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Abstract
In this paper, we consider orthogonal Ricci curvature Ric⊥ for Kähler manifolds, which
is a curvature condition closely related to Ricci curvature and holomorphic sectional cur-
vature. We prove comparison theorems and a vanishing theorem related to these curvature
conditions, and construct various examples to illustrate subtle relationship among them. As a
consequence of the vanishing theorem, we show that any compact Kähler manifold with pos-
itive orthogonal Ricci curvature must be projective. This result complements a recent result
of Yang (RC-positivity, rational connectedness, and Yau’s conjecture. arXiv:1708.06713)
on the projectivity under the positivity of holomorphic sectional curvature. The simply-
connectedness is shown when the complex dimension is smaller than five. Further study of
compact Kähler manifolds with Ric⊥ > 0 is carried in Ni et al. (Manifolds with positive
orthogonal Ricci curvature. arXiv:1806.10233).

Mathematics Subject Classification Primary 53C55 · 32Q15; Secondary 32Q10 · 32Q40

1 Introduction

There are several relatively recent works on comparison theorems for Kähler manifolds
despite that their Riemannian counter parts have been well known for quite a while. In [15],
for a Kähler manifold (Mm, g), Li andWang introduced the condition “bisectional curvature
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151 Page 2 of 31 L. Ni, F. Zheng

bounded from below by a constant λ” defined as

R(Z , Z , W , W ) ≥ λ
(
|Z |2|W |2 + ∣∣〈Z , W 〉∣∣2

)
(1.1)

for any (1, 0) vectors Z , W ∈ T ′M satisfying either 〈Z , W 〉 = 0 or Z = W , where the
complexified tangent space TCM = T ′M ⊕ T ′′M is decomposed (with respect to the almost
complex structure C) into the holomorphic subspace (T ′M) and antiholomorphic subspace
(T ′′M). Let m be the complex dimension of M and n = 2m be the real dimension. Here
〈·, ·〉 is the bilinear extension of the Riemannian product and the curvature R follows the
convention of [32]. Under this condition the authors derived the complexHessian comparison
theorem for the distance function ρp(x) (to a fixed point p ∈ M) for any Kähler manifold
M with the bisectional curvature bounded from below, comparing with the corresponding
distance function (to a point) of a complex space form with constant holomorphic sectional
curvature 2λ. For the case λ = 0, the result was also derived from the Hessian estimate of
the logarithm of the heat kernel proved in [3]. As applications, the authors of [15] derived a
diameter estimate (for λ > 0) and a volume comparison result. More recently, the volume
comparison result was generalized to the distance function to a complex submanifold by Tam
and Yu [31]. The reformulated assumption in [31] seems stronger than the original one stated
above by demanding (1.1) on all Z , W ∈ T ′M . In [17], a partial complex Hessian (only
in the complex plane spanned by {∇ρ, C(∇ρ)} with C being the almost complex structure)
comparison theoremwas proved under the assumption of the holomorphic sectional curvature
is nonnegative. This result plays a crucial role [17] in establishing the three-circle property
for holomorphic functions on such Kähler manifolds.

The common theme of these papers involving the comparison theorems is that the results
were derived by applying the Bochner formula to the length of the gradient ‖∇ρ‖(= 1) in a
similar spirit as the proofs of theHessian and Laplacian comparison theorems in [2,9] (cf. also
[27], where the Hessian comparison was made almost trivial for the case that the curvature is
bounded from above), and [5] respectively. To a large degree they were based on a Ricatti’s
type inequality on the Hessian of ρ (or the Bochner formula applying to ‖∇ρ‖), instead of the
more classical approach of Rauch via the comparison of the index forms and Jacobi fields. On
the other hand, the consideration via the second variation and the index forms has a lot of suc-
cess in understanding the geometry and topology of the Riemannian manifolds. For Kähler
manifolds with positive holomorphic sectional curvature there exists a work of Tsukamoto on
the diameter estimate1 and the simply connectedness [33] via the index form consideration.
There are also Lefschetz type theorems for complex or Levi flat real submanifolds in a non-
negatively curved Kähler manifold utilizing the index estimates of the energy functional (cf.
[24,29]). Despite the effort mentioned above the Kähler analogue of the sharp volume com-
parison (Bishop type) and the sharp diameter estimate (Bonnet-Myers type) are still elusive. In
Sects. 2 and 3 we apply the second variational/index form consideration to the Kähler setting
and prove several comparison and rigidity results generalizing some of the results mentioned
above with the intent of bridging the gap between the Riemannian and Kähler setting.

In the course of our study described above, a notion of curvature, namely the so-called
orthogonal Ricci curvature (denoted by Ric⊥) , which is complementary to the well-known
holomorphic sectional curvature, arises naturally. We indeed prove the comparison theorems
under conditions on the orthogonal Ricci curvature. If Li-Wang’s result can be phrased as
a complex Hessian comparison under the bisectional curvature comparison, the comparison
results proved here and [17] can be phrased as orthogonal Laplacian comparison (holo-

1 The diameter estimate of Li-Wang is a special result of Tsukamoto since the lower bound on the bisectional
curvature posed by (1.1) implies that the holomorphic sectional curvature H(Z) = R(Z , Z , Z , Z) ≥ 2λ|Z |4.
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Comparison and vanishing theorems for Kähler manifolds Page 3 of 31 151

morphic Hessian comparison) under the orthogonal Ricci (holomorphic sectional curvature,
respectively) comparison.

Very recently, in [38], as a separate development for manifolds with positive holomorphic
sectional curvature, the projectivity was proved for compact Kähler manifolds with positive
holomorphic sectional curvature. The vanishing theorem proved Sect. 4 of this paper implies
the projective embedding (namely projectivity of the underlying Kähler manifold) under a
metric property in terms of the positivity of Ric⊥. Since every compact Riemann surface
is projective while most tori (with dimension m ≥ 2) are not, perhaps this metric criterion
via Ric⊥ (which is the trace of orthogonal bisectional curvature in some sense as explained
a little later) perhaps reflects the projective embedding property more accurately than the
positivity of the holomorphic sectional curvature [38]. Our result suggests that an algebraic
geometric characterization of Kähler manifolds with Ric⊥ > 0 perhaps is an interesting
problem in view of that Fano varieties, namely algebraic manifolds with positive first Chern
class, can be characterized as ones admit Kähler metrics with positive Ricci curvature via
the Yau’s solution to the Calabi conjecture.

Before precise statements of the results, we first recall various notions of curvature for
Kähler manifolds so that Ric⊥ can be put in its proper perspective. For Z , W ∈ T ′

x M and
X , Y real vectors with

Z = 1√
2

(
X − √−1C(X)

)
, W = 1√

2

(
Y − √−1C(Y )

)
,

the first Bianchi gives the following expansion in terms of real vectors

R(Z , Z , W , W ) = R(X , C(X), C(Y ), Y ) = R(X , Y , Y , X) + R(X , C(Y ), C(Y ), X).

Besides the bisectional curvature, there exists the notion of the orthogonal bisectional
curvature R(Z , Z , W , W ) for any pair Z , W with 〈Z , W 〉 = 0. Note that 〈Z , W 〉 = 0 means
that 〈X , Y 〉 = 〈X , C(Y )〉 = 0. The holomorphic sectional curvature can be expressed as

R(Z , Z , Z , Z) = R(X , C(X), C(X), X).

For the sake of convenience, we will sometimes use H to denote the holomorphic sectional
curvature and B⊥ to denote the orthogonal bisectional curvature. The nonnegativity of B⊥ is
a Kähler analogue of the nonnegativity of the isotropic curvature for Riemannian manifolds,
and was proved to be invariant under the Ricci flow (cf. [34] for a detailed description of this
analogue in terms of the Lie theory and a unified proof of their Ricci flow invariance). More
recently in [21], a gap theoremand aLiouville theoremwere proved for completeKählerman-
ifolds with B⊥ ≥ 0 and nonnegative Ricci curvature. Note that the nonnegativity of the holo-
morphic sectional curvature does not imply Ric ≥ 0 as shown by Hitchin’s examples [10].

Clearly the lower bound on holomorphic sectional curvature, on orthogonal bisectional
curvature, and on bisectional curvature, are quite different assumptions. There are unitary
symmetric metrics on C

m with nonnegative orthogonal bisectional curvature (abbreviated as
(NOB)) but not with nonnegative bisectional curvature. There even exists algebraic Kähler
curvature R with nonnegative holomorphic sectional curvature and nonnegative orthogonal
bisectional curvature, but not nonnegative bisectional curvature [30].

There is yet another notion weaker than B⊥ called quadratic orthogonal bisectional
curvature, or quadratic bisectional curvature for short, denoted as Q B, which is defined for
any real vector {ai }m

i=1 and any unitary frame {Ei } of T ′M , Q B(a) = ∑
i, j Ri ī j j̄ (ai − a j )

2.
Invariantly it can be formulated as a quadratic form (in terms of a curvature operator R)
acting on Hermitian symmetric tensors {A} as
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151 Page 4 of 31 L. Ni, F. Zheng

Q BR(A) � 〈R, A2∧̄id − A∧̄A〉.
Interested readers can refer to [22] for the notations involved. Its nonnegativity, abbreviated
as (NQOB), means that Q B(a) ≥ 0 for any a and any unitary frame {Ei }. This curvature
condition was formally introduced by Wu et al. [36], although it appeared implicitly in the
work of Bishop and Goldberg [1] in 1965 already (see also [6]), where they showed that
compact Kähler manifold with positive bisectional curvature must have its second Betti
number equal to 1. The first example of compact Kähler manifold with (NQOB) but not
(NOB) was established by Li et al. [16], and shortly after, Chau and Tam [4] fully classified
all (NQOB) Kähler C-spaces of classical types. See also [22] for the role of (NQOB) in
solving the Poincaré–Lelong equation on complete Kähler manifolds.

The notion of antiholomorphic Ricci curvature Ric⊥(X , X) (for any real vector X ) was
coined for example in [18] but with no geometric implication of it was given. It is defined as

Ric⊥(X , X) =
∑

R(X , ei , ei , X) = Ric(X , X) − 1

|X |2 R(X , C(X), C(X), X),

where {ei } is any orthonormal frame of {X , C(X)}⊥. In view of the above notions of (NOB)
and (NQOB) it seems more sensible to called it orthogonal Ricci curvature. Let Ei =
1√
2
(ei − √−1C(ei )) be a unitary frame such that e1 = X

|X | = X̃ . Following the convention

en+i = C(ei ), direct calculation shows that
1

|X |2 Ric⊥(X , X) = Ric⊥(X̃ , X̃) = Ric(X̃ , X̃) − R(X̃ , C(X̃), C(X̃), X̃)

= Ric(E1, E1) − R(E1, E1, E1, E1) =
m∑

j=2

R(E1, E1, E j , E j ).

Hence Ric⊥(X̃ , X̃) = Ric(E1, E1) − R11̄11̄. Here Ric(Ei , Ei ) = Ric(ei , ei ) is used. In
some sense Ric⊥ is the trace of B⊥ as Ricci being the trace of bisectional curvature.

