
UC Merced
UC Merced Electronic Theses and Dissertations

Title
Graph Based Scalable Algorithms with Applications

Permalink
https://escholarship.org/uc/item/266130xp

Author
Vaz, Garnet Jason

Publication Date
2014

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/266130xp
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, MERCED

Graph Based Scalable Algorithms with Applications

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in

Applied Mathematics

by

Garnet Jason Vaz

Committee in charge:

Professor Harish S. Bhat, Chair

Professor Mayya Tokman

Professor Arnold D. Kim

2014

All Chapters c© 2014 Garnet Jason Vaz

The Dissertation of Garnet Jason Vaz is approved, and it is acceptable

in quality and form for publication on microfilm and electronically:

Mayya Tokman

Arnold D. Kim

Harish S. Bhat, Chair

University of California, Merced

2014

iii

To my Aunt, Lynette

iv

Contents

0.1 Acknowledgements . v

1 Introduction 1

2 Frequency Response and Gap Tuning for Nonlinear Electrical Oscillator
Networks 5
2.1 Introduction . 5

2.1.1 Connections to Other Systems . 7
2.2 Problem Formulation . 8
2.3 Algorithms for the forward problem . 10

2.3.1 Perturbative Algorithm . 10
2.3.2 Iterative Algorithm . 13

2.4 Inverse Problem . 15
2.4.1 Gap Tuning: Methodology . 17

2.5 Results and Discussion . 20
2.5.1 Comparison of Steady-State Algorithms 20
2.5.2 Gap Tuning . 25

2.6 Conclusion . 28

3 FVFD Method for Nonlinear Maxwell’s Equations 31
3.1 Introduction . 31
3.2 Finite Volume Discretization of Maxwell’s Equations 32

3.2.1 Boundary conditions & forcing terms 37
3.3 Assembly and Solution . 38
3.4 Simulations . 39

3.4.1 Software . 40
3.4.2 Convergence results . 41

3.5 Conclusion . 43

4 Quantile Regression Tree 49
4.1 Introduction . 49
4.2 Preliminaries . 50

4.2.1 Decision trees . 50
4.2.2 Decision tree algorithm . 51

4.3 Qtree algorithm . 53
4.4 Computational results . 58

4.4.1 Scalability . 58

iii

4.4.2 Model accuracy . 59
4.5 Conclusion . 61

A FVFD implementation 63
A.0.1 Mesh Generation . 63
A.0.2 Loading the mesh into PETSc . 63
A.0.3 Computing the dual of the mesh . 64
A.0.4 Algorithm for computing ∆ . 65
A.0.5 Linear systems . 65
A.0.6 Post-processing . 67

iv

0.1 Acknowledgements

First and foremost I would like to thank my advisor Harish Bhat for his support and guidance
throughout my PhD career. He has been the advisor that I wanted and the one that I needed
equally well and has helped me grow both professionally and personally in ways beyond
description and I will forever be in his debt.

I would like to thank the guidance provided by my other committee members Mayya
Tokman and Arnold Kim. Their patience in listening towards my concerns and providing
guidance in my research has been invaluable.

I would like to thank the helpful staff at the School of Natural Sciences office and
especially Carrie King for making all the paper work disappear. The staff at the International
Office have been extremely helpful in making my stay here hassle free.

My studies would not have been possible without the support and love from my Dad
and my aunt. They have always believed in me and encouraged me to search my own path.

Being away from my school friends was hard but my colleagues here including Nitesh
Kumar, Jane Hyojin Lee and Derya Şahin have taught me how to smile. They have been
around to share in my laughter and more importantly supported me when I was down. It
would be unfair to call them friends and so to me they will always be family.

I would also like to thank the UC Merced Open Access Fund Pilot and U.S. Department
of Energy (Contract No. DE-AC02-05CH11231, Subaward 7041635) for supporting my
research.

v

Graph Based Scalable Algorithms with Applications.

by

Garnet Jason Vaz

University of California, Merced, 2014

Prof. Harish S. Bhat, Chair

ABSTRACT OF THE DISSERTATION

In this thesis, we propose various algorithms for problems arising in nonlinear circuits,
nonlinear electromagnetics and data mining. Through the design and implementation of
these algorithms, we show that the algorithms developed are scalable.

In the first part of the thesis we provide two solutions to the forward problem of finding
the steady-state solution of nonlinear RLC circuits subjected to harmonic forcing. The work
generalizes and provides a mathematical theory bridging prior work on structured graphs and
extending it to random graphs. Both algorithms are shown to be orders of magnitude faster
than time stepping. We introduce an inverse problem of maximizing the energy/voltage at
certain nodes of the graph without altering the graph structure. By altering the eigenvalues
associated with the weighted graph Laplacian of the underlying circuit using a Newton-type
algorithm, we solve the inverse problem. Extensive results verify that a majority of random
graph circuits are capable of causing amplitude boosts.

Next, we connect nonlinear Maxwell’s equations in 2D to the RLC circuit problem.
This relationship is achieved by considering the finite volume decomposition of nonlinear
Maxwell’s equations. When we consider a discretization of the domain, the dual graph of this
discretization provides us with a planar random graph structure very similar to our previous
work. Thus, algorithms developed in the previous work become applicable. Using distributed
computing, we develop an implementation of one of the algorithms that scales to large-scale
problems allowing us to obtain accurate and fast solutions. Simulations are conducted for
structured and unstructured meshes, and we verify that the method is first-order in space.

Our final application is in the field of supervised learning for regression problems.
Regression trees have been used extensively since their introduction and form the basis of
several state-of-the-art machine learning methods today. Regression trees minimize the loss
criterion (objective function) using a greedy heuristic algorithm. The usual form of the
loss criterion is the squared error. While it has been known that minimizing the absolute
deviation provides more robust trees in the presence of outliers trees based on absolute loss
minimization have been ignored because they were believed to be computationally expensive.
We provide the first implementation which has the same algorithmic complexity as compared
to trees built with the squared error loss function. Besides computing absolute deviation
trees, our algorithm generalizes and can be used as a non-parametric alternative to quantile
regression.

vi

Chapter 1

Introduction

The increase in computational power over the last two decades has led to massive advances
in our ability to solve a variety of mathematical problems. The growing computational power
in turn has resulted in a desire to solve even larger problems. The size of the problems
we solve routinely nowadays might have seemed impossible 2–3 decades ago. With such
impressive advances it may seem that in order to solve problems of current interest, we may
just have to wait for another decade. This line of reasoning is flawed. The ability of hardware
to speed up computations has stalled due to the inability to increase computational speed
beyond its current limit while providing energy efficient processors. For almost a decade
now processor speeds have not increased according to prior trends. This has impeded our
ability to speed up computations. Instead of merely relying on hardware advances to speed
our work, the scientific community has branched out towards alternate methods to feed our
computational hunger. Rather than rely on a single technique there now exist a variety
of methods depending on our needs. For example, if our applications lie in an area which
includes high structured computing like BLAS based operations we can now use GPU’s. An
alternative to GPU’s is the Intel Xeon Phi co-processor, which allows one to execute X86
instruction sets that do not require any modifications unlike CUDA or OpenCL codes for
GPU’s. For applications which include large data manipulations, the MapReduce framework
is very popular and depending on the problem allows one to handle terabytes of data.

While it may seem that these new technologies and frameworks allow us to satisfy any
computational needs we might have, the truth is that there is a lot of work required to leverage
their full potential. Existing algorithms do not directly transfer over to newer technologies.
The LAPACK set of libraries that form the essence of linear algebra computations cannot be
used directly on GPU’s since code written for GPU’s requires us to micro-manage several
layers of memory very carefully. A naive implementation would result in very bad performance.
Similarly, the MapReduce framework used very widely in data analysis and machine learning
requires one to rethink many algorithmic concepts of existing methodologies. As a result,
much of current research is focused on developing new algorithms that can efficiently use
these technologies.

There are two approaches to building scalable methods for mathematical problems:
either start with an existing algorithm and improve it to make it faster and scalable, or
develop an algorithm with scalability in mind. The current work focuses on the latter. We
design and implement new algorithms for some problems of interest, verifying their potential
to scale as desired. All the algorithms involve graphs, either random or in the form of

1

binary trees. Graphs provide a very powerful and abstract concept towards a wide variety
of problems. Recently there has been much interest in random graphs for computations
and network analysis. Graphs also form a crucial part of the underpinnings of computer
science. As a result, data structures and algorithms for graph based approaches to a variety
of problems are well-known and many efficient libraries exist in every major language. The
current work builds algorithms for three problems.

In Chapter 2, we present the problem of solving for the frequency response of nonlinear
electrical oscillator networks. The networks are formed by interconnecting capacitors and
resistors using inductors. The circuit is forced with a harmonic frequency and the aim
it to find its steady-state response. If we construct a single chain circuit we obtain an
approximation of transmission lines. While transmission lines have been studied extensively,
most recent work has focused on the use of saturating, voltage-dependent capacitors yielding
nonlinear transmission lines. Nonlinear transmission lines thus created using semi-conductor
materials offer a wide range of possibilities in applications for signal processing and fil-
tering [57], [48], [4], [1]. Their success in one-dimensional applications naturally led to
their extension towards two-dimensional theory and applications [76], [1], [2], [9]. In all the
above cases involving 1D and 2D studies, the underlying circuit was always assumed to be
regular and structured. Given the success of these prior applications, Chapter 2 extends the
mathematical framework to cover a random network. This provides a unifying approach in
the study of nonlinear oscillator networks, encompassing both structured and unstructured
networks. In Section 2.3, we develop two different algorithms for solving the forward problem.
The first approach uses a perturbative expansion which offers flexibility in computing higher
order solutions as desired. This method shows that the solution only consists of higher
harmonics leading to an alternate algorithm to obtain the solution using a fixed-point method.
Using extensive numerical results in Section 2.5.1, we verify the accuracy of the two new
algorithms by contrasting them with traditional time-stepping methods. Since the two
algorithms solve for the steady-state solution directly without resorting to any computation
in the time-domain, they are orders of magnitude faster than explicit time-stepping methods
as demonstrated.

In prior work involving 2D RLC networks, it has been shown that the nonlinear effects
of the circuit on a structured lattice could significantly boost small-amplitude inputs [9]. A
second major contribution of Chapter 2 is to answer the analogous question with regards to
random networks. While previous work on amplitude boosting relied on a geometric approach
we use a completely approach: we enhance the given network’s nonlinear behavior by altering
the eigenvalues of the graph Laplacian, i.e., the resonant frequencies of the linearized system.
These results demonstrate a relationship between the network’s structure, encoded in the
graph Laplacian, and its function, which in this case is defined by the presence of nonlinear
effects in the frequency response. In order to achieve these results, we have developed a
Newton-type method that solves for the network inductances such that the graph Laplacian
achieves a desired set of eigenvalues; this method enables one to move the eigenvalues while
keeping the network topology fixed. Results in Section 2.5.2 show detailed results across three
different random graph models by just altering the graph Laplacian’s first two eigenvalues.
By altering the inductance values and retaining the underlying graph topology, we are able
to improve the network’s ability to (i) transfer energy to higher harmonics and (ii) generate
large-amplitude signals.

In Chapter 3, we focus on nonlinear Maxwell’s equations. We develop a new numerical

2

method for the planar Maxwell’s equations for the (H1,H2,E) polarized modes in nonlinear
inhomogeneous media subjected to time-harmonic forcing. Maxwell’s equations form the
basis of the vast field of electromagnetic theory. In this chapter, we provide a numerical
method for the solution of the nonlinear form of these equations. The nonlinearity arises
due to the dependence of the permittivity of the material on the applied electric field. By
far, the most widely used approach to numerically solving Maxwell’s equations is the finite
difference time domain approach using the Yee scheme developed by Kane Yee [87]. Though
the algorithm was introduced in the 1960’s it only gained recognition when it was shown
to correspond to the finite difference method by Taflove [80]. Due to their time domain
nature they are very good in studying transient solutions in models. Since the Yee scheme
is only conditionally stable, numerical dispersion is a major concern. This leads to the use
of advanced time stepping solvers [70]. Finite difference time domain methods use a grid
discretization which is known to introduce further complications when trying to model curved
boundaries or arbitrary material inhomogeneity. Finite element and Finite volume methods
get past this problem due to their flexibility in handling unstructured meshes.

The application which is the focus of Chapter 3 involves obtaining solutions to the
steady-state response of the model under harmonic forcing. Since we do not require the
transient part of the solution, we study the problem in the Fourier domain and obtain the
steady-state solution directly. We begin with a finite volume discretization of the domain.
By converting the problem to a Fourier domain we are able to forego time stepping. The
use of finite volume allows us to model complex inhomogeneity in the material. A major
contribution of the work is to reduce the finite volume Fourier domain method to a nonlinear
RLC circuit problem, exactly the same as was studied in Chapter 2. By providing analogues
to the permittivity of the material with capacitance and permeability of the material with
inductance, the connection become obvious. Once this relationship is obtained, convergence
results from Chapter 2 become an integral part in showing the validity of the method. By
ensuring that Kirchoff’s laws on the circuit hold, we can verify energy conservation easily
thereby ensuring physically correct solutions. While the algorithms developed in Chapter
1 apply directly without any modifications, solving partial differential equations usually
require us to scale problems to large sizes. By providing a working implementation in PETSc
we demonstrate the scalable power of our method. A major benefit of our approach is the
reduction of the solution to solving linear systems which allows us to leverage decades worth
of large-scale linear solvers.

In Chapter 4, we turn our attention to a problem arising in supervised learning. Our
focus is on decision trees, one of the most influential machine learning techniques. Since
their introduction in the 1980’s, they have been successfully used in tackling both inference
and prediction when analyzing data [72], [20]. In a supervised learning problem, we have
a data set consisting of predictor variables X1, X2, . . . , Xn along with a response variable
Y . The number of samples can be anywhere between a few hundred to millions. The aim
of supervised learning is to construct a model y = f̂(x) while ensuring that such a model
is close to the unknown true model y = f(x). To make this requirement mathematically
precise we usually rewrite it as: find f̂ to

Minimize ‖ y − f̂(x) ‖ . (1.1)

We now have to decide over which norm we would like to minimize this function. Traditional
statistics usually considers the 2-norm, since it is differentiable allowing for the possibility

3

of closed form solutions. Linear regression is one such example. While linear regression is
extremely popular and simple to implement, its simplicity and strong model assumptions
usually leads to a variety of problems which make it unsuitable for real world data without
regularization. Most important among these are (i) underlying assumptions of normality of
the data, (ii) heterogeneous error models, (iii) complications with noisy data and, (iv) non-
sparse models. As a result there are a number of alternate modeling frameworks developed
to counteract these problems.

Decision trees form the basis of many advanced state-of-the-art machine learning
methods today like bagging [18], random forests [19] and various forms of boosting [37] [38].
While minimizing the 2-norm is analytically convenient, recent trends have shifted towards
the use of the 1-norm. The change is largely attributed towards the sparse solutions provided
by the 1-norm. Replacing the 2-norm minimization at each step with 1-norm minimization
has the potential to make the trees far more robust to outliers, and also to provide a direct
approach to minimizing the absolute deviation. This observation is not new, and it has
appeared in the data mining research community for over 3 decades [20]. However, the
research community has largely relied on 2-norm minimization due to its efficient scalable
nature. Decision trees minimizing the 2-norm will be called OLS trees and trees which
minimize the 1-norm will be denoted LAD trees in this work. Our work provides the first
working implementation of LAD trees that have the same algorithmic complexity as that of
OLS trees.

Our algorithm generalizes decision tree construction and can construct quantile trees
of which LAD trees are a special case. This flexibility allows us to provide non-parametric
alternatives to linear quantile regression [53]. Linear quantile regression is an alternative to
linear regression that can provide either the median or other quantiles of interest. They have
been successfully applied to problems in economics and many other fields. The benefit of
using quantile regression is that the models allow us to determine weak relationships among
the predictor and response variables. This is very hard to do using regular linear regression
without knowing anything about the underlying model. While quantile regression offers a
better approach in this case, it is still a linear model. This is a severe restriction, one which
we tackle by providing a completely non-parametric model with no assumptions on linearity.

While designing and implementing a scalable algorithm was the first part, our present
work will enable us to extend LAD trees to a wide variety of situations including random
forests, boosting and quantile regression.

Since all the work included in the thesis has revolved around the design and implemen-
tation of algorithms, in the spirit of reproducible research, all codes are available through
the author’s Github repository at https://github.com/GarnetVaz.

4

https://github.com/GarnetVaz

Chapter 2

Frequency Response and Gap Tuning
for Nonlinear Electrical Oscillator
Networks

2.1 Introduction

Networks of nonlinear electrical oscillators have found recent application in several microwave
frequency analog devices [61, 63, 58, 59, 44, 45]. The fundamental unit in these networks
is a nonlinear oscillator wired as in Figure 2.1; this oscillator consists of one inductor, one
voltage-dependent capacitor, one source, and one sink (a resistor). While many nonlinear
oscillatory circuits have been studied for their chaotic behavior, the particular oscillator
in Figure 2.1 does not exhibit sensitive dependence on initial conditions in the regime of
operation that we consider [10]. Instead, assuming the source is of the form A cos(ωt+ φ),
the oscillator reaches a steady-state consisting of a sum of harmonics with fundamental
frequency ω [10].

When networks of these oscillators have been studied, the network topology has either
been a one-dimensional linear chain, in which case the circuit is called a nonlinear transmission
line [56, 47, 23, 22, 4]–see Figure 2.2, or a two-dimensional rectangular lattice [65, 78, 79, 3, 9]—
see Figure 2.3. Even if each individual block in the chain/lattice is weakly nonlinear, the
overall circuit can exhibit strongly nonlinear behavior. It is this property that is exploited for
microwave device applications, enabling low-frequency, low-power inputs to be transformed
into high-frequency, high-power outputs.

The first objective of this work is to develop numerical algorithms to compute the
frequency response of a nonlinear electrical network with topology given by an arbitrary
connected graph. Here we are motivated by the successful application of computational

Figure 2.1: Schematic of a single nonlinear oscillator.
This oscillator is the basic building block of the networks considered in this chapter. The circuit
contains one inductor, one voltage-dependent capacitor, one source, and one resistor.

5

Figure 2.2: An example of a nonlinear transmission line.
A nonlinear transmission line is a nonlinear electrical network on a one-dimensional linear
graph.

Figure 2.3: An example of a nonlinear lattice.
A nonlinear lattice is a nonlinear electrical network on a two-dimensional rectangular grid graph.

techniques in the design of the high-frequency analog devices referenced above. As we show,
to compute steady-state solutions with comparable accuracy, both the perturbative and
iterative algorithms developed in this chapter require orders of magnitude less computational
time than standard numerical integration. While the perturbative algorithm generalizes
derivations given in prior work [9, 10], the iterative algorithm has not been previously applied
to nonlinear electrical networks. Both new algorithms show exponential convergence in the
number of iterations, and for a test problem on a network with N = 400 nodes, less than 20
iterations are required to achieve machine precision errors.

The second objective of this work is to relate structural properties of the network to
the dynamics of the nonlinear oscillator system. The derivation of the perturbative algorithm
indicates that nonlinearity in the electrical network manifests itself through energy transfer
from the fundamental forcing frequency to higher harmonics. This helps us understand why
properties such as amplitude boosting [9, 10] and frequency upconversion [61], observed
in nonlinear electrical networks with regular lattice topologies, can be expected when the
topology is that of a random, disordered network. Additionally, we observe that an inductance-
weighted graph Laplacian matrix features prominently in both algorithms for computing the
steady-state solution. This graph Laplacian matrix encodes the structure of the network, and
its eigenvalues are the squares of the resonant frequencies for the undamped, linear version of
the circuit. Driving the damped, linearized circuit at one of these resonances results in large
amplitude outputs. It is reasonable to hypothesize that the locations of these resonances

6

Table 2.1: Portion of results for graphs with N = 175 nodes.
Simulation results for three different types of random graphs with N = 175 nodes, averaged over
100 runs. “Pre” and “Post” stand for before and after circuit inductances are changed to reduce
the gap between the graph Laplacian’s first two eigenvalues. Note that pre and post circuits have
the same graph topology and differ only in their inductances.

% of energy in higher harmonics Maximum magnitude voltage
Pre Post Pre Post

Barabási-Albert (BA) 0.410 4.063 0.01548 0.31684
Watts-Strogatz (WS) 1.006 8.701 0.03399 0.51157
Erdös-Rényi (ER) 0.033 7.534 0.002956 0.78902

play a large role in the dynamics of the nonlinear network.
This motivates the following question: how do the eigenvalues of the graph Laplacian in-

fluence the nonlinear network’s properties of frequency upconversion and amplitude boosting?
While it is possible to alter the spectrum of the graph Laplacian by changing the node-edge
relationships in the graph, we can also change its spectrum by keeping the topology fixed
and manipulating the network’s inductances. We formulate and solve the inverse problem of
finding the inductances such that the graph Laplacian achieves a prescribed spectrum. The
solution proceeds via a Newton-type algorithm that takes the desired spectrum as input and
iteratively alters the inductances until a convergence criterion is met.

