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Abstract

This paper presents simple weighted and fully augmented weighted estimators for the additive
hazards model with missing covariates when they are missing at random. The additive hazards
model estimates the difference in hazards and has an intuitive biological interpretation. The
proposed weighted estimators for the additive hazards model use incomplete data
nonparametrically and have close-form expressions. We show that they are consistent and
asymptotically normal, and are more efficient than the simple weighted estimator which only uses
the complete data. We illustrate their finite-sample performance through simulation studies and an
application to study the progression from mild cognitive impairment to dementia using data from
the Alzheimer’s Disease Neuroimaging Initiative as well as an application to the mouse leukemia
study.
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Introduction

For survival (time-to-event) data, a commonly used model is the Cox proportional hazards
(PH) model (Cox, 1972) pertaining to the relative risk of certain covariates. Another well-
known but less used method is the additive hazards model (Aalen, 1980; Cox and Oaks,
1984; Thomas, 1986; Breslow and Day, 1987, p.182). Unlike the Cox PH model, the
additive hazards model does not assume proportional hazards, and it estimates the difference
in hazards instead of the hazard ratios. Although the Cox PH model is very popular, it is
desirable to utilize the additive hazards model for several reasons as discussed in Lin and
Ying (1997). When describing the covariate-disease association, the hazard difference is
complementary to and may be more relevant to public health than the hazard ratio because it
translates directly into the number of events (e.g. disease cases) for the covariate. In practice,
the additive hazards model may fit certain type of data better than the Cox PH model
(Breslow and Day, 1987) and it provides a simple structure for studying frailty models and
interval-censored data (Lin and Ying, 1997). Therefore, when the difference in disease risk
due to the covariates is of primary interest or the PH assumption does not hold, the additive
hazards model may be more proper.

The additive hazards model assumes that the conditional hazard function given a set of
covariates is the sum of, rather than the product of, a baseline hazard function and a linear
regression function of the covariates. Specifically, the hazard function for the failure time 7
associated with a column vector of covariates 2 has the form

W2y = 2o+ 72, (1)

where Ag(?) is an unspecified baseline hazard function, and gis a column vector of
regression parameters. The additive hazards model has an intuitive biological interpretation.
When all covariates are fully observed, Lin and Ying (1994) proposed a simple
semiparametric estimating function for g which generates a consistent and asymptotically
normally distributed estimator with an explicit form.

Biomedical studies with survival outcomes frequently have missing covariates and some
components of Zare not observed for all study subjects. Discarding the subjects with
missing covariates may lead to either biased or inefficient estimates when the missing-data
mechanism depends on the outcomes. Assuming missing at random (MAR) (L.ittle and
Rubin, 1987), i.e., the missing-data mechanism (or the selection probability) depends on the
observed data but not on the missing data, Qi et al. (2005) proposed the simple weighted
estimating equations using nonparametrically estimated selection probabilities and the
kernel-assisted fully augmented weighted estimating equations for the Cox PH models.
Their resultant fully augmented estimators (FAWES) have the double-robustness property
and also improve efficiency compared to most of the simple weighted estimators (SWEs);
and the SWEs with selection probability estimated using all observed data are
asymptotically equivalent to the FAWES. For two-stage studies, Mark and Katki (2006)
incorporated auxiliary information as weights and used model based approaches for
estimating the sampling probabilities, which was further extended to general semi-
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parametric models by several authors including Breslow et al. (2009) and Sun et al. (2017).
For the additive hazards models, Kulich and Lin (2000) proposed a simple weighted
estimator for case-cohort studies (Prentice, 1986), a special case of MAR where all cases
(failures) and a subset of controls (censored subjects) are selected and have complete
observations.

In this paper, we propose the simple weighted and fully augmented weighted estimating
equations for the additive hazards models with missing covariates under the MAR
assumption. An advantage is that the SWEs and FAWESs for the additive hazards model take
explicit forms. We also propose to estimate the selection probabilities in the simple weighted
and fully augmented weighted estimating equations, and the unknown conditional
expectations in the fully augmented weighted estimating equations using the nonparametric
kernel smoothing techniques similar to those used by Wang et al. (1997), Wang and Wang
(2001) and Qi et al. (2005). Under certain regularity conditions, the resultant SWEs and
FAWEsS are consistent and asymptotical normal. We examine the finite sample performance
of these estimators through a simulation study, and also demonstrate these methods using an
Alzheimer’s Disease Neuroimaging Initiative data set (adni.loni.usc.edu) and the data from
the mouse leukemia study (Kalbfleisch and Prentice, 1980).

The remainder of the paper is organized as follows: Section 2 presents the SWEs and the
FAWEs and their asymptotic properties as well as the discussions of the relationships
between the SWEs and the FAWEs. Section 3 examines some properties of the proposed
estimators through a simulation study, and illustrates the proposed methods with real
examples using the Alzheimer’s Disease Neuroimaging Initiative (ADNI) data and the
mouse leukemia data. Section 4 provides further discussions and some practical
recommendations. The regularity conditions are given in the Appendix and the proofs of the
theorems are given in the online Appendix S1.