By Proposition 3.1 of [12] (see also [23]), (NQOB) implies that Ric⊥ ≥ 0. On the other
hand, the example constructed in [12] shows that there exist some unitary symmetric metrics
on C

m with nonnegative quadratic orthogonal bisectional curvature (hence the orthogonal
Ricci curvature is nonnegative), but the Ricci curvature is negative somewhere. In the later
sections of this paper we show examples of metrics with even nonnegative orthogonal bisec-
tional curvature (which is stronger than the (NQOB)), while its Ricci curvature, as well as the
holomorphic sectional curvature, can be negative somewhere. This shows that the Ric⊥(·, ·)
is a sensible notion for Kähler manifolds, and is different from the Ricci tensor. Nevertheless
(NQOB) does imply the nonnegativity of the scalar curvature as shown in [4,23]. In this
conjunction we have

Lemma 1.1 The nonnegative orthogonal Ricci curvature implies the nonnegativity of the
scalar curvature S. In fact there exists the following pointwise estimate for m ≥ 2:

S(y) ≥ 2m(m + 1)

m − 1
min

Z∈S2m−1
y ⊂T ′ M

Ric⊥(Z , Z).

Since (NQOB) implies Ric⊥ ≥ 0, Lemma 1.1 implies the result on the nonnegativity of the
scalar curvature in [4,23].

Given any fixed point p, let ρ(x) be the distance function to p. The Hessian of ∇2ρ(·, ·)
can be extended bi-linearly to TC

p M . Direct calculation shows that

∇2ρ(Ei , Ei ) = 1

2

(∇2ρ(ei , ei ) + ∇2ρ(C(ei ), C(ei ))
)
.
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This shows that �ρ = ∑m
i=1 ∇2ρ((Ei , Ei ) = 1

2

∑m
i=1

(∇2ρ(ei , ei ) + ∇2ρ(C(ei ), C(ei ))
)
.

Here {Ei } is a unitary frame. We define �⊥ the orthogonal Laplacian to be

�⊥ρ = �ρ − ∇2ρ(Z , Z)

where Z = 1√
2
(∇ρ − √−1C(∇ρ)). We call ∇2ρ(Z , Z) for Z = 1√

2
(∇ρ − √−1C(∇ρ))

the holomorphic Hessian of ρ, and denote it by ∇2
H ρ.

Note that one can define ∇2
H f for any real-valued function f , if one replaces Z by

1√
2
(∇ f −√−1C(∇ f )). The first comparison theorem we prove is on the orthogonal Lapla-

cian assuming the orthogonal Ricci curvature comparison (and the holomorphic Hessian
comparison for distance function to a complex submanifold assuming the holomorphic sec-
tional curvature comparison).

Theorem 1.1 (i) Let (Mm, g) be a Kähler manifold with Ric⊥ ≥ (m − 1)λ. Let (M̃, g̃) be
the complex space form with constant holomorphic sectional curvature 2λ. Let ρ(x) be the
distance function to a point p (and ρ̃ be the corresponding distance function to a point p̃).
Then for point x, which is not in the cut locus of p,

�⊥ρ(x) ≤ �⊥ρ̃ |ρ̃=ρ(x) = (m − 1) cot λ
2
(ρ).

(ii) Let (Mm, g) be a Kähler manifold with holomorphic sectional curvature H ≥ 2λ. Let
(M̃, g̃) be the complex space form with constant holomorphic sectional curvature 2λ. Let
ρ(x) (ρ̃) be the distance function to a complex submanifold P in M (P̃ in M̃). Then for x
not in the focal locus of P,

∇2
Hρ

∣∣
x ≤ ∇2

Hρ̃
∣∣
ρ̃=ρ(x)

.

In particular, if λ = 0 and P̃ is a point

∇2
Hρ(x)

∣∣
x ≤ 1

2ρ(x)
⇐⇒ ∇2

H log ρ ≤ 0.

Remark 1.2 The part (ii) was proved by Liu [17] for the case that P and P̃ are two points.
The results above provide generalizations of the comparison theorem proved in [15,17].
Besides the point that the proof here uses a different argument, more importantly, the results
signify the geometric implications of orthogonal Ricci curvature and holomorphic sectional
curvature. It is interesting to ask if similar comparison result hold for the heat kernels.

If both assumptions in (i) and (ii) are satisfied, the estimates in Theorem 1.1 implies the
volume comparison as in [15].

Corollary 1.3 Assume that (Mm, g) satisfies that Ric⊥ ≥ (m − 1)λ and H ≥ 2λ. Then for
any points x ∈ M, x̃ ∈ M̃, �ρ(x) ≤ �ρ̃|ρ(x), and for any 0 < r ≤ R,

V ol(B(x, R))

V ol(B(x, r))
≤ V ol(B̃(x̃, R))

V ol(B̃(x̃, r))

where B̃(x̃, R) is the ball in the complex space form. Equality holds if and only if B(x, R) is
holomorphic-isometric to the ball in the complex space form.

Note that Ric⊥ ≥ λ together with H ≥ 2λ implies the Ricci lower bound Ric(X , X) ≥
(m +1)λ|X |2. But the volume comparison in the Kähler case is sharper than the Riemannian
case assuming the same Ricci lower bound.
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151 Page 6 of 31 L. Ni, F. Zheng

The first part of Theorem 1.1 can be generalized to the cases of complex hypersurfaces,
which can be viewed as the Kähler version of Heintze–Karcher theorem [9] with the assump-
tion on the Ricci curvature being replaced by the orthogonal Ricci.

Theorem 1.4 Let (Mm, g) be a Kähler manifold with Ric⊥ ≥ (m − 1)λ. Let (M̃, g̃) be
the complex space form with constant holomorphic sectional curvature 2λ. Let ρ(x) be the
distance function to a complex hypersurface P (and ρ̃ be the corresponding distance function
to a totally geodesic complex hypersurface P̃). Then for point x, which is not in the focal
locus of P,

�⊥ρ(x) ≤ �⊥ρ̃ |ρ̃=ρ(x) = (m − 1) tan λ
2
(ρ).

Note that tan λ
2
(t) is a little different from the conventional trigonometric function. In fact

for λ > 0, tan λ
2
(t) = −

√
λ
2 · sin(

√
λ
2 t)

cos(
√

λ
2 t)

. The above result strengthens that the sensible notion

Ric⊥ is related to the orthogonal Laplacian �⊥. If one assumes additionally the bound on
the holomorphic sectional curvature, then one has the level hypersurface area comparison
result similar to that of [9], but sharper than the Riemannian setting due to Kählerity.

Similarly one can consider the orthogonal Hessian of a real function u to be ∇2u(Z , Z)

restricted to the space consisting of all Z ⊥ {∇u, C(∇u)}. By now it is natural to infer that
the orthogonal bisectional curvature gives comparison theorem for the orthogonal Hessian.

Theorem 1.5 Let (Mm, g) be a Kähler manifold with R(Z , Z , W , W ) ≥ λ|Z |2|W |2 for
any Z ⊥ W (namely the orthogonal bisectional curvature is bounded from the below by
λ, which we abbreviate as B⊥ ≥ λ). Let (M̃, g̃) be the complex space form with constant
holomorphic sectional curvature 2λ. Let ρ(x) be the distance function to a point p (and ρ̃

be the corresponding distance function to a point p̃). Then for point x, which is not in the cut
locus of p, restricted to the spaces of vectors Z which are perpendicular to {∇ρ, C(∇ρ)}
(as well as to {∇ρ̃, C(∇ρ̃)})

∇2ρ(x) ≤ ∇2ρ̃ |ρ̃=ρ(x) .

A similar argument as in the classical Bonnet-Myers theorem implies that any complete
Kähler manifold whose Ric⊥ is bounded from below by a positive constant must be compact.
This implies that any compact Kähler manifold with positive orthogonal Ricci curvaturemust
have finite fundamental group.

In the followingwewill focus on the relation between the holomorphic sectional curvature
H , the Ricci curvature Ric, and the orthogonal Ricci curvature Ric⊥. In terms of their
strength, all three notions of curvature are sitting between bisectional curvature and scalar
curvature, in the sense that when the bisectional curvature is positive, all three are positive,
while when any one of them is positive, the scalar curvature is positive.

However, the relationship between these three curvature conditions is quite subtle, except
the fact that Ric = H + Ric⊥. By Yau’s solution to the Calabi conjecture [40], compact
Kähler manifolds with positive Ricci are exactly the projective manifolds with positive first
Chern class, namely the Fano manifolds.

For compact Kähler manifolds with positive H , it was conjectured by Yau (cf. Problem
47, [41]), and recently proved by Yang [38] that such manifolds are all projective. Hence by
the recent work of Heier and Wong [8] (see also [38] for an alternative proof) they are all
rationally-connected, meaning that any two points on the manifold can be joined by a rational
curve. On the other hand, it was conjectured by Yau also that any rational or unirational
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Comparison and vanishing theorems for Kähler manifolds Page 7 of 31 151

manifold admits Kähler metrics with positive H . But this is far from being settled, as even
on the surface P

2#2P2, the blowing up of P
2 at two points, it is still an open question whether

there exists such a metric.
It is now a natural question to understand the class of compact Kähler manifolds with

positive Ric⊥. We propose the following:

Conjecture 1.6 Let Mm (m ≥ 2) be a compact Kähler manifold with Ric⊥ > 0 everywhere.
Then for any 1 ≤ p ≤ m, there is no non-trivial global holomorphic p-form, namely, the
Hodge number h p,0 = 0. In particular, Mm is projective and simply-connected.

Let us first explain the “in particular” part in the above conjecture. Note that once we
have the vanishing of h p,0 for all 1 ≤ p ≤ m, then the vanishing of h2,0 implies that Mm is
projective. Also, now since

χ(OM ) = 1 − h1,0 + h2,0 − · · · + (−1)mhm,0 = 1,

whereOM is the structure sheaf, we know that such amanifold Mm must be simply-connected
since π1(M) is finite, and the Riemann-Roch theoremwhich asserts that the arithmetic genus
χ is given as the integral over M of a polynomial in Chern classes, as in [13].

We remark that for Mm in the conjecture, h1,0 = 0 since π1(M) is finite, and hm,0 = 0
since Mm has positive scalar curvature, thus the canonical line bundle cannot admit any
non-trivial global holomorphic section. In fact, its Kodaira dimension must be −∞ as it has
positive total scalar curvature. So the conjecture is really about the cases 2 ≤ p ≤ m − 1.
When m = 2, the only compact Kähler surface with positive Ric⊥ is (biholomorphic to) P

2.
This is because Ric⊥ is equivalent to orthogonal bisectional curvature B⊥ when m = 2. By
Gu and Zhang [7], any compact, simply-connected Kähler manifold Mm with positive B⊥
is biholomorphic to P

m since the Kähler-Ricci flow takes any such metric into a metric with
positive bisectional curvature (see also an alternate argument in [34]). It is an interesting to
understand the class of threefolds or fourfolds with the Ric⊥ > 0 condition (see [25] for
progresses in this direction). Towards the conjecture we prove the following partial result.

