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ABSTRACT OF THE DISSERTATION

Fast models and reinforcement learning control of unsteady aerodynamics

by

Diederik Frank H Beckers

Doctor of Philosophy in Mechanical Engineering

University of California, Los Angeles, 2023

Professor Jeffrey D. Eldredge, Chair

Large amplitude flow disturbances and gusts can drastically alter the aerodynamic forces

on airfoils or structures. The modeling and control of the aerodynamic response of the flow

around the body is complicated by the inherent nonlinearities and high dimensionality of this

system, which increase the cost and complexity of the numerical tools that enable this. This

work introduces two numerical tools for the efficient modeling of unsteady aerodynamic

flows and explores the use of deep reinforcement learning to perform airfoil pitch control

during flow disturbances. The first numerical tool we introduce is a grid-based potential

flow solver. We focus on the discrete streamfunction and model the flow around bodies and

point vortices immersed in a cartesian grid. This tool reformulates the inviscid vortex-in-

cell method as a saddle-point problem where constraints such as the no-flow-through and

Kutta condition can be added as Lagrange multipliers. The second numerical tool uses

a potential flow to model wind tunnel walls and irrotational wind tunnel gust generators

in a viscous flow simulation. This technique allows us to still accurately model the flow

around the test subject while accounting for the effects of the wind tunnel in a way that

doesn’t drastically increase the cost of the simulation. Lastly, in our explorative study of

ii



reinforcement learning of airfoil pitch control, we try out the training of a control policy

in a classical unsteady aerodynamics environment and a viscous, low-Reynolds number flow

environment to minimize the lift variations caused by flow disturbances and compare the

performance of controllers, or agents, that observe different types of information about the

states of the system.
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CHAPTER 1

Introduction

1.1 Background and motivation

A key aspect in the design and operation of vehicles, machines, and structures that inter-

act with air flows is their behavior under varying ambient or operating conditions and the

regulation of the aerodynamic forces acting on them. An evident example is the control of

actuators on an aircraft wing or body to maintain a constant lift force when flying through

gusty air. Another example is the pitching of entire wind turbine blades to react to changes

in the incoming air to maintain optimal efficiency or, in extreme wind conditions, to align

the blades with the wind to shut down the turbine such that its operating limits are not

exceeded. These cases, and many others, are examples of flow control, where the control

manipulates the flow, and the control objective depends on the flow behavior, e.g., transition

delay, separation prevention, drag reduction, lift enhancement, etc. [Gad-el Hak, 2000]

Flow control lies at the intersection of fluid mechanics and control theory, and the perfor-

mance of flow control systems is often limited by three major challenges introduced by these

fields. Firstly, the fluid equations are nonlinear, which gives rise to intricate flow patterns

spanning multiple scales and input-output behavior that cannot be superposed. Secondly,

these patterns are inherently three-dimensional, and accurately modeling their behavior up

to the smallest scales with direct numerical simulations is extremely expensive for most in-

teresting flow problems. Finally, most control theory tools are developed for linear systems,

including linear quadratic regulators, robust control, root locus analysis, and Bode design
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techniques.

Despite these challenges, numerous highly effective solutions exist that solve complex

flow control problems thanks to many advances in both fields. Still, the key to pushing the

envelope of many systems is the ongoing development of appropriate techniques to handle the

challenges above by reducing the modeling cost while still accounting for the most important

flow features and considering or exploiting the nonlinearities in the flow when designing

control laws. These efforts are pivotal in unlocking enhanced performance across various

systems, such as the supermaneuverability of air vehicles, safety during extreme conditions,

and increased efficiency of energy-conversion systems and transportation, resulting in lower

operating costs and reduced emissions.

This dissertation focuses on developing and analyzing methods that align with these

ongoing efforts dealing with the flow control challenges and does so in the framework of

two-dimensional, incompressible, unsteady aerodynamics. Specifically, the contributions of

this work are:

• A fast method that relies on vortex modeling on a grid to reduce the cost of fluid

simulations while still accounting for the dominant flow behavior,

• A numerical method to efficiently account for wind-tunnel walls in the modeling of

experiments and an accompanying study investigating the influences of those walls on

gust-airfoil interactions, and

• An exploratory study of using deep reinforcement learning to control the pitch of an

airfoil under unsteady conditions in a nonlinear way.

1.2 Dissertation outline

In Chapter 2, we describe the unsteady aerodynamics flows we will deal with in the work

and introduce several modeling approaches: classical unsteady aerodynamics, dynamic wake

2



inviscid vortex methods, and a viscous flow model. These will be useful in the later chapters

of this work.

Chapter 3 presents a grid-based treatment of potential flows in two dimensions and its

use in an inviscid vortex model for simulating unsteady aerodynamic flows. For flows con-

sisting of vortex elements, the treatment follows the vortex-in-cell approach and solves the

streamfunction-vorticity Poisson equation on a Cartesian grid after transferring the circula-

tion from the vortices onto the grid.

The aerodynamic response to flow disturbances is regularly investigated through wind-

tunnel (or water-tunnel) experiments. The gusts generated in those experiments are often

further analyzed using numerical simulations, but usually without fully accounting for the

wind-tunnel walls or gust generator. In Chapter 4, we investigate wind-tunnel effects on

the predicted lift response and flow field in unsteady aerodynamics using a computational

framework that models the viscous flow around the airfoil but treats the tunnel walls and

gust generation as inviscid boundary conditions. We apply this model to three examples and

compare the predicted gust response with the responses predicted by a free-space viscous

model and a classical unsteady aerodynamics model to highlight the wind-tunnel effects.

In Chapter 5, we use deep reinforcement learning to train a controller, or policy, to control

the pitch of the airfoil to minimize the lift variations caused by disturbances. We train this

policy in two types of environments: a classical unsteady aerodynamics environment and a

viscous flow environment. The former is a linear model, and linear control theory can easily

solve the control problem. However, the latter environment applies disturbances that induce

a nonlinear aerodynamic response. This warrants the use of nonlinear control, such as deep

reinforcement learning policies, which we explore in this chapter.

Finally, in Chapter 6, we summarize the tools that this work introduced and reiterate

the main findings. We then conclude by providing an overview of possible future research

directions.
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CHAPTER 2

Unsteady aerodynamics: phenomena and modeling

approaches

2.1 Flow description and variables

This work is mostly concerned with two-dimensional, external, unsteady, low Mach number

viscous or inviscid fluid flows over airfoils. The main domain of application of these flows is

aerodynamics. However, most methods we introduce are equally applicable to hydrodynam-

ics or the study of other fluids.

We will assume the flows in this work have a uniform density ρ and uniform viscosity µ,

or zero viscosity in the case of inviscid flows. The viscosity combined with a characteristic

velocity U and a characteristic length L define the Reynolds number Re = ρUL/µ for viscous

flows. For all flows in this work, the characteristic velocity will always be the nominal flow

velocity relative to the airfoil, and the characteristic length will always be the chord length

c of the airfoil. The models we consider in this work are either viscous flows at low Reynolds

numbers or low-order inviscid flows. Real unsteady aerodynamics applications rarely meet

the full requirements for these models. However, these models’ low complexity and low

computational cost justify their use under two conditions. Firstly, we avoid modeling flows

that are known to be highly three-dimensional. Thus, we do not try to accurately predict

flows over low-aspect-ratio wings or vortex dynamics for more than a couple of convective

times after they formed. Secondly, we only seek to model the dominant flow behavior. In

our study of unsteady aerodynamics, we only model the largest vortex structures near the
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surface, whose contributions matter most when predicting the forces on the airfoil.

A differentiable velocity field u on the unbounded domain Ω = {x = (x, y)} can be

decomposed according to the Helmholtz decomposition

u = ∇ϕ+∇×Ψ, (2.1)

where ϕ is the scalar potential and Ψ is the vector potential. These potentials are governed

by the Poisson equations

∇2ϕ = Θ, and (2.2)

∇2Ψ = −ω, (2.3)

where Θ := ∇ · u is the rate of dilatation, and ω := ∇× u is the vorticity, which quantifies

the local rate of rotation of the flow (where the sign of the flow rotation follows the right-

hand rule). An important integral quantity is the circulation, which is defined for an area

S, enclosed by a curve C, as

Γ :=

∫
C
u · dl =

∫
S
ω · ndS. (2.4)

Note that in two dimensions, the velocity field has two components, u and v, the vorticity

is a scalar ω, and the vector potential is also a scalar ψ, more commonly known as the

streamfunction.