2 Method
2.1 Simple Weighted Estimating Equations

In the additive hazards model (1), let 7, Cand X'= min(T,C) be the failure, censoring and
observed time for a subject, respectively. The failure indicator §= A 7< C) is 1 if the subject
experiences a failure and § = 0 if censored. Let Zdenote a set of time-independent
covariates. We assume that, given Z, 7and C are independent, and all study subjects have
X6 observed. Suppose some elements of .Z, denoted by 2%, are observed for all 77study
subjects, while other elements may be missing for some subjects, denoted by 2. Let the
selection indicator Vequal 1 if Z7is available, and 0 otherwise. Then the selection
probability 7 is defined by pr(V=1| X, 6, Z5, Z7), equal to pr(V=1| X, &, Z°) under the
MAR assumption.

Let M) =8(X< hand Y(H) = (X= 1 be the counting process and the at-risk process,
respectively, corresponding to (X, ). Let (X, 6;, Z:.", ZI.C, V), i=1,...,n, be independent and

identically distributed copies of (X; 8, Z7, Z°, V). When the selection probability r is
known, a simple weighted estimating function can have the following form:

Ann Inst Stat Math. Author manuscript; available in PMC 2020 April 01.


http://adni.loni.usc.edu/

1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Qietal

Page 4

L
U (b= ) — A (2, Z, (@ o{dN @ - Y ()p" Zat) ()

i=1

where Z_ (z,1) = Z?= 1(Vj/”j)Yj(f)Z/E7= (Vy/m)Y (0 and == sup{t. pr(Y () = 1) > 0}.
This estimating function can be regarded as a weighted complete-data pseudolikelihood

score vector. By solving equation U, i) = 0, we obtain the estimator

n n

V. pr _ - V. [t _
> /O 2,-Z (x, t)}®2Yi(t)dt] [lz — /O Z2,-Z (z,0}dN@®)|. (3)

i=17"i =171

~

B gy(m) =

In a case-cohort study (Prentice, 1986) with Bernoulli sampling (Kulich & Lin, 2000), i.e.,
V=1 for all failure events (cases) and V=1 with probability r for censored observations
(controls), the SWE is the same as the estimator proposed by Kulich & Lin (2000).

To study rigorously the asymptotic properties of Bsw(n), we impose regularity conditions (al)

to (a5) given in the Appendix. Since  is a function of .X; &, Z°and may not be predictable,
the techniques of Andersen and Gill (1982) cannot be directly applied to Ug (8, ). We
employ modern empirical process theory to establish the consistency and asymptotic
normality of Bsw(n), and further introduce the following notation to present the asymptotic

; : - k -1 ®k -
results in Theorem 1. Define, for k=0, 1, Sz, 1) = n X l(vj/nj)zj Y (o), SR =
E{ZB%V(0}, &0 =, and &1 = a Let M (1) = N (1) — [ Y (8)3g(s)ds — [557 Z.Y (s)ds be the
counting process martingale for the failure process, and e(#) = sB(8/50(5. Let
Ms=[01Z- e(t)}dM(t) be the martingale transformation with mean E{MZ} = 0 and variance

z, = E{MZ® 2}, where 82 = aa’,

Theorem 1 Under the regularity conditions (al) to (a5) given in the Appendix, ﬁsw(n) s
consistent for the true parameter B, and n'/ 2(ﬁsw(n) — p) converges to N (0,57 Zg(m)Z71) in
distribution, where = = E[ JolZ—e))® 2Y(z)dz] and

s (@)= E{ﬂ‘lMZ@ 2} =3, + E{(ﬂ_l - I)MZ® 2}.

The first term X 4 of X 4,( ) is the asymptotic variance of the full-cohort pseudo-score
estimator, while the second term quantifies the efficiency loss due to the missing covariates.

The variance Zq(7) can be estimated consistently by £ (x) ="' 3" _ 1(Vi/”i_2)"7’§),-2’

where
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1 X7 (Vilm )N (o)

Sg(‘/)v)(ﬂ, s)

)

v = T4 ~sw, | Asw 1
= /0 (z.-Z (. t)}{dNi(t)—Yi(t)Z B, (mdt =Y (DAY (t)}AO =5 /0

DN T=
—/(; ﬁsw(ﬂ) st(ir,s)ds.

and I can be estimated consistently by £(r) = n ™' X7_ | (V//x) [5{2, - Z,, (x.0)) © %Y ()ar.