Theorem 1.7 Let Mm (m ≥ 2) be a compact Kähler manifold with Ric⊥ > 0 everywhere.
Then its Hodge numbers hm−1,0 = h2,0 = 0. In particular, Mm is always projective. Also, it
is simply-connected when m ≤ 4.

In Sect. 4 a stronger result is obtained. Namelywe prove that h2,0 = 0 (hence M is projective)
if the average of Ric⊥ over any complex plane is positive (or S⊥

2 > 0). An analogous result
for 2-scalar curvature was proved recently by authors [26].

For compact manifolds with Ric⊥ < 0, one can obtain the following analogue of a result
of Bochner [35], which implies the finiteness of the automorphism group of such manifolds.

Proposition 1.1 Let Mm be a compact Kähler manifold with Ric⊥ < 0. Then Mm does not
admit any nonzero holomorphic vector field.

It is an interesting question to find out whether or not such a manifold is projective, and
under what circumstance it admits a metric of negative Ricci curvature. That is, when its first
Chern class is negative, or equivalently when its canonical line bundle is ample.

Examples of Kähler metrics concerning various curvatures mentioned above and their
relations can be found in Sects. 4–8. Among them we construct unitary complete Kähler
metrics on C

m which have (NOB), positive Ricci, but negative holomorphic sectional cur-
vature somewhere. This answers affirmatively a question raised recently in [21] (this also
shows that the Liouville result in [21] is independent of that of [17]).

123



151 Page 8 of 31 L. Ni, F. Zheng

2 Proof of comparisons

We first prove Lemma 1.1. It is an easy consequence of a result of Berger.

Proof By a formula due to Berger, at any point p ∈ M , a Kähler manifold,

S(p) = m(m + 1)

V ol(S2m−1)

∫

|Z |=1,Z∈T ′
p M

H(Z) dθ(Z).

On the other hand it is easy to check that

S(p) = 2m

V ol(S2m−1)

∫

|Z |=1,Z∈T ′
p M

Ric(Z , Z) dθ(Z).

They imply that

m − 1

2m(m + 1)
S(p) = 1

V ol(S2m−1)

∫

|Z |=1,Z∈T ′
p M

Ric⊥(Z , Z) dθ(Z). (2.1)

The claimed result follows from (2.1) easily. ��
One can also prove the following estimate on the holomorphic sectional curvature in terms
of the orthogonal Ricci curvature.

Corollary 2.1 When m ≥ 2, at any point p, for unitary Z ∈ T ′
p M with Hp(Z) =

max|W |=1 Hp(W ),

Hp(Z) ≥ 2

m − 1
Ric⊥(Z , Z).

In fact for any W which is perpendicular to Z, Hp(Z) ≥ 2R(Z , Z , W , W ). Similarly if
unitary Z ′ ∈ T ′

p M satisfying Hp(Z ′) = min|W |=1 Hp(W ), then for unitary W ⊥ Z ′

Hp(Z ′) ≤ 2R(Z ′, Z ′, W , W ); Hp(Z ′) ≤ 2

m − 1
Ric⊥(Z ′, Z ′).

Proof For any complex number a, b and Z , W ∈ T ′
p M , it is easy to check that

H(aZ +bW ) + H(aZ −bW ) + H(aZ +√−1bW ) + H(aZ −√−1bW )

= 4|a|4H(Z) + 4|b|4H(W ) + 16|a|2|b|2R(Z , Z , W , W ).

For the unitary vector Z and W we choose a, b such that |a|2 + |b|2 = 1. Then if Z attains
the maximum of the holomorphic sectional curvature, for W ⊥ Z ,

4H(Z) ≥ 4|a|4H(Z) + 4|b|4H(W ) + 16|a|2|b|2R(Z , Z , W , W ).

The estimate H(Z) ≥ 2R(Z , Z , W , W ) follows from the above. The claim on the orthogonal
Ricci follows easily. For the minimal holomorphic sectional curvature, one can simply flip
the above argument. A more direct approach is to consider function f (θ) = H(cos θ Z ′ +
sin θW ). The second derivative test applying to f (θ) and the one replacing W by

√−1W
implies the claimed estimate. ��

Before we prove the comparison theorem, let us recall some basics regarding the normal
geodesics, the Jacobi fields with respect to a submanifold, the distance function and the
tubular hypersurface with respect to a Riemannian submanifold P (only later we assume that
P is a complex submanifold). LetN (P) denote the normal bundle of P . For any section ν(x)
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Comparison and vanishing theorems for Kähler manifolds Page 9 of 31 151

of the normal bundle the exponential map expP can be defined as expx (ν(x)). First recall
the concept of the P-Jacobi field along a normal geodesic γu(η) with u = γ ′(0) ⊥ P at
p = γ (0). A Jacobi field J (η) is called a P-Jacobi field along P if it satisfies J (0) ∈ Tp P
and J ′(0) − Aγ ′(0) J (0) ⊥ Tp P , where Au(·) is the shape operator in the normal direction
u. It is easy to check that if γ (η, t) is a family of normal geodesics, with γ (0, t) ∈ P
and Dγ

∂η
(0, t) ∈ T ⊥

γ (0,t) P , J (η) = D
∂t γ (η, 0) is a P-Jacobi field. An elementary fact is that

d expP

∣∣
�u is degenerate if any only if there exists a non-zero P-Jacobi field J (η) such that

J (�) = 0. The point γu(�) is called a focal point (with respect to P). The boundary operator
D J
∂η

− Aγ ′(0) J (0) also arises from the second variation of the energy for a variation of pathes
γ (η, t) with the initial points in P and a fixed end point:

d2

dt2

∣∣∣∣
t=0

E(γ ) =
∫ �

0
|∇ X |2 − 〈R(X , γ ′)γ ′, X〉 dη + 〈Aγ ′(0)(X(0)), X(0)〉

with X = Dγ
∂t (η, 0) being the tangent vector. Here E(γ ) = ∫ �

0 | Dγ
∂η

|2 dη. The polarization of
the right hand side is called the index form. Namely the index form I (X , Y ) is given by

I (X , Y ) =
∫ �

0
〈∇ X ,∇Y 〉 − 〈R(X , γ ′)γ ′, Y 〉 dη + 〈Aγ ′(0)(X(0)), Y (0)〉

−〈Aγ ′(�)(X(�)), Y (�)〉.
Here the second boundary term enters only for the more general case that the ending points
γ (�, t) lying inside another submanifold P ′. Allowing this flexibility is useful in [24,29], but
not needed when consider the distance function ρ(x). We denote the index form (along γ )
with P ′ being a point as I P

γ (·, ·) (otherwise we denote it as I P,P ′
γ (·, ·)).

An easy but useful observation is the following relation between theHessian of the distance
function and the index form. Namely

Hessian(ρ)|ρ(x)=� (X , Y ) = I I∇ρ(X , Y ) = I P
γ [0,�](J1, J2) (2.2)

if Ji (η) are P-Jacobi fields (in the case P = {p} a point the assumption is equivalent to
Ji (0) = 0) and J1(�) = X , J2(�) = Y . Here I I denotes the second fundamental form of
hypersurface {x | ρ(x) = �}. In short the Hessian of ρ, restricted to the subspace perpendicu-
lar to ∇ρ, is the same as the index form, which in turn is the same as the second fundamental
form of the tubular hypersurface (of P) with respect to the unit exterior normal ∇ρ.

Another useful result is the index comparison lemma.

Lemma 2.1 Assume that γ : [0, �] is a normal geodesic originated from P. Assume that
there exists no focal point along γ . Let X and Y be two vector fields along γ with X being a
P-Jacobi field, such that Y (0) ∈ Tγ (0) P and X(�) = Y (�). Then

I P
γ (X , X) ≤ I P

γ (Y , Y ).

The equality holds if any only if Y (η) = X(η) for η ∈ [0, �].
One can refer to [28] (cf. Chapter III, Lemma 2.10) for a proof of this lemma. In fact for
any such Y , there exists a P-Jacobi field X such that Y (�) = X(�). An alternate proof is
the following. First the index form can be used (replacing the Dirichlet energy) to define a
Reilly quotient on the vector fields which are perpendicular to γ ′(η) and are tangent to the
submanifolds (in the case P ′ = {x0}, requiring vanishing boundary at γ (�)) at both ends.
Then clearly the associated infinimum, namely the associated eigenvalue (which satisfies a
Robin boundary condition at η = 0 and Dirichlet condition at η = �) is very positive for
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� small. The positivity remains until a zero eigenvalue, namely a conjugate point (which
is defined as when a non-zero eigenvector satisfying the Euler-Lagrange equation of the
index form with suitable boundary condition, namely a P-Jacobi vector, can be obtained) is
reached.

For complex space form a useful lemma is the following.

Lemma 2.2 If (M̃m, g) is a Kähler manifold with constant holomorphic sectional curvature
2λ. Let n = 2m be the real dimension and {ẽi } be a orthonormal then

Rẽn ,ẽk ẽn = λ

2
ẽk, if ẽk ⊥ ẽn, C(ẽn); Rẽn ,ẽk ẽn = 2λẽk, if ẽk = C(ẽn).

If one only wants a formula in the right hand side of the comparison, and does not care about
the geometric meanings of the right hand side (such as in [17]), one does not need the above
lemma.

Nowwe can proveTheorem1.1.Assume that γ (η) and γ̃ (η) are twominimizing geodesics
in M and M̃ . At γ (�), let {ei }n=2m

i=1 be an orthonormal frame with e2k = C(e2k−1), and
en = ∇ρ and en−1 = −C(en) (namely en = C(en−1)). By the definition, �⊥ρ =
1
2

∑2m−2
i=1 ∇2ρ(ei , ei ). Let {ẽi } be the corresponding frame at γ̃ (�). Parallel transplant them

along γ and γ̃ . By Lemma 2.2, the Jacobi fields are given by J̃i (η) =
S 1
2 λ

(η)

S 1
2 λ

(�)
ẽi (η) , for

1 ≤ i ≤ 2m − 2, and J̃i (η) = S2λ(η)
S2λ(�)

ẽi (η) for i = 2m − 1. Here

Sκ (t) �

⎧
⎪⎨
⎪⎩

1√
κ
sin

√
κt, κ > 0,

t, κ = 0,
1√|κ| sinh

√|κ|t, κ < 0;
S′
κ (t) � d

dt
Sκ (t); cotκ (t) = S′

κ (t)

Sκ (t)
.

Transplant { J̃i (η)}2m−2
i=1 along γ (η) by letting J i (η) =

S 1
2 λ

(η)

S 1
2 λ

(�)
ei (η)we obtain 2m −2 orthog-

onal vector fields along γ (η) with J i (�) = ei (�) and J i (0) = 0. Let Ji (η) be the Jacobi
fields with Ji (�) = ei . Then

2�⊥ρ

∣∣∣
ρ(x)=�

=
2m−2∑
i=1

〈J ′
i (�), Ji (�)〉 =

2m−2∑
i=1

Iγ [0,�](Ji , Ji );

2�⊥ρ̃

∣∣∣
ρ̃(x)=�

=
2m−2∑
i=1

〈 J̃ ′
i (�), J̃i (�)〉 =

2m−2∑
i=1

Iγ̃ [0,�]( J̃i , J̃i ).

