves of fluid

particles – as

ψL = ψs
2 +

1

2

(
u1 ×

∫ t

0

u1 dτ

)
· ez. (2.48)

This streamfunction has the same θ dependence as ψs
2. After the reference

frame transformation in Section 2.2 is made to the first and second order velocities,

the radial dependence of the Lagrangian stream function can be expressed as

ΨL(r) = Ψs
2(r)+

1

2
Im

[
−C

r2
+
H

(1)
2 (γr)

H
(1)
0 (γ)

]
+
1

2
Im

[(
C

r2
− H

(1)
2 (γr)

H
(1)
0 (γ)

)(
H

(1)
0 (γr)

H
(1)
0 (γ)

)∗]
.

(2.49)

The third term of equation (2.49) represents the Stokes drift, the difference be-

tween mean Eulerian streamlines and Lagrangian (fluid particle) streaming. The

24



(a)

x/R

y/
R

0 1 2 3 4
0

1

2

3

4

(b)

x/R

y/
R

0 1 2 3 4
0

1

2

3

4

Figure 2.7: (a) Mean Eulerian streamlines and (b) mean Lagrangian streamline

for Re = 40.

Lagrangian stream function is exhibited in Figure 2.7(b), which reveals the fluid

particle’s trajectory.
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CHAPTER 3

Methodology

To manipulate a inertial particle the viscous streaming flow is first need to ob-

tained and then using this flow field the motion of inertial particle is considered by

integrating Maxey-Riely equation (MR equation) with Saffman lift force and wall

effect. In chap 2, the streaming flow is analytically obtained for single cylinder

in inertial reference frame. However it is mathematically difficult to solve flow

field generated by multiple oscillating cylinder with analytical approach and this

mathematical difficulty increases as the number of cylinders increases. Therefore

it is natural and proper choice to seek a computational method to obtain a flow

field created by multiple oscillating cylinders in various arrangement.

Viscous vortex particle method (VVPM) is a grid-free method which solves

a Lagrangian form of Navier-Stokes equations using a vorticity-carrying parti-

cle as a computational elements. The crucial feature that sets the VVPM apart

from a traditional grid-based method are that vorticity particles are convected

with the flow and are only present where vorticity is nonzero. For instance, the

vorticity is generated at the boundary and remains within the flow adjacent to

the solid boundary. Thus the vortex method gains a natural efficiency. There

are another significant features that give this vortex method a distinct advantage

for streaming problems over traditional grid-based method. First, the velocity of

any point including computational element in the flow is ‘induced’ from vortex

particles through the Bio-Savart integral. For this reason, there is no need for

artificial boundary conditions that is arisen when an infinite region is represented
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with a grid. Second, the outer streaming motion can be largely ignored in simu-

lation since the outer region is nearly vorticity-free [69]. Rather, the simulation

focuses on the thin Stokes layer surrounding each body and the streaming motion

is then computed during post-processing, which results in a much cheaper decou-

pled simulation. Third, no additional challenges such as gird re-generation are

presented by multiple bodies that are moving and deforming since the vorticity

particle moves with bodies. Last, Because the efficiency of velocity computation

from vorticity particles does not rely on the distance between particles, the flow

for two widely-separated bodies is computed as efficient as two nearby bodies. In

fact, with the help of an acceleration technique such as fast multipole method,

distant bodies are simulated faster than close probes because their mutual inter-

action is weaker. Grid-based methods, in contrast, need a much larger grid when

bodies are located farther apart. Therefore, the VVPM will be adapted in this

study due to its accuracy as well as its efficiency.

Although VVPM has a noticeable advantage for streaming problems VVPM

has also a intrinsic limitation that is unable to keep low intensity level of vortic-

ity particles due to computational efficiency, i.e, it needs to cut low intensity of

vorticity particles in order to enhance computational efficiency. In VVPM, vortic-

ities created on the surface of oscillating cylinder inside Stokes layer are supposed

to spread out due to viscous diffusion and this vorticity diffusion should cover

the other cylinders and even further region to correctly capture the outer region.

However it is not computationally efficient and feasible to keep the low intensity

of vorticity particles and thus some of them below certain strength need to be

throw out. However this may cause a problem to artificially cut the low strength

of vorticity particles and keep vorticity from diffusing outward although vorticities

created on the surface of oscillating cylinder inside Stokes layer and are supposed

to diffuse outward and naturally consist the outer region flow outside the Stokes

layer. This forced vorticity blocking ultimately affect the overall streaming field
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and leads to capture physically incorrect streaming of outer region.

As mentioned in chap 1, schlichting revealed by a matched asymptotic analysis

that the streaming in outer region is dominated by Stokes flow. The governing

equation of Stokes flow is a Laplace equation which can be readily solved by uti-

lizing numerical method such as Boundary Element Method (BEM). BEM is a

numerical method for solving boundary value or initial value problem formulated

by boundary integral equation with fundamental solution to the problem. It dis-

cretizes the boundary into a collection of straight lines (2D problem) or planar

segments (3D problem) and solves the system of linear equations to obtain the

distributed singularities on the boundary. Using this singular values on the bound-

ary it can generate approximate values of the required interior or exterior point.

This method has a superior advantage of fast convergence, accurate estimation in

infinite domain and efficient modeling due to dimension reduction in formulation.

Therefore, it may also be a natural and proper choice for multiple oscillating

cylinder to adapt BEM to simulate streaming flow in outer region and VVPM

to compute streaming flow in inner region in which moderate number of vorticity

particle can correctly captures the streaming flow. After the streaming flow field is

obtained for single cylinder by analytic approach by Holtsmark et al. [30] and for

multiple cylinder by VVPM or BEM, using this flow field, the motion of inertial

particle is considered by integrating MR equation assuming the inertial particle

is a small rigid sphere particle and does not interact with surrounding fluid due

to its finite and small size.

3.1 Viscous Vortex Particle Method (VVPM)

A viscous vortex particle method is a high-fidelity Navier-Stokes computational

method that captures the fluid motion with vorticity-carrying computational par-

ticles. The Lagrangian form of Navier-Stokes equations are solved in fraction step
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procedure. In the first-half time step, the vorticity particles exchange vorticity

strength to explain particle convection and stretching and viscous diffusion as

in unbounded flow. In the next-half time step, the vortex sheet is computed to

cancel out the spurious slip resulting from the first-half step and is diffused into

the neighbor flow so that the no-slip boundary condition is satisfied. In order to

maintain spatial regularity which is crucial for accuracy and stability, the vortic-

ity particles are redistributed through symmetric interpolation kernel every few

steps.

The vortex particle method has been used and developed for last few decades

for its computational advantage over the classic grid base method. Since this

method solves the Lagrangian form of Navier-Stokes equation using vorticity-

bearing particle as a computational element, it does not introduce aliasing errors

which is a problematic issue in grid-based method. As a grid free method, vortex

method has a lot of freedom in choosing body motion and body deformation. The

vortex method also has a great computational efficiency over grid-based method

when solving the multibody problem since the vorticity existing regions are only

considered for computation regardless of their distance.

In the last few decades, researchers have developed rigid and thorough math-

ematical background for understanding the accuracy and stability of the method.

The first historical numerical simulation with vortex method dates back to the

1930s by Rosehead [70, 71]. Since then, the vortex particle method have been de-

veloped significantly and accomplished notable achievements. Chorin designed the

random-walk method by creating new vorticity particles to simulate the viscous

effect [15]. Leonard [36, 37] and Rehbach [67] developed the three-dimensional

computation of vortex method. Koumoutsakos et al. [34] developed scheme to en-

force the no-slip boundary condition. A fast algorithm were established to enhance

the computational speed [12, 26]. The Particle Strength Exchange (PSE) scheme

was developed to accurately treat the viscous term [19]. The vortex method was
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even extended to compressible flows by Eldredge et al. [23].

3.1.1 Basic Equations

The evolution of vorticity field for three-dimensional, incompressible, viscous flow

is described by vorticity-velocity form of the Navier-Stokes equation

Dw

Dt
= w · ∇u+ ν∇2w (3.1)

The term in left hand side is rate of change of vorticity w, the first term in right

hand side is vortex stretching and the last term is viscous diffusion term. ν denotes

kinematic viscosity and u denotes velocity field. Since this equation is expressed in

Lagrangian frame, this provide grid adaptivity and is free of numerical dissipation.

For two-dimensional flow, since vorticity field is orthogonal to velocity field the

stretching term disappear. As a result,the governing equation is simplified to

convection-diffusion equation

Dw

Dt
= ν∇2w (3.2)

3.1.2 Vortex Method

Vortex methods simulate flow by solving a Lagrangian form of Navier-Stokes equa-

tion and using vorticity-carrying particles as computational elements. The La-

grangian form of Navier-Stokes equation is given below

dwp

dt
= ν∇2w (xp)

dxp

dt
= u (xp) (3.3)

xp and wp denotes the location and vorticity, respectively, carried by a fluid

particle and particle velocity is up. The velocity can be expressed as

u = ∇× ψ +U∞ (3.4)
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with the free stream U∞ and stream function ψ. By applying curl of (3.4), we

obtain the poisson equation

∇2ψ = −w (3.5)

By solving the poisson equation, velocity field u is recovered from (3.4). As a

result, after solving these equations with initial and boundary conditions, flow

field quantities can be obtained.

In vortex methods, vorticity particles are real fluid particles carrying vorticity

contrast to Eulerian methods which use fixed grid point to compute flow field

quantities. There are two ways to construct vorticity-carrying particle field. The

first method is to assume singular vortex particles and the second method is regu-

larized vortex particles. In this study, the regularized vortex particle is represented

as a set of N Lagrangian vector-valued particles

w(x, t) =
N∑
p

Spwpζσ(x− xp) (3.6)

Sp, wp, xp represent the area, vorticity strength and position of particle p respec-

tively. ζσ denotes the regularization function which is usually taken as radially

symmetric Gaussian function and σ is a smoothing radius or cutoff length or core

size.

ζσ(x) =
1

σ2
ζ(
|x|
σ

) (3.7)

where,

ζ(ρ) =
1

2π
exp

(
−ρ

2

2

)
(3.8)

It is important to choose appropriate smoothing radius value so that the vortex

particle core touch its very next particle’s core and to choose appropriate regular-

ization functions, which guarantee good representation of vorticity field [87]. In

this study, the smoothing radius is chosen as a particle redistribution grid size.

It is also noted that the N Lagrangian particle representation of vorticity field

(3.6) is not generally divergence free and also the stream function although the
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divergence of vorticity is zero by a vector identity ∇·w = ∇·∇×u. This can lead

to vorticity intensification mechanism that is associated with a rapid stretching

of Lagrangian particle, which make long-time computation difficult. However,

maintaining the regularity of the particle distribution (in 3.1.6) can relieve this

non-divergence problem [17].

3.1.3 Particle Convection and Stretching

The particle velocity or any velocity of specific point in flow field can be calculated

from Biot-Savart integral. By defining G (ρ) such that

∇2G (ρ) = −ζ (ρ) (3.9)

one obtains

ψ (x, t) =
∑
p

G (x− xp)wpsp (3.10)

Then, the velocity field is obtained as

u (x, t) = ∇× ψ (x, t)

=
∑
p

∇G (x− xp)×wpSp

=
∑
p

q (x− xp)

|x− xp|2
(x− xp)×wpSp (3.11)

where q (ρ) =
∫ ρ

0
ζ (s) sds. It is important to note that by computing the velocity

from (3.11), its correct value at infinity is automatically satisfied.

