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Abstract

Targeted Maximum Likelihood Estimation
for Evaluation of the Health Impacts of Air Pollution

by

Varada Sarovar

Doctor of Philosophy in Biostatistics

University of California, Berkeley

Professor Maya Petersen, Chair

The adverse effects of air pollution on human life is of serious concern for today’s society.
Two population groups that are especially vulnerable to air pollution are pregnant women
and their growing fetuses, and the focus of this thesis is to study the effects of air pollution
on these populations. In order to address the methodological limitations in prior research,
we quantify the impact of air pollution on various adverse pregnancy outcomes, utilizing
machine learning and novel causal inference methods. Specifically, we utilize two semi-
parametric, double robust, asymptotically efficient substitution estimators to estimate the
causal attributable risk of various pregnancy outcomes of interest. Model fitting via machine
learning algorithms helps to avoid reliance on misspecified parametric models and thereby
improve both the robustness and precision of our estimates, ensuring meaningful statistical
inference. Under assumptions, the causal attributable risk that we estimate translates to
the absolute change in adverse pregnancy outcome risk that would be observed under a
hypothetical intervention to change pollution levels, relative to currently observed levels.
The estimated causal attributable risk provides a quantitative estimate of a quantity with
more immediate public health and policy relevance.
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Chapter 1

Introduction

1.1 Overview

Ambient air pollution is identified as an important health problem in the United States as
well as around the world. The World Health Organization (WHO) recognizes air pollution
as a ’public health emergency’, leading to one in every nine deaths in 2012 [1] and according
to the State of the Air 2016 report by the American Lung Association, around 52.1% of the
population in the United States live in counties where air pollution levels, dominated by ozone
or particulate matter, are considered dangerous to health [2]. Many of the air pollutants
of concern are generated by human activities that include fuel combustion, mobile sources
and industrial processes [3, 4]. In the United States, the Environmental Protection Agency
(EPA), under the Clean Air Act [5], set permissible standards for six common ambient air
pollutants, known as criteria pollutants: which are nitrogen dioxide (NO2), ozone (O3),
particulate matter (PM), carbon monoxide (CO), sulfur dioxide (SO2), and lead. In the
United States, the EPA identifies motor vehicles as a major source of air pollution [6].
Although there are strict rules and regulations, such as the Clean Air Act, trends like the
rise in metropolitan populations and subsequent rise in the number and use of vehicles has
resulted in more traffic-related pollution [7].

Previous studies have linked air pollution with many adverse health outcomes [8], includ-
ing cardiovascular diseases [9, 10], adverse pregnancy outcomes [11, 12, 13] and subsequent
health problems [14, 15], respiratory diseases [16, 17], cancer [18, 19, 20], and death [13, 18].
Based on these studies, it is clear that increasing ambient air pollution threatens our health
and wellbeing. However, air pollution will not affect everyone equally. Prior research has
identified various air pollution vulnerability factors as well as population groups susceptible
to adverse health effects [11, 14, 21, 22]. A population group that has been identified as par-
ticularly susceptible to air pollution is pregnant women and their growing fetuses [23, 24, 25].
The focus of this thesis is to analyze the causal effects of air pollution and its primary source,
traffic density, on this vulnerable population.
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1.2 Air pollution and adverse pregnancy outcomes

Prior research on adverse health outcomes in pregnant women and fetuses has linked air
pollution to preterm birth (PTB) [12, 26, 27, 28], low birth weight (LBW) [12, 29, 30, 31],
small for gestational age (SGA) [32, 28, 33], birth defects [34], subsequent health effects at
later stages of life [35, 36, 37] and stillbirth (fetal death) [38, 39, 40, 41, 42].

Many biological pathways have been proposed to explain the adverse effect of air pollution
on a growing fetus [43, 44, 45]. First, research suggests that air pollutants, such as NO2,
CO, SO2 and PM10, can modify blood coagulability and plasma viscosity [46, 47] and these
can adversely affect the umbilical blood flow, leading to inadequate placental transfer of
oxygen, which consequently effects fetal growth. Second, air pollution can trigger preterm
delivery by increasing vulnerability to infection [44, 48, 49]. Third, O3 and traffic-related air
pollutants, such as nitrogen oxides (NOx), PM , are capable of generating reactive oxygen
species that lead to oxidative stress, and it has been hypothesized that oxidative stress
can result in DNA damage and premature placental aging, resulting in fetal vulnerability
[50, 51, 52, 53]. Fourth, air pollution can adversely effect the general health of a pregnant
woman (e.g. gestational hypertensive disorders, increased stress levels) and hence the health
of her growing fetus [54, 55, 56].

The burden of adverse pregnancy outcomes can lead to long-lasting consequences. For
most women and their families, pregnancy is an important and happy event of their life;
hence any adverse pregnancy outcome can pose a long-lasting emotional and psychological
effect. Prior studies have found an association between adverse pregnancy outcomes and
post traumatic stress disorder [57, 58]. Adverse birth events can also affect quality of life,
relationships between couples and subsequent pregnancies [59, 60]. In addition to various
psychosocial challenges, adverse pregnancy events can pose financial burden to the affected
families and society [61, 62, 63, 64, 65].

1.3 Background and motivation

This research described in this dissertation is based on a collaboration with research scientists
at California EPA/Office of Environmental Health Hazard Assessment (OEHHA) as well as
with researchers from UC Berkeley and Stanford who are involved in the Children’s Health
& Air Pollution Study - San Joaquin Valley (CHAPS-SJV).

As part of the CalEPA/OEHHA collaboration, I was involved in a project focused on
assessing the relationship between prenatal ambient air pollution exposure and stillbirth us-
ing a California cohort data from 1999 to 2009. I was interested in this project for various
reasons. First, research assessing the relationship between air pollution and stillbirth is a
relatively new topic, with most of the studies conducted outside the United States. Extrap-
olating the results of the two existing studies conducted within the United States, in New
Jersey, to California is difficult because of differences in the sources and the characteristics
of air pollution mixtures. Second, the large and diverse population in the dataset, as well as
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availability of exposure data during the entire study period, were ideal for studying a rare
outcome like stillbirth. Initially, I was involved in a project that established a strong and
stable association between prenatal exposure to ambient air pollutants (specifically NO2 and
O3) and stillbirth [39]. Subsequently, I extended this study as part of my thesis research to
address some of the limitations in the previous analysis.

As part of the CHAPS-SJV collaboration, I was involved in a project focused on assessing
the relationship between prenatal traffic exposure and preterm birth in the four most popu-
lated counties within the San Joaquin Valley air basin in California between 2000 and 2006.
Researchers involved in this project had already established an association between prenatal
traffic exposure and preterm birth using a parametric logistic regression model [27]. As part
of my thesis research, I am addressing some of the limitations of prior research related to
this topic.

In both cases, my thesis research advances the current state of understanding by going
beyond establishment of association between air pollutant exposure and the relevant adverse
birth outcomes, to assessing the causal influence of the air pollutants on the birth outcomes.

1.4 A summary of prior research

Ambient air pollution and stillbirth

Stillbirth (fetal death) is defined as the death of a fetus before or during delivery at or
after 20 or 28 weeks of gestational age [66, 67]. The rate of stillbirth in the United States
was around 1% as of 2013, affecting around 24, 000 pregnancies each year [66]. Assessing
the relationship between ambient air pollution and stillbirth is a relatively new topic and a
summary of the prior research is provided in Tables 1.1 and 1.2.

Traffic pollution and preterm birth

Preterm birth (PTB) is a major perinatology issue and is defined as birth that occurs before
37 weeks of gestational age. The prevalence rate of PTB in the United States was around 10%
in 2016 [68]. A summary of prior research that assessed the relationship between prenatal
traffic pollution or traffic related air toxic exposure and PTB is given in Tables 1.3 and 1.4.

1.5 Limitations of current literature

There are two major statistical methodology limitations to all previous studies on these
topics. These are:
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1. Parametric regression models were used to assess the relationship between exposure
and outcome of interest, as well as to adjust for measured confounders. Utilizing para-
metric models, that are not supported by a priori knowledge, to adjust for measured
confounders can result in biased estimates and incomplete control for confounding due
to plausible model misspecification.

2. In prior studies, conditional odds ratios or regression based estimates were reported
to evaluate the relationship between exposure and outcome. This parameters fail to
quantify the risk of poor birth outcomes attributable to the exposure in the study
population of interest, and also does not inform us about how much the outcome risk
burden might be expected to change if an intervention (e.g. a new policy on ambient
or traffic related air pollution level standards) modified the exposure level.

1.6 Research goals and significance

To address the above listed limitations in previous studies, we incorporate new machine
learning and causal inference methods to analyze the impact of air pollution on various ad-
verse birth outcomes. In the following, we quantify the impact of air pollution using the
causal attributable risk (CAR) of various outcomes of interest, which is estimated using both
targeted maximum likelihood estimation (TMLE) [69] and inverse probability of censoring
weighted targeted maximum likelihood estimation (IPCW-TMLE) [70]. Both TMLE and
IPCW-TMLE are semi-parametric, double robust, asymptotically efficient substitution es-
timators [71]. In addition, we utilize a machine learning algorithm, SuperLearner [72], for
model fitting in order to minimize the reliance on parametric models. IPCW-TMLE also
helps to overcome computational challenges that are posed by large data sets by utilizing a
sub-sample for analysis.

Under assumptions to be detailed in chapter 2, the CAR of a particular outcome in a
population, compares the absolute change in the outcome risk that would have been experi-
enced under a hypothetical intervention to change pollution exposure levels relative to their
currently observed levels. Evaluating CAR of various health outcomes, from different air
pollution exposures, is relevant for evaluating the impact of new policies related to the cor-
responding air pollution level. Quantifying the health effect of potential intervention levels
and establishing a causal relationship between air pollution and health outcomes are more
convincing than establishing mere associations for policy relevant issues [73, 74].

Specific aims of the two studies presented in this thesis (chapters 3 and 4) are:

1. Quantify the causal attributable risk of stillbirth from prenatal ambient air pollution,
focusing on NO2 and O3 exposures, in a California cohort dataset from 1999 to 2009.

2. Quantify the causal attributable risk of preterm birth from prenatal traffic exposure
in four counties in the San Joaquin Valley air basin between 2000 to 2006
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1.7 Thesis layout

This thesis consists of four chapters, including this introductory chapter. In this first chap-
ter, a summary of the prior literature related to two adverse pregnancy outcomes and air
pollution, as well as the limitations related to this prior research is provided. We also de-
tail the aims of the studies that will be presented in detail in this thesis, as well as our
motivations.

In the second chapter we present a summary of the well-established causal road map that
will be followed in subsequent chapters. This includes a brief description of a semi-parametric
efficient estimation approach [69] that we will apply to estimate the target parameter of inter-
est that quantifies the impact of air pollution on the adverse pregnancy outcomes considered.

In chapter 3, we estimate the causal attributable risk of two criteria pollutants on still-
birth using a California cohort data from 1999 to 2009. Here we also address the exposure
assignment challenge that could arise when a temporal trend exists both in exposure and in
conception. Under assumptions, we found a weak causal link between exposure to the two
pollutants considered and stillbirth. Moreover, we show that the significance of the causal
effect depends on the exposure assignment that is used.

In chapter 4, we quantify the CAR of preterm birth from prenatal traffic exposure in
the four most pollutant counties in San Joaquin Valley air basin from 2000 to 2006. Under
assumptions, we were able to establish a causal link between prenatal traffic exposure and
preterm birth.
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Chapter 2

A roadmap for causal inference

2.1 Overview

When studying the health effects of air pollution, causal questions or inference are more
informative and relevant than associations. To appreciate the difference between standard
statistical inference and causal inference note that the former uses observed sample data from
a data generating distribution to infer association between two variables, as well as extend
analysis to unobserved data assuming that the experimental setup that generated the data
remains the same. In contrast, causal inference is based on unobserved counterfactual data
that would have been generated under a different hypothetical experimental setup [88, 89].
When addressing causal inference research questions it is useful to follow the well-established
causal roadmap [90]. In this chapter, we present a summary of this roadmap, which we
followed to address the research questions addressed in the thesis.

The causal roadmap is specified by the following steps:

1. Define research question

a) Specify data and causal model

b) Specify the causal target parameter of interest

c) Specify the observed data and their link to causal model or counterfactual out-
comes

d) Identify the causal target parameter as a parameter of observed data distribution

2. Estimate the statistical target parameter

3. Interpret results under a causal framework

As we examine each one of these steps in more detail in this chapter, we will use a running
example to illustrate concepts. This example is based on the traffic exposure and preterm
birth cohort dataset studied in Chapter 4.
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2.2 Define research question

The running example is based on the CHAPS-SJV cohort data (traffic exposure-PTB). The
specific aim in that study is to quantify the causal attributable risk of preterm birth from
prenatal traffic exposure in four most populated counties in the San Joaquin Valley air basin
in California between 2000 to 2006

Defining the research question incorporates our knowledge about the system to be studied;
it can be broken up using the steps mentioned above, and we will explain each step in detail
using the running example.

