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Abstract

Superconducting Qubits: Dephasing and Quantum Chemistry

by

Peter James Joyce O’Malley

One of the most exciting potential applications of a quantum computer is the ability

to efficiently simulate quantum systems, a task that is out of the reach of even the

largest classical supercomputers. Such simulations require a quantum algorithm capable

of efficiently representing and manipulating a quantum system, as well as a device with

sufficient coherence to execute it. In this work, we describe experiments advancing both

of these goals. First, we discuss dephasing—currently a leading cause of decoherence

in superconducting qubits—and present measurements accurately quantifying both low-

and high-frequency phase noise sources. We then discuss two quantum algorithms for

the simulation of chemical Hamiltonians, and experimentally contrast their performance.

These results show that with continuing improvement in quantum devices we may soon

be able to apply quantum computers to practical chemistry problems.
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Chapter 1

Introduction

1.1 Quantum computation: motivation and applica-

tions

The continued increase in computing power over the past decades has been an unprece-

dented boon to society in general, and scientific research in particular. From early analog

simulations of nuclear physics in the Manhattan project to modern attempts to model

the human brain [67] or the entire universe [129], nearly all areas of research make use

of computing power in one way or another. Computers can solve problems that are

easy to understand, yet difficult to execute—such as computing electromagnetic fields

at all points in a space, or searching a massive database—as well as problems for which

the solution does not have an intuitive explanation—such as neural networks capable of

outperforming the best humans in the game of Go [113].

However, there are problems that will take even the most powerful supercomputer

longer than the age of the universe to solve. Frustratingly, such a problem is presented

by the scientific theory that underpins all of physics: quantum mechanics. The fact that

particles become entangled—meaning their state cannot be described individually, but
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that the quantum state must describe the system as a whole—and that the superposition

of such states are equally valid themselves, means that increasing the size of a quantum

system increases the resources required to simulate it exponentially. Concretely, if we

can simulate a system of n electrons, then simulating a system of n+ 1 electrons will be

twice as hard. Even if computing power continues to double every few years, it will take

many, many such doublings to significantly increase the size of a quantum system we can

simulate. For this reason, we say that an algorithm that solves a problem (for example,

simulating a physical system) is “efficient” or “scalable” if the resources it requires scale

polynomially with the size of the problem.

However, in 1982 Richard Feynman proposed [38] a solution to this: use the very

quantum mechanical systems that are so hard to simulate as a simulator themselves.

Since then, the idea of a universal quantum computer made of quantum bits (“qubits”)

has been developed, and many algorithms for such a computer have been shown to out-

perform their classical counterparts. While it is unknown whether an arbitrary physical

system can be efficiently simulated with a universal quantum computer, the range of

problems that can be efficiently solved is important enough to merit decades of work (so

far!) to its realization.

1.1.1 Errors and error correction

As with so many things, though, proposing a universal quantum computer is vastly easier

than building one. Noise is present in all physical systems, and it is particularly difficult

for a quantum computer to tolerate. Consider a classical bit defined by the voltage in

a wire: 0 V for 0, and 5 V for 1. If noise causes the wire’s voltage to fluctuate by

even a volt, we can still use it as a bit by simply considering anything less than 2.5 V

to be 0; all of the microscopic states of the wire—i.e. electron configurations, and so

on—that result in the macroscopic property of voltage being less than 2.5 V are valid.
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This leniency is lost on qubits. A qubit can be a 1 or a 0 or any superposition thereof:

we represent a qubit’s state as |ψ〉 = α|0〉 + β|1〉, where α and β are complex numbers

with the restriction that |α|2 + |β|2 = 1. If the value of β changes by some amount ε, it

is now a different computational state; for a qubit each microscopic state is unique.

It is useful to write the qubit state alternatively as |ψ〉 = cos(θ/2)|0〉+eiφ sin(θ/2)|1〉,

where 0 < θ < π and 0 < φ < 2π. This is the Bloch sphere representation, where the

qubit state is represented by a vector on the unit sphere, with θ as the angle to the

Z-axis and φ the angle in the X-Y plane. The north pole is |0〉 (θ = 0) and the south

pole is |1〉 (θ = π), with points on the equator representing an equal superposition of

|0〉 and |1〉. When the qubit is in |0〉 or |1〉, φ—called the phase—is undefined. We can

then consider two different types of noise: decoherence, or energy relaxation, in which

the qubit transitions from |1〉 to |0〉1; and dephasing, where the phase φ is blurred.

Decoherence is governed by a timescale known as T1, the relaxation rate, and the process

is described by a simple exponential. The dephasing timescale is sometimes called T2,

but dephasing processes are more complicated, and discussed starting in Chapter 2.

Both decoherence and dephasing cause errors in the execution of quantum algorithms.

As the number of operations required to perform a useful calculation is on the order of

1020, we have a rough estimate for a necessary error rate of 10−20 per operation. Decades

of research in experimental quantum computation has resulted in record error rates of

10−6 for single qubit operations [46] and 10−3 [16, 99, 11, 9] for two qubit operations. It

therefore seems that more than just “building better qubits” will be necessary to realize

a quantum computer. Fortunately, quantum error-correcting codes have been developed

for just this [112, 61, 39]. The idea is to use multiple physical, error-prone qubits to

encode one logical, error-free qubit. In a sense, this provides some of the leniency of the

1By convention, the higher energy state of the qubit is denoted |1〉, so decoherence is the physical
relaxation of the qubit to its ground state; qubit realizations where the two states have the same energy,
such as topological qubits, are thus said to be immune to decoherence.
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classical bit to the qubit, as now we have multiple “microscopic” states (states of the

physical qubits) that represent a valid “macroscopic” state (the logical qubit’s state).

Error-correcting codes allow for more error-prone qubits to be used at the cost of

requiring greater numbers of them, given that the qubit’s base error rate is below some

threshold value which depends on the particular code. While superconducting qubits have

recently reached the threshold for the surface code scheme [39] in isolated benchmarks

[95, 11, 94] and implemented partial versions of it [58, 97, 30, 87], this does not mean that

our work is done. First, adding ever more qubits to a device seems likely to increase error

rates to some degree, due to issues of crosstalk, fabrication complications, and so on; and

second, pushing the error rate further below threshold allows for using fewer physical

qubits to realize a single logical qubit. As the number of (logical) qubits necessary to

perform useful computations is ranges from dozens to thousands, this is a necessity. The

first half of this thesis describes efforts to quantify and understand dephasing, currently

the leading source of error in the Xmon superconducting qubit.

1.1.2 Potential applications of quantum computing

In addition to simulating other quantum systems, several quantum algorithms have been

proposed with the potential to efficiently solve classically intractable problems. The most

well known of these is Shor’s algorithm for prime factorization [111]. The best known

classical algorithm for prime factorization is the number field sieve, which scales sub-

exponentially in the number of bits of the integer to be factored; the difficulty of this

problem has motivated the development of widely-used public-key cryptography systems

based on prime factorization. Shor’s algorithm, by contrast, runs in polynomial time on a

quantum computer, meaning that these cryptography systems could be efficiently broken

with a large enough quantum computer. As modern cryptography systems typically use

thousands of bits for their keys, a quantum computer would require thousands of (fully
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error-corrected) qubits to break them, meaning that this potential security hole is still

many years in the future2.

Another important application for quantum computers is in the field of machine learn-

ing. Many machine learning problems are essentially very hard optimization problems,

and it has been recently shown that quantum computers can potentially speed up the

solution of such problems [84, 32]3.

One of the most scientifically interesting applications of a quantum computer is that

for which it was originally proposed: quantum simulation. This application is of partic-

ular interest to the field of quantum chemistry, where despite the inherent intractability

of the problem of simulating many electrons, significant progress has been made since

the advent of quantum mechanics with the creation of various approximation methods

bringing ever-larger molecules within reach of classical computation. In recent years,

however, there has also been rapid progress in the development of quantum algorithms

for chemistry [7], such that a quantum computer with merely dozens of qubits would

allow the simulation of molecules impractical for study with classical computers; this has

lead to quantum chemistry being called the “killer app” for a quantum computer [123].

The second half of this thesis describes the implementation of two quantum algorithms

for theoretical chemistry.

1.2 Superconducting qubits

1.2.1 History and overview

The implementation of a quantum computer requires a quantum system to serve as a

qubit. In principle, any two-level system (or individually addressable two-level subspace

2Though this algorithm is still considered by many in the field to be the primary motivation for
significant investments in quantum computation research by governments worldwide.

3By contrast, this application has motivated industrial investment in quantum computation research.
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of a many-level system) may be used as a qubit, but as a practical matter, in 2000 Di-

Vincenzo proposed a set of criteria necessary for a physical system to serve as a quantum

computer [34]. There are many candidate systems with the potential to fulfill these cri-

teria: photons controlled with linear optical elements, nuclear spins addressed through

nuclear magnetic resonance techniques, electronic spins in quantum dots, neutral atoms

confined in optical lattices, trapped ions, nitrogen-vacancy centers in diamond, topologi-

cal quasiparticles braided in two dimensions, superconducting circuits based on Josephson

junctions, and more. All of these systems must navigate a tradeoff between coherence

and control. The more isolated a qubit is from its environment, the more resistant it is

to unwanted noise, but the harder it is to precisely control. One consequence of this is

that qubits that may perform extremely well on their own may suffer a drastic reduction

in coherence times when coupled together.

This thesis focuses on superconducting qubits, which reside on the “better control”

side of the balance. These qubits use superconducting circuits as quantum LC oscillators

with flux (Φ̂) and charge (Q̂) as the conjugate variables. The qubit’s |0〉 and |1〉 states

are the ground and first excited state of the oscillator. To make this transition uniquely

accessible (that is, to be able to ignore the higher levels of the oscillator) we require

nonlinearity in the oscillator; using a Josephson junction for the inductor provides this.

Using a pair of Josephson junctions as a superconducting quantum interference device

(SQUID) allows the inductance to be tuned, and while this can be very experimentally

useful, it is not required, and many superconducting qubit designs are non-tuneable.

1.2.2 Advantages and disadvantages

Superconducting qubits are attractive platforms for a quantum computer for several

reasons. Their fabrication relies on well-known microfabrication techniques, making it

straightforward to build more of them by simply adding additional qubits to the design.
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They are controlled with microwave electronics, which again have been developed for

other industrial applications. Their ease of fabrication and control also makes them

natural candidates for the surface code error correction scheme.

With their strong performance on the “control” side, one might expect that super-

conducting qubits are lacking on the “coherence” end. Indeed, their coherence times of

up to about a hundred microseconds are less than other systems, which have seen record

coherence times of greater than a second. This is ameliorated by the speed with which

operations are possible: the error rate from decoherence is governed by the ratio of op-

eration time to coherence time, which is approaching 10−4. However, it seems likely that

further materials research will be necessary to improve coherence times. Finally, super-

conducting qubits also require dilution refrigerators to maintain temperatures low enough

to remove thermal decoherence processes. The capacity of such cryostats is not currently

a limiting factor, but advances will need to be made before we have superconducting

quantum computers with thousands or millions of qubits.

The qubit used in the experiments described in this thesis is the Xmon [10]. This is a

variant of the transmon qubit, proposed in 2007 [63] with the aim of reducing susceptibil-

ity to charge noise while maintaining sufficient nonlinearity for operation as a two-level

system. In the last few years, transmon qubits have seen drastic improvements in opera-

tion fidelities [95, 11, 94], reductions in noise mechanisms [104], and even demonstrations

of initial error correction algorithms [58, 97, 30, 87]. However, we are not yet at the level

where we can simply place hundreds of qubits on a device and have a quantum computer,

so we now turn to analysis of the leading cause of error in the Xmon: dephasing.
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Chapter 2

Dephasing

Figure 2.1: Dephasing represented on the Bloch sphere. For an ensemble of qubit states
(a) starting on the equator, over time (b) each element rotates at a slightly different
frequency, causing the ensemble to spread. (In this picture, we rotate the frame at
f10/2π, so a state without frequency noise remains fixed.) (c) The averaged Bloch vector
shrinks in from the equator.

2.1 A Bloch vector picture of dephasing

Dephasing simply means the loss of phase coherence. However, as the phase is undefined

for a qubit in either of the pure basis states (i.e. |0〉 and |1〉), techniques for measuring

and dealing with dephasing are more complicated than those for energy decoherence. In
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the Bloch vector picture of the qubit, the qubit state rotates about the Z-axis at the qubit

frequency, f10; that is, the qubit phase φ advances in time according to φ(t) = 2πf10t.

A frequency offset of δf for a period t therefore creates a phase offset δφ = δf t. (Of

course, if we had a constant frequency offset we could just change or re-measure our

bare frequency and eliminate the phase offset.) Thus frequency noise (δf(t)) over time

produces phase noise (δφ). Over an ensemble of experiments, frequency noise results

in the Bloch vectors of each experiment spreading out from the average as some rotate

with greater frequency and some with lower. Therefore, dephasing is said to shrink the

(averaged) Bloch vector (see Figure 2.1). Usually, we are interested in the variance of

the phase, 〈φ2(t)〉. In general use, “frequency noise”, “phase noise”, and “dephasing” are

used interchangeably1.

2.2 Frequency noise and the superconducting qubit

As the frequency of a superconducting qubit is set by device parameters (f10 ∝ 1/
√
LC),

it might be expected that frequency noise presents a particular problem if these param-

eters are variable. For tunable superconducting qubits, such as the Xmon, this is often

the case. In this section, we begin with a discussion of basic methods for measuring de-

phasing, followed by an overview of different types of frequency noise, and then consider

the microscopic source of these types of noise.

Ultimately, in order to measure phase noise, the qubit must be sensitive to it. There-

fore, all such measurements involve preparing the qubit in a superposition state (on the

equator in the Bloch sphere representation), acquiring a signal by allowing the qubit to

dephase, and then measuring. This can be contrasted with an energy coherence (T1) mea-

surement, for example, where the qubit is prepared in the |1〉 state, which is insensitive

1It is our opinion that “dephasing” most properly should refer to the variance 〈φ2(t)〉, but in the
literature it is not usually used to refer to any specific quantity.
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to frequency noise. Although there are several ways of classifying these measurements,

one useful one is to divide them experiments where the qubit is allowed to freely evolve

during the acquisition period (“free evolution”) and experiments where it is driven during

that time (“driven evolution”).

2.2.1 Ramsey measurements

The most basic free evolution dephasing measurement is the Ramsey fringe experiment,

first introduced by Norman Ramsey in 1950 in the context of atomic spectroscopy [93].

The qubit is prepared in a superposition state with a π/2 pulse, allowed to idle for

some time t, and then rotated back with another π/2 pulse and measured. Absent any

dephasing (or other source of error), the probability of measuring |1〉 varies sinusoidally in

time, from 1 to 0, with the same frequency as the qubit. This is most easily understood

with the Bloch sphere representation: the initial π/2 pulse rotates the Bloch vector

by π/2 about the X axis, and during the evolution it precesses at the qubit frequency

about the Z axis. The final π/2 rotation about the X axis and measurement then

projects the Y coordinate into the measurement basis (see Figure 2.2). In the presence

of dephasing, however, each iteration of the experiment will have a slightly different

frequency. Considering the experiment as an ensemble of Bloch vectors, prior to the final

π/2 rotation this ensemble will be spread out around the mean value of the frequency.

Therefore, the averaged Bloch vector is reduced in length, reducing the amplitude of the

measured sinusoidal signal. For longer t, the spread in the ensemble is increased, until

finally all signal is lost and the measured probability remains at 0.5. It is thus the change

in the amplitude of the signal–the envelope–that contains information about dephasing.

As it is only the envelope we are interested in, a slight modification to the experimental

procedure can greatly aid in data analysis. For each iteration, we perform four different

sequences, with the final π/2 pulse phase shifted by 0, π/2, π, and 3π/2 radians, changing

10



Figure 2.2: Bloch sphere diagram of a Ramsey experiment. (Unlike Figure 2.1, we here
show only one experiment, and are not in the qubit’s rotating frame.) (a) The initial
π/2 pulse puts the qubit on the equator. (b) The qubit evolves for some time t. (c) The
recovery π/2 pulse rotates about the X axis (red) or about the Y axis (blue), so that (d)
the measurement projects the Y (red) or X (coordinate) to the probability of |1〉.

the axis of rotation (that is, the final pulse is rotated between X/2, Y/2, −X/2, and

−Y/2). The envelope, sometimes called the visibility, V , can then be calculated directly

as

V =
√

(PX/2 − P−X/2)2 + (PY/2 − P−Y/2)2, (2.1)

where Pg is the measured probability for the experiment with the final gate g.

In fact, the Ramsey envelope visibility is a direct measurement of dephasing. For a

free-evolution time t, the visibility is given by (see Appendix B)

V (t) = A exp

[
−1

2
〈φ2(t)〉

]
+B, (2.2)

where the fit parameters A (initial visibility) and B (final population) reflect errors in

state preparation and measurement2; for details on 〈φ2(t)〉, see Section 2.3. We see that

the Ramsey experiment is a fairly straightforward way to measure the dephasing 〈φ2(t)〉

as a function of time.

2In our devices, A is dominated by readout error and B by thermal population.
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2.2.2 Spin echo measurements

The spin echo sequence (introduced by Hahn in 1950 [45]) is a modification to the Ramsey

experiment designed to lengthen phase coherence. A π pulse is inserted at the midpoint

of the free-evolution time to counteract the effect of offsets to the qubit frequency. Con-

sidering again the ensemble of Bloch vectors, if each vector precesses at a slightly different

rate due to frequency noise, the spread of the vectors will be reversed by the π pulse,

and at the end of the experiment the averaged Bloch vector will be “refocused”3.

The echoing pulse will only fully counteract frequency noise when the sequences in

the ensemble have different but static precession frequencies. In the context of a single

qubit experiment, this means that each run of the sequence has a constant frequency,

but the frequency can change between sequences; in other words, spin echo is effective

for low-frequency noise (specifically, lower than the inverse of the sequence timescale).

In the context of a true ensemble of systems–magnetic moments in an NMR experiment,

for example–if each system has a slight frequency offset due to local effects, spin echo

techniques become a necessity, as the Ramsey envelope decays exceedingly quickly4.

The visibility of a spin echo envelope is analogous to Eq. (2.2):

V (t) = A exp

[
−1

2
〈φ̃2(t)〉

]
+B, (2.3)

where 〈φ̃2(t)〉 indicates that the dephasing is modified by the presence of an echo pulse.

For details, see Appendix B and Section 2.3.

Furthermore, it can be desirable to add more than one echo pulse to suppress noise

at a greater range of timescales. The qubit becomes sensitive to noise mainly at (or

above) the frequency given by the separation between the pulses: fe = N/2t, where N

3The refocusing only occurs at t = 2tE , where tE is the time of the echo pulse. That is, if you were
to scan the measurement time while fixing tE , you would find a spike in t = 2tE . This spike is called
the “echo”, hence the name “spin echo”.

4For this reason, it is common to see the coherence time measured by spin echo called T2 and that
measured by Ramsey T ∗

2 .
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is the number of pulses and t is the sequence duration. There are different schemes for

adding more pulses to the sequence; two common ones are known as Uhrig Dynamical

Decoupling [124] (UDD) and Car-Purcell-Meiboom-Gill [24, 81] (CPMG) sequences. The

precise sensitivity to phase noise is given by a spectral weight function, which is detailed

in Appendix B.