The vortex method employs N Lagrangian particle, the computation cost of

velocity is approximately O(N2), where N is a number of particles in computa-

tion, which is very expensive in three-dimensional problem. Several researchers

proposed Fast Multipole Method (FMM) which utilize clustering of particles and

use expansions of the potentials around the cluster centers to compute their far-

field influence onto other particles. A tree code is used to define a hierarchy of

particle clusters so that the computational cost reduce to O(N) [26].
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The noticeable difference between three-dimensional and two-dimensional sim-

ulation is the stretching term in governing equation. This term fundamentally

affects the dynamics of flow by transferring the energy from large scale to small

scale and is responsible for vorticity intensification which make long time simula-

tion difficult [34].

3.1.4 Particle Strength Exchange

The computation of viscous diffusion term is based on the technique of Parti-

cle Strength Exchange (PSE) [19]. In this algorithm, the Laplacian operator is

approximated by an integral operator,

∇2w (x) ≈ 2

σ2

∫
ησ (x− y) (w (y)−w (x)) dy (3.12)

For Gaussian smoothing, ησ = ζσ. The integral operator in (3.12) is discretized

using particles. Therefore, the resulting discretized viscous diffusion term is

dwi

dt

∣∣∣∣∣
PSE

=
2ν

σ2

∑
j∈Pi

(Siwj − Sjwi) ησ (xi − xj) (3.13)

Si is a area of particle i. Pi denotes the subset of particles close to particle i.

Therefore, the strength exchange between particles are only done for the neigh-

borhood particles. In this study, Pi consists of particles less than 5σ from the

particle xi. With this PSE scheme, the global circulation is conserved.

3.1.5 Vortex Sheet and Diffusion

The algorithms described above can simulate for the unbounded viscous flow.

In order to account for the existence of impenetrable solid surface for bounded

viscous flow, we need more treatment. In vorticity-based method, such task is not

straightforward since no-slip boundary condition expressed in terms of velocity at

wall do not involve vorticity term explicitly. Physically the no-slip condition forces

the fluid element to adhere to the wall surface, which may generate a net torque
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to the fluid element adjacent to the wall that may convey the rotation motion to

the flow. Therefore imposing a no-slip boundary condition at wall boundary is a

important vorticity creation mechanism in flow.

Most of techniques to account for the no-slip conditions in vortex methods are

based on Lighthill’s vorticity creation mechanism who introduce the fractional

step algorithm in which successively handle the inviscid and the viscous processes

[41]. The first successful attempt to introduce no-slip boundary condition in

vortex method was made by Chorin [15]. Cottet presented the algorithm which

is extension to general geometries of Chorin’s algorithm [16]. In this study, the

algorithm proposed by Koumoutsakos et al. [34] was used to enforce the no-slip

boundary condition.

In the first half-step, the vorticity particle move and exchange their particle

strength according to unbounded flow algorithm, which produces spurious slip

velocity which represents the difference between the tangential component of the

Biot-Savart velocity evaluated on the body side of each panel sheet and the local

body velocity on the same panel sheet. In the next half-step, the vortex sheet, ∆γ,

is created at wall to cancel the spurious slip velocity with a strength distribution

that is determined by kinematic boundary condition in inviscid flow, i.e, no-flow

through condition. By diffusing the vortex sheet into the flow near the solid body,

the spurious slip is canceled so that the no-slip boundary condition is enforced.

Zhang and Eldredge presented the formulation of vortex sheet strength identi-

fication for deforming bodies [32]. This work is different from previous researches

[22, 34, 61] in that they used volume integral over the interior of the body. The

body surface is discretized by M triangular panels whose strength is uniform over

the panel. The vortex sheet, ∆γ, is calculated from boundary integral equation
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as in vortex panel method of aerodynamics.

1

2
∆γ (xs)− n×

∫
Sb

∇G
(
x(s),x

′)×∆γ (x′) dS(x′) (3.14)

=

(
1

2
ub (xs)− us (xs)−

∫
Vf

∇G
(
x(s),x

′)×w (x′) dV (x′)

)
× n

where,

us (x) (3.15)

=

∫
Sb

[
∇G (x,x′)× (n′ × ub (x

′))−∇G (x,x′) (n′ · ub (x
′))
]
dS(x)

ub denotes the local velocity of the deforming surface. The right hand side of (3.14)

represent the spurious slip originated from the first half-step, the unbounded flow

solution. It was shown that the total vorticity in the infinite unlimited space

occupied by fluid and solid body is always zero [5, 88].∫
Vf

wf
n+1 dV +

∫
Vb

wb
n+1 dV = 0 (3.16)

wf , wb denote the vorticity in the fluid region Vf and body region Vb respectively.

By applying the relation
∫
Vb
wb dV =

∫
Sb
n× ub dS and considering the vorticity

leakage, wf
leak, from fluid into body region during particle redistribution, we

obtain following constraint for linear system of vortex sheet.∫
Sb

∆γ dS = −
∫
Vb

n× ub
n+1 dV +

∫
Vb

n× ub
n dV +

∫
Vf

wf
leak dV (3.17)

The vortex sheet is then obtained by iteratively solving (3.14) with a constraint

(3.17) in a form of Lagrangian Multiplier through a Generalized Minimal Residual

Algorithm (GMRES) that has the property of minimizing the norm of residual

vector at every step [72].

By diffusing the vortex sheet, the spurious slip velocity is removed so that the

no-slip boundary condition is enforced. The strength of vortex sheet to be fluxed

into neighboring flow is diffused with Neumann boundary condition [34].

−ν ∂w
∂n

=
∆γ

∆t
(3.18)
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with n is pointing toward the fluid and ∆t is the vortex sheet emitting time

increment equal to time increment for advancing time step. In effect, the vortex

sheet ∆γ must be distributed to neighbor particles by discretizing the Green’s

integral for the inhomogeneous Neumann problem corresponding the diffusion

equation (3.18). Leonard et al. [38], Ploumhans and Winckelmans [61] have

proposed a more accurate panel diffusion scheme. Ploumhans and Winckelmans

have extended this scheme to three-dimensional [63].

The uniform strength ∆γ of a straight panel of size b is diffused into its neigh-

bor particles. The amount of “vorticity × area” received by particle located at

(xi, yi) from panel is given by

∆αi =

∫ ∆t

0

dαi

dt
dt (3.19)

where,
dαi

dt
=

∫ xi+hi/2

xi−hi/2

∫ yi+hi/2

yi−hi/2

dwi

dt
dx dy (3.20)

(3.20) is integrated exactly, giving

dαi

dt
=

∆γ

∆t

(
[erfc(u)]

(xi−hi/2)/
√
4νt

(xi+hi/2)/
√
4νt

)
(3.21)

×

(
√
4νt

1

2
[ierfc(u)]

(yi−b/2−hi/2)/
√
4νt

(yi−b/2+hi/2)/
√
4νt

− [ierfc(u)]
(yi+b/2−hi/2)/

√
4νt

(yi+b/2+hi/2)/
√
4νt

)

This scheme is conservative if particles are on a regular lattice aligned with the

panel. However the spatial distribution of particles is not well aligned with panel.

In order to make the scheme conservative the correction is added [62].

3.1.6 Particle Redistribution

The essential feature of vortex methods is a“good communication” between par-

ticles which stems from overlapping of particle core. If particles do not overlap

with their neighbor particles, they are not able to diffuse their vorticity. In the

case of excessive overlapping, the local Reynolds number diminishes, which can
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lead to numerical instabilities [17]. The overlapping of particle core is a required

criterion for the convergence of the vortex method [6, 28]. However, the flow map

often contain local stagnation points that will cause the particles to cluster or

others to spread, which prevent the particles from good communicating and thus

eventually degrade the long-term accuracy and stability.

In order to maintain regularity of particle distribution, we reinitialize the par-

ticle strength onto a grid every few time steps by interpolating the strength of

old particles onto a Cartesian grid and regenerating new particles from the grid

whose strength is greater than some tolerance. The circulation leakage into the

solid body was accounted in vortex sheet identification and diffusion so that the

Kelvin’s circulation theorem remains enforce. With this remeshing procedure, the

distorted particle distribution is corrected so that the uniform particle distribution

is maintained.

In this study the interpolation is carried out by M ′
4 interpolation kernel devel-

oped by Monaghan [52]. Specifically, the ith old vortex with circulation αi and

location (xi, yi) contributes circulation α̃i to new mesh point (x̃i, ỹi) according to

α̃i = αiΛ(
x̃j − xi
hi

)Λ(
ỹj − yi
hi

), (3.22)

and

Λ(u) =M
′

4(u) =


0, if | u |> 2;
1

2
(2− | u |)2(1− | u |), if 1 ≤| u |≤ 2;

1− 5u2

2
+

3 | u |3

2
, if 0 ≤| u |< 1.

(3.23)

In above formula, u = (x̃j − xi)/hi, or u = (ỹj − yi)/hi.
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3.2 Boundary Element Method (BEM)

The outer region of streaming flow is governed by Stokes flow, which is governed

by biharmonic equation

∇4ψ = 0 (3.24)

In order to solve the biharmonic equation for the stream function ψ and vorticity

ϕ in a domain Ω surrounded by boundary ∂Ω this biharmonic equation is split

into coupled form [25]

∇2ψ = ϕ (3.25)

∇2ϕ = 0, (3.26)

whre ϕ is the fluid vorticity. The boundary integral form of equation (3.25) and

(3.26) at the general filed point p is readily derived by applying Green’s Theorem

and fundamental solution G [33], giviing

η(p)ψ(p) =

∫
∂Ω

{
ψ(q) log′|p− q| − ψ′ log|p− q|

}
dω(q)

+
1

4

∫
∂Ω

{
ϕ(q)G′(p, q)− ϕ′(q)G(p, q)

}
dω(q), (3.27)

η(p)ϕ(p) =

∫
∂Ω

{
ϕ(q) log′|p, q| − ϕ′(q) log|p− q|

}
dω(q), (3.28)

where p ∈ Ω + ∂Ω, q ∈ ∂Ω and dω(q) denotes the differential increment of ∂Ω at

q. The primes denotes differentiation with respect to the outward normal to ∂Ω

at q. The fundamental solution G is given by

G(p, q) = |p− q|2{log|p− q| − 1} (3.29)

and coefficient η(p) is defined with respect to the position of p

η(p) = 0 if p ̸∈ Ω + ∂Ω

= θ if p ∈ ∂Ω

= 2π if p ∈ Ω (3.30)
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where θ denotes internal angle included between the tangents to ∂Ω on either side

of p if p ∈ ∂Ω [33]. Integral equation (3.27) and (3.28) are numerically approxi-

mated by discretizing the boundary ∂Ω into N smooth straight-line segment ∂Ωj,

j = 1, ..., N with midpoint of segment, qj, j = 1, ..., N . The unknown values of

ψ, ψ′, ϕ and ϕ′ on the boundary ∂Ω is approximated as piecewise constant values

ψj, ψj
′, ϕj and ϕj

′ on each boundary segment ∂Ωj. The resulting discretized ap-

proximation of equation (3.27) and (3.28) at the midpoint p ≡ qi, i = 1, ..., N , of

each segments are given,

ηiψ(qi) =
N∑
j=1

[
ψj

∫
∂Ωj

log′|qi − q| dω(q)− ψj
′
∫
∂Ωj

log|qi − q| dω(q)

+
1

4
ϕj

∫
∂Ωj

G′(qi, q) dω(q)−
1

4
ϕj

′
∫
∂Ωj

G(qi, q) dω(q)

]
, (3.31)

ηiϕ(qi) =
N∑
j=1

[
ϕj

∫
∂Ωj

log′|qi − q| dω(q)− ϕj
′
∫
∂Ωj

log|qi − q| dω(q)
]
,(3.32)

where qi ∈ ∂Ω and q ∈ ∂Ω. Then equation (3.31) and (3.32) are now reduced to

coupled system of linear equations of ψ, ψ′, ϕ and ϕ′ by introducing coefficient

matrix A,B,C and D [33].