In the case of low-Mach number flows, the velocity satisfies the incompressibility con-

straint

∇ · u = 0, (2.5)

which, together with the momentum transport equation

ρ

(
∂u

∂t
+ u · ∇ · u

)
= −∇p + µ∇2u, (2.6)

forms the Navier-Stokes equations describing viscous flow dynamics. Here, the pressure p

is a constraint force that enforces the incompressibility constraint (2.5) of the velocity field.
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Alternatively, the flow can be described by the transport equation for vorticity, obtained by

taking the curl of (2.6),

ρ

(
∂ω

∂t
−∇× (u× ω)

)
= µ∇2ω. (2.7)

The velocity field can then be reconstructed through (2.1) and (2.3), guaranteeing a divergence-

free velocity since the divergence of a curl is always zero. A numerical approach to modeling

these flows in the presence of surfaces is discussed later in this chapter.

Besides viscous incompressible flow, we will also focus on fast methods for inviscid in-

compressible flows. These are governed by the incompressible Euler equations (while still

obeying the incompressibility constraint (2.5)) or the inviscid vorticity transport equations,

obtained by removing the viscosity terms from (2.6) and (2.7), respectively. The flow descrip-

tion drastically simplifies when all vorticity is concentrated in singular elements consisting

of points, lines and surfaces. In this case, the flow outside of these elements is a potential

flow where ϕ and Ψ satisfy the Laplace equations

∇2ϕ = 0, and (2.8)

∇2Ψ = 0, (2.9)

and the vortex elements in the flow satisfy Helmholtz’ theorems: their strength is time-

invariant and they are transported by the flow. This is exactly the approach followed by

vortex methods, which we will describe later in this chapter.

2.2 Unsteady phenomena

To analyze a flow field, we can examine any of the fields introduced in the previous section,

but it is often most enlightening to look at the contours of the vorticity or streamfunction

fields, as we will often do in this work. The contours of the streamfunction represent the

streamlines of the flow, which are tangent to the velocity at every point. Here we will look at

these fields for a number of unsteady flows that exhibit unsteady aerodynamics phenomena
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Figure 2.1: Streamlines (grey) and vorticity contours (colored) after two convective times

for an impulsively started flow around an airfoil with an angle of attack of ten degrees at a

Reynolds number of 400.

that are relevant for this work.

2.2.1 The Kutta condition and the starting vortex

Suppose an airfoil is suddenly brought into motion in a quiescent viscous fluid in an asym-

metric way. The high velocity gradients that appear at the first instant when the fluid tries

to navigate around the sharp trailing edge are immediately damped out by the viscosity,

and the flow cannot remain attached. The vorticity formed in this process gets convected

away from the edge by that flow, or, in other words, gets shed from the airfoil into the

surrounding fluid, as clearly visible in Figure 2.1. This patch of shed vorticity is called the

starting vortex, and the resulting condition, i.e., the flow leaving the trailing edge smoothly,

is the Kutta condition. In an inviscid flow, this viscosity mechanism is absent, and the kutta

condition must be added with mathematical constructs when modeling the flow.

As soon as it appears in the flow, the starting vortex induces a velocity field that alters

the flow around the airfoil. Again, the modified flow cannot navigate the trailing edge,

and more vorticity gets shed to keep the flow smooth at the edge. In turn, this vorticity

again triggers the release of more vorticity and so on. This continuous process generates a

free shear layer, i.e., a layer over which high tangential velocity gradients persist that are

gradually diffused by viscosity. Its inviscid equivalent is an infinitesimally-thin free vortex

7



Figure 2.2: Streamlines (grey) and vorticity contours (colored) after two convective times

for an impulsively started flow around an airfoil with an angle of attack of 30 degrees at a

Reynolds number of 400.

sheet over which a jump in tangential velocity exists.

2.2.2 Flow separation and the leading-edge vortex

A phenomenon somewhat related to the Kutta condition can occur at the leading edge,

which is often rounded. After the flow impinges on this part of the airfoil, its boundary layer

usually has a favorable pressure gradient for a short part of the curved edge before it creates

an adverse pressure gradient to slow down the outer flow. Depending on the Reynolds

number, the curvature of the edge, and the airfoil’s angle of attack, the adverse pressure

gradient can be strong enough to cause a reversed flow which means the flow separates,

shown in Figure 2.2.

When flow separation occurs, several interesting phenomena can take place. The sepa-

rated flow forms a shear layer that is attached to the separation point and rolls up toward

the surface, forming the leading-edge vortex (LEV). When it is initially developing, the shear

layer remains close to the surface, and the outer flow that navigates around it can reattach

to the surface at a downstream point. The flow under the shear layer forms a recirculation

area called a separation bubble.
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Figure 2.3: Streamlines (grey) and vorticity contours (colored) after five convective times

for an impulsively started flow around an airfoil with an angle of attack of 45 degrees at a

Reynolds number of 400.

Under the right conditions, the separation bubble keeps growing, and the reattachment

point moves downstream until it passes the trailing edge, at which point the flow is completely

separated. The LEV keeps accumulating vorticity until it sheds into the surrounding fluid

that convects it away from the body, shown in Figure. The exact mechanics of this nonlinear

process can vary, but it usually has a significant impact on the force, including a temporary

lift increase while the low-pressure region of the LEV moves over the top surface and a

subsequent drop when the flow fully separates [Eldredge and Jones, 2019].

The shed LEV can trigger the release of another strong trailing-edge vortex. At high

enough Reynolds numbers (while remaining laminar) and a sustained angle of attack, this

can result in the periodic release of vortices from both edges, generating a von Karman

vortex street, depicted in Figure 2.3.
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2.3 Inviscid vortex modeling

We will now focus on the modeling approaches of flows where the vorticity is modeled using

singular elements such as point vortices, vortex sheets, or a combination of both. In the

case of an inviscid and incompressible model, the irrotational flow outside of these singular

vortex elements is a potential flow. Singular vortex elements that represent the free vorticity

in an inviscid vortex model are advected by the local flow velocity according to Helmholtz’s

second theorem and can be tracked as Lagrangian points. This local flow velocity can be

computed as part of the overall velocity field, which depends on the vorticity according to

the Biot-Savart integral

u(x) =

∫
V
K(x− y)× ω(y)dV (y), (2.10)

where K is the velocity kernel, which is equal to x/ (4π|x|3) in three-dimensional flows and

x/ (2π|x|2) in two-dimensional flows.

In case a vortex method inserts new vortex elements in the flow behind a bluff body or at

sharp edges, Kelvin’s circulation theorem dictates that the circulation should be conserved.

Singular potential flow elements can also serve to enforce the no-penetration condition, with

the most common choice in vortex methods being a distribution of singular vorticity on the

body, denoted as the bound vortex sheet, which will have the equal and opposite circulation

of the vorticity that was inserted into the flow. The strength of a vortex sheet is usually

denoted by γ and represents the local jump in velocities over the sheet

γ = n× (u+ − u−), (2.11)

where + is in the direction of the normal vector n. The Biot-Savart integral (2.10) allows

to formulate a boundary integral equation that can be solved for the unknown strength of

the vortex sheet. Note that the inviscid flow around an airfoil is generally non-unique but

that the Kutta condition constraint restricts these solutions to a unique solution where the

flow leaves the trailing edge smoothly.
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In what follows, we will discuss some relevant methods for this work. Firstly, we will

assume the strict conditions of classical unsteady aerodynamics and look at the linear Wag-

ner/Theodorsen model for the lift response to arbitrary small perturbations of an airfoil

in motion. We describe the formulation in the time-domain, which we will make use of in

Chapter 4, and derive a state-space form, which we will use as one of the systems for the

reinforcement learning in Chapter 5. Then we will introduce vortex methods that can model

more complex, nonlinear flow behavior, which serves as the background for the grid-based

vortex model in Chapter 3.

2.3.1 Classical unsteady aerodynamics

In the early 20th century, aerodynamicists developed simple formulations to predict the forces

in unsteady flows around airfoils under some specific assumptions. This theory is known as

classical unsteady aerodynamics [von Kármán and Sears, 1938], and its assumptions are as

follows. As depicted in Figure 2.4, the airfoil is a flat plate with chord length c at a small

angle of attack α, where |α| � 1, and its main motion is a constant velocity U in the

negative x-direction. Any other motions are perturbations of the angle of attack with an

angular velocity α̇ applied at a pivot point at a coordinate (d, 0) in the body-fixed reference

frame positioned at the center of the airfoil with its x̃-axis along the chord and the vertical

motion ḣ of that pivot point. These perturbations are considered small compared to the

forward velocity of the plate, i.e., |α̇ | � U/c and |ḣ| � U . The wake is assumed to lie along

the x̃-axis of the body, and the wake vorticity convects with the velocity U away from the

airfoil.