2.2.3 Rabi measurements

Another method for measuring dephasing is with driven evolution experiments, the proto-

typical example of which is the Rabi sequence. In a Rabi experiment, the qubit is driven

with by a pulse at the transition frequency f10, causing oscillation between |0〉 and |1〉

at the Rabi frequency fR, which is proportional to the amplitude of the driving pulse.

Like spin echo sequences, the Rabi experiment is insensitive to low-frequency noise; it is

primarily measures noise at fR. The spectral weight function for Rabi measurements is

given in Appendix B. A full treatment of Rabi oscillations is given in many quantum

mechanics textbooks; see, for example [100].

As both Rabi and CPMG/UDD measurements are sensitive to noise at a narrow

range of frequencies, they can be used for noise spectroscopy. However, the analysis

is somewhat complicated by the fact that the noise spectrum is essentially convolved

with the various spectral weight functions, and they are also sensitive to different noise

channels. Nevertheless, noise spectroscopy over a large frequency range has been carried

out with these methods [23, 138, 139, 141].

2.3 Forms of frequency noise

Now that we have a few basic ways of measuring the dephasing, 〈φ2(t)〉, we consider the

different types of dephasing and their functional form. It is useful to consider the spectral
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density Sf (f) of the qubit frequency fluctuation; the mean square phase noise is related

to the spectral density by (see Appendix B)

〈φ2(t)〉 =

∞∫
0

dfSf (f)
sin2(πft)

(πf)2
. (2.4)

When the integrand is nonconvergent, the lower limit of integration is taken to be the

inverse of the experiment duration (e.g. 1 hour−1), and the upper limit is the qubit

frequency, as noise power at or above that frequency drives state transitions rather than

dephasing the qubit. Note that the units of S are power per bandwidth; that is, Hz2 /

Hz for Sf , the spectral density of frequency noise. Spectral density is often quoted in

other units; for example, if the spectral density of current noise in the bias line is known,

we convert from SIbias
(in A2/Hz): Sf = (df/dIbias)

2SIbias
.

2.3.1 White noise

The simplest form of noise is white (or uncorrelated) noise, where the noise is spectrally

flat, with a constant spectral density Sf (f) = S0. From Eq. (2.4), we have

〈φ2(t)〉 =
S0

2
t ≡ 2

t

Tφ1

, (2.5)

where we here define Tφ1, the white noise dephasing time; we can also define a dephasing

rate Γφ1 = 1/Tφ1. For a Ramsey experiment with only white noise present, we can put

Eq. (2.5) into Eq. (2.2) and get the envelope Vwhite(t) = A exp(t/Tφ1) + B. (This is the

reason for the factor of 2 in the definition of Tφ1.) The value of Tφ1 can be crudely thought

of as “about how long you can use the qubit for before it loses phase coherence”; in a

Ramsey experiment, for example, at t = Tφ1 the visibility will have decayed 1/e of its

original value. Of course, depending on the coherence requirements of the experiment,

the actual “use time” of the qubit may be much less.
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T1 decay as phase noise

Energy decay of a qubit (T1) also manifests in dephasing measurements. The |0〉 state is

insensitive to T1 decay, while the |1〉 state decays at a rate 1/T1; the superposition state

(|0〉+ |1〉)/
√

2 therefore decays at a rate 1/2T1
5. Even in the absence of dephasing, then,

Ramsey and echo envelopes (and other dephasing measurements) will be limited by an

exponential decay with time constant 2T1; in this situation the qubit dephasing is said to

be “T1 limited”. Therefore, when measuring white noise dephasing, the effects of energy

decay must be separated out; fortunately, this is straightforward as T1 is easily measured

in a separate experiment.

2.3.2 1/f noise

1/f noise (sometimes called pink noise or flicker noise) can be found in a number of phys-

ical and biological systems [92], but for present purposes it is well-known in electronics

[15] (such as those driving the qubit), as well as Josephson junctions and SQUID loops

[64, 134]. As the name suggests, the spectrum of 1/f noise is of the form Sf (f) = S1/f/f .

For a Ramsey experiment, again using Eq. (2.4), we find

〈φ2(t)〉 = S1/f t
2 ln

0.4007

fct
, (2.6)

where fc is the low-frequency cutoff. Typically, the inverse of the experiment’s duration

is used for this. Because the logarithmic part varies slowly (not usually more than 10-20%

for even large variations between experiments), it is commonly ignored, leaving

〈φ2(t)〉 ≈ S∗1/f t
2 = 2

(
t

Tφ2

)2

, (2.7)

where here we define the correlated noise time constant Tφ2. We call this the “correlated

noise” time constant because Eq. (2.7) is the same as the result for a noise source that

5This simple averaging is valid because energy decay is independent of the quantum phase.
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is correlated over very long times, Sf (f) = 2σ2
qbδ(f), where σqb is the standard deviation

of the qubit frequency.

2.3.3 Telegraph noise

Telegraph noise (also called burst noise or a random telegraph signal) is seen when a

qubit switches between two stable frequencies. The dephasing due to telegraph noise

with switching timescale Ts and effective magnitude ∆f10 is given by (see Appendix B)

〈φ2(t)〉 = (2π∆f10)2Ts[t− Ts(1− e−t/Ts)], (2.8)

where, for simplicity, we have assumed that the up and down switching rates are identical.

For short timescales (t� Ts), telegraph noise looks like correlated noise; that is, 〈φ2(t)〉 ∝

t2. Conversely, for long timescales (t� Ts) it is similar to white noise (〈φ2(t)〉 ∝ t). This

means that a system dominated by telegraph noise will display the opposite behavior of

the common case where white noise dominates at short timescales and correlated (usually

1/f) noise dominates at long timescales.

2.4 Sources of noise

We now discuss the physical sources of frequency noise in the qubit. First, to frame the

discussion of noise sources, we state the equation for the frequency. The resonant fre-

quency of an LC circuit is given by f = 1/
√
LC; by treating the Xmon as an anharmonic

oscillator6, we have (see Appendix A)

f10 =
√

8fJfC

√
cos

πΦ

Φ0

− fC (2.9)

where now f10 is the frequency of only the 0 → 1 transition; fJ , and fC are device pa-

rameters deriving from the inductance and capacitance, respectively; Φ0 is the magnetic

flux quantum; and Φ is the applied magnetic flux threading the SQUID loop. Noise in
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f10, therefore, can be considered as noise in one of these parameters.

2.4.1 Flux noise

Perhaps the most straightforward source of frequency noise comes from noise in the

magnetic flux through the SQUID loop; the flux Φ of Eq. (2.9) is one of the experimental

knobs, so it is natural to consider what happens when that knob shakes. Taking the

derivative of Eq. (2.9), we see the flux sensitivity δf10/δφ is

δf10

δφ
=

π

2Φ0

√
8fJfC

sin πΦ
Φ0√

cos πΦ
Φ0

. (2.10)

From an experimentalist’s perspective, it is often useful to solve Eq. (2.9) for Φ and

substitute this into Eq. (2.10) to get

δf10

δφ
= −π

2
fp

√(
fp

f10 + fC

)4

− 1, (2.11)

where we have defined fp ≡
√

8fJfC . We can then measure f10(Φ) to fit Eq. (2.9), and

immediately calculate the flux sensitivity given only the operating point f10. In either

case, we are now prepared to analyze noise in the flux Φ.

One potential source of flux noise is the electronics controlling the flux bias; the

output noise of a signal generator, for example, will typically have a 1/f spectrum up to

a white noise floor at high frequencies. As the electronics are easily separable from the

qubit, the importance of this noise is relatively straightforward to compute. The noise

spectrum can be measured with a spectrum analyzer, from which we can extract the

magnitude of the 1/f noise (typically quoted as “noise at 1 Hz in nV/
√

Hz”) and the

noise floor (in V/
√
Hz). Then we calculate the sensitivity δf10/δV = (δf10/δΦ)(δΦ/δV ),

where we know δφ/δV from the wiring and inductance connecting the electronics to the

6The “−fC” is the modification resulting from treating the nonlinear nature of the Josephson induc-
tance as a (first-order) perturbation to the simple LC oscillator; see Appendix A.
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qubit. This allows us to use Eq. (2.6) or Eq. (2.7) (for the 1/f noise) and Eq. (2.5)

(for the noise floor) together with Eq. (2.2) to predict the limit to a Ramsey experiment

imposed by our electronics.

Typically, however, it is not the electronics that limit phase coherence. Flux noise

in SQUIDs has been studied for three decades [134], and 1/f noise magnitudes of a

few µΦ0/
√

Hz (at 1 Hz) have been consistently found across a wide range of SQUID

materials, geometries, and fabrication processes [140, 107, 17, 102, 1]. While there is

no single theory to conclusively explain all the data, ongoing work points to a possible

geometric understanding of SQUID flux noise (see Section 3.2.4).

Furthermore, flux noise is not necessarily 1/f -like. Telegraph noise can produce

“bumps” or “plateaus” in Ramsey and spin echo sequences [41], and there is evidence at

least in flux qubits for flux noise of this form [139]. However, there are also other sources

of telegraph noise liable to confound the situation (see below).

2.4.2 Charge noise and quasiparticle tunneling

Charge noise—fluctuations in the gate (or offset) charge—and quasiparticles tunneling

across the junction will both dephase Josephson junction-based qubits[73, 72, 63]; in

terms of Eq. (2.9), this corresponds to noise in the fC term (see Appendix A). The

sensitivity of the qubit to these processes is governed by the charge dispersion δEij/δng,

the shift in the energy spacing of between levels i and j caused by a change in the offset

charge (measured in number of Cooper pairs ng) of the device. As a transmon-based

qubit, however, the Xmon is designed to have δEij/δng exponentially suppressed in its

operating regime; see [63] for details. Such frequency noise has been seen, manifesting as

telegraph noise in qubits with a timescale of milliseconds [96].
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2.4.3 Critical current noise

Noise in the Josephson junctions’ critical current I0 will also dephase the qubit. This

noise is 1/f in nature, typically with amplitudes on the order of 10−6 I0/
√

Hz at 1 Hz

[126, 86]. The dephasing time caused by such variation is given by [63, 105]

Tφ2,I0 =
2

Bf10

, (2.12)

where B is the dimensionless amplitude of the 1/f noise spectrum of critical current

fluctuations at 1 Hz. This gives an expected Tφ2 in the range of tens of µs, which is not

currently limiting qubit performance. However, most of the studies of critical current

noise take place at temperatures well above typical qubit operating temperatures (i.e.

300 mK and above); noise is thought to decrease with decreasing temperatures. Given

that we hope to soon see dephasing times in the tens of µs, the effects of critical current

noise should be further studied.

2.4.4 Capacitance noise

Another potential source of noise is changes in the capacitance of the circuit (this would

correspond to fluctuations in fC in Eq. (2.9)). In fact, due to the tradeoffs made to

suppress charge dispersion, the Xmon may be uniquely sensitive to such noise. However,

there is as yet no experimental evidence that this poses a problem [63].

2.4.5 Resonator induced dephasing

The final potential source of dephasing we consider is dephasing caused by the coupled

measurement resonator. As the act of measuring a quantum state causes its complete

dephasing (it is projected to |1〉 or |0〉), any unintentional partial measurement will

partially dephase the qubit. More precisely, the dispersive shift χ, the frequency shift of
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the resonator in response to the qubit’s state change, can also be interpreted as the shift

in the qubit frequency for each additional photon in the resonator [101]7. The dephasing

rate for a resonator with a thermal population is given by [105]

Γφ,res = T−1
φ,res = 4n̄(n̄+ 1)

χ2

κ
, (2.13)

where n̄ = 1/(exp(~ωc/kT )− 1 is the mean thermal population of a resonator with fre-

quency ωc at temperature T , and κ is the resonator decay rate. Note that this expression

holds in in the weakly dispersive limit, χ/κ � 1. In the strongly dispersive case, this

dephasing has been modeled precisely in [104] and [105].

2.5 Conclusion

We have discussed basic methods for measuring dephasing as well as the forms dephasing

might take and some of the most common sources. A basic Ramsey, spin echo, or Rabi

measurement can be used to determine the dominant form of phase noise, which can

then be used to determine its potential source. We now proceed to examine this problem

in more depth. Chapter 3 describes the Ramsey Tomography Oscilloscope, useful for

characterizing low-frequency noise, and discusses its application to distinct qubit types.

Chapter 4 introduces the measurement of dephasing with randomized benchmarking, ca-

pable of measuring phase noise on the timescale of quantum gates, relevant to performing

more complex algorithms.

7For this reason, such dephasing is sometimes called “photon-induced dephasing”. Additionally, the
readout resonator can be a cavity (e.g. in 3-D transmons), and is then referred to as such.
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Chapter 3

The Ramsey Tomography

Oscilloscope

We now turn to more advanced techniques for measuring frequency noise in supercon-

ducting qubits. This chapter discusses the Ramsey Tomography Oscilloscope (RTO),

useful for measuring the low-frequency end of the noise spectrum. We then present mea-

surements on three different types of transmon-style qubits and compare the results to

theory on flux noise in superconducting qubits.

Flux noise is the leading cause of dephasing in tunable superconducting qubits. It

has been long studied in SQUIDs and superconducting qubits, and has been consistently

found to have a 1/fα spectrum, with 0.8 . α . 1.2, and a magnitude of a few µΦ2
0/Hz

at 1 Hz, despite differences in device design, materials, and fabrication [134, 140, 54,

17, 107, 108, 23]. Several explanations for this noise have been proposed [65, 37, 26, 68]

but none have satisfactorily explained all the data. However, it seems likely that the

ultimate source of the noise is free magnetic fluctuators on the SQUID surface, and

recent theoretical and experimental evidence strongly indicates that molecular oxygen is

responsible [130, 66].
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As the 1/f slope of flux noise in SQUIDs is found to be consistent over a wide fre-

quency range—less 1 Hz to tens of MHz [23, 139, 141]—a measurement at low frequencies

should allow us to explore the behavior of the noise across devices.

3.1 Introduction of the Ramsey Tomography Oscil-

loscope

Perhaps the most straightforward way to measure frequency noise in a qubit is simply

to repeatedly measure the frequency and then analyze its variation. The Ramsey To-

mography Oscilloscope does just that. Introduced in 2012 both at UCSB [102] and MIT

Lincoln Laboratory [138], the algorithm repeats a Ramsey experiment with a fixed free

evolution duration τ . This is depicted on the Bloch sphere in Figure 3.1. The angle

θ = 2πf10τ that the qubit state rotates through is measured tomographically; that is,

a final Y/2 rotation and measurement gives the x projection of θ, and similarly an X/2

rotation and measurement gives the y projection. The x and y sequences are repeated (in

our case, on the order of several hundred times) and the measurement results averaged

to get a single value for x or y. We then compute f10 = θ/(2πτ) = arctan(y/x)/(2πτ).

Figure 3.1: The RTO sequence, represented here on a Bloch Sphere, is identical to a
Ramsey sequence (see Figure 2.2), repeated with a fixed free-evolution time τ . During
the evolution (b), the qubit state acquires a phase θ = 2πf10τ (green). The x (blue) and
y (red) components of the phase are tomographically measured (c, d) and averaged, and
the phase recovered as θ = arctan(py/px).
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This experiment is repeated at regular intervals, as fast as possible, to generate a time

series f10(t). The measurement limit imposed by the hardware is the qubit reset time

(typically 150µs) combined with the number of repetitions: 150µs × 300 repetitions ×

2 measurement angles = 0.09 ms per data point. However, ensuring that the experiment

is repeated regularly over the entire data-taking period of ∼ 8 hours is done in software,

which has a latency of about 0.5 s, resulting in a typical Nyquist frequency fn of 1 Hz.

The data are the then Fourier transformed to create the power spectral density (PSD) of

the frequency noise, Sf (f); the details of the data processing are given in Appendix C.

For a given flux sensitivity df10/dΦ, this is converted to a flux noise power spectrum

SΦ(f) = Sf (f)/ (df10/dΦ)2.

Figure 3.2: A processed RTO power spectral density (blue dots) fit to Eq. (3.1) (solid
red line). The 1/f portion of the fit (dotted red line) has slope α = 0.95 and magnitude
S∗Φ = 1.75µΦ2

0/Hz.

An example of a fully-processed noise power spectrum is given in Figure 3.2. In

addition to the dominant 1/f component, the data show two additional effects: the
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signal aliasing and a white noise floor. The fit to the data contains all three components,

SΦ(f) =
S∗Φ
fα

+ SΦ,0 +
2S∗Φ

(2fn − f)α
(3.1)

with two free parameters for the 1/f noise: the slope α and the magnitude at 1 Hz, S∗Φ;

and one for the white noise: its magnitude SΦ,0. The third term of Eq. (3.1) represents

the aliasing of the 1/f signal; it is relatively unimportant and only affects a few of the

highest-frequency data points. The white noise is principally due to measurement error

(and in some cases qubit decoherence (T1) and white noise dephasing sources); as such,

for studying flux noise, the two figures of merit extracted from the fit are the parameters

to the 1/f fit, α and S∗Φ.

Figure 3.2 shows that while the data clearly display a 1/f dependence, for accurate

extraction of the key parameters α and S∗Φ, we should reduce the noise in the PSD. The

most straightforward way to do this is to take multiple RTO datasets and average them

together. We find that for a given device type, the magnitude and slope of the 1/f noise

are consistent, across different operating frequencies (provided we correctly account for

the flux sensitivity df10/dΦ), and even across different devices on the same chip.

3.2 Ramsey Tomography Oscilloscope results in

transmon-type qubits

We now present data from RTO measurements on three different qubit types.

3.2.1 Flux noise in Xmons

Four RTO datasets were taken on “standard” Xmons and are shown in Figure 3.3; these

qubits were initially used to demonstrate gate fidelities suitable for quantum error cor-

rection, and are described in [11]. Two different qubits were used (q2 and q3), and
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Figure 3.3: (left) Four RTO datasets (solid markers) taken on two Xmons of the device
from [11]. (right) Averaged PSD (open circles) superimposed, with fit (solid line) to
Eq. (3.1) and 1/f portion of the fit (dashed line), with α = 0.88 and S∗Φ = 3.0µΦ2

0/Hz.

two different operating frequencies and thus flux sensitivities were measured on q2. The

magnitude of the averaged flux noise, S∗Φ = 3.0µΦ2
0/Hz at 1 Hz, is in good agreement

with other results for aluminum superconducting qubits and SQUIDs [107, 102]. The

slope, α = 0.88, is slightly less than 1 (the case for “pure” 1/f noise). This is also not

uncommon [17, 23, 139, 66], but is less well-reported. The Xmon RTO data will serve as

a baseline for comparison with further measurements.

3.2.2 Flux noise in gmons

The gmon is a modification to the Xmon incorporating flux-tunable coupling between

qubits1. While the fabrication process of the gmon was similar to that of the Xmon, the

shape of the SQUID loop is significantly modified to accommodate the coupler. Eight

RTO datasets, shown in Figure 3.4, were taken on q2 of the gmon device introduced and

1The variable for the coupling strength is g, hence the name “gmon”.
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Figure 3.4: (left) Eight RTO datasets (solid markers) taken on gmon q2 of the device
introduced in [98] and [25]. (right) Averaged PSD (open circles) superimposed, with
fit (solid line) to Eq. (3.1) and 1/f portion of the fit (dashed line), with α = 0.92 and
S∗Φ = 14.2µΦ2

0/Hz.

described in [98] and [25], at a variety of operating frequencies. The slope α = 0.92 is

comparable to that measured on Xmons, while the magnitude, S∗Φ = 14.2µΦ2
0/Hz at 1

Hz, is roughly five times greater.