When the true selection probability r is used, ,Esw(n) is obtained excluding all incomplete

observations, so it may not be efficient. To improve efficiency, an estimate of  can be used
in the estimating function. We implement nonparametric methods to estimate s using all
observed data, allowing incomplete observations to also contribute to the calculation of
/?sw(n). Let W denote the variables used to estimate 7z. When Wis discrete, sz can be

estimated by the empirical proportion based on the observed data,

Z?=1ViI(Wi=W)'
2o (W =w)

4)

z(w) =

If Whas dnumber of continuous components, 7z can be estimated consistently by
nonparametric kernel smoothers. Let K'be a rth-order (7> @) kernel function with bounded
support, with /' K(v)au= 1, S "K(W)du=0for m=1,..., (r- 1), S/K)du#0, and S
K(U)? du< oo, Let Ki{-) = K(-/#), and A is the smoothing parameter, also called the
bandwidth. We estimate r(1) using the Nadaraya-Watson (Nadaraya 1964; Watson 1964)
estimator

The kernel function K usually has little effect on 7, and thus on the estimator of 5, while A
affects the behavior of the estimator both theoretically and practically. We assume /4 satisfies
nt??— oo and n2’— 0, as n— oo, Similar to Qi et al. (2005) and Wang & Wang (2001),
we may choose /= O(1/P) for some integer p> 24, and the smallest even integer for rsuch
that r= p— d For example, when = 2, pand rcan take values of 5 and 4, respectively.

Plugging in 7z in the simple weighted estimating function (2) results in the following
estimating function:

nov.

L

Usw(ﬂ’;[): Z T

i=1"1

[) T{zl. -Z (. t)}{le.(t) - Yl.(t)ﬁTZidt} .
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Solving U, (B, 7) = 0, we obtain Bsw(ﬁ) with the same closed form of (3) replacing = with z.
The consistency and asymptotic normality of ﬁsw(ﬁ) were established in the online
supplementary material, with more imposed regularity conditions (a6) to (a10) in the
Appendix, and the results are stated in the following Theorem 2.

Theorem 2 Under the regularity conditions (al) to (a10), given in the Appendix, ﬁsw(;?) s
consistent for the true parameter B, and n'/ 2(BSW(7?) ~ p) converges to N (0, bn lsz(zz)z‘ 1) in
probability, with =% (x) = =, + X% (n), where

=% (n) = E[(ﬂ_l - 1){MZ - E(le W)} ® 2] = E{(ﬂ_l - l)var(MZI W)}

Theorem 2 shows that with the consistent estimator 7 in (4) or (5), ﬁsw(ﬁ) is consistent for g,
and has a smaller asymptotic variance than ﬁsw(n) because their asymptotic variances have
the same first term X 4 and the second term in 3 (x) is E{(n‘l - 1)MZ§’ 2}, greater than
E[(n'_l - 1){MZ~ - E(MZI W)} ® 2], the second term in =7 (x). Hence using the
nonparametrically estimated selection probability in the simple weighted estimating
equation allows more effective use of the available data and improves the efficiency of the
SWE with 7.

Also var(MZI W) is non-increasing over the dimension of W, so the more variables are used
to estimate 7, the smaller is var(MZI W) and the more efficient is Esw(ﬁ). This suggests that

estimating selection probabilities using additional variables besides the variables on which

they depend may lead to further efficiency gains for the SWEs. The variance wa (z) can be
estimated consistently by estimating %4 and =%, (=) consistently. Let M%), = E(M_IW).
Estimate dAq(4) and M, respectively, by

P 1("/51'){‘”\’1‘(’) - Yi(’)ﬁsTw(’?)Zid’}

AW A N
dAO (7, 1) = -

SE?V)(?:, 0

T — -~ ~
(z-Z (&, t)}{dN(t) — YAy (1.7) - ﬂsw(ﬁ)TZY(t)dt} .

)
N

[
S~

ﬁA = n_l Z Tlfor{zi - st(;[’ [)} ® szi([)

and % (m) by
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where 1\71% ; is obtained by the Nadaraya-Watson estimator (12) of Section 2.2.

2.2 Fully Augmented Weighted Estimating Equations

We propose the following fully augmented estimating function for the additive hazards
model,

noy. T _ n
UpgBim = ) — fo (2= Z B0} dN @) - BT 2y (0t} + Y AL (Bm), (1)

i=1 i=1

where Z, (z. E,1) = S;Qw(n, E, t)/SS?(l)W(n, E, 1, and let W= (X, &, 29),

1 —; ./0 T(E[Zi{le.(t) - /}TZiYi(t)dt}lWi]—Z T E- z)E“dNi(t) - /JTZl.Yl.(z)dz} | Wl.]),

Al (p.m) = ,
L

and for k=0, 1,
*) 1y Y ok, 1y Vi ®k
Sfaw(n,E,r)=;j;”—ij(r)zj +;]Zl - Y E(Z2 w). (@)