Specify data and causal model

The first sub-step in defining the research question is to specify the data and causal model;
this step helps to express our research question in mathematical terms. Structural causal
models (SCM) [88, 91] were utilized to represent our causal model; the SCM framework
integrates the approaches of structural equation modeling [92, 93], causal diagrams [91, 94]
and potential outcomes or counterfactuals [95, 96],

We represent our data as X = {W,A, Y }. Here W denotes the baseline covariates,
A is the exposure of interest and Y denotes the outcome of interest. X represents the
endogenous variables that are relevant to our research question; it includes both measured
or unmeasured variables that are affected by the other variables. In our running example:
W includes various individual (e.g. maternal age, sex of infant), temporal (e.g. season of
conception) and community or neighborhood factors (e.g. census tract variables), A is traffic
density, and Y is preterm birth.

There will be some unmeasured background factors or error terms, also known as ex-
ogenous variables, that will effect the endogenous variables and they are represented by
U = {UW , UA, UY } ∼ PU with PU denoting the distribution of U . In our example, UW and
UY could include some maternal or infant genetic characteristics, UA could indicate the hous-
ing rental prices. F = {fW , fA, fY } denotes a set of structural equations that represent each
endogenous variable as a function of other variables, namely parent variables, that could
include both exogenous and other endogenous variables that affect them. In our data, we
did not assume any functional form for the structural equations; hence the non-parametric
structural equations representing our data are given as:

W = fW (UW )

A = fA(W,UA)

Y = fY (W,A,UY ) (2.1)

Structural equations represent our background knowledge about the system to be studied
and this is reflected in terms of the exclusion criteria (by restricting parent variables for each
endogenous variables) and the independence assumptions (by assuming no common parent
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for some endogenous variables) applied. MF denotes the structural causal model that include
all the possible probability distributions for both endogenous and exogenous variables.

Specify the causal target parameter of interest

The second step in defining the research question is to specify the causal target parameters
of interest. This step requires us to be specific about the type of intervention that we wish
to apply to the current system as well as the resulting counterfactual outcomes. In the
running example the aim of the study is to better understand changes in the preterm birth
distribution in our study population from a plausible proposed intervention (e.g. a policy
change) that could modify traffic pollution exposure level. Hence we decided to estimate the
causal attributable risk (CAR), which is a population intervention parameter [97].

Structural causal models can represent the system to be studied under various desired
experimental setups. For example under a new static intervention of A = a, on the exposure
variable, the system to be studied represented in Eq. 2.1 will modify to

W = fW (UW )

A = a

Ya = fY (W,a, UY ) (2.2)

In Eq. 2.2 the resulting outcome, under the desired intervention of A = a, is called the
potential or the counterfactual outcome corresponding to the new intervention applied. The
counterfactual outcome distribution is represented by PU,X which is the joint distribution
of PU and F . In our running example, counterfactual outcome Ya for a mother is the birth
outcome she would have had if she had been exposed to exposure A = a.

In addition to all the possible probability distributions for both endogenous and exoge-
nous variables, MF also include the distributions of counterfactual outcomes under various
intervention scenarios.

Based on the distribution of a counterfactual outcome Ya, from a statistical intervention
on the exposure variable A = a, the target parameter of interest is defined as

ΨFPU,X
= EPU,X

(Y )− EPU,X
(Ya); a ∈ A (2.3)

The parameter represented in Eq. 2.3 compares the expected outcome that is currently
observed with the expected counterfactual outcome under various hypothetical intervention
scenarios applied to the exposure A = a; a ∈ A. In the running example, A = {1, 2, 3, 4}
represents a particular level/quartile of traffic density exposure, with 1 representing the
lowest quartile of exposure and 4 representing the highest, and ΨFPU,X

represents the impact
of a particular level of traffic exposure on preterm birth relative to the current probability
of preterm birth.
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Specify the observed data and their link to the causal model or
counterfactual outcomes

We assume that our observed data were created by sampling n times from a data generating
system that is compatible with the causal model specified in the earlier step. Thus for each
of the n subjects, the observed data structure can be represented as O = {W,A, Y } and
the observed data can be viewed as n independent and identical copies of O ∼ P0, where
P0 is the true, but unknown, distribution. Our statistical model M comprises of all the
possible distributions, including the true, for the observed data; i.e. P0 ∈M. Since O ⊂ X,
the causal model implies the statistical model. Statistical models can be parametric and/or
non-parametric.

To represent the observed data based on Neyman-Rubin counterfactual framework [95,
96], we assume the stable unit treatment value assumption (SUTVA) [98]. The two key points
in this assumption are: firstly, the potential outcome for one subject is not effected by the
exposure assigned to another subject; secondly there is only a single level for each exposure
and hence the potential outcome under each exposure is well defined. Under SUTVA, we
can represent the observed outcome for the ith subject in terms of their observed exposure
and potential counterfactual outcomes as: Yi = AiYi,1 + (1 − Ai)Yi,0. In reality, we will be
observing only one of two potential outcomes for each subject and hence causal inference is
a missing data problem.

Identify the causal target parameter as a parameter of observed
data distribution

The final step in defining the research question is to identify the target causal parameter of
interest from the observed data that we have. To identify the target causal parameter ΨFPU,X

from the available observed data, we need to express it as a statistical parameter Ψ(P0)
which is a function of observed data. To do this we need to make the following assumptions
[71]:

1. Consistency assumption: This is a key assumption in causal inference. Under this
assumption we assume that the the observed outcome (Y ) under the observed exposure
level (A) is equal to the counterfactual outcome (YA) under the observed exposure level.
This is an untestable assumption. In the SCM framework, consistency assumption is
implied by the definition of counterfactuals.

2. Randomization assumption: This assumption is also known as the “no unmeasured
confounding” assumption because under it we assume that the measured covariates W
are sufficient to control for confounding of the effect of A on Y . Mathematically, this
assumption is expressed as Ya |= A|W , ∀ a ∈ A. This is an untestable assumption.

3. Positivity assumption: This is also known as the experimental treatment assumption
(ETA). Under ETA, we assume that in our population there is a positive probability
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for receiving each level of exposure A within every combination of baseline covariate
values that occurs with positive probability under P0. Mathematically this is expressed
as: min

a∈A
P0(A = a|W ) > 0.

In our running example, we believe that most of the important confounders related to
traffic exposure and preterm birth are included in the available observed data, however it is
possible that some maternal or neighborhood/community characteristics that we do not track
could potentially determine exposure and birth outcomes and thus act as confounders. Hence
in this example it should be kept in mind that the untestable randomization assumption
may not hold. Here, we also assume that there is enough variability within the traffic
exposure quartiles, regardless of various covariate strata, and hence positivity assumption is
reasonable.

Under these three assumptions, we can express the target parameter of interest in terms
of the observed data as:

Ψ(P0) = E0(Y )− EW,0[E0(Y |A = a,W )]; a ∈ A (2.4)

This is the statistical estimand.
Identifying the target causal parameter in terms of the observed data structure completes

the first step of the causal roadmap.

2.3 Estimate the statistical target parameter

The second step of causal roadmap is the estimation of the target parameter; and since we
expressed our target parameter as a statistical estimand in the first step, this estimation step
is essentially a statistical problem. There are different methods to estimate the identified
statistical estimand. The G-computation method (or simple substitution method) makes
use of an estimate of outcome regression E0(Y |A,W ) [99, 100] and the inverse probability of
treatment weighted (IPTW) method utilizes an estimate of treatment regression (also known
as the propensity score) P0(A = a|W ) [101]. The G-computation and IPTW estimators are
consistent if the outcome regression or the treatment regression, respectively, are consis-
tently estimated. In this thesis we make use of another class of estimators, which combines
both outcome and treatment regression estimates, namely the targeted maximum likelihood
estimators (TMLE) [69, 71, 102].

A generic description of TMLE involves the following steps [69, 71], and in what follows,
we will explain each step in detail, using the running example.

1. Define the target parameter, which is a mapping from the statistical model to the
parameter space Ψ :M→ R.

2. Compute the efficient influence curve (IC), D∗Ψ(P0)(O), of the target parameter.
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3. Define a loss function L(P ) such that expected value of that loss function, E0L(P ), is
minimized at P0; P0 is the true distribution.

4. Perform TMLE updating steps:

a) Form an estimate P 0
n of P0.

b) Define least-favorable parametric working model through the initial estimate P 0
n ,

denoted as P 0
n(ε), such that P 0

n(ε = 0) = P 0
n and d

dε
L(P 0

n(ε))|ε=0 = D∗Ψ(P 0
n)(O).

c) Find ε0n = arg minε
∑n

i=1 L(P 0
n(ε)(Oi)).

d) Update the initial estimate: P 1
n = P 0

n(ε0n).

e) Repeat the last three steps (b,c & d) until convergence at the Kth step, i.e. until
εKn = 0. The final update at the Kth step is denoted as P ∗n and this is the TMLE
of P0.

5. Form the TMLE of the target parameter obtained by simply substituting the TMLE
of P0 as per the parameter mapping; i.e. ψ∗n = Ψ(P ∗n).

Define the target parameter

We have already provided our target parameter of interest, in terms of the observed data,
in Eq. 2.4 and there are two points to note regarding this parameter. First, instead of
directly targeting the difference E0(Y )− EW,0[E0(Y |A = a,W )], we will apply the targeted
updating steps only to the second term of our target parameter EW,0[E0(Y |A = a,W )]. The
first term of our target parameter, E0(Y ), is estimated using the empirical mean of Y which
is already an unbiased estimate, and hence this part does not require any further update.
However, in an alternative approach, not implemented here, one could directly target the
difference, which can be done in such a way that the estimate of E0(Y ) still reduces to the
empirical mean of Y . Second, note that EW,0[E0(Y |A = a,W )], which we will refer as the
counterfactual term of the target parameter in the subsequent steps, depends on P0 through
the conditional expectation of the outcome given the exposure and base line covariates,
denoted as Q̄0 = E0(Y |A,W ), and the marginal distribution of baseline covariates, denoted
as Q̄W,0. Hence the second term of the target parameter, i.e. the counterfactual term, can
be rewritten as a function of Q0, where Q0 = (Q̄0, Q̄W,0).

Compute the efficient influence curve of the target parameter

The next step is to compute the efficient influence curve (IC) of the target parameter.
Fortunately, the efficient influence curve for EW,0[E0(Y |A = a,W )], the counterfactual term
of the target parameter, is already provided in the literature [71, 69]. If we denote conditional
probability of exposure given the base line covariates as g0(A|W ) = P0(A|W ) then the
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efficient influence curve for the counterfactual term of the target parameter is given as:

D∗EW,0[E0(Y |A=a,W )](P0)(O) =
1(A = a)

g0(a|W )
(Y − Q̄0(A,W )) + Q̄0(a,W )− EW,0[E0(Y |A = a,W )]

(2.5)
The efficient IC, given in Eq. 2.5, can be decomposed into two parts, as D∗(P0)(O) =

D∗Y (P0)(O) + D∗W (P0)(O) based on their relation to the distribution of the outcome Y . In
the upcoming steps we will be updating only the relevant part of the efficient IC, which is
D∗Y (P0)(O) = 1(A=a)

g0(a|W )
(Y − Q̄0(A,W )) [71].

Also, using a simple calculation based on the definition of influence function [103], the
efficient influence curve for the first part of the target parameter, E0(Y ), can be written
as Y − E0(Y ). Applying the Delta method [71], the efficient influence curve for the target
parameter, specified in Eq. 2.4, can be calculated to yield:

D∗Ψ(P0)(O) = Y − 1(A = a)

g0(a|W )
(Y − Q̄0(A,W )) + Q̄0(a,W )−Ψ(P0) (2.6)

Define a loss function

The next step is to define a loss function such that the risk, which is the expected value of the
loss function, is minimized at the true distribution. We chose a loss function that depends
on P0, through the relevant parts of Q0, specifically Q̄0. For example, for a binary outcome
Y , the negative log loss function is represented as [71]: L(O, Q̄0) = −log(Q̄0(A,W )

Y
(1 −

Q̄0(A,W ))(1−Y )).
For our running example, we choose a negative log loss function.

Perform TMLE updating steps

Form an initial estimate P 0
n of P0

Since we can write the target parameter of interest as a function of Q0 = (Q̄0, Q̄W,0), in
this step, we are forming an initial estimate of Q0. The empirical probability distribution
of W , denoted as Q̄W,n, was used to estimate Q̄W,0; this is a non-parametric maximum
likelihood estimator and it will not add any bias to the target parameter. Hence in the
subsequent steps the updating will be focused only on Q̄0

n, which is the initial estimate of
Q̄0 = E0(Y |A,W ). Q̄0

n is based on the loss function and it can be obtained using a machine
learning algorithm called SuperLearner [72]. Utilizing cross-validation, SuperLearner creates
an optimal combination of fits obtained from user supplied individual prediction algorithms.

In our running example, to get an initial estimate of both Q̄0 and g0(A = a|W ) we used
SuperLearner, with a non-negative least squares loss function, a 10-fold cross validation and
our library of candidate algorithms included main term logistic regression, logistic regression
with all possible pairwise interactions, simple mean and the stepwise logistic regression. Q̄W,n

is estimated using the empirical distribution.
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Define least-favorable parametric working model through the initial estimate

Once we have the initial estimate Q̄0
n for Q̄0, the next step is to create a parametric working

model, denoted as Q̄0
n(ε), through this initial estimate with the following properties [71]:

1. Q̄0
n(ε = 0) = Q̄0

n. i.e. when ε = 0, we are able to recover the initial estimate Q̄0
n of Q̄0.

