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ABSTRACT OF THE DISSERTATION 

Kinematic Pile-Soil Interaction for Liquefied and Nonliquefied Ground 

 

by 

 

Benjamin Turner 

Doctor of Philosophy in Civil Engineering 

University of California, Los Angeles, 2016 

Professor Scott Joseph Brandenberg, Chair 

 

In Part I of this dissertation, equivalent static analysis (ESA) procedures for computing foundation 

demands during lateral spreading are applied to two parallel bridges that were damaged during the 

2010 M 7.2 El Mayor-Cucapah earthquake in Baja California, Mexico. A railroad bridge span 

collapsed, whereas the adjacent highway bridge survived with one support pier near the river 

having modest flexural cracking of cover concrete. Cone penetration and geophysical test results 

are presented along with geotechnical and structural conditions evaluated from design documents. 

ESA using a beam-on-Winkler foundation model is found to accurately predict observed responses 

when liquefaction-compatible inertia demands are represented as spectral displacements that 

account for resistance from other bridge components. Pier columns for the surviving bridge 

effectively resisted lateral spreading demands in part because of restraint provided by the 

superstructure. Collapse of the surviving bridge is incorrectly predicted when inertial demands are 
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computed for the individual bent in isolation from other components, and are represented by forces 

that do not consider global restraint. 

In Part II, results of a parametric study of the influence of kinematic pile-soil interaction on 

foundation-input motions (FIM) are presented. One-dimensional nonlinear ground response 

analysis was used to define free-field motions, which were subsequently imposed on a beam-on-

nonlinear-dynamic-Winkler-foundation pile model. The free-field ground surface motion (FFM) 

and top-of-pile “foundation-input motion” (FIM) computed from these results were then used to 

compute transfer functions and spectral ratios for use with the substructure method of seismic 

analysis. A total of 1,920 parametric combinations of different pile sizes, soil profiles, and ground 

motions were analyzed.  

Results of the study show that significant reductions of the FFM occur for stiff piles in soft soil, 

which could result in a favorable reduction in design demands for short-period structures. Group 

effects considering spatially-variable (incoherent) ground motions are found to be modest over the 

footprint of a typical bridge bent, resulting in an additional reduction of FFM by 10 percent or less 

compared to an equivalent single pile. This study aims to overcome limitations of idealistic 

assumptions that have been employed in previous studies such as linear-elastic material behavior, 

drastically simplified stratigraphy, and harmonic oscillations in lieu of real ground motions. In 

order to capture the important influence of more realistic conditions such as material nonlinearity, 

subsurface heterogeneity, and variable frequency-content ground motions, a set of models for 

predicting transfer functions and spectral ratios has been developed through statistical regression 

of the results from this parametric study. These allow foundation engineers to predict kinematic 

pile-soil interaction effects without performing dynamic pile analyses.  
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This work is dedicated to those who have lost their lives during earthquakes. May our profession 
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1 Introduction 

During a major earthquake, attention is drawn to the response of bridges, buildings, and other 

infrastructure. To a large extent, the response of these structures is controlled by what happens 

underground, at the interface between the structure’s foundations and moving soil or rock. 

Dynamic behavior of the foundation and ground materials along with the subsequent impact on 

the structure’s response due to relative movements at this interface are described by the field of 

kinematic soil-structure interaction. 

The purpose of the studies described in this dissertation is to validate existing design 

guidelines and provide new, simplified design tools for capturing this complex mechanism in the 

routine design of structures supported on deep foundations. While two- or three-dimensional 

dynamic numerical modeling techniques that attempt to recreate these complexities are available, 

they are beyond the scope of most projects. Instead, foundation engineers desire robust and well-

validated equivalent-static analysis (ESA) methods for seismic design than can be integrated with 

the level of design methodologies already in day-to-day use. Two cases are examined: 

Part I of the dissertation investigates the demands placed on foundations by permanent 

ground displacements resulting from liquefaction-induced lateral spreading. Existing ESA 
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methods are shown to be capable of adequately predicting both the collapse and non-collapse of a 

pair of bridges in Mexico during the 2010 M 7.2 El Mayor-Cucapah earthquake, with the important 

caveat that inertial demands from the superstructure should be represented in a manner that 

considers resistance provided by all above-ground bridge components, not just the foundations. 

In Part II of the dissertation, simplified models are developed for predicting transfer 

functions and spectral ratios to capture kinematic pile-soil interaction in non-liquefied ground. 

These models can be used to modify free-field ground motions resulting from a seismic hazard 

analysis or building code without the need for conducting dynamic analysis of the foundations. 

Use of the modified motions rather than free-field motions is more realistic, and is shown to 

provide a beneficial reduction in design forces for large-diameter piles in soft soil conditions. To 

develop these models, a parametric study is performed considering typical ranges of pile, soil, and 

ground motion conditions encountered in practice, with explicit consideration of nonlinear 

material behavior and the complexity of real ground motions. While previously-available elastic 

analytical models are shown to be capable of predicting the average results of this study, they do 

not adequately reflect the amount of variability in the results that arises from consideration of more 

realistic conditions. The new model is also used to re-examine available case history data that 

could not be explained by existing models. 
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Part I: Evaluation of Collapse and Non-Collapse of Parallel Bridges Affected 

by Liquefaction and Lateral Spreading 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Are simplified, equivalent-static analysis methods adequate to capture the complex mechanism of 

lateral spreading for design of bridge deep foundations? 
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2 Introduction to Part I 

The 2010 M 7.2 El Mayor-Cucapah (EMC) earthquake triggered liquefaction-induced lateral 

spreading in the vicinity of two bridges (highway and railroad) that cross the Colorado River in 

Baja California, Mexico. The bridges exhibited significantly different performance levels, despite 

being separated by only a few meters and both bridges being supported on deep foundations. The 

railroad bridge (RRB) suffered unseating collapse of one span and near collapse of another span, 

while the highway bridge (HWB) suffered moderate repairable damage without collapsing. 

Since the soil conditions and imposed lateral spreading demands were essentially 

equivalent for the two bridges, this case study provides an excellent opportunity to validate 

recently-proposed equivalent-static analysis (ESA) procedures (Ashford et al. 2011; Caltrans 

2013a) for analyzing bridge foundations subjected to lateral spreading. The objectives of this study 

were to apply the recommended ESA procedures to the two bridges and compare the predicted 

behavior to the performance that was observed following the EMC earthquake. Design procedures 

are often validated against failure case studies, but validation against cases of moderate to good 

performance is less common. The ability of a single method to predict the full range of possible 

performance levels indicates that it is a particularly robust tool that will be useful in practice. 
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An alternative to the ESA procedure for lateral spreading is to perform nonlinear dynamic 

numerical analyses where the soil and structure are modeled using two- or three-dimensional 

continuum elements, and input ground motions are provided that exhibit appropriate levels of 

spatial variability. Although this method can capture features of behavior neglected by ESA, 

dynamic methods can be costly and time-consuming to implement, require advanced user-

expertise, and are limited in accuracy by the user’s ability to adequately estimate the parameters 

needed to define the material constitutive models. For routine design, this approach is not practical. 

Hence, the ESA procedure is a useful design tool as long as its predictive capabilities are properly 

validated. The ESA procedure can also be used to check the results of more advanced analyses 

when such analyses are justified by the nature of the project. 

The remainder of Part I of the dissertation is organized as follows: 

  Chapter 3 presents an overview of the San Felipito Bridges site and 

observed damage following the EMC earthquake. 

 Chapter 4 describes the geotechnical and structural modeling parameters 

used for the analyses, and how they were selected based on the known 

project conditions and existing guidance documents. Results are presented 

which demonstrate that ESA procedures are capable of predicting the full 

range of performance exhibited by the San Felipito Bridges, but only when 

inertial demands from the superstructure were represented in a manner that 

captured the resistance provided by all bridge components, not just 

foundations. A simplified procedure is developed for capturing this effect 

using a model of a single bridge bent. 
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 Chapter 5 investigates the concepts of “pinning” and “shielding” in the 

context of interaction between adjacent structures during lateral spreading. 

A novel analysis method combining the results of ESA with two-

dimensional finite-element analysis is presented to quantify these effects. 

 Chapter 6 presents conclusions and recommendations for implementing the 

findings of this case study in practice. 
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3 Site Description and Investigation 

The San Felipito Bridges (SFB) cross the Colorado River near the geographic center of the 

Mexicali Valley in the Mexican state of Baja California, about 60 km southeast of the city of 

Mexicali and 6 km southeast of the nearest town, Guadalupe Victoria. The Mexicali Valley and its 

counterpart to the north of the Mexico/United States border, the Imperial Valley, represent the 

terminus of the Colorado River as it flows into the Gulf of California. 

The following sections describe the SFB site, from a regional scale down to the site-specific 

results of geotechnical investigations, and will present a summary of the EMC earthquake. 

3.1 REGIONAL AND LOCAL GEOLOGY 

The Mexicali and Imperial Valleys are located in the Salton Trough, a transtensional basin formed 

during the last five million years by tectonic activity along the transform boundary between the 

Pacific and North American Plates. To the northwest, the San Andreas Fault system accommodates 

primarily right-lateral strike-slip movement at the continental-transform boundary between the two 

plates. To the southeast, the Gulf of California is a result of extension due to divergent fault step-

over at the ridge-transform plate margin, driven by oceanic ridge spreading at the Eastern Pacific 

Rise (Merriam and Bandy 1965; Brothers et al. 2009; McCrink et al. 2011). The Mexicali area is 
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located at the junction of these two tectonic regions, leading to complex faulting patterns and 

seismicity (Hauksson et al. 2011; Wei et al. 2011). 

The Colorado River (known as the Río Colorado in Mexico) enters the east side of the 

basin at Yuma, Arizona, on the Mexico-U.S. border, depositing fine-grained fluvio-deltaic 

sediments over existing marine, deltaic, lacustrine, and locally derived coarse-grained alluvial fan 

and fluvial deposits for a total thickness of up to 10-12 km (Merriam and Bandy 1965; Dorsey 

2010). Petrographic studies by Merriam and Bandy confirmed that the majority of the fine sand 

and smaller-sized sediment in the basin originates from the Colorado Plateau and was not derived 

locally from the crystalline Peninsular Range mountains that bound the valleys to the east, north, 

and west. 

Continual extension and depression has thus resulted in a series of basins filled with 

deposits from the Colorado River extending far below present-day sea level. The depositional 

environment within the basins has alternated between marine and non-marine depending on the 

contemporary topography during deposition. Periodically, the Colorado River has terminated as a 

series of distributaries and shallow freshwater lakes that do not reach the Gulf of California, similar 

to the present configuration, although currently this phenomenon is exacerbated by human 

withdrawal of the majority of the river’s flow for agriculture and domestic consumption. Resulting 

lacustrine deposits of silt and clay can thus be found throughout the region. Flood overbank 

deposits are also responsible for fine-grained sediment in the area, particularly in the Imperial 

Valley as a result of floods of the river extending north of its usual course (Merriam and Bandy 

1965; Dibblee 1984; Pacheco et al. 2006; Dorsey 2010). 

Several faults cross the region as shown in Figure 3-1, primarily accommodating strike-

slip movement in the northwest-southeast direction in combination with smaller oblique normal 
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faults accommodating extension at the divergent step-over zones. The major plate boundary faults 

in the region are, from north to south, the San Andreas fault, the Imperial fault, and the Cerro 

Prieto fault. The EMC earthquake occurred as a sequence of ruptures along a series of faults 

considered to be west of the active plate boundary, including the Pescadores, Borrego, and 

previously unknown Indiviso faults (GEER 2010; Hauksson 2011). 

 
Figure 3-1: Regional map and key geologic features. Fault rupture zones after GEER (2010); Cerro 

Prieto and Imperial Faults after Pacheco et al. (2006). Google Earth base image. 

Pacheco et al. (2006) estimated the average depth to crystalline bedrock in the central and 

eastern Mexicali Valley to be about 4 km using exploratory well data and geophysical methods. 

Basin depth further west of the Cerro Prieto fault has not been directly measured but is estimated 

to be significantly deeper than 4 km (Dorsey 2010). Sediment depth has not been measured directly 

at the SFB site, but the studies by Pacheco et al. as well as others by the Mexican Federal Electricity 
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Commission in support of the Cerro Prieto Geothermal Field (Davenport et al. 1981) indicate that 

unconsolidated (in the geologic sense) Quaternary sediments in the region vary in thickness 

between approximately 500 and 2500 m. Late Miocene and Pliocene sediments below this depth 

are mostly consolidated and in places have been subjected to low-grade metamorphism. 

3.2 SITE TOPOGRAPHY AND SURFACE CONDITIONS 

Nearly-level agricultural fields surround the area adjacent to the river, as can be seen in the 

background of Figure 3-2. Approach embankments that maintain the grade of the road at the 

elevation of the surrounding land are sufficient to provide about ten meters of clearance between 

the base of the bridges and the river surface during average flow. 

The bridges cross the river at a gentle meander that has caused the active channel to migrate 

to the west side of its flood plain, which is about 175 m wide as seen in Figure 3-3. In the vicinity 

of the SFB crossing, the active river channel is approximately 50 m wide during the low and 

average flows that appear to be predominant for most of the year based on vegetation patterns 

observed at the site. The active channel is incised about 24 m below the flood plain terraces by a 

steep bank on the west side, and a more gradual slope on the east side (approximately 1.5 horizontal 

to 1 vertical (1.5H:1V) and 3~5H:1V, respectively). The flood plain terraces extend for about 25 

m west of the active channel and about 90 m east of the active channel until meeting slopes that 

lead up to the adjacent fields. These slopes are about 2-3H:1V on the west bank and more gradual 

on the east bank. Constructed fills surrounding the bridge abutments slope down to the flood plain 

terraces at approximately 1.5H:1V. 

The average natural ground slope is steeper on the west side of the river than on the east 

side because the bend in the river results in higher flow velocity and thus more erosive energy on 
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the west side, with corresponding low velocity and sediment deposition on the inside of the bend. 

This pattern of topography is typical at bends in rivers flowing through alluvial valleys, and the 

resulting differences in relative density on each side of the river can significantly affect the 

behavior during earthquakes as was observed at the SFB site. 

The ground surface is barren under and immediately north and south of the bridges, but in 

general the area is characterized by thick growth of tamarisk and other semi-aquatic and terrestrial 

bushes, extending from the water’s edge to between about 20 and 150 m away from the active 

channel banks. Rip-rap armoring has been placed around the abutment fills to provide erosion 

protection, visible in Figure 3-2. 
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Figure 3-2: View of site looking west across the Río Colorado from atop the east river bank. People 
standing near the river are adjacent to the railroad bridge span that collapsed during the 2010 El 
Mayor-Cucapah earthquake as a result of lateral spreading; steel columns to support temporary 

replacement trestle are visible. Photo by B. Turner, January 2013.
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Figure 3-3: Site plan showing locations of CPT, seismic survey lines, and sample collections from October 2013 site investigation and 

previous investigations. Mapped lateral spreading features and structural damage after GEER (2010]. 
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3.3 SUBSURFACE CONDITIONS 

Characterization of the subsurface conditions is based on review of previous reports and other 

documents associated with the original design and construction of the highway bridge (HWB), 

borings performed after the El Mayor-Cucapah (EMC) earthquake in support of repair efforts, and 

additional subsurface tests performed for this study. The results of each will be discussed in the 

following sections. 

3.3.1 Previous Subsurface Investigations by Others 

The Mexican highway authority, Secretaría de Comunicaciones y Transportes (SCT), provided us 

with a cross section of the HWB showing profiles of blowcounts for five borings performed during 

the original subsurface investigation for the bridge design in 1998 as well as blowcounts from a 

post-earthquake boring (SCT, personal communication, 2013). The approximate locations of these 

borings are shown on Figure 3-3. The documents provided by SCT indicate that the original 

exploratory borings were advanced using hydro-jetting and sampled using a standard penetration 

test (SPT) split spoon sampler. The post-earthquake boring was observed by members of the GEER 

reconnaissance team to be advanced in a similar manner, notably without the use of casing or 

slurry (GEER 2010). Other design documents that SCT provided us indicate that index tests were 

performed on the samples retrieved during the original investigation, but the results of these tests 

were not available. 

In general, the stratigraphy indicated by the SCT cross section consists of about 6 to 10 m 

of loose silty sand that gradually increases in relative density with depth, overlying a very dense 

layer of silty sand that resulted in refusal blow counts. The soil profile is uniformly described on 

the SCT cross section as poorly graded, light brown, very loose to very dense silty sand. Of the six 

borings, three show penetration resistance gradually increasing with depth. The other three 
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borings, including the post-earthquake boring, show erratic increases and decreases in penetration 

resistance in the upper 10 m, with SPT N-values above 25 immediately below the surface and 

refusal at depths as shallow as 5 m, interbedded with low N-value layers. Some of the high 

penetration resistances may have been caused by friction along the sampling rods due to caving of 

the borehole prior to, or during, driving of the sampler. 

The SCT also provided us with a cross section of the railroad bridge (RRB) that shows 

three post-earthquake borings performed in June 2012 by Ferrocarril Mexicano (Ferromex), the 

owner of the railroad, along with a complete log for one of the borings, which is included in 

Appendix A (SCT, Personal communication, 2013). The boring log does not indicate whether 

hydro-jetting or a different form of drilling was used. The SPT samples were taken, and results of 

index tests performed on the retrieved samples are included on the boring log. 

The Ferromex boring log shows SPT N-values between about 12 and 20 in the upper 7 m, 

followed by a gradual increase in relative density to refusal over the next 5 m. The general trend 

of these blow counts with depth is reasonable, but the average values are unexpectedly high in the 

shallow soil given that liquefaction and resulting lateral spreading were severe enough to cause 

collapse of the adjacent RRB span. The unexpectedly high penetration resistance measured in these 

borings may be due to the “nonstandard” nature of the SPT tests that were performed, i.e., that the 

use of hydro-jetting the unsupported borehole, using a rope and cathead hammer system, unknown 

hammer efficiency, etc., may have resulted in field blow counts that do not correspond to typical 

U.S. energy standards of 6090% efficiency. 

Groundwater encountered in each of the borings suggests that the surface of the 

groundwater table is relatively constant across the site at approximately the same elevation as the 
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river surface. Given the primarily course-grained soil at the site and the lack of geologic structural 

features that could cause artesian pressures, this interpretation is reasonable. 

3.3.2 Subsurface Investigation for this Study 

As a result of the uncertain nature of the SPT N-values from the previous investigations, as well 

as a lack of available index test results and the need to characterize the subsurface as accurately as 

possible in order to complete the analyses for this study, the research team opted to supplement 

the available information by performing additional subsurface explorations at the site consisting 

of in situ testing and laboratory testing of retrieved samples. 

The investigation, completed in October of 2013, consisted of cone penetration testing 

(CPT) with shear wave velocity and porewater pressure measurements, hand sampling of near-

surface soil, and spectral analysis of surface waves (SASW) geophysical testing. The locations of 

each exploration are shown on Figure 3-3. 

The CPT soundings were performed using the NEES@UCLA 20-ton truck-mounted 

Hogentogler rig, which is capable of pushing to a maximum cone tip resistance (qt) of 

approximately 30 MPa. Four CPT's were successfully advanced to depths between 4.5 and 16.5 

m, and several more attempted tests were stopped by obstructions at shallow depths. The 

obstructions were likely rubble from the original bridge construction or post-earthquake repair 

efforts. Shear wave velocity (Vs) measurements were taken at the CPT-3 location. 

Profiles of cone tip resistance are shown in the Figure 3-4 cross section, and detailed 

profiles of tip resistance and friction ratio are presented in Appendix A. 

Minimum and maximum void ratio and grain size analysis tests were performed on a bulk 

sample collected at the surface from location TP-1 (shown in Figure 3-3) in general accordance 
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with ASTM standards. Laboratory test results are presented in Appendix B. The sample was found 

to be a uniformly graded silty fine sand, and the fines fraction was non-plastic. The fines content 

of 45% is higher than expected for the deeper layers, and most likely because a large amount of 

silt is deposited on the ground surface by wind and the river on a regular basis. This is supported 

by the grain size analysis results on the railroad boring; see Appendix A. 
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Figure 3-4: Cross section along highway bridge centerline and penetration resistances from previous and current subsurface 

investigations. Explorations are offset from centerline as shown in Figure 3-3.
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Two SASW geophysical surveys were conducted at the locations shown in Figure 3-3. 

Four sensors were placed at 2-m and 4-m horizontal spacings to record signals generated by a 

vertical constant-force shaker performing a sine wave sweep over a frequency range of 5 to 35 Hz. 

Recordings were also taken with a sledgehammer impacting a steel plate as a high-frequency 

source. Results of the SASW interpretation are presented in Section 3.3.3. 

The stratigraphy inferred from the CPT generally agrees with the inferred stratigraphy from 

the SCT/Ferromex borings over the upper 610 m, although the higher resolution of the CPT data 

reveals that the interbedded loose and dense layers are thinner than captured by the SPT in some 

cases. Below depths of about 10 m, the SCT/Ferromex borings suggest a continuous very dense 

layer extending well below the tips of the foundations (with one notable exception in PEB-1 that 

will be discussed later). Of the CPT's performed, only CPT-1 was able to extend a significant depth 

into this supposedly very dense layer; in fact, the results show that the pattern of interbedded loose 

and dense layers continues over this depth. This further supports the notion that the method of 

drilling and sampling used for these borings may have resulted in erroneous N-values, or that the 

SPT sampling intervals were inadequate to identify the loose layers. 

Considering all the available information, the stratigraphy in the vicinity of the eastern 

spans of the bridges is summarized as follows: surficial soil consists of a loose, uniformly graded, 

silty, fine sand crust above the groundwater table, which is about 1.5 to 2 m below the ground 

surface. In the vicinity of the bridges, this layer is highly disturbed from construction and post-

earthquake repair efforts, so it is considered fill, though it consists of the naturally deposited 

sediments. The fines portion of the soil consists of nonplastic silt expected to behave as a granular 

material. This loose layer extends below the groundwater table to a depth of about 6 m near the 

river. Moving from west to east, (i.e., away from the river), the thickness of the loose surface layer 
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decreases and its relative density increases. Below the loose layer, interbedded dense and loose 

layers continue to the maximum depth of CPT exploration (16.6 m) and a similar interbedded 

pattern is expected below this depth. Within the interbedded strata, the dense layers range in 

thickness from about 1 to 3 m, while the loose layers are generally thinner, ranging from about 

0.25 to 1 m thick. The CPT results and index testing from the Ferromex boring suggest that the 

soil at depth has the same general consistency as the near-surface soil, i.e., fine to medium sand 

with varying amounts of nonplastic to low plasticity fines. Some thin layers of predominantly fine-

grained soil are present within the interbedded granular layers. 

Stratigraphy on the western side of the bridges is less certain because only one CPT was 

performed on the west bank, and only to a depth of about 4.5 m due to equipment problems. The 

subsurface conditions are expected to fit the same pattern as described for the east bank zone, 

except that the transition from low to high relative density is expected to occur over a shorter 

distance because this area is on the outside of the river bend. The CPT tip resistance measured on 

the west bank was slightly higher than the tip resistance measured near the river on the east bank, 

confirming this trend. 

Based on a review of photographs from the post-earthquake reconnaissance team (GEER 

2010), the river level at the site around the time of the earthquake was approximately the same as 

the level during the October 2013 site investigation. This conveniently eliminates the need to re-

interpret the CPT data for a different groundwater level. 

3.3.3 Interpretation of Vs Profile 

The shear-wave velocity profile was interpreted by combining the results of the SASW data with 

the CPT and SCPT measurements. This is a non-standard procedure that makes appropriate use of 
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all of the available measurements. Typically, SASW inversion is performed based only on the 

measured Rayleigh wave dispersion curve. A problem with this procedure is that the inversion 

from the Rayleigh wave dispersion curve to a Vs profile is non-unique. For example, the velocity 

profiles in Figure 3-5 are associated with essentially identical first-mode Rayleigh wave dispersion 

curves, yet the velocity profiles clearly differ from each other. The dispersion curves in this case 

were computed using the finite element formulation developed by Lysmer (1970). The vertical 

variations in the Vs profile could be important depending on the manner in which the velocity 

profile is utilized. For example, a one-dimensional site response analysis using the Profile 1 would 

likely differ significantly from the same analysis performed on Profile 3. Furthermore, Vs -based 

liquefaction triggering procedures could provide significantly different outcomes for the three 

profiles in Figure 2.5. However, a blind inversion of the first-mode Rayleigh wave dispersion curve 

(common practice in SASW) cannot possibly resolve the vertical variation of the velocity profile. 

For this reason, the CPT tip resistance data was utilized to constrain the inversion of the dispersion 

curve. 

 
Figure 3-5: S- and P-wave velocity profiles and dispersion curves for Seismic Line 2 (location shown 

in Figure 3-3). 
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Correlations between Vs and penetration resistance have been formulated previously [e.g., 

Brandenberg et al. (2010) and DeJong et al. (2006)]. The correlation tends to be rather poor, but 

provides an improvement in velocity estimates based on surface geology or topography alone. 

Much of the dispersion in the relation between Vs and penetration resistance arises from site-to-

site variability rather than random variability within a specific site. For this reason, a site-specific 

calibration in which Vs and penetration resistance are independently measured can improve 

accuracy. 

The approach adopted in this study is to utilize the functional relation between Vs, qt, and 

vertical effective stress  v  shown in Equation (3.1), and adjust the fitting parameters, 0 , 1 , 

and 2 , such that the resulting Vs profile produces a dispersion curve that matches the measured 

curve. Note that the definition of the overburden scaling factor, n, is based on Robertson (2012); 

see Appendix C. An overburden scaling term is required in the relation between Vs and tq  because 

these parameters are known to scale differently with overburden stress. 
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where Vs is in m/sec, tq  is in kPa, v  is vertical effective stress in kPa, ap  is atmospheric pressure 

(101.325 kPa), and cI  is the soil behavior type index. 

The CPT-2 sounding and dispersion curve measured for Seismic Line 2 were used in this 

study, and the following constants were found to provide a good fit as shown in Figure 3-6: 0  = 

0.5, 1  = 0.58, and 2  = 0.35. This particular combination of CPT-2 and Seismic Line 2 were 

selected because: (1) they are at similar distances from the river, and site conditions are known to 
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depend on this distance; and (2) the soil directly below the HWB at the location of Seismic Line 1 

is known to have been significantly reworked during post-earthquake construction to retrofit the 

bridge foundations. Therefore this soil does not represent site conditions outside of the bridge 

footprint. 

 
Figure 3-6: CPT-2 tip resistance, inferred shear-wave velocity profile, and dispersion curves used to 

fit parameters in Equation(3.1). 

Utilizing the   values determined for CPT-2 and Seismic Line 2, Vs profiles can be 

computed at the location of other CPT test sites, as shown in Figure 3-7. Comparing CPT-1, 2, and 

3, the velocity profile tends to stiffen with increasing distance from the river, which is consistent 

with the interpreted geology at the site and the trends in the penetration resistance tests. Comparing 

CPT-1 and CPT-4, which are similar distances from the river but on opposite banks, the west bank 

of the river tends to be stiffer than the east bank. This is also consistent with geological conditions 

since younger deposits exist on the east side of the river. Time-averaged shear wave velocity over 

the upper 30 m (Vs30) was estimated to range between approximately 180 and 230 m/sec for 

subsequent calculations. 
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Figure 3-7: Profiles of shear wave velocity estimated at CPT test sites using Equation (3.1) with 0  

= 0.5, 1  = 0.58, and 2  = 0.35. 

3.4 BRIDGE DETAILS 

The HWB and RRB both consist of precast-prestressed simply supported concrete spans on 

elastomeric bearings resting atop reinforced concrete bents supported on deep foundations. The 

bents of the HWB were designed to match the 20-m spacing of the RRB, with ten spans total for 

an overall length of 200 m. The primary difference between the two bridges is the size and number 

of foundations that support each bent, which will be described further in the following sections. 

3.4.1 Highway Bridge (HWB) 

The following structural details are primarily based on the bridge construction plans (1998) 

provided to the research team by SCT. The HWB was designed by a private engineering firm from 

Mexico City, Sigma Ingenieria Civil, S.A. de C.V. 

Each of the bridge’s ten 20-m-long spans consists of seven precast-prestressed 1.15 m-deep 

I-shaped girders. Vertical post-tensioned diaphragms connect the ends of the girders in the 

transverse direction. Precast slab panels rest on the top flanges of adjacent girders, covered by a 
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cast-in-place deck slab. The total deck width is about 11 m. Plain laminated elastomeric bearings 

transfer loads from the girders to 60-cm-wide concrete masonry plates atop the 1.6-m-wide bent 

caps, which are in turn supported on four extended-shaft columns. 

At the bents between spans 34 and 78, as well as at the end supports at the abutments, 

the only connection between the girders/diaphragm and the bent cap is the elastomeric bearings. 

The bearings transfer load and allow for relative displacement and rotation between the 

superstructure and the substructures by compressing and deforming in shear. The deck slabs are 

separated by a polymer-filled joint at these locations to allow for thermal expansion and 

contraction. 

At the remaining bents, including Bent 2 and Bent 5 that suffered flexural damage during 

the EMC earthquake, translation of the girders is restrained by anchorage via two rectangular shear 

tabs that extend from the base of the diaphragm into the bent cap, as shown in Figure 3-8. The 

anchorage tabs fit into a rectangular slot cast into the bent cap such that translation is restrained in 

both the longitudinal and transverse directions. A felt pad lines the joint between the anchorage 

tabs and the bent cap; no reinforcing bars form a positive connection between the two elements. A 

small amount of rotation is allowed at these connections, hence they are considered to be “pinned” 

as opposed to moment-resisting connections. It is assumed that the elastomeric bearings are 

intended to accommodate lateral deformation under service loads, while the anchorage tabs are 

meant to prevent unseating during extreme events. The end conditions of all ten spans are 

considered simply supported. 

At each bent, four 1.2-m-diameter extended-shaft columns are continuous with four drilled 

shaft foundations of the same size and reinforcement detail. A transverse beam near the ground 

level joins the shafts at each bent with the exception of Bent 2, which has a larger pile cap. The 
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foundations in the river extend to the deepest elevation, approximately 17 m below the river surface 

elevation, as shown in Figure 3-4, while the foundations nearest the abutments and beneath the 

eastern spans where the river flows less frequently are shorter by 3 to 6 m. A cross section of the 

bridge adapted from the construction plans is shown in Figure 3-4. 

 

 
Figure 3-8: Bent 1 of highway bridge showing shear tabs extending from transverse diaphragm into 

bent cap (top) and Bent 3 with no shear tabs (bottom). Photos B. Turner, 2013.
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Design documents provided by SCT indicate that each shaft was designed to carry an 

allowable axial load of about 2100 kN. Axial dead load estimated from the superstructure (girders, 

deck, and nonstructural components) was approximately 1,050 kN, which is consistent with a static 

factor of safety against axial failure of 2.0, although this does not consider the self-weight of the 

column. It is not known if the bridge was explicitly designed to resist loads resulting from 

liquefaction such as downdrag or lateral spreading, but the absence of any discussion of these 

subjects in the design documents suggests they were not considered. 

During the October 2013 site investigation, Mr. Ramón Pérez Alcalá, an engineer for SCT 

who was responsible for overseeing construction of the bridge in 19981999, provided information 

on the methods used to construct the foundations. Temporary steel casing was advanced under its 

own weight, or using hydraulic jacks in stiff layers, while the spoils were removed by air lifting. 

Water was pumped from the river and maintained at or above ground level to keep a positive head 

within the hole. Concrete was placed using the tremie method after the reinforcing cages were in 

place. All the foundations were installed to the depths shown on the construction plans. A cold 

joint exists at the approximate ground surface elevation during construction since the columns 

were not ready to be constructed when the foundations were poured. Based on photographs 

provided by Mr. Alcalá, such e.g., Figure 3-9, the foundation reinforcing cages are lap spliced with 

the column reinforcement by approximately 3 to 4 m. 
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Figure 3-9: Construction of highway bridge foundations via casing and air lift method, circa 1999. 

Photo courtesy Ramón Pérez Alcalá, SCT. 

Mr. Alcalá also explained why Bent 2 has a pile cap not present at the other bents. A void 

related to a previous structure was encountered during construction of the foundations. Since a 

foundation passing through the void could not be relied upon, a fifth shaft was constructed south 

of the bridge and connected to the other foundations and columns via the pile cap. 

Further information regarding the dimensions and mechanical properties of the bridge 

elements is provided in Section 4.3 

3.4.2 Railroad Bridge (RRB) 

The RRB, constructed in 1962 (EERI 2010), consists of a single track supported on three 1.2 m-

deep I-shaped girders. The simply supported spans rest on plain elastomeric bearings atop oblong-

shaped reinforced concrete pier walls that are most likely supported on driven pile foundations. 

No shear keys or other form of anchorage were observed to prevent an unseating failure if the 
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elastomeric bearing capacity is exceeded. Simply supported concrete slab walkways parallel the 

track on each side. The research team was unable to obtain construction plans or design documents 

for the RRB. 

Foundation details are unknown, but given the timeframe of construction, the fluvial 

environment, and the propensity of North American railroad companies to use driven pile 

foundations to this day (e.g.,, the post-earthquake repair of the RRB utilized driven steel piles), it 

is most likely that the pile caps are supported on driven pile foundations as opposed to drilled 

shafts. Because it is not known whether timber, concrete, or steel piles were used, analyses were 

performed considering all three materials over a range of sizes and group layouts; see Chapter 4. 

In order to quantify the structural properties of the RRB for modeling purposes, direct 

measurements of the above-ground member geometry were taken during the October 2013 site 

investigation. The size of the pile cap was inferred from photographs taken by members of the 

GEER team (2010) during the repair efforts by Ferromex in which the soil above and around the 

pile cap had been excavated to facilitate installing new driven piles. 

Given the date of construction, it is almost certain that the RRB foundations were not 

designed to resist the effects of liquefaction and lateral spreading. 

3.5 APRIL 4, 2010 M 7.2 EL MAYOR-CUCAPAH EARTHQUAKE 

The Mexicali and Imperial Valley region is known to be seismically active, with several major 

earthquakes occurring in recent history, including an estimated M 7.2 event in 1892 (Hough and 

Elliot 2004). The EMC earthquake caused widespread damage to buildings, utilities, and 

transportation and agricultural infrastructure throughout the Mexicali and Imperial Valleys (GEER 

2010; EERI 2010). 
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Rupture occurred mainly along the Pescadores and Borrego faults through the Sierra El 

Mayor mountain range northwest of the epicenter and the previously unknown Indiviso fault to 

the southeast, which was buried beneath sediments of the Colorado River delta prior to the 

earthquake (GEER 2010; USGS 2010; McCrink et al. 2011). This series of faults represents the 

southern continuation of the Elsinore fault zone in Southern California. Fault offset was oblique 

with the primary component being strike-slip. Further details of the complex rupture propagation, 

which appears to have started along a short unnamed normal fault and then propagated north and 

south along the strike-slip faults, are provided in GEER (2010), Hauksson et al. (2011), and Wei 

et al. (2011). 

The SFB site is approximately 14.5 km east of the fault rupture zone (Rjb; note Rjb = Rrup 

for vertical strike-slip faults). The three nearest strong-motion recording stations are Riito, Saltillo, 

and Geotérmica, located approximately 12, 21, and 24 km from the SFB, respectively (see Figure 

3-10). Peak ground accelerations (PGA) recorded at the three stations were 0.40, 0.15, and 0.29g, 

respectively. A weighted average based on distance of these three values yields a PGA of 0.29g 

for the SFB site, but this estimate fails to consider site effects and is clearly inaccurate due to the 

variability of the three recorded motions. 

The USGS PGA Shakemap (USGS 2010) for the EMC earthquake estimates a PGA of 

about 0.32g for the SFB site, as shown in Figure 3-10. However, the Shakemap PGA values south 

of the U.S.Mexico border are based entirely on estimated ground motions using “standard 

seismological inferences and interpolation” and are not constrained by recorded motions (USGS 

2014). The nearest recording station to the SFB site used to generate the USGS Shakemap is 

approximately 50 km to the northwest; hence the estimated value is only approximate and does 

not consider local site effects. 
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In order to estimate PGA at the SFB site including site effects, the procedures described by 

Kwak et al. (2016) were used. In this method, a Kriging (spatial interpolation) procedure is used 

to estimate the residual of the selected ground motion prediction equation (GMPE) at the location 

of interest considering the residuals at nearby recording stations and the event term. (The residual 

is the misfit between a recorded motion and the GMPE prediction for that location, and the event 

term is the average of the residuals for all recordings from the earthquake, essentially representing 

the average misfit of the GMPE to the recordings.) This procedure captures the event term directly 

and approximately accounts for region-specific path terms. Site effects are captured at the level of 

resolution of the site term in the GMPE [i.e., they are not site-specific, hence this does not 

correspond to a single-station sigma condition; e.g., Rodriguez-Marek et al., (2011)]. This 

technique was used to estimate the residual at the SFB site (about -0.04 for PGA, in natural log 

units), which was subsequently added to the median predicted PGA from the BSSA 2014 GMPE 

(Boore et al. 2014) with appropriate site and distance parameters. The resulting estimated PGA 

range is 0.26 to 0.27g for estimated Vs30 values of 180 to 230 m/sec, respectively. The same 

procedure was repeated for spectral acceleration at periods corresponding to the estimated first 

mode periods of the SFB (determination of these values is discussed in Section 4.4). The estimated 

values of spectral acceleration are shown in Figure 3-11, including error bars that represent within-

event aleatory uncertainty (±φ). Estimated spectral displacements at the bridge first-mode periods 

are also shown; spectral displacements will be used with the proposed analysis method discussed 

in Chapter 4. 
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Figure 3-10: USGS Shakemap for PGA. Contours show Shakemap estimated PGA in %g based on 
GMPE estimates (not constrained by recordings south of the U.S.Mexico border). Measured PGA 

shown for SMA recording stations nearest the San Felipito Bridges. Adapted from USGS 
Shakemap (2010). 
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Figure 3-11: Pseudospectral accelerations and spectral displacements estimated for SFB site during 

El Mayor-Cucapah earthquake. 

3.6 OBSERVED DAMAGE 

This section summarizes the observed ground failure and structural damage attributed to the EMC 

earthquake at the SFB site as documented by the GEER (2010) and EERI (2010) teams. Further 

details of the damage are available in the respective reconnaissance reports. The observed behavior 

was used as the basis for evaluating the predictive capability of the analyses described in Chapter 

3. 

3.6.1 Ground Deformation 

Lateral spreading cracks were documented by the GEER team; see Figure 3-3. The maximum 

documented lateral spreading surface displacement, based on summing the width of cracks at the 

ground surface along a transect, was 4.6 m towards the east river bank about 60 m north of the 

bridges. Lateral spreading along the bridge alignment was reduced due to the restraining influence 
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of the bridge foundations. However, this is not a traditional "pinning" effect (e.g., Martin et al. 

2002) because the out-of-plane width of the spreading deposit is very large relative to the bridge 

foundations; therefore, the resistance provided by the foundations is negligible compared to the 

inertial force of the displacing crust. (In contrast, the foundation resistance is significant for the 

case of a finite-width earth structure such as an embankment). Thus a free-field ground 

displacement profile is needed for structural analysis, and the measurements 60 m north of the 

bridge are considered reasonable estimates of the free-field conditions. 

Lateral spreading deformation was observed to be greater on the east bank of the river than 

the west bank, which is likely because the river currently flows along the western margin of its 

floodplain so the alluvial sediments on the east bank are looser and more susceptible to 

liquefaction. Similar deformation patterns at a river bend are documented by Robinson et al. 

(2012). In general, lateral displacements were observed to decrease with increasing distance from 

the river, as well as in close proximity to the bridges.  

At the HWB Bent 6, apparent vertical ground settlement of about 30 to 50 cm relative to 

the bridge columns was observed on the river-side of the columns; see Figure 3-12. The apparent 

relative vertical displacement on the upslope side of the columns was smaller, about 10 to 15 cm. 

These estimates of settlement are based on the assumption that the height of soil stuck on the sides 

of the columns (as shown in Figure 3-12) is representative of the ground level immediately 

preceding the earthquake; however, other explanations for the soil marks cannot be ruled out. The 

settlement was likely due to a combination of post-liquefaction reconsolidation of the liquefied 

soil layers and extension/shear strains associated with lateral spreading of the crust. As a result, 

there is no means for independently measuring the amount of vertical settlement that occurred due 

to reconsolidation alone. 
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Figure 3-12: Approximately 3050 cm of apparent relative vertical displacement between the 
ground and river-side of columns at Bent 6 of the highway bridge. Apparent relative vertical 

displacement on the upslope side is about 10 to 15 cm. Photo by J. Gingery, Kleinfelder/UCSD, 
2011. 

The Bent 6 columns themselves also settled about 50 cm as evidenced by vertical 

displacement in the bridge deck. Combined with the 3050 cm of apparent relative displacement 

between the ground and the river-side of the column, this indicates that the total ground settlement 

may have been as much as 0.81.0 m downslope of the columns, and about 0.6 m upslope of the 

columns. 

3.6.2 Structural Damage 

The bents of the RRB closest to the east and west river banks translated toward the river due to 

lateral spreading, which exceeded the lateral displacement capacity of the elastomeric bearings 

and led to unseating of the girders for a span on the eastern bank and near-collapse of a span on 

the west bank (Figure 3-13). The translation was observed to occur with relatively little 

corresponding pier rotation. The bridge deck also displaced in the transverse direction relative to 



 36

the bents; although displacements in the longitudinal direction were greater. Ferromex erected 

steel trestles to replace the collapsed span and support the nearly collapsed span on the west bank. 

Damage to the HWB was concentrated in discrete zones and was moderate overall. In 

contrast to the RRB, the HWB exhibited much better performance; it remained in operation 

immediately following the earthquake and required repair efforts that were completed with 

minimal disruption to traffic. The damage documented by the reconnaissance teams is summarized 

as follows: 

 Shear keys extending up from the ends of the bent caps intended to prevent 

unseating of the girders in the transverse direction were damaged, indicating 

that inertial demands in this direction were significant. Shear keys on the 

west abutment bent cap were damaged in a similar manner. 

 Flexural cracking was observed on the inward (river side) of the base of the 

columns of the bents on both sides of the river (Bent 2 and Bent 5), 

indicating horizontal movement of the foundations and pile cap towards the 

center of the river due to lateral spreading. Cracks on Bent 5 are shown in 

Figure 3-13. The bridge deck showed minor cracking above these damaged 

bents. 

 Bent 6 settled vertically about 50 cm, which cracked the pavement 

immediately above the bent. SCT subsequently installed six additional 1.2-

m diameter drilled shafts to a depth of 27.8 m around the perimeter of the 

existing Bent 6 foundations and connected the new and old foundations via 

a post-tensioned pile cap (SCT, personal communication, January 2013). 

Post-earthquake boring 1 (PEB-1, shown in Figure 3-3) was performed 
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adjacent to Bent 6 in support of the design effort for the additional 

foundations. The deck was subsequently re-leveled and the concrete 

masonry pads that support the elastomeric bearings were extended 

vertically to accommodate the height change. 

Column rotations were measured for the bridge bents on the east side of the river during 

the October 2013 site investigation. HWB Bent 5 columns were rotated between approximately 

0.9° and 1.7° away from the river, i.e., the bottom of the column was displaced towards the river 

relative to the top of the column. The measured rotation was smallest for the column closest to the 

RRB and increased approximately linearly to the south, indicating that more lateral spreading 

demand was imposed on the south columns than the north. HWB Bent 6 columns were uniformly 

rotated about 1.1° away from the river. Rotations for Bents 7, 8, and 9 ranged between about 0.4° 

and 0.1°, with a clear trend of decreasing rotation with increasing distance from the river. The RRB 

Bent 5 column, which translated enough to cause unseating of one of the spans it supported, rotated 

about 0.4° away from the river and about 0.6° to the north; it was difficult to measure the rotation 

because the surface of the column was rough. The remaining RRB bents on the east side of the 

river had essentially zero measureable rotation. 
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(a) (b)

Figure 3-13: (a) Railroad bridge Bent 5 translated due to lateral spreading demand, causing an 
unseating collapse; arrow shows direction of movement. Photo during GEER reconnaissance by D. 

Murbach, City of San Diego, 2011; and (b): flexural cracking at base of highway bridge Bent 5 
extended-shaft column. Photo B. Turner, 2013. Note that these two bents are adjacent to each 

other. 
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4 Analysis 

In order to validate the equivalent static analysis (ESA) procedures recommended by Ashford et 

al. (2011) and Caltrans (2013a), the San Felipito Bridges (SFB) were analyzed as described in this 

chapter and the results compared to the observed behavior described in the previous chapter. Three 

separate analyses were performed as depicted in Figure 4-1: 

 Highway bridge (HWB) Bent 5 with imposed lateral spreading and inertial 

demands, 

 Railroad bridge (RRB) Bent 5 with imposed lateral spreading and inertial 

demands, and 

 The axial response of HWB Bent 6. 

The locations of Bents 5 and 6 are shown on the Figure 3-3 site plan and the cross sections 

in the previous chapter. 
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Figure 4-1: Numerical models of (a) highway bridge Bent 5 lateral analysis, (b) railroad bridge 

Bent 5 lateral analysis, and (c) highway bridge Bent 6 axial analysis. 

The project scope initially included analyzing HWB Bent 2 under lateral spreading 

demand. However, the research team was unable to perform site investigation at this location due 

to a malfunction of the CPT rig. Furthermore, the revelation that an additional foundation was 

installed here because of an underground void discovered during construction complicated the 

structural modeling. 

A detailed treatment of the steps required to perform the ESA procedure is given by 

Ashford et al. (2011) and Caltrans (2013a) and will not be repeated here, however some of the 

calculations performed to quantify input parameters for the analyses are included in Appendix C. 

In summary, the methods provide a set of relatively simple tools that foundation engineers can use 

to estimate the engineering demand parameters (EDP) necessary to design bridge foundations in 

laterally spreading ground. The foundation design is intended to be performed in concert with the 

design of the superstructure in order to provide compatible behavior at the desired performance 

level. 
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The ESA procedure is performed using a two-dimensional static beam on nonlinear 

Winkler foundation (BNWF) approach. The analyses for this project were performed with the 

finite-element modeling platform OpenSees (McKenna 1997; McKenna et al. 2010). In theory, the 

analysis could be performed with any numerical analysis software that incorporates the BNWF 

approach and allows the user to impose a displacement profile to the free ends of the soil springs 

to simulate lateral spreading, and permits adequate consideration of important structural details. 

For example, the Caltrans (2013a) lateral spreading design guidelines describe how to perform the 

analysis using the finite-difference method program LPILE made by ENSOFT (Reese et al. 2005). 

OpenSees was used instead of LPILE because (1) it permits more detailed structural modeling 

(e.g., bearings between piers and girders, rotational stiffness at the top of the pier column, etc.), 

(2) it permits modeling of groups of piles (ENSOFT also makes GROUP, which permits analysis 

of pile groups), and (3) OpenSees is freely available. 

Since the HWB bents consist of four identical extended-shaft columns with approximately 

equal tributary loads, the analysis was performed for a single shaft, and the results are assumed to 

represent the behavior of all four shafts at the bent. The shafts form a single row in the bridge 

transverse direction, so group-interaction effects do not apply for lateral spreading loading in the 

bridge longitudinal direction. In contrast, the RRB bents consist of a single column supported on 

a pile cap that connects multiple rows of piles (it is assumed that multiple rows of piles exist based 

on traditional construction methods). To accurately capture the foundation group-interaction effect 

(i.e., the overturning resistance provided by the axial load in each row of piles times its eccentricity 

from the pile cap centroid), the system was explicitly modeled with multiple rows of piles. Each 

row of piles for the RRB is represented by a single pile with a flexural rigidity (EI) equal to the EI 

of a single pile times the number of piles in the transverse row. The actual number of rows of piles 
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and number of piles per row for the RRB is unknown; Section 4.6.2 includes discussion on how 

this uncertainty was addressed in the analysis. 

Above-ground portions of the bridge bents were modelled explicitly up to the elastomeric 

bearings. An alternative that is often used when modeling using LPILE or GROUP is to decouple 

the column demands from the foundation demands and impose the estimated column demands on 

the foundation for the BNWF analysis. However, explicitly modeling the columns is a superior 

approach because in many cases the lateral spreading demands are resisted by a combination of 

the foundation(s) and superstructure (i.e., the columns, girders, and deck segments), and knowing 

the demands at the base of columns a priori is often not possible. Furthermore, knowledge of the 

damage to the bridges in this study is based primarily on post-earthquake observations of above-

ground structural elements, namely cracking, rotation, and translation of columns. Since this 

damage was used as the basis for evaluating the accuracy of the predicted EDP, it was necessary 

to include the above-ground elements in the model. 

The following sections document the input parameters used in the OpenSees models of the 

bridges followed by results of the analyses. 

4.1 SOIL PROPERTIES 

CPT data were correlated to soil properties using the procedures described by Robertson (2012) 

and Idriss and Boulanger (2008). Peak friction angle was estimated in a manner consistent with 

critical state soil mechanics with an assumed critical state friction angle of 32° for quartz sand 

(Bolton 1986). Further details of the correlations are provided in Appendix C. Soil properties for 

each layer of the idealized soil profile used for the lateral spreading analyses are presented in Table 

4-1. 
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Using the overburden-normalized penetration resistance profiles presented in Appendix A 

and the soil properties presented below, liquefaction susceptibility and triggering analyses were 

performed per the recommendations of Idriss and Boulanger (2006; 2008). Soil layers with Ic less 

than 2.6 were assumed susceptible to liquefaction, which is supported by the laboratory tests 

performed on samples collected during the field investigation that showed that the fines fraction 

of the silty sand consisted of nonplastic silt. Groundwater depth was taken as 1.5 m below the 

ground surface. 

Because lateral spreading demand acting on the bridges represents a liquefied soil 

condition, discretization of the soil profile into the idealized layers presented in Table 4-1was 

based primarily on the results of the liquefaction triggering analysis. Correlated soil properties 

such as relative density and peak friction angle were then computed based on the average values 

estimated over the depth interval of each layer. 

Analyses were performed for the estimated PGA range of 0.17 to 0.41g to capture the 

uncertainty in Vs30 and the within-event aleatory uncertainty () in the estimated shaking intensity. 

Triggering of lateral spreading is dependent on the upper loose layer (layer 1 in Table 4-1) 

liquefying, which it is predicted to do for PGA values greater than about 0.15g. Hence, liquefaction 

and lateral spreading are predicted for the entire range of PGA values considered for this analysis 

(0.17 to 0.41g). The estimated lateral spreading displacement at the ground surface using the data 

from CPT-1 was 3.77 m for the median predicted PGA of 0.27g, with a range of 2.78 to 3.82 m 

for the median minus/plus one standard deviation PGA values of 0.17 and 0.41g, respectively. The 

predicted lateral spreading displacement saturates at values of PGA exceeding about 0.23g because 

maximum shear strains trend towards a limiting value for low factors of safety against liquefaction 

(FSliq). From these results it is concluded that lateral spreading demand is relatively insensitive to 
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the range of PGA considered, and thus the median estimated PGA of 0.27g is used from this point 

forward. 

Profiles of FSliq and estimated lateral spreading displacement using data from CPT-1 are 

shown in Figure 4-2 and are included alongside the CPT data profiles in Appendix A. Estimation 

of lateral spreading displacement is discussed in Section 4.2. 

Table 4-1: Estimated soil properties for Bent 5 lateral spreading analyses. 

L
ay

er
 

Description 
Depth 
range 
(m) 

Unit 
wt.a 

(kN/
m3) 

rD b 

(%) 

Peak 
friction 
anglec 

60N d

Excess 
PWP 
ratioe

ru  

(%) 

Fully--
iquefied 

P-
multiplierf

,p liqm  

P-
multiplier

pm  

1 
unsaturated 
silty sand 

crust 
0–1.5 17 55 35° 10 N/A N/A N/A 

2 loose sand 1.5–6.5 18 42 35° 8 100 0.14 0.14 

3 dense sand 6.5–8.4 18 77 40° 27 40 0.47 0.93 

4 
medium-

dense sand 
8.4–
11.2 

18 54 37° 20 100 0.28 0.28 

5 
very dense 

sand 
>11.2 19 82 41° 44 5 0.70 0.98 

aBased on judgment. 
bBased on a weighted average of Idriss and Boulanger (2008)—40%, Zhang et al. (2004)—30%, and Kulhawy and Mayne 

(1990)—30%; see Appendix C. 
cRobertson (2012) and Bolton (1986) 
dBased on correlation to qt and Ic per Robertson (2012); see Appendix C. 
ePWP = porewater pressure; median prediction of correlation by Cetin and Bilge (2012) between shear strain and ru is shown. 
fBrandenberg (2005) 
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Figure 4-2: Cross section showing eastern spans of highway bridge and computed profiles of factor of safety against liquefaction and 

lateral spreading displacement.
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Interaction between the soil and foundations was modeled using nonlinear p-y springs for 

lateral loading and t-z and q-z springs for axial side and base resistance, respectively, using the 

PySimple1, TzSimple1, and QzSimple1 uniaxial material models in OpenSees. The p-y springs are 

based on the API (1993) sand formulation considering modulus of subgrade reaction based on 

relative density values and peak friction angles presented in Table 4-1. The t-z springs utilize the 

backbone curve of Mosher (1984) with an ultimate resistance based on the effective stress at the 

spring depth and assumptions of interface friction angle equal to the peak friction angle following 

the recommendations of Brown et al. (2010) and at-rest (K0) lateral earth pressure conditions. K0 

was computed as (Jaky 1944): 

0 1 sinK      (4.1) 

Where  is the peak friction angle given in Table 4-1. Q-z springs following the functional form 

of Vijayvergiya (1977) were created from an estimated unit base resistance of 1500 kPa for the 

dense bearing layer. Unit base resistance  bq  was estimated from the CPT data using the following 

equation (Salgado 2006): 

b cbq c qb     (4.2) 

where cbq  is the cone tip resistance at the pile base level, and bc  is a constant that quantifies the 

ratio of base resistance to cone tip resistance based on soil type and pile material. A range of bc  

values between 0.25 and 0.5 was considered based on the recommended values in Salgado (2006) 

and a range of cbq  values between 1500 and 15,000 kPa. These ranges reflect the uncertainty in 

pile length, material, and end condition (i.e., full displacement versus open pipe piles). The 

analysis results are relatively insensitive to the chosen value of base resistance since the majority 



 47

of the axial resistance of the piles comes from side resistance. For the HWB, axial resistance does 

not affect the response to lateral spreading since axial-interaction group effects are not a factor for 

the single row of extended-shaft columns. However, the end bearing resistance plays a crucial role 

in the observed settlement at Bent 6, as discussed later. 

The t-z and q-z springs are based on the assumption that 50% of the spring’s ultimate 

resistance is mobilized at relative displacements (z50) of 1.5 mm and 1.25% of the foundation 

diameter, respectively. These z50 values imply that the full resistance of the t-z and q-z springs will 

be mobilized at relative displacements of about 1.5 cm and 10% of the foundation diameter, 

respectively. For the RRB, the ultimate resistance of the soil springs was multiplied by the number 

of piles per row in the transverse direction. 

The influence of liquefaction on p-y behavior was accounted for by multiplying the 

computed ultimate resistance of the p-y spring (pult) by the p-multiplier values (mp) presented in 

Table 4-1, which range between 0.14 and 0.28 for the liquefied layers. The p-multipliers were also 

applied to the t-z springs per the recommendations of Ashford et al. (2011). For the non-liquefied 

layers, pult values were reduced to account for the buildup of excess porewater pressure during 

shaking. Following the recommendation of Dobry et al. (1995), p-multipliers were then linearly 

interpolated between values corresponding to ur  = 100% (i.e., mp,liq) and the estimated ru using 

the following equation: 

 ,1 1p u p liqm r m      (4.3) 

Excess porewater pressure ratio ( ur ) was estimated using the correlation to maximum 

shear strain (γmax) by Cetin and Bilge (2012). Maximum shear strains were estimated using the 

procedure described in Idriss and Boulanger (2008) based on the results of laboratory tests relating 
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FSliq to γmax by Ishihara and Yoshimine (1992). The Cetin and Bilge strain-based approach tends 

to predict similar ru values in comparison to the Marcuson et al. (1990) method that relates FSliq 

directly to ru for FSliq values less than or equal to 1.0 (i.e., full liquefaction), and above about FSliq 

≈ 1.5 to 1.9 (depending on DR). For intermediate values of FSliq in the range of 1.0 to 1.5, the 

Marcuson et al. method tends to predict lower ur  values than the strain-based method. FSliq values 

for the idealized stratigraphy presented in Table 4-1 tended to fall outside this intermediate range; 

hence the analysis results were found to be relatively insensitive to the method used. 