For three types of random graphs, we find that the Newton-type method effectively
finds circuit inductances that close the gap between the first two eigenvalues of the graph
Laplacian. We conduct a series of numerical experiments to examine the effect of closing
this eigenvalue gap on a given circuit’s ability (i) to transfer energy from the fundamental
driving frequency to higher harmonics, and (ii) to generate high-amplitude output signals.
The results indicate that the two metrics (i-ii) can be improved dramatically by closing the
gap between the graph Laplacian’s first two eigenvalues. Table 2.1 shows results we obtained
for graphs with N = 175 nodes. Though this a small portion of the results we describe later,
this table already illustrates the effect of gap tuning on network performance. Note that each
pre and post circuit have the same graph topology, differing only in their edge inductances.

2.1.1 Connections to Other Systems

We can make several connections between the problem studied in this chapter and other
problems of interest:

• Random elastic networks. Using a mechanical analogy between inductors/capacitors
and masses/springs, the nonlinear electronic network can be transformed into a math-
ematically equivalent network of masses and anharmonic springs [11, Appendix I].
Such random elastic networks have been of recent interest as models of amorphous
solids [85, 64, 82]. For such networks, quartic spring potential energies have been
considered [29]. Nonlinear random elastic networks have also been used to model molec-
ular machines; in this context, tuning the gap between the first two eigenvalues of the
linearized system enables the construction of networks with properties similar to those
of real proteins [83]. Despite this activity, algorithms for computing and manipulating
the frequency response of nonlinear elastic networks have not been developed. Our

7

work addresses this issue directly.

These random elastic networks can be thought of as either (a) spatially inhomogeneous
Fermi-Pasta-Ulam [35] systems on connected graphs, or (b) generalizations of Dyson’s
disordered mass-spring chain [31] to the case of anharmonic spring potential energies
combined with more general network topologies.

• Nonlinear electromagnetic media. The circuit we analyze, for particular values of
the circuit parameters, arises naturally as a finite volume discretization of Maxwell’s
equations for TE/TM modes in a nonlinear medium [13, 14]. The arbitrary connected
graph topology of the circuit corresponds to a finite volume discretization on an
arbitrary unstructured mesh. The algorithms developed here can be used to compute
and optimize the frequency response of nonlinear electromagnetic media.

• Coupled phase oscillator networks. There has been intense interest in nonlinear
phase oscillator networks, primarily due to the ability of such networks to model
biophysical systems featuring synchronization. Though synchronization is not of
primary interest in our system, we may still draw parallels. The effect of network
topology on the properties of coupled phase oscillators has been studied extensively [15,
54, 67, 5]. Manipulating eigenvalues of the Laplacian matrix enables one to enhance a
network’s synchronization properties [49]. More recently, several authors have developed
algorithms for optimizing the synchronization of phase oscillator networks [30, 17, 16,
28, 52, 86]. The questions considered in this subset of the coupled phase oscillator
literature are related to the issues addressed in the present work.

2.2 Problem Formulation

Let H(N, e) be a connected, simple graph with N nodes and e edges. Each edge corresponds
to an inductor that physically connects two nodes. Each node corresponds to a capacitor
and resistor, wired in parallel, that physically connect the node to a common ground. Let
f ≤ N be the number of nodes that are driven by prescribed sources. Since the voltage at
the prescribed source is known, we do not model it using a node. The connection between
the source and the node that it drives is modeled by a half-edge, also known as a dangling
edge since one end is connected to a driven node and the other end does not connect to any
node. We let H(N, e, f) denote the graph together with the f half-edges.

The capacitance and conductance (inverse resistance) at node j are Cj and Gj ,
respectively. We let Vj(t) denote the voltage from node j to ground at time t. The
inductance of edge k is Lk, while the current through edge k at time t is Ik(t). The exact
dimensions for each component of H, along with the currents and voltages, are tabulated in
Table 2.2.

In order to write down Kirchhoff’s laws, we must choose an orientation of the edges.
The orientation of an edge records the direction of positive current flow through the edge. If
we solve the problem with opposite orientations, the only difference we will notice is that the
currents will pick up a factor of −1. Consequently, the orientation we choose does not affect
the solution in any material way. In what follows, we will choose a random orientation of the
edges.

In Figure 2.4, we show an example graph corresponding to H(6, 9, 2). The edges are
oriented randomly. The inputs are connected at nodes 1 and 6 through two inductors. These

8

Table 2.2: Summary of the notation used in this chapter

Notation Significance Size

C Capacitance at node N × 1
L Inductance of edge (e+ f)× 1
G Conductance at node N × 1
V Voltage at node N × 1
I Current through edge (e+ f)× 1
W Input forcing N × 1
B Signed incidence matrix N × (e+ f)

Figure 2.4: An example of a nonlinear electrical network.
In the graph on the left, the numbered circles are nodes, the solid arrows are edges, and the
dashed arrows are half-edges. Orientation of the arrows indicates the direction of positive current
flow. Each node corresponds to a voltage-dependent capacitor to ground, wired in parallel with a
resistor to ground, as depicted in the zoomed-in schematic for node 3. Each edge corresponds to
an inductor. Each half-edge connects one prescribed voltage source to one given node. In the
present work, all methods that are developed are valid for connected graphs with at least one
half-edge. Note that the circuits in Figures 2.1 and 2.3 can all be represented using this graph
formalism.

input nodes correspond to half-edges in H. On the right we view node 3 in detail. Each of the
two edges connected to this node correspond to an inductor. A capacitor with capacitance
C3 and a resistor with conductance G3 connect node 3 to ground.

To arrange Kirchhoff’s laws compactly, we use the N × (e + f) incidence matrix of
H(N, e, f), denoted by B. Let j be an edge connecting the nodes i′ and i. If j is oriented
such that positive current starts at node i′ and flows to node i, we write j = (i′, i). If j is a
half-edge attached to node i, we write j = (∅, i), leaving the first slot empty and orienting
the half-edge so it always points toward the forced node. The entries of the incidence matrix
B are

Bi,j =

1 if j = (i′, i) for some node i′ or i′ = ∅
−1 if j = (i, i′) for some node i′

0 otherwise.

This chapter will only consider single frequency time-harmonic forcing of the form
aeiωt + ae−iωt where a ∈ CN . Let P be an N × (e+ f) matrix with entries Pi,j = 1 if node i
is connected to an input edge j and 0 otherwise. Using the projection matrix P we define
the forcing

W (t) = PT(aeiωt + ae−iωt). (2.1)

9

Using the notation summarized in Table 2.2, Kirchhoff’s laws for the nonlinear circuit
on the graph H(N, e, f) can now be written compactly as

L
dI

dt
= −BTV +W (2.2)

C
dV

dt
= BI −GV. (2.3)

Here L(dI/dt), C(dV/dt), and GV are examples of component-wise multiplication of vectors.
For a, b ∈ Cm, we define c = ab ∈ Cm by cj = ajbj for 1 ≤ j ≤ m. Note that in this case, we
can also write c = diag(a)b. Here diag(a) is the m×m matrix that contains the vector a
along its diagonal ([diag(a)]ii = ai) and is zero elsewhere.

The formulation (2.2 and 2.3) generalizes previous formulations [13, 12] where the
capacitors were constant and the systems considered were linear.

By differentiating (2.3) and inserting it into (2.2), we obtain a second-order system for
the voltages:

d

dt

[
C

dV

dt

]
+G

dV

dt
+ ∆V = Vin. (2.4)

Here

Vin(t) = B[diag(L)]−1W (t) (2.5)

∆ = B[diag(L)]−1BT. (2.6)

Note that ∆ is the weighted Laplacian for the network with edge weights given by reciprocal
inductance.

We assume that the capacitance at node i depends on the voltage at node i:

Ci(Vi) = C0(1− εVi), (2.7)

where C0 ∈ R is a constant. Note that this choice of capacitance function means that (2.4)
features a quadratic nonlinearity.

We can then formulate the frequency response problem for the nonlinear electrical
network: given the amplitude vector a and frequency ω for the forcing function (2.1),
determine the steady-state solution V (t) of (2.4).

2.3 Algorithms for the forward problem

We now discuss two algorithms to solve the frequency response problem defined in the
preceding Section. The two approaches are independent of each other. Correctness of the
algorithms is proved numerically in detail in Section 2.5.1.

2.3.1 Perturbative Algorithm

The first algorithm is based on a perturbative expansion in powers of ε. We use dots to denote
differentiation with respect to time. Substituting the capacitance function (2.7) in (2.4) and
rearranging, we obtain

C0V̈ +GV̇ + ∆V = Vin +
εC0

2

d2

dt2
[
V 2
]
. (2.8)

10

We expand
V (t) = V0(t) + εV1(t) + ε2V2(t) + · · · (2.9)

Inserting (2.9) into (2.8), we obtain equations for each order of ε. At zeroth order, we obtain

C0V̈0 +GV̇0 + ∆V0 = Vin. (2.10)

For k ≥ 1, the k-th order equation is

C0V̈k +GV̇k + ∆Vk = C0 d

dt

[
k−1∑
m=0

Vk−1−mV̇m

]
. (2.11)

We now solve (2.10-2.11). Let us introduce the Fourier transform in time,

ψ̂(α) =

∫ ∞
−∞

e−iαtψ(t) dt, (2.12)

with inverse Fourier transform

ψ(t) =
1

2π

∫ ∞
−∞

eiαtψ̂(α) dα. (2.13)

Note that with these definitions, ̂̇
ψ(α) = iαψ̂(α).

This implies that the Fourier transforms of both sides of (2.10-2.11) can be summarized by
writing

L(α)V̂k(α) =

{
V̂in k = 0

−(α2/2)C0φ̂k(α) k ≥ 1,
(2.14)

where L(α) is the linear operator

L(α) = −α2 diag(C0) + iα diag(G) + ∆, (2.15)

and

φk(t) =

k−1∑
m=0

Vk−1−mVm. (2.16)

By (2.5) and (2.1), we see that

V̂in = 2πB[diag(L)]−1PT (aδ(α− ω) + aδ(α+ ω)) , (2.17)

where δ is the Dirac delta. Then the k = 0 branch of (2.14) yields

V̂0(α) = 2π [a0,1(α)δ(α− ω) + a0,−1(α)δ(α+ ω)] (2.18a)

a0,1(α) = [L(α)]−1B[diag(L)]−1PTa (2.18b)

a0,−1(α) = [L(α)]−1B[diag(L)]−1PTa. (2.18c)

Using the inverse Fourier transform, we have

V0(t) = a0,1(ω)eiωt + a0,−1(−ω)e−iωt

= a0,1(ω)eiωt + c.c.,

11

where “c.c.” stands for the complex conjugate of the previous terms. Here we have used the
property that L(−α) = L(α).

Once we have computed V0(t), we can insert it into (2.16) to compute φ1(t). We will
find that φ1(t) is a linear combination of e−2iωt, e0iωt, and e2iωt. Using this fact in the k = 1
branch of (2.14), we can solve for V̂1(α) and then apply the inverse Fourier transform to
compute V1(t). We will find that V1(t) contains the same modes as φ1(t).

The above shows how we get the perturbative solution algorithm started. Now let us
move to the more general case where we seek Vk(t) for any k ≥ 1. Assume that we have
already computed Vj(t) for 0 ≤ j ≤ k − 1, and that the solution takes the following form:

V2m(t) =

m∑
`=0

a2m,2`+1e
(2`+1)iωt + c.c. (2.19a)

V2m+1(t) =
m+1∑
`=0

a2m+1,2`e
(2`)iωt + c.c. (2.19b)

In words, V2m contains odd modes 1, 3, . . . , 2m + 1, and V2m+1 contains even modes
0, 2, . . . , 2m + 2. Here we assume that 0 ≤ 2m < 2m + 1 ≤ k − 1, and that the ai,j ∈ CN
coefficients are known.

In order to solve for Vk(t), we use the k ≥ 1 branch of (2.14), which requires us to
compute (2.16). We have two cases, when k is odd and when k is even. In both cases, it is a
simple (if tedious) algebraic exercise to show that φk(t) yields:

• when k is odd, a sum of even Fourier modes −(k + 1), . . . ,−2, 0, 2, . . . , (k + 1), and

• when k is even, a sum of odd Fourier modes −(k + 1), . . . ,−3,−1, 1, 3, . . . , (k + 1).

In both cases, it is clear that using (2.14) to solve for V̂k(α) results in a sum of Dirac delta’s.
Applying the inverse Fourier transform yields Vk(t), which will be a sum of Fourier modes.
One can check that Vk(t) will have precisely the form (2.19a) or (2.19b) depending on whether
k is even or odd, respectively.

The algorithm is then clear. Starting with (2.19), we apply component-wise multiplica-
tion to particular pairs of the ai,j vectors in order to compute the coefficients of the Fourier
modes of φk(t) defined in (2.16). Next, we combine the step of solving for V̂k(α) using the
k ≥ 1 branch of (2.14) together with the step of computing the inverse Fourier transform.
After component-wise multiplication of the Fourier coefficients of φk by −(α2/2)C0, we
multiply each coefficient on the left by [L(α)]−1 with α set to match the frequency of the
corresponding Fourier mode. Dividing these coefficients by 2π yields the Fourier coefficients
of Vk(t), as desired.

While we have presented the algorithm in an intuitive way, the statements made above
can be made rigorous, and a convergence theory for the perturbative expansion (2.9) can be
established. This is the subject of future work.

There are a few brief remarks to make about the algorithm presented above:

• As described above, we consider only those networks that contain resistance at all
nodes, i.e., Gi > 0 for all nodes i. Such an assumption is not only physically realistic;
it also guarantees that for all α ∈ R, the matrix L(α) is invertible. The invertibility
for the α = 0 case is a consequence of Corollary 1.

12

• In this work, we are interested in the weakly nonlinear regime where ε‖a‖ is sufficiently
small such that the perturbative method converges as shown in prior work [10]. As
the nondimensional constant ε‖a‖ is increased beyond the breakdown point of the
perturbative method, direct numerical solutions of the equations of motion reveal
subharmonic oscillations, and eventually, chaotic oscillations.

• The fact that the Fourier transform yields the steady-state solution has been explained
in earlier work [10]. By fixing an arbitrary set of initial conditions and using the
Laplace transform to derive the full solution, one can show that after the decay of
transients, the part of the solution that remains is precisely what we obtain using the
Fourier transform. This also explains why it was not necessary for us to specify initial
conditions for (2.4) —the initial conditions only influence the decaying transient part
of the solution.

2.3.2 Iterative Algorithm

The perturbative method developed above shows us that the solution V (t) is a sum of
harmonics where the fundamental frequency is given by the input frequency ω. This implies
that the steady-state solution V (t) is periodic with period T = 2π/ω since all other Fourier
coefficients will be zero This observation leads us to ask whether it is possible to directly
solve for the Fourier coefficients of V (t) without first expanding in powers of ε. In this
section, we develop a fixed point iteration scheme that accomplishes this task.

First, we integrate both sides of (2.8) from t = 0 to t = T to derive

∆

∫ T

0
V (t) dt = 0. (2.20)

We show below that as long as the network contains at least one half-edge, ∆ is invertible.
Hence (2.20) implies ∫ T

0
V (t) dt = 0. (2.21)

This means there is no zero/DC mode present in V (t), motivating the Fourier series expansion

V (t) =

∞∑
k=1

αke
ikωt + c.c. (2.22)

In order to compute the solution, we truncate at k = M , leading to an approximation V ≈ V :

V (t) =

M∑
k=1

αke
ikωt + c.c. (2.23)

Using orthogonality we derive

αk =
1

T

∫ T

0
e−ikωtV (t) dt.

Using the T -periodicity of V and integration by parts, we have

1

T

∫ T

0
e−ikωtV̇ (t) dt = ikωαk.

13

To simplify notation, we combine (2.1) and (2.5) and write Vin = weiωt + c.c. where

w = B[diag(L)]−1PTa. (2.24)

Now let δm,n denote the Kronecker delta function which equals 1 if m = n, and 0 otherwise.
We multiply both sides of (2.8) by e−ikωt, integrate from t = 0 to t = T , and finally divide
by T to obtain

L(kω)αk = wδk,1 + wδk,−1 +
εC0(ikω)2

2
Ṽ 2

k, (2.25)

where L was defined in (2.15) and

Ṽ 2
k =

1

T

∫ T

0
e−ikωtV 2 dt. (2.26)

Because the form of the nonlinearity is simple, we can insert (2.23) into (2.26) and derive

Ṽ 2
k =

M∑
`=−M

α`αk−`, (2.27)

with the understanding that α0 = 0, α−j = αj for j > 0, and αj = 0 for |j| > M . We insert
(2.27) into (2.25) and obtain

L(kω)αk = wδk,1 + wδk,−1 −
εC0k2ω2

2

M∑
`=−M

α`αk−`.

We convert this into an iterative scheme in a natural way. Let α(j)
k denote the j-th iterate,

and assume that αk terms appearing on the left-hand side are at iteration j + 1, while those
appearing on the right-hand side are at iteration j. Let A(j) denote the N ×M complex
matrix whose k-th column is α(j)

k . Then the scheme is

A(j+1) = FM (A(j)) (2.28)

where the k-th column of the matrix FM (A(j)) is

FMk (A(j)) = [L(kω)]−1

(
wδk,1 −

εC0k2ω2

2

M∑
`=−M

α
(j)
` α

(j)
k−`

)
. (2.29)

Here we assume 1 ≤ k ≤M , which is also why we have deleted the second Kronecker delta
from the right-hand side.

Starting at A(0), we iterate forward using (2.28), stopping the computation when
‖F (A(j))−A(j)‖ is below a specified tolerance. Note that in our implementation of F , we
precompute and store the LU factorization for the M matrices {L(kω)}Mk=1, since this part
of the computation of the right-hand side of (2.29) does not change from one iteration to the
next.

Again, we have derived the algorithm but have not proven its convergence. Instead,
we will demonstrate empirically that the algorithm converges using several numerical tests.

14

2.4 Inverse Problem

In this section, we consider the inverse problem of finding a set of inductances such that ∆,
the Laplacian defined by (2.6), achieves a desired spectrum. Before describing an algorithm
to solve this inverse problem, we review basic spectral properties of ∆.

Lemma 1 Assume all inductances are positive. Then ∆ as defined in (2.6) is symmetric
positive semidefinite, and all its eigenvalues must be nonnegative.

Proof. Let [diag(L)]−1/2 be the diagonal matrix whose (i, i)-th element on the diagonal
is L−1/2

i , for 1 ≤ i ≤ e. Since Li > 0, the matrix ∆1/2 = B[diag(L)]−1/2 is real. Then

∆ = ∆1/2
(
∆1/2

)T, and for any v ∈ RN , we have vT∆v =
[(

∆1/2
)T
v
]T (

∆1/2
)T
v ≥ 0. 2

Let {λi}Ni=1 denote the spectrum of ∆, with eigenvalues arranged in nondecreasing
order: λ1 ≤ λ2 ≤ · · · ≤ λN . The above argument shows that λ1 ≥ 0. We can be more
precise about this: if there are no half-edges, then λ1 = 0, while the presence of at least one
half-edge causes λ1 > 0.

Lemma 2 Let H = H(N, e) be a connected graph with N nodes, e edges, and zero half-edges.
For a particular orientation of the graph, let B denote the signed incidence matrix. Then
rank(B) = N − 1.

Proof. Let r be any integer from 1 to N − 1. Consider any subset S of r vertices of the graph.
Take the sum of the rows of the incidence matrix corresponding to the elements of S. This
sum cannot be zero; if it were, there would be no path connecting S to the complement Sc

and the resulting graph would not be connected. Hence the sum of these rows must contain
a nonzero entry. As the same would be true if we considered linear combinations of the rows
corresponding to S, we conclude that any subset of at most N − 1 rows must be linearly
independent. At the same time, if we take the sum of all the rows we get a zero row, because
each column contains precisely one +1 and one −1. 2

Lemma 3 Let H′ = H(N, e, f) be a connected graph with N nodes, e edges, and f > 0
half-edges. For a particular orientation of the graph, let B′ denote the signed incidence matrix.
Then rank(B′) = N .