When k=0, s€) (r.E.0y= $_ ¥ (0/n.
The fully augmented weighted estimating function Ugy 8, i) uses incomplete observations

through the augmented averages S;lcfw(n, E.ryand ¢ (x,E.1), and the augmentation term

Af (B, 7). The resulting fully augmented weighted estimator (FAWE) possesses the so-called

double-robust property, ie., the estimator is consistent if either the missing-data mechanism
(i.e. the selection probability) or the distribution of the missing covariates given the observed
data is modeled correctly (Wang & Chen 2001, Qi et al. 2005). Solving Ugu (B, ) =0, we
can obtain the FAWE explicitly:

ln
G
i=1

~ no[V. T _
B a7 E) = [ Z [7[‘/0 Yl.(t)Zl.‘X’ 2dt +

i=1L"1

V. pr_ Vot
[7,- A ZdN (1) + 1—71_) A E(Z; W)dNi(t)],

1- %) A TYi(t)E(Zi®2I W)dt”

1
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w).

where Z,=7,~ 7, (m.E.yand W = (W .....

The conditional expectations E(Zi® 2IVT/) and E(Z,1W) in equation (9) are unknown since they
contain unknown quantities E(Zl.® ZIWi) and £(Z) W). Specifically,

E(Z[.‘X’ 2 W) = E(Zl.® 2 Wl.) —2E(Z,\W)Z T Es !+ Z (7 E.1) ®2 and
E(ZIW)=E(Z)W)-2 a1, The denominator of Z T B, S;(BW(:T, E, 1) does not
contain unknown quantities, while the nominator of Z faw(n, E,1), SS}a)W(n, E, 1) involves A(Z;|
W), i=1,..., n, as seen in equation (8). So once E(Zl.® 2IWl.) and E(Z} W) are estimated, we
can estimate E(Zi® 2 v~v) and E(Z,1W) as well as Z (@ E. ) I equation (9), and generate a
FAWE ﬁfaw(n, E). Furthermore, since Z= (2™ 297 and Zis known for all subjects, we

have

E(ZIW) = (E(Zml W)), (10)
ZC

and

£l w| Ezmwyz)”

E(z®%1w) = (11)

zE@zmw) (29%?

Hence we can use the observed values for Z€ and only need to estimate the unknown
quantities £[(Z™%®2 | W] and 27| W) in equations (10) and (11). We propose to use a
nonparametric kernel-assisted method to estimate £[(Z™®2 | W] and 27| W).
Specifically, let ¢ denote 27 or (Z™)®2, then we can estimate £({ | W) using the Nadaraya-
Watson (Nadaraya 1964; Watson 1964) estimator based on the complete observations.

Let g(w) = E(C| w). Assuming ¢(w) is a smooth function with rcontinuous and bounded
partial derivatives with respect to the continuous components of Wa.e., then a Nadaraya-
Watson estimator of ¢(w) is

Z?: 1ViCiKh(W - Wi)
VK= w)

dw) = ., (12)

where K'is an rth-order kernel function as defined in Section 2.1 and /4 is a smoothing
parameter.

A step by step algorithm for obtaining the FAWES using equation (9) can be summarized as
below:

Ann Inst Stat Math. Author manuscript; available in PMC 2020 April 01.
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1. Apply the kernel smoother (12) to obtain the estimated £[(Z™)®?|W)] and AZ7
W), i.e., E[(ZM®2|W)] and E(ZT| W), respectively. When there are both discrete
and continuous components in W first stratify by the discrete components, then
at each level, implement the kernel smoothers.

2. Calculate Sg}a)w(zr, E, 1) using equation (8). For the augmented term
" (1=V./x )Y ()E(Z 1W .)/n, plug in the observed values of Z€and (2" W).
j=1 JEIT i

(0) _ ;
Calculate S faw(;r, E,f) = 2;? _ le(t)/n and obtain

Z gy By = 8 (2 B 018 Q) (. B,

3. Obtain an FAWE 3 Faw'™ E) using equation (9). For the augmented terms in both

the nominator and the denominator, plug in the observed values of 2%, and

E(Z™®2| W], EZMW) and the estimated Z (s ESD.

When the selection probability 7 is unknown, z(w) in (5) with w= (x, &, z°) can substitute
for s in equation (7), resulting in the FAWE ﬁfaw(;?, E). When both selection probabilities
and conditional expectations are estimated nonparametrically, different kernel functions may

be used respectively. For simplicity, we used the same kernel function for theoretical
derivations and simulation studies. The following theorems present the asymptotical

properties of 3 (B, B fan B E), B Fanlm E)and g s E).

