
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Modeling and Optimizing User Experience for Cloud Mobile 3D Applications

Permalink
https://escholarship.org/uc/item/23f4776f

Author
Lu, Yao

Publication Date
2016

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/23f4776f
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Modeling and Optimizing User Experience for Cloud Mobile 3D Applications

A dissertation submitted in partial satisfaction of the
requirements for the degree of Doctor of Philosophy

in

Electrical Engineering (Computer Engineering)

by

Yao Lu

Committee in charge:

Professor Sujit Dey, Chair
Professor Pamela Cosman
Professor Truong Nguyen
Professor Jurgen P. Schulze
Professor Geoffrey M. Voelker

2016

Copyright

Yao Lu, 2016

All rights reserved.

The Dissertation of Yao Lu is approved and is acceptable in quality and

form for publication on microfilm and electronically:

Chair

University of California, San Diego

2016

iii

TABLE OF CONTENTS

Signature Page . iii

Table of Contents . iv

List of Figures . vi

List of Tables . x

Acknowledgements . xii

Vita . xiii

Abstract of the Dissertation . xvi

Chapter 1 Introduction . 1
1.1 Background and System Architecture . 1
1.2 Related Work and Existing Systems . 4

1.2.1 Commercial Cloud Gaming Platforms . 4
1.2.2 Video coding technology . 5
1.2.3 Stereo video streaming adaptation technology 6
1.2.4 User experience model based on subjective tests 6
1.2.5 Video bit rate model . 7
1.2.6 Adaptive rendering techniques . 7

1.3 Asymmetric Graphics Rendering . 8
1.4 Organization of the Thesis . 10

Chapter 2 Asymmetric Graphics Rendering . 11
2.1 Introduction . 11
2.2 Impairment Functions Derivation and Validation . 14

2.2.1 Subjective Experiment Setting . 15
2.2.2 Impairment Function Derivation . 17
2.2.3 Impairment Function Verification . 21

2.3 Overall User Experience Modeling . 23
2.3.1 Impairment Function Validation for Network Delay 24
2.3.2 CMG(3D)-UE Model Derivation and Validation 25

2.4 Asymmetric Rendering Adaptation Approach . 29
2.4.1 Relationship between Graphics Rendering Factors and 3D Video

Bitrate . 31
2.4.2 Delay Prediction and Verification . 35
2.4.3 Asymmetric Rendering Optimization Algorithm 39

2.5 Experimental Results . 43
2.6 Conclusions . 49

iv

2.7 Acknowledgements . 49

Chapter 3 Asymmetric and Selective Object Rendering . 50
3.1 Introduction . 50
3.2 User Experience Model . 52

3.2.1 Impairment Function Derivation . 55
3.2.2 Subjective Test settings . 57
3.2.3 Model Parameter Derivation and Validation 59

3.3 Bitrate Model . 67
3.3.1 Model Equation Validation . 69
3.3.2 Model Parameter Validation . 71
3.3.3 Relationship between Content Feature and Graphics Rendering

Settings . 71
3.4 Adaptation Algorithm . 74
3.5 Experimental Results . 78
3.6 Conclusion . 84
3.7 Acknowledgements . 87

Chapter 4 Joint Asymmetric Video Encoding and Graphics Rendering 88
4.1 Introduction . 88
4.2 User experience model . 89

4.2.1 Subjective Test settings . 89
4.2.2 Impairment Function Derivation . 92
4.2.3 Model Validation . 98

4.3 Bitrate Model . 99
4.3.1 Model Equation Validation . 101
4.3.2 Model Parameter Prediction . 102

4.4 Optimization Algorithm . 104
4.4.1 Problem Formulation . 105
4.4.2 Algorithm Description . 105
4.4.3 Proofs . 109
4.4.4 Complexity Analysis . 113

4.5 Experimental Results . 113
4.6 Conclusion . 118
4.7 Acknowledgements . 119

Chapter 5 Conclusion and future work . 120
5.1 Conclusion . 120
5.2 Future work . 121

Bibliography . 124

v

LIST OF FIGURES

Figure 1.1. System architecture diagram of CMVIA(3D) 3

Figure 1.2. Evolution of asymmetric graphics rendering 9

Figure 2.1. (a) top, Left view and right view with asymmetric view distance (b)
bottom, Left view and right view with asymmetric texture detail . . 12

Figure 2.2. (a) top, Rate-distortion performance with different view distance
setting for left view and right view (b) bottom, Rate-distortion
performance with different texture detail settings for left view and
right view . 13

Figure 2.3. Testbed for subjective experiments . 15

Figure 2.4. Subjective test results: (a) top, Relationship between impairment
values and minimum percentage of missing objects (b) bottom, Re-
lationship between impairment values and difference of percentage
of missing objects . 18

Figure 2.5. Validation of IR with blue line showing 95% confidence interval . . 21

Figure 2.6. Relationship between predicted and subjective ID value with blue
line showing 95% confidence interval . 24

Figure 2.7. (a) left, Relationship between predicted MOS and subjective MOS
for the game Planeshift, (b) right, Relationship between predicted
MOS and subjective MOS for the game Broadsides, Blue line
showing 95% confidence interval . 26

Figure 2.8. Problem formulation . 30

Figure 2.9. Factors affecting overall impairments . 30

Figure 2.10. Derivation of relationship between graphics rendering factors and
video bitrate . 34

Figure 2.11. Verification of the relationship between graphic rendering factors
and video bitrate . 34

Figure 2.12. Testbed for measuring delay . 37

Figure 2.13. Results showing actual and predicted delay 38

vi

Figure 2.14. RTT measured from AWS to test device . 43

Figure 2.15. Results for game PlaneShift . 45

Figure 2.16. Results for game Broadsides . 46

Figure 3.1. (a) left, Example of asymmetric object rendering, (b) right, Exam-
ple of selective object rendering . 50

Figure 3.2. Testbed for subjective experiments . 57

Figure 3.3. Derivation for c . 61

Figure 3.4. Derivation of INS using the game Broadsides 63

Figure 3.5. Derivation of INS using the game Planeshift 63

Figure 3.6. Derivation of IR using the game Broadsides 64

Figure 3.7. Derivation of IR using the game Planeshift . 64

Figure 3.8. Validation of IR with blue line showing 95% confidence interval for
the game Broadsides . 65

Figure 3.9. Validation of IR with blue line showing 95% confidence interval for
the game Planeshift . 65

Figure 3.10. (a) left, Validation of model equation with q (b) right, Validation of
model equation with t . 69

Figure 3.11. Validation results of the proposed bitrate model 75

Figure 3.12. Problem formulation . 75

Figure 3.13. Network bandwidth profile 1 . 81

Figure 3.14. Results of Broadsides using network bandwidth profile 1 (a) top,
Bitrate of three algorithms (b) middle, IR of three algorithms (c)
bottom, CMG(3D)-UE of three algorithms . 82

Figure 3.15. Results of Planeshift using network bandwidth profile 1 (a) top,
Bitrate of three algorithms (b) middle, IR of three algorithms (c)
bottom, CMG(3D)-UE of three algorithms . 83

Figure 3.16. Network bandwidth profile 2 . 84

vii

Figure 3.17. Results of Broadsides using network bandwidth profile 2 (a) top,
Bitrate of three algorithms (b) middle, IR of three algorithms (c)
bottom, CMG(3D)-UE of three algorithms . 85

Figure 3.18. Results of Planeshift using network bandwidth profile 2 (a) top,
Bitrate of three algorithms (b) middle, IR of three algorithms (c)
bottom, CMG(3D)-UE of three algorithms . 86

Figure 4.1. Example snapshots for three applications . 90

Figure 4.2. Testbed for subjective experiments . 91

Figure 4.3. Relationship between I and QP . 94

Figure 4.4. Regression result for g function for gaming application when tex-
ture detail combination is High-High . 97

Figure 4.5. Validation of I(V E,GR) (a) top, Results for gaming (b), middle
Results for virtual classroom (c) bottom, Results for virtual art
gallery . 100

Figure 4.6. Validation of model equation (a) left, For gaming; (b) middle, For
virtual classroom; (c) right, For virtual art gallery 102

Figure 4.7. Validation of bitrate estimation . 103

Figure 4.8. Problem formulation . 103

Figure 4.9. Validation of bitrate estimation . 107

Figure 4.10. Optimization problem . 111

Figure 4.11. LTE bandwidth trace . 115

Figure 4.12. PDF of the bandwidth from Amazon cloud server to UCSD Mobile
System Design Lab . 116

Figure 4.13. (a) left, Bandwidth consumption of the algorithms for gaming (b)
middle, Resulting impairment I of the algorithms for gaming (c)
right, MOS of the algorithms for gaming . 116

Figure 4.14. (a) left, Bandwidth consumption of the algorithms for virtual class-
room (b) middle, Resulting impairment I of the algorithms for
virtual classroom (c) right, MOS of the algorithms for virtual class-
room . 117

viii

Figure 4.15. (a) left, Bandwidth consumption of the algorithms for virtual art
gallery (b) middle, Resulting impairment I of the algorithms for
virtual art gallery (c) right, MOS of the algorithms for virtual art
gallery . 117

ix

LIST OF TABLES

Table 2.1. Graphics rendering factor setting . 17

Table 2.2. 3D graphics quality and criterion for IR . 17

Table 2.3. Subjective test results: average IT D scores for different texture detail
combinations and combined/individual scenes 22

Table 2.4. Settings for network delay factor . 22

Table 2.5. 3D graphics quality and criterion for CMG (3D) 28

Table 2.6. Parameters for game broadsides . 28

Table 2.7. Subjective test results to compare different adaptation algorithms
using game PlaneShift . 48

Table 2.8. Subjective test results to compare different adaptation algorithms
using game broadsides . 48

Table 3.1. Scoring criterion for rendering impairment IR 58

Table 3.2. Subjective test results: average IT D scores for different texture detail
combinations in different scenes . 59

Table 3.3. Derivation of value c for different games and in different scenes . . . 61

Table 3.4. Derivation of model parameter for INS function 61

Table 3.5. x264 encoding parameters . 69

Table 3.6. Statistical results of the experiment showing rendering impairment
IR and overall user experience achieved CMG(3D)-UE. 81

Table 4.1. Experiment setting . 92

Table 4.2. x265 encoding parameters . 93

Table 4.3. Impairment criterion . 93

Table 4.4. QP threshold T (T D) for different texture detail settings 93

Table 4.5. Average IT D scores for different texture detail combinations 93

Table 4.6. Regression parameters of a and b for f function 97

x

Table 4.7. Regression parameters of a1, a2 and b1 for g function 98

Table 4.8. Statistical results of the experiment showing impairment I and over-
all user experience mos. 115

xi

ACKNOWLEDGEMENTS

I would like to acknowledge Professor Sujit Dey for his support as my advisor as

well as the chair of my committee. Under his careful supervision and guidance, I learned

a lot of technical knowledge very fast, developed brand new techniques solidly, improved

my writing skills and presentation skills in a systematic way. His mentorship is the key

to the success of my earning the degree.

I would also like to acknowledge my parents and family. They provided tremen-

dous support and help in the whole career of my Ph.D. life, especially when I met

difficulties. Without their support, it would be 3 times more difficult for me to fulfill the

degree requirement in time.

I would also like to acknowledge my lab mates. Senior students such as Yao Liu

helped me a lot preparing manuscripts for publication. Junior students such as Wenchuan

Wei and Xueshi Hou worked closely with me together on a lot of cool techniques &

systems. I sincerely appreciate all their effort.

Chapter 2, in part, is from the material as it appears in proceedings of IEEE ICNC

2014. Yao Lu; Yao Liu; Sujit Dey. and in IEEE Journal of Selected Topics in Signal

Processing 2015. Yao Lu; Yao Liu; Sujit Dey. The dissertation author was the primary

investigator and author of this paper.

Chapter 3, in part, is from the material as it appears in proceedings of IEEE ICC

2015. Yao Lu; Yao Liu; Sujit Dey. and in Multimedia Tools and Applications 2016. Yao

Lu; Yao Liu; Sujit Dey. The dissertation author was the primary investigator and author

of this paper.

Chapter 4, in part, is from the material as it appears in proceedings of IEEE ISM

2015. Yao Lu; Yao Liu; Sujit Dey. and in IEEE Journal on Emerging and Selected Topics

in Circuits and Systems 2016. Yao Lu; Sujit Dey. The dissertation author was the primary

investigator and author of this paper.

xii

VITA

2011 Visiting Scholar, Stanford University

2012 Bachelor of Engineering, Tsinghua University

2014 Master of Science, University of California, San Diego

2012–2016 Research Assistant, University of California, San Diego

2016 Doctor of Philosophy, University of California, San Diego

PUBLICATIONS

Xuan Dong, Guan Wang, Yi (Amy) Pang, Weixin Li, Jiangtao (Gene) Wen, Wei Meng and
Yao Lu, “Fast Efficient Algorithm for enhancement of low lighting video” In Proceedings
of IEEE International Conference on Multimedia and Expo (ICME), pp 1-6, Jul. 2011,
Barcelona

Qiang Ning, Kan Chen, Li Yi, Chuchu Fan, Yao Lu and Jiangtao Wen, “Image Super-
Resolution via Analysis Sparse Prior” IEEE Signal Processing Letters, Volume 20, Issue
4, pp 399-402, Jan. 2013

Tong Shen, Yao Lu, Ziyu Wen, Linxi Zou, Yucong Chen and Jiangtao Wen, “Ultra
Fast H.264/AVC to HEVC Transcoder” In Proceedings of IEEE Data Compression
Conference (DCC), pp 241-250, Mar. 2013, Snowbird

Jiangtao Wen, Shunyao Li, Yao Lu, Meiyuan Fang, Xuan Dong, Huiwen Chang and
Pin Tao, “Cross Segment Decoding for Improved Quality of Experience for Video
Applications” In Proceedings of IEEE Data Compression Conference (DCC), pp 231-
240, Mar. 2013, Snowbird

Jiangtao Wen, Bohan Li, Shunyao Li, Yao Lu and Pin Tao, “Cross Segment Decoding of
HEVC for Network Video Applications” In Proceedings of IEEE Packet Video Workshop,
pp 1-8, Dec. 2013, San Jose

Sujit Dey, Yao Liu, Shaoxuan Wang and Yao Lu, “Addressing Response Time of Cloud-
based Mobile Applications” In Proceedings of ACM International Workshop on Mobile
Cloud Computing & Networking, pp 3-10, Jul. 2013, Bangalore

Yao Lu, Yao Liu and Sujit Dey, “Enhancing Cloud Mobile 3D Display Gaming User
Experience by Asymmetric Graphics Rendering” In Proceedings of IEEE International

xiii

Conference on Computing, Networking and Communications (ICNC), pp 368-374, Feb.
2014, Honolulu

Yao Lu, Yao Liu and Sujit Dey, “Optimizing Cloud Mobile 3D Display Gaming User
Experience by Asymmetric Object Of Interest Rendering” In Proceedings of IEEE
International Conference on Communication (ICC), pp 6842-6848, Jun. 2015, London

Yao Lu, Yao Liu and Sujit Dey, “Modeling and Optimizing Cloud Mobile 3D Display
Gaming User Experience by Asymmetric Graphics Rendering” IEEE Journal of Selected
Topics in Signal Processing, Volume 9, Issue 3, pp 1-16, April, 2015

Wenchuan Wei, Yao Lu, Cathrine Printz and Sujit Dey, “Motion Data Alignment and Real-
Time Guidance in Cloud-Based Virtual Training System” In Proceedings of Wireless
Health (WH), p. 13, Oct. 2015, Bethesda

Dennis Shen, Yao Lu and Sujit Dey, “Motion Data Alignment For Real-Time Guidance in
Avatar Based Physical Therapy Training System” In Proceedings of IEEE International
Conference on E-health Networking, Application & Services (Healthcom), Oct. 2015,
Boston

Yao Liu, Sujit Dey and Yao Lu, “Enhancing Video Encoding for Cloud Gaming Us-
ing Rendering Information.” IEEE Transactions on Circuits and Systems for Video
Technology, Volume 25, Issue 12, pp 1960-1974, Dec. 2015

Yao Lu, Yao Liu and Sujit Dey, “A Joint Asymmetric Graphics Rendering and Video
Encoding Approach for Optimizing Cloud Mobile 3D Display Gaming User Experience”
In Proceedings of IEEE International Symposium on Multimedia (ISM), Dec. 2015,
Miami

Yao Lu, Yao Liu and Sujit Dey, “Asymmetric and Selective Object Rendering for Op-
timized Cloud Mobile 3D Display Gaming User Experience” to appear in Multimedia
Tools and Applications

Yao Lu and Sujit Dey, “JAVRE: A Joint Asymmetric Video Rendering and Encoding
Approach to Enable Optimized Cloud Mobile 3D Virtual Immersive User Experience” to
appear in IEEE Journal on Emerging and Selected Topics in Circuits and Systems

Ziyu Wen, Bichuan Guo, Jiashuo Liu, Jisheng Li, Yao Lu and Jiangtao Wen,“Novel
3D-WPP Algorithms for Parallel HEVC Encoding” In Proceedings of IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), Mar. 2016, Shanghai

Xueshi Hou, Yao Lu and Sujit Dey,“A Novel Hyper-cast Approach to Enable Cloud-based

xiv

Virtual Space Applications” to appear in Proceedings of IEEE International Symposium
on Multimedia (ISM), Dec. 2016, San Jose

FIELDS OF STUDY

Major Field: Engineering

Studies in Electrical Engineering (Computer Engineering)
Professor Sujit Dey

xv

ABSTRACT OF THE DISSERTATION

Modeling and Optimizing User Experience for Cloud Mobile 3D Applications

by

Yao Lu

Doctor of Philosophy in Electrical Engineering (Computer Engineering)

University of California, San Diego, 2016

Professor Sujit Dey, Chair

Cloud gaming architecture has been proposed and deployed in large-scale com-

mercial systems in recent years. It renders and encodes video views on cloud servers,

with the resulting video streamed through network to end devices. This approach has

the advantage of relieving high computation, power and storage requirements of gaming

from end devices. The challenge therefore shifts to streaming high quality video with

low latency through networks with fluctuating conditions. In this thesis, we extend the

basic cloud gaming architecture in three aspects. First, we consider not only gaming as

target application, but also consider much more virtual immersive applications, such as

xvi

virtual classroom and virtual art gallery, etc. Second, with the development of ubiquitous

wireless network for mobile devices, we specifically consider streaming the video through

mobile wireless network. Third, with the growing popularity of mobile auto-stereoscopic

3D displays, we consider capture, record and stream two views (left and right views) in

the virtual world so that it can render 3D views on mobile 3D displays. To conclude, we

term our extended architecture as cloud mobile 3D display virtual immersive application

architecture. Because 3D videos contain two views that doubles video bit rate require-

ment for the same quality versus 2D video, and also because mobile wireless network is

much more fluctuating than wired and WiFi network, streaming high quality 3D video

with low latency becomes much more challenging. In this thesis, based on prior research

results that show human brain can compensate perceived video quality automatically

when one of the views is of inferior quality, we propose asymmetric rendering where we

tune graphics rendering quality to be asymmetric for the two views. We develop both

user experience models and bit rate models by applying different rendering settings and

conducting subjective tests. We further develop optimization algorithms which use the

above two models to automatically decide the optimal rendering settings for left view and

right view to ensure the best user experience given the network conditions. Experiments

conducted using real 4G-LTE network profiles on commercial cloud service with different

genres of applications demonstrate significant improvement in user experience when the

proposed asymmetric rendering techniques are applied.

xvii

Chapter 1

Introduction

In this chapter, first, the background of cloud gaming technology will be in-

troduced. How this technology has developed and evolved will be discussed and its

advantages & disadvantages will be compared. Next, we will describe an overview of our

extension to cloud mobile 3D display virtual immersive application architecture. System

architecture will be provided and system design aspects will be discussed. We will then

list the related work and existing commercial systems in this area. After that, we briefly

introduce the novel technique of asymmetric graphics rendering that we propose in this

thesis. Finally the organization of the thesis will be provided.

1.1 Background and System Architecture

Traditionally, before cloud gaming architecture [1] is proposed, people download

from the Internet or buy a disc from local store to obtain a digital game. They then

install the game on their desktop computer or laptop computer and every time launches it

locally to play the game. The game utilizes local computing resources such as CPU and

GPU to execute game logic and render the view. Some multi-user games will connect to

the Internet and exchange some data through the network with very low bit rate. With

this traditional architecture, gamers need to buy very high end computer with powerful

CPU and GPU in order to play the very high end 3D games. In addition, it also requires

1

2

decent storage space for texture maps and mesh data for the scenes and objects. Besides,

for developers, each game needs to be developed multiple times to support different

hardware and operating systems platforms. It requires even much more effort to port the

game from desktop version to mobile version.

During 2000 and 2010, cloud computing technologies were developed rapidly.

Successful products such as Google Docs [2], Amazon Web service [3], Dropbox [4]

gradually came into public view during that period. With the same concept as cloud

computing [5], cloud gaming technology was also developed. The key idea of cloud

gaming is to launch the game on the cloud servers, the then the video view will be

captured and encode as video to transmit through network and reach user’s device. On

the reverse side, inputs and commands will be captured and transmitted back to the

cloud server to execute the game logic. In this way, the end device does not need to

have powerful CPU and GPU, not need to have large storage space and the game can

theoretically be played on any operating system including operating system for mobile

devices. However, one disadvantage is under constrained network conditions, there

is a tradeoff here between quality and latency. Because the video encoding is a lossy

process, if the video is encoded as very high quality, the bit rate increases and will thus

introduce more latency. Otherwise, if the video is encoded to consume low bit rate,

the latency will be low but the quality compromises. Some video streaming adaptation

techniques [41] [42] were then developed to overcome this difficulty. It improves user

experience to some extent but the problem can not be fully solved [6]. In 2010, the

first commercial cloud gaming platform [23] was launched that is a sign showing cloud

gaming architecture tended to be mature.

Since 2011, three technology trends have also been evolving rapidly, which

makes extension of the basic cloud gaming architecture possible. First, the idea of

virtual reality (VR) [7] and augmented reality (AR) [8] have been proposed again and

3

Figure 1.1. System architecture diagram of CMVIA(3D)

the industry has started developing virtual immersive applications on different devices

and platforms. SecondLife [76] has developed virtual world application for desktop

PCs. Oculus [9], HTC [10] and Sony [11] developed Head Mounted Devices (HMD)

for consuming VR contents. Pokemon Go [12] became extremely popular from its first

release day as an AR application running on mobile devices. Thus, we conclude that

the cloud gaming architecture should not be constrained to work with games only, but

can also extend to other virtual immersive applications. Second, since late 2010, mobile

network infrastructure has started to be upgraded to support 4G-LTE standard [13]. It

increases network bandwidth, decreases network packet loss and it also makes the data

price to be lower for users. These changes made it possible to watch streamed videos

on mobile devices and the same assumption applies to making cloud gaming to mobile

device possible. Third, since 2011, mobile auto-stereoscopic 3D displays [14] have

become more and more popular. Products based on new auto-stereoscopic 3D technology

started entering the market. With huge success of 3D content at cinemas, it is believed

that consumers would like their mobile devices equipped with 3D displays in the future.