P-y springs for the non-liquefied crust layer are based on the lesser of the resultants of 

Rankine passive earth pressure acting over the height of the non-liquefied crust (i.e., the equivalent 

block mechanism in which soil becomes trapped between the piles) and log-spiral passive pressure 

acting over the thickness of the pile cap plus loads on the pile segments beneath the cap (i.e., the 

individual pile mechanism in which soil flows between the piles). In the out-of-plane direction, 

these forces are considered over the full transverse width of the pile cap or foundation group. For 

the RRB, the bottom of the non-liquefied crust does not extend below the level of the base of the 

pile cap, so the resistance of the piles within the crust was not a factor and the Rankine mechanism 

controlled. The transverse width of the RRB oblong columns is close to the transverse width of 

the pile cap, so the pile cap height was taken as the full vertical thickness of the crust (1.5 m).  For 

the HWB, the pressure of a Rankine wedge acting over the full 1.5-m crust thickness was 

considered. The calculations are shown in Appendix C. 

Computed p-y spring parameters for the non-liquefied crust following the Caltrans (2013a) 

guidelines are presented in Table 4-2. The Rankine passive force resultant includes a three-

dimensional modification term to account for the wedge-shaped failure surface (kw) based on the 

formulation by Ovesen (1964). The y50 term for the p-y springs was estimated using the best-fit 
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curves given by Caltrans (2013a) based on the recommendations of Brandenberg et al. (2007) 

considering the softened load-transfer behavior of a crust layer overlying liquefied soil. 

Profiles of pult were “smeared” over a depth equivalent to two foundation diameters per the 

recommendations of Ashford et al. (2011) to account for the reduction in resistance of stiff soil 

layers at the interface with liquefied soil. This "smearing" reduces the unreasonably large flexural 

demands that can occur when abrupt changes in stiffness are encountered at a particular depth, and 

is supported by three-dimensional finite element modeling by Yang and Jeremić (2002). 

“Smearing” was not performed within the crust layer, which is relatively thin compared to two 

foundation diameters, because Rankine earth pressure theory accounts for the loss of friction at the 

base of the crust layer, and because reducing the crust strength would be unconservative. 

Profiles of pult were “smeared” over a depth equivalent to two foundation diameters per the 

recommendations of Ashford et al. (2011) to account for the reduction in resistance of stiff soil 

layers at the interface with liquefied soil. This "smearing" reduces the unreasonably large flexural 

demands that can occur when abrupt changes in stiffness are encountered at a particular depth, and 

is supported by three-dimensional finite element modeling by Yang and Jeremić (2002). 

“Smearing” was not performed within the crust layer, which is relatively thin compared to two 

foundation diameters, because Rankine earth pressure theory accounts for the loss of friction at the 

base of the crust layer, and because reducing the crust strength would be unconservative. 

P-multipliers were also applied to the rows of piles supporting the RRB to represent 

shadowing effects during group lateral loading, the phenomenon for which p-multipliers were 

originally formulated. For the pile configurations that had four rows, p-multipliers of 0.6, 0.6, 0.75, 

and 0.93 were applied to the furthest trailing row of piles, 3rd row, 2nd row, and leading row, 

respectively. For the two-row configuration, the p-multipliers were 0.7 and 0.5 for the trailing and 
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leading rows, respectively. The various group configurations that were analyzed are discussed in 

Section 4.6.2. P-multipliers were applied in the non-liquefied layers only since shadowing effects 

are negligible in relatively weak liquefied soil. Note that the leading row of piles is on the side of 

the pile cap opposite the side exposed to the lateral spreading demand for this condition. 

For the axial analysis of HWB Bent 6 under downdrag loads, unit side and base resistances 

were estimated from the CPT-1 and CPT-2 data as described in 4.6.4. The predicted post-

liquefaction vertical reconsolidation settlement of the ground adjacent to Bent 6 was 0.16 m based 

on the CPT-2 data using the Idriss and Boulanger (2008) approach. The observed vertical 

settlement at this location was approximately 0.6 m on the upslope side of the columns, about four 

times the predicted value. 

Table 4-2: Non-liquefied crust load-transfer parameters. 

Bridge Passive Force Resultant (kN) y50 for Crust p-y Spring (m) 

Highway 
Bridge 

201* 0.12 

Railroad 
Bridge 

569 0.07 

*Per extended-shaft column, i.e., one-fourth of the demand on the group of four shafts 

4.2 LATERAL SPREADING DISPLACEMENT 

Lateral spreading surface displacement was computed using methods that integrate mobilized 

shear strains with depth (Zhang et al. 2004; Faris et al. 2004, 2006) and also using the empirical 

procedure by Youd et al. (2002). The strain-based methods have a benefit of providing a profile of 

lateral spreading displacement, which is required as an input to the analysis, whereas the Youd et 

al. procedure provides only the surface displacement. Both the Zhang et al. and Faris et al. methods 

involve the following steps: (1) estimate mobilized shear strains in each liquefiable layer based on 
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correlations with FSliq and shear strains observed in lab tests, (2) integrate strains from the bottom 

up, beginning in a layer below which no lateral spreading occurs, and (3) adjust the computed 

ground surface displacement by an empirical factor that depends on static driving shear stress 

(either from a free-face or sloping ground) to provide a least-squares fit with case histories of 

measured lateral spreading surface displacements. This procedure is demonstrated in Figure 4-3 

using the Zhang et al. (2004) method with the CPT-1 data. 

The Zhang et al. (2004) method was implemented as presented in Idriss and Boulanger 

(2008), and the Faris et al. (2004; 2006) procedure was implemented as presented in the Caltrans 

lateral spreading guidelines (2013a) using the Idriss and Boulanger (2008) procedure to estimate 

maximum shear strain. Free-face height was estimated to be about H = 3.5 m, the difference in 

elevation between the river bank and the bottom of the river channel. Lateral spreading demand 

was truncated at a depth of 2H = 7 m based on the procedures described by Chu et al. (2006) 

because static driving shear stresses are not anticipated to be significant below this depth. The 

Zhang et al. empirical factors based on static driving shear stress were approximately 2.0, 1.3, and 

1.0 at locations of CPT 1, 2, and 3, respectively. The decrease of this factor with increasing distance 

from the river bank free face represents the decrease in static driving shear stress. 

Profiles of estimated lateral spreading displacement (LD) using the Zhang et al. method 

are shown in the Figure 4-2 cross section. The maximum estimated surface LD of about 4 m based 

on the CPT-1 data is consistent with the maximum observed free-field LD of 4.6 m. The estimated 

LD using the Faris et al. method of about 1.0 m adjacent to Bent 5 was significantly less than the 

observed displacement. The large difference between the predictions of the two methods is caused 

by the difference in estimated shear strain, which reflects the inherent uncertainty in relating 

penetration resistance to shear strain potential. Utilizing multiple methods to predict lateral 
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spreading displacement is important for understanding this sort of inherent uncertainty, as 

suggested by Ashford et al. (2011). More discussion is given in Appendix C. 

Estimated LD at the surface using Zhang et al. (2004) versus distance from the free face is 

shown in Figure 4-4. A clear trend of decreasing LD with increasing distance from the free face 

can be observed. This is attributed to the increasing relative density with increasing distance from 

the free face, and decrease in static driving shear stress (captured by the empirical factor relating 

shear strain potential to LD based on the slope conditions). 

For comparison, lateral displacement was also estimated using the empirical Youd et al. 

(2002) procedure for the free-face condition. The Youd et al. method considers the cumulative 

thickness of layers within the zone being considered for lateral spreading with overburden and 

energy-corrected SPT blow counts [(N1)60] less than 15. It is assumed that a CPT tip resistance (qc) 

(of about 8 MPa corresponded to (N1)60 = 15 following the procedures used by Chu et al. (2006).  

The estimated LD adjacent to Bent 5 based on the CPT-1 data is about 6 m, but the ratio of the 

free-face height to the distance from the free face at this location falls outside the bounds of the 

empirical database upon which the method is based. For locations adjacent to Bents 6 and 7, the 

estimated LD are about 2 m and 1 m, respectively, which is significantly greater than predicted 

using the semi-empirical strain potential methods. The Bent 6 and Bent 7 locations do fall within 

the bounds of the empirical database for the method. 

For the structural analyses of HWB and RRB Bent 5, the free-field LD profile estimated 

based on the CPT-1 data (3.75 m at the ground surface) was applied to the free ends of the soil 

springs as recommended by Ashford et al. (2011). The estimated profile predicts relatively uniform 

displacement (i.e., minimal shear strain) within the crust layer as seen in Figure 4-3, so it was 
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represented by a tri-linear approximation, which is consistent with the recommendations of 

Ashford et al. (2011). 

 
Figure 4-3: Profiles of cone tip resistance and estimated factor of safety against liquefaction, shear 
strain, lateral spreading displacement index, and lateral spreading displacement for CPT-1 data 

during the El Mayor-Cucapah earthquake. 
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Figure 4-4: Estimated surface free-field lateral spreading (LD) displacement versus distance from 

free face (river bank) based on CPT-1, CPT-2, and CPT-3 profiles using the Zhang et al. (2004) 
approach. Decreasing LD with increasing distance appear to fit a linear (shown) or hyperbolic 

decay trend. 

4.3 MODELING OF STRUCTURAL ELEMENTS 

Structural properties of the HWB elements are based on the dimensions and material properties 

shown on the construction plans provided by SCT, listed in the tables below. Construction plans 

for the RRB were not available, so measurements were taken of the above-ground components 

during the 2013 investigation. The RRB foundations could not be visually inspected, and 

foundation type is unknown. However, considering that the bridge was constructed in 1962 by a 

railroad authority, it is most likely supported on groups of driven piles. Since the foundation type 

is unknown, a list of pile group configurations and material properties spanning the likely range 

of foundations installed for the RRB was compiled (Table 4-8), and all of these cases were 

analyzed. 
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The extended-shaft columns of the HWB and the piles and columns of the RRB were 

modeled as nonlinear beam-column elements idealized as bilinear with pre- and post-yield 

stiffness and yield moment based on moment-curvature analyses that modeled concrete cracking 

and steel rebar yielding and strain-hardening. For the timber and steel piles considered for the 

RRB, a yield stress of 11 MPa and 414 MPa (i.e., Grade 60 steel), respectively, were used in the 

moment-curvature analysis. Pile caps and bent caps were modeled as elastic beam-column 

elements. Each structural element was discretized into 0.1-m-long segments, and five integration 

points were used for interpolating the element response. The finite element analyses in OpenSees 

were performed using penalty constraints to enforce boundary conditions, using the norm of the 

displacement increment (NormDispIncr command) to test for convergence with a tolerance of 10-

8 m, and using a Newton-Raphson solution algorithm. A “P-delta” transformation was utilized to 

capture moments induced by offset axial loads. 

A cross section of the HWB extended-shaft columns is shown in Figure 4-5, and the 

railroad bridge elements are shown in Figure 4-6. Structural material properties, member 

geometry, and nominal strengths used for the OpenSees analyses are presented in Tables 3.43.8. 
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Figure 4-5: Highway bridge extended shaft column structural details. All dimensions in 

centimeters. Adapted from 1998 bridge construction plans (SCT, personal communication, 2013). 

 

 
Figure 4-6: Railroad bridge member geometry and foundation group configurations considered for 
analysis. Clear edge spacing for all pile configurations is 0.4 m as shown for the 4×5 group. Refer to 

Table 4-8 for pile spacing and details used for analyses. 
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Table 4-3: Concrete (unconfined) properties. 

Compressive strength 

 cf   
Young’s modulus  cE  Unit weight  c  Poisson’s ratio  v  

34.3 MPa (5 ksi) 27 GPa 24 kN/m3 0.2 

 
 
 

Table 4-4: Steel properties. 

Yield stress  yf  Young’s modulus  sE  Ultimate stress  uf  Poisson’s ratio  v  

414 MPa (60 ksi) 200 GPa 552 MPa (80 ksi) 0.3 

 
 
 

Table 4-5: Elastomeric bearing properties. 

Compression and 
rotation modulusa 

Young’s modulus 
 bE  

Shear modulus 
 bG  

Shore 
Hardness 

12.2 MPa 3.6 MPa 0.9 MPa 60 

aPer recommendations in AASHTO LRFD Bridge Design Specifications (2012) 

 
 
 

Table 4-6: Timber (piles) properties. 

Yield stressa  ytf  Young’s modulusa  tE  Poisson’s ratio  v  

11 MPa 7 GPa 0.4 

aReference: Colin (2002) 
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Table 4-7: Structural Properties for Lateral Spreading Analysis, Highway Bridge. 

Member Dimensions 

Cracking 
moment

crackM  

(kN•m) 

Yield 
moment 

yieldM  

(kN•m) 

Misc. Notes 

Elastomeric 
Bearing 

0.3-m width in BTDa; 0.2-m 
width in BLDa 
4.1-cm height 

N/A N/A 
Post-yield stiffness 

ratio = 10%; 3.5 
bearings per column 

Bent Cap 
1.0-m height 

1.6-m width in BLD 
N/A 

(elastic) 
N/A 

(elastic) 
Modeled as 10x 

stiffer than columns 

Extended-
shaft 

Columnb 

1.2-m diameter 
9.2-m column height 

17.5-m foundation length 
(Bent 5) 

16.4-m foundation length 
(Bent 6) 

620 2,000 

See moment-
curvature 

relationship 
description in Section 

4.3.1 

Transverse 
Diaphragm 

1.2-m height N/Ac N/Ac Visible in Figure 3-8 

a BLD = bridge longitudinal direction; BTD = bridge transverse direction. 
b Column and drilled shaft foundation have same dimensions and properties. 
c Not included in model because the contribution to bending resistance is considered negligible. 
 

Table 4-8: Structural Properties for Lateral Spreading Analysis, Railroad Bridge. 

Element Dimensions 

Flexural 
Rigiditya 

(EI) 

(MN•m2) 

Yield 
moment 

yieldM  

(kN•m) 

RR-Bridge Pile 
Foundationsb,c 

(Case #) 

(1) 
4x5 group of timber piles, D = 30cm, L = 10m, 

CCS = 4/4.5 
2.8 30 

(2) 
4x5 group of RC piles, D = 30cm, L = 10m, 

CCS = 4/4.5 
11 58 

(3) 
4x5 group of RC piles, D = 30cm, L = 15m, 

CCS = 4/4.5 
11 58 

(4) 
2x5 group of RC piles, D = 30cm, L = 10m, 

CCS = 12/4.5 
11 58 

(5) 
4x5 group of steel piles, D = 30cm, L = 10m, 

WT = 1 cm, CCS = 4/4.5 
19 265 

(6) 
4x5 group of steel piles, D = 30cm, L = 10m, 

WT = 2cm, CCS = 4/3 
35 480 

a Represents cracked sections properties for reinforced concrete sections. 
b Range of properties considered in analyses due to uncertainty with regards to actual foundation properties 
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c Abbreviations used in table: D = diameter, L = length, RC = reinforced concrete, WT = steel pile wall thickness, 

CCS = (l/t) center-to-center spacing of piles in bridge longitudinal/transverse directions, respectively, in terms of 

number of pile diameters. 
 

4.3.1 Moment-Curvature Analysis 

Behavior of foundation elements is highly nonlinear when demands exceed the foundation yield 

capacity. Hence, numerical models intended to accurately capture post-yield behavior must include 

nonlinear material load-deformation relationships. For this project, it was assumed that the 

foundation performance at large displacements was dominated by flexural behavior, and the 

moment-curvature (M-) relationships were modelled using bilinear approximations of the 

nonlinear curves. Shear and axial load-deformation relationships were modeled as elastic. 

The first step in this process was estimating the actual nonlinear M- relationships for the 

bridge structural elements under a prescribed axial load so that bilinear approximations could be 

developed. The commercially available software XTRACT (TRC Software 2011) was used to 

perform this task. An example of the resulting M- curve for the HWB extended-shaft columns is 

shown in Figure 4-7, along with a comparison using the section properties module in LPILE. 

The bilinear “Hardening uniaxialMaterial” model was implemented in OpenSees to 

approximate the nonlinear M- curves as shown in Figure 4-7. For the HWB extended-shaft 

columns, a yield moment of 2000 kN•m and post-yield stiffness of 1% of the initial stiffness were 

found to provide a reasonable match to the nonlinear curve. For the RRB, a post-yield stiffness of 

1% was used with the yield moments shown in Table 4-8 to define the bilinear approximations for 

M- behavior. Note that the M- model implemented in OpenSees continues at the post-yield slope 

indefinitely, i.e., there is no option to implement an ultimate moment capacity. As a result, the 

model is capable of predicting that a plastic hinge has the ability to sustain extremely large values 
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of rotation when in fact complete failure and loss of flexural resistance would have occurred in the 

real system. 

The initial slope of the bilinear M- curve corresponds to the cracked section stiffness, not 

the gross section stiffness. A factor of approximately 0.2 was multiplied by the gross stiffness to 

capture this reduction based on trial-and-error fit to the post-cracking, pre-yield slope of the curves 

shown in Figure 4-7. This does not affect the accuracy of the solution for problems in which the 

cracking moment is exceeded as is the case for the SFB. 

The M- behavior depends on axial load. For tension-controlled sections, compressive 

axial load acts to stiffen the element by retarding the onset of cracking due to flexure. Accordingly, 

it is necessary to specify an accurate axial load when computing M- behavior. For this project, it 

was assumed that axial foundation loads would vary between compressive and tensile as the bridge 

bents rocked back and forth, and that assuming an axial load equivalent to the tributary dead load 

of the superstructure (i.e., the girders, deck segments, and nonstructural components supported by 

each bent) represented an average condition that was appropriate for the ESA. 
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Figure 4-7: Moment-curvature behavior for highway bridge 1.2-m diameter reinforced-concrete 
extended-shaft columns with zero axial load and corresponding bilinear model implemented in 

OpenSees. 

4.3.2 Elastomeric Bearings and Shear Tabs 

Both bridges utilize plain (i.e., no steel or lead core) laminated elastomeric bearings to transfer 

loads from the girders to the columns. In the OpenSees models of the bridges, these bearings 

provide translational and rotational stiffness at the top of the columns. 

For the HWB, the rotational and translational (shear) stiffness of the elastomeric bearings 

were estimated to be 60 kN•m/radian and 1320 kN/m, respectively, following the guidelines 

presented in Chapter 14 of the AASHTO LRFD Bridge Design Specifications (2012). Details of 

the computation of the HWB bearing stiffness are included in Appendix C. 
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As described in Section 3.4.1, the HWB Bent 5 transverse diaphragms feature a positive 

structural connection to the bent caps via shear anchorage tabs. The shear tabs rest in a slightly 

oversized block-out cast into the bent cap (depicted in Figure 3.4-8) and are meant to engage under 

extreme-event loading to prevent an unseating failure such as the one that occurred at the adjacent 

RRB span. Shear tabs were modelled using an elastic-perfectly-plastic gap spring with an ultimate 

capacity equal to the estimated shear capacity of the tabs, about 500 kN. The gap accommodates 

1 cm of relative displacement between the girders and the bent cap before engaging the shear tab 

resistance. The elastomeric bearings were modeled with an elastic-perfectly-plastic spring with an 

ultimate resistance corresponding to sliding between the bearing and the girders, about 230 kN. 

The spring implemented in the OpenSees model is a combination of the elastomeric bearing spring 

and the shear tab spring in parallel as illustrated in Figure 3.4-8(3). The springs in Figure 3.4-8 

represent the tributary stiffness for one extended-shaft column (i.e., 14 bearings per bent/4 columns 

= 3.5 bearings per column; 4 shear tabs per bent / 4 columns = 1 shear tab per column). 

For the RRB, the post-earthquake observations clearly showed that the shear capacity of 

the bearings was exceeded and sliding occurred between the top of the bearings and the base of 

the girders. Accordingly, the bearings were modeled with an essentially-rigid perfectly-plastic 

spring with a capacity equal to the coefficient of friction for bearing-concrete contact (taken as 

0.2) multiplied by the estimated vertical load from the deck and girders (1325 kN). 

The weight of the RRB deck bearing on the top of the column also provides rotational 

restraint, since a rotation of the top of the column would necessarily have to lift up the bridge deck 

as depicted in Figure 4-9. A rotational spring was formulated to represent this restraint, which is 

in addition to the overturning restraint provided by the group-action of the piles. The stiffness of 
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this rotational spring was estimated to about 400 kN•m/radian (computations are shown in 

Appendix C). 

Because the boundary conditions at the tops of the bridge columns are modeled using 

springs, the shear, moment, and displacement reactions change during the analysis based on the 

amount of deformation of the springs. In contrast, a decoupled analysis in which the column 

response is replaced by a mobilized shear, moment, displacement, or slope at the top of the 

foundation (as is commonly performed in LPILE) removes the ability of the boundary condition 

(i.e., reactions) to vary during the analysis based on the response of the foundation and above-

ground components. As previously noted, the latter approach may not be able to accurately 

simulate the realistic behavior when above-ground components play a significant role in resisting 

lateral spreading forces. 
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Figure 3.4-8: Highway bridge shear tab detail (top) and spring definitions used to model connection 

between superstructure and bent cap (bottom). 

 
Figure 4-9: Formulation of rotational stiffness of railroad bridge deck spans transferring load to 

column through elastomeric bearings. 
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4.4 INERTIAL LOADS FROM SUPERSTRUCTURE 

Some fraction of the peak inertial demands was expected to occur simultaneously with kinematic 

demands imposed by lateral spreading (e.g., Brandenberg et al. 2005). The approach suggested by 

Ashford et al. (2011) differs from the Caltrans (2013) guidelines regarding modeling of 

liquefaction-compatible inertial demands. Whereas the Caltrans guidelines specify a simple force-

based approach for all scenarios, Ashford et al. distinguish pier columns not restrained by the 

superstructure from those that are restrained. An example of an unrestrained pier column is a 

simply-supported bent oscillating in the bridge transverse direction, where the response of other 

bents and the abutments has negligible influence on the response of the bent in question. Inertial 

demands for unrestrained pier columns can be represented either as spectral displacements or as 

inertial forces. Oscillation of the bent in the bridge longitudinal direction is an example of 

restrained oscillation, since resistance provided by other bents and/or the abutments (which tend 

to oscillate out-of-phase with the deck during first-mode excitation) can have a significant 

influence on the response of the bent in question. Inertial demands for restrained pier columns 

should be represented in a manner that considers the restraint provided by all relevant bridge 

components. An estimate of the inertial demands considering the restraint provided by all relevant 

bridge components, such as the abutments, will be referred to as a “restraint-compatible” demand 

in this text. This is in contrast to an estimate of the demand that ignores the resistance provided by 

bridge components other than the bent and foundations being analyzed. Further details of each 

approach are given in the following sections. 

The force-based approach as recommended by the Caltrans guidelines is problematic for 

cases where pier columns are restrained by the superstructure because the pier columns may help 

resist lateral-spreading demands, thereby reducing demands on the foundations while 
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simultaneously increasing demands on the pier columns. Restrained bridge piers have been 

damaged in earthquakes when the foundation displacement has exceeded the superstructure 

displacement because of lateral spreading demands (e.g., the Landing Road Bridge; Berrill et al. 

2001). The restraint-compatible displacement-based approach is more realistic in this regard 

because (1) the loads mobilized in above-ground components are an outcome of the analysis rather 

than a prescribed boundary condition, and (2) the spectral displacement accounts for the influence 

of other bridge components on global dynamic response. For these reasons, the displacement-

based procedure is used in this study, and it is subsequently demonstrated that the force-based 

procedure results in an overestimate of foundation demands. 

In either method, it is first necessary to perform a modal analysis of the structure to estimate 

the relevant modal frequencies so that spectral demand can be determined from an appropriate 

response spectrum. (For this study, it was assumed that the response of the bridge in the 

longitudinal direction is governed by the first mode.) An exception to this is when columns are 

expected to yield at their base, in which case the inertial demands transferred to the foundations 

are limited by the plastic moment capacity of the columns. For the SFB, the columns did not yield 

at their base, so it was necessary to estimate the bridge first-mode periods to quantify inertial 

demands. 

Determining the first-mode period of a bridge in the longitudinal direction using a model 

of a single bent is difficult, because the bent interacts with other bridge components during lateral 

loading. Furthermore, the connection between the top of the bent and the superstructure is typically 

not rigid, but consist of elastomeric bearings (and possibly shear tabs) which dissipate energy at 

the connection. For most projects, the structural designer would perform a modal analysis on a 

global model of the bridge, so the interaction of the superstructure, bents, and abutments would be 
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explicitly captured, and the resulting first-mode period would be passed on to the foundation 

engineer to estimate inertial forces. For foundation design, especially at the preliminary stages of 

a project, it is desirable to avoid creating a model of an entire bridge. An alternative, simplified 

procedure for modal analysis is used here in which a spring is used to represent the restraint 

provided at the top of the individual bents in the longitudinal direction, and additional translational 

and rotational springs are used to capture the flexibility of the bent-to-deck connection. This is 

illustrated in Figure 4-10(c). 

For modal analysis, it was assumed that all bents would oscillate in-phase during first-

mode longitudinal excitation, and that the only out-of-phase component providing restraint in the 

longitudinal direction would be the abutments. Accordingly, springs were formulated to represent 

the translational stiffness of the abutment-seat bearings for each bridge. For the HWB, the 

estimated stiffness of this spring is about 4.6 MN/m for each of the four columns. An elastic 

translational spring with this stiffness was attached to the superstructure mass to restrain oscillation 

in the longitudinal direction during modal analysis. No evidence of pounding was observed at the 

abutment-deck connections—for example, complete closure of the gap between the abutment and 

deck, which would have partially mobilized passive soil resistance against the abutment wall in 

addition to elastomeric bearing stiffness. 

The eigen command in OpenSees was used to perform modal analyses of the bridge bents 

including the appropriate superstructure tributary mass, which was estimated as 1335 kN per RRB 

bent and 1150 kN per each extended-shaft column of the HWB. Mass of the substructure elements 

(columns, pile cap, and foundations), computed based on the member dimensions and material 

properties presented in Section 4.3, was distributed over the nodes in the numerical model. The 

rotational and translational stiffness of the foundations were explicitly captured for the modal 
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analyses by inclusion of the soil springs discussed in Section 4.1. The resulting first-mode period 

for the HWB Bent 5 is approximately 1.7 sec. For comparison, the estimated first-mode period of 

the HWB column modeled as fixed against rotation at its top and bottom is about 0.27 sec. The 

additional flexibility in the real system is contributed by the foundation flexibility and the 

elastomeric bearing flexibility in roughly equal amounts. 

 
Figure 4-10: (a) Caltrans (2013a) force-based method for estimating top-of-foundation inertial 

shear and moment demands (VToF and MToF); (b) schematic of first-mode longitudinal oscillation; 
(c) single-bent model for modal and lateral spreading analyses 

The same procedure was repeated for the RRB, but less is known about the elastomeric 

bearings for this bridge. It was estimated that the total longitudinal translational restraint was 

between 3 and 5 MN/m, which resulted in a first mode period of about 2.3 sec. For comparison, 

the estimated first-mode period of the RRB column modeled as fixed against rotation at its top and 

bottom is about 0.12 sec. 

There is considerable uncertainty in the estimates of the bridge first-mode periods. There 

is additional error in the predicted response because higher-mode effects and period lengthening 

associated with inelastic response are not captured. As will be discussed in Section 4.6.3, the 

response of the bridges was considered over the range of pseudo-spectral accelerations (PSA) 
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represented by the aleatory uncertainty of the ground motion estimation, which showed that the 

predicted response is relatively insensitive to variability in the inertial demand. Although the 

variation of the estimated first-mode period was not considered directly, the effect of varying the 

period estimates has been considered indirectly by considering this range of ground motion 

intensity. 

4.4.1 Restraint-Compatible Spectral Displacement Method 

Ashford et al. (2011) recommend modeling inertial demands for the restrained case using spectral 

displacements estimated at the first-mode period of the bent, which is the approach used herein. It 

should be noted that restraint-compatible demands could be modelled either as inertial forces or 

displacements, as long as they are computed at a first-mode period that realistically captures the 

resistance provided by all relevant bridge components. However, seismic design of bridges often 

utilizes a displacement-based approach [e.g., following the AASHTO Guide Specifications for 

LRFD Seismic Bridge Design (2009) or the Caltrans Seismic Design Criteria (2013b)], so this 

approach is used for this study and is generally recommended. Furthermore, quantifying inertial 

demands as displacements is conceptually attractive, because the amount of displacement demand 

that is dissipated by the flexibility of the bent-to-deck connection (e.g., by bearings, shear tabs, 

etc.) can be directly investigated as an outcome of the analysis. 

Inertial demands from the superstructure represented as spectral displacements were 

combined with lateral spreading demands according to the recommendations of Boulanger et al. 

(2007) as presented in Ashford et al. (2011). Boulanger et al. discuss nonlinear dynamic finite 

element simulations that were performed for pile group foundations supporting single-degree-of-

freedom (SDOF) structures with various natural frequencies. The influence of liquefaction on the 

inertial demands of the structure was quantified by two constants: Cliq which quantifies the peak 
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inertial demand with liquefaction to that without liquefaction, and Ccc which quantifies phasing of 

the inertial and kinematic demands. The factors were quantified as constants that depend on the 

shape of the acceleration response spectrum for the surface motion without liquefaction, and were 

found to be Cliq = 0.55 and Ccc = 0.65 for motions with typical spectral shape. 

It should be noted that the Cliq and Ccc factors recommended by Boulanger et al. (2007) are 

based on simulations of bridge bents modeled as SDOF oscillators that are unrestrained against 

translation at the superstructure mass level. While this may be a reasonable assumption for 

multiple-span bridges loaded in the transverse direction, it does not apply to bridges that exhibit 

restraint in the longitudinal direction from abutments and adjacent piers founded in non-liquefied 

ground. Lateral spreading demands are most common in the longitudinal direction since bridges 

often cross water bodies and lateral spreading occurs toward the water. Further research is needed 

to understand the influence of longitudinal restraint on these factors. 

Spectral displacement demand is related to pseudo-spectral acceleration as follows: 

2d
PSA

S


    (4.4) 

2 f     (4.5) 

where Sd is spectral displacement in meters, PSA is pseudo-spectral acceleration in m/sec2, ω is 

the angular frequency of interest in radians per second, and f is the frequency in Hz, defined as the 

inverse of the period in seconds. The estimated spectral displacement demand was imposed on the 

free ends of the elastomeric bearing spring in the model as shown in Figure 4-10(c). 
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4.4.2 Inertial Force Method 

The Caltrans (2013a) lateral spreading guidelines provide recommendations for estimating inertial 

force demands for two cases. The first case is when the columns are expected to yield at their base 

during the design seismic event, which is often how bridge columns are designed in order to 

prevent below-ground damage that is difficult to inspect and repair (e.g., Caltrans “Type II” 

columns). In this case, the inertial demand that can be transferred to the foundation(s) is limited 

by the plastic moment capacity of the column. The maximum shear that can be transmitted to the 

foundations under this condition is also limited to the shear corresponding to the plastic moment 

capacity. For the second case in which columns are not expected to yield, the amount of shear and 

moment imposed on the foundation(s) depends on the inertial force generated by excitation of the 

superstructure. The SFB columns were observed to have not yielded at their base during the EMC 

earthquake, so the latter case applies, but this would not be known a priori for a forward design. 

In the author’s experience, the first case—imposing the full plastic moment capacity and 

corresponding shear, including material overstrength—is sometimes a project design requirement 

regardless of whether the actual estimated inertial demands would generate this level of top-of-

foundation force effects. 

The Caltrans (2013a) approach for estimating inertial demands when the column does not 

yield is to multiply the appropriate superstructure tributary mass by the pseudo-spectral 

acceleration at the bridge first-mode period as shown in Figure 4-10(a). This force is multiplied by 

the column height to compute the moment demand at the column base, essentially a “base shear” 

design approach. The full kinematic demand from lateral spreading is then combined with half of 

the inertial demand; the reduction approximately accounts for the influence of liquefaction and 

phasing on the inertial demand. For the HWB, this moment demand was computed as 
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0.5*(0.43g)*(117Mg)*(10.2m) = 2,500 kN•m. This demand exceeds the yield capacity of the 

column, which suggests that the plastic moment and associated shear should be imposed in design 

calculations. 

However, the prediction of plastic hinges in the HWB foundations is inconsistent with post-

earthquake observations that the columns slightly cracked but did not yield. The Caltrans 

procedure assumes that the column is the only lateral-force-resisting component, whereas in 

reality, the columns are restrained against rotation and translation by other bridge components due 

to loads transferred through the superstructure. This restraint affects both the modal properties of 

the system and the response to lateral spreading loads. For this study, the restraint was captured in 

the modal analyses that were performed to estimate the first-mode periods of the bridges and 

corresponding inertial demand at the deck level. However, no restraint at the superstructure-level 

was included during the lateral spreading ESA to be consistent with the Caltrans guidelines [i.e., 

the numerical model depicted in Figure 4-10(a) was used]. The results presented below 

demonstrate that this misrepresentation of the structural resistance leads to an over prediction of 

foundation-level demands. 

4.5 OPENSEES FINITE-ELEMENT ANALYSIS 

The following settings were used in the OpenSees finite-element analysis: 

 Penalty constraints to enforce boundary conditions, 

 Norm of the displacement increment (NormDispIncr command) to test for 

convergence with a tolerance of 10-8 m, 

 Newton-Raphson solution algorithm used to solve nonlinear system of 

equations, 
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 Displacement-controlled integrator, and 

 A p- transformation was utilized to capture secondary moments induced 

by offset axial loads. 

4.6 RESULTS 

4.6.1 Response of Highway Bridge to Lateral Loading 

Results of the analysis of the highway bridge under lateral spreading conditions are presented in 

Figure 4-11. Superstructure inertial demand, represented as liquefaction-compatible spectral 

displacement, was imposed in the opposite direction of lateral spreading displacement because this 

configuration resulted in the highest flexural demand. The peak mobilized bending moment near 

the ground surface was 1,130 kN•m, which lies between the cracking moment of 620 kN•m and 

the yield moment of 2000 kN•m. A slightly smaller negative moment was mobilized at the 

interface between the upper liquefied sand layer and the underlying dense send, -910 kN•m. This 

is consistent with field observations that cracks formed on the river-side of the pier column, but 

that a plastic hinge did not form. The ESA predicted that the extended-shaft columns would crack 

near the ground surface under an imposed lateral spreading demand of about 0.2 m or more. 

Furthermore, a column rotation of about 0.3° was predicted, which is on par with the measured 

rotations of about 1°. The predicted displacement at the base of the columns ranges between about 

3.1 and 5.4 cm depending on whether the inertial demands are applied in the same direction or 

opposite direction as the lateral spreading force. This amount of displacement satisfies the 

allowable foundation demand performance criteria for poorly-confined columns given in Table 

3.1 of the Caltrans lateral spreading guidelines (2013a). 



 74

Because the HWB foundations have sufficient embedment into the dense bearing layer and 

sufficient stiffness and strength to prevent large deformation under the imposed loads, the relative 

displacement between the foundations and the laterally spreading crust is nearly equal to the 

imposed lateral spreading displacement demand. That is to say that the foundations are sufficiently 

stiff and strong that the laterally spreading crust mobilizes full passive pressure (i.e., it “fails”) and 

flows around the foundations. The mobilization of full passive pressure occurs at imposed lateral 

spreading displacement demands greater than about 0.6 m. Lateral spreading displacement in 

excess of this amount does not contribute to structural demands. The EDPs plotted in Figure 4-11 

are nearly identical to the predicted EDPs for any imposed lateral spreading demand greater than 

about 0.6 m. In this case, the method used to predict the amount of free-field lateral spreading 

displacement is unimportant as long as the predicted LD exceeds about 0.6 m. 

Although it is difficult to accurately assess the actual lateral spreading demand imposed on 

each bridge during the EMC earthquake as a result of the restraint provided by the foundations, 

the predicted behavior is shown to be relatively insensitive to the demand. As long as the imposed 

lateral spreading displacement demand exceeds 0.2 m, the HWB columns are expected to crack, 

and if the demand exceeds about 1.0 m, the RRB is expected to collapse. 
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Figure 4-11: Highway bridge Bent 5 predicted response under imposed lateral spreading 

displacement demand of 4.6 m combined with superstructure inertia demand, represented as 
liquefaction-compatible spectral displacement demand, in opposite direction. 

 

4.6.2 Response of Railroad Bridge 

Response of the RRB to combined inertial and lateral spreading demands are summarized in Figure 

4-12 and Figure 4-13. Baseline analyses apply for the assumed condition of multiple rows of piles.  

These analyses show that in contrast to the HWB, the RRB foundations were not capable of 

resisting the passive pressure of the crust acting against the pile cap. The resulting foundation 

displacements are large, hence relative displacement between the structure and the laterally 

spreading crust is low (as seen in Figure 4-13), and the full passive pressure mechanism was not 

mobilized. Moreover, this analysis correctly predicts that Bent 5 of the RRB would translate 

enough to cause unseating collapse of the span between Bents 5 and 6 under imposed lateral 

spreading demands greater than or equal to about 1 m for all of the pile material and group 

configurations considered (recall that actual lateral spread displacements in the free-field at the 

location of Bent 5 were approximately 4.6 m). Translations at the top of the bent greater than 0.85 
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m relative to the superstructure are required to cause unseating. After the collapse mechanism has 

formed, results from the equivalent static analysis for further increases in lateral spreading 

displacement demand are no longer meaningful. Accordingly, the analyses are terminated at a 

lateral spreading displacement demand of 1 m rather than extending to the full free-field lateral 

spreading of 4.6 m.  

The large horizontal displacement demand imposed on the RRB foundations by laterally 

spreading soil is predicted to cause formation of plastic hinges in the piles at the pile cap 

connections and at the interface between the dense sand layer and the overlying liquefied layer in 

the simulations. The analysis predicts relatively small column rotations (about 1° or less) even at 

large horizontal displacements, which is consistent with the observed performance. The lack of 

rotation is attributed to the rotational restraint provided by the overturning resistance of the pile 

group and the weight of the superstructure. The lack of rotation associated with such significant 

translation was a feature of the observed response that was initially perplexing but is explained by 

the simulations.  

Additional simulations were performed using only one row of piles or two closely-spaced 

rows of piles. Under these assumptions, the pile groups lack significant overturning resistance 

through group interaction in the bridge longitudinal direction. The result is predictions of large 

column rotations, even with the restraint provided to the top of the column from the superstructure, 

which is contrary to observations.  

The collective results for the RRB demonstrate that (1) the structure is predicted to collapse 

over a wide range of foundation types and (2) the observed behavior is best explained by a group 

of piles with multiple rows that have a large overturning resistance through group interaction but 
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relatively low individual stiffness and strength such that the piles are displaced horizontally and 

plastic hinges form. 

 
Figure 4-12: Railroad bridge Bent 5 analysis results showing collapse for a 4×5 group of 30-cm 

diameter reinforced concrete piles under imposed lateral spreading displacement demand of 1.0 m. 
Includes superstructure inertial demand, represented as liquefaction-compatible spectral 

displacement, in opposite direction from lateral spreading. Predicted column rotation ≈ 0.3°. Note 
the horizontal scale is exaggerated.
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Figure 4-13: Numerical model and results of Bent 5 analyses of railroad bridge subjected to lateral spreading combined with inertial 

demands. Discontinuity in moment profile at pile-to-pile-cap connection occurs because the axial force in each pile row times its 
eccentricity from the pile cap centroid also contributes to moment resistance.
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4.6.3 Comparison of Combined Kinematic and Inertial Demand Methods 

The results presented in Sections 4.6.1 and 4.6.2  include superstructure inertial demands imposed 

as displacements at the superstructure level as described in Section 4.4.1, i.e., the restraint-

compatible spectral displacement method. Much of the imposed superstructure displacement 

demand manifests as bearing shear deformation with relatively little deformation of the column 

top, hence the influence of superstructure inertia was found to be negligible in terms of the 

resulting effects on foundation demand. This is expected for bridges in which longitudinal 

movement of the superstructure is restrained, as discussed above, and corresponding displacement 

demands in the longitudinal direction are low. The restraint-compatible displacement-based 

approach captured the observed behavior of the SFB well. 

As discussed in Section 4.4.2, the Caltrans (2013a) guidelines do not recommend a 

displacement-based approach, but rather advocate a force-based approach in which spectral 

acceleration is multiplied by tributary mass and the resulting inertial force is imposed at the top of 

the column without consideration of global restraint. Flexural and shear demands at the foundation 

level are then computed from these forces, limited by the flexural capacity of the columns. The 

highway bridge was re-analyzed using the force-based approach for comparison with the spectral 

displacement approach. 

Using the Caltrans (2013a) force-based procedure for quantifying inertial demands, the 

HWB columns were predicted to yield at their base as shown in Figure 4-14. When combined with 

lateral spreading demands, collapse of the HWB was predicted, which is inconsistent with 

observations. This erroneous prediction is an outcome of failing to model translational and 

rotational restraint at the top of the columns, which allows loads to be distributed to other 

components through the deck. Note that column demands presented in Figure 4-11 arise from the 
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combination of inertial loading and lateral spreading; such insight is not provided with a 

foundation(s)-only model in which column demands are prescribed as boundary conditions in the 

force-based approach. Figure 4-14 demonstrates that collapse is predicted using the force-based 

method whether the inertial demands are imposed in the same direction as the lateral spreading or 

in opposite directions, whereas the results utilizing the displacement-based approach are relatively 

insensitive to the direction of inertial demands and match the observed behavior well in both cases. 

 
Figure 4-14: Comparison of moment and displacement profiles for highway bridge piles as 
computed from force- and restraint-compatible displacement-based methods for imposing 

superstructure inertial demands in the same and opposite directions as lateral spreading. Restraint-
compatible displacement-based approach provides best match to observed behavior. 
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Based on these results, the force-based procedures as described in the Caltrans (2013a) 

guidelines is found to produce an unrealistic overestimate of foundation demands for structural 

systems in which the column is restrained at the connection with the superstructure. In such 

systems, the translational and rotational restraint at the top of the column (i.e., partial fixity) may 

help resist lateral spreading demands by transferring loads through the superstructure to other 

components such as piers founded in non-liquefied soil or abutments. This resistance may be 

mobilized even in cases where the inertial demand and lateral spreading are applied in the same 

direction, as demonstrated for the analysis of the HWB in Figure 4-14. The only way to properly 

model this load transfer behavior is to explicitly model the columns and connection with the 

superstructure, along with appropriate inertial demands at the superstructure level. Furthermore, 

the liquefaction-compatible inertial demands are less than those for non-liquefied soil conditions. 

As a result, the force-based method will always result in smaller flexural demands in the pier 

columns than the non-liquefied inertial analysis. This means that lateral spreading will never 

contribute to the design of pier columns using the force-based approach. However, lateral 

spreading can clearly cause pier column demands that are more significant than those from non-

liquefied inertial loading. These demands can only properly be captured using a global analysis of 

the entire bridge, or using a global restraint-compatible approach for analysis of a local component. 

For the RRB, the force-based approaches provided results that are reasonably similar to the 

displacement-based approach in terms of foundation shear and moment demand and the displaced 

shape of the pile cap and foundation group. However, the performance of this structure was poor 

as the foundation essentially moved with the spreading soil. The pier column therefore did not 

contribute significantly to resisting lateral spreading demands, and the force-based and 

displacement-based approaches provide similar predictions as a result. However, the 
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displacement-based approach as implemented herein still provides more insight because it informs 

the structural designer of the column demands mobilized during the lateral spreading load case. 

The displacement-based approach can be implemented in LPILE for extended column 

shafts or single piles, similar to the HWB, because an above-ground column can be included and 

displacement conditions (translation and rotation) can be prescribed at the top of the column. 

However, this approach cannot be utilized for pile groups because a rotational stiffness at the 

foundation level representing the rotational stiffness provided by axial interaction of a pile group 

cannot be prescribed in combination with displacement demands at the top of an above-ground 

segment of column. Furthermore, the force-based procedure also cannot be utilized properly for 

pile groups in LPILE since only two boundary conditions can be prescribed at the head. For 

example, if an inertial shear force is applied at the foundation head, the user must decide to either 

prescribe (1) a corresponding inertial moment or (2) a rotational stiffness that represents group 

overturning action or the restraint provided by the column. The inability to prescribe both 

simultaneously limits the accuracy of the model. In cases when longitudinal restraint of the bridge 

bents provides only minor resistance to the lateral spreading demands, it may still be possible to 

obtain a reasonably accurate estimate of foundation shear and moment demand for design. A more 

desirable solution would be to use GROUP, OpenSees, or other software that explicitly captures 

group action and allows the user to specify shear and moment demand at the foundation level in 

addition to translational and rotational restraint provided by the column and other above-ground 

components. 

4.6.4 Settlement of Highway Bridge Bent 6 

Settlement of Bent 6 of the HWB is attributed to a bearing capacity failure associated with 

decreased side and base resistance in layers that experienced excess porewater pressure generation 
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during the earthquake. Documents provided by SCT indicate that each shaft was designed to carry 

an allowable axial load of about 2,100 kN. Based on the construction plans, the axial dead load 

supported by each shaft is about 1,050 kN, consistent with a static factor of safety against axial 

geotechnical failure of 2.0. However, this does not consider the self-weight of the column, and is 

significantly less than the estimated axial resistance in the absence of liquefaction. 

Two cases are considered to evaluate whether a geotechnical failure could have resulted in 

the observed settlement, as shown in Figure 4-15. The first case essentially represents the original 

foundation design assumption that the sand is continuously dense below a depth of about 10 m. 

For this case, the dense soil at the depth of the foundation tips did not liquefy during the earthquake, 

and all of the layers above the foundation tip contributed drag loads in the same direction as the 

applied axial load (downward) based on static strengths corresponding to the end of 

reconsolidation. Although it is unlikely that all the overlying layers would contribute drag loads, 

this scenario represents the maximum possible axial load at the foundation tip depth. This scenario 

is presented simply to demonstrate that if the shaft bases were indeed founded in dense soil that 

did not undergo strength loss, the available base resistance alone (about 13,000 kN) is sufficient 

to carry the maximum applied axial load (about 3,500 kN) by a factor of almost three, even with 

the conservative assumption that all layers apply dragload. Hence, plunging failure would not have 

occurred. 

  In the second considered case, a loose layer is present at the foundation tips, as indicated 

by the post-earthquake boring performed by SCT and the CPT sounding performed for this study 

at the adjacent Bent 5. It was assumed that this loose layer would liquefy based on the results of 

liquefaction triggering analyses performed using data from CPT-1 for a similar depth range. Axial 

side and base resistance were computed for the appropriate liquefied/non-liquefied conditions by 
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explicitly considering ru in the computation of effective stresses. Since the layer at the shaft base 

was assumed to liquefy, it was assumed that all overlying layers contributed drag loads. 

When liquefied soil is present at the tip, the reduced base resistance (35 to 185 kN for the 

range of residual undrained strengths considered) in combination with the shaft friction resistance 

(950 to 1,300 kN range considered) is smaller than the applied load at the ground surface (1,900 

kN, including the column self-weight); drag loads from post-liquefaction reconsolidation would 

further lower the safety margin. Accordingly, a bearing capacity failure is predicted. Under such 

conditions, the foundation would “plunge” through the weak material underlying the base until it 

reaches a denser layer that provides sufficient base resistance to carry the axial load. The 

magnitude of settlement (about 0.5 m) and the thickness of the potentially liquefiable layers in the 

vicinity of the shaft tip (about 0.25 to 0.5 m) are roughly equivalent, so this failure mechanism can 

explain the observed settlement. 

Given that the presence of loose layer(s) in the vicinity of the foundation tip depth can 

explain the observed behavior well, it appears that significant strength loss of these layers occurred 

during the earthquake, causing a plunging failure. Even if the soil at the shaft tip did not completely 

liquefy (i.e., ru did not reach 100%), generation of significant excess porewater pressure could still 

reduce the bearing capacity of the soil, which would cause settlement if the total resistance drops 

below the applied load. Had the Bent 6 foundations been a different length such that their tips were 

not coincident with a loose layer, the failure likely would not have occurred. Ironically, a shorter 

foundation length may have satisfied this criterion, provided that the shaft tip was founded in a 

nonliquefied layer thick enough to prevent punching failure. 
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(a) (b) 

Figure 4-15: Profiles of axial load (including downdrag) and axial resistance for highway bridge 
Bent 6 based on data from CPT-1 and CPT-2: (a): no liquefaction at tip—load carrying capacity is 
sufficient; and (b): loose layer at the depth of the foundation tip is liquefied, axial load exceeds the 

load carrying capacity of the foundation, resulting in bearing capacity failure and vertical 
settlement.  
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5 Interaction of Adjacent Foundations during 
Lateral Spreading 

Analyses presented in the previous chapter were based on the simplifying assumption that the 

foundations supporting the railroad bridge (RRB) or highway bridge (HWB) interacted with the 

laterally spreading ground without being influenced by the presence of the other bridge, or by other 

bents of the same bridge. Furthermore, because the extent of the lateral spread was large relative 

to the zone of influence of each individual bent being analyzed, the full free-field lateral spreading 

displacement was used for the analyses. In some cases, a refined consideration of these two 

simplifying assumptions can provide a beneficial reduction in lateral spreading demand used for 

deep foundation design. This chapter focuses on (1) pinning effects that occur when the areal extent 

of the lateral spread feature is inadequate to fully encompass the passive loading zone of influence, 

and (2) shielding effects that occur when one foundation interacts with a lateral spread feature to 

reduce demands on an adjacent foundation. First, clear definitions of pinning and shielding are 

established. The influence of these mechanisms on the behavior of the Mexico bridges is then 

examined using a novel procedure that combines two-dimensional finite element simulations with 

the equivalent-static analysis (ESA) results from the previous chapter.  
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5.1 DEFINITIONS OF PINNING AND SHIELDING 

The so-called “pinning” phenomenon is sometimes misunderstood and must be clearly defined to 

avoid confusion and misuse. In this text, pinning is defined as a reduction in demand on a 

foundation embedded in a lateral spread feature with finite areal extent compared to the demand 

that would be mobilized in an infinite-extent lateral spread. In the context of a beam on nonlinear 

Winkler foundation (BNWF) analysis, lateral spreading demands are represented as displacements 

imposed on the free-ends of p-y elements attached to the piles. If the areal extent of the spread 

feature is large enough to fully encompass the zone of influence of soil-pile interaction, the free-

field soil displacement is the appropriate input for the free-ends of the p-y elements. However, if 

the areal extent of the spread feature is smaller than the zone of influence, the displacement demand 

must be reduced to account for pinning effects. The zone of influence of the foundations is defined 

as the region over which ground displacements are less than the free-field displacement. 

Lateral spreading soil displacements in the vicinity of stiff foundations are often observed 

to be smaller than those in the "free-field" at some distance away from the foundation during post-

earthquake reconnaissance efforts. This is true for both finite-extent and essentially infinite-extent 

lateral spread features. It is tempting to conclude that pile pinning must be responsible for this 

reduction in soil displacement. However, a reduction in soil displacement in the vicinity of the 

foundation is not a sufficient condition to conclude that pinning has occurred. Whether pinning 

occurred can only be determined by assessing whether a reduction in demands resulted from the 

finite areal extent of the spread feature. 

To further clarify the definition of pinning in the context of lateral spreading problems, 

consider the single pile in the lateral spread feature with large horizontal spatial extent in Figure 

5-1(a). This will be referred to as an “infinite-extent” lateral spread condition because, although 
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the spread is of course not actually infinite in any of its dimensions, further increases in size would 

not increase the demand placed on foundations within the spread. Assume for illustrative purposes 

that the pile foundation is embedded in underlying stiff soil, and the strength and flexural stiffness 

of the foundation is sufficiently high to limit the foundation displacements to negligible amounts 

as the spreading soil flows around the foundation. At large distances beyond the zone of influence 

of the foundation, the soil will exhibit a free-field displacement profile. However, within the zone 

of influence of the foundation the soil displacement will be reduced, and immediately behind the 

center line of the pile the soil displacement will equal the foundation displacement. The free-field 

soil displacement is clearly the correct input to a BNWF model in this case because the zone of 

influence of soil-pile interaction is completely contained within the spread feature. Therefore, 

consideration of pinning effects is not warranted. However, the stiffness of the load-transfer 

relationship between the pile and spreading crust may be significantly softer for liquefied soil 

profiles than for non-liquefied profiles due to a loss of shear stress on the bottom of the 

nonliquefiable crust layer (Brandenberg et al. 2007). 

Now consider the finite-length lateral spread in Figure 5-1(b). [Note: the following 

terminology is adopted for the remainder of this chapter—the length of the lateral spread is 

measured in the direction of free-field soil displacement, and its width is measured along the 

transverse direction, as shown in Figure 5-1(b)]. The zone of influence of soil-foundation 

interaction in this case extends to the upslope margin of the spread feature. Therefore, the areal 

extent of the spread feature influences the formation of the soil passive failure mechanism, thereby 

reducing demands imposed on the foundation elements. Pinning effects therefore should be 

considered for this problem. 
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Finally, consider the finite-length, finite-width approach embankment spreading against a 

pile-supported abutment in Figure 5-1(c). For this case, the zone of influence for soil-foundation 

interaction is geometrically limited by both the length and width of the spread feature. Demand 

could therefore be appreciably lower compared with the demand that would be mobilized by an 

embankment extending significantly further in one direction, such as a levee parallel to a river. 

Pinning is therefore an important consideration. For example, McGann and Arduino (2014) used 

3-D finite element modeling to demonstrate through back-analysis of damage to the Mataquito 

River Bridge in Chile that the width of an approach embankment undergoing lateral spreading has 

a significant influence on abutment pile demands.  
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Figure 5-1: Three lateral spreading scenarios—(a) single pile subjected to broad field of 
lateral spreading, (b) pile group subjected to “short” lateral spread, and (c) laterally-

spreading approach embankment resisted by abutment piles. 
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Methods have been proposed for analyzing the infinite-extent lateral spread cases in Figure 

5-1(a) and the finite-width spread feature in Figure 5-1(c). For infinite-extent lateral spreads the 

free-field displacement should be imposed, and can be crudely estimated using various procedures 

described in Chapter 4 (e.g., Youd et al. 2002, Faris et al. 2006, Olson and Johnson 2008). Finite-

width lateral spreads [Figure 5-1(c)] can be analyzed using an iterative procedure combining a 

pushover ESA analysis with limit equilibrium slope stability analyses with Newmark-type 

displacement estimates (e.g., Bray and Travasarou 2007). This procedure results in a compatible 

slope displacement and foundation resistance for design [e.g., MCEER 2003, Boulanger et al. 

2005; an example of this approach is given in the Caltrans (2013) lateral spreading design 

guidelines]. By contrast, pinning for “short” lateral spreads [Figure 5-1(b)] has not received 

adequate attention.  

Shielding is defined as the reduction in demand imposed on one foundation component 

arising from soil-foundation interaction effects for an adjacent component. Imagine that the bridge 

in Figure 5-1(b) is adjacent to a second parallel bridge, such as the condition at the San Felipito 

Bridges site under consideration. If one of the bridges has foundations that are adequately stiff and 

strong to resist lateral spreading demands while the other bridge has weaker foundation elements 

that yield before mobilizing the passive resistance from the crust, the stronger foundation elements 

may exert a "shielding" effect that reduces lateral spreading demands on the weaker foundation 

elements. The shielding effect for bridges in lateral spreads has not received adequate attention.  

As described in the previous chapter, Bent 5 of the RRB was observed to have translated 

about 1 m based on measurements taken following the earthquake. From the ESA analyses, Bent 

5 was predicted to undergo sufficient translation to cause an unseating collapse (about 0.85 m of 

movement was required) for imposed free-field lateral spreading displacements exceeding about 
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1 m. However, if the full free-field lateral spreading displacement of approximately 4.6 m was 

imposed, Bent 5 was predicted to displace about 4.1 m, which greatly exceeds the observed 

movement. A working hypothesis is that shielding provided by the HWB is responsible for the 

translation of RRB Bent 5 being less than predicted under free-field lateral spread demands. In 

addition, RRB bents further away from the river bank (6, 7 etc.) would be predicted to undergo 

significant translation when subjected to the level of lateral spreading observed in the free-field at 

the respective distance from the bank, but they underwent no measureable displacement. It is 

hypothesized that this better-than-predicted behavior arises from a combination of shielding 

provided by the HWB, and pinning resulting from the upslope extent of the lateral spread behind 

the bents being small relative to the HWB foundations’ zone of influence. 

This San Felipito Bridges case study provides a unique opportunity to explore methods for 

quantifying the shielding effect, since the site is well characterized, free field lateral spreading 

displacements were measured, the performance of the bridges during the earthquake was well 

documented, and the ESA of the foundations under lateral spreading demand has already been 

performed. 

