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ABSTRACT OF THE DISSERTATION

Resilient Computation Offloading for Real-Time Mobile Autonomous Systems

By
Davide Callegaro
Doctor of Philosophy in Computer Science
University of California, Irvine, 2021

Associate Professor Marco Levorato, Chair

The operations of Mobile Autonomous Systems (MAS) rely on real-time data analysis. For
instance, autonomous vehicles’ navigation requires the low-latency analysis of high resolution
images to detect, and avoid, objects. Unfortunately, many Mobile Autonomous Systems
(MASs) have constrained computing and energy resources, and the continuous execution
of state-of-the-art algorithms is out of their reach. By offloading the processing load to
compute-capable device located at the network edge, the edge computing paradigm can
mitigate this issue. However in practical real-world settings, the wireless channel connecting
the mobile devices to the edge server often presents erratic capacity patterns due to mobility.
As a result, the overall delay perceived by the mobile application may be affected by large

variations, which in turn harm control.

This thesis explores solutions to the problem described above. To this aim, in addition to
new concepts and edge offloading strategies, a complete real-world platform — the HyDRA
platform, was developed to support design and evaluation, as well as dataset collection.
HyDRA is a fully open source software and hardware platform realizing flexible machine
learning-empowered computing for MAS. From a hardware perspective, HyDRA is composed

of several Unmanned Aerial Vehicles (UAVs) and ground devices collaboratively performing

Xiv



data analysis to accomplish system-wide goals. From a software perspective, the HyDRA
middleware enables real-time control of data and task routing within the system, organized
as a distributed set of modules transforming the data captured by the MAS into actuable

control.

Taking HyDRA as a starting point, this thesis makes the following conceptual contributions:

e the end-to-end delay in remote computing settings for MAS — and specifically autonomous
quad-copters — were characterized by means of real-world experiments that produced a
comprehensive dataset focused on object detection from images. The study considered both
Wi-Fi and Long-Term Evolution connectivity, and several embedded computing platforms.
The results demonstrates the instability of application level delay even in line-of-sight settings

and relatively slow vehicle motion.

e A framework for the dynamic control of task offloading in MASs with extreme temporal
variations is developed. The frameworks is based on a preliminary experimental analysis, which
indicates that there is no dominant feature, including obvious features such as channel quality,
and that prediction necessitates an ensemble of weaker features. We first mathematically
formulate a Redundant Task Offloading Problem. Then, we create predictors that can
help manage the resource usage/performance trade-off. Specifically, we propose a myopic
predictor as baseline and a DRL-based approach, which operates on a set of features from
application, network and device-level components. To the best of our knowledge, this is
the first framework addressing the problem of redundant task offloading in MAS with a
data-driven approach which efficacy is verified in a real-world testbed and with replicable

dataset-based experiments.

e A modeling and optimization framework based on Markov Decision Processes (MDP) was

developed to analyze the structural properties of dynamic control strategies determining

XV



where information is processed in collaborative computing scenarios for MAS. In this section
of the thesis, the focus of control is primarily between local and remote analysis. Using
recent split Deep Neural Networks deep neural network (DNN) techniques, the framework
also controls at a fine-grain how the analysis task (the DNN in this case) is divided between

the mobile device and the edge server based on current system parameters.
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Chapter 1

Introduction

1.1 Copyright Notice

Some material contained withing this dissertation has been previously published and is used

with permission.

e Copyright (©) 2018 IEEE. Reprinted with permission, from Davide Callegaro, and
Marco Levorato, “Optimal Computation Offloading in Edge-Assisted UAV Systems”
In Proceedings of the IEEE Global Communications Conference (GLOBECOM), Abu

Dhabi, United Arab Emirates, Dec. 2018.

e Copyright (©) 2019 IEEE. Reprinted with permission, from Davide Callegaro, Sabur
Baidya, Gowri S. Ramachandran, Bhaskar Krishnamachari, and Marco Levorato,
“Information Autonomy: Self-Adaptive Information Management for Edge-Assisted
Autonomous UAV Systems” In IEEE MILCOM 2019-IEEE Military Communications
Conference (MILCOM).

e Copyright (C) 2020 IEEE. Reprinted with permission, from Davide Callegaro, Yoshitomo
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Matsubara, and Marco Levorato, “Optimal Task Allocation for Time-Varying Edge
Computing Systems with Split DNNs” In IEEE .