Aψ +Bψ′ + Cϕ+Dϕ′ = 0 (3.33)

Aϕ+Bϕ′ = 0, (3.34)

where,

Aij =

∫
q∈∂Ωj

log′|qi − q| dω(q)− ηjδij (3.35)

Bij = −
∫
q∈∂Ωj

log|qi − q| dω(q) (3.36)

Cij =
1

4

∫
q∈∂Ωj

{
|qi − q|2 log|qi − q| − |qi − q|2

}′
dω(q) (3.37)

Dij = −1

4

∫
q∈∂Ωj

{
|qi − q|2 log|qi − q| − |qi − q|2

}
dω(q) (3.38)

In order to solve this system of linear equations (3.31) and (3.32), the coefficient

matrix on each segment ∂Ωj need to be calculated. The evaluation using gaussian
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quadrature could introduce errors, and become computationally expensive when

the evaluation point qi is located near the neighborhood of boundary ∂Ω [33].

Thus I adapted analytical evaluation of coefficient matrix (3.35), (3.36), (3.37)

and (3.38) by Kelmanson [33] presented in appendix A.

Since this problem is biharmonic any two equivalent boundary condition is

needed on boundary segment ∂Ωj. Then using this boundary conditions the cou-

pled system of linear equation (3.33) and (3.34) can readily solved with analytical

solution of coefficient matrix from appendix A by employing direct matrix inver-

sion scheme such as Gaussian elimination with pivoting. Direct matrix inversion

scheme is favored over iterative scheme since the coefficient matrix are dense [33].

At this point boundary values of ψj, ψj
′, ϕj and ϕj

′ on each boundary segment

∂Ωj, j = 1, ..., N , are known. Therefore substituting these values into discreet

version of equation (3.27) and (3.28) can readily produce fluid stream function ψ

and vorticity ϕ at general point p ∈ Ω + ∂Ω

3.3 Validation of VVPM and BEM

It is necessary to validate the viscous streaming fields obtained from either VVPM

or BEM by comparing its velocity with analytical solution obtained from chapter

2. For this comparison, single cylinder undergoing rectilinear sinusoidal oscilla-

tion with amplitude A/R = 0.1 and Reynolds number Re = 40 is considered.

Figure 3.1 (a) is a velocity history of analytical solution and VVPM simula-

tions at (
√
2R,

√
2R) and indicates that VVPM simulation captures accurately

the oscillatory flows. Since streaming flow is steady second order interactions of

primary oscillatory flow it is necessary to average the velocity over one cycle to

obtain second order steady solution. Figure 3.1 (b) denotes that the second order

steady flow of VVPM simulations agrees well with the analytical solution and thus

VVPM simulations captures well the streaming motion. The accuracy of VVPM
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Figure 3.1: Velocity history (a) and time averaged velocity history (b) of VVPM

for A/R = 0.1 and Re = 40 at (
√
2R,

√
2R) during t/T ∈ [0, 20]. Black dashed

line denotes the Holtsmark’s analytical solution. Blue and green indicates the

VVPM simulation for dx = 0.01 and dx = 0.02, respectively.

simulations increases as resolution increases.

In addition to this velocity comparison, it is also necessary to investigate steady

Eulerian streamline to identify the streaming motion. For this validation, single

cylinder undergoing rectilinear sinusoidal oscillation with amplitude A/R = 0.04

and Reynolds number Re = 49 is considered. In VVPM, the circulation of com-

putational element, vorticity times area of computational element, is used for

strength of computational element. Thus this circulation has minimum value

(tolerance) to be kept during computation and some vorticity particles as compu-

tational elements below this tolerance need to be thrown out in order to reduce the
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Figure 3.2: Contour of steady Eulerian streamlines from (a) analytical solution

and VVPM of (b) dx = 0.02, tol = 10−7, ωtol = 2.5 × 10−4, (c) dx = 0.01,

tol = 10−9, ωtol = 1.0× 10−5, (d) dx = 0.01, tol = 10−10, ωtol = 1.0× 10−6

number of computational element and increase the computation efficiency. In this

simulation, the area of computational element is square of grid size of remeshing

step. Therefore different simulation result could be obtained by varying grid size

since it affects the tolerence and thus vorticity field. Several different simulations

for Re = 49 with varying grid size and tolerance from VVPM, which ultimately

affects the minimum vorticity (ωtol), are compared with analytical solution.

In figure 3.2(a), steady Eulerian streamline depicts one of four quadrants with

inner streaming cell circulating clock-wise and non-closed form of outer streaming
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Figure 3.3: Mean vorticity along 45 degree line from matched asymptotic analysis

of Schlichting (black dot) and VVPM of dx = 0.02, tol = 10−7, ωtol = 2.5× 10−4

(blue), dx = 0.01, tol = 10−9, ωtol = 1.0× 10−5 (red) and dx = 0.01, tol = 10−10,

ωtol = 1.0 × 10−6 (cyan). Matched asymptotic analysis and initial portion of

VVPM simulations indicate decaying in order of O(r−2).

region in which flows are directed from positive y-axis to positive x-direction.

The dividing streaming line between inner and outer streaming region, δDC/R, is

2.9404. The rests are numerical simulations from VVPM and denote similar inner

streaming cell but closed form of outer streaming region. As tolerance values are

decreased, the degree of closed form in outer streaming is mitigated and dividing

streaming line, δDC/R, approaches to the one of analytical solution ( δDC/R =

1.6405(b), 2.7719(c), and 2.8850 (d) ). We can deduce that the closed form of

outer streaming is originated by throwing out the vorticities below tolerance at

the periphery and this throwing out caused the equivalent imaginary wall effect

at the vorticity diffusion periphery. Therefore streamlines formed closed loop to

satisfied no flow through condition at this equivalent imaginary wall.
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Figure 3.4: Contour of (a) streamline and (b) vorticity from Boundary Element

Methods

This effect easily identified by investigating mean vorticity values, as depicted

in figure 3.3, along the 45 degree lines from the origin, where vorticity is maximum.

As indicated in chapter 2 matched asymptotic analysis of Schlichting (black dot

line) revealed the mean vorticity decrease slowly in order of O(r−2). Numerical

simulations from VVPM also exhibit similar decaying behaviors except at the

periphery in which weak vorticities are thrown out. This caused vorticities to build

up and make equivalent imaginary wall at this periphery. As tolerance is lowered

or minimum vorticity value is increased by decreasing grid size this imaginary

wall effect is alleviated and dividing streamline position became closed to the

one of analytical solution. However, vorticities below tolerance will be thrown

out eventually and thus have a closed loop form of outer streaming. It is very

expensive and inefficient to keep every level of vorticities to capture the correct

behavior in outer streaming region. We can reduce this computational efforts by

employing BEM to solve Stokes equation with boundary condition obtained by

matching with the inner Stokes layer solution in the asymptotic expansion for

small amplitude.
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Figure 3.5: Mean vorticity along 45 degree line from matched asymptotic analysis

of Schlichting (black dot) and BEM (blue).

Figure 3.4 denote contour of streamline and vorticity from BEM respectively.

Streamline contour exhibit well the outer streaming region but cannot capture

inner streaming cell whose thickness is decreased to zero since the matched inner

Stokes layer solution is applied on boundary. This BEM solution for outer region

exhibits well the predicted vorticity decaying in order of O(r−2) as shown in figure

3.5.

From these validation of VVPM and BEM it is shown that VVPM captures

well the behavior of inner streaming cell except outer streaming region due to the

cut of vorticity below tolerance, and BEM cannot explore the inner streaming

cell. Therefore VVPM and BEM will be used to simulate the inertial particle

transport between oscillating cylinders inside inner streaming cell, and outside

inner streaming cell respectively.
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3.4 Computation of Inertial Particle Trajectory

At this point we obtained streaming flow field for single oscillating cylinder using

analytic approach by Holtsmark et al. [30] and for multiple oscillating cylinder by

either VVPM or BEM. We are primarily interested in this work in computing the

trajectory, Xp(t), of an inertial particle. These trajectories will be computed by

integrating the Maxey–Riley (MR) equation with Saffman lift force [49, 81], which

is based on the assumption of a rigid spherical particle with small slip Reynolds

number, Rep. We are therefore implicitly assuming that the motion of the particle

does not significantly affect the flow generated by the oscillating cylinder. Use of

the Saffman lift force is restricted by the condition of small slip Reynolds number

(Rep ≪ 1) and shear Reynolds number (ReG ≪ 1), as well as Rep ≪ Re
1/2
G . That

these conditions are satisfied in the present simulations can be demonstrated by

examining a typical particle traversing the Stokes layer, where it experiences the

largest slip velocity and shear. For the typical case of this study, particle size,

Reynolds number and oscillation amplitude are a/R = 0.175, Re = 40 and ϵ = 0.2,

respectively. At time t/T = 325.5, when it is closest to the cylinder, |w| = 0.0268

and G = 0.695 and thus Rep = 0.184 ≪ 1, ReG = 0.836 < 1 and Rep ≪ Re
1/2
G .

The Faxén correction terms cannot be ignored in our study, as their contribution

is notable in the regions of significant vorticity, where the particle remains for

most of its trajectory. We ignore the gravity terms, and are therefore left with

dXp

dt
= V p (3.39)

mp
dV p

dt
= −6πρfνa

[
V p(t)− u(Xp(t), t)−

1

6
a2∇2u(Xp(t), t)

]
+ mf

Du

Dt

∣∣∣∣
Xp(t)

−1

2
mf

(
dV p

dt
− Du

Dt

∣∣∣∣
Xp(t)

− d

dt

[
1

10
a2∇2u(Xp(t), t)

])

−6π1/2ν1/2a2ρf

∫ t

−∞

d/dτ
[
V p(τ)− u(Xp(τ), τ)− 1

6
a2∇2u(Xp(τ), τ)

]
√
t− τ

dτ

+4Kρfa
2 (ν |G|)1/2 sgn(G) |u− V p|n, (3.40)
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where

G = |u− V p|−2

[
(ux − Vp,x)

2 ∂ux
∂y

− (uy − Vp,y)
2 ∂uy
∂x

− (ux − Vp,x) (uy − Vp,y)

(
∂ux
∂x

− ∂uy
∂y

)]
(3.41)

and

n = |u− V p|−1 [− (uy − Vp,y)ex + (ux − Vp,x) ey] (3.42)

The symbols mp and mf denote, respectively, the mass of the inertial particle

and the displaced fluid. The vectors V p and u are, respectively, the velocity of

the inertial particle and the fluid velocity. The Saffman constant, K, is 1.615. It

should be noted that G represents the coordinate-independent shear rate – the

n-directed gradient of the component of fluid velocity in the direction of relative

particle motion – as used by Tio et al. [81]. The operators d/dt and D/Dt denote

the time derivatives along their respective sets of characteristics,

du

dt
=
∂u

∂t
+ V p · ∇u,

Du

Dt
=
∂u

∂t
+ u · ∇u. (3.43)

The terms on the right hand side of (3.40) represent, respectively, the viscous

Stokes drag, the fluid acceleration force, the added mass, the Basset history force

and the Saffman lift force. The terms involving the Laplacian of the fluid velocity

are the Faxén corrections, which represent the effect of non-uniform fluid velocity

incident upon the inertial particle.