5.2 APPROACH 

The approach adopted to quantify shielding and pinning effects consists of two-dimensional finite 

element analyses (FEA) of a domain that represents a plan-view section of the site combined with 

parameters obtained from the previously-performed ESA simulations. Although lateral spreading 

acting on foundations is a 3-D problem, a 2-D simulation was adopted for simplicity. The FEA 

domain represented a 1-m thick horizontal slice of the crust in the out-of-plane direction (i.e., 

vertical in the physical system) and were conducted using the program Phase2 by Rocscience 
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(2013). The initial model included Bents 5, 6, and 7 of the highway bridge in the center of a 150-

m wide by 60-m long domain. The domain is sufficiently large so that a free-field response occurs 

outside the zone of influence of the foundations. Bents further to the east (Bents 8, 9 etc.) were not 

included since they are beyond the zone of observed lateral spreading in the free field, which 

extended about 50 m upslope from the east river bank. Bent 4 is not included in the model because 

it is located in the middle of the river channel; the lateral spread is assumed to have stopped shortly 

after entering the river from the east bank and likely did not interact with Bent 4. Bents of the 

railroad bridge were not included in the initial model so that the shielding effect provided by the 

highway bridge on the railroad bridge could be studied independently. In reality, the two bridge 

systems constitute an interacting system in which the railroad bridge may have also provided a 

shielding effect for the highway bridge. This effect is considered small in this case because the 

railroad bridge foundations were weaker and more flexible than those for the highway bridge. The 

interaction would be important for adjacent foundations with similar strength and stiffness.  

The relationship between mobilized passive pressure and free-field displacement was 

obtained from the OpenSees ESA (Figure 4-11). The average horizontal stress was found to be 78 

kPa with 4.6 m of free-field soil displacement, inducing a corresponding foundation displacement 

of 4.0 cm at the ground surface. This horizontal pressure represents a Rankine passive limit state 

corresponding to a friction angle of 35°. These results were used to define an elastic perfectly-

plastic model for the crust soil in Phase2 with uniform shear strength of 54 kPa such that the same 

passive limit state would be mobilized in the plain strain simulations. The perfectly-plastic 

behavior ensures that the soil cannot transfer additional load to the foundations once the passive 

limit state has been reached. Although the individual soil elements are modeled with a bilinear 

stress-strain relationship, the pile lateral response obtained from the simulations is nonlinear due 
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to incremental shear failure of the soil elements. Since the two-dimensional, plain-strain analysis 

used here does not fully capture the three-dimensional boundary conditions of the lateral spreading 

problem, the material properties for the two-dimensional analysis must be carefully selected so 

that the desired passive pressure is achieved.  

 
 

Figure 5-2: Equivalent-static analysis results. 

The lateral boundaries of the finite element domain were restrained against displacement 

in the x-direction (i.e., the domain could not change width) and a uniform displacement of 4.6 m 

was imposed on the lateral boundaries in the y-direction (i.e., towards the river) as shown in Figure 

5-3. In reality there was a non-uniform gradient of displacement along the length of the lateral 

spread, though most of the soil displacement was accommodated by several large cracks 

approximately 40 meters upslope from the river. In other words, a block about 40 meters long 

displaced relatively uniformly towards the river. A uniform displacement imposed on the 

boundaries is therefore considered reasonable for this exercise. 
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Figure 5-3: Finite element domain. 

To define an appropriate Young’s modulus for the crust soil, the lateral boundaries of the 

domain were displaced 4.6 m and the Bent 5 foundations were displaced by the amount predicted 

from the ESA, 4.0 cm, as shown in Figure 5-3. Bents 6 and 7 of the highway bridge were initially 

held fixed against translation; the Young’s modulus of the crust soil and displacement of Bents 6 

and 7 were then adjusted until the average reaction force of the crust acting against the foundations 

of each bent and the corresponding displacement were in agreement with the ESA results as shown 

in Figure 5-4. A modulus of 875 kPa was found to provide a good match. This value is significantly 

less than the small-strain modulus for cohesionless soils under typical loading conditions, which 

can be attributed to the low confining pressure near the surface and large modulus reduction at 

high strain as well as the loss of shear resistance at the bottom of the spreading layer (Brandenberg 

et al. 2007). The results were found to be relatively insensitive to a range of soil Poisson’s ratio 

between 0.2 and 0.35, typical for loose cohesionless soil (Bowles 1996).  A small amount of tensile 

strength (5 kPa) was assigned to the soil to prevent excessive deformation for soil elements that 

yield in tension. Foundation resistance provided by the railroad bridge was not included in the 
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domain for the soil modulus calibration step. If the foundations of the secondary structure have 

comparable resistance to the primary structure, they should be included in the calibration step. 

Concrete drilled shafts were modeled in Phase2 with an elastic material having a Young’s modulus 

of 27 GPa and a Poisson’s ratio of 0.2. 

 

Figure 5-4: Highway bridge mobilized force-displacement results for soil property calibration step. 
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Figure 5-5: Results of Phase2 simulations with 4.6 m of imposed free-field lateral spreading 
displacement, showing normal stress acting in direction of lateral spreading. Stress contours in kPa.  

The steps followed to estimate the reduced demand at the location of a secondary structure 

due to shielding by the foundations of a primary structure were: 

1. Performed ESA for the primary structure foundations using the free-field lateral spreading 

displacement to determine the average stress intensity acting on the foundations (Figure 

4-11) and the corresponding foundation displacement versus soil reaction force 

relationship (Figure 5-4); 

2. Developed finite element model of the crust layer, including foundations of the primary 

structure, and adjusted soil modulus and foundation displacement until soil reaction force 

and foundation displacement were in agreement with the ESA results determined in step 1 

(i.e., the “calibration step” depicted by Figure 5-3 through Figure 5-5); 
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3. Determined reduction of free-field lateral spreading displacement at the location of the 

secondary structure foundations; 

4. Performed ESA for secondary structure foundations using reduced lateral spreading 

displacement demand. 

5.3 RESULTS 

Average predicted displacement towards the river at the location of Bent 5 of the railroad bridge 

was 1.36 m for an imposed free-field lateral spreading displacement of 4.6 m as shown in Figure 

5-6. This represents a 70-percent reduction from the free-field lateral spreading demand. When the 

reduced demand is imposed on an ESA model of the bent, the bent is predicted to displace about 

1.2 m, which induces unseating collapse of the span and agrees reasonably with the measured pier 

displacement of about 1 m. 

Further studies were conducted to isolate the shielding effect in the transverse and 

longitudinal directions. A model that only included Bent 5 of the highway bridge (Bents 6 and 7 

removed) provided a 68-percent reduction of the free-field displacement at the location of Bent 5 

of the railroad bridge, which represents shielding only in the transverse direction. If the railroad 

bridge had been located an additional 15 m away from highway bridge, the predicted shielding 

effect would decrease to 45 percent. A model that only included Bents 6 and 7 of the highway 

bridge provided a 42-percent reduction for the railroad bridge Bent 5, which is primarily 

longitudinal shielding in the “downstream” lateral spreading direction. In the “upstream” shielding 

case, a model that only included Bent 5 of the highway bridge provided an 87-percent reduction 

at the location of Bent 6 of the railroad bridge. It is also apparent that the highway bridge shielded 

itself, with the presence of Bents 6 and 7 reducing demand on Bent 5 by about 45 percent. These 
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results demonstrate that longitudinal and transverse shielding effects are both significant, and can 

be investigated separately with the proposed approach. 

 
Figure 5-6: Displacement results (in meters) for finite element model including Bents 5, 6, and 7 of 

the highway bridge showing reduction in displacement at location of railroad bridge Bent 5 
compared to free-field lateral spreading displacement of 4.6 m. 

For bents of the railroad bridge further from the river bank (No.’s 6 and 7), the predicted 

reduced displacement demand still results in prediction of significant displacement during the 

ESA, about 0.4 m, which is contrary to the observed behavior. This can partially be explained by 

the uniform displacement gradient that was imposed on the model and the fact that the soil 

properties are different at these locations compared to the Bent 5 location, notably that the 

thickness of the liquefiable layer decreases further from the river. For forward design cases, 

knowingly underestimating the shielding effect is a reasonable approach given the uncertain nature 

of estimating the magnitude and margins of lateral spreading. 
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In contrast to the shielding provided by the highway bridge, Bent 5 of the railroad bridge 

only provides an 8 to 10 percent reduction in the lateral spreading displacement demand at the 

location of Bent 5 of the highway bridge. Since the highway bridge foundations have sufficient 

strength and stiffness to resist the fully-mobilized passive pressure of the laterally spreading crust, 

the low shielding effect provided by the railroad bridge is of little consequence. Nonetheless, the 

analysis did correctly predict that the highway bridge shaft closest to the railroad bridge 

experienced slightly less demand than the furthest shaft, which agrees with the observed gradient 

of residual rotations measured in the four columns of HWB Bent 5 following the earthquake. 

5.4 INFLUENCE OF LATERAL SPREAD LENGTH 

A separate issue, also missing from the literature, is the influence of the length of the lateral spread 

(recall that length is measured parallel to the direction of lateral spreading displacement). Spread 

features that are “short” in length along the longitudinal axis of the bridge can be restrained more 

effectively by the bridge foundations than an equivalent-width lateral spread that extends upslope 

for a larger distance but undergoes the same free-field displacement. The zone of stress influence 

for loading conditions below that which is required to fully mobilize passive failure can be 

relatively large in lateral spread features because the low friction along the base of the spreading 

crust (i.e., at the interface with the liquefiable sand) results in horizontal pressures transferring 

further upslope than they otherwise would in a non-liquefied soil profile (e.g., Brandenberg et al. 

2007). As a result, lateral spreading occurring a significant distance upslope from a foundation can 

be “felt” by the foundation even when soil displacement at this location under non-liquefied 

conditions would have a negligible influence on the foundation. The areal extent of the spread no 
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longer has an influence when full passive pressures are mobilized in the soil, since the passive 

pressure limit state does not depend on the length of the spread feature, although the size of the 

passive wedge will still be larger than in a non-liquefaction case. An exception is when the passive 

wedge extends beyond the upslope extent of the spread feature, in which case a reduction in passive 

force would be anticipated relative to the case in which the entire passive wedge is contained 

within the spread feature. 

 
 

Figure 5-7: Influence of lateral spread length; only the length of the lateral spread is varied 
between the two cases. 

For example, if the entire flood plain on the east bank of the San Felipito Bridges site had 

liquefied and undergone lateral spreading (lateral spread length of approximately 100 m instead of 

50 m), predicted pressures acting against the Bent 5 HWB foundations are about 40 percent higher 

when the free-field lateral spreading displacement is 0.5 m (less than the amount required to 

mobilize full passive pressure) as shown in Figure 5-7. This trend confirms that as the length of a 

lateral spread increases and the foundation zone of influence becomes smaller relative to the areal 

extent of the lateral spread, the appropriate demand for an ESA approaches the free-field 

displacement. 
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5.5 SUMMARY 

In this chapter, a novel procedure combining the results of the ESA from the previous chapter with 

two-dimensional finite element analyses of the laterally spreading crust layer was utilized to study 

pinning and shielding effects for pile foundations. The results confirm that for foundation groups 

subjected to very broad lateral spreads in which the zone of influence is entirely contained within 

the spread feature, the appropriate input displacement for ESA is the free-field displacement. For 

pile groups subjected to “short” lateral spreads in which the zone of influence of the foundations 

extends beyond the areal extent of the lateral spread, demands on the foundation are reduced 

relative to inputting a free-field displacement profile on the free-ends of the p-y elements in an 

ESA. 

Lateral spreading demand at the location of the railroad bridge foundations that were 

damaged during the earthquake was predicted to be reduced by about 70 percent compared to the 

free-field displacement measured at the same distance upslope from the river bank. The results of 

ESA performed using this reduced displacement closely match the observed bridge performance, 

whereas ESA performed using the free-field displacement over-predicts foundation displacement.  

Since the resistance provided by the foundation being investigated is not included in the 

proposed modeling approach, the displacement reduction may be underestimated for cases when 

the resistance of the individual foundation represents a significant portion of the total foundation 

group resistance. This would be most significant for cases where few large-diameter shafts are 

used and the resistance against lateral spreading provided by a single shaft is significant. In this 

case, all the foundations providing significant resistance should be included in the soil modulus 

calibration step. For the San Felipito Bridges case study considered here, the resistance provided 
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by the railroad bridge foundations was small relative to the resistance provided by the highway 

bridge foundations. 

A limitation of the proposed method as described herein is that only a single layer is 

considered to dominate the load-transfer behavior between the lateral spread and the foundations, 

in this case the nonliquefied crust. If multiple nonliquefied layers exist between liquefied layers 

and undergo significant displacement relative to the foundations, it may not be possible to 

adequately simplify the behavior to two dimensions. Nonetheless, in many lateral spreading 

scenarios a single layer of nonliqued crust overlying liquefied soil does impose the majority of the 

demand on the foundations, and the two-dimensional approach may be adequate. 

The findings of this study show that the length and width of the lateral spread feature 

relative to the size of the foundation zone of influence affects the load imposed on the foundations 

by the moving soil. The traditional pinning approach does not account for these effects well when 

applied to mid-span bents. For example, Kato et al. (2014) applied the pinning approach to back-

analysis of three bridges and found that the observed performance was not matched in all cases, 

concluding that the three-dimensional geometry of the problem has a clear influence on the pile 

response. 

The analysis method proposed herein can also be used to assess the appropriate demand 

for foundation groups. The free-field displacement should be applied for mono-foundations or in 

very broad lateral spreads, including softened p-y behavior to account for loss of shear resistance 

at the bottom of the spreading layer following recommendations by Brandenberg et al. (2007). 

Additionally, the sensitivity of the two-dimensional analysis results to changes in areal extent and 

magnitude of free-field displacement can provide insight to the potential consequences of actual 

lateral spreading displacements exceeding the estimated amount. Because there is large uncertainty 
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inherent in current methods available for estimating lateral spreading displacements, the ability to 

investigate the sensitivity of bridge performance to this uncertainty with the simple tool presented 

here could present significant cost and time savings for many projects.   

Foundation engineers are cautioned to carefully consider the boundary conditions of each 

individual project and whether or not two-dimensional analyses can adequately capture the real 

system behavior. It is important to recognize that the results of the procedure presented here are 

approximate and should not be treated as a guaranteed representation of actual system 

performance. For high-value or critical projects, the results of two-dimensional analyses could be 

used to decide whether or not more sophisticated analyses are warranted, or whether the cost 

associated with mitigating lateral spreading rather than designing for its consequences are justified. 
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6 Conclusions 

Equivalent static analysis (ESA) procedures for evaluating the effects on bridges of lateral 

spreading displacements (Ashford et al., 2011; Caltrans, 2013a) have been applied to two adjacent 

bridges that exhibited different performance levels in similar soil conditions and under 

approximately the same lateral spreading demands. These procedures correctly predicted the 

observed behavior of both bridges, indicating that they are appropriate for routine practice. The 

difference in behavior of the two bridges can ultimately be attributed to the cumulative lateral 

resistance of the railroad bridge pile group being less than the fully-mobilized passive pressure 

demand from the laterally spreading crust, whereas the highway bridge foundations had sufficient 

strength and flexural stiffness to resist the passive pressure without undergoing significant 

displacement. The ESA procedures correctly predicted the response of both bridges using a 

common framework for assigning input parameters. In addition, a novel procedure combining the 

results of the ESA with two-dimensional finite element analyses of the laterally spreading crust 

layer was utilized to study pinning and shielding effects for pile foundations. 

The effects of restraint-compatible displacement-based inertial demands were found to be 

negligible in comparison to kinematic loads from lateral spreading, which dominated the response 

of both bridges. This is expected for bridges that are restrained against translation in the direction 
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of lateral spreading. Force-based methods for combining inertial demands with lateral spreading 

for models that only included below-ground foundation elements of the bridges did not capture the 

observed behavior of the bridges and in some cases predicted collapse where none occurred. Using 

a restraint-compatible spectral-displacement-based approach—as opposed to the current force-

based approach— is recommended to impose inertial demands that explicitly consider the 

translational and rotational restraint provided by other bridge components. 

To adequately assess the predictive capability of the ESA procedures in the context of this 

case study, it was necessary to model the above-ground components of the bridge bents in addition 

to the foundation elements. OpenSees provides far more flexibility in structural modeling 

compared with tools commonly used by geotechnical engineers such as LPILE. It is difficult to 

accurately predict foundation and superstructure performance when analyses of the two systems 

are performed independently because the complex interaction that occurs between them cannot 

easily be replaced by simple shear, moment, or displacement boundary conditions. It is therefore 

recommended to perform such simulations using a structural design software package that can 

capture these more complex features of the structural behavior. It should be stressed that this does 

not necessitate a dynamic or even pseudo-static analysis of the entire superstructure combined with 

the foundations; a novel approach has been presented here for capturing the restraint of above 

ground components for modal analysis and subsequent combined inertial and kinematic analysis 

with a single-bent model [see Figure 4-10(c)]. This approach will have the added benefit of 

facilitating better communication between structural and geotechnical designers. 

This case study demonstrates several lessons with broad applicability: 

 The equivalent-static BNWF approach is a valuable tool for estimating 

foundation shear and moment demands for structural design, as well as for 
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predicting displacements and rotations for performance evaluation. 

However, proper implementation of the method requires correctly modeling 

both the soil and the structural elements that resist lateral spreading 

demands, which likely includes above-ground bridge components. This 

requires geotechnical and structural expertise and can best be achieved 

using software that allows explicit modeling of structural components and 

connections, such as OpenSees. 

 The foundation response predicted by the ESA procedures can be sensitive 

or insensitive to virtually any of the input parameters, and in most cases it 

is difficult to assess this sensitivity a priori without actually performing 

parametric studies over a range of the input values. The ESA should be 

utilized as a tool to understand the performance of a proposed design and 

guide further geotechnical investigation as well as to facilitate interaction 

with the bridge superstructure designers. 

 Large ground displacements occurred at the San Felipito Bridges case study 

site, and the railroad bridge was not stable against the passive pressure of 

the laterally spreading non-liquefied crust layer. Since there is considerable 

uncertainty in estimating lateral spreading displacements, if significant 

lateral spreading is expected at a site (i.e., several meters or more), it is 

reasonable to assume that enough displacement will occur to fully mobilize 

passive pressure of a crust layer. Proposed foundation designs should 

therefore exhibit tolerable rotation and displacement (i.e., be stable) in 

response to the fully-mobilized demand. In most cases, a stable design will 
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prevent yielding of the foundations and columns; where column or 

foundation yielding is permitted, significant ductility capacity is required.  

 Modeling superstructure inertial demands as the base shear and overturning 

moment of a laterally-unrestrained SDOF bent model can result in 

erroneous overestimates of foundation demands. Inertial demands are better 

represented as spectral displacements at the superstructure level. These 

spectral displacement demands should be generated from a modal analysis 

which explicitly considers bridge restraint from all bridge components. 

 Axial failure of Bent 6 of the highway bridge could potentially have been 

prevented by using a measure of penetration resistance with greater 

resolution than typical SPT sampling intervals, which would have identified 

the loose layer near the foundation tip. More suitable exploratory techniques 

in heterogeneous alluvial environments include CPT or continuous SPT 

sampling.  

 Analysis of axial behavior of deep foundations during seismic loading 

should explicitly consider generation of excess porewater pressure for 

computation of effective stress even if full liquefaction is not predicted. 

 For single piles and foundation groups subjected to very broad lateral 

spreads in which the zone of influence is entirely contained within the 

spread feature, the appropriate input displacement for ESA is the free-field 

displacement. For pile groups subjected to “short” lateral spreads in which 

the zone of influence of the foundations extends beyond the areal extent of 
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the lateral spread, demands on the foundation are reduced relative to 

inputting a free-field displacement profile on the free-ends of the p-y 

elements in an ESA. 
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Part II: Influence of Kinematic Pile-Soil Interaction on Foundation Input 
Motions for Bridges Supported on Deep Foundations  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

How can earthquake ground motions estimated from a seismic hazard analysis be reliably 

modified to account for differences between movement in the free-field and movement of the 

foundations due to kinematic pile-soil interaction? 
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7 Introduction to Part II 

Seismic design of bridges and other structures supported on bored or driven piles often utilizes a 

substructure method of dynamic analysis in which the foundation elements are not explicitly 

modeled, but are replaced by springs and dashpots representing the foundation impedance. The 

ground motion appropriate for input to the free end of the springs, known as the foundation input 

motion (FIM) differs from the free-field motion (FFM) due to the difference in stiffness and 

deformation characteristics between the pile(s) and soil, which is the concept of kinematic soil-

structure interaction (SSI). As with many other aspects of SSI, the difference between the FIM and 

FFM often results in a favorable reduction in demand placed on the structure, yet it is typically 

ignored in practice. In some cases, however, the FIM could actually be greater than the FFM, 

which is also typically overlooked. 

Within the substructure method, the problem of relating the FFM to the FIM is solved 

separately from the dynamic analysis of the superstructure.  Ground motions from a seismic hazard 

analysis represent shaking in the free field, and must be modified to account for kinematic SSI. 

For example, the PEER ground motions database (Ancheta et al., 2014), a commonly used source 

for accelerograms used for dynamic analyses, excludes records influenced by SSI. Similarly, 

response spectra representative of the FFM rather than the FIM are typically used for pseudo-static 



 112

response spectrum analysis. Pseudo-spectral accelerations (PSA) on seismic hazard maps and site 

amplification factors used in building codes and seismic design guidelines (e.g., ASCE-7, 2010) 

do not include the influence of SSI. 

Whereas kinematic SSI for shallow foundations is relatively well understood and tools are 

available for implementation in routine practice (e.g., NIST 2012), similar tools are not yet 

available for piles. Since the 1960’s, several researchers have studied the response of piles and pile 

groups using simplifying assumptions such as linear elasticity, homogeneous soil properties, and 

harmonic ground motions, including Tajimi (1969), Flores-Berones and Whitman (1982), Gazetas 

and Dobry (1984a), Fan et al. (1991), Kaynia and Novak (1992), and many others. More recent 

developments such as Anoyatis et al. (2013), Sica et al. (2013), and Di Laora and Rovithis (2014) 

have incorporated the effects of inhomogeneous and layered soil profiles and different pile 

boundary conditions. However, the previous studies to-date have yet to produce tools such as 

formulas for transfer functions and response spectrum scaling factors that reliably account for the 

complexity of realistic pile, soil, and ground motion conditions—in particular, nonlinear material 

behavior—yet are simple enough for implementation in routine practice. The purpose of this study 

is to develop such tools with consideration of realistic dynamic material behavior and subsurface 

conditions using the type of information known for a typical project. Emphasis is placed on 

evaluating the influence of the following factors: 

 Nonlinearity due to (i) free-field site response, (ii) interaction at the pile-soil 

interface, and (iii) nonlinear pile structural behavior, 

 Inhomogeneous soil profiles, which for this study are developed from the results of 

real subsurface investigations, 
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 The complexity of real ground motions, including variable frequency content, 

intensity, and incoherence (i.e., spatial variability), and 

 Pile group behavior, in particular the influence of ground motion incoherence over 

the spatial extent of the pile group in light of the preceding factors. 

Previous computational studies using elastic material properties and other highly idealized 

conditions have generally concluded that reductions between the FIM and FFM are insignificant 

and can be ignored in practice. This study demonstrates that large-diameter piles used in soft soil 

conditions can result in reductions to design ground motions that are significant and could result 

in appreciable cost savings.  

The few documented case studies of measured kinematic pile-soil interaction effects 

provide conflicting evidence as to whether or not it is a significant phenomenon that should be of 

interest to foundation engineers. This research seeks to explain these case studies and clearly 

demonstrate the conditions under which pile kinematic SSI should be considered, and likewise can 

safely be ignored. 

The outcome of this work is a set of “generalized models” for predicting transfer functions 

and spectral ratios for use in routine practice. The terminology “generalized model” is used here 

to refer to a mathematical model (i.e., equation with a specified functional form) intended to cover 

a wide range of conditions encountered in routine practice. The generalized model is implemented 

for specific project conditions by computing coefficients based on known project parameters such 

as pile size and soil shear wave velocity. The coefficients have been determined by statistical 

regression of the results of a parametric analysis covering typical foundation, subsurface, and 

ground motions conditions. 
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7.1 ORGANIZATION 

Part II of this dissertation is organized as follows: 

 The remainder of Chapter 7 introduces the fundamentals of kinematic pile-

soil interaction, followed by a literature review of previous work on the 

subjects of pile dynamics and lateral load analyses using the p-y method. 

Since most of the available pile kinematic solutions rely on simplifying 

assumptions of linear elasticity and highly idealized subsurface conditions, 

a critique is given in the context of the limitations of these assumptions and 

the motivation to overcome them with the present study. The limited 

amount of empirical and experimental evidence of pile kinematic SSI is also 

presented. 

 Chapter 8 presents a derivation of an elastic analytical solution for 

kinematic pile-soil interaction. The closed-form solution that results is used 

for validating the numerical modeling approach that will subsequently be 

used for nonlinear analyses. 

 Chapter 9 defines the bounds of the parametric study performed to 

investigate the kinematic pile problem, and lays out the means by which the 

input parameters for the nonlinear analyses were formulated. 

 Chapter 10 presents the results of the parametric study, followed by 

development of generalized models for predicting those results in a 

forward-design scenario. The forward prediction models consists of a 

specified functional form with coefficients that are predicted via equations 

developed through statistical regression. Comparisons are made between 
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the nonlinear analysis results and idealized elastic solutions, which show 

that the elastic solutions generally are capable of predicting the average 

response of the nonlinear system. However, the elastic solutions fail to 

capture the large variability exhibited by the nonlinear analysis results, 

which is caused by the complexity of realistic subsurface conditions and 

ground motions, and soil nonlinearity. 

 Chapter 11 investigates issues related to the combination of inertial and 

kinematic SSI effects. An understanding of the combined effects is 

necessary for the re-examination of case history data presented in the 

following chapter. 

 Chapter 12 provides example applications of the generalized models 

through (i) re-examination of existing case history data, and (ii) a 

hypothetical bridge design scenario. 

 Chapter 13 provides conclusions and recommendations for implementation 

of the generalized results in engineering practice. 

 Appendix D contains profiles of soil properties that define the sites used for 

nonlinear analyses. 

 Appendix E discusses a pilot field study done as part of this project to 

measure kinematic pile-soil interaction transfer functions for full-scale 

conditions. The framework used for this pile study is documented with the 

intent that it will be repeated in the future for further validation of 

computational approaches. 
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7.2 FUNDAMENTALS 

Soil-structure interaction can be broadly classified into two effects1: 

 Inertial interaction, which describes how inertial forces generated in the 

structure induce foundation displacements and rotations that would not 

occur if the structure had a fixed base, resulting in additional displacements 

in the structure and a change of fundamental frequency or “period 

lengthening”, and 

 Kinematic interaction, which describes how waves propagating in the free-

field differ from the motion of the foundation(s) due to differential 

foundation-soil stiffness, ground motion incoherence, and wave scattering 

effects.  

In the context of the substructure method, foundation “impedance” (defined below) depends 

primarily on inertial SSI, and kinematic SSI determines the appropriate FIM to be used for the 

analysis. For pile-supported structures, kinematic SSI will be referred to as “kinematic pile-soil 

interaction” in this text. 

Two effects resulting from kinematic pile-soil interaction are of interest to foundation 

engineers. The first, which is the primary subject of this study, is the difference between the FIM 

and the FFM. The second topic of interest is quantifying demands placed on the pile directly as a 

result of excitation of the surrounding soil. Pile foundations are typically designed only to resist 

force effects from the superstructure, including inertial demands during earthquake loading in 

                                                 
 
1 Professor Robert V. Whitman is credited with coining the terms inertial and kinematic during the 1970’s (Roesset 
1994; Kausel 2010). 
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seismic regions. Kinematic loads coming from the ground are often ignored, except for cases of 

large permanent ground displacement such as lateral spreading as discussed in Part I of this 

dissertation. However, kinematic pile-soil interaction can impose large demands on piles even in 

the absence of permanent ground deformation, particularly where a significant soil stiffness 

contrast exists over the length of the pile. While kinematic demands are not the focus of this study, 

the analysis method described herein sheds lights on the problem and could be used for future 

studies. 

The substructure method of SSI analysis (e.g., Roesset et al. 1973) for a pile-supported 

structure can be summarized in three steps: 

1. Determine the kinematic response of the pile foundation with the mass of the supported 

structure set equal to zero; this provides an estimate of the demand on the pile resulting 

from the ground vibration as well as the motion at the top of the pile (the FIM); 

2. Determine the dynamic impedance at the pile head, consisting of frequency-dependent 

springs and dashpots that relate an applied force or moment at the pile head to a unit 

displacement or rotation, respectively; and 

3. Evaluate the response of the structure supported on the springs and dashpots from step 2 

and excited by the FIM from step 1. 
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Figure 7-1: Substructure method of analysis for bridge bent supported on a pile group. Note that 
vertical impedance is not shown, but could also be considered. 

The substructure method for a pile-supported bridge bent is depicted in Figure 7-1. The 

alternative to the substructure method is to analyze the complete structure-pile-soil system 

simultaneously, known as the “direct” method of analysis. While this approach overcomes certain 

issues associated with combining the different steps of the substructure method, it is 

computationally expensive, difficult to perform using existing commercial software, and requires 

advanced expertise in both geotechnical and structural engineering. Hence for routine practice, 

tools and associated guidance for facilitating use of the substructure method are preferred. 

The stiffness contrast between a pile and surrounding soil is the primary mechanism driving 

kinematic pile-soil interaction. A stiff pile in a relatively soft soil profile will generally undergo 

less deformation than the free-field soil, whereas the deformed shape of a flexible pile in stiff soil 

will be closer to the deformation of the surrounding ground. 

Frequency of the free-field excitation has a strong influence on kinematic pile-soil 

interaction, because the wavelength of the free-field motion ( ff SV f  , where VS is soil shear 
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wave velocity and f is the excitation frequency) determines the extent to which the ground 

movement varies over the length of the pile. This is illustrated in Figure 7-2 for a “floating” pile 

with free-head and free-tip boundary conditions of length L = 20 m, subjected to harmonic free-

field excitation representing idealized vertically-propagating shear waves. The pile flexural 

rigidity EpIp = 1,325 MN·m2
 (Ep and Ip are the pile Young’s modulus and moment of inertia, 

respectively) corresponds to a B = 1-m diameter circular reinforced concrete section. Figure 7-3 

depicts the response of the same system, but for a fixed-head pile boundary condition in which the 

pile head is restrained against rotation to simulate connection to a pile cap or other stiff structural 

element. 

For low-frequency excitation, the pile moves in concert with the ground since the ground 

displacement is relatively uniform over L. For high-frequency, short-wavelength excitation, the 

ground displacement reverses directions many times over L. The pile flexural stiffness prevents it 

from conforming exactly to the ground displacement, instead averaging the variable ground 

displacements imposed over its length. This average displacement approaches zero at high 

frequencies corresponding to low ratios of λff/L. This is similar to the concept of base-slab 

averaging for shallow foundations [e.g., see Veletsos and Prasad (1988)], in which the stiffness 

and strength of the foundation average the spatially variable ground motions imposed across its 

footprint. As for shallow foundations, spatial variability (incoherence) of real ground motions has 

the potential to further increase the averaging effect for pile groups that cover a large area, such as 

the footprint of a building. 

Between these extremes, intermediate-frequency excitation places the largest flexural 

demands on the pile for the example parameters considered here. Notice that the free-field 

excitation has the same displacement amplitude for each of the frequencies shown. 
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Figure 7-2: Profiles of soil and free-head pile displacement for three frequencies of harmonic free-
field excitation. 

 
Figure 7-3: Profiles of soil and fixed-head pile displacement for three frequencies of harmonic free-

field excitation. 

Taking the pile head motion up as the FIM and the ground surface displacement ug as the 

FFM, the ratio FIM/FFM can be expressed as a frequency-dependent transfer function by 

computing FIM/FFM at several frequencies over a range of interest. The transfer function can be 

thought of as a filter which describes how the pile-soil system modifies an input signal (the FFM) 

to produce an output signal (FIM). A transfer function ordinate Hu of unity indicates that the soil 
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and pile move in unison, such as depicted in Figure 7-2(a), while Hu ≈ 1.2 and 0.15 for the 

conditions depicted in Figure 7-2(b) and (c), respectively. Transfer functions for the free- and 

fixed-head piles are depicted in Figure 7-4. Notice that for the free-head pile, Hu exceeds 1.0 for 

frequencies up to about 7 Hz, indicating that the pile amplifies the ground motion (up > ug), while 

the fixed-head pile displaces less than the free-field at all frequencies. The phenomenon of Hu >1.0 

for free-head piles, which occurs when λff ≈ L as depicted in Figure 7-2(b), will be referred to as 

“kinematic amplification” in this study. 

 

Figure 7-4: Kinematic pile-soil interaction transfer functions computed for idealized linear-elastic 
conditions. 

For both fixed- and free-head piles, the FIM is reduced from the FFM at high frequencies, 

implying that a structure supported by the piles will experience a beneficial reduction in demand 

at these frequencies if the FIM is used for design. The frequency beyond which Hu descends below 

unity will be referred to as the “corner frequency” (fc) of the transfer function in this text. Since Hu 

is technically less than unity for any f > 0 for elastic fixed-head transfer functions, an arbitrary 

definition of fc will be adopted as the frequency at which Hu ≈ 0.95, for example about 3.5 Hz for 

the fixed-head case in Figure 7-4. Whether or not the corner frequency falls within the frequency 

range of engineering interest (approximately 0.2 to 20 Hz for typical structures) depends on factors 
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such as the relative stiffness contrast between the pile and soil, changes in soil stiffness over the 

length of the pile, and whether or not restraint against rotation is provided at the pile head. 

In addition to the differences in displacement between the pile and soil, Figure 7-2 shows 

that a free-head pile also undergoes rotation at the pile head due to the kinematic response. To 

compute the response of a structure supported by free-head piles using the substructure method, 

the pile head rotation θFIM must be input to the base of the structural model in addition to uFIM. 

Since rotation of the free-field soil column is zero at the ground surface for vertically propagating 

shear waves (since shear strain has to be zero for a zero stress condition), the transfer function for 

free-head pile rotation is instead normalized by the free-field displacement, and is usually 

multiplied by pile diameter such that is dimensionless (i.e. Hθ = θFIM·B / uFFM) 

The transfer functions depicted in Figure 7-4 were computed using an analytically-derived 

linear-elastic solution that is presented in detail in Chapter 8. For more realistic pile, soil, and 

ground motion conditions typical of a real project, numerical techniques such as the finite-element 

method can be used to compute the dynamic response of the system, which is the approach used 

in this study. Because real earthquakes cause the free-field and structure to respond at multiple 

frequencies simultaneously, and because of nonlinearity in the system response, the results of 

dynamic analyses cannot be used directly to compute up/ug at a single isolated frequency. Instead, 

the response history of the pile-head and ground-surface motions must be transformed to the 

frequency domain, for example using a Fourier transform. This allows Hu to be computed as the 

ratio of Fourier amplitude spectra (FAS) at each frequency over the range of interest as depicted 

in Figure 7-5. The following notation is used to denote these operations: 

    u t U F   (7.1) 
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     u FIM FFMH U U      (7.2) 

In Equations (7.1) and (7.2), u(t) is the time-domain signal of either the FIM (up) or FFM (ug), and 

F denotes a Fourier transform operation which produces a complex-valued frequency-domain 

signal denoted by capital letter U(ω). The amplitude and phase of the signal are computed from its 

real and imaginary parts [Re(U(ω)) and Im(U(ω))] as: 

       2 2
U Re U Im U       (7.3) 

    
  U

Im U
arctan

Re U


 



 
   

 
   (7.4) 

For simplicity, the abbreviation FAS is sometimes used as a shorthand for the magnitude of the 

Fourier amplitude spectra, that is FAS =  U  . The frequency domain signal can be represented 

equivalently in terms of either frequency f or angular frequency ω.   
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Figure 7-5: Time- and frequency-domain representations of pile seismic response for computation 
of kinematic transfer function. 

Although transfer functions may be unfamiliar to foundation engineers outside the realm 

of pile dynamics, they are a very useful tool for seismic design. Once a kinematic pile-soil 

interaction transfer function has been defined, it can be used to compute a FIM given a FFM 

without repeating the actual dynamic analysis of the pile subjected to the FFM. This is 

accomplished by convolving the transfer function with the FFM in the frequency domain (i.e., 

multiplying the Fourier amplitude spectral ordinates of the FFM and transfer function at each 

frequency), then performing an inverse-Fourier transform to recover the FIM signal in the time-

domain—essentially performing the process depicted in Figure 7-5(b) through (d) in reverse. 

These operations can easily be performed with commonly used mathematical software. Hence, if 

a reliable predictive model is made available to define a transfer function using parameters known 

for a typical project—pile and soil properties and estimates of ground motion intensity measures 
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from a seismic hazard analysis—then foundation engineers can skip the dynamic pile analysis, yet 

still provide the structural designer an estimated FIM instead of FFM for more realistic dynamic 

analysis of the superstructure. 

While response history analysis may be used for major bridges or other critical 

infrastructure, for routine projects, seismic design is usually performed via pseudo-static response 

spectrum analysis. By computing response spectra from a FIM and FFM, the ratio of spectral 

ordinates at each period can be computed as depicted in Figure 7-6. These “spectral ratios” (also 

referred to as ratio-of-response-spectra or RRS) can then be used in a forward-design scenario to 

modify FFM response spectra generated from the building code or site-specific seismic hazard 

analysis to represent a FIM. Hence, just as in the case of the transfer functions for dynamic 

analysis, if foundation engineers can reliably estimate spectral ratios using known project 

parameters, FIM response spectra can be generated for design purposes without performing 

dynamic pile analyses. 
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Figure 7-6: Time-domain and response spectrum representations of pile seismic response for 
computation of kinematic spectral ratios. 

Although the spectral ratio plot in Figure 7-6(d) appears to be equal to the transfer function 

plot in Figure 7-5(d) with the horizontal axes flipped, spectral ratios should not be interpreted 

simply as the inverse of the kinematic transfer function. A response spectrum represents the 

response of a single-degree-of-freedom oscillator to an input ground motion, and therefore depends 

on the properties of both the ground motion and the oscillator. Whereas the response spectrum 

ordinate at longer natural periods (low natural frequency) is heavily dependent on the flexibility 

of the oscillator, at short natural periods (high natural frequency) the spectral ordinate is controlled 

by the largest amplitude peak in the ground motion, which is usually dominated by intermediate 

frequency energy.  
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7.3 PREVIOUS STUDIES 

7.3.1 Winkler Analysis and p-y Curves 

The approach used in this study is the beam-on-dynamic-nonlinear-Winkler-foundation (BDNWF) 

model solved numerically with the finite-element method. The Winkler method refers to the 

response of a beam supported on a bed of springs characterized by a constant elastic stiffness or 

“modulus of subgrade reaction,” the term favored by Terzaghi and Peck (1948). Winkler’s (1867) 

hypothesis is that the pressure exerted by the subgrade on a loaded beam at a given point is 

proportional to the deflection of the beam at that point, and independent of the response at other 

locations. Hetenyi (1946) and Vesic (1961) demonstrated that the error between Winkler models 

and elastic continuum models is small for many realistic scenarios involving flexible beams, and 

that when used within the appropriate bounds the Winkler method can generate reliable results for 

foundation design. For analysis of piles, the Winkler family of methods considers a discretized 

foundation element attached to the ground through springs representative of horizontal and/or 

vertical pile-soil interaction, and has been extended to include nonlinear pile-soil interaction 

through p-y, t-z, and q-z curves.  

While the majority of previous studies of pile-soil interaction using the Winkler method 

have utilized linear-elastic Winkler foundation springs, this study utilizes nonlinear soil springs. 

Accounting for soil nonlinearity directly is a more robust approach than equivalent-linear methods 

which approximate nonlinearity through a strain-compatible degraded stiffness. This is 

particularly true when soil strains vary over the duration of a dynamic problem and over the length 

of a pile. Several variations of the Winkler method are possible ranging from static analysis with 

linear-elastic springs (BWF), to static analysis with nonlinear springs (BNWF), to the dynamic 
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analyses performed for this project. These methods will be collectively referred to as Winkler-type 

to distinguish them from continuum models. 

Early nonlinear p-y curves (e.g., McClelland and Focht 1958) were developed by matching 

the results of full-scale load tests to simple functional forms that were based on the theoretical state 

of stress around a laterally-loaded pile. The offshore oil drilling industry funded seminal work by 

Matlock (1970) for soft clays, Reese and Welch (1975) for stiff clay above groundwater, Reese et 

al. (1975) for submerged stiff clays, and Reese et al. (1974) for sand. Reese et al. (2006) provides 

an overview of the theoretical and experimental development of these p-y curves. Much of this 

original work has been improved upon and adapted for specific conditions, for example Reese et 

al. (1974) was updated by O’Neill and Murchison (1983) and is often known as the “API sand” 

curve (API 1993). Boulanger et al. (2003) recommended further modifying the API (1993) curve 

to reflect the fact that the modulus of sand tends to increase approximately in proportion to the 

square root of confining pressure rather than increasingly linearly with depth. 

The first-widely available computer-based implementation of the p-y method was a finite-

difference solution called COM624 (Reese and Sullivan 1980). This code later became the basis 

for the commercial program LPILE (Reese et al. 2005) and other similar software that is widely 

used in practice. For many projects, the extent of “seismic” foundation design is that the project 

structural engineer provides the foundation engineer with top-of-pile force effects (shear, axial, 

and moment), and the foundation designer sizes the pile in terms of diameter and length to 

adequately resist these loads. Even in cases when the design loads are pseudo-static representations 

of seismic inertial forces, LPILE or an equivalent program is often used to design for seismic 

lateral loads as if though they were static, without consideration of the fact that the default p-y 

curves available in the software are not intended for dynamic problems. While top-of-pile spring 
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stiffness matrices (impedance functions) are sometimes provided back to the structural designer 

for further analyses, kinematic pile-soil interaction is rarely considered. 

While the p-y curves described above have seen widespread use in practice, they were 

initially developed for static or slow-monotonic loading conditions. In some instances, effects of 

cyclic degradation over time were taken into account, but these were meant to represent repeated 

cyclic loading from wave action for offshore applications—not rapid, high intensity cyclic loading 

from earthquakes. Existing p-y curve definitions have several shortcoming, including (after 

Khalili-Tehrani et al. 2014): 

 Inaccurate small-strain stiffness, 

  A functional dependence on diameter that is not thoroughly validated, since 

the curves are based on a limited number of tests, and 

 A lack of functional dependence on the pile head boundary condition.  

For dynamic analyses, the initial stiffness problem is of greatest concern. There are two 

issues to consider. First, some of the functional forms (e.g., Matlock 1970 and Reese and Welch 

1975) have an initial tangent stiffness of infinity. While this may be trivial for conventional 

problems in which loads applied at the pile head induce significant head displacement and thus 

reach the nonlinear range of the p-y curve, infinite stiffness is problematic for dynamic problems 

where small relative displacements may occur between the pile and soil, especially at depth. Small 

trial displacements during numerical solution routines will result in erroneously large forces, 

causing convergence problems. Furthermore, infinite initial stiffness is problematic when 

performing modal analyses to compute natural frequencies of the pile-soil or structure-pile-soil 

system.  
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Second, because of the rudimentary equipment used in the early tests, accurate 

measurements of pile strains could not be achieved in the range of truly elastic soil behavior (Choi 

et al. 2015). This error is further propagated when the strains are numerically double integrated to 

compute displacement and double differentiated to compute soil reaction, which are necessary 

steps to generate p-y curves from load test results. Hence, even if the functional form of the p-y 

curve allows specification of the initial stiffness, the available load test results are not adequate for 

accurately defining it. A more attractive approach would relate the initial stiffness of the soil-pile 

interaction to the elastic soil stiffness measured in-situ using geophysical methods (e.g., maximum 

shear modulus Gmax), which is described further in §9.4.1. 

Lam (2009) questions the applicability of initial stiffness corresponding to Gmax for 

practical applications of p-y curves, noting that several lateral load tests of full- and model-scale 

piles have shown that the measured initial p-y stiffness is significantly softer than the elastic 

stiffness computed from the results of small-strain geophysical site investigation methods, by a 

factor of as much as ten. In reality, however, the instrumentation used during the load test is not 

capable of measuring the true initial stiffness. Hence, the experimental measurements to which 

Lam (2009) refers are actually in the nonlinear, albeit small-strain, range. 

Numerical implementation of p-y curves to accommodate cyclic loading via unload/reload 

rules is described by Wang et al. (1998) and Boulanger et al. (1999). With some exceptions that 

will be discussed further in §9.3, the p-y macro-element described by Boulanger et al. is 

implemented in OpenSees as the material PySimple1. The backbone curve defined by the 

PySimple1 material is formulated to match the shapes of the Matlock (1970) and API (1993) curves 

for clay and sand, respectively. The infinite initial stiffness problem of Matlock (1970) is overcome 
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in PySimple1 by using a finite elastic stiffness computed using the method of Vesic (1961) up to 

a value of 35% of the ultimate resistance of the spring (pult). 

7.3.2 Analytical and Numerical Solutions for Pile Dynamics 

Computational studies of pile dynamics can generally be divided into two groups: (i) loading is 

applied at the pile head by machine vibrations or seismically-induced inertial forces in the 

structure, thereby inducing inertial SSI, and (ii) loading is applied by excitation of the free-field, 

typically from seismic sources, inducing kinematic SSI. Studies falling into the latter category may 

or may not include inertial effects in addition to kinematic effects depending on whether or not a 

superstructure mass is included. Studies can be further classified based on (i) the computational 

method used to arrive at the solution—analytical versus numerical; (ii) whether the domain is 

represented as a continuum or is discretized into thin layers using, for example, Winkler’s 

assumption; and (iii) whether linear or nonlinear material properties are used. While even further 

subcategories could be defined (two- versus three-dimensional domains, homogeneous versus 

layered soil, mixed linear/nonlinear materials, etc.), the preceding classification broadly outlines 

the existing body of work on pile dynamics and will guide the following literature review. 

Two of the earliest studies of pile dynamics, Penzien et al. (1964) and Tajimi (1969), 

considered a complete soil-pile-superstructure system excited by seismic waves. Penzien et al. 

performed one-dimensional ground response analysis of a clay layer using a lumped mass model 

and applied these free-field excitations to the pile foundations via viscoelastic Winkler springs, 

which in turn excited the superstructure. Soil nonlinearity was approximated using bilinear rather 

than linear springs, and connection details within the bridge superstructure were modeled 

explicitly. The entire system was solved simultaneously using a numerical time-stepping approach, 

a considerable achievement given computational power in the 1960’s. Penzien (1970) describes 
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application of this method for design of the Elkhorn Slough Bridge in California, with a detailed 

account of how the soil properties were selected based on results of a rigorous field investigation 

and laboratory testing program. Tajimi (1969) derived an elasticity-based analytical solution for a 

rigid structure supported by a flexible pile in a three-dimensional elastic continuum. While an 

exact solution is not reached, approximate solutions are given for the amplification of the structure 

displacement relative to the free-field ground displacement and for the pile head impedance. 

In much of the pile dynamics work that followed, and especially over the following decade, 

emphasis was placed on inertial SSI with less attention given to kinematic effects. In inertial SSI 

studies, loading is applied at the pile head, and the goal is to generate impedance functions to 

represent foundation stiffness and damping for use in the substructure method. This includes 

studies utilizing Winkler models by Novak (1974), Matlock et al. (1978), Kagawa and Kraft 

(1981), Dobry et al. (1982), Gazetas and Dobry (1984a), Nogami and Konagi (1988), Nogami et 

al. (1992), and Chau and Yang (2005) as well as continuum model approaches by Novak et al. 

(1978), Kuhlemeyer (1979), Kaynia and Kausel (1982; 1991), Sen et al. (1985), Wolf (1985), Pak 

and Jennings (1987), Tronchanis et al. (1991),  and Mamoon and Banerjee (1992). While the 

inertial SSI results are not directly applicable to this study, the analytical framework developed by 

these researchers was often used subsequently to investigate kinematic effects. Additionally, 

studies that focused on inertial SSI provide the only available references for quantifying certain 

parameters, such as the dashpot coefficient used to model radiation damping for Winkler-type 

analyses. 

Blaney et al. (1976) generated perhaps the first kinematic transfer functions for free-head 

piles from results of a finite-element continuum model considering a limited parametric range of 

pile and soil profile properties. At roughly the same time, R. Flores-Berrones was completing a 
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Ph.D. (1974) focused on the pile kinematic problem but utilizing a Winkler model. In their seminal 

1982 paper, Flores-Berrones and Whitman provide a chart-based solution for predicting the 

amplification or deamplification of the pile head relative to the free-field soil displacement as a 

function of excitation frequency and the soil profile fundamental frequency. The kinematic 

response is isolated by using a massless superstructure; the work also considers combination of 

inertial and kinematic effects. Other studies including kinematic response include Gazetas (1984), 

Gazetas and Dobry (1984a), Banerjee et al. (1987), Fan et al. (1991), Makris and Gazetas (1992), 

Makris et al. (1996), Giannakou et al. (2010) for battered piles, Di Laora et al. (2012), Di Laora 

and Sanctis (2013), Anoyatis et al. (2013), and Di Laora and Rovithis (2014). The most recent 

references provide analytical solutions for increasingly complex soil profiles (e.g., stiffness 

increasing as a nonlinear function of depth) and new insight into normalization of the results. 

While most of these studies model seismic excitation by vertically-propagating shear 

waves, similar solutions for inclined waves have been presented by Barghouthi (1984), Mamoon 

and Banerjee (1990), and Kaynia and Novak (1992). Kaynia and Novak (1992) and Makris (1994) 

also provided solutions for Rayleigh waves, and solutions are available for axial kinematic 

response due to vertical P-wave excitation (e.g., Mylonakis and Gazetas 2002). 

Kaynia and Kausel (1982) formulated a boundary-integral solution to the Green’s functions 

for a loaded circular disc in an elastic halfspace, meant to represent a pile. Their rigorous approach 

produced impedance functions and kinematic transfer functions for single piles and pile groups, 

and became the standard by which many other studies were judged throughout the 1980’s and 

1990’s. Fan et al. (1991) implemented a computer-based solution of the Kaynia and Kausel (1982) 

formulation, which allowed computation of transfer functions for single piles and pile groups for 

a variety of pile/soil stiffness ratios, pile length/diameter ratios, and pile head-fixity conditions. 
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Up until this point most studies had failed to present generalized recommendations that could 

easily be applied in a forward design sense. Fan et al. (1991) thus became the standard against 

which future pile KSSI studies were judged. Transfer functions from the Fan et al. (1991) study 

are shown in Figure 7-7. 

 

Figure 7-7: Kinematic pile-soil transfer functions from Fan et al. (1991) study for single pile with 
length-to-diameter ratio of 20. 

The results of these studies showed that pile kinematic SSI effects depend primarily on (i) 

the stiffness contrast between the pile and soil, often expressed as a ratio of pile to soil modulus 

(Ep/Es), (ii) the variation of soil stiffness over the length of the pile, e.g. homogeneous soil versus 

layered or increasing stiffness with depth, (iii) the pile head-fixity condition, and (iv) the pile 

length to diameter or “slenderness” ratio (L/d). With regards to L/d, recent work by Anoyatis et al. 

(2013) as well as the results of this study show that for piles longer than the active length (i.e., 

flexible piles), which deep foundations typically are, kinematic effects are not strongly dependent 
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on the slenderness ratio as a standalone parameter. Fan et al. also considered pile groups, and 

concluded that the group response was similar to that for a single pile for typical pile spacing when 

coherent ground motions are considered. 

For the studies that do center on kinematic effects, the focus is often placed on the flexural 

and/or shear demands imposed on the pile by the deforming soil (e.g., Banerjee et al. 1987; 

Kavvadas and Gazetas 1993; Kaynia and Mahzooni 1996; Mylonakis 2001; Nikolaou et al. 2001; 

Saitoh 2005; Maiorano et al. 2009; Di Laora et al. 2012, Sica et al. 2013) rather than on 

modification of the FIM relative to the FFM. This is likely in part due to the prevailing opinion 

that piles in general do not have sufficient stiffness to significantly reduce the FIM over the 

frequency range of engineering interest. However, this may not be true considering that (1) large 

diameter drilled shafts and cast-in-steel-shell piles on the order of 2-m to 3-m diameter or more 

are now commonplace for supporting large bridges, (2) soil nonlinearity effectively increases the 

stiffness contrast between pile and soil, and explicit consideration of nonlinearity has been missing 

from most previous studies, and (3) the ability to reduce high frequency motions may be of 

significant interest for certain structures, higher modes of conventional structures, and vibration-

sensitive nonstructural components, even if there is no significant reduction near the first-mode 

period of the structure. 

Beginning in the early 1990’s and continuing to the present, the advent of personal 

computers and commercial and open-source finite-element/difference software has produced a 

number of studies that expand upon previous work by incorporating more realistic assumptions 

such as soil and pile nonlinearity, three-dimensional domains, and dynamic analysis with realistic 

earthquake motions. This includes Nogami et al. (1992), Badoni and Makris (1996), Wu and Finn 

(1997a; 1997b), Boulanger et al. (1999), Bentley and El Naggar (2000), Klar and Frydman (2002), 
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Maheshwari et al. (2004), Chau and Yang (2005), Kampitsis et al. (2013), Hussein et al. (2014), 

Pecker (2014), and others. In most cases these studies attempted to recreate the results of model-

scale dynamic tests, and/or to compare to previous simplified approaches. While the findings 

provide valuable insight, especially on the importance of considering nonlinearity explicitly, in 

most cases results were not generalized for use with simplified design methods in forward analysis. 

One of the primary goals of this study is to fill that gap. 

7.3.3 Normalization Schemes 

In order for the results of numerical pile kinematic SSI studies to be made useful for practical 

design applications, and indeed for SSI in general, it is desirable to find normalization schemes 

that capture kinematic pile response using variables that capture the physics of the problem, and 

are themselves tractable to predict. For solutions based on linear-elasticity, closed form solutions 

may be tractable because the solution does not depend on shaking intensity or other ground motion 

parameters, and involves a small number of input parameters. The task is more complicated for 

nonlinear problems and inhomogeneous soil domains, because the solution becomes sensitive to 

shaking intensity and involves significantly more input parameters. 

For pile dynamics problems, transfer functions are often presented versus dimensionless 

frequency 0
pa , typically defined as (e.g., Kaynia and Kausel 1982, Fan et al. 1991): 

0
p

S

B
a

V


            (7.5) 

where 2 f    is the angular frequency of excitation, B is pile diameter (or radius for some 

studies, e.g., Novak et al. 1978, Gazetas and Dobry 1984a) and VS is the soil shear wave velocity. 

This dimensionless frequency was borrowed from the equivalent term for shallow foundations, 
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where the B term represents the shallow foundation radius (e.g., Gazetas 1983). While this form 

of a0 is essentially the only available choice for shallow foundations, pile behavior can be better 

characterized by terms other than diameter, which is a poor standalone representation of stiffness 

and characteristic patterns of deformation.  

To incorporate the effect of pile-to-soil stiffness ratio, results of early studies are often 

presented as families of transfer function curves for various ratios of pile-to-soil modulus Ep/Es. 

For example, the Fan et al. (1991) results in Figure 7-7 indicate that the same result is achieved for 

any size pile and soil stiffness as long as the slenderness ratio L/B and Ep/Es are held constant. 

While the ratio of pile-to-soil stiffness is a very significant parameter in terms of its influence on 

the kinematic pile-soil interaction, the simple quantity Ep/Es is a poor representation of this 

mechanism for practical applications because it does not contain any information on the geometric 

properties of the pile cross section. An “effective” pile modulus can be computed that equates a 

hollow section such as a steel pipe to an equivalent solid section, but this calculation is 

cumbersome and unfamiliar in routine foundation engineering. A more informative and familiar 

quantity to describe the pile stiffness is its flexural rigidity, which is the product of the pile material 

elastic modulus Ep and its moment of inertia Ip. By using flexural rigidity, explicit consideration 

can be made of (1) any pile geometry (e.g., rectangular, circular, hollow, octagonal, etc.), (2) 

composite sections such as cast-in-steel-shell concrete piles, and (3) material nonlinearity such as 

cracking of concrete in tension or yielding of reinforcing steel. Likewise, the use of B in Equation 

(7.5) serves only as a proxy for pile stiffness because it does not contain information about the 

material modulus. Accordingly, a more desirable dimensionless frequency parameter would be 

one that contains the pile flexural rigidity directly along with a measure of the soil stiffness. A 

useful parameter that combines these quantities is (Hetenyi 1946): 
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Hetenyi referred to λ as the “characteristic” term, because it appears in the roots of the 

characteristic equation of the homogeneous form of the governing differential equation for a 

laterally-loaded pile (presented in §8.1). Hetenyi also noted that since λ has the units [length-1], the 

quantity 1/ λ has units of length and hence he dubbed it “characteristic length”. More recent 

researchers sometimes refer to λ as the “Winkler parameter”, not to be confused with the Winkler 

coefficient δ as defined for this study in §8.3. 