3.2.3 Flux noise in early SiXmons

Due to a large increase in quality factor seen in superconducting aluminum resonators

on silicon substrates [80], efforts are currently underway to translate this gain to Xmons

by fabricating them on substrates made from silicon, rather than sapphire. RTO data

were taken on an early version of these “SiXmon” qubits, described in [80]. The device

design—in particular the SQUID loop—of the SiXmon is identical to the Xmon, but due

to the change in materials, the fabrication process was very different. The ten datasets,

taken across four different qubits, are shown in Figure 3.5. The magnitude of the 1/f
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Figure 3.5: (left) Ten RTO datasets (solid markers) taken across four SiXmon qubits.
(right) Averaged PSD (open circles) superimposed, with fit (solid line) to Eq. (3.1) and
1/f portion of the fit (dashed line), with α = 1.13 and S∗Φ = 2.4µΦ2

0/Hz.

noise, S∗Φ = 2.4µΦ2
0/Hz at 1 Hz, is in good agreement with the Xmon, but the slope

α = 1.13 significantly different from that seen in both the Xmon and gmon devices.

3.2.4 Comparison with theory

The most likely explanation for the presence of 1/f noise in SQUIDs is the presence

of magnetically active fluctuators on the surface of the superconductor. While there

is currently no microscopic theory for the type and behavior of these fluctuators that

successfully explains all the evidence, we can still use general arguments to gain insight

into how the flux noise may vary across different device geometries. This method follows

Ref. [17].

The effect of a magnetic fluctuator on a conducting loop may be calculated through

reciprocity: the flux from a fluctuator of moment m is given by (B ×m)/I, where B is

the magnetic field experienced by the fluctuator produced by a test current I through
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the loop. The magnetic field on the surface of the loop is proportional to the surface

current density; for a superconducting thin film strip of width W , the surface current

density J varies across the width of the strip as [125]

J(x) =
J(0)√

1− (2x/W )2
, (3.2)

where J(0) is the current density at the center and x is the horizontal position. (This

is for the case where R � W � b and Wb � λ2 for length R, film thickness b, and

superconducting penetration depth λ.) Now taking B ∝ J(x) and I =
∫
J(x)dx, the

mean-square flux induced by a fluctuator at position x is

〈Φ2〉 = C
J2(x)(∫
J(x)dx

)2 , (3.3)

where C contains the unknown microscopic details of the fluctuator. For a surface

density of fluctuators σ, the total flux is

〈Φ2〉 =

∫
σ〈Φ2〉dA = C ′

∫
ln

(
2 bW (l)

λ2

)
dl, (3.4)

where C ′ = σC now contains all microscopic details, and we have integrated J2(x) across

the width of the wire and taken the first-order approximation of
∫
J(x)2dx/

(∫
J(x)dx

)2
,

and the remaining integral is along the length of the wire (that is, around the SQUID

loop), allowing the width W (l) to vary2. To compare geometric effects, therefore, we

can evaluate the ratio of the integrals in last part of Eq. (3.4), making the assumption

that the microscopic details of the fluctuators are the same.

The data for the three different qubit types are plotted together in Figure 3.6. Com-

paring the SQUID geometries between the gmon and Xmon according to Eq. (3.4), we

compute 〈Φ2
gmon〉/〈Φ2

Xmon〉 ≈ 1.7. The relative noise magnitude, however, is S∗Φ,gmon/S
∗
Φ,Xmon ≈

4.7. While the data do not convincingly rule out the geometric argument, they also indi-

2It is common when analyzing SQUIDs to evaluate this integral for a circular washer of radius R and
fixed width W and compare flux noise in terms of the ratio R/W ; for qubits with less regularly shaped
SQUID loops, we attempt a more fine-grained approach here.
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Figure 3.6: The averages (circles), fits (solid lines) and 1/f portion of the fit (dashed
line) of the Xmon (blue), gmon (red), and SiXmon (green) RTO data, from Figures 3.3–
3.5, shown together for comparison.

cate that such arguments may not provide a detailed guide to reducing flux noise during

qubit design. As the trend in flux noise agrees with the trend predicted by geometry,

however, further exploration of qubit design on flux noise magnitudes is warranted. Other

flux noise results have also provided mixed support for such geometric arguments [102, 1].

For SiXmons, however, as the SQUID geometry is identical, we expect any difference

to be due to materials or fabrication processes—and, indeed, the materials and fabrication

are quite different. The significantly steeper slope seen in the SiXmon data is particularly

compelling because the effect of flux noise on the fidelity of a sequence of quantum

operations is proportional to the integral of the flux noise over many orders of magnitude,

and small changes in α greatly change the value of the integral. Again, we recommend

further research in this regard.
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Chapter 4

Qubit metrology of ultralow phase

noise using randomized

benchmarking1

We now introduce a method for measuring phase noise at the high frequency end of the

spectrum—on the same timescales as quantum gates, which are tens of nanoseconds in

our devices. Spectra of phase noise have been measured spectroscopically up to hundreds

of megahertz [23, 139, 141] using techniques discussed in Chapter 2. These techniques

acquire data over long timescales and use various methods remain sensitive to only certain

frequencies of noise, making it difficult to determine precisely how much the measured

noise will affect a quantum algorithm consisting of gates sequences taking place on short

timescales. Furthermore, as the performance superconducting qubits improves to the

level required for error correction [11, 58], the need arises for a method to accurately

quantify the now minute errors induced by dephasing. The approach presented here

1After the first paragraph, this chapter was previously published as: “Qubit Metrology of Ultralow
Phase Noise Using Randomized Benchmarking”, Peter O’Malley, Julian Kelly, Rami Barends, et al.
Phys. Rev. Applied, 3, 044009 (2015).
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makes use of the well-understood randomized benchmarking (RB) protocol [99, 74] to

measure gate errors on short timescales, rapidly gathering large statistics while remaining

insensitive to errors caused by state preparation and measurement. We first introduce

the protocol, called “RB Ramsey”, by comparing it to standard Ramsey and spin echo

sequences and describe how it is used to measure dephasing. We then use it to measure

a telegraph noise mechanism in our qubit, as well as decoherence caused by two-qubit

interactions. Finally, we demonstrate the separation various dephasing effects: T1, white

noise, and correlated (e.g. 1/f) noise.

4.1 Introduction

One of the main challenges in quantum information is maintaining precise control over

the phase of a superposition state. Long-term phase stability is threatened by frequency

drifts due to non-Markovian noise, which arises naturally in solid-state quantum systems

[134, 44]. Fortunately, correlated noise can be suppressed using Hahn spin echo [45].

In practice, Ramsey and spin echo measurements of dephasing [31, 18, 23] characterize

the dominant noise source for large error rates (0.1 to 0.5) and long times, but are

fundamentally inappropriate for understanding noise dominant on the timescales and

error rates needed for fault-tolerant gate operations (< 10−2).

We introduce a metrological tool based on randomized benchmarking [62, 99, 74,

22, 42, 29] to quantify noise on timescales relevant for quantum gates. Whereas other

measurement techniques based on Ramsey [31, 18, 23] and Rabi [139] measurements

measure noise over long timescales and filter low frequency noise to infer gate performance

at short timescales, we measure gate fidelity directly, providing immediate feedback on

the impact of noise on gate performance. We apply it on a SQUID-based qubit, and show

that this method determines that 1/f flux noise [134, 102, 138] is not currently a limiting
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factor in our device. This tool also provides a powerful probe of anomalous telegraph

noise sources seen in superconducting devices. We also show that undesired coherent

interactions can be understood as an effective correlated noise. Finally, we demonstrate

how this method allows for error budgeting and direct selection of ideal gate parameters

in the presence of non-Markovian noise.

Quantum systems based on ion traps, spin qubits, and superconducting circuits are

rapidly maturing, with individual operation fidelity at the levels required for fault-

tolerant quantum computing [46, 22, 88, 95, 27, 103, 3, 50, 11, 58]. These systems

are often limited by environmentally-induced phase noise, which can manifest as qubit

frequency jitter. Noise in the phase φ is characterized by variance 〈φ2(τ)〉, increasing

linearly with time τ for white noise, and with higher power for correlated noise [76].

Ramsey and spin echo experiments measure the decay of phase coherence for large mag-

nitudes over long timescales; at much shorter timescales, which are relevant to quantum

gates but still slower than the qubit frequency, dephasing errors are small and thus hard

to measure, making physical mechanisms difficult to directly identify. Here, we quan-

tify phase noise by using RB to measure the decoherence of an identity gate versus its

duration, providing an unprecedented metrological tool.

We use a superconducting quantum system based on the planar transmon qubit vari-

ant, the Xmon [10], cooled to 20 mK in a dilution refrigerator. This qubit consists of

a SQUID, which serves as a tunable non-linear inductor, and a large X-shaped shunt

capacitor. It is well-suited for characterizing phase noise as the qubit has long energy

relaxation times, and the SQUID gives a controllable susceptibility to flux noise. These

qubits have frequencies that can be tuned to 6 GHz and below and have typical non-

linearities of η/2π = −0.22 GHz, and capacitive coupling strengths between qubits of

2g/2π = 30 MHz. Single qubit rotations are performed with microwave pulses and tuned

using closed-loop optimization with RB [57]. We use a dispersive readout scheme with
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Figure 4.1: (Previous page) (a) Gate diagram for Ramsey and Hahn spin echo sequences,
and their RB equivalents. For RB Ramsey, instead of inserting an idle between Xπ/2

pulses, we interleave the idle between m randomly selected single-qubit Clifford gates
(C1), after which the qubit is rotated back (Cr) to the pole and measured. For spin
echo and RB echo, an X gate is inserted at the center of the idle. The range of m
is 21 for the longest τ to 300 for the shortest. (b) (inset) T1 (energy decay), Ramsey,
and spin echo envelopes. (main) Ramsey (open circle) and spin echo (open square)
envelopes at short times. RB decay envelopes are inferred from 〈φ2(τ)〉 measured by RB
Ramsey (solid circle) and RB echo (solid square); see text for details. Single qubit and
entangling gate durations are shown for reference. Note the significantly lower noise of
the RB sequences, which take approximately the same measurement time as the Ramsey
and echo experiments. (c) Magnification of the dashed area in (b), showing timescales
important for gates. The RB Ramsey data show a trend different from that predicted
by the Ramsey fit.

capacitively coupled resonators at 6.6–6.8 GHz for state measurements [51]. For details

of the experimental setup and fabrication process, see [58].

4.2 RB Ramsey

Figure 4.1a shows gate sequences for Ramsey and spin echo measurements, as well as

their RB equivalents that we have called “RB Ramsey” and “RB echo”. The Ramsey

experiment accumulates phase error from a single period τ , whereas the RB Ramsey

experiment accumulates phase error from m applications of τ , with m typically of order

100. In RB, gate error is measured directly by interleaving gates with random Clifford

group operators, which depolarize errors by evenly sampling the Hilbert space, such that

repeated gate applications add error incoherently [75]. Thus, RB Ramsey has a factor m

higher sensitivity than Ramsey when errors and times τ are small. The error of an idle

gate, rI(τ), is directly related to the variance of the phase noise by (see Appendix D.1)

rI(τ) =
1

6
〈φ2(τ)〉. (4.1)
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We infer and plot the equivalent Ramsey decay envelope visibility data V (solid cir-

cles) with V (τ) = A exp(−〈φ2(τ)〉/2) + B in Figure 4.1b, with state preparation and

measurement error parameters A and B extracted from the Ramsey fit as described in

Appendix D.3, and 〈φ2(τ)〉 measured by RB Ramsey according to Eq. (4.1). We likewise

show the equivalent spin echo decay envelope from RB echo data as solid squares. The

Ramsey and spin echo measurements over the same timescale are shown for comparison

as open circles and open squares, respectively. We label the length of a single qubit and

two-qubit entangling gate [11] to emphasize the relevant timescale. The full Ramsey

and spin echo measurements are shown on the typical linear scale, together with energy

relaxation, in the inset of Figure 4.1b.

As shown in Figure 4.1b, the RB Ramsey and RB echo data are consistent with

the Ramsey and spin echo measurements, respectively, at short to moderate time scales,

while measuring 〈φ2〉 with much greater precision. Any structure to short-time dephasing

is obscured in the Ramsey data, whereas the RB Ramsey data reveal a time dependence

that we will show is consistent with telegraph noise. The use of RB greatly improves the

precision of phase noise measurements; the uncertainty of the measured Ramsey visibility

for τ < 300 ns is reduced by an order of magnitude. We note that the total time taken

to perform the Ramsey and RB Ramsey measurements is approximately the same, and

that precision would be increased for a higher-fidelity qubit by simply choosing larger

m’s. Because of the imprecision of the Ramsey data at short time scales, the amount of

noise present can only be inferred from the fit to the entire Ramsey dataset. However,

Figure 4.1c shows that the phase noise measured by RB Ramsey can differ significantly

from that expected by the Ramsey fit. The trend in their difference indicates that there

is behavior to the noise at short times that Ramsey measurements miss. We examine

this in Figure 4.2.

35



4.3 Measuring telegraph noise
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Figure 4.2: RB Ramsey measurement (circles) for short timescales; note that the small
error from T1 decay, which is 9×10−4 at 450 ns, has been subtracted (see Appendix D.1).
We fit to a telegraph noise model, Eq. (4.4); the dotted (dashed) lines give the short (long)
time limit of the noise model. The inferred but negligible contribution from 1/f noise
as measured for this qubit (see Appendix D.4) is shown as a thick line. The inset shows
the experiment used to extract the 40 ns data point.

To identify the dominant noise mechanism, we examine the dependence of idle gate

error on time and compare against different noise models in Figure 4.2. Whereas in

Figure 4.1 we infer an equivalent Ramsey envelope, here we plot the idle gate error
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directly, as measured by RB Ramsey (with small T1 effects subtracted, see Appendix D.1).

For short times, we see a non-linear increase of error with gate duration which transitions

into a linear behavior for lengths above approximately 100 ns. The inset shows the

sequence fidelity vs. number of Cliffords, with and without interleaved idles, used to

extract the idle error for τ = 40 ns.

While it has long been known that SQUIDs are susceptible to 1/f flux noise [89,

134, 110, 140, 17, 107, 102], we find this a negligible contribution to gate error. A

system limited by 1/f and white noise would see a linear increase in error at short, and

quadratic increase at long times as the 1/f component begins to dominate. The data

exibit the opposite trend. Moreover, the expected contribution to gate error from 1/f

noise, as measured for this system below 1 Hz using the Ramsey Tomography Oscilloscope

protocol (see [102] and Appendix D.4), is significantly less than observed here (Figure 4.2

thick solid line).

The trend observed in Figure 4.2 is consistent with telegraph noise. For a random

telegraph switching of the qubit frequency, the phase noise is given by

〈φ2
tel(τ)〉 = (2π∆f10)2Tsw

(
τ − Tsw

[
1− exp

(
− τ

Tsw

)])
, (4.2)

where ∆f10 is the effective switching amplitude of the qubit frequency and Tsw is the

switching timescale. We make the simplifying assumption of symmetric telegraph noise

as the measurement is unable to differentiate up and down switching rates, and note that

while telegraph noise is not Gaussian, Eq. (4.2) is still approximately correct for use in

Ramsey and spin echo analyses (see Appendix D.1). In a more general case, the error

rate for an idle of length τ , rI(τ), can be fit to a combination of error sources: white,
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long-time correlated, 1/f , and telegraph phase noise, as well as T1 decay,

rI(τ) =
τ

3T1

+
1

6

(
〈φ2

white(τ)〉+ 〈φ2
corr(τ)〉

+ 〈φ2
1/f(τ)〉+ 〈φ2

tel(τ)〉
)
, (4.3)

where the derivation for 〈φ2
white(τ)〉 = 2τ/Tφ1, 〈φ2

corr(τ)〉 = 2(τ/Tφ2)2, and 〈φ2
1/f(τ)〉 are

given in Appendix D.2, and we assume correlated noise has a longer timescale than the

experiment. The data here are fitted to a noise model featuring only T1 decay (measured

independently) and telegraph noise,

rI(τ) =
τ

3T1

+
1

6
〈φ2

tel(τ)〉, (4.4)

indicating that 1/f and white noise do not dominate the error for this qubit. We extract

Tsw = 84± 14 ns and ∆f10 = 479± 30 kHz from the fit. The dotted (dashed) line shows

this noise model in the short (long) time limit. Perhaps surprisingly, this measurement

directly shows that gates of duration 20 ns can achieve fidelity > 0.999 in a system with

characteristic Ramsey scale of Tφ2 = 2.0µs (see Appendix D.3).

Telegraph noise has been studied in superconducting circuits with a variety of meth-

ods. Frequency fluctuations due to quasiparticle (QP) tunneling have been characterized

by Rabi oscillations [8] and repeated direct frequency measurement [96]. For our qubit,

the calculated frequency splitting due to QP tunneling ranges from 1 Hz to 14 kHz

(see Appendix D.6), well below the magnitude necessary to explain the data. Photon

shot noise in a coupled resonator has been shown to cause dephasing in both transmon

[88, 104, 95] and flux [116] qubits. In our case the magnitude of the telegraph noise de-

creases as the qubit–resonator frequency difference decreases, indicating that resonator

photon noise induced dephasing is not the cause. A more elusive telegraph-like noise has

been measured by T1ρ Rabi spectroscopy in flux qubits [139], hypothesized to be due to
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two sets of coupled coherent two-level states. This noise is similar in frequency to the

noise measured here, with spectroscopic signatures at 1 and 20 MHz, compared to 1/84

ns = 11 MHz for this measurement. However, it is much larger in magnitude, presenting

as a “dip” (or “plateau”) in spin echo measurements, which is known to happen in the

presence of strong telegraph noise [41], and seen in other systems [49, 116, 96]. In our

device, the telegraph noise is only dominant at short timescales, as any evidence of it in

longer measurements like Ramsey and spin echo is masked by 1/f flux noise.

4.4 Measuring error from coherent qubit-qubit in-

teractions

We now apply RB to coherent errors arising from unwanted qubit-qubit interactions,

which can also contribute to dephasing [33]. In Figure 4.3, we explore these effects in

our system. Figure 4.3a shows an energy level diagram for capacitively coupled qubits,

where the fundamental entangling rate ΩZZ [40] arises from an avoided level crossing

between the |11〉 state and the |02〉 and |20〉 states. This interaction manifests as a

state-dependent frequency shift, falling off with detuning ∆, as measured in Figure 4.3b.

We note that for a qubit coupled to a resonator, ΩZZ is equivalent to the dispersive shift

[20] 2χ as defined in [63]. The inability to turn this interaction off completely results in

additional errors when operating qubits simultaneously. Figure 4.3c shows average gate

error vs. duration, when a qubit is operated in isolation or simultaneously with a coupled

qubit (ΩZZ/2π = 0.4 MHz). Error for single qubit or simultaneous operation is inferred

from the RB reference error per Clifford, divided by the average of 1.875 physical gates

per Clifford [11]. The difference between isolated and simultaneous operation gives the

added error from the ΩZZ interaction, which is fit to a quadratic.