Proof. Without loss of generality, we can assume that the N × (e+ f) incidence matrix B′ is
organized such that the first e columns correspond to full edges, while columns e+1, . . . , e+f
correspond to half-edges. Now choose any j such that 1 ≤ j ≤ f , and examine column e+ j
of B. Let k be the unique row in which this column contains ±1. Since row k of B is the only
row that contains an entry in column e + j, row k is linearly independent from the other
N − 1 rows of B. By Lemma 2, the submatrix of B consisting of all rows other than row k
has rank N − 1. Including row k increases the rank by one, yielding a rank N matrix. 2

Lemma 4 For a connected graph H′ = H(N, e, f) with N nodes, e edges, and f > 0 half-
edges, let ∆ be the edge-weighted graph Laplacian defined in (2.6). Assume all inductances
are positive. Then rank(∆) = N .

15

Proof. The (e+f)×(e+f) diagonal matrix [diag(L)]−1 has rank e+f > N . LetB be the signed
incidence matrix for a particular orientation of H′. By Lemma 3, rank(B) = N , implying
rank(B[diag(L)]−1/2) = N , which implies rank(∆) = rank

[
(B[diag(L)]−1/2)(B[diag(L)]−1/2)T

]
=

N . 2

Corollary 1 Let H′, ∆ and the inductances satisfy the hypotheses of Lemma 4. Then ∆ is
symmetric positive definite and all eigenvalues of ∆ are positive, i.e., 0 < λ1 ≤ λ2 ≤ · · · ≤ λN .

Proof. Combine Lemmas 1 and 4. 2

We now describe an algorithm that quantifies how we must change the vector of
inductances L in order to make ∆ have a desired set of eigenvalues. In what follows, we
assume we work with a system that satisfies the hypotheses of Corollary 1.

For n ≤ N , let λ∗ = (λ∗1, . . . , λ
∗
n)T denote a vector of desired eigenvalues satisfying

0 < λ∗1 ≤ λ∗2 ≤ · · · ≤ λ∗n.

We treat the vector of inductances L as a variable, and let λ(L) denote the sorted vector of
eigenvalues of the graph Laplacian ∆ defined in (2.6). Since ∆ is symmetric, it possesses
an orthonormal basis of eigenvectors. We assume that vj(L) is the normalized eigenvector
corresponding to λj(L).

Now let F : Re+f → Rn be the function

F(L) =

λ1(L)
λ2(L)

...
λn(L)

−

λ∗1
λ∗2
...
λ∗n

 . (2.30)

We now apply a version of Newton’s method to find a zero of this function. To
use Newton’s method we will need to compute the Jacobian J(F(L)). Let primes denote
differentiation with respect to Lk. To form the Jacobian we need to find

λ′j :=
∂

∂Lk
λj(L).

We proceed by implicit differentiation, starting from the eigenvector equation

∆vj(L) = B[diag(L)]−1BTvj(L) = λj(L)vj(L).

Differentiating both sides with respect to Lk, and omitting the dependence on L, we obtain

B([diag(L)]−1)′BTvj +B[diag(L)]−1BTv′j = λ′jvj + λjv
′
j . (2.31)

Since ∆ is symmetric,

vT
j B[diag(L)]−1BT = (B[diag(L)]−1BTvj)

T = (λjvj)
T = vT

j λj . (2.32)

Multiplying (2.31) on the left by vT
j and using (2.32) together with (vj)

Tvj = 1, we obtain

vT
j B([diag(L)]−1)′BTvj = λ′j , (2.33)

16

where

([diag(L)]−1)′ :=
∂

∂Lk
([diag(L)]−1) =

[
0, 0, · · · ,− 1

L2
k

, · · · , 0
]T

.

Using λ′j we can compute the entries of the Jacobian matrix and the corresponding Newton’s
method with pseudoinverse becomes

L(i+1) = L(i) − [J(F(L))]†F(L) (2.34)

where † denotes the Moore-Penrose pseudoinverse.
Using (2.34) as shown might produce inductances such that the ratio of the largest

to smallest inductance is too large. In order to avoid these large variations, we constrain
ε−1 ≤ Li ≤ ε. We incorporate these constraints using an active set approach, replacing F by
the function Gi : Re+f+m → Rn+m, where i denotes the iteration number and m denotes the
number of constraints violated by L(i). Let Q± denote the functions

Q+(x) =

{
1
2x

2 x > 0

0 x ≤ 0,
and Q−(x) =

{
0 x ≥ 0
1
2x

2 x < 0.
(2.35)

For every constraint p violated from below, we set Gip(L) = Q−(Lp−ε−1). For every constraint
q violated from above, we set Giq(L) = Q+(Lq − ε). Since the Q± functions are continuously
differentiable, it is easy to compute the Jacobian J(Gi(L)) and then apply the algorithm

L(i+1) = L(i) −
[
J(Gi(L))

]†
(Gi(L)). (2.36)

Algorithm (2.36) can be used to alter all the eigenvalues of the system if n = N and λ∗ ∈ RN .
Alternatively, one can set n = 2 and only request the two smallest eigenvalues to be changed
to λ∗1 and λ∗2, respectively.

In the next section we show that altering the lowest eigenvalue λ1 is enough to cause
higher energy transfer to the higher modes. To show, we will use (2.36) to change λ1 to some
desired value, keeping λ2 constant. We note that since we do not constrain λ3, · · · , λN , they
can change as a result of altering L, but λ2 ≤ λj for j ∈ {3, . . . , N} will be maintained.

For all applications of this inverse problem algorithm described in the next section,
we use (2.36) with the initial conditions L(0) = [1, 1, . . . , 1]T and the constraint violation
parameter ε = 103.

2.4.1 Gap Tuning: Methodology

How does the steady-state voltage in the nonlinear circuit change as a function of the gap
between the first two eigenvalues of the graph Laplacian ∆? In this section, we address
this question by combining the perturbative/iterative algorithms with the inverse problem
algorithm. We describe numerical experiments designed to test the effect of closing the graph
Laplacian’s first eigenvalue gap on the circuit’s ability to (a) transfer more energy to higher
harmonics, and (b) generate higher-amplitude output signals.

We conduct our numerical experiments on three types of random graphs, all generated
using the NetworkX package [43]:

• Barabási-Albert (BA), a preferential attachment model with one parameter, m, the
number of edges to draw between each new node and existing nodes [8]. We set m = 3
in our experiments.

17

• Watts-Strogatz (WS), a small world model with two parameters, k, the number of
nearest neighbor nodes to which each node is initially connected, and p, the probability
of rewiring each edge [84]. In our experiments, we set k = 5 and p = 0.3.

• Erdös-Rényi (ER), a classical model in which edges are drawn independently with
uniform probability p [33]. In our experiments, we set p = 0.25.

When we produce realizations of any of these graphs, we accept only those graphs that are
connected.

Suppose we have used one of these three models to generate a connected, random
graph with N nodes. To make this a concrete circuit problem, we set C0

i = 1 for all nodes i,
and Lj = 1 for all edges j. We fix the nonlinearity parameter ε = 0.5. We select bN/10c
nodes uniformly at random, and attach half-edges to these nodes with inductance Lj = 1.
For each node i, we set the conductance Gi = 0.15 for the BA and WS graphs, and Gi = 0.5
for the ER graphs. This selection will be explained in more detail below.

With these parameters set, we have enough information to compute the graph Laplacian
∆ defined by (2.6). As we did before, let λ1, . . . , λN denote the eigenvalues of ∆ sorted
in increasing order. We set the forcing frequency ω =

√
λ2. Since this value is a resonant

frequency of the linear, undamped system we expect it lies close to a resonance for the
nonlinear, damped system. The type of forcing we consider is A sinωt, a special case of (2.1)
with a = A/(2i).

With this setup, we use both the perturbative method and the iterative method to
compute the steady-state solution V (t). For the perturbative method, we solve up to order
9, and for the iterative method, we solve using 20 modes. This means that the iterative
scheme captures ten modes—11ω through 20ω—that are not captured by the perturbative
scheme. We compare the two solutions as a check for whether the number of modes we have
considered is sufficient. In all tests, we find that there is no significant difference between
the solutions, implying that the first 10 harmonics—ω through 10ω—are sufficient to resolve
the solution.

Since ε = 0.5, the capacitance model (2.7) is valid only for Vi < 2. For all computed
solutions, we check that the maximum voltage across all nodes in one cycle satisfies this
constraint.

One quantity of interest in our simulations is the amount of energy in the higher
harmonics. Let Ψ be an N ×M complex matrix such that the j-th column of Ψ contains
the Fourier coefficients of the +jω mode over all N nodes. Here j goes from 1 to M , the
maximum mode to which the solution is computed. We then define

κpre =
1

N

N∑
n=1

∥∥∥(Ψn2,Ψn3, . . . ,ΨnM)T
∥∥∥

2∥∥∥(Ψn1,Ψn2, . . . ,ΨnM)T
∥∥∥

2

, (2.37)

the fraction of energy in modes +2ω and higher, averaged over all nodes. We also compute

Vpre = max
1≤i≤N

max
0≤t≤T

|Vi(t)|, (2.38)

the maximum magnitude voltage produced anywhere in the circuit during one period. For
both κ and V, the subscript “pre” denotes that these quantities have been computed before
we change L to manipulate the eigenvalues of ∆.

18

Table 2.3: Eigenvalue gaps for random graphs.
For each of three types of random graphs, we vary the number of nodes N and record the first
eigenvalue gap λ2 − λ1. The displayed results have been averaged over 200 realizations.

N = 25 N = 75 N = 125 N = 175

Barabási-Albert (BA) 0.6408 0.3561 0.3155 0.2850
Watts-Strogantz (WS) 1.4180 1.3255 1.2970 1.2758
Erdös-Rényi (ER) 1.5469 8.6936 17.7061 26.5297

Having computed κpre, we now study how this fraction changes when we reduce the
gap between the first two eigenvalues of ∆. For a fixed δ ∈ (0, 1), we set λ∗1 = δλ2 and
λ∗2 = λ2, and then apply the inverse problem algorithm.

Using (2.36), we solve for a vector of inductances L∗ such that the first two eigenvalues
of ∆ are given by λ∗1 and λ∗2. When we iterate forward using (2.36), if we find that
||Gi(L)||2 ≥ 10−12 after 200 iterations, we generate a new random graph and restart the
experiment. In our current work we rely on the Newton-step and do not try to find the
optimal step length which can cause certain graphs configuration to lead to slow convergence.
The 200 iteration limit is employed strictly to ensure fast simulations. In our simulations,
we have not found any graph configuration unable to solve the inverse problem if we let the
solver run for more steps.

We recompute the graph Laplacian ∆ using the new vector inductances L∗, and again
apply the perturbative and iterative algorithms to solve for the steady-state solution V (t).
Using this solution, we compute the energy in the higher harmonics using the right-hand
side of (2.37), now labeling this average fraction as κpost. We also compute the right-hand
side of (2.38) and label this quantity as Vpost.

Let us now describe how we choose the particular values of the conductance Gi and
the eigenvalue fraction δ. In Table 2.3, we tabulate λ2 − λ1, the gap between the second
and first eigenvalue for each of the three types of random graphs described above. The
eigenvalue gaps we present are averaged over 200 simulations for each of four graph sizes:
N ∈ {25, 75, 125, 175}.

We observe that the eigenvalue gaps for the BA and WS graphs do not change
appreciably as a function of N , while for ER graphs, the gaps grow quickly as a function of N .
Our choice of δ is guided by these results. For BA and WS graphs, we choose δ ∈ [0.5, 0.99].
For ER graphs, we choose δ ∈ [0.25, 0.75].

When we solve for the steady-state voltages on these three types of graphs, we also
notice a difference. For ER graphs, the maximum voltage grows quickly as a function of N ,
while for BA and WS graphs, the same phenomenon does not occur. To counteract the large
growth of maximum voltages for large graph sizes, we set the conductance Gi to the larger
value of 0.5 for ER graphs, causing more energy to dissipate through resistors. For BA and
WS graphs, we set Gi to 0.15.

19

2.5 Results and Discussion

2.5.1 Comparison of Steady-State Algorithms

In this section, we compare steady-state solutions computed by numerical integration against
the solutions computed using the perturbative and iterative methods derived earlier.

For the tests described in this section, the domain is a 20 × 20 square lattice with
N = 400 nodes. Nodes along the left and bottom boundaries of the lattice are driven by
input forcing. The input provided is 0.03 sin(ωt) with ω = 1. For the capacitance model
(2.7), we set C0 = 1 and ε = 0.5. For each edge j, we set Lj = 1. The conductance Gi is set
to 0.01 at all points except for the top-right corner, where it is set to 1.0.

To compare the results of the perturbative and iterative methods against the numerical
integrator, we will need to obtain the steady-state solution using the numerical integrator. To
do this, we start at t = 0 and numerically integrate the first-order system (2.2-2.3) forward
in time for 1500 cycles. The ODE solver uses the Dormand-Prince (dopri5) method with
relative and absolute tolerances equal to 10−10 and 10−12, respectively. For the parameters
given above, this number of cycles is sufficient so that, from one cycle to the next, the change
in the solution is on the order of the relative tolerance of the numerical integrator. Hence we
take the solution over the last cycle to be the steady-state solution.

The ODE solvers we tried are not state-of-the-art solvers and there exist other solvers
which might be able to solve the current problem both accurately and faster than the dopri5
solver. Since these approaches do not form the thesis of our work, we do not pursue any
such possibilities. As a result, our work does not provide an exhaustive discussion of possible
approaches.

As a preliminary check, we directly compare the three steady-state solutions. We
treat the solution obtained from numerical time integration as a reference solution zref(t).
Let z(i)(t) denote either the perturbative or iterative solution after i iterations—for the
perturbative method, the iteration count is defined as the largest mode number present in
the solution. Let T be the period of the steady-state solution, and for an integer τ > 0,
consider the equispaced discretization of the interval [0, T] given by {tk = kT/τ}k=τ

k=1 . For
each iteration i, we evaluate both the the perturbative/iterative and reference solution on
this equispaced grid with τ = 64 points, and we compute the error

E(i) =

1

τ

N∑
j=1

τ∑
k=1

(
z

(i)
j (tk)− zref

j (tk)
)2

1/2

. (2.39)

In Figure 2.5 we have plotted log10 E(i) as a function of the iteration i. While both methods
initially tend towards the reference solution, we see from Figure 2.5 that the error does not
drop below 10−9. In the following subsections, we provide evidence that the reference solution
is less accurate than the solutions computed using the perturbative/iterative methods. This
explains why the error in Figure 2.5 does not go to zero, i.e., why the perturbative/iterative
methods will not converge to the solution produced by time integration.

Our first tests concern the Fourier coefficients of the computed solutions. In what
follows, we use A to denote the vector of Fourier series coefficients associated with a
steady-state solution computed using any of the three methods discussed above.

20

Figure 2.5: Error between perturbative/iterative solutions and reference solution.
The reference solution has been computed via numerical time integration. We plot the log of
the error as a function of the number of iterations. As shown in Figures 2.6 and 2.7 together
with Tables 2.4 and 2.5, the perturbative/iterative solutions are more accurate than the reference
solution. This explains why, in the above plot, the perturbative and iterative solutions do not
converge to the reference solution.

Table 2.4: Comparison of the three solutions using the fixed point error metric
(2.40).
The numerical time stepping solutions as noted below is further away from the fixed point of the
system as compared to the other methods.

Scheme max1≤k≤M
∥∥αk − FMk (A)

∥∥
∞

Numerical 2.035× 10−11

Perturbative 3.4321× 10−16

Iterative 2.7144× 10−16

Fixed Point Error

Suppose that V (t) is an exact T -periodic steady-state solution of (2.4). If we were to expand
this solution in a Fourier series as in (2.22), the resulting (infinite) coefficient vector A would
satisfy A = F∞k (A) for all k, with F as in (2.29).

In both the perturbative and iterative methods, what we seek is a finite-mode truncation
of the exact solution. For the iterative method we fix M = 20 so that the highest mode has
frequency 20ω. In the perturbative method we solve up to order 19, which implies that the
highest mode in the solution has frequency 20ω.

Combining the ideas of the last two paragraphs, it is natural to use

EM (A) = max
1≤k≤M

‖αk − FMk (A)‖∞ (2.40)

as an error metric for the M -mode truncation of the exact solution. In Table 2.4, we record
(2.40) for solutions computed using the perturbative, iterative, and numerical integration

21

Figure 2.6: Log of the fixed point error (2.40) of the perturbative/iterative solutions
after i iterations.
Up to iteration 16, both curves are close to linear with slopes of −2.1407 (perturbative) and
−2.2326 (iterative), indicating exponential convergence of both methods. Note that only 10
iterations are required to reach error values which correspond to that of the numerical integrator’s
solution.

methods. Note that the iterative and perturbative methods directly provide us with the
Fourier coefficients necessary for this calculation. We compute the Fourier coefficients of the
numerical integrator’s solution using the FFT. Table 2.4, shows that the perturbative and
iterative solutions are about five orders of magnitude closer to being fixed points of FMk than
the solution obtained from numerical integration.

For the perturbative and iterative methods, let us examine how the fixed point error
(2.40) decreases as a function of iteration count. In Figure 2.6, we plot log EM (A(i)) versus the
iteration number i. Here A(i) is the vector of Fourier coefficients for the solution computed
after only i iterations. The plot shows that, for both the perturbative and iterative methods,
approximately 10 iterations are required to match the fixed point error of the solution
computed using time integration. The error of this latter solution, taken from Table 2.4, is
represented on Figure 2.6 by a horizontal black line.

Figure 2.6 also shows that the perturbative and iterative methods converge exponentially
in the number of iterations. From iteration 1 until iteration 16, fitting lines of best fit to the
perturbative and iterative error curves results in slopes of −2.1407 and −2.2326, respectively.
For both methods, this can be approximated by writing EM (A(i)) ∼ e−2i. After 16 iterations,
the error has approached machine epsilon, and both curves level off before reaching the final
values shown in Table 2.4.

Decay Rate

Suppose we write the first-order system (2.2 –2.3) in the form ż = F(z, t), with z = (I, V)T.
Then on the open set D = {I ∈ Re+f , V ∈ RN , t ∈ R | |Vi| < ε−1, 1 ≤ i ≤ N}, the vector
field F : D → Re+f+N is C∞, i.e., F is j times continuously differentiable for any integer

22

Figure 2.7: Decay of Fourier coefficients.
We plot log ‖αk‖ versus k to illustrate the decay of Fourier coefficients for the three methods.
The iterative and perturbative curves coincide and are nearly linear with slope −2.8004; the
exponential decay of these Fourier coefficients is consistent with theory. The time integrator’s
Fourier coefficients do not decay after mode 10, violating the theoretical decay rate.

j ≥ 1. By the standard existence/uniqueness theorem for ordinary differential equations, it
follows that wherever the solution z(t) = (I(t), V (t))T exists, it must also be C∞ in t.

The above observation enables us to test the decay of the Fourier coefficients of all
three solutions. For if the steady-state solution V (t) is C∞ in t, then the Fourier series
coefficients of V must satisfy the following decay property:

For all ` ≥ 1, there exists C` such that ‖αk‖ ≤ C`k−`. (2.41)

To examine the decay of the Fourier coefficients for the three computed solutions, we plot
log ‖αk‖ versus k in Figure 2.7. For the perturbative and iterative solutions, the curves on
the plot coincide and are nearly linear with slope −2.8004. This implies that ‖αk‖ ∼ e−2.8k,
which is sufficient to satisfy the theoretical decay rate given by (2.41).

The Fourier coefficients obtained from the numerical integrator’s solution, on the other
hand, do not decay at all beyond mode 10. This violates the theoretical decay rate (2.41)
even for ` = 1.

Energy Conservation

Next we test the energy conservation properties of the three computed solutions. We proceed
to derive an energy balance equation. Because our capacitors are voltage-dependent, the
charge Q and voltage V are related via dQ = C(V)dV , which implies

dQ

dt
= C(V)

dV

dt
.

Using this in (2.3) together with (2.2), we obtain

ITL
dI

dt
+ V T dQ

dt
= ITW − V TGV. (2.42)

23

Table 2.5: Comparison of the three solutions’ preservation of the energy balance
(2.44).
The perturbative and iterative method shows machine precision energy balance while the numerical
time stepping method is about 6 orders of magnitude lower in terms of energy balance preservation
over 1 cycle.