Randolph (1981) used the term “critical length” (and, interchangeably, “active length”) to 

refer to the portion of a laterally-loaded pile which effectively resists a lateral load, approximated 

as: 

44 p p
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          (7.7) 

For piles that are longer than the active length, further increases in length will not affect the 

response to lateral loads at the pile head and thus the piles are classified as “long” or “flexible” in 

comparison to “short” piles that are shorter than the active length. Close inspection of Equation 

(7.7) reveals that it is not equal to the inverse of Equation (7.6). The ratio of 1/ λ to Equation (7.7) 

is 4-3/4 ≈ 0.35, and therefore the definitions of “characteristic” and “critical” length used by Hetenyi 

and Randolph, respectively, are different. To avoid confusion, “active length” will be used in this 

text to refer to the portion of the pile that effectively resists the lateral load such as defined by 

Equation (7.7). 
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Di Laora and Sanctis (2013), expanding on the work of Rovithis et al. (2009) and 

recognizing the aforementioned shortcomings of the typical definition of 0
pa  given by Equation 

(7.5), proposed a revised dimensionless frequency that incorporated the characteristic length 

directly. Similarly, Anoyatis et al. (2013) proposed the following dimensionless frequency: 

0
p
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a
V




            (7.8) 

where λ is consistent with the definition given by Equation (7.6). This term improves upon the 

previous form given by Equation  (7.5) because it contains (i) the ratio of pile stiffness expressed 

as flexural rigidity to soil stiffness contained in the λ term, and (ii) the ratio of pile characteristic 

(1/ λ) length to the wavelength of soil free-field excitation (λff = VS/ω). The latter quantity captures 

a fundamental aspect of the problem at hand, which is that a stiff pile will not conform to the 

deformed shape of the free-field under high-frequency excitation as shown in Figure 7-2. Because 

the new normalization scheme better captures the underlying physics of the problem, the static 

results (radiation damping and pile inertia not considered) for a flexible pile (L > La) with any 

combination of soil and pile stiffness conveniently collapse into a narrow band  as shown in Figure 

7-8, which can be represented by a simple best-fit equation. Similarly, transfer functions for free-

head pile rotation collapse into a narrow band when the transfer function ordinate is defined as Hθ 

= θFIM /λ·uFFM, where 1/λ is used to normalize the result in lieu of B. This finding is perhaps the 

most significant advancement in elastic analytical solutions for pile kinematic SSI in recent years. 
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Figure 7-8: Static kinematic pile-soil interaction transfer functions using improved dimensionless 
frequency definition from Anoyatis et al. (2013). Applies for a free-tip pile with λL ≥ 5 and 

homogeneous soil of any stiffness. 

The Anoyatis et al. (2013) study considered a uniform, homogeneous viscoelastic soil 

profile such that the λ and VS terms in Equation (7.8) are constant over the length of the pile. To 

extend these results to more realistic soil profiles in which the soil stiffness varies as a function of 

depth, Di Laora and Rovithis (2014) proposed a dimensionless frequency with the same form as 

Equation  (7.8) except with λ and VS computed as average values over a depth interval equal to the 

uppermost active pile length. They described increases in soil stiffness versus depth using a 

generalized power law function such that analytical solutions could still be derived in closed-form 

for the pile kinematic response. This approach provides a convenient framework to account for the 

fact that the soil profiles considered for this study, and real soil profiles in general, do not have 

uniform shear wave velocity or modulus. To compute λ for use in Equation (7.8) for this study, the 

following will be used: 



 141

,L
4

4
a

a

e
L

p p

K

E I
            (7.9) 

where Ke,La is the average value of p-y curve initial elastic stiffness (Ke) computed over the upper 

active length of the pile. Likewise, VS for use in Equation (7.8) will be computed as the time-

averaged shear wave velocity computed over the upper pile active length, VS,La. From this point 

forward, any plots or discussion of normalizing by dimensionless frequency use the definition of 

Equation (7.8) unless noted otherwise. 

The pile active length La is usually on the order of 10B to 15B (Randolph 1981; Gazetas 

and Dobry 1984a), depending on the pile-to-soil stiffness ratio. In general, increasing soil stiffness 

results in a decreasing La if the pile properties are held constant. While this is a useful first-order 

approximation, a more precise value will be computed for this study as the length for which 

4L    (Timoshenko 1948; Reese et al. 2006), where λ is computed using the average values [as 

in Equation (7.9)] over the trial pile length L. Because the soil properties vary with depth, a simple 

iterative calculation is required to determine La in this manner.  

Because the concept of active length refers specifically to the upper portion of a pile which 

responds to a lateral load imposed at the pile head, it is not directly applicable to the pile kinematic 

SSI case in which kinematic demands are imposed over the full length of pile. Nonetheless, the 

results of this study have shown that the pile-soil interaction near the surface has the greatest 

influence on the foundation input motion, and therefore considering some portion of the pile length 

near the surface is useful descriptor of the system response. 
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7.3.4 Limitations of Elastic and Analytical Solutions 

The previous studies described above generally considered highly idealized soil-pile domains, 

such as uniform or simple layered combinations of uniform elastic soil layers, rigid bedrock, rigid 

and/or infinitely long piles, and simple harmonic excitation in lieu of realistic earthquake ground 

motions. Linear-elastic solutions are useful for elucidating the driving mechanisms behind 

complex SSI problems, and have some advantages over nonlinear approaches. The primary 

attraction is that they require low computational effort, and in many cases chart-based or closed-

form solutions are available. This makes them amenable to preliminary analysis when full details 

of a project or soil conditions are not yet known, and the solutions can quickly be updated as more 

information becomes available.  Also, the principle of superposition is exactly valid for use with 

the substructure method when linear-elasticity is used to model all system components, and 

because the elastic solutions are exact, they should be reproducible for verification. However, to 

quote the late professor A.S. Vesic (1977), “…analyses of this kind assume that the surrounding 

soil acts as an elastic-isotropic solid defined by a constant modulus of deformation and a Poisson’s 

ratio. This assumption represents a serious departure from reality…” Put simply, this is because 

lateral pile-soil interaction is nonlinear, and real subsurface conditions are inhomogeneous. 

Highly idealized assumptions can have unintended and unrealistic consequences on the 

dynamic behavior of the system. For example: 

 Pile radiation damping cannot occur for a pile embedded in an elastic soil layer underlain 

by rigid bedrock at frequencies below the fundamental frequency of the soil profile [e.g., 

see Gazetas (1991), Syngros (2004), Anoyatis et al. (2013)], which is unrealistic for real 

systems. 
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 Theoretical transfer functions for fixed-head piles suggest that the pile head motion is 

always less than the free-field motion for any pile and soil properties and at all frequencies. 

Not only is this shown to be false when realistic stratigraphy is considered, but it is 

erroneous in the unsafe direction, potentially resulting in an underestimate of actual 

demands imposed on the structure. 

A primary issue with elastic SSI solutions is that a single value of strain-compatible soil 

stiffness must be specified to approximate nonlinearity. Simplified methods are available for 

estimating the average shear modulus reduction induced in the free-field by a ground motion of a 

given amplitude [e.g., Table 2-1 in NIST (2012)]. However, no similar method is available for 

estimating a reduced modulus to represent pile-soil interaction which considers the non-uniform 

relative pile-soil displacement occurring over the length of the pile. An accurate equivalent-linear 

modulus must combine the effects of modulus degradation due to pile-soil interaction and shearing 

by the ground motion during free-field site response2.  

Furthermore, even in the simplest case of an approximately uniform soil layer such as stiff 

overconsolidated clay, because the amount of relative pile-soil displacement will vary over the 

depth of the layer [e.g., see Figure 7-2(b)], the equivalent-linear soil stiffness needed to accurately 

capture the response changes with depth. This has been recognized since the early work on pile 

dynamics began, for example by Kagawa and Kraft (1980). Although the stiffness specified in an 

equivalent-linear analysis could be varied with depth, this further complicates the selection of 

appropriate equivalent-linear properties. 

                                                 
 
2 Stewart et al. (2000) referred to these as “secondary” and “primary” nonlinearities, respectively. These terms could 
be misleading for pile-soil interaction because the nonlinearity induced by pile-soil interaction can exceed that due 
to site response for large earthquakes. 
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Relative to the total number of publications concerning pile dynamics for elastic material 

properties, the amount of guidance on selection of equivalent-linear properties for actual 

implementation is comparatively sparse. While back-analyses of single case studies or model 

studies may be able to determine a single value of reduced modulus which can be used in 

equivalent-linear analysis to match the desired response, doing so in a generalized manner for 

forward design cases presents significant challenges and uncertainty. 

A shortcoming of continuum solutions, whether solved analytically or numerically, is that 

the interaction between the pile and soil is often distilled to a simple condition of displacement 

compatibility (e.g., Tajimi 1969, Novak et al. 1978, Kaynia and Kausel 1982). Even if the 

independent behavior of soil and pile materials could be captured by constitutive models, a pile-

soil system cannot be accurately modeled without capturing interaction at the interface. While the 

assumption of displacement compatibility (i.e., no slip) may be appropriate for relatively small 

amplitude loading, such as produced by vibrating machinery, design-level earthquakes will induce 

significant nonlinearity at the pile-soil interface. 

While the simplifications adopted for theoretical, elasticity-based solutions may have been 

state-of-the-art and the “best available” tools for practicing engineers in the decades before modern 

personal computing power became widely available, this is simply no longer the case. Tools such 

as dynamic p-y analysis using nonlinear finite elements that enable significantly more accurate 

modeling of realistic pile, soil, and ground motion characteristics are now at the disposal of our 

profession. Nonetheless, use of these tools is beyond the scope of most projects and the expertise 

of most practitioners. The present work is meant to address these disparities by providing 

simplified tools that capture realistic complexities of soil and pile dynamics in a more rigorous 

manner than previous efforts.       
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7.3.5 Experimental Investigations 

Experimental studies of pile dynamics are limited relative to the number of computational studies 

described in the previous section. Of the experiments that have been conducted, most use dynamic 

loading applied at the pile head to generate inertial SSI as opposed to loading the pile via free-field 

excitation. From a practical standpoint, it is much easier to apply load directly to a test structure 

via actuators or shakers than to load the structure indirectly by loading the adjacent ground. To 

measure a purely kinematic response, (i) no superstructure mass can be supported by the pile, and 

(ii) it must be excited by the free-field. Hence, experimental results for purely kinematic pile SSI 

are very limited. 

1-g model-scale tests of piles undergoing dynamic loading at the pile head by Gaul (1958), 

Novak and Grigg (1976), Novak and El Sharnouby (1984), Blaney and O’Neill (1986), Han and 

Novak (1988), and El-Marsafawi et al. (1992)  along with centrifuge tests by Prevost et al. (1981) 

were useful for validating early analytical procedures. More recent full-scale tests by Vaziri and 

Han (1992), centrifuge tests by Ashlock and Pak (2009), and model-scale tests by Burr et al. 

(1997), Tokimatsu et al. (2005), and Manna and Baidya (2010) have been compared favorably to 

nonlinear analyses. Durante et al. (2015) describe a series of 1-g tests that provide an opportunity 

to validate combined kinematic and inertial analysis techniques. 

Only a handful of full-scale dynamic tests are reported, and only for inertia loading. Vaziri 

and Han (1992) conducted ground-level forced vibration tests on a group of six 7.5-m long, 0.32-

m diameter drilled shafts connected by a concrete pile cap. McManus and Alabaster (2004) 

performed cyclic loading on a group of four 5.5-m long, 0.75-m diameter piles. Appendix E 

documents an attempt made as part of this study to measure transfer functions for full-scale piles 

by exciting the free-field, and establishes a repeatable method for this type of testing in the future. 
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Apart from this effort, the author is not aware of any full-scale experiments of purely kinematic 

SSI for piles. Further experimental testing to validate the results of this study is an important future 

research need. 

A common finding of the experimental tests listed here, especially for the full-scale tests, 

is that the stiffness and damping of the piles are highly strain-dependent. This makes it difficult to 

choose a single value of stiffness or damping that is appropriate for design, supporting the notion 

that nonlinear analyses are superior to analytical or theoretical methods utilizing a single value of 

equivalent-linear stiffness or damping. 

7.3.6 Empirical Observations of Kinematic Pile-Soil Interaction 

Due to the same challenges that make experimental measurements of purely kinematic pile-soil 

interaction difficult—namely, the necessary absence of a superstructure mass atop the pile—

empirical observations of pile kinematic SSI during past earthquakes are also limited. A few well-

documented cases of pile-supported buildings instrumented with accelerographs at the foundation-

level and in the adjacent free-field undergoing strong earthquakes are available. However, 

interpretation of these cases is complicated by the fact that the foundation-level response includes 

not only the influence of pile kinematic SSI, but also inertial SSI due to the superstructure response. 

The issue of combined kinematic and inertial SSI effects is examined in more detail in Chapter 11. 

7.3.6.1 Empirical Transfer Functions 

Stewart et al. (1999a, 1999b) considered pairs of instrumented structure and adjacent free-field 

recordings to compare foundation-level and free-field intensity measures from earthquake 

recordings at 57 building sites in California and Taiwan, including 23 buildings supported on deep 

foundations. The intensity measures considered were PGA and pseudo-spectral acceleration (PSA) 
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at the flexible-base, first-mode building period. The results indicated that kinematic reduction of 

the foundation-level PGA was appreciable, whereas the reductions of first-mode PSA was 

relatively modest. However, this study did not present foundation/free-field transfer functions, and 

hence provides limited insight into kinematic interaction effects.  

Kim and Stewart (2003) focused specifically on kinematic interaction and considered 

recordings from 16 of the pile-supported buildings, all of which utilized grade beams or mat slabs 

to connect the piles. Figure 7-9 shows a comparison from the Kim and Stewart study between the 

Fan et al. (1991) kinematic pile model and the observed “transmissibility” function at one of the 

sites. (A transmissibility function represents the same concept as a transfer function, but is 

computed from ratios of power spectral density functions rather than spectral amplitude; the 

motivation for this alternative approach is discussed below.) The Fan et al. model generally 

underpredicts the reduction seen in the observed transfer function, while a base-slab averaging 

model representing shallow foundation kinematic SSI by Veletsos et al. (1997), using a site-

specific value of a parameter controlling ground motion incoherence (a), provided a closer match. 

Kim and Stewart concluded that kinematic interaction between the ground and surface foundation 

elements likely dominated the response of the pile-supported buildings in their study. However, 

Kim and Stewart recognized that the Fan et al. model and other existing kinematic pile models fail 

to include the effects of ground motion incoherence (spatial variability), and pose a lingering 

question as to whether or not consideration of incoherence in a pile kinematic model would provide 

a closer match to observed behavior. 
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Figure 7-9: Comparison of observed versus model prediction transfer functions for a 5-story hospital 
building in Lancaster, California during the 1994 Northridge earthquake. After Kim and Stewart 
(2003).  

Mikami et al. (2006, 2008) and Givens et al. (2012) describe recordings from a pile-

supported building in Sendai, Japan during the 2003 Off-Miyagi and 2011 Tohoku earthquakes 

that show a stronger reduction of foundation-level motion to FFM than the California and Taiwan 

recordings reported above. Three modeling approaches were applied in an attempt to match the 

observed transfer function: (i) a shallow foundation base-slab averaging model (Veletsos et al., 

1997; Kim and Stewart, 2003) similar to that ultimately published in NIST (2012), (ii) a linear-

elastic model including piles in the program SASSI [a System for Analysis of Soil-Structure 

Interaction; Ostadan (2005)] subjected to coherent ground motions, and (iii) a second SASSI 

model without piles but with incoherent ground motions. The results are shown in Figure 7-10. 
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Figure 7-10: Comparison of observed versus model prediction transfer functions for a 4-story 
building at Tohoku Institute of Technology in Sendai, Japan during the 2011 Tohoku earthquake. 
After Givens et al. (2012). 

The NIST model and SASSI model with coherent ground motions and piles both fail to 

capture the significant reduction in the observed transfer function between about 2 and 7 Hz. The 

SASSI model with incoherent ground motions but no piles comes closer to capturing the reduction, 

but misses the sharp drop-off occurring around 2 Hz. Mikami et al. and Givens et al. speculate that 

the misfit of these models may be due to inadequate consideration of incoherence in combination 

with the pile kinematic interaction, or failure to capture the end-bearing resistance of the piles. 

Recent discussion with Professor Atsushi Mikami (personal communication, 2015) and a re-

examination of this case in Chapter 12 make it clear that the influence of inertial SSI is the 

dominant factor causing the significant reduction in the observed transfer function. 
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7.3.6.2 Signal Processing Techniques  

Empirical transfer functions computed from recorded earthquake motions exhibit sudden changes 

in amplitude over short frequency ranges as seen in Figure 7-9 and Figure 7-10. Especially at high 

frequencies where the motion amplitude is typically low, this is due in part to the fact that the ratio 

of two very small numbers is being computed, such that small oscillations in either the free-field 

or foundation-level motion can result in spurious peaks in the transfer functions. The level of 

displacement required to produce such a spike may be close to the recording accuracy of the 

accelerographs, and therefore representative of “noise” in the signal rather than a meaningful 

representation of the system response. Noise could also result from energy sources other than 

seismic waves that affect either the free-field or foundation-level accelerographs, but not both, 

such as vibrating machinery near one of the recording stations. 

Kim and Stewart (2003), and Mikami et al. (2008) describe signal processing techniques 

to separate the meaningful transfer function ordinates from noise by utilizing an alternative transfer 

function definition: 

( ) ( ) / ( )u pp ggH S S              (7.10) 

where Spp and Sgg are the smoothed auto power spectral density functions of the foundation-level 

and FFM, respectively3. Auto (Spp and Sgg) and cross (Sgp) power spectral density functions are 

defined as: 

     pp pp ppS U U      (7.11) 

                                                 
 
3 Kim and Stewart (2003) and Mikami et al. (2006, 2008) use the notation x and y to refer to the free-field and 
foundation-level, respectively; p and g will be used here to be consistent with the previous notation and to retain the 
physical interpretation as the pile and ground-surface motions. 
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     gg gg ggS U U      (7.12) 

     gp gg ppS U U      (7.13) 

where U*(ω) is the complex conjugate of U(ω): 

       U Re U - Im U i        (7.14) 

and i is the imaginary number defined by 2 1i   . In signal processing terms, Hu computed using 

Equation (7.10) is called a transmissibility function, while Equation (7.2) produces a transfer 

function. The concept is the same—describing the manner in which a system modifies an input 

signal to produce an output signal—so the term transfer function will be used from this point 

forward. 

There are two benefits to using Equation (7.10) rather than defining the transfer function 

directly as the ratio of Fourier amplitude spectra: 

 Coherence can be computed, which allows quantitative identification of the 

transfer function ordinates with the highest signal-to-noise ratio, and 

 Smoothing of the power spectral density functions, a necessary step for 

computing coherence, further reduces the spurious nature of the transfer 

functions computed from raw signals.  

Coherence (γ2) between the foundation-level and FFM signals is defined as (Pandit 1991): 

 
   

2

2 gp

gg pp

S

S S




 
    (7.15) 
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Coherence indicates the strength of the relationship between an input and output signal; values 

near 1.0 indicate a strong dependence of the output on the input, while smaller values indicate a 

weak relationship. Hence, coherence can be used as a quantitative measure of whether certain 

frequency components of the foundation-level motion are likely a result of the system responding 

to excitation by the FFM, or represent noise. By using a threshold value of coherence below which 

data are discarded, empirical transfer functions can effectively be filtered to discern the most 

meaningful data points. Points with coherence greater than 0.8 are show in Figure 7-10, which is 

the cutoff used by Mikami et al. and Givens et al. 

Prior to computing coherence with Equation (7.15), the power spectral density functions 

must be smoothed. Coherence computed between unsmoothed input and output signals over the 

full frequency bandwidth of the signals will be unity at every frequency and thus is not a useful 

metric. The smoothing operation is accomplished by replacing each ordinate of the unsmoothed 

power spectrum with a weighted average value of the unsmoothed ordinates over a frequency band 

(i.e., window) centered on the point of interest. Mikami et al. (2008) examined the influence of the 

parameters used to define the smoothing window, which ultimately affect the computed value of 

coherence, and found that an 11-point Hamming window provided qualitatively good results. 

Mikami et al. also recommend not only emphasizing empirical transfer function points with high 

coherence, but bandwidths that have high coherence at multiple successive frequencies. This is an 

important secondary criterion, because even pairs of white noise signals will occasionally have 

coherence greater than 0.8 despite having a mean value of approximately 0.15 to 0.25 (the exact 

value depends on the shape and bandwidth of the windowing function used for smoothing). 

As the terminology implies, incoherent or spatially-variable ground motions resulting from 

stochastic effects such as wave scattering and subsurface variability will result in differences in 
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the foundation-level and FFM that are not due to foundation kinematic interaction; this ground 

motion incoherence will manifest as low coherence in the computed empirical transfer function. 

Since the incoherence of real ground motions tends to increase with increasing frequency, this 

mechanism is especially significant at higher frequencies. Mikami et al. (2008) conclude that 

empirical transfer function ordinates at high frequencies are usually dominated by incoherence, 

and thus should be deemphasized relative to low frequency ordinates when quantifying kinematic 

SSI. For the examples described in their paper, the usable frequency range is typically below about 

10 Hz. 

Although interpretation of empirical transfer functions is not the main focus of this study, 

the signal processing techniques described above turn out to be very useful, if not necessary, for 

interpreting the results of the numerical simulations. Ground motions used as input to the pile-soil 

interaction analyses are sourced from earthquake recordings at a single location, and the 

foundation is modeled as occupying the same physical location. Therefore, the incoherence of real 

ground motions between the physical locations of the free-field and foundation-level recording 

stations that can cause low coherence for high-frequency empirical transfer function ordinates does 

not apply, at least for single pile models. Nonetheless, variability between the computed FIM and 

FFM when represented in the frequency domain can mimic the variability between empirical 

foundation-level and FFM signals because: 

 Numerical oscillations in the finite-element solution on the order of the 

tolerance that satisfies the convergence criterion are significant relative to 

the Fourier amplitude of the computed FIM, particularly at higher 

frequencies, and 
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 Transfer functions are an imperfect representation of seismic response due 

to the finite-duration and non-stationary nature of the signals used to 

compute them (discussed further below). 

As a result, transfer functions computed from the numerical simulations look similar to the 

empirical transfer functions described above, in particular exhibiting large variability at higher 

frequencies. This is true even when the numerical solution approach is used to compute transfer 

functions for elastic pile and soil conditions subjected to harmonic free-field ground motions, and 

thus is not solely an artifact of nonlinearity in the system response. To facilitate extraction of 

meaningful trends from the simulations performed in this study, the same signal processing 

techniques described by Mikami et al. (2008) are applied, specifically: 

 Transfer functions are computed using Equation (7.10), 

 Power spectral density functions are smoothed with an 11-point Hamming 

window, 

 A minimum coherence threshold of 0.8 is applied to the computed transfer 

functions, while in some instances a more stringent value of 0.9 is used to 

clarify the trend exhibited by the results, particularly for stiffer soil sites for 

which the transfer function corner frequency is relatively high, and 

 Transfer functions are only defined up to the frequency at which a smoothed 

version of the coherence-versus-frequency curve is above the minimum 

threshold (0.8 or 0.9). 

Although other approaches could be taken for smoothing the results, for example simply 

smoothing the computed transfer functions directly, the approach used for interpretation of 
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empirical data is adopted here because of its demonstrated applicability to the mechanisms 

governing kinematic SSI. 

The last criterion in the above list is intended to satisfy the recommendation by Mikami et 

al. (2008) that not only should high coherence points be emphasized, but a further restriction 

should be implemented of focusing on bandwidths over which high coherence occurs for a series 

of successive frequencies. The coherence versus frequency curve is smoothed using a 25-point 

median smoothing window, which replaces each value with the median of the 25 points centered 

on that frequency. This allows automated processing of the thousands of results from the 

parametric study. 

In addition to the insights provided in the context of interpreting empirical transfer function 

data, the concept of using transfer functions as a means of quantifying SSI has additional 

limitations, and some discussion is warranted here. 

Strictly speaking, the concept of a transfer function applies only to an infinitely-repeating 

stationary process, which is defined as an entirely stochastic (random) process that displays no 

trends in mean or variance with time. While certain aspects of SSI are approximately stochastic, 

time signals of earthquake ground motions and the response of structures to these ground motions 

exhibit strong trends with time, and are of a finite duration. While advanced signal processing 

techniques are available to transform the time response of some physical systems from non-

stationary to approximately stationary (e.g., White and Boahash 1990), they are generally not 

applicable to ground motions. 

In particular, the ordinates of Fourier amplitude spectra can be unintentionally altered by 

the non-repeating nature of ground motions, and by the simple fact that the Fast-Fourier transform 

(FFT) algorithm used to perform the Fourier transform generates very small numbers at 
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frequencies away from the predominant energy of the signal. Consider the following simple 

examples to illustrate these points. 

 

Figure 7-11: Influence of small changes between input and output signals on system transfer 
functions. Relative to input signal, the output signal (a) is identical, (b) is perfectly out-of-phase, (c) 
is out of phase by 0.1, and (d) exhibits slight baseline drift.  



 157

A signal defined as a sine wave with amplitude of unity and frequency 1 Hz is passed 

through a system which has the ability to modify the input signal and produce an output signal. 

Since the FFT algorithm applied to a discrete time signal requires that the signal have 2n points, 

where n is an integer, the input signal for this example is chosen to have 211 = 2,048 points. The 

time step Δt is taken as 4 times the inverse of n (4/2,048 s) so that the vector of frequencies at 

which the FFT is defined includes f = 1 Hz without the need for interpolation. The amplitude is 

zero at time t = 0, and the amplitude of the 2,048th point is  2 1 0.012sin f t n        such that 

the 2,049th point would have an amplitude of zero and the signal could repeat indefinitely. 

The time- and frequency-domain representations of the input and output signals are 

presented in Figure 7-11, along with the transfer functions computed between them using Equation 

(7.2). First consider that the system makes no modification to the input signal, such that the input 

and output are identical [Figure 7-11(a)]. The FFT captures the amplitude of the signal at 1 Hz 

exactly. Theoretically, the amplitude at all other frequencies is zero since the signals are perfect 1 

Hz sine waves, but the FFT returns a non-zero, albeit very small, amplitude ranging between 1.0E-

13 and 1.0E-15. Nonetheless, the values are exactly the same for the input and output, thus the 

transfer function ordinate is exactly unity at all frequencies. Figure 7-11(b) shows the results when 

the output signal is perfectly out of phase by ±π radians. Even though the transfer function 

amplitude is defined only as the ratio of Fourier amplitude spectra and should not be affected by 

phase, the small, yet non-zero oscillations in computed Fourier amplitude now vary between the 

input and output signals, such that the transfer function is erratic away from f = 1 Hz. This 

highlights an important point—the transfer function amplitude does not reflect the amplitude of 

the input and output signals over different frequencies, only the ratio of their amplitudes. Hence 

by simply examining a transfer function without viewing the corresponding Fourier amplitude 
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spectra, it cannot be known which transfer function ordinates correspond to the predominant 

energy in the system and are therefore most meaningful. 

Figure 7-11(c) shows the effect of a small phase offset, which produces similar high 

frequency noise in the transfer function. Again, the amplitude of the output signal is identical to 

the input signal for (b) and (c). Figure 7-11(d) shows the effect of a small baseline drift in the 

output signal (linear change of 0.01 over 1 s), which also has a drastic effect on the transfer function 

away from f = 1 Hz. 

These example of changes between input and output signals were chosen because, to some 

extent, they all appear in signals representing the free-field and a structure during seismic 

excitation. The intent in pointing out their influence on the computed transfer functions is not to 

suggest that the transfer function approach should not be used; on the contrary, it is an excellent 

tool for earthquake engineering. These issues simply need to be kept in mind when trying to discern 

the meaningful trends from noise.  

7.3.6.3 Pile Damage due to Kinematic Demands 

Many of the same earthquakes that inspired the seminal work in geotechnical earthquake 

engineering on topics such as soil liquefaction and ground motion estimation also provided 

evidence that kinematic demands caused damage to pile foundations. The documented cases 

include damage to concrete piles supporting bridges during the 1964 Alaska Earthquake 

(Kachadoorian 1968) and a building during the 1964 Niigata Earthquake (Nishizawa et al. 1984). 

Mizuno (1987) documented pile performance during several Japanese earthquakes that occurred 

between 1923 and 1983, including several cases of piles damaged by kinematic demands, although 

most appear to be cases with large permanent ground displacement. Tazoh et al. (1987) 

instrumented the Ohba-Ohashi bridge in Japan and recorded the structural response during several 
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earthquakes, including a M 6.0. They found that the peak strains recorded by longitudinal strain 

gauges in the piles supporting one of the main piers occurred deep in the soil profile at the interface 

between the bearing stratum and softer overlying soil. 

Studies by Nikolaou et al. (2001) and others cite this evidence as motivation for considering 

kinematic demands in design, which eventually became a building code requirement as discussed 

in the following section. It is worth noting that the number of documented cases in which ground 

failure (e.g. liquefaction), permanent ground displacement, and inertial loads could be ruled out as 

the cause of damage is relatively low. This does not necessarily imply that this damage mechanism 

is not common, but is likely more attributable to the difficulty and cost associated with post-

earthquake inspections of piles at significant depths. 

7.4 KINEMATIC SSI IN BUILDING CODES 

The influence of kinematic pile-soil interaction on foundation input motions (FIM) receives little 

or no attention in US building codes. On the other hand, demands resulting from pile-soil 

interaction must be considered according to most building codes. For example, ASCE 7-10 (ASCE 

2013) §12.13.6.7 “Pile Soil Interaction” requires that piles be designed for the moment, shear, and 

deflections “considering the interaction of the shaft and soil.” Unlike the specifications in Chapter 

19 of ASCE 7-10 “Soil-Structure Interaction for Seismic Design”, which are optional and can be 

ignored at the designer’s discretion, the requirement that piles be designed to resist kinematic 

demands in addition to superstructure demands is required in all cases. Nonetheless, in the author’s 

experience it is often neglected in practice. 
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7.5 NOTES ON TERMINOLOGY AND NOTATION 

Because the terms used to describe various types of deep foundations tend to evolve over time, a 

few clarifications are noteworthy in the context of this study. 

During the timeframe of the early work on this subject (1960’s-1980’s), the term “pile” 

was most commonly used to refer specifically to driven piles. Drilled shafts were often referred to 

as “caissons” or “piers”. This distinction is important, because driven piles were categorically 

assumed to be more flexible than their drilled counterparts. Early work on this subject often applied 

specifically to relatively flexible driven piles for which kinematic SSI effects are less significant 

in comparison to larger-diameter, stiffer drilled shafts. For example, in the seminal 1982 paper by 

Flores-Berrones and Whitman, “Seismic Response of End-Bearing Piles,” the authors conclude 

that: 

… Piles located in seismic zones are subjected to two very important effects; one is 

the action of the soil along the pile length [kinematic SSI] and the other one is 

related to the supported mass at the pile’s head [inertial SSI]. Regarding the first 

of these effects, very often neglected in dynamic analysis for piles subjected to 

seismic forces, there are two extremes… (1) Piles behave as flexible elements and 

follow the ground displacements; and (2) piles behave as rigid elements, and their 

tendency is to remain still while the soil moves around them… Most “piles” fall 

into the first of these categories while piers and caissons might fall in the second 

one… Generally speaking, piles do not reduce significantly the horizontal 

movements of a structure…  

Consistent with this conclusion, much of the work on the topic of kinematic pile-soil interaction 

has focused on the shear and moment demands imposed on relatively flexible piles, while less 
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attention has been paid to the beneficial reduction in FIM that large, stiff piles can provide. Because 

large-diameter piles in soft soil conditions are now commonplace, especially for the support of 

bridges, this topic is worth revisiting. 

For simplicity, the term “pile” foundation will be used herein to refer to both driven piles 

and drilled, cast-in-place deep foundations, also known as drilled shafts or piers, bored piles (the 

predominant term outside the U.S.), cast-in-drilled-hole piles (Caltrans), etc. The distinction 

between driven and drilled shaft-type piles will be noted when relevant; otherwise the content of 

this study is intended to apply to both. 

Early work (1960’s – 1990’s) on pile KSSI and much of the contemporary work using 

analytical solutions use the term Iu, short for interaction factor, to represent the transfer function 

ordinate. This study adopts the term Hu based on the work of Kim and Stewart (2003), who applied 

signal processing techniques borrowed from the field of electrical engineering, where H is 

typically used to represent the transfer function between input and output signals. 
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8 Elastic Analytical and Numerical Solutions 

Elastic solutions for kinematic pile-soil interaction are useful for elucidating the fundamental 

mechanisms that control the physics of the problem, and for formulating the bounds of the 

nonlinear numerical analyses performed subsequently. In this chapter, a closed-form elastic 

analytical solution is derived, then compared to previous solutions by other researchers and used 

to validate the proposed numerical modeling approach. 

In addition, for the nonlinear numerical analyses that follow, pile-soil interaction is 

characterized by elastic behavior at very small strains. Hence, issues related to the small-strain 

elastic behavior of the nonlinear system are explored in the second half of this chapter. 

8.1 ELASTIC ANALYTICAL SOLUTION 

Derivation of the closed-form static solution for a vertical elastic pile in elastic soil begins with 

the following fourth-order differential equation for a laterally-loaded pile (after Hetenyi 1946): 

4 2

4 2
0p p

p p p

d u d u
E I P k u

dz dz
            (8.1)   

in which up is horizontal pile displacement, z is depth measured downwards from the pile head, 

EpIp is the pile flexural rigidity, P is axial load, and k is the soil-pile interaction stiffness intensity, 
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all defined in a consistent set of units. Equation (8.1) states that the force applied externally by the 

soil reaction (k·up term) is in equilibrium with the internal forces in the pile described by the 4th 

derivative of the transverse displacement multiplied by the pile flexural rigidity, plus second-order 

(“P-Δ”) effects. The pile is treated as an Euler-Bernoulli beam in this formulation. For the purpose 

of this derivation going forward, axial load is taken as zero such that second-order effects are 

dropped4. 

For a kinematic pile-soil interaction dynamic solution, the pile-soil interaction modulus k 

is replaced with the complex-valued *k k i c  , where c is the dashpot coefficient for equivalent 

viscous damping, the displacement term is replaced with the relative displacement between the 

pile and free-field soil, and an additional term is added to capture the inertial force generated by 

acceleration of the pile mass per unit length pm : 

4 2
*

04 2
[ ] 0p p

p p p g p

d u d u
E I k u u m

dz dt
           (8.2) 

If the free-field ground motion is represented as harmonic excitation by vertically propagating 

shear waves (after Kramer 1996): 

0( ) cos( )g gu z u z            (8.3) 

where ug0 is the ground displacement at the surface due to the harmonic seismic excitation and κ* 

is the complex-valued wave number defined as the ratio of excitation angular frequency (ω) to soil 

complex-valued shear wave velocity ( * 1 2S S sV V i   , where βs is the soil hysteretic damping 

ratio), then Equation (8.3) can be substituted into (8.2) to give: 

                                                 
 
4 Second-order moments are included in the nonlinear numerical analyses performed for this study. 
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4 2
*

04 2
[ cos( )] 0p p

p p p g p

d u d u
E I k u u z m

dz dt
          (8.4) 

Although a solution is available to the dynamic equation (8.4) (e.g., Anoyatis et al. 2013), 

the static solution without consideration of damping or pile inertia is still a reasonable means of 

investigating the controlling mechanisms of kinematic pile-soil interaction. The static version of 

(8.4) is: 

4

04
[ cos( )] 0p

p p p g

d u
E I k u u z

dz
           (8.5) 

The solution to (8.5) is the sum of complementary and particular solutions. Finding the 

complementary solution begins by solving the homogeneous form of (8.5), which does not include 

the ground displacement term since it is not a function of pile displacement up: 

 
4

4
0p

p p p

d u
E I k u

dz
           (8.6) 

The characteristic equation for the homogeneous form is: 

4 0
p p

k
r

E I
             (8.7) 

The roots of (8.7) are equal to the 4th roots of the k/EpIp term: 

4 4 4 4

1,2,3,4

exp
4 2 4 4p p p p p p p pj

k k j k k
r i i

E I E I E I E I

 



                   
   (8.8) 

Recalling that a complex root of the characteristic equation results in two terms in the 

complementary solution, the complementary solution to (8.4) can be written as: 
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where χ1 through χ4 are constants and the characteristic term β is a substitution variable defined 

as: 

4
4 p p

k

E I
             (8.10) 

This is the origin of the familiar “Winkler’s parameter”, and the inverse of (8.10) is often called 

the characteristic length. 

The particular solution is found using the method of undetermined coefficients as: 

 0

4
cosg

p p

k u
u z

E I k





 
 

   (8.11) 

and the sum of (8.9) and (8.11) is the complete solution to (8.4) for the pile horizontal displacement 

at any depth z: 

0
1 2 3 4 4

( ) cos( ) sin( ) cos( ) sin( ) cos( )gz z z z
p

k u
u z e z e z e z e z z

EI k
           


  

       
 

 

(8.12) 
 

A similar derivation can be found in Flores-Berrones and Whitman (1981) for pile-soil 

kinematic interaction, and in Hetenyi (1946) for conventional lateral loading at the pile head in the 

absence of free-field excitation. 

Successive derivatives of Equation (8.12) provide expressions for slope (S), curvature (ϕ), 

moment (M), shear (V), and soil reaction (p): 

   1 2 3 4( ) sin( )p z zdu
S z e A B e B A C z

dz
                  (8.13) 
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  (8.16) 

The following substitutions were used to abbreviate Equations (8.13) through (8.16): 

0

4
cos( ) sin( ) ;     cos( ) sin( ) ;     = g

p p

k u
A z z B z z C

E I k
   




   
 

   (8.17) 

To solve for the constants χ1 through χ4, a set of four permissible boundary conditions must 

be imposed. Typically the boundary conditions are prescribed at the pile head and tip since these 

can be determined on the basis of details such as embedment into a pile cap or a stiff bearing 

stratum. For example, in the absence of superstructure force or moment demands (required for a 

kinematic pile-soil interaction analysis) the boundary conditions for a fixed-head, free-tip pile of 

length L are: 

z 0 z 0 z z
0 ;     0 ;     0 ;     0

L L
V S V M

   
= = = =      (8.18) 

An example of the solution in terms of pile-versus-soil displacement, moment, and shear 

is shown in Figure 8-1 for the following input parameters: 
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 E = 27 GPa, I = 0.0031 m4 (corresponding to a 0.5-m diameter reinforced 

concrete pile), length (L) = 10 m, 

 Vs = 100 m/s (soft soil), k = 47 MPa, 

 ug0 = 0.1 m, f = 10 Hz, 

 Boundary condition at pile head = zero slope and zero shear; i.e., a fixed-

head pile with no superstructure demands so that the kinematic pile-soil 

interaction can be evaluated independently, and 

 Boundary condition at pile tip = zero shear and zero moment; i.e., the pile 

tip is unrestrained 

 

Figure 8-1: Soil and pile response under imposed 10 Hz harmonic ground motion using elastic 
analytical solutions.  

To produce an analytical transfer function, the pile head displacement determined from 

Equation (8.12) at depth z = 0 is normalized by the amplitude of the harmonic ground motion, ug0, 

and computed over the frequency range of interest (recall that the solution is frequency-dependent 
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even for the simplified static version because it contains the wavenumber term κ). Parametric 

studies using elastic solutions can provide valuable insight into the range of pile and soil stiffness 

for which kinematic pile-soil interaction is significant over the frequency range of engineering 

interest. Figure 8-2 shows kinematic pile-soil interaction transfer functions computed using the 

elastic analytical solution for three diameters of a 25-m long pile in two homogeneous soil profiles 

representative of relatively soft and relatively stiff soil. The boundary conditions for the pile are 

the same as shown in Figure 8-1—the pile tip is free (zero shear, zero moment), and the pile head 

is restrained against rotation to model a fixed-head condition with zero applied shear. The ranges 

of pile and soil properties considered are as follows: 

 Pile flexural rigidity (EpIp) between 82 MN·m2 and 21,200 MN·m2. These 

values approximately correspond to a 50-cm diameter reinforced concrete 

pile, such as might be used in a pile group, and a 2.0-m diameter pile that 

would likely be used as a mono-shaft to support a single column or in a pile 

group for a very large suspension or cable-stayed bridge. 

 Pile-soil interaction stiffness k of 60 MPa, corresponding to the initial 

elastic stiffness for a VS = 100 m/s soft soil site, and 1,050 MPa, 

corresponding to a VS = 400 m/s stiff soil site. 

The transfer functions shown in Figure 8-2 represent the bounds of these ranges of soil and 

pile properties over a frequency range of 0.1 to 100 Hz. The first-mode period for most bridges 

and building structures typically falls in the range of about 0.1 to 2 seconds, so the value of the 

transfer function ordinate Hu over this range is of most significance. This corresponds to a 

frequency range of 0.5 to 10 Hz.  
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Figure 8-2 shows that the pile/soil combination with the greatest reduction in Hu within the 

frequency range of interest is the larger diameter 1.0-m and 2.0-m piles embedded in the soft soil 

profile. In contrast to the stiff pile/soft soil cases, there is little reduction in Hu for the piles 

embedded in the stiff soil profile over the frequency range of interest, even for the 2.0-m diameter 

shaft. Significant reduction is predicted only for frequencies greater than about 20 Hz 

(corresponding to a period less than 0.05 seconds). Such high-frequency energy usually does not 

have a large influence on the behavior of a structure relative to the energy content at the structure 

fundamental frequency. Structures supported on stiff soil with significant participation from higher 

modes may still be affected in some cases. These findings are consistent with the previous elastic 

studies by Flores-Berrones and Whitman (1982) and Fan et al. (1991). 

 

Figure 8-2: Transfer function for kinematic soil-structure interaction effects for three diameters of 
25-m long, fixed-head reinforced concrete piles in soft and stiff soil profiles. 
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As discussed in the previous chapter, transfer functions are usually presented in a 

normalized manner by plotting versus dimensionless frequency. The version of dimensionless 

frequency given in Equation (7.8), proposed by Di Laora and Sanctis (2013) and Anoyatis et al. 

(2013), is demonstrated in Figure 8-3 to provide “perfect normalization” (i.e., the results all 

collapse onto a single line) for the parametric bounds considered here. 

 

Figure 8-3: Transfer functions from Figure 8-2 plotted versus dimensionless frequency and 
compared to Anoyatis et al. (2013). All solutions lie within the same narrow band. 

8.2 ELASTIC NUMERICAL SOLUTION 

The numerical modeling approach used for this study consists of discretized pile segments attached 

to soil springs at each node as depicted in Figure 7-1(b). The elastic analytical solution from the 

preceding section provides an opportunity to verify that the proposed numerical modeling 

approach provides an accurate solution, since the elastic analytical solution is explicit and the 

numerical solution should converge to a high degree of accuracy for elastic conditions. While each 
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component of the numerical modeling approach is discussed in detail in Chapter 9, this section 

will focus only on the results of elastic simulations. The pile and soil are modeled using elastic 

beam-column and elastic zero-length uniaxial materials, respectively, in OpenSees.  

Two categories of input excitation are considered, sine-sweep motions consisting of 

uniform-displacement amplitude broadband frequency content from 0.1 to 50 Hz, and recorded 

ground motions with variable bandwidth. The free-field input motions were specified at the ground 

surface and motions at the depth of each soil spring were computed using Equation (8.3). By 

specifying the input motion at the ground surface rather than the base of the soil profile, the 

problem of infinite amplification at resonant site frequencies is avoided. The amplitude of the input 

excitation does not affect the computed transfer functions since the model is linear-elastic. 

Soil and pile properties for the numerical analyses match the properties used in the 

analytical solution so that a direct comparison of the computed transfer functions can be made. 

The soil-pile interaction stiffness (k) at depth z is defined as (Gazetas and Dobry 1984): 

 
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      (8.19) 

where Ep is the pile elastic modulus, taken as 2.7E7 kPa for reinforced concrete, and Es is depth-

dependent elastic soil modulus computed from VS based on classical elasticity theory with assumed 

soil density ρ = 1.6 Mg/m3 and Poisson’s ratio ν = 0.3. The uniaxial spring stiffness is defined as 

k divided by the tributary length of the pile element to which it is attached. The soil springs 

connected to the pile head and tip are assigned a tributary length equal to half of the pile segment 

discretization length. 

Transfer functions for the analytical solution are compared to the numerical solution results 

for a sine-sweep input motion in Figure 8-4 and for recorded earthquake ground motions in Figure 
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8-5. Two sizes of circular concrete piles are considered, 0.5-m and 2.0-m diameter, for a site with 

VS =150m/s. Both fixed-head and free-head restraint conditions are considered. The sine-sweep 

input motion transfer functions show near-perfect agreement with the analytical solution for both 

pile sizes over the entire frequency range considered. 

 

Figure 8-4: Analytical and numerical solution transfer functions for sine-sweep input motion. 
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Figure 8-5: Fourier amplitude spectra for free-field and foundation-input motions (top) and 
corresponding transfer functions (bottom). 

For the nonlinear parametric study described in the following chapter, ground motions are 

sourced from a set of 40 records with broad frequency content and statistical variability compiled 

by Baker et al. (2011). These motions and their characteristics are described in detail in §9.7.1. 

For the current comparison, three of the 40 the motions were selected that have variable frequency 

content as seen in the Fourier amplitude spectra in Figure 8-5. The three motions are described in 

Table 8-1. 

Table 8-1: Ground motions for elastic numerical analyses; numbering follows Baker et al. (2011) 

Motion # Earthquake Recording Station M PGA (s)

25 1989 Loma Prieta UCSC 6.9 0.34 

4 1994 Northridge LA – Wonderland Ave. 6.7 0.13 

24 1989 Loma Prieta Golden Gate Bridge 6.9 0.16 
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Figure 8-5 shows acceleration Fourier amplitude spectra (FAS) for the pile head motion 

(FIM) and ground surface motion (FFM) for each of the three input ground motions. Note that 

each ground motion FAS is only plotted over the useable frequency range of the ground motion, 

which depends on the processing applied to the original recording (Ancheta et al. 2014). The ratio 

of the displacement FAS is the unsmoothed transfer function shown along with the high-coherence 

transfer function computed using Equation (7.10) in the lower portion of the figure. At frequencies 

up to about 20 Hz, the analytical solution matches the numerically-computed transfer functions 

exactly. At higher frequencies, the numerical transfer functions are dominated by noise, although 

the smoothed, high coherence transfer function reduces the noise significantly. 

The finding that the transfer functions computed for the three ground motions with variable 

frequency content all agree perfectly with the analytical solution (and therefore with each other) 

highlights the underlying assumption of elastic material behavior and superposition of the response 

at each frequency. For realistic nonlinear conditions, the response of the system will change for 

input motions with different frequency content. 

In light of the findings that the numerical results provide a near-perfect match to the 

analytical solution (Figure 8-4 and Figure 8-5), and that the analytical solution matches previous 

solutions by others (e.g., Figure 8-3), it has been verified that the proposed numerical modeling 

approach is valid, at least for elastic material properties. 

The remaining sections in this chapter discuss elastic behavior that applies to the small-

strain, initial stiffness range of pile-soil interaction for the nonlinear analyses that follow. 
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8.3 ELASTIC WINKLER MODULUS 

8.3.1 Terminology and Units 

In the past, terms such as modulus of subgrade reaction, coefficient of subgrade reaction, Winkler 

stiffness, Winkler modulus, normalized Winkler modulus, and other similar combinations of these 

phrases have been used somewhat interchangeably to refer to two concepts that are distinct and 

must be clearly differentiated. Some clarification is warranted here to avoid confusion. 

The concept of “modulus of subgrade reaction” refers to the soil settlement that occurs 

beneath a uniformly loaded area, and hence has units of [(force/length2)/length = force/length3]. 

Herein the symbol kmsr refers to this definition. It is formulated in this way because of its usefulness 

in structural models for estimating settlement resulting from the bearing pressure exerted by a 

structure, and has limited usefulness as a standalone descriptor of soil behavior (true soil modulus 

Es is more meaningful). Values of modulus of subgrade reaction can be crudely measured in the 

field using the “plate load test” (ASTM D 1194) by applying a measured force to a steel plate of 

known area (stress = force/area) and measuring the downward deflection. Terzaghi (1955) 

provided tabulated values of kmsr for different relative densities of sand that were widely used for 

lateral pile analyses until full-scale pile testing began in the 1970’s. 

When used with a beam-on-springs Winkler approach, the soil stiffness term must be 

modified to account for the out-of-plane (transverse) width of the beam over which the soil 

pressure acts, since Winkler models consider only two dimensions—the longitudinal axis of the 

beam and the orthogonal direction in which load is applied, parallel to the beam height. For 

example, if a measured value of kmsr was to be used for a Winkler analysis, it would be multiplied 

by beam width to obtain Ke = kmsrB, where Ke is the Winkler modulus with units of distributed load 

per unit deflection [force/length/length], which is equivalent to the units of stress [force/length2]. 
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The symbol Ke will be used in this text in reference to both (1) Winkler stiffness for elastic analyses 

and (2) the initial elastic stiffness of p-y springs for nonlinear analyses. 

Confusion may arise because Ke and soil Young’s modulus Es share the same units and are 

sometimes presented as being related by a dimensionless coefficient for pile analysis. A discussion 

of the basis for this assumption is provided in the following sections, but it should be noted that Es 

cannot be exactly defined from a measured value of kmsr. To define Es, a measurement of strain 

parallel to the direction of loading is needed. In a laboratory test this is trivial because the specimen 

height and boundary conditions are known. To measure strain during a plate load test would require 

knowing the height of the soil column (h) that is influenced by the load applied at the surface, 

which for an elastic halfspace is theoretically infinite. While finite values of h are more reasonable 

and could be estimated by taking into account the three-dimensional attenuation of stress below 

the plate, the computed value of Es scales linearly with h and is therefore highly sensitive to the 

estimate. Hence any tabulated values relating kmsr to Es [e.g., Bowles (1997) Table 9-1] contain an 

inherent assumption about the plate load test depth of influence and how this will scale with size 

between the test and real foundations. Likewise any relation between measured or tabulated kmsr 

and Winkler modulus for lateral pile analysis contain a similar embedded assumption, or represent 

the results of specific load test(s). 

8.3.2 Previous Definitions of Ke 

Existing p-y relationships such as the widely-used API (1993) curve for sand and Matlock’s (1970) 

curves for clay were derived by fitting equations that have a theoretically-derived functional form 

to the results of full-scale load tests. While load tests may provide a reasonable estimate of the 

near-surface ultimate lateral soil resistance pult, the instrumentation used to measure pile strain in 

the original tests was not capable of accurately measuring small enough deformations to capture 
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the truly elastic soil behavior (Choi et al. 2015). Since Es can be related to the small-strain shear 

modulus measured using geophysical methods, and since geophysical tests are an increasingly 

common part of site investigations for projects in seismic regions, a more attractive approach 

would relate the soil elastic Young’s modulus Es directly to the initial stiffness of the p-y curve, 

Ke. Soil shear modulus G, shear wave velocity VS, and Young’s modulus are related through the 

following well known equations from elasticity theory:  

2
s SG V    (8.20) 

 2 1sE G      (8.21) 

Where ν and ρs are the soil Poisson’s ratio and mass density, respectively. 

Vesic (1961) provided the following expression for Ke: 
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   (8.22) 

which explicitly recognizes that beam width B must be taken into account when formulating a 

Winkler modulus from kmsr. This is straightforward for the case that Winkler (1867), Hetenyi 

(1946), and Vesic (1961) were considering—an infinitely-long rectangular or wide-flange beam 

which only exerts normal stress at the contact between the flat base of the beam and the ground 

surface. For the case of a laterally-loaded circular pile, the stress field at the pile-soil interface is a 

combination of shear and normal stresses, and the relative contribution and direction of each 

component changes around the circumference of the pile as shown in Figure 8-6. Equation (8.22) 

has been used in the past to define p-y curve elastic stiffness (e.g., Boulanger et al. 1999) despite 

not being derived for these conditions. 



 178

 
 

Figure 8-6: (a) Normal and (b) shear stress contours around a laterally-loaded pile. Color key 
indicates change in stress from initial condition.  

Several researchers performing elastic pile KSSI analyses have quantified a Winkler spring 

coefficient δ, where the linear-elastic Winkler spring stiffness is defined as the product of the 

dimensionless parameter δ and the soil modulus Es: 

e sK E    (8.23) 

In other words, δ is the ratio of the p-y elastic stiffness to the soil elastic stiffness: 

e

s

K

E
     (8.24) 

Values and equations for δ for fixed- and free-head piles and for various soil properties 

(homogeneous, layered, stiffness increasing linearly with depth, etc.) have been proposed by many 

researchers including Kagawa and Kraft (1980), Roesset (1980a), Dobry et al. (1982), Gazetas and 

Dobry (1984b), Kavvadas and Gazetas (1993), and Syngros (2004). In these studies, a single value 

of δ was applied over the length of the pile in an elastic BDWF model; the value of δ was then 

adjusted until the pile head displacement matched the displacement computed with finite-element 

or boundary-element continuum solutions under the same applied lateral force at the pile head. In 

other words, the pile-head lateral impedances were matched between the two numerical modeling 
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approaches. Regression models to determine best-fits to parametric results were then used to 

determine coefficients for the expressions. A selection of these expressions and notes on their 

derivation are given in Table 8-2 and plotted in Figure 8-7. 

Even in the case of a homogeneous soil profile, relative pile-soil displacement varies with 

depth for both inertial and kinematic loading due to the deformation pattern of the pile. Since a 

single value of δ was applied over the entire pile length in these comparative studies, the mechanics 

controlling the interaction at a single depth are not directly reflected in the result, which represents 

an average response. This is counterproductive for practical applications, because real soil profiles 

are inhomogeneous, and foundation designers need reliable methods for specifying accurate p-y 

curve parameters at a single depth within a given soil layer. Furthermore since this approach simply 

equates one numerical study with another, the outcome is perhaps less a reflection of reality than 

it is of the difference between the modeling approaches. A more rigorous derivation of δ based on 

theory and rigorous numerical modeling complemented by validation from accurate small strain 

measurements during physical modeling studies is a future research need.  

Since loading was applied at the pile head in these studies, the resulting values of δ were 

not derived for the fundamental mechanics governing kinematic interaction from free-field 

excitation. Anoyatis et al. (2013) showed that the commonly used value of δ =1.2, initially 

proposed by Roesset (1980a), does not provide a good match to finite-element solutions for 

kinematic loading for certain pile and soil stiffness combinations. Furthermore, the parametric 

results of Anoyatis et al. showed that even for the same pile and soil conditions, different values 

of δ are required to match the BDWF results to the continuum finite-element results depending on 

which result is being matched (e.g., curvature ratios between the pile and soil at the pile head 

versus pile tip, maximum pile bending moment, etc.), which has also been reported by Kavvadas 
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and Gazetas (1993). This is again a reflection of the fact that the approach of obtaining δ by 

matching impedances from BDWF and continuum analyses does not faithfully capture the 

underlying pile-soil interaction mechanics; if it did then a single expression would work for a 

variety of boundary conditions. A useful finding of Anoyatis et al. is that the δ parameter is not 

strongly frequency-dependent, which is convenient because of the difficulties involved in 

performing frequency-domain analyses. 

Despite the shortcomings of the impedance-matching approach, the difference between δ 

values for fixed- and free-head piles in Figure 8-7 clearly shows that pile rotation or the lack 

thereof has a significant influence on the magnitude of the mobilized soil resistance. Near the head 

of a free-head pile where rotation is significant, the pile encounters greater soil resistance than a 

fixed-head pile because pile rotation mobilizes soil shear resistance in addition to the 

predominantly compressive stress induced by translation. Ideally, p-y curves should be formulated 

as p-y-θ curves, where θ is pile rotation. This is another future research need and will not be 

addressed in the current study. 
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Table 8-2: δ expressions from previous researchers derived by matching results of BDWF analyses 
to continuum analyses. 

Applicable 
soil condition 

Pile head-
fixity 

condition 
Source: 

Roesset 
(1980a) 

Dobry et al. (1982) 
Kavvadas and 

Gazetas (1993)b Syngros (2004)c 

Any, or not 
specified 

Any, or 
not 

specified 

δ = 

1.2 - - - 

Constant 
stiffness w/ 

depth 
Fixed - 

0.053

1.67 p

s

E

E


 
 
 

 - 

0.075

2.0 p

s

E

E


 
 
 

 

 Free - 

0.053

1.67 p

s

E

E


 
 
 

 

1/8 1/8

2

3

1
s

p

E L

E B
   
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0.11

3.5 p

s

E

E


 
 
 

 

Linearly 
increasing 
stiffness w/ 

deptha 

Fixed - - - 

0.08

3.0 p

s

E

E


 
 
 

 

 Free - - - 

0.13

5.8 p

s

E

E


 
 
 

 

aSoil stiffness Es defined as the stiffness at the pile tip, decreases linearly to zero at the ground surface. 
bMain emphasis of study was matching peak bending moments between BDWF and finite-element (FEM) continuum analyses 
cFEM studies performed using K-PAX software, described in Syngros (2004) dissertation. The axisymmetric domain is two-

dimensional and formulated in radial coordinates. Soil-pile interaction represented by a strain compatibility condition at interface.  
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Figure 8-7: Values of Winkler coefficient δ proposed in previous pile SSI research. 