The Basset history force (sometimes described as the ‘memory term’) repre-

sents the cumulative influence of the diffusion of vorticity from the particle during

its total traveling history. The computation of this term is extremely time consum-

ing and memory intensive, and many studies neglect it for simplicity. However,

it may lead to a physically incorrect result to omit the history term for a non-

neutrally buoyant particle. Studies by Daitche and Tél [18], Candelier, Angilella,

and Souhar [10, 11] and Mordant and Pintona [53] have shown that the history
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term can have a significant effect on the motion of an inertial particle and can-

not generally be neglected. An efficient technique for computing the history force

term was recently proposed by van Hinsberg, ten Thije Boonkkamp, and Clercx

[82]. The integration interval is divided into two sub-intervals. The sub-interval

involving more recent history is computed by trapezoidal integration; in the more

distant sub-interval, the Basset kernel t−1/2 is replaced with an exponential ap-

proximant, and a recursive algorithm is constructed to minimize expense. We

adopt this approach in the present work.

Since the MR equation (3.40) evaluates the terms at the center of the inertial

particle, it makes sense to define the relative velocity, w = V p − u(Xp), so that

the relationship between time derivatives is simply

Du

Dt
=

du

dt
−w · ∇u. (3.44)

Furthermore, we can non-dimensionalize the variables using Ω and R, as for the

flowfield itself in the Appendix. Thus, the dimensionless version of the MR equa-

tion (3.40) can be written as

(
ρp
ρf

+
1

2

)
dw

dt
= −9

2
Re−1

a w + (1− ρp/ρf )
du

dt

∣∣∣∣
Xp(t)

− 3

2
w · ∇u

∣∣∣∣
Xp(t)

−9

2
π−1/2Re−1/2

a

∫ t

−∞

d/dτ
[
w − 1

6
(a/R)2∇2u(Xp(τ), τ)

]
√
t− τ

dτ

+3KRe−1/2
a |G|1/2 sgn(G)|w|n (3.45)

+
3

4
Re−1

a (a/R)2∇2u(Xp(t), t) +
1

20
(a/R)2

d

dt

[
∇2u(Xp(t), t)

]
.

where Rea = Ωa2/ν = Re(a/R)2 is a particle-based Reynolds number. In terms

of the direction, ŵ = w/|w|, of the relative velocity, the direction of Saffman lift

is

n = ŵ × ez (3.46)

and the generalized shear rate is represented compactly as

G = n · ∇u · ŵ. (3.47)
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The inertial particle initially has the same velocity as the surrounding fluid,

so that the initial condition of this integro-differential equation is w(0) = 0. The

Stokes drag and the Basset history act as penalty terms, tending to drive w to

zero when the particle’s velocity deviates from that of the fluid; these terms,

along with the Saffman lift, are only active when w is non-zero. The unsteady

term (the second term on the right-hand side) and Faxén corrections are the

only inhomogeneous terms in this equation, and we note that the first of these is

absent for neutrally buoyant particles. The third term on the right-hand side, due

to the differences in the advection between a fluid and inertial particle, is only

significant when the particle traverses regions of steep change in fluid velocity.

The equation is integrated with a 4th-order Adams-Bashforth method with time

step size 0.02. At each time step, the fluid velocity, its gradient, and its time

derivative are computed from the Holtsmark solution (with a correction for change

of reference frame, described above) at the instantaneous location of the particle.

Convergence of the time marching was tested by doubling and halving the step

size, and verifying that the results were insensitive.

The relevant dimensionless parameters of this problem, in addition to the

oscillatory Reynolds number Re and amplitude ratio ϵ, are the density ratio ρp/ρf

and particle size ratio a/R. In this work, we will keep ϵ fixed between 0.1 and

0.2; this is a compromise between a sufficiently small amplitude for the asymptotic

solution to hold and practical integration times for computing particle trajectories.

Finally, we note that we do not add an additional force to account for the

hydrodynamic influence of the rigid cylinder on the particle here. That is, the

effect of the cylinder on the particle’s motion is felt solely through the velocity

field generated by the oscillating cylinder. However, the hydrodynamic influence

such as lubrication force from the cylinder need to be considered when inertial

particles are transported from one cylinder to other, and thus they follow the

outmost streaming lines and approach close enough toward the other cylinder.
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Then influence from the cylinder cannot be ignored anymore. The influence force

will be treated in chapter 5.

50



CHAPTER 4

Inertial Particle Trapping

In this chapter, the inertial particle motion in streaming flow generated by sin-

gle oscillating cylinder is considered. Relevant streaming flow information wiil be

used from analytical solution in chapter 2. Particle size, oscillation amplitude and

Reynolds nubmer are set as a/R = 0.175, Re = 40 and ϵ = 0.2, respectively for

the typical parameters of this inertial particle trapping of single oscillating cylin-

der. In this chapter, general trapping observation will be discussed. Then I will

discuss what mechanism makes the inertial particle trapped inside streaming cell.

Trapping speed depending on physical parameter such as particle size, density and

flow Reynolds number and inner and outer streaming behavior will be followed.

4.1 Inertial Particle Trapping

The trajectory, Xp(t), of an inertial particle is computed by integrating equation

(3.45) for the inertial particle velocity, V p, based on the parameters of relative

particle density ρp/ρf , relative size a/R and Reynolds number Re. Figure 4.1

depicts a visual comparison of the continuous inertial particle trajectory and the

trajectory sampled once per oscillation cycle, in this case for a neutrally buoyant

particle. The particle oscillates at the forcing frequency with an amplitude of

approximately 0.03R. As expected due to the small streaming velocity of order

ϵ2, the overall migration speed is very slow.

Figure 4.2 depicts representative trajectories for a heavy, a neutrally buoyant,
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Figure 4.1: Inertial particle trajectory (in red) based on trajectory sampled once

per cycle (blue dots) for Re = 40, a/R = 0.175 and ρp/ρf = 1.

and a light particle at Re = 40 for a particle of radius a = 0.175R. Each trajectory

is sampled only once per cycle for clarity purposes, and thus is actually a set of

discrete points representing the Poincaré section of the particle motion. Open blue

circles denote the initial location, in this case at (x, y) = (2R, 2R), and the mean

Lagrangian streamlines are depicted for reference. Note that, at this Reynolds

number, the inner streaming cell has size δDC ≈ 4.6R.

The plots in Figure 4.2 indicate that particles undergo an inward spiral toward

the center of the streaming cell, regardless of their density relative to the fluid.

Figure 4.2(d) shows that the trajectories of an inertial particle and fluid particle

starting from the same initial location deviate over one oscillation cycle, with the

inertial particle ultimately closer to the center of the streaming cell at the end
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Figure 4.2: Inertial particles trajectories (in blue), sampled once per cycle,

for Re = 40, a/R = 0.175. Initial locations depicted with blue circles. (a)

ρp/ρf = 1.05, (b) 1, (c) 0.95. In (b), red squares denote the instants t/T = 290

and 350. Lagrangian streamlines are depicted in light gray. (d) Inertial (red) and

fluid (green) particle trajectories over one oscillation cycle, t/T ∈ [317, 318] for

ρp/ρf = 1. Black arrows depict the total hydrodynamic force vectors in equation

(3.45). Blue dots denote inertial particle trajectory sampled once per cycle.
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Figure 4.3: Comparison of trapping position from current results (red squares)

and experiments (blue circles) of Lutz et al. [45]. Dashed and solid lines de-

pict, respectively, inner streaming cell size δDC/R and inner streaming cell center

location.

of the cycle. The hydrodynamic force vectors shown here are computed from

the right-hand side of (3.45), and thus are proportional to the rate of change of

the relative velocity between the inertial and fluid particles. They are generally

directed away from the cylinder, consistent with the deviation of the trajectories.

This spiral trajectory is qualitatively similar to the trajectory of a microsphere

in a micro-channel reported in the experiments of Lutz et al. [45]. Figure 4.3 de-

picts a comparison of the final trapping position predicted in the present study

with the experimental results of Lutz et al. [45], at different Reynolds numbers.

The size δDC/R of the inner streaming cell is also shown, and exhibits the depen-
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dence on Reynolds number reported above, increasing without bound as Re → 37.

The position of trapping predicted by the model agrees well with the experiments.

4.2 Inertial particle Trapping Mechanism

In order to determine whether the motion of an inertial particle shows a tendency

to spiral inward or outward, it is helpful to consider the instantaneous cross prod-

uct of the local tangents to the mean inertial and fluid particle trajectories, which

we denote as α. If we assume that at some recent instant the inertial particle

moved at the same velocity as the fluid, then the tangent of the mean inertial

particle trajectory is approximately V p/|U 0|, where U 0 is a constant, represen-

tative of the mean fluid particle velocity, U , during a certain interval. Then, we

can define

α(t)ez = |U 0|−2
(
V p(t)×U (t)

)
. (4.1)

By the definition (2.45) of temporal mean, it is easy to verify that these mean ve-

locities, V p and U , represent Poincaré maps of inertial and fluid particle position,

respectively, from one period to the next, e.g. Xp(t+T ) =Xp(t)+TV p(t). Since

all particles undergo clockwise orbits in the streaming cell in the first quadrant,

then α > 0 implies a tendency of the inertial particle to spiral inward, α < 0 a

tendency to spiral outward, and α = 0 a tendency to stay on the mean Lagrangian

streamline. Thus, the particle’s motion at a given instant can be explained by

examining this quantity, as Figure 4.4 illustrates. It is instructive to consider this

expression at some instant t0 such that the inertial and fluid particles have been

constrained to follow the same trajectory for t ≤ t0, so α(t0) = 0, and dα/dt

expresses the tendency for these trajectories to deviate in the next instant.