Scheme
∣∣∣∫ T0 ITWdt−

∫ T
0 V TGV dt

∣∣∣
Numerical 5.7841× 10−12

Perturbative 2.1684× 10−18

Iterative 1.2576× 10−18

Let M(t) be the total energy stored in the magnetic fields of all inductors at time t. Then

dM

dt
:=

d

dt

[
1

2

e+f∑
i=1

LiI
2
i

]
=

e+f∑
i=1

IiLi
dIi
dt

= ITL
dI

dt
,

the first term on the left-hand side of (2.42). Let E(t) be the total energy stored in the
electric fields of all capacitors at time t. Then

dE

dt
:=

d

dt

[
N∑
i=1

∫ Qi(t)

0
Vi(q)dq

]
=

N∑
i=1

Vi
dQi
dt

= V T dQ

dt
,

the second term on the left hand side of (2.42). Hence (2.42) reads:

d

dt
(M(t) + E(t)) = ITW − V TGV. (2.43)

If the system has reached a T -periodic steady state, then I(t), V (t), M(t), and E(t) will
all be T -periodic. Therefore, integrating (2.43) in t from t = 0 to t = T , we find that the
left-hand side vanishes. The remaining terms yield the following energy balance equation:∫ T

0
ITWdt =

∫ T

0
V TGV dt. (2.44)

The left-hand side is the energy pumped into the system over one cycle, while the right-hand
side denotes the energy dissipated through resistors, again over one cycle.

Table 2.5 shows the absolute difference between the left- and right-hand sides of (2.44),
computed for each of the three methods. We find that for the perturbative and iterative
methods’ energy balance errors are below machine epsilon. The numerical integrator yields
an error approximately five orders of magnitude larger than that of the two other methods.

Computational Time

The results presented thus far indicate that whether we measure error using the fixed point
error (2.40) or the violation of the energy balance (2.44), the solution obtained via numerical
integration has errors that are approximately five orders of magnitude larger than that of the
perturbative/iterative methods. The actual values of the errors committed by the numerical
integrator in Tables 2.4 and 2.5, as well as the final error values for the curves in Figure 2.5,

24

Table 2.6: Timing results for three frequency response algorithms.
For the numerical method, Time I records the time required to integrate forward by 1500 cycles and
obtain a solution with fixed point error ≈ 2×10−11 as in Table 2.4. For the perturbative/iterative
methods, Time I records the time required to compute 10 iterations, resulting in a fixed point
error comparable to that of the numerical method—see the crossing of the curves with the black
horizontal line in Figure 2.6. For the perturbative/iterative methods, we also record under Time
II the time required to achieve the O(10−16) errors as in Table 2.4. All times are averaged over
10 runs.

Scheme Time I (to achieve comparable error) Time II (to achieve O(10−16) error)

Numerical 483.2126 s N/A
Perturbative 1.71024 s 7.29115 s
Iterative 0.68374 s 0.89012 s

are close to the numerical integration relative and absolute tolerances of 10−10 and 10−12,
respectively. We hypothesize that, if computational time were not an issue, we could run
the numerical integrator with smaller tolerances and obtain steady-state solutions that more
closely match, in the same error metrics described above, the perturbative and iterative
solutions.

As we now proceed to show, computational time is a major issue for the time integration
method. In Table 2.6, we record the time required to compute steady-state solutions using
the three methods. We see from the Time I column that to achieve the error of ≈ 2× 10−11

in Table 2.4, the numerical integrator requires over 483 seconds. We know from Figure 2.6
that the perturbative/iterative methods require 10 iterations to achieve approximately the
same error as the time integrator; the remaining entries in the Time I column show that
both the perturbative and iterative algorithms compute such a solution hundreds of times
faster than the time integrator.

The Time II column in Table 2.6 records how long it takes the perturbative/iterative
algorithms to achieve the errors recorded in Table 2.4. Observe that even if we run the
perturbative/iterative algorithms all the way to full convergence, they are much faster than
time integration. In this case, the time integrator is 542 (respectively, 66) times slower than
the iterative (respectively, perturbative) algorithm.

Note that the perturbative and iterative algorithms were implemented in Python using
the Numpy/Scipy packages. The dopri5 implementation used for numerical time integration
is the implementation provided by the scipy.integrate.ode module. All times reported are
average times across 10 runs on the same machine.

2.5.2 Gap Tuning

For each N ∈ {25, 75, 125, 175}, and for each of 10 values δ chosen in an equispaced fashion
from the intervals given above, we compute 100 runs of the complete procedure described
above—see Gap Tuning: Methodology Section 2.4.1. For each such run, we compute pre/post
values of κ and V for three values of the input forcing amplitude, which we take to be the
same at all input nodes k: Ak ∈ {0.001, 0.005, 0.01}. These results for κ and V, averaged
over the 100 runs, are plotted in Figures 2.8, 2.9, and 2.10.

Figure 2.8 shows the results for Barabási-Albert (BA) graphs. By shrinking the gap
between the first two eigenvalues, the percentage of energy transferred to higher harmonics

25

Figure 2.8: Barabási-Albert random graph results.
From left to right, we present results for Barabási-Albert random graphs with N = 25, 75, 125,
and 175 nodes. For each graph, we use algorithm (2.36) to modify the inductances L such that
the ratio of the smallest to the second smallest eigenvalue is δ. We use pre and post to denote,
respectively, the graphs before and after algorithm (2.36) is applied.
By shrinking the gap between the first two eigenvalues, the energy transferred to higher harmonics
(2.37) can be increased from approximately κpre ≈ 0.5% to κpost ≈ 5% (for all graph sizes), and
the maximum voltage (2.38) can be increased from Vpre < 0.05 volts to Vpost ∈ [0.3, 0.5] volts
(depending on the graph size). We also note that for larger graphs, choosing δ = 1 (i.e., no gap
between the first two eigenvalues) does not yield optimal behavior.

(2.37) can be increased by approximately one order of magnitude, for all graph sizes, while
the maximum magnitude voltage (2.38) can be increased by a factor of 6 to 20, depending
on the graph size. Note that for larger graphs, choosing δ = 1, i.e., forcing the first two
eigenvalues to coincide, does not yield optimal energy transfer to higher harmonics.

The results in Figure 2.9 for Watts-Strogatz (WS) graphs are similar to those for BA
graphs. We again find that by shrinking the gap between the first two eigenvalues, the
energy transferred to higher harmonics (2.37) can be increased. However, the values of
κpost for Watts-Strogatz graphs are about twice as large as the values of κpost for Barabási-
Albert graphs in Figure 2.8. For all graph sizes, tuning the eigenvalue gap can increase
the percentage of energy transferred to higher harmonics by a factor of up to 8, while the
maximum magnitude voltage can be increased by approximately one order of magnitude.

In Figure 2.10, we present the results for Erdös-Rényi graphs. The results again
support the finding that by shrinking the gap between the first two eigenvalues, the circuit
can transfer more energy to higher harmonics and boost the peak magnitude of output signals.

26

Figure 2.9: Watts-Strogatz random graph results.
From left to right, we present results for Watts-Strogatz random graphs with N = 25, 75, 125,
and 175 nodes. For each graph, we use algorithm (2.36) to modify the inductances L such that
the ratio of the smallest to the second smallest eigenvalue is δ. We use pre and post to denote,
respectively, the graphs before and after algorithm (2.36) is applied.
By shrinking the gap between the first two eigenvalues, the energy transferred to higher harmonics
(2.37) can be increased from κpre ≈ 1% to κpost ≥ 8.75% (for all graph sizes), and the maximum
voltage (2.38) can be increased from Vpre ≈ 0.05 volts to Vpost ≈ 0.5 volts (for all graph sizes).
The values of κpost for Watts-Strogatz graphs are about twice as large as the values of κpost for
Barabási-Albert graphs in Figure 2.8.

27

Specifically, we see that the energy transferred to higher harmonics (2.37) can be increased
to κpost ∈ [1, 8]%, and the maximum voltage (2.38) can be increased to Vpost ∈ [0.1, 0.8].

The results for Erdös-Rényi graphs are much more strongly dependent on the number
of nodes N than the results shown in Figures 2.8 or 2.9. Note that the peak voltages for
the N = 175 graphs with forcing amplitude 0.01 are the largest voltages for any graphs
considered in this chapter. We can increase the peak voltages for smaller graphs by choosing
a smaller value of the conductance than Gi = 0.5 (for all nodes i), the value used to compute
the results in Figure 2.10.

For all three types of graphs, both pre and post values of κ and V increase as a function
of the input forcing amplitude.

Code

All code necessary to reproduce the above results have been posted as a public repository on
GitHub, accessible at the following URL:

https://github.com/GarnetVaz/Nonlinear-electrical-oscillators

We use Python together with the numpy, scipy, matplotlib, and networkx modules for all
numerical computing. The code that generates Figures 2.8,2.9, and 2.10 is set to utilize 10
processors using the open-source multiprocessing module. For plotting, we use R together
with the ggplot2, plyr, and reshape packages. All languages, packages and modules used
are open source.

Assuming all packages and modules have been correctly installed, one can reproduce all
results by running the Python codes numerical_comparison.py and graphmulti.py. The
latter code may require several hours to run. The Python codes will generate figures using
R; the R codes we provide need not be run independently.

Further details on how to run the codes, including the specific versions of required
packages and modules, are given in the README.md file at the URL given above.

The code that we provide can easily be modified to run simulations not described
here. For example, one can compare the perturbative/iterative algorithms against numerical
integration using graphs other than the 20× 20 grid graph used above. One can also explore
gap tuning results for random graphs with different parameters than the ones we have chosen.

2.6 Conclusion

For nonlinear electrical circuits on arbitrary connected graphs, we have developed two
numerical methods to compute the steady-state voltage. Using both absolute metrics and
relative comparisons with a solution obtained via direct numerical integration, we validated
the new algorithms. The results show that for the same error tolerance, both the perturbative
and iterative methods are orders of magnitude faster than the solution obtained by time
stepping. Moreover, these methods are able to capture the behavior in high Fourier modes
and converge to machine precision in a fixed point error metric.

In the following chapter, we show how we can apply the steady-state algorithms
developed above to solve Maxwell’s equations in nonlinear electromagnetic media [14]. This
application makes use of the correspondence between the nonlinear electrical network and a
finite volume discretization of Maxwell’s equations on an unstructured mesh.

28

Figure 2.10: Erdös-Rényi random graph results.
From left to right, we present results for Erdös-Rényi random graphs with N = 25, 75, 125, and
175 nodes. For each graph, we use algorithm (2.36) to modify the inductances L such that the
ratio of the smallest to the second smallest eigenvalue is δ. We use pre and post to denote,
respectively, the graphs before and after algorithm (2.36) is applied.

By shrinking the gap between the first two eigenvalues, the energy transferred to higher
harmonics (2.37) can be increased to κpost ∈ [1, 8]% (depending on the graph size), and the
maximum voltage (2.38) can be increased to Vpost ∈ [0.1, 0.8] (depending on the graph size).

The results for Erdös-Rényi graphs are much more strongly dependent on the number
of nodes N than the results shown in Figures 2.8 or 2.9. Note that the peak voltages for the
N = 175 graphs with forcing amplitude 0.01 are the largest voltages for any graphs considered in
this chapter. We can increase the peak voltages for smaller graphs by choosing a smaller value of
the conductance than Gi = 0.5 (for all nodes i), the value used to compute the results in this
figure.

29

In order to enhance the nonlinearity-driven features of these circuits, we developed
a Newton-like algorithm that alters the eigenvalues of a network’s graph Laplacian. The
algorithm leaves the topology of the network untouched, changing only the inductances, i.e.,
the edge weights. By applying the Newton-like algorithm to three types of random graphs,
we showed that reducing the gap between the graph Laplacian’s first two eigenvalues leads to
enhanced nonlinear behavior. Comparing pre- and post-optimized circuits, it is evident that
optimizing the eigenvalue gap significantly increases (i) energy transfer from the fundamental
driving frequency to higher harmonics, and (ii) the maximum magnitude output voltage.

In both the perturbative and iterative algorithms, the only way in which the network’s
structure influences its frequency response is through the graph Laplacian matrix. In our
experiments, we have tuned this graph Laplacian’s first eigenvalue gap by holding the topology
of the graph constant and altering the edge weights, i.e., inductances. What if we had instead
tuned the gap by holding the edge weights constant and altering the topology of the graph?
This would amount to altering the incidence matrix B instead of the inductance vector L. So
long as both types of alterations result in the same graph Laplacian ∆, our results indicate
that the nonlinear electrical network’s functionality should be enhanced significantly. This,
of course, leads to the question of whether it is possible to algorithmically alter the network
topology to achieve a particular graph Laplacian matrix, an interesting avenue for further
work.

30

Chapter 3

FVFD Method for Nonlinear
Maxwell’s Equations

3.1 Introduction

In Chapter 2 we devised two algorithms for the solution of nonlinear RLC circuits where the
underlying topology of the graphs is random. In this chapter, we show how these algorithms
can be applied to solve for the steady-state solutions for nonlinear inhomogeneous Maxwell’s
Equations on arbitrary domains when subjected to harmonic forcing.

Maxwell’s equations for the (H1,H2,E) polarized mode in a planar inhomogeneous
medium with permittivity ε(x, y, E) and permeability µ(x, y) are given by

∂t(µΛ) = −∇E, Λ = (−H2, H1) (3.1a)
∂t(εE) = − div Λ. (3.1b)

We consider an arbitrary domain Ω and use dΩ to denote its boundary. We split the boundary
dΩ into two disjoint regions dΩf and dΩb. The boundary dΩf corresponds to the boundary
where time-harmonic forcing is applied and dΩb corresponds to the part of the boundary
where appropriate boundary conditions are applied. Throughout this chapter we consider a
real forcing applied on dΩf which has a period T and can is represented by a general form

E(x, y, t)
∣∣

dΩf
= f(x, y, t)

∣∣
dΩf

+ c.c. (3.1c)

where “c.c.” reprents the complex conjugate of f . The forcing function f is real and is also
T–periodic i.e. f(x, y, t) = f(x, y, t+ T). For the boundary condition on dΩb we use the
Leontovich boundary conditions given by

Λ · n̂ = σ(x, y)E(x, y, t), (3.1d)

where n̂ represents the unit outward normal to dΩb.
Setting µ(x, y, E) = µ0 and ε(x, y, E) = ε0 results in linear Maxwell’s Equations. This

chapter considers the case when µ(x, y, E) = µ(x, y) but ε(x, y, E) still depends on E. The
specific form of dependence of the permittivity involves a linear dependence on the electric
field as given by

ε(x, y, E) = ε0(1− bE). (3.2)

31

Here ε0 is a constant which is dependent on space but not on the electric field E. For
notational convenience we do not display ε0 as a function of space. The specific choice of
nonlinearity might seem very restrictive but we mention that the methods developed can be
easily extended to other nonlinearities as noted in the conclusion.

Our first goal is to show that the finite volume method obtained by discretizing the
considered Maxwell’s equations (3.1) along with (3.2) lead to a circuit problem consisting
of voltage-dependent capacitors, inductors and resistors. The formulations naturally obey
Kirchoff’s laws, thereby ensuring energy conservation for the system as a whole.

The equivalent circuit formulation for the case when the permittivity was independent
of the electric field but had spatial variation has been developed in previous work [13]. The
current work extends it to the case of polynomial nonlinearity in the permittivity of the
material.

Numerical methods for Maxwell’s Equations have a long history spanning over five
decades. In our current work we derive equivalent circuits whose continuum limit yields
Maxwell’s Equations. There exists a large volume of study of such circuit formulations
in the literature starting from work as early as the 1940’s [55]. Recently, whenever a new
numerical method is developed for the solution of Maxwell’s Equations the equivalent circuit
formulation is studied later. For example, the equivalent circuit formulations for (i) the finite
difference time domain method [42], (ii) the finite element time domain method [41], (iii)
finite volume Fourier domain method [13], (iv) Transmission Line Matrix method [26] and
(v) Method of Moments [34] have been studied. Our current work continues on the use of
equivalent circuits for nonlinear Maxwell’s Equations.

3.2 Finite Volume Discretization of Maxwell’s Equations

To derive equivalent circuit based relations for the system defined in (3.1), we discretize
the computational domain with a triangulation. The derivation does not rely on a specific
discretization and the method can be used with quadrilateral, hexagonal or hybrid meshes.
An interior cell i along with its adjoining triangles is shown in Figure 3.1. For each cell i we
use bi to denote its barycenter. For the three edges of the triangle i we denote the outgoing
normal vector by n̂i,p where p is the cell sharing an edge with i. Similarly, we use m̂i,p to
denote a unit normal in the direction of the vector joining bi to bp. In order to relate the two
sets of normal vectors we define a counter-clockwise rotation matrix Ri,p given by

Ri,p =

[
cos θi,p − sin θi,p
sin θi,p cos θi,p

]
.

For each set of vectors n̂i,p, m̂i,p there exists a θi,p such that the relation

n̂i,p = Ri,pm̂i,p

holds true. We define the voltage in cell i having area Ωi as

Vi[E] :=
η

|Ωi|

∫
Ωi

E dΩi (3.3)

where η > 0 is the characteristic length scale in the out-of-place direction. The corresponding

32

Figure 3.1: Cell diagram for an interior triangle i along with the neighboring tri-
angles.
n̂ represents the unit normal vector to an edge of the triangulation. Ω represents the volume of
the cells. The red lines connect the barycenters of neighboring triangles.

A

BC

D

E

F
Ωi

Ωj

Ωk

Ωl

n̂i,j

n̂i,k

n̂i,l

charge in cell i is defined as

Qi[E] :=

∫
Ωi

ε(x, y, E)E dΩi =

∫
Ωi

ε0
(
E − bE2

)
dΩi (3.4)

where we have substituted the permittivity from (3.2) above. We are treating Vi and Qi as
functionals: in both cases, the input is a function E(x, y, t) and the output is a function of t.
This highlights the dependence of Vi and Qi on E, and enables us to analyze the change in
these functionals with respect to E.

To compute functional derivatives, let φ be a test function in Ωi. Then〈
δVi
δE

, φ

〉
=

[
d

dγ
Vi[E + γφ]

]
γ=0

=

 d

dγ

η

|Ωi|

∫
Ωi

(E + γφ) dΩi

γ=0

=
η

|Ωi|

∫
Ωi

φ dΩi,

This implies that
δVi
δE

=
η

|Ωi|
, (3.5)

33

a constant. Proceeding in a similar fashion for the charge Qi we have〈
δQi
δE

, φ

〉
=

[
d

dγ

∣∣∣∣
γ=0

Qi[E + γφ]

]
γ=0

=

 d

dγ

∣∣∣∣
γ=0

∫
Ωi

ε0
(
E + γφ− b(E + γφ)2

)
dΩi

γ=0

=

∫
Ωi

ε0(1− 2bE)φ dΩi.

This now implies that
δQi
δE

= ε0(1− 2bE). (3.6)

Using (3.5) and (3.6) we can derive the relation

δQi = ε0(1− 2bE)δE =
|Ωi|
η
ε0(1− 2bE)δVi.

Let the capacitance of cell i be denoted by Ci. We define Ci by

Ci :=
δQi
δVi

=
|Ωi|
η
ε0(1− 2bE). (3.7)

Replacing ε0 and E by their spatial averages, we have the approximation

Ci ≈
|Ωi|
η

 1

|Ωi|

∫
Ωi

ε0

1− 2b
1

|Ωi|

∫
Ωi

E dΩi

=
|Ωi|
η
ε0

(
1− 2

η
bVi

)
. (3.8)

We also have the approximation

Qi ≈ ε0
∫
Ωi

E − bE2 dΩi

= ε0

 |Ωi|
η
Vi − b

∫
Ωi

E2 dΩi

≈ ε0

 |Ωi|
η
Vi − bE

∫
Ωi

E dΩi

= ε0

(
|Ωi|
η
Vi −

b

η
Vi
|Ωi|
η
Vi

)
=
|Ωi|
η
ε0

(
Vi −

1

η
bV 2
i

)
. (3.9)

34

One can check that (3.8) is the derivative of (3.9) with respect to Vi, i.e., if we let Ci and Qi
denote the approximations derived in (3.8-3.9), then

dQi = Ci(Vi)dVi,

which implies that
dQi
dt

= Ci(Vi)
dVi
dt
. (3.10)

Consider now the time derivative of the charge, Q̇i. Using the definition of Qi from (3.4)
and using (3.1b) we can derive

Q̇i = CiV̇i =

∫
Ωi

∂t(εE) dΩi = −
∫
Ωi

div Λ dΩi = −
∮
∂Ωi

ΛT · n̂ dl. (3.11)

Let γ(p) represent the edge of the triangle that separates cells i and p. Using the definition
of the rotation matrix Ri,p we introduced earlier, (3.11) will lead to

CiV̇i =
∑

p∈{k,j,l}

−
∮
γ(p)

ΛT n̂i,p dl

=
∑

p∈{k,j,l}

−
∮
γ(p)

ΛTRi,pm̂i,p dl

=
∑

p∈{k,j,l}

−
∮
γ(p)

[
RTi,pΛ

]T
m̂i,p dl. (3.12)

We define the currents flowing from cell i to cell p by Ii,p and relate them to the magnetic
field with

Ii,p := −
∮
γ(p)

ΛT · m̂i,pdl. (3.13)

Using this definition in (3.12) we can close the relationship between the time derivative of
charge and current by

CiV̇i =−
∑

p∈{k,j,l}

∮
γ(p)

[(I +O(θi,p))Λ]T m̂i,p dl

=−
∑

p∈{k,j,l}

Ii,p +O(θi,p) (3.14)

If we assume that in the limit of zero mesh spacing, the mesh asymptotically approaches
a mesh of equilateral triangles, then in this same limit, θi,p → 0 and the above calculation
becomes exact. In other words, an asymptotically equilateral mesh implies that the normal
n̂i,p will asymptotically coincide with the unit mesh vector m̂i,p. For the special cases of
meshes made entirely of equilateral triangles or rectangular meshes, θi,p = 0 and the relation
holds exactly.