Theorem 3 Under the regularity conditions (a1) to (a5) given in the Appendix, 3 faw'™ E) s

1/2(

consistent for the true parameter B, andn'"*( Faw ™ E) = ﬂ) converges to M0,271% g ()

=Yy jn distribution, with ) = Z+ Z5, (0, Where % (x) = E{(n_l - l)var(MZIW)}.

aw

Theorem 4 Under the regularity conditions (a1) to (a10) given in the Appendix, faw(ﬁ, E),
B Fan E), and B (@ E) are consistent for the true parameter 5. Moreover,
nl! z(ﬁ BB — ﬁ), nl! 2(ﬁ el E) - ﬁ) andnl’ 2(ﬁ ' E) - ﬁ) are asymptotically normal

with mean 0 and variance matrix 1. g, )21,

All the FAWESs have the same asymptotic distribution, indicating that the asymptotic
properties of the FAWES are not affected by the nonparametric estimation of the selection
probabilities and the conditional expectations. The FAWEs are more efficient than the SWE
with true 7z and the SWEs with 7 except that the SWE with nonparametric z(X, s, Z) has the
same asymptotic distribution as all the FAWEs. When 2 can be exactly specified by W=
(X, 6, Z), then the martingale transformation M is constant given W, so var(MZIW) =0,

andx, (n)= wa(n) = x,. Therefore the SWE with 7(x, s, Z°) and the kernel-assisted

faw
FAWEsS achieve the efficiency of the estimator based on the full cohort data in this special
situation.

Ann Inst Stat Math. Author manuscript; available in PMC 2020 April 01.
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Consistent estimators of Z () can be obtained similarly to those of the ¥'7 (z) For

illustration, we demonstrate how to estimate the variance X z,( ) for g faw(;?, E). Set

o ' AN o A
dA-(];aW(t, ﬁ) = zln# _ ﬂfaw(ﬁs E)TZfaw(ﬁ,E, t)dt
Y ()
J

j=1

and

M

_[" Y L Af -
5= A {Z ~Z B Es t)dtHdN(t) = Y0P (7 E)Zd1 = Yl.(z)dAoaw(t, 7)

to be the estimators of dAy(#) and M 5 respectively. Then Z 4 and 5 () are estimated
respectively by
~ _ v, T — ~
£=n! T‘A |z~ 7, @.En)®2anN
i=1"1
and

b5 <n>=izv' (i1 - w1
faw n ~2 Zi Z,i

where A?% ; is obtained using the Nadaraya-Watson estimator in (12).

Numerical Studies

3.1 Simulation Study

A comprehensive simulation study was conducted to examine the moderate sample size
performance of the SWEs and the kernel-assisted FAWES and to compare their performance
with that of the full-cohort (i.e. Lin & Ying’s estimator, 1994) and complete-case analyses.
In all simulations, 1000 datasets were generated and either /7= 250 or 500 subjects were
used. In the first three simulation settings, we considered two independent covariates, a
missing covariate 277 and an observed covariate Z%. In the first setting, a binary variable Z¢
was generated from the Bernoulli distribution with probability 0.5, and 27 followed a
standard normal distribution. We generated the failure time using A(£2", Z5) = 1.5 - 0.527
+1.0.2% and the censoring time based on the exponential distribution with mean 1.5,
resulting in about 45% censored observations. The first setting mimicked the case-cohort
(Prentice, 1986) sampling scheme used in Kulich & Lin (2000), with (&) = 6+ 0.5(1 - 6),
so that we can compare our estimators with theirs.

In the second setting, (&) = 0.76+ 0.5(1 — &), resulting in an overall missing rate of 39%.
We considered correlated Z7 and Z¥ in this setting. Specifically, Z¢ ~ Bernoulli(0.5), 27 =

Ann Inst Stat Math. Author manuscript; available in PMC 2020 April 01.
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Z°- 0.5 + ¢ where e~ MO0, 1), and the correlation between 27 and Z€is about 0.44. In the
third setting, both 27 and 2 were generated from a Bernoulli distribution with probability
0.5. The hazard function A(£27, Z°) = 2+0.82" +0.4Z° was used to generate the failure
time and the censoring time was generated from the exponential distribution with mean 1,
yielding about 44% censored observations. The selection probability was (8, X) = 1/
{1+exp(1.5 - 2.56 - X)}, and about 44% observations had missing 27 In the fourth setting,
we considered two missing covariates, Z™ ~ N(0,1), Z™ ~ Bernoulli(0.5), Z* ~
Bernoulli(0.5), g =(0.5,1.0,—0.5) and the baseline hazard function equal to 1.0. The
censoring time was generated from exponential distribution with mean 0.5, yielding about
49% censored observations. The selection probability 7z(6) = 0.66 + 0.4(1 - 6), resulting in
50% observations with Z™ and 2™ missing.

The theoretical standard errors for the SWEs, the kernel-assisted FAWES were obtained from
the corresponding variance estimators discussed in Sections 2. The conditional expectations
in the FAWES were estimated by the Nadaraya-Watson estimators with the smoothing
parameter 4= 4oy, 13, where o was the standard deviation of observed times stratified
by Sand Z~.