e Copyright (C) 2021 IEEE. Reprinted with permission, from Davide Callegaro, Marco
Levorato, and Francesco Restuccia, “SeReMAS: Self-Resilient Mobile Autonomous
Systems Through Predictive Edge Computing” In Proceedings of 18th Annual IEEE

International Conference on Sensing, Communication, and Networking (SECON), 2021.

e Copyright () 2021 IEEE. Reprinted with permission, from Davide Callegaro, and Marco
Levorato, “Optimal Edge Computing for Infrastructure-Assisted UAV Systems” In
[EEE IEEE Transactions on Vehicular Technology, vol. 70, no. 2, pp. 1782-1792, 2021.

1.2 Motivation: Challenges in Highly Mobile

Computing

Mobile Autonomous Computing includes devices running a plethora of different applications:
from autonomous driving, to industry 4.0 or UAVs. All these applications require a stream of
high dimensional input data to be processed in real-time to allow data driven control to take
place. In the last decade this type of processing has been increasingly using DNNs to analyze
high dimensionality data, such as video, lidar, etc. For instance, analyzing images using
DNNs requires a large execution time, due to the large amount of operations they involve.
In order to reduce their computational delay, Graphics Processing Units, Tensor Processing

units or Field Programmable Gate Arrays are used.

However, continuous heavy data processing can be problematic for small embedded devices
that are computationally and energy constrained. In this category fall UAVs, which thanks
to advancements in embedded computers can carry processing units capable of such compu-

tational power, but would in such case still have to manage their energy budget. In fact, the

2



computational energy required by these applications can reach 10-15% of the power required

to hoover, forcing the device to offload some of its computation to extend its mission time.

1.2.1 Responsiveness

One metric that is central in MASs is their responsiveness to stimuli. In our research, we
measure this responsiveness as the capture-to-control delay (also referred here as the task
delay), defined as the interval of time between information acquisition and the corresponding
action being taken. For instance, if the UAV collects a images at time ¢, analyzes it locally
in d.s and updates its mission plan in d.s more, the task delay will be equal to the sum
of such components. If the analysis of the image is offloaded to a server, we will add the
communications components to the task delay: one to transport the image from the device

to the server, and one transporting the result from the server to the client.

However, note as the connection between the mobile device and the edge server is necessarily
wireless, communication delays are inherently erratic, and dependent on several time-varying
variables and parameters. Moreover, the — time varying — state of the overall system also
influences the task delay. For example, if the server has higher than usual load, the task
will incur queueing delays at the server side. Similarly, if several devices are accessing the
wireless channel, the communication delay will increase due to congestion. Moreover, as
shown in Chapter 4, mobility among other factors influences the instantaneous channel
performance, requiring approaches to mitigate such uncertainty when dealing with mission

critical applications.



1.3 Dissertation Contributions & Overview

In this thesis, we make a series of conceptual and system-level contributions, which are

presented and discussed in the different chapters:

- in Chapter 3, we introduce the HyDRA framework and we develop an optimization problem
used to balance energy usage and network resources. We also present a heuristic algorithm,

whose performance we corroborate with experimental results.

- in Chapter 4, we explore a predictive approach to the problem of task offloading. We
collect information from different sources (networking, application and board) and create
two parametric algorithm to trade-off computational resources, information, networking and

server resources.

- in Chapter 5, we take a theoretical approach to the problem of task offloading, and we solve
the decision problem of whether to compute on the embedded device or offload to the edge
server. We balance task delay and energy consumption at the device, and find the optimal

policy using a Markov Decision Process (MDP).

- in Chapter 6, we solve a similar problem, trading-off energy consumption at the device and
task delay, but we do so using the innovative split DNNs. When modeling such scenario,
we encounter a MDP where tasks are heterogenous (full offloading or split offloading) and
which requires us to solve a Linear Fractional Program. We study how the instantaneous
throughput influences the optimal policy and show our results over-perform a fixed policy up

to 30%.