4

Therefore, combining the above three technology trends, we propose an extension of

the basic cloud gaming architecture called cloud mobile 3D display virtual immersive

application CMVIA(3D) architecture. The system architecture diagram is shown in

Figure 1.1. In detail, we place two virtual cameras in the virtual world to generate a

left view and a right view of the virtual scene. After the two views are generated, they

will be encoded as 3D video and transmitted through wireless network to the mobile

device, and displayed on the device 3D screen. On the reverse side, control commands

are captured and transmitted from mobile device to the server to execute. There exists

an adaptive rendering module before 3D rendering engine. It is used to decide and set

the best rendering parameters to ensure best user experience. The details of how this

adaptive rendering module works will be explained in the following chapters.

1.2 Related Work and Existing Systems

In the following, we will first introduce some commercial cloud gaming systems

from which we can see there still exists research challenges. Then related research areas

will be carefully explored and investigated.

1.2.1 Commercial Cloud Gaming Platforms

In 2010, OnLive launched world’s first commercial cloud gaming service platform

[23]. It’s monthly active users reached 1 million shortly after its establishment. In

November 2010, powered by G-cluster technology, SFR launched a commercial cloud

gaming service in France for IPTV users [24]. In 2011, Gaikai collaborated with

game publishers to use cloud gaming technology to provide game trial experience to

users [25]. It was acquired by Sony in 2012 [26]. In 2013, the first open-source

cloud gaming platform GamingAnywhere was released [27]. In 2015, Sony Computer

Entertainment acquired OnLive’s patents and OnLive closed its doors [28]. Besides

5

commercial reasons, the technology provided by OnLive can only work under wired

and WiFi networks but not under cellular networks. In October 2015, NVidia released

its cloud gaming solution called GeForce Now together with its specialized hardware

NVIDIA GRID [29]. The specification for GeForce Now indicated that a user must have

over 10Mbps bandwidth with less that 100ms delay in order to launch the game. To

conclude, all current commercial services support only wired and WiFi networks because

of the challenges imposed by cellular wireless networks.

1.2.2 Video coding technology

For 3D virtual immersive applications, the main difference between traditional

standalone rendering architecture versus cloud based rendering architecture is that the

latter uses video encoding technology to compress the screen content as a video stream

and then transmit. Therefore, using the latest video coding technologies and standards,

reviewed below briefly, is the easiest way to reduce bitrate consumption and therefore

reduce delay and improve user experience.

Video coding standards have evolved primarily through the development by ITU-

T and ISO/IEC standards. H.261 [?] and H.263 [?] were produced by ITU-T while

MPEG-1 [?] and MPEG-4 Visual [?] were produced by ISO/IEC. The two organizations

jointly produced the H.262/MPEG-2 Video [?], H.264/MPEG-4 Advanced Video Coding

(AVC) [?] and H.265/MEPG-H High Efficiency Video Coding (HEVC) [?] standards.

The latest released standard HEVC is claimed to be able to encode a video using half

of the bitrate that AVC does while producing the same quality. There are a lot of

extensions of HEVC that have been developed and released afterwards among which

there is an extension called Screen Content Coding [?]. SCC is designed to improve

compression capability for video containing a significant portion of rendered (moving or

static) graphics, text, or animation rather than camera-captured video scenes.

6

1.2.3 Stereo video streaming adaptation technology

In terms of video streaming, there exists many techniques that could adapt video

bit rate according to network conditions to ensure low latency content delivery [38] [39].

Because stereo video or 3D video contains two views for user’s left eye and right eye

respectively, much more techniques were proposed to take advantage of this property and

further improve the overall quality of service. Among them, one of the techniques allow

left view and right view to be of asymmetric quality and let human brain to compensate

for the degradation. Some experiments [40] [41] [42] show that as long as the view with

lower quality is still better than some threshold, people won’t notice it and would still

generate the 3D view with acceptable quality in their brain. Thus, instead of tuning

the video quality to be lower for both views when network bandwidth is not adequate,

one of the views can preserve the quality while only the other is tuned to be lower and

the final 3D quality would still be better than the former method with the same bit rate

budget. The same concept inspired us to develop techniques in the rendering engine to

do asymmetric rendering to further improve the use experience.

1.2.4 User experience model based on subjective tests

Vankeirsbilck et al. [43] proposed a user experience model for cloud gaming but

it only considers video encoding impairment and it is based on a single view 2D display

Cloud Mobile Gaming (CMG) system. Jarschel [?] and chen [45] conducted experiments

to quantitatively measure quality of service for cloud gaming. Liu et al. [46] have

done user experience study and modeling considering both video encoding impairment

and graphics rendering impairment but it is also applicable only for 2D display CMG

system. However, no user experience model for cloud mobile 3D display system has

been proposed before.

7

1.2.5 Video bit rate model

Video bit rate modeling is a standard problem. Especially in traditional video

encoding research area, bit rate needs to be accurately estimated so that rate control

can be done correctly. For digital video broadcasting (DVB) transmission, strict CBR

is widely used which makes rate control and bit rate modeling extremely important.

Previous state-of-art methods usually use two pass methods to get statistical information

in the first pass and decide the bit rate in the second pass [47]. Some other previous

works model the relationship between video bitrate and encoding settings/video content

features [48] [49]. However, there are several shortcomings. 1) These models are not

specifically for screen content videos. 2) These models do not take into account graphics

rendering settings. 3) These models are developed several years ago with videos of low

resolutions. 4) Some models are developed based on old standards.

1.2.6 Adaptive rendering techniques

Hemmati et al. [50] propose the idea of selective rendering and has done some

preliminary experiments to show that by not rendering some unimportant objects, video

bitrate can be decreased. However, they applied their technique in 2D display CMG

system and they did not answer the question about how to choose those objects, how

it influences user experience and how to dynamically select the unimportant objects

to be rendered according to network bandwidth. Wang et al. [51] take video encoding

impairment, graphics rendering impairment and network impairment into consideration

and propose an adaptation algorithm to minimize the overall impairment by choosing

different levels of settings for different network conditions. However, the discrete number

of levels restricts smooth transition between different settings.

8

1.3 Asymmetric Graphics Rendering

The key idea we introduce in this thesis is called asymmetric graphics rendering

which is inspired by stereo video streaming adaptation in which two views for left eye

and right eye can be of different objective qualities without compromising user perceived

subjective quality. While normally it is done in the encoding process, we identify and

demonstrate in this thesis that it can also been done in the rendering engine which is

actually more flexible. Moreover, we notice and demonstrate that asymmetric graphics

rendering can be used together with asymmetric encoding to further improve the user

experience given limited bit rate budget. In this thesis, we start by applying asymmetric

graphics rendering for the whole view and all objects in the view), and then gradually

evolve the idea to apply it differently for each individual objects. Finally, we also

consider to combine asymmetric graphics rendering with asymmetric encoding. Figure

1.2 illustrates the evolution of our proposed concepts of asymmetric graphics rendering.

We first briefly introduce some terms in rendering engine and encoder (more

detailed introduction will be done in the next following chapters) and then explain the

key ideas in Figure 1.2 one by one. First, in rendering engine, we define two parameters,

called texture detail and view distance respectively. Texture detail defines the quality of

texture map. It contains three levels, High, Medium and Low. Lower level causes more

blurry effect to the view. View distance is defined as a distance threshold. When the

distance from the camera to the object is larger than this threshold, rendering engine won’t

render it. Next, in video encoder, we define QP which means the quantization parameter.

Because video encoding is a lossy process, quantization will create blurry artifacts to the

original view. The larger the QP, the more blurry the view will be. We consider using

the rendering parameters texture detail and view distance, and the encoding parameter

QP, in this thesis. We can see in the first row of Figure 1.2, we enable to set asymmetric

9

Figure 1.2. Evolution of asymmetric graphics rendering

10

texture detail and set symmetric view distance for two views. Both parameters can

be adaptively tuned according to network conditions. In the second row, we consider

setting asymmetric texture detail for each individual objects. The objects that attract

more attention from users are regarded as more important and hence will be assigned

to render with higher texture detail when possible. In the third row, we enhance the

above idea by further allowing the object to be selectively rendered. Some objects with

very low importance weight can choose not to be rendered at all. In the fourth row, we

combine asymmetric graphics rendering and asymmetric encoding together and also

allow symmetric view distance. These three parameters will be adaptively changed

according to network bandwidth constraints.

1.4 Organization of the Thesis

In the following chapters, we describe in details the asymmetric rendering and

encoding ideas introduced in Figure 1.2, and propose models, algorithms and architectures

needed to implement the novel ideas. Specifically, Chapter 2 describes the asymmetric

rendering technique described in the first row of Figure 1.2. Chapter 3 discusses the

technique illustrated in the second and third rows of Figure 1.2, which is asymmetric

and selective rendering for individual objects. Chapter 4 applies the idea of the last

row of Figure 1.2 to further improve the cloud mobile 3D virtual immersive system. In

each of the above chapters, the idea will be introduced in detail, subjective tests will be

carried out to derive an user experience model, adaptation algorithms will be designed

and final experiments will be conducted to verify the validity of the model and proposed

techniques. Finally, Chapter 5 will conclude the whole thesis and point out possible

future work in this area.

Chapter 2

Asymmetric Graphics Rendering

2.1 Introduction

In this chapter, we study two rendering factors that have great impact on user

experience and rendered video bitrate: texture detail and view distance. Texture detail

defines the quality of the images on the surface of the objects. In detail, texture detail

defines the quality of the images on the surface of the objects. We define texture detail

to be high when the game is using the original texture images, to be medium when the

texture images are downsampled once, and low when the texture images are downsampled

twice. View distance determines which objects will be included in the rendered game

video frame. For a given view distance value, except for the world boundaries (sky and

ground), the game engine will only render the objects which are within the given distance

from the camera to the object, and all the objects beyond this view distance value will be

excluded. Since for 3D display games we generate two views using two virtual cameras

(Figure 1.1), we can potentially render each view with different texture detail and view

distance, leading to asymmetric graphics rendering.

Figure 2.1a shows an example of asymmetric view distance in which left view

distance is set as 150 meters and right view distance is set as 100 meters. This means the

objects which are more than 100 meters but less than 150 meters away from the camera

11

12

(a)

(b)

Figure 2.1. (a) top, Left view and right view with asymmetric view distance (b) bottom,
Left view and right view with asymmetric texture detail

13

will be only rendered in left view but not in right one. Consequently, any object further

than 100m (and less than 150m) can only be seen by the viewer’s left eye, but not by the

right eye. Figure 2.1b shows another example which we term asymmetric texture detail.

In this example, left view texture detail is set as high quality and right one is medium

quality. This means the surface quality experienced by the left eye will be slightly higher

than that by the right eye.

(a)

(b)

Figure 2.2. (a) top, Rate-distortion performance with different view distance setting for
left view and right view (b) bottom, Rate-distortion performance with different texture

detail settings for left view and right view

We will show in the following why asymmetric graphics rendering is promising

to enhance user experience. Figure 2.2a and 2.2b present the rate-distortion comparison

between different view distance settings and different texture detail settings respectively.

(H stands for high texture detail, M for medium and L for low). We can see that by

enabling asymmetric graphics rendering, video quality (as measured by PSNR) can

14

be potentially increased. For example, as shown in Figure 2.2b, the setting that has

one view with medium texture detail and the other with low texture detail can have

roughly 2dB PSNR gain over the setting where both the views have medium quality

under the same encoding bitrate. In this way, user experience can be greatly improved

either under the same network condition (increase video quality) or the same video

quality (reduce bitrate needed and hence decrease network delay). However, while

asymmetric graphic rendering can enhance the resulting video quality and/or reduce

delay, it can also impair the surface quality; thereby impact the overall user experience.

After introducing the concept of asymmetric rendering, in the following sections, we will

derive impairment functions for the graphics rendering factors which can quantitatively

measure how asymmetric graphics rendering will impact user experience.

2.2 Impairment Functions Derivation and Validation

In order to learn how graphics rendering factors affect user experience quantita-

tively, especially when asymmetric graphics rendering is applied, we define an impair-

ment function IR as Equation (2.1).

IR = IV D + IT D (2.1)

IR indicates the impairment due to graphics rendering. It takes value between

0 and 100. Higher IR value indicates larger impairment. Similarly, IV D represents the

impairment due to view distance, and IT D indicates the impairment due to texture detail.

In this section, we will derive impairment function IV D and IT D through subjective tests

and then validate Equation (2.1) using another set of subjective tests.

In a typical 3D game, there are multiple different game scenes with different

spatial characteristics; hence the rendering impairment caused by view distance and

15

texture detail may be affected by the game scene also. For instance, for the same view

distance value, the graphics rendering impairment for an outdoor game scene where lots

of objects are far from the camera may be very different from an indoor scene where

lots of objects are close to the camera. To ensure that the impairment function for view

distance, IV D, is generally applicable to different game scenes, instead of modeling it as

a function of the actual view distance value (in meters), we proposed to model it as a

function of the percentage of missing objects caused by reducing view distance in [46].

In this work, we extended it to apply to asymmetric graphics rendering which enables

different percentage of missing objects in different views. On the other hand, for IT D, we

will show by subjective test results that the impairment value will not be affected much

by scene characteristics. In both cases, we will validate the derived impairment functions

by including different game scenes in the subjective experiments.

2.2.1 Subjective Experiment Setting

Figure 2.3. Testbed for subjective experiments

Figure 2.3 shows the testbed used for the subjective tests. We use a 3D monitor

with a laptop to substitute for 3D display of mobile devices because current available

mobile 3D displays do not have as good quality as 3D monitors which may cause

additional impairment which we want to avoid. The laptop is connected to a network

16

emulator via an Access Point and the network emulator is connected to the game server.

By changing parameters such as bandwidth, delay and packet loss on the network

emulator, we can generate different kinds of network conditions. The selected game which

runs upon the above framework is an online open source MMORPG game: PlaneShift

[57]. To investigate how asymmetric graphics rendering factors affect user experience,

we set the video encoding parameter QP to 25 which leads to sufficiently high encoding

video quality and set network bandwidth to be sufficiently large so that only graphics

rendering factors can cause impairment. We then invited 16 UCSD students (12 male, 4

female; aged 18∼26) to participate in our subjective experiments. Firstly, we asked the

testers to sit before a 23 inch LG D2342 3D Monitor, and showed them a 3D video as a

training sequence before the real test started to let the testers adjust their viewing angle

and viewing distance. The best viewing angle is related to the height of the testers but

the best viewing distance is about 1 meter for all testers. After that, we start the game

and manually set the graphics rendering factors according to Table 2.1 independently

for each view. Once a combination of rendering factors is set, we ask the testers to play

the game for 1 minute and evaluate the graphics rendering impairment according to the

criterion listed in Table 2.2 at the end of each condition. During the whole experiment,

the testers were asked to control the avatar to perform multiple tasks (including attacking

an enemy, looking for an object, running, walking and talking to an NPC, etc.) under

various different game scenes (including outdoor scenes like forest and city, as well as

indoor scenes such as weapon store). In this experiment, a total of 51 combinations of

rendering factors are studied. The experiment process including the test criterion and

the number of participants adhere to the ITU-T Recommendations [58, 66]. We collect

all the evaluations under different graphics rendering factors and use them to derive the

impairment functions.

Note that in Table 2.1, we have used the percentage of missing objects instead

17

of view distance (in meters) in order to make the IV D function applicable for different

scenes. We can easily compute view distance from percentage of missing objects using

the following method: suppose we need to set the percentage of missing objects to be

10%, we firstly extract the distance information of all the objects (this information can be

easily fetched during the rendering process), then we choose the 90th percentile of all the

distance values to be the corresponding view distance (for 10% missing object). This

is because the 90th percentile can ensure that 90% of objects have less distance than it,

therefore there are 10% of objects that exceed the view distance and will be missing.

Table 2.1. Graphics rendering factor setting

Factors Experiment Values
Texture Detail(Down Sample) High(0) Medium(2) Low(4)

Percentace of Missing Objects (%) 100 90 80 70 60 50 40 30 20 10 0

Table 2.2. 3D graphics quality and criterion for IR

IR Description

0
Excellent depth perception, Excellent visual quality, no visual impair-
ment

0-20
Good depth perception, Good visual quality, minor visual impairment,
will continue the game

20-40
Acceptable depth perception but noticeable visual impairment, might
quit the game

40-60
Can still get feeling of depth perception but clear visual impairment,
usually quit the game

60-100 No feeling of depth at all, unacceptable quality, definitely quit the game

2.2.2 Impairment Function Derivation

To derive IV D and IT D, we use the results from the experiments where we only

vary one rendering factor shown in Table 2.1 and keep the other at its best value. For

example, to derive IV D, we set different combinations of the percentage of missing objects

for the left and right views according to Table 2.1, while keeping the texture details of

18

the two views to be both at the highest value, such that all the impairment is caused by

view distance.

(a)

(b)

Figure 2.4. Subjective test results: (a) top, Relationship between impairment values and
minimum percentage of missing objects (b) bottom, Relationship between impairment

values and difference of percentage of missing objects

In the following, we first derive the impairment due to view distance, IV D which

mainly depends on two factors: (a) the value of the minimum percentage of missing

objects among the two views, and (b) the difference of percentage of missing objects

19

between the two views. The minimum percentage of missing objects indicates how many

objects are missing in both views and the value of difference represents how many objects

are seen by one eye but not the other. Figure 2.4a shows the relationship between IV D and

minimum percentage of missing objects while Figure 2.4b shows the relationship between

IV D and difference of percentage of missing objects. From these two figures, we can

observe that there is a very different relationship between IV D and minimum percentage

of missing objects whether the two views have the same percentage of missing objects

or different. When the two views have the same percentage of missing objects which

means the difference percentage is 0%, we can see IV D has a non-linear relationship with

minimum percentage of missing objects. Thus, we use nonlinear regression method to

derive the equation of IV D in this case. We tried to use square, third power and fourth

power to do the regression. The regression square errors for the three methods are 301.09,

30.58 and 15.74 respectively. Since the error of square is big, we do not consider it.

However, the error difference between third power and fourth power is not large. In

addition, using lower power can avoid over fitting and potentially save computational

power for the optimization algorithm we would propose later. Therefore, we propose to

use Equation (2.2) to describe the relationship when both views have the same percentage

of missing objects.

IV D = aP3 +bP2 + cP (2.2)

in which P denotes the percentage of missing objects and a,b,c,d are four parameters.

For the game Planeshift, a = 0.000179,b = −0.0115,c = 0.3497. Note that although

the above impairment model as well as all the models derived subsequently is general,

the values of the parameters need to be derived for specific games. We will validate the

above statement by applying the models to another game of a very different genre in the

next section.

20

For the other cases when the difference of percentage of missing objects is not

zero, we observe that the impairment has a bilinear relationship with the two factors.

Thus, we use a bilinear regression method to derive the equation of IV D. Equation (2.3)

shows the relationship. Pdi f f means the difference of percentage of missing objects and

Pmin means the minimum percentage of missing objects.

IV D = ePdi f f + f Pmin +g (2.3)

in which

Pdi f f = |P1−P2|

Pmin = min(P1,P2)

and e = 0.754, f = 0.608,g = 0.98 for Planeshift.

A similar method is used to derive the impairment function of texture detail,

IT D, where we vary the texture detail setting of left and right views, change different

scenes, and collect participants’ scores according to Table 2.2. The testers were asked

to give two kinds of scores, combined score for a combination of different scenes and

individual score for a specific scene. Table 2.3 summarizes the results. From Table 2.3

we can make the following observation. The difference between individual scores and

combined score ranges between -9.7% and 9.2% and thus we believe the complexity of

the scene does not influence the score too much, instead, the texture detail dominates the

impairment. In addition, the additional impairment due to asymmetric texture detail of

left and right views is marginal (only about 7.5) when the asymmetry is of one level (like

High-Medium, or Medium-Low); however, the impairment can go up significantly (more

than 25) if the asymmetry is higher (like High-Low). Based on the above observations,

we denote high texture detail as a value of 0, medium as 1 and low as 2 and further derive

21

the formula for IT D (as shown in Equation (2.4)) using regression method. Note that in

Equation (2.4) we use a square term, T D2
di f f , to penalize the large impairment due to

high texture asymmetry of two views (like High-Low). Term T Dmax is used to indicate

the impairment due to low surface quality itself.

IT D = hT Ddi f f
2 + iT Ddi f f + jT Dmax (2.4)

in which

T Ddi f f = |T D1−T D2|

T Dmax = max(T D1,T D2)

and h = 6.6591, i = 0.4318, j = 12.1932 for Planeshift.

2.2.3 Impairment Function Verification

Figure 2.5. Validation of IR with blue line showing 95% confidence interval

In order to verify the functions (Equations (2.1),(2.2),(2.3),(2.4) and Table 2.3)

derived in the previous subsection, we conducted another set of experiments with a new

group of 15 participants (11 male, 4 female; aged 18∼25), playing the same game, and

evaluate using the same criterion (Table 2.2); however, in this set of experiments, the

22

texture detail and percentage of missing objects parameters are changed at the same

time. Figure 2.5 shows the relationship between predicted IR computed by the derived

impairment function (y-axis) and subjective IR given by human subjects (x-axis). We also

plotted 95% confidence interval for each measurement as blue lines in the figure. The

correlation is 0.97, which proves the accuracy of the derived impairment functions.

Note that one limitation of our subjective study is that when we asked the testers

to evaluate the graphics rendering impairment while playing the game, they were asked

to play for 1 minute and give the score. The 1 minute playing time is a short period and

the subjective score may not capture the visual discomfort caused by assigning different

view distances to the two views, such that the player will see some objects visible in one

view but not visible in the other view. This discomfort effect of asymmetric rendering

will be further studied in our future work by asking the testers to play the game for longer

time and evaluate their experience.

Table 2.3. Subjective test results: average IT D scores for different texture detail
combinations and combined/individual scenes

Texture Detail Combination H-H H-M H-L M-M M-L L-L
Combined Score IT D 0 7.625 27.5 11.5 18.75 25

Forest Scene Score IT D 0 7.30 27.85 10.38 19.84 25.38
Plaza Scene Score IT D 0 8.30 28.85 11.61 20.46 24.00
Lane Scene Score IT D 0 7.84 25.61 12.30 20.76 23.07

Table 2.4. Settings for network delay factor

Factor Experiment Values
Network

delay (ms)
80 120 160 200 250 300 350 380 400 450 480
500 550 580 600 650 680 700 750 780 800 1000

23

2.3 Overall User Experience Modeling

In [46, 52–54, 59], the factors affecting Cloud Mobile Gaming User Experience

have been analyzed, and a UE Model has been proposed which takes into account the

impairments due to these factors. Though the above applies to 2D video streamed and

displayed on 2D mobile devices, the category of factors are the same in the 3D case. As is

described in [46], there are three major categories of objective factors: graphics rendering

factors, video encoding factors, and mobile network factors. As discussed in the previous

section, graphics rendering factors include texture detail and view distance which affects

the user perceived surface quality of the graphics. Video encoding factors include video

quality, video bitrate, etc. which affect both visual quality and response time. Mobile

network factors include packet loss rate and network delay which will affect visual

quality and response time. In this work, we will focus on studying graphics rendering

factors and mobile network factors, while keeping the video encoding factors at high

level such that there will be no impairment caused by video encoding. As for graphics

rendering factors, impairment functions have already been derived in the previous section.