Classical unsteady aerodynamics theory provides an expression for the bound vortex

sheet strength when the Kutta condition is applied at the trailing edge under the previously

mentioned assumptions: ∫ ∞

c/2

(x̃+ c/2)1/2

(x̃− c/2)1/2
γS(x̃)dx̃ = −Γqs (2.12)
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Figure 2.4: Diagram of the airfoil and wake in classical unsteady aerodynamics.

where the quasi-steady circulation Γqs := −πcUαeff depends on the effective angle of attack

αeff := − ḣ

U
+ α +

( c
4
− d
) α̇
U
, (2.13)

Assuming that the wake convects with the velocity U and equation (2.12) has to be

satisfied at any instant of time, the wake strength can be determined. Furthermore, the

classical theory also provides a general expression for the lift on the plate:

fy = − π

4
ρc2
(
ḧ + dα̈ − Uα̇

)
︸ ︷︷ ︸

added-mass lift fam
y

− ρUΓqs

︸ ︷︷ ︸
quasi-steady

lift fqs
y

− 1

2
ρUc

∫ ∞

c/2

γS(x̃S)

(x̃2S − c2/4)1/2
dx̃S︸ ︷︷ ︸

wake lift fS
y

. (2.14)

The last two terms (the quasi-steady and wake lift) together form the circulatory lift, or

f circ
y = fqs

y + fS
y .

The distributions of the pressure jump across the plate corresponding to the added-mass

and circulatory lift were first derived by Neumark [1952] and are for rigid-body motion given

by

[pam]+−(x̃P) = −2ρ
(
ḧ + dα̈ − Uα̇

) (
c2/4− x̃2P

)1/2 (2.15)

[pcirc]+−(x̃P) =

(
−2ρU2αeff +

ρU

π

∫ ∞

c/2

γS(x̃S)

(x̃2S − c2/4)1/2
dx̃S

)
(c/2− x̃P)

1/2

(c/2 + x̃P)
1/2
. (2.16)

The full pressure is then [p]+− = [pam]+− + [pcirc]+−. Note that the first factor in parentheses

in Eq. (2.16) is equal to −2f circ
y /πc and thus the circulatory pressure at any point along the

airfoil linearly scales with the circulatory lift.
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For an arbitrary, smoothly-varying αeff , a more practical expression can be obtained for

the circulatory lift if we formulate it as the convolution of the rate of change of Γqs with the

non-dimensional lift response to a step change in Γqs, known as Wagner’s function Φ [Wagner,

1925], plus the contribution of the initial value of Γqs times Wagner’s function evaluated at

the current time:

fy = f am
y − ρUΓqs(0)Φ(t∗)− ρU

∫ t∗

0

Γ̇qs(τ ∗)Φ(t∗ − τ ∗)dτ ∗. (2.17)

There is no analytical form of Wagner’s function available, but several approximations

exist, including one proposed by Jones [1938] that is expressed as

Φ(t∗) ≈ 1− 0.165e−0.091t∗ − 0.335e−0.6t∗ . (2.18)

The circulatory lift in (2.17) can be formulated in the Laplace domain as a multiplication

of a transfer function with the quasi-steady lift:

L{f circ
y } = −ρUΓqs(0)L{Φ} − ρUL{Φ}L{Γ̇qs} (2.19)

= −ρUsL{Φ}L{Γqs} (2.20)

= sL{Φ}L{fqs
y } (2.21)

where s is the Laplace variable. The transfer function C(s) = sL{Φ} based on the Wagner

function approximation (2.18) was also derived by Jones [1938] and can be expressed as

C(s) = s

∫ ∞

0

Φ(τ ∗)e−sτ∗dτ ∗ (2.22)

≈ 0.5s2 + 0.5616s+ 0.0546

s2 + 0.691s+ 0.0546
. (2.23)

Furthermore, Jones [1938] noted, like Garrick [1938] before him, that C evaluated on the

imaginary axis, i.e. its steady-state behavior for a purely oscillatory, quasi-steady circulation,

is equivalent to Theodorsen’s function [Theodorsen, 1935].

For control purposes, we seek the state-space representation of (2.22) and express the

lift in terms in terms of the lift coefficient cL = 2fy/ (ρU
2c). The controllable canonical
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Figure 2.5: Unit step response of the circulatory lift coefficient and the states of the control-

lable canonical state-space representation for the Wagner transfer function by Jones [1938].

state-space representation for C(s) is ˙̂x1

˙̂x2

 =

−0.691 −0.0546

1 0


︸ ︷︷ ︸

Â

x̂1
x̂2

+

1
0


︸︷︷︸
B̂

cqsL (2.24)

ccircL =
[
0.2161 0.0273

]
︸ ︷︷ ︸

Ĉ

x̂1
x̂2

+
[
0.5
]

︸ ︷︷ ︸
D̂

cqsL . (2.25)

The response of this system to a unit step increase of cqsL is shown in Figure 2.5.

Following Brunton and Rowley [2013], we can use (2.22) to create a multi-input, single-

output transfer function for the complete lift expression by applying the Laplace transform
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to (2.17) for each input:

G(s) =
[
Gḧ(s) Gα̈ (s)

]
(2.26)

=

[
− πc

2U2
− 2π

sU
C(s)

πc

2U

(
1

s
+
d

U

)
+ 2π

(
1

s2
+

1

sU

( c
4
− d
))

C(s)

]
, (2.27)

where Gḧ and Gα̈ are the transfer functions that give the reponse of the output cL to the

input signals ḧ and α̈ , respectively. We can also cast this result also into a minimal state-

space realization:
α̇eff

α̈

˙̂x

 =


0 1 0

0 0 0

2πB̂ 0 Â


︸ ︷︷ ︸

A


αeff

α̇

x̂

+


− 1

U
1
U

(
c
4
− d
)

0 1

0 0


︸ ︷︷ ︸

B

ḧ
α̈

 (2.28)

cL =
[
2πD̂ πc

2U
Ĉ
]

︸ ︷︷ ︸
C


αeff

α̇

x̂

+
[
− πc

2U2 − πcd
2U2

]
︸ ︷︷ ︸

D

ḧ
α̈

 (2.29)

2.3.2 Dynamic wake vortex methods

Although classical unsteady aerodynamics theory provides powerful tools to model unsteady

flows, it cannot model vortex shedding from the leading edge nor the dominating nonlinear

flow behavior that arises when the interactions between vortex elements become stronger.

In such cases, the flat wake model is insufficient, and a wake model has to be adopted where

the vortex elements are convected by the local velocity. These potential flow around these

elements can be modeled in different ways. This can be done by either using direct interaction

between the potential flow elements or by calculating the velocity on a grid over the entire

domain and the eventual choice dictates the treatment of boundary and edge conditions.

In the first approach, the Green’s function of the Laplacian is applied to the Poisson equa-

tion in the velocity-vorticity formulation to give the Biot-Savart integral, which provides the
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exact solution for a velocity field that satisfies unbounded boundary conditions. Biot-Savart

vortex methods often smooth the Biot-Savart kernel, equivalent to replacing point vortices

by vortex blobs [Chorin and Bernard, 1973], to suppress Kelvin-Helmholtz instabilities below

a certain wavelength resulting from the interactions between closely spaced vortex elements.

The solution generally requires O(N2) operations, with N the number of vortex elements,

to sum the influences of each discretized vortex element on every other element. With fast

multipole methods, it scales optimally as O(N) but with a large prefactor and overhead cost.

Inviscid vortex methods of this kind can straightforwardly use the potential flow tools to

enforce the no-penetration, such as conformal mapping or solving the integral equation for

a surface singularity distribution through analytical inversion, panel discretization, or with

Fourier expansions. For a detailed review of this subject, the reader is referred to Cottet and

Koumoutsakos [2000] and Eldredge [2019].

A second approach to calculate the flow velocity follows from the discretization of the

Poisson equation in the velocity-vorticity formulation or streamfunction-vorticity formula-

tion on an Eulerian grid over the domain of interest and is called a vortex-in-cell (VIC)

approach, first developed by Christiansen [1973]. The procedure requires first to transfer

the circulation from Lagrangian vortex elements onto the grid, then to solve the discrete

Poisson equation, and finally to interpolate the velocity (or the curl of the streamfunction)

back to the vortex elements. It introduces discretization errors but only requires O(M logM)

operations, with M the number of grid points, to solve the Poisson equation with current

numerical techniques and O(N) operations to perform the regularization and interpolation.

Similar to the regularized Biot-Savart kernel, the grid spacing together with the vorticity

regularization scheme determine the cut-off wavelength below which the Kelvin-Helmholtz

instabilities get suppressed.