2. d
dε
L(Q̄0

n(ε))|ε=0 = D∗Y (Q0
n, gn)(O). i.e. taking a derivative of the loss of the parametric

working model (i.e. the score of the working model) with respect to ε and evaluating
it at ε = 0 will give the appropriate component of the efficient IC.

In our analysis, we used the following least favorable parametric working model:

Q̄0
n(ε)(A,W ) = expit

(
log

Q̄0
n

(1− Q̄0
n)

(A,W ) + εH∗n(A,W )
)

(2.7)

where H∗n(A,W ) = 1(A=a)
gn(A=a|W )

and gn(A = a|W ) is an estimate of g0(A = a|W ) that can be
obtained using SuperLearner.

Updating the initial estimate

Once we have the parametric working model through the initial estimate of Q̄0, the next
step is to identify the ε value that minimize the risk within this parametric working model
family. i.e. ε0n = arg minε

∑n
i=1 L(Q̄0

n(ε)(Oi)). The TMLE update is then defined as the
parametric working model evaluated at the optimal ε0n. i.e. Q̄∗n = Q̄0

n(ε0n) and the resulting
TMLE of Q0 is denoted as Q∗n = (Q̄∗n, Q̄W,n).

In our running example, in the updating step, the optimal ε0n is obtained by performing
a logistic regression of Y on H∗n(A,W ), with initial estimate of Q̄0 as an offset and by
suppressing the intercept. The resulting maximum likelihood estimate of the coefficient of
H∗n(A,W ) is the optimal ε0n. The TMLE update of Q̄0

n is obtained as logit(Q̄∗n) = logit(Q̄0
n)+

ε0nH
∗
n(A,W ).

Estimating the target parameter

The target parameter is then estimated by applying the same mapping Ψ, that defines the
parameter as a function of the true distribution, to an estimate of the true distribution
obtained using the observed data. Thus, along with the empirical means of both Y and W ,
by plugging in the updated estimate Q̄∗n into the parameter mapping, we can estimate the
the statistical estimand of the target parameter of interest given in Eq. 2.4 as

Ψ(P ∗n) =
1

n

n∑
i=1

Yi −
1

n

n∑
i=1

Q̄∗n(a,Wi); a ∈ A (2.8)

TMLE is a substitution estimator [71].
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TMLE solves efficient IC equation

When ε converges to zero, we obtain the minimum risk model within the chosen parametric
working model family. i.e.

0 =
d

dε
EL(P ∗n(ε)(O))|ε=0 = E

d

dε
L(P ∗n(ε)(O))|ε=0

= ED∗Ψ(P ∗n)(O)
(2.9)

In Eq. 2.9 the last equality is based on the property of the chosen parametric working
model family; d

dε
L(P ∗n(ε)(O))|ε=0 = D∗Ψ(P ∗n)(O). Eq. 2.9 implies that the TMLE of P0, P ∗n ,

solves the efficient influence curve equation 0 =
∑n

i=1D
∗
Ψ(P ∗n)(Oi) and hence it inherits many

attractive asymptotical properties [71, 102], such as:

1. TMLE is double robust. i.e. TMLE will be consistent if either gn(A = a|W ), the initial
estimator of the treatment regression g0(A = a|W ), or Q̄0

n, the initial estimator of the
outcome regression Q̄0, is consistent.

2. TMLE is asymptotically linear as well as asymptotically efficient under the following
conditions:

a) Both gn(A = a|W ) and Q̄0
n are consistent.

b) D∗Ψ(P ∗n) belongs to the Donsker class with probability that approaches 1.

c) The second order reminder term,
∫
w

( (gn−g0)(a|W )
gn(a|W )

)
(Q̄0

n−Q̄0)(a,W )dP0(w) = op(
1√
n
).

If an estimator is asymptotically efficient, it will have the smallest possible variance (i.e.
it will attain the Cramer-Rao lower bound) among regular estimators as sample size n
goes to infinity. If an estimator is asymptotically linear, it implies that this estimator
will be asymptotically normal with mean zero and its variance well approximated by
the sample variance of influence curve divided by the sample size n. This provides a
basis for central limit theorem based statistical inference for TMLE.

2.4 Interpret results under a causal framework

Interpretation of the results is the last step of the causal roadmap. Under the above assump-
tions, TMLE is asymptotically normal, and we can conservatively estimate its variance using
the sample variance of the estimated efficient influence curve [71]. We could construct a 95%

confidence interval for the target parameter as: Ψ(P ∗n)±1.96 σ̂; where σ̂2 =
∑n

i=1 IC
2
n,Ψ(P∗

n)
(Oi)

n
.

As an estimated working influence curve, for the target parameter, we can use:

ICn,Ψ(P ∗
n) = Y − 1(A = a)

gn(A = a|W )
(Y − Q̄∗n(A,W ))− Q̄∗n(A = a,W )−Ψ(P ∗n); a ∈ A (2.10)
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In our running example, the causal attributable risk of preterm birth, under assumptions,
compares the absolute change in preterm birth risk that would have been experienced by our
study population under a hypothetical intervention to change traffic related pollution levels
comparative to their currently observed levels.

2.5 Estimation challenges associated with big data

Applying machine learning algorithms, such as SuperLearner, on large data sets can be com-
putationally intensive. The birth cohort data sets collected over several years are examples of
such large data sets. For example the birth cohort that we analyzed in chapter 3 of this thesis,
includes eleven years of birth information from all of California and it consists of around 3.5
million observations. The running example data set, that we treat throughout this chapter,
includes six years of data from four counties in California and it consists of around 300,000
observations. Hence in our analysis, to cope with the computational challenges, we also incor-
porate a TMLE for two-stage designs namely the inverse-probability-of censoring-weighted
targeted maximum likelihood estimator (IPCW-TMLE) [70]. IPCW-TMLE inherits the de-
sired properties of original TMLE that we discussed above, but utilizing a sub-sample of the
original cohort to estimate our target parameter of interest.

Revisiting the causal roadmap

Before explaining the details of target parameter estimation part, using two-stage TMLE, we
will go through the relevant steps of the causal roadmap that will be different, when utilizing
a sub-sample of the whole cohort data, from the one provided earlier, where we utilized the
whole cohort data collected from the target population in our analysis. We will use the same
running example as before to illustrate the relevant parts of the causal roadmap, even though
this cohort was comparatively smaller and does not present any computational issues.

Define research question

In this step of the causal roadmap, if one uses a sub-sample of the cohort collected from
the target population, the main differences occur in the observed data and the assessment
of identifiability of the target parameter based on the observed data.

Suppose we have a data structure X = {W,A, Y }, representing a full-data as mentioned
earlier, with distribution PX,0. In the two-stage sampling designs, that are relevant to this
thesis, the second stage data comprises of a sub-sample of this full-data structure, and a
particular subject is sub-sampled to the second stage, with a known probability, based on
their observed outcome, Y . The reduced sub-sample data structure can be viewed as a
missing data structure relative to the full-data structure. The observed data structure can
be represented as OR = (Y,∆,∆X) ∼ P0;P0 ∈ MR, where ∆ is a indicator of inclusion to
the second stage sub-sample and we observe X = {W,A, Y } when ∆ = 1.
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From this reduced data structure, in order to identify our target causal parameter of
interest specified earlier we need an additional assumption, namely the missing at random
(MAR) assumption, which is mathematically stated as PX,0(∆|X) = PX,0(∆|Y ); i.e. the
missing mechanism, Π0(Y ) ≡ PX,0(∆ = 1|Y ), that constructed the sub-sample from the
full-data is determined only by the value of Y . Under MAR and the positivity assumption,
the reduced data distribution of P0 is implied in terms of the full-data distribution, PO,0, as
well as the missing mechanism distribution, Π0, as:

PX,0(Y = y, A = a,W = w) =
P0(Y = y, A = a,W = w,∆ = 1)

P (∆ = 1|Y = y)

=
P0(Y = y, A = a,W = w,∆ = 1)

Π0(Y = y)

The missing mechanism or the sampling probability, if unknown, can be estimated us-
ing the data. Here, however, the missing mechanism is known. Under assumptions we
can express the target parameter of interest in terms of the observed data, consisting of n
independent and identical copies of OR, as in Eq. 2.4.

IPCW-TMLE estimation of the counterfactual term of the target parameter

Our target parameter ΨR :MR → R remains the same as Ψ, but we define our loss function
differently. The new loss function, for the reduced observed data structure, is defined by
giving appropriate weights to the full-data loss function as L(OR, Q̄0) = ∆

Π0(Y )
L(O, Q̄0). As

before, this loss function depends on P0 through the relevant parts of Q0 and the updating
steps of IPCW-TMLE will focus only on Q̄0 of Q0. However, finding the initial estimates
of both Q̄0 and g0(A|W ) using SuperLearner as well as the updating steps are based on the
new loss function. To find these initial estimates, we apply SuerLearner on the full-data with
appropriate observational weights, denoted as ∆

Π0(Y )
, associated to each observation. Here,

Π0 is known, based on a known sampling procedure.
Once we have the initial estimate of Q̄0, the next step is to define the parametric working

model through it and we use the same parametric working model as before, specified in Eq.
2.7. However, the minimum risk model within this parametric model working family should
be found using the new loss function for the reduced observed data structure; i.e. ε0n =
arg minεEL(Q̄0

n(ε)(OR
i )) = arg minε

∑n
i=1

∆i

Π0(Yi)
L(Q̄0

n(ε)(Oi)). Then as before, the IPCW-

TMLE update is defined as the parametric working model evaluated at the optimal ε0n
obtained and the final IPCW-TMLE of Q0 is represented as Q∗n = (Q̄∗n, Q̄W,n).

Using the empirical means of both Y andW as well as the IPCW-TMLE updated estimate
Q̄∗n, we can estimate the the statistical estimand of the target parameter of interest given in
Eq. 2.4 as

Ψ(P ∗n) =
1

n

n∑
i=1

Yi −
1

n

n∑
i=1

∆i

Π0(Yi)
Q̄∗n(a,Wi); a ∈ A (2.11)
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The efficient influence curve of the target parameter at P0 = PPX,0,Π0(Y ) can be represented
in terms of the efficient IC of the target parameter at PX,0 as [70]

DR∗

Ψ (PX,0,Π0(Y ))(O) =
∆

Π0(Y )
D∗Ψ(PX,0)−

(
∆

Π0(Y )
− 1

)
E0(D∗Ψ(PX,0)|∆ = 1, Y ) (2.12)

Here D
∗
Ψ(PX,0) is the efficient IC for the full-data parameter that is specified in Eq. 2.6.

If the missing mechanism is estimated non-parametrically, it follows that in Eq. 2.12 the
expectation of second term under estimated distribution is zero and the IPCW-TMLE solves
the efficient influence curve [70]. Here, we sacrifice full efficiency by using the known Π0 and
as a result, the IPCW-TMLE solves the weighted full-data efficient influence curve equation.

Estimation of the target parameter in the running example

In our running example, the sub-sample data includes all the preterm births with Y = 1 and
five randomly chosen term births with Y = 0 per preterm birth; thus the sub-sample consists
of 29, 359 preterm births and randomly chosen 146, 795 out of 226, 689 term births. Here,
conditioning on the outcome Y , each observation included in the sub-sample had a known
sampling probability and they are Π0(Y = 1) = 1 and Π0(Y = 0) equal to the proportion of
term births included in the subsample in the second stage. Q̄W,n, is a discrete distribution
and here it adds an observational weight ∆

n×Π0(Y )
for each observations. When obtaining the

initial estimates of both Q̄0 and g0(A = a|W ), we utilized SuperLearner with a non-negative
least squares loss function, a 10-fold cross validation as before, but our candidate algorithms
in the library included weighted versions of the individual algorithms mentioned earlier; i.e.
we used the full-data with appropriate observational weights applied to each observation.

In the first updating step, the optimal ε0n is obtained by performing a weighted logistic
regression of Y on H∗n(A,W ), with initial estimate of Q̄0 as an offset and by suppressing the
intercept. The resulting maximum likelihood estimate of the coefficient of H∗n(A,W ) is the
optimal ε0n. The first IPCW-TMLE update of Q̄0

n is obtained as logit(Q̄∗n) = logit(Q̄0
n) +

ε0nH
∗
n(A,W ). Based on the final updated fit, the target parameter can be estimated as shown

in Eq. 2.11.

Interpret results under a causal framework

Since IPCW-TMLE is asymptotically normal, we can construct a 95% confidence interval for

the target parameter as: Ψ(P ∗n)± 1.96 σ̂ ; where σ̂2 =
∑n

i=1 IC
2
n,Ψ(P∗

n)
(OR)

n
. The influence curve

for the target parameter can be estimated by putting observational weights to the estimated
full-data IC [71, 70], given in Eq. 2.10. i.e.

ICn,Ψ(P ∗
n) =

∆

Π0(Y )

(
Y − 1(A = a)

gn(A = a|W )
(Y − Q̄∗n(A,W ))− Q̄∗n(A = a,W )−Ψ(P ∗n)

)
; a ∈ A

(2.13)
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In our running example, the variance of the IPCW-TMLE estimated target parameter is
approximated using the weighted variance of the estimated influence curve of the full-data
target parameter.