This interaction is correlated, and therefore the errors are quadratic with gate du-
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Figure 4.3: (a) Energy level diagram for two capacitively coupled qubits with coupling
strength 2g/2π = 30 MHz, detuned by frequency ∆. The avoided level crossing between
the |11〉 and |02〉/|20〉 states repels the |11〉 frequency from the sum of |01〉 and |10〉
frequences by the amount ΩZZ . (b) This entangling interaction causes the phase of one
qubit to precess, conditional on the state of its neighbor (cartoon and inset). The ΩZZ

interaction decreases with ∆, to a level of ΩZZ/2π = 0.4 MHz at ∆/2π = 750 MHz.
(c) RB data isolating the ΩZZ interaction. Gate error is measured vs. gate duration
for a single qubit and when qubits are operated simultaneously (inset). The difference
(main figure) measures the error contribution from the ΩZZ interaction, and is fit to
1.86(ΩZZtgate/2π)2 + 1.4× 10−4.

ration; specifically, the error per gate due to the ΩZZ interaction between two qubits

simultaneously undergoing RB is

E =
π2

6

(
ΩZZ

2π
tgate

)2

, (4.5)
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where ΩZZ/2π is the interaction magnitude and tgate is the RB gate duration (see

Appendix D.7). The fit to the data has a quadratic coefficient of 1.86 ± 0.1, while

π2/6 ≈ 1.64. Here, the careful application of RB both distinguishes these errors at the

1 · 10−4 level, and indicates that short gates are effective in suppressing them.

4.5 Measuring different gate implementations
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Figure 4.4: (color online) Operation error of σI and σZ , implemented with (closed sym-
bols) and without (open symbols) echoing, as measured with interleaved RB. The data
are fitted to a linear and quadratic form, representing uncorrelated and correlated noise.
The dark gray region indicates error attributed to T1, the medium gray region uncorre-
lated noise, and the light gray region non-Markovian (e.g., telegraph) noise. Note that
the I data are RB Ramsey data, the same as Figure 4.2.

We now examine the gate fidelity for a variety of gates in the presence of the non-

Markovian noise we have measured. Figure 4.4 shows gate fidelity vs. gate length for

two implementations each of two different gates: for σI , an idle and two microwave
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pulses (X, X), and for σZ , a frequency detuning pulse and two microwave pulses (Y ,

X). The errors of these operations vs. duration are determined with interleaved RB. In

agreement with previous measurements, we find that the error of operations without X or

Y pulses (open symbols) follow a quadratic-like dependence with gate duration at these

timescales. Using X or Y pulses (closed symbols), we observe a linear-like dependence at

longer durations, indicating that the correlated phase noise has been suppressed. Below

40 ns, we find an increased error which we attribute to the population of higher levels

due to spectral leakage [71]. The solid (dashed) lines are linear (linear and quadratic)

fits to the data. For full details of the fits, see Appendix D.3.

Using the functional forms of the different error types given in Eq. (4.3), we can

determine an error budget for our operations. For a typical entangling gate duration

of 40 ns, T1 contributes an error of 5 × 10−4, and telegraph noise an error of 5 × 10−4.

With echoing pulses, the total error is 8× 10−4, indicating that the added echoing pulses

are either not completely suppressing the phase noise or are contributing error of their

own. Using a combination of RB Ramsey and RB echo, we have determined the relative

contribution of different noise sources to operational error, and we can also immediately

see that either short gates, or long gates with intrinsic echoing, are effective at remedying

non-Markovian noise, and by how much.

4.6 Summary

RB Ramsey provides a direct measurement of phase noise in the regime most relevant

to quantum gates. While previous noise spectroscopy has relied on accumulating noise

over longer timescales while filtering out low-frequency noise with additional pulses, our

technique directly measures small amounts of noise with repeated incoherent additions.

It does not require extensive calibration, and is also robust against state preparation and
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measurement error. As a gate-based measurement, it is useful in a variety of situations:

measuring noise due to the environment as RB Ramsey, measuring filtered environmental

noise as RB echo, and measuring dephasing induced by coherent qubit-qubit interactions.

As the measurement output is gate fidelity, it is also immediately applicable as a tool to

determine the highest-fidelity implementation of different quantum gates in the presence

of noise. We show here that RB Ramsey is the metrological tool best suited for measuring

noise in high-fidelity qubits.

We have taken RB, a protocol for determining the fidelity of gates, and applied it as

a metrological tool for identifying noise processes. Applied to a superconducting qubit

system, we have found a telegraph noise mechanism in a regime inaccessible to previous

measurements, accurately characterized dephasing caused by coherent qubit-qubit inter-

actions, and determined the highest-fidelity implementation of different quantum gates.

Our results demonstrate that RB Ramsey is capable of measuring small noise processes

at short timescales that are directly relevant to gate fidelity, and show that understand-

ing this non-Markovian phase noise can be lead to its effective suppression through short

gates and echoing.
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Chapter 5

Chemistry on a quantum computer:

a brief introduction

Previous chapters introduced the problem of dephasing—currently the leading source of

error in Xmon qubits—and presented the results of two different techniques for character-

izing opposite ends of the phase noise power spectrum. While this is clearly an immediate

problem to be solved in the effort to build a quantum computer, it is not necessarily of

great interest to someone who wants to use such a device for practical purposes. The

remainder of this thesis turns to the opposite case: we present and demonstrate two

quantum algorithms for computations of great practical interest outside of the field of

quantum computing, finding molecular ground state energies. This problem has been

the focus of much of theoretical chemistry since the formulation of quantum mechan-

ics itself. However, the computational complexity of the full solution of a molecular

Hamiltonian—known as the full configuration interaction, or FCI—scales exponentially

with the number of electrons in the system. Quantum algorithms have the potential to

make such calculations possible; indeed, it was for this purpose that Feynman proposed

quantum computers [38].
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This is not entirely unrelated to the work on dephasing presented earlier, as it may

seem at first glance. The first algorithm discussed, the phase estimation algorithm,

uses the phase of a qubit to store the result of the computation, making it particularly

susceptible to any phase noise. In contrast, the variational quantum eigensolver is robust

to some systematic errors, and in our implementation this robustness allows its success

in the presence of dephasing.

This chapter first provides a brief overview of the chemistry necessary to encode a

molecule on a quantum computer. We then describe the phase estimation algorithm, and

its application to chemistry when combined with Hamiltonian Trotterization. Finally,

we discuss the variational quantum eigensolver, an hybrid quantum-classical algorithm

for chemistry potentially useful on quantum devices without error correction.

5.1 Representing electrons with qubits: The Bravyi-

Kitaev Transform

Our goal is to compute the lowest energy eigenvalue of a given molecular Hamiltonian:

the electronic structure problem. The precision to which we must measure the energy

eigenvalue is known as “chemical accuracy”, which is 1.6× 10−3 Hartree1, 1 kcal/mol, or

0.043 eV. Chemical reaction rates are proportional to the exponential of the ratio energy

difference to thermal energy kT ; a relative error equal to chemical accuracy results in a

chemical rate change by an order of magnitude.

The first task in simulating a molecule, therefore, is writing down the Hamiltonian

in a scalable way. This is summarized in Appendix E.1 (and references therein), and

outlined in Figure E.1; the end result is a Hamiltonian written in the second quantized

1One Hartree, the preferred energy unit of theoretical chemists, is ~2/mee
2a20, where me, e, and a0

are the electron mass, electron charge, and Bohr radius, respectively.
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formalism:

H =
∑
pq

hpqa
†
paq +

∑
pqrs

hpqrsa
†
pa
†
qaras (5.1)

where a†i and ai are the fermionic creation and annihilation operators for an electron

in molecular orbital2 i and the hij coefficients are (efficiently, classically) computed from

the orbital overlaps (see Eq. (E.3)). However, we cannot simply use qubits to represent

fermionic operators directly, as they do not obey fermionic commutation relations; we

must therefore carefully map between the two. The most commonly cited mapping is

the Jordan-Wigner transform, first introduced in 1928 as a mapping between spins and

fermions [53], and formulated in 2002 for use in quantum computation [115].

The Jordan-Wigner transform represents the occupation of each orbital with the state

of a single qubit—this is called the “occupation basis”. Considering a state with n orbitals

where fi is the occupation of orbital i, |fn−1 . . . f0〉, when applying the creation operator

a†j, the state acquires a phase of −1 for each occupied orbital with index less than j; that

is,

a†j|fn−1 . . . fj+10fj−1 . . . f0〉 = (−1)

j−1∑
k=0

fk |fn−1 . . . fj+11fj−1 . . . f0〉. (5.2)

This means that the qubit implementation of a†j must contain not only a gate to change

the value of qubit j but also must compute the parity of all qubits with index less than j;

this is accomplished with a Z gate on each. Therefore, one fermionic operation requires

O(n) gates, and furthermore, these gates are nonlocal.

An alternative encoding is the “parity basis”, where qubit j now stores the parity of

all orbitals with index ≤ j. In this case, when applying a†j, the phase acquired due to

the parity of orbitals < j is easily computed with a Z gate on qubit j − 1. However,

when changing the occupation of orbital j, all qubits with index ≥ j must be changed;

2By “orbital” we mean a combined spin and spatial orbital, so each orbital can be occupied by at
most one electron.
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therefore, the computational requirements in the parity basis are equivalent to that of

the occupation basis.

The Bravyi-Kitaev (BK) transform was first introduced in 2002 for the purpose of

using fermions to perform quantum computation [21]; the inverse case, of representing

fermions on qubits, is described in [106] and [120]. Rather than storing the occupation

locally and the parity nonlocally, as in the occupation basis (and vice versa for the parity

basis), the BK transformation stores both of them nonlocally. For even index j, qubit j

holds the occupation of orbital j. For odd j, qubit j stores the parity of a set of orbitals

with index < j. Following [120], the transformation is defined by an n-by-n matrix βn,

where βn ~fn = ~bn with the occupation number basis vector ~fn and the BK basis ~bn:

β2x =

 β2x−1 0

0
β2x−1← 1→

 , (5.3)

where ← 1→ represents a row of ones, and β1 = (1).

This is best seen with an example; here we give β8
~f8 = ~b8:

1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 0
1 1 1 1 1 1 1 1





f0

f1

f2

f3

f4

f5

f6

f7


=



f0

f0 + f1

f2

f0 + f1 + f2 + f3

f4

f4 + f5

f6

f0 + f1 + f2 + f3 + f4 + f5 + f6 + f7


(5.4)

In this case, to apply a†7, we must check qubits 3, 5, and 6 to determine the parity of

orbitals < 7; this is called the “parity set” of orbital 7, or P (7) = {3, 5, 6}. We must then

change the value of qubit 7, but as f7 does not appear in any other qubit, we do not need

to update any other qubits; thus the “update set” of orbital 7 is empty, or U(7) = ∅.

Finally, to determine whether the occupation of orbital 7 is equal to the value of qubit 7,

or its inverse, we consult the “flip set” of orbital 7: F (7) = {3, 5, 6}. (In general, the flip
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set is a subset of the parity set; for even numbered orbitals in particular, it is empty.)

For orbital 0, we note by contrast that P (0) = F (0) = ∅, while U(0) = {1, 3, 7}.

The full details of the BK transform are beyond the scope of this treatment; the

transform is covered pedagogically in [106] and [120]3. We note that the size of the parity,

update, and flip sets scales logarithmically with the number of orbitals, n, whereas for

the Jordan-Wigner transform, the parity set scales linearly with the number of orbitals

(PJW(j) = {i|i < j}), while the update set is empty (and vice versa for the parity basis).

This means that the BK basis requires fewer gates to implement fermionic operators

than the occupation or parity bases. This is shown numerically for hydrogen in [106] and

methane in [120]. Crucially, the greater locality of the BK mapping reduces the number

of required CNOT gates, when compared to the Jordan-Wigner mapping; in some cases

the number of single-qubit gates was greater, but the total number of gates is always

fewer, indicating that there is no overhead that may make the BK transform impractical

for small systems.

Furthermore, the increased locality of the BK transform is of particular importance for

certain device architectures. When the qubit coupling is restricted to nearest neighbors,

a logical CNOT between non-adjacent qubits requires “swapping through” intervening

qubits. A SWAP gate is conventionally implemented as three CNOTs, meaning that

non-local CNOTs greatly increase gate counts.

5.2 The canonical quantum chemistry algorithm

First described in 2005 [2], what has come to be called “the canonical quantum chemistry

algorithm” is a combination of quantum phase estimation with Hamiltonian Trotteriza-

tion. The quantum phase estimation algorithm is a standard method in the quantum

3Note that matrix row- and column-labeling conventions are reversed between the two, however.
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|0〉 H • H

|ψ0〉 e−iĤt

Figure 5.1: Schematic for one iteration of phase estimation. The top qubit is the ancilla,
with input state |0〉; the register qubits’ input state is the ground state, denoted |ψ0〉.
e−iĤt is the Trotterized version of the molecular Hamiltonian applied for time t.

information literature for measuring the eigenvalue of a unitary operator [85]; the chem-

istry algorithm (henceforth “PEA”) is the application of this to a molecular Hamiltonian.

In particular, the problem Hamiltonian must first be encoded in the qubits, with a method

such as the Jordan-Wigner or Bravyi-Kitaev transforms as discussed in Section 5.1. This

encoding produces a series of gates that implement the Hamiltonian; however, the terms

in this Hamiltonian will likely not all commute, so its application will require use of the

Trotter-Suzuki expansion [117] (also known as “Trotter decomposition” or just “Trot-

terization”) to approximate the time evolution of a set of non-commuting operators, at

the cost of some error. This Trotterization is then applied to a register set of qubits

encoding the ground state controlled by a set of ancilla qubits. The inverse quantum

Fourier transform is then used to read out the phase acquired by the ancilla qubits,

which is proportional to the eigenvalue of the Trotterized Hamiltonian, i.e., the ground

state energy.

For full details of the standard phase estimation algorithm, see [85]; an alternative

version, iterative phase estimation, introduced by Kitaev in 1995 [60], uses fewer qubits

in the ancilla at the cost of repeated measurements. This was proposed for use on

superconducting qubits in 2007 [35] and described in detail in 2010 [136] in the context

of molecular Hamiltonians, and as it is the method used in the experiment of Chapter 6,

we describe it briefly here. In particular, for the case of one ancilla qubit, the circuit

schematic is given in Figure 5.2. The action of this circuit to apply a phase to the register
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qubit,

|0〉|ψ0〉+ exp(−iĤt)|1〉|ψ0〉 = |0〉|ψ0〉+ exp(−iE0t)|1〉|ψ0〉
= (|0〉+ exp(−iE0t)|1〉)|ψ0〉,

(5.5)

where the controlled unitary evolution exp(−iĤt) is the Trotterized molecular Hamil-

tonian applied for time t, which applied to the ground state |ψ0〉 produces a phase pro-

portional to the ground state energy E0 only if the ancilla is in state |1〉. After the final

Hadamard, the probability of measuring the ancilla qubit to be 0 is P0 = cos2(πE0t).

One could imagine performing N measurements to determine P0 with accuracy 1/
√
N ;

however, the accuracy of the measurement of E0t would require an exponential number

of measurements in terms of the number of bits of precision required. Instead, the

iterative approach uses a single measurement4of the ancilla to determine whether the

first bit (i.e. most significant bit) of the binary representation of E0t is 0 or 1. The

experiment is then repeated, with the Hamiltonian applied for duration 2t. An additional

Z rotation on the ancilla based on the first measurement subtracts the first bit of the

energy eigenvalue; the second measurement then measures the second bit of E02t. By

doubling the Hamiltonian duration and feeding back the previous measurement, each

subsequent measurement reads out the next bit of the energy eigenvalue5.

We now note that the PEA is an efficient algorithm; that is, the resources required

scale at most polynomially with system size. For a given error threshold (e.g. chemical

accuracy), the implementation of the Hamiltonian has been shown to be efficient in

terms of the number of gates required [2], and the phase estimation algorithm is known

to be efficient [85]. As discussed above, the encoding scheme (e.g. the Jordan-Wigner

4In the actual experiment, we use a majority voting scheme: the experiment is repeated many
(∼ 1000) times and the majority of the measurements determines 0 or 1. This allows for a certain
amount of experimental error, provided the “true” value of P0 is not too close to 50%.

5The iterative phase estimation algorithm has previously been presented (e.g. in [35] and [136]) as
reading out the phase in reverse, from least- to most-significant bit. Both approaches are valid, but we
find the most-significant bit first approach to be simpler.
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or Bravyi-Kitaev transforms) is requires a polynomial number of gates, and extension to

larger molecules requires (more orbitals) only a linear increase in the number of qubits.

Details of our implementation of PEA are given in Section 6.2 and Appendix E.3; we

end this section by mentioning a few important qualifications to the simple algorithm

described above. First, we have assumed that the register qubits are prepared in the

ground state of the Hamiltonian, |ψ0〉. In fact, it is necessary only that the state of the

register has significant overlap with the true ground state. In principle, with an error-free

quantum computer, one could repeat the PEA experiment until the measurement projects

the register into the ground state; that is, repeat the experiment and take the lowest

measured energy. However, in a device with errors this is not possible. In the case of the

hydrogen molecule, the Hartree-Fock ground state overlap with the true ground state is

large (〈ψ0|ψHF 〉 > 0.5), allowing us to use a majority voting scheme. For other systems—

particularly ones with strong electron-electron correlations for which classical theoretical

chemistry methods work poorly—the overlap of a standard approximate ground state

(e.g. from Hartree-Fock) with the true ground state may be exponentially small. While

other methods, such as adiabatic state preparation, have been proposed [136, 56], it is not

clear that these methods will scale favorably with the number of electrons simulated. This

is not surprising, however, as finding the ground state energy of an arbitrary Hamiltonian

is known to be in the QMA complexity class, the quantum analog of NP [59].

The main disadvantage of the PEA is that it requires long, coherent evolution, and

the effect of gate errors is not well understood. Recent proposals of more efficient phase

estimation algorithms using Bayesian techniques [118, 137] reduce the resource require-

ments and even allow the possibility of learning about error mechanisms in the quantum

device, but these have yet to be tested experimentally. Instead, we now describe a dif-

ferent algorithm more suitable for imperfect devices with limited coherence times, the

Variational Quantum Eigensolver.
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5.3 The Variational Quantum Eigensolver

The Variational Quantum Eigensolver (VQE), first proposed and demonstrated on an

optical system in 2013 [90], is a hybrid algorithm that uses shallow quantum circuits at

the cost of an increased number of repetitions to variationally find the ground state of

a problem Hamiltonian. The basic idea is straightforward: use a parameterized ansatz

to approximate the ground state of a problem Hamiltonian on the quantum computer,

and then measure each of the terms of the Hamiltonian and classically compute the

energy. This energy is fed to a (classical) minimization algorithm, which then proposes

new parameter values. The process is repeated to minimize the energy.

For the VQE to be scalable, its constituent parts must be scalable. The classical

preparation (see Appendix E.1) and fermion-to-qubit mapping (see Section 5.1) are the

same as used for the PEA. The choice of ansatz used is key to the performance of the

VQE; in this work, we use the unitary coupled cluster (UCC) ansatz. There is no efficient

method of computing it on a classically, but efficient quantum preparations have been

shown, which is evidence that the UCC may allow for quantum speedup with VQE. For

details of the UCC ansatz, see Appendix E.4. Finally, the number of measurements

necessary to compute the energy must scale efficiently. For chemical Hamiltonians, this

has been shown to be the case [79].