We obtain the following measures for all the estimators. Bias is the average difference
between a parameter and its estimate. Relative bias is the result of bias divided by the true g8
value. Sample standard error (SE) equals the square root of the sample variance of the 1000
parameter estimates. Mean theoretical standard error (SE) is the average of the one thousand
standard error estimates. And 95% confidence interval coverage probabilities (CP) were
calculated using the theoretical standard error estimates.

Table 1 presents the results from the first simulation setting. All estimated selection
probabilities are consistent for the true 7. There is no evidence of bias in any of the
estimates j except for the complete-case analysis, due to the strong association between the
selection probability and the outcome variable 6. All FAWEs had smaller bias than other
estimators for both B; and B,. The sample standard errors are generally in good agreement
with the corresponding mean theoretical standard errors. As the cohort size increased from
250 to 500, the sample and mean theoretical standard errors for 4 , became closer for all the

weighted estimators, and the standard errors of SWE (7(X, s, Z¢)) became closer to those of
the FAWEs.

In addition, the estimator of Kulich & Lin (2000) and SWE (z(6)) have the same point
estimates because they share the same estimating equations. All weighted estimators have
similar standard errors for ﬁl, indicating that compared to the SWE with true r, using

partially incomplete data in estimation did not improve the efficiency of estimates of ;.
However, compared to SWE(7z(6)) the sample standard error for ﬁz was reduced by using

the SWEs with 7(5, z°) (e.g. about 9% when n = 250) and 7(X, &, Z) (about 11% when n =
250) and as well as all the kernel-assisted FAWES (about 16% when n = 250). So the
efficiency of /?2 was improved by including the incomplete data in estimation. Especially, all

kernel-assisted FAWES almost achieved the full-cohort efficiency for estimating B,. For n=
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250, the ratios of sample and theoretical standard errors between the full-cohort estimator
and the FAWES were 96%. When cohort size was 500, the ratio was about 98% if calculated
from sample standard errors, and about 97% if from theoretical standard errors.

The results from the second simulation setting, where 2 and Z* are correlated, show similar
patterns as those from the first setting and are provided in Table 2. The bias of complete-case
method was smaller in this setting because the missing data mechanism was less dependent
on the censoring indicator & (selection probability was 70% for cases and 50% for controls).

Table 3 displays the results from the third simulation setting where both 27 and Z° were
binary and the selection probability depended on both the censoring indicator and the
survival time. The results from this setting show similar patterns as those from the first two
settings, except that the sample and mean theoretical standard errors of SWE(z(5)) are not in
good agreement with each other and its 95% confidence interval coverage probability is low
when the sample size was 250. This occurred because the 7z based on §alone was
inconsistent for the true nz(8, X). These issues are reduced when the sample size increases to
500. The FAWE(z(5)), however, does not have these issues and still performs well under both
sample sizes. Because the selection probability depended heavily on both survival time and
censoring indicator, the bias for estimates from the complete-case analysis was elevated to
about 15% of the true parameter value.

The results from the fourth setting with a mixture of continuous and binary missing
covariates, Z™ and 2™, and a binary 2%, showed similar patterns as those from the first
three settings (Table 4).

In summary, the results from the simulation studies suggest that (1) the kernel-assisted
FAWESs and most of the SWESs with nonparametric 7z are more efficient than the SWE with
true 7; (2) the SWEs with 7 are not as efficient as the kernel-assisted FAWES most of the
time, and the efficiency of SWE(z(X, 6, %)), the most efficient among all SWEs, approaches
to those of the FAWES when sample size increases; (3) the complete-case analysis generates
inconsistent estimates when true 7z depends on outcome variables; (4) all FAWES and the
SWEs correct such bias with true r or consistent z; (5) an inconsistent z may affect the
variance estimation of the SWEs but not of the kernel-assisted FAWEs.