2.6 Simulation

We develop a simulation to (1) estimate causal attributable risk by implementing IPTW,
TMLE and IPCW-TMLE, (2) compare bias and confidence interval coverage of these three
estimators, (3) illustrate the finite sample performance of these three estimators, and (4)
illustrate the double robustness property of both TMLE and IPCW-TMLE. Simulations are
done in R version 3.2.4.

Data generation and estimation processes

The first step of the simulation was data generation and estimation of the true value of the
target parameter of interest. Our target parameter of interest was the causal attributable
risk as specified in Eq. 2.3. For a sample size of 10 million observations, we generated vari-
ous baseline covariates W = {W1,W2,W3,W4}, binary exposure A and the binary outcome
variable Y as follows:

W1 ∼ Bernoulli(0.5) W2 ∼ Bernoulli(0.25)

W3 ∼ Uniform(0, 1) W4 = expit(0.5−W2 +W3)

P (A = 1|W ) = expit(−1 − 2 ∗W1 + 1.75 ∗W3 + .2 ∗W4)

sinW3 = sin(π ×W3)

P (Y = 1|A,W ) = expit(−13.5 +1.3×W1×W4 +7×A×sinW3 +6.5×(1−A)×W2 +1.2×W4)

The prevalence probability of the outcome was around 12.9% in the resulting population
and the true value of the target parameter of interest was −12.2, and here the negative value
of the target parameter indicates that the counterfactual mean of outcome under exposure
A = 1 is higher than that of the observed mean of outcome.

From this population, we sampled n observations (n = {1000, 2000}) to form a dataset,
and estimated the target parameter of interest, the causal attributable risk as specified in
Eq. 2.4, for A = 1, using the IPTW, TMLE and IPCW-TMLE methods. This was repeated
m = 1000 times to collect statistics on the performance of the estimators. When estimating
the target parameter using IPCW-TMLE, the sub-sample included all cases, with Y = 1,
and five randomly sampled controls, with Y = 0, per case. Both the outcome and treatment
regressions were estimated with the correctly specified logistic model with appropriate main
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and interaction terms as per the data generating process, and misspecified regression models
that only included an intercept term. The performance of the estimators were compared
based on the estimated bias and the confidence interval coverage values.

In Fig. 2.1 the top panels show the bias of the estimates under various models. As ex-
pected, IPTW exhibited higher bias when the treatment regression model was misspecified.
However because of the ”double-robustness” property of both TMLE and IPCW-TMLE,
lower bias values were obtained when either the outcome regression or the treatment re-
gression was misspecified. Similar behavior can be seen in terms of the confidence interval
coverage plots, show in the bottom panels of Fig. 2.1. In addition, the performance of TMLE
and IPCW-TMLE were comparable in terms of bias and confidence interval coverage.
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Figure 2.1: Estimated Bias (top panels) and confidence interval coverage (bottom panels)
obtained while estimating the target parameter of interest using IPTW (red), TMLE (green)
and IPCW-TMLE (blue), for sample sizes n = 1000 and n = 2500. CC indicates both the
outcome regression and the treatment regression are correctly specified. CM indicates the
outcome regression is correctly specified, but the treatment regression misspecified. MC
indicates the outcome regression is misspecified, but the the treatment regression correctly
specified. MM indicates both the outcome regression and the treatment regression are mis-
specified. In the confidence interval coverage plots (bottom panels), the dashed line indicates
the 95% confidence interval and CC is represented using ’square’ symbol, CM with ’circle’,
MC with ’triangle’ and MM with ’diamond’. The double robustness property of both TMLE
and IPCW-TMLE are clear from the estimated bias and confidence interval coverage values.
Also, the properties of TMLE and IPCW-TMLE are similar.
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Chapter 3

Assessing the causal impact of
prenatal exposure to nitrogen dioxide
and ozone on stillbirth

3.1 Introduction

The adverse effect of air pollution on human life is a serious concern for today’s society. Many
studies have been conducted to understand the relationship between air pollution and various
human health problems [9, 104, 105, 106]. Children and human fetuses are particularly
vulnerable populations, and hence many studies have concentrated on the adverse effects
of air pollution on these populations. Prenatal exposure to environmental pollution affects
newborns’ health, both at birth and at later stages of development [11, 38, 107, 108]; ambient
air pollution may also increase the risk of miscarriage, stillbirth, neonatal and postnatal
mortality [12, 39, 109, 110, 111].

The Environmental Protection Agency (EPA) identifies motor vehicles as a major source
of air pollution in the Unites States [6]. Rise in metropolitan populations and subsequent
rise in the number and use of vehicles has resulted in more traffic-related pollution [7].
Traffic emission is the origin for both nitrogen dioxide (NO2) and ozone (O3), and well-
studied adverse health effects of NO2 and O3 exposures include respiratory problems and
increased incidence of respiratory-related emergency room visits [16, 112, 113, 114]. Research
investigating the relationship between ambient air pollution and stillbirth is relatively a new
topic; in particular studies focussing on both NO2, O3 or both, is limited [38, 39, 40, 41, 42]
and their results have been mixed. For example, no association between NO2 and stillbirth
was found in a study conducted in the Czech Republic [76]. In a Brazilian study [38], an
association was found between NO2 and increased risk of still birth, but no association was
reported between O3 and stillbirth. No statistically significant associations were observed
between either pollutants and stillbirth in a study conducted in Taiwan [40]. In a study
conducted in New Jersey, NO2 exposure during the third trimester was associated with
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stillbirth [41], but no association was found for a short term NO2 exposure [42]. In our
previous study [39], using the same California cohort data from 1999 to 2009 that we used
in the current analysis, both significant and borderline significant associations were found
with both NO2 and O3 on stillbirth during various pregnancy periods and the relationship
was stable even after adjusting for other pollutants included in the study.

In prior studies, the effect of prenatal exposures to NO2, O3 or both on stillbirth risk was
estimated by applying a logistic regression [39, 40, 42], a generalized estimating equation
model [41] or a Poisson regression model [38]. Even though these studies inform us about
the association between stillbirth and a pollutant exposure level, there are some limitations.
First, parametric regression models were used to assess the relationship between prenatal
pollutant exposures and stillbirth and to adjust for measured confounders. Reliance on
parametric models to adjust for measured confounders can result in biased estimates and
incomplete control for confounding due to model misspecification. Second, prior studies
evaluated the association between stillbirth and pollutant exposure based on a conditional
odds ratio or a regression based estimate. However, these parameters fail to quantify the
stillbirth risk burden attributable from the pollution exposure in the study population of
interest, and also it does not inform us about how much the stillbirth risk burden will change
if an intervention (e.g. a new policy on air pollution level standards) modifies the exposure
level. To address these two limitations, in this analysis, we build on prior research by applying
a semi-parametric efficient estimation approach, targeted maximum likelihood estimation
(TMLE) [69], to estimate the casual attributable risk of air pollution exposure on stillbirth
in a population that has been studied previously using parametric models [39]. We use
SuperLearning, a flexible machine learning method [72], to estimate outcome regression and
treatment mechanism when implementing TMLE, in order to avoid reliance on misspecified
parametric models, and thereby improve both the robustness and precision of our estimates
and ensure meaningful statistical inference. The causal attributable risk that we estimate
(under an assumption of no unmeasured confounding) corresponds to the absolute change in
stillbirth risk that would be observed under a hypothetical intervention to change ambient
pollution levels relative to currently observed levels.

3.2 Methods

Study population and outcome of interest

Our study population included all live births and stillbirths that occurred in California
between January 1, 1999 and December 31, 2009; births were identified by the Office of
Health Information Research of the California Department of Public Health (California Office
of Vital Statistics). Birth and fetal death certificates were used to extract information on date
of live birth or stillbirth and gestational age of the infant or fetus. Our study cohort included
only those mothers who resided at a non-missing California zip code and had singleton births.
No information was available about pregnancies that were terminated before 20 weeks of
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gestational age and though our study cohort included pregnancies between 20 to 44 weeks
of gestational age, in order to avoid selection bias [115] we limited our analysis to those
pregnancies that survived until the third trimester (i.e. till 27th week). Our outcome of
interest was stillbirth (fetal death), defined in the State of California as the death of a fetus
who is at least 20 weeks of gestational age prior to complete expulsion or extraction from
the mother (California Code of Regulations, Title 17, Section 916).

Exposure of interest

The exposure of interest was prenatal exposure to NO2 and O3 exposures during the third
trimesters of pregnancy and we defined the third trimester as the time between 27th week of
gestation to delivery. California Air Resources Board provided hourly measures of levels of
both pollutants and we used the daily 1-hour maximum values of each pollutant to calculate
the corresponding exposure. We used the population-weighted centroid of the 2000 US
Census zip code tabulation area, associated with the maternal residential zip code, to assign
exposures and ArcGIS software (Esri, Redlands, California) to calculate the distances from
this centroid to nearby monitors. To improve accuracy of exposure assessment, we assigned
O3 exposures to those mothers living within 10 km of a corresponding O3 monitors and
because of the known spatial heterogeneity of NO2 [116, 117], we decided to limit our analysis
to only those mothers whose maternal residence is within 5 km of the closest monitor.

Exposure period definitions

We calculated the third trimester exposure to both NO2 and O3 in two ways. In the first
option, based on the actual gestational age, we calculated the third trimester exposure to
both NO2 and O3, as the average of weekly mean exposures; provided that at least 5 days
of monitored data were available within each week and exposure data were available for at
least 75% of the weeks included until the event date (stillbirth or live birth date) in the third
trimester. The drawback of defining the third trimester exposure period in this way was
that the event date determines the length of exposure period. For example, if the event date
occurred in the third trimester, the exposure period could include a minimum of 1 week (for
an event date in the 28th week) to a maximum of 17 weeks (for an event date in the 44th
week). This approach, while accurately capturing cumulative trimester exposures pre-dating
the birth outcome, is subject to bias due to temporal trends in exposure and conception. We
therefore also employed a second approach in which, irrespective of actual gestational age
at event date, we calculated the third trimester exposures as the average of weekly exposure
from 27 weeks until the expected date of delivery i.e. until 40 weeks. Here, each subject
will have a fixed 14 weeks of exposure period irrespective of their event date; hence before
calculating the cumulative trimester exposure, we made sure that weekly exposures were
available for at least 11 out of the 14 weeks in the third trimester. This approach removes
the impact of the outcome on the period during which the exposure is assessed, but at the
cost that the exposure period may now extend beyond the outcome date.
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In both exposure period assigning options, exposures of interest were first calculated as
continuous values and then categorized based on quartiles.

Potential confounders

From the available population information provided in the birth or fetal death certificates,
we identified three categories of potential confounders: individual factors, temporal factors
and neighborhood or community level factors. The first category of the individual factors
included maternal age, education, race/ethnicity, air basin of maternal residence as well as
sex of the fetus or infant. There are 15 air basins in California to manage and monitor
air pollution, and within each of the air basins geographical and meteorological features
are comparable; air basin of maternal residence were determined based on the zip codes
provided. Second, temporal confounders included season of last menstrual period (LMP)
and year of conception. Season of LMP was calculated using the information of LMP and
year of conception that divides deliveries into year-long groups was calculated based on
the conception date (i.e. LMP date + 2 weeks). Third, neighborhood or community level
factors included the following variables (given in percentage) from Census 2000: high school
graduates, house ownership, non-Hispanic White, employed, under poverty and under 2
times poverty. Individuals with missing confounder values were excluded from the analysis.

Statistical method

Parameters of interest

Our goal was to estimate the impact of being exposed to a particular level of NO2 or O3

on stillbirth during the third trimester of pregnancy. In order to quantify the burden of
stillbirth in our population of interest, we estimated the causal attributable risk (CAR),
which compares the outcome distribution under a hypothetical intervention on a population
with observed outcome distribution [97]. Based on the counterfactual framework (Neyman-
Rubin framework) [95, 96], our causal parameter of interest is defined as

E(Y )− E(Ya); a ∈ A = {1, 2, 3, 4} (3.1)

Here Y represents the observed birth outcome, which is equal to one if a stillbirth occurred,
and Ya represents the counterfactual birth outcome that a mother would have had if she
had been exposed to exposure quartile A = a ∈ A. Here entries in A represent a particular
level/quartile of NO2 or O3 exposure, with 1 representing the lowest quartile of exposure
and 4 representing the highest.

In order to identify the causal parameter of interest from the observed data distribution,
we make the following assumptions [71]. First, we assume consistency Y = YA; i.e. we assume
that the the observed outcome (Y ) a mother experienced under the observed exposure level
is equal to the counterfactual outcome (YA) under the observed exposure level. Second,
we make the randomization assumption (no unmeasured confounding), which assumes that
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given our set of baseline covariates (which we denote as W ), the potential outcomes Ya is
independent of the exposure A; i.e. Ya |= A|W , ∀ a ∈ A. Under this assumption, we assume
that measured covariates W are sufficient to control for confounding of the effect of A on Y .
Finally, the positivity assumption assumes that there is a positive probability for receiving
each quartile of exposure A within every combination of baseline covariate values among the
population; i.e. min

a∈A
P (A = a|W ) > 0. Under these assumptions, the causal parameter of

interest can be rewritten as [97, 99]

E(Y )− EW [E(Y |A = a,W )]; a ∈ A = {1, 2, 3, 4} (3.2)

This is a function of the observed data distribution alone and it represents the statistical
estimand.