The curvature assumption, together with the initial conditions Ji (0) = J̃i (0) = 0, implies
that

2m−2∑
i=1

Iγ [0,�](J i , J i ) ≤
2m−2∑
i=1

Iγ̃ [0,�]( J̃i , J̃i ).

The result then follows from the index form comparison Lemma 2.1. This completes the
proof on the comparison of �⊥ρ.

To prove the comparison on the complex Hessian, note that ∇2ρ(Z , Z) = 1
2∇2

ρ(en−1, en−1), where Z = 1√
2

(∇ρ − √−1C(∇ρ)
)
. Now let J n−1(η) = S2λ(η)

S2λ(�)
en−1 as

before. It is easy to check that J n−1(0) = 0 and J
′
n−1(0) ⊥ Tγ (0) P (no need to check this

123



Comparison and vanishing theorems for Kähler manifolds Page 11 of 31 151

for the previous case since P = {x0} being a point). Now the assumption on the holomorphic
sectional curvature implies that

Iγ [0,�](J n−1, J n−1) ≤ Iγ̃ [0,�]( J̃n−1, J̃n−1).

The claimed result again follows from the index form comparison Lemma 2.1.

3 Extensions

First we prove the Theorems 1.4 and 1.5. The proof of Theorem 1.5 follows verbatim as
the proof of Theorem 1.1. For Theorem 1.4, we construct of the vector fields {J i } satisfying
different boundary conditions at η = 0. First we define

Cκ (t) �

⎧
⎪⎨
⎪⎩

1√
κ
cos

√
κt, κ > 0,

1, κ = 0,
1√|κ| cosh

√|κ|t, κ < 0;
C ′

κ (t) � d

dt
Cκ (t); tanκ (t) = C ′

κ (t)

Cκ (t)
.

Now we let J i (η) =
C λ

2
(η)

C λ
2
(�)

ei (η). Since at η = 0, en(0) = γ ′(0) and en−1(0) = C(γ ′(0))

are perpendicular to P , {ei (0)}2m−2
i=1 are tangent to P . Since P is minimal

2m−2∑
i=1

〈Aγ ′(0)(J i (0)), J i (0)〉 = 0.

Hence (if we adapt the Einstein convention)

2m−2∑
i=1

Iγ [0,�](J i , J i ) =
∫ �

0
‖J

′
i‖2 − 〈RJ i ,γ

′γ ′, J i 〉

= 1

C2
λ
2
(�)

∫ �

0
(2m − 2)(C ′

λ
2
)2 − C2

λ
2

Ric⊥(γ ′, γ ′).

Then Theorem 1.4 follows from the index comparison Lemma 2.1 and direct calculation of
the right hand above (for

∑2m−2
i=1 Iγ̃ [0,�]( J̃i , J̃i )).

The argument above can be extended to the case that P is a Levi-flat real hypersurface,
observing that the boundary term vanishes due to the Levi-flatness (cf. [24]).

Corollary 3.1 Let (Mm, g) be a Kähler manifold with Ric⊥(X , X) ≥ (m − 1)λ|X |2. Let
(M̃, g̃) be the complex space form with constant holomorphic sectional curvature 2λ. Let
ρ(x) be the distance function to a real Levi flat hypersurface P (and ρ̃ be the corresponding
distance function to a totally geodesic complex hypersurface P̃). Then for point x, which is
not in the focal locus of P,

�⊥ρ(x) ≤ �⊥ρ̃ |ρ̃=ρ(x) = (m − 1) tan λ
2
(ρ).

In [33], it was proved that if a Kähler manifold (Mm, g) has positive lower bound 2λ on
its holomorphic sectional curvature, then it must be compact with diameter bounded from
above by π√

2λ
. The following generalizes this slightly.
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Proposition 3.1 Let (Mm, g) be a compact Kähler manifold with holomorphic sectional
curvature bounded from below by 2λ > 0. Then for any geodesic γ (η) : [0, �] → M with
length � > π√

2λ
, the index i(γ ) ≥ 1.

Proof Let en−1(η) = C(γ ′(s)). Let X(η) = sin
(

π
�
η
)

en−1(η). Then

I (X , X) =
∫ �

0

(π

�

)2
cos2

(π

�
η
)

− sin2
(π

�
η
)

〈RC(γ ′),γ ′γ ′, C(γ ′)〉

≤
(π

�

)2 ∫ �

0
cos2

(π

�
η
)

− 2λ
∫ �

0
sin2

(π

�
η
)

< 0.

This proves the claim. ��
Moreover it was also proved in [33] that M must be simply-connected. The following is a
generalization on the simply-connectedness.

Proposition 3.2 Let (Mm, g) be a compact Kähler manifold with positive holomorphic sec-
tional curvature. Then any holomorphic isometry of M must have at least one fixed point.

Proof Assume that there exists such a map φ : M → M with no fixed point. Then there
exists p such that d(p, φ(p)) = minq∈M d(q, φ(q)). Let γ be the minimal geodesic joining
p to φ(p) with � being the length. First observe that dφ(γ ′(0)) = γ ′(�). This follows from
the triangle inequality and the estimate:

d(γ (η), φ(γ (η))) ≤ d(γ (η), φ(p)) + d(φ(p), φ(γ (η)))

= d(γ (η), φ(p)) + d(p, γ (η)) = d(p, φ(p)).

Now let en = γ ′(η). Let en−1 = C(en). Clearly en−1(η) is parallel. On the other hand,
en−1(0) = C(γ ′(0)), en−1(�) = C(γ ′(�)) = C(dφ(γ ′(0))) = dφ(en−1). This shows
that if β(s) is a geodesic starting from p with β ′(0) = en−1, β̃(s) = φ(β(s)) will be
a geodesic starting from γ (�) with β̃ ′(0) = en−1(�). Consider the variation γ (η, s) =
expγ (η)(sen−1(η)). The second variation formula on the energy E(s) = 1

2

∫ �

0 | ∂γ
∂η

|2 gives
that

d2

ds2
E(0) = −

∫ �

0
〈Ren−1,γ ′γ ′, en−1〉 < 0.

This contradicts to that γ0(η) = γ (η, 0) is lengthminimizing (hence also energyminimizing)
among all γs(η) = γ (η, s), which joins β(s) to β̃(s) = φ(β(s)). ��

Regarding to the diameter estimate we have the following result under the assumption of
the orthogonal Ricci lower bound, whose proof is the same as that of Myers’ theorem.

Theorem 3.2 Let (Mm, g) be a Kähler manifold with Ric⊥(X , X) ≥ (m − 1)λ|X |2 with

λ > 0. Then M is compact with diameter bounded from the above by
√

2
λ

· π . Moreover, for

any geodesic γ (η) : [0, �] → M with length � >

√
2
λ

· π , the index i(γ ) ≥ 1.

Note that this estimate is not sharp for Fubini-Study metrics. It is an interesting question
whether or not a compact Kähler manifold with positive orthogonal Ricci curvature is simply-
connected. The case for Ricci curvature is a theorem of Kobayashi [13]. The following result
provides a generalization of a result of Tam and Yu [31].
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Corollary 3.3 Assume that (Mm, g) satisfies that Ric⊥(X , X) ≥ (m −1)λ|X |2 and H(X) ≥
2λ|X |4 with λ > 0. Assume that there exists a complex hypersurface P and a point Q ∈ M
such that d(P, Q) = π√

2λ
. Then (Mm, g) is holomorphic-isometric to a complex projective

space with Fubini-Study metric.

Proof Without the loss of generality we let λ = 2. Under the assumption, it is known that
d(P, Q) ≤ π

2 . The assumption and the comparison theorems proved above implies that the
area element with respect to level circle of a complex hypersurface over the area element of
the level circle of CP

m−1 ⊂ CP
m , and the area element with respect to the level spheres (to

a point) over that of sphere in CP
m are all monotone decreasing. This shows that for any

� ∈ (0, π
2 ), B(P, �) ∩ B(Q, π

2 − �) = ∅ and

1 ≥ V ol(B(P, �))

V ol(M)
+ V ol(B(Q, π

2 − �))

V ol(M)

≥ 1

V ol(CP
m)

(∫

CP
m−1

∫ �

0
2π cos2m−1 t · sin t dt +

∫

S2m−1

∫ π
2 −�

0
sin2m−1 t · cos t dt

)

= 1.

The claimed rigidity follows from the equality case in the volume/area comparison as in the
Riemannian case. ��

4 Proof of the vanishing theorem

In this sectionwe prove Theorem 1.7. In [38], it was proved that any compact Kählermanifold
Mm with positive holomorphic sectional curvature H satisfies h p,0 = 0 for all 1 ≤ p ≤ m,
using a form version of the Bochner identity. By employing this method we prove that, under
the Ric⊥ > 0 condition, hm−1,0 = h2,0 = 0.

Let s be a global holomorphic p-form on Mm . A Bochner identity (cf. Ch III, Proposition
1.5 of [14], as well as Proposition 2.1 of [20]) gives

∂∂|s|2 = 〈∇s,∇s〉 − R̃(s, s, ·, ·)
where R̃ stands for the curvature of the Hermitian bundle

∧p
�, and � = (T ′M)∗ is the

holomorphic cotangent bundle of M . The metric on
∧p

� is derived from the metric of Mm .
It is useful to note that R̃ acts on (p, 0) forms as special case of the curvature action on

tensors. Precisely we have the following formula for any holomorphic (p, 0)-form s and any
given tangent direction v at the point x0, namely, there always exists a local frame {dzi }
which is unitary at a point x0, such that

〈√−1∂∂̄|s|2, 1√−1
v ∧ v̄〉 = 〈∇vs, ∇̄v̄ s̄〉 + 1

p!
∑

Ip

p∑
k=1

Rvv̄ik īk
|aIp |2, (4.1)

where s = 1
p!

∑
Ip

aIp dzi1 ∧ · · · ∧ dzi p and Ip = (i1, · · · , i p). The 〈·, ·〉 in the left hand side
is the scalar product between the (1, 1)-forms and their dual, instead of bilinear extension
of the Hermitian product. If M admits metric of positive holomorphic section curvature, the
second variation argument as in the proof of Corollary 2.1 implies that Rvv̄ik īk

> 0 for v,
a unit vector which attains the minimum of the holomorphic sectional curvature among all
unit vector w ∈ T ′

x0 M at the given x0. This is the argument of [38] proving the vanishing of
h p,0 under the positivity of the holomorphic sectional curvature.
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Now we adapt this to prove Theorem 1.7. As one can see by comparing, the argument is
a bit tricker under Ric⊥ > 0, particularly for (2, 0)-forms.

