
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Resilient Computation Offloading for Real-Time Mobile Autonomous Systems

Permalink
https://escholarship.org/uc/item/26n928t7

Author
Callegaro, Davide

Publication Date
2021

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/26n928t7
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Resilient Computation Offloading for Real-Time Mobile Autonomous Systems

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Computer Science

by

Davide Callegaro

Dissertation Committee:
Associate Professor Marco Levorato, Chair

Chancellor’s Professor Nikil Dutt
Professor Nalini Venkatasubramanian

2021

Portion of Chapter 2, 3, 6 © 2020 IEEE
Portion of Chapter 2, 4, 5 © 2021 IEEE

All other materials © 2021 Davide Callegaro

TABLE OF CONTENTS

Page

LIST OF FIGURES v

LIST OF TABLES viii

ACKNOWLEDGMENTS ix

VITA xi

ABSTRACT OF THE DISSERTATION xiv

1 Introduction 1
1.1 Copyright Notice . 1
1.2 Motivation: Challenges in Highly Mobile

Computing . 2
1.2.1 Responsiveness . 3

1.3 Dissertation Contributions & Overview . 4

2 Related work 5
2.1 Real-time Applications in Mobile Internet of Things 5

2.1.1 Edge Computing in Mobile Autonomous Systems 5
2.1.2 Static Approaches . 5
2.1.3 Data Driven Approaches to Real-Time Scheduling 6
2.1.4 Simulation Environments . 6

2.2 Theoretical Solutions and Heterogeneous Metrics 7

I Experimental Study of Task Offloading for MASs 9

3 Dynamic Distributed Scheduling for Infrastructure Autonomous UAVs 10
3.1 Problem Setup and Preliminary Results . 13

3.1.1 Computation Task . 13
3.1.2 Experimental Platform . 14
3.1.3 Preliminary Considerations . 14

3.2 HYDRA . 17
3.2.1 Hydra Architecture . 17

ii

3.2.2 Hydra Logics . 19
3.3 Experimental Results on Energy-Performance Trade-Off 21

4 SeReMAS: Self-Resilient Task Allocation Mobile Autonomous Systems
Through Predictive Computing 26
4.1 Preliminary Experiments . 30

4.1.1 Preliminary Analysis . 31
4.2 The SeReMAS Framework . 32

4.2.1 SeReMAS: A Walkthrough . 33
4.2.2 Redundant Task Offloading Problem (RTOP) 34
4.2.3 Myopic-based Baseline for RTOP . 36
4.2.4 Deep Q-Learning Approach for RTOP 37

4.3 SeReMAS Prototype . 39
4.3.1 Platform Components . 40
4.3.2 DRL State Space and Feature Selection 41
4.3.3 Myopic Predictor and DRL Implementation 43

4.4 Experimental Results . 44
4.4.1 Experimental setting . 44
4.4.2 Prediction Performance . 45
4.4.3 Redundant Offloading . 47

II Theoretical Analysis of Task Offloading for MASs 51

5 Optimal Edge Computing for Infrastructure-Assisted UAV Systems 52
5.1 System and Problem Overview . 54
5.2 System Model . 56

5.2.1 Communications . 56
5.2.2 Computation . 57
5.2.3 Energy . 58

5.3 Optimal Offloading Decisions . 58
5.3.1 Transition Probabilities . 60
5.3.2 Cost Functions and Optimal Policy 62

5.4 Numerical Results . 66
5.4.1 Performance Analysis . 68
5.4.2 Mission Trajectory . 71
5.4.3 Characterization of State in Temporally Correlated Environment . . . 76

6 Optimal Task Allocation for Edge Computing Systems with Split DNN
Computing 81
6.1 Distilled Split DNN Models . 84
6.2 System Description . 85
6.3 Stochastic Model . 87

6.3.1 State Space . 87
6.3.2 System Dynamics . 89

iii

6.4 Optimal Policy . 93
6.4.1 Performance Metrics and Cost Functions 94
6.4.2 Optimization Problem . 95
6.4.3 Optimal Policy . 96

6.5 Results . 96

7 Conclusions & Future Work 99

Bibliography 101

iv

LIST OF FIGURES

Page

3.1 Edge computing scenario considered in this chapter: UAVs offload analysis
modules to ground edge servers. The architecture we developed enables the
seamless distribution of modules across devices, as well as to re-route data
analysis in real-time to improve performance. 11

3.2 Sensing, analysis and control pipeline where object detection performed on
images acquired by the UAV is used to control navigation. 13

3.3 Temporal variation of capture-to-output delay and distance from a reference
edge server as the UAV moves away from and toward it. 15

3.4 Capture-to-output time as a function of the distance between UAV and the
edge server. 16

3.5 High-level schematics of the modular structure of Hydra. 18
3.6 Illustration of the threshold based pipeline activation and selection strategy. 22
3.7 Avg. capture-to-control time and power consumption over the experiment as

a function of the threshold λ. 23
3.8 Fraction of time in which local computing is active as a function of the threshold

λ. 24
3.9 Temporal pattern of the capture-to-control time showing the switching between

modes in Hydra. 25
3.10 Temporal pattern of the capture-to-control time showing the switching between

modes in Hydra. 25

4.1 Example of task level delay from a flying drone to 3 edge servers, transmitted
over WiFi 802.11n in a 50s interval. 27

4.2 Our Architecture for Task Offloading in MASs. 28
4.3 Cumulative density function of delay (a) for each edge server and (b) selecting

the minimum delay, or the one with maximum RSSI, or the average of the
available delays. 31

4.4 Distribution of task level delay as a function of distance from each of the edges
and the RSSI. 32

4.5 SeReMAS system architecture: two different control cycles intersect at the
communication modules, where the DRL agent’s policy is applied by means of
task replication. 33

4.6 Training architecture using Double Deep Q-Learning. 39
4.7 (a) Drone prototype; (b) NVidia Jetson Xavier acting as edge server. 40

v

4.8 Schematic representation of the system setting: three ground edge servers,
connected to the drone. Not all connections are continuously actively used
(unused is dashed). 44

4.9 Performance of future delay classification for different sets of features. Length
of the prediction window is expressed in seconds. 46

4.10 Performance in future delay classification in presence of partial information
for recent time slots. Length of the prediction window is expressed in seconds. 47

4.11 Delay performance and resource utilization trend of the myopic and DRL-based
selector. 48

4.12 DRL agent improving delay by using task replication. We plot in grey the
traces of the non-selected delays. 50

5.1 Illustration of the considered scenario and system: a UAV interconnects with
an edge server through a low latency wireless link to offload computation tasks.
Poor channel conditions and high processing load at the edge server may result
in a larger delay and energy expense compared to local on-board processing. 53

5.2 Representation of state transitions with non-zero probability in the Markov
Chains associated with decision u “ 0 (left) and u “ 1 (right). 58

5.3 Probability of offloading to the edge server (lighter shades corresponds to
higher probability) with ω “ 0. 63

5.4 Probability of offloading to the edge server for different values of ω, as a
function of channel quality (SNR) with ρ “ 0.5. We use µ “ 1{0.461{s to
emphasize the observed effects. 65

5.5 Probability of offloading the computation to the edge server as a function of
the server load ρ. 67

5.6 Probability of selecting local computation in the three main decision stages or
offloading to the edge server. 69

5.7 Offloading probability on the considered map. The average SNR is set to 9dB
and server load set to (a) 0% and (b) 70%. 69

5.8 Map of the considered area, centered around a 30 m high building. Symbols
display the access point’s placement and the drone trajectory. Different shades
show Signal To Noise ratio in dB across the area. 71

5.9 End-to-end delay over the described trajectory for different values of external
interference with no server load. 73

5.10 End-to-end delay over the trajectory for different values of server load with
average SNR of 16dB. 74

5.11 Delay average over the full trajectory for varying average SNR for both only
offloading policy and our approach. We also plot the probability for the UAV
to successfully offload in our schema. 75

5.12 Delay average over the full trajectory for varying server load, and the probability
to successfully offload. 76

5.13 Delay improvement using adaptive schema compared to constant offloading at
different average SNRs. 76

vi

5.14 Gain percentage over a full trajectory for different hardware configurations.
Processing speeds are referenced as serving rates µ. Both cases have average
SNR at 16 dB, but they differ in edge load ρ. 77

5.15 (a) Delay and (b) standard deviation for delay over a trajectory for differ-
ent hardware configurations with average SNR of 16dB and no server load.
Processing speeds are referenced as serving rates µ. 78

5.16 Average delay over the full trajectory for different server loads shows the
adaptability of agents that have spatial awareness. 79

5.17 Delay over the trajectory for different state representations at different server
loads. 80

6.1 Schematics of the system considered in this chapter. 84
6.2 Delay ratio w.r.t. edge computing as a function of transmission rate. 97
6.3 Gain in task computed w.r.t. edge computing, as a function of the total

inference delay. 98

vii

LIST OF TABLES

Page

4.1 Normalized feature relevance to a linear model predicting the number of
high-delay tasks in a 1 s window. 42

6.1 Classification performance of head-distilled (student) models with bottlenecks [36] 85
6.2 Inference time and size of data to be transferred 98

viii

ACKNOWLEDGMENTS

My gratitude goes first to Professor Marco Levorato, who guided me through my doctorate.
It has been amazing to work on problems together, bringing ideas into reality, always with
passion and kindness. The long days in the laboratory to put the finishing touches on a
submission have been inspirational. Thank you Marco for pushing me beyond my comfort
zone. It has been remarkable to have your support as an academic advisor, and I am grateful
to have you as one of my mentors.

A great deal of gratitude goes to a former lab-mate, now Prof. Sabur Baidya, who made
research fun and who has always been up to the challenge! Prof. Baidya is an amazing
researcher, and I wish him the very best in his future!

I really appreciated the time and energy that Prof. Francesco Restuccia put in our work.
Thank you for all the technical guidance, presentation advice and powerful encouragements!

I want to thank all the colleagues I had the pleasure of working with. It has always been a
fantastic experience to spend time with each and every one of you: Ali, Anas, Delaram, Igor,
Peyman, Sharon, Yoshitomo.

I would like to thank the other members of my dissertation committee, Professor Nikil Dutt
and Professor Nalini Venkatasubramanian for their valuable feedback and suggestions.
I can honestly say I enjoyed my final examination, and I have to thank you for making it an
interesting conversation!

My experience at UC Irvine would not have been the same without all the students who
helped me mature and understand how to enable them to progress in their work. Special
thanks to all the teams, for also the joy and fun you brought to work!

Thank you to the external collaborators Gowri Ramachandran and Prof. Bhaskar
Krishnamachari, part of the amazing Deep Edge team, which was the start of my main
line of research.

Big thanks to my Internships’ advisors: Akhilesh Yoshi and Sandeep Reddy Goli,
Marcellino Gemelli, who helped me see real problems in the industry and bring some of
the tools back to academia.

I want to acknowledge that my research was supported in part by: Prof. Marco Levorato,
Donald Bren School of Information and Computer Sciences at UCI, Intel Corporation and
NSF grants IIS-1724331 and MLWiNS-2003237 and DARPA under grant HR00111910001. I
will be always thankful to the people and organizations that helped me achieve what is my
best work yet!

Finally I would like to thank my family and friends for their support. I could have not started
a doctorate program without the encouragement and support of my parents, Massimo and
Margerita. I hope this achievement makes them and my brother Andrea proud!

ix

The COVID-19 pandemic hit during 2020, and since the beginning of that year, I spent most
of my time working from home with my girlfriend Reebbhaa. She made challenges look
easy and always facing them with a smile. Her love, trust and support helped me focus on
the important things and I am proud of all of our achievements.

x

VITA

Davide Callegaro

EDUCATION

Doctor of Philosophy in Computer Science 2021
University of California, Irvine Irvine, California

Laurea Magistrale in Computer Engineering 2016
Universita’ degli Studi di Padova Padua, Italy

Laurea Triennale in Information Engineering 2013
Universita’ degli Studi di Padova Padua, Italy

PROFESSIONAL EXPERIENCE

Research Intern Jul.2017–Sep.2017
Robert Bosch Corporation Palo Alto, California

Research Intern Jun.2018–Sep.2018
Nutanix San Jose, California

ACADEMIC RESEARCH EXPERIENCE

Intelligent & Autonomous Systems Laboratory 2016–2021
University of California, Irvine Irvine, California

TEACHING EXPERIENCE

Teaching Assistant 2016–2018
University of California, Irvine Irvine, California

xi

REFEREED JOURNAL PUBLICATIONS

Optimal Edge Computing for Infrastructure-Assisted
UAV Systems

2021

IEEE Transactions on Vehicular Technology

Head Network Distillation: Splitting Distilled Deep
Neural Networks for Resource-Constrained Edge Com-
puting Systems

2020

IEEE Access

Cloud-Backed Mobile Cognition Power-Efficient Deep
Learning in the Autonomous Vehicle Era

2021

Springer Computing

REFEREED CONFERENCE PUBLICATIONS

SeReMAS: Self-Resilient Mobile Autonomous Systems
Through Predictive Edge Computing

Jul.2021

18th Annual IEEE International Conference on Sensing, Communication, and Networking
(SECON)

Optimal Task Allocation for Time-Varying Edge Com-
puting Systems with Split DNNs

Dec.2020

IEEE Global Communications Conference (GLOBECOM)

Dynamic Distributed Computing for Infrastructure-
Assisted Autonomous UAVs

Jun.2020

Proceedings of the IEEE International Conference on Communications (ICC)

Information Autonomy: Self-Adaptive Information
Management for Edge-Assisted Autonomous UAV Sys-
tems

Nov.2019

Proceedings of the IEEE Military Communication Conference (MILCOM)

Distilled Split Deep Neural Networks for Edge-Assisted
Real-Time Systems

Oct.2019

Proceedings of the ACM International Conference on Mobile Computing and Networking
(MobiCom)

A Measurement Study on Edge Computing for Au-
tonomous UAVs

Aug.2019

Proceedings of the Workshop on Mobile Air-Ground Edge Computing, Systems, Networks,
and Applications (MAGESys)

xii

Optimal Computation Offloading in Edge-Assisted UAV
Systems

Dec.2018

IEEE Global Communications Conference (GLOBECOM)

Intelligent Data Filtering in Constrained IoT Systems Nov.2017
Proceedings of the Asilomar Conference on Signals, Systems, and Computers (ACSSC)

xiii

ABSTRACT OF THE DISSERTATION

Resilient Computation Offloading for Real-Time Mobile Autonomous Systems

By

Davide Callegaro

Doctor of Philosophy in Computer Science

University of California, Irvine, 2021

Associate Professor Marco Levorato, Chair

The operations of Mobile Autonomous Systems (MAS) rely on real-time data analysis. For

instance, autonomous vehicles’ navigation requires the low-latency analysis of high resolution

images to detect, and avoid, objects. Unfortunately, many Mobile Autonomous Systems

(MASs) have constrained computing and energy resources, and the continuous execution

of state-of-the-art algorithms is out of their reach. By offloading the processing load to

compute-capable device located at the network edge, the edge computing paradigm can

mitigate this issue. However in practical real-world settings, the wireless channel connecting

the mobile devices to the edge server often presents erratic capacity patterns due to mobility.

As a result, the overall delay perceived by the mobile application may be affected by large

variations, which in turn harm control.

This thesis explores solutions to the problem described above. To this aim, in addition to

new concepts and edge offloading strategies, a complete real-world platform – the HyDRA

platform, was developed to support design and evaluation, as well as dataset collection.

HyDRA is a fully open source software and hardware platform realizing flexible machine

learning-empowered computing for MAS. From a hardware perspective, HyDRA is composed

of several Unmanned Aerial Vehicles (UAVs) and ground devices collaboratively performing

xiv

data analysis to accomplish system-wide goals. From a software perspective, the HyDRA

middleware enables real-time control of data and task routing within the system, organized

as a distributed set of modules transforming the data captured by the MAS into actuable

control.

Taking HyDRA as a starting point, this thesis makes the following conceptual contributions:

‚ the end-to-end delay in remote computing settings for MAS – and specifically autonomous

quad-copters – were characterized by means of real-world experiments that produced a

comprehensive dataset focused on object detection from images. The study considered both

Wi-Fi and Long-Term Evolution connectivity, and several embedded computing platforms.

The results demonstrates the instability of application level delay even in line-of-sight settings

and relatively slow vehicle motion.

‚ A framework for the dynamic control of task offloading in MASs with extreme temporal

variations is developed. The frameworks is based on a preliminary experimental analysis, which

indicates that there is no dominant feature, including obvious features such as channel quality,

and that prediction necessitates an ensemble of weaker features. We first mathematically

formulate a Redundant Task Offloading Problem. Then, we create predictors that can

help manage the resource usage/performance trade-off. Specifically, we propose a myopic

predictor as baseline and a DRL-based approach, which operates on a set of features from

application, network and device-level components. To the best of our knowledge, this is

the first framework addressing the problem of redundant task offloading in MAS with a

data-driven approach which efficacy is verified in a real-world testbed and with replicable

dataset-based experiments.

‚ A modeling and optimization framework based on Markov Decision Processes (MDP) was

developed to analyze the structural properties of dynamic control strategies determining

xv

where information is processed in collaborative computing scenarios for MAS. In this section

of the thesis, the focus of control is primarily between local and remote analysis. Using

recent split Deep Neural Networks deep neural network (DNN) techniques, the framework

also controls at a fine-grain how the analysis task (the DNN in this case) is divided between

the mobile device and the edge server based on current system parameters.

xvi

Chapter 1

Introduction

1.1 Copyright Notice

Some material contained withing this dissertation has been previously published and is used

with permission.

• Copyright © 2018 IEEE. Reprinted with permission, from Davide Callegaro, and

Marco Levorato, “Optimal Computation Offloading in Edge-Assisted UAV Systems”

In Proceedings of the IEEE Global Communications Conference (GLOBECOM), Abu

Dhabi, United Arab Emirates, Dec. 2018.

• Copyright © 2019 IEEE. Reprinted with permission, from Davide Callegaro, Sabur

Baidya, Gowri S. Ramachandran, Bhaskar Krishnamachari, and Marco Levorato,

“Information Autonomy: Self-Adaptive Information Management for Edge-Assisted

Autonomous UAV Systems” In IEEE MILCOM 2019-IEEE Military Communications

Conference (MILCOM).

• Copyright © 2020 IEEE. Reprinted with permission, from Davide Callegaro, Yoshitomo

1

Matsubara, and Marco Levorato, “Optimal Task Allocation for Time-Varying Edge

Computing Systems with Split DNNs” In IEEE .