Chapter 2

Related work

2.1 Real-time Applications in Mobile Internet of Things

2.1.1 Edge Computing in Mobile Autonomous Systems

Edge computing can significantly improve reliability and performance in mobile applications
[7]. Different frameworks perform a multi-layer optimization to exploit the full potential
of edge computing [61, 19]. To fully exploit the edge servers, the user equipment needs to
periodically make a decision on whether to process tasks locally, or to offload. In the latter
case, there might be multiple technologies or networks available, e.g. [10], and a link must be

chosen for each transmission.

2.1.2 Static Approaches

Convex optimization has been proven to be ineffective due to the presence of complex factors

such as user’s mobility [13]. Classic approaches are shown to perform better with coarser



granularity settings and when considerable prior knowledge is available. For example, in
[44] the authors develop an online multi-decision making scheme, solving a task offloading
problem while jointly optimizing caching, communication and computation resources in the

Internet of Vehicles, exploiting the proximity of users to roadside units.

2.1.3 Data Driven Approaches to Real-Time Scheduling

Fast-changing mobile networks usually employ data-driven approaches, using Markov Decision
Processes (MDP), Q-Learning or DRL. MDPs achieve a good tradeoff between the flexibility
of learning and the data efficiency of a model-based solution [12, 58]. However, MDP-based
solutions often lead to exceedingly large state spaces, and require vast amounts of data to
find the correct transitions for each state-action pair during training. Finally, they are very
memory intensive both in training and execution time. For these reasons, DRL approaches
have been proposed. Cao et. al [13] present a general framework for intelligent offloading
in multi-access edge computing composed by observation tier, analysis tier, prediction tier
and policy tier. In this chapter, we consider a much more complicated problem where the

trade-off is beyond power efficiency and link performance.

2.1.4 Simulation Environments

Recently, researchers have worked towards simulation environments for drones, for example,
OpenUAV [50] and FlyNetSim [3]. However, neither of the two environments can capture the
interactions between mobility and application delay that are key in this chapter. Thus, we
are sharing our dataset with the community to further allow research that can explain and

exploit these interactions.



2.2 Theoretical Solutions and Heterogeneous Metrics

Most recent contributions on edge computing for UAVs focus on planning aspects, and mostly
from an purely abstract perspective [40, 14, 39, 11] or center their attention on UAV-assisted

edge computing and cloudlets [28, 61, 20, 56, 43].

Other contributions, such as, [2], focus, instead, on monetary metrics (for instance associated
with communications) to guide the optimization process. In [2] a game theoretic approach is
proposed, with which the authors are able to reduce the communication cost, considering not
only multiple servers, but also the possibility for some of them to offload the computation
further. Our work centers on short-term metrics, which allow a fine degree of control when
optimizing the offloading process. We remark how this is a marked difference with respect to

most existing literature.

Very recent contributions, such as [16], focus on the optimization of specific scenarios,
assuming the apriori knowledge of a prediction model for the channel state, which leads to
sophisticated decision making algorithms to determine which part of the task can be offloaded.
This interesting class of approaches imposes stronger limitations on the type of analysis task.
[30] presents an approach based on fuzzy logic to face the high uncertainty induced by these

applications.

In [35], B.Liu et al. propose to offload computationally intensive tasks from UAVs to
edge and cloud servers. They formulate a joint computation and routing optimization by
defining a three-layered computational model on which they design a polynomial near-optimal
approximation algorithm. The authors use a Markov approximation technique described in
[17], which is useful when solving network combinatorial optimization problems. However,

they do not consider energy-related metrics and control.

Energy expense is considered in the work by Zhu et al. [62], where cooperative approach to



computation offloading for UAVs is presented that aims to improve the inefficiency of naive
local computing solutions. The authors explore an urban environment for UAV operations,
and use simulated annealing to minimize the energy consumption while satisfying a delay
constraint. Our solution jointly optimizes energy and delay, offering more flexibility to the

application.



Part 1

Experimental Study of Task
Offloading for M ASs



Chapter 3

Dynamic Distributed Scheduling for

Infrastructure Autonomous UAVs

As previously discussed, the ability to observe and analyze the surrounding environment to
inform decision making is the key to autonomy. In physical systems, state information is
extracted by acquiring and processing endogenous and exogenous signals in real-time. Despite
the important advances both in algorithms and embedded platforms of the recent years, the
execution of sensing-processing-control pipelines in lightweight airborne platforms such as
commercial Unmanned Aerial Vehicles (UAV) is a non-trivial problem. Rather intuitively,
there exists an inherent tradeoff between three key metrics: accuracy, decision delay, and
energy consumption. Improving accuracy of analysis often requires increasing complexity,
which comes at the price of a larger execution time, and thus decision delay, or a larger weight

and energy consumption.