If s is not identically zero, then |s|2 will attain its nonzero maximum somewhere, say x0,
and at this point we have

R̃(s, s, v, v) ≥ 0

for any type (1, 0) tangent vector v ∈ Tx0 M . We want to show that this will contradict the
assumption Ric⊥ > 0 when either p = m − 1 or p = 2.

The p = m−1 case is easy. In a small neighborhood of x0,we canwrite s = f ϕ2∧· · ·∧ϕm ,
where f �= 0 is a function and {ϕ1, ϕ2, . . . , ϕm} are local (1, 0)-forms forming a coframe
dual to a local tangent frame {E1, . . . , Em}, which is unitary at x0. Since

R̃(s, s, v, v) = −| f |2
m∑

i=2

Riivv ≥ 0

for any tangent direction v, where R is the curvature tensor of M . If we take v = E1, we
would get Ric⊥(E1, E1) ≤ 0, a contradiction.

Now consider the p = 2 case. Suppose that s is a non-trivial global holomorphic 2-form
on Mm . Let r ≥ 1 be the largest positive integer such that the wedge product sr is not
identically zero. Since we already have hm,0 = hm−1,0 = 0, we know that 2r ≤ m − 2.

We will apply the ∂∂̄-Bochner formula to the 2r -form σ = sr . Let x0 be a maximum point
of |σ |2. At x0, let us write s = ∑

i, j fi jϕi ∧ ϕ j under any unitary coframe {ϕ j } which is
dual to a local unitary tangent frame {E j }. The m × m matrix A = ( fi j ) is skew-symmetric.
As is well-known (cf. [11]), there exists a unitary matrix U such that tU AU is in the block
diagonal form where each non-zero diagonal block is a constant multiple of E , where

E =
[

0 1
−1 0

]
.

In other words, we can choose a unitary coframe ϕ at x0 such that

s = λ1ϕ1 ∧ ϕ2 + λ2ϕ3 ∧ ϕ4 + · · · + λkϕ2k−1 ∧ ϕ2k,

where k is a positive integer and each λi �= 0. Clearly, k ≤ r since sk �= 0 at x0. If k < r ,
then σ = sr = 0 at x0, which is a maximum point for |σ |2, implying σ ≡ 0, a contradiction.
So we must have k = r . Thus σ = λϕ1 ∧ · · · ∧ ϕ2r , where λ = λ1 · · · λk �= 0. From the
Bochner formula, we get that

2r∑
i=1

Riivv ≤ 0 (4.2)

for any tangent direction v of type (1, 0) at x0. From this we shall derive a contradiction to
our assumption that Ric⊥ > 0.

Denote by W ∼= C
2r the subspace in T ′

x0 M spanned by E1, . . . , E2r . By letting v ∈ W ,
we see that the ‘Ricci’ of the restriction R|W of the curvature tensor R on W is nonpositive,
thus the ‘scalar’ curvature of R|W is also nonpositive:

S|W =
2r∑

i, j=1

Rii j j ≤ 0. (4.3)
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On the other hand, for each 1 ≤ j ≤ 2r , Ric⊥(E j , E j ) > 0. By adding them up, we get

0 <

2r∑
j=1

Ric⊥(E j , E j ) =
∑

1≤i �= j≤2r

Rii j j +
2r∑

j=1

m∑
�=2r+1

R j j��. (4.4)

By applying (4.2) to v = E� for each �, we know that the second term on the right hand side
of (4.4) is nonpositive, therefore we get

∑
1≤i �= j≤2r

Rii j j = S|W −
2r∑

i=1

H(Ei ) > 0. (4.5)

Note that for any P ∈ U (2r), if we replace {E1, . . . , E2r } by {Ẽ1, . . . , Ẽ2r } where Ẽi =
Pi j E j , then the above inequality still holds. Taking the average integral

∫
over U (2r), and

using Berger’s lemma, we get

0 < S|W − 2r
∫

H(P E1) = S|W − 2r
2

2r(2r + 1)
S|W = 2r − 1

2r + 1
S|W ,

so S|W > 0, contradicting (4.3). This proves that h2,0 = 0 for any compact Kähler manifold
Mm with Ric⊥ > 0 everywhere, and we have completed the proof of Theorem 1.72.

The proof in fact yields the following more general result, which is in the same spirit of
the result in [26].

Corollary 4.1 The vanishing of Hodge number h2,0(M) follows if (M, g) is compact and for
any unitary pair {Ei }i=1,2 with E1 ⊥ E2

Ric⊥(E1, E1) + Ric⊥(E2, E2) > 0.

In particular, M is projective.

Modifying the argument also proves the following result which in fact is different from the
above corollary since Ric⊥(Z , Z) does not come from a Hermitian symmetric sesquilinear
form. Similar to [26], for any k-subspace � ⊂ T ′

x M , we define

S⊥
k (x, �) = k

∫

Z∈�,|Z |=1
Ric⊥(Z , Z) dθ(Z)

where
∫

f (Z) dθ(Z) denotes 1
V ol(S2k−1)

∫
S2k−1 f (Z) dθ(Z). We say S⊥

k (x) > 0 if for any

k-subspace � ⊂ T ′
x M , S⊥

k (x, �) > 0.

Theorem 4.2 Let (M, g) be a compact Kähler manifolds such that S⊥
2 (x) > 0 for any x ∈ M.

Then h2,0 = 0. In particular, M is projective.

Proof First it is easy to see that S⊥
l (x) > 0 implies that S⊥

k (x) > 0 for any k ≥ l. We observe
that, if � = span{E1, E2, · · · , El},
1

l
S⊥

l (x, �) =
∫

Z∈�,|Z |=1
Ric⊥(Z , Z) dθ(Z) =

∫

Z∈�,|Z |=1

(
Ric(Z , Z) − H(Z)

)
dθ(Z)

=
∫

1

V ol(S2m−1)

(∫

S2m−1

(
m R(Z , Z , W , W ) − H(Z)

)
dθ(W )

)
dθ(Z)

2 The projectivity follows from h2,0 = 0 and Theorem 8.3 of [19]
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= 1

V ol(S2m−1)

∫

S2m−1

(∫ (
m R(Z , Z , W , W ) − H(Z)

)
dθ(Z)

)
dθ(W )

= 1

l

(
Ric(E1, E1) + Ric(E2, E2) + · · · + Ric(El , El)

) − 2

l(l + 1)
Sl(x, �)

where Sl(x, �) is the scalar curvature of R restricted to � (cf. [26]). Now we adapt the
proof of Theorem 1.7 above. For W = span{E1, · · · , E2r } in the proof of Theorem 1.7, the
∂∂̄-Bochner formula, particularly (4.2), implies that S2r (x0, W ) ≤ 0. On the other hand (4.2)
also implies that

Ric(E1, E1) + Ric(E2, E2) + · · · + Ric(E2r , E2r ) = S2r (x0, W ) +
2r∑

j=1

m∑
�=2r+1

R j j��

≤ S2r (x0, W ).

Combining with the above calculation we have that

2r − 1

2r(2r + 1)
S2r (x0, W ) ≥ 1

2r
S⊥
2r (x0, W ) > 0.

The contradiction implies the theorem. ��
Note that it is well known that (cf. [14], Theorem 3.4 of Ch. 3) if Ric is k-positive, namely

min
unitary{Ei }

(
Ric(E1, E1) + Ric(E2, E2) + · · · + Ric(Ek, Ek)

)
> 0

for any x ∈ M , then h p,0 = 0 for any p ≥ k. It was recently proved in [26] that the same result
holds if Sk > 0. Given the above relation between S⊥

k (x), k-positivity of Ricci curvature, and
Sk(x), it is natural to conjecture that if S⊥

k (x) > 0 h p,0 = 0 for p ≥ k. Clearly an affirmative
answer to this question would imply Conjecture 1.6 in the introduction.

To prove Proposition 1.1, observe that for any holomorphic vector field s the ∂∂̄-Bochner
formula can be applied to obtain that

〈√−1∂∂̄|s|2, 1√−1
v ∧ w̄〉 = 〈∇vs, ∇̄w̄ s̄〉 − Rvw̄ss̄ .

If s is nonzero, as before at the point x0, where |s|2 attains its maximum we have that

Rvv̄ss̄ ≥ 0

for any direction v. Summing over an unitary basis of {s}⊥ we have a contradiction with
Ric⊥ < 0.

Next we examine the correlation between the positivity of the three curvatures: Ric, Ric⊥,
and H . First of all, we observe that the positivity of two of them does not imply that of the
third one, except the obvious case caused by Ric = Ric⊥ + H .

• Examples with Ric > 0, H > 0 but Ric⊥
� 0.

To see such an example, let us consider the surface M2 = P
2#P2, the blowing up of P

2

at one point. We have

M2 = {([z0 : z1 : z2], [w1 : w2]) ∈ P
2 × P

1 | z1w2 = z2w1}.
For λ > 0, let ωλ be the metric on M2 which is the restriction of

√−1∂∂ log(|z0|2 + |z1|2 + |z2|2) + λ
√−1∂∂ log(|w1|2 + |w2|2)
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on the product manifold P
2 ×P

1. By a straight forward computation, which will be included
in the “Appendix”, we will show that Ric > 0 everywhere if and only if λ > 1

2 , and H > 0
everywhere if and only if λ > 1. So for any λ > 1, we get an example with the desired
curvature condition. Note that the metric has Ric⊥

� 0. In fact, M2 does not admit any
Kähler metric with Ric⊥ ≥ 0 everywhere by the result of [7].

• Examples with Ric > 0, Ric⊥ > 0 but H � 0.
In later sections, wewill construct examples of completeU(m)-invariantKählermetrics on

C
m , such that itsRicci curvature andorthogonal bisectional curvature B⊥ are both everywhere

positive, yet the holomorphic sectional curvature H � 0. In fact, there are such examples
where H is negative in some tangent directions at every point outside a compact subset. Note
that as we mentioned before, B⊥ > 0 ⇒ Q B > 0 ⇒ Ric⊥ > 0.

We would also point out that, there are examples of Kähler metrics where one of these
three curvature is positive, while the other two are not.

• Examples with H > 0 but Ric � 0, Ric⊥
� 0.

For instance, consider the Hirzebruch surface Fn = P(OP1 ⊕ OP1(−n)) with n > 2. By
a well-known result of Hitchin [10], all Fn admit Kähler metric with H > 0 everywhere. On
the other hand, when n > 2, the first Chern class c1(Fn) � 0, so there is no Kähler metric
with Ric ≥ 0. There is no Kähler metric with Ric⊥ ≥ 0 either, by the result of [7].

• Examples with Ric > 0 but Ric⊥
� 0, H � 0.

To see such an example, we can simply take the previous example (see the “Appendix”
for details) of metric on P

2#P2 with the parameter λ in ( 12 , 1). In this case one has Ric > 0
everywhere, but H is negative somewhere in some directions. The surface does not admit
any metric with Ric⊥ ≥ 0 for the reason given above.

Note that on this surface, there are metrics with H > 0. In fact, it is conjectured by Yau
that any rational surface (or any rational manifolds in higher dimensions) admits Kähler
metric with H > 0 everywhere, although this is still open for most of the rational surfaces.