• Copyright © 2021 IEEE. Reprinted with permission, from Davide Callegaro, Marco

Levorato, and Francesco Restuccia, “SeReMAS: Self-Resilient Mobile Autonomous

Systems Through Predictive Edge Computing” In Proceedings of 18th Annual IEEE

International Conference on Sensing, Communication, and Networking (SECON), 2021.

• Copyright © 2021 IEEE. Reprinted with permission, from Davide Callegaro, and Marco

Levorato, “Optimal Edge Computing for Infrastructure-Assisted UAV Systems” In

IEEE IEEE Transactions on Vehicular Technology, vol. 70, no. 2, pp. 1782–1792, 2021.

1.2 Motivation: Challenges in Highly Mobile

Computing

Mobile Autonomous Computing includes devices running a plethora of different applications:

from autonomous driving, to industry 4.0 or UAVs. All these applications require a stream of

high dimensional input data to be processed in real-time to allow data driven control to take

place. In the last decade this type of processing has been increasingly using DNNs to analyze

high dimensionality data, such as video, lidar, etc. For instance, analyzing images using

DNNs requires a large execution time, due to the large amount of operations they involve.

In order to reduce their computational delay, Graphics Processing Units, Tensor Processing

units or Field Programmable Gate Arrays are used.

However, continuous heavy data processing can be problematic for small embedded devices

that are computationally and energy constrained. In this category fall UAVs, which thanks

to advancements in embedded computers can carry processing units capable of such compu-

tational power, but would in such case still have to manage their energy budget. In fact, the

2

computational energy required by these applications can reach 10-15% of the power required

to hoover, forcing the device to offload some of its computation to extend its mission time.

1.2.1 Responsiveness

One metric that is central in MASs is their responsiveness to stimuli. In our research, we

measure this responsiveness as the capture-to-control delay (also referred here as the task

delay), defined as the interval of time between information acquisition and the corresponding

action being taken. For instance, if the UAV collects a images at time t, analyzes it locally

in δcs and updates its mission plan in δcs more, the task delay will be equal to the sum

of such components. If the analysis of the image is offloaded to a server, we will add the

communications components to the task delay: one to transport the image from the device

to the server, and one transporting the result from the server to the client.

However, note as the connection between the mobile device and the edge server is necessarily

wireless, communication delays are inherently erratic, and dependent on several time-varying

variables and parameters. Moreover, the – time varying – state of the overall system also

influences the task delay. For example, if the server has higher than usual load, the task

will incur queueing delays at the server side. Similarly, if several devices are accessing the

wireless channel, the communication delay will increase due to congestion. Moreover, as

shown in Chapter 4, mobility among other factors influences the instantaneous channel

performance, requiring approaches to mitigate such uncertainty when dealing with mission

critical applications.

3

1.3 Dissertation Contributions & Overview

In this thesis, we make a series of conceptual and system-level contributions, which are

presented and discussed in the different chapters:

- in Chapter 3, we introduce the HyDRA framework and we develop an optimization problem

used to balance energy usage and network resources. We also present a heuristic algorithm,

whose performance we corroborate with experimental results.

- in Chapter 4, we explore a predictive approach to the problem of task offloading. We

collect information from different sources (networking, application and board) and create

two parametric algorithm to trade-off computational resources, information, networking and

server resources.

- in Chapter 5, we take a theoretical approach to the problem of task offloading, and we solve

the decision problem of whether to compute on the embedded device or offload to the edge

server. We balance task delay and energy consumption at the device, and find the optimal

policy using a Markov Decision Process (MDP).

- in Chapter 6, we solve a similar problem, trading-off energy consumption at the device and

task delay, but we do so using the innovative split DNNs. When modeling such scenario,

we encounter a MDP where tasks are heterogenous (full offloading or split offloading) and

which requires us to solve a Linear Fractional Program. We study how the instantaneous

throughput influences the optimal policy and show our results over-perform a fixed policy up

to 30%.

4

Chapter 2

Related work

2.1 Real-time Applications in Mobile Internet of Things

2.1.1 Edge Computing in Mobile Autonomous Systems

Edge computing can significantly improve reliability and performance in mobile applications

[7]. Different frameworks perform a multi-layer optimization to exploit the full potential

of edge computing [61, 19]. To fully exploit the edge servers, the user equipment needs to

periodically make a decision on whether to process tasks locally, or to offload. In the latter

case, there might be multiple technologies or networks available, e.g. [10], and a link must be

chosen for each transmission.

2.1.2 Static Approaches

Convex optimization has been proven to be ineffective due to the presence of complex factors

such as user’s mobility [13]. Classic approaches are shown to perform better with coarser

5

granularity settings and when considerable prior knowledge is available. For example, in

[44] the authors develop an online multi-decision making scheme, solving a task offloading

problem while jointly optimizing caching, communication and computation resources in the

Internet of Vehicles, exploiting the proximity of users to roadside units.

2.1.3 Data Driven Approaches to Real-Time Scheduling

Fast-changing mobile networks usually employ data-driven approaches, using Markov Decision

Processes (MDP), Q-Learning or DRL. MDPs achieve a good tradeoff between the flexibility

of learning and the data efficiency of a model-based solution [12, 58]. However, MDP-based

solutions often lead to exceedingly large state spaces, and require vast amounts of data to

find the correct transitions for each state-action pair during training. Finally, they are very

memory intensive both in training and execution time. For these reasons, DRL approaches

have been proposed. Cao et. al [13] present a general framework for intelligent offloading

in multi-access edge computing composed by observation tier, analysis tier, prediction tier

and policy tier. In this chapter, we consider a much more complicated problem where the

trade-off is beyond power efficiency and link performance.

2.1.4 Simulation Environments

Recently, researchers have worked towards simulation environments for drones, for example,

OpenUAV [50] and FlyNetSim [3]. However, neither of the two environments can capture the

interactions between mobility and application delay that are key in this chapter. Thus, we

are sharing our dataset with the community to further allow research that can explain and

exploit these interactions.

6

2.2 Theoretical Solutions and Heterogeneous Metrics

Most recent contributions on edge computing for UAVs focus on planning aspects, and mostly

from an purely abstract perspective [40, 14, 39, 11] or center their attention on UAV-assisted

edge computing and cloudlets [28, 61, 20, 56, 43].

Other contributions, such as, [2], focus, instead, on monetary metrics (for instance associated

with communications) to guide the optimization process. In [2] a game theoretic approach is

proposed, with which the authors are able to reduce the communication cost, considering not

only multiple servers, but also the possibility for some of them to offload the computation

further. Our work centers on short-term metrics, which allow a fine degree of control when

optimizing the offloading process. We remark how this is a marked difference with respect to

most existing literature.

Very recent contributions, such as [16], focus on the optimization of specific scenarios,

assuming the apriori knowledge of a prediction model for the channel state, which leads to

sophisticated decision making algorithms to determine which part of the task can be offloaded.

This interesting class of approaches imposes stronger limitations on the type of analysis task.

[30] presents an approach based on fuzzy logic to face the high uncertainty induced by these

applications.

In [35], B.Liu et al. propose to offload computationally intensive tasks from UAVs to

edge and cloud servers. They formulate a joint computation and routing optimization by

defining a three-layered computational model on which they design a polynomial near-optimal

approximation algorithm. The authors use a Markov approximation technique described in

[17], which is useful when solving network combinatorial optimization problems. However,

they do not consider energy-related metrics and control.

Energy expense is considered in the work by Zhu et al. [62], where cooperative approach to

7

computation offloading for UAVs is presented that aims to improve the inefficiency of naive

local computing solutions. The authors explore an urban environment for UAV operations,

and use simulated annealing to minimize the energy consumption while satisfying a delay

constraint. Our solution jointly optimizes energy and delay, offering more flexibility to the

application.

8

Part I

Experimental Study of Task

Offloading for MASs

9

Chapter 3

Dynamic Distributed Scheduling for

Infrastructure Autonomous UAVs

As previously discussed, the ability to observe and analyze the surrounding environment to

inform decision making is the key to autonomy. In physical systems, state information is

extracted by acquiring and processing endogenous and exogenous signals in real-time. Despite

the important advances both in algorithms and embedded platforms of the recent years, the

execution of sensing-processing-control pipelines in lightweight airborne platforms such as

commercial Unmanned Aerial Vehicles (UAV) is a non-trivial problem. Rather intuitively,

there exists an inherent tradeoff between three key metrics: accuracy, decision delay, and

energy consumption. Improving accuracy of analysis often requires increasing complexity,

which comes at the price of a larger execution time, and thus decision delay, or a larger weight

and energy consumption.

Herein we focus on video analysis, and specifically on object detection, an important compo-

nent of most advanced autonomous systems. Modern object detection algorithms take the

form of Deep Neural Networks (DNN). The most performing DNNs are extremely complex,

10

Figure 3.1: Edge computing scenario considered in this chapter: UAVs offload analysis modules
to ground edge servers. The architecture we developed enables the seamless distribution
of modules across devices, as well as to re-route data analysis in real-time to improve
performance.

and their execution requires powerful computing platforms. Two key recent advancements

make object detection possible in constrained mobile devices:

‚ The development of techniques such as distillation, pruning and quantization led to the

construction of effective simplified DNN models with a significantly reduced complexity

compared to the full models.

‚ The development of powerful embedded computers equipped with accelerators and GPUs.

Intuitively, despite the clever optimized design of simplified models, aggressive complexity

reduction results in a perceivable degradation of accuracy. We remark that lower complexity

also means a shorter execution time, that is, a smaller time between information acquisition

and control – here referred to as capture-to-control time – a critical parameter for an effective

11

control. The modern GPU-equipped embedded boards mentioned above allow fast execution

of fairly complex DNN models. However, the use of GPUs to speed up execution significantly

increases energy consumption, another crucial metric, especially when considering airborne

systems.

This chapter seeks insights on edge computing for UAVs from a real-world deployment and

real-world testing, especially to characterize and counteract temporal variations in capture-

to-control time shaped by variations in the channel conditions, including gain and congestion

level. Specifically, we make the following contributions:

(i) We develop an experimental platform realizing an infrastructure assisted UAV system.

We focus on navigation tasks based on object detection via DNN models, and equip the UAV

with one of the most powerful embedded computers for machine learning to enable a fair

comparison with offloading to edge servers.

(ii) We develop Hydra[8], a middleware architecture enabling the adaptive distribution of

computation tasks within infrastructure assisted UAV systems. The modular architecture

grants significant flexibility in deploying sensing, analysis, and control pipelines, and includes

a logic to dynamically activate-deactivate pipelines in response to changes in the state of

their components or environment.

(iii) We test the architecture to illustrate its performance against variations of channel gain

and contention/interference from other mobile devices.

Our experimental results indicate that offloading complex analysis tasks to edge servers grants

a significant reduction in the overall energy intake of operating the UAV, thus prolonging

mission lifetime. The proposed Hydra architecture is shown to provide reliable control against

fluctuations of the capture-to-control time at different temporal scales based on a tunable

tradeoff between energy and delay performance.

12

The rest of the chapter is organized as follows. Section 3.1 introduces the experimental

platform and provides a preliminary discussion of the problem at hand. In Section 3.2, we

present and discuss the architecture and logics of Hydra. Section 3.3 presents and discusses

the experimental results.

3.1 Problem Setup and Preliminary Results

First, we describe the task and experimental platform, and make some preliminary considera-

tions on metrics of interest.

3.1.1 Computation Task

We consider the sensing-analysis-control pipeline illustrated in Fig. 3.2: the onboard camera

acquires images that are analyzed using an object detection algorithm, whose output is a

series of labeled bounding boxes. The control module selects a bounding box with a predefined

label, and produces steering commands. The objective of steering is to center the bounding

box with respect of the vision range of the UAV and match it to a predefined size. Note that

our objective is to analyze communication-computation aspects of this class of problems, so

we focus on the accuracy, delay and energy consumption associated with the pipeline, rather

than on the specific output control.

Figure 3.2: Sensing, analysis and control pipeline where object detection performed on images
acquired by the UAV is used to control navigation.

13

We use ssdlite mobilenet v2 [47] trained on the Coco dataset [34] and floating Point 32

bits precision for object detection, a highly optimized model designed for mobile devices.

Performance in terms of accuracy is expressed in terms of mean Average Precision (mAP),

which measures a combination of precision, recall and bounding box intersection with ground

truth. The model we use achieves a mAP equal to 22 [1], compared to the 37 ´ 43 of full

sized models which are out of reach of most embedded computers.

3.1.2 Experimental Platform

Experiments are performed using a 3DR solo quadcopter customized to mount on an attached

plate an additional embedded computer and battery, a GoPro Hero 4 camera, and a Magewell

HDMI to USB converter. Specifically, we use the Nvidia Jetson Nano with 4GB RAM,

Quad-core ARM Cortex-A57 MPCore processor and 128-core Nvidia Maxwell GPU. We use

as edge servers Nvidia Jetson TX2 boards with 8 GB RAM, hex-core ARMv8 64-bit CPU

and an integrated 256-core Nvidia Pascal GPU.

The UAV connects to the edge servers using WiFi communications, and specifically IEEE

802.11n, which offers higher data rates (upto 130 Mbps application throughput) compared to

IEEE 802.11 a/b/g and can operate both on 2.4 GHz and 5 GHz band. We configure the

access points to operate in the 2.4 GHz band on non-overlapping channels.

3.1.3 Preliminary Considerations

The Nvidia Nano is a recently released extremely powerful embedded computer, specifically

designed to provide state of the art performance in executing machine learning algorithms.

The average time to execute the bare object detection task is 87˘ 6 ms, which almost equal

to the 75˘ 8 ms achieved by the Jetson TX2 board. We report that the execution of other

14

0 10 20 30 40 50
Time (s)

0

1

2

3

4

5

Ca
pt
ur
e-
to
-c
on

tro
l d

el
ay

 (s
)

0

5

10

15

20

25

Di
st
an

ce
 fr
om

 A
cc
es

s P
oi
nt

Figure 3.3: Temporal variation of capture-to-output delay and distance from a reference edge
server as the UAV moves away from and toward it.

models, such as ssd mobilenet v1, took almost the same time on the Nano and half of the time

on the TX2 likely due to specific architectural characteristics. We choose v2 to benchmark our

system due to its slightly higher accuracy and to provide the most advantageous conditions

to the local analysis option. We remark that a more powerful edge server would obviously

advantage remote analysis pipelines, and that any other task using the GPU at the UAV

could significantly impact the performance of local onboard analysis loops.

However, the extreme performance of the Nano comes at the price of a high energy con-

sumption. Continuous local computing requires 4˘ 0.5 W (measured during flight using the

Jetson Nano utilities), which is more that 10% of the 38 W required by the UAV to hover or

navigate. This is mostly connected to the use of the GPU, however, our extensive testing on

other embedded computers resulted in execution times above half a second.

Continuous offloading to 1 or 2 edge servers requires 2˘0.2 W and 2.055˘0.1 W, respectively.

15

0 5 10 15 20 25
Distance from Access Point (m)

0

1

2

3

4

5

En
d-
to
-e
nd

 d
el
ay

 o
ffl
oa

di
ng

 (s
)

Figure 3.4: Capture-to-output time as a function of the distance between UAV and the edge
server.

Therefore, offloading dramatically reduces energy intake, and would prolong mission time.

However, the capture-to-control time of pipelines through available edge servers has additional

components corresponding to the transfer of the image from the UAV to the server and of

steering commands on the reverse path. Importantly, those components are heavily influenced

by latent variables such as path loss and channel load, and present large fluctuations at

fine-time scale due to fading, as well as channel access and transport protocols’ parameters.

Fig. 3.3 shows an experimental trace obtained as the UAV is flying away from the edge server

– a detailed description of the software and experimental parameters used to obtain these

results is provided later. Micro and macro scale variations are observed on a general trend

of degradation due to path loss. Distance spikes, automatically corrected, are due to wind.

Fig. 3.4 reinforces the notion that distance and connection to edge servers are a rather poor

predictor of the delay, with large variations and clustering effect.

16

As shown in the experimental results section, the onset of heavy-duty data streams has a

more abrupt impact on the capture-to-delay time, whose trajectory presents sudden spikes

and a more erratic behavior.

The need for a flexible and adaptive strategy is apparent. Importantly, the reaction of the

system cannot be exclusively driven by macro-scale parameters such as distance due to

sharp delay spikes triggered by micro-scale effects such as the dynamics of the inner state

of communication and networking protocols. Moreover, hardly observable variables such as

channel load and exogenous traffic emission have a considerable impact on the delay and its

dynamics.

3.2 HYDRA

Herein, we describe the structure of Hydra and its embedded logics, which enables the

activation/deactivation of pipelines, both local in-device and through edge servers.

3.2.1 Hydra Architecture

As shown earlier, autonomy pipelines are composed of three main logical blocks, namely

sensing, data analysis and control, which transform environmental or internal signals into

control. HYDRA allows the construction of flexible pipelines, where the flexibility is both in

where the blocks are executed and which blocks are executed. To this aim, the open-source

architecture we developed [8] is modular, where the module abstraction corresponds to

an encapsulation of data transformation functions. The high level schematics of Hydra is

depicted in Fig. 3.5.

The core of Hydra is a reliable threading of the modules over a distributed system, where the

17

Figure 3.5: High-level schematics of the modular structure of Hydra.

threading itself is controlled by a logic. Every module is characterized by a core function,

and is equipped with an input and one or many output queues. The queues are the interfaces

between a specific module and all the other – local or remote – modules. Thus, the flow of

information, as well as the deactivation of pipelines, is controlled by the routing strategy

implemented by the modules. For instance, the deactivation of a pipeline will be realized by

disabling an output queue, thus avoiding the summoning of the modules following it.

Some input queues implement filtering to remove replicas of data structures transiting the

modules. In our implementation, the input queue of the actuation module at the UAV detects

and filters out replica outputs of data analysis modules – that is, outputs corresponding to

the same initial data – to avoid the implementation of duplicate steering actions. Moreover,

some queues log the activity to monitor the performance of the associated pipelines. In

our implementation, the logging driving pipeline selection is delegated to the input queue

of the final actuation module at the UAV. The input queue of this module will log the

capture-to-control time of active pipelines by tracking the delivery time of control outputs

with respect to the generation time of their corresponding frame. Note that both times are

generated at the same device.

A module outside those realizing the transformation of the data implements the high-level

18

control logic of HYDRA. Specifically, we concentrate all intelligence in the logics module.

The module collects the logs from target input queues and determines the routing policies

of selected output queues. In this specific implementation, the logics module collects the

temporal patterns of frame emission and output reception from the onboard sensing and

control modules, respectively. The sequences of delays are, then, used to compute the average

driving pipeline activation/deactivation and selection.