As for mobile network factors, we will only consider network delay, since our use of

TCP minimizes any impairment due to packet loss while increasing the potential of

impairment due to delay. We also show in the next subsection that we can reuse the same

impairment function for network delay as has been derived for the 2D case [52]. After

getting impairment functions separately for graphics rendering factors and network delay

factors, we will derive and validate an overall user experience model for CMG(3D).

24

2.3.1 Impairment Function Validation for Network Delay

In our previous work [52], the impairment caused by network delay for 2D cloud

gaming has been studied and the impairment function is as follows:

ID =


0 (T1 > Delay > 0)

T0 [(Delay−T1)/(T2−T1)] (T2 > Delay > T1)

T0 +α (Delay−T2) (Delay > T2)

(2.5)

For the game Planeshift, T0 = 40,T1 = 120,T2 = 440,α = 0.05.

Figure 2.6. Relationship between predicted and subjective ID value with blue line
showing 95% confidence interval

We validate the accuracy of this function for 3D cloud mobile gaming by conduct-

ing subjective tests with a new group of 15 participants (11 male, 4 female; aged 18∼25)

playing the game Planeshift using our CMG (3D) testbed shown in Figure 2.3. The value

of network delay parameters are shown in Table 2.4. The tasks which the testers are asked

to perform; the scene they passed and the duration of the time they play are the same as

the test for derivation. Figure 2.6 shows the relationship between subjective impairment

given by people with the objective impairment computed using Equation (2.5). We also

plotted 95% confidence interval for each measurement as blue lines in the figure. The

correlation between predicted ID (y-axis) and subjective ID (x-axis) is 0.97. This high

25

correlation indicates that although Equation (2.5) is derived for 2D cloud gaming, we

can also apply it in 3D cloud gaming. We next derive the UE model based on these two

impairment functions.

2.3.2 CMG(3D)-UE Model Derivation and Validation

In this subsection, we propose a Cloud Mobile 3D Display Gaming User Ex-

perience (CMG(3D)-UE) model by taking network delay impairment and asymmetric

graphics rendering impairment into consideration. Derivation and validation are both

done through subjective tests.

We define Cloud Mobile 3D Display Gaming Mean Opinion Score (CMG(3D)-

MOS) as a measurement metric for CMG(3D)-UE. In order to formulate it using the

impairment functions, we follow the same framework as ITU-T E-model [58]. The ITU-T

model offers a way to quantify the combined impact of several audio transmission im-

pairments, including network delay impairment, audio distortion impairment, etc. Hence,

although the model is originally developed for audio transmission, since the impairment

for cloud mobile gaming also includes combined effects of rendering impairment and

network delay impairment, we borrow the framework of the ITU-T model for our study.

The function of CMG(3D)-MOS formulated by R factor can be found in ITU-T E-model.

We duplicate it for our CMG(3D)-MOS formulation:

CMG(3D)-MOS = 1+0.035R+7×10−6R(R−60)(100−R) (2.6)

In Equation (2.6) the transmission rating factor, R, takes value from range [0,100]

(the higher R, the better CMG(3D)-MOS). CMG(3D)-MOS relates to R through a non-

linear mapping and takes value in the range [1,4.5]. Considering that R in ITU-T E-Model

is designed specifically for audio transmission application and not suitable for CMG

26

applications where graphic rendering factors affect user experience, we propose the

following new definition of R:

R = 100− I = 100− IR− ID +CDR(
√

ID · IR) (2.7)

in which I means the overall impairment, IR is the impairment due to graphics rendering

factors and ID is the impairment due to network delay factor. The last term adjusts I by

the cross effect between the two impairments, and CDR is a constant.

(a) (b)

Figure 2.7. (a) left, Relationship between predicted MOS and subjective MOS for the
game Planeshift, (b) right, Relationship between predicted MOS and subjective MOS for

the game Broadsides, Blue line showing 95% confidence interval

In order to derive the parameter CDR and verify the correctness of the model, we

conduct a new series of subjective experiments using the same subjects used earlier to

validate the impairment functions. This time we simultaneously change the graphics

rendering factors at the cloud game server and the network delay factor at the network

emulator, and let the testers give their scores according to Table 2.5 whose scale is

mapped to Table 2.2 via Equation (2.6). We use 60% of the data to derive CDR and use

the rest 40% to validate. Our results show that CDR = 0.4 for Planeshift. Then, we use

27

Equations (2.6) and (2.7) to compute our predicted UE score and compare it with the

subjective UE score given by the testers to validate the model. Figure 2.7a shows our

results. We also plotted 95% confidence interval for each measurement as blue lines in

the figure. We can see from the figure that the correlation between predicted UE score

and subjective UE score for the game Planeshift is 0.93, indicating adequate accuracy of

our CMG(3D)-UE model.

To demonstrate the applicability of the CMG(3D)-UE model to other games,

we applied it to another 3D game Broadsides [63], which belongs to a different genre

than game PlaneShift. For the new game, we apply the same approach for training and

validating the CMG(3D)-UE model. We conduct a new group of subjective tests of 16

participants (10 male, 6 female; aged 19∼28) and collect evaluations under different

combinations of the rendering and network factors. Firstly we use the results where only

one factor varies and all the others are fixed at the best values to train the impairment

functions for the new game. Table 2.6 shows the coefficient values. Comparing these

values with the coefficients for game PlaneShift, we can see that for different games,

the coefficients are different. Secondly we use the results where all the factors vary

simultaneously to derive and validate the overall CMG(3D)-UE model. 60% of the

results are used for training the model of R and computing the coefficient CDR, and the

other 40% of test results are used for validating the model. Figure 2.7b is the scatter plot

of the relationship between subjective and predicted CMG(3D)-MOS. For the new game

Broadsides, CDR = 0.2 and the correlation is 0.87. From Table 2.6 and Figure 2.7b, we

can see that for the new game, after training and refitting the coefficients, the proposed

CMG(3D)-UE model will also lead to high modeling accuracy.

28

Table 2.5. 3D graphics quality and criterion for CMG (3D)

CMG
(3D)-MOS Description

4.5
Excellent depth perception, Excellent visual quality, no visual
impairment and excellent response time, no noticeable delay.

4.0-4.5
Good depth perception, Good visual quality, minor visual impair-
ment and good response time, not easily noticeable delay, will
continue the game

3.0-4.0
Acceptable depth perception but noticeable visual impairment, or
noticeable delay but can endure, might quit the game

2.0-3.0
Can still get feeling of depth perception but clearly visual impair-
ment, can still control the game, but have to wait for the response,
usually quit the game

1.0-2.0
No feeling of depth at all, unacceptable quality, or unacceptable
delay definitely quit the game

Table 2.6. Parameters for game broadsides

a b c e f g h
0.000234 -0.0089 0.435 0.863 0.547 2.08 6.53

i j T0 T1 T2 α

0.45 11.98 40 100 400 0.045

29

2.4 Asymmetric Rendering Adaptation Approach

In Cloud Mobile 3D Display Gaming, game video has to be transmitted through

wireless network, the latter characterized by unpredictable bandwidth fluctuations. An

effective approach to cope with the bandwidth fluctuation of mobile network is to adapt

the graphics rendering factors such that the required encoding bitrate can be adapted

and maintained below the available bandwidth and therefore avoid network congestion

and hence delay. However, as illustrated in Figure 2.2, while lowering the rendering

factor is effective in reducing network delay, it can cause negative impact on graphics

quality, and hence will influence the overall user experience. In other words, under a

given network bandwidth budget, there is a tradeoff between network delay and graphics

rendering quality. The question that needs to be addressed is how to select the optimal

rendering factors such that the overall user experience is maximized, when taking into

account both graphics rendering factors and network delay factor. Previous work [46, 53]

have proposed techniques to dynamically change graphics rendering factors according

to network conditions, but since those solutions were for streaming 2D rendered video,

they did not consider using asymmetric graphics rendering. Thus, in this section, we

use the proposed CMG(3D)-UE model to derive an optimization algorithm which can

take asymmetric graphics rendering into consideration to solve this problem. The aim

of our optimization algorithm is to maximize CMG(3D)-MOS which is equivalent to

minimizing I. We also provide bounds for both network delay factor and graphics

rendering factors to ensure that the solution for the problem will not let one aspect of

the user experience to be too good while letting the other aspect to be too bad. Thus,

we formulate the asymmetric graphics rendering optimization problem as is shown in

Figure 2.8:

It may be most prudent to specify the bounds most appropriate to a specific

30

Given:
Network bandwidth BW
Find:
The optimal graphics rendering factors, including PL, PR, T DL and T DR, to
minimize I

Iopt = min I = IR + ID−CDR(
√

ID× IR) (2.8)

s.t.
Plower bound ≤ PR ≤ PL ≤ Pupper bound

T Dlower bound ≤ T DL ≤ T DR ≤ T Dupper bound
Delay≤ DT hreshold

Figure 2.8. Problem formulation

game. For example, the following values are appropriate for Planeshift: Plower bound = 0,

Pupper bound = 80, T Dlower bound = 0, T Dupper bound = 2, DT hreshold = 120ms. For a social

game, a more relaxed value of DT hreshold may be sufficient.

Note that our subjective experiments show that exchanging rendering settings

between left and right views result in almost the same user experience scores, thus in

order to tighten the variable range and hence decrease complexity, in the above problem

formulation, we let the left view always have better or equal graphics rendering quality

compared to the right view.

Figure 2.9. Factors affecting overall impairments

Next, we propose an approach to solve the above optimization problem. Consider-

ing that during the game session, the network dynamically changes. Hence, our approach

31

is to divide time into constant intervals, and apply the proposed solution periodically so

that the overall impairment I during every time interval is minimized. We will dynami-

cally select the optimal graphics rendering factors for the left and right views to adjust

to the dynamic fluctuations in the network. As shown in Equation (2.8) and Figure 2.9,

the overall impairment I is determined by the selected graphics rendering factors and the

expected delay. The expected delay mainly depends on two factors: the available mobile

network bandwidth of the next interval, and the amount of video data generated during

the next time interval. Regarding these two factors, we assume the network bandwidth

can be estimated using a probe-packet approach which will be discussed in Subsection

2.4.2. And the amount of generated video data is solely dependent on graphics rendering

factors. Therefore, the proposed optimization problem can be restated such that, both the

optimization target (the overall impairment I) and the constraint function (the experienced

delay) will be solely dependent on the graphics rendering factors. We use a branch and

bound based algorithm to solve this problem which will be discussed in Subsection 2.4.3.

The rest of this section is organized as follows. In Subsection 2.4.1, we propose

and verify a model to predict the bitrate of the encoded 3D video resulting from rendering

performed with given rendering factors. Subsection 2.4.2 proposes and verifies an

approach to predict network delay given the available network bandwidth and bitrate of

the 3D video that needs to be streamed from the cloud. Subsection 2.4.3 proposes the

overall algorithm to solve the proposed optimization problem.

2.4.1 Relationship between Graphics Rendering Factors and 3D
Video Bitrate

In our proposed CMG(3D) platform, the left and right views are firstly rendered

and then encoded. Our approach is to change rendering factors to impact the video

bitrate, while ensuring high video quality (no video encoding impairment) by using high

32

(constant) QP during video encoding. Thus, we need to estimate the effect of changing

the rendering factors on resulting video bitrate. However, using constant QP can result

in big fluctuations in video bitrate, making estimating resulting bitrate from rendering

factors used very difficult. In this subsection, we first explain the two factors which

can influence video bitrate when using constant QP, and how we can minimize their

influence so the bitrate will be primarily influenced by the graphics rendering factors.

We next derive a model to estimate video bitrate of both the views as a function of the

rendering factors used to render the videos, and provide results validating the accuracy of

the estimation model.

As is commonly known, encoding with constant QP may cause a wide range of

bitrate changes, especially between static scenes and high motion scenes. That is because

static scenes will contain a number of blocks which are encoded as SKIP mode and they

will cause much fewer bits than any other modes in H.264 standard. In addition, the GOP

setting also influences the bitrate much because GOP defines how frequently an I frame

appears; in constant QP case, every I frame will cause much higher bitrate than P frame

or B frame. In this way, if the GOP is not set properly, the bitrate may be high in one

second but much lower in another. Next, we describe how we minimize the uncertainty

in the video bitrate due to the above two factors that are motion and GOP size.

Firstly, we empirically observe that game videos are mostly high motion. Our

assumption is verified by a study [60] which shows 3D game has really high motion

energy (the average difference between consecutive frames). However, there can be cases

of mostly static scenes, like during temporary pauses by the gamer. To eliminate the

effect of static scenes on the resulting bitrate, we stop encoding and streaming the game

video when we detect static scenes. Consequently, the 3D game video streamed from

our system will be mostly very high motion, eliminating the uncertainty on bitrate due to

different types of motion.

33

Secondly, in order to eliminate the influence of GOP size and the burst bitrate

consumed by I frames, we take use of “intra refresh” technique [61] in our system to

balance bitrate. This technique does not require any I frame in the whole video except

the first frame, but instead, it requires every frame to have a portion of blocks which is

encoded by intra modes. In this way, for example, if the GOP size is 30 then every frame

will have 1/30 blocks which are not overlapped in position with each other to be encoded

by intra modes. We implement the above in x264 encoder using the “–intra-refresh”

option. Having minimized the influence of motion and I frame/GOP size on resulting

bitrate, for a given resolution and frame rate, the bitrate for every frame mainly depends

on the content of video frame, which in our case is influenced by the graphics rendering

factors. Furthermore, because we use H.264 standard to encode two views separately, the

total bitrate consists of the bitrate for the left view plus the bitrate for the right view.

BSUM = BL +BR (2.9)

Note that the relationship between graphics rendering factors and video bitrate

are the same for the left view and the right view, so in the following we derive this

relationship based on a single view. Using our CMG-(3D) prototype, we collect data

by capturing 1 hours’ game video data. The data contains different players performing

different tasks in different scenes with different graphics rendering settings. We use 40

minutes’ data to derive and 20 minutes’ data to verify. The resolution of the video is

640×480, the framerate is 25fps and QP is set to be 25.

To derive the relationship, we calculate the average bitrate for each combination

of the graphics rendering factors and plot it on Figure 2.10. From this figure, we can get

two main observations. Firstly, for a given texture details level, the relationship between

the VD and bitrate is almost linear. In this way, a linear term for view distance is used in

34

Figure 2.10. Derivation of relationship between graphics rendering factors and video
bitrate

Figure 2.11. Verification of the relationship between graphic rendering factors and
video bitrate

35

our derived function. Secondly, the relationship between the TD and bitrate is not linear

which is because the image has two dimensions and the texture detail level relates to both

dimensions so that we include a square term of texture detail in the derivation. According

to the observations mentioned above, a regression method is used to derive the following

relationship between graphics rendering factors and video bitrate.

BL = kT DL
2 + lT DL +mV DL +n

BR = kT DR
2 + lT DR +mV DR +n

(2.10)

For the game Planeshift, we derive the values of the coefficients using the first 40

minutes data as: k =−8.5, l =−291.5,m = 2.7,n = 937.4.

Figure 2.11 shows the validation results. Predicted values (computed using

Equation (2.11)) are represented by the red line while actual bitrate values are shown by

black line. We can see that the predicted bitrate values are very close to the actual bitrate

values. The mean error rate is 5.38% which proves the accuracy of our proposed model.

2.4.2 Delay Prediction and Verification

Previous work has been done to model the network and predict delay (like [64,65]).

However, most of these techniques are based on transport layer or network layer, requiring

information like TCP packet header. In contrast, we would like to develop an application

layer delay prediction technique, which can be easily deployed by our application layer

CMG(3D) approach. In the following, we show the derivation of the predicted delay

model assuming that we know the available bandwidth and the video bitrate.

At any time t, the total experienced delay consist of three parts, server delay

caused by graphics rendering and video encoder tasks, network delay due to bandwidth

constraint, and propagation delay indicating the natural delay from a source to a destina-

tion depending on geographic distance and transmission medium. Equation (2.12) shows

36

this relationship.

D(t) = DN (t)+DS (t)+DP (t) (2.11)

in which DN(t) stands for network transmitting delay at time t, DS(t) represents server

(computation) delay and DP(t) means propagation delay. In our work, we assume

encoding delay and propagation delay are constant at any time. All the delay components

are in units of second. Equation (2.13) and (2.14) show how DN(t) is calculated.

DN (t) = max((SP (t)+SC (t))/BW (t)−TINT ,0) (2.12)

SC (t) = B(t) ·TINT (2.13)

SP (t +TINT) = max(SP (t)+SC (t)−BW (t) ·TINT ,0) (2.14)

in which BW (t) is the current bandwidth, B(t) is the current video bitrate, SC(t) is current

generated data size and SP(t) is data size of previous accumulated data in the streamer

buffer. For every time interval TINT , current generated data whose size is SC(t) will be

queued in streamer buffer on the server which is equal to the product of video bitrate

and time interval. However, the buffer may have some existing data, with size SP(t),

from previous time period which has not been streamed yet. We will discuss later how

SP(t) can be calculated. As shown in Equation (2.13), it will take (SP(t)+SC(t))/BW (t)

seconds for this new data to be streamed to the mobile device over the wireless network.

If the required time is less than TINT , it will not create delay (DN(t) = 0), but if it exceeds

TINT , the expected delay will be the excess time (required streaming time minus time

interval TINT). After the expected delay is calculated, we use Equation (2.14) to update

the buffer data size remaining to be transmitted in the next time interval. It first adds the

previous data and current data together and then subtracts it by the product of bandwidth

and time interval. If the result is less than zero, it means there is no data remaining so

37

that we set SP(t +TINT) to be zero. Note that in our experimental setup, we use TINT = 1

second.

Figure 2.12. Testbed for measuring delay

We verify the accuracy of the above procedure by conducting the following

experiment. Figure 2.12 shows our testbed setup. In the experiment, we stream a pre-

recorded video from a server (a desktop computer) to a client (a laptop computer) through

a network emulator. As the video is streamed, we apply a network bandwidth profile

on the network emulator to control the bandwidth and generate network delay. The

pre-recorded video is encoded with constant bitrate of 2Mbps and framerate of 60fps.

Note that during the encoding process, the default CBR rate control has 10% inaccuracy,

hence we have used the “–nal-hard” option in x264 encoder which will add dummy bits

to achieve higher accuracy(within 0.1%) in rate control. The content of the video is a

stopwatch that shows time going in the resolution of millisecond. We also programmed

a pair of software (server and client) such that on the server side, the video will be

displayed simultaneously as it is transmitted, and on the client side the video will be

decoded and displayed once it is being received. Because the content of the video is a

stopwatch and both the server and client are playing the video, the latency in this case can

be easily calculated by subtracting the time shown on the server from the time showing

on the client. We use a high resolution camera to record a video of the whole process and

process the data offline.

Figure 2.13 shows the result. Black dotted line is the network bandwidth trace

38

Figure 2.13. Results showing actual and predicted delay

captured in a real 4G-LTE environment. Red solid line shows the predicted delay results

calculated by Equation (2.11)∼ (2.13) and black solid line shows the actual experienced

delay measured. With regard to the propagation delay, Dp(t), and the server encoding

delay, DS(t), in the theoretical calculation (Equation (2.12)), because the server and

client is close enough, we set DP(t) to be 0 and also because the video is pre-encoded,

so we also set DS(t) to be 0. Considering that the accuracy resolution of 60fps video

is about 16ms, we claim from Figure 2.13 that the predicted results match the actual

experimental results very well. Note that though in the above experiment we consider

the case where Ds(t) and Dp(t) values are zero, in our CMG(3D) application they will

not be. As we discuss later in the next section, they can still be estimated in advance,

depending on the cloud service and servers used, and hence can be used to estimate D(t)

in Equation (2.12).

Thus, the above results show that if we know the video bitrate and network

bandwidth, we will be able to predict the delay in an accurate manner. We next briefly

describe how we estimate the network bandwidth. Various techniques have been proposed,

like pathChirp [55] and BART [56] to accurately estimate the network bandwidth by

injecting probing traffic. BART [56] uses fixed inter-packet separation probe packet

train together with a Kalman filter based method to do real time bandwidth estimation

39

with demonstrated accuracy better than pathChirp. However, the additional probe traffic

overhead of the above techniques can be very high; for example [56] requires 0.2 Mbps

overhead to achieve reasonable accuracy. In our approach, we use BART [56] with the

following modifications so that we can use the video data we anyway need to transmit

instead of additional probing traffic, thus avoiding overhead.

The original BART algorithm sends a series of 1.5KB packets from server to

client. By calculating the receiving time interval and the sending rate value injected in

the packets, it will be able to estimate the current bandwidth. In our CMG(3D) platform,

we generate video data at a certain framerate, transmitting one frame as several 1.5KB

packets right after it is generated. In order to integrate BART algorithm into our platform,

in other words, to let the client know the sending rate as well as to instruct the server to

generate some predefined time interval between sending two 1.5KB packets, we did the

following two main changes.

1) For all of the data packets of each frame, we set time interval between sending

two packets of the same frame (originally there is no time interval between these two

packets so that one packet is sent right after another), but we ensure that the total time

interval to be less than 1/framerate sec, otherwise it will create additional delay for the

next frame.

2) We insert the sending rate as a value into the video packet to send to the client

as BART algorithm needs that information to feed into Kalman Filter.

We conducted experiments using the above approach and it shows that our modi-

fied BART algorithm can achieve 87.36% accuracy in estimating network bandwidth.

2.4.3 Asymmetric Rendering Optimization Algorithm

From the above sections, it can be seen that by applying the impairment functions

(Equations (2.1)∼(2.5)), delay prediction model (Equations (2.12)∼(15)) and relationship

40

between graphics rendering factors and video bitrate (Equations (2.10)∼(2.11)), we can

expand the optimization function and delay constraint from the problem formulation

(Equation (2.8)) to depend only on the four rendering factors P1, P2, T D1, T D2 and the

current network bandwidth BW . Hence, for any time interval TINT , given the measured

network bandwidth BW , we can solve the optimization problem (8) to produce the

optimal values for the four rendering factors, which when selected to render the left and

right views will maximize user experience.

Because the rendering factors are discrete variables and our objective function

has root terms, our problem can be categorized as having a discrete variable, non-linear

objective function, with unequal non-linear constraint function. Since the solution space

consists of four variables, with two (T D1 and T D2) having only 3 possible values, a

branch and bound method can be efficient and feasible [62]. We describe next our

branch and bound based algorithm Asymmetric Rendering Adaptation (ARA) shown in

Algorithm 1.