3.2 Application to the Alzheimers Disease Neuroimaging Initiative Data

We illustrate our methods using a data set from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database, a large depository of clinical and demographic data of
Alzheimer’s disease (AD) patients, as well as their longitudinal outcome and imaging
measurements (adni.loni.usc.edu). The ADNI, led by Dr. Michael W. Weiner at VA Medical
Center and University of California San Francisco, was launched in 2003 by the National
Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, the
Food and Drug Administration, pharmaceutical companies and non-profit organizations as a
public-private partnership. The ADNI had several goals including AD pathophysiology
investigation, diagnostic tool improvement and biomarker development.
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Our example involves the progression from mild cognitive impairment (MCI) to dementia
data from the first phase of ADNI (ADNI-1), where 800 patients were enrolled from over 50
sites across the U.S. and Canada in 2005-2007. Patients were advised to have office visit
very six months for a period of two years, followed by a visit after one-year interval. Totally
382 patients had MCI diagnosis at the initial visit and had at least one follow-up visit. The
middle point between two visits was used as the time-to-event, as in conventional analyses
of follow-up survival outcomes in practice. Among the 382 patients, 159 developed
dementia and 223 were censored. The median follow-up time for patients without dementia
diagnosis at subsequent visits was 36 months. Baseline covariates were obtained during the
initial visit to address various questions. Here we consider the association between the risk
of developing dementia from MCI and two covariates: the APOE-e4 status, a binary variable
with 1 indicating the presence of APOE-e4 and 0 otherwise, and Abeta, a biomarker with
continuous expression levels. All patients had APOE-e4 status while the Abeta expression
levels were available only for 192 patients who consented to get the lumbar punctures done.
The standardized Abeta expression level was included in the analysis and each unit of the
standardized variable represented 50 in the original expression level. We applied the
complete-case analysis, the SWEs and the kernel-assisted FAWES with estimated selection
probabilities to the data. Selection probabilities were estimated based on censoring indicator
Sonly, observed time Xand &, and X, § and APOE-e4 status for the SWEs and the FAWEs.
When including Xto estimate the selection probabilities, the Nadaraya-Watson estimator
was used with the band width /= 4o, 713, Conditional expectations were estimated by the
Nadaraya-Watson estimator (12) based on .X; & and the APOE-e4 status.

Results in Table 5 show that the Abeta level was significantly associated with the risk of
dementia after adjusting for APOE-e4 status. For patients with the same APOE-e4 status, a
high Abeta expression level was associated with a lower risk of dementia. However, APOE-
ed, was not statistically significant regardless of the methods used.

3.3 Application to the Mouse Leukemia Study

We also illustrate our methods using the data set from the mouse leukemia study
(Kalbfleisch and Prentice, 1980). This study was conducted in the laboratories of Dr. Robert
Nowinski of the Fred Hutchinson Cancer Research Center, Seattle, Washington,
investigating genetic and viral factors in the development of spontaneous leukemia in mice.
Totally 204 mice were followed for 2 years for mortality due to thymic or nonthymic
leukemia, or other natural causes. Two covariates, the Gpd-1 phenotype and the level of
endogenous murine leukemia virus, were of interest. Almost all mice had the level of
endogenous murine leukemia virus measured. The Gpd-1 phenotype was obtained for 100
mice that survived 400 days, indicating whether the Gpd-1 phenotype was observed on a
mouse depends on its follow-up time. The MAR assumption seems proper here since the
missingness was caused by design.

Following previous publications (e.g. Wang and Chen, 2001, and Qi et. al. 2005), we
excluded the animals with missing endogenous murine leukemia virus for computational
simplicity. A total of 175 mice were analyzed in the data analysis. The virus level was
classified into two categories, with Z€ = 0 if a virus level < 104 PFU/ml and 1 otherwise. We
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conducted separate analyses for the death of thymic leukemia and the death of thymic or
nonthymic leukemia as the endpoint, respectively. We obtained the estimates of regression
coefficients in the AFT model using the complete case analysis, the SWEs and the kernel-
assisted FAWES. To estimate the selection probabilities for the SWEs and the FAWEs, we
applied the Nadaraya-Watson estimator in (5) with bandwidth /# = 4o, 3. Conditional
expectations were estimated by the Nadaraya-Watson estimator (12).

Results in Table 6 show that only the complete case analysis indicated a significant
association between the Gpd-1 phenotype and the death of thymic leukemia adjusting for the
virus load, while for the death of thymic or nonthymic leukemia, none of the methods had
significant results. For the virus load, all methods except for the complete case analysis
resulted in significant associations with the death of thymic leukemia and with the death of
thymic or nonthymic leukemia, respectively. The FAWES sometimes have slightly smaller
SE than the SWEs, especially for the coefficient of the observed covariate, virus load. This
trend is consistent with what we have seen in the simulation results.

4 Discussion

Missing covariates complicate analysis of survival data. Inconsistent and inefficient
estimates can be generated by naively discarding subjects with missing covariates. The
additive hazards model is a useful alternative to the commonly used Cox PH model,
especially when the primary interest is to estimate the difference in disease risk for the
covariates or when the proportional hazards assumption is violated. Assuming the
missingness is MAR, we proposed the SWEs and kernel-assisted FAWEs for the additive
hazards model. By using the nonparametric smoothing techniques, the proposed SWEs and
FAWEs are robust against model misspecifications for the selection probability and the
conditional expectation of missing covariates, which is an advantage over the existing
methods in the literature. The proposed weighted estimators are consistent and
asymptotically normal and can improve the efficiency of the estimates from the SWE with
true 7z as well as from the complete-data analysis. All the weighted estimators possess an
explicit expression, an advantage of using the additive hazards model over the Cox PH
model.