35

To obtain a similar relation for the rate of change of current, we can take the time
derivative of the current Ii,p and using (3.1a) we obtain

İi,p =

∮
γ(p)

− 1

µ
(∇E)T m̂i,p dl.

We approximate µ by its average value on the segment γ(p), i.e.,

µ ≈ 〈µ〉 :=
1

|γ(p)|

∮
γ(p)

µ dl.

Then
İi,p ≈ −

1

〈µ〉

∮
γ(p)

(∇E)T m̂i,p dl.

Let γ(p)∗ denote the midpoint of γ(p). We use the midpoint rule to approximate the line
integral and obtain

İi,p ≈ −
|γ(p)|
〈µ〉

[
(∇E)T m̂i,p

]
γ(p)∗

.

The quantity in square brackets is the directional derivative of E in the m̂m,n direction,
which we approximate using a difference quotient:

İi,p ≈ −
|γ(p)|
〈µ〉

Ep − Ei
|~mi,p|

.

Here Em and En are the electric fields evaluated at the barycenters of cells m and n,
respectively. We approximate these quantities by their cell averages, i.e., for k ∈ {i, p},

Ek ≈
1

|Ωk|

∫
Ωk

E dx ≈ Vk
η
.

Using this approximation, we have

İi,p ≈
|γ(p)|
〈µ〉

Vi − Vp
η|~mi,p|

.

If we define the inductance of the inductors connecting cell i to cell p by

Lγ = Li,p =
η|~mi,p|
|γ(p)|

〈µ〉 =
η|~mi,p|
|γ(p)|

1

|γ(p)|

∮
γ(p)

µ dl, (3.15)

we can relate the rate of change of current with the voltages as

Lγ İm,n ≈ Vm − Vn. (3.16)

36

3.2.1 Boundary conditions & forcing terms

Suppose the cell i shares an edge γf with the forced boundary dΩf . In order to handle the
forcing we introduce a ghost cell i′ which is a mirror reflection of the cell i such that they
share the edge γf . We now compute the voltage at the cell i′ by

Vi′ ≈
η

|Ωi′ |

∫
Ωi′

E dΩi ≈
η

|γf |

∫
γf

Edl ≈ η

|γf |

∫
γf

f(x, y, t)dl (3.17)

The ghost cells introduce new currents which can now be used to produce the forcing as
defined in (3.1c). The line integral can be handled with any choice of quadrature along γf .

If the cell i shares an edge γb with the boundary dΩb then we need to impose the
conditions as in (3.1d). We have from (3.11)

CkV̇k =−
∫
γb

Λ · n̂ dl −
∫

∂Ωk\γb

ΛT · n̂ dl

=−
∫
γb

σE dl −
∫

∂Ωk\γb

ΛT · n̂ dl (3.18)

The second line integral can be evaluated as before and we focus on the first integral. We
have ∫

γb

σEdl ≈

 1

|γb|

∫
γb

Edl

∫
γb

σdl

≈

 η

|Ωk|

∫
Ωk

E dΩi

1

η

∫
γb

σdl

≈ VkGk (3.19)

where we define the conductance on the boundary cell by Gk given by

Gk :=
1

η

∫
γ

σ dl (3.20)

Note that if σ = 0 then (3.1d) and (3.1) imply that ∇·E = 0, a perfectly insulating boundary
condition. If σ =∞ then 3.1d yields E = 0 on the boundary which represents a perfectly
conducting boundary condition. In this chapter, we choose σ to approximate outgoing
boundary conditions which are obtained as follows. Dotting (3.1a) with n̂ and using (3.1d)
we obtain

∂tE +
1

εσ
∇E · n̂ = 0

At each edge where the outgoing boundary condition is to be applied the value of σ(x, y) we
choose to implement (3.1d) is

σ =

√
ε0(x, y)

µ(x, y)
.

37

3.3 Assembly and Solution

In the previous section we derived relations between the E,H fields and V, I respectively.
We have also derived relations to physically discrete notions of capacitance, inductors and
resistors and used the dual graph of the triangulation as the graph connecting the various
components. This formulation is exactly the same as the one described in the previous
chapter for random graphs.

In short, we may have already solved some nonlinear Maxwell Equation system already.
While random graphs need not be planar, they may not correspond to an actual finite
volume discretization. The dual graph of the interior of a triangulation will be a planar
3-regular graph. This is the big difference between the work done in contrast to the previous
chapter. We can think of the current work as a specific case of a general problem solved in
the previous chapter. Once we have considered a discretization of the domain and computed
the inductance, capacitance and conductance values and know the dual graph there is no
difference in the solution technique. The derivation of the discrete system follows very closely
as described in Section (2.2) with some small changes to suit the application in mind.

The second-order discrete system is shown again below for reference:

d

dt

[
C

dV

dt

]
+G

dV

dt
+ ∆V = Vin. (3.21)

where

Vin(t) = B[diag(L)]−1W (t) (3.22)

∆ = B[diag(L)]−1BT. (3.23)

From (3.8) the capacitance function can be written as

Ci(Vi) = C0(1− b′Vi), (3.24)

where C0
i := |Ωi|

η (ε0)i ∈ R is a constant for each cell i and b′ = 2/η. This choice of capacitance
function means that (3.21) features a quadratic nonlinearity.

Unlike in the previous chapter, we allow the generalize the forcing function to any
smooth function which can be approximated using a Fourier series.

f(x, y, t) =
∞∑

k=−∞
ak(x, y)eikωt + c.c. (3.25)

In order to implement this input numerically we truncate the series to contain only L modes
to obtain

f(x, y, t) ≈
L∑

k=−L
ak(x, y)eikωt + c.c. (3.26)

In order to implement this time-harmonic forcing we collect all the Fourier coefficients into
k distinct vectors Ak ∈ CN for k ∈ {−L · · ·L}. Here, Ak[i] is the local coefficient of the
Fourier series over the cell i as obtained from (3.17).

In order to solve the system we can use either the perturbative approach as described
in Section (2.3.1) or the iterative method described in Section (2.3.2).

38

The difference between the iterative and perturbative method is minimal with respect
to the solution accuracy as was demonstrated in Section (2.4.1). From an implementation
standpoint the iterative solver is easier to implement, since it does not need us to keep track
of the current order and incrementally build solutions. This helps ease setup and makes the
code easier to maintain so we only implement the iterative method.

The simulation results described in Section (2.4.1) consisted of very small problems of
size smaller than 200 nodes. Since our current application lies in solving Maxwell’s Equations,
we can no longer use such small problem sizes. As a result we use the PETSc framework to
solve medium-scale problems. The implementation details are described in Appendix A. We
first begin by explaining the details of the simulations conducted.

3.4 Simulations

In this section we explain the numerical simulations conducted and discuss the convergence
of the numerical scheme that was developed. In past work we have solved (3.1) for the case
b = 0 using structured rectangular meshes [10]. The derivation in Section (3.2) extends
the work to general meshes. The numerical results we discuss are split into linear (L) and
nonlinear (N) cases. We further split the problem into two tests for homogeneous (LH,NH)
and inhomogeneous (LI, NI) medium cases. In all cases, the domain Ω consists of a square
[0, 1]× [0, 1] and we set η = 1. The forcing is applied to the left boundary and the general
form is

f(0, y) = e−a(y−0.5)2eiωt + c.c. (3.27)

where a is a constant equal to 150 in all simulations. This input is a special form of (3.26)
where we have only one k value which equals ω. For the linear cases there are no higher
harmonics generated. Even with a single input frequency the nonlinear case generates higher
harmonics through the product αlαk−l as seen in (2.29).

For the homogeneous test cases (LH,NH), we set µ = 1 and ε0 = 9 throughout the
domain. For the inhomogeneous case (LI,NI) we consider a medium modeled after a photonic
crystal device [50]. This medium consists of a circular array of inclusions with a linear defect.
The permittivity is ε0 = 9 outside the circular inclusions and ε0 = 1 inside. The permeability
of the medium is left unchanged at µ = 1. The circular inclusions have a radius of 1/40
and are separated from each other with a distance of 1/10. The linear defect is obtained by
removing the inclusions along the y = 0.5 axis.

Mesh Generation. For all decompositions of the domain Ω we use triangles. The algorithm
does not constrain us to use any particular discretization method and we could have used
quadrilaterals, hexagons or a combinations of any of then. Since the mesh distribution
cannot be done for heterogeneous meshes we use triangulations, which are more flexible than
quadrilateral meshes. Each test case is split further into two cases consisting either entirely of
equilateral triangles (E) or by unstructured triangles (U). The use of unstructured triangles
provides great flexibility in adapting the mesh to curved material inhomogeneities. Note
that the use of unstructured mesh leads to (3.14) not being satisfied exactly. We compare
the solutions in each case for two mesh types. The unstructured meshes are generated so
as to force small triangulations near regions of high contrasting material properties for the
inhomogeneous cases (LIU, NIU). For the unstructured homogeneous case (LHU, NHU) we

39

build meshes that contain smaller triangles around y = 0.5, the axis along which the forcing
propagates. All unstructured meshes we generated used DistMesh [69]. The meshes range
from size 1K-500K cells for the equilateral case and 1K-300K for the unstructured case.

Choice of parameters. Once the material properties are decided we need to select the
strength of nonlinearity b′ in (3.24) and fundamental frequency ω in (3.27). For the simulations
each instance of the problem is solved for b′ ∈ {0.005, 0.01} for ω ∈ {0.2, 0.4, 0.6, 0.8} ∗ (2π).
We use α to denote the unscaled values of ω corresponding to α = {0.2, 0.4, 0.6, 0.8}. In all
computations we solve for the first 10 Fourier coefficients {ω, 2ω, . . . , 10ω}.

Error computation. The case b = 0 leads to the linear Maxwell equations and the
exact solution for this case with homogeneous medium was used to compute the error in
past work [10]. We use the same exact solution here to compute the error for the linear
homogeneous test case. For all other cases we do not have a closed-form solution. In order
to derive the convergence order of the method, we use the solution obtained on the finest
grid as the reference solution corresponding to a particular choice of material properties
along with b and ω. Since successive meshes are not obtained from refining coarse meshes we
cannot directly approximate the error of a coarse mesh with respect to the fine mesh. One
problem we face if we try to recursively refine a mesh is the degradation of mesh quality
which is essential for our method. Let Sf represent the solution obtained from the fine mesh
and Sc represent a coarse mesh solution. Note that for both cases Sf and Sc are composed
of Fourier coefficients for 10 modes. The number of Fourier coefficients for each mode of the
fine solution is greater than the coarse solution since the finer mesh has more triangles. The
procedure we use to compute the error is as follows. Let R correspond to a uniform square
mesh over Ω. Let Rl,m correspond to the mid-points of each square in R where the indices
l,m are used to enumerate the rectangles in the x, y directions respectively. We interpolate
Sf onto the grid R and perform a similar interpolation for Sc. The interpolated solutions
on R are denoted by S̃f and S̃c respectively where both solutions now contain 10 modes at
the same points. Let S̃∗(p, k) represent the Fourier coefficient of the solution at point p ∈ R
corresponding to mode k. If R is decomposed into squares of sides δx then the error between
the fine and coarse solution within one single square of side δx can now be computed as

E = ‖(S̃f − S̃c)δx‖. (3.28)

By summing over the entire region and over all the harmonics we obtain the full error.

3.4.1 Software

For all computations, we use the PETSc library [6]. The PETSc library allows us to solve
the problems in a distributed computing environment. The mesh is distributed across all
processors and computations of the parameters C0, L,G and Vin are done locally on each
processor. Rather than compute the incidence matrix B, we instead form the matrix ∆
directly since we do not need the incidence matrix while solving the second order system.
For the iterative procedure in (2.29), we need to solve k linear systems until convergence.
For the results in this paper, we use a direct solver to obtain a LU decomposition of each
matrix L(kω). We use the SuperLU_DIST package [60], to obtain this decomposition. A more
detailed explanation of the implementation along with further run-time details provided in
the Appendix A.

40

Figure 3.2: Convergence plot for the linear simulations.
The x-axis corresponds to the logarithm of the maximum edge length among all triangles used.
The error is computed with respect to the exact solution. The red lines correspond to LHU while
the blue lines correspond to the LHE test cases. The convergence for the equilateral triangulations
is monotonic while for unstructured meshes it is not.

−7

−6

−5

−4

−3

−5 −4 −3

Maximum h

L
o

g
 E

rr
o

r

α

0.2

0.4

0.6

0.8

Case

LHE

LHU

3.4.2 Convergence results

We now discuss the convergence of the test problems using the setup described before. For
each set of tests we provide a convergence plot along with the slope indicating the rate of
convergence. For the convergence plots we have plotted the error computed using (3.28) as a
function of the maximum edge length among all the triangles used in the mesh. For each test
case the results are shown for various values of α. We discuss each case separately below.

Linear homogeneous case. The linear homogeneous case is the only one for which we
have an exact solution available. This exact solution at the centroids of the triangles is used as
a reference solution. These solutions were obtained in previous work [13]. There are two test
cases (LHE and LHU) which fall under this criterion since the discretization does not play any
role in the exact solution. The log-log error plot for these two cases for different values of α
are shown in Figure 3.2. The x-axis corresponds to the logarithm of the maximum edge length
of the triangles and the y-axis plots the logarithm of the error obtained for each case. The
red lines correspond to convergence plots for unstructured meshes and blue lines correspond
to convergence obtained for equilateral triangles. We also provide the corresponding rate of
convergence in Table 3.1. The drop in the rate of convergence for unstructured meshes can
be attributed to the error introduced in Equation 3.14. The equilateral triangulation does
not have this problem due to the equation being satisfied exactly and hence converges to
first order exactly. This highlights the importance of generating high quality meshes. An
alternative is to use only regular meshes such as the equilateral triangulation mesh or a
square mesh, thereby simplifying the convergence process considerably.

41

Table 3.1: Order of convergence for linear homogeneous problem.
The error computation for the linear homogeneous cases is done with respect to the exact solution.
The LHE case corresponds to the use of equilateral triangulation while the LHU uses unstructured
triangulations.

α LHE LHU

0.2 1.0054 0.8320
0.4 1.0113 0.8454
0.6 1.0298 0.7995
0.8 1.0877 0.7511

Figure 3.3: Order of convergence for linear inhomogeneous problem.
Log-Log error plot for linear inhomogeneous test cases. The red lines correspond to LIU while
the blue lines correspond to the LIE test cases. The error computations are done with respect to
the solutions obtained from the finest mesh.

−10

−9

−8

−7

−6

−5

−5 −4 −3

Maximum h

L
o

g
 E

rr
o

r

Case

LIE

LIU

α

0.2

0.4

0.6

0.8

Linear inhomogeneous case. For the inhomogeneous test cases we do not have an exact
solution. In order to compute the order of convergence, we use the finest mesh solution as
an approximation to the exact solution and compute the errors as mentioned in Section 3.4.
The log-log error plots are shown in Figure 3.3. The corresponding rate of convergence is
tabulated in Table 3.2. From the Table 3.2 we see that even with the use of unstructured
meshes we obtain a first order rate of convergence.

Nonlinear test cases For the nonlinear cases, we solve for the first 11 harmonic frequencies
{ω, 2ω, . . . , 10ω}. The strength of the nonlinearity b′ in (3.24) is set to either 0.005 or 0.01
to test for effects of the parameter on the method. The convergence plots for b′ = 0.005 is
shown in Figures 3.4. Figure 3.5 shows the corresponding plot for b′ = 0.01. In each figure
we plot the error on the y-axis as a function of the maximum edge length over all triangles in
the triangulation for both the equilateral triangulation case as well as the unstructured mesh
case. From both these figures we see that the error drops as we reduce the maximum edge

42

Table 3.2: Order of convergence for linear homogeneous problem.
The error computation for the linear inhomogeneous cases is done with respect to the solution
obtained from the finest mesh. The LIE case corresponds to the linear inhomogeneous solutions
based on equilateral meshes while the LIU case uses unstructured meshes. The order of convergence
is dependent on the underlying mesh and the methodology used to obtain the error.

α LIE LIU

0.2 1.3206 1.1764
0.4 1.2573 1.3190
0.6 1.3953 1.1273
0.8 1.3204 1.0944

length over all triangles. In Table 3.5, we tabulate the order of convergence for all the test
cases obtained by fitting a line of best fit for convergence plots. The order of convergence for
all cases is close to 1 as expected. The results show that having an equilateral triangulation
gives consistent results while the convergence of unstructured meshes is affected by the
triangulation with respect to monotonicity.

For the nonlinear case the fixed point algorithm will be used and we would like to
ensure that the number of iterations required to obtain convergence does not grow excessively
as we increase the size of the problem. In order to verify this we also provide the number
of iterations required for the iterative solver to converge. The convergence is tested by
comparing two consecutive solutions and we declare convergence when the difference is below
10−10. Table 3.3 shows the number of iterations required for the fixed point solver to converge
for the equilateral triangulations and the corresponding Table 3.4 shows the iterations for
the unstructured meshes. From the Tables, we see that the number of iterations required
increases slightly as the forcing frequency increases. The number of iterations required for
the solver to converge is independent of the size of the problem. The maximum number of
iterations for the homogeneous problem is 14 while the inhomogeneous problem takes less
than 13 iterations to reach convergence.

3.5 Conclusion

We have developed a new numerical method for the solution of nonlinear Maxwell’s equations
that can handle material inhomogeneity and is independent of the underlying mesh, i.e.,
can handle triangular, quadrilateral or hybrid conforming meshes. The conversion of the
time-domain problem to a Fourier-domain problem enabled us to obtain the steady-state
solution of the system without needing to step forward in time. While we only demonstrated
results with a single forcing frequency α, the algorithm enables solutions for any harmonic
forcing by breaking it into constituent frequencies. This further allows us to use the method
for triangular/sawtooth forcing functions. While the algorithm is built only for a quadratic
nonlinearity, the iterative procedure we used does not have this constraint. In (2.29), the
product αlαn−l is a convenient product we obtained for the convolution due to our choice
of nonlinearity. If we instead choose any other bounded nonlinearity, while it may not be
possible to obtain such a simple product, one can always use a corresponding quantity in
the time-domain and then convert it back into the Fourier domain. This makes the method
greatly flexible in its ability to handle complex nonlinear functional dependence of the

43

Table 3.3: Number of iterations for fixed point solver to converge for equilateral
triangulation.
We see that the number of iterations to convergence is almost constant as a function of mesh size.
An increase in frequency causes the number of iterations to increase as does the magnitude of the
nonlinearity b′. The convergence of the solver is checked by comparing two consecutive solutions
and ensuring that the difference is smaller than 10−10. The maximum number of iterations is
less than 14 in all cases.

type b’ α 1K 3K 23K 28K 36K 54K 92K 187K

homogeneous

0.005

0.2 5 5 5 5 5 5 5 5
0.4 6 6 6 6 6 6 6 6
0.6 6 7 6 6 6 6 6 6
0.8 8 7 7 7 7 7 7 7

0.01

0.2 5 5 5 5 5 5 5 5
0.4 7 7 7 7 7 7 7 7
0.6 8 9 8 8 8 8 8 8
0.8 9 10 9 10 10 10 10 10

inhomogeneous

0.005

0.2 4 5 5 5 5 5 5 5
0.4 6 6 6 6 6 6 6 6
0.6 7 7 8 8 8 8 8 7
0.8 8 8 8 9 9 8 8 8

0.01

0.2 5 5 5 5 5 5 5 5
0.4 7 7 8 7 7 7 7 7
0.6 9 9 10 10 10 10 10 10
0.8 9 14 12 13 12 12 11 11

permittivity on the electric field.
To the best of our knowledge, we do not know of any other method available which

can solve for the steady-state solution while providing scalability at the same time. The
current work is a first step in this direction. Given the feasibility of our approach there are
many avenues for further research in order to extend our work.