We first define term subproblem as minimizing a target function (in our case

minimizing I) given a set of variable ranges (in our case P1, P2, T D1 and T D2). Our aim

is to solve the original problem (as defined in Equation (2.8)). The original problem

or a subproblem can be further divided into subproblems, which has the same objective

function but with a smaller variable range. The algorithm maintains a subproblem queue

to manage all of the subproblems and use IOPT
temp, POPT

1 temp, POPT
2 temp, T DOPT

1 temp,

T DOPT
2 temp to store temporary optimized values. In detail, the algorithm will first

initialize the upper and lower bounds for the variable ranges, set the number of iterations

to be 0, set SP(t) to be 0 and set the temporary optimized I, IOPT
temp, to be infinite. It

will also put the original problem into the subproblem queue. Next, in step 2, the while

loop continues if the length of the subproblem queue is larger than 0 and the number

of iteration is less than a maximum iteration threshold which is predefined. Inside the

41

Algorithm 1: Asymmetric Rendering Adaptation (ARA)
Input :Network bandwidth BW
Output : IOPT , POPT

1 , POPT
2 , T DOPT

1 , T DOPT
2

Step 1: Initialize upper bound and lower bound of P1, P2, T D1, T D2; set
iteration to be 0; set SP(t) to be 0; set IOPT

temp to be infinite;

inqueue(original problem,subproblem queue)

Step 2:
while (length(subproblem queue)> 0 &&
iteration < MAX INT ERAT ION) do

iteration = iteration+1

subproblem = outqueue(subproblem queue)

Step 3: [P1temp,P2temp,T D1temp,T D2temp, Itemp] = s =
non linear continuous variable optimization(I)
update SP(t)
Step 4:
if s = Integer solution then

if Itemp < IOPT
temp then

IOPT
temp = Itemp

POPT
1 temp = P1temp, POPT

2 temp = P2temp
T DOPT

1 temp = T D1temp, T DOPT
2 temp = T D2temp

end
else

if s = Non-integer solution then
for i = 1; i < 2number o f non integer values; i++ do

Determine the ith variable range for subproblemi
inqueue(subprobelmi,subproblem queue)

end
end

end
if s = No feasible solution then

continue
end

end
Step 5: Return IOPT = IOPT

temp, POPT
1 = POPT

1 temp, POPT
2 = POPT

2 temp,
T DOPT

1 = T DOPT
1 temp, T DOPT

2 = T DOPT
2 temp

42

while loop, during every iteration, we get a subproblem from the subproblem queue.

In step 3, we relax the discrete variable optimization problem into continuous variable

optimization problem and solve it using a non-linear continuous variable optimization

algorithm (in our case, we use sequential quadratic programming), and denote the solution

as s. After that, we update SP(t). In step 4, we have three conditions according to the

output from step 3. If there is no feasible solution, we skip this branch. If it is an integer

variable solution, we compare the corresponding impairment result, Itemp, with the current

temporary optimized I, IOPT
temp and see if we need to replace the current temporary

optimized values with s. If it is a continuous variable solution, we will further branch

this subproblem for each non-integer value into two subproblems and then put them

into subproblem queue. For example, if s = [10,20,1.5,2,50], we define subproblem1

to be the same as the current subproblem except that it will add one more constraint that

T D1 ≤ 1. subproblem2 will also be the same as subproblem but with the constraint that

T D1 ≥ 2. Thus, if we have m non-integer values, we will have to solve 2m subproblems.

Finally when the while loop terminates, we get the optimized values from temporary

optimized value and finish the algorithm.

We have implemented the algorithm ARA in C; the average running time is 153ms

on an Intel Xeon E5-2670 @2.60GHz processor with 15GB memory. Hence ARA can be

applied in real time in every time interval TINT (1 second in our current implementation).

For a CMG(3D) gaming session, our overall approach is the following. In each time

interval TINT , we use the modified BART algorithm to measure the bandwidth BW

(Section 2.4.3), and use BW as input to ARA to get the optimal asymmetric rendering

factors for the time interval. The above is repeated for each time interval, leading

to dynamic adaptation of left and right view rendering factors optimal to the changing

network bandwidth, so as to maximize overall user experience during the entire CMG(3D)

session.

43

2.5 Experimental Results

In this section, we report on experiments conducted using a commercial cloud

service to verify the performance improvement possible by applying the proposed Asym-

metric Rendering Adaptation technique. We use the same testbed as shown in Figure 2.3,

except we implement our CMG(3D) system, including the ARA algorithm, on Amazon

Web Service (AWS) cloud servers. Specifically, we use AWS g2.2xlarge instance which

provides access to one NVIDIA GRID GPU with 1,536 CUDA cores and 4GB of video

memory. The CPU it provides is Intel Xeon E5-2670 @2.60GHz with 15GB memory.

The operating system we deploy is Windows Server-2008-R2 SP1. As explained before,

we emulate network traces collected from a 4G-LTE network using the network emulator

in the testbed.

Figure 2.14. RTT measured from AWS to test device

Firstly, in order to determine the propagation delay, DP(t), in Equation (2.12)

from AWS cloud server to the 3D device, we performed an experiment to record the

round trip delay (RTT) at different times of a day. We use Ping to test for RTT, with

testing every 10 minutes from 8:00 a.m. to 10:00 p.m., Monday to Sunday, to get 588 data

points in total. Figure 2.14 shows the PDF of the results. We find that the RTT between

AWS cloud server to the 3D device in our testbed is very stable-mostly between 38ms to

41ms with very limited number of exceptions which have longer RTTs. According to

the above, we calculate the average RTT to be 40.2ms. Thus, considering the downlink

44

delay to be half of RTT, we use 20.1ms value for DP(t) in Equation (2.12). In addition,

in order to determine DS(t), we measured the rendering and encoding time on AWS and

found out it was on average 2ms for rendering and encoding one frame. Thus we set

DS(t) to be 2ms in the following experiments.

We compared three approaches using the testbed: 1) Asymmetric Rendering

Adaptation (ARA) which adapts the rendering of left and right views depending on the

network conditions using our proposed approach, 2) Symmetric Rendering Adaptation

(SRA) which is an adaptation algorithm for cloud mobile 2D display gaming introduced

in [51] where the rendering factors of left and right views are adapted symmetrically, and

3) No adaptation (NA) in which we fix texture detail to be medium and view distance to

be 150m for both views. For fair comparison between ARA and SRA, we disable video

encoding adaptation option for SRA, but rather fix it to produce high video quality using

QP = 25 like in the case of ARA.

In addition, in order to verify our model and optimization algorithm can be

applied to different kinds of games, we tested two different games of different genres

based on the above testbed. Figure 2.15 shows the results for Planeshift and Figure 2.16

shows the results for Broadsides [63]. For both games, we show step by step results in

the following order.

Figures 2.15a and 2.16a show the 4G-LTE mobile network bandwidth profile

we captured and then used (emulated using the network emulator) when playing the

games for all the three approaches. Figures 2.15b, 2.15c, 2.15d 2.16b, 2.16c and 2.16d

show the graphics rendering factors used when playing the games. We can see that for

both games, while NA cannot adapt to the network bandwidth, ARA and SRA can both

choose high texture quality and large view distance when network condition is good but

low texture quality and small view distance when network bandwidth is tight. However,

because ARA can use more choices (separate T D and P for each view), we can see

45

Figure 2.15. Results for game PlaneShift

46

Figure 2.16. Results for game Broadsides

47

that ARA can choose better combinations (higher values) of texture detail and view

distance than SRA. Figures 2.15e and 2.16e show the value of rendering impairment, IR,

calculated by our model for all three approaches. For the game Planeshift, the average IR

is 12.57 for ARA, 18.32 for SRA and 12.19 for NA, and for the game Broadsides, the

average IR is 20.80 for ARA and 23.48 for SRA and 12.19 for NA. Figures 2.15f and

2.16f show the actual bitrate of the video encoded. In both plots, the video bitrate show

great correlation with the graphics rendering factors which means that when the graphics

rendering factors are using high texture quality and large view distance, the bitrate rises

up and when low texture detail and small view distance are applied, the bitrate is kept

at a low level. Figure 2.15g and 2.16g show the PSNR for the resulting encoded video.

Because we are using constant QP to encode, we see that a high and stable value of PSNR

is maintained as desired. For the game Planeshift, the mean PSNR for ARA, SRA, and

NA are 32.65, 32.65 and 32.39 respectively. For the game Broadsides, they are 32.70,

32.24 and 32.4. Figure 2.15h and 2.16h show ID which is calculated using actual delay

measured. We can see that ARA can maintain low delay much better than the other two

strategies. Figures 2.15i and 2.16i show CMG(3D)-MOS which takes both IR and ID

into consideration. The mean CMG(3D)-MOS for the game PlaneShift are 4.09, 3.52

and 1.41 using ARA, SRA and NA respectively. Similarly, for the game Broadsides, the

mean CMG(3D)-MOS for ARA, SRA and NA are 3.94, 3.46 and 2.19 respectively.

To further prove the advantage of ARA, we performed a final round of subjective

tests which includes 17 UCSD students (12 males, 5 females; aged 19∼27). We used

the same network profile as is shown in Figure 2.15a. We divided the whole 5 minutes

testing into 5 time segments, 1 minute each. The testers were asked to give a score

according to Table 2.5 at the end of each 1-min segment for each adaptation algorithm.

Table 2.7 and Table 2.8 list the minute-wise average subjective CMG(3D)-MOS for the

three algorithms with 95% confidence interval range. (For example, “3.560.04” means

48

the average is 3.56 and the 95% confidence interval is 3.52-3.60.) For game PlaneShift,

the average CMG(3D)-MOS for the three adaptation algorithms are 3.48, 3.15 and 1.42,

using ARA, SRA, and NA respectively. For game Broadsides, the average CMG(3D)-

MOS for the three adaptation algorithms are 3.69, 3.35 and 1.96, using ARA, SRA, and

NA respectively. Note that the average 95% confidence interval range for two games is

only 0.082 which indicates that the results given by the subjects are statistically valid.

From the tables, we can observe that for game Planeshift, ARA outperforms SRA by up

to 26.2% (segment 3) and on average 10.5%. For game Broadsides, ARA outperforms

SRA by up to 33.8% (segment 3) and on average 10.1%.

Table 2.7. Subjective test results to compare different adaptation algorithms using game
PlaneShift

Time
Segment 1 2 3 4 5

ARA 3.56±0.04 3.78±0.03 3.08±0.06 2.98±0.05 4.02±0.03
SRA 3.42±0.04 3.45±0.06 2.44±0.07 2.82±0.08 3.64±0.05
NA 3.12±0.05 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0

Table 2.8. Subjective test results to compare different adaptation algorithms using game
broadsides

Time
Segment 1 2 3 4 5

ARA 3.68±0.05 4.08±0.04 3.28±0.03 3.54±0.03 3.89±0.04
SRA 3.55±0.06 3.89±0.08 2.45±0.1 3.18±0.05 3.67±0.06
NA 3.32±0.05 1.0±0.0 1.0±0.0 3.46±0.09 1.0±0.0

The above results demonstrate the significant advantage of our proposed asym-

metric graphic rendering adaptation approach (ARA) to deliver consistent and high user

experience on 3D displays when playing Cloud based 3D games, in spite of dynamically

changing and challenging mobile network conditions.

49

2.6 Conclusions

In this chapter, we propose an asymmetric graphics rendering technique for Cloud

Mobile 3D Display Gaming, in order to address the challenge of delivering 3D rendered

video with high user experience over fluctuating and constrained wireless networks. To

study the feasibility of this asymmetric graphics rendering technique, we developed and

validated a user experience model to quantitatively measure user experience, including

impairments due to asymmetric graphics rendering and network delay, using extensive

subjective experiments. Moreover, based on the CMG(3D)-UE model, we proposed

a technique to automatically select the optimal graphics rendering factors for each of

the views, according to the changing network conditions. Our experiments conducted

using real cellular network and Amazon Cloud Servers demonstrate that our proposed

technique can achieve much better CMG(3D)-MOS than techniques proposed before [51]

and is applicable and effective to 3D games of different genres.

In the next chapter, we will extend the idea of asymmetric graphics rendering

to let each individual object to choose its own texture detail so that objects of higher

importance will be set of higher quality and unimportant objects can sacrifice more. In

this way, the overall user experience can be improved given limited bit rate budget.

2.7 Acknowledgements

Chapter 2, in part, is from the material as it appears in proceedings of IEEE ICNC

2014. Yao Lu; Yao Liu; Sujit Dey. and in IEEE Journal of Selected Topics in Signal

Processing 2015. Yao Lu; Yao Liu; Sujit Dey. The dissertation author was the primary

investigator and author of this paper.

Chapter 3

Asymmetric and Selective Object Ren-
dering

3.1 Introduction

(a) (b)

Figure 3.1. (a) left, Example of asymmetric object rendering, (b) right, Example of
selective object rendering

In the last chapter, we proposed the idea of asymmetric graphics rendering.

However, all objects need to be of the same texture quality in one view. Inspired by

region-of-interest (ROI) based video encoding [68, 69] which allocates more encoding

bits to the more important regions of a video frame and fewer bits to the less important

ones and therefore reduce the bit rate for the same perceptual quality, we propose a

similar approach for graphics rendering. While rendering a frame, we can increase the

richness of rendering for the more important objects while decreasing the rendering

richness for other less important objects, thereby potentially reducing the video content

50

51

complexity and hence the video bit rate needed to encode the rendered frame while

maintaining the perceived video quality. We call this technique Object Rendering. The

term richness of rendering includes several factors such as texture detail, realistic effect,

scene complexity, etc. In this chapter we focus on texture detail, and the other factors

could be researched later as future work. The texture is defined as an image used to put

on top of the game objects when doing rendering. We define texture detail to be High(H)

when the game is using the original texture images, to be Medium(M) when the texture

images are down-sampled once, and Low(L) when the texture images are down-sampled

twice. In addition, because our use case is true 3D gaming where we will render two

views, and these two views will be seen by the user’s two eyes separately, we propose

a technique called Asymmetric Object Rendering, where the rendering richness of an

object for one view can be different from the rendering richness of the same object for

the other view. Figure 3.1a shows an example, where the left view (left image) has all the

objects rendered with Medium texture detail, while in the right view, the tree on the left

side and right side, the building on the right edge, and the path are rendered with Low

texture detail but all the other objects are rendered with Medium texture detail.

In addition, also inspired by the preliminary work done by Hemmati et al. [50],

we found that for each object, not only could we set specific texture detail for it, but we

could also choose to not render it at all. Figure 3.1b shows an example. The two images

are both for the left view of the game. However, the left image is not rendered with

clouds while the right image is rendered with clouds. We combine these two techniques

in this chapter and call it Asymmetric and Selective Object Rendering (ASOR).

In the last chapter, we have shown that by lowering texture detail, or not rendering

some objects, video bitrate can be lowered tremendously. However, ASOR influence

user experience, thus we need to develop a model to quantitatively measure the user

experience when the proposed ASOR is performed.

52

3.2 User Experience Model

We define Cloud Mobile 3D Display Gaming Mean Opinion Score (CMG(3D)-

MOS) as a measurement metric for CMG(3D)-UE. To derive the formula for CMG(3D)-

MOS with ASOR, we follow the same framework initially proposed by ITU [58] and

modified by us in our previous work, where the user experience is formulated using a set

of impairment functions including the impairment functions for graphics rendering (IR),

video encoding (IV) and network (IN).

CMG(3D)-MOS = 1+0.035R+7×10−6R(R−60)(100−R) (3.1)

R = 100− I = 100− f (IR, IV , IN) (3.2)

In Equation (3.1), the CMG(3D)-MOS metric is formulated by a transmission

rating factor R, which represents the overall user experience. R factor takes value

between 0 and 100; higher R value corresponds to higher CMG(3D)-MOS and better

user experience. In Equation (3.2), the term I stands for the combined impairment

(described by function f) caused by various factors including graphics rendering (IR),

video encoding (IV) and network factors(IN). However, in this work, we will only need to

consider impairment caused by rendering. We will set sufficiently high encoding quality

on the encoder (for example, set a low quantization parameter, QP), so there will be no

impairment due to encoding. Also, we assume there will be no impairment due to the

wireless network, as we can adapt the rendering setting effectively such that the resulting

video bit rate will not exceed the available bandwidth and cause network congestion.

Thus, the formula of R factor (Equation (3.2)) can be re-stated as:

R = 100− IR (3.3)

53

in which IR is the graphics rendering impairment.

Furthermore, in the proposed ASOR approach, we will both decide whether or

not to render the object and adapt the rendering richness (more specifically, texture detail)

for each individual object depending on its importance; hence, we propose the following

equation to model IR

IR = f (IS, INS) (3.4)

IS =
K

∑
i=1

wi piIT D (T DL i,T DR i) (3.5)

INS = g

(
L

∑
i=1

wi pi

)
(3.6)

with the constraints of
K

∑
i=1

wi pi = 1 (3.7)

w1

w2
= c1, . . . ,

wi

wi+1
= ci, . . . ,

wK−1

wK
= cK−1 (3.8)

In Equation (3.4), IS means the impairment caused by changing texture detail of

objects which are selected to be rendered while INS stands for the impairment caused by

(not rendering) the objects which are not selected to be rendered. The total impairment

IR is a combination of these two impairments (IS and INS) described by a function f

which we will derive later through subjective tests. In Equation (3.5), K represents the

total number of objects that are rendered in the game frame and IT D function describes

different impairment values caused by the different texture detail settings on the left

and right views. The parameter i is the object index, pi means the percentage of pixels

that the object i occupies within a game frame and wi means the object weight which is

related to the importance of the object i. Equation (3.5) can be interpreted as: the overall

impairment caused by the objects that are selected to be rendered, IS is a weighted average

of impairment caused by each object (IT D(T DLi,T DRi)), considering the importance of

54

this object (wi) and how much space this object occupies in the game frame (pi). The

value of pi can be conveniently extracted from the game engine and the importance of

each object wi is a fixed parameter for each object and can be derived through subjective

test. In Equation (3.6), L represents the total number of objects that are not selected to

be rendered. We define the impairment INS to be a function of the sum of the product

of the importance of each object i, wi, and how much space this object i occupies in

the game frame. The function g will be derived through subjective tests. Equation (3.7)

is a constraint function which normalizes the weight for object i, wi. Equation (3.8) is

defined so that the importance relationship (ratio) between any two object in one scene is

fixed (defined by fixed values c1, . . . ,cK−1). The rationale behind these two constraint

functions is that we want to make sure IS computed by Equation (3.5) will not be too

large or too small at the same time that the importance between any two objects should

be maintained and contribute to the IS.

To summarize, we propose Equations (3.4) to (3.8) as a framework to model the

impairment caused by graphics rendering as IR. In this framework, first, all the objects

will be divided into two groups. One group of the objects is decided to be rendered whose

impairment value IS can be computed by Equation (3.5). The other group of objects is

decided not to be rendered and exclude from the game frame whose impairment value INS

will be computed by Equation (3.6). For those objects that are rendered, T DL i and T DR i

for each object i will be set and the pixel that each object i occupies, pi can be extracted

from game engine. Because pi is different in each game frame, by using Equations (3.7)

and (3.8), wi associates with pi can be computed. Thus, T DL i, T DR i, wi and pi can be

regarded as input values and our research goal is to figure out how to derive IT D function,

the values of c1, . . . ,cK−1, the function g and the function f to complete the model and

output the final impairment IR according to the input values.

In the following, we will first propose the procedures and theories of how to

55

derive IT D function, the values of c1, . . . ,cK−1, the function g and the function f . Then,

we perform subjective tests to get data to derive the parameters in the models and finally

we validate the model through another set of subjective test results.

3.2.1 Impairment Function Derivation

Firstly, to derive IT D function, we design our experiment (Exp A) as follows.

We render all the objects and change texture details for all the objects together,

making all of them to be the same. In this case, because IT D value for each object is

the same and because of the constraint Equation (3.7), Equations (3.4) to (3.6) can be

re-stated as

IR = IS = (
K

∑
i=1

wi pi)IT D (T DL,T DR) = IT D (T DL,T DR) (3.9)

By collecting the subjective test scores from users, we can easily get the formu-

lation of IT D function. Because the combination of the texture detail for both views is

limited (5 in total), we consider to use a lookup table to represent IT D function.

Secondly, to derive the values of c1, . . . ,cK−1, we design the experiment (Exp B)

in another way as follows.

We still render all the objects. We vary the texture detail settings for each object

one at a time (5 combinations for each object and we have K objects so 5K times in total)

and then collect pi of each object and IS (impairment scores given by subjects) associated

with each round.

For each round, we can derive the following:

56

1) By plugging Equation (3.8) into Equation (3.7), we can get:

w1 p1 +w2 p2 . . .+wK pK = 1

⇔ w1 p1 +
w1

c1
p2 + . . .+

w1

c1c2 . . .cK−1
pK = 1

(3.10)

2) By plugging Equation (3.8) into Equation (3.6), we can get:

w1 p1IT D (T DL 1,T DR 1)+w2 p2IT D (T DL 2,T DR 2)+ . . .

+wK pKIT D (T DL K,T DR K) = IS

⇔ w1 p1IT D (T DL 1,T DR 1)+
w1

c1
p2IT D (T DL 2,T DR 2)+ . . .

+
w1

c1c2...cK−1
pKIT D (T DL K,T DR K) = IS

(3.11)

3) Let IT D(T DL i,T DR i) = Ii, let 1/(c1c2 . . .ci) = zi. Combining Equation (3.10)

with Equation (3.11) we can get:

w1 p1IS+
w1

c1
p2IS+ . . .+

w1

c1c2 . . .cK−1
pKIS =w1 p1I1+

w1

c1
p2I2+ . . .+

w1

c1c2 . . .cK−1
pKIK

(3.12)

4) Let 1/(c1c2 . . .ci) = zi, we can get:

p1IS + z1 p2IS + . . .+ zK−1 pKIS = p1I1 + z1 p2I2 + . . .+ zK−1 pKIK

⇔ p1IS− p1I1 + z1 (p2IS− p2I2)+ . . .+ zK−1 (pKIS− pKIK) = 0
(3.13)

Then, by doing 5K rounds of experiments, we can get 5K implementations of

Equation (3.13). Next, Let piIS− piIi for round m be Li m we can get the following

57

matrix: 

L1 1

L1 2

. . .

· · ·

LK 1

LK 2

...

L1 5K−1

L1 5K

· · ·

· · ·

LK 5K−1

LK 5K





1

z1

z2

...

zK−1


= 0 (3.14)

Notice that Equation (3.14) is an over-determined linear equation. Thus, a least

square method can be applied to solve z1, . . . ,zK−1. Note that theoretically, K rounds

of experiments will provide enough data to solve the equation. However, because the

subjective tests scores have some variations and are therefore noisy, it is recommended

to do more rounds of experiments to fit the data and get higher accuracy.

After getting the values of z1, . . . ,zK−1, they can be easily translated back into the

values of c1, . . . ,cK−1.

Thirdly, The derivation of g function and f function can both be considered as

one dimensional data regression problem. We will use regression techniques to derive

these functions.