First, it is straightforward to show that the temporal mean and derivative
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Figure 4.4: Illustration of the tendency of a inertial particle to deviate from

a Lagrangian streamline. Note that α < 0 in the upper right portion of the

streamline, and α > 0 in the lower left portion.

operations commute with one another. Thus, at t0, we can write

dα

dt
ez = |U 0|−2

(
dV p

dt
×U + V p ×

dU

dt

)
. (4.2)

Using a Taylor expansion about a reference position similar to that used in the

Appendix for the mean fluid particle velocity, it can be shown that the mean of

the relative velocity is

w(t) = V p(t)−U(t)−wsd, (4.3)

where the final term, wsd =
∫ t
w dτ · ∇u, represents the difference in Stokes drift

between the inertial and fluid particles. This term is smaller than the Stokes drift

itself, and is therefore not expected to serve a role in determining the inward or

outward motion of the inertial particle, so we neglect it in this discussion. Thus,
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we can equally well define dα/dt at t0 as

dα

dt
ez = |U 0|−2

(
dw

dt
×U +w × dU

dt

)
. (4.4)

In the first term, we can replace dw/dt with the MR equation (3.45), and we

note that the temporal mean also commutes with the convolution operator in the

Basset term. Thus, we end up with

dα

dt
ez = |U 0|−2

[
Cu

dU

dt
×U − Csw ×U − Ccw · ∇U ×U

−Cb

∫ t

−∞

d/dτ
[
w − 1

6
(a/R)2∇2U(Xp(τ), τ)

]
√
t− τ

dτ ×U

+Clsgn(G)|G|1/2|w|n×U(
Cf1∇2U + Cf2

d

dt
∇2U

)
×U +w × dU

dt

]
. (4.5)

where

Cu =
1− ρp/ρf
ρp/ρf + 1/2

, Cs =
(9/2)Re−1

a

ρp/ρf + 1/2
, Cc =

3/2

ρp/ρf + 1/2
,

Cb =
(9/2)π−1/2Re−1/2

a

ρp/ρf + 1/2
, Cl =

3KRe−1/2
a

ρp/ρf + 1/2
,

Cf1 =
(3/4)Re−1

a (a/R)2

ρp/ρf + 1/2
, Cf2 =

(1/20)(a/R)2

ρp/ρf + 1/2
. (4.6)

Here, we examine the quantities α and dα/dt during the interval between t/T =

290 and 350 (between two red squares in Figure 4.2(b)), when the inertial particle

experiences the greatest tendency toward the center of the streaming cell. As

Figure 4.5(a) shows, the value of α remains essentially zero, except for a short

interval during which the particle is nearest to the cylinder. During this short

interval, α has a positive peak between t/T = 310 and 320, followed by a slightly

negative value. This behavior is evident in the particle trajectory in Figure 4.2(b).

At the start of the interval, indicated by the first red square, the inertial particle

essentially follows the fluid particle trajectory until it reaches the region in which

the streamlines of the cell change curvature, from convex (bowed outward) to

concave (bowed inward). Here, the inertial particle moves significantly toward
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the center of the streaming cell, consistent with the positive peak in α. When

the particle has traversed this region of concave streamlines, it undergoes a slight

outward motion, associated with a slightly negative value of α. Therefore, the

inertial particle experiences the most inward motion toward the center of the

streaming cell in the portion of trajectory nearest to the cylinder, while it stays

on the fluid streamline on the portion farthest from the cylinder. This is evident

in Figure 4.6, which depicts the mean inertial particle trajectory superposed on

the mean fluid trajectories, along with the total force on the particle (that is,

the right-hand side of equation (3.45) sampled at various instants). This force is

largest, and consistently directed toward the center of the streaming cell, when the

particle is nearest the cylinder, but its magnitude decreases dramatically when the

particle is furthest from the cylinder. With each successive orbit, this process is

repeated, until finally the particle becomes trapped at the center of the streaming

cell.

Each contribution to dα/dt from equation (4.5) is depicted in Figure 4.5(b).

The Faxén terms are the earliest to contribute to positive α, and are countered by

the Stokes drag, the convective term, and the Basset history term, which all tend

to resist this deviation from the fluid particle trajectory. The Saffman lift initiates

its role somewhat later, but ultimately contributes the most positive dα/dt, and is

therefore most responsible for the motion toward the center of the cell. Note that

all terms are significant, and none – including the Basset term – can be reliably

ignored in the analysis.

The Saffman lift clearly plays an important role in the trapping of inertial

particles, so we examine it further. Figure 4.7 graphically depicts the instanta-

neous relationships between local fluid velocity gradient, relative velocity w, and

lift component. Two different instants within a single oscillation cycle are shown.

Generically, the Saffman lift is oriented in the gradient direction of increasing ve-

locity when the relative velocity is opposite that of the fluid velocity (i.e. when
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Figure 4.5: (a) History of α during the cycle t/T ∈ [290, 350] for Re = 40,

a/R = 0.175, ρp/ρf = 1. (b) Contributions to dα/dt from each term in equation

(4.5): Stokes drag (black); convective term (cyan); Basset history (magenta);

Saffman lift (blue); Faxén corrections (green); w × dU/dt (yellow).

the particle moves slower than the fluid). This is confirmed in each of the instants

shown in Figure 4.7. Indeed, the component maintains the same direction at both

instants shown, since the components of both w and shear rate change sign during

59



0.5 1 1.5

0.5

1

1.5

x/R

y/
R

Figure 4.6: Hydrodynamic force (black arrows) at sampled times along the in-

ertial particle trajectory (blue solid line) during the intervals t/T ∈ [0, 485] and

t/T ∈ [1300, 1370] for Re = 40, a/R = 0.175 and ρp/ρf = 1. All portions of the

inertial particle trajectory not in these intervals are shown as a blue dotted line.

the cycle. This ensures that there is a significant mean in the Saffman lift.

It is also important to note that the Saffman lift is only operative when the

relative particle velocity, w, is non-zero. By (3.45), there are only two possible

mechanisms by which w can become non-zero when it starts at zero: the fluid

acceleration term and the Faxén corrections. For a neutrally buoyant particle, the

unsteady term vanishes, and thus only the Faxén correction can cause an inertial

particle to initially deviate from its fluid trajectory. This is clearly the case here,

as indicated by the breakdown of contributions in Figure 4.5(b): the Faxén term

is the earliest to divert the particle from the trajectory of the fluid, as the particle

enters the region of significant vorticity gradient. However, once the particle has

60



0.4 0.5 0.6 0.7 0.8

0.8

0.9

1

1.1

1.2

x/R

y/
R

Figure 4.7: Saffman lift force (black arrow), relative particle velocity, w (green

arrow), and local profile of fluid velocity, u, perpendicular to w (blue arrows)

at t/T = 317.5 and t/T = 318. Velocity vectors are plotted with the same

scale. Red line denotes the inertial particle trajectory during the oscillation cycle

t/T ∈ [317, 318]. Local fluid particle trajectories, sampled once per period, shown

with blue dots.

deviated, the role of the Faxén terms is secondary to that of the Saffman lift.

The final trapping point of the inertial particle is at the center of the La-

grangian streaming cell, and is not dependent on the initial location. Indeed,

inertial particles travel toward nearly the same point, regardless of their size, den-

sity and initial position. We can understand this better by inspecting the mean

version of the MR equation (3.45). The mean fluid particle velocity, U , vanishes

at the center of this cell, and so too does dU/dt once an inertial particle reaches
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Fx/ρfR
4Ω2 Fy/ρfR

4Ω2

Lift 5.65× 10−3 3.61× 10−3

Faxén −3.00× 10−4 1.12× 10−2

Basset 3.43× 10−5 −2.41× 10−4

Convective −3.98× 10−3 2.59× 10−4

Stokes −1.40× 10−3 −1.48× 10−2

Total −4.49× 10−7 1.08× 10−6

Table 4.1: Time averaged forces applied on the inertial particle during the interval

t/T ∈ [4200, 4700] for Re = 40, a/R = 0.175, ρp/ρf = 1.

this center. However, ∇U and ∇2U do not vanish, and thus several of the forces

remain active at the center of the streaming cell, due to continuous motion from

the oscillating cylinder. As Table 4.1 shows, all forces are small in magnitude in

this region, and the Saffman lift and Faxén corrections remain in balance with the

Stokes drag and convective term. Thus, the cell center is a fixed point of these

mean equations. The continuous trajectory actually converges to a limit cycle,

traversed once per oscillation cycle. This is evident in Figure 4.8, which depicts

the limit cycle for neutrally buoyant inertial particles of various size (or particle

Reynolds number) and fixed Re. The limit cycle is approximately the same size

for all particles, and is nearly concentric with the streaming cell. The orbits have a

nearly elliptical shape with a major axis of length 0.25R and minor axis of length

0.05R (which are likely controlled by ϵ) and are oriented nearly vertically.
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Figure 4.8: The final limit cycle for inertial particles of various sizes: a/R = 0.1

(blue); a/R = 0.115 (red); a/R = 0.13 (green); a/R = 0.145 (cyan); a/R = 0.16

(black); a/R = 0.175 (magenta), each plotted over one cycle for Re = 40,

ρp/ρf = 1. Mean Lagrangian streamlines shown in gray for reference.

4.3 Inertial particle trapping speed

It was revealed above that a inertial particle spirals inward due to the hydrody-

namic forces (primarily the Saffman lift), and eventually gets trapped near the

center of the Lagrangian streaming cell in a continuous limit cycle. In the tra-

jectory sampled once per period, this particle converges to a fixed point, and the

speed with which it converges is of interest.

The complex mix of forces during the trapping is dependent upon all of the

parameters of the problem. Furthermore, the velocity of the particle during this

trajectory is similar to that of the fluid particle, Vs ∼ ϵΩA = ϵ2ΩR. However, the
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forces on the particle during trapping, notably the Stokes drag and Saffman lift,

have a mix of linear and non-linear dependence on velocity. Thus, one expects that

τ/T – the timescale of trapping, scaled by period T = 2π/Ω – depends inversely

on ϵ to some power, but all parameters – ϵ, Re, a/R, and ρp/ρf – determine the

shape of the spiral trajectory. Thus, the trapping timescale obeys

τ

T
= f(ϵ,Re, a/R, ρp/ρf ) (4.7)

The dashed line in Figure 4.9(a) is the history of the x component of position

of the inertial particle (sampled once per period) and exhibits an asymptotic decay

toward a steady position. A criterion to establish convergence is that the difference

between two consecutive peaks in this sampled history falls below a threshold value

(10−4). Once the inertial particle is determined to be converged, the trapping

timescale can be determined by fitting an exponential curve K exp(−t/τ) to the

envelope of the history, as depicted by the solid line in Figure 4.9(a).

Three cases are investigated by varying one of the parameters (density, particle

size and Reynolds number), while fixing the remaining parameters. Figure 4.9(b)

indicates that, as the size of the particle (and thus, the particle Reynolds number,

Rea = Ωa2/ν) increases, so too does the speed of convergence toward the trapping

point. This is due to the decreased resistance from the Stokes drag in the MR

equation. This term is proportional to the inverse of the particle Reynolds number,

whereas the Saffman lift is proportional to the inverse root, and is thus less affected

by the increase. This result is consistent with the experimental results of Lutz

et al. [43], who found that very small particles are not trapped effectively. Note

that Figure 4.9(b) also exhibits the dependence on ϵ. As expected, the trapping

speed is higher as ϵ increases.

Figure 4.9(c) shows that, as particle density increases, the convergence speed

decreases. Inspection of (4.5) shows that all terms contributing to dα/dt, except

for the unsteady term (with factor Cu), are weakened by an increase in particle
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Figure 4.9: (a) The sampled history of the x position of an inertial particle (-

- -) and an exponential fit to the envelope (—), for Re = 40, ρp/ρf = 1 and

a/R = 0.175. (b) Trapping timescale dependence on a/R, for Re = 40, ρp/ρf = 1.

This figure contains results for ϵ = 0.2
√
2 (green triangles), 0.2 (blue circles),

0.1 (red squares). (c) Trapping timescale dependence on ρp/ρf for Re = 40,

a/R = 0.175. (d) Trapping timescale dependence on Re for ρp/ρf = 1, with a/R

varied so that Ωa2/ν is fixed at 1.2.

inertia. Though this unsteady term can enhance trapping as density ratio increases

(by virtue of centripetal acceleration), its effect for density ratios near unity is

more than compensated for by the decreased effectiveness of the Saffman lift and

Faxén correction terms, which are dominant in this regime.