The logics module can also control data capture parameters to optimize the flow of information

through the pipelines and maximize performance. Herein, we set the image capture rate

to match the performance of the fastest pipeline over a moving window. Intuitively, an

exceeding capture frequency will overload the active pipelines and create undesirable queueing

effects, which may have a substantial impact on the capture-to-control delay. In the current

implementation, we enforce a strict queueing policy, where we store only the most recent data

structure received from the previous modules. This simple strategy avoids delay accumulation,

and results in an “effective” capture rate where all dropped samples are not accounted for.

3.2.2 Hydra Logics

Intuitively, the macro-scale parameters governing temporally local capture-to-output delays

are hardly observable. Even if some network interfaces can report the value of some relevant

variables, such as channel gain and modulation, many others remain inaccessible unless

a complex, and possibly resource consuming, information exchange is established. The

most eminent examples include channel load and server load, which would require a direct

exchange of information with local access points and available servers. Remarkably, even

once these macro features of the environment are known, as shown in the previous section the

capture-to-control time still presents complex patterns inducing possibly large performance

variations.

19

We, then, take the simple but effective approach of using directly observable parameters

to drive the system, where the selection process is guided by the observation of the actual

capture-to-control time offered by available – active – pipelines. An important advantage

of this strategy is that of being completely agnostic to the technologies and protocols used

within the system, meaning that the state of all the pipelines is represented by a homogeneous

set of variables. We remark that local computing at the UAV (local pipeline) is an option

available to the UAV possibly with a reduced degree of uncertainty compared to offloading.

Although conceptually trivial, this approach presents an important challenge: only the capture-

to-control delays associated with the currently used pipeline are observable. Intuitively, on

the one hand, the activation of only one pipeline does not provide any information on

other available pipelines. On the other hand, the activation of all the available pipelines –

including the local one – would maximize the information available to the UAV, but maximizes

the burden imposed to the surrounding networks and servers, possibly decreasing global

performance. In fact, any active – non-local – pipeline uses the channel resource to support

information exchange, and the server resource to complete the offloaded tasks.

Hydra takes this observation as a starting point to build an adaptive, and parsimonious,

strategy for the exploration-exploitation of available resources. In Hydra, pipelines are, thus,

activated to: (i) use the corresponding resources to generate control outputs; (ii) reduce

uncertainty in the minimum capture-to-output time – that is, the first available outcome

associated with an acquired sample; and (iii) update the state estimate of available pipelines.

The key, then, is to control the activation of pipelines when necessary to one of these purposes,

while minimizing the active time of pipelines whose output will not be used.

In order to control the activation of the pipelines, we define 3 operational modes, namely

Performance (ψptq“P), Exploration (ψptq“E), and Reliability (ψptq“R), where ψptq is the

mode at time t. In the Performance mode, the UAV utilizes only one, remote, pipeline,

which is achieving the smallest known capture-to-output delay. In the Exploration mode, the

20

UAV activates available remote pipelines to update their known “state”, and perform an

informed selection. In Reliability, local computing is activated in addition to all the remote

pipelines to guarantee an almost constant capture-to-control time when other options have

degraded performance. Note that variations of these modes, where only subsets of pipelines

are activated can be included in Hydra.

The selection of the mode is performed based on a recent window of capture-to-control times.

Define τp,j as the capture-to-control time of image n processed through the pipeline p. At

image N , the future mode and edge server selection are determined by the functions

Ep “

N
ÿ

j“N´W`1

αW´jτpp,jq, Mp “ max
j“N´W`1,...,N

τpp,jq, (3.1)

respectively corresponding to the moving average window and maximum of the last W images’

capture-to-control delay.

Fig. 3.6 illustrates the modes and the selection strategy. Assuming pipeline p˚ through an

edge server is being currently used in Performance mode, the system switches to Exploration

if Mp is larger than the threshold λ. In this mode, if for at least one of the pipelines Mp

is below λ, then among those the pipeline with the smallest Ep is selected and the system

returns to Performance. In Exploration, the system transitions to Reliability after δ samples

unless at least one of the pipelines has delay below λ.

3.3 Experimental Results on Energy-Performance Trade-

Off

We now presents and discuss experimental results illustrating relevant tradeoffs between

accuracy and energy of available computing options. Experiments are performed placing

21

Figure 3.6: Illustration of the threshold based pipeline activation and selection strategy.

two edge servers at a distance of 25 m (Edge Server 1 and 2, respectively). A fixed image

is used to provide a stable performance reference in all the experiments. The image is of

size 480ˆ640 RGB pixels and compressed using JPEG to 21 KB. The UAV is set to move

for 10 minutes on the line between the two edge servers at a speed of 1 m/s to illustrate

the impact of distance from the edge servers and guarantee reproducible experiments across

our measurement campaign. Note that in the actual tracking application, variations in the

capture-to-control time of different strategies could result in different motion trajectories of

the UAV.

Fig. 3.7 depicts the average capture-to-control time and power consumption over the exper-

iment as a function of the threshold λ. When λ is set to 0.1 s, Hydra almost exclusively

22

0.10 0.15 0.20 0.25

Theshold λ

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

A
v
g

.
e

n
d

-t
o

-e
n

d
 d

e
la

y
 (

s
)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

P
o

w
e

r
C

o
n

s
u

m
p

ti
o

n
 (

m
W

)

Figure 3.7: Avg. capture-to-control time and power consumption over the experiment as a
function of the threshold λ.

chooses local computing over remote computing options. This results in a delay of about

0.09 s, and an energy consumption of approximately 4 W. As λ is increased, the system

increases the fraction of time in which local computing is deactivated and one – or two – of

the pipelines through the edge servers is kept active. At λ is set to 0.25 s, the delay increases

to approximately 0.13 s, and the energy decreases to about 2 W. The trend is illustrated in

Fig. 3.8, where the fraction of time in which local computing is active as a function of the

threshold λ is shown.

The ability of the system to quickly adapt to delay variations is demonstrated in Fig. 3.9,

which shows a temporal trace of the active pipelines. The UAV is at first connected to Edge

Server 2. However, as it moves away from it, the delay degrades and Hydra transitions

to Reliability mode, activating Edge Server 1. As the connection to Edge Server 1 is still

flimsy, both edge-based pipelines have a large delay, and after δ samples local computing

is activated. As the link to Edge 2 improves, windows of low delay allow the deactivation

of local computing. We remark that when multiple pipelines are active, the first received

control is used. Therefore, the smallest delay in the plot is the effective delay perceived by

23

0.1 0.15 0.2 0.25

Threshold λ

0

20

40

60

80

100

L
o
c
a
l
C

o
m

p
u
ta

ti
o
n
 (

%
)

Figure 3.8: Fraction of time in which local computing is active as a function of the threshold
λ.

the controller.

In order to further evaluate the system’s dynamics, we inject in the channels used by Edge

Server 1 and 2 traffic from external data streams. Specifically, we create high-volume traffic

with a duty cycle of 20 s – 10 s active followed by 10 s inactive – with an offset of 5 s between

the two channels. Thus, within one duty cycle, we have 5 s in which both channels experience

congestion, 5 s in which both are congestion-free, and two periods of 5 s in which either one

of the channel is congested and the other is congestion-free.

Fig. 3.10 shows a temporal trace of the capture-to-control time achieved by Hydra under

these conditions. The cycles are apparent: the system switches from one edge server to

another as the exogenous data streams are activated, and relies on local computing when the

channel to both edge servers is congested. We note the erratic behavior of delay due to the

interactions between data flows due to channel access and transport layer protocols.

24

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time (s)

10−1

100

101

Ca
pt
ur
e-
to
-c
on

tro
l d

el
ay

 (s
) Local

Edge Server 1
Edge Server 2
Lambda

Figure 3.9: Temporal pattern of the capture-to-control time showing the switching between
modes in Hydra.

0 5 10 15 20 25
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ca
pt
ur
e-
to
-c
on
tro

l d
el
ay
 (s
) Local

Edge Server 1
Edge Server 2
Lambda

Figure 3.10: Temporal pattern of the capture-to-control time showing the switching between
modes in Hydra.

25

Chapter 4

SeReMAS: Self-Resilient Task

Allocation Mobile Autonomous

Systems Through Predictive

Computing

In this chapter, we tackle the challenging problem of providing task-level performance

guarantees to a stream of computing tasks generated by an airborne MAS. Specifically, we

impose a bound on the maximum time between data acquisition and the completion of

the corresponding analysis task. We remark how a task-level perspective is necessary in

this class of systems, where temporally local degradation of task delay can severely harm

control loops in MASs. Figure 4.1 shows the temporal pattern of the end-to-end application

delay (the different curves are different edge servers) obtained through our experimental

drone testbed described in Section 4.4.1. We can observe that the delay exhibits significantly

time-varying patterns, with a standard deviation 0.14 and a peak-to-peak difference reaching

0.43, which is 241% of the average value of 0.178s. We note that the experimental setting

26

is in Line-of-Sight (LOS), and that more convoluted propagation environments would just

aggravate this problem. A bound on the average delay would not guarantee that the task-level

delay will be below a certain threshold for each of the tasks belonging to the task stream,

which is key to guarantee correct functionality of stream-oriented edge-based MASs.

0 10 20 30 40 50
Time [s]

0.1

0.2

0.3

0.4

Ta
sk
-le

ve
l d

el
ay

 [s
]

Edge 1 Edge 2 Edge 3 Min Delay

Figure 4.1: Example of task level delay from a flying drone to 3 edge servers, transmitted
over WiFi 802.11n in a 50s interval.

Our vision is simple: the seamless usage of edge resources by MASs necessarily requires

techniques able to mitigate the impairments and erratic temporal patterns induced by the

surrounding communication and computing ecosystems and the physics of the system itself.

Existing work – discussed in detail in Chapter 2 – has tackled the issue of MASs reliability in

a piecemeal and often highly abstract fashion, by focusing on static optimization of either

mobile device’s trajectory [61, 18, 59, 25] or communication resources [57, 60, 6]. In Sec. 4.4.1,

we show that edge selection methodologies based on channel quality would fail, and we

conclude that new task offloading strategies are needed to stabilize task completion delay in

MASs.

To address this challenging problem, we developed SeReMAS – Self-Resilient Mobile Au-

tonomous Systems – a framework whose core is a dynamic task replication mechanism, where

individual tasks are replicated and sent over multiple channel/edge server resources. The key

27

intuition is that the task delay experienced by the MAS will be the minimum delay of each

replica. Thus, the larger the number of channel/edge couples, the greater the probability that

one task will satisfy the delay requirement, which however also implies increased resource

usage. The objective of SeReMAS is to minimize resource usage under the constraint that

the probability that the task-level delay bound will be met.

Our Approach. To drive our design, we implemented a testbed composed by an airborne

MAS and multiple ground servers (Section 4.1). Specifically, we extracted a rich dataset from

the system (Section 4.4.1), whose analysis demonstrates a lack of variables strongly correlated

with the delay (Section 4.1.1). We show that the received signal strength indicator (RSSI),

one of the key variables used to control connectivity and offloading, has limited influence

on the delay. The dataset illustrates how in real-world MAS systems the delay pattern is

the result of a wide variety of complex cross-variable interactions at various temporal scales.

Importantly, influential variables are outside the network layers, and include physical variables

such as orientation, acceleration and tilt.

Figure 4.2: Our Architecture for Task Offloading in MASs.

Based on this considerations, SeReMAS embeds a predictive core based on Deep Reinforcement

28

Learning (DRL) to determine a compact set of computing pipelines dynamically assigned

task-by-task based on the perceived state of the system. Fig. 4.2 depicts the high-level

schematics of SeReMAS. The key intuition is that the selected set of channel/computing

resources will influence future decision making, which DRL is able to capture. Some of

the features – e.g., application and most network-related features – become available only

if a resource is used. For instance, if a channel/edge server pipeline is not selected for

a task, then the corresponding delay is not observed, which motivates the adoption of a

DRL-based approach. By including future rewards in action selection and taking as input

unprocessed features such as RSSI, end-to-end delay, inertial measurement unit (IMU) and

global positioning system (GPS) coordinates, the DRL algorithm will implicitly embed the

impact of current computing pipelines selection on the efficacy of future decisions, as well as

real-world phenomena that can be hardly modeled through explicit mathematical terms.

Novel Contributions

‚ We design SeReMAS, a framework for the dynamic control of task offloading in MASs

with extreme temporal variations (Section 4.2). SeReMAS is based on a preliminary experi-

mental analysis (Section 4.1.1), which indicates that there is no dominant feature, including

obvious features such as channel quality, and that prediction necessitates an ensemble of

weaker features. We first mathematically formulate (Section 4.2.2) a Redundant Task Of-

floading Problem (RTOP). Then, we create predictors that can help managing the resource

usage/performance trade-off. Specifically, we propose a myopic predictor as baseline (Section

4.2.3) and a DRL-based approach, which operates on a set of features from application,

network and device-level components (Section 4.2.4). To the best of our knowledge, SeReMAS

is the first framework addressing the problem of redundant task offloading in MAS with a

data-driven approach which efficacy is verified in a real-world testbed and with replicable

dataset-based experiments.

29

‚ We prototype SeReMAS on a drone-based experimental testbed (Section 4.3). The platform

embeds a module for the real-time analysis of features, including the flight controller, tied

to internal data routing control. As part of our prototype, we design a strategy to make

the state representation compact (Section 4.3.2), and thus lower the complexity of the DRL

agent, using an iterative feature selection procedure. We consider a real-time image analysis

application through state-of-the-art edge-assisted object detection algorithms where a drone

periodically acquires from onboard sensors data whose analysis is offloaded to edge servers on

the ground (Section 4.4.1). We let the drone perform task offloading through multiple WiFi

interfaces, and collect a total of 140 minutes of flying. The dataset and the code produced as

part of this chapter can be found at [9].

‚ Through experiments, we show how different subsets of features appear dominant at different

time-scales (Section 4.4.2). We also show in Section 4.4.3 how the DRL approach improves

by 17% the task execution probability with respect to a reactive approach [10], thanks to the

ability to manage state uncertainty in the action selection problem, measured in terms of

probability of meeting a delay requirement per amount of resource used, with respect to a

myopic controller based on a one-shot selection of the next set of edge servers to be used.

4.1 Preliminary Experiments

In our setting, a MAS is connected to N edge servers es1, es2, . . . , esN through separate

wireless channels. The device generates a sequence of tasks t1, t2, t3, . . . with fixed inter-

arrival time equal to T seconds. A task is described as a chunk of data to be processed

with a predetermined analysis algorithm to produce an output. We assume that tasks are

homogeneous, meaning that the amount of data associated with any task and the analysis

algorithm are fixed. Let us define δnptiq as the capture-to-output delay of task ti executed as

edge server esn, defined as the time from the generation of the task to the availability of its

30

output at the edge server. The delay δnptiq is the composition of two delays: the transmission

delay δcomm
n ptiq and the computing delay δcomp

n ptiq. In real-world settings, both components

are highly stochastic, and depend on a number of latent variable, parameters as well as states

of protocols at various layers of the stack.

4.1.1 Preliminary Analysis

We motivate our study by analyzing the data obtained from real-world experiments. We

consider an experimental setting, described in detail in Section 4.4.1, where a drone is

offloading image processing tasks to three edge servers. Fig. 4.1 shows a section of the

temporal pattern of the task-level delay δt at the three edge servers. We observe that the

delay signals alternate low-delay (150´ 175ms) sections with spikes and higher delay sections.

While some mild correlation between the delay signals is present, the minimum of the three

signals provides the needed stability to the delay. Fig. 4.3.a shows the Cumulative Density

Function (CDF) of the task-level delay δt for the three edge servers in our experiments. Note

that in our scenario the task execution delay δcomp is nearly deterministic. We remark that

all the edge servers are within coverage, and that all the links are in Line of Sight (LoS). Most

delays are in the range 120ms to 250ms, with about 40% of the delays below 135-145ms.

0.100 0.125 0.150 0.175 0.200 0.225 0.250 0.275 0.300
Delay [s]

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m
ul
at
iv
e
De

ns
ity

 Fu
nc

tio
n

Edge 0
Edge 1
Edge 2

(a)

0.100 0.125 0.150 0.175 0.200 0.225 0.250 0.275 0.300
Delay [s]

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

De
ns

ity
 Fu

nc
tio

n

Min delay
Max RSSI
Avg. delay

(b)

Figure 4.3: Cumulative density function of delay (a) for each edge server and (b) selecting
the minimum delay, or the one with maximum RSSI, or the average of the available delays.

31

Fig. 4.3.b shows the distribution of the minimum delay δmin with respect to the cdf of the

average delay and the delay associated with the edge server with the maximum channel

quality index (RSSI). We observe that there is a noticeable difference between the minimum

delay and the delay offered by the edge server with the best channel quality. Therefore, even

a perfect SNR-based handover would fail to provide optimal performance in this context.

This effect is the result of the convoluted interdependencies between protocol variables at the

various layers and the physical and hardware properties of the system at multiple time scales.

We remark this important aspect by plotting in Fig. 4.4 the (delay, RSSI) and (delay, distance)

mean and one standard deviation of the delay as a function of the two other variables. We

can see the lack of a strong correlation between the delay and both RSSI and distance and

emphasize again how experimental results unveil effects and interactions that are rarely

captured in simulations and models.

10 15 20 25 30 35 40
Distance from Edge [m]

0.10

0.15

0.20

0.25

0.30

De
la
y
[s
]

(a)

40 50 60 70 80
Link Quality

0.15

0.20

0.25

0.30

De
la
y
[s
]

(b)

Figure 4.4: Distribution of task level delay as a function of distance from each of the edges
and the RSSI.

4.2 The SeReMAS Framework

The results illustrated in the previous section emphasize the need for new techniques boosting

the reliability of edge offloading for extreme real-time applications. In this section, we present

32

SeReMAS, a data-driven framework addressing the reliability of task offloading in MAS. We

first present an overview of the main system blocks and functionalities in Section 4.2.1. Then,

we formalize the learning-based redundant task offloading control problem in Section 4.2.2.

4.2.1 SeReMAS: A Walkthrough

SeReMAS [9] enables the data-driven control of task offloading from the MAS to the edge

servers. The architecture of SeReMAS is depicted in Fig. 4.5, where we show the modules

performing mobility control of the MAS (yellow) and control of task offloading (blue), and

the modules – multiplexing and filter – handling the communication between the section of

the platform at the MAS to the section at the various edge servers.

Task
Generation

Mobility
Features

Computing
Features

DRL

Module Data
Analysis

Control
Module

MAS Control
Actuator

Network
Features

Policy

 MAS Control

Task Offloading Control

Both

Mobile Autonomous System (MAS)

Pr
ep

ro
ce

ss
in

g

Actuation
Control

Edge Servers

1

2

3

4

7

Data
Analysis

Control
Module

Connection
Module

Data
Analysis
Module

Control
Module

5Multiplexer

Filter
6

Figure 4.5: SeReMAS system architecture: two different control cycles intersect at the
communication modules, where the DRL agent’s policy is applied by means of task replication.