3.2.2 Subjective Test settings

Figure 3.2. Testbed for subjective experiments

Figure 3.2 shows the testbed used for the subjective tests. We use a 3D monitor

with a laptop to substitute for 3D display of mobile devices because current available

mobile 3D displays do not have as good quality as 3D monitors that may cause additional

impairment which we want to avoid. The laptop is connected to a network emulator via

58

an Access Point and the network emulator is connected to the game server. We select

two games of different genres, enable ASOR by reprogramming the rendering loop in

the rendering engine and perform the subjective tests. The first game is a first person

shooting game Broadsides [63] and the second game is a Massively Multiplayer Online

Role-Playing Game Planeshift [57]. To investigate how ASOR affect user experience,

we set the video encoding parameter QP to 25 which leads to sufficiently high encoding

video quality and set network bandwidth to be sufficiently large so that only texture

detail can cause impairment. We then invited 23 UCSD students (13 male, 10 female;

aged 18-28) to participate in our subjective experiments. Firstly, we asked the testers

to sit before a 23 inch LG D2342 3D Monitor, and show them a 3D video as a training

sequence before the real test starts to let the testers adjust their viewing angle. After that,

we start the game and set the graphics rendering factors manually according to the rules

that will be explained in the next subsection. Once a combination of rendering factors is

set, we ask the testers to play the game for 1 minute and evaluate the graphics rendering

impairment according to the criterion listed in Table 3.1. During the whole experiment,

the testers were asked to control the avatar to perform multiple tasks (including attacking

an enemy boat, sailing towards an island, etc. for Broadsides and looking for an object,

talking to a Non-player character (NPC), attacking an enemy etc. for Planeshift).

Table 3.1. Scoring criterion for rendering impairment IR

IR Description
0 No visual impairment

0-20 Minor visual impairment
20-40 Noticeable visual impairment
40-60 Clear visual impairment
60-100 Unacceptable visual impairment

59

Table 3.2. Subjective test results: average IT D scores for different texture detail
combinations in different scenes

Texture Detail
Combination H-H H-M H-L M-M M-L L-L

IT D 1 Broadsides 0 18.52 43.35 22.5 24.45 40.5
IT D 2 Broadsides 0 17.35 40.25 23.24 26.23 38.74
IT D 3 Broadsides 0 18.34 45.32 25.17 27.12 39.27
IT D 1 Planeshi f t 0 7.30 27.85 10.38 19.84 25.38
IT D 1 Planeshi f t 0 8.30 28.85 11.61 20.46 24.00
IT D 1 Planeshi f t 0 7.84 25.61 12.30 20.76 23.07

3.2.3 Model Parameter Derivation and Validation

There are multiple genres of games and within one game there are different game

scenes with different spatial and temporal characteristics; hence the entire rendering

impairment caused by texture detail and selective rendering may be affected by the

type of the game and even by different game scenes in the same game. To gain better

understanding and ensure that the impairment functions derived are general and applicable

to most of games and are consistent across different game scenes, in the following, we

select three different scenes in each Broadsides and Planeshift to conduct our subjective

study. In addition, for simplicity but without the loss of generality, in our experiments, we

will discuss a special scenario, where all the objects can be divided into two groups and

each group of objects has the same importance. We define the following two categories

of objects: 1) Key Objects (KO) and 2) General Objects (GO). KO is defined as the

objects which are important to the players and will attract a lot of attention. For example,

in the game Broadsides, the player’s boat and enemy boats are KO. GO is defined to be

the objects which do not influence the execution of game logic, and eliminating them

will not severely affect the playability of the game. For example, trees, rocks, ports, etc.

Thus, by replacing wi with wKO and wGO, Equation (3.5),(3.7),(3.8) can be rewritten as

60

the following.

IS =
K1

∑
i=1

wKO piIT D (T DL i,T DR i)+
K2

∑
j=1

wGO p jIT D
(
T DL j,T DR j

)
(3.15)

with the constraints of
K1

∑
i=1

wKO pi +
K2

∑
j=1

wGO p j = 1 (3.16)

wKO

wGO
= c (3.17)

In Equation (3.15), K1 and K2 represent the total number of KO and GO objects

respectively, wKO and wGO mean the importance weight for KO and GO respectively.

Based on the above setup and assumptions, we will derive the model parameters

in the following.

Firstly, we derive IT D function. According to Equation (3.9) and by performing

EXP A, the scores given by the subjects to evaluate the overall rendering impairment is

equal to the value computed by IT D(T DL,T DR) function. We collected the results for

Exp A and compute the average scores. The results are listed in Table 3.2. Note that the

results of Planeshift are referenced from our previous work.

From Table 3.2 we can make the following observation. For each game and each

combination of texture detail, the average impairment score given by the testers are very

close to each other irrespective of the scene, with an average standard deviation of 0.97;

hence we believe that for a specific game, the complexity of the scene does not influence

the score too much, instead, the texture detail dominates the impairment. However, we

also find that the scores are very different between two games, which indicates that the

impairment caused by texture detail maybe related to the genre of the game.

Secondly, because the model is simplified, instead of computing model parameters

c1, . . . ,cK−1 in Equation (3.8), we only need to compute c in Equation (3.17). Thus,

61

Equation (3.14) can also be re-written as:

c =

K2
∑
j=1

p jIT D (T DL GO,T DR GO)− IS
K2
∑
j=1

p j(
IS

K1
∑

i=1
pi−

K1
∑

i=1
piIT D (T DL KO,T DR KO)

) (3.18)

Table 3.3. Derivation of value c for different games and in different scenes

Scene 1 B 2 B 3 B 1 P 2 P 3 P
c 1.78 2.34 1.25 4.76 5.34 2.79

Table 3.4. Derivation of model parameter for INS function

Scene 1 B 2 B 3 B 1 P 2 P 3 P
k 8.67 9.74 9.51 12.18 11.75 11.20
x0 0.61 0.60 0.63 0.44 0.45 0.48

Figure 3.3. Derivation for c

In our Exp B, we set K to be 5, so there are 25 implementations of Equation (3.18)

in total and we apply least square method to solve c. Figure 3.3 shows results for scene 1

of the game Broadsides where x-axis and y-axis represent the denominator and numerator

of Equation (3.18) respectively after using the scores IS given by the subjects. For scene

62

1 of the game Broadsides, c = 3.78. The results for other scenes are listed in Table 3.3.

From Table 3.3, we can see that the value c varies from game to game and even scene to

scene.

Note that in the above derivation, the number of pixels pi for each object i for

each video frame is different; since a subject plays the game for 1 minute which equals

to 25∗60 = 1500 frames, we use the average pi value in the derivation process.

Thirdly, in order to derive the function g in Equation (3.6), we set the texture

detail of all the objects that are rendered to be High. We randomly select k objects that

are not to be rendered with k = 1,2,3,4,5,6. For each k, we repeat the experiment for 5

times, selecting k randomly different objects each time. We consider the total set of 30

conditions to be enough to derive the function g. After obtaining the subjective scores

from the subjects, we plot the results in Fig 6 with x-axis showing the sum of the product

of wi and pi, and y-axis showing the impairment value (subjective score).

From Figures 3.4 and 3.5, we can see that the curve is very flat when the product

of wi and pi is small, but then it goes up with a steep slope and finally becomes flat again.

We aim to select a mathematical function to fit the data accurately. We try regression

methods with linear function, sigmoid function, piecewise linear function and use the

sum of absolute difference as the metric to select the best fitted function. We found that

use of sigmoid function (Equation (3.19)) can best fit the data.

INS =
100

1+ e
−k(

L
∑

i=1
wi pi−x0)

(3.19)

Figures 3.4 and 3.5 also show the fitted results and Table 3.4 shows the parameters

k and x0 derived accordingly.

From the results above we can see the parameters of different scenes for each

game are very close to each other but are not close between two different games. Thus,

63

Figure 3.4. Derivation of INS using the game Broadsides

Figure 3.5. Derivation of INS using the game Planeshift

64

we conclude that the INS function is not scene dependent but is game dependent.

Fourthly, after getting the separate impairment functions IS and INS, we need to

derive the entire impairment function IR. In order to achieve that, we then change the

texture detail settings for each object independently, and select whether or not to render

an object randomly in all six scenes and ask the testers to give scores for IR. We use 60%

of the data to derive the function f in Equation (3.4) and use the rest 40% of the date to

finally validate the entire model later.

Figure 3.6. Derivation of IR using the game Broadsides

Figure 3.7. Derivation of IR using the game Planeshift

65

Figure 3.8. Validation of IR with blue line showing 95% confidence interval for the
game Broadsides

Figure 3.9. Validation of IR with blue line showing 95% confidence interval for the
game Planeshift

66

Figures 3.6 and 3.7 plot both IR given by the subjects and the sum of IS and INS

calculated using the functions we derived previously for both games. We find that IR is

always bigger than the sum of IS and INS. In some cases, it even exceeds 100 which is

the maximum value we set for IR. Thus we propose to model IR as Equation (3.20)

IR = min(IS + INS−h(IS, INS) ,100) (3.20)

We tried the following possible h functions and using regression method to derive

the parameter.

h1 (IS, INS) = pISINS (3.21)

h2 (IS, INS) = p
√

ISINS (3.22)

h3 (IS, INS) = p(ISINS)
2 (3.23)

We use the sum of absolute difference as metric and find that using Equation (3.21)

as the h function achieves the best accuracy. The parameter p derived for two games are

0.22 for Broadsides and 0.27 for Planeshift.

Finally, after deriving all the parameters and necessary functions, we use 40%

of the data mentioned above to validate the derived model. Figure 3.8 is the scatter

plot of the relationship between subjective and predicted CMG(3D)-UE scores for the

game Broadsides and Figure 3.9 is for the game Planeshift. The correlation of Figure 3.8

is 0.986 and the correlation of Figure 3.9 is 0.974. Thus, we can conclude that the

proposed IR model (including Equations (3.1),(3.3),(3.4),(3.7),(3.8),(3.19),(3.20),(3.21)

and Table 3.2,3.3,3.4) will lead to high modeling accuracy.

In the above subsections, we have completed deriving a model which describes

the relationship between the impairment caused by ASOR proposed in this work and

the rendering settings. The high accuracy achieved by using the model for two games

67

of very different genre show the model can be generally applicable. However, there

are several parameters that need to be derived for each game and even for each specific

scene. We consider the effort needed to derive the parameters for each game to be

acceptable compared to the effort it needs to develop a complete 3D game. In addition, a

specific parameter, the ratio of weight between KO and GO c (Equation (3.18)), needs

to be derived for each scene), which may need significant effort. However, as is the

challenge for all applications based on ROI technology, how to decide the importance

ratio still remains an open problem. Compared to previous works [68, 69] which assign

the importance value manually or according to the features extracted from video frames

such as distance, brightness, edge, etc. that is sophisticated and not accurate enough,

our framework provides a novel way to automatically get the importance ratio based on

our proposed subjective test methodology and results, which is much easier and more

accurate than previous assignment methods.

3.3 Bitrate Model

In this section, we develop a bitrate model which estimates the encoding bitrate

of a view at a given time from the graphics rendering settings in this view at that time.

Several techniques have been proposed to model the bitrate of encoded video as a

function of the video encoding parameter quantization step q and the video frame rate t.

For example, in [48], Ma et al. proposed Equation (3.24)

R(q, t) = Rmax

(
q

qmin

)−a(t
tmax

)b

(3.24)

in which qmin and tmax parameters are chosen based on the application and Rmax is the

actual bitrate when encoding a video at qmin and tmax. Coefficients a and b are model

parameters which depend on the content of the video. The authors in [48] further proposed

68

a method to estimate a and b based on content features shown in Equations (3.25) and

(3.26).

[abRmax]
T = B[1µFDµMV M

µMV M

σMDA
]
T

(3.25)

B =


1.1406 −0.0330 −0.0611 0.1408

0.4462 0.0112 0.0680 −0.0667

0.1416 −0.0008 −0.0001 −0.0036

 (3.26)

in which µFD represents mean of frame difference, µMV M stands for mean of motion

vector magnitude and σMDA means standard deviation of motion direction activity.

Although reported in [48, 70] that this model is of high accuracy, it is based on

a data set containing videos that are natural scene videos and the resolutions are CIF

(352× 288) rather than the situation in our CMG(3D) application where the view is

generated by computer instead of camera in the real world and the video resolution used

is much higher: 720p (1280×720). Moreover, this work [48, 70] only considers video

encoding parameters but do not consider any graphics rendering settings. Thus, the model

Equations (3.24)-(3.26), especially the model parameters, may not be accurate enough in

our CMG(3D) application. Therefore, in this work, we extend their work by:

A. Conduct experiments using CMG(3D) videos with 720p resolution to validate

the model equations.

B. Conduct additional experiments to verify the B matrix in Equation (3.26).

C. Conduct additional experiments to predict µFD, µMV M and σMDA from the

graphics rendering settings so that the model not only considers video content features

but also graphics rendering settings.

In the following, we use x264 [57] as the video encoder. The version of x264

that we use is r2230. Table 3.5 lists the encoding parameters we use in our experiment.

In addition, we set QP)min = 25 and tmax = 60. By using the H.264/AVC standard

69

definition, q = 2((QP−4)/6), qmin = 11.

Table 3.5. x264 encoding parameters

Encoding Parameters Value Encoding
Parameters Value

Rate Control Method X264 RC CQP Periodic Intra Refresh 1
Profile High QP 25

Level of IDC 0
Number of Frames

per second
30

Sub Pixel Refine Value 2 Enable CABAC 0
Enable Motion Estimation

for Chroma
0 Enable PSNR 1

3.3.1 Model Equation Validation

In this subsection, we introduce how we perform experiments to validate the

model Equation (3.24).

(a) (b)

Figure 3.10. (a) left, Validation of model equation with q (b) right, Validation of model
equation with t

In order to validate this model, first we fix t = 60 and capture 3 videos using our

CMG(3D) system with different texture detail settings and encode them using different

QP settings including 25, 27, 29, 31, 33, 35 and 37 (the corresponding q values are 11,

14, 18, 23, 28, 36 and 45). For each video, we encode it by using x264 software with

parameters shown in Table 3.5 and record the bitrate under each q value. We calculate

70

the normalized bitrate R(q)/Rmax. Figure 3.10a shows the results. x-axis of the fig is

q which ranges from 11 to 45 and y-axis is the normalized bitrate. The results of each

video are represented by a specific color. Besides the bitrates shown as circles for the 3

videos with different texture details, we also plot a line for each video to represent the

model equation.

The parameter a is obtained by minimizing the squared error between the model

predicted and measured rates for each video. From Figure 3.10b , we can conclude that q

and normalized bitrate follows Equation (3.24) proposed by [48].

Next, we fix q = 11 and change the framerate when we capture the game video.

The framerate values we choose are 30, 35, 40, 45, 50 and 60. We capture 18 videos

in total for each framerate setting with 3 texture detail settings. Again, for each video,

we encode it by using x264 software with parameters shown in Table 3.5 and record

the bitrate under each t value. We calculate normalized bitrate R(t)/Rmax. Figure 3.10b

shows the results. X-axis of the figure is t which ranges from 30 to 60 and y-axis is the

normalized bitrate. The results of each video are represented by a specific color. Besides

the bitrates shown as circles for the 3 videos with different texture details, we also plot

a line for each video to represent the model equation. The parameter b is obtained by

minimizing the squared error between the model predicted and measured rates for each

video. From Figure 3.10b , we can conclude that t and normalized bitrate also follows an

exponential relationship so that the model equation proposed by [48] is still correct.

From the above, we conclude that the video bitrate model proposed by [48] still

applies to a specific category of video types that is gaming video and also in a different

resolution.

71

3.3.2 Model Parameter Validation

After validating that the model equations are accurate, we continue to validate

whether the parameter matrix B proposed in previous work is accurate enough.

To achieve the above, we use the video data mentioned in the above subsection

and divide them into two parts. We use 60% of the data to train the generalized linear

predictor proposed by [70] and use 40% of the data to validate. The results we get for the

parameter matrix B is the following:

B =


1.031 −0.0812 −0.0823 0.213

0.443 0.032 0.1870 −0.0761

1.387 −0.0042 −0.0003 −0.0043

 (3.27)

Note that the mean of sum of absolute difference caused by using the B matrix

in Equation (3.27) is 18.25kbps while it is 170.3kbps by using the B matrix proposed

by [48] (Equation (3.26)). Thus, our conclusion is that the B matrix derived above

(Equation (3.27)) is more accurate for gaming videos with 720p resolution than originally

proposed, and hence we will use it in our work.

3.3.3 Relationship between Content Feature and Graphics Render-
ing Settings

Since in this work we assume there will be no video impairment due to encoding,

we fix the values for the quantization step size q and the frame rate t. Thus, the only

variables in the model equation will be content features (µFD, µMV M and σMDA). In the

following, we perform several experiments to derive the relationship between rendering

settings of each object and content features (µFD, µMV M and σMDA). Intuitively, suppose

72

we have s objects in total, then for example the function of µFD will become the following:

µFD = F (T D1,T D2, . . . ,T Ds) (3.28)

in which T Di represents the rendering setting for object i.

Because the number of objects is changing all the time so that the number of the

variables in the above function will be dynamic, it is difficult to derive the relationship

directly. Hence, instead of using the rendering setting of every single object as one

variable, we use the percentage of pixels with certain rendering setting as the variable.

(Thus the number of variables will be fixed.) For example, for the game Broadsides, it

has four settings, High texture detail, Medium texture detail, Low texture detail and not

rendered at all. We propose the function to be the following:

µFD = F

(
∑

T DL i=H
pi, ∑

T DL j=M
p j, ∑

T DL k=L
pk, ∑

T DL l=N
pl

)
(3.29)

The first variable ∑
T DL i=H

pi indicates the total percentage of pixels of all the

objects that are rendered as High texture detail, the second for Medium texture detail,

the third for Low texture detail and the fourth for those that are not rendered. Moreover,

since the sum of the percentages of the above four conditions will be 100%, the above

function can be further simplified to include only three variables. We remove the variable

indicating the total percentage of pixels of all the objects that are not rendered. So that

the function becomes:

µFD = F

(
∑

T DL i=H
pi, ∑

T DL j=M
p j, ∑

T DL k=L
pk

)
(3.30)

However, relating the content features to only the rendering settings studied in

this chapter only may not be appropriate as the content features are also related to the

73

temporal and spatial complexity of the image, lighting and other rendering settings. On

the other hand, content features can actually be calculated after one frame is encoded and

our purpose is to predict what the bitrate will be if we substitute the rendering settings

for an object or multiple objects. Thus, we propose to study the following relationship

which will be more appropriate and more accurate.

µFD

(
∑

T DL i=H
pi, ∑

T DL j=M
p j, ∑

T DL k=L
pk

)
µFD (1,0,0)

= F

(
∑

T DL i=H
pi, ∑

T DL j=M
p j, ∑

T DL k=L
pk

)
(3.31)

By introducing a division operation, the influence of other settings to the content

features are removed automatically so that we can focus on the influence of the rendering

settings studied in this chapter. Also the denominator in the equation represent the case

when all the objects are rendered with High texture detail which is the default setting of

the game and can be studied separately.

Similar to the methods used in [48, 67, 70], we develop a generalized linear

predictor showing in Equations (3.32)-(3.34) to predict the relationship.

µMV M

(
∑

T DL i=H
pi, ∑

T DL j=M
p j, ∑

T DL k=L
pk

)
µMV M (1,0,0)

=H1

[
1, ∑

T DL i=H
pi, ∑

T DL j=M
p j, ∑

T DL k=L
pk

]T

(3.32)

σMDA

(
∑

T DL i=H
pi, ∑

T DL j=M
p j, ∑

T DL k=L
pk

)
σMDA (1,0,0)

= H2

[
1, ∑

T DL i=H
pi, ∑

T DL j=M
p j, ∑

T DL k=L
pk

]T

(3.33)

µFD

(
∑

T DL i=H
pi, ∑

T DL j=M
p j, ∑

T DL k=L
pk

)
µFD (1,0,0)

= H3

[
1, ∑

T DL i=H
pi, ∑

T DL j=M
p j, ∑

T DL k=L
pk

]T

(3.34)

74

We then capture 60 video clips from playing the game Broadsides and 40 video

clips from playing the game Planeshift. We divide the video clips into several groups,

with each group containing playing the game in the same game scene, performing the

same tasks with the same time period, but with different rendering settings of each object.

Within each group of videos, we first set the texture details of all objects to be High and

calculate µFD, µMV M and σMDA. Secondly, we change texture details of some objects

to be Medium, or Low or not render them. We collect the bitrate associated with each

video clip and perform generalized linear prediction. We divide the whole dataset into

two parts, with 60% of the data to train the model and use 40% of the data to test. The

results are shown in the following:

H1 =

[
0.534 0.637 0.436 0.562

]
(3.35)

H2 =

[
0.992 0.045 0.063 0.076

]
(3.36)

H3 =

[
1 0.88 0.48 0.25

]
(3.37)

Thus, Equations (3.24),(3.25),(3.27),(3.32),(3.33),(3.34),(3.35),(3.36),(3.37) com-

plete the proposed bitrate model. We validate the accuracy of the model by conducting

experiments using another group of video clips captured with random scenes. Figure 3.11

shows the validation results. The correlation is 0.9923, which proves the accuracy of the

model.

3.4 Adaptation Algorithm

In the above sections, we have proposed 1) a user experience model which models

cloud mobile 3D display gaming user experience as a function of rendering settings of

each object and 2) a bitrate model which estimates video bitrate needed to encode the

75

Figure 3.11. Validation results of the proposed bitrate model

Given:
1) Network bandwidth BW
2) Texture Detail bound T Dmin and T Dmax
3) Percentage of pixels for each object pi
4) Importance weight ratio c
5) Current content features µFD, µMV M and σMDA
Find:
The optimal graphics rendering factors, T DLi and T DRi, for each object i to
minimize IR

Iopt = minimize(IR) = minimize(min(IS + INS− pISINS,100)) (3.38)

s.t.
K1

∑
i=1

wKO pi +
K2

∑
j=1

wGO p j = 1,
wKO

wGO
= c (3.39)

T Dmin ≤ T DL i ≤ T DR i ≤ T Dmax (3.40)
RL

(
∑

T DL i=H
pi, ∑

T DL i=M
pi, ∑

T DL k=L
pk

)
+

RR

(
∑

T DR i=H
pi, ∑

T DR i=M
pi, ∑

T DR k=L
pk

)
≤ BW (3.41)

Figure 3.12. Problem formulation

76

rendered video as a function of the rendering settings of each object. In this section, we

combine these two models so that by selecting proper rendering settings of each object in

each view we can find an optimal solution for maximizing user experience given a current

network bandwidth constraint. Figure 3.12 shows the problem formulation. Because

according to Equation (3.1) and (3.2), maximizing CMG(3D)-UE is equal to minimizing

I, we set optimization objective to be minimizing I. T Dmin and T Dmax are the minimum

and maximum boundaries of texture details being used for a game. So if the rendering

engine uses texture detail values of High, Medium, Low, and we assign 0 to be High,

1 to be Medium and 2 to be Low, then T Dmin = 0, T Dmax = 2. Considering we also

have an option to not render the object, we assign T D = 3 in this case. Thus T Dmin = 0,

T Dmax = 3. The percentage of pixels object i occupies, pi, can be obtained through

game information and coefficient c has already been studied in the previous section. In

addition, note that in Equation (3.41) we are using H.264/AVC video encoder to encode

two views separately, thus the total bitrate equals the sum of the bitrate of two views. If

we substitute the video encoder with H.264/MVC or video+depth encoder, the expression

of total bitrate should be only one term.