Finally, Figure 4.9(d) shows that trapping speed also increases with increasing
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Figure 4.10: Inertial particle trajectories at Re = 80 for particle of density

ρp/ρf = 1 and radius a/R = 0.175, initially located at (1.2R, 1.2R) (◦),

(1.8R, 1.8R) (�), (2R, 2R) (△), (2.2R, 2.2R) (♢). Lagrangian streamlines are

in light gray.

Reynolds number when the particle Reynolds number is fixed. Since the particle

Reynolds number is fixed, the viscous resistance does not change. However, the

underlying flow field has been altered by an increase in Re, and particularly, the

strengths of the vorticity and velocity gradients have increased. Thus, the Faxén

terms and the Saffman lift are enhanced by the stronger gradients, increasing the

tendency toward trapping.

4.4 Inner and outer streaming

The results thus far have focused on the behavior of inertial particles in the inner

streaming cell. At Reynolds number Re = 40, this cell has a thickness δDC ≈ 4.6R,

so that the boundary of the cell is on the periphery of the viewing window in

Figure 4.2. However, this thickness shrinks to 0.82R at Re = 80, so that the
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cell is more compact, as shown in Figure 4.10. It is natural, then, to explore

the behavior of inertial particles released from points outside the boundary of the

streaming cell. This region is characterized by mean Lagrangian streamlines that

do not form closed loops, but rather, direct fluid particles toward the cylinder in

the 90 degree sectors centered on the y axis, and away from the cylinder in the

sectors centered on the x axis. Figure 4.10 depicts the trajectories of a neutrally

buoyant inertial particle of radius a/R = 0.175 released from various points. The

particle released from a point well inside the inner streaming cell remains inside the

cell and spirals toward a fixed point. Particles released well outside the cell remain

outside, and travel approximately along fluid particle trajectories (expected due

to the small velocity and vorticity gradients in this region).
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CHAPTER 5

Inertial Particle Transport

In this chapter, inertial particle transport between multiple cylinders in streaming

flow generated by oscillating cylinders is considered. First, background streaming

flow is obtained from VVPM and BEM for inertial particle transport inside and

outside inner streaming cell, respectively. In VVPM simulations, the sequence of

starting and stopping the oscillation of individual cylinder is controlled to trans-

port the inertial particle in predictable manner. In BEM simulations, appropriate

boundary conditions are applied on each cylinders to generate streaming flow ac-

cording to the sequence of starting and stopping the oscillation of cylinders. Then

these background flow will be used to integrate the modified Maxey-Riley equa-

tion including wall effect. Several arrangement of oscillating cylinders such as two

cylinders, three cylinders in triangular arrangement and four cylinders in zigzag

arrangement are considered and their inertial particle trapping and transport be-

haviors are explored.

5.1 Problem Statement

As is revealed in chapter 4, inertial particles inside inner streaming cell follow the

swirling trajectory and finally becomes trapped in the center of inner streaming

cell. Therefore streaming flow generated by another oscillating cylinder would

drag the trapped particle into the streaming cell and finally it will be trapped

inside the center of newly established streaming cell. A simple inertial particle

transport between two oscillating cylinders is considered first.
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Figure 5.1: Schematic of two oscillating cylinders and the sequence of their os-

cillations. (a) Oscillating two-dimensional cylinders with amplitude A1, A2 and

frequency Ω1, Ω2. (b) Sequence of oscillating cylinders in VVPM. Streaming flow

is generated by left cylinder until t/T = ts1 (blue solid line) and one oscillat-

ing cycle is then used to integrate inertial particle trajectory until it is finally

trapped at t/T = tf1 (blue dot line). Right cylinder start to oscillate at t/T = tf1

and generate streaming flow until t/T = ts2 (red solid line). Every cycle during

t/T = tf1 ∼ ts2 and then one oscillating cycle is used to compute the transport of

trapped inertial particle until it is trapped in newly established streaming cell by

right cylinder at t/T = tf2 (red dot line).
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Figure 5.2: Schematic of oscillating cylinders in triangular arrangement and the

sequence of their oscillations. (a) Oscillating two-dimensional cylinders of with

amplitude A1, A2, A3 and frequency Ω1, Ω2, Ω3. (b) Sequence of oscillating

cylinders in VVPM is similar to sequence of two cylinders in figure 5.1 (b).
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Figure 5.3: Schematic of oscillating cylinders in line arrangement and the sequence

of their oscillations. (a) Oscillating two-dimensional cylinders of with amplitude

A1, A2, A3 and frequency Ω1, Ω2, Ω3. (b) Sequence of oscillating cylinders in

VVPM is similar to sequence of two cylinders in figure 5.1 (b).
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Figure 5.4: Schematic of oscillating cylinders in zigzag arrangement and the se-

quence of their oscillations. (a) Oscillating two-dimensional cylinders of with am-

plitude A1, A2, A3, A4 and frequency Ω1, Ω2, Ω3, Ω4. (b) Sequence of oscillating

cylinders in VVPM is similar to sequence of two cylinders in figure 5.1 (b).
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Left cylinder located at (−4R, 0) is initially oscillated with rectilinear sinu-

soidal motion with amplitude A1 and frequency Ω1 in figure 5.1 (a). After iner-

tial particle is trapped inside the inner streaming cell generated by left oscillating

cylinder, stop the oscillation of left cylinder and start the oscillation of right cylin-

der located at (4R, 0) with amplitude A2 and frequency Ω2 to initiate the motion

of trapped inertial particle and transport the particle inside the newly established

streaming cell by right oscillating cylinder. This is basic particle transport strat-

egy when employing either VVPM or BEM to generate streaming flow. VVPM,

however, cannot generate streaming flow until inertial particle is trapped and

transported toward another designated points , which needs more than several

tens of thousand oscillations. This is computationally expensive and inefficient.

Instead, VVPM stop generating flow field after the streaming flow field does not

evolve anymore and thus it can be regarded as some steady state, and one os-

cillating cycle after steady state is used repeatedly to calculate inertial particle

trajectory.

Figure 5.1 (b) describes oscillation sequences. In VVPM, streaming flow is

generated by oscillating left cylinder until t/T = ts1(T is representative time

scale, i.e. 1/Ω) when the streaming flow field is reached to steady state. Then one

oscillating cycle after t/T = ts1 is repeatedly used to integrate inertial particle

trajectory until it is finally trapped inside the center of streaming cell generated

by left cylinder at t/T = tf1. Right cylinder then start to oscillate at t/T = tf1

and starts to generate streaming flow until t/T = ts2 when the streaming flow by

right cylinder reaches to steady state. Meanwhile, the trapped inertial particle

initiate its motion due to the streaming flow generated by right cylinder during

t/T = tf1 ∼ ts2, in which every cycle needs to be integrated to take account the

transient streaming effect between two cylinders. Then, one oscillating cycle after

t/T = ts2 is again used to compute the inertial particle transport motion until

it is finally trapped inside the center of newly established streaming cell by right
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Figure 5.5: Contour of streamline of oscillating two cylinders from VVPM .

Streaming flows are obtained from oscillation of (a) left (−4R, 0) and (b) right

(4R, 0) cylinder, respectively.

cylinder at t/T = tf2.

Similarly, inertial particle transport in triangular arrangement (figure 5.2) ,

line arrangement (figure 5.3) and zigzag arrangement (figure 5.4), respectively, is

considered.

Streaming flow generated by oscillating two cylinder is depicted in figure 5.5

(a). Left cylinder oscillates until ts1 = 20 and stop oscillating left cylinder and

start to oscillate right cylinder until ts1 = 40. Each plot is steady 2nd-order

streamlines, Ψs
2 in equation 2.23, by averaging the instantaneous streamfunctions
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over one oscillating period during ts1 = t/T = 19 ∼ 20 and ts2 = t/T = 39 ∼ 40,

respectively. Streaming flow pattern describes well the behavior of inner streaming

cell and the other stationary cylinder is located inside this inner streaming cell.

Thus inertial particle transport between oscillating cylinder is occurred inside

inner streaming cell. Unequal streamlines from the center of oscillating axis still

remains in flows and this asymmetric effect is expected to diminish as simulation

period increases ( increase ts1 and ts2 ) and resolution of simulation increases

( decrease grid size dx ). In these simulations of multiple oscillating cylinders,

oscillation amplitude and grid size are ϵ = 0.1 and dx = 0.02, respectively.

Likewise, streaming flows generated by oscillating cylinders in triangular ar-

rangement, line arrangement and zigzag arrangement from VVPM are shown in

figure 5.6, 5.7 and 5.8, respectively. Similar inner streaming cell is generated and

other fixed cylinders is located inside inner streaming cell.

Before using this streaming flow to integrate the inertial particle trajectory, it

is important to explore characteristics of streaming flow at several points. Figure

5.9 depicts the history of velocities, Ux and U y at (a) (−2R, 2R), (b) (0, 2R) and

(c) (2R, 2R) during t/T = 0 ∼ 40 and describes well the oscillatory flow field

as cylinders oscillate. One thing to note is that the magnitude of velocity, Ux

at (−2R, 2R), which is close to the left cylinder, increases when the oscillating

cylinder is changed from left cylinder to right cylinder although the distance from

the oscillating cylinder is increased. This is because the point located near the

center of streaming cell, where flow is stationary, is located further from the newly

established center by changing oscillating cylinder. However the magnitude of U y

at (−2R, 2R) has reversal result, (i.e., the magnitude of velocity decreased as the

oscillating cylinder is changed from left to right). Similar behavior is observed at

(2R, 2R).

It is important to note that the velocity field reflects instantaneous oscillating

motion from the cylinders. Velocity field instantaneously captures the onset of
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oscillation of left cylinder and transition of oscillation from left cylinder to right

cylinder as shown in figure 5.9. This is because the dominant, 1st order streaming

flow in eq. (2.10) is pressure driven flow and thus the oscillating motion from the

cylinder is instantaneously conveyed. However this 1st order streaming flow can-

not discern whether flow approaches to steady state or not since streaming motion

is 2nd order steady flow generated by interaction of this 1st order, oscillatory flow.