8.3.3 Diameter Effects 

The relationships for δ in Table 8-2 generally lack a functional dependence on pile diameter, 

suggesting that pile-soil interaction initial stiffness is independent of diameter. While this holds 

true for plane-strain elastic solutions considering a homogeneous full-space domain, solutions 

using more realistic boundary conditions along with experimental results (e.g., see Carter 1984 

and Pender 2004) indicate that initial stiffness does depend on pile diameter. Conversely, 

experimental work by Ashford and Juirnarongrit (2003) showed that a diameter-independent 

estimate of Ke provided the best match to full-scale experimental results, but only for piles with 

active length contained within a uniform-stiffness stiff clay layer.   
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A dependence on diameter is intuitive—it would seem that a pile undergoing lateral 

displacement will encounter greater soil resistance than a smaller diameter pile undergoing the 

same displacement, due simply to the fact that it is wider than the small-diameter pile. Pile rotation 

and changes in soil stiffness with depth also affect the resistance encountered by the pile as a 

function of its diameter (Pender 2004). These effects are due to the dependence of the pile’s 

flexural response on EI (and hence B), and because a larger diameter pile mobilizes soil resistance 

over an increasingly larger depth increment and hence “feels” an increase in stiffness with depth. 

Pender (2004) and others have suggested that previous experimental campaigns failed to identify 

these trends because only a small number of pile diameters were tested—in some cases, one. 

Nonetheless, the majority of elastic pile dynamics work and many nonlinear p-y studies 

(e.g., Kagawa and Kraft 1981, Boulanger et al. 1999) have proceeded with the assumption of Ke 

being independent of pile diameter. The underlying assumption for this approach is that a small-

diameter pile will induce greater average soil strain than a large-diameter pile for the same lateral 

displacement by a factor proportional to the difference of the two piles diameters. This is consistent 

with Terzaghi’s (1955) assumption that the zone in which significant strain is mobilized beneath 

a loaded footing scales in proportion to the size of the footing.  

Kagawa and Kraft (1980) adapted a formulation by Matlock (1970) as the basis for 

applying this assumption to pile dynamics5, suggesting that the average shear strain γave which 

                                                 
 
5 It is worth noting that further examination of the underlying theory behind Equation (8.25) reveals that it has little 
relation to lateral pile-soil interaction. The basis for Equation (8.25) is Skempton’s (1951) method for estimating the 
immediate settlement of an embedded strip footing on clay based on a combination of elasticity theory, limit-state 
concepts, and laboratory tests results. Skempton estimated that the ratio of Es to undrained strength (su) for typical 
clays is about 50 to 200, and assumed that the inverse of this range (0.005 to 0.02) could be used to approximate the 
strain occurring at one-half the measured strength (ε50). Using these values and an assumption of the size of the 
stress zone of influence below the footing, a simple approximation for settlement was provided. Matlock adopted 
this for piles by taking the average of the ε50 range (≈ 0.01) and substituting pile diameter for footing width, 
resulting in the expression that average normal strain around the pile could be approximates as y/2.5B—hardly a 
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develops around a laterally loaded pile is a linear function of the ratio of displacement to pile 

diameter (y/B), such that as B increases, the relationship between stress and strain, and hence p/y, 

scales at the same rate: 

 1

2.5ave

y

B





           (8.25) 

To test this hypothesis, a series of simple plane-strain elastic analyses were run for this 

study in the finite-element program Phase2 (Rocscience 2013). The results showed that δ is 

independent of diameter, but only if the domain size is scaled to match changes in pile size—a 

significant caveat. This is in agreement with previous two- and three-dimensional elastic analyses 

(e.g., see Pender 2004), so further details will not be provided here. 

The potential error introduced by using a diameter-independent Ke is likely minor for many 

applications in which large relative pile-soil displacements are expected, since the tangent modulus 

of a nonlinear p-y curve depends on both the initial stiffness and the ultimate resistance. The results 

of Ashford and Juirnarongrit (2003) also suggest that the error is minor for small-strain dynamic 

loading if the soil stiffness is approximately constant with depth.  

Despite its shortcomings, the framework of Equation (8.25) is convenient because it allows 

the relative pile-soil displacement defining the onset of nonlinearity yyield to be defined as a function 

of shear strain at the onset of soil nonlinearity, the latter of which has been studied extensively 

through laboratory testing (e.g., Vucetic and Dobry 1991). Hence, a diameter-independent 

                                                 
 
rigorous consideration of pile-soil interaction mechanics. Kagawa and Kraft (1980) later adopted this approach for 
their theoretical pile dynamics study. Noting that the strain orthogonal to ε is –υε and therefore the maximum shear 
strain is (1+υ)ε, they came up with Equation (8.25). 
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definition for Ke based on Equation (8.25) will be adopted for this study, with the opportunity to 

revise the findings in the future if more rigorous relationships between δ and B (or γave and B) 

become available.  

8.4 QUESTIONS OF PILE MASS AND INERTIA 

For static loading, since acceleration is zero (or is ignored for pseudo-static analysis) no inertial 

force is associated with movements of the pile mass. During the rapid and potentially large-

amplitude loading from an earthquake, however, pile inertia contributes to the overall response of 

the pile-soil system and should be included in dynamic analyses, as recognized early on by Novak 

(1974). To produce more tractable and simplified solutions, previous researchers using Winkler 

models have often neglected the pile mass such that a static solution is being used to approximate 

the dynamic response (e.g., Dobry et al. 1982, Anoyatis et al. 2013). Others assigned a mass 

density greater than the true pile mass (e.g., Berger et al. 1977; Marshall et al. 1977) to account 

for the fact that some portion of the soil surrounding the pile moves in phase with the pile, 

amplifying its inertia. The volume of soil which moves with the pile likely varies depending on 

the frequency and amplitude of the excitation along with the pile and soil properties, and is 

therefore difficult to quantify. 

The influence of pile mass is demonstrated in Figure 8-8, which compares normalized 

elastic transfer functions computed for two pile sizes with and without mass. In general these 

elastic analyses indicate that the effect of pile mass is minor, which agrees with previous findings 

by Kagawa and Kraft (1980), and only deviates from the no-mass condition over a limited 

frequency range. The effect does not appear to scale with pile diameter, since the difference 

between the with-mass and without-mass curves is approximately equal for the two sizes 
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considered when plotted versus dimensionless frequency. The effect of pile inertia may not be as 

consistent when system nonlinearity is considered. As discussed in the following section, including 

pile mass in numerical simulations can complicate interpretation of the kinematic transfer function 

because of inertial resonance near the fundamental frequency of the pile-soil system. Because of 

this, and in light of the finding that the influence of pile inertia is minor, piles will be modelled as 

massless for the numerical simulations that follow. 

 
Figure 8-8: Normalized elastic transfer functions computed with and without pile mass. 

8.5 PILE-SOIL SYSTEM FUNDAMENTAL FREQUENCY AND RESONANCE 

When pile mass is included in a Winkler model, the pile-soil system will have a defined 

fundamental frequency. It is important to recognize that this represents a somewhat fictitious mode 

of vibration in the context of a real structure, since in general the dynamic response of a system 

depends on the coupled response of the superstructure and foundation-soil components. 

Nonetheless, transfer functions computed for this study have the potential to be influenced by 

inertial resonance when pile mass is included. To investigate the potential influence of resonance, 
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transfer functions were computed for pile-soil systems with and without pile mass, similar to the 

analyses presented in the previous section. 

 

Figure 8-9: Effect of resonance at pile-soil system fundamental frequency on kinematic transfer 
functions. 

An example of the results is shown in Figure 8-9. It is clear that the kinematic transfer 

function is strongly influenced by resonance near the first mode period of the pile-soil system (at 

about 17 Hz), amplifying the free-field motion by a factor of nearly five. Also of note is that the 

bandwidth of the zone influenced by first-mode resonance is on the order of 5 Hz. In general this 

bandwidth will increase with increasing fundamental frequency of the system (Rathje et al. 2004; 

Chopra 2007). Hence, it is possible for resonance to influence the kinematic transfer function over 

the frequency range of interest even if the fundamental frequency of the pile-soil system lies 

beyond this this range. 

Inflation of transfer function ordinates due to inertial resonance further compounds the 

difficulties associated with accurately defining kinematic transfer functions at high frequencies 

discussed in §7.3.6.2. In light of this, pile mass will be set to zero for the analyses that follow 

unless otherwise noted. This approach is especially helpful for nonlinear analyses in which the 
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fundamental frequency of the system changes over the duration of the problem, which makes it 

difficult to discern which portions of the resulting transfer function are strongly affected by 

resonance. 
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9 Analysis 

9.1 APPROACH 

The approach for investigating kinematic pile-soil interaction for this study is through numerical 

analyses using the finite element modeling platform OpenSees. A model of a single pile or pile 

group connected to nonlinear p-y springs is formulated as shown in Figure 9-1(b). Dynamic time-

domain analyses are then conducted in which the free ends of the p-y springs are displaced to 

simulate free-field ground response due to earthquake excitation; the free-field ground motions are 

computed separately using one-dimensional nonlinear ground response analysis in DEEPSOIL 

(Hashash et al. 2015) as depicted in Figure 9-1(a).  Transfer functions and spectral ratios are then 

computed using the pile head and free-field ground surface response histories. 

In the following sections, the various components used in the beam-on-dynamic-nonlinear-

Winkler-foundation (BDNWF) and ground response models for this study are discussed. 

Background on the parameters is first given in the context of previous efforts by other researchers 

studying pile dynamics, followed by an explanation of how the parameters were quantified for this 

study. 



 190

 

Figure 9-1: Numerical modeling approach. 

9.2 PARAMETRIC STUDY BOUNDS 

The range of pile and soil properties considered for this study are intended to span the conditions 

encountered in typical bridge design practice. The study bounds were further refined based on the 

combinations of pile and soil stiffness found to result in significant kinematic interaction based on 

elastic solutions in the previous chapter. 

Table 9-1: Parametric Study Bounds for Single Piles 

Length (L)  Diameter (B) Slenderness Ratio (L/B) Cracked Section 
Stiffness (MN∙m) 

7.5 m  0.5 m  15 28

15 m  0.5 m  30 28

30 m  2.0 m  15 7,220 

60 m  2.0 m  30 7,220 

 

Table 9-1 presents the range of single pile properties considered. Models of each of the 

four piles in Table 9-1 have been analyzed for six different soil profiles each subjected to 40 ground 
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motions for free- and fixed- head pile boundary conditions. This represents 960 analyses for each 

head-fixity, for a total of 1,920 single pile analyses. Properties of sites 1 through 6 are discussed 

in §9.6, and the 40 ground motions are discussed in §9.7. In addition, a limited number of pile 

group analyses were performed to investigate group effects and the influence of ground motion 

incoherence, as discussed in §9.5.4 and §9.7.3, respectively. 

9.3 PySimple3—MOTIVATION AND MODEL UPDATES 

It is well known in the geotechnical community that the generic p-y springs typically used in 

practice do not sufficiently capture realistic soil behavior, especially for dynamic analysis. For this 

study, a modified version of the p-y model developed by Choi et al. (2015) is used, known as 

PySimple3 in OpenSees. The PySimple3 model was developed specifically for dynamic analysis 

of laterally-loaded piles and includes several features not found in previously available models 

such as the ability to independently specify small stain stiffness, the force at which 

yielding/nonlinearity occurs, and hysteretic and radiation damping. The model consist of an initial 

linear portion followed by nonlinear behavior according to a bounding-surface plasticity 

formulation (e.g., Dafalias 1986) as illustrated in Figure 9-2. The user specifies the initial elastic 

slope of the curve Ke, the ultimate resistance pult, the resistance at yielding py, and a shape 

parameter C that describes curvature and hence affects the amount of soil hysteric damping. 

Radiation damping can also be modeled by specifying an optional viscous damping coefficient. 
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Figure 9-2: Basic features of PySimple3 material under monotonic loading. After Choi et al. 2015. 

9.3.1 Motivation 

Prior to development of PySimple3, the primary tool available for pile SSI modeling with a BNWF 

approach was the PySimple1 material model in OpenSees, which is based on a framework 

presented by Boulanger et al. (1999). The implementation of PySimple1 in OpenSees is formulated 

to approximate the shape of the API (1993) or Matlock (1970) p-y curves for sand and clay, 

respectively. Because the material model is coded to match the shapes of these previous p-y 

definitions, the user has limited control over specific aspects of the curve. For example, the initial 

stiffness cannot be specified directly, only adjusted indirectly by changing the other parameters. 

In addition, as shown in Figure 9-3 the viscous dashpot used to represent radiation damping is 

placed in parallel with the entire material instead of just the far-field elastic component as 

presented in Boulanger et al. (1999). For the OpenSees implementation, the dashpot force is 

computed after force and displacement compatibility has been achieved between the gap, plastic, 

and elastic components based on the proportion of the total displacement that occurs in the elastic 
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component relative to the total element. In other words, the dashpot force is not considered while 

solving for compatible forces and displacements in the other components, only after the fact. While 

this approach is computationally stable, it is more desirable to have a true viscoelastic-plastic 

implementation as shown in Figure 9-4(b). Note that placing the dashpot in parallel with the elastic 

component, also known as the Kelvin-Voigt viscoelasticity model, is distinct from placing the two 

components in series, known as the Maxwell model (Simo and Hughes 1998). The PySimple1 and 

PySimple3 materials are compared for sand and clay in Figure 9-5. 

 

Figure 9-3: Comparison of Boulanger et al. (1999) dynamic p-y material and later implementation 
in OpenSees. 
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Figure 9-4: PySimple3 viscoelastic-plastic material model formulation. 

 

 

Figure 9-5: Comparison of PySimple1 and PySimple3 material models. 

9.3.2 Governing Equations and OpenSees Implementation 

The PySimple3 constitutive model by Choi et al. (2015) is based on a bounding-surface plasticity 

formulation according to the following governing equations: 

 e e e pp K y K y y         (9.1) 
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Equation (9.1) is the elastic constitutive law relating the rate of change versus time 

(signified by the overdot) of force in the element p  to the elastic displacement rate 
ey  based on 

the elastic stiffness Ke. The right-hand side of (9.1) shows that the elastic displacement rate is 

equivalent to the total displacement rate minus the plastic displacement rate. Equation (9.2) is the 

yield function used to determine if yielding has occurred (f = 0) or if the current state remains in 

the elastic region (f < 0). When yielding has occurred, Equations (9.3) - (9.5) define the plastic 

modulus, kinematic hardening law, and elastoplastic (tangent) modulus. The force pα tracks the 

center of the elastic region, which evolves with the yield surface during continued post-yield 

loading. This is equivalent to the concept of backstress in classical plasticity formulations, but in 

this case is a “backforce”.  The plastic modulus is determined by how close the current state p lies 

to the ultimate resistance (bounding surface) represented by pult and the force at the onset of 

yielding pin. The formulation allows for a smooth transition between elastic and post-yield 

behavior since the plastic modulus is infinite at the onset of yielding, such that the elastoplastic 

modulus is initially equal to the elastic modulus, then undergoes degradation with continued 

displacement. Further details are available in Choi et al. (2015). 
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Three updates were made to PySimple3 to meet the needs of this study and to improve the 

performance of the material for general use in other pile dynamics problems: (i) optional 

viscoelastic behavior was added to model radiation damping, (ii) a backforce-updating routine was 

added to prevent overestimates of force following an unload-reload cycle, and (iii) the implicit 

integration scheme used for solving the governing equations was updated to use the 

unconditionally-stable and efficient Ridders’ method (Ridders 1979). 

An elastic spring in parallel with a viscous dashpot as shown in Figure 9-4(b) is known as 

the Kelvin-Voigt viscoelasticity model. The instantaneous force in a Kelvin-Voigt material is the 

sum of the force in the elastic component due to the material’s elastic stiffness plus the force in 

the dashpot: 

2

2
e e

e e e e

dy d ydp
p K y cy K c

dt dt dt

         
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where c is the dashpot coefficient. This formulation defines the elastic (now viscoelastic) 

constitutive law for the updated PySimple3 material. The viscoelastic-plastic tangent becomes: 
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   (9.7) 

The term relating change in force to change in elastic displacement (dp/dye) can be isolated 

from Equation (9.6) in incremental form as follows: 

, , ,1e last e last e laste e
e e e e

e e e e

dy dy dydy dydp c
dp K dy c K c K

dt dt dy dy dt dy dt dt dy

    
             

     
 (9.8) 
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where dye,last/dt is the elastic displacement rate during the last converged step. Note that the 

following possible alternative formulation for dp/dye: 

2

2
e e e
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dy d y dydp dp c
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dt dt dt dt dy dt
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 (9.9) 

implies that the dashpot force would continue to be added to the total force in the viscoelastic 

component even if the elastic displacement rate stays constant. This is an incorrect formulation; if 

the elastic displacement rate (i.e., velocity) is constant, then the dashpot force should remain 

constant between successive increments. Only the force in the elastic spring component changes 

if the elastic displacement rate is constant, and Equation (9.8) is formulated to capture this. 

 The approach for solving the governing equations in the OpenSees implementation of the 

PySimple3 material is as follows: 

 A trial displacement step is passed to the material by the program; if yielding does not 

occur, the resulting force is determined from Equation (9.6) directly; 

 If yielding occurs, an initial guess is made which divides the trial displacement increment 

into elastic and plastic sub-increments; 

 The force in the plastic and viscoelastic components is computed based on the imposed 

trial displacements; 

 Since the plastic and viscoelastic components are in series, the force in the two components 

must be equal. Hence the unbalanced force between the two components is cast as a 

residual equation, and the trial amount of elastic versus plastic displacement is adjusted 

until the residual unbalanced force falls below a specified tolerance. Ridder’s method is 

used to solve this iteration scheme. 
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9.4 PySimple3—PARAMETER VALUES 

The following sections describe how each of the parameters that define the PySimple3 model are 

defined for this study. 

9.4.1 Initial Elastic Stiffness Ke 

The initial horizontal interaction between a laterally-loaded pile and soil does not induce 

nonlinearity in the pile or soil. Although the nonlinear PySimple3 model used for this study is 

linear only for very small displacements [on the order of y/B of 2x10-5 (after Choi et al. 2015)], the 

elastic slope has a significant impact on the shape of the p-y curve and the resulting tangent 

stiffness and hysteresis at displacements large enough to induce nonlinearity. Figure 9-6 

demonstrates that for all other parameters being equal, the amount of hysteretic damping during 

harmonic loading is significantly different when Ke is varied by a factor of two—even at 

displacements less than 1 cm. Hence, it is important to make an accurate estimate of Ke in order to 

capture nonlinear behavior at larger strains. 

 

Figure 9-6: Effect of initial elastic stiffness Ke on PySimple3 behavior for typical soft clay properties. 
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Values of the parameter δ that relates Ke to the soil elastic modulus were discussed in 

§8.3.2. In general these values apply to inertial interaction cases and have not been validated 

against real pile behavior. In the absence of more rigorous studies specifically targeting δ for 

kinematic pile SSI applications, lower- and upper-bound values of 1.0 and 3.0 are used for this 

study. The lower-bound value 1.0 is used for fixed-head piles, including pile groups connected by 

a stiff pile cap, which undergo translation with little corresponding rotation. The finite-element 

simulations discussed in the following section indicate that this value is reasonable. A value of δ 

= 3.0 is used in this study for free-head piles such as extended-shaft bridge columns. These values 

fall within the range implied by the elastic solutions presented in Figure 8-7 and Table 8-2. 

The effect of head-fixity condition on the pile response is most significant near the pile 

head, within the uppermost pile active length La. Hence, it is possible that using a δ value of 3.0 

over the full length of a free-head pile results in an overestimate of the pile-soil interaction 

stiffness. To investigate whether or not this has a significant effect on the transfer functions 

computed for this study, a comparison was made between transfer functions computed using a 

uniform value of δ= 3.0 over the full length of a free-head pile versus using δ = 3.0 over a depth 

increment from the surface to eight pile diameters, and δ = 1.0 below this depth. An example of 

the results is shown in Figure 9-7, which indicates that there is a negligible influence of the value 

of δ used over the lower portion of the pile on the computed transfer function. Hence, a uniform 

value of δ = 3.0 will be used for free-head piles for simplicity. 
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Figure 9-7: Transfer functions (left) and p-y curve initial stiffness parameter versus depth plots 
(right) for free-head pile with uniform and variable values of Winkler coefficient δ over the depth 

of the pile. 

9.4.2 Ultimate Resistance 

The API (1993) and Matlock (1970) values for p-y spring ultimate resistance are adopted for this 

study for sand and clay, respectively. Although these relationships are semi-empirical and do not 

account for seismic loading conditions, they provide a convenient method for estimating ultimate 

resistance. Furthermore, since the relative displacement between the pile and the soil due to 

kinematic interaction is small over the majority of the length of the pile, the ultimate resistance of 

the p-y springs will rarely be mobilized and the initial stiffness Ke and yield force pyield are more 

important terms. Further research is needed to better characterize the ultimate resistance for both 

static and dynamic loading conditions.  

9.4.3 Curvature Parameter and Yield Force 

The parameter C controls the shape of the PySimple3 curve between the elastic region and the 

ultimate resistance, with smaller values of C resulting in more curvature if Ke and pult are held 
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constant (Figure 9-8). C can be calibrated to fit the results of model- or full-scale load tests, or can 

be set such that the curve passes through a target point. 

 

Figure 9-8: Effect of PySimple3 curvature parameter C. 

In this study, C is computed such that the curve passes through a target y50 point, where y50 

is the deformation at which 50% of pult has been mobilized and, conveniently, is a parameter 

usually defined for existing p-y curve models. Choi et al. (2015) derive the following expression 

for C as a function of y50 and the remaining PySimple3 parameters from the governing equations 

(9.1) through (9.5) presented above: 
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  (9.10) 

where y e yieldp K y  is the value of p at which yielding occurs. The relative pile-soil displacement 

yyield is the value of y at the onset of soil nonlinearity. For this study, yyield is estimated using 

Equation (8.25), the same approach taken in the Choi et al. (2015) study. Shear strain 
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corresponding to the onset of soil nonlinearity is approximated as 0.001% based on laboratory 

direct simple shear test results performed by Darendeli (2001).  

As the target y50 value becomes smaller and the denominator of Equation (9.10) approaches 

zero, C approaches infinity. Very large values of C result in approximately elastic perfectly-plastic 

p-y behavior, which can lead to numerical instability in the finite element solution. (The trend 

towards this behavior is shown in Figure 9-8.) Permissible values of y50 must satisfy the 

expression: 

 50

0.5 ult

e

p
y

K
            (9.11) 

One approach for establishing the target y50 is to use expressions from an existing p-y 

relationship such as API (1993) or Matlock (1970). For sand, the API relationship tends to predict 

y50 values that are close to the lower bound defined by Equation (9.11), especially for loose to 

medium-dense sands at confining pressures greater than about 400 kPa. This is partially due to the 

implicit assumption in the API formulation that the stiffness of sand increases linearly with depth; 

the stiffness of sand can more accurately be described as scaling in proportion to the square root 

of confining stress (Hardin and Drnevich 1972). Hence, the API formulation tends to overpredict 

sand stiffness, with the magnitude of the overprediction increasing with depth. This results in a 

corresponding underestimate of y50.  The modified version of the API sand formulation described 

by Boulanger et al. (2003), in which soil stiffness is assumed to increase in proportion to the square 

root of confining pressure, also resulted in y50 values near the lower bound defined by Equation 

(9.11). 

To address the shortcoming described above for estimating y50 for sand, a series of plane-

strain finite element analyses of laterally-loaded piles were conducted using the program Phase2 
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(Rocscience 2013). The domain consists of a horizontal slice through the pile and the surrounding 

soil as shown in Figure 9-9. The plane-strain behavior is meant to capture the lateral pile-soil 

interaction below the depth at which a passive pressure wedge would form and displace upward 

near the ground surface. The sand was characterized as having minimum and maximum void ratios 

of 0.4 and 0.9, respectively, and a critical state friction angle of 32° (Bolton 1986). For three 

relative densities corresponding to loose, medium-dense and dense sand (20%, 50%, and 80%) 

and assumptions of 100% saturation and a specific gravity of solids of 2.65, unit weights and 

corresponding vertical stresses were calculated at depths of 5, 10, 20, and 40 m. Shear strength 

and stiffness properties of the sand were then estimated using a consistent framework to ensure 

that the properties scaled uniformly with changes in stress. 

 

Figure 9-9: Phase2 finite element domain for plane-strain analyses of laterally-loaded pile. Pile is 
displaced from left to right during the analyses. 

Peak friction angles were calculated based on relative density, confining pressure, and 

mean effective stress at failure assuming a triaxial stress path after Bolton (1986). The resulting 
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values of ϕ’ ranged from 32 to 45°; these values were used to compute the coefficient of lateral 

earth pressure at-rest K0 using the expression for normally consolidated sand by Jaky (1948): 

0 1 s in 'K      (9.12) 

Values of Young’s modulus for the sand were estimated using an expression proposed by Lewis 

(1990) with the coefficients representing the average results of laboratory testing on sands at 

different relative densities and confining stresses. The expression captures the increase in stiffness 

of sand as a function of square root of confining pressure: 
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where p’ is mean effective stress, pa is atmospheric pressure in the same units as p’, and e is void 

ratio. The parameters ϕ’ and Es were used to define the Duncan-Chang (1970) nonlinear-elastic 

hyperbolic material model is Phase2. Soil Poison’s ratio ν = 0.3 and a failure ratio Rf  = 0.9 were 

used for the model. Although the Duncan-Chang model does not include plasticity, it provides a 

reasonable representation of the stress-strain behavior of soil up to the point of shear failure and is 

simple to define based on readily-quantifiable soil parameters. 

Analyses were performed for the four depths listed previously for pile diameters of 0.5 and 

2.0 m. The loose soil (D r= 20%) was not considered at the 40-m depth. The plane-strain behavior 

results in p-y curves that do not reach an asymptotic value of pult since increasing pile displacement 

mobilizes resistance in an increasingly larger zone of soil (which is likely a realistic behavior, 

although current p-y curves are not formulated this way). As such, pult was defined somewhat 

arbitrarily as the value of p for which the secant slope of the p-y curve decreased to 5% of the 

initial slope. 



 205

 

Figure 9-10: Comparison of normalized y50 values using (a) existing p-y relationships and (b) from 
results of plane-strain finite element simulations of laterally-loaded piles in Phase2 using Duncan-

Chang nonlinear-elastic (D-C) and Mohr-Coulomb (M-C) soil constitutive models. 

The results of the simulations are presented in normalized form in Figure 9-10(b) along 

with the normalized values predicted by API (1993) and the modified API relationship presented 

by Boulanger et al. (2003) in Figure 9-10(a). The 1:1 slope line in Figure 9-10 represents the 

minimum value of y50/B that satisfies Equation (9.11) for a given pile diameter; values of y50/B 

plotting to the left of this line are inadmissible and values plotting near the line indicate 

approximately elastic perfectly-plastic behavior that can result in numerical instability. The best-

fit linear trendline passing through the Phase2 results can be simplified to the following 

expression: 

   50

0.82 ult

e

p
y

K
           (9.14) 
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Equation (9.14) is used to define y50 for sand layers in this study. 

9.4.4 Radiation Damping 

As a pile vibrates, stress waves propagate or “radiate” away into the surrounding soil. This form 

of energy dissipation is known as radiation damping, or alternatively as geometric damping 

because the radiated energy tends to attenuate with increasing propagation distance. For dynamic 

pile analyses using continuum elements, radiation damping is usually accounted for by using an 

energy-absorbing boundary that prevents incident stress waves from reflecting back into the 

domain (e.g., Lysmer and Kuhlemeyer 1969). For Winkler-type analyses, if radiation damping is 

to be considered it must be incorporated into the pile-soil interaction elements. Equivalent viscous 

damping, modeled through a rate-dependent viscous dashpot, is typically utilized for this purpose. 

The viscous dashpot component is characterized by a dashpot coefficient, c, which is defined as 

the ratio of the force in the dashpot pdashpot to velocity dy/dt, i.e.: 

dashpot

dy
p c cy

dt
             (9.15) 

The dashpot coefficient has units of [F][T][L]-1 or equivalent, such that when multiplied by a 

velocity a force results. 

For Winkler-type analyses, the energy dissipation due to radiation damping can be thought 

of as additional soil resistance for a given amount of relative pile-soil displacement (y) compared 

to the equivalent static or slow-monotonic loading case. Hence, a dynamic p-y curve including 

radiation damping would be stiffer than the p-y curve for the same pile and soil conditions 

undergoing static loading. This is depicted in Figure 9-11. 
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Figure 9-11: Effect of radiation damping in PySimple3 material. 

Cyclic lateral load tests of a full-scale four-pile group in granular soil by McManus and 

Alabaster (2004) found an increase in dynamic stiffness of about 50 percent over the static 

stiffness, which they concluded was at least partially due to radiation damping effects, supporting 

this concept. Ignoring radiation damping for dynamic loading conditions would therefore result in 

an underestimate of foundation stiffness and a corresponding overestimate of superstructure 

displacement and rotation. This may be a conservative design assumption for certain scenarios, 

but for the purpose of quantifying foundation input motions it could result in an unconservative 

overestimate of the kinematic pile-soil interaction effect, since the stiffness contrast between the 

pile and soil is a dominant factor controlling the interaction. Indeed, even the pioneering work on 

pile dynamics (e.g., Novak 1974) recognized the importance of radiation damping in forming an 

accurate solution. 
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Much of the previous research utilizing Winkler-type and continuum models for dynamic 

analysis of piles used equivalent-linear viscoelastic elements without a plastic component [e.g., 

Novak (1974), Kaynia and Kausel (1982), Gazetas and Dobry (1984a), Banerjee et al. 1987, Fan 

et al. (1991)]. Recognizing the importance of soil nonlinearity, especially for dynamic time domain 

analyses, other researchers have attempted to modify nonlinear p-y relationships to include 

dynamic effects, including radiation damping. Matlock et al. (1978) proposed adding a viscous 

dashpot in parallel with existing static p-y curves (Matlock 1970), perhaps the first attempt to 

explicitly capture dynamic effects with the nonlinear p-y method. Nogami and Konogai (1988) 

formulated a dynamic p-y element with separate near-field and far-field elements, where the 

nonlinear near-field element captured material hysteretic damping and the linear far-field element 

included a dashpot in parallel with a linear spring; a similar formulation has been adopted for the 

PySimple3 material as described above. Badoni and Makris (1996) and Bentley and El Naggar 

(2000) also performed analyses with viscous damping in parallel to the hysteretic p-y response. 

However, Wang et al. (1998) demonstrated that this arrangement, which they term “parallel 

radiation damping”, can produce erroneous results because forces in the pile can effectively bypass 

the near-field hysteretic pile-soil interaction during high-velocity loading pulses by transmitting 

through the dashpot component directly to the far field. Wang et al. propose that a more appropriate 

arrangement is “series radiation damping” in which a nonlinear near-field element accounts for 

elastic or elastoplastic interaction at the soil-pile interface and a separate far-field element, 

connected in series to the near-field element, captures radiation damping. This formulation 

satisfies the intuitive notion that lateral loads must mobilize a response in the zone immediately 

surrounding the pile before energy can be radiated away to the far field. The modified PySimple3 

element uses series radiation damping. 
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While the conceptual motivation for including radiation damping is clear, successful 

implementation is dependent on accurately quantifying the dashpot coefficients, which is 

nontrivial and unfamiliar in the realm of traditional foundation design. Engineers face two 

significant challenges when quantifying dashpots: (i) choosing an appropriate relationship from 

the many available in the literature, and (ii) addressing frequency-dependence. 

Quantifying pile radiation damping based on experimental results is a difficult proposition, 

to say the least. While it is feasible to estimate the total damping of a pile-soil system during 

forced-vibration testing (e.g., Ashford and Juirnarongrit 2003), this will include the combined 

effects of hysteretic damping in the pile and soil materials as well as radiation damping. While the 

former can be approximately inferred from material stress-strain curves if extensive 

instrumentation is used, there is no simple means for measuring radiation damping directly. 

Furthermore, even if the contribution of radiation damping to the total damping could be 

determined, there is an additional challenge in formulating the corresponding dashpot coefficients 

to be used with distributed springs and dashpots for Winkler-type analysis. Even if these results 

could be generated from a single test, there remains the issue of formulating generalized 

expressions for practical use. In light of these challenges, the available models for c are derived 

from a theoretical approach. Future experimental campaigns which are able to measure pile 

radiation damping more directly would be a valuable contribution to the field of pile dynamics.   

Many researchers have used the theory of wave propagation in a linear viscoelastic medium 

to derive expressions for c. Berger et al. (1977) derived theoretical frequency-independent dashpot 

coefficients for a wave propagating in a one-dimensional elastic rod. Novak et al. (1978), 

expanding on the work of Novak (1974), developed a plane-strain solution based on a cylindrical 

elastic rod embedded in a viscoelastic halfspace (Baranov’s solution). Gazetas and Dobry (1984a, 
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1984b) took a similar approach but assumed the rod was rigid and infinitely long, hence their 

expression does not include a pile modulus or length term. Makris and Gazetas (1992) proposed a 

simplified expression for c based on the results of the aforementioned studies and their own further 

analyses, and Kavvadas and Gazetas (1993) provided yet another expression with the same form 

as Gazetas and Dobry (1984a) but with slightly simplified coefficients. Nogami & Konagai (1988) 

approximated frequency-independent dashpot coefficients by calibrating the results of equivalent-

linear viscoelastic time-domain BDWF analyses of a pile undergoing inertial head loading to 

frequency domain solutions. The relationship between normalized c and dimensionless frequency 

a0 [defined in this case using the Equation (7.5) definition] from these references are shown in 

Figure 9-12. Note that the Nogami and Konagai (1988) far-field element formulation is actually a 

series of three elements; the value plotted in Figure 9-12 is the third and softest of the three 

dashpots. Note also that NIST (2012) Table 2-4b provides an impedance function for the 

equivalent pile head radiation damping to be used with the substructure method, but not dashpot 

coefficients for distributed Winkler-type springs for BDWF analyses. 
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Figure 9-12: Normalized dashpot coefficient for ν = 0.25m, ρs = 1.7 Mg/m3 and Ep/Es ≈ 690. 

The frequency-dependent models indicate a sharp increase in c at low frequencies, but an 

approximately constant value for a0 greater than about 0.5. While c may indeed be frequency-

dependent, only frequency-domain solution approaches [e.g., Banerjee et al. (1987); Wu and Finn 

(1997a)] can explicitly implement such behavior. For time-domain solutions, which are used for 

this study and are the predominant method used for structural and geotechnical nonlinear analyses, 

it is necessary to specify a single value of c for the entire duration of the analysis. To do so, the 

foundation designer can either (1) choose a representative frequency, such as the fundamental 

frequency of the pile-soil system, to be used with a frequency-dependent expression for c, or (2) 

use a frequency-independent expression for c. Researchers that have made an effort to develop and 

evaluate nonlinear time-domain solution approaches for laterally-loaded piles tend to favor the 

latter, while those that have focused on developing analytical solutions can accommodate 

frequency dependence. 
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Using a computer implementation of the plane-strain solutions of Novak et al. (1978), 

Novak and El Sharnouby (1983) found an approximately linear relationship between pile damping 

and increasing frequency above the fundamental frequency of the soil profile. They concluded that 

a constant value of c can be used to represent equivalent viscous radiation damping at frequencies 

above the profile fundamental frequency, and that below this frequency only the soil hysteretic 

damping (also referred to as “material” damping) was significant. Gazetas (1991) and Syngros 

(2004) also proposed that radiation damping only be considered above a dimensionless “cutoff 

frequency” defined as: 
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where B is pile diameter and ωs is the natural angular frequency of the site, based on the natural 

site period T computed from the well-known formula relating one-quarter wavelength of a 

harmonic oscillation to the thickness of the soil profile H:   
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V
            (9.17) 

where VS is the soil shear wave velocity. The fundamental frequency of the site is the inverse of 

Equation (9.17).  

The concept that pile radiation damping cannot occur at frequencies below the site 

fundamental frequency only applies for an elastic pile embedded in an elastic soil layer underlain 

by rigid bedrock, hardly representative of realistic soil conditions. In this author’s opinion, this 

limitation can safely be ignored for realistic conditions. 
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The approach taken for this study is to define the dashpot coefficient using the Gazetas and 

Dobry (1984a) relationship at the frequency corresponding to the dimensionless frequency ω/λVS 

= 1.25. This value approximately corresponds to Hu = 0.5 for the elastic analytical solutions (e.g., 

see Figure 8-3), and as will be shown in the next chapter, for the nonlinear analyses as well. The 

frequency corresponding to a 50-percent reduction in free-field motions was chosen because the 

purpose of this study is to define the conditions for which kinematic pile-soil interaction is 

significant, and especially to identify the frequency range over which significant deamplification 

of free-field motions could occur. 

In addition to radiation and hysteretic damping, Rayleigh damping is used in the OpenSees 

analyses to achieve damping at low-strain. Unlike hysteretic damping or the type of radiation 

damping discussed above that are incorporated into the material model, Rayleigh damping operates 

directly on the mass and stiffness matrices in the formulation of the equation of motion that is 

solved in the finite-element method. Since soil is known to exhibit damping even at the smallest 

levels of measurable strain (e.g., Vucetic and Dobry 1991), incorporating small-strain damping is 

realistic, and is also computationally beneficial for achieving convergence. 

9.5 PILE MODELING 

For the present study, piles are modeled using 0.5-m long displacement-based beam-column 

elements. Pile nonlinearity is considered by using an equivalent EI representative of a reduced 

moment of inertia due to concrete cracking. The following subsections describe specific aspects 

of the structural modeling approach. 
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9.5.1 Pile Moment-Curvature Behavior 

Reinforced-concrete (RC) elements exhibit nonlinear moment-curvature (M-ϕ) behavior when 

flexural demands exceed the yield strength of either the concrete or reinforcing steel in tension or 

compression. Of greatest interest in the context of a laterally-loaded pile is the reduction in stiffness 

that occurs when concrete cracks in tension, since flexural demands during extreme event loading 

would typically be expected to exceed the cracking moment. As illustrated in Figure 9-13, the 

initial portion of the M-ϕ curve corresponds to linear-elastic material behavior across the entire 

section. The slope of a M-ϕ curve is the flexural rigidity of the section, so the slope of the elastic 

region corresponds to the elastic EpIp computed using the gross moment of inertia of the section. 

The upper-bound of the elastic region is defined by cracking of the concrete in tension, which is 

typically the first nonlinear material behavior. In accordance with §5.6.1.1 of the Caltrans (2013) 

Seismic Design Criteria, for this study the cracked section stiffness is defined by the secant slope 

of the M-ϕ plot between the origin and the moment corresponding to the first yielding of the 

longitudinal reinforcing steel in tension, My. 

For the generalized transfer function and spectral ratio prediction models generated from 

the results of this study, flexural rigidity of the pile is an input variable. Whether or not the value 

used should correspond to the elastic or cracked section stiffness depends on the anticipated 

behavior under design loading, and the foundation engineer is responsible for making this decision. 
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Figure 9-13: Moment curvature analyses conducted at axial load P = 0.05*Ag*f’c for (a) 2-m and (b) 
0.5-m diameter pile sections. 

The M-ϕ plots shown in Figure 9-13 were computed using fiber models of the 2-m and 0.5-

m diameter pile sections in OpenSees. In the fiber-modeling approach, the section is discretized 

into separate zones (fibers) characterized by unique uniaxial stress-strain behavior representative 

of, for example, reinforcing steel, confined concrete, and unconfined concrete. Radial 

discretization is used to define the circular cross sections. The following assumptions and analysis 

parameters were used for the M-ϕ analyses: 

 The longitudinal reinforcing steel layout was based on a target steel ratio 

(ρsteel) of 1.5-percent, with the following layouts used for the analyses: 

o  For the 2-m diameter shaft, 32 No. 14 bars bundled in groups of two 

(to achieve adequate spacing between adjacent bars) with 6 inches 

(15.2 cm) of clear cover— ρsteel = 1.48% ; 

o For the 0.5-m diameter shaft, 8 No. 7 bars with 3 inches (7.6 cm) of 

clear cover— ρsteel = 1.58% ; 
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 Clear-cover from the edge of the pile to the edge of the longitudinal bars is 

based on the recommendations in the FHWA drilled shaft design manual 

(Brown et al. 2010) based on the diameter of the pile; 

 Assumed concrete compressive strength of 5 ksi (34.5 MPa) modelled with 

the ConcreteCM uniaxial material model in OpenSees; 

 Grade 60 steel for the longitudinal bars modelled using the ReinforcingSteel 

uniaxial material model with expected material properties (i.e., accounting 

or overstrength in accordance with the Caltrans (2013) Seismic Design 

Criteria) 

 Confinement of the core concrete was not considered, where the core is the 

portion of the section inside the perimeter formed by the longitudinal bars. 

Because confined and unconfined concrete exhibit similar stress-strain 

behavior up to point of crushing of the unconfined concrete in compression, 

the effect on the M-ϕ behavior is only significant in the post-yield range; 

 The number of discrete fibers was increased until the results were stable, 

which was achieved with 24 radial and 24 angular divisions within the core 

of the section and four radial and 24 angular divisions outside the core for 

the cover concrete; and 

 Analysis were performed for an axial load P equal to 5-percent of the gross 

compressive capacity of the concrete section, i.e. P = 0.05*Ag*f’c. 

The axial load imposed on a pile is a function of the tributary load supported by each bridge 

bent, the number and layout of piles relative to the number of columns or pier walls per bent, 
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geotechnical conditions over the length of the pile, whether axial or lateral loads govern the pile 

diameter, and many other factors. In addition, the pile axial load is likely to fluctuate during an 

earthquake as bents undergo frame action, and the axial load changes over the depth of the pile as 

load is shed into or added from the ground. Clearly there is no unique definition for a “typical” 

axial load for a pile foundation based solely on the section diameter. As discussed above, the axial 

load used to define the effective flexural rigidity for design cases should be based on the actual 

anticipated axial load during extreme event loading. In the absence of such information for the 

parametric analyses performed for this study, the arbitrary definition of P = 0.05*Ag*f’c was 

adopted for simplicity, which is consistent with the typical axial load for reinforced concrete 

columns and is therefore a good approximation for extended-shaft column type foundations. 

9.5.2 Pile Head Fixity Condition 

The pile head-fixity conditions used in this study are either “fixed-head”—perfectly fixed against 

rotation, or “free-head”— completely free to rotate without encountering any rotational resistance. 

While these idealized assumptions are conceptually attractive and convenient for analytical 

purposes, the pile head boundary condition in a real structure falls somewhere between the two 

extremes. 

Piles embedded in a reinforced pile cap or interconnected with stiff grade beams are often 

characterized as fixed-head, which implies that an imposed moment will result in zero rotation at 

the connection. However, the true rotational stiffness of these connections is less than rigid. 

Rotation at the connection could be accommodated either on a global or local scale, for example 

by rocking of the entire pile cap or by strain concentrated in the zone around the connection, 

respectively. Short of experimental measurements or continuum numerical modeling, the author 

is not aware of any geotechnical or structural references that provide general guidance on 
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quantifying this rotational stiffness. However, previous experience by the author has shown that 

while allowing a small amount of rotation at the pile head in BNWF analyses can significantly 

decrease moment demands, it does not have a significant influence on the pile head horizontal 

translation. Hence, use of a less-than-rigid boundary condition would not be expected to 

significantly change transfer functions computed for free-field versus pile-head horizontal 

displacement. 

For conventional foundation design applications in which superstructure loads are carried 

through the foundation into the ground, a free-head assumption is reasonable for extended-shaft 

columns (i.e., the “flagpole” condition), or for piles that lack significant embedment or structural 

anchorage into a pile cap. However, for the kinematic pile-soil interaction case, it is important to 

remember that the load path acts in the opposite direction—ground movement results in foundation 

displacements and force effects which are subsequently imposed on the base of the superstructure. 

Hence, the pile-head fixity condition should be assessed in terms of the question what resisting 

force/moment would be mobilized in above-ground structural elements due to a unit 

displacement/rotation at the pile head? For extended-shaft columns, pile head rotation due to 

kinematic interaction would encounter resistance as the resulting rotation and corresponding 

moment and translations are carried up the column, through the column-to-superstructure 

connection (e.g., bearings and/or other anchorage between the bent cap and girders), and into the 

superstructure. Clearly these elements would provide some resistance to rotation such that the pile 

head is not truly “free” to rotate. 

Despite these inconsistencies between real behavior and the idealized extremes, fixed- and 

free-head boundary conditions will be used for this study for several reasons. First, these extremes 

provide bounds on the problem. The true behavior is somewhere in between, and the foundation 
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designer can use judgment to interpret where in between these bounds their problem lies, or simply 

use whichever assumption results in greater demands. The latter approach is advocated in the realm 

of conventional deep foundation design for lateral loading by Reese et al. (2005). Second, the 

rotational resistance provided by pile-to-pile-cap connections and other above-ground structural 

elements depends on the specific geometry and material properties of each project, and thus is hard 

to generalize in a simplified design tool such as the transfer function models being developed for 

the present study. Finally, because free-head or fixed-head boundary conditions are the standard 

of practice for routine design, and because there are no established guidelines for quantifying 

rotational resistance, including rotational stiffness as a parameter in the transfer function model 

would make the model more difficult to implement in practice. The intent of this study is to provide 

a transfer function model that is compatible with the current state of practice for seismic design, 

so such a limitation would be counterproductive. Future studies could investigate the influence of 

head-fixity through parametric analysis of varying rotational spring stiffness applied at the pile 

head. 

9.5.3 Pile Shear Deformations 

Conventional beam-on-Winkler-foundation analyses treat the pile as an Euler-Bernoulli beam, for 

which flexural demands are resisted structurally by the flexural rigidity (EI) of the pile (see 

derivation in §8.1). Shear deformations are neglected in this approach, which is a reasonable 

assumption when it is kinematically possible for the pile to respond to imposed demands primarily 

in flexure, such as for the “flagpole” configuration. However, significant rotational resistance 

provided by embedment into a pile cap or toe embedment into rock may result in shear 

deformations that are significant within a few pile diameters of the point of rotational restraint. For 

example, Massone and Lemnitzer (2012) found that shear deformations accounted for up to 40 
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percent of total horizontal displacement near the pile head connection during full-scale lateral load 

tests of 24-inch (0.61-m) diameter piles. Moreover, when flexural demands approach the pile 

plastic moment capacity, these shear deformations can be nonlinear in terms of the shear-stress 

versus shear-strain behavior even when shear stresses are well below the shear strength of the 

concrete (e.g., Massone and Wallace 2004), which further complicates interpretation of load test 

results. The Massone and Lemnitzer study along with follow-up work by Khalili-Tehrani et al. 

(2014) suggests that commonly used semi-empirical p-y curve models derived from free-head 

lateral load test results (e.g., API 1993) are inaccurate for fixed-head conditions because shear 

deformations were not considered explicitly in their derivation. 

For the case of kinematic pile-soil interaction for fixed-head piles, using a numerical model 

that allows shear deformations would be expected to result in slightly larger total displacement 

near the pile head, and thus increase transfer function ordinates (Hu) relative to the same case 

analyzed without consideration of shear deformations, such as done herein. However, simply using 

a structural model that accounts for shear deformations, such as the Timoshenko beam column 

element in OpenSees, or the recently added cyclic shear-flexure interaction model by Kolozvari et 

al. (2015a,b), could provide misleading results. This is because, as determined from the 

experimental work described above, alternative p-y curves should be used in combination with 

structural consideration of shear deformations, and a generalized p-y model for this purpose is not 

currently available. A future study that integrates the Kolozvari et al. cyclic shear-flexure 

interaction elements and p-y curves that explicitly consider shear deformations into the numerical 

modeling framework used for the present study could shed light on the influence of shear-flexure 

interaction for kinematic transfer functions. 
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9.5.4 Pile Groups 

Pile groups are modeled as multiple individual piles connected at their heads through massless 

rigid links using the equalDOF command in OpenSees. Pile caps are not modelled explicitly 

because their mass and stiffness would result in inertial and kinematic interaction in addition to 

the pile-soil interaction. The rigid link between piles combined with a fixed-head pile boundary 

condition essentially captures the restraint offered by the pile cap without introducing additional 

SSI, such that pile-soil interaction can be studied independently. In real systems utilizing pile 

groups, the pile cap motion which excites the superstructure depends on kinematic pile-soil 

interaction as well as kinematic interaction between the pile cap and the ground. For example, an 

embedded pile cap is subjected to ground motions imposed through lateral earth pressure on its 

sides, horizontal motions imposed on its base, and the motions of the piles which it connects. 

Depending on the surficial soil stiffness and the pile cap dimensions, particularly the depth of 

embedment, the pile cap motion could be dominated by cap-soil interaction more than pile-soil 

interaction. Future studies could investigate this effect by explicitly modeling pile caps in addition 

to piles. 

The pile group layout considered for the present study is for a 2x3 group of 2-m diameter 

piles on a 7.5-m center-to-center spacing (i.e., 3.75·B) as shown in Figure 9-14. This configuration 

is typical for support of large bridge bents, and use of B = 2-m piles allows for direct comparison 

to the 2-m single pile results. The incoherent ground motions discussed below in §9.7.3 were 

imposed on the piles such that each pile in the group experienced a different input motion. The 

motion at each pile head is identical because of the rigid links, and effectively is an average of the 

motions imposed on the individual piles, similar to the concept of base slab averaging. 
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Figure 9-14: Pile group layout considered for analyses. 

Additional group configurations were not considered because of the considerable effort 

required to generate incoherent ground motions at each pile location as well as the significant 

computational demand for running dynamic group analyses. 

9.6 SOIL PROFILES FOR ANALYSES 

Six soil profiles were developed based on cone penetration test (CPT) soundings. The purpose of 

developing soil profiles from real sites rather than using simple fictitious homogeneous or layered 

models such as those used in past studies is to examine the effect that realistic subsurface 

variability has on the results. Soil stiffness, quantified by the time-averaged shear wave velocity 

in the upper 30 m of the profile (VS,30) ranges between about 100 and 400 m/s for the six soil 

profiles. These bounds are intended to capture the range of soil stiffness over which kinematic 

pile-soil interaction is likely to be significant as suggested by the elastic solutions presented in the 

previous chapter. Likewise, for a given pile stiffness, the range is intended to extend to high enough 

soil stiffness such that the conditions for which kinematic interaction is no longer significant can 

be defined. 
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CPT data used to develop the six soil profiles was obtained from the United States 

Geological Survey (USGS) research division’s repository of CPT data, available online 

(http://earthquake.usgs.gov/research/cpt/). As indicated by the shear wave velocity profiles in 

Figure 9-15, sites were chosen that showed relatively uniform gradients of shear wave velocity 

versus depth in order to avoid the large shear demands that are imposed on piles at such an 

impedance contrast. Sites 1, 2, and 4 contain a combination of granular and cohesive layers, while 

Sites 3 and 6 are all granular, and Site 5 is all stiff clay. Layer thicknesses and relevant soil 

properties for each of the six sites are presented in Appendix D. A general description is also 

provided of the real sites which are represented, including their inferred geologic history and 

depositional environment. In general the profiles were discretized into 0.5-m thick layers to match 

the discretization of pile elements so that input displacement time series could be computed from 

ground response analysis without interpolation. 

The arbitrary metric VS,30 was used as a convenient measure of the site stiffness and because 

of its familiarity in practice (e.g., for building code site classifications); as will be shown in the 

results chapter, shear wave velocity computed over the length of the pile is more relevant for 

describing pile-soil interaction. Table 9-2 gives values of time-averaged VS computed over depth 

intervals corresponding to the four pile lengths from Table 9-1, denoted as VS,z, where z is the depth 

increment over which the computation is made. When not referring to a specific pile length, this 

term will subsequently be denoted by the variable VS,L. 
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Figure 9-15: Shear wave velocity and reference strain (γr) profiles for Sites 1 through 6. 

Table 9-2: Site time-averaged shear wave velocity characteristics for Sites 1-6. 

Site: 1 2 3 4 5 6 

VS,7.5 (m/s) 92 134 158 186 230 344 

VS,15 (m/s) 97 150 176 204 259 396 

VS,30 (m/s) 111 192 217 264 305 446 

VS,60 (m/s) 151 244 253 332 351 504 

VS,H (m/s) 173 280 289 367 383 525 

Thickness (H, m) 76.0 80.0 82.0 76.0 80.0 72.00 

9.7 GROUND MOTIONS 

9.7.1 Baker et al. (2011) Ground Motion Suite 

Input motions for the ground response analyses were sourced from the collection of motions 

developed by Baker et al. (2011) for PEER Transportation Research Program projects. Multiple 
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sets of motions are included in the Baker et al. set; for this study the “Set #2, broad-band ground 

motions corresponding to M 7.0, R [source-to-site distance] = 10 km, and rock conditions” are 

used. These motions are specifically intended to represent rock conditions with an average VS of 

760 m/s for use in ground response analysis, and were selected by Baker et al. such that the median 

and ± standard deviation response spectra computed from the 40 unscaled motions match the Boore 

and Atkinson (2008) ground motion prediction equations. A basic description of the motions is 

provided in Table 9-3, and Table 9-4 lists their peak ground acceleration, velocity, and 

displacement (PGA, PGV, and PGD) values. Table 9-5 lists minimum, maximum, and mean 

PGA/PGV/PGD for the 40 motions, showing that the set covers a wide range in terms of these 

intensity measures. For each motion, a fault-normal (FN), fault-parallel (FP), and vertical record 

are available. The fault normal (FN) component of each ground motion is used for this study, 

which on average is slightly stronger than the FP component. Further details of the motions are 

available in the Baker et al. report. 
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Table 9-3: Ground motion records used for analyses (after Baker et al. 2011). 

Record 
number 

NGA 
Record 

Sequence 
Number 

Earthquake Name Year Station 

M
ag
n
it
u
d
e 

C
lo
se
st
 

D
is
ta
n
ce
 

1  72  San Fernando 1971 Lake Hughes #4 6.6 25.1

2  769  Loma Prieta 1989 Gilroy Array #6 6.9 18.3

3  1165  Kocaeli, Turkey 1999 Izmit 7.5 7.2

4  1011  Northridge‐01 1994 LA ‐Wonderland Ave  6.7 20.3

5  164  Imperial Valley‐06 1979 Cerro Prieto 6.5 15.2

6  1787  Hector Mine 1999 Hector 7.1 11.7

7  80  San Fernando 1971 Pasadena ‐ Old Seismo Lab  6.6 21.5

8  1618  Duzce, Turkey 1999 Lamont 531 7.1 8.0

9  1786  Hector Mine 1999 Heart Bar State Park  7.1 61.2

10  1551  Chi‐Chi, Taiwan 1999 TCU138 7.6 9.8

11  3507  Chi‐Chi, Taiwan‐06 1999 TCU129 6.3 24.8

12  150  Coyote Lake 1979 Gilroy Array #6 5.7 3.1

13  572  Taiwan SMART1(45) 1986 SMART1 E02 7.3 ‐

14  285  Irpinia, Italy‐01 1980 Bagnoli Irpinio 6.9 8.2

15  801  Loma Prieta 1989 San Jose ‐ Santa Teresa Hills  6.9 14.7

16  286  Irpinia, Italy‐01 1980 Bisaccia 6.9 21.3

17  1485  Chi‐Chi, Taiwan 1999 TCU045 7.6 26.0

18  1161  Kocaeli, Turkey 1999 Gebze 7.5 10.9

19  1050  Northridge‐01 1994 Pacoima Dam (downstr)  6.7 7.0

20  2107  Denali, Alaska 2002 Carlo (temp) 7.9 50.9

21  1  Helena, Montana‐01 1935 Carroll College 6.0 ‐

22  1091  Northridge‐01 1994 Vasquez Rocks Park  6.7 23.6

23  1596  Chi‐Chi, Taiwan 1999 WNT 7.6 1.8

24  771  Loma Prieta 1989 Golden Gate Bridge  6.9 79.8

25  809  Loma Prieta 1989 UCSC 6.9 18.5

26  265  Victoria, Mexico 1980 Cerro Prieto 6.3 14.4

27  1078  Northridge‐01 1994 Santa Susana Ground  6.7 16.7

28  763  Loma Prieta 1989 Gilroy ‐ Gavilan Coll.  6.9 10.0

29  1619  Duzce, Turkey 1999 Mudurnu 7.1 34.3

30  957  Northridge‐01 1994 Burbank ‐ Howard Rd.  6.7 16.9

31  2661  Chi‐Chi, Taiwan‐03 1999 TCU138 6.2 22.2

32  3509  Chi‐Chi, Taiwan‐06 1999 TCU138 6.3 33.6

33  810  Loma Prieta 1989 UCSC Lick Observatory  6.9 18.4

34  765  Loma Prieta 1989 Gilroy Array #1 6.9 9.6

35  1013  Northridge‐01 1994 LA Dam 6.7 5.9

36  1012  Northridge‐01 1994 LA 00 6.7 19.1

37  1626  Sitka, Alaska 1972 Sitka Observatory 7.7 34.6

38  989  Northridge‐01 1994 LA ‐ Chalon Rd 6.7 20.5

39  748  Loma Prieta 1989 Belmont – Envirotech  6.9 44.1

40  1549  Chi‐Chi, Taiwan 1999 TCU129 7.6 1.8
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Table 9-4: Intensity measures for ground motion set. 