In order to solve the above problem, we propose an Asymmetric and Selective

Object Rendering Adaptation (ASORA) algorithm which runs periodically (in this chapter

we set the time period to be 1 second) so that the rendering settings could be changed

dynamically depending on changing network conditions. In detail, at the end of each

time period, we will obtain the inputs for the ASORA algorithm: 1) current network

bandwidth BW which is obtained through an active networking probing method we

proposed in our previous work; 2) percentage of pixels for each object pi and current

content features (µFD, µMV M and σMDA). We use the pi value and the content features in

the current time period to predict the bitrate consumption in the next time period with

different rendering settings. The output of the algorithm will be the optimal rendering

77

setting for each object in the next time period.

Intuitively, our problem is very similar to a Multi Choice 0/1 knapsack problem

(MCKP) [72]. The definition of the MCKP is the following: Given a knapsack of

capacity C and n items with associated values v1,v2, . . . ,vn and weights w1,w2, . . . ,wn

and belonging to a set of k mutually exclusive classes N1,N2, . . . ,Nk the MCKP is to find

the subset of items consisting of exactly one item from each class that maximize total

value without exceeding knapsack capacity. If we associate the impairment contributed

by each object with a value in MCKP, video bitrate with weight and bandwidth with

capacity, the two problems looks very similar. However, the difference of our problem is

that the contribution to the impairment and bitrate of each object is not additive. Thus,

we cannot use dynamical programming algorithm (which applies to MCKP) to solve

our problem. In addition, our optimization problem can be categorized as a discrete

variable, non-linear object function with non-linear constraint function problem which

can be optimally solved using optimization solvers, such as CPLEX [75]. However, using

CPLEX gives optimal solutions at the expense of exponential computation complexity.

Thus, we propose the following algorithm which is both efficient and accurate.

The detail of the algorithm is the following. Considering the fact that the algorithm

needs to be executed in as little time as possible as CMG(3D) application has a real time

execution requirement, we propose ASORA which is an approximation algorithm based

on greedy approach with pruning [73], and is shown in the following pseudo code. The

underlying principle of the algorithm is as follows: initially we set all the objects to be

not rendered in both left and right views. Then we keep adjusting the rendering setting

of objects using a while loop, as long as the total bit rate does not exceed the bit rate

budget (BW). During each iteration, the algorithm will firstly iterate over all the objects

and for each object i, the algorithm computes the possible degradation in its rendering

impairment (∆Ii) and the possible increase in the consumed bandwidth (∆BWi), if we

78

set its rendering setting in one view to be one level higher. Among all the objects, the

algorithm will choose the one with the highest ratio of ∆Ii/∆BWi. The algorithm will

stop when 1) it reaches the maximum number of iteration bound or 2) there is no more

bandwidth available or 3) all objects set texture detail to be High. The proposed ASORA

algorithm has a run time of less than 12ms on a computer with a dual-core i7 processor,

and thus can meet the real time execution requirement.

3.5 Experimental Results

In this section, we report on experiments conducted using a commercial cloud ser-

vice to verify the performance improvement by applying the proposed ASORA technique

over the other existing methods. We use the same testbed as shown in Figure 3.2, except

we implement our CMG(3D) system, including the ASORA algorithm, on Amazon Web

Service (AWS) servers. For the Amazon cloud server, the CPU is Intel Xeon E5-2670

@2.60GHz with 15GB memory and the GPU has 1536 CUDA cores and 4GB of video

memory. The operating system is Windows Server 2008 R2 SP1.

We firstly collected real 4G-LTE network traces by using network bandwidth

testing software Speedtest.net [74] to record the bandwidth around UCSD campus.

Figures 3.13 and 3.16 show two sample LTE traces collected during lunch time and

dinner time (both are peak usage hours of mobile network at university), which are

then emulated using the network emulator in our testbed. In addition, for comparison

reasons, we also implemented two other algorithms called ARA from the last chapter and

JREA from [51]. Basically, ARA enables the game to set two different texture details

for left view and right view, but all the objects in the same view will have the same

texture detail settings. ARA also enables view distance settings which let the game not

render the objects whose distance to the virtual camera in the world is greater than the

threshold (value of view distance). JREA is an adaptation algorithm developed for 2D

79

Algorithm 2: Asymmetric and Selective Object Rendering Adaptation
(ASORA)

Input :
1) Network bandwidth BW
2) Texture Detail bound T Dmin and T Dmax
3) Percentage of pixels for each object pi
4) Content features µFD, µMV M and σMDA
5) Importance weight ratio c
Output : IOPT , T DL i

OPT , T DR i
OPT

Step 1: For each object i, set both T DL i
OPT and T DR i

OPT to be T Dmax,
calculate the current bandwidth needed BWcur and Icur

BW pre = BWcur

I pre = Icur

Step 2:
while (BW −BWcur > 0) && (round < round limit) && !(all T D == 0)
do

for i = 1; i < K; i++ do
max(T DL i

OPT ,T DR i
OPT) = max(T DL i

OPT ,T DR i
OPT)−1

calculate BWcur and Icur
∆BWi = BWcur−BWpre
∆Ii = Ipre− Icur
max(T DL i

OPT ,T DR i
OPT) = max(T DL i

OPT ,T DR i
OPT)+1

end
Find i which has the maximum value of ∆Ii/∆BWi
Step 3: Set the change of T D setting of object i

max(T DL i
OPT ,T DR i

OPT) = max(T DL i
OPT ,T DR i

OPT)−1

end
Step 4: Return IOPT , T DL i

OPT , T DR i
OPT

80

CMG applications. The basic idea for this technique is that it pre-defines several groups

of parameter combinations and assigns them into different levels. The algorithm will

choose to go up a level or go down a level at a time when the network conditions changes.

We extend the framework of it for CMG(3D), but only let the texture detail settings to be

the same for all the objects in both of the views. We evaluated the performance of the

algorithms on both Broadsides and Planeshift.

Figures 3.13 and 3.16 show the network bandwidth profiles. The average band-

width for network bandwidth profile 1 is 3330 kbps and it is 3029 kbps for network

bandwidth profile 2. Thus, network bandwidth profile 2 is more challenging.

Under the bandwidth constraint, the three algorithms will compute the best

texture detail settings they support and set these parameters in the game which will

result in different video bitrate consumption and different impairment for users. Fig-

ures 3.14a 3.15a 3.17a 3.18a show the bitrates resulting from using all three algorithms.

Figures 3.14b 3.15b 3.17b 3.18b show the resulting rendering impairment IR of the three

algorithms. Figures 3.14c 3.15c 3.17c 3.18c show the resulting CMG(3D)-UE scores of

the three algorithms computed using the proposed user experience model. The statistical

results are all shown in Table 3.6. Our experimental results show that most of the time,

ASORA performs significantly better than the other two algorithms. For example, in Fig-

ure 3.15c, at time= 200s, we can see that using ASORA enables achieving significantly

better user experience than using the other algorithms. By using ASORA, the CMG(3D)-

UE score is 4 which means negligible visual impairment, while by using ARA and JREA,

the resulting CMG(3D)-UE score is 1 which means unacceptable visual impairment that

will cause the user to quit the game. Further, if we compare the results using two different

network bandwidth profiles, we can see that the performance gain of ASORA over the

other two algorithms increases with more challenging network conditions. Moreover, if

we compare the results using two games, we can observe that ASORA performs better

81

using Planeshift than Broadsides, the main reason is the following. From Table 3.3, it

shows the average importance ratio of Planeshift is higher than that of Broadsides, thus,

by transferring more low quality rendering settings to more unimportant objects from

important objects while preserving the video bitrate, Planeshift can get much more user

experience gain than Broadsides. Overall we can see that ASORA performs much better

than the other two algorithms. Especially from the statistical results we can see that

ASORA performs 49.4%-70.3% better than ARA and 90.8%-124.8% better than JREA

in terms of CMG(3D)-UE score.

The above results prove that the proposed algorithm is much better than existing

approaches and can be applied in different network conditions with different genres of

games.

Table 3.6. Statistical results of the experiment showing rendering impairment IR and
overall user experience achieved CMG(3D)-UE.

Network
Profile Game IR CMG(3D)-UE

ASORA ARA JREA ASORA ARA JREA
Profile1 Broadsides 13.59 50.69 66.16 4.14 2.77 2.17
Profile1 Planeshift 8.96 51.37 67.71 4.26 2.79 2.17
Profile2 Broadsides 35.07 70.43 83.36 3.32 2.01 1.52
Profile2 Planeshift 31.13 71.59 84.86 3.44 2.02 1.53

Figure 3.13. Network bandwidth profile 1

82

(a)

(b)

(c)

Figure 3.14. Results of Broadsides using network bandwidth profile 1 (a) top,
Bitrate of three algorithms (b) middle, IR of three algorithms (c) bottom,

CMG(3D)-UE of three algorithms

83

(a)

(b)

(c)

Figure 3.15. Results of Planeshift using network bandwidth profile 1 (a) top,
Bitrate of three algorithms (b) middle, IR of three algorithms (c) bottom,

CMG(3D)-UE of three algorithms

84

Figure 3.16. Network bandwidth profile 2

3.6 Conclusion

The main contributions of this chapter are the following:

1) We performed extensive subjective tests to derive a general user experience

model for cloud mobile 3D display gaming considering both asymmetric object rendering

and selective object rendering.

2) We derived a video bitrate model to relate the video with the changes of

different rendering settings.

3) By making use of the above two models, we developed a novel adaptation

algorithm called ASORA that is able to automatically decide the optimal rendering

settings for objects in left and right views to ensure the best user experience given the

network conditions.

4) By conducting experiments using real 4G-LTE network profiles and commer-

cial cloud service and comparing with existing methods, we demonstrate the significant

improvement in user experience when the proposed ASORA algorithm is applied.

In the next chapter, we will not only consider asymmetric graphics rendering, but

apply it together with asymmetric video encoding to further improve the user experience.

85

(a)

(b)

(c)

Figure 3.17. Results of Broadsides using network bandwidth profile 2 (a) top,
Bitrate of three algorithms (b) middle, IR of three algorithms (c) bottom,

CMG(3D)-UE of three algorithms

86

(a)

(b)

(c)

Figure 3.18. Results of Planeshift using network bandwidth profile 2 (a) top,
Bitrate of three algorithms (b) middle, IR of three algorithms (c) bottom,

CMG(3D)-UE of three algorithms

87

3.7 Acknowledgements

Chapter 3, in part, is from the material as it appears in proceedings of IEEE ICC

2015. Yao Lu; Yao Liu; Sujit Dey. and in Multimedia Tools and Applications 2016. Yao

Lu; Yao Liu; Sujit Dey. The dissertation author was the primary investigator and author

of this paper.

Chapter 4

Joint Asymmetric Video Encoding and
Graphics Rendering

4.1 Introduction

In the last two chapters, asymmetric graphics rendering has been extensively

studied. We proposed asymmetric texture detail. We also proposed selective rendering for

each individual objects. The experimental results proved the effectiveness of the proposed

technique. In this chapter, we further explore the idea of combining asymmetric graphics

rendering and asymmetric video encoding together to further improve user experience.

As is the work flow of the previous two chapters, we propose the idea, model the user

experience, develop a bit rate model and design an algorithm to solve the optimization

problem. Compared to what is proposed in the previous chapters, we have the following

improvements. First, we extend the application from game only to support other virtual

immersive applications. We term them as cloud mobile 3D virtual immersive applications

(CMVIA(3D)). Second, we replace the H.264/AVC codec to be H.265/HEVC codec to

improve the coding efficiency.

88

89

4.2 User experience model

In this section, we study and model user experience for CMVIA(3D) considering

the joint effect of video encoding impairment and graphics rendering impairment, as

opposed to our previous work which only takes into account the effects of graphics

rendering impairment for CMG(3D). Because both the system architecture and the factors

that influence user experience of CMVIA(3D) and CMG(3D) are very similar, we use the

same Mean Opinion Score (MOS) criterion introduced in Chapter 2 as a measurement

metric for modeling CMVIA(3D) user experience, as shown in equations (4.1) and (4.2):

MOS = 1+0.035R+7×10−6R(R−60)(100−R) (4.1)

R = 100− I (V E,GR) (4.2)

In Equation (4.1), the MOS metric is formulated by a transmission rating factor

R, which represents the overall user experience. R factor takes value between 0 and 100;

higher R value means higher MOS and better user experience. In Equation (4.2), the

equation I(V E,GR) stands for the combined impairment caused by video encoding (VE)

and graphics rendering (GR).

In the following, we describe how we conducted subjective tests to derive the

impairment functions and how we validated them.

4.2.1 Subjective Test settings

Table 4.1 shows the specific video encoding settings and graphics rendering

settings we want to include in our experiment. In detail, for video encoding settings,

we fix the resolution to be 720p (960×720) for each view and frame rate to be 25fps

in our experiment but change the quantization parameter (QP). QP that ranges from 0

90

(a)

(b)

(c)

Figure 4.1. Example snapshots for three applications (a) top, Cloud mobile 3D display
gaming left view: High texture detail, QP = 25, right view: Medium texture detail,

QP = 35 (b) middle, Cloud mobile 3D virtual classroom left view: High texture detail,
QP = 25, right view: Medium texture detail, QP = 27 (c) bottom, Cloud mobile 3D

virtual art gallery left view: High texture detail, QP = 25, right view: Medium texture
detail, QP = 25

91

to 51 decides quantization level. Higher QP means lower quality. The other settings

of x265 encoder are listed in Table 4.2. For graphics rendering settings, we study the

effect of asymmetric texture detail. Texture detail defines the quality of the images on

the surface of the objects. As is defined in Chapter 2, we define texture detail to be

high when the game is using the original texture images, to be medium when the texture

images are downsampled once and low when the texture images are downsampled twice.

Figure 4.1 shows an example where left view is rendered with high quality and right view

is rendered with medium quality. The viewer can observe some blurry effect from the

right view.

Figure 4.2. Testbed for subjective experiments

Figure 4.2 shows the testbed used for the subjective tests. We use a 3D monitor

with a laptop to substitute for 3D display of mobile devices because current available

mobile 3D displays do not have as good quality as 3D monitors that may cause additional

impairment which we want to avoid. The laptop is connected to an access point and

the access point is connected to the game server. The selected applications which run

upon the above framework are 1) an online open-source MMORPG game PlaneShift [57]

2) an virtual classroom application we developed based on SecondLife [76] and 3) an

virtual art gallery application we also developed based on SecondLife. We then invited

25 students (17 male, 8 female; aged 18∼26) to participate in our subjective experiments.

Firstly, we asked the testers to sit before a 23 inch LG D2342 3D Monitor, and show them

a 3D video as a training sequence before the real test starts to let the testers adjust their

viewing angle. After that, we start these applications and manually set the video encoding

92

settings and graphics rendering settings according to Table 4.1 independently for each

view. Once a combination of rendering and encoding factors is set, we ask the testers to

play the game for 1 minute and evaluate the impairment according to the criterion listed

in Table 4.3 at the end of each condition. During the whole experiment, the testers were

asked to control the avatar to perform multiple tasks (including attacking an enemy in the

gaming application, discussing with another student in the virtual classroom application,

watch the paintings in the virtual art gallery application, etc.). Example snapshots of

the three applications with specific graphics rendering and video encoding settings are

shown in Figure 4.1.

4.2.2 Impairment Function Derivation

Considering the graphics rendering and video encoding settings used in our

CMVIA(3D) platform and the two views, we formulate impairment function as:.

I (V E,GR) = I (T DL,T DR,QPL,QPR) (4.3)

where T D means texture detail and QP indicates quantization parameter. The subscripts

L and R represent left view and right view respectively. In order to study I(V E,GR), we

first keep one of the four parameters fixed to its best quality value during the test and see

how the impairment I changes according to other three parameters.

Table 4.1. Experiment setting

Settings Experiment Values
Texture Detail (Down Sample) High(0) Medium(1) Low(2)

Quantization Parameter 25 27 29 31 33 35 37 39

Figures 4.3a - 4.3f show the average impairment values when we keep QP of one

of the views to be 25 (almost no video encoding impairment on that view) but change QP

of the other view and at the same time change the texture detail settings for both views.

93

Table 4.2. x265 encoding parameters

Encoding Parameters Value Encoding
Parameters Value

Rate Control CQP
Number of Reference

frames
3

Profile Main Number of B frames 0
Preset Medium Scenecut 40

Rc-lookahead 0 Period Intra Refresh ON
Wavefront Parallel

Processing
ON Weighted P Frame ON

AMP Partition ON Weighted B Frame OFF
Motion Estimation Range 57 Enable PSNR ON

Table 4.3. Impairment criterion

I Description
0 No visual impairment

0-20 Minor visual impairment
20-40 Noticeable visual impairment
40-60 Clear visual impairment
60-100 Unacceptable visual impairment

Table 4.4. QP threshold T (T D) for different texture detail settings

Application H M L
Gaming 27 31 35

Virtual Classroom 27 31 35
Virtual Art Gallery 27 29 31

Table 4.5. Average IT D scores for different texture detail combinations

Application H-H H-M M-M M-L L-L
Gaming 0.2 8.35 12.3 19.14 24.5

Virtual Classroom 0 7.4 11.5 17.2 22.6
Virtual Art Gallery 0 11.2 15.7 24.3 32.3

94

(a) (b) (c)

(d) (e) (f)

Figure 4.3. (a) top left, Relationship between I and QPL under different texture detail
combinations for gaming (b) bottom left, Relationship between I and QPR under

different texture detail combinations for gaming (c) top middle, Relationship between I
and QPL under different texture detail combinations for virtual classroom (d) bottom

middle, Relationship between I and QPR under different texture detail combinations for
virtual classroom (e) top right, Relationship between I and QPL under different texture
detail combinations for virtual art gallery (f) bottom right, Relationship between I and

QPR under different texture detail combinations for virtual art gallery

95

From these six figures we can clearly observe that for each texture detail combination,

the impairment values remain similar till the QP value exceeds some thresholds (showing

as a red circle on the figures). For example, for curve L-L (both left and right views

use low texture detail) in Figure 4.3a, the threshold is at 35 since the impairment I does

not change until QP exceeds 35. Clearly the value of this QP threshold is related to

the texture detail setting. Further, we found that this threshold was only related to the

texture detail setting of the view whose QP is changing. For example, in Figure 4.3a, the

threshold of M-M is the same as the threshold of M-L and that value is also the same as

the threshold of H-M and M-M in Figure 4.3b. Thus, it means for a specific texture detail

setting of one view, there is a corresponding QP threshold so that when QP is less than

or equal to that threshold, the total impairment is not related to the QP value. In other

words, the video encoding won’t cause additional impairment besides the impairment

caused by texture detail when the QP is below the threshold. According to the results

from Figures 4.3a - 4.3f, we list the threshold and the corresponding impairment IT D in

Tables 4.4 and 4.5. Note that although the above relationship as well as all the models

derived subsequently are general, the values of the parameters need to be derived for each

specific application. From Tables 4.4 and 4.5 we can also identify that virtual art gallery

application has much higher impairment due to texture detail and lower QP threshold

than other two applications. The reason is that for this application, the user will pay

continuous attention to the content of the virtual paintings so that they tend to be very

strict about the details of the views. Thus, when there is some blurry effect of the views,

it hurts user experience severely.

Considering the QP threshold, we propose to model I by two parts. The first one

is the IT D that is the impairment caused by texture detail only and the second part is IA

that is the additional impairment when QP is bigger than the threshold. Equation (4.4)

96

shows the relationship.

I (T DL,T DR,QPL,QPR) = IT D (T DL,T DR)+ IA

IA =



0
QPL < T (T DL)

QPR < T (T DR)

f (QPL−T (T DL))
QPL ≥ T (T DL)

QPR < T (T DR)

f (QPR−T (T DR))
QPL < T (T DL)

QPR ≥ T (T DR)

g(QPL−T (T DL) ,QPR−T (T DR))
QPL ≥ T (T DL)

QPR ≥ T (T DR)

(4.4)

in which IT D is the value form Table 4.5. The QP threshold T (T D) is the value from

Table 4.4.

From Figures 4.3a - 4.3f we observe that the impairment I would increase almost

linearly with QP when QP exceeds the threshold T (T D). Hence can conclude that f can

be modeled as a linear function showing in Equation (4.5).

f (QPL−T (T DL)) = a(QPL−T (T DL))+b (4.5)

The parameters a and b for 3 applications are derived using linear regression

technique and are listed in Table 4.6.

In order to derive g function, we change both QPs to be values that exceeds

the T (T D), plot the data points in a 3 dimensional figure and derive the relationship.

Figure 4.4 shows an example for gaming application with texture detail combination set

to be High-High. We tried different two dimensional equations to fit the data and we

97

Figure 4.4. Regression result for g function for gaming application when texture detail
combination is High-High

found that the bilinear equation can have the best regression results in terms Mean Square

Error (MSE). Thus we model g function as is shown in Equation (4.6). The parameters

a1, a2 and b1 for 3 applications are shown in Table 4.7.

g(QPL−T (T DL) ,QPR−T (T DR)) =

a1 (QPL−T (T DL))+a2 (QPR−T (T DR))+b1

(4.6)

Equations (4.3),(4.4),(4.5) and (4.6) complete our user experience model. We

will validate it in the next subsection.

Table 4.6. Regression parameters of a and b for f function

Application a b
H M L H M L

Gaming 0.9 0.8 1.1 0.1 0.3 0.2
Virtual

Classroom 0.95 0.88 1.03 0.4 0.2 0.25

Virtual Art
Gallery 0.88 0.75 1.21 0.3 0.23 0.14

98

Table 4.7. Regression parameters of a1, a2 and b1 for g function

Application H-H H-M M-M M-L L-L
a1

Gaming 0.92 0.92 0.85 0.82 1.04
Virtual

Classroom 0.98 0.96 0.91 0.90 1.13

Virtual Art
Gallery 0.91 0.88 0.79 0.76 1.24

a2
Gaming 0.92 0.83 0.85 1.01 1.04
Virtual

Classroom 0.98 0.89 0.91 1.05 1.13

Virtual Art
Gallery 0.91 0.72 0.79 1.23 1.24

b1
Gaming 0.13 0.12 0.27 0.3 0.22
Virtual

Classroom 0.41 0.43 0.22 0.23 0.25

Virtual Art
Gallery 0.32 0.34 0.24 0.23 0.15

4.2.3 Model Validation

In order to validate the impairment model (Equations (4.3)∼ (4.6)) derived in the

previous subsections, we conducted another set of experiments with a new group of 16

participants (10 male, 6 female; aged 18∼25), exploring the same applications. In this set

of experiments, the texture detail and quantization parameters for both views are changed

at the same time. Figures 4.5 shows the relationship between predicted impairment I

computed by the derived impairment function (y-axis) and subjective impairment I given

by human subjects (x-axis) for the 3 applications. In the figures, each data point represents

one combination of graphics rendering settings and video encoding settings. We also

plotted 95% confidence interval for each measurement as black lines in the figures to

show the variety among different subjects. The correlation for the game application is

0.96 while it is 0.97 for virtual classroom application and 0.97 for virtual art gallery

99

application. The above results show the accuracy of the derived user experience model,

and its applicability to different applications.