Estimation of parameters of interest

The first term of the above statistical estimand, E(Y), can be estimated as a simple em-
pirical mean. There are various methods to estimate the second component of the above
statistical estimand. The G-computation (or simple substitution method) utilizes an esti-
mate of the outcome regression, E(Y |A,W ) [99, 100]. The inverse probability of treatment
weighted (IPTW) method utilizes an estimate of the treatment regression (also known as the
propensity score), P (A|W ) [101]. The G-computation and IPTW estimators are consistent if
the outcome regression or the treatment regression, respectively, are consistently estimated.
Here, we utilize another class of estimation methods called targeted maximal likelihood
estimators (TMLE) [69] that combine initial estimators of both outcome and treatment re-
gressions. TMLE for the second term of our target parameter, EW [E(Y |A = a,W )], is a
two step procedure where in the first step, initial estimates of both outcome and treatment
regressions are obtained and in the second bias-reduction step, the initial estimate of the
outcome regression is updated using the estimated treatment regression, targeted towards
the parameter of interest. TMLE has the property that it will be consistent, if either one of
the two initial estimators is consistent (the so-called “double robustness” property), and it
will be efficient (have the lowest asymptotic variance among reasonable estimators) if both
are estimated consistently. In our analysis, both the outcome and treatment regression es-
timates were obtained using SuperLearner [72]. SuperLearner is a data-adaptive algorithm
that utilizes cross validation to build an optimal combination of fits that are obtained from
user supplied individual prediction algorithms.

Incorporating machine-learning algorithms for analysis on a large data set, like the birth
cohort that we are analyzing, can be computationally intensive. Hence, we used a TMLE
for a two stage design known as an inverse probability of censoring weighted targeted max-
imum likelihood estimator (IPCW-TMLE) [70]. The original data set was comprised of
the baseline covariates, exposure and outcome on all subjects. We then sampled from
this cohort conditional on outcome status resulting in an artificially reduced data struc-
ture given as OR = (Y,∆,∆X), where X represents the original observed data in the first
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stage X = (W,A, Y ) and ∆ is an indicator about the second stage inclusion, i.e. ∆ = 1
if an observation is included in the second stage and ∆ = 0 otherwise. Given an outcome
Y , each observation thus had a known sampling probability, which we denote by Π0(Y ),
equal to one if the outcome was a stillbirth and otherwise equal to the proportion of live
births sampled. Each step in the estimation procedure (estimation of the initial outcome
and treatment regressions using SuperLearner, followed by the targeted updating step, and
plugging in the final estimate to the G-computation formula) was implemented using the
inverse of these sampling weights; specifically, the sampling weight is equal to ∆

Π0(Y )
.

Since under assumptions the IPCW-TMLE is asymptotically linear, its variance can be
approximated by the sample variance of its estimated influence curve divided by sample
size. Using the Delta method [71], the influence curve for the standard TMLE of the causal
attributable risk can be derived and it is explicitly

Y − I(A = a)

P (A = a|W )

(
Y −Q0(A,W )

)
+Q0(A = a,W )−Ψ(Q0) (3.3)

where Q0(A,W ) denotes the true conditional expectation of the outcome (i.e. the outcome
regression E(Y |A,W )). If Π0(Y ) is estimated using a correctly specified parametric model
then the influence curve of the IPCW-TMLE is equal to this full-data influence curve mul-
tiplied by the sampling weights ∆

Π0(Y )
minus its projection onto the tangent space of model

for Π0(Y ) [70]. Thus the variance of the IPCW-TMLE estimator can be conservatively es-
timated by treating the sampling weights as known, plugging in estimates of the outcome
regression and propensity score, and taking the sample variance of the weighted influence
curve estimate and dividing by sample size.

The 95% confidence interval for our target parameter is thus estimated as

ψ̂n ± 1.96

√
σ̂2

√
N

(3.4)

where ψ̂n is the estimated causal attributable risk, σ̂2 is the sample variance of the weighted
influence curve estimate and N is the total number of observations in our final study popu-
lation.

To implement IPCW-TMLE, first we sampled from our original data. We included all
the stillbirths and randomly chose 25 live births per stillbirth. All the stillbirths were given
observational weight equal to one and those live births included in the sample were assigned
a weight of (proportion of live births included in the subsample in the second stage)−1. To
implement SuperLearner in our analysis, we used a non-negative least squares loss function,
10-fold cross validation and our library of candidate algorithms included weighted main
term logistic regression, simple weighted mean and the stepwise weighted logistic regression.
In primary analysis, we bounded our estimated treatment regression from below at 0.01
[118]. We also applied other lower bound values (no lower bound, 0.025 and 0.05) to the
estimated treatment regression values to see the influence of these bounds on estimated
causal parameter value.
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In order to compare results qualitatively with that of prior research that utilized the same
data [39], we also conducted a traditional main-term logistic regression analysis including all
the confounders, that we adjusted for when estimating CAR, as well as quartiles of NO2 or
O3 exposure as a four level categorical variable.

Analyses were conducted using SAS version 9.4 and R version 3.1.2 and the random seed
was set to 1 while randomly sampling the live births.

3.3 Results

Map of California showing air basins, along with both NO2 and O3 monitoring stations,
is provided in Figure 3.1. Our study cohort included a total number of 3,574,788 eligible
singleton pregnancies with gestational age between 20 to 44 weeks. We were able to assign
exposure using option 1 (where we defined the exposure period based on the event date) for
all 3,574,788 pregnancies; however only 3,441,667 pregnancies had exposure assigned using
option 2 (where the exposure period had a fixed length, irrespective of the event date).
We included only those subjects with a non-missing exposure and baseline covariates as
well as we limited our analysis to those pregnancies that survived until the third trimester.
Details on exclusion criteria applied to our study cohort, for the NO2 and O3 analyses,
are provided in Figures 3.2 and 3.3 resepectively. To assess the impact of NO2 exposure
on stillbirth, our final study population included 1,113,651 subjects with exposure assigned
using option 1 exposure period definition and 1,112,797 subjects with exposure assigned
using option 2 exposure period definition; and these numbers for O3 analyses were 2,668,464
and 2,668,100 respectively. The distributions of various demographic and clinical covariates
in our final study populations for NO2 analysis are given in Tables 3.1 through 3.3 and that
for O3 analysis are given in Tables 3.4 through 3.6. The total number of stillbirths and
live births in our final study populations was different for NO2 and O3 analyses; however,
the characteristics of the populations were similar. In our final study populations for both
analyses, majority of mothers were Hispanic, aged 25 to 34 years, and not educated beyond
high school and most of the fetuses were male. The quartile specific exposure matrices
for both NO2 and O3 are provided in Tables 3.7 and 3.8 respectively and outcome specific
exposure matrices are given in Table 3.9. The exposure distributions were very similar
irrespective of the exposure period definitions that we applied.

We observed practical positivity violations, i.e. the predicted probability of treatment
mechanism was close to zero and in order to mitigate the issues related to it, a lower bound to
the predicted treatment mechanism was applied while estimating the target parameter. The
summary statistic of predicted probabilities of the treatment mechanism, before applying
a lower bound, is given in Tables 3.10 and 3.11 respectively. First focusing on propensity
scores obtained in the NO2 exposure analysis as shown in Tables 3.10; regardless of the
exposure period definitions that we used, around 25% of study subjects had propensity
score smaller than 0.01 in fourth exposure quartile during the third trimester. Around 2%
and 2.5% of subjects had a propensity score below 0.01, in the first and third exposure
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quartiles respectively. For the O3 exposure analysis, as given in Table 3.11, irrespective of
the exposure period definition, no subject had a propensity score value below 0.01 in the
first three exposure quartiles, but around 11% subjects had a propensity score smaller than
0.01 in the fourth exposure quartile for both definitions of the exposure period.

Within each exposure quartile, an estimate of E(Y |A = a), a ∈ A, obtained using the
empirical mean of stillbirth and an estimate of the counterfactual outcome, E(Ya), obtained
using IPCW-TMLE from both NO2 or O3 exposures are given in Table 3.12. We denote
the estimate of E(Y |A = a) as an unadjusted estimator and that of E(Ya) as an adjusted
estimator. If exposure indeed increases risk of stillbirth in the third trimester, we would
expect their values in exposure quartile 1 will be lowest and that in exposure quartile 4 will
be highest. First focusing on NO2 analysis results. In trimester 3, when the exposure period
was defined using option 1, we observed an increasing trend in the unadjusted stillbirth risk
with respect to exposure except in the fourth exposure quartile, and though we did not
see any increasing trend in adjusted stillbirth risk with respect to exposure, the adjusted
counterfactual risk in the fourth exposure quartile was highest compared with other three
quartiles. When the exposure period was defined using option 2, we observed an increasing
trend in both unadjusted and IPCW-TMLE adjusted stillbirth risk estimators with respect
to exposure with highest stillbirth risk in the fourth exposure quartile. Now focusing on
ozone exposure results: when exposure was assigned using option 1, an increasing trend was
found in adjusted stillbirth risk estimates with respect to exposure; but when the exposure
was assigned using option 2, an increasing trend among the same was present only in the
first three exposure quartiles.

Figure 3.4 shows the estimated causal attributable risk (CAR) of stillbirth, our target
parameter of interest, from both NO2 and O3 exposures in the third trimester. Here the
estimated CAR is the difference between the unadjusted estimate of the empirical stillbirth
risk in the whole data and the adjusted estimate of the counterfactual stillbirth risk within
each exposure quartile. In these plots a negative parameter value indicates that the estimated
adjusted stillbirth risk, under a hypothetical intervention to set a pollutant exposure equal
to a particular exposure quartile, is higher than the unadjusted stillbirth risk; i.e. the more
negative the estimated CAR value, greater the harmful effect of that pollutant exposure
quartile on a growing fetus, relative to current levels of pollutant. First focus on the estimated
CAR of stillbirth from NO2 exposure in the third trimester. When the exposure was assigned
using option 1 exposure period, we found that exposing all pregnant women to the fourth
exposure quartile would increase the stillbirth risk by 0.291% (95% CI: 0.236%, 0.346%).
However, when the exposure was assigned using option 2 exposure period, none of the CAR
estimates were significantly different from zero. Now focusing on the estimated CAR of
stillbirth from O3 exposure in the third trimester. When the exposure was assigned using
option 1 exposure period, we found a trend in estimated CAR of stillbirth, with a protective
effect in the first exposure quartile (estimated CAR = 0.019%, 95% CI: 0.007%, 0.031%)
and an increasing risk in the fourth exposure quartile (estimated CAR = -0.056%, 95%
CI: -0.086%, -0.027%). When the O3 exposure was assigned using option 2 the same trend
was observed for the first three quartiles; however, some of the effect estimates were not
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significant and for the fourth exposure quartile, the estimated CAR was significantly positive,
suggesting a protective effect. We believe that the practical positivity violations that we
observed, especially in the 4th exposure quartile of O3 exposure might have produced the
counterintuitive results that we observed as well as the large confidence intervals in some of
the exposure quartiles.

In order to investigate the potential impact of positivity violations, we conducted sensi-
tivity analyses in which we estimated the casual attributable risk under various values (0.05,
0.025, 0.01 and no cut off) to the lower bound of propensity score. Results are shown in Fig-
ures 3.5 and 3.6. In Figure 3.5, we observed some of the lower bounds produced a significant
change in the CAR estimates from NO2 exposure, especially for exposure quartile 3 and
4, regardless of the exposure assigning options; but no patterns were observed. In Figure
3.6, the effect of various lower bound to the propensity score was more visible in exposure
quartile 4, especially when the O3 exposure was assigned using option 1. In both Figures 3.5
and 3.6, CAR estimates calculated using option 2 exposure definition had larger confidence
interval compared with that calculated using option 1 exposure; this was true with all the
lower bound values that we applied to the propensity scores.

Table 3.13 shows the results obtained from the traditional logistic regression analysis
with all the main-term baseline covariates that we adjusted for when estimating CAR and
the quartiles of third trimester NO2 or O3 exposure under two exposure scenarios. However,
the reported conditional odds ratio of stillbirth is a different statistical parameter than the
IPCW-TMLE estimated CAR. Even if we correctly specify the parametric regression model
and suppose the randomization assumption holds, the exponentiated regression coefficients
of exposure quartiles estimate the conditional causal odds ratio, which is different from the
estimated CAR under the equivalent causal assumptions. However, we can utilize Table 3.13
results for a qualitative comparison. For exposure assigned using option 2, the parametric
logistic regression results suggests a detrimental effect of exposure to the third quartile of O3

(adjusted odds ratio = 1.078, 95% CI: 1.008, 1.153), while IPCW-TMLE found no significant
effect. This may be attributable to more complete control for measured confounders when
utilizing IPCW-TMLE. When comparing the adjusted odds ratio of stillbirth under exposure
assignment option 1 for both NO2 and O3, provided in Table 3.13, with that of our prior
analysis [39] we can see that the results are slightly different. Our current analysis is different
from that of our prior [39] in the following aspects: a) here we limited our analysis to include
only those fetuses that survived until the third trimester, b) we included census variables
to adjust for neighborhood or community level confounders along with other listed baseline
covariates, and c) we performed the logistic regression with quartile of NO2 or O3 exposure.