The early work on VIC methods focused on inviscid vortex dynamics using Fourier-based

Poisson solvers with Dirichlet or periodic boundary conditions [Meng and Thomson, 1978,

Baker, 1979, Couët et al., 1981] and the analysis of different interpolation kernels [Ebiana
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and Bartholomew, 1996]. After viscous schemes for vortex methods were introduced, VIC

methods increasingly replaced Biot-Savart methods in an effort to speed up vortex methods

for viscous flows, leading to methods with over a billion vortex particles [Chatelain et al.,

2008]. This also stimulated the development of VIC methods for external flows over bodies,

mostly for viscous flows. The most straightforward way to include a body in the flow is to use

a body-fitted mesh as in Cottet and Poncet [2004], who apply the Helmholtz decomposition

on the flow in their VIC method and place a Neumann boundary condition for the scalar

potential on the body to account for its presence and employ an analytic boundary condition

for the far-field. However, a body-fitted mesh is case-specific and, therefore, the same work

(and later also Poncet [2009]), develops an immersed boundary method by introducing a

singular distribution of sources that represents the influence of the body and is smeared onto

a cartesian grid using a discrete approximation to the Dirac delta function. The result is a

source term that is inserted in the Poisson equation for the scalar potential which is solved

on the grid. Similar to the immersed boundary methods, Brinkman penalization methods

do not require body-fitted meshes. In vortex methods, the Brinkman penalization method

[Coquerelle and Cottet, 2008, Rossinelli et al., 2010, Gazzola et al., 2011, Rasmussen et al.,

2011, Chatelin and Poncet, 2014] adds a volume forcing term to the vorticity transport

equation that includes a penalization parameter, equivalent to the porosity of the body.

However, the method suffers from a strong time step restriction, which motivated Hejlesen

et al. [2015] to use an iterative Brinkman penalization method, which Spietz et al. [2017]

extended to three dimensions. Gillis et al. [2017] formulates this method as a linear system

and uses a recycling iterative solver to obtain the solution more efficiently.

The immersed boundary method and Brinkman penalization method both smear out

the influence of the interface onto nearby grid points. LeVeque and Li [1994] developed the

immersed interface method (IIM) to overcome this issue and to obtain a higher spatial order

of accuracy than the immersed boundary method. The premise of this method is to discretize

the jump conditions caused by the interface with finite differences instead of discretizing the
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Dirac delta function, and the result is a sharp representation of the interface with a second or

higher-order accuracy. Marichal et al. [2014] applies the explicit-jump IIM [Wiegmann and

Bube, 2000] in his potential flow method. The influence of the interface was condensed into

an extra source term in the streamfunction Poisson equation and it was recognized that the

term is equivalent to a bound vortex sheet strength regularized to the grid. The bound vortex

sheet strength, streamfunction field, and outer boundary condition on the streamfunction

are then computed iteratively. The work presents results from the flow over a cylinder and an

airfoil, for which the Kutta condition enforced through discretization of the streamfunction

normal derivatives at the trailing edge. Gillis et al. [2018] extends this method, but applies

the IIM on the scalar potential instead. An explicit formula for the singular distribution

of sources on the interface is then obtained by applying the Sherman-Morrison-Woodbury

decomposition formula to the Poisson equation, similar to Poncet [2009]. Furthermore, by

solving the Poisson equation using the lattice Green’s function [Katsura and Inawashiro,

1971], which automatically satisfies far-field boundary conditions, the method is no longer

iterative and the cost is greatly reduced. Gillis et al. [2019] applies this method again to the

streamfunction in two dimensions and employs it in a viscous VIC method.

Chapter 3 introduces a saddle-point system formulation for grid-based potential flow

solvers where the circulation of the body or shed vortices can be added as a Lagrange

multiplier to enforce the Kutta condition constraint.

2.4 Viscous modeling

In a viscous flow, the pressure combines with the viscous stresses to give the stress tensor

t = −pI +µ
(
∇u+∇⊤u

)
. The surface traction t ·n is the projection of the stress tensor at

a surface onto the normal vector n of that surface and provides the means to compute the
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force f and moment m about the origin exerted by the fluid on the surface:

f =

∫
t · n dS, (2.30)

m =

∫
x× (t · n) dS. (2.31)

In this work, the nominal flow relative to the airfoil is always parallel to and pointing in

the same direction as the positive x-axis of the inertial reference frame, and we regularly

decompose the force vector into its inertial x- and y-components, which we refer to as the

drag and lift, respectively. Note that in a viscous flow, the surface traction is the constraint

force that enforces the no-slip condition u = ub on the surface.

In general, modeling the incompressible Navier-Stokes equations (2.5) and (2.6) is often

more complicated than modeling the potential flow in inviscid vortex methods. Not many

viscous flows have an analytical solution, especially in unsteady aerodynamics, and elemen-

tary flow solutions can generally not be superposed. Furthermore, the numerical modeling

of viscous flows is a broad field containing many different approaches. In this work, we

only discuss the immersed boundary projection method and its variant, the immersed layers

projection method.

The immersed boundary projection method Taira and Colonius [2007] reformulates the

original immersed boundary method by Peskin [1972] as a saddle-point system that can be

solved using the LU-decomposition, similar to the analysis of Perot [1993] of the fractional-

step method. The original immersed boundary method discretizes the Navier-Stokes equa-

tions on a staggered Cartesian grid and represents the interface with discrete Lagrangian

points that are not bound to the grid points and where point forcing is applied to the fluid

to enforce the no-slip condition. The forcing is transferred to the grid points using a reg-

ularization or immersion operator that applies a convolution with the discrete Dirac delta

function, and a similar interpolation operator transfers the fluid velocity to the position of

the surface points. As a result, this method doesn’t require the shapes of the mesh and sur-

face to agree and is ideal for numerically modeling the flow around moving or geometrically
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complex interfaces.

The equivalent continuous formulation of the immersed boundary treatment of the

Navier-Stokes equations is

ρ

(
∂u

∂t
+ u · ∇ · u

)
= −∇p + µ∇2u+

∫
Ω

σ (X(ξ)) δ(X − x)dS(ξ), (2.32)

∇ · u = 0, (2.33)

u (X(ξ)) =

∫
∂Ωb

u(x)δ(x−X)dx = ub (X(ξ)) . (2.34)

where σ is the surface force that acts as a Lagrange multiplier to enforce the no-slip con-

dition, δ is the multi-dimensional Dirac Delta function, X(ξ) is the position of the body,

parametrized by ξ, and ub is the velocity of the surface.

Alternatively, the immersed boundary treatment can be formulated for the vorticity-

streamfunction form of the Navier-Stokes equations Colonius and Taira [2008] as

ρ

(
∂ω

∂t
−∇× (u× ω)

)
= µ∇2ω −∇×

∫
Ω

σ (X(ξ)) δ(X − x)dS(ξ), (2.35)

u (X(ξ)) =

∫
∂Ωb

u(x)δ(x−X)dx = ub (X(ξ)) . (2.36)

Eldredge [2022] points out that in the immersed boundary method, the surface force

function σ is equal to (t+ − t−) ·n, the sum of the surface tractions exerted from either side

(with + in the direction of the surface normal), and that it is thus impossible to obtain the

surface traction on the exterior surface from σ without knowing t− from the interior flow.

The immersed layers method Eldredge [2022] is developed to remedy this issue by accounting

for the jump in velocity over the interface. However, in our work, this surface force will

always represent the physical surface traction on the surface. That is because the surfaces

we study are either static airfoils or moving infinitesimally-thin airfoils. Nevertheless, the

viscous flow simulations in this work are performed using a viscous flow solver code that

relies on the immersed layers projection treatment of the vorticity-streamfunction form of

the Navier-Stokes equations and which is available on Github [Eldredge, 2023].
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The saddle-point system that results from discretizing the equations using the immersed-

boundary projection method is solved using a block-LU decomposition. The projection step

generates a Poisson equation that can be solved using a single inversion of the system, which

can be reused for every subsequent simulation timestep, provided that the surfaces are not

in motion. When the surfaces are in motion, the grid operators change at every time step,

and the resulting system would have to be inversed every time. However, if in the body-fixed

reference frame, the boundary conditions don’t change, the problem can be solved as if the

body were not moving, and again only a single inversion of the system will be necessary for

the whole simulation.
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CHAPTER 3

Grid-based modeling of potential flows

In this chapter we present a grid-based treatment for planar potential flow. The focus of

this work is on the flow around point vortices, but the treatment can easily be extended to

account for sources and sinks. In the case of the flow around vortices, the treatment fol-

lows a vortex-in-cell approach. In our implementation, the streamfunction-vorticity Poisson

equation is solved for the streamfunction on the grid using the lattice Green’s function, such

that unbounded boundary conditions are accounted for. To enforce the no-penetration con-

dition on surfaces in the flow, the treatment is presented by using the immersed-boundary

projection method and our implementation is therefore approximately first-order accurate in

space [Colonius and Taira, 2008]. This approach consists in adding an extra singular vortic-

ity source term to the streamfunction-vorticity Poisson equation that is distributed over the

discrete surface points and is smeared onto the nearby grid nodes. This extra vorticity term

represents the bound vortex sheet strength and assumes the role of a Lagrange multiplier in

this method. The modified Poisson equation combined with the no-penetration constraint

then forms a saddle-point system that can be solved with the Schur’s complement method.