• Examples with Ric⊥ > 0 but Ric � 0, H � 0.
Examples of complete U(m)-invariant Kähler metrics on C

m with the above curvature
properties will be constructed in a later section. In fact the metric constructed will have
B⊥ > 0, but Ric < 0 and H < 0 for some directions at every point outside a compact
subset.

5 Examples–preliminary

We will follow the notations of [12,21,37]. Let g be a U(m)-invariant Kähler metric on C
m

with Kähler form ωg . Denote by (z1, . . . , zm) the standard holomorphic coordinates of C
m

and write r = |z1|2+· · ·+|zm |2. Since g isU(m)-invariant, one can writeωg = √−1∂∂ P(r)

for some smooth function P on [0,∞). Note that ωg > 0 means that the smooth functions
f = P ′ > 0 and h = (r f )′ > 0, and the metric is complete if and only if

∫ ∞

0

√
h

r
dr = ∞.

Herewe adapt the constructions in [12,21,37] to illustrate unitary symmetricmetrics onC
m

with various properties promised in the last section. The basic is the ansatz and computation
laid out in [37]. Below is a summary.

Wu and Zheng [37] considered the U(m)-invariant Kähler metrics on C
m and obtained

necessary and sufficient conditions for the nonnegativity of the curvature operator, nonneg-

123



151 Page 18 of 31 L. Ni, F. Zheng

ativity of the sectional curvature, as well as the nonnegativity of the bisectional curvature
respectively. Yang and Zheng [39] later proved that the necessary and sufficient condition in
[37] for the nonnegativity of the sectional curvature holds for the nonnegativity of the complex
sectional curvature under the unitary symmetry. Huang and Tam [12] obtained the necessary
and sufficient conditions for (NOB) and (NQOB) respectively. Moreover they constructed
a U(m)-invariant Kähler metric on C

m , which is of (NQOB), but does not have (NOB) nor
nonnegativity of the Ricci curvature. In [21], the construction was modified to illustrate an
example with (NOB), but the holomorphic sectional curvature is negative somewhere. In
later sections we will construct U(m)-invariant Kähler metrics on C

m which has (NOB) but
Ricci curvature is negative somewhere (this of course implies that holomorphic sectional
curvature must be negative somewhere). We will also construct examples which has (NOB)
and positive Ricci curvature, but the holomorphic sectional curvature is negative somewhere.

We follow the same notations as in [37,39]. Let (z1, · · · , zm) be the standard coordinate
on C

m and r = |z|2. An U(m)-invariant metric on C
m has the Kähler form

ω =
√−1
2

∂∂̄ P(r) (5.1)

where P ∈ C∞ ([0,+∞)). Under the local coordinates, the metric has the components:

gi j̄ = f (r)δi j + f ′(r)z̄i z j . (5.2)

We further denote:
f (r) = P ′(r), h(r) = (r f )′. (5.3)

It is easy to check that ω will give a complete Kähler metric on C
n if and only if

f > 0, h > 0,
∫ ∞

0

√
h√
r

dr = +∞. (5.4)

If h > 0, then ξ = − rh′
h is a smooth function on [0,∞) with ξ(0) = 0. On the other hand,

if ξ is a smooth function on [0,∞) with ξ(0) = 0, one can define h(r) = exp(− ∫ r
0

ξ(s)
s ds)

and f (r) = 1
r

∫ r
0 h(s) ds with h(0) = 1. It is easy to see that ξ(r) = − rh′

h . Then (5.2) defines
a U(m)-invariant Kähler metric on C

m .
The components of the curvature operator of a U(m)-invariant Kähler metric under the

orthonormal frame {E1 = 1√
h
∂z1 , E2 = 1√

f
∂z2 , · · · , Em = 1√

f
∂zm } at (z1, 0, · · · , 0) are

given as follows, see [37]:

A = R11̄11̄ = − 1

h

(
rh′

h

)′
= ξ ′

h
; (5.5)

B = R11̄i ī = f ′

f 2
− h′

h f
= 1

(r f )2

[
rh − (1 − ξ)

∫ r

0
h(s) ds

]
, i ≥ 2; (5.6)

C = Riīi ī = 2Riī j j̄ = −2 f ′

f 2
= 2

(r f )2

(∫ r

0
h(s) ds − rh

)
, i �= j, i, j ≥ 2. (5.7)

The other components of the curvature tensor are zero, except those obtained by the symmetric
properties of curvature tensor.

The following result was proved in [37], which plays an important role in the construction.

Theorem 5.1 (Wu–Zheng). (1) If 0 < ξ < 1 on (0,∞), then g is complete.
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(2) g is complete and has positive bisectional curvature if and only if ξ ′ > 0 and 0 < ξ < 1
on (0,∞), where ξ ′ > 0 is equivalent to A > 0, B > 0 and C > 0.

(3) Every complete U(m)-invariant Kähler metric on C
m with positive bisectional curva-

ture is given by a smooth function ξ in (2).

It was proved in [12,21,37] that the following result holds.

Proposition 5.1 Let g be a U(m)-invariant Kähler metric on C
m, with positive functions f ,

h on [0,∞) described as above. Then

(i) g has positive bisectional curvature ⇐⇒ A > 0, B > 0, C > 0 ⇐⇒ A > 0.
(ii) If m ≥ 3, then g has positive orthogonal bisectional curvature ⇐⇒ B > 0, C > 0,

A + C > 0.
(iii) If m ≥ 3, then g has positive orthogonal bisectional and positive Ricci curvature ⇐⇒

B > 0, C > 0, A + C > 0, A + (m − 1)B > 0.

Note that when m = 2, the positivity of the orthogonal bisectional curvature no longer
guaranteesC > 0, and the curvature condition for (ii) actually becomes B > 0 and A+C > 0;
while the condition for (iii) becomes B > 0, A + B > 0, C + B > 0, and A + C > 0. In
particular, the “⇐�” part of (ii) and (iii) are still valid when m = 2.

As noted in [37], there are plenty of metrics satisfying (i). In [12], the authors perturbed
metrics in (i) to obtainmetrics in (ii) that are not in (i). For case (iii), as well as the comparison
theorem proved earlier, the following questions are natural (the first question was raised in
([21]):
Questions. 1) Does there exist a complete U(m)-invariant Kähler metric on C

m with positive
orthogonal bisectional curvature, positive Ricci curvature, but does not have nonnegative
holomorphic sectional curvature? Namely, a metric g such that B, C , A + C , A + (m − 1)B
are positive functions on [0,∞), while A is negative somewhere.

2) Does there exist a complete U(m)-invariant Kähler metric on C
m with positive orthog-

onal bisectional curvature and negative Ricci curvature somewhere?
In [37], the authors used the ξ function to describe U(m)-invariant Kähler metrics on

C
m , which is defined by ξ = − rh′

h . Clearly, ξ is smooth on [0,∞) with ξ(0) = 0, and is
determined by g. Conversely, ξ determines h and f up to a positive constant multiple, and
as proved in [37], if 0 < ξ < 1 in (0,∞), then the metric g determined by ξ is complete.

In terms of ξ , the above question (i) can be rephrased (see the last paragraph of [21]) as
finding a smooth function ξ on [0,∞) with ξ(0) = 0 and 0 < ξ < 1 on (0,∞), such that
ξ ′ < 0 somewhere, yet

rh − (1 − ξ)

∫ r

0
h(s)ds > 0;

∫ r

0
h(s)ds − rh > 0;

ξ ′ + 2h

(r f )2

(∫ r

0
h(s)ds − rh

)
> 0;

ξ ′ + (m − 1)h

(r f )2

(
rh − (1 − ξ)

∫ r

0
h(s)ds

)
> 0

everywhere on (0,∞).
It is not obvious why such a function must exist. So we will resort to another characteri-

zation of U(m)-invariant metrics in §5 of [37] by the generating surface of revolution.
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6 Examples: a characterization

Let us first recall the characterization of U(m)-invariant metrics by surface of revolutions
given in §5 of [37]. Let g be a complete U(m)-invariant Kähler metric on C

m , with h, f
defined as before. Let us assume that h′ < 0 everywhere. Write ξ = − rh′

h , then we have
0 < ξ < 1 on (0,∞) by the assumption h′ < 0 and the completeness of g.

Write x = √
rh. On (0,∞), we have x ′ =

√
h(1−ξ)

2
√

r
> 0, so x is a strictly increasing

function and x ′2 < h
4r . Define a positive, strictly increasing function y on (0,∞) so that

y(0+) = 0 and

x ′2 + y′2 = h

4r
.

The metric g is determined by the smooth function y = F(x) on (0, x0), where x0 =
limr→∞

√
rh ≤ ∞. It is easy to see that F is actually smooth on [0, x0) and F(0) = 0. From

the definition, we have the relationship

1 +
(

d F

dx

)2

= 1

(1 − ξ)2
.

As computed in [37], in terms of this generating function F(x), the curvature component
functions are

A = F ′F ′′

2x(1 + F ′2)2
, B = 1

v2

(
x2− v√

1 + F ′2

)
, C = 2

v2
(v − x2),

where

v(x) = r f =
∫ x

0
2τ

√
1 + F ′2(τ )dτ.

To simplify these expressions, let us use the trick in [37] by letting

F(x) = 1

2
p(x2), p(t) =

∫ t

0

√
q(τ ) dτ, q(t) = (k(t))2 − 1

t

where k(t) is a smooth function on [0,∞) such that k(0) = 1 and k(t) > 1 when t > 0. We
have

F ′(x) = xp′(x2) = x
√

q(x2),

therefore

1 + F ′2(x) = 1 + x2q(x2) = (k(x2))2.

Now let us denote by t = x2, and u(t) = ∫ t
0 k(σ )dσ , then by a straight forward computation,

we get

A = k′

k3
, B = 1

ku2 (tk − u), C = 2

u2 (u − t).

Write u(t) = t + tα(t). Then k = u′ = 1 + α + tα′, and

A = tα′′ + 2α′

(1 + α + tα′)3
, B = α′

(1 + α + tα′)(1 + α)2
, C = 2α

t(1 + α)2
. (6.1)
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7 Examples with (NOB), positive Ricci, but negative holomorphic
sectional curvature somewhere

The goal here is to prove the following result, which affirmatively answers a question in [21].

Theorem 7.1 For any m ≥ 2, there are complete U(m)-invariant Kähler metrics on C
m with

positive Ricci curvature and positive orthogonal bisectional curvature everywhere, yet the
holomorphic sectional curvature is negative somewhere.

Now that the expressions of the curvature components are reasonably simple, we could
try to find functions α so that the desired curvature conditions are satisfied. For instance, let
us consider the smooth function α(t) given by

α(t) = λ

(
1 − 1

(1 + t2)a

)
, (7.1)

where a, λ are positive constants with a ∈ ( 12 , 1). We have α(0) = 0, and

α′ = 2aλt

(1 + t2)a+1 .