3.4 Discussion

We estimated the CAR of stillbirth from two criteria pollutants during the third trimester
of pregnancy using a semi-parametric targeted approach. While estimating the CAR of
stillbirth, we examined sensitivity to different definitions of exposure period, which is relevant
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especially when there are temporal trends in both conception and exposure of interest. When
assigning the exposure using option 1, the event date determined the exposure period length.
However, since both conception and pollutant levels can vary seasonally, this definition may
lead us to conclude an effect when there is only simple temporal co-variation of exposure
and stillbirth [119]. Therefore, we defined exposure assignment option 2 in which a fixed
exposure period was assigned based on the conception date. The disadvantage with option
2 is that the assigned exposure level may not be consistent with the pregnancy period and
hence it could weaken the relationship between exposure and stillbirth.

Based on the estimated CARs obtained when using the exposure period definition that
depends on the event date (option 1), our results suggest that prenatal exposure to highest
levels (i.e. exposure quartile 4) of both NO2 and O3 during the third trimester is harmful.
However we may be seeing this effect because of the temporal trends in pollution and concep-
tion, for we did not see a similar trend when we used the fixed exposure period irrespective
of the actual gestational age experienced by a mother (option 2). Thus our results imply the
causal estimates are affected by the exposure period definition used.

As mentioned in the introduction, previous studies have examined the impact of prenatal
nitrogen dioxide and ozone exposure on stillbirth based on parametric models and results
to date have been mixed. A direct comparison between our current analysis results and
that of previous studies is not possible because of the difference in estimated parameters
reported. In the prior studies a difference in stillbirth associated with exposure during
various gestational periods, while holding the baseline covariates as constant, were given
in terms of odds ratio. But in our analysis, using counterfactual scenarios that arise by
applying a hypothetical intervention exposure level, we compared the counterfactual risk
of stillbirth with the observed risk of stillbirth in our study population. Although a direct
comparison is not possible, our results strengthen these previous studies that established
an association between NO2 and O3 exposure and stillbirth by establishing a weak causal
link, under assumptions, especially when we assigned the exposure with exposure period
depending on the event date (i.e. option 1); however the significance of the causal effect
estimates depended on the exposure period definition.

Exact biological mechanisms, explaining the effect of air pollution on the growing fetus
that may lead to stillbirth, are yet to be established, even though many biologic pathways
have been proposed [43, 45]. Studies have suggested that air pollution (especially NO2, CO,
SO2 and PM10) can alter the blood coagulability and plasma viscosity [46, 47]. This may
adversely affect the umbilical blood flow, leading to inadequate placental transfer of oxygen
and thus consequently affecting the fetal growth. Air pollutants such as nitrogen oxides,
O3, particulate matter are capable of generating reactive oxygen species and thus leading to
oxidative stress [50] and it has been hypothesized that oxidative stress can result in DNA
damage and in premature placental aging resulting in fetal vulnerability [51, 52].

There are some limitations to our study. We estimated our parameter of interest under
two major assumptions - randomization assumption and positivity assumption. In this
analysis we might have excluded some important maternal (e.g. smoking status, individual
SES, perinatal risk factors) and community factors (e.g. safety features, access to amenities
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and resources that support a healthy living) because of their unavailability in our data set
during the entire study period. However, prior research analyzing infant mortality has not
observed a change in relationship with air pollution exposure after considering maternal
smoking status [120]. Also, we assume individual maternal education status as well as the
neighborhood level confounders considered in our analysis could act as a proxy for individual
SES information as well as the care a mother received during her pregnancy. In addition to
unmeasured individual level confounders, unmeasured confounding at the community and
geographic level remains a concern [121, 122, 123]. While we adjusted for air basin as well
as a number of factors at the level of census tract, unmeasured factors that vary spatially
and correlate with pollution exposure may in part explain our results. We assumed that
there will be enough variability within NO2 or O3 exposure quartiles, irrespective of various
baseline covariate strata, and hence it is reasonable to assume a positivity assumption;
however, in our analysis, we observed practical positivity violations. Even though we tried
to minimize impact by setting a lower bound on the estimated propensity score, we observed
some counterintuitive results as well as large variance in those exposure quartiles where we
had large positivity violations. An additional limitation is the potential misclassification in
the assigned exposure that may arise due to the fact that we used ambient air pollution
exposure obtained from the closest monitor based on maternal residence zip code at the
delivery time. Also, actual exposure experienced by each mother depends on other factors,
like time spend outdoor and at the assigned zip code, the distance of the maternal residence
from the assigned air pollution monitor and all these factors might have also contributed to
exposure misclassification. We obtained the date of stillbirth occurrence from the provided
fetal death certificate data, but prior studies show that a lag between the actual stillbirth
and complete expulsion or extraction of fetus from it’s mother is possible and this may cause
inaccuracy in the reported stillbirth date. In our analysis, we considered only nitrogen dioxide
and ozone at a time, however each mother might have experienced a pollution mixture that
contains many other pollutants as well. Future studies addressing these limitations would
be beneficial.

Our analysis has several strengths. In our knowledge this is the first study that cal-
culated the causal attributable risk of stillbirth from two criteria air pollutants, using a
semi-parametric targeted estimation technique incorporating machine learning. Estimating
a causal attributable risk, that compares the health effect of a potential exposure level with
that of observed, is relevant for assessing the impact of new policies related to air pollution
and for designing appropriate strategies to help those population who will be affected by the
proposed air pollution standards. Our analysis could easily extend to any policy relevant
hypothetical level of both nitrogen dioxide and ozone as well as any other pollutant of inter-
est and, under the key assumption that relevant confounders are measured, could quantify
it’s causal impact on stillbirth. In a study cohort, that consists all the important individual
and neighborhood level factors related to both air pollution exposure and birth outcome,
quantifying the health effect of potential intervention and establishing a causal relationship
between the exposure and outcome would be more convincing than a mere association in
policy relevant issues [73, 74]. In our analysis we used IPCW-TMLE, to estimate the causal
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attributable risk of stillbirth, which allowed us to work with a sub-sample of the final study
population and thus helped to overcome the computational challenges posed by the large
amount of data in our study cohort. Similar to the standard TMLE, IPCW-TMLE is also
double robust [70], which means the estimator of our parameter of interest obtained using
IPCW-TMLE will be consistent if either the outcome regression or the propensity score are
estimated consistently. In our analysis, we incorporated a machine learning algorithm, Su-
perLearner, to estimate both the outcome and treatment regressions, thus avoid bias from
parametric misspecification and helps minimize variance and ensure accurate statistical in-
ference for IPCW-TMLE [71, 72].

In our future research, we are interested in exploring the effects of other criteria pollutants
on stillbirth. To address the challenges in defining the exposure period based on gestational
length, we are also interested in exploring other methodologies such as time-to-event or sur-
vival approach to estimate the risk of stillbirth. Survival analysis will be useful to explore
week specific probability of stillbirth risk and will have more flexibility for comparing still-
birth and live birth on a smaller time scale; and this is important as the fetal development
and hence the stillbirth risk probability varies on a smaller time period than trimesters.

In conclusion, we were able to quantify the causal attributable risk from the third
trimester prenatal exposure of nitrogen dioxide or ozone on stillbirth using California co-
hort data. In our knowledge, this is the first epidemiological study that quantified the causal
impact from ambient air pollution on stillbirth using a semi-parametric targeted estimation
approach. Since studies assessing the causal impact of air pollution exposure on stillbirth
is a new research area, further studies in other locations as well as data base with more
stillbirth risk factor information are recommended.
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Figure 3.1: Map of California showing air basins with nitrogen dioxide and ozone monitors
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Subjects with non-missing maternal, fetal 
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the three trimester exposure  
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from a nitrogen dioxide monitor 
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Excluded subjects living in air basins 
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Subjects living within 5KM of a nitrogen 
dioxide monitor  
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Excluded subjects living in air basins 
with with less than 50 stillbirths during 

study period N = 4,998 

Subjects living in air basins with >=  50 
stillbirths during study period  N= 
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Subjects living in air basins with >=  50 
stillbirths during study period  N= 

1,154,375 
Data set containing common subjects 

only 
N= 1,154,155 

Excluded fetuses who did not survive till 
the third trimester  N = 5,733 

Fetuses who survived till 3rd trimester 
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Subjects in the final study population 
N = 1,113,651  
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Excluded fetuses with missing 3rd 
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census variables  N = 38,007 

Excluded fetuses with missing 3rd 
trimester exposure using option 2 and 

census variables N = 38,865 

Subjects in the final study population 
N = 1,112,797 

Number of  stillbirths = 3,240 
Number of  live births = 1,109,557 

Figure 3.2: Flow chart showing the study population, based on exclusion criteria for nitrogen
dioxide analysis, in California 1999 to 2009
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Figure 3.3: Flow chart showing the study population, based on exclusion criteria for ozone
analysis, in California 1999 to 2009
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1 indicates that the event date (date of stillbirth or live birth) determines the exposure
period and option 2 indicates that exposure was assessed over a fixed gestational period,
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Chapter 4

Assessing the causal impact of
prenatal traffic exposure on preterm
birth

4.1 Introduction

Increasing air pollution is a threat to public health worldwide. According to the State of the
Air 2016 report by the American lung association, around 52.1% of the population in the
US live in counties where air pollution levels, dominated by ozone or particle, are considered
dangerous to health [2]. Traffic is a major source of air pollution and traffic related health
issues are a major concern in today’s society [7]. Many epidemiological studies have analyzed
the adverse effects of traffic pollution on various health issues [124, 36, 37, 125] that includes
many adverse pregnancy outcomes [126, 127, 128, 110]. Preterm birth (PTB) is a major
issue in perinatology; for it poses subsequent health and developmental challenges on the
fetus as well as can cause economic burden to the family [61, 62, 63]. In 2016, preterm birth
rate in United States was around 10% [68].

Prior studies reported a positive [83, 26, 27, 80, 84, 81, 82] or a null association [85, 86, 87]
between traffic-related air pollution and preterm birth; however, there are some limitation
to these studies. First, parametric regression models were used to assess the relationship
between traffic-related air pollution and measured confounders. Utilizing misspecified re-
gression models to adjust for measured confounders can result in biased estimates and in
incomplete control for confounding. Second, in prior studies, the relationship between traffic-
related air pollution and preterm birth was assessed based on conditional odds; this param-
eter fails to quantify the preterm risk burden from traffic-related air pollution in the study
population of interest, and it does not inform us about the preterm risk burden change asso-
ciated with a modified exposure level (for example; a new policy or intervention that could
modify the traffic pollution standards). In order to address these limitations, we decided to
estimate a causal attributable risk of preterm birth from prenatal traffic pollution exposure
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in a population that has been previously studied using parametric regression model [27].
Specifically, we decided to apply targeted maximum likelihood estimation (TMLE) [69], a
semi-parametric efficient estimation approach, to estimate the causal attributable risk of
preterm birth. When implementing TMLE we incorporated SuperLearner, a flexible data
adaptive algorithm [72], which can improve both the robustness and precision of our esti-
mates and ensure meaningful statistical inference. Applying machine learning algorithms on
big data sets, that are similar to our birth cohort data, can be computationally challenging.
Hence we also illustrate the use of another class of TMLE, known as the TMLE for two
stage design [70], which allows us to work with a subsample of the cohort to estimate the
causal attributable risk of preterm birth. The causal attributable risk of preterm birth, under
assumptions, compares the absolute change in preterm birth risk that would have been expe-
rienced by our study population under a hypothetical intervention to change traffic related
pollution levels comparative to their currently observed levels. To our knowledge, this is the
first epidemiological study that estimated the causal attributable risk of preterm birth from
prenatal traffic pollution exposure using a semi-parametric targeted method incorporating
machine learning.

4.2 Methods

Study population and outcome of interest

Our study population included all the live births that occurred in the four most populated
counties in the San Joaquin Valley of California (Fresno, Kern, Stanislaus, and San Joaquin)
between 2000 to 2006. They were identified from the birth certificate data provided by the
California Department of Public Health. Preterm birth was our outcome of interest, and it
was defined as birth that occurred before 37 weeks of gestational age. Our data included
only those pregnancies, that resulted in live births, between 20 to 42 week of gestational age;
information about births that occurred before 20 weeks were not available to us.

Exposure of interest

Traffic density was our exposure of interest; it is a dimensionless quantity that summarize the
traffic activity in proximity of a maternal residence location. As a first step to calculate the
exposure of interest, using ArcGIS software (ESRI, Redlands, California) maternal residence
locations (obtained from the birth certificate) were geocoded and ZP4 software (Semaphore
Corporation, Aptos, California) was used to correct the residential addresses. Using the
traffic count data received from Tele Atlas/Geographic Data Technology (GDT) in 2005,
we applied a distance-decayed annual average daily traffic (AADT) volume to estimate the
required traffic density. Detailed exposure assignment description was provided in a prior
study that utilized the same exposure data [27]. Prenatal traffic density exposure during the
entire pregnancy (i.e. from conception to birth) was first calculated as a continuous value
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and then categorized based on quartiles. No temporal trend was associated with the traffic
density exposure.