Record 
number 

Earthquake Name Year Magnitude PGA (g) PGV 
(m/s) 

PGD 
(m) 

1  San Fernando  1971  6.6  0.15  0.08  0.02 

2  Loma Prieta  1989  6.9  0.16  0.17  0.06 

3  Kocaeli, Turkey  1999  7.5  0.15  0.23  0.10 

4  Northridge‐01  1994  6.7  0.16  0.11  0.03 

5  Imperial Valley‐06  1979  6.5  0.15  0.18  0.08 

6  Hector Mine  1999  7.1  0.34  0.37  0.14 

7  San Fernando  1971  6.6  0.09  0.07  0.01 

8  Duzce, Turkey  1999  7.1  0.16  0.13  0.08 

9  Hector Mine  1999  7.1  0.07  0.07  0.03 

10  Chi‐Chi, Taiwan  1999  7.6  0.20  0.41  0.36 

11  Chi‐Chi, Taiwan‐06  1999  6.3  0.34  0.17  0.06 

12  Coyote Lake  1979  5.7  0.45  0.52  0.07 

13  Taiwan SMART1(45)  1986  7.3  0.13  0.13  0.05 

14  Irpinia, Italy‐01  1980  6.9  0.19  0.29  0.10 

15  Loma Prieta  1989  6.9  0.27  0.26  0.13 

16  Irpinia, Italy‐01  1980  6.9  0.12  0.18  0.11 

17  Chi‐Chi, Taiwan  1999  7.6  0.60  0.44  0.38 

18  Kocaeli, Turkey  1999  7.5  0.24  0.52  0.44 

19  Northridge‐01  1994  6.7  0.50  0.49  0.06 

20  Denali, Alaska  2002  7.9  0.09  0.10  0.05 

21  Helena, Montana‐01  1935  6.0  0.15  0.06  0.01 

22  Northridge‐01  1994  6.7  0.16  0.18  0.02 

23  Chi‐Chi, Taiwan  1999  7.6  0.96  0.69  0.31 

24  Loma Prieta  1989  6.9  0.14  0.29  0.07 

25  Loma Prieta  1989  6.9  0.37  0.12  0.06 

26  Victoria, Mexico  1980  6.3  0.63  0.31  0.13 

27  Northridge‐01  1994  6.7  0.23  0.14  0.03 

28  Loma Prieta  1989  6.9  0.29  0.31  0.07 

29  Duzce, Turkey  1999  7.1  0.11  0.10  0.09 

30  Northridge‐01  1994  6.7  0.11  0.08  0.02 

31  Chi‐Chi, Taiwan‐03  1999  6.2  0.13  0.20  0.04 

32  Chi‐Chi, Taiwan‐06  1999  6.3  0.06  0.09  0.04 

33  Loma Prieta  1989  6.9  0.41  0.18  0.05 

34  Loma Prieta  1989  6.9  0.43  0.39  0.07 

35  Northridge‐01  1994  6.7  0.58  0.77  0.20 

36  Northridge‐01  1994  6.7  0.38  0.22  0.05 

37  Sitka, Alaska  1972  7.7  0.10  0.07  0.05 

38  Northridge‐01  1994  6.7  0.19  0.19  0.02 

39  Loma Prieta  1989  6.9  0.14  0.20  0.06 

40  Chi‐Chi, Taiwan  1999 7.6 1.01 0.60  0.51
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Table 9-5: Summary of ground motion intensity measures 

Value PGA (g) PGV 
(m/s) 

PGD 
(m) 

Minimum  0.06  0.06  0.01 

Maximum  1.01  0.77  0.51 

Mean  0.28  0.25  0.11 

 

9.7.2 Ground Response Analyses 

To define the free-field ground motion at the p-y spring depths for the BDNWF models, each of 

the 40 motions was propagated through a one-dimensional ground response analysis model in the 

program DEEPSOIL (Hashash et al. 2015). DEEPSOIL analyses were conducted using the 

nonlinear time-domain total stress method. Using the idealized profiles for each of the six sites 

presented in Appendix D, modulus reduction and damping curves were developed using the 

procedures of Menq (2003) and Darendeli (2001) for granular and cohesive materials, respectively. 

The “hybrid” procedure recommended by Yee et al. (2013) was used to ensure that the modulus 

reduction curves matched the inferred shear strength of the material at large strain, although strains 

approaching these levels were generally not mobilized during the analyses. Profiles of reference 

strain γr for the modulus reduction curves are shown alongside the VS profiles in Figure 9-15. The 

reference strain corresponds to 50-percent modulus reduction (i.e., G/Gmax = 0.5) and thus is a 

good proxy for the amount of nonlinearity exhibited by the material, with smaller values indicating 

the soil will exhibit greater nonlinearity at small strains.  

As described above, the idealized site stratigraphy is based on real CPT data to the 

approximate maximum depth of the CPT sounding, typically between 30 and 40 m. Below this 

depth, additional layers were added to the profile to create a gradual transition to the elastic 

bedrock. This was done so that the input motions, which are representative of outcrop motions on 
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rock with an average VS=760 m/s, would not encounter a strong impedance contrast at the base of 

the profiles. 

The following options were used for the DEEPSOIL analyses: 

 Pressure-dependent modified Kodner-Zelesko nonlinear backbone 

formulation (Matasovic 1993) with non-Masing unloading/reloading 

formulation; 

 Input motions specified as outcrop motions; 

 Elastic half-space (bedrock) with VS=760 m/s and unit weight 22 kN/m3 

underlying the soil profiles; 

  Frequency-independent damping formulation; and 

 When needed to achieve convergence, sub-stepping of time increments 

using linear interpolation of input motion with maximum strain increment 

of 0.005. 

Acceleration time series computed from DEEPSOIL for each layer were manually post-

processed to generate displacement records, which are needed as the input to the soil nodes of the 

p-y springs for the OpenSees analyses. Performing the integration necessary to compute 

displacement from acceleration time series, whether executed in the time or frequency domain, is 

a nontrivial exercise that can result in spurious amplification of low frequency noise if proper 

filtering procedures are not implemented. Recent versions of DEEPSOIL offer the option to export 

displacement records computed during direct integration of the equation of motion, but no filtering 

is applied to these records. 
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For this study, high-pass filtering was applied to remove low-frequency noise using a third-

order Butterworth filter at frequencies above about 0.1 to 0.2 Hz. To remove spurious high 

frequency noise, the motions were also filtered using a low-pass Butterworth filter at the higher of 

(i) the low-pass frequency used for the original PEER ground motion processing or (ii) the 

maximum frequency which could be propagated through the DEEPSOIL model, which depends 

on thickness and shear wave velocity of the layers. Generally the former controlled. In addition, 

the acceleration time series were baseline corrected and zero-padded at the beginning and end of 

each record. The transition between a displacement of zero and the computed displacement was 

achieved with a cosine filter over 20 time increments; failure to do so can result in significant low 

frequency noise even if the beginning and end displacements have relatively small amplitudes. 

The fundamental frequency of each site as computed by DEEPSOIL is given in Table 9-6. 

Table 9-6: Site fundamental frequencies. 

Site: 1 2 3 4 5 6 

Site Fundamental Frequency fS (Hz) 0.57 0.87 0.88 1.21 1.20 1.82 

9.7.3 Ground Motion Incoherence 

Real ground motions exhibit incoherence, or variation between two physical locations, because of 

two effects. The first is the wave-passage effect, which for inclined waves simply characterizes 

the delay in arrival time of a uniform planar wavefront between two locations. The second effect, 

termed “stochastic” incoherence, is due to the inherent spatial variability of the ground motion 

itself, since earthquake ground motions are generated not at a single point but along a 

heterogeneous fault, and from the scattering of waves due to material heterogeneity at the site. 

Abrahamson (1992a) and others have demonstrated that this can have important consequences for 

SSI. 
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Because DEEPSOIL performs one-dimensional ground response analysis assuming 

vertically-propagating shear waves, the only component of incoherence that is captured is the 

influence of changing soil properties with depth; the wave passage effect and stochastic 

incoherence are not captured. For single pile foundation, this is acceptable. For pile groups, 

however, ground motion incoherence results in different motion being imposed on each pile within 

the group. Much like the concept of base-slab averaging for shallow and mat foundations, the 

response of a stiff pile cap represents an average of the motions imposed on each pile within the 

group. 

To capture ground motion incoherence in the horizontal direction for the pile group 

simulations in this study, spatially-variable ground motions (SVGM) have been generated using 

the program FDW2D.r, based on a simulation routine described by Ancheta and Stewart (2015). 

Starting with one of the 40 input motions as a “seed” motion corresponding to a corner pile location 

within the pile group shown in Figure 9-14, a motion was generated at each of the five remaining 

pile locations that matches a set of target spatially variable ground motion (SVGM) functions. Dr. 

Timothy Ancheta was hired as a sub-consultant for this project to generate the incoherent motions, 

and the following is a summary of his work.  

The basic process of simulating an incoherent motion is to modify a seed ground motion 

by adding a random phase and amplitude at each frequency to match target coherency and 

amplitude models that are consistent with empirical observations. Additionally, for the method 

used here, the coherency between the seed-to-simulation and simulation-to-simulation matches the 

target coherency function for all locations simultaneously. The FDW2D.r simulation method uses 

an energy randomization process called Frequency Dependent Windowing (FDW). The FDW 

method is used to conserve the low frequency (coherent) energy and resample the high frequency 
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(random) energy to be consistent with a set of SVGM functions without introducing unwanted 

spectral leakage. 

The FDW method is a non-stationary simulation routine that utilizes a modified short-time 

Fourier transform (MSTF) routine. The MSTF routine allows preservation of the non-stationary 

properties of the motion and incorporation of time-varying nonlinear spectral modifications. The 

routine is summarized in the following steps:  

 The seed time series is split into short time segments;  

 A discrete Fourier transform (DFT) is performed on the segment; 

 Phase angles at each frequency within a desired frequency range (dependent 

on segment length) are modified consistent to a coherency function for each 

segment [this procedure is fully described in Ancheta (2010)]; 

 The new set of Fourier phase angles is combined with the seed Fourier 

amplitudes and transformed into the time domain with an inverse Fourier 

transform (IFT); 

 The modified short time segments are recombined to form a modified time 

series; 

 The preceding steps are performed multiple times for multiple segment 

lengths, with each segment length having a specified frequency range over 

which phase angles are modified. Hence, multiple modified time series are 

created. Segment lengths and corresponding frequency limits used are 

shown in Table 9-7; 
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 The multiple modified time series are band-pass filtered within the limits of 

the pass-band matching the band of the modification to combine the 

modified frequency bands in the frequency domain;   

 The non-overlapping frequency bands are transformed back to the time 

domain to create the final broadband modified time series. 

Table 9-7: Segment duration (L) and frequency bands (b) used in the FDW routine. 

Segment Duration (sec) Frequency limits (Hz) 

1.28 2-Nyquist 

2.56 1-2 

5.12 0.5-1 

10.24 0.25-0.5 

20.48 0.12-0.25 

Full duration of time series 0-0.12 

 

The SVGM generated using this procedure all occur within a single horizontal plane. In 

other words, the seed and simulated motions exist at different x and y horizontal locations, but at 

the same depth z. For the purpose of this study, this depth corresponds to the base of the soil 

profiles. To generate motions at each depth increment for input to the BDNWF group analyses, 

transfer functions were computed from the DEEPSOIL results relating the seed input motions to 

the motion computed at the depth of each layer. These transfer functions were then used to compute 

a ground motion at the depth of each layer from the SVGM, effectively propagating the same 

amount of spatial variability generated at the base of each profile from FDW2D.r uniformly over 

the full depth of the profile.  In other words, horizontal and vertical incoherence are uncoupled in 

the approach used here, but both are ultimately reflected in the ground motions imposed on the 

pile group. 
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Figure 9-16: Acceleration (top) and displacement (bottom) time series for seed motion (1971 San 
Fernando earthquake, Lake Hughes #4 recording station) and simulated spatially-variable ground 

motions at locations corresponding to other piles in group layout shown in Figure 9-14. 

An example of the seed and SVGM is shown in Figure 9-16 in terms of acceleration and 

displacement. Note that only a short time window of two seconds is shown. It is apparent from this 

figure that while a modest amount of variability exists between pile locations in terms of 

acceleration, the displacement time series are nearly identical. This is because incoherence 
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increases with increasing frequency, and displacement tends to amplify low frequency energy and 

de-amplify high frequency energy relative to acceleration. 

9.8 OPENSEES ANALYSIS 

The following parameters were used to define the OpenSees finite-element analyses: 

 Penalty constraints to enforce boundary conditions, 

 Norm of the displacement increment (NormDispIncr command) to test for 

convergence with a starting tolerance of 10-6 m; 

 Krylov-Newton solution algorithm (Scott and Fenves 2010) used to solve 

nonlinear system of equations, 

 If convergence was not achieved at a particular step, the modified-Newton 

algorithm with initial stiffness was used; if this failed to converge, the 

tolerance was decreased by an order of magnitude and the Krylov-Newton 

algorithm was used again, 

 Newmark integrator with gamma = 0.5 and beta = 0.25, and 

 A P- transformation was utilized to capture secondary moments induced 

by offset axial loads. 
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10 Results 

10.1 SINGLE PILES 

Horizontal displacement transfer function results for each pile/site/motion combination are 

presented in Figures 10-1 through 10-12. Each figure is for one site and contains four plots, one 

for each of the four piles, where each plot contains the computed transfer functions ordinates with 

high coherence for the 40 ground motions along with the mean and ± one standard deviation of the 

results shown in that plot. Separate figures are presented for the fixed- and free-head conditions. 

Collectively, the plots represent the results of 1,920 single pile simulations. 

Because the time step, duration, and high- and low-pass filtering for the input ground 

motions vary, the frequency vector computed during the Fast Fourier Transform (FFT) operation 

varies between ground motions. To accommodate computing the mean and standard deviation at 

each frequency, the data are binned into 200 log-evenly spaced frequency bins spanning between 

the minimum high-pass and maximum low-pass frequencies used during processing of the 40 

motions (0.0375 and 62.5 Hz, respectively). Furthermore, within each frequency bin it is typically 

the case that not all 40 transfer functions exceeded the minimum coherence threshold of 0.8. In 

general, the number of transfer functions meeting the minimum coherence threshold decreases 

with increasing frequency above the corner frequency. To avoid spurious fluctuations at these 
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higher frequencies, the mean and ± one standard deviation are only computed if at least 25 percent 

(10) of the 40 transfer functions exist in a given frequency bin. For this reason, the plots show 

individual transfer functions at higher frequencies than the mean and ± one standard deviation are 

generally plotted. 

Following presentation of the single pile results versus plain frequency, normalized plots 

versus dimensionless frequency are presented in §10.2. This is followed by identification of the 

controlling parameters for kinematic pile-soil interaction and a comparison to previous elastic 

solutions in §10.3. Models for predicting transfer functions and spectral ratios for design 

applications are developed in §10.4 and §10.5. The chapter concludes with a summary of pile 

group simulation results. 
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Figure 10-1: Transfer functions for Site 1 fixed-head piles. 
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Figure 10-2: Transfer functions for Site 2 fixed-head piles. 
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Figure 10-3: Transfer functions for Site 3 fixed-head piles. 
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Figure 10-4: Transfer functions for Site 4 fixed-head piles. 
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Figure 10-5: Transfer functions for Site 5 fixed-head piles. 
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Figure 10-6: Transfer functions for Site 6 fixed-head piles. 
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Figure 10-7: Transfer functions for Site 1 free-head piles. 
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Figure 10-8: Transfer functions for Site 2 free-head piles. 
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Figure 10-9: Transfer functions for Site 3 free-head piles. 
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Figure 10-10: Transfer functions for Site 4 free-head piles. 
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Figure 10-11: Transfer functions for Site 5 free-head piles. 
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Figure 10-12: Transfer functions for Site 6 free-head piles. 

10.2 NORMALIZED RESULTS USING DIMENSIONLESS FREQUENCY 

To be of practical use in foundation design, the results of soil-structure interaction studies are 

usually presented in a normalized fashion in which the independent variable is a dimensionless 

function of frequency rather than plain frequency. The intention of normalization is to collapse the 

range of results into a narrow band which can then be represented by a single mathematical model 

(equation) for use in a forward-design scenario. 
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The normalization scheme developed by Di Laora and Sanctis (2013) and Anoyatis et al. 

(2013) is adopted here because of its strong fundamental basis and demonstrated ability to achieve 

near-perfect normalization for flexible piles considering elastic behavior. Furthermore, this allows 

for comparison between the elastic analytical solutions and the nonlinear results computed for this 

study. The dimensionless frequency for this approach is computed as ω/(λVS). Recall that the 

improvements realized with this normalization scheme over the previous (ωB)/VS scheme are due 

to (i) the use of flexural rigidity EpIp in the λ term instead of diameter and (ii) inclusion of the 

characteristic length relative to the free-field wavelength, which drives the frequency-dependence 

of the problem.  

Following the approach of Di Laora and Rovithis (2014), λ and VS are computed over the 

depth increment corresponding to the uppermost pile active length, denoted by λLa and VS,La. 

Consistent with Equation (7.9), λLa is computed using the initial stiffness of pile-soil interaction 

Ke. Nonlinearity due to degradation of the p-y springs is reflected in the results and will be 

considered in development of the prediction models. 

Figure 10-13 presents the normalized transfer functions for fixed-head piles. Free-head pile 

transfer functions for horizontal displacement and head rotation are presented in Figures 10-14 and 

10-15. Unlike the plots in the previous section, computed transfer functions for the normalized 

versions are plotted as points rather than lines. This is simply because plotting 960 lines within a 

narrow band would make it nearly impossible to discern one from another. In contrast, plotting 

only points that represent transfer function ordinates with high coherence makes the overall trend 

clear, but also provides a visual guide to where the greatest concentration of points lie. Prior to 

plotting, the results were binned into 200 equally-spaced dimensionless frequency bins. The results 

were further grouped into nine equally-spaced dimensionless frequency bins for computing mean 



 251

and standard deviation trends as shown in the figures. Note that the “Best-fit to functional form” 

curves in these figures are for the functional forms discussed subsequently in §10.4. 

 

Figure 10-13: Normalized horizontal displacement transfer function results for fixed-head piles. 
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Figure 10-14: Normalized horizontal displacement transfer function results for free-head piles. 
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Figure 10-15: Normalized rotation transfer function results for free-head piles. 

10.3 CONTROLLING PARAMETERS AND COMPARISON TO ELASTIC 
SOLUTIONS 

The normalized and plain-frequency transfer function results presented above allow the key 

parameters that control kinematic pile-soil interaction to be identified. These findings will be used 

subsequently to guide development of models for predicting transfer functions and spectral ratios 

for design applications. While identifying the key parameters, a comparison is also made to elastic 

analytical solutions to highlight the important effects of realistic modeling assumptions and 

material nonlinearity. 
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Previous work using simplified elastic models (e.g., Fan et al. 1991) identified the key 

parameters for kinematic pile-soil interaction as (i) pile-to-soil stiffness contrast, (ii) variations (or 

lack thereof) in soil stiffness over the length of the pile, and (iii) pile head-fixity condition. The 

effect of head-fixity is so significant that the results of fixed- and free-head piles must be 

considered separately. This is because free-head piles show “kinematic amplification” over a 

frequency range where the free-field wavelength is similar to the pile length. Because of this 

fundamental difference, head-fixity is considered less of a controlling parameter than simply a 

different category of results from this point forward, and separate predictive models will be 

developed for each case. 

Consistent with elastic solutions, pile-to-soil stiffness ratio remains the dominant factor 

that determines over what frequency range kinematic pile-soil interaction will be significant. 

Comparison of the mean results for each pile/site combination (Figure 10-16) reveals that the 

corner frequency6  shifts higher with decreasing pile-to-soil stiffness contrast (i.e., as the sites get 

stiffer), while the shape of the transfer function remains relatively consistent. 

                                                 
 
6 Recall from Chapter 7 that “corner frequency” is the term used herein to refer to the frequency beyond which 
significant pile-soil interaction occurs such that the transfer function ordinates fall below about 0.95. 
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Figure 10-16: Mean fixed-head transfer function results for each pile/site combination. 

Variations in soil stiffness over the length of pile also play an important role as suggested 

by Fan et al. (1991) and others. For example, the difference between the Anoyatis et al. (2013) and 

Di Laora and Rovithis (2014) curves in Figure 10-13 is due to the fact that Di Laora and Rovithis 

used a soil profile with increasing stiffness versus depth, while Anoyatis et al. considered a 

homogeneous profile. Figure 10-17 compares transfer functions computed for the B = 2.0 m, L = 

30 m pile for three ground motions at Sites 3 and 4. Recall that Sites 3 and 4 have similar shear-

wave velocity profiles over the upper 20 m (see Figure 9-15), and both consists of predominantly 

granular soil; the only significant difference between the two sites is that the stiffness of Site 4 
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shows a marked increase below 20 m. The portion of the pile embedded in this stiffer layer 

influences the response of the upper portion of the pile at Site 4, whereas Site 3 lacks this behavior. 

 

Figure 10-17: Influence of changes in stiffness over pile length for B = 2.0 m, L = 30 m pile subjected 
to (a) 1971 San Fernando earthquake (NGA record sequence number 72), (b) 1994 Northridge 
earthquake (NGA record 1011), and (c) 1999 Chi-Chi, Taiwan earthquake (NGA record 2661). 

The two most significant effects that are not reflected in the elastic analytical solutions are 

(i) nonlinearity due to pile-soil interaction and (ii) radiation damping. An increase in ground 

motion intensity generally results in greater pile-soil relative displacement and corresponding p-y 

softening, effectively increasing the pile-to-soil stiffness contrast and shifting transfer function 

ordinates to lower values. On the other hand, because radiation damping manifests as an increase 

in stiffness for dynamic p-y curves, its effect is to decrease the pile-to-soil stiffness contrast and 

shift transfer function ordinates higher. Hence, nonlinearity due to pile-soil interaction and 

radiation damping are competing effects in terms of their influence on the transfer functions. 

This is illustrated in Figure 10-18, which shows transfer functions computed for the B = 

0.5 m, L = 7.5 m pile in the Site 1 profile subjected to the 1971 San Fernando earthquake (NGA 

record sequence number 72). A comparison of the transfer functions computed with (i) a constant 

value of elastic p-y stiffness set equal to the initial stiffness Ke, versus (ii) an equivalent-linear 

degraded stiffness, verifies that a decrease in soil stiffness shifts the transfer function ordinates 
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down. However, when a dashpot representing radiation damping is added to the degraded stiffness 

model, the transfer function ordinates are shifted back up, in this case above the transfer function 

representing initial stiffness but without the dashpot. Finally, the transfer function for the fully-

nonlinear model is shown, which on average plots above the elastic transfer functions computed 

without radiation damping. Thus, the effect of nonlinearity due to pile-soil interaction is effectively 

outweighed by the increase in stiffness due to radiation damping for this case. (Note that all four 

models were subjected to the same input ground motions, so the effect of nonlinearity due to site 

response is equal for all cases). 

 

Figure 10-18: Competing effects of radiation damping and stiffness degradation due to pile-soil 
interaction. 

Comparison of the trends indicated by the binned means in Figures 10-13 through 10-15 

shows that the nonlinear results computed for this study plot near or slightly above the elastic 

analytical solution. This is somewhat counterintuitive, as it would seem that including pile-soil 
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interaction nonlinearity would shift the results below the elastic analytical solution due to soil 

softening. However, because the elastic solutions in these plots do not include radiation damping, 

this is a somewhat misleading comparison. Although radiation damping is included in the full 

derivation by Anoyatis et al. (2013), the best-fit curves from their study that are shown on the 

normalized transfer function plots in the previous section are for a static simplification in which 

pile inertia and radiation damping are ignored (the influence of hysteretic damping on the free-

field ground response can be included by using a complex shear wave velocity *
SV  ). Furthermore, 

ground motion intensity does not influence elastic solutions except to the extent that the soil 

modulus values specified by the designer should be consistent with the anticipated level of strain. 

Unfortunately, little guidance is available on predicting this strain due to pile-soil interaction, and 

methods for predicting free-field nonlinearity due to site response [e.g., NIST (2012)] are only 

approximate. Additionally, the elastic solutions will produce essentially the same transfer function 

regardless of the pile-to-soil stiffness contrast for any flexible pile as demonstrated in Chapter 8. 
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Figure 10-19: Mean fixed-head transfer function results for each pile/site combination plotted 
versus dimensionless frequency. (a) Shows variability in results due to pile stiffness, and (b) shows 

lack of variability in results due to pile slenderness ratio L/B. 

It is immediately clear when examining the normalized transfer function plots that 

significant dispersion exists in the computed results relative to the perfect normalization suggested 

by elastic solutions. Figure 10-19 provides insight into this variability by showing only the mean 

transfer functions for each pile/site combination (rather than all 40), with all 24 pile/site 

combinations plotted versus dimensionless frequency on a single graph. Three key trends are 

apparent from this figure: 

 Increasing soil stiffness (and thus decreasing pile-to-soil stiffness contrast) still 

shifts the corner frequency higher, as was seen in Figure 10-17 when the results 

were plotted versus plain frequency. 

 Likewise, increasing pile stiffness (which is best characterized by flexural rigidity 

EpIp) shifts the corner frequency down—it is apparent in Figure 10-19(a) that the 
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larger-diameter piles result in more significant pile-soil interaction and thus 

produce lower transfer function ordinates. 

 Figure 10-19(b) confirms a lack of dependence on pile slenderness ratio L/B, 

consistent with Anoyatis et al. (2013). 

Again, it should be reiterated that the first two trends in the above list are not captured by 

elastic analytical solutions. The primary driver of these trends is that decreasing soil stiffness and 

increasing pile stiffness result in greater pile-soil interaction nonlinearity. 

In addition to the variability exhibited by the means of each pile/site combination relative 

to one another, it is apparent that individual transfer functions show significant fluctuations relative 

to the smooth curves produces by elastic solutions (e.g., examine the individual transfer functions 

plotted in Figures 10-1 through 10-12). One of the causes of this variability is that pile/site 

combinations which are initially the same but then subjected to different ground motions exhibit 

different levels of nonlinearity due to free-field site response and pile-soil interaction. While the 

former effect is only approximately reflected in the results by means of the variable displacement 

time series imposed on each p-y spring, nonlinearity due to pile-soil interaction directly alters the 

pile-to-soil stiffness contrast. The effect of this interaction nonlinearity is difficult to isolate in the 

resulting transfer function, because the level of nonlinearity varies over the duration of the 

earthquake. 

A related effect is due to the variable frequency content between the different input 

motions. By using a nonlinear time-domain solution, the pile-soil system is subjected and responds 

to energy at multiple frequencies and amplitudes simultaneously, just like in a real earthquake. 

The resulting interaction of nonlinear responses to different frequencies can have a significant 

influence on the results that is not captured by elastic solutions, which assume the system response 
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to all frequencies can be superimposed. As a simple example, consider excitation of a pile-soil 

system by a signal containing a low frequency, large amplitude pulse, and a second high frequency 

component with a smaller amplitude. For an elastic system, the transfer function will be the same 

regardless of when the low frequency energy arrives relative to the high frequency waves. For a 

nonlinear system, if the high frequency energy arrives during the low-frequency pulse such that 

the pulse has resulted in significant p-y softening, the high-frequency excitation effectively occurs 

during a period of softened pile-to-soil stiffness contrast. Hence, the transfer function ordinate at 

the high frequency will be lower compared to a case where the high frequency energy excitation 

occurs prior to the low-frequency pulse arrival.  

Again, the effect of variable frequency content demonstrated by the preceding example is 

hard to pinpoint in the computed transfer functions, because many more than two frequencies of 

excitation are present in the input motions, and the effect of variable frequency content is conflated 

with the other effects discussed in this section. Rather, it can generally be stated that the effect of 

variable frequency content along with time-variable pile-soil interaction nonlinearity is to increase 

fluctuations in the computed transfer functions relative to the idealized elastic case. Moreover, the 

interplay of these effects with highly variable stratigraphy, as opposed to uniform or smoothly 

varying soil stiffness, further increases the irregularity of the transfer functions computed herein 

relative to elastic solutions. 

In summary, the key parameters controlling kinematic pile-soil interaction are: 

 Pile head-fixity condition, 

 Pile-to-soil stiffness contrast, 

 Variations in soil stiffness over the pile length, 
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 Nonlinear soil behavior due to pile-soil-interaction, which depends on relative pile-

to-soil stiffness contrast, and due to free-field ground response, 

 Radiation damping, and 

 Variable frequency content of the free-field excitation. 

The key differences between simplified elastic solutions and the nonlinear results 

computed for the more realistic conditions considered in this study are caused by the latter three 

factors in the above list. 

The results presented above make it clear that although using an elastic solution may 

provide a reasonable approximation of average behavior, it would fail to capture the variability 

that is possible when more realistic subsurface conditions and ground motions are used along with 

explicit consideration of nonlinearity. It is noteworthy, and rather convenient, that the elastic 

solutions are approximately coincident with the average results of this study. While this suggests 

that elastic solutions provide a reasonable first-order approximation of behavior, it also means that 

they would over-predict reductions in free-field motions roughly half the time. A need to capture 

the impact of realistic conditions, which is reflected by the variability in the results computed for 

this study, is the motivation for development of predictive models in the following sections. 

10.4 GENERALIZED MODELS FOR PREDICTING TRANSFER FUNCTIONS 

The results presented above demonstrate that when the nonlinear transfer functions computed for 

this study are normalized using dimensionless frequency ω/(λVS), consistent trends are exhibited 

between the individual results, but significant dispersion still exists about the mean trend. In this 

section, predictive models (i.e., equations with a specified functional form) are developed to 

predict this variability so that it can be represented in transfer functions used for design 
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applications. Coefficients used in these models depend on the controlling parameters identified in 

the previous section. Similar models are developed for predicting spectral ratios in the following 

section. 

Two potential approaches for developing the models were considered. Each begins with 

specifying a functional form, which is described in more detail in the following subsection. For 

now, consider the functional form suggested by Anoyatis et al. (2013) for fixed-head piles: 
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in which Anoyatis et al. recommended values of C0 = 0.25 and C1 = 4 for the coefficients. Equation 

(10.1) with these values for the coefficients is plotted in Figures 10-13 through 10-15. The first 

option for a fixed-head pile transfer function predictive model would be to add terms to Equation 

(10.1) that are functions of dimensionless frequency and other parameters in an attempt to achieve 

better normalization, for example: 
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  (10.2) 

Mathematically speaking, many potential variations of this approach are possible, for example 

including terms in the denominator of the fraction rather than as additive terms. The alternative 

approach is to leave the functional form of the model unchanged—for example, use Equation 

(10.1)—and develop regression models to predict the coefficients: 

     0 0 1 1 ...j n nC f predictor f predictor f predictor intercept        (10.3) 
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Equation (10.3) is an example of a multiple linear regression model for predicting a coefficient Cj 

as a linear combination of functions of predictor variables, each with an independent coefficient 

(slope) β. In a multiple linear model, functions of predictor variables do not necessarily have to be 

linear, but they must be combined in a linear fashion. For example, the following is a permissible 

multilinear model: 

   2
0 0 1 0jC predictor predictor intercept      (10.4) 

while this is not: 

    2

0 0 1 0jC predictor predictor intercept        (10.5) 

The approach of using multiple linear regression to predict individual coefficients rather 

than attempting to modify the functional form has several benefits. First, performing multiple 

linear regression for one coefficient model at a time is much simpler and faster than performing a 

nonlinear mixed-effects regression on the entire 60,000+ data points reflected in each of the 

Figures 10-13 through 10-15. Second, it maintains the ability to compare to elastic solutions. If the 

functional form were modified to improve normalization of the nonlinear results, the x-axis value 

of the normalized plots would no longer have a clear physical meaning like ω/(λVS) does. A 

modified x-axis variable would also complicate the process of converting the normalized transfer 

function back to Hu as a function of plain frequency, a necessary step to actually implement the 

transfer function for practical applications. Furthermore, there would be no clear way to express 

the elastic solutions in the new normalized space if the x-axis values were functions of parameters 

describing nonlinearity. It is useful to retain the ability to make the elastic versus nonlinear 

comparison, because it highlights the shortcoming of elastic solutions in terms of their inability to 
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predict the variability that occurs when realistic conditions are modelled. Hence, the multiple linear 

regression approach is used here. 

Predictor variables used in the multiple linear regression models must capture the physical 

mechanisms that control kinematic pile-soil interaction in order for the models to be meaningful 

and reliable. The recent work by Anoyatis et al. (2013) and Di Laora and Rovithis (2014) shows 

that the ω/(λVS) normalization scheme captures two of the controlling parameters well for elastic 

conditions: (i) pile-to-soil stiffness contrast and (ii) the ratio of pile characteristic length to the 

wavelength of free-field excitation, which controls the frequency-dependence of the problem. 

Hence, the primary goal of the of the coefficient prediction models is to capture the effects that are 

not present in the elastic solutions, namely: 

 Nonlinearity due to pile-soil interaction, 

 The influence of ground response on the free-field motions that excite the 

pile, and nonlinearity associated with the free-field response, and 

 Ground motion intensity and frequency content characteristics. 

Furthermore, parameters used in the models should be: 

 Dimensionless, if possible; 

 Easy to define with routine project information, i.e. without the need for in-

situ or laboratory testing that is outside the bounds of conventional practice, 

and using readily-quantifiable structural properties; 

 Based on parameters consistent with the level of seismic hazard analysis 

appropriate for the project. For example, if spectral ratios are desired for a 

response-spectrum based design, the parameters in the spectral ratio 
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prediction model should be based on the free-field response spectrum rather 

than requiring parameters that describe an appropriate acceleration time 

series. 

10.4.1 Functional Form 

The functional forms used here for fixed- and free-head horizontal displacement transfer functions 

are adopted from the Anoyatis et al. (2013) and Rovithis et al. (2009) studies, respectively. Note 

that Anoyatis et al. provide results for free-head piles in terms of plots of normalized transfer 

functions, but they only present a best-fit function for the fixed-head case. Although Rovithis et 

al. do not present the free-head function in the same form that it is presented below, the form below 

can be derived from other equations presented in their paper. 

Prior to adopting these previously-established functional forms, an independent study was 

conducted to derive expressions for the fixed- and free-head cases in order to evaluate if alternative 

forms existed that could capture the underlying trends with fewer coefficients, or simply provide 

a better fit. To do this, the derivation presented in Chapter 8 was distilled down to the simplest 

possible mathematical form and then terms were dropped one at a time to evaluate whether or not 

each term was necessary to capture the underlying trends. This exercise produced results that are 

essentially the same as Anoyatis et al. (2013) and Rovithis et al. (2009), presumably because they 

used a similar process, so their functional forms will be used herein. 

The functional form for normalized (i.e., versus dimensionless frequency) fixed-head 

transfer functions is: 
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   (10.6) 

The only difference between this functional form and Equation (10.1) used by Anoyatis et al. 

(2013) is that (10.6) uses λLa and VS,La, that is, values of  λ and VS computed over the depth 

increment corresponding to the uppermost active length of the pile. This makes (10.6) consistent 

with the form recommended by Di Laora and Rovithis (2014), who proposed C0 = 0.3 and C1 = 3 

as an approximate best-fit to their elastic results. 

The functional form for normalized free-head horizontal displacement transfer functions 

is: 
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  (10.7) 

The second term in (10.7) containing coefficients C4 and C5 captures the kinematic amplification 

exhibited by free-head piles. Note that although (10.6) appears as the first term in (10.7), 

coefficients C0 and C1 generally do not take on the same values as C2 and C3 for a given 

pile/site/ground motion combination in which all factors are equal other than the head-fixity 

condition. Although Rovithis et al. (2009) take the approach of using the same coefficients for this 

portion of their free- and fixed-head equations, the models developed here were found to have 

more predictive power if the coefficients were defined independently for each head-fixity case. 

To the best of the author’s knowledge, no functional form for the underlying trend of free-

head pile rotation transfer functions has previously been established. The curve shown in Figure 
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10-15 for Anoyatis et al. is simply a replication of results they presented graphically. Based on the 

similarity between these transfer functions (see Figure 10-15) and the kinematic amplification 

region of free-head horizontal displacement transfer functions (see Figure 10-14), the following 

functional form for normalized free-head rotation transfer functions has been established for this 

study: 
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   (10.8) 

10.4.2 Approach 

The statistical software package R (R Core Team 2015) was used to aid in development of the 

multiple linear regression for each coefficient prediction model. The steps taken to develop the 

models can be summarized as follows: 

 Use R software to perform nonlinear least-squares regression (NLSR) to 

determine best-fit coefficients for each transfer function result for fixed- and 

free-head piles. For example, see Figure 10-20. These values of coefficients 

become the “targets” which the coefficient models will be used to predict. 

Computed transfer functions that lacked a significant number of high 

coherence points or did not extend to a high enough dimensionless 

frequency such that the underlying trend was well-constrained by the data 

were excluded from the regression model at this step. 
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  Evaluate a number of statistically independent predictive parameters for 

possible inclusion in the models by looking for strong correlation, low 

standard error, and an approximately linear trend between a given parameter 

and coefficient. In most cases, a log transformation of both the predictive 

parameters and pool of target coefficients [i.e., log(parameter0) and 

log(C0)] was found to improve linearity, correlation, and normality/variance 

structure of residuals, while in other cases either no transformation or a 

power transformation was found to be optimum. The Box-Cox test (Box 

and Cox 1964) was used to determine the optimum transform power. 

 Once best candidates for predictive parameters have been identified, use R 

to assess the performance of the models. Begin with a null model (predicted 

coefficient = mean of best-fit results from NLSR), then add the single-best 

standalone predictor and test for statistical significance; look for next-best 

predictor that can be added that will have most predictive power and 

statistical significance, etc., until adding additional predictors does not 

significantly increase the predictive power of the model. This saturation 

usually occurred once three strong predictors were identified. 

 After a model has been developed for each coefficient needed for a given 

functional form, identify the predictors which (i) have the clearest physical 

meaning, (ii) have the most predictive power, and (iii) appear in multiple 

coefficient prediction models. Reformulate all coefficient prediction models 

to use the same set of predictors. While this may decrease the predictive 
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capability of an individual coefficient prediction model, using the same 

predictors in each model makes them easier to implement. 

 Throughout the process outlined by the above steps, but especially when a 

potential set of final models has been produced, check that the underlying 

assumptions of multiple linear regression are satisfied (after Kutner et al. 

2004): 

o Linear relationship between predictor and target parameter, 

o Normally-distributed predictor variables, e.g. as tested by a Q-Q 

plot, 

o Little or no multicollinearity between predictor variables, and  

o Homoscedasticity and lack of autocorrelation of residuals. 
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Figure 10-20: Example of nonlinear least-squares regression to determine coefficients for free-head 
pile functional form [Equation (10.7)] using computed data for B = 2 m, L = 60 m pile embedded in 

Site 4 and subjected to 1999 Hector Mine earthquake (NGA record sequence number 1786). 

 

10.4.3 Models for Predicting Fixed-Head Transfer Function Coefficients 

Models for predicting the coefficients to be used in Equation (10.6) are given in Equations (10.9) 

and (10.10). Metrics for assessing the statistical significance of the models are presented in Table 

10-1 and Figure 10-21. 
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The physical interpretation and motivation for using each of the predictor variables that 

appear in (10.9) and (10.10) are summarized as follows: 

 
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 is essentially a dimensionless frequency term, inspired by the 

dependence of kinematic interaction on ω/(λVS). The difference is that the 

term used here corresponds to a single value of frequency fm, which is the 

inverse of the mean period Tm defined by Rathje et al. (2004): 
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where FASi are the Fourier amplitude coefficients from the Fourier 

Amplitude Spectrum of the free-field ground surface motion, fi are the 

frequencies corresponding to each FASi, and Δf is the frequency interval 

used in the FFT computation. This term will be referred to as “mean 

frequency” of the surface motion, although Rathje et al. do not use this 

terminology because they refer to it only in terms of period. Use of mean 

frequency as a predictor term is a convenient way to represent the frequency 

content of the ground surface motion with a single value. (Note— in order 

to be consistent with this model, fm must be computed from the ground 

surface motion, not the input motion used for 1-D ground response 

analysis). Using mean frequency in a dimensionless frequency term 

effectively compares the pile characteristic length to the wavelength of free-

field excitation corresponding to the predominant energy in the ground 
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motion. Finally, the λLa term allows the coefficient to have a dependence on 

pile-to-soil stiffness contrast, which has been demonstrated to influence the 

results due to its effect on nonlinearity beyond what is captured by the 

dimensionless frequency term in the basic fixed-head functional form. 
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 is a proxy for shear strain in the free-field due to ground response, 

and also serves as a general proxy for ground motion intensity. The former 

is based on the fundamental relationship of ground velocity normalized by 

shear wave velocity in the transverse direction being equal to shear strain 

(e.g., see Newmark 1967). Again, PGV is the peak ground velocity of the 

free-field ground surface motion, not the base input motion used for ground 

response analysis. In addition to producing a dimensionless ratio when 

normalized by shear wave velocity, PGV was found to be a strong predictor 

because it is mostly dependent on mid-range frequency content of the 

ground motion, which is where kinematic pile-soil interaction becomes 

significant.  

 The preceding two terms are multiplied in order to allow the ground motion 

intensity to interact with the pile-to-soil stiffness term, which is an attempt 

to capture the increase in pile-soil interaction nonlinearity that is caused by 

increasing ground motion intensity. 
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 is the ratio of shear wave velocity over the uppermost pile active 

length (hence, near the ground surface) to the shear wave velocity over the 
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full length of the pile. This quantifies the increase, or lack thereof, in soil 

stiffness over the length of the pile. 
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 is the ratio of free-field ground surface acceleration response 

spectrum ordinates at 0.5 and 0.05 seconds, which serves as another 

descriptor of free-field ground motion frequency content. The periods 0.5 

and 0.05 seconds (f  = 2 to 20 Hz) were chosen because the transfer function 

corner frequencies and bandwidth over which significant deamplification 

occurs usually falls within this range (e.g., see Figure 10-16). The term may 

also capture, at least in part, the influence of free-field motion variable 

frequency-content on nonlinearity as discussed in §10.3. 

Table 10-1: Fixed-head transfer function coefficient prediction model metrics. 

Coefficient: Adjusted R2 F-Statistic P-Value 

C0 0.44 139 2.2E-16 

C1 0.19 43 2.2E-16 
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Figure 10-21: Residuals versus predicted values plots (left) and normal Q-Q plots (right) for fixed-
head transfer function coefficient prediction models. Lines on residuals plots show trend and ± one 

standard deviation. 

As shown in Figure 10-19(a), there is a variability between the normalized transfer 

functions computed for the two diameters of piles considered in this study. This is shown again in 

terms of all computed transfer function ordinates with high coherence in Figure 10-22. This 

variability provides an opportunity to test the predictive capabilities of the coefficient models 

(10.9) and (10.10) by comparing the mean model predictions to the study results for each diameter 

independently. Figure 10-23 and Figure 10-24 show that the models match the overall trends 

exhibited by the two sizes of piles well. Note that although this variability is discussed here in 

terms of diameter, the actual behavior is better characterized by its dependence on EpIp, and 

diameter only appears in the functional form and coefficient prediction models through its 

inclusion in the EpIp term. 
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Figure 10-22: Variability in fixed-head transfer function results for the two pile diameters 
considered in this study. 
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Figure 10-23: Mean fixed-head transfer function model prediction for B = 0.5 m compared to 

computed results. 
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Figure 10-24: Mean fixed-head transfer function model prediction for B = 2.0 m compared to 

computed results. 

10.4.4 Models for Predicting Free-Head Displacement Transfer Function 
Coefficients 

Models for predicting the coefficients to be used in Equation (10.7) are given in Equations (10.12) 

through (10.15). Metrics for assessing the statistical significance of the models are presented in 

Table 10-2 and Figure 10-25. The same predictive parameters used for the fixed-head pile 

coefficient prediction models were used here for the free-head case, and the physical meaning and 

motivation for each parameter that was described above applies here as well. 
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(10.15) 

 
Table 10-2: Metrics for free-head displacement transfer function coefficient prediction models. 

Coefficient: Adjusted R2 F-Statistic P-Value 

C2 0.51 72 2.2E-16 

C3 0.22 21 8.0E-12 

C4 0.47 62 2.2E-16 

C5 0.06 5 1.5E-3 
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Figure 10-25: Residuals versus predicted values plots (left) and normal Q-Q plots (right) for free-
head displacement transfer function coefficient prediction models. Lines on residuals plots show 

trend and ± one standard deviation. 
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As for the fixed-head pile transfer functions, the free-head transfer functions exhibit 

variability between the two diameters considered in the study. Figure 10-26 and Figure 10-27 

demonstrate that the coefficient prediction models are capable of capturing these trends well. 

 

 

Figure 10-26: Mean free-head displacement transfer function model prediction for B = 0.5 m 
compared to computed results. 
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Figure 10-27: Mean free-head displacement transfer function model prediction for B = 2.0 m 
compared to computed results. 

 

10.4.5 Models for Predicting Free-Head Rotation Transfer Function Coefficients 

Models for predicting the coefficients to be used in Equation (10.8) are given in Equations (10.16) 

through (10.19). Metrics for assessing the statistical significance of the models are presented in 

Table 10-3 and Figure 10-28, and the ability to capture diameter-variability in the results (see 

Figure 10-29) is shown in Figure 10-30 and Figure 10-31. 
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  (10.19) 

 
 
 

Table 10-3: Metrics for free-head rotation transfer function coefficient prediction models. 

Coefficient: Adjusted R2 F-Statistic P-Value 

C6 0.52 40 2.2E-16 

C7 0.31 17 4.1E-09 

C8 0.44 29 1.3E-13 

C9 0.18 9 2.3E-05 
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Figure 10-28: Residuals versus predicted values plots (left) and normal Q-Q plots (right) for free-
head rotation transfer function coefficient prediction models. Lines on residuals plots show trend 

and ± one standard deviation. 
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Figure 10-29: Variability in free-head rotation transfer function results for the two pile diameters 
considered in this study. 
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Figure 10-30: Mean free-head rotation transfer function model prediction for B = 0.5 m results. 
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Figure 10-31: Mean free-head rotation transfer function model prediction for B = 2.0 m results. 

10.5 GENERALIZED MODELS FOR PREDICTING SPECTRAL RATIOS 

The same approach described above for development of transfer function prediction models was 

used to develop models for predicting spectral ratios that include variability due to the controlling 

parameters identified in §10.3. Spectral ratios primarily depend on the same physical mechanisms 

that influence transfer functions, except that short-period (high-frequency) spectral ordinates are 

controlled by the largest amplitude peak in the signals rather than the high-frequency energy. 

Response spectra used to compute spectral ratios were computed from the free-field ground surface 

and pile-head motions for 5-percent damping. 
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10.5.1 Functional Form 

Spectral ratios for kinematic pile-soil interaction exhibit a characteristic form in which the 

ordinates generally decrease with decreasing period, down to some limiting value corresponding 

to the period Tmin (see Figure 10-32). The minimum value defines a transition point in the pile-soil 

system behavior. At periods below Tmin (i.e., frequencies above 1/Tmin), spectral acceleration of 

both the pile head and free-field ground surface motion are controlled by the largest amplitude 

peak in the respective motions. This behavior is maximized at T = 0 s (i.e., PGA), when the spectral 

acceleration is simply equal to the maximum of the acceleration time series. The largest amplitude 

peak of design-level earthquake motions usually occurs within mid-range frequencies of 2 to 5 Hz 

(e.g., periods around 0.2 to 0.5 s), which corresponds to the range over which kinematic pile-soil 

interaction may be significant for stiff piles in soft soil, but relatively insignificant for smaller piles 

in stiffer soil (see Figure 10-16). Hence the spectral ratio ordinate at zero period depends on the 

level of kinematic pile-soil interaction that occurs at frequencies corresponding to the peak 

amplitude of the free-field ground surface motion, and for fixed-head piles will approach unity as 

the level of pile-soil interaction decreases. 

 
Figure 10-32: Fixed-head pile spectral ratio functional form after Di Laora and Sanctis (2013). 
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The only published work that the author is aware of in which kinematic pile-soil interaction 

spectral ratios are computed and discussed in terms of an underlying functional form is the elastic 

study by Di Laora and Sanctis (2013). The functional form used here for fixed-head piles is 

adopted from their study: 
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  (10.20) 

Equation (10.20) is a piecewise combination of two parabolas and a straight line, where R0 and 

Rmin are coefficients defining the spectral ratio at a period of zero and the minimum spectral ratio, 

and Tmin, and Tcrit are the period corresponding to the minimum spectral ratio and the period beyond 

which no significant reduction occurs, respectively. These parameters and the basic functional 

form are illustrated in Figure 10-32. 

Di Laora and Sanctis only considered fixed-head piles; for free-head pile spectral ratios, 

the author is not aware of any published functional forms. The trend exhibited by free-head pile 

spectral ratios computed for this study is matched well by the following: 
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  (10.21) 

Equation (10.21) is a modified version of the fixed-head form which captures the effect of 

kinematic amplification on the computed spectral ratios by adding a third parabolic leg to the 

piecewise formulation. The peak spectral ratio is defined by (Rmax, Tmax) as shown in Figure 10-33.  

 

Figure 10-33: Free-head pile spectral ratio functional form. 

10.5.2 Models for Predicting Fixed-Head Spectral Ratio Coefficients 

Models for predicting the coefficients to be used in Equation (10.20) are given in Equations (10.22) 

through (10.25). Metrics for assessing the statistical significance of the models are presented in 

Table 10-4 and Figure 10-34. 



 291

,0 max
0,

, ,

0.086log 0.047 0.046log 0.81a

a a

S L
FXH

L S L S L

Vf PSA
R

V V g

     
               

  (10.22) 

,0 max
min,FXH

, ,

0.38log 0.12 0.026log 0.16a

a a

S L

L S L S L

Vf PSA
R

V V g

     
               

  (10.23) 

  0.58 ,0 max
min,FXH

, ,

1.39log 4.53 1.99log 0.26a

a a

S L

L S L S L

Vf PSA
T

V V g
      

               
  (10.24) 

  ,0 max
,

, ,

log 0.79log 0.53 0.27log 1.01a

a a

S L
crit FXH

L S L S L

Vf PSA
T

V V g

     
              

  (10.25) 

Note that Tmin and Tcrit in Equations (10.24) and (10.25) are in seconds. 

The physical interpretation and motivation for using each of the predictor variables that 

appear in (10.22) through (10.25) are summarized as follows: 

 Similar to the transfer function models, the 0

,a aL S L

f

V

 
  
 

 term is a 

dimensionless frequency computed at a single frequency value. In this case 

f0 is used, which is the inverse of the “smoothed spectral predominant 

period” period T0 defined by Rathje et al. (2004): 
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where Ti are the discrete periods in the acceleration response spectrum 

equally spaced on a log axis and PSA(Ti) are the spectral accelerations at 
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periods Ti. If the spacing criterion is not satisfied, the spectral values must 

be interpolated over a closer log interval. Equation (10.26) essentially 

extracts the spectral ordinates that are greater than 1.2 times PGA, thus 

exhibiting significant amplification, and returns the period corresponding to 

the peak of a smoothed curve of these ordinates. The way in which T0 is 

defined makes it mostly dependent on the moderate to high frequency 

content of a ground motion, which is the important range for kinematic pile-

soil interaction. As demonstrated by Rathje et al, T0 is also a better overall 

descriptor of the mean frequency content of the motion than the peak of the 

unsmoothed spectrum because it represents a weighted average of the entire 

period bandwidth over which amplification occurs, and thus is not 

controlled by a single peak that may have narrow bandwidth. Furthermore, 

f0 was chosen because it is defined from the free-field ground surface 

motion response spectrum. For design applications in which spectral ratios 

for kinematic pile-soil interaction are desired, it would be impractical to 

have to compute a parameter like fm which is defined by a ground motion 

time series instead of a response spectrum. The empirical relationships 

developed by Rathje et al. could also be used to predict f0 for use in (10.22)

—(10.25) at the planning stages of a project, or for cases when a site-

specific seismic hazard analysis to define response spectra is not performed. 
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 quantifies changes in soil stiffness over the length of the pile.  
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 is simply the maximum spectral acceleration normalized by 

gravity such that the term is dimensionless. This measure of ground motion 

intensity serves as a proxy for nonlinearity and was found to be a more 

effective predictor than spectral acceleration at any one specified period. As 

discussed above, the maximum spectral acceleration also plays an important 

role in defining the zero-period ordinate and thus is a powerful predictor of 

R0. 

 
Table 10-4: Fixed-head spectral ratio coefficient prediction model metrics. 

Coefficient: Adjusted R2 F-Statistic P-Value 

R0 0.19 74 2.2E-16 

Rmin 0.54 381 2.2E-16 

Tmin 0.33 157 2.2E-16 

Tcrit 0.70 734 2.2E-16 
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Figure 10-34: Residuals versus predicted values plots (left) and normal Q-Q plots (right) for fixed-

head spectral ratio coefficient prediction models. Lines on residuals plots show trend and ± one 
standard deviation. 
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Figure 10-35: Fixed-head spectral ratio results. 

As for the transfer functions, variability exists in the computed spectral ratios between the 

two diameters considered for this study (Figure 10-35). Since no normalization scheme is applied 

to the results—that is, the computed spectral ratios are presented versus period rather than a 

dimensionless combination of period and other variables—there is variability in the spectral ratio 

results that has effectively been removed (or at least reduced) from the corresponding normalized 

transfer function results by using a dimensionless frequency that captures the underlying physics 

(e.g., Figure 10-13 and Figure 10-14). While it would be possible to first normalize the spectral 

ratio results using a “dimensionless period” akin to the dimensionless frequency used for transfer 

functions, this would obscure the meaning of a spectral ratio at a given period. Moreover, 
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promoting the false notion that spectral ratios are simply the mirror image of transfer functions 

since period is the inverse of frequency is undesirable, so “dimensionless period” is avoided herein. 

 

Figure 10-36: Fixed-head pile spectral ratio predictive model residuals. 

Residuals between the predictive model and the computed spectral ratio results are shown 

in Figure 10-36. To compute these residuals, the coefficient prediction models [Equations (10.22)

—(10.25)] were applied for a given combination of pile, site, and ground motion properties to 

predict spectral ratio values at each period. These predicted values were then subtracted from the 

spectral ratios computed in the parametric analyses for the same combination of pile, site, and 

ground motion properties. The mean trend exhibited by the residuals is close to zero, indicating 

that the predictive model is generally unbiased. Furthermore, the ± one standard deviation error 

bars shown that the majority of the residuals fall close to zero. The ± one standard deviation error 

bars are the best means of visually assessing these trends because the large number of points (over 
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60,000) shown on the plot make it visually difficult to assess where the greatest concentration of 

points lie. 

The largest bias occurs around a period of 0.05 to 0.1 seconds, which is where the minimum 

spectral ratio occurs. The mean bias at this period is approximately 0.1, meaning that, on average, 

predicted spectral ratios are about 10-percent below those computed for this study. This bias is 

attributable to the difficulty in predicting the period and corresponding ordinate at which the local 

minimum in the spectral ratio will occur (Tmin and Rmin, respectively). In future studies it may be 

possible to reduce this bias, and/or to further reduce the total variability exhibited the residuals, 

thus improving the reliability of the model. 

10.5.3 Models for Predicting Free-Head Spectral Ratio Coefficients 

Models for predicting the coefficients to be used in Equation (10.21) are given in Equations (10.27) 

through (10.32). Metrics for assessing the statistical significance of the models are presented in 

Table 10-5 and Figure 10-37. The same predictor variables used in the fixed-head models are used 

here. 
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Note that Tmin, Tmax, and Tcrit in Equations (10.29), (10.31),  and (10.32) are in seconds. 
 

Table 10-5: Metrics for free-head spectral ratio coefficient prediction models. 

Coefficient: Adjusted R2 F-Statistic P-Value 

R0 0.47 203 2.2E-16 

Rmin 0.13 35 2.2E-16 

Tmin 0.41 163 2.2E-16 

Rmax 0.47 203 2.2E-16 

Tmax 0.58 313 2.2E-16 

Tcrit 0.60 350 2.2E-16 
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Figure 10-37: Residuals versus predicted values plots (left) and normal Q-Q plots (right) for free-
head spectral ratio coefficient prediction models. 
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Figure 10-38: Free-head pile spectral ratio results. 