So α and α′ are positive on (0,∞). Note that the function α′ and α
t are actually also positive

at t = 0. By formula (6.1) in the previous section, we have B > 0, C > 0 everywhere. Note
that A(0) > 0 as well, so the bisectional curvature of the metric g is positive at the origin.

Let us examine the situation away from the origin. For a constant b > 0, we compute

(tbα′)′ = 2aλtb

(1 + t2)a+2

(
(b + 1) + (b − 1 − 2a)t2

)
.

For b = 2, the right hand side factor becomes 3−(2a −1)t2, so the sign of A, or equivalently

the sign of tα′′ + 2α′, is the same as that of (t0 − t), where t0 =
√

3
2a−1 . That is, we have

A > 0 on [0, t0), and A < 0 on (t0,∞).

For b = 3, b − 1 − 2a = 2 − 2a > 0, so (t3α′)′ > 0, thus by formula (6.1)

k3(A + (n − 1)B) ≥ k3(A + B) ≥ tα′′ + 3α′ > 0.

It remains to check the condition A + C > 0. We have

k3C ≥ (1 + α + tα′)2α
t

.

So when 2α ≥ 1, we have k3C ≥ α′, hence k3(A + C) ≥ tα′′ + 3α′ > 0. Let us fix
a ∈ ( 12 , 1), and choose λ sufficiently large so that

1

2λ − 1
<

(
1 + 3

2a − 1

)a

− 1,

in this case we have

(
2λ

2λ − 1

) 1
a − 1 <

3

2a − 1
.
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Note that

2α < 1 ⇐⇒ 1 − 1

(1 + t2))a
<

1

2λ
⇐⇒ t2 <

(
2λ

2λ − 1

) 1
a − 1.

So by our choice of λ we have t < t0 =
√

3
2a−1 . But in this case A > 0, thus A + C > 0 as

well.
This completes the proof of Theorem 7.1. Note that the metric g given by α in (2) has pos-

itive bisectional curvature in a ball Bc, while outside the ball, at every point the holomorphic
sectional curvature is negative in some direction.

One can also construct examples satisfying Theorem 7.1 while the bisectional curvature is
positive outside an annulus, in particular, outside a compact subset. To see such an example,
let us consider

α = t − 2at2 + t3, (7.2)

where a > 0 is a constant to be determined. We have
α

t
= 1 − 2at + t2

α′ = 1 − 4at + 3t2

tα′′ + 2α′ = 2(1 − 6at + 6t2)

tα′′ + 3α′ = 3 − 16at + 15t2

tα′′ + 2α′ + 2α

t
= 2(2 − 8at + 7t2)

We want to choose a so that the middle line is negative somewhere, while the other four are
positive everywhere in (0,∞). The first two guarantee that B > 0, C > 0, while last two
imply that A + B > 0, A + C > 0. The middle term shares the same sign with A.

Note that for positive constants a, b, c, the polynomial a − bt + ct2 will be everywhere
positive on [0,∞) if and only if b2 < 4ac, and when b2 > 4ac, the polynomial will be
negative in the interval [t1, t2] where t1 > t2 > 0 are the two roots. Applying this criteria to
the five quadratic polynomials above, we know that we want respectively

a2 < 1, a2 <
3

4
, a2 >

2

3
, a2 <

45

64
, a2 <

7

8
.

Since 2
3 < 45

64 < 3
4 , if we choose a > 0 so that 23 < a2 < 45

64 , then the corresponding metric g
will have positive orthogonal bisectional and positive Ricci curvature everywhere, while the
holomorphic sectional curvature is negative in some directions at every point in an annulus.
The bisectional curvature is positive outside the annulus.

8 The examples with (NOB) but negative Ricci curvature and negative
holomorphic sectional curvature somewhere

We present here two constructions. The first one is along the line of [12] (see also [21]). Let ξ
be a smooth function on [0,∞) with ξ(0) = 0, ξ ′(r) > 0 and 0 < ξ(r) < 1 for 0 < r < ∞.
Let a = limr→∞ ξ(r). Then 0 < a ≤ 1. By the discussion in the pervious sections, this gives
a complete U(m)-invariant metric on C

m with positive bisectional curvature. The strategy of
[12] is to perturb this metric by adding a perturbation term to ξ . This then yields one metric
with the needed property. It startswith some estimates for themetricswith positive bisectional
curvature. In [12,37] the following estimates (cf. Lemma 4.1 of [12]) were obtained.
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Lemma 8.1 Let ξ be as above with limr→∞ ξ = a (∈ (0, 1)). The following holds

(1) limr→∞ h(r) = 0 and limr→∞ h(r+r0)
h(r)

= 1 for any r0 > 0.

(2) For any r > 0,
(
rh − (1 − ξ)

∫ r
0 h

)′
> 0, and

lim
r→∞

∫ r

0
h = ∞, lim

r→∞ h = 0, lim
r→∞

rh∫ r
0 h

= 1 − a.

(3) For any ε > 0, and for any r0 > 0, there is R > r0 such that

ξ ′(R) − εh(R)C(R) < 0.

(4) limr→∞ h(r)C(r) = 0.
(5) For all ε > 0, there exists δ > 0 such that if R ≥ 3, δ ≥ η ≥ 0 is a smooth function

with support in [R − 1, R + 1], then for all r ≥ 0,

h(r) ≤ h̄(r) ≤ (1 + ε)h(r), and
∫ r

0
h ≤

∫ r

0
h̄ ≤ (1 + ε)

∫ r

0
h,

where h̄(r) = exp(− ∫ r
0

ξ̄
t dt) and ξ̄ = ξ − η.

Let φ be a cutoff function on R as in [12] such that
(i) 0 ≤ φ ≤ c0 with c0 being an absolute constant;
(ii) supp(φ) ⊂ [−1, 1];
(iii) φ′(0) = 1 and |φ′| ≤ 1.
The construction is to perturb ξ into ξ̄ (r) = ξ(r) − αh(R)C(R)φ(r − R) for suitable

choice of R, α. Note that this only changes the value of ξ on a compact set. Once h̄ is defined,
Eqs. (5.5)–(5.7) define the corresponding curvature components Ā, B̄, C̄ of the perturbed
metric.

Theorem 8.1 There is 1 > α > 0 such that for any r0 > 0 there is R > r0 satisfying the
following: If ξ̄ (r) = ξ(r) − αh(R)C(R)φ(r − R), then ξ̄ determines a complete U(m)-
invariant Kähler metric on C

m such that

(1) Ā + C̄ > 0 on [R − 1, R + 1];
(2) B̄(r) > 0 for all r;
(3) C̄(r) > 0 for all r; and
(4) Ā(R) + (m − 1)B̄(R) < 0.

Then ξ̄ will give a compete U(m)-invariant Kähler metric which satisfies (NOB) but does not
have nonnegative Ricci curvature, nor nonnegative holomorphic sectional curvature.

Proof Note that (1)–(3) implies the (NOB). The estimate (4) shows the negativity of the Ricci
somewhere. First for any α > 0, by choosing R large, ξ̄ (along with the h̄ and f̄ ) defines a
complete Kähler metric on C

m . Recall that a ∈ (0, 1) is the limit of limr→∞ ξ(r), c0 being
the bound of |φ|. The proof of (2) and (3) is exactly the same as in [21], which does not
involve the careful picking of α > 0. We need to choose the constant α > 0 a bit more
carefully here to achieve both (1) and (4) simultaneously. Note that in [12], metrics were
constructed with both Ā(R) + C̄(R) and Ā(R) + (m − 1)B̄(R) being negative.

By (5.5) and (5.7) for (1) we only need to prove if for r ∈ [R − 1, R + 1]. By the formula
(5.7) and the proof of Lemma 4.2 in [12] (precisely (4.6) of [12]), we may choose a large r1
so that if R > r1 and for r ∈ [R − 1, R + 1],

C̄(r) ≥ 2

(1 + ε)2
∫ R
0 h

(a − 2ε + aε − ε2)
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provided a −2ε +aε −ε2 > 0. For ε > 0 sufficiently small it clearly satisfies this condition.
Here a > is the constant from Lemma 8.1. On the other hand,

C(R) ≤ 2∫ R
0 h

(a + ε)

if r1 is large enough depending only on ε and R > r1. Hence, if ε and r1 satisfy the above
conditions, then for r ∈ [R − 1, R + 1],

C̄(r) ≥ a − 2ε + aε − ε2

(a + ε)(1 + ε)2
C(R).

Therefore, if ε > 0 satisfies a > ε and a − 2ε + aε − ε2 > 0, we can find r1 > r0 such that
if R > r1, then it holds for r ∈ [R − 1, R + 1],

Ā(r) + C̄(r) ≥ ξ ′(r) − β

h̄
+ C̄(r)

≥ −β

h̄(r)
+ a − 2ε + aε − ε2

(a + ε)(1 + ε)2
C(R)

≥ − β

(1 − ε)h(R)
+ a − 2ε + aε − ε2

(a + ε)(1 + ε)2
C(R)

= 1

(1 − ε)h(R)
[−β + (1 − ε)

a − 2ε + aε − ε2

(a + ε)(1 + ε)2
h(R)C(R)]. (8.1)

In the third line we have used the fact that− β

h̄(r)
≥ − β

h(r)
≥ − β

h(R+1) and limr→∞ h(r)
h(r+r0)

=
1. Hence for r ∈ [R − 1, R + 1],

Ā(r) + C̄(r) ≥ 1

(1 − ε)h(R)

[
−α + (1 − ε)

a − 2ε + aε − ε2

(a + ε)(1 + ε)2

]
h(R)C(R).

Hence if we pick α = 1
2 , for sufficiently small ε we can be sure that Ā(r) + C̄(r) > 0. This

proves (1).
On the other hand, as in [12], for r1 ≥ r0 sufficiently large and R ≥ r1,

C̄(r) = 2∫ r
0 h̄

(
1 − r h̄∫ r

0 h̄

)

≤ 2∫ r
0 h̄

(
1 − rh

(1 + ε)
∫ r
0 h

)

≤ 2∫ r
0 h

a + 2ε

1 + ε
.

Here we have used part (ii) of Lemma 8.1. But

C(r) = 2∫ r
0 h

(
1 − rh∫ r

0 h

)
≥ 2∫ r

0 h
(a − ε).

Hence for small ε

C̄(r) ≤ a + 2ε

(a − ε)(1 + ε)
C(r)
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This implies that

Ā(R) + 1

3
C̄(R) = ξ ′(R) − αC(R)h(R)

h̄(R)
+ 1

3
C̄(R)

≤ ξ ′(R) − αC(R)h(R)

(1 + ε)h(R)
+ 1

3

a + 2ε

(a − ε)(1 + ε)
C(R)

= 1

(1 + ε)h(R)

(
ξ ′(R) − αC(R)h(R) + 1

3

a + 2ε

a − ε
C(R)h(R)

)
.