We now provide a walk-through of the main operations performed by SeReMAS, following the

steps indicated in Fig. 4.5. First, the framework takes computing features (e.g., CPU, GPU,

and RAM utilization), mobility features (e.g., accelerometer, gyroscope, GPS coordinates,

33

etc), and network features (e.g., TCP state, RSSI) and applies pre-processing (step 1) to

construct the input to a DRL model (see Section 4.2.2 for details). The extracted features

and the composition of the state space are described in Section 4.3.2. Then, the DRL state is

given as input to the DRL algorithm, which outputs φ, the set of edge servers to be used as

task executors (step 2).

Tasks are generated (step 3) according to the current MAS needs (e.g., multimedia classifi-

cation), and handled by module called multiplexer (step 4) which handles task replication

across multiple edge servers. Specifically, the multiplexer is responsible for replicating and

forwarding the tasks to the edge servers, and is directly controlled by the output φ of the DRL

algorithm. The tasks are sent to the edges specified by φ, which are then executed (step 5).

The knowledge produced by the task execution can be used to drive control decisions on the

MAS. For example, in our prototype we use the task result to control the mobility of the MAS,

as explained in Section 4.3. The related control messages generated by the edge server(s)

are sent back to the MAS, and processed by the filter module (step 6), which eliminates

replicated messages when more than one edge server is selected to avoid the re-execution

of flight commands. Finally, the control messages are fed to the control actuator (step 7),

which takes care of implementing the control action, if needed (e.g., flight control).

4.2.2 Redundant Task Offloading Problem (RTOP)

As part of the SeReMAS framework, we investigate the problem of redundant task offloading

to replicate tasks and send them over multiple channel-edge server pipelines for increased

reliability, which we call RTOP. This problem will drive our DRL design. We define the

capture-to-output delay as the minimum of the delays associated with the task replicas:

δtipφiq “ mintδnptiq : nPφiu, (4.1)

34

where φiĎt1, . . . , Nu is the subset of edge servers to which a replica of task ti is sent.

Then, we define a controller whose objective is to determine the sequence of edge servers

φ˚“rφ˚t1 , φ
˚
t2
, . . .s solving the following optimization problem:

arg min
φ

Ei r|φi|s (4.2)

s.t. Ei rI pδminptiq ą δ˚q |φis ă ∆, (4.3)

where I p¨q is the indicator function and expectation is computed over the task sequence. This

formulation is different than imposing a constraint on the average delay, i.e., Ei rδminptiq|φis ă

δ˚. The latter formulation would allow a possibly large number of delays above δ˚, while our

formulation is equivalent to

arg min
φ

E r|φt|s (4.4)

s.t. P pδminptq ą δ˚|φtq ă ∆. (4.5)

Thus, we impose a constraint on the probability that the task completion time is above a

threshold δ˚ while striving to minimize resource usage.

Intuitively, the larger the number of edge servers selected, the larger the probability that the

minimum of the delays is below the threshold. However, the inevitable limitations on channel

access and maximum edge server load leads to a task-level selection problem, where the

number and members of the chosen set is informed by the uncertainty regarding future delays

and their expected values. In real-world settings, the resolution of the RTOP defined above

necessitates the consideration of complex inter-variable and temporal interdependencies. For

this reason, we resort to data-driven solutions methodologies decomposing the problem into

sequences of local problems.

35

4.2.3 Myopic-based Baseline for RTOP

First, we formulate a myopic predictive solution to address the RTOP. We introduce the

notion of state of the system si “ tsi,nun“1,...,N , where si,n is the feature matrix

si,n “

»

—

—

—

—

—

—

—

–

ψ1,i´L`1,n . . . ψ1,i´1,n ψ1,i,n

ψ2,i´L`1,n . . . ψ2,i´1,n ψ2,i,n

...
... . . .

...

ψF,i´L`1,n ... ψF,i´1,n ψF,i,n

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, (4.6)

of FˆL features, and ψf,j,n is f ´ th feature referring to task j and computing pipeline n.

We describe the specific features and dataset in the Section 4.3.2. We train a probabilistic

predictor as the function pi`1,n “ σpsi,nq, where

pi`1,n “ P pδnpti`1q ą δ˚q . (4.7)

We find the set φi`1 with minimum cardinality such that

P
`

δti`1
pφi`1q ą δ˚

˘

ă ∆, (4.8)

where the left-hand term is computed as

1´
ź

nPφi`1

p1´pi`1,nq. (4.9)

When more than one set with the same cardinality satisfies the constraint, then the one with

the smaller probability is chosen. We note that stronger predictors σp¨q may lead to a reduced

resource usage, as they would lead to reduced uncertainty in the class of the next delay

(above and below threshold), and thus would allow the controller to bet on fewer remote

computing pipelines. For example, let us assume that at least one of the pipelines has a next

36

delay below threshold: an accurate and confident predictor returning probability 1 would

allow the selection of only one edge server.

We extend the predictor to larger temporal windows to evaluate the predictive power of

features blocks. We define

pW,yi`1,n “ σpsi,nq (4.10)

where

pW,yi`1,n “ P

˜

W´1
ÿ

`“0

I pδnpti``q ą δ˚qěy

¸

, (4.11)

that is pW,yi`1,n is the probability that at least y tasks will be completed with delay larger than

δ˚ in a window of W future tasks. We build a binary classifier from σp¨q by setting

pW,yi`1,n

C1

ż
C0

1

2
(4.12)

4.2.4 Deep Q-Learning Approach for RTOP

The formulation above produces suboptimal control sequences. Thus, we adopt a Deep

Q-Learning formulation to resolve the optimization problem. This formulation implicitly

accounts for the impact of current decisions on the distribution of future states (and thus

on the accuracy of control). In this case, the predictive function is defined to return the

Q-values based on the state, that is,

Qpsi`1, φi`1q “ σDRLpsiq, (4.13)

37

where

Qpsi, φiq “ Esi`1|si,φi

“

Eri`1|si`1,φi,si rri`1|si`1, φi, si|s
‰

` γmax
φ1

Esi`1|si,φi rQpsi`1, φ
1
qs . (4.14)

The cost variable ci includes weighted penalties for the delay being above threshold and the

cardinality of the selected set, that is

ci “ λ cdelayi ` p1´λq cseti , (4.15)

with

cdelayi “I pδminptiq ą δ˚qS pαdelayδmin ´ κ
delay

q (4.16)

and

cseti “ αset
|φi| ´ κ

set, (4.17)

where αdelay, αset, κdelay and κset are normalization and offset parameters. S pxq“1{p1` e´xq

is the sigmoid function, here used to generate a smooth delay cost function which is 0 until

δ˚ and then progressively penalizing higher delay without overpenalizing tasks with poor

channel conditions. Figure 4.6 shows the training procedure for our DRL-based approach.

We remark that the recursive formulation of the Q-values embeds the distribution of future

states and costs given the current policy. The Q-values guide the selection of the actions

according to the rule:

φi`1 “

$

’

’

&

’

’

%

argminφiQpsi, φiq with prob. 1´ εt

UpPpφqzHq with prob. εt

(4.18)

38

Training
Environment

Mini
Batch

Q-Value
Network

Target
Network

Loss
Function

Replay
Buffer

Copy
every N
epochs

Episode s

r

Sample
Loss

Figure 4.6: Training architecture using Double Deep Q-Learning.

where the best action (that is, subset of servers) is selected as the one maximizing the future

reward with probability 1 ´ ε, and selected uniformly at random with probability ε. This

is commonly known as a ε-greedy strategy, it is often used in practical problems to balance

exploration/exploitation in DRL problems.

4.3 SeReMAS Prototype

We first describe the platform experimental components in Section 4.3.1, and then describe

our feature selection process in Section 4.3.2. Finally, we explain how we implemented the

SeReMAS predictors for the RTOP, both myopic and DRL, in Section 4.3.3.

39

FLIGHT CONTROLLERFlight
Controller
(hidden)

Onboard
Computer

Network Interfaces GPS module

Camera

(a) (b)

Figure 4.7: (a) Drone prototype; (b) NVidia Jetson Xavier acting as edge server.

4.3.1 Platform Components

Figure 4.7 shows our experimental setup. Specifically, we use a Tarot650 quadcopter mounting

a PixHawk flight controller. We connect Telem2 port on the PixHawk to a serial interface

on a NVidia Jetson Nano board with 4GB of RAM. We use three NVidia Jetson Xavier

development boards, operating in performance mode with 8 core ARM 64-bit processor,

32GB of main memory, 512-core Volta GPU. We use three IEEE 802.11n WiFi cards to

interconnect the drone to the edge servers. These boards act as access points on different

channels in the 2.4GHz WiFi spectrum.

40

4.3.2 DRL State Space and Feature Selection

We discuss how we create the input state for the DRL algorithm. We consider features at

the application, network stack and device level as follows:

• Application and Onboard Computer: We track relevant application variables such

as past capture-to-control delays, number of samples in the intermediate buffers, and

selected actions. These will include real-time statistics relative to power consumption

and resource allocation of CPU, GPU, and RAM.

• Telemetry and Position: We use MAVLink [32] protocol messages to register a

listener to the flight controller. The onboard computer receives monitoring statistics

from the Inertial Measurement Unit (IMU), Global Positioning System (GPS) and the

power consumption of the vehicle. We include the edge servers’ position, by including

the distance from the drone using polar coordinates (Distance, Azimuth, Elevation)

centered in the reference edge server. Distance is computed using the Harvesine formula.

Moreover, we add the relative heading by computing the orientation of the drone with

respect to the position of the edge server. Furthermore, we consider the L2-norm of

multi-dimensional vectors (such as accelerometer and gyroscope data) and compute

speed with respect to absolute reference frame and edge servers. All the features are

synchronized at 5Hz.

• Network: We select relevant parameters such as TCP window and retransmissions,

RSSI, and modulation/coding scheme (MCS) of the IEEE 802.11n protocol. We do so

separately for each network interface available, so to isolate features relative to each

edge server.

The details of the features are available in [9].

41

Feature Selection. We use feature importance methods such as Logistic Regression, Support

Vector Machines and Random Forest as implemented in [45] and selected Logistic Regression

with L1 regularizer due to the bias that Random Trees have towards features with high

support’s cardinality and the hybrid nature of the features, which include continuous and

categorical variables. We then used a recursive algorithm, where at each iteration we train a

predictor and discard the least influential features. We reduce the initial pool of 360 features

to 73, maximizing accuracy on the validation set. Table I shows the normalized feature

relevance predicting the number of high-delay tasks in a 1 s window.

Feature Normalized Correlation
Round Trip Time average 1
Transmission timeout -0.83
Packets Received -0.80
Channel Level -0.48
Inclination (magnitude) -0.17
Position w.r.t Edge 0.16
Altitude 0.16
Last Sent -0.15
Heading 0.13
Speed 0.08
Congestion Window 0.08

Table 4.1: Normalized feature relevance to a linear model predicting the number of high-delay
tasks in a 1 s window.

Interestingly, while all available past delays are selected in the prediction (with L “ 3 in

Eq. 4.6), acceleration and inclination features are selected with a lag of 0.6s indicating a

longer range dependency with the delay. Other relevant features include gyroscope and the

increment of TCP fast retransmissions, failures, RSSI, and retries. The complete trend within

the window is selected for these features. The selection shows how both vehicle and network

parameters are relevant to characterize the state of the system and its future behavior, but

their influence is expressed at different time scales.

42

4.3.3 Myopic Predictor and DRL Implementation

We provide the details of the myopic and DRL controllers.

Myopic Predictor - To implement the predictor pW,yi`1,n “ σpsi,nq we train a series of dense

DNNs (with two hidden layers at r150, 50s nodes) using the Adam optimizer and trained for

100 epochs, with softmax output), which returns the probability that the next delay will

belong to the predicted class.

Deep Q-Learning Agent - Naive implementations of Deep Q-Learning use one DNN

function. However as demonstrated in [54], this approach may cause instability during

training if the Q-values presents sudden changes. Due to the erratic behavior of the system we

consider, we then take a Double Deep Q-Learning (DDQL) approach to build our DRL agent.

In DDQL, two separate Deep Neural Networks (DNN) are used. Referring to Eq. (4.14), one

network is trained to approximate Qp¨q “ Qpsi, φiq, and the other one to approximate the

future Q-value term in the expectation, that is Q̂p¨q “ Qpsi`1, φ
1q

Fig. 4.6 illustrates the DDQN architecture and the training procedure. We use a fully

connected DNN, with [200, 100, 50] hidden nodes, ReLu activation, and Huber Loss. During

training, we apply backpropagation to Qp¨q over the epochs e “ 1, ..., N . We periodically

copy DNN’s parameters so that Q̂Ð Q, as a mean to reduce noise in during training. Note

that we still choose the best action to learn on φ using the most updated Qp¨q, and in fact the

decoupling between action selection and q-value function evaluation further stabilizes learning.

We use a replay buffer during training, where the experiences in the form of psi, φi, ri, si`1q

are stored and sampled randomly to avoid forgetting, which may occur if only the most recent

experiences are used [31].

43

4.4 Experimental Results

We first present the experimental setting in Section 4.4.1, then the prediction performance in

Section 4.4.2, and the task offloading results in Section 4.4.3.

4.4.1 Experimental setting

We consider a testbed illustrated in Fig. 4.8, which is composed of an airborne drone and

N“3 ground edge servers in LOS. We consider an object tracking application where the

MAS uses a camera to follow a predefined object at a certain distance. Specifically, the MAS

captures images that are analyzed to extract the bounding box of the closest object of a

certain class (e.g., a person).

Figure 4.8: Schematic representation of the system setting: three ground edge servers,
connected to the drone. Not all connections are continuously actively used (unused is
dashed).

The controller steers the vehicle in the appropriate direction to (i) center the bounding box

in the field of vision and (ii) obtain a bounding box of a predefined size by controlling the

44

distance with respect to the object. In our testbed, the drone generates a regular stream

of images to be analyzed using object detection. Specifically, the drone emits 15 images of

size 19.5 kB per second. SSD-MobileNet-v2 model is used to analyze the images. In our

measurements, the NVidia Jetson Xavier board takes 10 ms to execute the algorithm. Note

that the onboard NVIDIA Jetson Nano takes 87 ms to complete the execution, however,

power expenditure increases from 1.6 W to 4.2 W when the GPU is processing the images,

that is, 11% of the power needed to fly.

To acquire a dataset for a wide-spectrum of flight parameters, we set the drone on a semi-

random flight pattern around the edge servers. The pattern is defined by assigning uniformly

distributed GPS way-points to the drone in a cylinder of radius equal to 30m centered on

the edge server constellation and confining the altitude in the r5, 15sm range. The maximum

speed is randomly chosen for every new GPS waypoint between r1, 4sm{s. A new waypoint

is set as soon as the drone reaches 3 meters from the current one, to obtain a smooth flight

as similar as possible to a real application. In drone applications, the outcome of the object

detection analysis is promptly needed to take control action and adjust the trajectory. While

the action taken after the image analysis is beyond the scope of the current manuscript, we

mention target tracking [42], object avoidance [55] as possible applications.

4.4.2 Prediction Performance

All results are based on an experimental dataset [9] collected using the randomized flight

patterns described in Section 4.4.1. We first evaluate the prediction performance of the

myopic predictors pW,yi`1,n “ σpsiq and associated binary classifier. In other words, the predictor

determines whether at least half of the delay in the future window is below a given threshold,

which we set to δ˚“175ms. We use the Area Under the Curve (AUC), integral of the ROC

with respect to false positives, as performance metric, commonly used to evaluate algorithms

45

predicting an imbalanced target.

0 0.5 1 1.5 2 2.5
Prediction window time interval [s]

0.8

0.9

1.0
A
re
a
U
nd
er

C
ur
ve

Network Telemetry Application All

Figure 4.9: Performance of future delay classification for different sets of features. Length of
the prediction window is expressed in seconds.

Fig. 4.9 shows the performance of the predictor trained on different feature blocks as a

function of the window W (where we set y “ W {2). The results highlight how semantic

differences across subsets of features influence their predictive power in the short and long

term. When the prediction window is small, most of the predictive power lies in networking

features, which capture short-term correlations between high delay events. However, network

variables struggle to capture longer-term trends, which are, instead predicted by telemetry

variables. Indeed, the latter directly influence the distribution of fine-grain network events.

As noticed earlier, part of the network information is available only when offloading to a

particular edge server. We now analyze how prediction performance is affected when several

recent samples lack such information for one server. Fig. 4.10 shows how the lack of full

state information (which is available only if the edge server is used) in recent samples (last

one, last two, etc.) affects the ability of the myopic classifier to accurately predict future

pipeline performance as a function of the prediction window W expressed in seconds. Missing

information in one or few recent input samples, has a noticeable effect on classification in

46

0 1 2 3 4
Prediction window time interval [s]

0.80

0.85

0.90
Ar
ea
 U
nd
er
 th
e
Cu
rv
e

All features
1 no offload
2 no offload
4 no offload

Figure 4.10: Performance in future delay classification in presence of partial information for
recent time slots. Length of the prediction window is expressed in seconds.

the short term, as the AUC reduces by 5% for one sample and 10% for just two samples.

On the other hand, as expected, the influence of recent samples fades out when predicting

further points in the future. As the decisions of the DRL agent embed the future performance

beyond the next delay sample, they also consider the availability of information in future

decision instances.

4.4.3 Redundant Offloading

Fig. 4.11 shows the performance of the myopic and DRL selectors in terms of delay (percentage

below threshold) and resource usage (average number of edge servers used). The different

points for the myopic approach are obtained by varying the parameter ∆, i.e., the bound on

the probability that the delay is below threshold.

The DRL approach, as described in Section 4.2.2, generates different points in the plot for

different values of the weight λ in the cost function, where a larger λ favors low delay over

resource usage. For comparison, we include a selector which uses all the available edge servers

47

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
Average # of Edge Servers used

85.0

87.5

90.0

92.5

95.0

97.5
%

de
la
y
b
el
ow

th
re
sh
ol
d

Myopic

Deep-RL

Figure 4.11: Delay performance and resource utilization trend of the myopic and DRL-based
selector.

for all the tasks, and a selector which uses the edge server with the best channel quality index.

When using all the three edge servers all the time, the myopic selector achieves maximum

performance („ 97%), whereas when using only one edge server, it achieves „ 85.5%. We

note that a selector that chooses the edge server with the best channel quality achieves 75%

of tasks with delays below threshold, w.r.t. which we improve 17%. Thus, predictive control

greatly improves performance compared to traditional options, even when idealized to task-level

granularity without connection delay. As we make the bound on ∆ more tight, the myopic

approach uses more and more resources.