The proposed SWEs and FAWEs expand the SWE of Kulich & Lin (2000) for the case-
cohort studies (Prentice, 1986) to general missing-data mechanisms. The asymptotic
distribution theory of the SWEs with nonparametric 7 suggests that the more variables are
used in obtaining 7z, the more efficiency may be gained potentially. So the SWE with

(X, 8,Z°) has the best efficiency among all the SWEs. Although the SWE with 7(X, 5, Z¢) has
the same asymptotic distribution as the kernel-assisted FAWEs, our simulation studies and
the data analysis example suggest that the FAWES tend to perform better than the SWE with
7(X,8,Z°) when sample sizes are moderate. In addition, the FAWEs are robust toward
misspecifications of the selection probabilities due to their double robustness property.

The proposed methods can utilize surrogate variables to predict the missing covariates and
the selection probability for increased efficiency. In this case, the surrogate variables should
considered as a part of the observed data under the MAR and included as elements in W.
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These weighted methods can be applied to situations where missing covariates occur by
happenstance or by design, such as two-phase studies where selection probabilities are
known. For two-phase studies with moderate sample sizes, we suggest the use of the FAWE
with true selection probabilities. When the sample sizes are large and missingness rates are
not extreme, one can employ either the SWE with 7(X, 5, ) or the kernel-assisted FAWE
with 7, and the estimators will generate consistent estimates with similar efficiency.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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The following regularity conditions are needed in the proofs of Theorems 1 to 4.
(al) Ag(z) < 0.

@) AY(r)=1}>0.

(a3) Zis time-independent and bounded.

(a4) The matrix = , = E[/S{Z —e(n)) ® ZdN(t)] is positive definite.

(a5) Whas bounded support 7. There exists a constant rzp > 0 such that (1) > g for
wew.

(a6) The selection probability (1) has rcontinuous and bounded partial derivatives with
respect to the continuous components of W a.e.

(a7) The probability density/mass function Aw) of wand the conditional probability density/
mass function 7\, (#) of W| V'have rcontinuous and bounded partial derivatives with
respect to the continuous components of Wa.s.

(a8) Conditional distributions £jy1/=0(W) and fiyy\,=1(w) have the same support, and o(w) =
fuhv=0(W/Fulyy=1(W) is bounded over the support.

(a9) The conditional expectations £(Z¥| W= w), E{(Z®?|W= w}, k=0,1, have r
continuous and bounded partial derivatives with respect to the continuous components of W
a.e.
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(a10) nfP9— oo and A" — 0,as n— .
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Analysis of the ANDI dementia data using the additive hazards model and various estimators.

Table 5.

Abeta APOE-e4
Method Estimate SE p-value  Estimate SE p-value
Complete-case -0.0055 0.0016  0.0009 0.0035 0.0047 0.46
SWE - 7(5) -0.0052 0.0016  0.0009 0.0044 0.0041 0.28
SWE - 7(5, X) -0.0054 0.0012 <0.0001 0.0037 0.0034 0.27
SWE - 7?(5, X, ZC) -0.0052 0.0012 <0.0001 0.0063 0.0041 0.13
FAWE - 7(5) -0.0053 0.0015  0.0004 0.0057 0.0037 0.12
FAWE - (5, X) -0.0052 0.0016  0.0011 0.0058 0.0039 0.14
FAWE - 7(5,X,Z°) -0.0053 00016 00008 00057 00039 0.5

7 was obtained on the variables in the bracket using the Nadaraya-Watson estimator with uniform kernel and bandwidth /= 4a'WI7_1/ 3,
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Analysis of the Mouse Leukemia data using the additive hazards model and various estimators.

Table 6.

Gpd-1 Virus load

Method Estimate SE p-value Estimate SE p-value
Thymic leukemia death

Complete-case -0.0167 0.0069  0.0153 0.0072 0.0047  0.1288
SWE - (8, X) -0.0145 0.0081 0.0723 0.0173 0.0068  0.0107
SWE-7(8,X,Z°)  -00149 00078 00578 00207 00063  0.0010
FAWE - (5, X) -0.0144 0.0084  0.0857 0.0235 0.0065  0.0003
FAWE - 7(5,X,Z°) -00150 00080 00597 ~ 0.0233  0.0063  0.0002
Thymic or nonthymic leukemia death

Complete-case -0.0144  0.0075 0.0561 0.0107 0.0061 0.0781
SWE - (6, X) -0.0137  0.0086  0.1090 0.0230 0.0074  0.0018
SWE-7(8,X,Z°)  -00131 00084 01170 00233  0.0070  0.0009
FAWE - 7(5, X) -0.0148 0.0088  0.0925 0.0262 0.0073  0.0003
FAWE - 7(5,X,Z°) -00152 00085 00743  0.0259  0.0072  0.0003

7 was obtained on the variables in the bracket using the Nadaraya-Watson estimator with uniform kernel and bandwidth /= 40'WI7_1/3.
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