If unstructured mesh are not required then by using either equilateral triangulations
or rectangular meshes our algorithm can yield results without the introduction of errors in
(3.12). On the other hand if the use of unstructured meshes is necessary for a particular
application then a good quality mesh generator becomes a crucial part of the method. Most
mesh generators for partial differential equations are built with the finite element procedure
in mind. For such methods, as long as the minimum angle is above a certain threshold
the mesh is considered acceptable. For our case, we would really want the meshes to be
as close to the optimal meshes. For the triangular mesh case, by optimal we mean meshes
such that the normal from a cell center to its neighbor should lie in the same direction as
the line joining the centroids of the triangles. Rather than rely solely on mesh generation
software an alternate approach is to use a mesh optimization software like Mesquite [21].
A simple Laplacian smoothing of the mesh with local geometry already built in may be
sufficient. The Mesquite package can be used with the Message Passing Interface thereby
allowing much larger meshes to be used. Also, the package is flexible enough to provide a

44

Table 3.4: Number of iterations for fixed point solver to converge for unstructured
meshes.
The number of iterations for convergence to within 10−10 is independent of the size of the mesh.
For higher values of forcing frequency the number of iterations needed increases. There is no
noticeable difference between the homogeneous and inhomogeneous test cases. As we increase the
strength of the nonlinearity the number of iterations needed for the fixed-point solver to converge
increases.

type b’ α 3K 12K 21K 48K 76K 135K 196K 306K

homogeneous

0.005

0.2 5 5 5 5 5 5 5 5
0.4 6 6 6 6 6 6 6 6
0.6 7 7 7 6 7 6 6 6
0.8 8 8 8 7 7 7 7 7

0.01

0.2 5 5 5 5 5 5 5 5
0.4 7 7 7 7 7 7 7 7
0.6 10 9 8 8 8 8 8 8
0.8 13 12 11 10 10 10 9 9

inhomogeneous

0.005

0.2 5 5 5 5 5 5 5 5
0.4 6 6 6 6 6 6 6 6
0.6 7 8 8 7 8 7 7 8
0.8 8 9 9 9 9 8 8 8

0.01

0.2 5 5 5 5 5 5 5 5
0.4 7 8 8 8 7 7 7 7
0.6 10 11 11 9 10 10 10 10
0.8 12 12 13 12 12 12 12 12

specific optimization function with which to alter the mesh. Because we know the criterion
our meshes optimally should satisfy, this approach might work very well.

The graph Laplacian which is the dual graph of the triangulation contains only 3
non-zeros for each row regardless of the mesh size. This is an extremely sparse matrix and
one could use iterative schemes to solve the fixed point (2.29). The direct solvers are much
faster for the problem sizes that we considered here. In the future if we desire to solve
problems of much larger sizes it might be beneficial to consider iterative solvers. The linear
systems we need to solve are of the form

A[k] = (2πik)2C0 + (2πik)Gi + ∆.

The matrix ∆ is a symmetric positive definite matrix. The diagonal component involving
the capacitance and the conductance change depending on the harmonic we are interested in
solving. PETSc allows one to define a shell matrix which could be very beneficial in this
case. Since iterative solvers like GMRES would only require one to compute matrix-vector
products all matrices can reuse the Laplacian matrix ∆ without creating further copies.
This formulation could help scale the problem much further depending on our needs. Our
current simulations use a direct solver which enables us to solve for a large number of
harmonics. When using an iterative solver care must be taken to ensure that the solver uses
finer tolerances.

45

Figure 3.4: Convergence plot for nonlinear homogeneous test cases with b′ = 0.005.
Log-Log error plot for nonlinear inhomogeneous test cases with b′ = 0.005. The red lines
correspond to NHU while the blue lines correspond to the NHE test cases.

●

●

●

●

●

●

●

●

●

●

●
●

●

●

−9

−8

−7

−6

−5

−5 −4 −3
Maximum h

Lo
g

E
rr

or

α
● 0.2

0.4

0.6

0.8

Case

NHE

NHU

Table 3.5: Convergence orders for nonlinear homogeneous case (NHE and NHU)
with b′ = 0.005 and b′ = 0.01.

b′ = 0.005 b′ = 0.01
α NHE NHU NHE NHU

0.2 1.198078 0.868255 1.198082 0.868295
0.4 1.207757 1.119995 1.207824 1.119862
0.6 1.222071 0.947510 1.222142 0.947382
0.8 1.258230 0.902042 1.258885 0.902255

The system of matrices we need to solve are complex symmetric and not Hermitian.
There are only some algorithms known to efficiently solve systems of such type [7], [40].
Currently, however, no large-scale implementations exist. Our current implementation uses
the complex matrix directly. Further experiments could be conducted by converting the
complex system into an equivalent real system. Such transformations change the eigenvalue
distribution and hence might be hard to solve, but merit further exploration.

46

Figure 3.5: Convergence plot for nonlinear homogeneous test cases with b′ = 0.01.
The red lines correspond to NHU while the blue lines correspond to the NHE test cases.

●

●

●

●

●

●

●

●

●

●

●
●

●

●

−9

−8

−7

−6

−5

−5 −4 −3
Maximum h

Lo
g

E
rr

or

α
● 0.2

0.4

0.6

0.8

Case

NHE

NHU

Table 3.6: Convergence orders for nonlinear inhomogeneous case (NIE and NIU)
with b′ = 0.005 and b′ = 0.01.

b = 0.005 b = 0.01
α NIE NIU NIE NIU

0.2 1.3250 1.1028 1.3250 1.1028
0.4 1.3611 1.1136 1.3612 1.1137
0.6 1.3446 1.1404 1.3450 1.1404
0.8 1.3521 1.1612 1.3515 1.1617

Figure 3.6: Log-Log error plot for nonlinear inhomogeneous test cases with b′ =
0.005.

●

●

●

●

●

●

●

●

●

●

●

●

●●

−9

−8

−7

−6

−5

−5 −4 −3
Maximum h

Lo
g

E
rr

or

α
● 0.2

0.4

0.6

0.8

Case

NIE

NIU

47

Figure 3.7: Log-Log error plot for nonlinear inhomogeneous test cases with b′ = 0.01.

●

●

●

●

●

●

●

●

●

●

●

●

●●

−9

−8

−7

−6

−5

−5 −4 −3
Maximum h

Lo
g

E
rr

or

α
● 0.2

0.4

0.6

0.8

Case

NIE

NIU

48

Chapter 4

Quantile Regression Tree

4.1 Introduction

Decision trees are one of the most widely used methods in data mining. Trees enjoy various
advantages, among which are interpretability, ability to handle different types of predictors,
and ability to handle missing data. Fitting the tree to data is typically performed using
recursive partitioning algorithms, which can be efficient and scalable. Tree methods in
modern use go back to the works of Breiman et al. [20] and Quinlan [71], which have spawned
numerous variations that attempt to improve the predictive power of the model and/or the
efficiency of the fitting algorithm.

When tree models are applied to regression problems, the most widely used splitting
criterion employs an ordinary least squares (OLS) loss function. Trees built with this OLS
loss may lead to unsatisfactory performance when, for example, the response variable contains
large outliers. To understand why, suppose we have a number of instances at a node that
we are about to split, and that some of these instances contain a few large outliers in the
response variable. Assume there is no split that causes all of the outliers to be separated from
the rest of the instances. Then, whatever split we choose will lead to one or more outliers
at a child node. If these children are leaf (i.e., terminal) nodes, then the OLS tree says the
predicted value should be the mean of the response variable for the instances associated with
the leaf. It is this mean that will be sensitive to the presence of outliers.

To generate trees that are more robust to outliers in the response variable, Breiman et
al. [20, Chap. 8] suggested a splitting criterion based on least absolute deviation (LAD). In
this approach, when we arrive at a leaf node, the predicted value will be the median of the
response variable for the instances associated with the leaf. Consistency of LAD trees has
been proven [24].

In this chapter, we generalize Breiman’s framework to arrive at quantile trees. The
splitting criterion uses a tilted absolute value loss function (4.2) that, in a natural way, allows
us to develop a model for the τ -th quantile of the response variable. The LAD median tree
is included as a special case. There are three main reasons for exploring quantile trees. First,
we hypothesize that quantile trees should share with LAD trees the property of robustness
with respect to outliers. They also give us a natural way to deal with skewed errors. Second,
linear quantile regression has proven useful in many applications, especially when one is
interested in features of the conditional density f(Y |X) that go beyond the conditional
expectation E[Y |X]. Here Y is the response variable and X contains the predictors. Quantile

49

trees should enable us to probe similar features of the conditional density without making
parametric assumptions on the form of the model. Finally, we believe one of the main reasons
that both LAD and quantile trees have not been more widely adopted is that the associated
splitting criteria are viewed as computationally inefficient when compared to OLS trees. It is
of interest to try to design a more efficient, scalable tree algorithm that uses the loss function
(4.2).

Let us briefly discuss prior work where trees have been employed to provide nonpara-
metric estimates of conditional quantiles. In [25], a polynomial is fitted to the instances in
each terminal node. In this scheme, the node splitting criterion involves p-values from linear
quantile regression. This yields a piecewise polynomial model for the conditional quantile
function.

In [62], a forest of OLS trees is modified in one way: the prediction at a leaf node
is not just the mean or median of the response values—instead, we compute the empirical
probability mass function (PMF) of response values. If there are n trees in the forest, then
a new covariate x yields n leaf PMF’s, which are averaged and used to compute a single
empirical CDF. Numerically inverting this CDF yields the quantile estimate. This approach
is called “quantile regression forests.”

Next, [68] uses both the OLS loss and the tilted absolute value loss used here. However,
the estimated conditional quantile at a leaf node is calculated by adding an offset to the
conditional expectation. This approach only works when making strong distributional
assumptions on the model errors; in this case, it is assumed that they are i.i.d. homoscedastic
normal.

Moving beyond LAD and quantiles, [39] has shown that splitting criteria based on
robust M-estimators may lead to more robust trees.

Our work differs from all prior work discussed above in one or both of the following
ways: (1) our splitting criterion is based on a tilted absolute value loss, and (2) our predicted
value at a leaf node is the empirical quantile of the response values at the leaf. Using this
approach, our main contribution is an algorithm which attains the same complexity as OLS
trees.

4.2 Preliminaries

4.2.1 Decision trees

Decision trees are non-parametric models built for supervised learning problems. In supervised
learning the objective is to understand and build a model for a desired response variable
Y . The usual setup involves a set of predictor variables X where X is an N × p matrix
containing all the inputs that were observed. Each row of the matrix corresponds to a single
sample point. The number of samples is denoted by N and there are p predictors. For row
i we observe the output Yi. Table 4.1 provides a small sample of the white wine data set.
The complete data set consists of 11 predictor variables and 1 response variable, and there
are 4198 sample points. We only show 6 of the predictor variables and 4 sample points.
The predictor variables shown include the fixed acidity, volatile acidity, density, pH and
sulphates. The response variable is the quality of the wine. The quality provided in the Table
is determined by wine tasters and the values lie in the range [0,10].

Decision trees use a simplifying heuristic to construct the model. The decision tree

50

Table 4.1: Sample data from white wine data set.
For clarity we only show 6 predictor variables and the response variable in this case is called
quality. The aim is to predict the quality of the wine for an unknown case given the predictor
variables.

fixed acidity volatile acid density pH sulphates alcohol quality

7.0 0.27 1.00 3.00 0.45 8.8 6
6.3 0.30 0.99 3.30 0.49 9.5 6
8.1 0.28 0.99 3.26 0.44 10.1 6
7.2 0.23 0.99 3.19 0.40 9.9 6

obtained for the white wine data set is shown in Figure 4.1. Starting from the entire data
set we recursively partition the data set. At the root node of the tree which includes the
entire data set we ask the question: If we had to split the data into two parts based on the
value of a single predictor variable which one would we use and at what value would we
create the split? If we know how to find such a predictor variable and the value to create our
split we can then continue recursively until needed. While this heuristic of selecting a single
predictor variable at each node might seem very loose, decision trees in fact produce highly
interpretable and accurate prediction models. The exact algorithm used to create each split
for both the OLS trees and the quantile trees is described in the next Section.

For the decision tree shown in Figure 4.1 at the root node the variable chosen by the
algorithm is alcohol and the split value is 11. This means that we split the data set into
two mutually exclusive parts. The left branch contains all the sample points in the data set
which have alcohol content less than or equal to 11, while the right branch will contain the
rest of the sample points. Next, from the sample points which had an alcohol content of
less than 11, we split the points based on the volatile acidity of the samples. If the volatile
acidity is greater than 0.25 then we move such samples to the right and carry on recursively.
However, if the volatile acidity of the samples is less than or equal to 0.25 then we do not
split the samples further. Instead we use the mean or median value of the quality among all
samples which fall under this case as the model response value. In the sample decision tree
shown we would predict the quality of the wine to be 5.4.

4.2.2 Decision tree algorithm

Given p predictors X1, . . . , Xp and the response variable Y , tree models minimize the node
deviance

Snode =
∑
i∈node

ρmodel(yi − θmodel), (4.1)

where ρmodel is the loss function and θmodel is the associated M-estimator. The M-estimator
for a squared loss criterion becomes the mean of the sample while the absolute deviation
criterion leads to the median as the associated M-estimator. We define

ρOLS(x) = x2,

ρQT(x) =

{
(τ − 1)x x < 0

τx x ≥ 0.
(4.2)

51

Figure 4.1: Decision tree obtained for the white wine data set.
The root node splits the data using the amount of alcohol content. If the alcohol content is less
than 11% then we move to the left branch. Otherwise we move to the right branch. Once we
have decided on which one of the branches to take we repeat the procedure until we reach the leaf
nodes. The leaf nodes do not split the data set further but rather provide an estimate for the
quality of the wine.

alcohol < 11

volatile >= 0.25

volatile >= 0.21

density < 1

free sul < 12

alcohol < 125.4

5.7

5.9 6.6

5.4

6.2 6.6

yes no

The OLS model is the traditional deviance based splitting model and QT is a quantile based
model which is the focus of this chapter.

Let {i1, . . . , iν} = {i : i ∈ node} and let y = (yi1 , . . . , yiν), the vector of response
values associated with the node i. The optimal M-estimator θmodel associated with the two
models defined in (4.2) is given by

θmodel = argmin
y∗

∑
i∈node

ρmodel(yi − y∗)

=

{
µ(y) model = OLS

F−1
y (τ) model = QT,

where µ(y) is the mean of y and F−1
y (τ) is the empirical τ -th quantile of y.

Once the model and the loss function ρ have been chosen, the tree can be built using

52

a recursive algorithm. Fix a threshold δ > 0 and positive integers nm and nc. The value
of nm decides the minimum number of sample points in yi required to attempt a split at
node i. The variable nc is the minimum number of sample points required at any node.
The constant δ is a user defined value to stop splitting nodes unless they provide sufficient
decrease. Initially, let all instances be contained in a single node. For this single node obtain
Sroot from (4.1). Then the recursive splitting algorithm can be defined as follows.

1. If |node| ≤ nm, then label node as a leaf. Go to step 6.

2. Calculate the node deviance Snode using (4.1). When we split on a fixed predictor Xi,
let l and r denote the sets of instances that branch to the left and right, respectively.
Let L and R denote the collection of all distinct sets l and r that are obtained by
considering all binary splits over all predictors Xi. Set φ(l, r) = Snode − (Sl + Sr) and
calculate

(l∗, r∗) = argmax
l∈L,r∈R

φ(l, r), ∆node = φ(l∗, r∗).

3. If ∆node ≤ δSroot, then label the node as a leaf.

4. If |l∗| ≤ nc or |r∗| ≤ nc, then label the node as a leaf.

5. If this node has not been labeled as a leaf, then delete this node and split it by labeling
l∗ as a node and r∗ as a node.

6. If all nodes are labeled as leaves, then STOP. Else, move to the next node. Go to Step
1.

The condition in Step 3 avoids the cost of building deep trees which will be pruned,
thereby decreasing the cost of building the tree.

The most time-consuming step in the tree building procedure above is Step 2. To
compute the values of (l∗, r∗) we need to consider every possible split and the most efficient
way is to first sort the values. If the node has n elements this operation takes O(n log n) time.
OLS trees can then compute (l∗, r∗) in linear time using an online algorithm by updating
the values of the mean and φ(l, r) across all possible splits. In order to achieve the same
time complexity for the QT model we now present our algorithm. Note that maximizing
φ(l, r) is equivalent to minimizing Sl + Sr and we will use this to choose the best split.

4.3 Qtree algorithm

The recursive partitioning algorithm defined in the previous section differs between the two
models defined in (4.2) only at Step 2. In order to explain our algorithm we focus only on
finding the optimal split at one node for one predictor variable. Given such an algorithm
we can then obtain the best predictor variable among all the predictor variables by simple
comparison.

The starting point are two vectors X0 and Y0 which hold the values corresponding
to a predictor and response at any particular node of the tree. We first find the sort order
denoted by ord for the vector X0 and obtain two vectors X = X0[ord] and Y = Y0[ord]. In
order to break the problem of computing Sl and Sr into an online algorithm we will need
to compute the τ ’th quantile in an online fashion. What we mean by an online algorithm

53

here is as follows: suppose we have already computed the value of Sl for a certain number
of points. Now we add a new point into the left child. We would like to update Sl without
having to sort all the values again and then computing the value of Sl from scratch.

In general, computing the quantile in an online manner is considered expensive since it
requires at least a partial sort of the data. However, in the present case, if we are able to
obtain the new quantile for each insertion in logarithmic time then the cost incurred overall
is the same order as sorting which we incur even while using OLS trees. We use this already
incurred cost to update the quantile without worsening algorithmic complexity.

The update of quantiles should be done with regards to efficiency, requiring the use of
certain well-studied data structures. The following two requirements on a data structure will
be essential to our algorithm:

• Insertion/deletion time of a value in the structure should be at most O(log n).

• Finding the maximum/minimum should be at most O(log n).

Any data structure that permits the above bounds will work for our algorithm. The
current work will demonstrate it using a heap based priority queue. Priority queues built
with heaps are a very well-studied data structure offer O(1) access to the priority element
and O(log n) time for insertion and delete operations. The priority element depends on our
choice of ordering and we will use both min and max heaps.

We use two heaps denoted by Hlow and Hhigh, which correspond to max and min
heaps, respectively. The max heap Hlow allows access to the maximum element of the heap
(denoted by Hlow[top]) in O(1) time and the min heap Hhigh allows access to the minimum
element of the heap (denoted by Hhigh[top]) in O(1) time. We denote by NP the first P
points in Y . We can easily obtain the τ ’th quantile if we place N−P = d(NP − 1)τe points
in Hlow and the remaining N+

P = NP −N−p points in Hhigh. The τ ’th quantile can now be
computed as

qP = Hlow[top] + [Hhigh[top]−Hlow[top]] (τ(NP − 1)− (d(NP − 1)τe − 1)). (4.3)

The value of the quantile qP is a function of both the set of points P and the desired quantile
τ , but the choice of quantile is fixed at the start of the algorithm and does not change. For
notational clarity refer to q as a function of P only. Define R = {P ∪ s} where s = Y [N + 1]
is the new point we wish to insert. In order to update the quantile when we insert s, we first
check if s ≤ Hlow. If this is true we insert s into Hlow, else we insert it into Hhigh. Once
inserted we need to ensure that there are exactly N−r points in Hlow and N+

r points in Hhigh

such that the τ ’th quantile can still be obtained using (4.3). If this condition is violated, we
need to pop the top value from Hlow and insert it into Hhigh, or vice versa, to ensure the
condition holds. This provides us with an online algorithm for updating the quantile when
we insert one value at a time. Using (4.3) we can now obtain the updated quantile qR. In
this manner, starting with a single point Y [1] inserted into Hlow we can keep updating the
quantile until we have inserted all the points.

We now describe how we can update ρ(x) when we insert a new point using the previous
value. We denote by P−, P+ the set of points in Hlow, Hhigh respectively. Equation (4.2)
can be written as

QADqP ,P = τ
∑
P+

(yi − qP) + (τ − 1)
∑
P−

(yi − qP). (4.4)

54

where QADqP ,P corresponds to the general expression ρ(x). We can now simplify this
expression to obtain

QADqp,P = τ
∑
P+

(yi − qp) + (τ − 1)
∑
P−

(yi − qp)

= τ
∑
P+

yi −N+
p τqp + (τ − 1)

∑
P−

yi −N−p (τ − 1)qp

= τ
∑
P+

yi + (τ − 1)
∑
P−

yi − qp
[
N−p (τ − 1) +N+

p τ
]

(4.5)

Suppose we have already computed QADqp,P and we now wish to update the value
when we insert the data point s as before with R = {P ∪ s}. Consider first the case where
the point is added to the left heap Hlow. We have two possibilities to consider to obtain
QADqR,R.