We observe that using two edge servers, the myopic controller already achieves a performance

roughly 2% worse than the three edge server option, demonstrating that prediction can reduce

resource usage. However, when using a small amount of resources, the myopic controller’s

effectiveness sharply decreases. Conversely, the DRL is capable of effectively select small

sets of computing pipelines while preserving delay performance. Using 1.1 edge servers on

average, the DRL approach achieves „ 92%, that is, 7% more than the myopic approach. We

48

explain this trend by observing that the DRL agent optimizes the information available to

make future decisions, thus maximizing the overall prediction accuracy when resources are

scarce and selection needs to be precise.

To further illustrate the behavior of the proposed approach, we show in Figure 4.12 a time

series of delays and decisions (selected edge servers) of the DRL-based approach for two

different λ (0.1 and 0.2) used in Eq. 4.15. We can see that the DRL agent can stabilize delay,

where a larger use of resources leads to the avoidance of more delay peaks. We note how the

DRL agent rotates the edge servers periodically to harvest information for more informed

future decisions.

49

0 2 4 6 8 10
Time [s]

0.10

0.15

0.20

0.25

0.30

E
nd
-t
o-
en
d
D
el
ay

[s
]

0 2 4 6 8 10
Time [s]

1

2

3

N
um

b
er

of
A
ct
iv
e
S
er
ve
rs

λ = 0.1 λ = 0.2

0 2 4 6 8 10
Time [s]

0

1

2

A
ct
iv
e
S
er
ve
rs

λ = 0.1 λ = 0.2

Figure 4.12: DRL agent improving delay by using task replication. We plot in grey the traces
of the non-selected delays.

50

Part II

Theoretical Analysis of Task

Offloading for MASs

51

Chapter 5

Optimal Edge Computing for

Infrastructure-Assisted UAV Systems

In this chapter, we present an optimized decision process through which the UAV decides

whether to process locally or offload the computation task to the edge server. The decision

is based on a series of interactions between the UAV and the IoT system, where the UAV

receives feedback on the state of the network and edge server, which allows the estimation

of the residual time to task completion. Based on this information, the UAV solves an

optimization problem aiming at the minimization of a weighted sum of delay and energy

expense. Formally, the problem is formulated as an Optimal Stopping Time problem over a

semi-Markov process.

Numerical results, which are based on parameters extracted from a real-world implementation

of the system, demonstrate that the proposed intelligent and sequential probing technique

effectively adapts the processing strategy to the instantaneous state of the network-edge

server system. The outcome is a reduced processing delay and energy expense, two extremely

important metrics in the considered application. These results are evaluated on the afore-

52

mentioned urban scenario, where we place particular emphasis on the components that could

decrease the performance of the UAV across a mission. In addition to analytical evaluations,

we characterize the, temporal and average, performance of the adaptive offloading scheme

we proposed in a scenario where a UAV mission requires to complete a trajectory around a

building while analyzing images.

In the setting described above, we train a Deep Reinforcement Learning (DRL) agent capable

of learning spatio-temporal characteristics of the environment to learn effective offloading

policies. Results indicate the importance of features such as position and recent offloading

outcomes in maximizing the ability of the controller to optimize its decisions across missions.

The rest of the chapter is organized as follows. Section 5.1 provides an overview of the system

considered in this chapter. Section 5.2 describes in detail the parameters and operations of

the UAV-edge server system. Section 5.3 introduces a Markovian description of the system’s

dynamics and formulates and solves the problem for the optimization of the offloading

decisions. Section 5.4 presents numerical results illustrating the performance of the proposed

adaptive offloading strategy, and comparing it with alternative solutions.

Figure 5.1: Illustration of the considered scenario and system: a UAV interconnects with an
edge server through a low latency wireless link to offload computation tasks. Poor channel
conditions and high processing load at the edge server may result in a larger delay and energy
expense compared to local on-board processing.

53

5.1 System and Problem Overview

We consider a scenario where a UAV autonomously navigates an urban environment. The

UAV is assigned the task to acquire and process complex data in predefined locations within

the city, where the outcome of processing may influence sensing and navigation actions. A

relevant case-study application is city-monitoring, in which the UAV captures a panoramic

sequence of pictures at each location and process them using a classification algorithm to

detect objects or situations of interest. In case of positive detection, the UAV may stay at

the location to capture more detailed or higher-resolution pictures of a specific portion of its

view.

Intuitively, processing information-rich signals using a computation-intense algorithm is a

challenging task for inherently constrained platforms such as UAVs. In fact, the limited

processing power of the on-board computation resources results in long capture-to-output

time of the algorithm, which decreases responsiveness to stimuli and increases mission

time. Additionally, on-board processing consumes a significant amount of energy, even when

compared to motion and navigation, thus shortening the lifetime of these battery-powered

systems. Note that in the scenario described above, the UAV is hovering while waiting for

the classification algorithm to complete, as the outcome will determine its subsequent action.

Thus, a large processing time incurs at additional energy expense penalty associated with

longer flight time.

The UAV can leverage the resources of the surrounding urban IoT infrastructure to improve

its performance. In the scenario at hand, edge servers placed at the network edge can take

over the task of processing the data acquired by the UAV. Intuitively, the larger processing

power of edge servers compared to that of UAVs grants a much faster completion of the

processing task, thus allowing a faster decision making and a smaller capture-to-decision time,

defined as the time between image capture and the availability of the its analysis’ outcome.

54

Additionally, the UAV would be relieved from the energy expense burden of processing, at

the price of energy expense associated with data transmission. We remark that a shorter

time to receive the output of the classification algorithm also corresponds to a smaller energy

expense associated with hovering.

However, as noted in the introduction, the urban IoT is a highly dynamic environment, where

a myriad of data streams and services coexist and compete for the same communication

resources. In the considered scenario, the wireless channel connecting the UAV to a wireless

access point may have a low capacity due to the physical properties of signal propagation, but

also due to the existence of interfering communications which use part of the time/frequency

channel resource. Additionally, the edge servers may be serving other devices offloading their

computation tasks, and the UAV task may suffer queuing delay, or a reduced processing

speed. As a result, in certain conditions, offloading the computation task to an overloaded

edge server connected to the UAV through a poor communication channel may lead to a

longer capture-to-decision time. Again, this corresponds to less efficient mission operations,

but also a possibly large energy expense due to hovering while waiting for a response.

In order to fully harness the possible performance gain granted by the available resources

provided by the urban IoT infrastructure, the UAV needs to make informed decisions about

whether or not to offload the execution of image analysis. To this aim, we equip the UAV with

the ability to interact with the surrounding network and edge devices and acquire information

regarding the status of the communication and processing pipeline. The information is used

to evaluate the progress of the task and predict the future cost of the binary decision between

local and edge-assisted computing.

We remark that the optimization framework can be used in scenarios with multiple base

stations and edge servers. As the sequential decisions are made on a task by task basis,

handover and connectivity can be managed by the network infrastructure without a major

impact on decision making. However, we note that when considering agents learning spatio-

55

temporal correlation properties (as those shown in Section V.C), the agent will need to

implicitly incorporate connectivity information associated with spatial features. In fact,

handover may cause abrupt loss of temporal correlation – for instance in server load if a

different edge server is connected to the new base station.

5.2 System Model

In this section, we formalize and discuss an abstraction of the system composed of the UAV,

a network access point and an edge server. We divide the description into modules focusing

on the communication, computation and energy expense aspects of the system.

5.2.1 Communications

The UAV is connected to the network access point through a wireless channel of finite capacity.

The data to be transferred for offloading have size L-bits. The UAV transmits with fixed

power P and rate R in the finite set of K ` 1 transmission rates tR0, R1, R2, . . . , RKu, where

R0“0 corresponds to disconnection from the network, and thus no data transmission. The

link between the UAV and the AP is a wireless link affected by path loss, fading and noise.

The SNR at the receiver is

SNR “
gP

σ2
, (5.1)

where σ2 is the noise power and g is the channel attenuation coefficient including path loss

and fading. We assume exponential path loss and Rayleigh flat fading. Thus, the distribution

of g is

Θgpxq“Prpg ď xq“1´e´
x
γ , (5.2)

56

where γ is the path loss.

Assuming channel knowledge and a capacity achieving scheme, the selected transmission rate

of the UAV is equal to Ri bits/s if g P pgi, gi`1s, where

gi “ g : Ri “ CpgSNRq, i“1, . . . , K, (5.3)

and

Cpxq“logp1` xq. (5.4)

The resulting transmission time is L{Ri seconds. In the chapter, we use a capacity model

to abstract the communication layer, where the channel gain is matched with a maximum

achievable data rate. The integration in the model of more realistic communication models,

for instance to capture interactions between physical, channel access and transport layers,

would lead to a much more convoluted analysis. We point the interested reader to our work

[10] for the evaluation and analysis of real-world edge computing for UAVs with dynamic

offloading.

5.2.2 Computation

The time to complete the computation task locally at the UAV and at the edge server are

captured using the random variables X 1 and X, respectively. We assume that X 1 and X

follow an exponential distribution of rate µ1 and µ tasks/s, respectively. The edge server

accumulates incoming computation tasks in a finite buffer of size B tasks. Excluding the

task generated by the UAV, tasks arrive according to a Poisson process of rate λ tasks/s,

with λăµ.

57

Figure 5.2: Representation of state transitions with non-zero probability in the Markov
Chains associated with decision u “ 0 (left) and u “ 1 (right).

5.2.3 Energy

As described in the previous section, at each predefined location the UAV captures the

data, and then completes the computation task – either locally or at the edge server – while

hovering maintaining the position. We define a rate of energy expense for the two fundamental

operational blocks that are influenced by the offloading decision: processing and hovering.

Specifically, we define PP and PH as the Watts used to respectively process the data and

hover. As mentioned earlier, the transmission power is equal to P Watts.

5.3 Optimal Offloading Decisions

In the considered scenario, the two most relevant performance metrics are energy expense E

and time T per location. Herein, we assume the state of the system at each location to be

independent. Importantly, the costs E and T are a function of the offloading decision, that

58

is, whether the computation task is completed at the UAV or at the edge server.

Given the knowledge of the system parameters, the UAV can compute the average cost E and

time T corresponding to each of the two options, where the average is over realizations of the

stochastic process associated with the system dynamics. However, within that average there

are realizations in which offloading is advantageous (high channel capacity and low processing

congestion) or disadvantageous (low channel capacity and high processing congestion). In

order to fully harness the performance gain edge computing can offer, while facing the

dynamics of the IoT system, we develop a sequential probing and decision making framework.

At each stage, the UAV observes the current realization, estimates the residual cost to

complete the task, and makes a decision about whether to initiate local processing or not.

This formulation corresponds to an optimal stopping time problem on a semi-Markov process.

Under the assumptions listed in the previous section, the temporal evolution of the system can

be represented as a semi-Markov process. Let’s define as t`j , j“0, 1, 2, . . . the time instants

right after the occurrence of an event, defined as the establishment of the connection with

the network, the delivery of the data to the edge server, or the completion of a computation

task at the UAV or edge server. We denote the state of the system at time t`j as the random

variable Spt`j q. The state space S of Spt`j q consists of an initial state s0, two termination

states sUAV and sES, and a number of states describing data transmission and task queueing

process. The termination states correspond to the computation task being completed locally

at the UAV (sUAV) and offloaded to the edge server (sES). Specifically, we include (i) a set of

K`1 states R0, R1, . . . , RK associated with a transmission rate, that is, a channel state in the

ranges defined in the previous section; and (ii) a set of C`1 states B1, . . . , BC`1 associated

with the position of the UAV task in the task buffer at the edge server. Note that BC`1

corresponds to a full buffer at arrival, that is, the UAV task is rejected. It can be shown that

the process S“pSpt`j qqj“0,1,... is a Markov process.

At each time instant t`j , the UAV is notified of the state Spt`j q from the network access point

59

or the edge server, and makes a binary decision uPt0, 1u, where 0 and 1 correspond to local

computing and continuing on the edge-assisted pipeline – that is, further deferring local

computing, respectively.

5.3.1 Transition Probabilities

We now describe the transition probabilities governing the dynamics of the stochastic process

S. For the sake of notation clearness, we denote the time t`j with its index j. We define, then

P ps1|s, uq“PrpSpj`1q“s1|Spjq“s, Upjq“uq. (5.5)

If the decision is equal to 0, the transition probabilities from any state s are

P ps1|s, 0q“

$

’

’

&

’

’

%

1 if s1“sUAV;

0 otherwise.

(5.6)

That is, if the decision is to compute locally, the process moves to state sUAV deterministically

from any state.

We, then, analyze the transition probabilities if the decision is 1, that is, the UAV further

defers the initiation of local computation. In such case, from the initial state s0, the channel

distribution is sampled, and the state moves to one of the pre-transmission states Ri with

probability equal to that of the associated interval. Thus,

P ps1|s0, 1q“

$

’

’

&

’

’

%

πi if s1“Ri, i“0, 1, . . . , K;

0 otherwise,

(5.7)

60

where πpiq“Θgpgi`1q ´Θgpgiq.

In any state Ri, the UAV is reported the transmission rate, that is, the index i, from the

wireless access point. If the decision is to defer local processing, the transition probabilities

from Ri, i=1,. . . ,K, are

P ps1|Ri, 1q“

$

’

’

&

’

’

%

σc´1 if s1“Bc

0 otherwise.

(5.8)

σc is the probability that the UAV task will find c tasks stored in the edge server buffer at

arrival. It is known that

σc“
p1´ λ{µqpλ{µqc

1´ pλ{µqC`1
. (5.9)

The state R0, corresponding to disconnection from the network, deterministically leads to

sUAV.

At the beginning of any state Bc, the UAV is notified of the index c. For states Bc, c“2, . . . , C,

the transition probabilities are

P ps1|Bc, 1q“

$

’

’

&

’

’

%

1 if s1“Bc´1

0 otherwise.

(5.10)

State BC`1 corresponds to a full task queue and, thus, rejection of the UAV task. Therefore,

from BC`1 the system deterministically moves to sUAV. State B1 corresponds to the UAV

task being in the first position, and deterministically leads to sES.

61

5.3.2 Cost Functions and Optimal Policy

With the transition probabilities conditioned on the state and action, we can now build

the optimization process. We consider a formulation where the objective of the UAV is to

minimize E pV q, with

V “ ωE ` p1´ωqT, (5.11)

where ω is a positive weight in r0, 1s.

To this aim, define the time and energy spent in state sPS as Φps, uq and Ψps, uq conditioned

on the action u, respectively. Note that both the latter and the former are random variables.

We denote their average as φps, uq“E pΦps, uqq and ψps, uq“E pΨps, uqq. We further define

Cps, uq“ωΦps, uq ` p1´ωqΨps, uq, with average cps, uq.

The average time and energy cost associated with the initial state are equal to 0. In the

termination states sUAV and sES, we have

φpsUAVq “ 1{µ1, (5.12)

ψpsUAVq “ pPP ` PHq{µ
1, (5.13)

and

φpsESq “ 1{µ, (5.14)

ψpsESq “ PH{µ. (5.15)

Herein, based on actual value obtained by means of experimental evaluations, we assume

that the transmission energy expense PL{Ri is negligible compared to the processing and

hovering energy expense. Note that in the termination states the action is pre-determined

62

Figure 5.3: Probability of offloading to the edge server (lighter shades corresponds to higher
probability) with ω “ 0.

63

and does not need to be formally included in the cost. From any transmission and queueing

state R0, . . . , RK and B1, . . . , BC`1, if the decision is to initiate local processing at the UAV

(u“0), the process immediately moves to sUAV and the energy and time cost are both equal

to 0. Note that such decision is forced in states R0 and BC`1.

If the decision is to defer local processing (u“1), the costs are

φpRi, 1q “ L{Ri, (5.16)

ψpRi, 1q “ pPH ` P qL{Ri. (5.17)

with i“, 1, . . . , K, and

φpBi, 1q “ 1{µ, (5.18)

ψpBi, 1q “ PH{µ. (5.19)

Herein, based on measurements obtained by means of experimental evaluations, we assume

that the transmission energy PL{Ri is negligible compared to the computing and hovering

energy expense.

The problem of minimizing the expected total cost can be rephrased as a Markov Decision

Process over a finite temporal horizon. We aim at finding, then, the (deterministic) optimal

policy u˚psq, where

u˚psq “ arg min
u“t0,1u

E
`

Vresps, uq
˘

, (5.20)

where E pVresps, uqq is the expected minimum cumulative residual cost to a termination state

64

Figure 5.4: Probability of offloading to the edge server for different values of ω, as a function
of channel quality (SNR) with ρ “ 0.5. We use µ “ 1{0.461{s to emphasize the observed
effects.

s: from state s given that decision u is selected, that is,

min
U1

j:
E

¨

˝

j:
ÿ

j“0

cpSpjq, Upjq|Up0q“u, Sp0q“sq

˛

‚, (5.21)

where

j: “ minpj : SpjqPtsUAV, sESuq, (5.22)

and Uj:

1 “ pUp0q, . . . , Upj
:qq.

We compute the optimal policy using the Value Iteration method [5], which focuses on

iterations producing policies achieving performance increasingly close to the optimal point.

In our case, the optimal value form the starting state yields the experienced delay and energy

consumption for each image, when ω “ 0 or ω “ 1 respectively. Values at other states, at

convergence, represent the expected future cost from that state obtained using the optimal

policy. Let Vt be the vector whose elements are the value function for each state in the state

space, where t is the number of steps taken in the recursion. Then Vt P R5`K`C , where the

65

size of the vector derives directly from the states definition in Figure 5.2. The arbitrarily

initialized vector V0, is then updated using the Bellman equation as follows:

Qk`1ps, aq “
ÿ

s1

P ps1|s, aqpRps, a, s1q ` γVkps
1
q

Vkpsq “ min
a
Qkps, aq,

(5.23)

where Qtps, aq represents the expected cost taking action a. Note that, to reduce the time to

convergence, the updates are usually computed backwards, from the end nodes (in our case

SES, SUAV) to the input node S0.

5.4 Numerical Results

This section presents and discusses results obtained using the model and optimization

technique proposed in this chapter. First, we analyze performance metrics and offloading

probabilities exploring parameters describing channel quality and server load. We, then,

characterize the performance of the proposed scheme in a realistic environment, where channel

parameters (that is, SNR) is obtained based on trajectory of the UAV. Note that in this

latter section of the results, we can analyze the temporal behavior of the system during the

mission.

To make our observations more meaningful, we derive the optimal policies under different

channel and load conditions using parameters obtained from real-word experimentation.