History of averaged velocities over one period oscillation, Ux and U y during

t/T = 0 ∼ 40 at these points is also explored in figure 5.10: (a) at (−2R, 2R), (b)

at (0, 2R) and (c) at (2R, 2R). Averaging the velocities over one cycle removes the

oscillatory part of 1st and 2nd order solution and thus 2nd order steady solution

is left. Sudden impulsive velocity peaks at the beginning of oscillation of cylin-

ders (t/T = 0 from left cylinder and t/T = 20 from right cylinder) subside after

several oscillations. Distinct from the history of velocities in figure 5.9 averaged

velocities exhibits steady portion with several oscillation after new streaming flow

is generated from oscillating cylinders. This steady portion obtained after sev-

eral oscillations (ts1, ts2, · · · ) enable us to employ one oscillating cycle repeatedly

to compute inertial particle trajectory, and thus it saves a lot of computational

effort without losing a significant accuracy. The value of steady portion depends

of computational tolerance and tolerance of current VVPM simulation (10−6) is

reasonably small enough to capture streaming flow between oscillating cylinders

inside inner streaming cell.
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Figure 5.6: Contour of streamline of oscillating cylinders in triangular arrange-

ment from VVPM. Streaming flows are obtained from oscillation of (a) lower left

(−4R, 0), (b) lower right (4R, 0) and (c) upper (0, 6R) cylinder, respectively.
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Figure 5.7: Contour of streamline of oscillating cylinders in line arrangement

from VVPM. Streaming flows are obtained from oscillation of (a) left (−8R, 0),

(b) center (0, 0) and (c) right (8R, 0) cylinder, respectively.
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Figure 5.8: Contour of streamline of oscillating cylinders in line arrangement

from VVPM. Streaming flows are obtained from oscillation of (a) upper left

(−9R,−3R), (b) lower left (−3R,−3R), (c) upper right (3R, 3R) and (d) lower

right (9R,−3R) cylinder, respectively.
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Figure 5.9: History of velocities, Ux and U y at (a) (−2R, 2R), (b) (0, 2R) and

(c) (2R, 2R) during t/T = 0 ∼ 40.
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Figure 5.10: History of averaged velocities over one period oscillation, Ux and U y

at (a) (−2R, 2R), (b) (0, 2R) and (c) (2R, 2R) during t/T = 0 ∼ 40.
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5.2 Modified Maxey-Riley Equation

The motion of inertial particle between cylinders is different from the motion in

streaming flow generated by single oscillating cylinder in that the trapped iner-

tial particle follows the outmost streamline by the streaming flow and approaches

closely toward oscillating cylinder. Then it could experience liquid-solid inter-

action force inside thin lubrication layer between inertial particle and surface of

cylinder, and moreover it could directly collide with the surface of cylinder. There-

fore wall effect such as lubrication force and elastic collision force from the direct

contact with cylinder are newly included. Here, Basset history force term is ig-

nored for simplicity purpose as well as its relative small contribution in this study

in figure 4.5 (b). Thus the final modified MR equation is,

dXp

dt
= V p (5.1)

mp
dV p

dt
= −6πρfνa

[
(V p(t)− u(Xp(t), t))λ− 1

6
a2∇2u(Xp(t), t)

]
+ mf

Du

Dt

∣∣∣∣
Xp(t)

− 1

2
mf

(
dV p

dt
− Du

Dt

∣∣∣∣
Xp(t)

− d

dt

[
1

10
a2∇2u(Xp(t), t)

])

+ 4Kρfa
2 (ν |G|)1/2 sgn(G) |u− V p|n+ F

(
δ

δss

)
edWo, (5.2)

where

λ =
1

2δ
H

(
δ

δsl

)
+ 1.0×

[
1−H

(
δ

δsl

)]
(5.3)

and

F

(
δ

δss

)
=


e(−δ/δss)−e−1

1−e−1 0 ≤ δ ≤ δsq

0 δ > δss

(5.4)

and

Wo =
4

3
a2E∗

(
5π

4E∗ρpVI
2

)3/5

(5.5)

Each terms of right hand side of equation (3.45) represent mixed viscous drag

force with Faxén corrections, unsteady force, added mass force, and elastic colli-
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sion force respectively. λ represent mixed viscous drag force coefficient between

lubrication force by G. I. Taylor and Stokes force, which are blended by smoothed

Heaviside function, H (δ/δsl) = 1/
(
1 + e10(δ/δsl−1)

)
. δ represent nondimension-

alized gap distance between wall (surface of cylinder) and particle surface by

particle diameter. δsl is chosen as 0.5. As the gap distance decrease, viscous drag

significantly increase and thus make inertial particle velocity approach quickly

to background fluid velocity while viscous drag recovers Stokes drag force as

the gap distance increase. Last term represents elastic collision force between

inertial particle and cylinder based on Hertz elastic force by Timoshenko and

Goodier [80] and Hunt, Li, and Colonius [90]. This elastic force Wo thus be-

comes active only when the gap, δ, is less than δss and becomes unity when δ

approach to zero. δss and dry coefficient of restitution ed is set as 0.017 and 0.97

respectively [90]. VI is particle impact velocity relative to velocity of oscillating

cylinder and E∗ = [(1− ν1
2)/E1 + (1− ν2

2)/E2]
−1

is reduced modulus combining

Young’s Modulus E with Poisson ratio ν. As in the previous equation in (3.45)

it is more natural to utilize relative velocity between inertial particle and fluid,

w = V p − u(Xp), then nondimensionalized form of above equation (5.2) by R

and Ω is

(
ρp
ρf

+
1

2

)
dw

dt
= −9

2
Re−1

a wλ+ (1− ρp/ρf )
du

dt

∣∣∣∣
Xp(t)

− 3

2
w · ∇u

∣∣∣∣
Xp(t)

+ 3KRe−1/2
a |G|1/2 sgn(G)|w|n+ F

(
δ

δss

)
edWo

+
3

4
Re−1

a (a/R)2∇2u(Xp(t), t) +
1

20
(a/R)2

d

dt

[
∇2u(Xp(t), t)

]
.

(5.6)

where

Wo =
R

a

(
5

4

ρp
ρf
VI

2

)3/5(
E∗

π

)2/5

(5.7)

In this problem, reduced modulus and Poisson ratio is respectively, E∗ =

3GPa, ν = 0.35. According to the previous chapter 2, the convective time scale
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for inertial particle to orbit the streaming cell is order of 1/ϵ2 oscillations, which

may need more than several thousands steps of time integration. The computation

efforts even increase if the inertial particle is located further from the cylinder,

where fluid motion is weak. In this far-region, however Faxén corrections term is

zero since the vorticity, ω = −∇2u, generated from cylinder oscillation is zero.

Thus for neutrally buoyant inertial particle, it does not have any none-zero forc-

ing terms and thus relative velocity is zero w = 0, which leads inertial particle

to behave as fluid particle. Therefore, in case of using VVPM to integrate iner-

tial particle trajectory, the computation effort can be significantly reduced if the

trajectory of inertial particle is integrated by Mean Lagrangian Velocity (MLV)

[42, 65] in the region where the vorticity is zero,

U = u+

∫ t

0

u dτ · ∇u. (5.8)

where the temporal mean (·) is defined in equation (2.45). The first term of

right hand side of equation (5.8) is a mean Eulerian velocity which is a 2nd order

steady velocity and second term is a mean Stokes drift which correct the difference

between mean Lagrangian and mean Eulerian velocity. Therefore fluid particle is

transported by mean Lagrangian velocity (5.8) and inertial particle can also be

integrated using MLV once a period in a far-region, so that computational effort

can be reduced significantly.

The comparison between trajectories from complete MR (blue line) and MLV

(red line) equation is made in figure 5.11. Both inertial particles starts initially

from (x, y) = (4R, 4R) and hardly exhibit deviation from each other until t/T =

21316, where the vorticity is not zero anymore and thus trajectory integration

from MLV stops. This indicates using MLV can integrate the inertial particle

trajectory not only precisely but also efficiently. Therefore, inertial particle is

integrated by complete MR near the cylinder and MLV away from the cylinder.
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Figure 5.11: Inertial particle trajectory from complete MR (blue line) and MLV

(red line) for Re = 40, A/R = 0.1, a/R = 0.175 and ρp/ρf = 1. Each open circles

and squares are positions of inertial particles at t/T = 0 and 21316, respectively.

5.3 Transport inside Stokes layer

Simple inertial particle transport between oscillating cylinders inside inner stream-

ing cell (Stokes layer) is considered first in figure 5.3. Streaming flow is first gener-

ated by VVPM with strategy in figure 5.1. Left cylinder oscillates until streaming

flow reaches to steady state at ts1 = 20 and right cylinder starts to oscillate until

at ts2 = 40. Then inertial particle trajectory is integrated with modified MR

equation (5.6) using each oscillating cycles (t/T ∈ [19, 20] and t/T ∈ [39, 40]).

Inertial particle first initiate its motion from (−2R, 2R) by the oscillation of left

cylinder and becomes trapped inside the inner streaming cell after following in-

ward swirling trajectory during t/T ∈ [0, 6784] (blue line). The trapped inertial

particle starts to move toward right cylinder following the outmost stream line

generated by the oscillation of right cylinder (red line). The speed of particle is
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Figure 5.12: Inertial particle trajectory during the cycle t/T ∈ [0, 6784] (oscillation

from left cylinder; blue line) and t/T ∈ [6785, 105963] (oscillation from right

cylinder;red line) for Re = 40, ϵ = 0.1, a/R = 0.175 and ρp/ρf = 1. Initial

location depicted with blue circle.

relatively small since the streaming motion becomes weaker after distance to the

oscillator increases. In the proximity of left cylinder, however, the vorticity is still

nonzero due to the interaction of still left cylinder to satisfy the no slip condition

at its surface. Therefore, despite of this small streaming motion, complete modi-

fied MR equation is employed until the inertial particle escape the vortical region

during long period of t/T ∈ [6785, 70957].

After the inertial particle passed the vortical region and is located in non-

vortical region between two cylinder, inertial particle behaves like a fluid particle

since the inertial particle does not have any forcing term in this non-vortical

region. As mentioned, MLV is thus employed to significantly reduce the compu-

tation efforts during t/T ∈ [70958, 97650]. Then inertial particle enters again into

the vortical region, generated by right cylinder, in which complete modified MR
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Figure 5.13: Inertial particle trajectory during the cycle t/T ∈ [0, 6784] (oscil-

lation from lower left cylinder; blue line), t/T ∈ [6785, 105109] (oscillation from

lower right cylinder;red line) and t/T ∈ [105110, 162754] (oscillation from upper

cylinder;green line) for Re = 40, ϵ = 0.1, a/R = 0.175 and ρp/ρf = 1. Initial

location depicted with blue circle.

equation is employed again during t/T ∈ [97651, 105963] . In this region, inertial

particle has relatively fast speed and approaches close to the right cylinder since

it followed the outmost streamline. When it is in close proximity to the right

cylinder, viscous drag such as lubrication force increase and this drag suppress

the acceleration of inertial particle. In this close proximity region, δ < δss, elastic

collision force Wo turns on several times and thus inertial particle exhibits uneven

trajectory from this collision with right cylinder. After this proximity region, it

is finally trapped again inside the inner streaming cell after swirling motion.

One can also transport inertial particle with oscillating cylinders in triangular
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Figure 5.14: Inertial particle trajectory during the cycle t/T ∈ [0, 6784] (oscil-

lation from left cylinder; blue line), t/T ∈ [6785, 105109] (oscillation from center

cylinder;red line) and t/T ∈ [105110, 441381] (oscillation from right cylinder;green

line) for Re = 40, ϵ = 0.1, a/R = 0.175 and ρp/ρf = 1. Initial location depicted

with blue circle.

arrangement as in figure 5.13. Inertial particle is transported in similar manner as

it is transported between two oscillating cylinder in figure . The trapped particle

in the vicinity of lower right cylinder start to migrate toward upper cylinder

as it follows the outmost streamline generated by upper cylinder during t/T ∈

[105110, 162754] (green line). Although it is not shown in this figure, the trapped

particle by upper cylinder is transported back inside the center of streaming cell by

lower left cylinder during t/T ∈ [162755, 239306]. This indicates that it is feasible

to transport particles between oscillating cylinders in certain arrangement.