• Case 1: Addition of the point s does not cause any points to be moved from Hlow to
Hhigh in the update of the quantile. In this case we obtain

QADqR,R = τ
∑
R+

(yi − qR) + (τ − 1)
∑
R−

(yi − qR)

= τ
∑
P+

(yi − qR) + (τ − 1)
∑
P−

(yi − qR) + (τ − 1)(s− qR)

= τ
∑
P+

yi + (τ − 1)
∑
P−

yi − qR
[
N−p (τ − 1) +N+

p τ
]

+ (τ − 1)(s− qR)

= QADqP ,P + (qP − qR)
[
N−p (τ − 1) +N+

p τ
]

+ (τ − 1)(s− qR). (4.6)

• Case 2: When we add the point s to Hlow we need to re-balance the heaps by moving
Hlow[top] to the heap Hhigh in order to obtain the new quantile. Let l denote the value
of Hlow[top]. Again we can derive a similar update equation as in (4.6):

QADqR,R = τ
∑
R+

(yi − qR) + (τ − 1)
∑
R−

(yi − qR)

= τ
∑
P+

(yi − qR) + τ(l − qR)

+ (τ − 1)
∑
P−

(yi − qR)− (τ − 1)(l − qR) + (τ − 1)(s− qR)

= τ
∑
P+

yi + (τ − 1)
∑
P−

yi

− qR
[
N−p (τ − 1) +N+

p τ
]

+ l − qR + (τ − 1)(s− qR)

= QADqP ,P + (qP − qR)
[
N−p (τ − 1) +N+

p τ
]

+ (l − qR) + (τ − 1)(s− qR) (4.7)

Note that Case 2 is a generalization of Case 1.
If the point s to be added is greater than Hlow[top] then we insert it into Hhigh.

Following a similar procedure we can obtain the following update equation for similar cases:

55

• Case 1: No movement of points from Hhigh to Hlow when updating quantile.

QADqR,R = QADqP ,P + (qP − qR)
[
(τ − 1)N−p + τN+

p

]
+ τ(s− qR) (4.8)

• Case 2: Move Hhigh[top] to Hlow when updating quantile.

QADqR,R = QADqP ,P + (qP − qR)
[
(τ − 1)N−p + τN+

p

]
+ (qR − l) + τ(s− qR) (4.9)

These four cases, covering all possible cases, can be represented compactly using a
single update equation as follows. Let I = 1 if a value has to be moved from the left heap to
the right or vice versa and 0 otherwise. Let J = 1 if we move a value from the left heap to
the right and J = −1 if we move a value from the right heap to the left. Let K = 1 if the
value was inserted into the left heap and 0 otherwise.

QADqR,R = QADqP ,P + (qP − qR)
[
(τ − 1)N−p + τN+

p

]
+ IJ (l − qR) +K(τ − 1)(s− qR) + (1−K)τ(s− qR) (4.10)

Equation (4.10) provides us with a streaming update equation to update the value of
the loss obtained from the left child as we move one point at a time.

So far we have only discussed the case of adding points sequentially into the heaps. To
find (l∗, r∗) we need to remove points sequentially from the right split starting with all the
points. Deletion of floating-point values from heaps can run into trouble but we can avoid
that problem simply by inserting points in reverse order.

We demonstrate the evaluation of ρ(x) for a simple node with 5 values below. Let
ya, yb, yc, yd, ye be a list of the response variables sorted based on the order of Xi. By
sequentially inserting these values we obtain the following results of ρ(x).
Table 4.2: Iteration progress in forward and reverse to obtain values of ρ(x) for all
combinations of (l, r). The left split is used to compute Sl and the right split is used
to compute Sr.

Iteration Left split Iteration Right split Full result

1 – 6 {ya, yb, yc, yd, ye} ρ(∅, {a, b, c, d, e})
2 {ya} 5 {yb, yc, yd, ye} ρ({a}, {b, c, d, e})
3 {ya, yb} 4 {yc, yd, ye} ρ({a, b}, {c, d, e})
4 {ya, yb, yc} 3 {yd, ye} ρ({a, b, c}, {d, e})
5 {ya, yb, yc, yd} 2 {ye} ρ({a, b, c, d}, {e})
6 {ya, yb, yc, yd, ye} 1 – ρ({a, b, c, d, e}, ∅)

Once we obtain the values of ρ(x) for all possible split points we can easily obtain the
best possible split point to obtain (l∗, r∗) using a linear scan.

The pseudocode for computing the left child is described in Algorithm 1. The input
Y is the response vector, sorted based on the sort order of the predictor vector. QAD is
initialized to zero for computing the left child. After each insertion we need to rebalance the
heaps and obtain the new quantile values. Once rebalanced we can compute the new quantile
value and obtain the next value of the QAD using the previous one using the update (4.10).
To start we set QAD[0] and QAD[1] equal to zero. In order to compute the complete QAD
vector the algorithm is very similar but we insert points in the reverse order and add the
changes to the QAD vector. At the end a linear scan identifies the best possible split.

56

Algorithm 1 Streaming update for quantile loss for left child
procedure left_qad(Y,QAD, τ)

initialize Hlow, Hhigh

set QAD[1] = QAD[2] = 0.0
insert Y [1] into Hlow

set qP = Y [1]
for i:=2.. (N+1) do

if Y [i] ≤ Hlow[top] then
insert Y [i] into Hlow

else
insert Y [i] into Hhigh

end if
RebalanceHeaps(Hlow, Hhigh, τ)
qR = FindQuantile(Hlow, Hhigh, τ)
QAD[i] = QAD[i− 1]+ update using (4.10)
set qP = qR

end for
end procedure

procedure RebalanceHeaps(Hlow, Hhigh, τ)
nl← size(Hlow)
nr ← size(Hhigh)
test← d((nl + nr − 1)τ)
if nl > test then

pop Hhigh[top] and insert into Hlow

else if nl < test then
pop Hlow[top] and insert into Hhigh

end if
end procedure

procedure FindQuantile(Hlow, Hhigh, τ)
nn← size(Hlow) + size(Hhigh)
test← d((nn− 1)τ)e
q ← Hlow[top] + (Hhigh[top]−Hlow[top])(τ(nn− 1)− (test− 1))

end procedure

57

Note on algorithmic complexity: For each predictor variable we need to first find the
sort order for the points in the node. This operation takes O(N logN) where N is the number
of points. The worst case complexity for the LEFT_QAD algorithm involves N insertions, N
deletions for rebalances and N re-insertions. This provides an upper bound of O(N logN)
for both the left and right children, the same order as sorting. Since OLS trees also need to
sort, our algorithm maintains the same order of complexity as OLS trees.

4.4 Computational results

In this section we provide both timing and accuracy results obtained for our qtree method
against traditional OLS trees. For comparison we use both the tree package [75] and the
rpart package [81] from R [73]. Both these packages build trees using the OLS criterion. Our
implementation is provided as a package in R and uses the RcppArmadillo package [32]. We
first discuss the scalability of our algorithm.

4.4.1 Scalability

In the preceding section we showed that the worst case asymptotic complexity of the qtree
algorithm is the same as OLS trees. In order to demonstrate this with practical examples we
consider two data sets for the tests. The first is the California housing data set [66]. This
data set has 20,640 samples and 8 predictor variables. The second is the CT slices data set
available at UCI machine learning repository [36]. This data set has 53,500 samples and
384 predictor variables. For both tests we set the following common parameters. When
considering if a node has to be split there should be at least 20 sample points in the node.
The minimum number of samples in any split cannot be smaller than 7. The value of ∆node

which is the amount of reduction offered by introducing the split cannot be smaller than
0.01. These are the default settings for rpart package. The package rpart can perform 10-fold
cross-validation internally but we turn it off for this study. We also request rpart to not
search for surrogate variables which cuts the time required to build the trees.

For the California housing data set we consider sub-samples of the data without
replacement of increasing sizes {1500, 2500, . . . , 19500}. For the CT slices data set the sample
sizes are chosen to be {5000, 10000, . . . , 50000}. We use all the predictor variables in both
cases. For each sample size we perform 100 runs of the simulation and present the averaged
results.

In Figure 4.2 we plot the ratio of time taken by our algorithm against the tree and
rpart packages for the California housing data set. The ratio of time taken against both
packages is less than 3 and does not show an increase in the time as a function of the number
of data points. In Figure 4.3 we show a similar plot for the CT slices data set. We notice
again that the ratio of time is less than 5 and does not grow as a function of the number of
data points. Both these results confirm that the algorithmic complexity of our algorithm is
the same as that of OLS trees. We also provide the exact run times in Table 4.3 performed
on a i7 laptop with 4Gb memory.

The tree package is written with the aim of simplicity while the rpart package is the
standard optimized version for growing OLS trees. Since almost all the work is done in
deciding the split we cannot expect the running time of our algorithm to be less than a factor
of 2 than that of the rpart package. This is because our algorithm requires two passes; once

58

Figure 4.2: Ratio of time taken by our algorithm to the tree and rpart packages
for the California housing data set.

●
●

● ● ●
●

●
● ● ●

●

●
●

●
●

●
●

●

●

●

0

1

2

3

4

5000 10000 15000 20000
Number of samples

R
at

io

Comparison
package
●

●

tree
rpart

for computing the left QAD and then to update it to obtain the complete QAD when doing
the right split. The OLS trees on the other hand just need a single pass over the data and
can compute the best split with O(1) memory.

4.4.2 Model accuracy

Our proposed algorithm can handle any quantile value 0 < q < 1 which allows us to build
non-parametric models that extend linear quantile regression [53]. A complete analysis
of the abilities and scope with regards to the linear quantile regression case will be done
elsewhere. In this chapter we contrast the use of LAD trees which correspond to τ = 0.5
against traditional OLS trees, keeping in mind the underlying objective function.

The objective function optimized by recursive partitioning methods using the OLS
criterion is the squared error loss also known as deviance. LAD trees in contrast will optimize
the absolute deviation function. The aim of these methods is to provide a fast greedy heuristic
to minimize the following two objective functions:

• Mean Squared Error (MSE):
1

N

N∑
i=1

(yi − ŷi)2

• Mean Absolute Deviation (MAD):
1

N

N∑
i=1
|yi − ŷi|

where we define the true and predicted values by yi and ŷi respectively over the tested
samples. Since the functions which are optimized are different we will obtain different models
in each case. For prediction purposes it will be beneficial if we decide on which one of these
loss functions is appropriate for our analysis.

We build models using the qtree algorithm and the rpart method and estimate these
two error functions using a standard 10-fold cross-validation procedure. The internal cross-
validation procedure of rpart is turned off and we use the same folds for both the methods.

59

Figure 4.3: Ratio of time taken by our algorithm to the tree and rpart packages
for the CT slices data set.

● ● ● ● ● ● ● ● ● ●

● ● ●

●
●

● ● ● ● ●

0

2

4

6

10000 20000 30000 40000 50000
Number of samples

R
at

io

Comparison
package
●

●

tree
rpart

The data sets used to perform the tests include:

• Wine: The wine data set is available at the UCI machine learning repository [27]. It
consists of two data sets both with 11 predictors. The red wine data set has 1599
samples and the white wine data set has 4898 samples. The response is the quality of
wine which is real valued and lies between 1 and 10.

• Crime: The Communities and Crime data set from the UCI machine learning reposi-
tory [74]. The complete data set consists of 1994 samples with 128 instances. Since
there are missing values in some columns we eliminate those columns reducing the
number of predictors to 96. The output is measure of crime rate which lies between 0
and 1.

• CA housing: This is the same data set used in the timing analysis. The response
variable is the log of the median house prices.

Our algorithm follows closely to rpart package with regards to most of the control
parameters and hence we use the same settings whenever possible. Minimum split size is
set to 20 and minimum samples in a leaf node is set to 7. In order to prevent pruning both
methods use the notion of a minimum required reduction in error in order to grow a node.
We use the same default value of 0.01 for this parameter. Note that while the same numeric
value is being used, the rpart routine will use the squared value while we consider the absolute
value. In order to avoid this inconsistency we report the size of the trees grown in both cases.
All results are averaged over 100 runs where each run does a 10 fold cross-validation.

The results are tabulated in Table 4.4. LAD trees perform better for every data set if
our criterion for minimization is the mean absolute deviation. OLS trees perform better for
every data set if the criterion is minimization of mean squared error. These results show that
our objective decides the use of either methods. From the table we also notice that LAD
trees are able to achieve lower MAD errors using trees of smaller sizes. For both the wine

60

Table 4.3: Average of raw times taken by all three algorithms for the housing and
CT slices data set.
The ratio is non-increasing as sample sizes increase and is within a small constant factor of OLS
trees for various sample sizes of the data.

Housing CT Slices

Size qtree tree rpart Size qtree tree rpart

1.5K 0.0202 0.0136 0.0086 5K 2.5418 0.9476 0.5641
3.5K 0.0383 0.0270 0.0152 10K 5.1707 1.9200 1.1495
5.5K 0.0603 0.0446 0.0232 15K 7.8585 2.9546 1.7697
7.5K 0.0814 0.0596 0.0292 20K 10.6167 4.0779 2.5048
9.5K 0.1016 0.0744 0.0356 25K 13.4323 5.2316 3.2416
11.5K 0.1276 0.1009 0.0488 30K 16.2734 6.4152 4.0386
13.5K 0.1518 0.1129 0.0596 35K 19.1917 7.6866 4.8185
15.5K 0.1734 0.1339 0.0723 40K 22.1166 8.8849 5.6510
17.5K 0.2035 0.1563 0.0751 45K 25.0712 10.2914 6.4583
19.5K 0.2294 0.1710 0.0945 50K 28.0457 11.3384 7.2880

Table 4.4: Accuracy results for MAD and MSE for qtree and rpart methods.
The size column indicates the size of the tree grown including the leaf nodes. On every data set
LAD trees obtain a smaller error if we consider the MAD loss function and similarly OLS trees
perform better on every data set if the loss function is MSE.

LAD trees OLS trees

MAD MSE Size MAD MSE Size

Red wine 0.4843 0.5670 7.68 0.5304 0.4619 19.91
White wine 0.5275 0.6553 9.00 0.6041 0.5817 11.84

Crime 0.1022 0.0340 22.39 0.1070 0.0308 34.54
Housing 0.2808 0.1382 24.03 0.2857 0.1370 27.11

data sets LAD trees provide a significantly lower error rate as compared to the OLS trees.
For the same two data sets the OLS trees provide much lower error rates for the MSE error.
However, the difference between both trees is small for both MAD and MSE for the Crime
and Housing data sets. This shows that the choice of loss function is also dependent on the
data set.

4.5 Conclusion

We have derived a general algorithm for an absolute deviation loss function that works
for any quantile value 0 < τ < 1. Performing numerical simulations we showed that the
asymptotic complexity of our algorithm is similar to and within a small constant factor of
that of OLS based trees with a small constant factor multiple. This is a significant reduction
in computational complexity over a naive implentation.

Our current work can be extended to the following use cases:

1. Random Forests: Random forests [19] are built using sub-samples of data by restricting
the choice of predictors at each node to a subset of the predictors. Their have a higher

61

predictive ability than a single tree since they trade off bias to achieve a lower variance.
Since they are built with repeated calls to a tree building algorithm, our current work
easily fits into the framework of random forests.

2. Boosting: Boosting [37] is a technique of building a strong learner from a collection
of weak base learners. The most widely-used base learners are decision stumps/ trees.
Since their introduction, they have achieved much success in solving a variety of
supervised learning problems. One of the strongest features of boosting is their ability
to resist over fitting. The first variant of boosting introduced was able to deal with
classification problems; since then there have been many of variations of boosting
that can handle regression problems as well. A specific case we mention is the GBM
procedure [38]. Quoting from [38], the authors mention the problem with directly
minimizing the MAD error and state
“Squared error loss is much more rapidly updated than mean-absolute-deviation when
searching for splits during the tree building process”
Our algorithm eliminates this problem and allows one to directly minimize the MAD
in their algorithm.

3. Quantile Regression: While our current work shows the application of our algorithm
only to LAD trees the algorithm can build trees with any quantile of interest. This
allows us to obtain a distribution of the response variable rather than just a point
estimate. This is a very powerful technique used in linear quantile regression [53]. Linear
quantile regression is an extension of linear regression that allows us to interpret the
underlying model dependencies by providing a distribution of the response. However,
the underlying assumption in these models is that the dependence of the predictors is
linear. This is a very severe restriction when trying to infer the underlying model. By
generalizing to the non-parametric case, we can immediately handle unknown nonlinear
relationships between the predictor and response variables.

62

Appendix A

FVFD implementation

We describe here the implementation details for the finite volume Fourier domain solver
described in Chapter 3. The solver is written in PETSc [6], which enables easy implementation
for large scale solvers for partial differential equations. The main steps involved in the code
are as follows.

A.0.1 Mesh Generation

The mesh is generated by an external library. We used two approaches for mesh generation.

• Triangle : The Triangle library [77] is written in C and constructs Delaunay triangula-
tions.

• DistMesh : DistMesh [69] is a Matlab based triangulation library which solves a
spring-mass system to obtain a high-quality mesh.

The Triangle library can be called from PETSc directly, but the complete API is not exposed
and hence we generate meshes externally and then load them.

The meshes in both cases are obtained in vertex and triangles format. The Triangle
library is very fast and can generate meshes of size up to a few million within a minute on a
laptop. However, the meshes obtained can only be constrained to have a minimum angle of
33 degrees among all the triangles. This is a severe restriction for our case and hence we do
not use it to build unstructured meshes. The DistMesh library can produce much better
quality meshes achieving a minimum angle of approximately 45 degrees. The time taken to
generate these meshes, however, is very large and it can take up to a few days to generate a
mesh of size 1 million. In order to prevent mesh generation from being time-consuming we
reuse the meshes whenever possible.

A.0.2 Loading the mesh into PETSc

The meshes generated from either of the two libraries can be directly loaded in to PETSc
without requiring any pre-processing with the help of the DMPlexCreateFromCellList func-
tion. This function creates the data structure which holds the mesh on a single processor.
DMPlexDistribute is used to distribute the mesh across all available processes. Since the
method is a finite volume method, we choose an overlap of 1 across processors which gives us
access to the neighboring cells. We have a choice of using either the Chaco [46] or Metis [51]

63

libraries to control the distribution of meshes. The load balancing of both methods is
comparable and hence we decided to use Chaco.

Once the distributed mesh is available across processors, we need to compute the various
parameters for our algorithm. These include L,G,C0 and ∆. Because of the distributed
nature, the vectors L,G and C need to be computed locally. We first compute the number
of local cells on each processor and compute C0 and G locally. Similarly, depending on the
specific forcing applied, we also build the right hand side forcing term Vin. The forcing is
computed through a line integral and we use the GNU libraries qng integration method. We
now need to compute the inductances and the graph incidence matrix.

A.0.3 Computing the dual of the mesh

Due to the distributed nature it becomes hard to compute the graph incidence matrix directly
as the number of edges is not easily known. The second-order formulation of the problem
does not require use to compute either the inductance L or the graph incidence matrix as
long as we can obtain the weighted graph Laplacian ∆.

Consider the following simple discretization of the domain shown in Figure A.1. The

1 2

3 4

d

c

e

f

da

b

Figure A.1: Mesh and dual

incidence matrix for this mesh is given by:

a b c d e f

1 1 0 1 1 0 0
2 0 0 0 −1 0 1
3 0 1 −1 0 1 0
4 0 0 0 0 −1 −1

.
Note that we do not require that the inputs be placed at the ends. They can appear in any
order, i.e., the labelling of the nodes does not affect the computation of ∆. This is very
helpful since we do not need to worry about the distribution of the mesh across processors.

Suppose the matrix L−1 is as shown:

La 0 0 0 0 0
0 Lb 0 0 0 0
0 0 Lc 0 0 0
0 0 0 Ld 0 0
0 0 0 0 Le 0
0 0 0 0 0 Lf

 .

64

Then we find that the product B ∗ L−1 ∗Bt is given by:

1 2 3 4

1 La + Lc + Ld −Ld −Lc 0
2 −Ld Ld + Lf 0 Lf
3 −Lc 0 Lb + Lc + Le −Le
4 0 −Lf −Lc Lf + Le

.
We see from this that the computation of the graph Laplacian can be done row-by-row. The
diagonal part involves all inductances which are connected to the cell. The off-diagonal part
is always negative, and its value is given by the inductance separating the two cells. In the
case when the cell is an input cell, once the inductance is computed there is no difference in
the two cases. Since the graph Laplacian involves only the cells, it also provides a natural way
to obtain the number of rows on each processor: this equals the number of C0 components
on the same processor. This approach leads to the following algorithm for the computation
of ∆.

A.0.4 Algorithm for computing ∆

The algorithm requires a few things to be available before it can be run. The requirements
are:

• indIs: Contains the index set obtained from DMPlexGetCellNumbering. This is a
global-to-local numbering that PETSc provides automatically.