Potential confounders

From the available population information obtained from the California Department of Pub-
lic Health and Census 2000, three categories of potential confounders were identified: indi-
vidual factors, temporal factors and community or neighborhood factors. Individual factors
included various maternal factors (county of residence, age, education and race/ethnicity),
info on whether prenatal care started in first trimester, method of payment for delivery, parity
indicator and sex of the infant. The method of payment for delivery information represents
whether Medi-Cal (Medicaid) or other government program paid the birth costs. Temporal
factors included season of conception and year of birth. Using the extracted Census vari-
ables, we created an indicator with the following characteristics was created: unemployment
rate > 10%, income from public assistance > 15% and families below the federal poverty
level > 20% [27]; this represented the neighborhood or community factors.

Our study was approved by the Office for Protection of Human Subjects, University
of California Berkeley and the California State Committee for the Protection of Human
Subjects.

Statistical method

Parameters of interest

The aim of our study was to quantify the impact of traffic exposure on preterm birth during
the entire pregnancy and for this we estimate the causal attributable risk (CAR), which
compares the outcome distribution under a hypothetical intervention on a population with
the outcome distribution observed [97]. Our causal parameter of interest was based on the
Neyman-Rubin counterfactual framework [95, 96] and it is defined as

E(Y )− E(Ya); a ∈ A = {1, 2, 3, 4} (4.1)

Here the observed birth outcome, which is equal to 1 if a preterm birth occurred, and the
counterfactual birth outcome a mother would have had if she had been exposed to exposure
quartile A = a ∈ A are represented as Y and Ya respectively. The entries in A represent a
particular level/quartile of traffic density exposure, with 1 representing the lowest level of
exposure and 4 representing the highest.

Following assumptions are required to identify the causal parameter of interest from the
observed data distribution [71]. First, under consistency assumption we assume that the
the observed outcome (Y ) a mother experienced under the observed exposure level is equal
to the counterfactual outcome (YA) under the observed exposure level. Second, under the
randomization assumption, we assume that given our set of baseline covariates (which we
denote as W ), the potential outcomes Ya is independent of the exposure A; i.e. Ya |= A|W , ∀
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a ∈ A. Randomization assumption is also known as no unmeasured confounding assumption,
for under this assumption, we assume that measured covariates W are sufficient to control
for confounding of the effect of A on Y . Finally, under the positivity assumption, we assume
that there is a positive probability for receiving each quartile of exposure A within every
combination of baseline covariate values among the population; i.e. min

a∈A
P (A = a|W ) > 0.

Under these three assumptions, the causal parameter of interest can be rewritten as a function
of observed data distribution alone [97, 99]

E(Y )− EW [E(Y |A = a,W )]; a ∈ A = {1, 2, 3, 4} (4.2)

This represents the statistical estimand. Here, note that the first term in the above
statistical estimand, E(Y ), represents the empirical mean of the outcome Y and in the
subsequent steps, we will refer the second term of the above estimand, EW [E(Y |A = a,W )],
as the counterfactual part of the target parameter.

Estimation of parameters of interest

There are various methods to estimate the counterfactual part of our target parameter. The
G-computation method (or simple substitution method) make use of the outcome regression
estimate, E(Y |A,W ) [99, 100], and the inverse probability of treatment weighted (IPTW)
method uses a treatment regression estimate (also known as the propensity score), P (A|W )
[101]. The G-computation and IPTW estimators are consistent if the outcome regression
or the treatment regression, respectively, are consistently estimated. In our analysis, we
utilize another class of estimation method called targeted maximal likelihood estimators
(TMLE) [69], that combine estimators of both outcome and treatment regressions and is
double robust.

Estimation of the parameter using the entire final study population
TMLE for the counterfactual term of our target parameter, EW [E(Y |A = a,W )], is a two

step procedure; the initial estimates of both outcome and treatment regressions are obtained
in the first step and in the second bias-reduction step the initial estimate of the outcome
regression is updated towards the parameter of interest utilizing the initial estimate of treat-
ment regression. TMLE is robust to misspecification of either the outcome regression or the
treatment regression (the so-called ”double robustness” property) and it will be efficient,
with lowest asymptotic variance among reasonable estimators, if both regression models are
correctly identified. We estimated both the outcome and treatment regressions using Super-
Learner [72], a data-adaptive algorithm, that based on cross-validation creates an optimal
combination of fits obtained from user supplied individual prediction algorithms.

Under assumptions, TMLE is asymptotically linear, with its variance explained by the
sample variance of estimated influence curve of the target parameter divided by sample size.
The influence curve for the causal attributable risk can be derived using the Delta method
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[71] and it is explicitly

Y − I(A = a)

P (A = a|W )

(
Y −Q0(A,W )

)
+Q0(A = a,W )−Ψ(Q0) (4.3)

where Q0(A,W ) denotes the true conditional expectation of the outcome.
The 95% confidence interval for our target parameter is thus estimated as

ψ̂n ± 1.96

√
σ̂2

√
N

(4.4)

where ψ̂n is the estimated causal attributable risk, σ̂2 is the sample variance of the influence
curve estimate and N is the total number of observations in our final study population.

In our analysis to estimate the outcome and treatment regressions using SuperLearner,
we used a non-negative least squares loss function, a 10-fold cross validation and our library
of candidate algorithms included main term logistic regression, logistic regression with all
possible pairwise interactions, simple mean and the stepwise logistic regression.

Estimation of the parameter using a sub-sample of the final study population
Incorporating machine-learning algorithms, like SuperLearner, on large birth cohort data

sets can be computationally intensive. Hence, we also illustrate the use of another class of
TMLE, known as an inverse probability of censoring weighted targeted maximum likelihood
estimator (IPCW-TMLE) [70] that utilizes a sub-sample of the final study population to
estimate the target parameter. In IPCW-TMLE, a sub-sample of the final study cohort was
created conditional on outcome status. If ∆ is an indicator about the sub-sample inclusion,
with ∆ = 1 if an observation is included in the sub-sample, we can represent the sub-sample
data structure as OR = (Y,∆,∆X), where X represents the original data set X = (W,A, Y ).
Conditional on an outcome Y , each observation had a known sampling probability, denoted
by Π0(Y ); Π0(Y ) is equal to one if the outcome was a preterm birth and otherwise equal
to the proportion of term births sampled. IPCW-TMLE is also a two-step procedure which
involve initial estimation of the outcome and treatment regressions using SuperLearner as
well as the targeted updating step, both implemented using the inverse of the sampling
weights; specifically, the sampling weight is equal to ∆

Π0(Y )
. Since, IPCW-TMLE is also

asymptotically linear, under assumptions, the standard error of the IPCW-TMLE estimator
can be conservatively estimated by taking the sample variance of the weighted influence
curve estimate, provided in Eq. 4.3, and dividing by sample size.

To implement IPCW-TMLE, first we created a sub-sample of our original data, that
included all the preterm births and randomly chose 5 term births per preterm birth. The
sampling probability for preterm births and term births were equal to one and proportion
of term births included in the subsample in the second stage respectively. The loss function,
number of folds and the candidate algorithms included in SuperLearner library were same
as before; but appropriate sampling weight was assigned to each observations.
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In order to compare results qualitatively with that of prior research, we also conducted
a traditional main-term logistic regression analysis including all the confounders, that we
adjusted for when estimating CAR, as well as traffic exposure quartiles as a four level cat-
egorical variable. Our analyses were conducted using R version 3.1.2 and the random seed
was set to 1 while randomly sampling the term births.

4.3 Results

All live births that occurred between 2000 to 2006, in four most populated counties within
the San Joaquin Valley air basin, were included in our original cohort and it included 329,650
live births. We excluded mothers with a missing file number (N=248) and who had multiple
births (N=8,373). We also excluded those fetuses whose gestational age was either missing
or not between 20 to 42 weeks (N=44,713) as well as those fetuses with birth weight missing
or < 500 or > 5000 grams (n=764). 1,025 live births were removed because of the lack of
a last menstrual period (LMP) date. We excluded those subjects with a missing exposure
value (N=12,345) or a confounder value (N=6,134). Exclusion criteria applied to our study
cohort can be found in Figure 4.1. Our final study population included 256,048 live births,
whose descriptive statistics by gestational age can be found in Table 4.1 through Table 4.4.

Our data set included 11.5% preterm births and 88.5% term births; with 8.5% preterm
births occurring between 34 to 36 weeks of gestational age. Majority of our study population
included male fetuses (51.3%) and around 35% of the fetuses were the first born child. Higher
percentage of conceptions occurred in winter (25.7%) and fall (25.6%). More than half of the
mothers were Hispanic and had a high school degree. Most of the mothers received prenatal
care starting in the first trimester (81.3%), with majority of them receiving government aid
to pay the delivery related costs (53.7%) and about 25% mothers had C-section. The mean,
5th and 95th percentiles of our exposure of interest were also provided in Table 4.4; and
from this it is clear that the provided summary statistics were higher for the preterm births
in comparison with term births. In Table 4.5, we have also provided quartile specific traffic
density values.

The propensity score, while estimating the causal attributable risk of preterm birth us-
ing both TMLE and IPCWP-TMLE are given in Table 4.6. We can see that the predicted
propensity score are well bounded and away from zero in each exposure quartiles, which
implies that there is no practical positivity violation observed in our analysis [118]. Within
each quartile, the estimate of E(Y |A = a) is obtained using the quartile specific empirical
mean of preterm birth; we refer this an unadjusted estimator. Similarly, for each traffic
exposure quartile A = a, the counterfactual estimate E(Ya) is obtained using both TMLE
and IPCW-TMLE and we refer this an adjusted estimator. Both unadjusted and adjusted
estimators are provided in Table 4.7. There is an increasing trend in the unadjusted prob-
ability of preterm birth, with the lowest probability of preterm birth in quartile 1. When
we adjusted for confounders the resulted counterfactual probabilities in the first two expo-
sure quartiles were higher and that in the 3rd and 4th quartiles were lower in comparison
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with their counterpart unadjusted preterm birth probabilities; however, except within the
third exposure quartile, the increasing trend in the preterm probability remains as before.
The adjusted counterfactual probabilities of preterm birth were similar when we estimated
them using either the whole study population applying TMLE or a sub-sample of the study
population using IPCW-TMLE.

Estimated causal attributable risk using both TMLE and IPCW-TMLe are given in Fig-
ure 4.2. Here the estimated CAR is the difference between the unadjusted estimate of the
empirical probability of preterm birth in the whole data and the adjusted estimate of the
counterfactual probability of preterm birth within each exposure quartile. If an adjusted
counterfactual probability estimate is higher than that of the unadjusted empirical proba-
bility, it will result in a negative causal attributable risk. A positive CAR value indicates a
protective effect and the more negative the estimated CAR value, the higher harmful effect
on mothers exposed to that particular exposure quartile. Except within exposure quartile 3,
we observed a trend in the estimated CAR values with an increasing preterm risk as we move
from lower to higher exposure quartiles, but the significant CAR estimates were observed
only in first and fourth exposure quartiles and the effect estimates using both TMLE and
IPCW-TMLE were similar. Our CAR estimates using TMLE suggest that shifting all preg-
nant women’s exposure to the first quartile would decrease preterm birth by 0.295% (95%
CI: 0.057%, 0.532%) and increasing it to the fourth quartile would increase preterm birth
by 0.276% (95% CI: 0.051%, 0.500%). When utilizing IPCW-TMLE, the CAR estimates
in first and fourth exposure quartiles were 0.292% (95% CI: 0.055%, 0.528%) and -0.246%
(95% CI: -0.469%, -0.022%) respectively.

Conditional odds ratio of preterm birth, obtained from a traditional main-term logistic re-
gression analysis, with the same confounders that we adjusted for when estimating CAR and
traffic exposure quartiles, is given in Table 4.8. This statistical parameter is different from
CAR, even when the parametric model is correctly specified and randomization assumptions
holds. However, Table 4.8 results can be utilized for a qualitative comparison with prior
research. Parametric logistic regression results suggest a harmful effect of exposure to both
the 2nd and 4th traffic exposure quartiles; however the TMLE or IPCW-TMLE results found
harmful effect in the 4th exposure quartile only. Even though we utilized the same data,
the results shown in Table 4.8 are slightly different from that of prior research [27] and this
could be because of the following reasons: a) in our current analysis we included a slightly
different baseline covariates (we included season of conception and an indicator representing
community factors, but excluded birth weight), and b) we report the conditional odds ratio
of preterm birth in the higher exposure quartiles relative to that of lowest exposure quartile.
In our current analysis, even though both conditional odds ratio and CAR estimates led to
a conclusion of a detrimental effect from exposure to the highest quartile, note that CAR
provides a quantitative estimate of a quantity with more immediate public health and policy
relevance.
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4.4 Discussion

Incorporating data-adaptive algorithm, we estimated the causal attributable risk of preterm
birth from prenatal traffic exposure in four most populated counties in San Joaquin Valley air
basin in California in a semi-parametric targeted way and our results suggests that exposing
pregnant woman to the highest traffic exposure is harmful. We observed preterm birth risk
can increase relative to the current observed level by around 0.25% if all the pregnant women
are exposed to the highest exposure quartile.