4.3 Bitrate Model

In TCP based cloud streaming applications, when video bitrate exceeds the

network bandwidth, it will cause accumulated delay [59]. Therefore a bitrate model

needs to be developed so that given a combination of parameters (T DL, T DR, QPL, QPR),

the video bitrate can be accurately estimated. In this way, by controlling the parameter

settings, the resulting video bitrate can be controlled to be below the network bandwidth

and therefore avoid congestion.

Several techniques have been proposed to model the bitrate of encoded video as

a function of the video encoding parameters. For example, in [48], Ma et al. proposed

Equation (4.7) to model bit rate R using quantization step q and video frame rate t.

R(q, t) = Rmax

(
q

qmin

)−α(t
tmax

)β

(4.7)

In Equation (4.7), coefficients qmin and tmax represent the minimum quantization

step and the maximum frame rate, respectively, and are chosen based on the application;

Rmax indicates the maximum bitrate when encoding a video at qmin and tmax; coefficients

α and β are model parameters that depend on the content of the video. The authors

in [48] further proposed a method to estimate α and β based on content features shown

in Equation (4.8) and (4.9).

[
α β

]T

= B
[

1 µFD µMV M
µMV M
σMDA

]T

(4.8)

100

(a)

(b)

(c)

Figure 4.5. Validation of I(V E,GR) (a) top, Results for gaming (b), middle Results for
virtual classroom (c) bottom, Results for virtual art gallery

101

B =

 1.1406 −0.0330 −0.0611 0.1408

0.4462 0.0112 0.0680 −0.0667

 (4.9)

in which µFD represents mean of frame difference, µMV M stands for mean of motion

vector magnitude and σMDA means standard deviation of motion direction activity.

Though reported in [48] that this model is of high accuracy, it is based on a

data set containing videos that are natural scene videos and the resolutions are CIF

(352×288) rather than the situation in our CMVIA(3D) application where the view is

generated by computer instead of camera in the real world and the video resolution for

each view is 720p (960×720). Moreover, the video encoding standard we use is H.265/

HEVC instead of H.264/AVC in [48]. Also note that we need to consider both video

encoding settings and graphics rendering settings in the bitrate model. Thus, the model

Equations (4.7) ∼ (4.9), especially the model parameter may not be accurate enough in

our case. Therefore, in this chapter we extend their work by:

1. Performing experiments using CMIVA(3D) videos with 720p resolution to

validate the model equations.

2. Performing additional experiments to adjust the model of parameter a (Equa-

tion (4.8),(4.9)) by incorporating graphics rendering setting with H.265/ HEVC video

coding standard.

4.3.1 Model Equation Validation

In this subsection, we introduce how we perform experiments to validate the

model equations. Firstly, because in this chapter, we do not evaluate the influence of

framerate to user experience or bitrate, we will fix the framerate and set t to be tmax and

thus we can simplify equation (4.7) to be:

R(q) = Rmax

(
q

qmin

)−α

(4.10)

102

In order to derive and validate this bitrate model, we captured 3 videos for each

application using our CMVIA(3D) system with different texture detail settings and

different QP settings from Table 4.1. Using the H.265/HEVC standard definition that

q = 2(QP−4)/6, the corresponding q values are 11, 14, 18, 23, 28, 36, and 45. For each

video, we encode it by using x265 encoding library and record the bitrate under each q

value. We set Rmax to be the bitrate when encoding with qmin and calculate normalized

bitrate R(q)/Rmax. Figures 4.6 show the results. X-axis of the figures is q which ranges

from 11 to 45 and y-axis is the normalized bitrate. The results of each video in each

figure are represented by a specific color. Besides the bit rates shown as circles for the

3 videos with different texture details, we also plot a line for each video to represent

the model equation. The parameter α is obtained by minimizing the mean square error

between the model predicted and measured rates for each video. From Figure 4.6, we

can conclude the Equation (4.10) can model the bitrate of CMVIA(3D) videos using

H.265/HEVC standard with high accuracy.

(a) (b) (c)

Figure 4.6. Validation of model equation (a) left, For gaming; (b) middle, For virtual
classroom; (c) right, For virtual art gallery

4.3.2 Model Parameter Prediction

In this subsection, we discuss how we adjust the parameter model (Equation (4.8),(4.9))

proposed in [48] to cope with CMVIA(3D) application. As is reported in [48] that µFD,

µMV M and µMV M/σMDA are the most related content features which influence parameter

103

Figure 4.7. Validation of bitrate estimation

Given:
1) Video content features µFD, µMV M and σMDA
2) Network bandwidth limit BW
3) Texture Detail bound T Dmin and T Dmax
4) Quantization Parameter bound QPmin and QPmax
Find: The optimal T DL, T DR, QPL, and QPR to minimize impairment

IOPT = min I (V E,GR) = min I (T DL,T DR,QPL,QPR)

s.t.
T Dmin ≤ T DL ≤ T DR ≤ T Dmax

QPmin ≤ QPL ≤ QPR ≤ QPmax

RL (T DL,QPL)+RR (T DR,QPR)≤ BW

Figure 4.8. Problem formulation

104

a. However, as is shown in Figure 4.5, the parameter a will vary for different texture detail

settings. Thus we combine texture detail, TD, with the content features including σFD,

µMV M/σMV M, etc. proposed in [48] as the input parameters for predicting a. Further,

we captured 36 30-second long video clips with different texture detail settings and for

different applications performing different tasks. We use the same generalized linear

predictor with leave-one-out cross-validation error method reported in [48] to derive and

validate the equations, which are shown in Equation (4.11),(4.12).

α = B
[

1 µFD µMV M
µMV M
σMDA

T D

]T

(4.11)

B =

[
1.13 −0.076−0.042 0.00132 0.31

]
(4.12)

Our results show that using µFD, µMV M, µMV M/σMDA and T D is sufficient to

predict the model parameter accurately. Figure 4.7 shows the bitrate estimation results

comparing the estimated bitrate versus actual bitrate using another 18 30-seconds video

clips encoded with different QPs. The correlation is 0.99 indicating the high accuracy of

the proposed model.

Thus, Equations (4.10) ∼ (4.12) completes our bitrate model.

4.4 Optimization Algorithm

In the previous sections, we have proposed 1) a user experience model which

models cloud mobile 3D display gaming user experience as a function of video encoding

settings and graphics rendering settings, and 2) a bitrate model which estimates video

bitrate needed to encode the rendered video as a function of video encoding settings

and graphics rendering settings. In this section, we combine these two models so that

by selecting proper graphics rendering (texture detail) settings and video encoding

105

(quantization parameter) settings of the rendered video, we can find an optimal solution

for maximizing user experience (minimizing I) given a network bandwidth limit.

4.4.1 Problem Formulation

Figure 4.8 shows the problem formulation. We formulate the problem as an

optimization problem. Because according to Equation (4.1) and (4.2), maximizing MOS

is equal to minimizing I, we set our optimization target as minimizing I. T Dmin, T Dmax,

QPmin and QPmax are the minimum and maximum boundaries of the settings being used

for an application.

4.4.2 Algorithm Description

We first describe the key ideas and insights of how we analyze the problem and

develop the algorithm. Then we discuss the detailed steps of the algorithm.

First, notice that the problem we are to solve contains 4 variables that are all

discrete variables. For a convex or concave problem with continuous variables, it is very

easy to solve. However, for the proposed problem, we are faced with two difficulties

1) It’s hard to prove our problem is a convex or concave problem directly or maybe the

problem is not convex or concave at all. 2) The variables are discrete. From our previous

work, we can conclude that discrete variable linear programming is very hard to solve,

discrete variable convex optimization is even harder and if the problem is not even convex

or concave, it will be almost impossible to find a shortcut and prove optimality.

Notice that assuming the variable range space of T D is n, the combination of T DL

and T DR can only have 2n−1 choices. That is because we only allow either T DL = T DR

or T DL = T DR− 1 as in our previous work our subjective test shows when T DL and

T DR has more than one level difference, it creates a large impairment, so we exclude that

case from our value space. In addition, in reality, n can only be a very small number as

106

it is not possible to define too much texture detail levels. In our experiment, we choose

n = 3 resulting in 5 combinations in total that is two orders less than the number of

combinations of QPL and QPR. Thus, we propose to divide our problem into 2n− 1

sub-problems with only two variables, calculate the best solution for each sub-problem

and compare to get the final best solution. In this case, one advantage is that the number

of variables are decreased so that it becomes possible to prove the sub-problem to be a

convex or concave problem. Note that the objective function is a piecewise function; we

provide proof in Section 4.4.3 to show that one piece of the objective function together

with the constraint functions is a convex problem. Thus, we propose to first relax the

discrete variable optimization problem into a continuous variable optimization problem.

Then we propose to use a relatively small search space that we will discuss in detail

later to find the real optimal discrete solution. We can also prove the complexity of the

search space is O(m) where m is the possible choices of QP. By utilizing the thoughts

and ideas above, we are able to design an algorithm leading to an optimal solution with

low complexity.

In the following, we describe the details of the algorithm. Figure 4.9 shows

the block diagram of our proposed algorithm. At the beginning, in step 1, we will

first compute the values of I for all combinations of the parameters (QPL, QPR, T DL,

T DR) and sort them in a queue called Q S. As this is a one-time computation and the

result can be saved in memory, it saves redundant computations during the execution of

the algorithm, and at the same time the sorting itself will be an important step in this

algorithm. The rest of the algorithm is designed to be periodically executed according

to a fixed time interval. In our experiment, we use 1 second as the interval. During

each interval, in step 2, video content features are extracted to estimate the video bitrate,

and network bandwidth is estimated through a network probing method proposed in

our previous work. Then, at the end of each time interval, after gathering the necessary

107

Figure 4.9. Validation of bitrate estimation

108

information, we divide our problem into 2n−1 sub-problems. For each sub-problem, in

step 3, we first check whether the condition when QPL = T (T DL) and QPR = T (T DR)

satisfies the bandwidth constraint. For asymmetric settings of texture detail, for example

T DL = M and T DR = L, we will also check the conditions when QPL > T (T DL) and

QPR < T (T DR). If these conditions satisfy the bandwidth constraint, the best one with

lowest I among them will be the optimal discrete solution for the sub-problem because

any other solution (described by g function in Equation (4.4)) in this sub-problem

will result in higher I. Otherwise, we relax the discrete optimization problem into a

corresponding continuous optimization problem and use Lagrangian Minimum method

to get the solution for this continuous problem. The proof why the continuous problem is

convex and the corresponding equations of how to compute the minimum are provided

in Section 4.4.3. After getting the continuous minimum or discrete minimum for each

sub-problem, we need to find out the real discrete minimum among all sub-problems.

In step 4, we sort these solutions from minimal I to maximal I and put them in a queue

called QI and then start examining from the minimal continuous solution. Notice that

for any continuous solution whose corresponding parameters are QP L i j and QP R i j

where L means left view, R means right view, i means the choice for T DL and j means

the choice for T DR, the discrete solution when QP L = QP L i j and QP R = QP R i j

will always satisfy the bandwidth constraint because both QPs are increasing, resulting

in the bandwidth consumption to be decreasing. In step 5, we can set this solution as the

upper bound and set the continuous solution as the lower bound for this sub-problem. By

using this upper bound and lower bound, in step 6, we go back to QS and can select the

solutions that have lower I than upper bound and higher I than lower bound. In step 7,

we compute from the lowest I to the highest I to see if one of those solutions can satisfy

the bandwidth constraint and if so the first one that can satisfy the constraint will be the

best discrete solution for this sub-problem. Note that in the worst case, the upper bound

109

will be the discrete solution so it is guaranteed to find a solution by this method. It is also

proved in Section 4.4.3 that the complexity of searching for the discrete solution inside

the bounds is O(m) where m is the number of choices of QP. After getting one discrete

solution, in step 8, the algorithm will compare it with the continuous or discrete solutions

of the other sub-problems. If the current discrete solution is better than the continuous

or discrete solutions of the other sub-problems, these solutions in other sub-problems

do not need to be further examined to find the corresponding discrete solution. If the

current discrete solution is not better than the discrete solutions in other sub-problems,

the current solution will be dropped. This pruning will not result in inaccuracy but it

will improve the execution time of the algorithm significantly. After the above in step

9, it will judge if QI is empty, if so, it can get the final optimal discrete solution for the

problem.

4.4.3 Proofs

In the following, we will first prove that for each sub-problem, when g function

applies, the problem is a convex problem and when it relaxes into a continuous problem,

it can be solved by Lagrangian Minimum method. We will also derive the equations of

how to compute the minimal solution.

According to [77], an optimization problem of the form

minimize f (x)

subject to gi (x)≤ 0, i = 1, . . . ,n
(4.13)

is called convex if the functions f ,g1, ...,gm : Rn→ R are convex. [77]

Recall that the objective function when g function applies is

g(x1,x2) = a1x1 +a2x2 +b1 (4.14)

110

where x1 = QPL−T (T DL) and x2 = QPR−T (T DR)

For a given sub-problem, T DL and T DR are fixed. Thus

g(QPL,QPR) = c1QPL + c2QPR + c3 (4.15)

Since the g function is a bilinear function, it can be considered as both a convex

function and a concave function.

In addition, for a given sub-problem, T DL and T DR are fixed, the constraint

function is

R(QPL,QPR) = R(QPL)+R(QPR) (4.16)

If we combine all the constants together, the constraint function can be rewritten

as

R(QPL,QPR) = e12d1(QPL−4)+ e22d2(QPR−4) (4.17)

Because the Hessian Matrix of the above equation is

H =

(d1 ln2)2e12d1(QPL−4) 0

0 (d2 ln2)2e22d2(QPR−4)

 (4.18)

And also because e1 > 0 and e2 > 0, H is a positive definite matrix. Thus, the

constraint function is a convex function.

The range of QPs are from 0 to 51 and we also have QPL ≤ QPR. Thus, the range

of the variable is a closed convex set.

Therefore, our problem is a convex optimization problem. After proving that the

problem is a convex optimization problem, we can compute the minimal value by the

following method.

111

First, construct an F function as

F (QPL,QPR) = g(QPL,QPR)+λ (R(QPL,QPR)−BW) (4.19)

Let 
∂g(QPL,QPR)

∂QPL
+λ

∂R(QPL,QPR)
∂QPL

= 0
∂g(QPL,QPR)

∂QPR
+λ

∂R(QPL,QPR)
∂QPR

= 0

R(QPL,QPR)=BW

(4.20)

We can solve that

QPL =
log2

(
BW
e1
· c1

c1+c2

)
d1

+4

QPR =
log2

(
BW
e1
· c2

c1+c2

)
d1

+4

(4.21)

Thus, we prove that the problem is convex and also provide the explicit equation

to solve the convex problem and find the optimized solution.

In the following, we will prove the search space of the best discrete solution of a

sub-problem is of the complexity m where m is the variable range of QP.

Define:
g(x,y) = ax+by+ c

Assume:
1. Both a > 0 and b > 0
2. x and y are both integers and both ranges in (0 t].
Consider:
∀(x,y) ,∃k pairs of (x′,y′)in total
s.t. f (x,y)≤ f (x′,y′)≤ f (x+1,y+1)
To prove:
k ≤ mt, where m is a constant

Figure 4.10. Optimization problem

112

We first generalize the problem and prove the more general problem, so that our

problem is just a special case under this framework. We can state the generalized problem

below.

Then we provide proofs to this problem in the following:

f (x,y)≤ f (x′,y′)≤ f (x+1,y+1)

⇔ ax+by≤ ax′+by′ ≤ ax+by+a+b

⇔ x+ b
ay≤ x′+ b

ay′ ≤ x+ b
ay+1+ b

a

Let ∆x = x′− x

∆y = y′− y

⇔ 0≤ ∆x+ b
a∆y≤ 1+ b

a

⇔−a
b∆x≤ ∆y≤ 1+ a

b −
a
b∆x

∴ For any ∆x,

∆y can have at most 1+ a
b values

∵ x′ = x+∆x ∈ (0 t]

y′ = y+∆y ∈ (0 t]

∴ ∆x ∈ [−x t− x]

∆y ∈ [−x t− x]

∵ Both x and x′ are integers

∴ ∆x is also an integer

∴ ∆x can have t values

∴ ∆y can have at most t
(
1+ a

b

)
values

∴ k≤ t
(
1+ a

b

)
where 1+ a

b is a constant

113

4.4.4 Complexity Analysis

We define the range of the parameter T D as n and that of QP as m. Because

each parameter can be set in both left view and right view, considering the brute force

algorithm, the complexity of the original problem is O(n2m2).

In the proposed algorithm, for each sub-problem, we calculate the continuous

optimal and then search for the discrete optimal in a space of the complexity m. Thus,

the worst case complexity of this algorithm is O(n2m). Considering the pruning we

introduced in the algorithm that if the first discrete solution is better than all the other the

continuous solutions, we do not need to search discrete solutions for other sub-problems,

the complexity of the algorithm can be reduced to O(n2 +m). In our simulation of

randomly generated data, we see that the algorithm prunes successfully in more than 90%

of the cases.

4.5 Experimental Results

In this section, we report on experiments conducted using a commercial cloud

service, Amazon Web Service (AWS) [78], to verify the performance improvement by

applying the proposed JAVRE technique. We use the same testbed as shown in Figure 4.2,

except that 1) we put a network emulator Linktropy [79] between AP and laptop to control

wireless network condition and 2) we implement our CMVIA(3D) system, including the

JAVRE algorithm, on AWS servers. In detail, we modified the open-source game engine

Planeshift and open-source virtual world application SecondLife so that 1) the rendering

engine is able to pre-load different levels of textures when initializing the rendering

loop and 2) when one specific texture detail setting is chosen it is able to switch to it

dynamically. We also programmed a control software that is able to 1) capture the game

scene or virtual world scene in real time, 2) encode the left and right view videos by x265

114

library, 3) stream the videos to the client devices through TCP, 4) probe the network and

estimate the available network bandwidth and 5) with the JAVRE algorithm implemented

inside, decide the parameters TDs and QPs that result in best use experience and set them

in the rendering engine through process level share memory mechanism

For the Amazon cloud server, the CPU is Intel Xeon E5-2670 @2.60GHz with

15GB memory and the GPU has 1536 CUDA cores and 4GB of video memory. The

operating system is Windows Server 2008 R2 SP1.

We firstly collected real 4G-LTE network traces by using network bandwidth

testing software Speedtest.net [74] to record the bandwidth. Figure 4.11 shows a sample

LTE trace, which is emulated using the network emulator in our testbed. We then

measured the bandwidth from Amazon cloud server to our lab. We use iPerf software to

test, and collect bandwidth value every 10 minutes from 8:00 a.m. to 10:00 p.m. for three

days. Figure 4.12 shows the PDF of the results. We find that the bandwidth has some

variance but is quite adequate. Compared to Figure 4.11 where the largest bandwidth

of LTE is about 3.4Mbps, the lowest bandwidth from AWS to our lab is about 5.8Mbps.

Thus we conclude the bandwidth bottleneck on the entire transmission flow is caused

by the LTE trace. In addition, for comparison reasons, we also implemented two other

algorithms called ARA from our previous work and JREA from [51]. Basically, ARA

enables the game to set two different texture details for left view and right view, but

video encoding settings are fixed to the highest values. ARA also enables view distance

settings which let the game not render the objects whose distance to the virtual camera

is greater than a certain threshold (view distance threshold). JREA is an adaptation

algorithm developed for 2D CMG applications. The basic idea for this technique is that

it pre-defines several groups of parameter combinations and assigns them into different

levels. The algorithm chooses to go up a level or go down a level at a time when the

network conditions changes. We extended the framework of it for CMVIA(3D), and

115

evaluated the performance of the algorithms on all three applications (gaming, virtual

classroom and virtual art gallery).

Figures 4.13a ∼ 4.13c show the result for cloud mobile 3D display gaming

while Figures 4.14a ∼ 4.14c show the result for cloud mobile 3D virtual classroom

and Figures 4.15a ∼ 4.15c show the result for cloud mobile 3D virtual art gallery.

Figures 4.13a,4.14a,4.15a plot the video bitrate while Figures 4.13b,4.14b,4.15b plot

the corresponding impairment I and Figures 4.13c,4.14c,4.15c show the MOS. In each

figure, we compare the performance of the three algorithms (JAVRE, ARA and JREA).

The average values of I and MOS for each algorithm and each application are also shown

in Table 4.4. From the figures and the table, we can make the following observations:

Figure 4.11. LTE bandwidth trace

Table 4.8. Statistical results of the experiment showing impairment I and overall user
experience mos.

Application I MOS
JAVRE ARA JREA JAVRE ARA JREA

Gaming 13.93 42.44 57.95 4.13 3.10 2.51
Virtual

Classroom 7.64 26.59 40.31 4.35 3.71 3.16

Virtual Art
Gallery 17.70 44.31 60.81 3.67 2.92 2.11

116

Figure 4.12. PDF of the bandwidth from Amazon cloud server to UCSD Mobile System
Design Lab

(a) (b) (c)

Figure 4.13. (a) left, Bandwidth consumption of the algorithms for gaming (b) middle,
Resulting impairment I of the algorithms for gaming (c) right, MOS of the algorithms

for gaming

117

(a) (b) (c)

Figure 4.14. (a) left, Bandwidth consumption of the algorithms for virtual classroom (b)
middle, Resulting impairment I of the algorithms for virtual classroom (c) right, MOS of

the algorithms for virtual classroom

(a) (b) (c)

Figure 4.15. (a) left, Bandwidth consumption of the algorithms for virtual art gallery (b)
middle, Resulting impairment I of the algorithms for virtual art gallery (c) right, MOS of

the algorithms for virtual art gallery

118

1) In all applications, JAVRE performs the best (result in lowest I and highest

MOS), ARA is the next and JREA is the worst. The improvement in terms of MOS by

using JAVRE over ARA is up to 33.2% and that over JREA is up to 64.5%.

2) For all the three algorithms, the MOS values of gaming are all lower than

that of virtual classroom. The reason is that a) the parameters of the user experience

model for gaming and virtual classroom are very similar and b) for virtual classroom

application, the virtual camera is mostly fixed with limited movement, unlike the gaming

that the camera is mostly moving which make the video bitrate to be lower for the same

parameter setting and therefore for the virtual classroom application, under the same

bandwidth constraint, it can choose the TDs and QPs result in lower I and higher MOS.

3) For all the three algorithms, the MOS values of virtual art gallery are all lower

than that of virtual classroom. The reason is in virtual art gallery application, the viewers

pay extensive attention to the details of the virtual paintings and hence will be more

sensitive to the influence of decreasing TD or increasing QP. Therefore, although for

virtual art gallery application, the algorithm will choose the parameters resulting in more

bandwidth consumption, but it still doesn’t provide the user experience as well as it does

for the virtual classroom application.

4.6 Conclusion

The main contributions of this chapter are the following.