These values are used unless otherwise stated. Specifically, we used a 3DR Solo Drone

mounting a Pixhawk flight controller running ArduCopter connected to a Raspberry Pi model

3B as companion computer. We use as edge server a Laptop with 16GB RAM and Intel Core

i7-6700HQ processor with Nvidia GM204M GPU. We set the number of pictures collected

in each location to 1, where each picture has resolution equal to 720 ˆ 480. The average

66

Figure 5.5: Probability of offloading the computation to the edge server as a function of the
server load ρ.

size of each picture after encoding is 80 KB. The pictures are processed implementing a face

recognition algorithm using a multi-scale Haar Cascade, which takes on average 1{µ1“0.56s

at the UAV and 1{µ“0.046s at the edge server. We consider SNR values in the range

r´10, 20s dB and transmission rates in the range from 1 Mbps to 11 Mbps (matching a system

using Wi-Fi IEEE 802.11). Power consumption rates are based on battery level readings

in the same set up: in particular, we set Ph “ 0.1 levels/s, Pp “ 10% ¨ Ph levels/s. The

optimal deterministic policy Uj:

1 given the parameters is computed using Equation (5.21).

We note here that our performance analysis will be impacted by an error due to the resolution

chosen on the set of available rates and positions. As a result of the position error, a different

expected SNR will be used, causing a difference in the probability distribution over the

rates. These will be averaged out on multiple runs and so our results still hold. We consider

on the other hand the rate resolution error in this case acceptable: the difference in Mbps

in the Wifi protocol is much higher than the one considered. Our investigation takes into

consideration several aspects of the system, and even though the error margin at small rates

might is large (100ms), it is worth noting that in all other scenarios it reduces to a few

milliseconds. Furthermore the overall policy behaviour does not change due to these effects,

67

and in this respect while absolute values might differ, the statistics and system behaviour

will be consistent with our results.

5.4.1 Performance Analysis

In Figure 5.3, we show the probability of offloading to the Edge Server as a function of SNR

and server load ρ “ λ{µ. This probability corresponds to the probability of the process being

absorbed in SES from S0 conditioned on the control policy, defined as

P8S0
pY q “ lim

tÑ8
P pSptq “ SY |Sp0q “ S0, U “ Uj:

1 q (5.24)

where Y P tSUAV, SESu, and P8S0
pSUAVq `P

8
S0
pSESq“1. In Figure 5.3, we plot P8S0

pSESq, using

lighter pixel color for higher probabilities. As expected, for low values of ρ and high values of

the SNR, the offloading probability is almost equal to 1, that is, the UAV offloads computation

when system conditions are favorable. When the SNR is sufficiently low, the UAV will likely

be disconnected, or the cost of offloading might exceed that of local computation due to the

large time needed to transport the data to the edge server. Similarly, if the load parameter ρ

is large, that is, the ES buffer has frequent arrivals or computation tasks take a large time to

be completed, the UAV chooses to compute locally.

In Figure 5.4 we show the effect of ω, the parameter that controls the tradeoff between

energy and delay in the objective function, over the optimal policy and consequently on the

offloading probability. In the plot, each line corresponds to a different value of ω P r0, 1s,

where the larger ω the larger the weight of energy cost. The impact of including energy in

the optimization is apparent: the larger ω, the larger the offloading probability, even for

low SNR, where transmitting over the channel may result in an increased overall delay. In

fact, while a larger delay leads to a larger hovering time, and thus more hovering energy

expense, offloading eliminates the energy cost associated with local processing. We observe

68

Figure 5.6: Probability of selecting local computation in the three main decision stages or
offloading to the edge server.

(a) (b)

Figure 5.7: Offloading probability on the considered map. The average SNR is set to 9dB
and server load set to (a) 0% and (b) 70%.

an interesting threshold effect, where the policy transitions from fully local computing to

partial offloading at an SNR value which is a function of ω.

In Figure 5.5 we fix the SNR, and show P8S0
pSESq as a function of ρ. As the SNR decreases, the

probability of offloading to the edge server decreases as well. Intuitively, the SNR influences

the shape of the probability curve. Interestingly, high SNR values show a sharp transition from

offloading to local computing, whereas low SNR values have a more progressive transition,

most likely due to the distribution of the communication time.

69

Finally we illustrate the value of probing compared to a simple decision informed by the

average delay pre-computed based on a priori knowledge of the parameters. Figure 5.6 shows

the probability that the decision of processing locally is taken at the different stages or that

offloading is selected. Specifically, the decision stages are:

• Stage 0: the initial stage S0, where the UAV knows the parameters, but not the

channel or queue state;

• Stage 1: Ri, where the UAV has connected with the network and is aware of the

maximum transmission rate;

• Stage 2: Bj, where the UAV reached the edge server, that is, upon transmission after

transmission, and is reported the position in the processing queue.

For small values of ρ, offloading is predominant, with a small probability of local computing

decision forced by extremely poor channel conditions. As ρ increases, the set of rates

corresponding to local computing decisions increases. In fact, the delay requirement for the

data transportation becomes more stringent as the average time spent in the edge server

buffer increases. In the transition phase between offloading and local computation, we can

observe a spike in the probability that the UAV will select local computing after the edge

server is reached, as the probability finding a number of tasks in the buffer sufficiently large

to make offloading disadvantageous increases before a region in which probing is not even

attempted. The policies resulting from the abstraction of the system we adopt have a simple

structure. Across the phases of the decision making, the agent will identify thresholds within

layers of the Markov process corresponding to binary decisions. While the structure is simple,

the thresholds are function of the distributions of channel quality and incoming load at the

server.

70

Figure 5.8: Map of the considered area, centered around a 30 m high building. Symbols
display the access point’s placement and the drone trajectory. Different shades show Signal
To Noise ratio in dB across the area.

5.4.2 Mission Trajectory

We now analyze a mission trajectory of the UAV in an urban scenario inspired by applications

such as city monitoring and building inspection. We consider the trajectory illustrated in Fig.

5.8, where the UAV flies at fixed altitude and constant distance from the building’s external

surface in a loop starting from the lower left corner and proceeding in clockwise direction.

The map shown has delimits a 50ˆ 50 meters area, where both the access point and the UAV

are at 15m altitude, and the building’s width, length and height are 20m, 30m, 30m.

In the scenario, we consider a setting with one access point and one building, and we compute

the SNR – to be plugged in our model, see Eq. (5.3) – using the building shadowing model [15]

71

(added to the attenuation caused by free-space propagation)

L “ αn` βd0, (5.25)

where α is the attenuation per wall (dB), n is the number of walls penetrated, β is the

attenuation per meter (dB) and do the distance in meters traveled through obstacles. We use

experimentally validated coefficients in [15] α “ 9dBm and β “ 0.9dB{m

Using the same set of parameters as in the previous set of results, we find the optimal policy

for each position in the considered map. In Fig. 5.7, we show how the probability of offloading

to the edge server evolves along the trajectory. In Fig. 5.7.a, the edge server is dedicated

to the UAV. The impact of the additional attenuation effect of the building on the strategy

is apparent: the offloading probability decreases in regions that are more affected by the

additional attenuation. Overall, the low server load leads to offloading being a predominant

strategy. Fig. 5.7.b shows the same map where we increase the server load to 70%, and

we can see that the adaptive scheme reacts selecting edge computing as the best strategy

in a smaller fraction of realizations. This effect is due to the higher chances that the task

generated by the UAV will find several other tasks in the server’s buffer.

We now consider the delay performance over the full trajectory, and illustrate how the

strategy evolves. In Fig. 5.9, we plot the average capture-to-output delay achieved by the

optimal strategy. We can observe how, for different values of SNR, low performance regions

expand. This is due to the higher probability that local computing will be chosen due to

the low data rate supported by the channel. Interestingly, we can observe how new spikes

and low performance regions emerge as noise increases and the strategy switches to different

modalities in some regions.

The server load ρ has a much different impact, as shown in Fig. 5.10. The average delay

increases homogeneously along the trajectory to reach a cap determined by the policy always

72

Figure 5.9: End-to-end delay over the described trajectory for different values of external
interference with no server load.

choosing local analysis. Additionally, we observe how moderate server loads have relatively

low impact (e.g., 25% vs 50%).

Considering the average over the full trajectory, we now explore how some parameters affect

performance and strategies. In Fig. 5.11 and Fig. 5.12, we display the average delay (in blue)

and offloading probability (in orange), averaged over the trajectory, for different noise levels

and edge server’s load. Interestingly, while the delay has a clear inverse relationship with

the offloading probability when varying average SNR, the relationship between average delay

and offloading probability is less marked when varying the edge server’s load. In the former

plot (Fig. 5.11), we have a sharp change at « 10dB, where the probability of a successful

offload sharply decreases and the delay increases due to the more frequent selection of local

processing. In the latter plot (5.12), we observe a low sensitivity of the delay, where in the

low to moderate load region we have an increasing average delay, but a minor change in the

offloading strategy. The delay experiences a sharp increase when the offloading probability

73

Figure 5.10: End-to-end delay over the trajectory for different values of server load with
average SNR of 16dB.

sharply decreases in the high load region. This effect is due to the more gradual degradation

imposed by increasing load compared to that of a worsening SNR.

We now characterize the impact of the computing capacity of the devices, expressed as their

service rates. We explore a range of values of µ P r1, 40s for the edge server, µ1 P r1, 8s for

the UAV, to evaluate the impact of different design choices and operational settings. We

highlight the advantage of an adaptive approach, by depicting the percent delay increase

when a fixed offloading policy is used. We remark that we are still considering averages over

the entire trajectory.

The gain is shown in Fig. 5.14, where we we set the load to 0 (a) and 70% (b). Note in

both graphs that higher gains (darker regions), are focused in high local service rates and

relatively low edge server service rates areas. This conveys the fact that adaptation can

improve performance only when the strategy is non-trivial and adaptation can bring benefit.

74

Figure 5.11: Delay average over the full trajectory for varying average SNR for both only
offloading policy and our approach. We also plot the probability for the UAV to successfully
offload in our schema.

When local service rate is small (left portion of the graphs), we indeed observe than the

offloading policy,

Interestingly, we see how the gain granted by the adaptive strategy is higher when the load is

higher, this due to the fact that our policy can effectively fall back to local computing when

the buffer is busy in specific realizations of the process.

In Fig 5.15.a we can see how the average delay using an adaptive policy is very sensitive

to the local processing capacity, but has a weak dependency on the edge server processing

capacity. However, as shown in Fig 5.15.b, we can see that the delay’s variance is higher

in the areas where the gain is small. In fact, the advantage of the adaptive technique is to

choose local processing whenever it seems advantageous, and that is shown in the areas where

lower variability maps to local processing being the optimal policy.

75

Figure 5.12: Delay average over the full trajectory for varying server load, and the probability
to successfully offload.

(a) average SNR of 16dB (b) average SNR of 6dB

Figure 5.13: Delay improvement using adaptive schema compared to constant offloading at
different average SNRs.

5.4.3 Characterization of State in Temporally Correlated Environ-

ment

We built on these results and created an event based simulator that allows us to capture the

temporal correlations between subsequent positions along the trajectory. We use this tool in

76

(a) ρ “ 0% (b) ρ “ 70%

Figure 5.14: Gain percentage over a full trajectory for different hardware configurations.
Processing speeds are referenced as serving rates µ. Both cases have average SNR at 16 dB,
but they differ in edge load ρ.

order to study the impact of different state representations on the performance of a decision

agent.

In the state representations we include:

• phase: before offloading, at the edge server or processing locally

• position: the px, yq coordinates on the map

• E[SNR]: average SNR at the current position

• num. jobs: number of jobs in the queue

• past (action, delay) tuples: we include the last 3 actions and delays.

Although in a collaborative system we would expect to collect all the above, if using a

third-party infrastructure or different networking protocols, it could be difficult or impossible

to collect some of this dynamic information. For this reason we study the same system using

three different observed states:

1. full state

2. phase, position, past action-delays

77

(a) (b)

Figure 5.15: (a) Delay and (b) standard deviation for delay over a trajectory for different
hardware configurations with average SNR of 16dB and no server load. Processing speeds
are referenced as serving rates µ.

3. phase, past action-delays

Due to the nature of this state, where some elements are discrete, other continuous, we

involve the use of a function approximator, such as Deep Neural Networks (DNN), to learn

the q-function. In order to learn from experience in this new setting, we resort to some

techniques investigated in Deep Reinforcement Learning (DRL). DRL has been successful in

environments such as Atari games [41], the game of Go [51] and many others [54]. As shown

in these works, there are many details that help DRL converging to a stable approximation

for the q-function. In fact naive approaches often do not work, due to the inherent difference

in the way DNNs learn with respect to the tabular approach. For example, DNNs are subject

to catastrophic forgetting [22], the tendency of forgetting early examples seen in the training

procedure. To address this problem Schaul et al. introduced replay buffer [49], a buffer where

samples are stored after observation. We use samples randomly extracted from the buffer,

and feed them to the DNN in batches. The model will compute the function Qp¨q, and return

a vector with q-values for each of the actions. However since we can take only one action, we

will observe only one reward, and therefore we will update, i.e. compute the loss and apply

back-propagation, only relative to one output. We use the Bellman equation based on one

step Temporal Difference to compute the estimate q-value for the next step:

Qps, aq “ p1´ αqQps, aq ` αpRps, aq ` γargmaxa1Q̂ps
1, a1qq (5.26)

78

Figure 5.16: Average delay over the full trajectory for different server loads shows the
adaptability of agents that have spatial awareness.

where α is learning rate, γ is discounting factor, and Q̂ is an old version of the DNN. We use

to different networks Q̂, Q, so that the q-value estimation does not vary too quickly, causing

divergent behaviour. We update Q̂ “ Q periodically to improve our approximation of the

q-function.

As mentioned, we maintain the setup the same as in the previous setting, where the agent has

to decide whether to continue offloading or not at two stages: when it arrives to a position

and when it gets in queue to the edge server. From the agent’s point of view all transitions

are probabilistic, since the rate might be 0 and the queue might be full. In order to discourage

fixed policy of only offloading, we have a small network probing term that is added to the

delay when a transmission is unsuccessful.

We trained different agents using the state representation described earlier, and obtained

insights into what carries useful information in predicting the optimal policy at each position.

79

(a) ρ “ 70% (b) ρ “ 90%

Figure 5.17: Delay over the trajectory for different state representations at different server
loads.

In Fig. 5.16 we display the average delay of each of the agents going through the trajectory.

We can observe that using all the information available gives the agent an advantage similar

to what we observed earlier, since it is able to choose the correct policy for each given channel

situation. Interestingly, removing average SNR and position in queue does not influence the

performance for loads lesser than 70%. There we see the two lines (blue for full state and

orange for only position and delays) diverging, with the less informative state having higher

average delay. The critical advantage of these two policies on delays only and fixed policies,

can be observed in Fig. 5.17: we notice that the central part of the trajectory, where the line

of sight is obstructed by the building, offload strategy incur in very high delays. For higher

loads, we can also see how the position in queue at the edge server changes the ability of the

user to exploit offloading only when advantageous: in Fig. 5.17 we see that only the agent

that has access to the position in the server buffer is able to exploit successfully offloading in

positions 0-50 in high load regimes.

This study reveals how the position along the trajectory is a viable proxy for the average

Signal to Noise Ratio, and how on the other hand previous delays are not as predictive of

the number of processes in queue at the server. Furthermore this opens the opportunity for

further investigation in spatial-temporal maps that can embed this information and allow

dynamic adaptation in continuous learning settings.

80

Chapter 6

Optimal Task Allocation for Edge

Computing Systems with Split DNN

Computing

Many modern mobile applications rely on complex machine learning algorithms, such as Deep

Neural Networks (DNNs), to analyze images and extract information on their content. The

high computational complexity of these algorithms clashes with the constrained computing

and energy resources available to mobile devices. To address this issue, the research community

proposed two main approaches: (i) reducing the complexity of the DNN models to fit within

the constraints of the mobile device [53], and (ii) offloading the computing task to more

powerful computers, such as edge servers [4]. On the one hand, the former option inevitably

results in some degradation of the DNN output with respect to full models. On the other

hand, edge computing necessitates the transfer of – possibly high resolution – images over

wireless links. The instability of wireless links, and network load patterns in general, may

degrade the performance of this strategy.

81

A recent trend of contributions proposed splitting the execution of DNNs models between

the mobile device and edge server [29, 21, 36, 38, 37]. The idea is to divide DNN models into

head and tail portions, which are executed at the mobile device and edge server, respectively.

The channel, then, transports the output tensor of the head model to the edge server.

Unfortunately, the structure of DNN models for vision task does not allow effective splitting,

as they typically concentrate most computational complexity in the early layers, where they

also tend to amplify the input size. Intuitively, splitting such architectures would result in

an excessive computation load to the mobile device, as well as no advantage in terms of

channel load. Some split DNN approaches, then, introduce a bottleneck layer early in the

DNN structure to compress the input image into a small tensor, thus mitigating channel

impairments that are the main source of performance degradation in edge computing-based

systems [21, 36, 38, 37].

In this chapter, we take as a starting point the splitting approach we presented in [36], where

the modification of the architecture was paired with a specific training strategy - Knowledge

Distillation - applied to the first section of the model. Knowledge Distillation trains that

portion of the modified model – which contains the bottleneck – to mimic the output of

the original section of the model. The model is then split at the bottleneck to achieve

compression. This approach showed some important advantages, including the ability to

generate small bottlenecks without sacrificing overall accuracy even in complex vision tasks,

such as classification on the ImageNet dataset.

However, splitting is of course optimal only in some regions of parameters describing the

channel capacity and the characteristics and state of the edge server (e.g., task queue length

and computing capacity). In general, the three main options, local computing, edge computing

and split computing, may be optimal in different conditions. As the system state evolves over

time due to channel and queueing dynamics, a scheduling problem arises, where the mobile

device needs to determine which one of the three options to choose. Intuitively, as tasks may

82

accumulate, the decision needs to be optimal considering the statistics of the future system’s

state.

In this chapter, we present a scheduling problem determining how images periodically produced

by a mobile device are processed. We consider a system including a sensor generating images

at the mobile device, processing units at the mobile device and edge server, a time-varying

communication channel, and a selector deciding how each image is processed. As task flow

may exceed the capabilities of the processing units and communication channel, we include

in the system finite buffers to accumulate tasks to be completed and data to be transmitted.

Notably, the presence of buffers, a crucial components of real-world systems, induces temporal

correlation, where the choices of the selector at a given time influence the distribution of

future system’s states.

We model the system as a Markov process, and formulate an optimization problem whose

objective is to minimize the average time between image capture and the availability of

the analysis outcome and the number of images rejected by the buffers. The problem is

mapped to a Linear Fractional Program (LFP), whose optimization variables are state-action

stationary frequencies.