Note that the IIM introduces a similar modification to the Poisson equation [Marichal et al.,

2014] and the Sherman-Morrison-Woodbury decomposition can produce an expression for

the discrete vortex sheet strength [Gillis et al., 2019] that is equivalent to the formula we

obtain by using the Schur’s compelement method. Consequently, one could use the IIM to

obtain a second-order method instead. Drawing inspiration from the analytical treatment

of the Kutta condition in Biot-Savart methods, this work then introduces a new way of

enforcing the Kutta condition in a discrete potential flow treatment by decomposing the
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discrete vortex sheet strength into a singular and non-singular part and constraining the

non-singular part. This amounts to algebraically constraining the system arising from the

immersed-boundary projection method to make it well-behaved.

3.1 Basic two-dimensional potential flow problem

We consider here a staggered, Cartesian grid with uniform cell size ∆x and of infinite extent.

The space corresponding to data at cell vertices (nodes) on this grid is denoted by N , and

the physical coordinates of these nodes by x and y. Furthermore, we consider a finite number

Nv of Lagrangian, singular point vortices. The space of scalar data on these points is denoted

by WNv and we define Γv ∈ WNv as the vector containing the strengths of the point vortices

in our grid-based treatment. The basic (unbounded) potential flow problem is expressed as

Ls = −w, (3.1)

where L is the discrete 5-point Laplacian operator, s ∈ N is the discrete streamfunction,

and w ∈ N the discrete vorticity. The discrete velocity field v, whose components lie on the

faces of the cells with the corresponding normals, is computed from s by the discrete curl

operation,

v = Cs. (3.2)

The operator C applies centered differences between the nodes to obtain the velocity com-

ponents at the intermediate centers of cell faces. We denote the space of data that lie on

cell faces by F , so C : N 7→ F . Figure 3.1(a) shows the staggered grid structure.

The grid differencing operators L and C and others to be defined are scaled by the grid

spacing, and thus represent second-order approximations of the corresponding continuous

operators, and the discrete streamfunction s, vorticity w, and velocity v are each approxi-

mations of their continuous counterparts. The total flow circulation is equal to the sum of

grid vorticity multiplied by the cell area ∆x2. To support the work that follows, we define

23



an inner product on the grid nodes,

〈w1,w2〉N = ∆x2wT
1 w2, (3.3)

for w1, w2 ∈ N . The total circulation can then be written compactly as

Γw = 〈1,w〉N , (3.4)

where 1 ∈ N is a grid vector of ones.

The particular solution of equation (3.1) can be written down immediately with the help

of the lattice Green’s function for L [Katsura and Inawashiro, 1971, Cserti, 2000, Liska and

Colonius, 2014a]. We denote this simply by the inverse operator,

s = −L−1w. (3.5)

It can be shown that, with a suitable truncation of the grid, both L and its inverse are

symmetric operators. However, L is only positive semi-definite, and an additional homoge-

neous solution, s∞ ∈ N—for example, corresponding to a uniform flow—can be added to

the particular solution of this equation −L−1w+ s∞. This homogeneous solution allows us to

satisfy boundary conditions at (discrete) infinity. The size of the domain in our simulations

is therefore not relevant, as long as it includes the features that are of interest.

As in the vortex-in-cell approach [Christiansen, 1973], the discrete vorticity is obtained by

immersing the vortex elements into the grid and transferring their circulation to the nearby

nodes using a tensor product of two one-dimensional, discrete Dirac delta functions:

w =
1

∆x2

Nv∑
q=1

Γv,qd

(
x−Xq

∆x

)
d

(
y − Yq
∆x

)
, (3.6)

where d is a discrete Dirac delta function1. By the properties imposed on d,

〈1,w〉N =
Nv∑
q=1

Γv,q. (3.7)

1In particular, d(x/∆x)/∆x represents a Dirac sequence as ∆x → 0.
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In this work, d is the M ′
4 function from Monaghan [1985], depicted in Figure 3.1(b);

panel (a) depicts how data from a Lagrangian point is regularized onto the grid nodes. For

compact notation, we define dq ∈ N , the grid vorticity field generated when a vortex of unit

strength is immersed into the grid, so that we can write (3.6) as

w =
Nv∑
q=1

Γv,qdq. (3.8)

Even more compactly, we define the regularization operator NRW : WNv 7→ N , whose Nv

columns are dq, q = 1, . . . , Nv, which allows us to write (3.8) as

w = NRWΓv, (3.9)

the discrete streamfunction field as s = −L−1 NRWΓv + s∞ and the velocity field as

v = −CL−1 NRWΓv + Cs∞. (3.10)

Figure 3.2 shows a spatial grid refinement analysis for a flow consisting of point vortices

of random strength that are randomly positioned in the lower-left quadrant of the domain.

The analysis verifies that the discretization technique of the Poisson equation is second-order

accurate in ∆x. We compute the error as ϵs = ‖s−ψ(x, y)‖2/‖ψ(x, y)‖2, where ψ is the exact

solution for the streamfunction. We only consider the values in the upper right quadrant of

the domain to exclude the positions of the point vortices, because the exact singularities at

these positions are not comparable to the regularized, discrete version.

To obtain the velocity at the locations of the point vortices, the discrete velocity field v

should first be interpolated from cell faces to the nodes (using simple averages). Then, the

velocity can be interpolated onto the point vortices with the interpolation operator WEN :

N 7→ WNv , which is the transpose of the regularization operator, WEN = NRT
W , to obtain

an overall interpolation scheme that is consistent with (3.9).

It is worth noting here that, if we wish to include sources and sinks, then we can make

additional use of a discrete scalar potential, lying at cell centers, ϕ ∈ C, whose governing
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Figure 3.1: (a) Schematic of the grid and the regularization of data from a Lagrangian point

(•) onto the grid with a discrete Dirac delta function of radius two. Symbols (◦), (□),

(|), and (-) denote the locations holding the components of the nodes N , cell centers C,

horizontal faces Fx, and vertical faces Fy, respectively. Symbols (×) denote the nodes that

are affected by the regularization. (b) Two examples of discrete Dirac delta functions of

radius two: the M ′
4 function (——) from Monaghan [1985] and the smoothed three-point

function (- - - -) from Yang et al. [2009].
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Figure 3.2: (a) Contours (——) of the discrete streamfunction for randomly positioned point

vortices (•) of random strengths, and (b) its error (◦) over the shaded area for different grid

spacings. Overlaid is an error (——) that scales as ∆x2.
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equation is the discretized version of (2.2), analogous to (3.1). The sources and sinks can be

immersed into a rate of dilatation field at cell centers in similar manner to vortices to cell

nodes (3.6). The velocity field due to the combination of vortices, sinks, and sources can

then be composed using the discrete version of the Helmoltz decomposition (2.1):

v = Gϕ+ Cs. (3.11)

Analogous to the discrete curl operator, the discrete gradient operator G applies centered

differences to scalar data at cell centers C to obtain the velocity components at the cell faces,

so G : C 7→ F .

3.2 Potential flow with an impenetrable surface

Now, let us suppose we have a rigid impenetrable surface S, on which we seek to enforce the

no-penetration condition for the streamfunction. The no-penetration condition asserts that

the normal components of the fluid velocity and this surface velocity must be equal. For

rigid bodies, this surface motion can be alternatively described by a streamfunction, and the

no-penetration condition in the absence of sources and sinks can be imposed equivalently (in

two dimensions) by setting the fluid streamfunction equal to that of the surface ψb up to a

uniform value. In continuous form, this is described by the Dirichlet problem

∇2ψ = −ω (3.12)

ψ (x) = ψb (x) , x ∈ S. (3.13)

In the presence of sources and sinks, one can again solve the auxiliary problem for the scalar

potential and enforce the no-penetration condition only for the flow due to the sources and

sinks. The overall velocity field (2.1) then satisfies the no-penetration condition. Note that

the boundary value problem for the scalar potential is a Neumann problem and requires a

slightly different numerical treatment [Poncet, 2009, Gillis et al., 2018].

The continuous Dirichlet problem (3.12)–(3.13) can be solved via Green’s theorem with
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boundary integrals. We will now solve the discrete version of this equation using the im-

mersed boundary projection method, resulting in completely analogous operations.