Free-head pile spectral ratios show amplification (ordinates > 1.0) at short periods because 

kinematic amplification usually occurs during the largest-amplitude pulse in the ground motion, 

which is the component of the motion that controls PGA and short-period spectral ordinates. What 

appears to be a large number of points showing significant amplification at short periods in Figure 

10-38 is somewhat exaggerated, however, because the points are approximately log-normally 

distributed, which is not visually apparent in Figure 10-38. 

The ability of the predictive models to capture the effect of kinematic amplification at short 

periods is demonstrated in the plot of residuals shown in Figure 10-39. The average residual value 

is near zero at periods greater than about 0.1 seconds, and is around 0.05 to 0.1 at shorter periods. 
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This indicates that the predictive model underestimates the computed spectral ratio by, on average, 

about 5 to 10 percent. Future studies may be able to reduce this bias by adjusting the coefficient 

prediction models. 

 
Figure 10-39: Free-head pile spectral ratio predictive model residuals. 

10.6 PILE GROUP RESULTS 

Simulations of pile groups subjected to incoherent ground motions generally showed that group 

effects were minimal for the parametric bounds considered here, which is consistent with previous 

findings based on elastic solutions. For stiff-pile/soft-site combinations for which single piles 

exhibit significant reduction of the free-field motion at low frequencies, the average trends 

exhibited by pile-group transfer functions typically ranged between 0 to 10 percent below the 

corresponding single-pile transfer functions computed for the same ground motion. For pile/site 

combinations with less of a pile-to-soil stiffness contrast, pile groups amplified narrow-bandwidth 

frequency components of some ground motions up to about 10-20 percent relative to the single 
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pile transfer functions, but the average trends of the group transfer functions still generally plotted 

slightly below the single pile results.  

For design applications, a reasonable first-order approximation of pile group behavior 

could be estimated by reducing transfer functions predicted using the models presented in this 

chapter by an additional 5 percent at frequencies beyond the corner frequency. Because of the 

idiosyncratic nature of the group results, for critical projects, modeling of the type used for this 

study would be more appropriate than this rough approximation. Alternatively, group effects could 

be ignored due to their relatively insignificant contribution to kinematic pile-soil interaction. Pile-

supported buildings which use a stiff mat foundation (i.e., piled-raft) or grade beams to connect 

piles over a large footprint could potentially experience a larger reduction due to the group 

averaging. This should be examined in future studies. 

Examples results are shown in Figure 10-40 through Figure 10-42. Comparison of Figure 

10-40 to Figure 10-41 (same pile/site combination, different motion) shows that the group transfer 

function varies based on the ground motion amplitude and frequency content in much the same 

manner as the single pile results. Comparison of Figure 10-41 to Figure 10-42 (same pile/motion, 

different site) shows that for stiffer sites, the pile groups may amplify or de-amplify certain 

frequency components, but the smoothed trend exhibits approximately the same difference 

between single pile and group pile results for both sites. 
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Figure 10-40: Group versus single-pile results for B = 2.0 m. L = 30 m pile, Site 1, subjected to 1994 
Northridge earthquake (NGA record sequence number 957). 

 
Figure 10-41: Group versus single-pile results for B = 2.0 m. L = 30 m pile, Site 1, subjected to 1971 

San Fernando earthquake (NGA record sequence number 72).  
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Figure 10-42: Group versus single-pile results for B = 2.0 m. L = 30 m pile, Site 4, subjected to 1971 

San Fernando earthquake (NGA record sequence number 72). 
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11 Combination of Inertial and Kinematic Pile-
Soil Interaction 

11.1 COMBINING INERTIAL AND KINEMATIC SSI 

For comparison of predictive models to empirical transfer functions (TF), and in a broader sense, 

for consideration of a structure’s earthquake response considering soil-structure interaction (SSI), 

it is necessary to consider the combination of kinematic and inertial effects. Analytically 

decoupling these effects for use with the substructure method of design is convenient, but must be 

kept in check by considering important factors related to their combined effects. This chapter will 

discuss this topic prior to presentation of the example applications in the next chapter. 

Three distinct motions will be considered in the context of combined inertial and kinematic 

SSI: the free-field motion (FFM), foundation-input motion (FIM), and foundation motion (FM). 

The FFM and FIM are consistent with the definitions given in previous chapters, and represent the 

modification of the free-field ground response due to kinematic pile-soil interaction. In the absence 

of inertia from the superstructure, the FM is the same as the FIM. When superstructure inertia is 

present, however, the FM will differ from the FIM because inertial force effects from the 

superstructure will induce additional foundation displacements and rotations, which is the concept 

of inertial SSI. In other words, the FM is influenced by both inertial and kinematic SSI. 
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When considering empirical TF’s computed between recordings of instrumented structures 

and the adjacent free-field, it is important to keep in mind that the empirical TF represents the ratio 

of FM/FFM—as opposed to FIM/FMM—since inertial effects are present in the structure 

foundation-level recording. To make a meaningful comparison between an empirical TF and a 

purely kinematic TF model such as the ones developed in this study, it is necessary to simulate the 

response of the structure subjected to the FIM; the FM is an outcome of this analysis. An alternative 

method is to approximately remove inertial effects by ignoring the portion of an empirical TF that 

is near the first-mode frequency of the system, based on the assumption that this is where inertial 

effects are most pronounced (e.g., Mikami et al. 2008). However, this is often where the greatest 

reductions between FM and FFM are observed, so ignoring this frequency range can leave 

important questions unanswered. 

For many applications, the structure response can be idealized as a single-degree-of-

freedom oscillator (SDOFO), and the FM can be computed using the substructure analysis method. 

This process is illustrated in Figure 11-1 and can be summarized as follows: 

1. Compute kinematic transfer function using site and pile parameters [Figure 11-1(a) and 

(b)]. This could be achieved using the generalized models presented in Equations (10.6) – 

(10.8) (depending on head-fixity) or by directly simulating the dynamic pile response to 

free-field motions at discrete depth intervals computed from a ground response analysis. 

2. Convolve the transfer function from step 1 with the FFM to generate a FIM. 

3. Impose this FIM on the free end of a spring representing foundation impedance for the 

appropriate degree of freedom. For example, Kxx represents the pile translational 

impedance in Figure 11-1(c). Additional impedance springs can be used to model pile 

rotation and/or vertical translation depending on the pile boundary conditions. The stiffness 
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of impedance springs can be computed for specific site conditions, or approximated using 

a simplified equivalent-linear approach [e.g., see NIST (2012)]. 

4. Compute dynamic response of system subjected to FIM through impedance spring(s), from 

which FM can be determined. The transfer function computed between the FM and FFM 

[Figure 11-1(d)] can be compared to empirical TF’s for the system being modeled. 

 

 

Figure 11-1: (a) Schematic of pile-soil kinematic interaction, which produces foundation-input 
motion (FIM) to free-field motion (FFM) transfer function (b), and (c) application of kinematic 
transfer function using substructure approach to represent a structure supported by a fixed-head 
pile. (d) The foundation motion (FM) transfer function differs from the FIM transfer function 
because of additional foundation displacements resulting from superstructure inertial forces. 
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11.1.1 Linear-Elastic SDOFO-Pile-Soil System 

A series of dynamic simulations of the idealized linear-elastic system depicted in Figure 11-2 were 

conducted to illustrate the effects of combining inertial and kinematic SSI.  

 

Figure 11-2: Idealized system used for direct analysis method. 

A structure represented by a SDOFO is supported on a single pile, embedded in a 

homogeneous soil medium excited by vertically-propagating shear waves. The SDOFO is defined 

by a lumped mass (mSDOFO) and a massless column of height HSDOFO and swaying stiffness kSDOFO. 

The swaying stiffness of a fixed-base SDOFO is related to the column flexural rigidity EISDOFO by: 

 3

3 SDOFO
SDOFO

SDOFO

EI
k

H
           (11.1) 

The first-mode fundamental frequency of the fixed-base SDOFO f1,SDOFO can be computed from 

its mass and stiffness using the following basic relationship: 

1,2SDOFO
SDOFO SDOFO

SDOFO

k
f

m
           (11.2) 
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Figure 11-3 compares a kinematic pile-soil interaction TF (i.e., FIM/FFM) to FM/FFM 

TF’s computed with superstructure inertia included. The following system properties were used 

for the analyses: 

 Soil: VS = 100 m/s, ρs = 17 Mg/m3, βs = 0.05, νs= 0.35 

 Pile: L = 10 m, elastic stiffness EpIp = 84 MN·m2, ρp = 24.5 Mg/m3, and a 

fixed-head boundary condition 

 Soil-Pile Interaction: interaction modulus k = 37 MPa, which represents a 

modulus reduction of about 20 percent from the initial elastic condition to 

approximate nonlinearity due to site response and pile-soil interaction, and 

5-percent damping modeled as equivalent viscous damping through 

distributed dashpots. 

 SDOFO: HSDOFO = 5 m, mSDOFO = 10 Mg, and f1,SDOFO = 7 Hz, which 

corresponds to EISDOFO = 81 MN·m2. Flexible-base (i.e., including 

foundation flexibility) first- and second-mode natural frequencies of 

f1̃,SDOFO. = 6.1 and f2̃,SDOFO = 33 Hz were computed using the eigen command 

in OpenSees. 

 Rayleigh damping was imposed on the structural elements corresponding to 

5-percent damping at f1̃,SDOFO and f2̃,SDOFO. 

 Ground motion: sine-sweep motion of constant 0.1-m amplitude over a 

frequency range of 0.1 to 25 Hz, specified at the ground surface and 

computed at each depth increment of the pile using Equation (8.3). 
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Figure 11-3: Comparison of transfer functions computed for pile-soil system and combined single-
degree-of-freedom-oscillator and pile-soil systems using direct and substructure analysis methods. 

The direct analysis TF in Figure 11-3 was computed from analyzing the complete system 

depicted in Figure 11-2, while the substructure analysis TF was computed from analyzing the 

system depicted in Figure 11-1(c). For the substructure analysis, the FIM was computed by 

convolving the free-field sine-sweep motion at the ground surface with the kinematic pile-soil 

interaction transfer function. The pile was replaced with an equivalent macroelement representing 

the foundation translational impedance. To determine the foundation impedance, a “pushover” 

analysis of the pile was performed by imposing a lateral force on a model of the pile-soil domain 
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(no SDOFO) and recording the lateral displacement. This produced a pile-head lateral force-

versus-displacement stiffness Kxx = 54.7 MN/m. To capture foundation damping, a dashpot with a 

coefficient of 142 kN·s/m was modeled in parallel with the spring. This dashpot coefficient 

corresponds to 5-percent damping at f1̃,SDOFO based on the following relationship relating damping 

ratio β to equivalent viscous damping (NIST 2012): 

2 j j
j

j

k
c




            (11.3) 

In (11.3), k is stiffness (in this case Kxx), ω is the frequency of interest, and the subscript j stands 

for the mode of interest, in this case first-mode. 

 The TF’s computed from the direct and substructure analysis methods are in close 

agreement for this example. The slight misfit between them occurs because of the different modal 

properties of the two systems and the manner in which damping was implemented. While the 

substructure model with lumped mass and a single degree of freedom has only one defined mode, 

the direct-analysis model has multiple higher modes associated with deflection of the pile’s 

distributed mass. Hence the modal-mass participation and mode-shapes of the two models are not 

identical. In addition, f1̃,SDOFO of the substructure model is slightly less than for the direct-analysis 

model (6.01 versus 6.12 Hz) because of the different distribution of mass and stiffness that occurs 

when the pile is replaced by a single macroelement. Nonetheless, the good agreement between the 

two approaches verifies that the substructure method can provide a reasonably accurate response 

for linear-elastic systems. Note that at a single frequency of interest, the substructure method can 

provide an exact match to the direct analysis method, but a perfect match cannot be achieved over 

a wide frequency bandwidth for a time-domain solution when Rayleigh damping and equivalent 

viscous damping are combined in the manner of this example. 
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 Two deviations between the complete SDOFO-pile-soil system TF and the purely 

kinematic pile-soil TF are of interest. First, significant amplification occurs in the complete-system 

TF near f1̃,SDOFO as a result of resonance. At frequencies near f1̃,SDOFO, the SDOFO mass undergoes 

displacements in excess of the ground displacement, which generates inertial base shear and 

moment acting on the foundation. Noting in Figure 11-3 that, for this example, the purely-

kinematic pile-soil TF predicts a negligible difference between the FIM and FFM near f1̃,SDOFO, it 

can be said that the FM is controlled by the structure response near f1̃,SDOFO, and that kinematic 

pile-soil interaction has a negligible influence. This can be verified by repeating the substructure 

analysis with the FFM in place of the FIM—effectively bypassing kinematic pile-soil interaction. 

Figure 11-4 shows that this results in a nearly identical TF for frequencies up to the kinematic pile-

soil interaction TF corner frequency (about 7 Hz). Only at frequencies above 7 Hz does the 

reduction of FIM due to kinematic pile-soil interaction result in a significant difference between 

the two TF’s computed for the complete system. 
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Figure 11-4: Comparison of transfer functions computed with and without consideration of 
kinematic pile-soil interaction. 

The second difference of interest between the complete-system TF (i.e., including the 

SDOFO inertia) and pile-only kinematic TF is that the complete-system TF is significantly reduced 

relative to the pile-only kinematic TF at frequencies greater than the range where resonance occurs. 

For example, referring back to Figure 11-3, the complete-system TF is less than the pile-only 

kinematic TF at all frequencies shown in the plot above about 6.5 Hz. This is significant because 

it indicates that kinematic pile-soil interaction is not entirely responsible for reductions between 

FM and FIM that are observed in empirical TF’s, even away from f1̃,SDOFO. Even for the case where 
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the FFM was used in place of the FIM with the substructure method, shown as the dashed-orange 

TF in Figure 11-4, the TF plots below 1.0 at all frequencies shown above about 6.5 Hz. 

This reduction occurs as a result of phase lag between the oscillator response and the 

ground surface motion, which is depicted for the system from the above example by the phase 

angle frequency-response curve in Figure 11-5(a). In this context, phase lag is defined as the time 

difference between the peak ground response and the subsequent peak SDOFO response. As 

described by Chopra (2007), phase lag of a single-degree-of-freedom system varies over three 

distinct frequency ranges based on the ratio of excitation frequency to the system first-mode 

fundamental frequency. Chopra’s explanation is expanded here to include the SDOFO foundation-

level response, including foundation flexibility, and the influence of pile-soil kinematic 

interaction—two factors not present for a truly single-degree-of-freedom system. When these 

additional system components are considered, four distinct regions of phase-lag behavior are 

observed as depicted in Figure 11-5 and Figure 11-6: 

1. At low frequencies (f << f1̃,SDOFO), the direction of base excitation changes slowly, hence 

inertial forces are low and damping is insignificant, so the stiffness of the system controls 

the response. Because insignificant inertial forces develop at the SDOFO mass-level, the 

SDOFO response is in-phase with the ground surface response at both the mass- and 

foundation-level. This is evident as near-zero phase-lag in the low frequency range of 

Figure 11-5(a). 

2. As the excitation frequency approaches the system fundamental frequency (f ≈ f1̃,SDOFO), 

inertia increases, along with the corresponding displacement, velocity, and damping of the 

SDOFO. The magnitude of the peak SDOFO response at the mass-level, which occurs at f 

/ f1̃,SDOFO = 1, is dependent primarily on the system damping. The large base-shear and 
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moment resulting from inertia dominates the SDOFO foundation-level response, hence the 

response at mass-level and foundation-level are nearly in phase with each other. However, 

as illustrated in Figure 11-5(c) and Figure 11-6(e) and (f), the SDOFO response is 

approximately 90 degrees out-of-phase with the ground surface response near f / f1̃,SDOFO = 

1, meaning that the peak SDOFO response occurs when the ground surface displacement 

passes through zero. This is a fundamental property of resonance of a SDOF system. 

3. At high frequencies (f >> f1̃,SDOFO), the direction of base excitation changes rapidly. The 

inertia of the SDOFO mass now opposes the rapidly-changing direction of ground 

displacement, hence the mass-level response approaches a phase lag of 180 degrees 

(perfectly out-of-phase). As shown in Figure 11-6(j)-(l), this means that when the ground 

surface displaces to the right, the SDOFO mass displaces to the left, and vice versa. As the 

SDOFO mass increases, the mass-level response approaches zero at high frequencies, 

hence the SDOFO response is controlled by its mass in this frequency range. The pile 

displaced shape is controlled by the profile of ground displacement rather than the SDOFO 

response, hence the pile-head motion (i.e., SDOFO foundation-level response) is in phase 

with the ground-surface response, so the phase lag returns to zero at high frequencies. The 

magnitude of the SDOFO foundation-level response is reduced from the ground-surface 

response by two mechanisms: (i) the tendency of the SDOFO mass to remain still due to 

its inertia, and (ii) kinematic pile-soil interaction, which would reduce the foundation-level 

response relative to the ground-surface response even in the absence of inertial forces. 

4. A transition between (2) and (3) occurs when the foundation-level response shifts from 

being dominated by inertia to being controlled primarily by the ground displacement. This 

transition is marked by the peak in the foundation-level response phase-lag plot [red line 
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in Figure 11-5(a)] and the response history plot and graphics in Figure 11-5(d) and Figure 

11-6(g)-(i). The local minimum of the complete-system TF occurring around 7 Hz in 

Figure 11-3 occurs approximately when the foundation-level response transitions from 

being out-of-phase with the ground surface response (phase lag > 90 degrees) to in-phase 

(phase lag < 90 degrees). The transfer function ordinate Hu may then increase slightly until 

kinematic pile-soil interaction becomes significant. This occurs between about 7 and 10 

Hz in Figure 11-3.  
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Figure 11-5: (a) Phase angle frequency-response curves for SDOFO-pile-soil system (inset) and (b)-
(e) response history of system components at different frequencies of harmonic free-field excitation. 
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Figure 11-6: Response of SDOFO-pile-soil system to harmonic free-field excitation. 
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Several other issues can be investigated with the modeling framework presented above. A 

select few will be discussed in the following sections, although this is not meant to be an exhaustive 

treatment of the combination of kinematic and inertia SSI. 

11.1.2 Effects of SDOFO Properties 

In the familiar context of a response spectrum, a single-degree-of-freedom oscillator is defined 

solely by its fundamental frequency (or period). When representing an actual structure as a 

SDOFO, however, the height, mass, and stiffness of the system—not just the fundamental 

frequency—all affect its seismic response. This is because a change to any of these properties will 

affect the inertial base shear and moment imposed on the foundation, in-turn altering the overall 

seismic response. To illustrate these effects, the complete system with the “baseline” properties 

given in §11.1.1 was re-analyzed with the following modifications: 

 mSDOFO varied by a factor of three from the original 10 Mg to 3.33 and 30 

Mg 

 HSDOFO varied by a factor of three from the original 5 m to 1.67 and 15 m. 

 Free-head pile boundary condition considered in addition to fixed-head. 

The fixed-base fundamental frequency of the SDOFO f1,SDOFO was held constant at 7 Hz by 

changing EISDOFO. TF computed from the results of these simulations are plotted in Figure 11-7, 

demonstrating that: 

 The flexible-base fundamental frequency of the system f1̃,SDOFO is decreased 

when the mass or height are increased, and is always less than the fixed-

base f1,SDOFO. 
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 The amount of amplification near f1̃,SDOFO and deamplification at f > f1̃,SDOFO 

is also altered when the mass and height are changed, 

 The trends of increasing versus decreasing the amount of amplification near 

f1̃,SDOFO relative to the baseline properties as a result of changes in mass are 

opposite for the free- and fixed-head-pile systems, and  

 The effect of changes in height is negligible for the fixed-head pile system 

over the range of properties considered for this example. 

The different behavior of the free- versus fixed-head-pile systems occurs because the 

inertial base shear and moment result in greater rotations and displacements of the free-head pile 

than for the fixed-head pile. 

The effect of SDOFO properties on the combined inertial-kinematic TF is highlighted here 

simply for the purpose of demonstrating that accurate mass, height, and stiffness must be specified 

for a meaningful comparison to be made between an empirical TF and a simplified model. 

Unfortunately, adequate information to model an instrumented structure as a SDOFO is not always 

available even when recording of the structure and ground motions are available. Likewise for 

forward-design scenarios, it is important to accurately specify more than just the fundamental 

frequency of the structure for consideration of combined kinematic-inertial SSI effects. 
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Figure 11-7: Transfer functions computed for variable single-degree-of-freedom oscillator 

properties. Note fixed-base fundamental frequency f1,SDOFO = 7 Hz for all cases. 
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11.1.3 Effect of Pile-Soil Kinematic Interaction Corner Frequency versus SDOFO 
Fundamental Frequency 

In the preceding examples, the corner frequency fc of the purely kinematic pile-soil interaction 

TF’s have always been greater than f1̃,SDOFO of the SDOFO-pile-soil system. (Recall that the corner 

frequency of the kinematic pile-soil interaction TF is the frequency beyond which significant 

deamplification of the FFM occurs, e.g. approximately 7 Hz in Figure 11-3). This means that over 

the range where amplification occurs for the complete-system TF due to inertial resonance (e.g., 

approximately 4-7 Hz in Figure 11-3), kinematic SSI is negligible. In this section the result of 

having fc be approximately equal-to or less-than f1̃,SDOFO are briefly investigated, since this is a 

possibility for flexible structures supported on stiff piles in soft soil. 

A series of dynamic simulations similar to those described in §11.1.1 were performed, 

except that f1,SDOFO was varied from 4 to 19 Hz while fc remained constant at about 7 Hz. HSDOFO 

= 5 m and mSDOFO = 10 Mg were held constant, and EISDOFO was adjusted according to Equation 

(11.1) to yield the desired f1,SDOFO. In other words, the only system component that is changed in 

order to vary f1,SDOFO is the column stiffness. Rayleigh damping coefficients were adjusted to 

achieve 5-percent damping at f1̃,SDOFO and f2̃,SDOFO. 

The results shown in Figure 11-8 show that the shape of the TF stays approximately the 

same as f1,SDOFO is varied relative to fc; only the magnitude of the amplification near f1̃,SDOFO and 

deamplification at f > f1̃,SDOFO change. For the example systems shown in the figure, the magnitude 

of these two mechanisms both increase as f1,SDOFO increases, but this is not solely a function of 

f1,SDOFO relative to fc—inertial SSI increases as f1,SDOFO increases because the higher acceleration 

of the excitation results in greater inertial force, in turn resulting in greater peak amplification at 

resonance. (Recall that for the constant-amplitude input displacement used for the analysis, as 

frequency is increased, velocity and acceleration increase.) 
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The influence of kinematic SSI on the results is primarily on the amount of deamplification 

at f > f1̃,SDOFO. For systems that have f1̃,SDOFO < fc, kinematic SSI is the primary mechanism 

controlling the TF at f > fc. For example, the deamplification at frequencies greater than about 7 

Hz for the f1,SDOFO = 4 Hz TF is due almost entirely to kinematic SSI, whereas for the higher f1,SDOFO 

TF’s, inertial SSI still plays a significant role at f  > fc. Hence, the following statement can be made: 

if f1̃,SDOFO < fc, kinematic pile-soil interaction is the dominant mechanism causing reduction (or 

lack thereof) of the FM relative to the FFM at frequencies greater than f1̃,SDOFO; if f1̃,SDOFO > fc, both 

inertial and kinematic SSI influence the complete-system TF at frequencies greater than f1̃,SDOFO. 

 

Figure 11-8: Effect of varying fixed-base fundamental frequency of SDOFO-pile-soil system relative 
to kinematic pile-soil interaction transfer function corner frequency 
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11.1.4 Effect of Pile-Soil Interaction Nonlinearity 

The results presented in the previous chapter show that kinematic pile-soil interaction is strongly 

dependent on soil nonlinearity. This issue is significant because the principal of superposition 

produces an exact result only for linear-elastic systems, and the substructure methods relies on 

superposition to combine inertial and kinematic effects. In this section the error introduced to the 

substructure method as a result of neglecting nonlinear pile-soil interaction is examined. While not 

shown here, it should also be recognized that nonlinearity in other system components, such as 

free-field site response and nonlinear structural behavior, further violate the principal of 

superposition. 

The SDOFO-pile-soil system with the properties given in §11.1.1 was again analyzed, 

except that the linear elastic soil springs and dashpots were replaced with nonlinear p-y springs for 

the direct analysis. For the substructure analysis, the pile was replaced by a single macro-element 

representing foundation impedance with either a nonlinear or equivalent-linear impedance spring. 

For the analyses previously presented in §11.1.1 through §11.1.3, the p-y modulus Ke was 

computed assuming a 20-percent modulus reduction to approximately account for nonlinearity. 

For the analyses in this section computed using nonlinear p-y springs, the initial elastic behavior 

was defined based on the full elastic stiffness (i.e., Ke = 46 MPa corresponding to VS = 100 m/s), 

not a reduced value, since the PySimple3 material inherently captures the nonlinear behavior at 

larger displacement. 

Figure 11-9 presents results generated using the same sine-sweep motion of constant 0.1-

m amplitude over a frequency range of 0.1 to 25 Hz. For this case, the substructure analysis 

performed with a nonlinear foundation impedance spring closely matches the direct analysis 



 325

results, with only a slight over-prediction of the peak response at resonance due to a minor 

mismatch in damping between the two systems. 

 

Figure 11-9: Effect of nonlinear pile-soil interaction on SDOFO-pile-soil system transfer functions 
for homogeneous soil subjected to sine-sweep free-field excitation. 

Formulation of the nonlinear impedance spring is depicted in Figure 11-10. To begin, a 

pushover analysis of a model of the pile and soil was performed. Because nonlinear p-y springs 

were used, the pile-head versus lateral deformation relationship is nonlinear. A single PySimple3 

element was then formulated to approximately match the pushover curve as shown in the figure. 

A close match can easily be achieved given the flexible user control over the PySimple3 shape. 

Besides faithfully capturing the nonlinear pushover behavior of the pile-soil system, using a 
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nonlinear impedance spring has an added benefit— the material and radiation damping that occur 

due to kinematic interaction are inherently captured by the pushover response (as long as the 

pushover analysis is performed at a velocity similar to the excitation velocity near the system 

f1̃,SDOFO). Hence by closely fitting the pushover curve with the nonlinear impedance spring, the 

effects of these damping mechanisms are included in the complete system response during the 

substructure analysis. 

 

Figure 11-10: Formulation of nonlinear and equivalent-linear impedance spring macro-elements to 
replace pile in substructure method of analysis. 

Also shown in Figure 11-10 is an equivalent-linear impedance spring with secant stiffness 

defined by passing through the origin and the peak displacement of approximately 0.1 m. The 

magnitude of the pushover displacement to which the impedance springs were matched was chosen 

based on the outcome of the direct analysis, which showed that the peak pile-head relative 

displacement was about 0.1 m. Since the nonlinear impedance spring matches the pushover curve 

over both small and large deformation regions, the largest displacement to which it is defined is 

not a critical factor, as long as it lies within the range of the subsequent analyses. On the contrary, 
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the modulus of the equivalent-linear impedance spring is directly dependent on the displacement 

at which it is defined, complicating the fitting process. 

Furthermore, foundation damping must be modeled separately when using an equivalent-

linear impedance spring. To some degree, foundation damping is inherently captured by fitting the 

equivalent-linear spring to the nonlinear pushover curve, since the nonlinear soil response implies 

non-zero hysteretic damping under cyclic loading, but it is difficult to quantify the extent to which 

this is the case. For these analyses it was found that use of a dashpot in parallel to the impedance 

spring resulted in spurious behavior at frequencies other than the frequency for which the dashpot 

coefficient was defined. Instead, foundation damping was imposed as Rayleigh damping 

corresponding to β = 0.05 at 25 Hz and β = 0.22 at 3.9 Hz ≈ f1̃,SDOFO. Foundation damping at f1̃,SDOFO 

was computed using the following equations from NIST (2012): 
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In Equations (11.4) through (11.6), the damping subscripts p, s, and r stand for pile and soil 

material damping and radiation damping, respectively; α is the static stiffness modifier for pile 

lateral translation, δ is the Winkler coefficient taken as 1.0 for fixed-head piles, and 0
pa  is 

dimensionless frequency defined at f1̃,SDOFO using the classical definition / SB V . Soil and pile 

material damping were approximated as 0.05. 



 328

When the equivalent-linear impedance spring is used with the substructure method, the 

computed system response is in reasonable agreement with the nonlinear impedance spring and 

direct analysis results for this example as shown in Figure 11-9. Given that the current state-of-

practice for deep foundation lateral loading design is to use nonlinear p-y curves, the tools 

necessary for creating a nonlinear force vs. displacement head pushover curve to which an 

equivalent-linear stiffness can be matched are already available, and should be used. The 

equivalent-linear impedance spring result appears to have overestimated f1̃,SDOFO by about 10 

percent and underestimated damping, causing an over-prediction of the peak FM/FFM ordinate by 

about 15 percent. Also shown for reference is the result computed using linear properties 

corresponding to the initial elastic soil properties, i.e. with no modulus reduction. This approach 

clearly produces an erroneous result, highlighting the importance—and difficulty—of selecting 

appropriate equivalent-linear properties. The equivalent-linear properties could be further refined 

to provide a closer match to the nonlinear system behavior in a design setting. 

To assess the impact of pile-soil interaction nonlinearity for more realistic conditions, the 

analyses were repeated for the same SDOFO-pile system embedded in the soft soil Site 1 and 

subjected to the 1971 San Fernando Earthquake Lake Hughes #4 recording (known as ground 

motion 1 for this study; refer to §9.6 and §9.7 for site and motion descriptions). The mass of the 

SDOFO was varied from 10 Mg to 25 Mg to produce different amounts of period lengthening 

while the remaining system properties were held constant. Foundation impedance springs were 

formulated in the same manner depicted in Figure 11-10. The results are shown in Figure 11-11. 

For both the mSDOFO = 10 Mg and 25 Mg cases, the substructure analysis using a nonlinear 

foundation impedance spring gives a close match to the direct analysis result in terms of matching 

the correct f1̃,SDOFO and peak transfer function ordinates. However, the accuracy of the results does 
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appear to decrease slightly with increasing period lengthening. The results using the equivalent-

linear impedance spring formulated from the nonlinear pushover curve also provide a reasonably 

close match to the direct analysis results. However, formulating these equivalent-linear springs 

and capturing the foundation damping required knowing the nonlinear behavior of the system in 

advance, which would not be known a priori if the equivalent-linear method was used as a 

standalone approach. 

Also shown in Figure 11-11 are substructure analysis results computed with equivalent-

linear impedance springs based on the modulus reduction values recommended in NIST (2012) 

Table 2-1 for SSI analysis. Based on a short-period spectral acceleration SDS ≈ 0.2 g for the ground 

motions that was used, the modulus reduction factor (G/Gmax) for Site Class E (VS,30 < 180 m/s) is 

given as 0.60. Since p-y modulus is linearly related to soil shear modulus for the formulation used 

herein, these factors can be applied directly to Ke to approximately capture nonlinearity due to 

ground response for equivalent-linear pile-soil interaction modeling. 
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Figure 11-11: Effect of nonlinear pile-soil interaction on SDOFO-pile-soil system transfer functions 

for Site 1 subjected to 1971 San Fernando earthquake Lake Hughes #4 recording. 
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The results show that as the amount of period lengthening increases, the accuracy of the 

transfer functions computed with the NIST reduction factors decreases. For the mSDOFO = 10 Mg 

system (f1̃,SDOFO/ f1,SDOFO ≈ 0.75), the peak transfer function ordinate is under-predicted by about 

10 percent, and for the mSDOFO = 25 Mg system (f1̃,SDOFO/ f1,SDOFO ≈ 0.55), the peak transfer function 

ordinate is under-predicted by about 20 percent and period lengthening is significantly 

underestimated. One of the reasons for this trend is that the NIST factors for estimating modulus 

reduction only depend on the magnitude of free-field excitation without consideration of the 

system properties such as mass, stiffness, and foundation flexibility, because they are only 

intended to capture modulus reduction due to site response, not SSI. Since the amount of pile-soil 

interaction nonlinearity depends on all of these properties, a proxy for quantifying nonlinearity 

based only on ground motion intensity is unlikely to provide a realistic estimate over a wide range 

of project conditions.  

The period-lengthening ratio (or equivalently, the frequency-shortening ratio (f1̃,SDOFO/ 

f1,SDOFO) could therefore by a more useful metric for quantifying whether or not the error introduced 

to the substructure method of analysis by neglecting pile-soil interaction nonlinearity is significant. 

The results presented above indicate that f1̃,SDOFO/ f1,SDOFO below about 0.75 results could introduce 

significant errors to the substructure method, but a more comprehensive parametric study would 

be useful for refining this criterion. To make an accurate estimate of f1̃,SDOFO/ f1,SDOFO, pile-soil 

interaction nonlinearity should be considered. Even for superstructure dynamic analysis using 

equivalent-linear foundation impedance springs, nonlinear pile-soil interaction analyses should be 

conducted to define the equivalent linear impedance properties.  
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12 Example Applications of Transfer Function 
and Spectral Ratio Prediction Models 

In this chapter, the generalized kinematic pile-soil interaction transfer function (TF) and spectral 

ratio models developed in Chapter 10 will be compared to previously recorded empirical TF’s and 

implemented for a bridge design scenario. This requires consideration of the effects of combined 

kinematic and inertia soil-structure interaction (SSI) discussed in Chapter 11. 

12.1 EMPIRICAL CASE STUDIES 

The empirical transfer functions for pile-supported buildings reported by Kim and Stewart (2003) 

and Givens et al. (2012) provide an opportunity to apply the predictive models developed for this 

study and investigate issues of combined kinematic and inertial SSI for real systems. The empirical 

transfer functions and attempts to replicate them in previous studies were originally discussed in 

§7.3.6.1. These case studies will be revisited in the following sections. 

12.1.1 Sendai, Japan Site after Givens et al. (2012) 

This site consists of an instrumented four-story reinforced-concrete building and adjacent free-

field accelerographs located on the Tohoku Institute of Technology campus in Sendai, Japan. 

Multiple strong earthquakes have been recorded at the site. Transfer functions computed from 
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these earthquakes show a significant reduction of the foundation motion (FM) relative to the free-

field motion (FFM) over a frequency bandwidth of approximately 2.5 to 8 Hz. As reported by 

Givens et al., the reductions were observed to be approximately equal (Hu ≈ 0.5) for the M 7.1 

2003 Off-Miyagi and M 9.0 2011 Tohoku earthquakes, despite significantly different recorded 

peak ground accelerations (PGA) of 0.23 g and 0.81 g for the two earthquakes, respectively. This 

behavior is inconsistent with the notion that kinematic pile-soil interaction should result in lower 

values of Hu for stronger shaking due to greater modulus reduction of the soil. The original 

researchers hypothesized that the misfit between existing kinematic transfer function models and 

the empirical data could be due to ground motion incoherence, and that perhaps nonlinear effects 

are not significant for kinematic interaction. 

Further details regarding the site are presented in Figure 12-1 and Figure 12-2 based on 

information presented by Mikami et al. (2006), Givens et al. (2012), and from discussions with 

Professor Atsushi Mikami (personal communication, 2015). The building’s lateral-force resisting 

system consists of shear walls in the transverse (narrow) direction and concrete moment frames in 

the longitudinal direction. A total of 24 reinforced-concrete B = 0.75-m, L = 8-m piles 

interconnected by stiff grade beams support the building. The piles pass through 6 m of soft to 

medium-stiff surficial soil (VS ≈ 130 to 200 m/s) and are socketed 2 m into soft mudstone (VS ≈ 

320 m/s). Assuming good construction practices were followed, the piles likely exhibit significant 

base resistance given the diameter and stiffness of material at the base elevation. 
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Figure 12-1: Tohoku Institute of Technology building layout after Givens et al. (2012) and idealized 
single-degree-of-freedom oscillator representation. 

 
Figure 12-2: Subsurface information for Sendai site after Givens et al. (2012). Subsurface data 

originally reported by OYO Corporation (2007). 

The substructure modeling approach presented in the previous chapter has been applied to 

this case study for the 2011 Tohoku earthquake recording originally reported by Givens et al. The 

modeling steps are summarized as follows: 

 The generalized transfer function model for fixed-head piles presented in 

§10.4.3 was used to predict a kinematic pile-soil interaction TF relating 
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foundation-input motion (FIM) to FFM in the absence of superstructure 

inertia (i.e., FIM/FFM TF). This kinematic model considers only pile effects 

and not base slab averaging. 

 The recorded FFM was convolved with the predicted kinematic FIM/FFM 

TF to produce a FIM for subsequent dynamic analysis. 

 A beam-on-dynamic-nonlinear-Winkler-foundation (BDNWF) model of 

the pile embedded in the subsurface profile shown in Figure 12-2 was 

constructed in OpenSees. Nonlinear pile-soil interaction was modeled using 

p-y curves defined by the PySimple3 material. A “pushover test” of this pile 

was simulated to produce a nonlinear pushover curve (e.g., see Figure 

11-10) relating lateral force imposed at the pile head to lateral displacement. 

 The structure was idealized as a pile-supported single-degree-of-freedom 

oscillator (SDOFO) with height 9.4 m and mass 75 Mg. The mass is based 

on four 38.5 m x 28.5 m above-grade floors supporting an assumed uniform 

dead load of 5 kPa, evenly distributed to the 24 piles. The height 

corresponds to the centroid of the above-grade floors as shown in Figure 

12-1. The SDOFO-pile model represents a single pile and its tributary mass, 

but the response of this system is assumed to approximately represent the 

entire structure. 

 The flexible-based period of the building is reported by Mikami et al. (2006) 

as 0.43 s (f1̃,SDOFO = 2.35 Hz) based on system identification techniques.  

The SDOFO with mass = 75 Mg and height = 9.4 m described above was 
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added to the OpenSees pile-soil model. After specifying an initial trial value 

for fixed-base period f1,SDOFO, from which SDOFO column stiffness was 

computed using Equations (11.1) and (11.2), the eigen command was used 

to compute f1̃,SDOFO of the combined SDOFO-pile-soil system. Using 2.35 

Hz as the target f1̃,SDOFO, the fixed-base frequency was adjusted until a good 

match was achieved using f1,SDOFO =  2.45 Hz (0.41 s). This finding suggests 

that period lengthening was relatively insignificant, which is reasonable 

given the relatively flexible structure and stiff subsurface. Note that this 

calibration step would not have been possible if only the building period 

were known without information about its mass and stiffness. 

 The pile and p-y springs in the OpenSees model were replaced with a single 

macroelement impedance spring calibrated to fit the nonlinear pushover 

curve. This nonlinear spring was modelled using the PySimple3 material. 

Rayleigh damping was specified as 10 and 5 percent at frequencies of 2.35 

and 25 Hz, respectively. 

 A dynamic analysis was performed by imposing the FIM on the free end of 

the impedance spring macroelement to excite the SDOFO-macroelement 

system [e.g., see Figure 11-1(c)]. 

 The foundation motion (FM) recorded at the base of the SDOFO column 

during this analysis was then used to compute a FM/FFM transfer function 

for comparison to the empirical transfer function as shown in Figure 12-3. 

The kinematic pile-soil interaction FIM/FFM TF (purple line in Figure 12-3) predicts 

negligible reduction of the FFM over the frequency range where the empirical Hu ≈ 0.5. On the 
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other hand, the combined SDOFO-pile prediction computed using the substructure method (orange 

triangles) matches the empirical transfer function very well over this frequency range, including 

prediction of the sharp drop-off occurring just beyond f1̃,SDOFO. It can be concluded from these 

results that the large reduction in the foundation-level motion relative to the free-field motion 

between 2.5 and 8 Hz is due primarily to the influence of inertial interaction, not the inability of 

the kinematic pile-soil interaction model to adequately capture the underlying mechanisms. 

 

Figure 12-3: Model predictions versus empirical data for Tohoku Institute of Technology building 
during 2011 Tohoku earthquake after Givens et al. (2012). 
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12.1.2 Lancaster, California Site after Kim and Stewart (2003). 

This site consists of a five-story pile-supported hospital building in Lancaster, California. During 

the 1994 M 6.7 Northridge earthquake, a free-field sensor located 360 ft (110 m) away from the 

building recorded a PGA of 0.071 g. The Lancaster site is included in a database of 57 structure 

and adjacent free-field recordings compiled by Stewart and Stewart (1997) for empirical 

evaluation of SSI. Kim and Stewart (2003) reanalyzed 16 of the buildings that were pile-supported 

and found that the Fan et al. (1991) elastic model generally under-predicted reductions in 

foundation-level motions (FM) relative to FFM. In many of these cases, including the Lancaster 

site, a base-slab averaging model by Veletsos et al. (1997) modified with an empirically-adjusted 

factor to approximate ground motion incoherence, foundation flexibility, and wave inclination 

effects was found to provide a better fit to the measured transfer functions. The authors concluded 

that interaction between shallowly-embedded or surface foundation elements dominated the 

foundation motion, and that piles played an insignificant role. Given the relatively stiff soil 

(estimated VS ≈ 210 to 370 m/s) and flexible B = 20-inch (51 cm) piles at the Lancaster site, this 

hypothesis is consistent with the findings of the present study. 

Re-evaluation of the Lancaster site therefore has two goals: (i) compare the kinematic 

model from this study to the measured TF, for which a poor match is expected, and (ii) determine 

if including inertial SSI effects provides a better match to the measured TF as was the case for the 

Sendai site. 
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Figure 12-4: Lancaster, California hospital building layout and idealized single-degree-of-freedom 
oscillator representation after Stewart and Stewart (1997). 
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Figure 12-5: Subsurface conditions at Lancaster site after Stewart and Stewart (1997). 

Further details of the building and site are presented in Figure 12-4 and Figure 12-5 based 

on original documentation presented in Stewart (1996) and Stewart and Stewart (1997), with 

additional information from Stewart et al. (1999b), Kim (2001), and Kim and Stewart (2003). The 
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building was designed circa 1986 with steel moment frames serving as the lateral force resisting 

system in both building directions. Steel columns are supported by B = 20-inch (51 cm) drilled 

shafts ranging in length between 15 and 50 feet (4.6 – 15.2 m). Although not stated explicitly in 

the original documentation, based on the building layout shown in Figure 12-4 and typical design 

practices it assumed for the purpose of this analysis that each column is supported directly by an 

individual pile. The 1st floor of the building is not embedded below the ground surface. Fixed-base 

and flexible-base first-mode periods are reported by Stewart et al (1999b) as 0.69 and 0.73 s, 

respectively, corresponding to a relatively small period-lengthening value of 1.06. These values 

and the transfer functions computed below correspond to the building transverse direction, which 

is roughly east-west (see Figure 12-4). Subsurface conditions consist of interbedded medium dense 

to dense silty sand and medium stiff to very stiff silty clay. The unit weights and estimated shear 

wave velocity profile shown in Figure 12-5 were used to define the subsurface profile for the 

transfer functions computed for the present study. 

The procedures for computing the purely kinematic FIM/FFM TF and combined SDOFO-

pile FM/FFM TF are the same as for the Sendai site and so will not be repeated here. The exception 

is that the system identification work done by Stewart (1996) provides some parameters for the 

Lancaster site that had to be estimated for evaluating the Sendai case. These are the equivalent-

SDOFO height (40 ft) and fixed-base period (0.69 s). As for the Sendai site, the building is 

modelled as a SDOFO supported by a single pile, where the mass of the SDOFO represents the 

estimated tributary mass supported by a single pile in the real structure. Using the same assumed 

uniform dead load of 5 kPa distributed over the floor plans shown in Figure 12-4, this resulted in 

an equivalent SDOFO mass of 145 Mg. The 50 foot pile length is used for the model. The measured 

TF ordinates with high coherence do not indicate that strong kinematic amplification occurred, 
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which would be indicative of a free-head pile condition, so the pile heads are assumed to be fixed. 

Although not shown on the building drawings or described in the original documentation, it is 

assumed that grade beams interconnect the piles and provide some resistance against rotation. The 

impedance spring macro-element used for the substructure analysis is defined to a stiffness of 0.01 

m, which is in the range of the maximum differential displacement between the recorded FM and 

FFM. 

The kinematic FIM/FFM TF predicted using the models presented in §10.4.3 is shown in 

Figure 12-6. Note that significant reduction of the FIM relative to the FFM is predicted only at 

frequencies above about 30 Hz, which is well beyond the range of interest for this case and for 

most buildings in general. The FIM/FFM TF is also shown versus dimensionless frequency with 

a comparison to the range of results computed for the parametric analysis done for this study (e.g., 

see Figure 10-13). This comparison shows that the predicted TF falls within the range of the study 

results. 

 

Figure 12-6: Predicted kinematic pile-soil interaction transfer function for Lancaster site plotted 
versus (a) plain frequency and (b) dimensionless frequency. 
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Comparison between the combined SDOFO-pile FM/FFM TF and recorded FM/FFM TF 

is shown in Figure 12-7. Note that a log-frequency scale is used to emphasize low frequencies near 

the building fundamental frequency. The computed TF (orange triangles) provides a good match 

to the recorded TF (green dots) up to the peak occurring around approximately 1.2 – 1.3 Hz, which 

occurs because of inertial resonance near the building’s flexible first-mode period. Immediately 

beyond this frequency, the computed TF predicts a significant drop-off down to Hu ≈ 0.5, while 

the recorded TF only decreases to around Hu ≈ 0.75.  

 

Figure 12-7: Model predictions versus empirical data for Lancaster building during 1994 
Northridge earthquake after Kim and Stewart (2003). 

Recalling Figure 11-5 and Figure 11-6, the local minimum in this region of the TF marks 

the transition between the foundation-level response being dominated by inertia to being controlled 

primarily by the ground displacement at higher frequencies. For the Lancaster case, over-

prediction of the drop-off after f1̃,SDOFO is likely a result of not including the surface-foundation 

elements in the SDOFO-pile substructure model. Interaction of surface foundation elements 
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through base friction and rocking would decrease foundation-level motions in addition to the 

lateral resistance provided by piles, which in turn would decrease the effect of the foundation 

motion being dominated by inertia of the structure mass. Because the pile-to-soil stiffness contrast 

was relatively low at this site, and the piles are relatively small, base-slab averaging likely provides 

a better explanation for the observed behavior than the pile kinematic model, as concluded by the 

original researchers. Nonetheless, these results again highlight the fact that recorded FM/FFM 

transfer functions inherently contain inertial SSI effects, especially near the fundamental mode 

frequency, and comparison of empirical results to kinematic SSI models is more meaningful if the 

combined inertial-kinematic effects are explicitly considered. 

12.2 EXAMPLE APPLICATION OF SPECTRAL RATIO PREDICTION MODEL FOR 
PILE-SUPPORTED BRIDGE 

The California Department of Transportation (Caltrans) is currently in the process of replacing a 

bridge at the Highway 101—Linden Avenue overcrossing in Carpinteria, California. Construction 

plans for the replacement bridge, which are available online (Caltrans 2016)7, show that 78-inch 

diameter cast-in-steel-shell (CISS) piles will be used to support the single bent structure, shown in 

Figure 12-8 and Figure 12-9. CISS piles consist of a driven steel pile shell that is subsequently 

filled with concrete and reinforcing steel, resulting in a stiff foundation element. The first-mode 

natural frequency of the bridge in the longitudinal direction is 0.45 s (Caltrans, personal 

communication 2015). Based on the design response spectrum for free-field conditions shown in 

the plans (see Figure 12-10), the spectral acceleration at this period is approximately 1.34 g. 

                                                 
 
7 http://www.dot.ca.gov/hq/esc/oe/project_ads_addenda/05/05-4482U4/plans/ 
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Using the proposed bridge foundations as an example, the spectral ratio prediction model 

for free-head piles presented in §10.5.3 will be used to modify the free-field acceleration response 

spectrum to account for kinematic pile-soil interaction. 

 

Figure 12-8: Longitudinal elevation view of proposed Linden Street overcrossing replacement (after 
Caltrans 2016). 

 

Figure 12-9:  Transverse elevation view of interior bent for proposed Linden Street overcrossing 
replacement (after Caltrans 2016). 
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Figure 12-10: Acceleration response spectrum used for proposed Linden Street overcrossing 
replacement (after Caltrans 2016) 

 

Figure 12-11: Shear-wave velocity profile measured using P-S suspension logging (after Caltrans 
2016). 
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Subsurface conditions at the bent location generally consist of loose to medium dense silty 

sand and sandy silt interbedded with soft to medium-stiff lean clay. The CISS piles will extend 

from elevation +18 ft. to -58 ft., a total length of 75 ft. A shear wave velocity profile measured 

using P-S suspension logging is shown in Figure 12-11. Considering the VS profile and based on a 

review of the borings and cone penetration test (CPT) soundings done at the site, the stratigraphy 

is idealized as consisting of a surface layer extending from the ground surface to a depth of 15 m 

with unit weight 108 pcf (17 kN/m3) overlying a denser layer with unit weight 120 pcf (19 kN/m3). 

Both layers are assumed to behave as predominately granular soils. 

The following list summarizes how the parameters needed as inputs for the coefficient 

prediction models were defined based on information obtained from the construction plans and 

other references: 

 The effective flexural rigidity (i.e., considering the reduced moment of 

inertia due to concrete cracking) was estimated from the following 

expression from AASHTO (2009) for concrete-filled steel structural 

members: 

0.4 c c
eff s s s

s

E A
EI E I I

A

 
   

 
       (12.1) 

in which E, I, and A are the Young’s modulus, moment of inertia, and cross-

sectional area, respectively, and the subscripts c and s denote concrete and 

steel. The steel shell has a wall thickness of 1 inch (25.4 mm) and an 

assumed Young’s modulus of 29,000 ksi (200 GPa). The concrete has a 

design strength of 3.6 ksi and assumed modulus of 3,420 ksi (23.6 GPa). 

EIeff computed using these parameters and the appropriate values of I and A 
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in the above equation is 28,100 MN·m2. This value was also checked with 

a moment-curvature analysis, which showed good agreement. 

 Active length La was computed as 50 ft. (15.4 m; about 8 times the pile 

diamter) using the iteration process described in §7.3.3. Based on this 

length, λLa and VS,La were computed as 0.079 ft-1
 (0.26 m-1) and 606 ft/s (185 

m/s), respectively. The λLa calculation was based on EIeff and Ke computed 

from the shear wave velocities and unit weights given above, an assumed 

Poisson’s ratio of 0.35, and δ = 3.0 (for free-head piles) as described in §8.3.  

 The frequency f0 as defined by Rathje et al. (2004) computed from the 

design acceleration response spectrum is 2.05 Hz. This parameter describes 

the frequency corresponding to the predominant energy of the spectrum as 

discussed in §10.5.2. In order to meet the period spacing criterion 

established by Rathje et al, the spectrum was resampled on a log-evenly 

spaced period axis. 

 From the preceding terms, 0

,
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 Time-averaged shear wave velocity over the full pile length is 656 ft./s (200 
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The last three parameters in the above list are the inputs to the spectral ratio coefficient 

prediction models for free-head piles presented in §10.5.3. Using the coefficients predicted by 

Equations (10.27) through (10.32), the resulting spectral ratio curve defined by the Equation 

(10.21) functional form is presented in Figure 12-12. 

 

Figure 12-12: Predicted spectral ratios for Linden Street Overcrossing. 

 
Figure 12-13: Kinematic pile-soil interaction effect on acceleration response spectrum. 

The predicted spectral ratios in Figure 12-12 were multiplied by the design response 

spectrum to produce the modified spectrum shown in Figure 12-13. The modified spectral 
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acceleration at the first mode period of the Linden Avenue Overcrossing (0.45 s) is 1.34 g, which 

is unchanged from the free-field spectrum value. For this example, the first-mode period of the 

bridge lies just beyond the range where kinematic pile-soil interaction is predicted to cause a 

significant modification to the free-field spectrum. 
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13 Conclusions and Recommendations for 
Engineering Practice 

A comprehensive parametric study of the influence of kinematic pile-soil interaction on 

foundation-input motions (FIM) by means of nonlinear numerical analysis has been presented. The 

analysis approach consisted of performing one-dimensional ground response analysis to define 

free-field motions, which were subsequently imposed on a beam-on-nonlinear-dynamic-Winkler-

foundation model of a pile or pile group. The free-field ground surface motion (FFM) and top-of-

pile “foundation-input motion” (FIM) computed from these results were then used to compute 

transfer functions and spectral ratios for use with the substructure method of seismic analysis. A 

total of 1,920 parametric combinations of different pile sizes, soil profiles, and ground motions 

were analyzed.  

Results of the study show that significant reductions of the FFM due to kinematic pile-soil 

interaction occur for stiff, large-diameter piles in soft soil, which could result in a favorable 

reduction in design demands for short-period structures. Simulations of a 3 x 2 pile group subjected 

to incoherent ground motions showed that group effects further reduce the FIM relative to the FFM 

in comparison to an equivalent single pile, but typically by less than 10 percent, and only over a 

limited frequency range. Still, the simulations performed for this study confirm this trend, and it 
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is likely that consideration of ground motion incoherence over a larger spatial extent, such as the 

footprint of a building supported on a piled-raft foundation, could be more significant. The tools 

for generating incoherent motions based on the work of Ancheta and Stewart (2015) described in 

§9.7.3 could be used for this purpose for future studies. 

The key parameters controlling kinematic pile-soil interaction are: 

 Pile head-fixity condition, 

 Pile-to-soil stiffness contrast, 

 Variations in soil stiffness over the pile length, 

 Nonlinear soil behavior due to pile-soil-interaction, which depends on relative pile-

to-soil stiffness contrast, and due to free-field ground response, 

 Radiation damping, and 

 Variable frequency content of the free-field excitation, as opposed to harmonic 

excitation at a single frequency. 

The first three items in the above list have long been recognized from the results of elastic 

studies (e.g., Flores-Berrones and Whitman 1982, Fan et al. 1991, Anoyatis et al. 2013). The key 

differences between simplified elastic solutions and the nonlinear results computed for the more 

realistic conditions considered in this study are caused by the latter three factors, including time-

varying coupling and interference of these factors that is not captured when linear superposition is 

assumed. 

The primary motivation for performing this study was to overcome the limitations of 

idealistic assumptions that have been employed in previous studies, such as linear-elastic material 
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behavior, drastically simplified stratigraphy, and harmonic oscillations in lieu of real ground 

motions. In order to capture the important influence of more realistic conditions such as material 

nonlinearity, subsurface heterogeneity, and variable frequency-content ground motions, a set of 

models for predicting transfer functions and spectral ratios has been developed through statistical 

regression of the results from this parametric study. 

The results presented in Chapter 10 demonstrate that elastic solutions are approximately 

coincident with the average results of this study, but fail to capture the variability that is possible 

when more realistic subsurface conditions and ground motions are used along with explicit 

consideration of nonlinearity. While this suggests that elastic solutions provide a reasonable first-

order approximation of behavior, it also means that they would over-predict the reduction in free-

field ground motion due to kinematic pile-soil interaction roughly half of the time. A method that 

produces an erroneous prediction in the unsafe direction (i.e., an “un-conservative” estimate) half 

the time is generally unacceptable for engineering practice. A robust design approach should 

include measures for predicting the amount of variability that is anticipated due to realistic 

conditions. 

Although a comparison to elastic analytical solutions provides a good means for checking 

that the results of this study fall within reasonable bounds (which has been confirmed), the 

importance of this comparison should not weighted too heavily. Significant effort has been made 

to model realistic conditions for this study, which often represent a significant departure from the 

assumptions used in elastic analytical solutions, hence it is expected that the results will differ. The 

large amount of variability exhibited by the results of this study should not be viewed as a negative 

outcome, but rather a reflection of the amount of variability that should be anticipated for real 

system behavior. 
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The results of the numerical analyses performed for this study are likely skewed slightly in 

the direction of under-predicting kinematic pile-soil interaction, which is to say that the computed 

transfer function ordinates are slightly above what may be anticipated for real behavior. 

Reductions in free-field motions computed in this study thus error slightly on the safe side in a 

design sense. This judgment is based on the effects of assumptions made when defining two of the 

modeling parameters as discussed subsequently: (i) radiation damping and (ii) using a value of δ 

= 3.0 for free-head piles. 

Radiation damping manifests as an increase in stiffness for dynamic p-y curves (see 

§9.4.4). Increases in soil stiffness, which correspond to a decrease in pile-to-soil stiffness contrast, 

result in less kinematic interaction. For example, Figure 10-18 showed that radiation damping 

effectively outweighed the effect of p-y softening due to soil nonlinearity. The models used to 

define dashpot coefficients for radiation damping in this study are from elasticity-based solutions 

which assume perfect radiation of stress waves to infinity through homogeneous elastic media. For 

more realistic heterogeneous subsurface conditions, radiation damping may be a less efficient 

mechanism of energy dissipation than assumed by these models. Some portion of the energy due 

to stress waves generated at the pile-soil interface could be reflected back by other piles, adjacent 

structures, or geomaterial impedance contrasts. Hence, it is likely that the influence of radiation 

damping is being over-predicted in this study, but because this results in a decrease in kinematic 

pile-soil interaction, it is considered acceptable. Experimental measurements of these effects could 

provide justification for reducing the magnitude of radiation damping employed in future studies. 