One additional property of the VQE that is particularly attractive for current quan-

tum devices is its potential robustness to certain systematic errors. This is due to the

variational nature of the algorithm: the parameters that the classical minimizer deter-

mines as optimal will necessarily reflect any errors in the implementation of the ansatz,

as long as they do not take the system out of the variational subspace. In our exper-

iment in particular, the single variational parameter is the magnitude of a Z-rotation.

Phase noise throughout the experiment has the experiment of an unwanted Z-rotation;
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therefore, the optimization procedure automatically compensates for any correlated de-

phasing. This property of the VQE is what allows our experiment to measure the disso-

ciation energy of hydrogen to within chemical accuracy. Additionally, before the advent

of a fully error-corrected quantum computer there will be devices with more qubits than

can be simulated on a classical supercomputer6; its shallow circuits and resistance to

some systematic errors means that the VQE could provide industrially useful, classically

incomputable results.

Finally, the variational nature of the VQE also means that it is not guaranteed to

find the true ground state energy. While this is a disadvantage compared to the PEA,

to be practically useful we must only find a ground state energy that is lower than

what is possible to compute with classical methods. Furthermore, the VQE may be

able to efficiently prepare an input state for the PEA for interesting systems where

classical chemistry fails. The ultimate quantum algorithm for chemistry may therefore

be a combination of the VQE and PEA.

6In fact, possibly quite soon.
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Chapter 6

Scalable Quantum Simulation of

Molecular Energies1

Universal and efficient simulation of physical systems [70] is among the most compelling

applications of quantum computing. In particular, quantum simulation of molecular en-

ergies [2], which enables numerically exact prediction of chemical reaction rates, promises

significant advances in our understanding of chemistry and could enable in silico design

of new catalysts, pharmaceuticals and materials. As scalable quantum hardware becomes

increasingly viable [11, 58, 30, 97, 12], chemistry simulation has attracted significant at-

tention [136, 55, 28, 133, 47, 91, 7, 14, 135, 127, 128, 120, 6, 90, 142, 78, 132, 79, 119, 4,

5, 122, 82, 43] since classically intractable molecules require a relatively modest number

of qubits and because solutions have commercial value associated with their chemical

applications [83].

The fundamental challenge in building a quantum computer is realizing high-fidelity

operations in a scalable architecture [77]. Superconducting qubits have made rapid

progress in recent years [11, 58, 30, 97] and can be fabricated in microchip foundries

1This chapter has been submitted as: “Scalable Quantum Simulation of Molecular Energies”, Peter
O’Malley, Ryan Babbush, et al. (2016).
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and manufactured at scale [52]. Recent experiments have shown logic gate fidelities at

the threshold required for quantum error correction [11] and dynamical suppression of

bit-flip errors [58]. Here, we use the device reported in [58, 12, 13] to implement and

compare two quantum algorithms for chemistry.

Our first experiment demonstrates the recently-proposed variational quantum eigen-

solver (VQE), introduced in [90]. Our VQE experiment achieves chemical accuracy and

is the first scalable quantum simulation of molecular energies performed on quantum

hardware, in the sense that our algorithm is efficient and does not benefit from exponen-

tially costly precompilation [114]. When implemented using a unitary coupled cluster

ansatz, VQE cannot be efficiently simulated classically and empirical evidence suggests

that answers are accurate enough to predict chemical rates [90, 142, 132, 78, 79]. Because

VQE only requires short state preparation and measurement sequences, it has been sug-

gested that classically intractable computations might be possible using VQE without

the overhead of error correction [79, 132]. Our experiments substantiate this notion by

providing clear evidence that VQE is robust to systematic errors.

Our second experiment realizes the original algorithm for the quantum simulation

of chemistry, introduced in [2]. This approach involves Trotterized simulation [121] and

the quantum phase estimation algorithm (PEA) [60]. We experimentally perform this

entire algorithm, including both key components, for the first time. While PEA has

asymptotically better scaling in terms of precision than VQE, long and coherent gate

sequences are required for its accurate implementation.

Several prior experiments have demonstrated subroutines of quantum chemistry sim-

ulations but none have shown a full algorithm that is scalable at the logical level. The

phase estimation component of the canonical quantum chemistry algorithm has been

demonstrated in a photonic system [69], a nuclear magnetic resonance system [36], and

a nitrogen-vacancy center system [131]. While all three experiments obtained molecular
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Figure 6.1: Hardware and software schematic of the variational quantum
eigensolver. (Hardware) micrograph shows two Xmon transmon qubits and microwave
pulse sequences to perform single-qubit rotations (thick lines), DC pulses for two-qubit
entangling gates (dashed lines), and micrwave spectrosopy tones for qubit measurements
(thin lines). (Software) quantum circuit diagram shows preparation of Hartree-Fock state,
followed by application of the unitary coupled cluster ansatz in Eq. (6.3) and efficient
partial tomography (Rt) to measure the expectation values in Eq. (6.1). Finally, the total
energy is computed according to Eq. (6.4) and provided to a classical optimizer which
suggests new parameters.

energies to incredibly high precision, none of the experiments implemented the propa-

gator in a scalable fashion (e.g. using Trotterization) as doing so requires long coherent

evolutions. There have been two previous experimental demonstrations of VQE: first

in a photonic system [90] and later in an ion trap [109]. Both experiments validated

the variational approach and the latter implemented an ansatz based on unitary coupled

cluster. All prior experiments focused on either molecular hydrogen [69, 36] or helium

hydride [90, 131, 109] but none of these prior experiments employed a scalable qubit rep-

resentation such as second quantization. Instead, all five prior experiments represent the

Hamiltonian in a configuration basis that cannot be efficiently decomposed as a sum of

local Hamiltonians, and then exponentiate this exponentially large matrix as a classical

preprocessing step [69, 36, 131, 90, 109].

Until this work, important aspects of scalable chemistry simulation such as the
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Jordan-Wigner transformation [115] or the Bravyi-Kitaev transformation [21, 106] had

never been used to represent a molecule in an experiment. In both experiments pre-

sented here, we simulate the dissociation of molecular hydrogen in the minimal basis

of Hartree-Fock orbitals, represented using the Bravyi-Kitaev transformation of the sec-

ond quantized molecular Hamiltonian [120]. As shown in Appendix E.1, the molecular

hydrogen Hamiltonian can be scalably written as

H = g01 + g1Z0 + g2Z1 + g3Z0Z1 + g4X0X1 + g5Y0Y1 (6.1)

where {Xi, Zi, Yi} denote Pauli matrices acting on the ith qubit and the real scalars

{gγ} are efficiently computable functions of the hydrogen-hydrogen bond length, R. The

ground state energy of Eq. (6.1) as a function of R defines an energy surface. Such energy

surfaces are used to compute chemical reaction rates which are exponentially sensitive to

changes in energy. At room temperature, a relative error in energy of 1.6× 10−3 Hartree

(1 kcal/mol or 0.043 eV) translates to a chemical rate that differs from the true value by

an order of magnitude; therefore, 1.6 × 10−3 Hartree is known as “chemical accuracy”

[48]. Our goal then is to compute the lowest energy eigenvalues of Eq. (6.1) as a function

of R, to within chemical accuracy.

6.1 Variational quantum eigensolver

Many popular classical approximation methods for the electronic structure problem in-

volve optimizing a parameterized guess wavefunction (known as an “ansatz”) according

to the variational principle [48]. If we parameterize an ansatz
∣∣∣ϕ(~θ)

〉
by the vector ~θ

then the variational principle holds that〈
ϕ(~θ)

∣∣∣H∣∣∣ϕ(~θ)
〉

〈ϕ(~θ)|ϕ(~θ)〉
≥ E0, (6.2)
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Figure 6.2: Variational quantum eigensolver: raw data and computed energy
surface. (a) Data showing the expectation values of terms in Eq. (6.1) as a function of
θ, as in Eq. (6.3). Black lines nearest to the data show the theoretical values. While such
systematic phase errors would prove disastrous for PEA, our VQE experiment is robust to
this effect. (b) Experimentally measured energies (in Hartree) as a function of θ and R.
This surface is computed from Figure 6.2a according to Eq. (6.4). The white curve traces
the theoretical minimum energy; the values of theoretical and experimental minima at
each R are plotted in Figure 6.3a. Errors in this surface are plotted in Appendix E.2 in
Figure E.2.

where E0 is the smallest eigenvalue of the Hamiltonian H. Accordingly, E0 can be

estimated by selecting the parameters ~θ which minimize the left-hand side of Eq. (6.2).

While the ground state wavefunction is likely to be in superposition over an exponen-

tial number of states in the basis of molecular orbitals, most classical approaches restrict

the ansatz to the support of polynomially many basis elements due to memory limita-

tions. However, quantum circuits can prepare entangled states which are not known to

be efficiently representable classically. In VQE, the state
∣∣∣ϕ(~θ)

〉
is parameterized by the

action of a quantum circuit U(~θ) on an initial state |φ〉, i.e.
∣∣∣ϕ(~θ)

〉
≡ U(~θ)|φ〉. Even if |φ〉

is a simple product state and U(~θ) is a very shallow circuit,
∣∣∣ϕ(~θ)

〉
can contain complex

many-body correlations and span an exponential number of standard basis states.

We can express the mapping U(~θ) as a concatenation of parameterized quantum gates,

U1(θ1)U2(θ2) · · ·Un(θn). In this work, we parameterize our circuit according to unitary
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coupled cluster theory [142, 79, 132]. As described in Appendix E.4, unitary coupled

cluster predicts that the ground state of Eq. (6.1) can be expressed as

|ϕ(θ)〉 = e−i θ X0Y1|01〉, (6.3)

where |φ〉 = |01〉 is the Hartree-Fock (mean-field) state of molecular hydrogen in the

representation of Eq. (6.1). The gate model circuit that performs this unitary mapping

is shown in the software section of Figure 6.1.

VQE solves for the parameter vector ~θ with a classical optimization routine. First,

one prepares an initial ansatz
∣∣∣ϕ(~θ0)

〉
and then estimates the ansatz energy E(~θ0) by

measuring the expectation values of each term in Eq. (6.1) and summing these values

together as

E(~θ) =
∑
γ

gγ

〈
ϕ(~θ)

∣∣∣Hγ

∣∣∣ϕ(~θ)
〉
, (6.4)

where the gγ are scalars and the Hγ are local Hamiltonians as in Eq. (6.1). The initial

guess ~θ0 and the corresponding objective value E(~θ0) are then fed to a classical greedy

minimization routine (e.g. gradient descent), which then suggests a new setting of the

parameters ~θ1. The energy E(~θ1) is then measured and returned to the classical outer

loop. This continues for m iterations until the energy converges to a minimum value

E(~θm) which represents the VQE approximation to E0.

Because our experiment requires only a single variational parameter, as in Eq. (6.3),

we elected to scan a thousand different values of θ ∈ [−π, π) in order to obtain expectation

values which define the entire energy landscape. We did this to simplify the classical

feedback routine but at the cost of needing slightly more experimental trials. These

expectation values are shown in Figure 6.2a and the corresponding energy surfaces at

different bond lengths are shown in Figure 6.2b. The energy surface in Figure 6.2b was

locally optimized at each bond length to emulate an on-the-fly implementation.

Figure 6.3a shows the exact and experimentally determined energies of molecular
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Figure 6.3: Computed H2 energy curve and errors. (a) Energy surface of molecular
hydrogen as determined by both VQE and PEA. VQE approach shows dissociation energy
error of (8± 5)× 10−4 Hartree (error bars on VQE data are smaller than markers). PEA
approach shows dissociation energy error of (1 ± 1) × 10−2 Hartree. (b) Errors in VQE
energy surface. Red dots show error in the experimentally determined energies. Green
diamonds show the error in the energies that would have been obtained experimentally by
running the circuit at the theoretically optimal θ instead of the experimentally optimal θ.
The discrepancy between blue and red dots is evidence for the robustness of VQE. The
gray band encloses the chemically accurate region relative to the experimental energy of
the atomized molecule. The dissociation energy is relative to the equilibrium geometry,
which falls within this envelope.

hydrogen at different bond lengths. The minimum energy bond length corresponds to

the equilibrium bond length, R = 0.741 Å, whereas the asymptote on the right part of

the curve corresponds to dissociation into two hydrogen atoms. The energy difference

between these points is the dissociation energy, and the exponential of this quantity

determines the chemical dissociation rate. Our VQE experiment correctly predicts this

quantity with an error of (8 ± 5) × 10−4 Hartree, which is below the chemical accuracy

threshold. Error bars are computed with Gaussian process regression [19] which inter-

polates the energy surface based on local errors from the shot-noise limited expectation

value measurements in Figure 6.2a.

Errors in our simulation as a function of R are shown in Figure 6.3b. The curve in

Figure 6.3b becomes nearly flat past R = 2.5 Å because the same angle is experimentally
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chosen for each R past this point. Note that the experimental energies are always greater

than or equal to the exact energies due to the variational principle. Figure 6.3b shows

that VQE has substantial robustness to systematic errors. While this possibility had been

previously hypothesized [79], we report the first experimental signature of robustness.

By performing (inefficient) classical simulations of the circuit in Figure 6.1, we identify

the theoretically optimal value of θ at each R. In fact, for this system, at every value

of R there exists θ such that E(θ) = E0. However, due to experimental error, the

theoretically optimal value of θ differs substantially from the experimentally optimal

value of θ. This can be seen in Figure 6.3b from the large discrepancy between the

green diamonds (experimental energy errors at theoretically optimal θ) and the red dots

(experimental energy errors at experimentally optimal θ). The experimental energy curve

at theoretically optimal θ shows an error in the dissociation energy of 1.1×10−2 Hartree,

which is more than an order of magnitude worse. One could anticipate this discrepancy

by looking at the raw data in Figure 6.2a which shows that the experimentally measured

expectation values deviate considerably from the predictions of theory. In a sense, the

green diamonds in Figure 6.3b show the performance of a non-variational algorithm,

which in theory gives the exact answer, but in practice fails due to systematic errors.

6.2 Phase estimation algorithm

We also report an experimental demonstration of the original quantum algorithm for

chemistry [2]. Similar to VQE, the first step of this algorithm is to prepare the system

register in a state having good overlap with the ground state of the Hamiltonian H. In

our case, we begin with the Hartree-Fock state, |φ〉. We then evolve this state under H

using a Trotterized approximation to the time-evolution operator. The execution of this

unitary is controlled on an ancilla initialized in the superposition state (|0〉 + |1〉)/
√

2.
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Figure 6.4: Hardware and software schematic of the Trotterized phase esti-
mation algorithm. (Hardware) a micrograph shows three Xmon transmon qubits and
microwave pulse sequences, including (i) the variable amplitude CZφ (not used in Fig-
ure 6.1) and (ii) dynamical decoupling pulses not shown in logical circuit. (Software)
state preparation includes putting the ancilla in a superposition state and compensating
for previously measured bits of the phase using the gate ZΦk (see text). The bulk of the
circuit is the evolution of the system under a Trotterized Hamiltonian controlled by the
ancilla. Bit jk is determined by a majority vote of the ancilla state over one thousand
repetitions.

The time-evolution operator can be approximated using Trotterization [121] as

e−iHt = e−it
∑
γ gγHγ ≈ UTrot(t) ≡

(∏
γ

e−igγHγt/ρ

)ρ

(6.5)

where the Hγ are local Hamiltonians as in Eq. (6.1) and the error in this approximation

depends linearly on the time step ρ−1 [121]. Application of the propagator induces a

phase on the system register so that

e−iHt|φ〉 =

(∑
n

e−iEnt|n〉〈n|
)
|φ〉 =

∑
n

ane
−iEnt|n〉 (6.6)

where |n〉 are eigenstates of the Hamiltonian such that H|n〉 = En|n〉 and an = 〈n|φ〉.

By controlling this evolution on the ancilla superposition state, one entangles the system
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register with the ancilla. Accordingly, by measuring the phase between the |0〉 state and

|1〉 state of the ancilla, one measures the phase Ent and collapses the system register to

the state |n〉 with probability |an|2.

Our PEA implementation is based on a modification of Kitaev’s iterative phase es-

timation algorithm [136, 60]. The circuit used is shown in Figure 6.4 and detailed de-

scriptions of the subroutines used to control UTrot(2
kt0) on an ancilla are shown in Ap-

pendix E.3. The rotation ZΦ(k) in Figure 6.4 feeds back classical information from the

prior k − 1 measurements using phase kickback as

Φ (k) = π
k−1∑
`=0

j`
2`−k+1

. (6.7)

With iterative phase estimation, one measures the phase accumulated on the system

one bit at a time. Even when a0 is very small, one can use iterative phase estimation to

measure eigenvalues if the system register remains coherent throughout the entire phase

determination. Since the Hartree-Fock state has strong overlap with the ground state of

molecular hydrogen (i.e. |〈0|φ〉|2 > 0.5) we were able to measure each bit independently

with a majority-voting scheme, reducing coherence requirements. For b bits, the ground

state energy is digitally computed as a binary expansion of the measurement outcomes,

Eb
0 = − π

t0

b−1∑
k=0

jk
2k+1

. (6.8)

Experimentally computed energies are plotted alongside VQE results in Figure 6.3a.

Because energies are measured digitally in iterative phase estimation, the experimentally

determined PEA energies in Figure 6.3a agree exactly with theoretical simulations of Fig-

ure 6.4, which differ from the exact energies due to the approximation of Eq. (6.5). The

primary difficulty of the PEA experiment is that the controlled application of UTrot(2
kt0)

requires complex quantum circuitry and long coherent evolutions. Accordingly, we ap-
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proximated the propagator in Eq. (6.5) using a single Trotter step (ρ = 1), which is not

sufficient for chemical accuracy. Our PEA experiment shows an error in the dissociation

energy of (1± 1)× 10−2 Hartree.

In addition to taking only one Trotter step, we performed classical simulations of

the error in Eq. (6.5) under different orderings of the Hγ in order to find the optimal

Trotter sequences at each value of R. The Trotter sequences used in our experiment

as well as parameters such as t0 are reported in Appendix E.3. Since this optimization

is intractable for larger molecules, our PEA protocol benefited from inefficient classical

preprocessing (unlike our VQE implementation). Nevertheless, this is the first time the

canonical quantum algorithm for chemistry has been executed in its entirety and as such,

represents a significant step towards scalable implementations.

6.3 Experimental Methods

Both algorithms are implemented with a superconducting quantum system based on

the Xmon [10], a variant of the planar transmon qubit [63], in a dilution refrigerator

with a base temperature of 20 mK. Each qubit consists of a SQUID (superconducting

quantum interference device), which provides a tunable nonlinear inductance, and a large

X-shaped capacitor; qubit frequencies are tunable up to 6 GHz and have a nonlinearity of

(ω21−ω10) = −0.22 GHz. The qubits are capacitively coupled to their nearest neighbors

in a linear chain pattern, with coupling strengths of 30 MHz. Single-qubit quantum gates

are implemented with microwave pulses and tuned using closed-loop optimization with

randomized benchmarking [57]. Qubit state measurement is performed in a dispersive

readout scheme with capacitively coupled resonators at 6.6-6.8 GHz [58]. For details of

the device fabrication and conventions for reporting qubit parameters, see [58].