The rest of the chapter is organized as follows. In Section 6.1, we provide an overview of

prior work, and briefly explain the split DNN technique we proposed in [36]. Sections 6.2

and 6.3 describe the system and the Markov process used to model its dynamics. Section 6.4

formulates the optimization problem and presents the resolution methods. Results are shown

and discussed in Section 6.5.

83

Figure 6.1: Schematics of the system considered in this chapter.

6.1 Distilled Split DNN Models

There are several methods to make DNN models deployable such as training lightweight

models [48, 53], model compression and pruning [23, 33]. Such approaches, however, often

experience significantly degraded accuracy of the model predictions and/or require many

iterations of complex operations in training and optimization.

Kang et al. [29] and Jeong et al. [27] propose to simply split DNN models in an edge computing

scenario. However, such approaches are not well motivated, as many state-of-the-art DNN

models do not present bottlenecks – that is, layers with few nodes – in the early layers. As a

result, splitting is often suboptimal compared to local or edge computing from a point of

view of total inference time. Recent studies attempt to introduce bottlenecks by modifying

the architecture and training of the models [21, 36, 38, 37].

For the sake of completeness, we briefly summarize here the split DNN technique we proposed

in [36]. As mentioned in the introduction, the core idea is to introduce a bottleneck layer,

that is, a layer composed of few nodes, in the early stages of the model. This enables to

achieve in-network compression of the input while limiting the computing load assigned to

the mobile device. We focus on complex DNN models: DenseNet-169, -201 [26], ResNet-152

and Inception-v3 [52], where we first modified the models to introduce such bottlenecks,

and retrained the altered model using a technique called head network distillation [36]. The

84

Table 6.1: Classification performance of head-distilled (student) models with bottlenecks [36]

Altered model DenseNet-169 DenseNet-201 ResNet-152 Inception-v3

Test accuracy [%] 83.3 (-1.2) 84.1 (-1.1) 83.2 (-1.1) 85.7 (-0.8)

Data size [%] 1.68 1.68 1.68 1.53

* The numbers in brackets indicate difference in accuracy from the original (teacher) models.

technique stems from knowledge distillation [24], a procedure used to train a smaller (student)

model to mimic a bigger (teacher) model’s output. Interestingly, it is reported that student

models trained to mimic the teacher model often outperform equivalent models trained using

a vanilla method. Since our focus is on introducing bottlenecks to the early layers of the

pretrained model, we only train the head portion of the altered model to reduce training

time.

Table 6.1 summarizes the head-distilled models’ accuracy and bottleneck tensor size scaled by

the input tensor size (3ˆ 299ˆ 299 for Inception-v3 and 3ˆ 224ˆ 224 for others) as reported

in our previous work [36]. With small test accuracy loss, our introduced bottlenecks reduce

the size of data to be transferred to the edge computer by approximately 98% compared to the

input tensor size. The reduction in network payload corresponds to a reduced communication

delay withe respect to transmitting the input data, as shown in Section 6.5.

6.2 System Description

We consider a system composed of a mobile device (MD) and an edge server (ES). The overall

objective of the system is to analyze images acquired by the MD in the shortest possible

time and with the highest possible accuracy with the assistance of the ES. We consider a

specific family of vision tasks, that is, image classification. In this work, we focus on a specific

classification model being used to analyze all the images produced by the MD.

85

We denote the total time lapse from image acquisition to the availability of the output as T .

To minimize T , the MD has three options:

Local Computing: the MD executes the DNN model using its own resources.

Edge Computing: The MD transmits the full image to the ES, which executes the model

and transmits the outcome to the MD.

Split Computing: The MD executes the head model, transmits over the wireless channel

the output tensor to the ES, which executes the tail model and sends back the outcome to

the MD.

As explained in [36], the three different choices are optimal in different regions of parameters

describing the computing capacity of the MD and ES, as well as the capacity of the wireless

channel connecting them.

Herein, we develop a technique to allow the MD to dynamically select the best option in

response to the system state. As both computing and communication tasks may accumulate

within the system, we describe the latter as the concatenation of queues illustrated in Fig. 6.1.

The MD acquires images, which are forwarded to a selector to determine which of local,

edge and split computing is used. In the first case, the task is forwarded to the task buffer

of the MD, and eventually executed by the embedded MD’s processor. In the second case,

the full input image is forwarded to the communication buffer and eventually delivered over

the communication channel to the ES task buffer for processing. In the third case, the

image is sent to the local task buffer, but only the head portion of the model is executed by

the embedded processor, which then forwards the tensor to the communication buffer for

transmission to the ES task buffer. The ES then executes the tail portion. Note that in the

edge and split computing options, the model output needs to be transmitted back to the MD.

The size of the MD task buffer, ES task buffer and communication buffer are denoted with

86

Nmd, Nes and Ncomm, respectively. We adopt a First-In First-Out service model.

The total delay Ti of image i is the sum of many components, whose value depends on the

computing capacity of the MD and ES – which here is assumed fixed – as well as the current

channel capacity and the state of the buffers, which vary over time. In order to minimize the

average delay, the selector, then, inevitably needs to implement a policy capable of reacting

to the dynamics of the system’s state.

6.3 Stochastic Model

In this section, we characterize the state space and dynamics of the stochastic process

associated with the system described earlier. We note that in the following we use capital

and lowercase letters to denote random variables and their values, respectively.

6.3.1 State Space

We define the state space of the system as the vector

s “ rc,bmd,bcomm,bess, (6.1)

where c is the state of the wireless channel, and bmd, bcomm, and bes are vectors describing

the state of the MD task buffer, communication buffer and ES task buffer, respectively. The

state of the channel corresponds to the Signal-to-Noise-Ratio (SNR) experienced by the link.

We quantize the SNR to define C transmission rates, obtained using a capacity model, that

is

Ψpcq“W log2p1` SNRcq, (6.2)

87

where SNRc is the SNR associated with channel state cPt1, . . . , Cu, and W is the channel

bandwidth.

The vector bmd “ taku1,...,Nmd
contains Nmd elements each of those is associated with a slot in

the MD task buffer. The variables ak lie in the set t0, full, splitu, whose elements respectively

correspond to an empty slot, a slot containing an input image to be processed using the

original full model, and an image to be processed using the head model only. The buffer is

organized to rank tasks in order of arrival, that is, the oldest task is in the first position, the

second oldest on the second and so on, and empty slots are at the vector end. We define the

functions

Zmdpzq “ z, Fmdpzq “ a1, (6.3)

where z is the number of empty slots and a1 is the first element in the vector bmd within the

state z. We define analogous functions extracting the same quantities from bes and bcomm,

whose definition is analogous. The elements ak of bcomm are associated with empty slots

(ak“0), input images (ak“full), and tensors (ak“split) to be delivered to the ES buffer for

processing. The elements ak of bes correspond to empty slots (ak“0), input images to be

fully processed by the ES (ak“full), and tensors (ak“split) that are inputs to the tail DNN

model. On these models, we define similar functions as in Eq. 6.3.

In addition to the system state, we define the decision variable u P tlc, ec, splitu. The

components of the decision space correspond to a task being fully executed locally at the

MD, being fully offloaded to the ES, and split computing.

88

6.3.2 System Dynamics

In order to analyze the system and locate the optimal selection policy, we make some

assumptions that are common in queueing system analysis. Specifically, we assume that

the image interarrival time at the MD, the data transfer time, and the task execution time

are exponentially distributed random variables. The distributions are centered on values

extracted from the real-world experiments reported in [36].

We define, then, the following parameters

‚ λ as the arrival rate of images (that is, 1{λ is the average inter-capture time of images),

‚ γfull and γhead as the execution rate of the full and head DNN models at the MD, respectively.

‚ ρfull and ρtail as the execution rate of the full and tail DNN models at the ES, respectively.

‚ νpi,inq and νpi,headq as the transmission rate (i.e., the channel service rate) of full images and

output tensors, respectively. The parameters are computed as the channel capacity of that

state divided by the data size of the input image/tensor.

‚ Finally, we assume a jump model for the channel, where the channel state switches from

state i to state j with probability φij after an exponentially distributed time with parameter

ω.

We emphasize that the service rate of the MD and ES task buffers depends on the nature

of the task being executed (oldest in the buffer), which can be either the execution of the

full DNN model, or the execution of the head (MD) and tail (ES) DNN models. Similarly,

the channel service rate depends on the tag associated with the oldest data chunk in the

buffer, but also on the current channel capacity (described by the element c in the overall

state vector).

89

Under the assumption that the service rates are exponentially distributed as defined above, the

system dynamics can be described as a stationary Semi-Markov process tStu with a finite state

space as described in Section 6.3.1, where t“1, 2, Different from plain Markov processes,

in Semi-Markov processes the permanence time in each state is a random variable. The

discrete temporal index t, then, refers to time instants right after a state change. We remark

that as the timing of all events in the system is determined by exponentially distributed

random variables, then the probability that a particular event is the next is computed as

the probability that the corresponding random variable is the smallest. Moreover, again due

to the exponential nature of inter-event time, the residual time of the variables upon the

occurrence of an event has the same distribution. Importantly, the overall inter-event time is

distributed as the minimum set of exponentially distributed variables.

Assuming a recurrent Markov chain, the long-term dynamics of the process are fully defined

by the transition probabilities

Pupijq “ PrtSt`1“j | St“i, Ut“uu, (6.4)

where Ut is the decision variable at time t. Listing the transition probabilities is laborious

and cumbersome. Instead, we provide an operational description of the process dynamics

and associated probabilities.

Consider an empty system, that is

s0,c “ rc,0,0,0s, (6.5)

where 0 are zero-vectors of an appropriate size. In this state, then, all the buffers are empty,

and the channel is in state c. Intuitively, the next “event” driving the system in a different

state can be either (i) the channel state changes, or (ii) a new image arrives. The probability

of event (i) being the first to happen is simply ω{pω ` λq. Then the probability that the

90

process transitions from s0,c to s0,c1 is equal to φcc1ω{pω ` λq. Note that u is irrelevant in

this case. The probability that the next event is (ii) is λ{pω ` λq. In this case, the decision

variable determines the next state, and we have the following transitions with probability

λ{pω ` λq:

s0,cÑrc, r0, . . . , 0, fulls,0,0s if u “ lc, (6.6)

s0,cÑrc,0, r0, . . . , 0, fulls,0s if u “ ec, (6.7)

s0,cÑrc, r0, . . . , 0, splits,0,0s if u “ split. (6.8)

Thus, if u“lc a full size image is sent to the MD’s task buffer for full processing (note that

the full DNN model is immediately executed locally as the task is in first position), if u“ec a

full size image is sent to the communication buffer (and transmission immediately begins),

and if u“split then the full image is sent to the MD’s task buffer and the head model is

used to generate a tensor. From s0,c, all the other transitions have a probability equal to

zero. Consider a state s “ rc,bmd,bcomm,bess, where 0ăZmdpsqăNmd, 0ăZcommpsqăNcomm,

and 0ăZespsqăNes. Thus, all the buffers are non-empty, but also non-full.

From s, the following events might be the first to occur: (i) a new image arrives; (ii) a

task is completed in the MD task buffer; (iii) a task is completed in the ES task buffer;

(iv) the transmission of a data chunk from the communication buffer is completed; and (v)

the channel changes its state. As expected, when (i) to (iv) occurs, the task/data chunk

is removed from the buffer, and either sent to the next buffer or removed from the system.

Event (v) is different, in that the state vector remains the same excluding (possibly) the

channel state variable c.

Again, the probability that the first event is a specific one in the set of the five possible is the

probability that the corresponding exponential variable controlling the time is the smallest in

91

the set. We, then, define the variables

γ “ γfull1pFmdpzq “ fullq`γhead1pFmdpzq “ splitq (6.9)

ρ “ ρfull1pFespzq “ fullq`ρtail1pFespzq “ splitq (6.10)

ν “ νc,in1pFcommpzq “ fullq`νc,head1pFcommpzq “ splitq (6.11)

where 1pxq is the indicator function of event A. We remark that λ and ω are the parameters

of the variables determining image arrival and channel state change frequency, respectively.

We also define µ“λ` ω ` γ ` ρ` ν.

The probability that the first event from z is (i), (ii), (iii), (iv) or (v) is λ{µ, γ{µ, ρ{µ, ν{µ

and ω{µ, respectively. Given the occurrence of any of these specific events, the next state

is deterministic irrespective of the decision variable u, excluding in (v), where the channel

transition statistics determine the next state.

Let’s define the state vector s1 “ rc1,b1md,b
1
comm,b

1
ess. Given the occurrence of (v), the

state remains the same excluding the channel component, that is, the state transitions to

s1 “ rc1,bmd,bcomm,bess with probability φcc1 .

Let’s now look at the individual state vectors:

bmd “ r0 . . . 0 akmd
. . . a1s, (6.12)

bcomm “ r0 . . . 0 akcomm . . . a1s, (6.13)

bes “ r0 . . . 0 akes . . . a1s, (6.14)

where kmd“Nmd´Zmdpzq, kes“Nes´Zespzq, and

kcomm“Ncomm´Zcommpzq. Given the occurrence of (i), the process transitions to the following

92

states

sÑrc r0 . . . full akmd
. . . a1s bcomm bess if u“lc, (6.15)

sÑrc bmd r0 . . . full akmd
. . . a1s bess if u“es, (6.16)

sÑrc bmd r0 . . . split akmd
. . . a1s bess if u“split, (6.17)

with probability one.

If (ii) occurs and the first element of bmd is equal to full then the vector shifts right (removing

the first element) and a zero is appended. If the first element of bmd is equal to split, then

that first element is moved to replace a zero in bcomm, the vector bmd shifts right (removing

the first element) and a zero is appended. If (iii) occurs, then the vector bes shifts right

(removing the first element) and a zero is appended. If (iv) occurs, then the first element of

the bcomm is moved to replace a zero in bes, the vector bcomm shifts right (removing the first

element) and a zero is appended.

If one or more buffers are empty, then the corresponding event has probability equal to zero,

and the respective rates are removed from the denominator of the transition probabilities.

If one or more buffer is full, then the transitions described above need to be modified to

account for the fact that tasks/data cannot be moved to them and are, instead, erased.

6.4 Optimal Policy

The transition probabilities described in the previous section are conditioned on the action u

chosen by the selector. We define, then, the policy ξ guiding such choice.

93

6.4.1 Performance Metrics and Cost Functions

We are interested in two key metrics: (a) the average time lapse between task arrival and

departure from the system (total inference time) and (b) the task loss rate, that is, the

probability that a task is sent to a full buffer. Given the complexity of the system, the

definition of such metrics is non-trivial. Due to space constraints, we again provide an

operational description that allows the derivation of the metrics.

Given the nature of the process, for each metric ri : S ˆ S ˆ U Ñ R, that assigns a cost to

the tuple (state, state, action), we associate the time-average of the metric ri defined as

r̄i “ lim
nÑ`8

1

n

n
ÿ

k“1

E rripsk, s
1
k, ukqs . (6.18)

We now express the quantities needed to compute the performance metrics listed above. The

average number of tasks successfully completed is the time average of the cost function:

r1psk, s
1
k, ukq “

$

’

&

’

%

1 if task successful at MD or ES

0 otherwise.
(6.19)

Similarly we denote r2psk, s
1
k, ukq the average number of tasks discarded and r3psk, s

1
k, ukq the

time passed.

The average total inference time is the ratio between the accumulated delay of all the images

and the number of images whose analysis is completed. Therefore we can express it as

r̄3
r̄1
“

limnÑ`8

řn
k“1Err3psk, s

1
k, ukqs

limnÑ`8

řn
k“1Err1psk, s

1
k, ukqs

. (6.20)

94

6.4.2 Optimization Problem

Let us introduce Û, the sequence of actions that minimizes the objective RpUq over the space

U8 of all possible infinite action sequences under Mc linear constraints. Then we can express

the problem as a Linear Fractional Program:

Û “ arg inf
ξ

ř

sPS πξpsqr3ps, ξq
ř

sPS πξpsqr1ps, ξq

s.t. βq

ř

sPS πξpsqrcnpqqps, ξq
ř

sPS πξpsqrcdpqqps, ξq
` λq ď γq

(6.21)

where q “ 1, 2, ...,Mc enumerates the program constraints and cnpqq, cdpqq are indexes for

the necessary cost functions appearing in the constraints. The problem stated above has

multiple dependencies between the randomized stationary policy ξps, uq: πξpsq, the stationary

distribution of being in a given state, and the cost rips, ξps, uqq.

For this reason we define κ “ gω “ gπξpsqξps, uq, where the intermediate variables ω can

be interpreted as the probability that the process is in state s and action u is taken. The

change of variables κ “ gω is necessary to scale the magnitude of probabilities to the one of

the cost functions, reaching the final problem formulation:

tκ̂, ĝu “ argmin
κ,g

rT3 κ

s.t. pβrcn ` pλ´ γqrcdq
Tκ ď 0Mc,1

11,Aκ´ g “ 0

rTcdκ “ 1

Pκ “ 0|S|,1

g ě 0, κs,u ě 0 @s P S, @u P U ,

(6.22)

where A “ |S ˆ U | is the cardinality of the state-action space, and where 0m,n,1m,n are

matrices with m rows and n columns, with all elements equal to 0 and 1 respectively.

95

6.4.3 Optimal Policy

As demonstrated in [46], if the Markov process is unichain, that is, the whole state space is a

single recurrent class, then at least one optimal memoryless stationary policy exists in the

form of the following conditional probability

ξps, uq“PrtUt“u | St“su. (6.23)

We use the problem formulated above to find the policy ξ through direct computation

using the Linear Fractional Problem defined in the previous section. Applying the Simplex

Algorithm to the problem in Eq. (6.22) we find κs,u, from which we can extract the policy

using the following formulas:

ξ̂ps, uq “
κps, uq

ř

uPU κps, uq
(6.24)

where if κps, uq “ 0 the state is transient under the optimal policy, making ξ̂ps, uq “ 1 for

one random action and ξ̂ps, uq “ 0 otherwise.

6.5 Results

In this section, we provide results discussing the performance of the dynamic selection we

proposed with respect to edge computing. In order to find the parameters to use in solving

LFP, we measured the inference time of DenseNet-169 over a large image classification dataset,

on two devices: a Raspberry Pi 3b+ and Nvidia Jetson TX2. We created a split architecture

using the head distillation technique described in [36] with a similarly shaped bottleneck.

Note that we selected the smallest bottleneck size that preserved accuracy. The inference

time and size of the data to be transmitted over the network are reported in Table 6.2.

96

Figure 6.2: Delay ratio w.r.t. edge computing as a function of transmission rate.