• cellVec: Contains the centroid information for the cell. This can be computed by
looping over the cells and simultaneously obtaining C0 and G.

• delta: Matrix initialized to place the values of the entries to be inserted. The number
of rows allocated on each processor is equal to the number of cells on the particular
processor.

The procedure for filling the matrix is provided in Algorithm 0.

A.0.5 Linear systems

Once we have assembled the vectors C0 and G and computed the matrix ∆, we can generate
the linear systems needed to compute the solutions. We choose to solve all systems up to
order 10. This gives us 10 linear systems of the form

A(k) = C0(−k2(2π)2)− 2πkiG+ ∆.

Since the vectors and matrices are laid out in distributed memory in a consistent manner,
formation of the matrices just involves shifting the diagonal of ∆ by a different amount each
time.

PETSc provides a common interface for solving linear systems, either using direct
solvers or iterative solvers compactly. The following four lines of code express this for use
with any solver (either direct or iterative and with/without preconditioning) for the linear
problem.

65

procedure computeDelta(..)
for i← cStart, cEnd do

if indIs[i] ≤ 0 then
continue

end if
numV als←− 0
rowId←− i
cInd←− [i,−1,−1,−1]
val←− [0, 0, 0, 0]
centOrig ←− cellInfo.centroid
E = [e1, e2, e3]←− Support(i)
for j ← 0, 2 do

xj := {cm, cn} ←− Cone(E[j])
if |xj | == 1 then

if ejvertical then
if ejleft boundary thenn

Lj ←− 2 ∗ computeL()
val[0]+ = Lj

else
G[i]←− ComputeG()

end if
else

G[i]←− ComputeG()
end if

else
neighCell = xj [0] == i ? xj [1] : xj [0]
centNext←− cellInfo− > centroid[indIs[neighCell]]
Lj ←− computeL()
if indIs[neighCell] > 0 then

cInd[numV als] = indIs[neighCell]
else

cInd[numV als] = −(indIs[neighCell] + 1)
end if
val[numV als+ +] = −Lj

end if
end for
for k ← 1, numV als− 1 do

vals[0]+ = −vals[k]
end for
MatSetV alues(delta, 1, rowId, numV als, cInd, vals, INSERT_V ALUES)

end for
MatAssemblyBegin(delta,MAT_FINAL_ASSEMBLY)
MatAssemblyEnd(delta,MAT_FINAL_ASSEMBLY)

end procedure

66

ierr = KSPCreate(PETSC_COMM_WORLD,&ksp);CHKERRQ(ierr);
ierr = KSPSetOperators(ksp,delta0,delta0,SAME_PRECONDITIONER);CHKERRQ(ierr);
ierr = KSPSetFromOptions(ksp);CHKERRQ(ierr);
ierr = KSPSolve(ksp,model->Vin,sol[0]);CHKERRQ(ierr);
ierr = KSPDestroy(&ksp);CHKERRQ(ierr);

We first create a distributed solver whose span is the entire range of processors through
PETSC_COMM_WORLD. We then set the matrix on which we plan to run the solver on the next
line. The flag SAME_PRECONDITIONER is used to signify that the matrix will not change from
one iteration to another and hence if we build a pre-conditioner then the same pre-conditioner
can be reused.

The next line sets all command line options for our solver. This is crucial and lets
us change the type of solver without any modification to the code and without need to
recompile. We finally solve the system, save our solution and clean up.

A.0.6 Post-processing

The solution obtained through the PETSc code is written for final post-processing into files
along with the centroid information. Here, it is important to consider the representation
of the points. We do not use parallel I/O. Writing a parallel vector involves sending all
components to processor 0 and then writing to file. We maintain a mapping for the relation
between the cell centroids and the solution computed so we can plot it directly without any
need to permute the solution.

Post-processing is done by importing the solutions into Python through the API
provided for loading binary files produced through PETSc. Once the solution and the
centroids are loaded, we can then produce plots of the solution and verify the order of
accuracy of the solution.

The entire code is available on a GitHub repository at

https://github.com/GarnetVaz/NME.

The code requires PETSc (version ≥ 3.4) to be installed and it can support both the
homogeneous or inhomogeneous problem through a command line flag. The forcing and
boundary conditions are hard-coded and requires the user to make changes appropriately for
use in other cases. Instructions to run the code are provided in the source code.

67

Bibliography

[1] Ehsan Afshari, Harish S. Bhat, A Hajimiri, and Jerold E. Marsden. Extremely wideband
signal shaping using one-and two-dimensional nonuniform nonlinear transmission lines.
Journal of Applied Physics, 99(5):054901, 2006.

[2] Ehsan Afshari, Harish S. Bhat, and Ali Hajimiri. Ultrafast analog fourier transform
using 2-d lc lattice. IEEE Transactions on Circuits and Systems I: Regular Papers,
55(8):2332–2343, 2008.

[3] Ehsan Afshari, Harish S. Bhat, Ali Hajimiri, and Jerrold E. Marsden. Extremely wide-
band signal shaping using one- and two-dimensional nonuniform nonlinear transmission
lines. Journal of Applied Physics, 99:054901, 2005.

[4] Ehsan Afshari and Ali Hajimiri. Nonlinear transmission lines for pulse shaping in silicon.
IEEE Journal of Solid-State Circuits, 40(3):744–752, 2005.

[5] Alex Arenas, Albert Díaz-Guilera, Jurgen Kurths, Yamir Moreno, and Changsong Zhou.
Synchronization in complex networks. Physics Reports, 469:93–153, 2008.

[6] Satish Balay, Jed Brown, Kris Buschelman, William D. Gropp, Dinesh Kaushik,
Matthew G. Knepley, Lois Curfman McInnes, Barry F. Smith, and Hong Zhang. PETSc
Web page, 2013. http://www.mcs.anl.gov/petsc.

[7] Ilan Bar-On and Victor Ryaboy. Fast diagonalization of large and dense complex
symmetric matrices, with applications to quantum reaction dynamics. SIAM Journal
on Scientific Computing, 18(5):1412–1435, 1997.

[8] Albert-László Barabási and Réka Albert. Emergence of scaling in random networks.
Science, 286(5439):509–512, 1999.

[9] Harish S. Bhat and Ehsan Afshari. Nonlinear constructive interference in electrical
lattices. Physical Review E, 77:066602, 2008.

[10] Harish S. Bhat, Wooram Lee, Georgios N. Lilis, and Ehsan Afshari. Steady-state
perturbative theory for nonlinear circuits. Journal of Physics A: Mathematical and
Theoretical, 43:205101, 2010.

[11] Harish S. Bhat and B. Osting. The zone boundary mode in periodic nonlinear electrical
lattices. Physica D, 238:1216–1228, 2009.

68

[12] Harish S. Bhat and Braxton Osting. 2-D Inductor-capacitor lattice synthesis. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 30:1483–
1492, 2011.

[13] Harish S. Bhat and Braxton Osting. Kirchhoff’s laws as a finite volume method for
the planar Maxwell equations. IEEE Transactions on Antennas and Propagation,
59:3772–3779, 2011.

[14] Harish S. Bhat and Garnet J. Vaz. Finite volume method for planar Maxwell equations
in nonlinear media. In preparation, 2013.

[15] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang. Complex networks:
Structure and dynamics. Physics Reports, 424:175–308, 2006.

[16] Markus Brede. Construction principles for highly synchronizable sparse directed networks.
Physics Letters A, 372:5305–5308, 2008.

[17] Markus Brede. Locals vs. global synchronization in networks of non-identical Kuramoto
oscillators. The European Physical Journal B, 62:87–94, 2008.

[18] L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

[19] L. Breiman. Random forests. Machine Learning, 45:5–32, October 2001.

[20] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen. Classification and Regression
Trees. Chapman & Hall/CRC, 1984.

[21] Michael L. Brewer, Lori Freitag Diachin, Patrick M. Knupp, Thomas Leurent, and
Darryl J. Melander. The mesquite mesh quality improvement toolkit. In IMR, 2003.

[22] M. Case, E. Carman, R. Yu, M. J. W. Rodwell, and M. Kamegawa. Picosecond duration,
large amplitude impulse generation using electrical soliton effects. Applied Physics
Letters, 60(24):3019–3021, 1992.

[23] M. Case, M. Kamegawa, R. Yu, M. J. W. Rodwell, and J. Franklin. Impulse compression
using soliton effects in a monolithic GaAs circuit. Applied Physics Letters, 58(2):173–175,
1991.

[24] P. Chaudhuri. Asymptotic consistency of median regression trees. Journal of Statistical
Planning and Inference, 91:229–238, 2000.

[25] P. Chaudhuri and W.-Y. Loh. Nonparametric estimation of conditional quantiles using
quantile regression trees. Bernoulli, 8(5):561–576, 2002.

[26] Christos Christopoulos. The transmission-line modeling (TLM) method in electromag-
netics. Synthesis Lectures on Computational Electromagnetics, 1(1):1–132, 2005.

[27] Paulo Cortez, Juliana Teixeira, António Cerdeira, Fernando Almeida, Telmo Matos, and
José Reis. Using data mining for wine quality assessment. In Discovery Science, volume
5808 of Lecture Notes in Computer Science, pages 66–79. Springer-Verlag, 2009.

69

[28] Majid Dadashi, Iman Barjasteh, and Mahdi Jalili. Rewiring dynamical networks with
prescribed degree distribution for enhancing synchronizability. Chaos, 20:043119–043119–
6, 2010.

[29] B. DiDonna and T. Lubensky. Nonaffine correlations in random elastic media. Physical
Review E, 72:066619, 2005.

[30] Luca Donetti, Pablo I. Hurtado, and Miguel A. Muñoz. Entangled networks, synchro-
nization, and optimal network topology. Physical Review Letters, 95:188701, 2005.

[31] Freeman J. Dyson. The dynamics of a disordered linear chain. Physical Review, 92:1331–
1338, 1953.

[32] Dirk Eddelbuettel and Conrad Sanderson. Rcpparmadillo: Accelerating R with high-
performance c++ linear algebra. Computational Statistics and Data Analysis, 71:1054–
1063, March 2014.

[33] Paul Erdős and Alfréd Rényi. On the evolution of random graphs. Magyar Tud. Akad.
Mat. Kutató Int. Közl, 5:17–61, 1960.

[34] Leopold B. Felsen, Mauro Mongiardo, and Peter Russer. Electromagnetic field computa-
tion by network methods. Springer, 2009.

[35] E. Fermi, J. Pasta, and S. Ulam. Studies of non linear problems. Technical Report
LA-1940, Los Alamos National Laboratory, 1955.

[36] A. Frank and A. Asuncion. UCI Machine Learning Repository, 2010.

[37] Yoav Freund, Robert Schapire, and N Abe. A short introduction to boosting. Journal-
Japanese Society For Artificial Intelligence, 14(771-780):1612, 1999.

[38] Jerome H Friedman. Greedy function approximation: a gradient boosting machine.
Annals of Statistics, pages 1189–1232, 2001.

[39] G. Galimberti, M. Pillati, and G. Soffritti. Notes on the robustness of regression trees
against skewed and contaminated errors. In New Perspectives in Statistical Modeling
and Data Analysis, pages 255–263. Springer-Verlag, 2011.

[40] Wilfried N Gansterer, Hannes Schabauer, Christoph Pacher, and Norman Finger. Tridi-
agonalizing complex symmetric matrices in waveguide simulations. In Computational
Science–ICCS 2008, pages 945–954. Springer, 2008.

[41] K. Guillouard, M.F. Wong, Fouad V. Hanna, and J. Citerne. A new global time-domain
electromagnetic simulator of microwave circuits including lumped elements based on
finite-element method. Microwave Theory and Techniques, IEEE Transactions on,
47(10):2045–2049, 1999.

[42] Wojciech K. Gwarek. Analysis of an arbitrarily-shaped planar circuit a time-domain
approach. IEEE Transactions on Microwave Theory and Techniques, 33(10):1067–1072,
1985.

70

[43] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring network structure,
dynamics, and function using NetworkX. In Proceedings of the 7th Python in Science
Conference (SciPy2008), pages 11–15, Pasadena, CA USA, August 2008.

[44] Ruonan Han and Ehsan Afshari. A 260GHz broadband source with 1.1mW continuous-
wave radiated power and EIRP of 15.7dBm in 65nm CMOS. In Solid-State Circuits
Conference Digest of Technical Papers (ISSCC), 2013 IEEE International, pages 138–139,
2013.

[45] Ruonan Han and Ehsan Afshari. A high-power broadband passive terahertz frequency
doubler in CMOS. IEEE Transactions on Microwave Theory and Techniques, 61:1150–
1160, 2013.

[46] Bruce Hendrickson and Robert Leland. The chaco user’s guide: Version 2.0. Technical
report, Technical Report SAND95-2344, Sandia National Laboratories, 1995.

[47] R. Hirota and K. Suzuki. Studies on lattice solitons by using electrical networks. Journal
of the Physical Society of Japan, 28:1366–1367, 1970.

[48] Ryogo Hirota and Kimio Suzuki. Studies on lattice solitons by using electrical networks.
Journal of the Physical Society of Japan, 28(5):1366–1367, 1970.

[49] Mahdi Jalili, Ali Rad, and Martin Hasler. Enhancing synchronizability of weighted
dynamical networks using betweenness centrality. Physical Review E, 78:016105, 2008.

[50] J.D. Joannopoulos, S.G. Johnson, J.N. Winn, and R.D. Meade. Photonic Crystals:
Molding the Flow of Light (Second Edition). Princeton University Press, 2011.

[51] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for
partitioning irregular graphs. SIAM Journal on Scientific Computing, 20(1):359–392,
1998.

[52] David Kelly and Georg A. Gottwald. On the topology of synchrony optimized networks
of a Kuramoto-model with non-identical oscillators. Chaos, 21:025110, 2011.

[53] R. Koenker. Quantile Regression. Cambridge University Press, 2005.

[54] Hiroshi Kori and Alexander Mikhailov. Strong effects of network architecture in the
entrainment of coupled oscillator systems. Physical Review E, 74:066115, 2006.

[55] Gabriel Kron. Equivalent circuit of the field equations of maxwell-I. Proceedings of the
IRE, 32(5):289–299, 1944.

[56] R. Landauer. Shock waves in nonlinear transmission lines and their effect on parametric
amplification. IBM Journal of Research and Development, 4(4):391–401, 1960.

[57] Rolf Landauer. Shock waves in nonlinear transmission lines and their effect on parametric
amplification. IBM Journal of Research and Development, 4(4):391–401, 1960.

[58] Wooram Lee, Muhammad Adnan, Omeed Momeni, and Ehsan Afshari. A nonlinear
lattice for high-amplitude picosecond pulse generation in CMOS. IEEE Transactions on
Microwave Theory and Techniques, 60:370–380, 2012.

71

[59] Wooram Lee and Ehsan Afshari. A CMOS noise-squeezing amplifier. IEEE Transactions
on Microwave Theory and Techniques, 60:329–339, 2012.

[60] Xiaoye S. Li and James W. Demmel. SuperLU_DIST: A scalable distributed-memory
sparse direct solver for unsymmetric linear systems. ACM Trans. Mathematical Software,
29(2):110–140, June 2003.

[61] Georgios N. Lilis, Jihyuk Park, Wooram E. Lee, Guansheng Li, Harish S. Bhat, and
Ehsan Afshari. Harmonic generation using nonlinear LC lattices. IEEE Transactions
on Microwave Theory and Techniques, 58:1713–1723, 2010.

[62] N. Meinshausen. Quantile regression forests. Journal of Machine Learning Research,
7:983–999, 2006.

[63] Omeed Momeni and Ehsan Afshari. A broadband mm-wave and terahertz traveling-wave
frequency multiplier on CMOS. IEEE Journal of Solid-State Circuits, 46:2966–2976,
2011.

[64] Cécile Monthus and Thomas Garel. Random elastic networks: a strong disorder renor-
malization approach. Journal of Physics A: Mathematical and Theoretical, 44:085001,
2011.

[65] L. A. Ostrovskii, V. V. Papko, and Yu. A. Stepanyants. Solitons and nonlinear resonance
in two-dimensional lattices. Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 78:831–
841, 1980. [Sov. Phys. JETP 51, 417 (1980)].

[66] R. K. Pace and R. Barry. Sparse spatial autoregressions. Statistics & Probability Letters,
33(3):291–297, 1997.

[67] Kwangho Park, Liang Huang, and Ying-Cheng Lai. Desynchronization waves in small-
world networks. Physical Review E, 75:026211, 2007.

[68] C. Perlich, S. Rosset, R. D. Lawrence, and B. Zadrozny. High-quantile modeling for
customer wallet estimation and other applications. In Proceedings of the 13th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
’07, pages 977–985, 2007.

[69] P. Persson and G. Strang. A simple mesh generator in matlab. SIAM Review, 46(2):329–
345, 2004.

[70] Martin Pototschnig, Jens Niegemann, Lasha Tkeshelashvili, and Kurt Busch. Time-
Domain Simulations of the Nonlinear Maxwell Equations Using Operator-Exponential
Methods. IEEE Transactions on Antennas and Propagation, 57(2):475–483, 2009.

[71] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.

[72] Ross J. Quinlan. Induction of decision trees. Machine learning, 1(1):81–106, 1986.

[73] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria, 2013.

72

[74] Michael Redmond and Alok Baveja. A data-driven software tool for enabling coopera-
tive information sharing among police departments. European Journal of Operational
Research, 141(3):660–678, 2002.

[75] Brian Ripley. tree: Classification and regression trees, 2014. R package version 1.0-35.

[76] Masayuki Sato, S. Yasui, M. Kimura, T. Hikihara, and A. Sievers. Management of
localized energy in discrete nonlinear transmission lines. EPL (Europhysics Letters),
80(3):30002, 2007.

[77] Jonathan Richard Shewchuk. Triangle: Engineering a 2D Quality Mesh Generator
and Delaunay Triangulator. volume 1148 of Lecture Notes in Computer Science, pages
203–222. Springer-Verlag, May 1996.

[78] Yu. A. Stepanyants. Experimental investigation of cylindrically diverging solitons in an
electric lattice. Wave Motion, 3:335–341, 1981.

[79] Yu. A. Stepanyants. Experimental study of “Cerenkov” radiation from solitons in
two-dimensional LC-lattices. Radiophysics and Quantum Electronics, 26(7):601–607,
1983.

[80] Allen Taflove. Application of the finite-difference time-domain method to sinusoidal
steady-state electromagnetic-penetration problems. Electromagnetic Compatibility, IEEE
Transactions on, (3):191–202, 1980.

[81] Terry Therneau, Beth Atkinson, and Brian Ripley. rpart: Recursive Partitioning and
Regression Trees, 2014. R package version 4.1-6.

[82] Brian P. Tighe. Dynamic critical response in damped random spring networks. Physical
Review Letters, 109:168303, 2012.

[83] Yuichi Togashi and Alexander S. Mikhailov. Nonlinear relaxation dynamics in elastic
networks and design principles of molecular machines. Proceedings of the National
Academy of Sciences, 104:8697–8702, 2007.

[84] Duncan J. Watts and Steven H. Strogatz. Collective dynamics of small-world networks.
Nature, 393:440–442, 1998.

[85] M. Wyart, H. Liang, A. Kabla, and L. Mahadevan. Elasticity of floppy and stiff random
networks. Physical Review Letters, 101:215501, 2008.

[86] Tatsuo Yanagita and Alexander S. Mikhailov. Design of oscillator networks with
enhanced synchronization tolerance against noise. Physical Review E, 85:056206, 2012.

[87] Kane S. Yee. Numerical solution of initial boundary value problems involving Maxwell’s
equations. IEEE Transactions on Antennas and Propagation, 14(3):302–307, 1966.

73

	Acknowledgements
	Introduction
	Frequency Response and Gap Tuning for Nonlinear Electrical Oscillator Networks
	Introduction
	Connections to Other Systems

	Problem Formulation
	Algorithms for the forward problem
	Perturbative Algorithm
	Iterative Algorithm

	Inverse Problem
	Gap Tuning: Methodology

	Results and Discussion
	Comparison of Steady-State Algorithms
	Gap Tuning

	Conclusion

	FVFD Method for Nonlinear Maxwell's Equations
	Introduction
	Finite Volume Discretization of Maxwell's Equations
	Boundary conditions & forcing terms

	Assembly and Solution
	Simulations
	Software
	Convergence results

	Conclusion

	Quantile Regression Tree
	Introduction
	Preliminaries
	Decision trees
	Decision tree algorithm

	Qtree algorithm
	Computational results
	Scalability
	Model accuracy

	Conclusion

	FVFD implementation
	Mesh Generation
	Loading the mesh into PETSc
	Computing the dual of the mesh
	Algorithm for computing
	Linear systems
	Post-processing