Inertial particle can also be transport in straight line arrangement as shown

88



−12 −9 −6 −3 0 3 6 9 12
−6

−3

0

3

6

x/R

y/
R

Figure 5.15: Inertial particle trajectory during the cycle t/T ∈ [0, 5891] (oscil-

lation from upper left cylinder; blue line), t/T ∈ [5892, 88198] (oscillation from

lower left cylinder;red line), t/T ∈ [88199, 202499] (oscillation from upper right

cylinder;green line) and t/T ∈ [202500, 306366] (oscillation from lower right cylin-

der;magenta line) for Re = 40, ϵ = 0.1, a/R = 0.175 and ρp/ρf = 1. Initial

location depicted with blue circle.

in figure 5.14. After the trapped inertial particle is transported toward the inner

streaming cell generated by center cylinder during t/T ∈ [0, 6784] (blue line)

and t/T ∈ [6785, 105109] (red line) respectively, it is slowly migrate toward right

cylinder from the oscillation of right cylinder during t/T ∈ [105110, 441381] (green

lne). Since the streaming flow is weakly generated by the oscillation of right

cylinder in the region of second quadrant of center cylinder, the migration speed

of trapped inertial particle is very slow in those region. Although it is slow process,

streaming flow can transport objects behind obstacles.

It took more than four hundred thousand oscillations to transport inertial

particle approximately from (−8R, 0) to (8R, 0) in straight line arrangement in
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figure 5.14. This transport speed can be improved if one can avoid weak streaming

zone by arranging the oscillating cylinders as in figure 5.15. Similar strategy but

avoiding weak streaming zone can transport inertial particle approximately from

(−9R, 0) to (9R, 0) with three hundred thousand oscillations. This oscillations

takes several hundreds seconds in practical experimental condition using several

kilo hertz oscillation frequency.

Overall, inertial particle can be transported between oscillating cylinders in-

side Stokes layer in that streaming flow can drag the inertial particle into inner

streaming cell and finally trap it inside the center of streaming cell. By controlled

sequence of starting and stopping oscillation of cylinders, inertial particle is trans-

ported in a predictable manner. Computational effort significantly is reduced by

using one oscillation cycle after the streaming flow reaches to state state as well as

Mean Lagrangian Velocity (MLV) in vorticity-free region to compute the inertial

particle trajectories. Inertial particle transport outside Stokes layer is dealt in

next section 5.4.

5.4 Transport outside Stokes layer

As mentioned in chapter 3, simulations from VVPM cannot captures the correct

streaming flow in outer region between oscillating cylinders due to computational

efficiency. One can, however, obtain approximated outer region flow by BEM as

shown in figure 5.16. The streaming flow in outer region directs flow from the

direction perpendicular to oscillating axis (Y axis) to oscillating axis (X axis).

Meanwhile, the flow in the region facing other cylinder need to satisfy the no

slip condition on the surface of other cylinder, so that it forms closed loop of

streaming cell and flow circulates around this streaming cell as the flows inside

inner streaming cell. This BEM simulation serves as an approximate surrogate

to capture the streaming flow between oscillating cylinders although it cannot
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Figure 5.16: Contour of streamline of oscillating two cylinders from BEM . Stream-

ing flows are obtained from oscillation of (a) left (−4R, 0) and (b) right (4R, 0)

cylinder, respectively.

capture the inner streaming cell which is shrunk to zero.

Streaming flows between oscillating cylinders in triangular arrangement, line

arrangement and zigzag arrangement from BEM are shown in figure 5.17, 5.18 and

5.19, respectively. Streaming flows exhibit similar behavior as flows are directed

in the region not facing other cylinder, and circulates around the streaming cell

in the region between cylinders.
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Figure 5.17: Contour of streamline of oscillating cylinders in triangular arrange-

ment from BEM. Streaming flows are obtained from oscillation of (a) lower left

(−4R, 0), (b) lower right (4R, 0) and (c) upper (0, 6R) cylinder, respectively.
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Figure 5.18: Contour of streamline of oscillating cylinders in line arrangement

from BEM. Streaming flows are obtained from oscillation of (a) left (−8R, 0), (b)

center (0, 0) and (c) right (8R, 0) cylinder, respectively.
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Figure 5.19: Contour of streamline of oscillating cylinders in line arrangement from

BEM. Streaming flows are obtained from oscillation of (a) upper left (−9R,−3R),

(b) lower left (−3R,−3R), (c) upper right (3R, 3R) and (d) lower right (9R,−3R)

cylinder, respectively.
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Figure 5.20: Inertial particle trajectory during the cycle t/T ∈ [0, 15934] (oscilla-

tion from left cylinder; blue line) and t/T ∈ [15934, 26388] (oscillation from right

cylinder;red line) for Re = 40, ϵ = 0.1, a/R = 0.175 and ρp/ρf = 1. Particle’s

Initial location and transient location at t/T = 15934 is depicted with blue circle

and red square, respectively.

Inertial particle transport in outer region is considered for two oscillating cylin-

ders in figure 5.20. The motion of inertial particle is also integrated with modified

MR equation (5.6) using streaming flow from BEM in figure 5.16. Inertial particle

initiates its motion in (−R,R) and undergoes slight inward spiral motion toward

the center of streaming cell during t/T ∈ [1, 21105] (blue line). After left cylinder

stop oscillating and right cylinder starts to oscillate, the inertial particle experi-

enced spiraling clockwise around the center of streaming cell with slight inward

motion is dragged toward right cylinder at (−2.15R, 2.47R) (red square), and

starts to spiral counter-clockwise around the center of streaming cell generated by

right cylinder with slight inward motion during t/T ∈ [21106, 37763]. The notable

difference between this inertial particle transport in outer region and inner region
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is inward motion.

In order to investigate this slight inward motion, the quantity α and dα/dt

during the interval between t/T = 120 and 240 is examined. Figure 5.21 (a)

indicates that inertial particle experience slight inward motion as it approaches

close to the cylinder but it experience smaller outward motion smaller than the

previous inward motion as it recedes from the cylinder. Thus overall α during this

period is very small positive values compared to the values in figure 4.5, so that it

experience a little inward motions. This insignificant inward motion comes from

symmetric cancelation of contributions of each terms from modified MR equation.

Faxén corrections terms (green line) initiates this inward motion as it approaches

to the cylinder but reverse this motion as it recedes from the cylinder. Meanwhile,

viscous drag term (black line) conversely acts to Faxén corrections terms, and

convective term (cyan line) is almost negligible. Thus, the slight inward motion

comes from the small positive Saffman lift term (blue line) which plays prominent

role for inward motion.

Also the flowfield is steady second order solution of Stokes flow and thus the

primary first order oscillatory flow is missing in integrating inertial particle trans-

port trajectory. This implies that inertial forces closely related pressure type

forces originating first order oscillatory motion are missing. Therefore it is nec-

essary to enhance this approximated solution to include first order solution to

correctly captures inward motion when the inertial particle is transported outside

Stokes layer.
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Figure 5.21: (a) History of α during the cycle t/T ∈ [120, 240] for Re = 40,

a/R = 0.175, ρp/ρf = 1. (b) Contributions to dα/dt from each term in equation

(4.5): Stokes drag (black); convective term (cyan); Saffman lift (blue); Faxén

corrections (green); w × dU/dt (yellow).
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CHAPTER 6

Conclusion and Future Works

The behavior of inertial particles in a streaming flow generated by an oscillating

circular cylinder has been examined by integrating the Maxey–Riley equation with

Saffman lift force in an analytically-obtained flow field. The flowfield consists of

a primary oscillatory and secondary streaming components, the latter of which

consists of a set of four streaming cells surrounding the cylinder. Inertial particles

released in the inner streaming cell of this flow exhibit an inward spiral toward a

trapping point at the center of streaming cell, regardless of particle density, size

and fluid Reynolds number. The most prominent force responsible for trapping

is the Saffman lift force – which itself is activated by the Faxén corrections that

divert the particle from the fluid particle trajectory – while viscous forces such as

Stokes drag and the Basset history term resist this trapping.

The trapping speed for inertial particles has also been investigated. It has been

found that lighter, larger particles are trapped faster, as are particles of a fixed

density and particle Reynolds number at larger flow Reynolds number. These

results have also shown that the particle is trapped at approximately the same

location – the center of the streaming cell – regardless of its size, density, or initial

location inside the cell. Particles initially outside the streaming cell, however, are

repelled rather than trapped.

Inertial particle transport between multiple oscillating cylinder is also investi-

gated. The flowfield for multiple oscillating cylinder is obtained by either high-

fidelity simulation (VVPM) for transport inside Stokes layer and approximated
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simulation (BEM) for transport outside Stokes layer. The transport motion is

obtained by integrating the modified Maxey–Riley equation including wall effect

such as lubrication force and elastic collision force. With controlled sequence of

stopping and starting the oscillation inertial particle is transported in a predictable

manner inside Stokes layer, while the inertial particle is transported without trap-

ping motion due to weak inertial effect outside Stokes layers.

It has been shown that the oscillations to trap inertial particles inside the

streaming cell take several thousand cycles, which is approximately couple of sec-

onds for several kilo hertz oscillation frequency in practical experimental condi-

tion. This oscillations increase for inertial particle transport up to several hundred

thousands cycles, which is approximately several hundreds seconds. This reveals

that viscous streaming is an effective mechanism for microparticle trapping but

transport due to the significant long transport times, which needs improvement.

Inertial particle transport take much more oscillations than particle trapping

since the flow field generated by next oscillator is felt weak at current trapped

position. Therefore if the transport strategy is enhanced in a manner that the

current oscillator does not stop but oscillates again with next oscillator to gen-

erated streaming flow in a direction to transport the trapped particle to next

designated points. With this approaches it is expected to reduce the oscillations

for particle transport significantly. Also, by adding free stream flow to the direc-

tion in which inertial particle is transported, it may increase the particle transport

speed without changing the streaming cell topology due to the free stream.

Moreover, inertial particle outside Stokes layer using approximated solution

of Stokes flow is transported without significant inward motion. This is because

the flowfield is steady second order solution of Stokes flow in which first order

oscillatory flow is missing. Since it is computationally expensive to solve flowfield

of multiple oscillating cylinders with high fidelity simulation, it is necessary to

improve the current approximated solution of Stokes flow to include first order
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oscillatory solution, so that it correctly captures the streaming flow and particle’s

transport motion without any significant computation efforts.
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APPENDIX A

Analytical Solution of Coefficient Matrix

Most of derivation of coefficient matrix followed the work of Kelmanson [33].

Figure A.1 depicts the geometry of boundary segment ∂Ωj and notations.

General field point p is located inside domain Ω enclosed by boundary ∂Ω. qaj

and qbj are both endpoints of boundary segment ∂Ωj whose length is given by h.

n is unit normal vector of ∂Ω,

a = |p− qaj|,

b = |p− qbj|,

h = |qaj − qbj|, (A.1)

β = ∠qbjqajp,

ζ = ∠qajpqbj

Then analytic expressions for the integrals in (3.35) - (3.38) are∫
q∈∂Ωj

log′|qi − q| dω(q) = ζ, (A.2)∫
q∈∂Ωj

log|qi − q| dω(q) = a(log a− log b) cos β + h log b− h+ aζ sin β ≡ I, (A.3)∫
q∈∂Ωj

{
|qi − q|2 log|qi − q| − |qi − q|2

}′
dω(q) = a(2I − h) sin β, (A.4)

∫
q∈∂Ωj

{
|qi − q|2 log|qi − q| − |qi − q|2

}
dω(q)

=
1

3

{
(h− a cos β)3(log b− 4

3
) + (a cos β)3(log a− 4

3
)
}

+ (a sin β)2
{
I − 2

3
h− 1

3
aζ sin β

}
(A.5)
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Figure A.1: Geometry of boundary segment ∂Ωj and notations for analytic solu-

tion of integration.
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