As mentioned in the introduction, prior studies, based on parametric models, have an-
alyzed the impact of prenatal traffic exposure on preterm birth and results were mixed.
Because of the difference in the estimated parameters, it is not possible to make a direct
comparison between our current study results with that of prior studies. In previous stud-
ies, preterm risk difference associated with different traffic exposure levels while holding the
baseline covariates as constant, was given in terms of odds ratio. In our analysis, by apply-
ing a hypothetical intervention traffic exposure level, a counterfactual probability of preterm
birth risk was compared with that was currently observed in our study population. The
confounders that we adjusted in our analysis were also different from the prior studies and
this might have reflected in the parameter estimates that we reported. Because of these
dissimilarities, even though a direct comparison is not possible, our analysis where we were
able to establish a causal link between prenatal traffic density exposure and preterm birth
supports the prior studies that established an association between them.

Several plausible biologic pathways have been proposed through which ozone and traffic
related air pollutants, such as nitrogen oxides (NOX), particulate matter (PM), carbon
monoxide (CO) or carbon dioxide (CO2), could adversely affect various birth outcomes
[43, 44, 45]. Air pollution can increase vulnerability to infection, which can trigger preterm
delivery [44, 48, 49]. Traffic related air pollutants were associated with oxidative stress
and inflammation [43, 44, 53] and both of these can influence the pregnancy duration. Air
pollutants can also change the blood coagulability and plasma viscosity; this influences
the umbilical blood flow and placental oxygen transfer adversely affecting the fetal growth
[46, 47].

There are some limitations to our study. Randomization assumption was one of the major
assumption that we made while estimating the causal attributable risk of preterm birth.
Despite making this assumption, we acknowledge that our data does not include information
on various maternal factors (e.g. smoking, individual SES, individual perinatal risk factors)
and neighborhood characteristics (e.g. access to nutritious food and other amenities to
support a healthy living, safety features), that could potentially determine both exposure
and birth outcome [129, 121, 122, 123]; hence in our analysis this untestable assumption
maybe unlikely to hold. Second limitation is the possibility of exposure misclassification in
the assigned exposure for each mothers due to the lack of information about their time spend
outdoors or at the assigned zip code etc and these factors could alter the actual exposure
experienced. However, geocoding the maternal residential street addresses while assigning
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exposure might have helped to overcome this issue to some extend.
Our analysis has several strengths. We used a diverse population with large sample

size. Since maternal addresses were geocoded our assigned exposure may have been more
accurate than the exposure estimate obtained from simply assigning a mother to a nearest
monitoring station based on her residential zip code. Addition to various individual and
temporal factors, we included few neighborhood level confounders; this is important as a
neighborhood environment can influence birth outcome [121, 122, 123]. Evaluating CAR of
various health issues from air pollution exposure is relevant for evaluating the impact of new
policies related to air pollution levels; this can help authorities for outlining proper prevention
strategies to help those population who will be affected by the proposed new standards.
Also, quantifying the health effect of potential intervention levels and establishing a causal
relationship between air pollution and health outcomes are more convincing than a mere
association in policy relevant issues [73, 74]. In our analysis, to estimate our target parameter,
we utilized both TMLE and IPCW-TMLE that used either the entire study population or
a sub-sample of it respectively. As mentioned earlier, both methods are doubly robust to
model misspecification. Also, by using only a sub-sample of data for analysis, IPCW-TMLE
helps to overcome the computational challenges of big data analysis that can be common
when analyzing birth registry data. Also, incorporating a data-adaptive algorithm in our our
analysis, to estimate both the outcome and treatment regressions, helps to remove parametric
misspecification bias and to ensure accurate statistical inference for TMLE methods [72, 71].

In our future research, we are interested in estimating the causal attributable risk of
various subsets of preterm birth, specifically extremely PTB with gestational age between
20-27 weeks, very PTB (VPTB) with gestational age between 28-31 weeks, moderate PTB
(MPTB) with gestational age between 32-34 weeks and late PTB (LPTB) with gestational
age of 35-36 weeks. Assessing the risk within various subsets of preterm birth is important
as many changes happen during human fetal development in short period of time.

To conclude, we calculated the causal attributable risk of preterm birth from prenatal
traffic exposure using cohort data from San Joaquin Valley air basin in California. Our study
is relevant for it helps to quantify the burden of preterm birth from traffic pollution and it
can easily extend to any relevant hypothetical pollution exposure level and thus could inform
the authorities to make necessary prevention strategies to alleviate the risks associated with
a specific exposure pollution level. This is important as air pollution from traffic is a serious
global health concern and based on our results, we recommend further studies in other
locations.
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Total live births occurred between 2000 to 2006 in 4 
selected counties in San Joaquin Valley air basin 

N =  329,650  

Total live births with a missing file number 
N =248 

Total live births with a file number 
N = 329,402 

Total live births with multiple births 
N =8,373 

Total live births with a singleton births 
N =321,029 

Total live births with gestational age missing or occurred 
outside  20 to 42 weeks : N =44,713 

Total live births with non missing gestational age and 
occurred between 20 to 44 weeks  

N =276,316 

Total live births with birth weight missing or <500 gram  
or >5000 grams: N =764 

Total live births with non missing gestational age and 
occurred between 20 to 44 weeks  

N =275,552 

Total live births with missing LMP:  N =1,025 

Total live births with non missing gestational age and 
occurred between 20 to 44 weeks  

N =274,527 

Total live births with missing exposure value (traffic 
density): N =12,345 

Total live births with non-missing exposure 
N =262,182 

Total live births with missing confounders N =6,134 

Total live births in the final study population 
N =256,048 

Figure 4.1: Flow chart showing the exclusion criteria applied to create our final study pop-
ulation
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Table 4.6: Propensity score while estimating the counterfactual probability of preterm birth
from prenatal traffic exposure. We estimated the causal attributable risk of preterm birth us-
ing both TMLE and IPCW-TMLE techniques. Our final study population included 256,048
live births that occurred in four most populated counties within San Joaquin Valley air basin
in California between 2000 to 2006. TMLE analysis included all the subjects in this popu-
lation (N = 256,048); however in the IPCW-TMLE analysis, we used a sub-sample of this
cohort that consists of all the preterm births (N = 29,359) and five term births per preterm
birth.

Propensity score, when estimating the causal attributable risk of preterm birth
using TMLE

No. of subjects
included in analysis

Exposure
quartile

Minimum
First

Quartile
Median

Third
Quartile

Maximum

256,048 1 0.06497 0.21759 0.25017 0.28649 0.57556
2 0.15150 0.20830 0.24540 0.28060 0.42290
3 0.17030 0.22570 0.24370 0.27280 0.35940
4 0.07968 0.19714 0.23741 0.27727 0.59966

Propensity score, when estimating the causal attributable risk of preterm birth
using IPCW-TMLE

No. of subjects
included in analysis

Exposure
quartile

Minimum
First

Quartile
Median

Third
Quartile

Maximum

176,154 1 0.06865 0.21692 0.24889 0.28497 0.57363
2 0.14790 0.20810 0.24410 0.28040 0.4162
3 0.17350 0.22620 0.24430 0.27180 0.36620
4 0.07721 0.19934 0.23854 0.27708 0.58896
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Table 4.7: Unadjusted (empirical probability) and adjusted (counterfactual probability) of
preterm birth (given in %) within each prenatal traffic exposure quartile during the entire
pregnancy period. We estimated the adjusted counterfactual probability of preterm birth us-
ing both TMLE and IPCW-TMLE techniques. Our final study population included 256,048
live births that occurred in four most populated counties within San Joaquin Valley air basin
in California between 2000 to 2006. TMLE analysis included all the subjects in this popu-
lation (N = 256,048); however in the IPCW-TMLE analysis, we used a sub-sample of this
cohort that consists of all the preterm births (N = 29,359) and five term births per preterm
birth.

Probability of preterm birth (%)

Exposure quartile Unadjusted (95% CI)
Adjusted (95% CI)

using TMLE
Adjusted (95% CI)
using IPCW-TMLE

1 10.73 (10.61, 10.85) 11.17 (10.91, 11.44) 11.17 (10.91, 11.44)
2 11.45 (11.33, 11.57) 11.56 (11.31, 11.81) 11.57 (11.32, 11.83)
3 11.47 (11.35, 11.60) 11.45 (11.20, 11.70) 11.45 (11.20 11.69)
4 12.21 (12.09, 12.34) 11.74 (11.49, 12.00) 11.71 (11.46, 11.97)

Table 4.8: Odds Ratios for preterm birth from prenatal traffic exposure during the entire
pregnancy period, obtained using a traditional logistic regression analysis. Our final study
population included 256,048 live births that occurred in four most populated counties within
San Joaquin Valley air basin in California between 2000 to 2006.

Exposure quartile Odds Ratio (95% confidence interval)
1 1.000 (Reference)
2 1.041 (1.004, 1.080)
3 1.034 (0.997, 1.073)
4 1.064 (1.026, 1.103)
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Figure 4.2: Causal attributable risk of preterm birth from prenatal traffic exposure during the
entire pregnancy, estimated using both TMLE and IPCW-TMLE. Our final study population
included 256,048 live births that occurred in four most populated counties within San Joaquin
Valley air basin in California between 2000 to 2006. TMLE analysis included all the subjects
in this population (N = 256,048); however in the IPCW-TMLE analysis, we used a sub-
sample of this cohort that consists of all the preterm births (N = 29,359) and five term
births per preterm birth.
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Chapter 5

Conclusions

As a summary, we present the main conclusions drawn from the studies presented in this
thesis.

1. We demonstrated the utility of a data-adaptive algorithm and various semi-parametric
efficient approaches to estimate causal attributable risk (CAR) of adverse pregnancy
outcomes.

2. Based on the CAR estimates of stillbirth, our study suggests that exposure to highest
levels of both NO2 and O3 during the third trimester of pregnancy is harmful but only
when exposure period is assigned based on the date of birth outcome, an approach
subject to temporal confounding. Hence, in this analysis, we also address a method
for assigning exposure to deal with the challenges of temporal trends in pollution as
well as in conception and our results imply the causal estimates are affected by the
exposure period definition applied.

3. In the study assessing the relationship between traffic pollution and preterm birth, our
estimates suggest that exposing all pregnant women to the lowest exposure level would
decrease the preterm birth risk by around 0.30% and exposing them to the highest
level would increase the preterm birth risk by around 0.28%.

4. Both studies could be improved by utilizing information on additional neighborhood or
community level characteristics as well as individual and temporal factors that could
influence both exposure and outcomes.

5. The causal attributable risk (CAR) of adverse pregnancy outcomes has immediate
public health impact and importance. We recommend researchers to follow the anal-
ysis presented in this thesis when analyzing air pollution related adverse pregnancy
outcomes.
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[15] Lilian Calderón-Garcidueñas, Ricardo Torres-Jardón, Randy J Kulesza, Su-Bin Park,
and Amedeo D’Angiulli. Air pollution and detrimental effects on children’s brain. The
need for a multidisciplinary approach to the issue complexity and challenges. Frontiers
in human neuroscience, 8(AUG):613, 2014.

[16] J. Sunyer. Urban air pollution and chronic obstructive pulmonary disease: A review.
European Respiratory Journal, 17(5):1024–1033, 2001.

[17] Guarnieri M and Balmes J R. Outdoor air pollution and asthma. Lancet, 383:318–319,
2014.

[18] C A III Pope, R T Burnett, M J Thun, Calle E E, D Krewski, K Ito, and G Thurston.
Lung Cancer, Cardiopulmonary Mortality, and Long-term Exposure to Fine Particu-
late Air Pollution. JAMA, 287(9), 2002.

[19] Y Zhao, S Wang, K Aunan, H M Seip, and J Hao. Air pollution and lung cancer risks
in China - a meta-analysis. Science of the Total Environment, 366(2-3):500–513, 2006.

[20] D Pyatt and S Hays. A review of the potential association between childhood leukemia
and benzene. Chem Biol Interact, 184(1-2):151–164, 2010.

[21] Anna Makri and Nikolaos Stilianakis. Vulnerability to air pollution health effects.
International journal of hygiene and environmental health, 211(3-4):326–336, 2008.

[22] M.L. Bell, A. Zanobetti, and F. Dominici. Evidence on vulnerability and susceptibility
to health risks associated with short-term exposure to particulate matter: a systematic
review and meta-analysis. American journal of epidemiology, 178(6), 2013.



77

[23] Tracey J. Woodruff, Jennifer D. Parker, Amy D. Kyle, and Kenneth C. Schoendorf.
Disparities in exposure to air pollution during pregnancy. Environmental Health Per-
spectives, 111(7):942–946, 2003.

[24] Marie Lynn Miranda, Pamela Maxson, and Sharon Edwards. Environmental contri-
butions to disparities in pregnancy outcomes. Epidemiologic Reviews, 31(1):67–83,
2009.

[25] K P Stillerman, D R Mattison, L C Giudice, and T J Woodruff. Environmental
exposures and adverse pregnancy outcomes: a review of the science. Reprod Sci,
15(7):631–650, 2008.

[26] Sabrina Llop, Ferran Ballester, Marisa Estarlich, Ana Esplugues, Marisa Rebagliato,
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