Fig. 6.2 shows the ratio between the delay incurred using a fixed edge computing policy and

the split computing. We remark that both adaptive and Split Computing outperform simple

task offloading when transmission rates are below 2 Mbps. From the plot, it is clear that

edge computing is the best strategy when data rates are sufficiently large (over 10 Mbps

in the considered setting). The optimal policy implements a hybrid behavior. Whe the

transmission rate is small, it mainly uses split computing. As the transmission rate increases,

edge computing is used more often.

In Fig. 6.3, we plot the tradeoff between the number of successful tasks and the average

delay. It can be observed how not only the delay is reduced using an adaptive approach, but

also the number of successfully processed tasks increases. This is again due to the flexibility

that split computing offers in a range of data rates where edge offloading is simply unusable

due to the size of the full frame.

97

Table 6.2: Inference time and size of data to be transferred

Mobile Device Edge Server Data

Full comp. 7.4 s 0.3 s 600 Kb

Split comp. 0.44 s 0.25 s 85 Kb

Figure 6.3: Gain in task computed w.r.t. edge computing, as a function of the total inference
delay.

98

Chapter 7

Conclusions & Future Work

In this thesis we have shown different approaches to the problem of real-time analytics on

high dimensional data. In particular we investigated how real-time video analytics used to

control mobile autonomous systems, can be performed in a reliable and resilient way at the

edge servers.

We presented a series of results derived from our real-world testbed. The development and

utilization of our open-source framework HyDRAhelped us understanding what are the

challenges in this space. We targeted reliability in edge offloading in MASs, proposing a

reactive and a predictive approach. The reactive solution is described in Chapter 3, where

we explored how an edge computing system can react in order to satisfy it’s latency based

computational requirements, while minimizing the impact on the network resources. The

predictive solution is the topic of Chapter 4, where we show how pulling information from

heterogeneous resources can help predicting the task delay. Moreover we have shown how to

build intelligent agents on top of such prediction and how using Deep-Q Learning can further

enhance the system’s capabilities.

We then explored two different theoretical formulations regarding the same set of problems.

99

In Chapter 5 we show how formulating the problem using MDPs we can effectively uncover

the characteristics of the optimal decision policies. In Chapter 6 we introduce an original

formulation of the scheduling problem using heterogeneous tasks into a MDP. In this case we

are also able to show how different networking scenario trigger different optimal policies to

balance resource utilization and performance.

In all the techniques explored in this thesis we assume that the trajectory of the vehicle is

independent from the decision making algorithm. If we were to relax this hypothesis, we

would be able to create proactive approaches. In such scenarios the drone might still have a

preferred region in which to be (for example 10m from the target), but if could optimize it’s

position in such region to increase the real-time performance loop (e.g. reducing the task

delay).

Similar line of investigation could also be conducted on different data types: for example

multi-spectral lidar is a technology used on drones in agricultural applications. Introducing

offloading and a control loop to sample more often regions that have higher uncertainty could

be beneficial in extending operation times and overall accuracy of classification.

Finally we suggest a different area to explore, where we consider heterogeneous tasks. In

video analytics a recent idea is to alternate object detection and object tracking in order to

provide some computational advantage at the embedded device. We envision how the same

could be done in a distributed manner, including edge computing to improve allow the device

to use the outcome of more precise models when applying tracking.

100

Bibliography

[1] Tensorflow detection model zoo. https://github.com/tensorflow/models, 2019.

[2] A. Alioua, H. eddine Djeghri, M. E. T. Cherif, S.-M. Senouci, and H. Sedjelmaci. Uavs for
traffic monitoring: A sequential game-based computation offloading/sharing approach.
Computer Networks, 177:107273, 2020.

[3] S. Baidya, Z. Shaikh, and M. Levorato. FlyNetSim: An Open Source Synchronized
UAV Network Simulator Based on NS-3 and Ardupilot. In Proceedings of the 21st ACM
International Conference on Modeling, Analysis and Simulation of Wireless and Mobile
Systems, pages 37–45, 2018.

[4] M. V. Barbera, S. Kosta, A. Mei, and J. Stefa. To offload or not to offload? the bandwidth
and energy costs of mobile cloud computing. In Proceedings of IEEE INFOCOM 2013,
pages 1285–1293, 2013.

[5] R. Bellman. Dynamic programming and lagrange multipliers. Proceedings of the National
Academy of Sciences of the United States of America, 42(10):767, 1956.

[6] L. Bertizzolo, S. D’Oro, L. Ferranti, et al. SwarmControl: An Automated Distributed
Control Framework for Self-Optimizing Drone Networks. In IEEE Conference on
Computer Communications (INFOCOM), pages 1768–1777, 2020.

[7] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli. Fog computing and its role in the
internet of things. In Proceedings of the first edition of the MCC workshop on Mobile
cloud computing, pages 13–16. ACM, 2012.

[8] D. Callegaro. Hydra - distributed processing in heterogeneous cloud robotics systems.
https://github.com/uci-iasl/HYDRA, 2019.

[9] D. Callegaro. SeReMAS: Resilience Through Task Replication in Mobile Autonomous
Systems with Predictive Capabilities, 2021.

[10] D. Callegaro, S. Baidya, and M. Levorato. Dynamic distributed computing for
Infrastructure-Assisted autonomous uavs. In 2020 IEEE International Conference
on Communications (ICC): SAC Tactile Internet Track (IEEE ICC’20 - SAC-10 TI
Track), Dublin, Ireland, June 2020.

101

https://github.com/tensorflow/models
https://github.com/uci-iasl/HYDRA

[11] D. Callegaro and M. Levorato. Optimal computation offloading in edge-assisted uav
systems. In 2018 IEEE Global Communications Conference (GLOBECOM), pages 1–6.
IEEE, 2018.

[12] D. Callegaro and M. Levorato. Optimal Edge Computing for Infrastructure-Assisted
UAV Systems. IEEE Transactions on Vehicular Technology, 70(2):1782–1792, 2021.

[13] B. Cao, L. Zhang, Y. Li, D. Feng, and W. Cao. Intelligent Offloading in Multi-access
Edge Computing: A State-of-the-art Review and Framework. IEEE Communications
Magazine, 57(3):56–62, 2019.

[14] X. Cao, J. Xu, and R. Zhangt. Mobile edge computing for cellular-connected uav:
Computation offloading and trajectory optimization. In 2018 IEEE 19th International
Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pages
1–5. IEEE, 2018.

[15] S. E. Carpenter and M. L. Sichitiu. An obstacle model implementation for evaluating
radio shadowing with ns-3. In Proceedings of the 2015 Workshop on Ns-3, WNS3 ’15,
page 17–24, New York, NY, USA, 2015. Association for Computing Machinery.

[16] J. Chen, S. Chen, S. Luo, Q. Wang, B. Cao, and X. Li. An intelligent task offloading
algorithm (itoa) for uav edge computing network. Digital Communications and Networks,
2020.

[17] M. Chen, S. C. Liew, Z. Shao, and C. Kai. Markov approximation for combinatorial
network optimization. In 2010 Proceedings IEEE INFOCOM, pages 1–9, 2010.

[18] F. Cheng, S. Zhang, Li, et al. UAV Trajectory Optimization for Data Offloading at the
Edge of Multiple Cells. IEEE Transactions on Vehicular Technology, 67(7):6732–6736,
2018.

[19] N. Cheng, F. Lyu, W. Quan, C. Zhou, H. He, W. Shi, and X. Shen. Space/Aerial-Assisted
Computing Offloading for IoT Applications: A Learning-Based Approach. IEEE J. on
Sel. Areas in Communications, 37(5):1117–1129, 2019.

[20] N. Cheng, W. Xu, W. Shi, Y. Zhou, N. Lu, H. Zhou, and X. Shen. Air-ground
integrated mobile edge networks: Architecture, challenges, and opportunities. IEEE
Communications Magazine, 56(8):26–32, 2018.

[21] A. E. Eshratifar, A. Esmaili, and M. Pedram. Bottlenet: A deep learning architecture
for intelligent mobile cloud computing services. In 2019 IEEE/ACM International
Symposium on Low Power Electronics and Design (ISLPED), pages 1–6. IEEE, 2019.

[22] I. J. Goodfellow, M. Mirza, D. Xiao, A. Courville, and Y. Bengio. An empirical
investigation of catastrophic forgetting in gradient-based neural networks. arXiv preprint
arXiv:1312.6211, 2013.

102

[23] S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing deep neural net-
works with pruning, trained quantization and huffman coding. In Fourth International
Conference on Learning Representations, 2016.

[24] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network. In
Deep Learning and Representation Learning Workshop: NIPS 2014, 2014.

[25] Q. Hu, Y. Cai, G. Yu, Z. Qin, M. Zhao, and G. Y. Li. Joint Offloading and Trajectory
Design for UAV-enabled Mobile Edge Computing Systems. IEEE Internet of Things
Journal, 6(2):1879–1892, 2018.

[26] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. Densely connected
convolutional networks. In CVPR, volume 1, page 3, 2017.

[27] H.-J. Jeong, I. Jeong, H.-J. Lee, and S.-M. Moon. Computation offloading for machine
learning web apps in the edge server environment. In 2018 IEEE 38th International
Conference on Distributed Computing Systems (ICDCS), pages 1492–1499. IEEE, 2018.

[28] S. Jeong, O. Simeone, and J. Kang. Mobile edge computing via a uav-mounted cloudlet:
Optimization of bit allocation and path planning. IEEE Transactions on Vehicular
Technology, 67(3):2049–2063, 2017.

[29] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and L. Tang. Neurosur-
geon: Collaborative intelligence between the cloud and mobile edge. In Proceedings of
ACM ASPLOS, pages 615–629, New York, NY, USA, 2017. ACM.

[30] A. Karanika, P. Oikonomou, K. Kolomvatsos, and T. Loukopoulos. A demand-driven,
proactive tasks management model at the edge. In 2020 IEEE International Conference
on Fuzzy Systems (FUZZ-IEEE), pages 1–8, 2020.

[31] J. Kirkpatrick, R. Pascanu, et al. Overcoming Catastrophic Forgetting in Neural
Networks. Proceedings of the National Academy of Sciences, 114(13):3521–3526, 2017.

[32] A. Koubâa, A. Allouch, M. Alajlan, Y. Javed, A. Belghith, and M. Khalgui. Micro Air
Vehicle Link (MAVlink) in a Nutshell: A Survey. IEEE Access, 7:87658–87680, 2019.

[33] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf. Pruning filters for efficient
convnets. In Fourth International Conference on Learning Representations, 2016.

[34] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and
C. L. Zitnick. Microsoft coco: Common objects in context. In European conference on
computer vision, pages 740–755. Springer, 2014.

[35] B. Liu, H. Huang, S. Guo, W. Chen, and Z. Zheng. Joint computation offloading
and routing optimization for uav-edge-cloud computing environments. In 2018 IEEE
SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted Computing, Scalable
Computing Communications, Cloud Big Data Computing, Internet of People and Smart
City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), pages 1745–
1752, 2018.

103

[36] Y. Matsubara, S. Baidya, D. Callegaro, M. Levorato, and S. Singh. Distilled split deep
neural networks for edge-assisted real-time systems. In Proceedings of the 2019 MobiCom
Workshop on Hot Topics in Video Analytics and Intelligent Edges, pages 21–26, 2019.

[37] Y. Matsubara and M. Levorato. Neural compression and filtering for edge-assisted
real-time object detection in challenged networks. arXiv preprint arXiv:2007.15818,
2020.

[38] Y. Matsubara and M. Levorato. Split computing for complex object detectors: Challenges
and preliminary results. arXiv preprint arXiv:2007.13312, 2020.

[39] M.-A. Messous, A. Arfaoui, A. Alioua, and S.-M. Senouci. A sequential game approach
for computation-offloading in an uav network. In GLOBECOM 2017-2017 IEEE Global
Communications Conference, pages 1–7. IEEE, 2017.

[40] M.-A. Messous, H. Sedjelmaci, N. Houari, and S.-M. Senouci. Computation offloading
game for an uav network in mobile edge computing. In 2017 IEEE International
Conference on Communications (ICC), pages 1–6. IEEE, 2017.

[41] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and
M. Riedmiller. Playing atari with deep reinforcement learning. arXiv, 2013. cite
arxiv:1312.5602Comment: NIPS Deep Learning Workshop 2013.

[42] M. Mueller, N. Smith, and B. Ghanem. A Benchmark and Simulator for UAV Tracking.
In European Conference on Computer Vision, pages 445–461. Springer, 2016.

[43] M. Narang, S. Xiang, W. Liu, J. Gutierrez, L. Chiaraviglio, A. Sathiaseelan, and
A. Merwaday. Uav-assisted edge infrastructure for challenged networks. In 2017 IEEE
Conference on Computer Communications Workshops (INFOCOM WKSHPS), pages
60–65. IEEE, 2017.

[44] Z. Ning, K. Zhang, X. Wang, L. Guo, X. Hu, J. Huang, B. Hu, and R. Y. K. Kwok.
Intelligent Edge Computing in Internet of Vehicles: A Joint Computation Offloading
and Caching Solution. IEEE Transactions on Intelligent Transportation Systems, pages
1–14, 2020.

[45] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, et al. Scikit-learn: Machine Learning in Python.
The Journal of Machine Learning Research, 12:2825–2830, 2011.

[46] K. W. Ross. Randomized and past-dependent policies for markov decision processes
with multiple constraints. Operations Research, 37(3), 1989.

[47] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 4510–4520, 2018.

104

[48] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In Proceedings IEEE Conference on Computer Vision
and Pattern Recognition, 2018.

[49] T. Schaul, J. Quan, I. Antonoglou, and D. Silver. Prioritized experience replay. arXiv
preprint arXiv:1511.05952, 2015.

[50] M. Schmittle, A. Lukina, L. Vacek, J. Das, C. P. Buskirk, S. Rees, J. Sztipanovits,
R. Grosu, and V. Kumar. OpenUAV: A UAV Testbed for the CPS and Robotics
Community. In 2018 ACM/IEEE 9th Int. Conference on Cyber-Physical Systems
(ICCPS), pages 130–139. IEEE, 2018.

[51] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrit-
twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering the game of go
with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

[52] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the inception
architecture for computer vision. In Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016.

[53] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard, and Q. V. Le.
Mnasnet: Platform-aware neural architecture search for mobile. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 2820–2828, 2019.

[54] H. van Hasselt, A. Guez, and D. Silver. Deep Reinforcement Learning with Double
Q-learning. CoRR, abs/1509.06461, 2015.

[55] D. Wang, W. Li, X. Liu, N. Li, and C. Zhang. UAV Environmental Perception and
Autonomous Obstacle Avoidance: A Deep Learning and Depth Camera Combined
Solution. Computers and Electronics in Agriculture, 175:105523, 2020.

[56] F. Wang, J. Xu, X. Wang, and S. Cui. Joint offloading and computing optimization
in wireless powered mobile-edge computing systems. IEEE Transactions on Wireless
Communications, 17(3):1784–1797, 2017.

[57] Z. Yang, C. Pan, K. Wang, and M. Shikh-Bahaei. Energy Efficient Resource Allocation
in UAV-enabled Mobile Edge Computing Networks. IEEE Transactions on Wireless
Communications, 18(9):4576–4589, 2019.

[58] B. Zhang, G. Zhang, W. Sun, and K. Yang. Task Offloading with Power Ccontrol for
Mobile Edge Computing Using Reinforcement Learning-Based Markov Decision Process.
Mobile Information Systems, 2020, 2020.

[59] J. Zhang, L. Zhou, Q. Tang, E. C.-H. Ngai, X. Hu, H. Zhao, and J. Wei. Stochastic
Computation Offloading and Trajectory Scheduling for UAV-assisted Mobile Edge
Computing. IEEE Internet of Things Journal, 6(2):3688–3699, 2018.

105

[60] T. Zhang, Y. Xu, J. Loo, D. Yang, and L. Xiao. Joint Computation and Communication
Design for UAV-Assisted Mobile Edge Computing in IoT. IEEE Transactions on
Industrial Informatics, 16(8):5505–5516, 2020.

[61] F. Zhou, Y. Wu, R. Q. Hu, and Y. Qian. Computation Rate Maximization in UAV-
Enabled Wireless-Powered Mobile-Edge Computing Systems. IEEE Journal on Selected
Areas in Communications, 36(9):1927–1941, 2018.

[62] S. Zhu, L. Gui, J. Chen, Q. Zhang, and N. Zhang. Cooperative computation offloading
for uavs: A joint radio and computing resource allocation approach. In 2018 IEEE
International Conference on Edge Computing (EDGE), pages 74–79, 2018.

106

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE Dissertation
	Introduction
	Copyright Notice
	Motivation: Challenges in Highly Mobile Computing
	Responsiveness

	Dissertation Contributions & Overview

	Related work
	Real-time Applications in Mobile Internet of Things
	Edge Computing in Mobile Autonomous Systems
	Static Approaches
	Data Driven Approaches to Real-Time Scheduling
	Simulation Environments

	Theoretical Solutions and Heterogeneous Metrics

	I Experimental Study of Task Offloading for MASs
	Dynamic Distributed Scheduling for Infrastructure Autonomous UAVs
	Problem Setup and Preliminary Results
	Computation Task
	Experimental Platform
	Preliminary Considerations

	HYDRA
	Hydra Architecture
	Hydra Logics

	Experimental Results on Energy-Performance Trade-Off

	SeReMAS: Self-Resilient Task Allocation Mobile Autonomous Systems Through Predictive Computing
	Preliminary Experiments
	Preliminary Analysis

	The SeReMAS Framework
	SeReMAS: A Walkthrough
	Redundant Task Offloading Problem (RTOP)
	Myopic-based Baseline for RTOP
	Deep Q-Learning Approach for RTOP

	SeReMAS Prototype
	Platform Components
	DRL State Space and Feature Selection
	Myopic Predictor and DRL Implementation

	Experimental Results
	Experimental setting
	Prediction Performance
	Redundant Offloading

	II Theoretical Analysis of Task Offloading for MASs
	Optimal Edge Computing for Infrastructure-Assisted UAV Systems
	System and Problem Overview
	System Model
	Communications
	Computation
	Energy

	Optimal Offloading Decisions
	Transition Probabilities
	Cost Functions and Optimal Policy

	Numerical Results
	Performance Analysis
	Mission Trajectory
	Characterization of State in Temporally Correlated Environment

	Optimal Task Allocation for Edge Computing Systems with Split DNN Computing
	Distilled Split DNN Models
	System Description
	Stochastic Model
	State Space
	System Dynamics

	Optimal Policy
	Performance Metrics and Cost Functions
	Optimization Problem
	Optimal Policy

	Results

	Conclusions & Future Work
	Bibliography