1) We performed extensive subjective tests to derive a general user experience

model for cloud mobile 3D virtual immersive applications considering both asymmetric

video encoding and graphics rendering.

2) We derived a bitrate model which is suitable for H.265/HEVC standard, by

taking into account both video encoding parameters and graphics rendering parameters.

3) We developed a novel adaptation algorithm called JAVRE that can decide

119

QPs and TDs dynamically by making use of the above two models to ensure best user

experience for cloud mobile 3D virtual immersive applications under dynamic wireless

network condition.

4) By conducted experiments using real 4G-LTE network profiles on commercial

cloud service with 3 different virtual immersive applications, we demonstrated significant

improvement over existing methods in user experience when the proposed JAVRE

algorithm is applied.

4.7 Acknowledgements

Chapter 4, in part, is from the material as it appears in proceedings of IEEE ISM

2015. Yao Lu; Yao Liu; Sujit Dey. and in IEEE Journal on Emerging and Selected Topics

in Circuits and Systems 2016. Yao Lu; Sujit Dey. The dissertation author was the primary

investigator and author of this paper.

Chapter 5

Conclusion and future work

5.1 Conclusion

In this thesis, we develop techniques to improve user experience for cloud mobile

3D applications. In each chapter, we start from conducting subjective experiment to

derive a user experience model. A bit rate model is then proposed and the algorithm is

designed to solve the optimization problem. The technologies proposed are evolving.

We start by explore the possibility of enabling asymmetric graphics rendering for the

entire frame (ARA). Then, we further experiment with the idea to enable asymmetric

graphics rendering for each individual objects (ASORA). Further, jointly optimization by

using asymmetric graphics rendering and asymmetric video encoding together(JREA) is

investigated. The experimental results show that by using ARA, it is much better than

traditional symmetric settings in terms of user experience. Also, by using ASORA and

JREA, the user experience is further improved under fluctuating network conditions.

Moreover, in the third work, we also extend the application from game only to other

virtual immersive applications such as virtual classroom and virtual art gallery. To

conclude, the techniques proposed in this thesis improve the overall user experience for

cloud mobile 3D virtual immersive applications under challenging network conditions.

120

121

5.2 Future work

In the future, we would like to extend our research reported in this thesis in the

following several directions.

First, more advanced video encoding tools need to be investigated. In our proto-

type we firstly use x264 that is an open-source implementation of H.264/AVC standard.

We then moved on to use x265 [15] that is another open-source implementation of

H.265/HEVC standard. These two encoders are all single view video encoder that do

not take into account the redundant information between left view and right view. In

order to make use of the this information, 3D-HEVC [16] and MV-HEVC [17] are two

standards that need to be integrated and experimented with. For these two new standards,

currently no real-time open-source implementation is available. Consequently, we will

have to wait till such an implementation becomes available, or we will need to develop a

software prototype of the new real-time encoder before applying it in the cloud gaming

pipeline. Besides, traditional encoding standards are developed for nature scene videos

captured by cameras. Computer graphics videos, on the other hand, are different. They

are generated by computer algorithms running on GPUs. HEVC has recently announced

its screen content encoding standard called HEVC-SCC [38]. It would be promising to

see HEVC-SCC can also be integrated into the pipeline and achieve better performance. It

can be foreseen that with these new encoding tools integrated, the compression efficiency

will be increased and thus the user experience will be further improved.

Secondly, in Chapter 3 and Chapter 4, in our problem formulation, we assume

our technique will ensure that the resulting video bitrate will not exceed the available

bandwidth and hence there will be no network congestion and therefore no impairment

due to wireless network delay. This is based on the network bandwidth estimation

technique proposed by us in Chapter 2. This technique is proved to be effective for wired

122

networks which have very low possibility of packet loss in layer two. However, this

may not be always achievable under wireless network conditions due to random packet

loss. Hence, in the future, we will consider random packet loss in wireless networks

and propose a better network bandwidth estimation scheme. We will also conduct more

subjective tests to include network delay and network packet loss impairment in our user

experience model.

Thirdly, our research can be extended to support virtual reality and augmented

reality applications with Head Mounted Displays (HMD) such as Oculus Rift [9], HTC

Vive [10], PlayStation VR [11], Samsung Gear VR [18], Microsoft Hololens [19] etc.

Considering the fact that the screens of HMDs are very close to human eyes, visual

impairment is more noticeable. Thus, the overall quality (graphics rendering quality

plus video encoding quality) of the streamed content needs to be improved to ensure

acceptable user experience. Besides, the asymmetric quality between two views may

also introduce more impairment compared to viewing the content using a 3D monitor

or a 3D mobile device. Another challenge for HMD is that it is highly delay sensitive.

Every movement of the head will generate an input command to control the camera

on the cloud that makes the requirement of the delay to be less than 20-30ms [20].

Otherwise, it can easily cause dizzy effect for human beings. One possible solution to

overcome this problem is to put multiple virtual cameras in the scene, generate multiple

views from different angles and stitch the video into a 360 degree video. In this way,

it eliminates the requirement to send the head motion back to the server and therefore

make the requirement of the delay to be less strict. GPU utilization of larger number of

virtual cameras needs to be investigated and a real-time stitching algorithm needs to be

developed. Further subjective tests also need to be performed to carefully model the user

experience for virtual reality applications on HMDs and an adaptation algorithm needs to

be developed for these cases.

123

Last but not least, this thesis focuses on how to adaptively tune various parameters

to ensure best user experience, but it does not consider the cloud cost. The cloud cost

contains two parts. One is bandwidth cost, and the other is hardware cost that is decided

by the computational complexity of the system. In fact, almost all the parameters

considered in this thesis are not only related to user experience but also related to

the computational complexity. For example, if we set texture detail from Medium to

High, it improves the graphics rendering quality, increases video bitrate but it will also

increase the complexity or more specifically speaking, GPU utilization. Thus, larger the

complexity, more the number of GPUs needed, and thus higher the cloud cost. To tackle

this practical problem and make some tradeoffs between cloud cost and user experience,

a computational complexity model needs to be developed to take into account all the

parameters and compute how many GPU machines are needed for the whole task. In

addition, considering that each application requires different resources but each GPU

machine have fixed resource, a scheduling algorithm may also need to be designed to

assign each application to a specific machine or machines to optimize the hardware usage.

Some preliminary research on this topic can be investigated and referred to, such as [21]

and [22].

To conclude, cloud architectures optimized for gaming and other graphics-heavy

applications are recently emerging. To ensure good user experience is hard to achieve.

To ensure good user experience while preserving low cost is an even more challenging

task. This thesis focuses on how to ensure good user experience without considering cost.

A lot of future work needs to be done both in terms of improving user experience and

lowering cost so as to make this technology better and become a commercial success.

Bibliography

[1] Ryan Shea, Jiangchuan Liu, Edith C-H. Ngai, and Yong Cui. Cloud gaming: archi-
tecture and performance. IEEE Network 27(4):16-21, 2013

[2] Google Doc, https://apps.google.com/

[3] Amazon Web Service, https://aws.amazon.com/

[4] Dropbox, https://www.dropbox.com/

[5] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz,
Andy Konwinski, Gunho Lee et al. A view of cloud computing. ACM Communica-
tions 53(4):50-58, 2010

[6] Jacob Chakareski, Adaptive multiview video streaming: challenges and opportuni-
ties. IEEE Communications Magazine 51(5):94-100, 2013

[7] Grigore C. Burdea, and Philippe Coiffet. Virtual reality technology. Vol. 1. John
Wiley & Sons, 2003

[8] Ronald T Azuma, A survey of augmented reality. Presence: Teleoperators and
virtual environments 6(4):355-385, 1997

[9] Oculus, https://www.oculus.com/

[10] HTC Vive, https://www.htcvive.com/

[11] Sony Playstation VR, https://www.playstation.com/en-ca/explore/playstation-vr/

[12] Pocemon Go, https://www.pokemongo.com/

[13] Erik Dahlman, Stefan Parkvall, and Johan Skold. 4G: LTE/LTE-advanced for mobile
broadband. Academic press, 2013.

[14] Yung?Yuan Kao, Yan?Pean Huang, Kai?Xian Yang, Paul C?P. Chao, Chi?Chung
Tsai, and Chi?Neng Mo. 11.1: An Auto?Stereoscopic 3D Display Using Tunable
Liquid Crystal Lens Array That Mimics Effects of GRIN Lenticular Lens Array. In
SID symposium digest of technical papers, 40(1):111-114. Blackwell Publishing
Ltd, 2009.

124

125

[15] x265, http://x265.org/

[16] Gerhard Tech, Ying Chen, Karsten Mller, Jens-Rainer Ohm, Anthony Vetro, and
Ye-Kui Wang. Overview of the multiview and 3D extensions of High Efficiency
Video Coding. IEEE Transactions on Circuits and Systems for Video Technology
26(1):35-49, 2016

[17] Gary J. Sullivan, Jill M. Boyce, Ying Chen, Jens-Rainer Ohm, C. Andrew Segall,
and Anthony Vetro. Standardized extensions of high efficiency video coding
(HEVC). IEEE Journal of selected topics in Signal Processing 7(6):1001-1016,
2013

[18] Samsung Gear VR, https://www.samsung.com/global/galaxy/gear-vr/

[19] Microsoft Hololens, https://www.microsoft.com/microsoft-hololens/en-us

[20] Jason D. Moss, Jon Austin, James Salley, Julie Coats, Krysten Williams, and Eric R.
Muth. The effects of display delay on simulator sickness. Displays 32(4):159-168,
2011

[21] Zhengwei Qi, Jianguo Yao, Chao Zhang, Miao Yu, Zhizhou Yang, and Haibing
Guan. VGRIS: virtualized GPU resource isolation and scheduling in cloud gaming.
ACM Transactions on Architecture and Code Optimization (TACO) 11(2):17, 2014

[22] Chao Zhang, Jianguo Yao, Zhengwei Qi, Miao Yu, and Haibing Guan. vgasa:
Adaptive scheduling algorithm of virtualized gpu resource in cloud gaming. IEEE
Transactions on Parallel and Distributed Systems 25(11):3036-3045, 2014

[23] Maggie Shiels. “Console killer” OnLive to launch in June.
http://news.bbc.co.uk/2/hi/technology/8556874.stm, 2010.

[24] Audrey Oeillet. Reportage : SFR dvoile son service de jeux vido “cloud gaming” sur
Neufbox. http://www.clubic.com/connexion-internet/fai-sfr-box-neufbox/actualite-
373750-cloud-gaming-sfr-service-jeux-video-neufbox.html, 2010.

[25] Rich Brown. Gaikai cloud-gaming service goes live.
http://www.cnet.com/news/gaikai-cloud-gaming-service-goes-live/, 2011.

[26] Sharif Sakr. Sony buys Gaikai cloud gaming service for $380 million.
https://www.engadget.com/2012/07/02/sony-buys-gaikai/, 2012.

[27] Chun-Ying Huang, De-Yu Chen, Cheng-Hsin Hsu, and Kuan-Ta Chen. Gamingany-
where: an open-source cloud gaming testbed. In Proceedings of the 21st ACM
international conference on Multimedia, pp. 827-830. ACM, 2013.

126

[28] Eric Johnson. Sony acquires OnLives cloud gaming patents.
http://www.recode.net/2015/4/2/11561104/sony-acquires-onlives-cloud-gaming-
patents, 2015.

[29] Marshall Honorof. GeForce Now review: game streaming done (mostly) Right.
http://www.tomsguide.com/us/geforce-now-game-streaming,review-3113. html/,
2015.

[30] Video codec for audiovisual services at px64 Kbit/s. ITU-T Rec H.261, version 1:
Nov. 1990, version 2: Mar. 1993.

[31] Video coding for low-bit-rate communication. ITU-T Rec H.263, 1995.

[32] Coding of moving pictures and associated audio for digital storage media at up to
about 1.5 Mbit/s Part 2: Video. ISO/IEC 11172-2 (MPEG-1), 1993.

[33] Coding of audio-visual objects Part 2: Visual. ISO/IEC 14496-2 (MPEG-4 Visual
version 1), 1999.

[34] Generic coding of moving pictures and associated audio information Part 2: Video.
ITU-T Rec. H.262 and ISO/IEC 13818-2 (MPEG 2 Video), 1994.

[35] Advanced video coding for generic audio-visual services. ITU-T Rec. H.264 and
ISO/IEC 14496-10 (AVC), 2003.

[36] High efficiency video coding. ITU-T Rec. H.265 and ISO/IEC 23008-2 (HEVC),
2013.

[37] Jizheng Xu, Rajan Joshi, and Robert A Cohen. Overview of the emerging HEVC
screen content coding extension. IEEE Transactions on Circuits and Systems for
Video Technology, 26(1):50-62, 2016.

[38] Mathias Wien, Renaud Cazoulat, Andreas Graffunder, Andreas Hutter, and Pe-
ter Amon. Real-time system for adaptive video streaming based on SVC. IEEE
Transactions on Circuits and Systems for Video Technology, 17(9):1227-1237,
2007.

[39] Saamer Akhshabi, Ali C Begen, and Constantine Dovrolis. An experimental evalua-
tion of rate-adaptation algorithms in adaptive streaming over HTTP. In Proceedings
of the second annual ACM conference on Multimedia systems, pp. 157-168. ACM,
2011.

[40] Hamideh Afsarmanesh and Luis M Camarinha-Matos. Future smart-organizations:
a virtual tourism enterprise. In Proceedings of IEEE International Conference on
Web Information Systems Engineering, volume 1, pp. 456-461, 2000.

127

[41] Gorkem Saygili, Cihat Goktug Gurler, and A Murat Tekalp. Evaluation of asym-
metric stereo video coding and rate scaling for adaptive 3D video streaming. IEEE
Transactions on Broadcasting, 57(2):593-601, 2011.

[42] Sima Valizadeh, Maryam Azimi, and Panos Nasiopoulos. Bitrate reduction in
asymmetric stereoscopic video with low-pass filtered slices. In Proceedings of IEEE
International Conference on Consumer Electronics (ICCE), pp. 170-171, 2012.

[43] Bert Vankeirsbilck,Tim Verbelen,Dieter Verslype,Nicolas Staelens,Filip De Turck,
Piet Demeester, and Bart Dhoedt. Quality of experience driven control of interactive
media stream parameters. In Proceedings of IFIP/IEEE International Symposium
on Integrated Network Management, pp. 1282-1287, 2013.

[44] Michael Jarschel, Daniel Schlosser, Sven Scheuring, and Tobias Hossfeld. An
evaluation of QoE in cloud gaming based on subjective tests. In Proceedings of
IEEE International Conference on Innovative Mobile and Internet Services in
Ubiquitous Computing (IMIS), pp. 330-335, 2011.

[45] Kuan-Ta Chen, Yu-Chun Chang, Hwai-Jung Hsu, De-Yu Chen, Chun-Ying Huang,
and Cheng-Hsin Hsu. On the quality of service of cloud gaming systems. IEEE
Transactions on Multimedia, 16(2):480-495, 2014.

[46] Yao Liu, Shaoxuan Wang, and Sujit Dey. Content-aware modeling and enhancing
user experience in cloud mobile rendering and streaming. IEEE Journal on Emerging
and Selected Topics in Circuits and Systems, 4(1):43-56, 2014.

[47] Chengsheng Que, Guobin Chen, and Jilin Liu. An efficient two-pass VBR en-
coding algorithm for H.264. In Proceedings of IEEE International Conference on
Communications, Circuits and Systems, pp. 118-122, 2006.

[48] Zhan Ma, Meng Xu, Yen-Fu Ou, and Yao Wang. Modeling of rate and perceptual
quality of compressed video as functions of frame rate and quantization stepsize and
its applications. IEEE Transactions on Circuits and Systems for Video Technology,
22(5):671-682, 2012.

[49] Bumshik Lee and Munchurl Kim. Modeling rates and distortions based on a mixture
of Laplacian distributions for inter-predicted residues in quadtree coding of HEVC.
IEEE signal processing letters 18(10):571-574, 2011

[50] Mahdi Hemmati, Abbas Javadtalab, Ali Asghar Nazari Shirehjini, Shervin Shir-
mohammadi, and Tarik Arici. Game as video: Bit rate reduction through adaptive
object encoding. In Proceeding of ACM Workshop on Network and Operating
Systems Support for Digital Audio and Video, pp. 712, 2013.

[51] Shaoxuan Wang and Sujit Dey. Adaptive mobile cloud computing to enable rich
mobile multimedia applications. IEEE Transactions on Multimedia, 15(4):870-883,
2013.

128

[52] Shaoxuan Wang and Sujit Dey. Cloud mobile gaming: modeling and measuring
user experience in mobile wireless networks. In Proceedings of ACM SIGMOBILE
Mobile Computing and Communications Review 16(1):10-21, 2012

[53] Shaoxuan Wang and Sujit Dey. Rendering Adaptation to Address Communication
and Computation Constraints in Cloud Mobile Gaming, In Proceedings of IEEE
Global Communications Conference (GLOBECOM), Miami, 2010.

[54] Yao Liu, Shaoxuan Wang, and Sujit Dey. Modeling, Characterizing, and Enhancing
User Experience in Cloud Mobile Rendering. In Proceedings of IEEE International
Conference on Computing, Networking and Communications (ICNC), Maui, 2012.

[55] Vinay Joseph Ribeiro, Rudolf H. Riedi, Richard G. Baraniuk, Jiri Navratil, and Les
Cottrell. pathchirp: Efficient available bandwidth estimation for network paths. In
Proceedings of Passive and Active Measurement Workshop, 2003.

[56] Svante Ekelin, Martin Nilsson, Erik Hartikainen, Andreas Johnsson, J-E. Mangs,
Bob Melander, and Mats Bjorkman. Real-time measurement of end-to-end available
bandwidth using kalman filtering. In Proceedings of IEEE/IFIP Network Operations
and Management Symposium(NOMS), pp. 73-84, 2006.

[57] PlaneShift, http://www.planeshift.it/

[58] ITU-T Rec. G.107, The E-model, a computational model for use in transmission
planning, Mar, 2005.

[59] Sujit Dey, Yao Liu, Shaoxuan Wang, and Yao Lu, Addressing response time of
cloud-based mobile applications. In Proceedings of ACM International Workshop
on Mobile Cloud Computing & Networking, pp. 3-10, 2013

[60] Nang, Jongho, Sangchul Kim, and Hyuk-Jun Lee. Classifying useful motion vectors
for efficient frame rate up conversion of MC-DCT encoded video streams. Journal
of Information Science and Engineering 30(6)1755-1771, 2014

[61] R. Schreier and A. Rothermel. Motion adaptive intra refresh for the H. 264 video
coding standard, IEEE Transactions on Consumer Electronics, 52(1):249-253, 2006

[62] M. Bremicker, Panos Y. Papalambros, and H. T. Loh. Solution of mixed-discrete
structural optimization problems with a new sequential linearization algorithm.
Computers & Structures, 37(4):451-461, 1990

[63] Broadsides, http://cse125.ucsd.edu/cse125/2012/cse125g1/

[64] A. E. Eckberg, Approximations for bursty (and smoothed) arrival queueing de-
lays based on generalized peakedness, In Proceedings of International Teletraffic
Congress, Kyoto, 1985.

129

[65] Kerry W. Fendick and Ward Whitt. Measurements and approximations to describe
the offered traffic and predict the average workload in a single-server queue. In
Proceedings of the IEEE, 77(1):171-194, 1989

[66] BT-500-11: Methodology for subjective assessment of the quality of television
picture, International Telecommunication Union.

[67] Yao Lu, Yao Liu and Sujit Dey, Optimizing Cloud Mobile 3D Display Gaming User
Experience by Asymmetric Object of Interest Rendering. In Proceedings of IEEE
International Conference on Communication (ICC), 2015

[68] Yang Liu, Zheng Guo Li, and Yeng Chai Soh. Region-of-interest based resource al-
location for conversational video communication of H. 264/AVC. IEEE transactions
on circuits and systems for video technology, 18(1):134-139, 2008

[69] Dimitris Agrafiotis, David R. Bull, Nishan Canagarajah and Nawat Kamnoon-
watana. Multiple priority region of interest coding with H. 264. In Proceedings of
International Conference on Image Processing (ICIP), pp. 53-56, 2006.

[70] Yen-Fu Ou, Zhan Ma, Tao Liu, and Yao Wang. Perceptual quality assessment of
video considering both frame rate and quantization artifacts. IEEE Transactions on
Circuits and Systems for Video Technology, 21(3):286-298, 2011

[71] x264, http://www.videolan.org/developers/x264.html/, Jun. 2015

[72] Prabhakant Sinha, and Andris A. Zoltners. The multiple-choice knapsack problem.
Operations Research, 27(3):503-515, 1979

[73] Paul C. Chu, and John E. Beasley. A genetic algorithm for the multidimensional
knapsack problem. Journal of Heuristics, 4(1):63-86, 1998

[74] Speedtest.net, https://itunes.apple.com/us/app/speedtest.net-mobile-speed/id30070
4847?mt=8/, Jun. 2015

[75] IBM ILOG CPLEX optimizer, http://www-01.ibm.com/software/integration/optimi
zation/cplex-optimizer/, Jun. 2015

[76] SecondLife, http:// www.secondlife.com/

[77] S. Boyd, and L. Vandenberghe, Convex optimization, Cambridge university press,
2004

[78] Amazon Web Service, http://aws.amazon.com

[79] Linktropy, http://www.apposite-tech.com/products/

	Signature Page
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Background and System Architecture
	Related Work and Existing Systems
	Commercial Cloud Gaming Platforms
	Video coding technology
	Stereo video streaming adaptation technology
	User experience model based on subjective tests
	Video bit rate model
	Adaptive rendering techniques

	Asymmetric Graphics Rendering
	Organization of the Thesis

	Asymmetric Graphics Rendering
	Introduction
	Impairment Functions Derivation and Validation
	Subjective Experiment Setting
	Impairment Function Derivation
	Impairment Function Verification

	Overall User Experience Modeling
	Impairment Function Validation for Network Delay
	CMG(3D)-UE Model Derivation and Validation

	Asymmetric Rendering Adaptation Approach
	Relationship between Graphics Rendering Factors and 3D Video Bitrate
	Delay Prediction and Verification
	Asymmetric Rendering Optimization Algorithm

	Experimental Results
	Conclusions
	Acknowledgements

	Asymmetric and Selective Object Rendering
	Introduction
	User Experience Model
	Impairment Function Derivation
	Subjective Test settings
	Model Parameter Derivation and Validation

	Bitrate Model
	Model Equation Validation
	Model Parameter Validation
	Relationship between Content Feature and Graphics Rendering Settings

	Adaptation Algorithm
	Experimental Results
	Conclusion
	Acknowledgements

	Joint Asymmetric Video Encoding and Graphics Rendering
	Introduction
	User experience model
	Subjective Test settings
	Impairment Function Derivation
	Model Validation

	Bitrate Model
	Model Equation Validation
	Model Parameter Prediction

	Optimization Algorithm
	Problem Formulation
	Algorithm Description
	Proofs
	Complexity Analysis

	Experimental Results
	Conclusion
	Acknowledgements

	Conclusion and future work
	Conclusion
	Future work

	Bibliography