Herein we focus on video analysis, and specifically on object detection, an important compo-
nent of most advanced autonomous systems. Modern object detection algorithms take the

form of Deep Neural Networks (DNN). The most performing DNNs are extremely complex,

10



Actuation
é

s | Analysis s | Analysis

Actuation

i

-

Figure 3.1: Edge computing scenario considered in this chapter: UAVs offload analysis modules
to ground edge servers. The architecture we developed enables the seamless distribution
of modules across devices, as well as to re-route data analysis in real-time to improve
performance.

and their execution requires powerful computing platforms. Two key recent advancements

make object detection possible in constrained mobile devices:

e The development of techniques such as distillation, pruning and quantization led to the
construction of effective simplified DNN models with a significantly reduced complexity

compared to the full models.
e The development of powerful embedded computers equipped with accelerators and GPUs.

Intuitively, despite the clever optimized design of simplified models, aggressive complexity
reduction results in a perceivable degradation of accuracy. We remark that lower complexity
also means a shorter execution time, that is, a smaller time between information acquisition

and control — here referred to as capture-to-control time — a critical parameter for an effective
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control. The modern GPU-equipped embedded boards mentioned above allow fast execution
of fairly complex DNN models. However, the use of GPUs to speed up execution significantly
increases energy consumption, another crucial metric, especially when considering airborne

systems.

This chapter seeks insights on edge computing for UAVs from a real-world deployment and
real-world testing, especially to characterize and counteract temporal variations in capture-
to-control time shaped by variations in the channel conditions, including gain and congestion

level. Specifically, we make the following contributions:

(i) We develop an experimental platform realizing an infrastructure assisted UAV system.
We focus on navigation tasks based on object detection via DNN models, and equip the UAV
with one of the most powerful embedded computers for machine learning to enable a fair

comparison with offloading to edge servers.

(ii) We develop Hydra[8], a middleware architecture enabling the adaptive distribution of
computation tasks within infrastructure assisted UAV systems. The modular architecture
grants significant flexibility in deploying sensing, analysis, and control pipelines, and includes
a logic to dynamically activate-deactivate pipelines in response to changes in the state of

their components or environment.

(731) We test the architecture to illustrate its performance against variations of channel gain

and contention/interference from other mobile devices.

Our experimental results indicate that offloading complex analysis tasks to edge servers grants
a significant reduction in the overall energy intake of operating the UAV, thus prolonging
mission lifetime. The proposed Hydra architecture is shown to provide reliable control against
fluctuations of the capture-to-control time at different temporal scales based on a tunable

tradeoff between energy and delay performance.
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The rest of the chapter is organized as follows. Section 3.1 introduces the experimental
platform and provides a preliminary discussion of the problem at hand. In Section 3.2, we
present and discuss the architecture and logics of Hydra. Section 3.3 presents and discusses

the experimental results.

3.1 Problem Setup and Preliminary Results

First, we describe the task and experimental platform, and make some preliminary considera-

tions on metrics of interest.

3.1.1 Computation Task

We consider the sensing-analysis-control pipeline illustrated in Fig. 3.2: the onboard camera
acquires images that are analyzed using an object detection algorithm, whose output is a
series of labeled bounding boxes. The control module selects a bounding box with a predefined
label, and produces steering commands. The objective of steering is to center the bounding
box with respect of the vision range of the UAV and match it to a predefined size. Note that
our objective is to analyze communication-computation aspects of this class of problems, so
we focus on the accuracy, delay and energy consumption associated with the pipeline, rather

than on the specific output control.

Sensor Analysis Control Actuation
Image Acquisition Object Detection Direction and Speed Rotors speed

= U= A=

Figure 3.2: Sensing, analysis and control pipeline where object detection performed on images
acquired by the UAV is used to control navigation.
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We use ssdlite mobilenet v2 [47] trained on the Coco dataset [34] and floating Point 32
bits precision for object detection, a highly optimized model designed for mobile devices.
Performance in terms of accuracy is expressed in terms of mean Average Precision (mAP),
which measures a combination of precision, recall and bounding box intersection with g