Noting part (iii) of Lemma 8.1, and that we picked α = 1
2 , for sufficiently small ε we have

that

Ā(R) + 1

3
C̄(R) ≤ 0. (8.2)

On the other hand, similar calculation as the above shows that

C̄(r) ≥ 2

(1 + ε)
∫ r
0 h

(
1 − (1 + ε)rh∫ r

0 h

)

≥ 2

(1 + ε)
∫ r
0 h

(1 − (1 + ε)(1 − a + ε))

≥ 2(a − ε)∫ r
0 h

.

Here ε is small and we may choose a different one in the last line. Thus together with (8.2)
we have

Ā(R) ≤ −1

3

2(a − ε)∫ r
0 h

.

On the other hand, as in Lemma 4.2 of [12], for R sufficiently large,

B̄(R) ≤ ε∫ R
0 h

.

Combining themwe conclude that Ā(R)+(m −1)B̄(R) < 0 for R ≥ r1. This proves (4). ��
One could also construct U(m)-invariant complete Kähler metrics on C

m with B⊥ > 0
but Ric � 0 and H � 0, using the notations and the construction in the previous section.
Below are the details.

For the sake of simplicity, we will work with the m = 2 case. In this case, B⊥ coincides
with Ric⊥, and by Proposition 5.1 and the remark afterwards, its positivity means B > 0
and A + C > 0. So to ensure that the Ricci and the holomorphic sectional curvature H are
not everywhere nonnegative, we need A � 0 and A + B � 0. That is, it suffices to find such
a metric satisfying

B > 0, C > 0, A + C > 0, A � 0, A + B � 0,

where the functions A, B, C are expressed in terms of the α function by formulae in (6.1).
As in the previous sections, we may start with the function

α(t) = λ

(
1 − 1

(1 + t2)a

)
,
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where a, λ are positive constants with a > 1
2 . We will specify the range of a and λ later. As

before, we have α(0) = 0, and

α′ = 2aλt

(1 + t2)a+1 .

So α and α′ are positive on (0,∞). Also, the function α′ and α
t are positive at t = 0, so we

have B > 0, C > 0 everywhere, while A has the same sign with t0 − t , where t0 =
√

3
2a−1 .

In particular, A � 0.
As noticed before, for any b > 0, we have

(tbα′)′ = 2aλtb

(1 + t2)a+2

(
(b + 1) + (b − 1 − 2a)t2

)
.

This function will be positive on (0,∞) if b ≥ 1+2a, and negative for large t if b < 1+2a.

In the following, we will take a = 6. So t0 =
√

3
11 . Clearly, we can choose λ > 0 large

enough so that α(t0) > 6. Since α is strictly increasing, when α < 6, we must have t < t0,
thus A > 0 hence A + C > 0. While when α ≥ 6, we have

(A + C)(1 + α + tα′)3 = tα′′ + 2α′ + 2α

t
(1 + α + tα′) (1 + α + tα′)2

(1 + α)2

≥ tα′′ + 2α′ + 2α

t
(1 + α + tα′)

≥ tα′′ + 2α′ + 12α′ = t−13(t14α′)′ > 0

since 14 > 2a + 1 = 13. This demonstrates that A + C > 0 everywhere. To see that
A + B � 0, let us observe that the inequality

tα′ ≤ 2α

always holds, as it is implied by

at2

(1 + t2)a+1 ≤ 1 − 1

(1 + t2)a
,

which is true since 1 + at2 ≤ (1 + t2)a for any t . So we now have

1 + α + tα′ ≤ 3(1 + α).

Thus the quantity (A + B)(1 + α + tα′)3 can be estimated as

(A + B)(1 + α + tα′)3 = tα′′ + 2α′ +
(
1 + α + tα′

1 + α

)2

α′

≤ tα′′ + 2α′ + 32α′

= t−10(t11α′)′.

Since 11 < 2a+1 = 13, (t11α′)′ < 0 when t is large. So we have A+ B � 0 as desired. This
construction gives the metric which has B⊥ > 0, but has negative holomorphic sectional
curvature and negative Ricci curvature outside a compact subset.

Acknowledgements We would like to thank the referees for nice comments and the correction of typos in an
earlier version of this paper. We also thank Valentino Tosatti and Richard Wentworth for their interests.
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9 Appendix

In this “Appendix”, we will give the calculation of the curvature for the surface M2 = P
2#P2,

when the metric is the restriction of the product metric. Consider

M2 = {([u0 :u1 :u2], [v1 :v2]) ∈ P
2 × P

1 | u1v2 = u2v1},
and let ωg be the restriction on M of the product metric

ωg = √−1∂∂ log(|u0|2+|u1|2+|u2|2) + λ
√−1∂∂ log(|v1|2+|v2|2)

where λ > 0 is a constant. We will prove the following

Proposition 9.1 The surface (M2, ωg) will have its Ricci curvature positive everywhere if
and only if λ > 1

2 , and it will have its holomorphic sectional curvature positive everywhere
if and only if λ > 1.

To see this, let us fix an arbitrary point p ∈ M . First let us consider the case when
u0(p) �= 0. By a unitary change of coordinate in (u1, u2) and (v1, v2), we may assume that
p = ([1 : a : 0], [1 : 0]), where a ∈ [0,∞). So in a neighborhood of p, we have local
holomorphic coordinate (z1, z2) which corresponds to the point ([1 : z1 : z1z2], [1 : z2]), and
p = (a, 0). In this neighborhood, the metric ωg becomes

ωg = √−1∂∂ log η + λ
√−1∂∂ log σ

where σ = 1 + |z2|2 and η = 1 + |z1|2σ = 1 + |z1|2 + |z1z2|2. We compute that

g11 = σ

η2
, g12 = z1z2

η2
, g22 = |z1|2(|z1|2+1)

η2
+ λ

σ 2 .

From this, we get

g11,1 = − 2

η3
σ 2z1, g22,2 = − 2

η3
|z1|4(|z1|2+1)z2 − λ

2

σ 3 z2,

g12,1 = − 2

η3
σ z21z2, g12,2 = 1

η2
z1 − 2

η3
|z1|2|z2|2z1,

g12,1 = 1

η2
z2 − 2

η3
σ |z1|2z2, g12,2 = − 2

η3
|z1|2z1z22.

Under the local coordinate (z1, z2), the curvature components are given by

Ri jk� = −gi j,k� +
2∑

p,q=1

gi p,k g jq,� g pq .

At the point p = (a, 0), we have η = 1 + a2, σ = 1, and

g11 = 1

η2
, g12 = 0, g22 = a2+λη

η
,

g12,1 = g21,1 = g21,2 = g11,2 = g22,2 = 0.

From these, we get that at p

R1212 = −g12,12 + 1

g11
g11,1 g21,2 + 1

g22
g12,1 g22,2 = 0.
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Similarly, we also get R1112 = R1222 = 0 at p. Next, we compute at p

R1122 = −g12,21 + 1

g11
|g11,2|2 + 1

g22
|g12,2|2

= − 1

η2
+ 2a2

η3
+ 0 + η

a2 + λη

a2

η4
= a2 − 1

η3
+ a2

η3(a2 + λη)
,

R1111 = −g11,11 + 1

g11
|g11,1|2 + 1

g22
|g12,1|2

= 2

η3
− 6a2

η4
+ η2

4a2

η6
+ 0 = 2

η4
,

R2222 = −g22,22 + 1

g11
|g21,2|2 + 1

g22
|g22,2|2

= −g22,22 = 2a4

η2
+ 2λ.

Now let us compute the component of the Ricci curvature at p. We have R12 = 0, and

R11 = η2R1111 + η

a2+λη
R1122

= 2

η2
+ a2 − 1

η2(a2+λη)
+ a2

η2(a2+λη)2
,

R22 = η2R1122 + η

a2+λη
R2222

= a2 − 1

η
+ a2 + 2a4 + 2λη2

η(a2 + λη)
.

Since 2λη2 > λη, we know that R22 > 0 for all a ≥ 0. For R11, if we let f (t) be the function
of t = a2 which represents the quantity η2(a2 + λη)2R11, then

f (t) = (λ + 1)(2λ + 3)t2 + 4λ(λ + 1)t + λ(2λ − 1).

Hence R11 > 0 for all a ≥ 0 if and only if λ > 1
2 .

Next let us examine the holomorphic sectional curvature H at the point p. For any tangent
direction X = x1

∂
∂z1

+ x2
∂

∂z2
at p, we have

RX X X X = |x1|4R1111 + |x2|4R2222 + 4|x1x2|2R1122

= 2

η4
|x1|4 + 2

η2
(a4+λη2)|x2|4 + 4

η3

(
a2−1+ a2

a2+λη

)|x1x2|2. (9.1)

In particular, when a = 0, we have

RX X X X = 2|x1|4 + 2λ|x2|4 − 4|x1x2|2,
so if λ < 1, then there are X �= 0 with RX X X X < 0, while when λ = 1, we have RX X X X ≥ 0
but attains 0. Now suppose that λ > 1. If x2 = 0, then RX X X X > 0. If x2 �= 0, then by (9.1)
we have

RX X X X ≥ 2

η4
|x1|4 + 2λ|x2|4 − 4

η3
|x1x2|2

>
2

η4
|x1|4 + 2|x2|4 − 4

η3
|x1x2|2
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≥ 2

√
2

η4
|x1|4 2|x2|4 − 4

η3
|x1x2|2

= 4

η2
|x1x2|2 − 4

η3
|x1x2|2 = 4a2

η3
|x1x2|2 ≥ 0.

So when λ > 1, the holomorphic sectional curvature at p is positive.
Now let us assume that u0(p) = 0, namely, p lies in the line at infinity with respect to the

point of blowing up. Again by a simultaneous unitary coordinate change on the (u1, u2) and
(v1, v2) if necessary, we may assume that p = ([0 :1 :0], [1 :0]). Let us choose holomorphic
coordinate (z1, z2) near p by letting it correspond to the point (z1 : 1 : z2], [1 : z2]). Then
p = (0, 0), and the metric in this case is given by

ωg = √−1∂∂ log(1+|z1|2+|z2|2) + λ
√−1∂∂ log(1+|z2|2).

Again if we denote by η = 1+|z1|2+|z2|2 and σ = 1+|z2|2, then we have

gi j = 1

η
δi j − 1

η2
zi z j + λ

σ 2 δi2δ j2,

gi j,k = − 1

η2
(δi j zk + δk j zi ) + 2

η3
zi zk z j − 2λ

σ 3 z2δi2δ j2δk2.

At p = (0, 0), we have g11 = 1, g12 = 0, g22 = 1 + λ, and gi j,k = 0. So the curvature
components at p are given by

Ri jk� = −gi j,k� = δi jδk� + δi�δ jk + 2λδi2δ j2δk2δ�2.

So for any tangent direction X at p, the holomorphic sectional curvature

RX X X X = 2(|x1|2 + |x2|2)2 + 2λ|x2|4,
which is always positive. For the Ricci curvature, one has R12 = 0, and

R11 = R1111 + 1

1 + λ
R1122 = 2 + 1

1 + λ
,

R22 = R1122 + 1

1 + λ
R2222 = 1 + 1

1 + λ
(2 + 2λ) = 3.

So theRicci curvature at p is also always positive. This completes the proof of the proposition.
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