Our entangling operation is a controlled-phase (CZφ) gate, accomplished by holding
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one of the qubits at a fixed frequency while adiabatically tuning the other close to an

avoided level crossing of the |11〉 and |02〉 states [11]. To produce the correct phase

change φ, the acquired phase is measured with quantum state tomography versus the

amplitude of the trajectory, and the amplitude for any given φ is then determined via

interpolation [12]. To minimize leakage out of the computation subspace during this

operation, we increase the gate duration from the previously used 40 ns to 50 ns, and

then shape the pulse trajectory. The CZφ gate as implemented here has a range of

approximately 0.25 to 5.0 rad; for smaller values of φ, parasitic interactions with other

qubits become nontrivial, and for larger φ, leakage is significant. For φ outside this range,

the total rotation is accomplished with two physical gates. For CZφ gates with φ = π, the

amplitude and shape of the trajectory are further optimized with ORBIT [57]. CZφ 6=π is

only necessary in the PEA experiment (see Appendix E.3).

The gates used to implement both VQE and PEA are shown in Appendix E.2 and

Appendix E.3, respectively. A single VQE sequence consists of 11 single-qubit gates and

two CZπ gates. A PEA sequence has at least 51 single-qubit gates, four CZφ 6=π gates,

and ten CZπ gates; more were required when not all φ values are within the range that

could be performed with a single physical gate.

6.4 Conclusion

We report the use of quantum hardware to experimentally compute the energy landscape

of molecular hydrogen using both PEA and VQE. We perform the first experimental

implementation of the Trotterized molecular time-evolution operator and then measure

energies using PEA. Due to the costly nature of Trotterization, we are able to implement

only a single Trotter step, which is not enough to achieve chemical accuracy. By contrast,

our VQE experiment achieves chemical accuracy and shows significant robustness to
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certain types of error.

The robustness of VQE is partially a consequence of the adaptive nature of the algo-

rithm; the classical outer loop of VQE helps to avoid systematic errors by acting similarly

to the calibration loops used to tune individual quantum gates [57]. This minimization

procedure treats the energy functional as a black box in that no assumptions are made

about the actual circuit ansatz being implemented. Thus, VQE seeks to find the opti-

mal parameters in a fashion that is blind to control errors, such as pulse imperfection,

crosstalk and stray coupling in the device. We observe a remarkable increase in precision

by using the experimentally optimal parameters rather than the theoretically optimal

parameters. This finding inspires hope that VQE may provide solutions to classically

intractable problems even without error correction. Additionally, these results moti-

vate future experiments which take “sublogical” hardware calibration parameters, e.g.

microwave pulse shapes, as variational parameters.
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Appendix A

Perturbative treatment of the Xmon

Hamiltonian

Here we give a brief derivation of Eq. (2.9) by treating the Xmon as a first-order pertur-

bation of an LC oscillator.

The Hamiltonian of the Xmon simply consists of the energies of the capacitor and

Josephson junction,

H =
Q̂2

2C
− EJ cos(2πΦ̂/Φ0), (A.1)

where C is the total capacitance, the junction energy EJ = I0Φ0/2π, I0 is the junction

critical current, and Φ0 is the magnetic flux quantum. The conjugate variables Q̂ (charge)

and Φ̂ (flux) have the commutation relation [Φ̂, Q̂] = i~. It is common to write the

Hamiltonian in terms of the number of Cooper pairs that have tunneled through the

junction, n̂ = Q̂/2e (e being the electron charge),

H = 4Ecn̂
2 − EJ cos(δ̂), (A.2)

where we have also defined the capacitor energy EC = e2/2C and δ̂ = 2πΦ̂/Φ0. In the
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standard Xmon regime, EJ/EC � 1, and we expand cosine to fourth power,

H = 4Ecn
2 − EJ(1− δ2/2 + δ4/24 + · · · ). (A.3)

We can now treat H = 4Ecn̂
2 + EJ δ̂

2/2 as a standard harmonic oscillator Hamiltonian

with a perturbing term H1 = −EJ
24
δ̂4. The solution to the harmonic oscillator is well

known; see [100] for a standard treatment, or Appendix B of [101] for a particularly

clear statement of the results, which we now use. The (unperturbed) frequency of the

oscillator fp is

fp =
√

8EJEC/~ =
√

8fJfC =
1

2π

√
1

LJC
, (A.4)

where we introduce fJ and fC as the junction and capacitor energies in frequency units,

and for the last equality we introduce the Josephson inductance LJ = Φ0/2πI0. We can

write δ̂ and H1 in terms of the harmonic oscillator’s raising and lowering operators,

δ̂ =

(
8EC
EJ

)1/4
a+ a†√

2
(A.5)

H1 = −EC
12

(a+ a†)4, (A.6)

which allows us to solve for the energy shifts with first-order perturbation theory, E
(1)
n =〈

n(0)
∣∣H1

∣∣n(0)
〉

(remembering, of course, that [a, a†] 6= 0 when expanding the to the fourth

power). This results in the level shifts δE
(1)
0 = −EC/4 and δE

(1)
1 = −5EC/4, leaving us

with

f10 = fp − fC . (A.7)

We now consider the fact that the Josephson junction is actually a SQUID, with a

tunable inductance LJ(Φ) = LJ0/ cos(πΦ/Φ0), where Φ is the flux through the SQUID
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loop. Switching LJ → LJ(Φ) in Eq. (A.4) and inserting that into Eq. (A.7), we have

f10(Φ) =
1

2π
√
LJ0C

√
cos

πΦ

Φ0

− fC =
√

8fJfC

√
cos

πΦ

Φ0

− fC , (A.8)

which is Eq. (2.9).
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Appendix B

Spectral density of phase noise

In this appendix, we state several results useful for calculating the impact of dephasing

sources on typical dephasing measurements. These have all been previously derived; for

details, see chapter 3 of [31], [76], and [23].

We first note that the spectral density we use S(f) is one-sided and the frequency

is given in Hertz (not radians). In the most general case, the mean-squared phase noise

〈φ2(t)〉 is related to the spectral density Sλ(f) of a noise source λ by1

〈φ2(t)〉 =

(
2π
df10

dλ

)2
∞∫

0

dfSλ(f)W (f, t), (B.1)

where df10/dλ is the sensitivity of the qubit frequency to the noise source λ, andW (f, t) is

a spectral weight function, which accounts for the sensitivity of the particular experiment

to different ranges of frequency noise. For an experiment sensitive to the full noise

spectrum (for example, a Ramsey or RB Ramsey experiment), the weight function is

W0(f, t) =
sin2(πft)

(πf)2 . (B.2)

1This is essentially an example of the Wiener-Khinchin theorem.
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For a spin echo sequence (a single additional π pulse at time t/2), the spectral weight

is given by

WSE(f, t) = tan2

(
πft

2

)
sin2(πft)

(πf)2 . (B.3)

As expected, noise at DC is eliminated and low-frequency noise suppressed by the tangent

term. With additional echoing pulses, the low-frequency noise is further suppressed.

The exact form of W depends on the exact implementation of the pulse sequence; the

supplement of [23] presents one methodology to calculate it. An example given in [76],

for a (2N + 1)-pulse spin echo sequence, is

WSEN(f, t) = tan2

(
πft

2N

)
sin2(πft)

(πf)2 . (B.4)

The noise sensitivity peaks at f = N/t; [23] uses this fact to perform noise spectroscopy

by varying the number of pulses.

Finally, for a Rabi experiment with Rabi frequency fr, the spectral weight function

is given by

WR(f, t) =

(
frf

f 2
r − f 2

)2
sin2(πft)

(πf)2 . (B.5)

Again the noise sensitivity peaks at a particular frequency, fr; this is used for spec-

troscopy in [141].

We now consider different forms of the noise spectrum, Sλ(f). For white noise,

Sλ(f) = Sλ,0. Using this and Eq. (B.2) to integrate Eq. (B.1), we compute the sen-

sitivity of a Ramsey experiment to white noise:

〈φ2(t)〉 =

(
2π
df10

dλ

)2
Sλ,0

2
, (B.6)

which is Eq. (2.5). We also note that the same expression holds for echo sequences with

a spectral weight given by Eq. (B.3).

For noise that is correlated over a long timescale, the spectral density is Sf (f) =
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2σ2
qbδ(f), where σqb is the standard deviation of the qubit frequency. This is the case

for very slowly varying qubit frequency; it can be thought of as varying only between

repetitions of the experiment. Again using Eq. (B.2) and Eq. (B.1), we find

〈φ2(t)〉 = σ2
qbt

2. (B.7)

Similarly, for 1/f noise, the frequency spectrum Sλ(f) = S1/f,λ/f gives

〈φ2(t)〉 =

(
2π
df10

dλ

)2

S1/f,λ t
2 ln

0.4007

fct
, (B.8)

where we now introduce a low-frequency cutoff fc because the integral diverges as fc →

0. The divergence, though, is logarithmic, meaning that the exact value of fc is not

important; typically the inverse of the total experimental time is used. For the same

reason, the logarithmic part of Eq. (B.8) is frequently ignored altogether, and Eq. (B.7)

is used instead. For a spin echo sequence, the dephasing from 1/f noise is given by

〈φ2(t)〉 =

(
2π
df10

dλ

)2

S1/f,λ t
2 ln 2. (B.9)

The value of the logarithmic factor can vary between the Ramsey and the spin echo case

by more than an order of magnitude.

For telegraph noise, the spectral density is given by

Sf (f) =
4(2π∆f)2Γ↑Γ↓

ΓΣ((2πf)2 + Γ2
Σ)
, (B.10)

where ∆f is the magnitude of the switching, Γ↑ and Γ↓ are the up and down switching

rates, and ΓΣ = Γ↑ + Γ↓. Now using Eq. (2.4), we find

〈φ2(t)〉 = 2
(2π∆f)2

ΓΣ

Γ↑Γ↓
Γ2

Σ

(
t− 1− exp(−ΓΣt)

ΓΣ

)
. (B.11)

At short times (t � Γ−1
Σ ), Eq. (B.11) reduces to that of correlated noise with Tφ2 =

ΓΣ/(
√

2Γ↑Γ↓π∆f); when the experimental duration is less than the switching timescale,

the noise becomes just a constant offset from the average frequency. Similarly, for times
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much greater than the switching timescale, telegraph noise looks like white noise; and as

expected, for t� Γ−1
Σ we see Tφ1 = Γ3

Σ/[Γ↑Γ↓(2π∆f)2]. For simplicity, if we assume that

Γ↑ = Γ↓, and let the effective switching amplitude ∆f10 = 2∆f
√

Γ↑Γ↓/ΓΣ, we get

〈φ2(t)〉 = (2π∆f10)2Ts[t− Ts(1− e−t/Ts)], (B.12)

where Ts = 1/ΓΣ is the switching timescale, which is Eq. (2.8). Finally, for a spin echo

sequence, the dephasing due to telegraph noise is

〈φ2(t)〉 = 2
(2π∆f)2

ΓΣ

Γ↑Γ↓
Γ2

Σ

(
t− 3 + exp(−ΓΣ t)− 4 exp(−ΓΣ t/2)

ΓΣ

)
. (B.13)

Finally, we will now give a brief derivation of the Ramsey visibility in terms of 〈φ2(t)〉,

Eq. (2.2). For a single Ramsey experiment, the expected value is V0 = exp(iφ), where

here φ is the deviation of the phase from the mean value. Assuming Gaussian noise, and

using 〈φ〉 = 0, we have

〈eiφ〉 = 〈1 + iφ− φ2/2 + . . .〉

= 1− (1/2)〈φ2〉+ . . .

= e−〈φ
2〉/2.

(B.14)

In the case that 〈φ2(t)〉 is described by white or correlated noise, we therefore have

V (t) = e−t/Tφ1 or V (t) = e−(t/Tφ2)2
, analogous to the T1 of energy relaxation.
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Appendix C

Ramsey Tomography Oscilloscope

data processing

In this appendix we describe the data processing used to extract the frequency noise

power spectrum from the time series f10(t).

Prior to computing the power spectral density (PSD), we pre-process the time series

f10(t). First, the mean is subtracted. The time series data are taken at regular intervals

with time step ts. Occasionally during the data taking irregular software lag causes a the

system to be unable to maintain this spacing; in this case a single data point is skipped.

The second pre-processing step is filling in the skipped data points with 0. This may

slightly reduce the measured noise, but the fraction of missed data points is typically

about 0.1%, so the inaccuracy introduced is less than what would result from taking the

discrete Fourier transform of unevenly spaced data. Due to the long durations of these

scans—8 hours or greater—sometimes it is necessary to truncate the beginning or end of

the time series if there was an interfering event that caused the sample temperature to

fluctuate1.

1Typically someone will fill cryogens in the refrigerator without knowing an experiment is underway.
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The PSD is then computed by taking the real, discrete Fourier transform of the time

series2, squaring it, and normalizing by multiplying by 2tsn, where n is the number of

points in the time series. The PSD is then averaged by binning in log space; the data

shown in Chapter 3 use 100 bins logarithmically spaced from 10−4 Hz to 1 Hz. We use the

same binning across all datasets so they may be easily averaged together and compared.

This is the PSD of the frequency noise, Sf (f), used in Section 3.1.

For completeness, we also note that the fits to Eq. (3.1) were done using the binned

data with the standard least-squares method, with each bin weighted logarithmically so

that each frequency decade contributes equally to the fit. Finally, when averaging PSDs

from multiple RTO datasets, the highest and lowest frequency bins are dropped if not

all constituent PSDs contributed to them (if, for example, the datasets were of different

total length or ts).

2Specifically, we use the fft.rfft function of the numpy Python library, which, depending on the
specific installation, typically uses a C or FORTRAN library such as FFTPACK.
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Appendix D

Appendices for Chapter 4

D.1 Theoretical relation of RB error to 〈φ2〉

In order to determine the effect of various dephasing mechanisms on an RB sequence,

we first consider the following simplified model: a single qubit begins in |ψ0〉 = |0〉,

then a randomly chosen perfect Clifford rotation C1 is applied, and then a phase φg,n

is accumulated by application of a Z rotation to simulate phase noise. The random

Clifford and noise gate pair are repeated N times, after which the single Clifford Cr that

is the inverse of all the previous Cliffords is applied to rotate back to (nearly) |0〉 and we

measure the probability of error, Perr = |〈1|ψN〉|2.

The value of φg,n depends on the dephasing model employed. For example, for static

dephasing (e.g., a frequency offset), it is constant: φg,n = φg,st. For white noise, φg,n is

randomly sampled from a symmetric Gaussian distribution. In general, φg,n is arbitrary,

but we assume |φg,n| � 1. The average square of φg,n is denoted 〈φ2
g〉.

We now consider the “error angle”, ∆φ, the angular separation of |ψN〉 from |0〉 in the

Bloch sphere picture of a single qubit, noting that Perr = 〈(∆φ/2)2〉, assuming |∆φ| � 1.

Because |φg,n| � 1 and N is not too large, after each rotation |ψ〉 is close to one of the
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six axes (±X,±Y,±Z), and the angular distance from the axis is ∆φ. There is a 1/3

chance that the qubit is near the pole (i.e., Z axis) and then the rotation φg,n does not

change ∆φ, while with 2/3 probability the qubit is near the equator and ∆φ is changed.

For any dephasing model, it is straightforward to see that the evolution of ∆φ is

essentially a random walk in two dimensions, and that

〈(∆φ)2〉 =
2

3
N〈φ2

g〉, (D.1)

assuming N〈φ2
g〉 � 1. The RB error is then

Perr = 〈(∆φ/2)2〉 =
1

6
N〈φ2

g〉. (D.2)

It might be expected that in the static dephasing case—when there are correlated

phase contributions—there can be some sort of echoing effect; for example, if a Clifford

takes |ψ〉 to the +Y axis and it is rotated by φg,st, then if the next Clifford is an X

rotation, putting |ψ〉 near the -Y axis, the following rotation also by φg,st will cancel the

previous noise rotation. However, when the full set of Clifford rotations is used, there

are four rotations that take |ψ〉 near the -Y axis, and each orients the previous ∆φ in

a different direction relative to the axis, resulting in equal probability of canceling the

previous rotation, doubling it, or moving in one of the two perpendicular directions. The

noise accumulated between rotations is therefore uncorrelated with previous or future

noise; the Clifford set is error depolarizing. Therefore, Eq. (D.1) and Eq. (D.2) hold

regardless of the noise model.

This simplified model has been confirmed with simulation, for both a static and an

uncorrelated noise model with φg,n = ±φg.

This implies that RB is an effective way to measure dephasing, if the sequence error

occuring between the gates is attributable to dephasing. This can be done easily by

comparing the sequence fidelity of an RB sequence with interleaved idling time to that
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of a reference RB sequence, effectively subtracting out errors due to the Clifford gates

themselves—in other words, measuring the fidelity of an idle using interleaved RB, as in

[11]. We can therefore measure the dephasing that takes place during an idle, and by

varying the length τ of an idle, measure dephasing as a function of time, 〈φ2(τ)〉 (for

brevity we remove the subscript g). With rI(τ) being the error rate (i.e., error per gate)

of an idle, we thus arrive at Eq. (4.1):

Perr/N = rI(τ) =
1

6
〈φ2(τ)〉. (D.3)

For completeness, we also mention here the effect of energy relaxation (T1 decay)

on the fidelity of RB sequences. After each Clifford, the qubit state |ψ〉 is near the

equator of the Bloch sphere with probability 2/3. In this case the probability of the

energy relaxation event is τ/2T1 (we assume τ � T1); such an event moves |ψ〉 by

approximately the angle π/2 on the Bloch sphere, thus leading to the error probability

1/2 at the end of the RB sequence. The corresponding contribution to the RB error per

gate is (2/3) × (τ/2T1) × (1/2) = τ/6T1. With probability 1/6 the qubit state after a

Clifford is close to the North pole (state |0〉); then there is no energy relaxation. Finally,

with probability 1/6 the qubit state is close to the South pole |1〉; then the probability

of the energy relaxation event is τ/T1, which moves the state by approximately the angle

π, thus almost certainly leading to the RB error. The corresponding contribution to the

RB error per gate is (1/6)× (τ/T1)× 1 = τ/6T1. Adding together the two contributions,

we arrive at

Perr/N =
τ

3T1

. (D.4)

Since T1 can be measured independently, the effects of T1 decay can be calculated

and subtracted from the results obtained with RB, much as it can be subtracted from

Ramsey visibility decays as well. In our experiment T1 is relatively large, and therefore
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this correction is small.

D.2 Types of phase noise

We now discuss the form of 〈φ2(τ)〉 for different sources of noise. For completeness, we

also show the similar characteristic, 〈φ̃2(τ)〉, for the echo sequence of duration τ (with

π pulse at τ/2). Most of results discussed here were presented earlier, e.g., in Refs.

[31, 76, 140].

The average values 〈φ2(τ)〉 and 〈φ̃2(τ)〉 for the idle and echo sequence, respectively,

can be calculated via the spectral density S(ω) of the qubit frequency fluctuation,

〈φ2(τ)〉 = τ 2

∫ ∞
0

S(ω)

(
sin(ωτ/2)

ωτ/2

)2
dω

2π
, (D.5)

〈φ̃2(τ)〉 = τ 2

∫ ∞
0

S(ω)
sin4(ωτ/4)

(ωτ/4)2

dω

2π
, (D.6)

where S(ω) is single-sided and the average frequency fluctuation is assumed to be zero.