3.2.1 Discrete surface and its immersion in the grid

We enforce the no-penetration condition at a finite number Ns of discrete surface forcing

points; the space of scalar data on these Lagrangian points is denoted by SNs . In particular,

let us define rx, ry ∈ SNs as the vectors of x and y coordinates of the surface points. Each

surface point p is associated with a small straight segment of length ∆Sp. Some of the

calculations will require information about the local surface orientation. For this purpose,

we define vectors nx, ny ∈ SNs of components of the discrete surface unit normals. We also

define the space VNs to hold vector-valued data, such as velocity, on the immersed surface

points. For convenience, let us also define unit vectors ep on this space, equal to 1 at surface

point p (1 ≤ p ≤ Ns) and zero at every other point. For example, the x coordinate of point

p is picked out of the vector rx by projection onto the pth unit vector:

eTp rx. (3.14)

Each of the surface point spaces has an associated inner product that includes the surface

length, e.g.,

〈s1, s2〉SNs =
∑
p

∆Sps1,ps2,p, (3.15)

for any s1, s2 ∈ SNs , so that the inner product approximates a surface integral. Another

vector we will make substantial use of in this paper is 1 ∈ SNs , a vector of ones on all

surface points.

From any vector s ∈ SNs , we can also form a diagonal Ns × Ns operator Ds with the

entries of the vector along the diagonal. When this operator acts upon another vector

u ∈ SNs , it represents the Hadamard (i.e., element-by-element) product of the two vectors,

Dsu = s ◦ u ∈ SNs . Note that Dsu = Dus, and that Ds1 = s.
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Similar to (3.9), surface data are immersed into the grid with the regularization operator
NRS : SNs 7→ N . Grid data are interpolated onto the surface points with the interpolation

operator SEN : N 7→ SNs . NRS can be constructed (and we will assume it has) so that it

is the transpose of the interpolation operator, NRS = SEN
T , with respect to the grid and

surface inner products defined in this paper. Furthermore, note that NRS and SEN can be

constructed with a different choice for the discrete Dirac delta function than the one used

for the vortex regularization. In this work, we use the smoothed three-point function from

Yang et al. [2009] (figure 3.1) and we use a uniform spacing between the surface points.

3.2.2 The immersed surface potential flow problem

The surface’s motion is specified by a velocity distribution ub, represented discretely by

components vx, vy ∈ SNs . For rigid bodies, this surface motion can be described by a

streamfunction. Specifically, translation at velocity (U, V ) and rotation at angular velocity

Ω would be described equivalently by velocity components

vx = U1 − Ωry, vy = V 1 + Ωrx (3.16)

or by a surface streamfunction sb ∈ SNs :

sb = U ry − V rx −
1

2
Ω
(
Drxrx + Dry ry

)
. (3.17)

The no-penetration condition can be imposed by setting the discrete streamfunction equal

to that of the surface, up to a uniform value, s0 ∈ SNs :

SEN s = sb − SEN s∞ − s0. (3.18)

For later shorthand, we will denote the difference between the body motion streamfunction

and interpolated uniform flow streamfunction by s ′b ≡ sb − SEN s∞. This modified stream-

function simply consists of subtracting the components (U∞, V∞) of the uniform flow from

(U, V ) in (3.17). The uniform value s0 is left unspecified and will later serve the role of

enforcing a constraint on circulation. For now, we will suppose that it can be set arbitrarily.
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The no-penetration constraint is enforced in the basic potential flow problem (3.1) with

the help of a vector of Lagrange multipliers, f ∈ SNs , on the surface points. The modified

potential flow problem is thus

Ls = −
(
w + NRS f

)
. (3.19)

In fact, by simple comparison with the vorticity w, it is clear that the vector f represents

the strength of the discrete bound vortex sheet on the surface and serves as another source

term of the Poisson equation. Suppose we consider the bound vortex sheet γ(ξ) that emerges

from the analogous continuous problem on the undiscretized surface, where ξ is the arc-length

parameter along the surface. At each point p, the discrete solution f is approximately equal

to this continuous solution:

eTp f ' γ(ξp). (3.20)

The vector of Lagrange multipliers f is initially unknown. Thus, the potential flow

problem in the presence of the impenetrable surface is L NRS

SEN 0

s

f

 =

 −w

s ′b − s0

 . (3.21)

This problem (3.21) has the structure of a generic saddle-point problem [Benzi et al., 2005].

We will encounter many such systems in this work, so in appendix A we summarize a solution

approach, based on block-LU decomposition. The generated solution algorithm of (3.21) is

Ls∗ = −w (3.22)

Sf = s ′b − s0 − SEN s∗ (3.23)

s = s∗ − L−1 NRS f , (3.24)

where the Schur complement S is

S = − SENL−1 NRS . (3.25)

Based on the properties of the matrices comprising S, this operator is symmetric and

negative definite, and therefore invertible. Its inverse S−1, also symmetric, maps a surface
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distribution of streamfunction to a corresponding bound vortex sheet strength. Note that

the computation of f through S−1 is sensitive to both the ratio of discrete surface spacing to

the grid spacing ∆S/∆x and the choice of discrete Dirac delta function. On the one hand,

small values for ∆S/∆x and discrete Dirac delta functions with small support generally both

lead to more high-frequency noise in f . This is because the underlying continuous problem

for S−1 is a Fredholm integral equation of the first kind, which is ill-posed. As a result,

the discrete analogue problem is poorly-conditioned [Goza et al., 2016]. On the other hand,

values for ∆S/∆x that are too high can lead to streamlines penetrating a surface. We found

that values between one to four can provide a good balance between the smoothness of f

and the accuracy of the streamlines near a surface.

We can describe this algorithm in words: First, solve for the intermediate streamfunc-

tion field, associated with vorticity in the fluid, but without regard for the presence of the

surface. Second, find the bound vortex sheet whose associated streamfunction cancels the

difference between the specified streamfunction on the surface and the intermediate stream-

function evaluated on the surface. Finally, correct the intermediate streamfunction field for

the influence of the bound vortex sheet. A version of the Julia code that implements this

algorithm, as well as the algorithms in the following sections, is available in the authors’

Github repository [Beckers and Eldredge, 2021].

We give two examples of the streamfunction with a body present and show the associated

vortex sheet strength. Figure 3.3 shows a vortex near a circular cylinder and figure 3.4 shows

a circular cylinder that translates horizontally. In both cases, the vortex sheet strength is in

good agreement with the analytical solution from potential flow theory.

For later use, we note that the solution of (3.21) can also be written in inverse form using

equation (A.7):s

f

 =

L−1 + L−1 NRSS
−1 SENL−1 −L−1 NRSS

−1

−S−1 SENL−1 S−1

 −w

s ′b − s0

 . (3.26)

The matrix operator in (3.26) is the inverse of the basic saddle-point system.
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Figure 3.3: (a) Contours (——) of the discrete streamfunction for a point vortex (•) with

strength Γv,1 at (Rv, 0) near a circular cylinder of radius Rc and with a bound circulation

−Γv,1. The inset figure shows a closeup of the nodes (◦) and surface points (■) in the boxed

area (- - - -). (b) The scaled discrete vortex sheet strength (——) as a function of the angle

θ measured counter-clockwise from the positive x-axis. k = 1 corresponds to the right-most

point on the surface and increases counterclockwise. Overlaid is the exact continuous solution

(- - - -). The simulation is performed with Rv/Rc = 3/2, ∆x/Rc = 0.03, and ∆S/∆x = 2.
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Figure 3.4: (a) Contours (——) of the discrete streamfunction for a horizontally translating

circular cylinder with radius R, and (b) its scaled discrete vortex sheet strength (——). Over-

laid is the exact continuous solution (- - - -). The simulation is performed with ∆x/R = 0.03

and ∆S/∆x = 2.

3.3 Non-uniqueness and discrete circulation

In two-dimensional potential flows, there is no unique solution to problem (3.21), since one

can choose any value for the uniform value s0 and still enforce the no-penetration condition.

Equivalently, we can specify any circulation about the body and still enforce this condition.

Let us determine the relationship between s0 and circulation. For later use, let us write this

uniform surface streamfunction as s0 = s01 , where s0 is a single scalar value. The discrete

circulation Γb about the body is given by the sum of the bound vortex sheet data and can

be written compactly as

Γb = 〈1 , f 〉SNs . (3.27)

The discrete circulation of the vortex sheet in the solution (3.23) is

Γb =

〈
1 , S−1

(
s ′b +

SENL−1w
)〉

SNs

− s0

〈
1 , S−11

〉
SNs

. (3.28)
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Note that we can obtain the same expression if we would use s0 as a Lagrange multiplier to

enforce the constraint (3.27) as
L NRS 0

SEN 0 1

0 1TD∆S 0




s

f

s0

 =


−w

s ′b

Γb

 , (3.29)

where we use the fact that the inner product 〈1 , f 〉SNs can, by its definition, be rewritten as

1TD∆Sf . Here, D∆S is a diagonal matrix containing the surface element arc lengths.We will

use s0 in a similar way in the next section to enforce the Kutta condition and demonstrate

how to solve the associated saddle-point system.