It is worth noting that conventional deep foundation design based on static or pseudo-static 

methods does not take damping into consideration. Ignoring damping is usually a reasonable 

assumption for typical design applications in which soil is relied upon to provide resistance to 
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loads generated in the superstructure and transmitted to the ground through foundations. For 

example, because ignoring the contribution of radiation damping to dynamic p-y stiffness 

effectively results in a softer curve, estimates of lateral pile displacements due to superstructure 

lateral loads would be expected to exceed the real behavior. Thus a safe design can be developed 

by assuring that the predicted displacements are within tolerable limits. 

For free-head piles, the assumption of zero rotational restraint at the pile head is an 

oversimplification. For a system that can be represented by a single-degree-of-freedom oscillator, 

such as a sign pole supported on a single pile, complete lack of rotational restraint may be a 

reasonable approximation. But for the case of piles supporting a bridge bent, the tendency for the 

pile head to rotate due to free-field kinematic demands would be resisted by other bridge 

components via the connection between the top of the bent and the superstructure. For example, 

consider rotations in the longitudinal direction of the bent foundations shown in Figure 12-8, which 

would be resisted by the bent-to-deck connection and the abutment stiffness. This connection was 

found to play an important role in resisting lateral spreading demands in Part I of the dissertation, 

and likewise could play an important role in influencing pile behavior during transient kinematic 

loading, thus affecting the transfer of the foundation input motion to the superstructure. The most 

significant impact of this restraint would be to limit rotations of the pile near the ground surface, 

which should result in a smaller value of Winkler coefficient δ. Recall that δ = 3.0 was used for 

free-head piles to account for the increases shear resistance mobilized in the soil due to pile 

rotation, while δ = 1 was used for the fixed-head piles which undergo less rotation and thus exert 

predominantly compressive stresses in the direction of loading. Hence, the value of δ = 3.0 used 

in this study for free-head piles may results in an overestimate of p-y stiffness and corresponding 
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underestimate of kinematic interaction for cases where significant restraint against rotation is 

provided by the superstructure, even if restraint is not provided at the ground surface elevation. 

13.1 PREDICTIVE MODELS AND LIMITATIONS 

Models for predicting transfer functions and spectral ratios were presented in §10.4 and §10.5.  

These models represent a means for predicting kinematic pile-soil interaction with consideration 

of nonlinear behavior, realistic subsurface condition, and real ground motion characteristics 

without the need to perform dynamic analysis of a pile-soil system. Input parameters for the 

predictive models are computed from the type of information typically known for real projects, 

and are consistent with the type of seismic design that will be performed. For example, the spectral 

ratio prediction equations use terms defined from the free-field response spectrum, while the 

transfer function prediction equations use terms defined from a free-field acceleration time series. 

For design applications, a reasonable first-order approximation of pile group behavior 

could be estimated by reducing transfer functions predicted using the single-pile prediction models 

by an additional 5 percent at frequencies beyond the corner frequency. Because of the idiosyncratic 

nature of the group results, for critical projects, modeling of the type used for this study would be 

more appropriate than this rough approximation. Alternatively, group effects could be ignored due 

to their relatively insignificant contribution to kinematic pile-soil interaction. 

Caution should be exercised when applying the transfer function and spectral ratio 

prediction models to conditions falling outside the bounds considered in this study. In particular, 

the kinematic pile-soil interaction behavior predicted by the models may differ significantly from 

actual behavior for: 
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 Sites with a strong ground response effect caused by, for example, an abrupt 

impedance contrast occurring over the length of the pile, or a stiff layer overlaying 

a significantly soft layer, 

 Sites with time-averaged shear-wave velocity over the length of the pile (VS,L) 

significantly below 100 m/s, which could result in soil nonlinearity during site 

response and due to pile-soil interaction that is beyond the amount of nonlinearity 

captured in this study, 

 Cases of ground failure such as liquefaction, significant cyclic softening of 

cohesive soils, or permanent ground displacements. 

For these cases, the nonlinear modeling approach used to generate the results for this study 

would be more appropriate than applying the generalized transfer function or spectral ratio 

predictions models. 

13.2 REINTERPRETATION OF EMPIRICAL CASE STUDIES 

Empirical transfer functions computed from pile-supported structures instrumented at the 

foundation level and adjacent free-field recordings are reported by Kim and Stewart (2003), 

Mikami et al. (2006), and Givens et al. (2012). In these studies it was found that elastic kinematic 

pile-soil interaction transfer function models (e.g., Fan et al. 1991) did not provide a good match 

to empirical observations, while in some cases base-slab averaging models considering ground 

motion incoherence provided a better match (e.g., see Kim and Stewart 2003). Based on these 

findings, the researchers posed questions as to whether consideration of ground motion 

incoherence in combination with an improved kinematic interaction model would provide a better 

match to the empirical observations. 
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As shown in §12.1, the trends exhibited by the empirical transfer functions turn out to be 

dominated by inertial interaction. Simulations using the substructure modeling approach that 

included a single-degree-of-freedom oscillator to represent the structure provided a close match to 

the observed behavior near the first-mode period of the system. The improved kinematic transfer 

function model developed herein produced a predicted kinematic transfer function that was not 

significantly different from previous kinematic models, suggesting that the ability or lack thereof 

to accurately capture kinematic interaction was not critical for interpreting these cases; it was more 

important to consider the combination of inertial and kinematic effects. The original researchers 

recognized that inertial effects are present in the recorded foundation-level motions, and thus 

focused their efforts on interpreting kinematic effects at frequencies away from the fundamental 

frequency of the structures. Combined kinematic-inertial analysis methods or closed-form 

analytical methods give the opportunity to study both effects simultaneously, which can be 

particularly usefule when evaluating case studies. 

Further issues related to the combined effects of inertial and kinematic interaction were 

explored in Chapter 11. These findings, along with the lessons learned from revisiting the case 

studies, highlight the fact that when superstructure inertia is present, the foundation motion (FM) 

differs from the FIM corresponding to a pile that does not support a structure. To compute a 

FM/FFM transfer function for comparison to empirical transfer functions requires performing a 

dynamic analysis of a structural model (e.g., a SDOF oscillator) subjected to the FIM, for example 

using the substructure method. Beyond just knowing the structure’s period, this requires knowing 

enough information to form a reasonably accurate structural model. 
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13.3 FUTURE RESEARCH NEEDS 

In addition to the transfer function and spectral ratio models presented herein, the analytical 

framework that is used to generate the results can be used to investigate further complexities. 

Likewise, future improvements to numerical modeling methods such as improved p-y curves can 

be incorporated. 

The work performed for this study made it apparent that the following are important 

research needs in the field of pile dynamics: 

 P-y-θ springs that explicitly consider pile rotation (applies to conventional static loading 

as well). 

 Better quantification of δ through theoretical and rigorous numerical modeling approaches 

as well as experimental measurements. 

 Better quantification of p-y curve ultimate resistance for sand based on rigorous theory and 

validated with experiments and rigorous three-dimensional numerical studies. 

 Group analyses considering spatially-variable (incoherent) ground motions over the 

footprint of a typical building. Whereas group effects were relatively minor for the pile 

group layout considered here, which represents a typical bridge bent substructure, the 

larger footprint of a building could result in a greater group-averaging effect and further 

kinematic reduction of free-field motions. 

 The analyses performed here decoupled free-field ground response from pile soil 

interaction for computational efficiency. In a real system, soil nonlinear behavior due to 

these two effects occurs simultaneously, and thus it is difficult to predict their combined 

effects a priori without a coupled simulation. A limited number of couple numerical 
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analyses and/or experimental data specifically targeted at studying the combined effects of 

nonlinearity due to ground response and kinematic pile-soil interaction would be helpful 

for validating the results of this study. 

 Experimental measurements of kinematic pile-soil interaction; especially measurements of 

radiation damping. 

 Thorough recommendations on the combination of inertial and kinematic soil-structure 

interaction effects, especially as affected by system nonlinearity. 
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Appendix A: Subsurface Investigations for 
Mexico Bridges Site 
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Log of boring performed for Ferromex near Bent 5 of 
railroad bridge. Exact location unknown. Provided by 
SCT (personal communication, 2013). 
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Appendix B: Laboratory Test Results for Mexico 
Bridges Project  
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Appendix C: Sample Calculations for Lateral 
Spreading Equivalent-Static Analysis 
Procedure  
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 This appendix presents a portion of the calculations that were performed in order to quantify the 
input parameters used for the finite element analyses described in Part I of the dissertation. Not all 
calculations are shown. The reader is encouraged to refer to the references cited in the report 
rather than simply change the numbers in these sample calculations to fit their project. 
 
Section numbers refer to the section number in Part I of the dissertation in which the calculations 
being shown here are discussed. Note, trigonometric functions shown herein accept angles in 
radians as the argument. 

Section 4.1 Soil Properties  
 
Soil properties presented in Chapter 4 are primarily based on correlations to CPT measurements. 
Correlations were performed at each depth corresponding to the sampling interval of the CPT 
(every 1 cm), and then the correlated values were averaged over the depth interval of each layer 
of interest. Examples are provided below of the correlations for a single discrete depth interval. 
 
Using data from CPT-1, at a depth of 3 m below ground surface:                        (depth = 
3m)  

Stress: 

 Vertical total stress in kPa-- see Table 3.1 for unit wt. 

 Vertical effective stress in kPa 

 Atmospheric pressure in kPa 

Penetration resistance: multiple methods will be used so that correlations to soil properties (e.g. 
relative density) can use the appropriate corrected penetration resistance as input 

 Measured cone tip resistance in kPa 

Robertson (2012): 

 Soil behavior type index, stress exponent, and 
overburden normalized cone tip resistance, 
respectively, using Robertson (2012) approach-- note 
requires iteration to determine stress exponent and 
soil behavior type index. 

 

 

 Clean sand factor for Ic > 1.64 
[Robertson 2012 eqn. 22] 

 Equivalent clean sand overburden normalized cone tip 
resistance (Robertson 2012 eqn. 20) 

 Equivalent SPT N-value at 60% energy [Robertson 
2012 eqn. 2] 

d 3

v 1.5 17 1.5 18( ) 52.5

vp 1.5 17 1.5 18 9.81( ) 37.8

p a 101.325

q t 3468

Ic 1.928

n 0.6

Qtn 61.1

Kc 5.581Ic
3

0.403Ic
4

 21.63Ic
2

 33.75Ic 17.88 1.22

Qtncs Kc Qtn 74.3

N60

qt

pa









10
1.1268 0.2817Ic  9



 370

  

 because  is > 1.6 SPT overburden correction 
factor [Cetin 2004] 

 Overburden and energy corrected equivalent SPT 
blowcount. 

Robertson and Wride [1998] method with Zhang [2002] update: 

 < 2 Overburden correction factor. 

 Overburden corrected normalized cone penetration 
resistance   ( RWZ subscript indicated Robertson & 
Wride (1998) method with Zhang (2002) updates) 

Idriss and Boulanger (2006, 2008) method-- requires iteration: 

Initial guess for m(ex), stress exponent:  

  < 1.7 therefore  C(NIB) is the Idriss and 
Boulanger overburden 
correction factor. 

Evaluate q(c1n)IB using this correction factor: 

 < 254 

Now re-compute the stress exponent, m 
using this normalized cone penetration 
resistance:  

Re-compute the overburden correction 
factor:    > 1.7 therefore 

Re-compute normalized penetration resistance:   < 254 

Re-compute m and C(NIB):    > 1.7 

 

C N 1.6
pa

vp
2.68

N160 CN N60 14

Cq

pa

vp









n

1.81

qc1NRWZ Cq

qt

pa









 62

m ex 0.5

pa

vp









mex

1.64 CNIB

pa

vp









mex

1.64

qc1nIB CNIB

qt

pa
 56

mex 1.338 0.249 qc1nIB
0.264

 0.62

pa

vp









mex

1.84 CNIB 1.7

qc1nIB CNIB

qt

pa
 58

mex 1.338 0.249 qc1nIB
0.264

 0.61
pa

vp









mex

1.83

qc1nIB CNIB

qt

pa
 58

CNIB 1.7
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Re-compute normalized penetration resistance:  < 254 

After three iterations, the values of m, C(NIB), and the overburden corrected normalized cone 
penetration resistance have stabilized. 

 Estimated fines content. Is reasonable based on SCT boring logs. 

 Clean sand 
correction factor 

 Equivalent clean sand overburden corrected 
normalized cone penetration resistance [IB 
subscript indicated Idriss and Boulanger [2006, 
2008] method]. 

Correlated parameters: 

Friction angle: 

 Constant volume (critical state) friction angle depending on 
mineralogy, taken as 32 deg. for quartz sand. 

 Peak friction angle [Robertson 2012 eqn. 25] 

Relative density-- use multiple correlations then take a weighted average: 

Idriss and Boulanger (2008) methods:  

 
Relative density based on correlations 
to SPT and CPT penetration 
resistances, respectively. 

 

Zhang et al. (2004) method:  

 for qc1n < 200 

Kulhawy and Mayne [1990] method:  

 

FC 2.8 Ic
2.6

 15

qc1n IB 5.4
qc1nIB

16










exp 1.63
9.7

FC .01







15.7

FC .01






2










 31

qc1ncs IB qc1nIB qc1n IB 89

 cv 32

  cv 15.84 log Qtncs   26.88 35

DrIBspt

N160

46
0.56

DrIBcpt 0.478 qc1nIB 0.264
 1.063 0.33

DrZhang

85 76 log qc1NRWZ 

100
0.51

DrKM

qc1NRWZ

325
0.44

qc1nIB CNIB

qt

pa
 58
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Weighted average of computed relative densities: 

 

The Idriss & Boulanger [2008] method using CPT as the input consistently predicted 
lower Dr values than the other three methods, so it was assigned a lower weighting 
factor. Judgment should always be applied when considering which correlations provide 
the most reliable estimates for a given project. 

Liquefaction susceptibility and triggering analysis: 

Note-- use the appropriate normalized penetration resistance for each calculation. For example, do 
not use the Robertson [2012] Qtncs values for the Idriss and Boulanger [2008] liquefaction 
triggering analysis, use the Idriss and Boulanger [2008] qc1n. 

Idriss and Boulanger (2006, 2008) method:  

Susceptibility: 

 < 2.6 ...therefore susceptible. In addition, our index testing determined 
that the fines portion of the bulk sample we collected near the 
surface is nonplastic. The sample is considered to be reasonably 
similar to the soil at 3 m depth being considered herein. 

Conclusion: the soil at this depth is susceptible to liquefaction 

Triggering: 

 Earthquake magnitude being considered (in this case magnitude 
of 2010 EMC earthquake) 

 Peak ground acceleration estimated for SFB site. 

 Normalized cone penetration resistance to be used for 
computations 

Nonlinear stress reduction factor, r(d): 

 

 

  (check-- should be 
close to 1.0 near the 
ground surface)  

 

 

Cyclic stress ratio (CSR)-- estimate of demand 

Dr 0.3DrIBspt 0.3 DrZhang 0.1 DrIBcpt 0.3 DrKM 0.48

Ic 1.93

M 7.2

PGA 0.27

qc1ncs IB 89

z 1.012 1.126 sin
d

11.73
5.133





 0.134

z 0.106 0.118sin
d

11.28
5.142





 0.015

rd exp z z M  0.977 rd 0.98

CSR 0.65 PGA
v

vp
rd 0.238
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Overburden correction factor: 

 < 0.3   < 1.0 

(I&B 2006) 
therefore  

Assume ground is approx. level such that static shear stress correction factor is 1.0:  

Compute cyclic resistance ratio (CRR) for M 7.5, 1 atm. of effective overburden pressure, and level 
ground: 

 

Compute magnitude scaling factor: 

 

Correct CRR for appropriate value of earthquake magnitude and effective overburden stress: 

 

Compute factor of safety against liquefaction: 

  
< 1 Solution: soil is predicted to liquefy during the M 7.2 EMC 

earthquake with a PGA of 0.27g. 

Post-liquefaction behavior 

Estimate shear strain resulting from liquefaction [Idriss and Boulanger 2008]: 

 < 0.5 Limiting shear strain (%) 

 Parameter F(alpha) 

 Since factor of safety against liquefaction is less than parameter 
F(alpha), the estimated shear strain is taken as the limiting shear 
strain. 

 

C
1

37.3 8.27 qc1ncs IB
0.264







0.097 K 1 C ln
vp

pa









 1.096

K 1.0

K 1.0

CRRM7.51 exp
qc1ncs IB

540

qc1ncs IB

67









2


qc1ncs IB

80









3


qc1ncs IB

114









4

 3






0.125

MSF 6.9 exp
M

4






 .058 1.083

CRR CRRM7.51 MSF K 0.136

FSliq
CRR

CSR
0.569

 lim 1.859 2.163 0.478 qc1ncs IB
0.264







3
 0.4

F 11.74 8.34 qc1ncs IB
0.264

 1.371 qc1ncs IB
0.528

 0.87

FSliq F 1

 max  lim 0.4
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Post-liquefaction residual undrained shear strength: 

 Robertson [2010]  

 (true) Check that estimated value is greater 
than 0.03 and less than the shear 
strength under static conditions using 
the estimated friction angle. 

Excess porewater pressure ratio: 

Since soil at depth = 3m is predicted to liquefy, assume r(u) = 100%. For layers with estimated 
FS(liq) > 1,0, r(u) was estimated using a hyperbolic decay function fit to the Marcuson et al. [1990] 
plot of FS(liq) versus r(u) and the Cetin and Bilge [2012] relationship between shear strain and r(u) 
for comparison. The methods were found to provide similar results for FS(liq) substantially greater 
than 1.0. The Marcuson et al. equation is presented below for an example FS(liq) = 1.7. 

  

P-multiplier for fully liquefied condition [r(u) = 100%] using equation from Figure 3.7 in Caltrans lateral 
spreading guidelines [2013a]: 

First compute equivalent clean sand (N1)60 value using the Idriss and Boulanger [2008] formula: 

  

 

 

For layers with predicted factor of safety against liquefaction greater than 1.0, there is still 
excess porewater pressure buildup, which reduces effective stress and acts to soften load 
transfer. To account for this, a p-multiplier is determined based a linear interpolation between 
the estimated r(u) and an r(u) of 100% and the corresponding fully-liquefied p-multiplier 
(previous calculation). For example: 

  

  (fully-liquefied p-mult.)  

 interpolated p-multiplier to account for 
decreased effective stress. 

sur vp

0.02199 0.0003124Qtncs

1 0.02676Qtncs 0.0001783Qtncs
2


 11.7

0.03 sur vp tan


180






 1

FS liqEx 1.7 ru
1

1 14 FSliqEx 1 
0.09

N160 14 N1 60 exp 1.63
9.7

FC 0.01







15.7

FC .01






2










3

N160cs N160 N1 60 18

mp 0.0031N160cs 0.00034N160cs
2

 0.16

FSliqEx 1.7 ru
1

1 14 FSliqEx 1 
0.09

N160cs 33 mp 0.0031N160cs 0.00034N160cs
2

 0.47

mpNonLiq 1 ru 1 mp  0.95
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Computations for non-liquefied crust p-y springs following Caltrans lateral spreading guidelines 
[2013a]. For a graphical explanation of the dimensions, refer to Figure 3.2 in the Caltrans guidelines. 

Highway Bridge: 

 Number of extended-shaft columns 

 Shaft diameter (meters) 

 Crust thickness above top of transverse diaphragm (meters). 
Assume no flow between the short length of the shafts between 
the top of the transverse diaphragm and the ground surface 
such that the transverse diaphragm essentially extends to the 
surface.  

 Transverse diaphragm height (meters) 

 Non-liquefied crust thickness (meters) 

 Distance between bottom of transverse diaphragm and bottom of 
crust (meters). 

 Distance between top of transverse diaphragm and bottom of 
crust (meters) 

 Width of transverse diaphragm in the bridge transverse direction 
(meters) 

 Width of transverse diaphragm in the bridge longitudinal direction 
(meters) 

 Tributary width of the transverse diaphragm assigned to the 
single shaft being analyzed (meters)  

Soil properties in non-liquefied crust: 

 Peak friction angle 

 Effective stress at mid-height of the crust layer (kPa); soil unit wt. 
is 17kN/m^3. 

Lateral earth pressure coefficients: 

 Rankine passive L.E.P. coefficient 

Nc 4

B 1.2

D 0

T 1.5

Zc 1.5

Z bb 0

Zt Zc D 1.5

W t 10.2

W L 1.2

Wtrib

Wt

Nc
2.55

 35

vp 0.5 Zc 17 13

Kp tan


180
45



2












2

3.69
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 Rankine active L.E.P. coefficient 

 

Adjustment factor for 3-d wedge-shaped 
failure surface 

Compute forces from crust acting against bent: 

 Passive force acting against "front" face of 
composite block formed by extended-shaft 
columns and transverse diaphragm (kN) 

 Force acting on sides of outside 
extended-shaft columns through the crust 
(kN) 

The non-liquefied crust does not extend below the base of the transverse diaphragm, therefore 
the foundations do not contribute to the resistance within the crust --> F(piles) = 0 

 Total force is sum of the passive and 
side forces (kN) 

 Total force acting on a single extended-shaft 
column's tributary width within the crust. 

Determine displacement required to fully mobilize the non-liquefied crust passive pressure. 
Considers softened load-transfer relationship for a crust overlying liquefied layer [Brandenberg 
2007]. 

Factors relating thickness of crust relative to width and thickness of pile cap: 

  

 Estimated displacement (meters) required to 
mobilize full passive pressure 

Ka tan


180
45



2












2

0.27

kw 1 Kp Ka 
2

3
1.1 1

T

D T






4


1.6

1 5
Wt

T




0.4 Kp Ka  1
T

D T






3

1
0.05Wt

T


















 1.1

FpassiveCap vp Kp T Wt kw 795

FsidesCap 2 vp tan


180



3












 WL Zt 9

FultGroup FpassiveCap FsidesCap 804

FultIndividual

FultGroup

Nc
201

fdepth exp 3
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  As shown in in the Caltrans lateral spreading guidelines [2013a] in Figure 3.1, the load transfer 
curve for the crust is represented with a trilinear curve defined by three points: (1) the origin, (2) 
half of the ultimate force and 1/4 of the displacement required for full passive mobilization, and 
(3) the ultimate force and the full displacement. The curve then continues at zero slope for 
further displacement. It should be noted that displacement in this case refers to the relative 
displacement between the soil and the structure, not the absolute displacement of the laterally 
spreading ground. 

  

When lateral load-transfer is represented through p-y curves, it is customary to express the load as 
force per unit length of the foundation.  

  see p-y curve below 

Railroad Bridge (same procedure): 

 Crust thickness above top of pile cap (meters). Since oblong pier-
wall-type column is nearly as wide as the pile cap, assume a 
uniform block of soil will exert passive pressure from the base of 
the pile cap to the ground surface. 

 Effective pile cap height (meters) 

 Non-liquefied crust thickness (meters) 

 Distance between bottom of pile cap and bottom of crust (meters). 

 Distance between top of pile cap and bottom of crust (meters) 

 Width of pile cap in the bridge transverse direction (meters) 

 Width of pile cap in the bridge longitudinal direction (meters) 
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Soil properties in non-liquefied crust same as for HWB. 

Lateral earth pressure coefficients: 

  Rankine passive and active L.E.P. coefficients 

 

Adjustment factor for 3-d wedge-shaped 
failure surface 

Compute forces from crust acting against bent: 

 Passive force acting against "front" face 
of composite block formed by pile cap 
and oblong column(kN) 

 Force acting on sides of pile cap (kN) 

The non-liquefied crust does not extend below the base of the pile cap, therefore the foundations 
do not contribute to the resistance within the crust --> F(piles) = 0 

 Total force is sum of the passive and side 
forces (kN) 

Determine displacement required to fully mobilize the non-liquefied crust passive pressure. 

Factors relating thickness of crust relative to width and thickness of pile cap: 

  

 Estimated displacement (meters) required 
to mobilize full passive pressure 

Kp 3.69 Ka 0.27
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Express the load as force per unit length (in vertical direction) of the structure: 

  

 

disprel

0

 max

4

 max

5  max

















0

0.07

0.29

1.47











 Force

0

FultGroup

2

FultGroup

FultGroup

















0

284

569

569













pRRB
Force

Zc D
 yRRB disprel

0 0.2 0.4 0.6 0.8
0

100

200

300

400

Highway Bridge
Railroad Bridge

Nonliquefied Crust p-y Curves

Relative Displacement (m)

L
oa

d 
(k

N
/m

)



 380

  

Section 4.2  Magnitude of Lateral Spreading Displacement 
 

Lateral spreading index using the Zhang [2004] method as presented in Idriss and Boulanger [2008]: 

 Thickness of each layer for calculations is 1 cm (i.e., the 
CPT sampling interval.) 

 This is the predicted lateral spreading index (LDI) for 
the 1-cm-thick layer at a depth of 3 m. This 
computation is repeated at each CPT sampling interval 
from the "bottom up" to generate a profile of cumulative 
LDI versus depth. LDI is then converted to an 
estimated lateral spreading displacement via a 
multiplicative factor that depends on the ground slope 
and the free face conditions. Refer to the main report 
and Zhang (2004) for more details. 

Lateral spreading index using the modified Faris et al. [2006] method as presented in Caltrans lateral 
spreading guidelines [2013a]: 

Lateral spreading is assumed to occur up to a depth of two times the free face height, about 7 
m, meaning only the upper liquefied layer should be considered. For the upper liquefied layer 
(depth 1.5 to 6.5 m below ground surface), the average (N1)60 value (using the methods 
presented above) is 12. Using an estimated fines content range of 15 to 20%, the fines 
correction factor is: 

  

  

An approximate average of 4 will be used: 

 

An additional correction based on fines content is recommended by Faris et al. [2004] to generate 
a corrected blowcount for use in estimating shear strain potential: 

 since this is greater than the average estimated fines content, the 
correction is zero 

 -->  

tlayer 0.01

LDIi  max tlayer 0.00401
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
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
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



2




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0.882 N160cs 5 19

N FC 0 N160cs N160cs N FC 16



 381

  

Magnitude-corrected CSR: 

 
 

  

Using these values of (N1)60,cs and magnitude-corrected CSR with Figure 3.12 from the 
Caltrans lateral spreading guidelines [2013a], the estimated strain potential index is about 10 - 
11%. Using the equations in Appendix A of the Caltrans guidelines to get a more refined 
estimate: 

 

 

 

 

 (true), therefore use:  

 

Compute displacement potential index (DPI): 

Estimate maximum displacement from DPI: 

 

Bent 5 is located near the river bank free face (L/H < 4), so the estimated displacement is 
amplified by a factor of 2:  

 

The estimated displacement at the ground surface is about 1 m using the Caltrans [2013a]
approach based on Faris et al. [2004; 2006], significantly less than the Idriss and Boulanger 
[2008] approach based on Zhang et al. [2004] of about 3.7 m. The difference is due primarily to 
the difference in shear strain predicted by the two methods. The equivalent clean sand corrected 
blow counts used for the Caltrans approach predict an average shear strain of about 10% for the 
upper liquefied layer, while the latter approach predicts an average shear strain of 37% in the 
layer. The equivalent SPT blowcounts used herein are based on the correlation to CPT resistance 
shown previously, but it should be noted the values compare relatively well to the Ferromex boring 
log for this layer. Ultimately the large difference between the two predictions illustrates the 
uncertainty in relating penetration resistance to shear strain potential and the further uncertainty 
in the empirical factors used to transform the computed displacement index values (DPI or LDI) 
to actual horizontal displacements. 
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Section 4.3.2  Elastomeric Bearings 
 
Determine rotational and shear stiffness of elastomeric bearings for highway bridge. 

AASHTO Approach per AASHTO LRFD Bridge Specs 6th Edition Chapter 14 

  Length, width, and thickness of bearing 

  Area and MOI 

 Shear and bulk moduli 

 

 eqn. 14.7.5.1-1 

 

 eqn. C14.7.5.3.3-7  

  

 (per radian) 

  

Each bearing has a translational (shear) stiffness of 1317 kN/m. There are 7 bearings at each of the 
two abutments. The total translational stiffness provided by the abutment bearings is: 

 
 
 
 

 
 ----> 18.4 MN/m 

Each bent of the highway bridge has four extended-shaft columns, so the "tributary restraint" of a single 
column is: 

 

 

 -------> 4.6 MN/m 
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Section 4.3.2 
Rotational restraint derived from rotation of top of column, railroad bridge. Refer to Fig. 20 in 
the report for schematic derivation of equations. 

 weight of one deck span 

 coefficeint of friction for sliding between top of elastomeric bearing and girders 

 width of bent cap in bridge long. direction (meters) 

 derive rotational stiffness for a unit rotation (one radian) 

 Rotational stiffness for mechanism one [kN*m/rad.] 

 Rotational stiffness for mechanism two 

 Total rotational restraint  

w 1325

mu 0.2

width BC 1.7

theta 1

Mc1 cos theta( )
w widthBC

4
 304

Mc2 sin theta( )
mu w widthBC

4
 95

McTotal Mc1 Mc2 399
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Appendix D: Site Profiles for Kinematic Pile-Soil 
Interaction Analysis  
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D.1 INTRODUCTION 

Stratigraphy and soil properties for the six sites used for baseline pile kinematic soil-structure 

interaction analyses are presented in this appendix. Each of the six sites is based on cone 

penetration test (CPT) data, including seismic shear wave velocity measurements, obtained from 

the United States Geological Survey CPT database website8. Note that several of the VS,30 values 

presented on the USGS website are incorrect based on the data that is provided, the correct values 

are given in the site descriptions below. Soil properties presented in Appendix D were interpreted 

from the CPT data in a manner consistent with routine practice following the methods of Mayne 

et al. (2009) and Robertson (2012), unless otherwise noted. 

The stratigraphy has been slightly modified from the conditions encountered during CPT 

as explained below in order to avoid significant impedance contrasts that would result in a strong 

site response effect. Analysis were also performed with these impedance contrast left in the profiles 

to evaluate their influence on the pile kinematic response. Below the maximum depth of the CPT 

explorations, the profiles were extended such that they exceeded the maximum pile depth 

considered for the analyses (L = 60 m) and reached a shear wave velocity of 760 m/s to be 

consistent with the input motions. The soil properties of these additional layers were computed 

based on stiffness versus depth scaling relationships as described in the main text. 

The following sections briefly summarize the geologic setting and stratigraphy of each site. 

                                                 
 
8 http://earthquake.usgs.gov/research/cpt/  
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D.2 SITE 1 

Site 1 is based on USGS CPT-ALC014, located on Alameda Island near the Alameda entrance to 

the Posey Tube tunnel that connects Alameda to Oakland. The original profile has been modified 

by removing the stiff layer at a depth of 22-23 m so that there is a relatively smooth increase in 

stiffness with depth. Layer properties of the idealized soil profile are presented the table below. 

Groundwater was estimated at a depth of 1.2 m below the surface during the CPT but is considered 

to be at the ground surface for the idealized profile used for analyses. VS,30 of the idealized profile 

presented below is 111 m/s. VS,30 computed using the actual data is 123 m/s. 

 
Site 1 properties for DEEPSOIL analysis 

Layer  Material 
Type 

Depth 
Top 

Thickness Unit 
Weight 

VS  ɸ'  OCR K0  Shear 
Strength 

PI 

‐  ‐  m  m  kN/m^3 m/s degrees ‐  ‐  kPa  ‐ 

1  clay  0  2  16.5  90  N/A  1.5  0.54  12  15

2  clay  2  2  16.5  90  N/A  1.4  0.53  12  15

3  clay  4  2  16.5  95  N/A  1.3  0.52  15  15

4  clay  6  2  16.5  95  N/A  1.2  0.50  18  15

5  clay  8  2  16.5  100  N/A  1.1  0.49  20  15

6  clay  10  2  16.5  100  N/A  1.0  0.47  22  15

7  clay  12  2  16.5  105  N/A  1.0  0.47  25  15

8  clay  14  2  17  110  N/A  1.0  0.47  28  15

9  clay  16  2  17  115  N/A  1.0  0.47  32  15

10  clay  18  2  17  120  N/A  1.0  0.47  35  15

11  clay  20  2  17  125  N/A  1.0  0.47  39  15

12  clay  22  2  17.5  130  N/A  1.0  0.47  42  15

13  clay  24  2  17.5  140  N/A  1.0  0.47  46  15

14  clay  26  2  17.5  145  N/A  1.0  0.47  50  15

15  clay  28  2  17.5  160  N/A  1.0  0.47  53  15

16  clay  30  2  18  200  N/A  1.0  0.47  57  15

17  sand  32  2  19  220  38  1.0  0.38  201  0

18  sand  34  2  19  224  38  1.0  0.38  215  0

19  sand  36  2  19  228  38  1.0  0.38  230  0

20  sand  38  2  19  231  38  1.0  0.38  244  0

21  sand  40  2  19  234  38  1.0  0.38  258  0
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Layer  Material 
Type 

Depth 
Top 

Thickness Unit 
Weight 

VS  ɸ'  OCR K0  Shear 
Strength 

PI 

22  sand  42  2  19  237  38  1.0  0.38  273  0

23  sand  44  2  19  241  38  1.0  0.38  287  0

24  sand  46  2  19  244  38  1.0  0.38  302  0

25  sand  48  2  19  246  38  1.0  0.38  316  0

26  sand  50  2  19  249  38  1.0  0.38  330  0

27  sand  52  2  19  252  38  1.0  0.38  345  0

28  sand  54  2  19  254  38  1.0  0.38  359  0

29  sand  56  2  19  257  38  1.0  0.38  373  0

30  sand  58  2  19  259  38  1.0  0.38  388  0

31  sand  60  2  19  262  38  1.0  0.38  402  0

32  sand  62  2  19  264  38  1.0  0.38  416  0

33  sand  64  2  19  266  38  1.0  0.38  431  0

34  sand  66  1  19  300  38  1.0  0.38  434  0

35  sand  67  1  19  350  38  1.0  0.38  441  0

36  sand  68  1  19  400  38  1.0  0.38  448  0

37  sand  69  1  19  450  38  1.0  0.38  456  0

38  sand  70  1  19  500  38  1.0  0.38  463  0

39  sand  71  1  19  550  38  1.0  0.38  470  0

40  sand  72  1  19  600  38  1.0  0.38  477  0

41  sand  73  1  19  650  38  1.0  0.38  484  0

42  sand  74  1  19  700  38  1.0  0.38  492  0

43  sand  75  1  19  760  38  1.0  0.38  499  0

 

 

D.3 SITE 2 

Site 2 is based on USGS CPT-SCC069, which is located on the southern margin of the San 

Francisco Bay near San Jose. The surficial materials are classified as fine-grained Holocene 

alluvial fan and overbank flood deposits. Deeper layers may be marine sediments. Groundwater is 

at a depth of 2 m. VS,30  of the idealized profile presented below is 192 m/s. VS,30  computed using 

the actual data is 172 m/s. The difference is a results of modifications made to the upper 14 m of 

the idealized profile to remove stiff layers overlying soft layers. The “stiff over soft” condition is 
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considered in Site “2a” as described in the main text, which is closer to the conditions measured 

in the field. 

Site 2 properties for DEEPSOIL analysis 

Layer  Material 
Type 

Depth 
Top 

Thickness Unit 
Weight 

Vs  Friction 
Angle 

OCR K0  Shear 
Strength 

PI 

‐  ‐  m  m  kN/m^3 m/s degrees ‐  ‐  kPa  ‐ 

1  clay  0  2  17  120  N/A  7.4  0.73  37  15

2  clay  2  1.5  17  130  N/A  5.3  0.60  44  15

3  clay  3.5  5.5  17  145  N/A  3.1  0.44  61  30

4  clay  9  3.5  17  165  N/A  3.4  0.45  73  15

5  clay  12.5  1.5  17  190  N/A  4.0  0.49  86  15

6  clay  14  2  18  206  N/A  3.9  0.48  96  15

7  clay  16  1.5  18  222  N/A  3.6  0.46  96  10

8  sand  17.5  1.5  18  251  37  3.4  0.40  127  0

9  clay  19  2.5  18  273  N/A  2.8  0.40  96  20

10  clay  21.5  2.5  18  276  N/A  2.6  0.38  101  15

11  clay  24  2  18  285  N/A  2.7  0.39  110  15

12  clay  26  2  18  302  N/A  3.4  0.43  143  15

13  clay  28  2  18  306  N/A  4.4  0.48  188  15

14  clay  30  2  18  315  N/A  4.3  0.47  197  15

15  clay  32  2  18  318  N/A  4.1  0.46  201  15

16  clay  34  2  18  321  N/A  4.0  0.45  205  15

17  clay  36  2  18  324  N/A  3.8  0.44  210  15

18  clay  38  2  18  328  N/A  3.7  0.43  214  15

19  clay  40  2  18  331  N/A  3.6  0.42  218  15

20  clay  42  2  18  334  N/A  3.4  0.42  223  15

21  clay  44  2  18  337  N/A  3.3  0.41  227  15

22  clay  46  2  18  340  N/A  3.3  0.40  231  15

23  clay  48  2  18  343  N/A  3.2  0.40  235  15

24  clay  50  2  18  346  N/A  3.1  0.39  239  15

25  clay  52  2  18  349  N/A  3.0  0.38  243  15

26  clay  54  2  19  343  N/A  2.9  0.38  248  15

27  clay  56  2  19  346  N/A  2.9  0.37  252  15

28  clay  58  2  19  349  N/A  2.8  0.37  257  15

29  clay  60  2  19  352  N/A  2.7  0.36  261  15

30  clay  62  2  19  355  N/A  2.7  0.36  266  15

31  sand  64  2  19  400  38  2.6  0.38  444  0

32  sand  66  2  19  450  38  2.6  0.38  458  0
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Layer  Material 
Type 

Depth 
Top 

Thickness Unit 
Weight 

Vs  Friction 
Angle 

OCR K0  Shear 
Strength 

PI 

33  sand  68  2  19  500  38  2.5  0.38  472  0

34  sand  70  2  19  550  38  2.5  0.38  487  0

35  sand  72  2  19  600  38  2.4  0.38  501  0

36  sand  74  2  19  650  38  2.4  0.38  516  0

37  sand  76  2  19  700  38  2.4  0.38  530  0

38  sand  78  2  19  760  38  2.3  0.38  544  0

 

D.4 SITE 3 

Site 3 is based off USGS CPT-MSC019, performed in point bar deposits in the Mississippi River 

Valley. Groundwater is at a depth of 4 m. VS,30  of the idealized profile presented below is 208 m/s. 

VS,30  computed using the actual data is 217 m/s. 

Site 3 properties for DEEPSOIL analysis 

Layer  Material 
Type 

Depth 
Top 

Thickness Unit 
Weight 

Vs  Friction 
Angle 

OCR K0  Shear 
Strength 

PI

‐  ‐  m  m  kN/m^3 m/s degrees ‐  ‐  kPa  ‐ 

1  sand  0  3  17  150  34  N/A  0.44  34  0 

2  sand  3  3  17  160  34  N/A  0.44  65  0 

3  sand  6  2  17  170  34  N/A  0.44  72  0 

4  sand  8  3  17  185  36  N/A  0.41  98  0 

5  sand  11  2  17  205  40  N/A  0.36  118  0 

6  sand  13  1  17  220  39  N/A  0.37  118  0 

7  sand  14  2  18  235  40  N/A  0.35  141  0 

8  sand  16  2  18  225  42  N/A  0.33  164  0 

9  sand  18  2  18  233  42  N/A  0.32  182  0 

10  sand  20  2  18  240  42  N/A  0.32  197  0 

11  sand  22  2  18  280  42  N/A  0.33  209  0 

12  sand  24  2  18  265  42  N/A  0.33  222  0 

13  sand  26  2  18  285  42  N/A  0.34  235  0 

14  sand  28  2  18  290  42  N/A  0.33  251  0 

15  sand  30  2  19  295  42  N/A  0.33  269  0 

16  sand  32  2  19  299  42  N/A  0.33  286  0 
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Layer  Material 
Type 

Depth 
Top 

Thickness Unit 
Weight 

Vs  Friction 
Angle 

OCR K0  Shear 
Strength 

PI

17  sand  34  2  19  303  42  N/A  0.33  302  0 

18  sand  36  2  19  307  42  N/A  0.33  319  0 

19  sand  38  2  19  311  42  N/A  0.33  336  0 

20  sand  40  2  19  315  42  N/A  0.33  352  0 

21  sand  42  2  19  319  42  N/A  0.33  369  0 

22  sand  44  2  19  322  42  N/A  0.33  385  0 

23  sand  46  2  19  326  42  N/A  0.33  402  0 

24  sand  48  2  19  329  42  N/A  0.33  418  0 

25  sand  50  2  19  332  42  N/A  0.33  435  0 

26  sand  52  2  19  335  42  N/A  0.33  451  0 

27  sand  54  2  19  338  42  N/A  0.33  468  0 

28  sand  56  2  19  341  42  N/A  0.33  484  0 

29  sand  58  2  19  344  42  N/A  0.33  501  0 

30  sand  60  2  19  347  42  N/A  0.33  518  0 

31  sand  62  2  19  350  42  N/A  0.33  534  0 

32  sand  64  2  19  352  42  N/A  0.33  551  0 

33  sand  66  2  19  400  42  N/A  0.33  567  0 

34  sand  68  2  19  450  42  N/A  0.33  584  0 

35  sand  70  2  19  500  42  N/A  0.33  600  0 

36  sand  72  2  19  550  42  N/A  0.33  617  0 

37  sand  74  2  19  600  42  N/A  0.33  633  0 

38  sand  76  2  19  650  42  N/A  0.33  650  0 

39  sand  78  2  19  700  42  N/A  0.33  667  0 

40  sand  80  2  19  760  42  N/A  0.33  683  0 

 

D.5 SITE 4 

Site 4 is based off USGS CPT-CHN007, performed in Pleistocene barrier-beach ridge deposits 

near Charleston, South Carolina. Groundwater is estimated to be at a depth of 2.5 m. VS,30  of the 

idealized profile presented below is 253 m/s. VS,30  computed using the actual data is 261 m/s. 

Site 4 properties for DEEPSOIL analysis 
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Layer  Material 
Type 

Depth 
Top 

Thickness Unit 
Weight 

Vs  Friction 
Angle 

OCR K0  Shear 
Strength 

PI 

‐  ‐  m  m  kN/m^3 m/s degrees ‐  ‐  kPa  ‐ 

1  sand  0  2  17  170  35  1.0  0.43  24  0 

2  sand  2  3  18  200  35  1.0  0.43  55  0 

3  clay  5  1.5  17  170  N/A  3.1  0.45  44  15

4  sand  6.5  3.5  18  210  32  1.0  0.47  75  0 

5  clay  10  1  18  215  N/A  3.4  0.46  68  15

6  sand  11  3  18  255  35  1.0  0.43  105  0 

7  clay  14  1  18  210  N/A  2.7  0.40  73  15

8  sand  15  5  18  260  35  1.0  0.43  146  0 

9  sand  20  2  18  335  32  1.0  0.47  131  0 

10  sand  22  2  19  365  32  1.0  0.47  142  0 

11  sand  24  2  19  380  33  1.0  0.46  158  0 

12  sand  26  2  19  420  33  1.0  0.46  172  0 

13  sand  28  2  19  440  34  1.0  0.44  190  0 

14  sand  30  2  19  447  36  1.0  0.41  220  0 

15  sand  32  2  19  453  36  1.0  0.41  233  0 

16  sand  34  2  19  460  36  1.0  0.41  247  0 

17  sand  36  2  19  466  36  1.0  0.41  260  0 

18  sand  38  2  19  472  36  1.0  0.41  273  0 

19  sand  40  2  19  477  36  1.0  0.41  287  0 

20  sand  42  2  19  483  36  1.0  0.41  300  0 

21  sand  44  2  19  488  36  1.0  0.41  314  0 

22  sand  46  2  19  493  38  1.0  0.38  352  0 

23  sand  48  2  19  498  38  1.0  0.38  366  0 

24  sand  50  2  19  503  38  1.0  0.38  380  0 

25  sand  52  2  19  508  38  1.0  0.38  395  0 

26  sand  54  2  19  512  38  1.0  0.38  409  0 

27  sand  56  2  19  517  38  1.0  0.38  423  0 

28  sand  58  2  19  521  38  1.0  0.38  438  0 

29  sand  60  2  19  525  38  1.0  0.38  452  0 

30  sand  62  2  19  529  38  1.0  0.38  466  0 

31  sand  64  2  19  533  38  1.0  0.38  481  0 

32  sand  66  2  19  550  38  1.0  0.38  495  0 

33  sand  68  2  19  600  38  1.0  0.38  510  0 

34  sand  70  2  19  650  38  1.0  0.38  524  0 

35  sand  72  2  19  700  38  1.0  0.38  538  0 

36  sand  74  2  19  760  38  1.0  0.38  553  0 
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D.6 SITE 5 

Site 5 is based on USGS CPT-ALC046, which is located in the East San Francisco Bay in Albany, 

about 1 km from the Bay margin. The surficial materials are classified as Holocene alluvial fan 

and natural levee deposits. Groundwater is at a depth of 2.1 m. The profile generally consists of 

18 m of soft to medium-stiff clay overlying stiff clay. VS,30  of the idealized profile presented below 

is 301 m/s. VS,30  computed using the actual data is 305 m/s. 

Site 5 properties for DEEPSOIL analysis 

Layer  Material 
Type 

Depth 
Top 

Thickness Unit 
Weight 

Vs  Friction 
Angle 

OCR K0  Shear 
Strength

PI 

‐  ‐  m  m  kN/m^3 m/s degrees ‐  ‐  kPa  ‐ 

1  clay  0  2  17  205  N/A  48.2 1.81  166  15 

2  clay  2  1  17  220  N/A  17.2 1.06  101  15 

3  clay  3  2  17  250  N/A  24.4 1.22  188  15 

4  clay  5  1  17  240  N/A  18.7 1.07  157  15 

5  clay  6  2  18  245  N/A  54.5 1.76  485  15 

6  clay  8  1.5  18  280  N/A  14.3 0.91  185  15 

7  clay  9.5  2.5  18  300  N/A  17.9 1.00  277  15 

8  clay  12  2.5  18  310  N/A  20.7 1.05  362  15 

9  clay  14.5  3.5  18  320  N/A  6.6  0.60  178  15 

10  clay  18  2  19  340  N/A  23.7 1.10  526  15 

11  clay  20  3  19  360  N/A  23.1 1.07  604  15 

12  clay  23  4  19  380  N/A  21.9 1.03  686  15 

13  clay  27  3  19  400  N/A  22.4 1.03  759  15 

14  clay  30  2  19  403  N/A  21.4 1.00  767  15 

15  clay  32  2  19  406  N/A  20.2 0.97  778  15 

16  clay  34  2  19  409  N/A  19.2 0.94  788  15 

17  clay  36  2  19  411  N/A  18.2 0.92  799  15 

18  clay  38  2  19  414  N/A  17.4 0.89  809  15 

19  clay  40  2  19  416  N/A  16.6 0.87  818  15 

20  clay  42  2  19  419  N/A  15.9 0.85  828  15 

21  clay  44  2  19  421  N/A  15.3 0.83  837  15 
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Layer  Material 
Type 

Depth 
Top 

Thickness Unit 
Weight 

Vs  Friction 
Angle 

OCR K0  Shear 
Strength

PI 

22  clay  46  2  19  423  N/A  14.7 0.81  846  15 

23  clay  48  2  19  425  N/A  14.2 0.79  854  15 

24  clay  50  2  19  427  N/A  13.7 0.77  863  15 

25  clay  52  2  19  429  N/A  13.2 0.76  871  15 

26  clay  54  2  19  432  N/A  12.8 0.74  880  15 

27  clay  56  2  19  433  N/A  12.4 0.73  888  15 

28  clay  58  2  19  435  N/A  12.0 0.72  896  15 

29  clay  60  2  19  437  N/A  11.6 0.71  903  15 

30  clay  62  2  19  439  N/A  11.3 0.69  911  15 

31  clay  64  2  19  486  N/A  14.1 0.77  1117  15 

32  clay  66  2  19  488  N/A  13.7 0.76  1125  15 

33  clay  68  2  19  512  N/A  14.9 0.79  1238  15 

34  clay  70  2  19  534  N/A  16.0 0.81  1349  15 

35  clay  72  2  19  556  N/A  17.0 0.83  1458  15 

36  clay  74  2  19  576  N/A  18.0 0.86  1568  15 

37  clay  76  2  19  645  N/A  23  1  1963  15 

38  clay  78  2  19  704  N/A  28  1.1  2344  15 

 

 

D.7 SITE 6 

Site 6 is based on USGS CPT-SBC109, performed in stiff granular alluvial fan deposits on the 

north side of the San Gabriel Mountains near Adelanto, California. Groundwater depth is assumed 

to be 4 m for analyses. VS,30  of the idealized profile presented below is 446 m/s. VS,30  computed 

using the actual data to a depth of 18 m and then extrapolating to 30 m is 409 m/s. The increase 

between the idealized and measured VS,30  values is a result of replacing the soft layers encountered 

during the CPT in the upper 4 m of the profile with stiffer layers to prevent a strong impedance 

contrast. Site “6a” includes these softer layers as described in the main text such that their influence 

on the pile kinematic response can be considered. 
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Site 6 properties for DEEPSOIL analysis 

Layer  Material 
Type 

Depth 
Top 

Thickness Unit 
Weight 

Vs  Friction 
Angle 

OCR K0  Shear 
Strength

PI 

‐  ‐  m  m  kN/m^3 m/s degrees ‐  ‐  kPa  ‐ 

1  sand  0  2  18  320  43  N/A  0.32  17  0 

2  sand  2  2  18  340  42  N/A  0.33  48  0 

3  sand  4  3  18  360  41  N/A  0.34  74  0 

4  sand  7  2  18  380  41  N/A  0.34  92  0 

5  sand  9  1  18  480  43  N/A  0.32  107  0 

6  sand  10  2  18  490  42  N/A  0.33  118  0 

7  sand  12  3  19  500  41  N/A  0.34  133  0 

8  sand  15  2  19  510  43  N/A  0.32  160  0 

9  sand  17  3  19  510  43  N/A  0.32  185  0 

10  sand  20  10  19  510  43  N/A  0.31  242  0 

11  sand  30  2  19  535  41  N/A  0.34  271  0 

12  sand  32  2  19  543  41  N/A  0.34  287  0 

13  sand  34  2  19  551  41  N/A  0.34  303  0 

14  sand  36  2  19  558  41  N/A  0.34  319  0 

15  sand  38  2  19  565  41  N/A  0.34  335  0 

16  sand  40  2  19  571  41  N/A  0.34  351  0 

17  sand  42  2  19  577  41  N/A  0.34  367  0 

18  sand  44  2  19  584  41  N/A  0.34  383  0 

19  sand  46  2  19  590  41  N/A  0.34  399  0 

20  sand  48  2  19  596  41  N/A  0.34  415  0 

21  sand  50  2  19  601  41  N/A  0.34  431  0 

22  sand  52  2  19  606  41  N/A  0.34  447  0 

23  sand  54  2  19  612  41  N/A  0.34  463  0 

24  sand  56  2  19  617  41  N/A  0.34  479  0 

25  sand  58  2  19  622  41  N/A  0.34  495  0 

26  sand  60  2  19  627  41  N/A  0.34  511  0 

27  sand  62  2  19  632  41  N/A  0.34  527  0 

28  sand  64  2  19  637  41  N/A  0.34  543  0 

29  sand  66  2  19  650  41  N/A  0.34  559  0 

30  sand  68  2  19  700  41  N/A  0.34  575  0 

31  sand  70  2  19  760  41  N/A  0.34  591  0 
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Appendix E: A Framework for Full-Scale 
Experimental Measurements of Kinematic 
Pile-Soil Interaction 
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Experimental data for validating kinematic pile-soil transfer function models is scarce, and often 

includes superstructure inertia, making it difficult to isolate the kinematic effects. The author is 

not aware of any full-scale tests in which kinematic pile-soil transfer functions have been measured 

experimentally and without a superstructure supported on the pile(s). 

In this appendix a pilot experimental field test is briefly described. Although the results of 

the pilot test program do not necessarily provide a reliable means for validating the models 

developed in Chapter 10, the approach is documented here in hopes that similar tests will be 

conducted in the future on a scale that does provide a means for validation. 

The basic field test setup is depicted in Figure E-1. The goal is to replicate the modeling 

approach used for the numerical study described in the previous chapters in which a pile is 

subjected to free-field excitation and the pile head and free-field ground surface responses are 

recorded; experimental transfer functions can then be computed from these recordings. Since most 

piles are built to support structures, executing an experiment like this requires either gaining access 

to a construction site during the brief window between completion of the piles but prior to the 

beginning of superstructure construction, or the costly alternative of building a sacrificial test pile 

solely for the purpose of the experiment. 

Ideally, the vibration source should excite the free-field to a level consistent with design 

earthquakes, but this would be difficult from a practical point of view. A more feasible approach 

it to measure small-strain soil behavior by exciting the ground with a shaker such as the type 

commonly used for geophysical testing methods like SASW (spectral analysis of surface waves). 

Ambient noise from traffic or other consistent sources could also provide enough energy to 

mobilize a small-strain response. 
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Figure E-1: Instrumentation for full-scale field measurements of kinematic pile-soil interaction. 

E.1 PILOT STUDY 

The pilot field study program was conducted at a Caltrans culvert construction project site in 

Goleta, California. A row of 16-inch diameter, L = 60 ft. open pipe piles with 0.625-inch wall 

thickness had been driven to support the culvert wall as shown in Figure E-2, and a brief window 

of time was available to perform the experiment prior to beginning of the wall construction. 
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Figure E-2: Goleta pilot study field test site. 

The pile to be tested and adjacent free-field were instrumented with triaxial MEMS 

accelerometers9 housed in PVC tubing. The pile accelerometer was epoxied to the pile head, and 

the instrumentation end of the free-field accelerometer was buried in surficial gravel to improve 

coupling with the ground surface as shown in Figure E-3. The accelerometers were connected to 

a portable data acquisition system that interfaced with a laptop computer.  

                                                 
 
9 Model 4630 accelerometer manufactured by Measurement Specialties http://meas-spec.com/  
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Figure E-3: Instrumentation setup. 

A number of vibration sources were used in combination with various spacings between 

the pile and free-field sensors as well as different spacings between the pile and the vibration 

source. The attempted vibration sources included striking a steel plate vertically with a sledge 

hammer, striking adjacent piles vertically and in multiple horizontal directions relative to the 

orientation of a line between the test pile and the pile being struck (Figure E-4), dropping a 75-lb 

bag of aggregate from a ladder, and recording ambient noise from traffic and other sources. For 

each attempted source, a series of at least ten recordings were made, which were later stacked to 

improve the quality of the signals. This was necessary in part because of the relatively low quality 

of the MEMS accelerometers that were used. 

Spacing between the pile and free-field sensors corresponded to either two pile diameters 

or 6 pile diameters. For the sledge-hammer-on-steel-plate and aggregate sack sources, the spacing 

between the vibration source and the test pile either corresponded to a “near-field” spacing of 
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approximately 3 pile diameters (steel plate visible in Figure E-3), or a “far-field” spacing of 

approximately 10 pile diameters. 

 

Figure E-4: Striking adjacent pile to excite instrumented test pile. 

E.2 RESULTS 

Recorded time signals of the pile-head and free-field response were stacked and used to compute 

transfer functions. A lower-bound coherence cutoff of 0.8 was applied, consistent with the 

procedures implemented in the numerical study and by Mikami et al. (2008). The vibration sources 

that generated the strongest signals, and thus the most consistent trends in terms of their transfer 

functions, were striking the steel plate vertically and dropping the aggregate sack. Transfer 

functions for these sources are shown in Figure E-5. The figure also shows free-head pile elastic 

analytical transfer functions for vertically-propagating shear waves (derived in Chapter 8) and 

Rayleigh waves (after Makris 1994). The vertical S-wave analytical model significantly over-

predicts the measured transfer functions, while the Rayleigh wave model appears to capture the 
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underlying trends. This is likely due to the fact that the vibration sources primarily produced 

surface waves rather than vertically-propagating shear waves. 

 
Figure E-5: Goleta pilot study experimental transfer functions. 

The measured transfer functions show significant fluctuations, and only have high 

coherence over a relatively high- frequency range; they do not constrain the underlying trend over 

the lower frequency range of zero to 10 Hz that is of greater foundation engineering interest. 

Hence, they are not very useful for validating the models developed for this study. An experimental 

program in which transfer functions are measured using high-quality instrumentation that exhibit 

significant deamplification of the free-field motion over this lower frequency range would be 

extremely valuable for validation purposes. 
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