For the white noise with a flat spectral density, S(ω) = S0, we find

〈φ2
white(τ)〉 = 〈φ̃2

white(τ)〉 =
S0

2
τ = 2

τ

Tφ1

, (D.7)

where Tφ1 = 4/S0 is the dephasing time due to white noise. Note that the factor of

2 in the last expression cancels when the corresponding visibility of a Ramsey or echo

sequence, exp(−τ/Tφ1), is calculated.

For noise that is correlated over very long times (very slowly fluctuating qubit fre-

quency), S(ω) = 4πσ2
qbδ(ω), where σqb is the standard deviation of the qubit frequency

2πf10. In this case

〈φ2
corr(τ)〉 = σ2

qbτ
2 = 2

(
τ

Tφ2

)2

, 〈φ̃2
corr(τ)〉 = 0, (D.8)

where Tφ2 =
√

2/σqb is the Ramsey dephasing timescale due to such correlated noise.
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Obviously, in this case there is no dephasing in the echo sequence visibility.

For 1/f noise let us use S(ω) =
S1/f

ω/2π
, then [76, 140]

〈φ2
1/f (τ)〉 = S1/f τ

2 ln
0.4007

fcτ
, (D.9)

〈φ̃2
1/f (τ)〉 = S1/f τ

2 ln 2, (D.10)

where fc = ωc/2π is the low-frequency cutoff of the 1/f noise (e.g., the inverse of the

total duration of the experiment), which is introduced as the lower limit of integration

in Eq. (D.5). Note that in Eq. (D.9) we assumed fcτ . 0.2. As the log part in Eq. (D.9)

varies slowly, typically it is ignored and 1/f noise for 〈φ2(τ)〉 is treated with Eq. (D.8).

Note that the factors in Eq. (D.9) and (D.10) are different, resulting in different effective

dephasing times Tφ2 for the Ramsey and echo sequences.

Finally, let us consider a telegraph noise, for which the qubit frequency 2πf10 switches

between two values separated by ∆ωqb, with up (down) switching rate of Γ↑ (Γ↓). In this

case

S(ω) =
4(∆ωqb)

2Γ↑Γ↓
ΓΣ(ω2 + Γ2

Σ)
, ΓΣ = Γ↑ + Γ↓, (D.11)

so using Eqs. (D.5) and (D.6) we obtain

〈φ2
tel(τ)〉 = 2

(∆ωqb)
2

ΓΣ

Γ↑Γ↓
Γ2

Σ

(
τ − 1− e−ΓΣτ

ΓΣ

)
, (D.12)

〈φ̃2
tel(τ)〉 = 2

(∆ωqb)
2

ΓΣ

Γ↑Γ↓
Γ2

Σ

(
τ − 3 + e−ΓΣτ − 4e−ΓΣτ/2

ΓΣ

)
. (D.13)

Note that at short time, τ � Γ−1
Σ , the effect of the telegraph noise is similar to the effect

of the correlated noise with Tφ2 =
√

2 ΓΣ/(
√

Γ↑Γ↓∆ωqb), while at long time, τ � Γ−1
Σ it

is similar to the effect of white noise with Tφ1 = Γ3
Σ/[Γ↑Γ↓(∆ωqb)

2].

Defining the effective switching amplitude as 2π∆f10 = 2∆ωqb
√

Γ↑Γ↓/ΓΣ and intro-
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ducing notation Tsw = 1/ΓΣ, we can rewrite Eq. (D.12) as

〈φ2
tel(τ)〉 = (2π∆f10)2Tsw[τ − Tsw(1− e−τ/Tsw)], (D.14)

which is Eq. (4.2). In the case where Γ↑ = Γ↓, as we have assumed, 2π∆f10 provides a

lower bound on ∆ωqb. Note that the telegraph noise in not Gaussian. Therefore, while

the obtained equations can be used to find the RB error per gate, they cannot, strictly

speaking, be used to find the visibility of the standard Ramsey and echo sequences.

Nevertheless, they can be used approximately if |∆ωqb|/min(Γ↑,Γ↓) � 1, because at

short time the accumulated phase shift is small and the assumption of Gaussianity is not

needed, while at longer time, when the phase becomes comparable to 1, the probability

distribution for the phase becomes Gaussian due to a large number of switching events.

D.3 T1, Ramsey, and spin echo fits

The T1 data are fit to a simple exponential, P1(t) = A exp(t/T1) + B, and we find

T1 = 26.7µs. The Ramsey and spin scho envelopes are each fit to a noise model that

includes white and correlated components,

V (t) = A exp
[
−t/Tφ1 − (t/Tφ2)2

]
+B, (D.15)

where V (t) is the Ramsey/echo visibility, t is the length of the idle as shown in Fig-

ure 4.1, Tφ1 is the white noise dephasing timescale, Tφ2 is the correlated noise dephasing

timescale, and A and B are the result of state preparation and measurement errors. The

fit parameters are given below. Note that each of the fits includes the full range of data,

from 0 < t < 5.0µs for Ramsey and 0 < t < 12.0µs for Echo.
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Table D.1: Ramsey and spin-echo fit parameters.

Sequence Tφ1 (µs) Tφ2 (µs) A B
Ramsey 6.8 2.8 0.88 0.015

Spin echo 15.1 7.5 0.88 0.021

D.4 Flux noise

Flux noise on this device, plotted in Figure D.1, has been measured over the frequency

range 10−4 < f < 1 Hz, using the Ramsey Tomography Oscilloscope (RTO) protocol

of repeated frequency measurements as described in [102]. Four measurements were

made on this device (open markers), at three different operating points, and then each

measurement was binned in log-space, and the binned measurements averaged together

(closed squares). This average is fit (solid line) to an aliased 1/f and white noise model,

given by

Sφ(f) = S∗φ/f
α + S∗φ/(2fn − f)α + Swhite, (D.16)

where Sφ(f) is the flux noise power, expressed in (µΦ0)2/Hz, f is the noise frequency,

α is the slope of the noise (1 for pure 1/f noise), S∗φ is the flux noise power at 1 Hz,

fn = 1 Hz is the Nyquist frequency of the measurement, and Swhite is the white noise

floor. From the fit we extract S∗φ = 2.4 (µΦ0)2, α = 0.99, and Swhite = 9.7 (µΦ0)2/Hz.

We attribute the white noise to state preparation and measurement error. The dashed

line shows the 1/f fit extended to 1 Hz, where the value of the y-intercept is S∗φ.

To plot the inferred flux noise contribution in Figure 4.2 and Figure D.2 below, we

use Eq. (D.9), with S1/f = ∂f/∂φ · S∗φ taken from the measurements above, and fc = 10

min, the length of the experiment. The value of the log factor of Eq. (D.9) varies from

13 to 7 for 1 < τ < 450 ns.

This analysis assumes that the low frequency flux noise measured here can be ex-

82



trapolated to high frequencies. In Figure 4.2, however, we see that this calculation

underestimates the amount of high frequency noise, and furthermore, that the noise is

telegraph in nature, not 1/f .

Figure D.1: Flux noise as measured with RTO [102]
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Figure D.2: (color online) RB Ramsey idling error vs. duration, for various frequencies;
T1 effects have been subtracted according to Eq. (D.4). The dashed lines denote the
inferred contribution from 1/f flux noise at the four different operating points. The inset
shows frequency spectroscopy vs. applied flux, following the expected dependence [63];
the four operating points are shown.
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Table D.2: Telegraph fit parameters.

f10 df/dΦ T1 (µs) Tφ1 (µs) Tsw (ns) ∆f10 (kHz)
(GHz) (GHz/Φ0)

5.1 3.39 30.6 20.6 182000 184
4.9 4.81 26.7 - 84 479
4.5 6.95 31.3 12.4 98 484
4.0 9.23 36.2 15.5 263 469

D.5 RB Ramsey across the qubit spectrum

Figure D.2 shows RB Ramsey measurements at three additional qubit frequencies; the

data for the 4.9 GHz operating point are the same as in Figure 4.2. The inset shows

the frequency-flux relation for this qubit, with the four operating points denoted by

symbols; df/dφ changes by a factor of 2.7 between the operating points, to explore

different susceptibilities to flux noise. The remaining three datasets are fit to a noise

model incorporating telegraph and white noise; that is,

rI(τ) =
1

6

(
〈φ2

tel(τ)〉+ 〈φ2
white(τ)〉

)
(D.17)

[see Eqs. (D.7) and (D.14)]. We show the fit parameters here. We note that at the highest

qubit frequency, the large Tsw indicates that the telegraph noise model is not needed here

and can be replaced by the correlated noise model with Tφ2 =
√

2/[2π∆f10] = 1.2µs. The

Ramsey data for this frequency, fit to Eq. (D.15), give Tφ1 = 10.7µs and Tφ2 = 3.6µs,

which indicates that even though the telegraph dephasing source is not present at this

operating point, the dephasing magnitude measured by Ramsey still does not match that

found with RB.

Despite tuning the flux Φ/Φ0 over most of its range, we find that 1/f noise does

not contribute appreciably to gate errors. For typical gates of length 20ns, idle fidelities

greater than 0.999 are seen over the frequency range, demonstrating that tunable qubits
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can achieve high fidelity even when biased significantly away from the flux-insensitive

operating point.

D.6 Charge noise

To calculate the expected frequency fluctuation due to charge noise, we use Eq. (2.5)

from [63]

εm ' (−1)mEC
24m+5

m!

√
2

π

(
EJ

2EC

)m
2

+ 3
4

e−
√

8EJ/EC , (D.18)

where εm is the charge dispersion for energy level m, and EJ and EC are the Joseph-

son energy and charging energy, respectively, of the qubit. Note that we can also write

EJ/EC ≈ (ω01/η − 1)2 /8 (following from Eq. (2.11)), where ω01/2π is the qubit fre-

quency and the qubit anharmonicity f12 − f01 = η/2π = −215 MHz. We then calculate

ε1 for the two ends of the qubit spectrum; we find ε1(ω01/2π = 6 GHz) = 3.6 Hz and

ε1(ω01/2π = 4 GHz) = 14.4 kHz, both of which are far below the measured charge noise

fluctuation frequency of ≈ 500 kHz. We also note the qubits used in Ref. [96] have charge

noise fluctuations of the same order as the telegraph noise measured here, but charge noise

of that magnitude is expected, as explained by the different parameter range of those

qubits: ω01/2π = 4.387 GHz and η/2π = −334 MHz, giving ε1 ≈ 2 MHz.

D.7 Calculation of ΩZZ

Two capacitively coupled qubits have an XX-type coupling of the form g(|01〉〈10| +

|10〉〈01|), where the coupling constant g is half the swap rate between the qubits. The

interaction between the higher levels,
√

2g(|11〉〈20|+ |02〉〈11|)+
√

2g(|11〉〈20|+ |02〉〈11|),

results in a repulsion of the |11〉 level from the |02〉 and |20〉 levels; this energy shift in the

|11〉 level produces a ZZ-type interaction between the qubits. In the far-detuned limit,
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neglecting the XX-coupling, the two-qubit Hamiltonian becomes

H = ω1|10〉〈10|+ ω2|01〉〈01|

+ (ω1 + ω2 + ΩZZ) |11〉〈11|, (D.19)

ΩZZ =
2g2

∆− η2

+
2g2

−∆− η1

, (D.20)

where ωn and ηn are the qubit frequencies and nonlinearities, respectively, and ∆ =

ω1 − ω2. In our system, η1 = η2 ≡ η, giving

ΩZZ =
4g2η

∆2 − η2
. (D.21)

When both qubits are simultaneously performing an RB sequence, phase error φ per

idle gate in qubit A is

φ = ±ΩZZ

2
tgate (D.22)

where tgate is the idle gate duration, and the frequency shift ±ΩZZ/2 assumes centering

the qubit frequency. This gives 〈φ2〉 = (ΩZZtgate)
2/4, and since for RB the error per gate

is E = 〈φ2〉/6 [see Eq. (D.3)], we arrive at Eq. (4.5) for the error per gate due to the ΩZZ

interaction,

E =
π2

6

(
ΩZZ

2π
tgate

)2

. (D.23)
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Table D.3: Gate error fit parameters

Gate Linear Term Quadratic Term
(10−6 error/ns) (10−6 error/ns2)

I 17 0.22
XX 20 -
Z 24 0.18
Y X 22 -

D.8 Fits to gate errors in Figure 4.4

For the data in the Figure 4.4, the fits are made either to a simple linear model in the

case of Markovian noise (the XX and Y X cases) or to a quadratic and linear model

in the case of non-Markovian noise (the I and Z cases). There is no offset in any fit.

Note that the contribution from T1 = 26.7µs to the linear portion of the error, given by

Eq. (D.4), is 9.3× 10−6 error/ns, or roughly half of the error measured. The remainder

is equivalent to a white noise dephasing with time constant Twhite ≈ 30µs, according to

Eqs. D.3 and D.7. The quadratic terms correspond with Tφ2 ≈ 1µs.
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D.9 Telegraph noise measured in other devices
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Figure D.3: Telegraph noise measured with RB Ramsey in other devices. All fits in-
cluded T1 and telegraph noise only (Eq. (4.4)). (a) A reproduction of Figure 4.2 data
for reference. (b) Measurement of another Xmon on the same chip as the device. (c)
Measurement of an Xmon qubit from another sample; see [11] for device details. (d)
Measurement of a gmon qubit; see [98] for device details.

Telegraph noise has been observed in many other devices. In Figure D.3, we present

RB Ramsey measurements of three other devices that show telegraph noise, with the

data from Figure 4.2 reproduced for reference (a); one is another device on the same chip

(b), one another Xmon with different parameters [11] (c), and the last a gmon qubit [98]

(d). All fits were to T1 and telegraph noise only, Eq. (4.4), with fit parameters given in
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Table D.4: Fits for telegraph noise measured in other devices (Figure D.3); see text and
references for sample details.

Sample f10 df/dΦ T1 Tsw ∆f10 Device
(see text) (GHz) (GHz/Φ0) (µs) (ns) (kHz) Details

a 4.9 4.81 26.7 84 479 q2 of [58]
b 4.8 5.36 15.7 183 274 q0 of [58]
c 5.5 3.96 22.2 201 199 q2 of [11]
d 4.9 6.62 15.7 32 528 q1 of [98]

Table D.4.

90



Appendix E

Appendices for Chapter 5

E.1 The electronic structure problem

The central problem of quantum chemistry is to compute the lowest energy eigenvalue

of the molecular electronic structure Hamiltonian. The eigenstates of this Hamiltonian

determine almost all of the properties of interest in a molecule or material, and as the

gap between the ground and first excited state is often much smaller than the thermal

energy at room temperature, the ground state is of particular interest. To arrive at the

standard form of this Hamiltonian used in quantum computation, one begins from a

collection of nuclear charges Zi and a number of electrons in the system N for which the

corresponding Hamiltonian is written

H = −
∑
i

∇2
Ri

2Mi

−
∑
i

∇2
ri

2
−
∑
i,j

Zi
|Ri − rj|

+
∑
i,j>i

ZiZj
|Ri −Rj|

+
∑
i,j>i

1

|ri − rj|
(E.1)

where the positions, masses, and charges of the nuclei are Ri,Mi, Zi, and the positions of

the electrons are ri. Here, the Hamiltonian is in atomic units of energy known as Hartree.
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One Hartree is ~2/mee
2a2

0 (630 kcal/mol or 27.2 eV) where me, e and a0 denote the mass

of an electron, charge of an electron and Bohr radius, respectively.

This form of the Hamiltonian and its real-space discretization are often referred to

as the first quantized formulation of quantum chemistry. Several approaches have been

developed for treating this form of the problem on a quantum computer [55]; however,

the focus of this work is the second quantized formulation. To reach the second quantized

formulation, one typically first approximates the nuclei as fixed classical point charges

under the Born-Oppenhemier approximation, chooses a basis φi in which to represent

the wavefunction, and enforces anti-symmetry with the fermion creation and annihilation

operators a†i and aj to give

H =
∑
pq

hpqa
†
paq +

∑
pqrs

hpqrsa
†
pa
†
qaras (E.2)

with

hpq =

∫
dσ φ∗p(σ)

(
∇2
r

2
−
∑
i

Zi
|Ri − r|

)
φq(σ) (E.3)

hpqrs =

∫
dσ1 dσ2

φ∗p(σ1)φ∗q(σ2)φs(σ1)φr(σ2)

|r1 − r2|
(E.4)

where σi is now a spatial and spin coordinate with σi = (ri, si), and the standard anti-

commutation relations that determine the action of a†i and aj are {a†i , aj} = δij and

{a†i , a†j} = {ai, aj} = 0. Finally, the second quantized Hamiltonian must be mapped into

qubits for implementation on a quantum device. The most common mappings used for

this purpose are the Jordan-Wigner transformation [115] and the Bravyi-Kitaev trans-

formation [21, 106, 120].

Using the Bravyi-Kitaev transformation, the spin Hamiltonian for molecular hydrogen
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Figure E.1: A flowchart describing steps required to quantum compute molecular ener-
gies using both PEA and VQE.

in the minimal (STO-6G) basis, as reported in [106], is given by

H = f01 + f1Z0 + f2Z1 + f3Z2 + f1Z0Z1 (E.5)

+ f4Z0Z2 + f5Z1Z3 + f6X0Z1X2 + f6Y0Z1Y2

+ f7Z0Z1Z2 + f4Z0Z2Z3 + f3Z1Z2Z3

+ f6X0Z1X2Z3 + f6Y0Z1Y2Z3 + f7Z0Z1Z2Z3

where the values {fi} depend on the fixed bond length of the molecule. We notice that

this Hamiltonian acts off-diagonally on only two qubits (the ones having tensor factors
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of 0 and 2), those colored in red in Eq. (E.5). Because we start our simulations in

the Hartree-Fock state, a classical basis state, we see that the Hamiltonian stabilizes

qubits 1 and 3 so that they are never flipped throughout the simulation. We can use

this symmetry to scalably reduce the Hamiltonian of interest to the following effective

Hamiltonian which acts only on two qubits,

H̃ = g01 + g1Z0 + g2Z1 + g3Z0Z1 + g4X0X1 + g5Y0Y1 (E.6)

where the values {gi} depend on the fixed bond lengths of the molecule. We further note

that the term Z0Z1 commutes with all other terms in the Hamiltonian. Since the ground

state of the total Hamiltonian certainly has support on the Hartree-Fock state, we know

the contribution to the total energy of Z0Z1 (it is given by the expectation of those terms

with the Hartree-Fock state). Steps to prepare this Hamiltonian are summarized in the

upper-half of Figure E.1.

E.2 Experimental methods for VQE

For the VQE experiment, the qubits q0 and q1 are used, at 4.49 and 5.53 GHz, respectively,

while all the other qubits are detuned to 3 GHz and below. Xπ, Yπ, ±Xπ/2, and ±Yπ/2
gates are 25 ns long, and pulse amplitudes and detunings from f10 are optimized with

ORBIT; for these parameters, additional pulse shaping (e.g. DRAG) proved unnecessary

(see [13] for details of pulse detuning and shaping). The amplitude, trajectory, and

compensating single-qubit phases of the CZπ gate are optimized with ORBIT as well.