The scalar factor 〈1 , S−11〉SNs in expression (3.28) is a property of the set of points

and their immersion into the Cartesian grid. Part of this factor, S−11 , represents the bound

vortex sheet strength associated with a uniform, unit-strength streamfunction on the surface.

This sheet has a particularly important role in some of the discussion to follow, so we will

denote its strength by f0:

f0 ≡ S−11 . (3.30)

The transpose of f0, equal to 1TS−1, calculates the circulation of the associated bound

vortex sheet when it acts upon a surface streamfunction. Thus, the factor 〈1 , S−11〉SNs is

the circulation associated with a uniform, unit-strength surface streamfunction. We will

refer to this as Γ0:

Γ0 ≡ 〈1 , S−11〉SNs ≡ 〈1 , f0〉SNs ≡ 〈f0, 1〉SNs . (3.31)

We can rewrite the inner product 〈f0, 1〉SNs as f T0 D∆S1 , and we will define f̂0 = D∆Sf0, for

shorthand in what follows. By this notation, Γ0 = f̂0
T
1 , and f̂0

T applied to any surface

streamfunction obtains the corresponding circulation.

Figure 3.5 shows the distribution of f0 for elliptical cylinders with different aspect ratios.

For a circular cylinder, the flow due to a uniform streamfunction on the body corresponds

to the flow when the cylinder is replaced by a point vortex at its center. The streamlines are
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Figure 3.5: (a) Geometry and (b) the scaled bound vortex sheet strength f0, associated with

a uniform, unit-strength streamfunction, as a function of the surface point index p divided

by the number of surface points Ns for elliptical cylinders with different aspect ratios (AR):

· · · · · ·, AR = 1; - - - -, AR = 2; – – –, AR = 3; ——, AR = ∞ (flat plate). The simulations

are performed with ∆x/R = 0.004 and ∆S/∆x = 3.

concentric circles and the tangential velocity is constant at a given radius. The resulting vor-

tex sheet strength f0 therefore assumes a uniform distribution. The figure also demonstrates

that when the aspect ratio increases, the distribution gradually shows stronger variations

near the edges of the major axis, corresponding to an acceleration and deceleration of the

flow when it passes those edges. The distribution eventually turns singular at the edges of a

flat plate as the flow now has to navigate around a sharp corner, which will be discussed in

more detail in the next section. To clearly illustrate the emergence of the singularities, the

simulations in this figure are performed with an extremely fine grid (∆x/R = 0.004). Note

that such fine grids are not needed in general, as is demonstrated by the other figures in this

work.

The last term in (3.28) illustrates the direct relationship between the scalar value s0

and the bound circulation Γb, and we identified s0 as a means of setting the circulation.

Before we use it in the next section to enforce the Kutta condition, we will use it here for
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an immediate purpose. The prescribed surface streamfunction s ′b (given by (3.17), with the

uniform flow accounted for) may have some associated bound circulation, and it is desirable

to adjust it by adding or subtracting a uniform value so that it has none. Equation (3.28)

suggests that this circulation can be removed by setting s0 to 〈1 , S−1s ′b〉SNs/Γ0 ≡ f̂0
T
s ′b/Γ0

and then subtracting this value (multiplied by the uniform vector 1) from s ′b. Overall, this

process can be encapsulated in a circulation removal operator, PΓ, that acts upon a surface

streamfunction, s ∈ SNs ,

PΓ ≡ I− 1 f̂0
T

Γ0

. (3.32)

It is easy to verify that 〈S−11 ,PΓs〉SNs = f̂0
T
PΓs = 0 for any s ∈ SNs , so that the circulation

of any surface streamfunction acted upon by PΓ is indeed zero. It is important to observe,

also, that s ′b can be replaced by PΓs ′b without affecting the nature of the no-penetration

condition. We also note that the composite operator S−1PΓ is symmetric, just as S−1 is,

since

S−1PΓ = S−1 − f̂0f̂0
T
. (3.33)

3.4 The Kutta condition

For surfaces that contain convex edges, the vortex sheet strength assumes a singular behavior

in the vicinity of these edges, with a strength that depends on the interior angle of the edge:

sharper edges have more singular behavior. In the discrete representation of the surface,

edges are only approximately represented by the sudden disruptions of positions in clusters

of adjacent points, without any information about the surface normals. The behavior in this

discrete form is not quite singular, but the solution of (3.23) nonetheless exhibits a large and

rapid change of amplitude.

If we seek to eliminate this behavior, we must first have some means of exposing it.

In fact, for any discretized surface, the essence of this nearly-singular behavior lies in the

vector f0, and all other bound vortex sheets associated with the same surface share the same
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nearly-singular behavior. Thus, we will use a multiplicative decomposition of the vortex

sheet strength:

f = f0 ◦ f̃ , (3.34)

where ◦ is the Hadamard product. This decomposed form isolates the singular behavior into

f0, and f̃ is a relatively smoother vector of surface point data. In the regularization operation

on f , we can absorb f0 into NRS , first noting that the Hadamard product can alternatively

be written with the help of a diagonal matrix,

f = f0 ◦ f̃ = Df0 f̃ . (3.35)

Then, we can define a re-scaled regularization operator,

NRS f = NRSDf0 f̃ =
N
R̃S f̃ . (3.36)

The re-scaled operator N
R̃S = NRSDf0 can, in turn, be absorbed into the Schur complement,

defining S̃ = − SENL−1 N
R̃S = SDf0 . A useful property of S̃ is that it preserves uniform

vectors:

S̃1 = SDf01 = Sf0 = 1 , S̃−11 = 1 . (3.37)

The decomposition of the vortex sheet strength is demonstrated in figure 3.6 for a flat

plate in a uniform flow. We plot the vortex sheet strength against the scaled coordinate

ξ, which varies along the plate from −1 at the leading edge to 1 at the trailing edge. As

expected, the vortex sheet strength f shows large amplitude variations at the sharp leading

and trailing edges, corresponding to the singularities in the distribution of the continuous

vortex sheet strength. By use of decomposition (3.34), these discrete singularities are retained

in f0 and we are left with a non-singular f̃ , which varies almost linearly with ξ.

The Kutta condition corresponds to annihilating the nearly-singular behavior at a surface

point. At such points, we will set the corresponding value of f̃ to zero. Suppose we wish to

enforce the Kutta condition at an edge corresponding to surface point k. The condition is

eTk f̃ = 0. (3.38)
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Figure 3.6: (a) Contours (——) of the discrete streamfunction for a flat plate of length c, at

30◦ in a uniform flow U∞ without enforcement of the Kutta condition. The inset figure shows

a closeup of the nodes (◦) and surface points (■) in the boxed area (- - - -). The point-wise

product of (b) the discrete vortex sheet strength associated with a uniform, unit-strength

streamfunction on the body, and (c) the non-singular vector that results from re-scaling

the regularization operator, composes (d) the discrete vortex sheet strength. Overlaid is

the exact continuous solution (- - - -). The simulation is performed with ∆x/c = 0.01 and

∆S/∆x = 2.
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3.4.1 Using the Kutta condition in a steady-state problem

We will first take the steady-state approach to enforce the Kutta condition: allow the bound

circulation to be set appropriately, with the implicit understanding that there is a starting

vortex of equal and opposite circulation at infinity that preserves the Kelvin circulation

theorem. The Lagrange multiplier for this constraint will not be Γb, but s0, similar to (3.29).