The duration of the CZπ is 55 ns, during which the frequency of q0 is fixed and q1 is

moved. The rotation Zθ (the adjustable parameter in Eq. (6.3)) is implemented as a

phase shift on all subsequent gates. As operated here, q0 and q1 have energy relaxation

times T1 = 62.8 and 21.4µs, and Ramsey decay times T ∗2 = 1.1 and 1.9µs, respectively.

The expectation values used to calculate the energy of the prepared state are mea-
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sured with partial tomography; for example, X1X0 is measured by applying Yπ/2 gates

to each qubit prior to measurement. We emphasize that for chemistry problems, the

number of measurements scales polynomially [79]. Readout duration is set to 1000 ns

for higher fidelity (compared to [58], where the “measure”/odd-numbered qubits utilized

much shorter readout). In addition to discriminating between |0〉 and |1〉, higher level

qubit states were also measured (called |2〉 for simplicity). Readout fidelities are typically

>99% for |0〉, and ∼95% for |1〉 and |2〉, and measurement probabilities are corrected for

readout error. After readout correction, experiments where one of the qubits is measured

in |2〉 are dropped; any probability to be in |2〉 is set to zero and remaining probabilities

are renormalized.

The circuit pulse sequence used to implement the UCC sequence in Eq. (6.3) is shown

in Figure 6.1. The experiment is performed in different gauges of the Bravyi-Kitaev

transform; these correspond to the |0〉 (|1〉) state of q0 representing the first orbital being

unoccupied (occupied) or occupied (unoccupied), and similarly for q1 representing the

parity of the first two orbitals being even (odd) or odd (even). In practice, a gauge change

means a flip of the value of one or both qubits in the Hartree-Fock (HF) input state, and

a sign change on the relevant terms of the Hamiltonian. In the standard gauge, the HF

state is |01〉 and is prepared with an Xπ gate on q0. Statistics from the experiment in

these gauges are then averaged together. We also drop the first −Yπ/2 on q0; for an input

state of either |0〉 or |1〉, it has no effect given that Xπ/2 is the only gate preceding it.

The energy for a given nuclear separationR is computed by calculating the value of the

Hamiltonian with the expectation values measured for each θ and choosing the smallest

energy. This is done for all values of R to construct the energy surface. Figure 6.2a shows

the raw expectation values (after readout correction); Figure 6.2b shows the measured

energy versus θ for each value of R and Figure E.2 shows the errors in that surface.

Error bars were computed from a Gaussian process regression [19] applied to the energy
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Figure E.2: Errors in the VQE energy surface (in Hartree) as a function of bond length
and rotation angle. This plot looks somewhat like the derivative of Figure 6.2b with
respect to R and θ because errors are greatest where the energy is most sensitive to
changes in system parameters. As in Figure 6.2b, the white curve traces the theoretical
minimum energy which is seen to be in good agreement with the data. Note that while
errors in the energy surface are sometimes negative, all energies are bounded from below
by the variational minimum.

landscape obtained from Figure 6.2b using error estimates propagated from the shot-noise

limited measurements shown in Figure 6.2a.
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E.3 Experimental methods for PEA

The PEA experiment uses three qubits: q0 for the ancilla, and q1 and q2 for the register.

Operating frequencies are 4.56, 5.65, and 4.80 GHz for q0, q1, and q2, respectively. Pulse

tune-up is the same as for the VQE experiment. For the entangling gates (CZφ between

q0 and q1, and CZπ between q1 and q2), however, the adjacent non-interacting qubit must

be decoupled from the interaction. For the CZπ, q0 is decoupled with paired Xπ and −Xπ

pulses; this has the effect of “echoing out” any acquired state-dependent phase on q0 from

q1 and vice versa, while minimizing stray single-qubit phases on q0 by keeping its fre-

quency stationary. For the CZφ, however, q2 is detuned to frequencies significantly below

the q0-q1 interaction; while this makes single-qubit phases on q2 harder to compensate,

it is more effective at minimizing the impact of q2 on the CZφ gate. This combination of

decoupling methods was found to be optimal to minimize error on the phase of q0, which

is the critical parameter in the PEA experiment.

As the CZφ gate varies the amplitude of q1’s frequency trajectory over a wide range

(approximately 200 MHz to 950 MHz) particular values of φ can be more sensitive lossy

parts of the q1’s frequency spectrum that are rapidly swept past and easily compensated

for in the standard case of only tuning up φ = π. Therefore, for some values of φ it is

necessary to individually tune in compensating phases on q0. This is implemented by

executing the individual term of the Hamiltonian, varying the compensating phase on

q0, and fitting for the value that minimizes the error of that term. After performing this

careful compensation when necessary, the experiment produces the bit values (0 or 1) for

each different Hamiltonian (i.e. each separation R) at each evolution time t that match

those predicted by numerical simulation.

As operated in this experiment, q0, q1, and q2 have T1 values of 48.1, 23.7, and 43.0

µs, and T ∗2 times of 1.3, 1.6, and 0.8 µs, respectively. Figure 6.4 shows the pulses for
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Figure E.3: Example data for a single PEA experiment, run at R = 1.55 Å. The results
are shown without phase kickback from the measurements of the previous bit. The line
at P|1〉 = 0.5 discriminates a measurement of 1 from 0.

one iteration of the PEA experiment; Figure E.3 shows an example of the measurement

results for one value of R. The parameters at each R are given in Table E.1. For reference,

included in this section are the implementations of all the terms of the Bravyi-Kitaev

Hamiltonian for molecular hydrogen. In the following diagrams, α is the ancilla qubit

(q0 in the experiment), and 0 and 1 are the register qubits (q1 and q2 in the experiment).

We must always be aware that representing our terms in terms of these gates, and then

in terms of the actual basis, is not necessarily the most efficient approach.

CNOT

CNOT is implemented as a CZπ and two rotations.
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• •
= −Yπ/2 • Yπ/2

SWAP

SWAP is implemented as three consecutive CZπ gates with intermediate rotations.

× • −Yπ/2 • Yπ/2 •

× = −Yπ/2 • Yπ/2 • −Yπ/2 • Yπ/2

Controlled evolution under Z0

Z0 is implemented as CZφ and a z rotation on the control qubit.

qα −Zθ/2 •

q0 Zθ

Controlled evolution under Z1

Z1 is the same as Z0, but surrounded by SWAP gates so that the ancilla interacts with

the other qubit.

qα −Zθ/2 •

q0 × Zθ ×

q1 × ×
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Controlled evolution under X0X1

For X0X1, we first change bases with Yπ/2 gates, then compute the parity of the register

qubits with a CNOT, then apply the controlled phase, and finally undo the parity com-

putation and basis change. Note that the Yπ/2 gates will cancel on the middle qubit with

our CNOT implementation.

qα −Zθ/2 •

q0 Yπ/2 Zθ −Yπ/2

q1 Yπ/2 • • −Yπ/2

Controlled evolution under Y0Y1

Y0Y1 is the same as X0X1 with a different basis change.

qα −Zθ/2 •

q0 −Xπ/2 Zθ Xπ/2

q1 −Xπ/2 • • Xπ/2

E.4 Unitary coupled cluster

The application of VQE requires the choice of an ansatz, and in this work we have

focused on the unitary coupled cluster (UCC) ansatz. This ansatz is a unitary variant of

the method sometimes referred to as the “gold standard of quantum chemistry”, namely

coupled cluster with single and double excitations with perturbative triples excitations
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[48]. The unitary variant has the advantage of satisfying a variational principle with

respect to all possible parameterizations. While the unitary variant has no efficient

preparation scheme on a classical computer, scalable methods of preparation for a fixed

set of parameters on a quantum device have now been documented several times [90, 142,

132, 79].

The UCC ansatz
∣∣∣ϕ(~θ)

〉
is defined with respect to a reference state, which in this

work we take to be the Hartree-Fock state |φ〉,

∣∣∣ϕ(~θ)
〉

= U(~θ)|ϕ〉 = eT (~θ)−T (~θ)†|φ〉 (E.7)

where T (~θ) is the anti-Hermitian cluster operator:

T =
∑
k

(k)T (~θ) (E.8)

(1)T (~θ) =
∑
i1∈occ
a1∈virt

θa1
i1
a†a1

ai1 (E.9)

(2)T (~θ) =
∑

i1,i2∈occ
a1,a2∈virt

θa1,a2

i1,i2
a†a2

ai2a
†
a1
ai1 (E.10)

where the occ and virt spaces are defined as the occupied and unoccupied sites in the

Hartree-Fock state and the definition of higher-order cluster operators (k)T follows nat-

urally. When only including up to the first two terms in the cluster expansion, we term

the ansatz unitary coupled cluster with single and doubles excitations (UCCSD) [48].

The task within VQE is to determine the optimal values of the cluster amplitudes

θa1
i1

, which are determined by the variational minimum of a nonlinear function. As with

all nonlinear minimizations, the choice of starting parameters is key to algorithmic per-

formance. As in classical coupled cluster, we can determine the starting amplitudes

perturbatively through Möller-Plesset perturbation theory (MP2) [48]. For molecular
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hydrogen, there is exactly one term in the UCCSD ansatz.

The MP2 guess amplitudes are given by the equations

θai = 0, θabij =
hijba − hijab

εi + εj − εa − εb
(E.11)

where εa refer to the 1-electron occupied and virtual orbital energies from the Hartree-

Fock calculation and the hijab are computed as in Eq. (E.3). In the MP2 guess, the

vanishing of the singles amplitudes is a result of the fact that single excitations away

from the Hartree-Fock reference do not couple through the Hamiltonian as a consequence

of Brillouin’s theorem [48]. As the solution of the classical coupled cluster equations is

also efficient, it is possible to use amplitudes from a method like CCSD as starting

values as well. We note in both cases however, that the single-reference, perturbative

nature of these constructions may lead to poor initial guesses for systems with strong

multireference character or entanglement. In these cases the amplitudes may represent

poor guesses, requiring more iterations for convergence. As such, a better initial guess in

such problems may be a related optimization, such as a different molecular geometry of

the same system. In cases where the perturbative estimates are accurate, one can discard

operations related to very small amplitudes in the state preparation circuit, leading to

computational savings.
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R 1 Z0 Z1 Z0Z1 X0X1 Y0Y1 t0 Ordering Trotter Error
0.20 2.8489 0.5678 -1.4508 0.6799 0.0791 0.0791 1.500 Z0 ·X0X1 · Z1 · Y0Y1 0.0124
0.25 2.1868 0.5449 -1.2870 0.6719 0.0798 0.0798 1.590 Z0 · Y0Y1 · Z1 ·X0X1 0.0521
0.30 1.7252 0.5215 -1.1458 0.6631 0.0806 0.0806 1.770 X0X1 · Z0 · Y0Y1 · Z1 0.0111
0.35 1.3827 0.4982 -1.0226 0.6537 0.0815 0.0815 2.080 Z0 ·X0X1 · Z1 · Y0Y1 0.0368
0.40 -0.2047 0.4754 -0.9145 0.6438 0.0825 0.0825 2.100 Z0 ·X0X1 · Z1 · Y0Y1 0.0088
0.45 -0.2677 0.4534 -0.8194 0.6336 0.0835 0.0835 2.310 X0X1 · Z0 · Y0Y1 · Z1 0.0141
0.50 -0.3202 0.4325 -0.7355 0.6233 0.0846 0.0846 2.580 Z0 ·X0X1 · Z1 · Y0Y1 0.0672
0.55 -0.3642 0.4125 -0.6612 0.6129 0.0858 0.0858 2.700 Z0 ·X0X1 · Z1 · Y0Y1 0.0147
0.60 -0.4012 0.3937 -0.5950 0.6025 0.0870 0.0870 2.250 Z0 ·X0X1 · Z1 · Y0Y1 0.0167
0.65 -0.4323 0.3760 -0.5358 0.5921 0.0883 0.0883 3.340 Z1 ·X0X1 · Z0 · Y0Y1 0.0175
0.70 -0.4584 0.3593 -0.4826 0.5818 0.0896 0.0896 0.640 Z0 · Y0Y1 · Z1 ·X0X1 0.0171
0.75 -0.4804 0.3435 -0.4347 0.5716 0.0910 0.0910 0.740 Z0 · Y0Y1 · Z1 ·X0X1 0.0199
0.80 -0.4989 0.3288 -0.3915 0.5616 0.0925 0.0925 0.790 Z0 · Y0Y1 · Z1 ·X0X1 0.0291
0.85 -0.5143 0.3149 -0.3523 0.5518 0.0939 0.0939 3.510 Z0 ·X0X1 · Z1 · Y0Y1 0.0254
0.90 -0.5271 0.3018 -0.3168 0.5421 0.0954 0.0954 3.330 Z0 ·X0X1 · Z1 · Y0Y1 0.0283
0.95 -0.5377 0.2895 -0.2845 0.5327 0.0970 0.0970 4.090 X0X1 · Z0 · Y0Y1 · Z1 0.0328
1.00 -0.5463 0.2779 -0.2550 0.5235 0.0986 0.0986 4.360 Z0 ·X0X1 · Z1 · Y0Y1 0.0362
1.05 -0.5533 0.2669 -0.2282 0.5146 0.1002 0.1002 4.650 Z1 ·X0X1 · Z0 · Y0Y1 0.0405
1.10 -0.5588 0.2565 -0.2036 0.5059 0.1018 0.1018 4.280 Z1 ·X0X1 · Z0 · Y0Y1 0.0243
1.15 -0.5631 0.2467 -0.1810 0.4974 0.1034 0.1034 5.510 Z0 ·X0X1 · Z1 · Y0Y1 0.0497
1.20 -0.5663 0.2374 -0.1603 0.4892 0.1050 0.1050 5.950 Z0 · Y0Y1 · Z1 ·X0X1 0.0559
1.25 -0.5685 0.2286 -0.1413 0.4812 0.1067 0.1067 6.360 X0X1 · Z1 · Y0Y1 · Z0 0.0585
1.30 -0.5699 0.2203 -0.1238 0.4735 0.1083 0.1083 0.660 Z1 ·X0X1 · Z0 · Y0Y1 0.0905
1.35 -0.5706 0.2123 -0.1077 0.4660 0.1100 0.1100 9.810 Z0 ·X0X1 · Z1 · Y0Y1 0.0694
1.40 -0.5707 0.2048 -0.0929 0.4588 0.1116 0.1116 9.930 Z0 ·X0X1 · Z1 · Y0Y1 0.0755
1.45 -0.5702 0.1976 -0.0792 0.4518 0.1133 0.1133 5.680 Y0Y1 · Z0 ·X0X1 · Z1 0.0142
1.50 -0.5693 0.1908 -0.0666 0.4451 0.1149 0.1149 10.200 Z1 ·X0X1 · Z0 · Y0Y1 0.0885
1.55 -0.5679 0.1843 -0.0549 0.4386 0.1165 0.1165 9.830 Z0 ·X0X1 · Z1 · Y0Y1 0.0917
1.60 -0.5663 0.1782 -0.0442 0.4323 0.1181 0.1181 8.150 Z0 · Y0Y1 · Z1 ·X0X1 0.0416
1.65 -0.5643 0.1723 -0.0342 0.4262 0.1196 0.1196 8.240 X0X1 · Z0 · Y0Y1 · Z1 0.0488
1.70 -0.5621 0.1667 -0.0251 0.4204 0.1211 0.1211 0.520 Z1 ·X0X1 · Z0 · Y0Y1 0.0450
1.75 -0.5597 0.1615 -0.0166 0.4148 0.1226 0.1226 0.520 Z0 · Y0Y1 · Z1 ·X0X1 0.0509
1.80 -0.5571 0.1565 -0.0088 0.4094 0.1241 0.1241 1.010 Z0 ·X0X1 · Z1 · Y0Y1 0.0663
1.85 -0.5544 0.1517 -0.0015 0.4042 0.1256 0.1256 0.530 Z1 ·X0X1 · Z0 · Y0Y1 0.0163
1.90 -0.5516 0.1472 0.0052 0.3992 0.1270 0.1270 1.090 X0X1 · Z0 · Z1 · Y0Y1 0.0017
1.95 -0.5488 0.1430 0.0114 0.3944 0.1284 0.1284 0.610 X0X1 · Z1 · Z0 · Y0Y1 0.0873
2.00 -0.5458 0.1390 0.0171 0.3898 0.1297 0.1297 1.950 Z1 · Z0 ·X0X1 · Y0Y1 0.0784
2.05 -0.5429 0.1352 0.0223 0.3853 0.1310 0.1310 4.830 X0X1 · Y0Y1 · Z0 · Z1 0.0947
2.10 -0.5399 0.1316 0.0272 0.3811 0.1323 0.1323 1.690 Y0Y1 ·X0X1 · Z0 · Z1 0.0206
2.15 -0.5369 0.1282 0.0317 0.3769 0.1335 0.1335 0.430 X0X1 · Y0Y1 · Z0 · Z1 0.0014
2.20 -0.5339 0.1251 0.0359 0.3730 0.1347 0.1347 1.750 Z0 · Z1 ·X0X1 · Y0Y1 0.0107
2.25 -0.5310 0.1221 0.0397 0.3692 0.1359 0.1359 11.500 X0X1 · Z1 · Z0 · Y0Y1 0.0946
2.30 -0.5280 0.1193 0.0432 0.3655 0.1370 0.1370 0.420 Z0 · Z1 ·X0X1 · Y0Y1 0.0370
2.35 -0.5251 0.1167 0.0465 0.3620 0.1381 0.1381 0.470 Z1 · Z0 · Y0Y1 ·X0X1 0.0762
2.40 -0.5223 0.1142 0.0495 0.3586 0.1392 0.1392 10.100 X0X1 · Z1 · Z0 · Y0Y1 0.0334
2.45 -0.5195 0.1119 0.0523 0.3553 0.1402 0.1402 11.200 Z0 · Z1 ·X0X1 · Y0Y1 0.0663
2.50 -0.5168 0.1098 0.0549 0.3521 0.1412 0.1412 0.580 Z0 · Y0Y1 ·X0X1 · Z1 0.0296
2.55 -0.5141 0.1078 0.0572 0.3491 0.1422 0.1422 11.000 Z0 · Z1 ·X0X1 · Y0Y1 0.0550
2.60 -0.5114 0.1059 0.0594 0.3461 0.1432 0.1432 11.000 Z0 ·X0X1 · Y0Y1 · Z1 0.0507
2.65 -0.5089 0.1042 0.0614 0.3433 0.1441 0.1441 11.040 Z1 ·X0X1 · Y0Y1 · Z0 0.0490
2.70 -0.5064 0.1026 0.0632 0.3406 0.1450 0.1450 0.400 Z0 · Z1 · Y0Y1 ·X0X1 0.0471
2.75 -0.5039 0.1011 0.0649 0.3379 0.1458 0.1458 0.450 Y0Y1 · Z0 · Z1 ·X0X1 0.0061
2.80 -0.5015 0.0997 0.0665 0.3354 0.1467 0.1467 0.950 Z0 · Y0Y1 ·X0X1 · Z1 0.0368
2.85 -0.4992 0.0984 0.0679 0.3329 0.1475 0.1475 10.600 Z0 ·X0X1 · Y0Y1 · Z1 0.0324

Table E.1: The Hamiltonian coefficients for Eq. (6.1) and parameters (see text) for the
PEA experiment for each value of R.
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