We also use the circulation removal operator to adjust the imposed surface streamfunction:
L

N
R̃S 0

SEN 0 1

0 eTk 0




s

f̃

s0

 =


−w

PΓs ′b

0

 (3.39)

This block system, like the earlier one in (3.21), has a saddle point form, and we can

reduce it by the same block-LU decomposition to develop a solution algorithm. We will

interpret it in the general form (A.3), with the upper left 2 × 2 block taking the role of A,

the solution vector x and constraint force y set, respectively, to

x =

s

f̃

 , y = s0, (3.40)

the remaining operators set to

B2 =
[
0 eTk

]
, BT

1 =

0
1

 , C = 0, (3.41)

and the right-hand side vectors set to

r1 =

−w

PΓs ′b

 , r2 = 0. (3.42)

We note that block A has the original form of the system before the Kutta constraint

(3.21), though with the slight modification of a re-scaled regularization operator, and we

already have the inverse of A available from (3.26). The solution of this original system
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forms the intermediate solution of the full system endowed with the Kutta condition:

f̃ ∗ = S̃−1
(
PΓs ′b +

SENL−1w
)
, s∗ = −L−1

(
w +

N
R̃S f̃

∗
)
. (3.43)

Then, using the general procedure outlined in appendix A, the solution of the full system

(3.39) is easy to develop; its Schur complement is simply

S = −1. (3.44)

Applying the general solution equations, and using the property (3.37) to simplify the re-

sulting operators, it can be shown that the solution is

s0 = eTk f̃
∗ (3.45)s

f̃

 =

s∗

f̃ ∗

−

−L−1 N
R̃S1

1

 eTk f̃
∗. (3.46)

The entire solution can be written more compactly as

f̃ = PK
k S̃

−1
(
PΓs ′b +

SENL−1w
)
, (3.47)

s = −L−1
(
w +

N
R̃S f̃

)
, (3.48)

where we have defined the Kutta projection operator,

PK
k ≡ I− 1eTk , (3.49)

which acts upon the (non-singular part of the) bound vortex sheet vector, subtracting the

value at point k from every point, including at k itself.

Note that the Lagrange multiplier for the Kutta condition takes the simple value given

by equation (3.45), revealing that the additional streamfunction on the surface is exactly the

value of the intermediate bound vortex sheet at the Kutta point k.

The application of the Kutta condition to a steady-state problem is demonstrated in

Figure 3.7 on the flat plate problem that was introduced in the previous section. By con-

straining the trailing edge point of f̃ , its whole distribution is shifted upward such that the
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trailing-edge value equals zero. The resulting streamfunction indicates that the flow then

indeed leaves the trailing edge smoothly.

Figure 3.7 also shows a spatial grid refinement analysis of the non-singular part of the

vortex sheet strength. For this analysis, we can use a multiplicative decomposition for the

continuous vortex sheet strength, γ(ξ) = γ0(ξ)γ̃(ξ), analogous to (3.34). The continuous

counterpart of f0, can be found as the bound vortex sheet strength of a circular cylinder

with a point vortex of strength Γ0 at its center, conformally mapped to a flat plate. Due to

the definition of f0, the circulation Γ0 depends on the grid spacing. Therefore, if we define

γ0 as the continuous counterpart of f0/Γ0, we obtain the grid-independent solution γ̃(ξ) =

−πcU∞ sin(α)(1 − ξ) as the continuous counterpart of Γ0f̃ for a flat plate with the Kutta

condition enforced. We can then define the error for the non-singular part of the vortex sheet

strength as ϵΓ0 f̃
= ‖Γ0f̃ − γ̃(ξ(rx, ry)‖2/‖γ̃(ξ(rx, ry)‖2. The refinement analysis verifies that

the immersed-boundary projection method using the vortex sheet strength decomposition

is approximately first-order accurate in ∆x. Furthermore, the figure shows the streamlines

near the plate, the vortex sheet strength, and the error for four different values of ∆S/∆x.

These confirm that a lower value increases the noise in the vortex sheet strength, but a

higher value can lead to the streamlines penetrating the surface, as discussed previously.

3.4.2 Using the Kutta condition to set a new vortex element

In the previous section, we used the Kutta condition to set the bound circulation but did not

explicitly create a new vortex element. This vortex element was assumed to lie at infinity

so that its effect was negligible except insofar as it left equal but opposite circulation about

the body.

In this section, we will create a new vortex element in the vicinity of the edge at which

we are applying the Kutta condition. We will thus seek to establish the strength of this new

element and to do so in such a manner that the overall circulation of the flow is conserved.

Once the element is created, it will be allowed to advect with the local fluid velocity.
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Figure 3.7: (a) Contours (——) of the steady, discrete streamfunction for a flat plate of length

c at 30◦ in a uniform flow with enforcement of the Kutta condition at the trailing edge. (b)

Zoom on the leading edge showing the streamlines for three values of the streamfunction,

(c) the non-singular part of the associated discrete vortex sheet strength for ∆x/c = 0.01

with an inset enlarging the boxed area (— — —), and (d) the variation of its error with

grid spacing for different values for ∆S/∆x: · · · · · · and ♢, ∆S/∆x = 1; – – – and □,

∆S/∆x = 2; - - - - and ◦, ∆S/∆x = 3; —— and △, ∆S/∆x = 4. Overlaid is an error

(——) that scales as ∆x.
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Let us assume that the new vortex element (which we label with the subscript 1) is

introduced at some point in physical space, and that its immersion into the Cartesian grid

is described by d1 and that its strength (i.e., its circulation) is Γv,1. Thus, the fluid vorticity

after this new element’s introduction can be written as

w + Γv,1d1. (3.50)

The Kutta condition (3.38) is still to be enforced. We also seek to ensure that the total

circulation is zero to satisfy Kelvin’s circulation theorem. (We are assuming that the flow

has started from rest.) Let us denote the circulation of the existing fluid vorticity w by

Γw = 〈1,w〉N . (3.51)

Then, the circulation constraint is

〈1 , f 〉SNs + Γv,1 + Γw = 0. (3.52)

The circulation of the bound vortex sheet f can be re-written in terms of the non-singular

part of the sheet as 〈1 , f 〉SNs = 〈f0, f̃ 〉SNs = f̂0
T
f̃ .

With these two constraints, the overall saddle point system of equations is
L

N
R̃S 0 d1

SEN 0 1 0

0 eTk 0 0

0 f̂0
T

0 1




s

f̃

s0

Γv,1

 =


−w

PΓs ′b

0

−Γw

 . (3.53)

Again, the basic saddle-point matrix constitutes the upper left 2×2 block A and the solution

vector x is as before. The constraint force vector is

y =

 s0

Γv,1

 , (3.54)

and the remaining vectors and operators are now

r2 =

 0

−Γw

 , B2 =

0 eTk

0 f̂0
T

 , BT
1 =

0 d1

1 0

 , C = −

0 0

0 1

 . (3.55)
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The solution algorithm follows, once again, from the equations in appendix A. After

carrying out the block matrix multiplications, it can be shown that the Schur complement

(A.2) is the 2× 2 matrix

S =

 −1 eTk f̃1

−f̂0
T
1 1 + f̂0

T
f̃1,

 (3.56)

where, for convenience, we have defined

f̃1 = S̃−1 SENL−1d1, (3.57)

which represents the (non-singular part of the) strength of the vortex sheet that “reacts”

to the presence of a unit-strength vortex d1 immersed into the grid, canceling that vortex’s

induced velocity on the surface. The term f̂0
T
f̃1 represents this sheet’s bound circulation

and eTk f̃1 is its contribution to the Kutta condition at point k. The problem (A.6) for the

constraint forces s0 and Γv,1 is then −1 eTk f̃1

−f̂0
T
1 1 + f̂0

T
f̃1,

 s0

Γv,1

 =

 −eTk f̃
∗

−Γw − f̂0
T
f̃ ∗

 , (3.58)

where the intermediate solution f̃ ∗ is available from (3.43).

The determinant of this Schur complement matrix is −1− f̂0
T
PK
k f̃1, which represents the

negative of the circulation of the unit vortex and its associated vortex sheet, after the Kutta

condition has been enforced on this sheet. It is straightforward then to calculate the strength

of the new vortex Γv,1 and the additional uniform surface streamfunction, s0:

Γv,1 =
−Γw − f̂0

T
PK
k f̃

∗

1 + f̂0
T
PK
k f̃1

, s0 = eTk

(
f̃ ∗ + Γv,1f̃1

)
. (3.59)

From these, we can then obtain the vortex sheet strength and the fluid streamfunction,

f̃ = PK
k

(
f̃ ∗ + Γv,1f̃1

)
, s = −L−1

(
w + Γv,1d1 +

N
R̃S f̃

)
. (3.60)

The intermediate solution, which corresponds to the flow associated with existing vorticity,

is corrected here with the new vortex 1 to enforce the Kutta condition at the point k.
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We now first demonstrate the enforcement of the Kutta condition in unsteady flow on the

flat plate problem with a point vortex near the trailing edge to enforce the Kutta condition

at that edge. We position the point vortex at a distance 10∆tU∞ from the edge in the

direction of the free stream, perpendicular to the plate. Figure 3.8 demonstrates that,

because of the proximity of the point vortex to the flat plate, f̃ exhibits a quick variation at

the surface points that lie closest to the point vortex. The value at the trailing edge point

itself is still constrained to zero and the flow again leaves the edge smoothly. This situation

corresponds to the flow right after impulsively starting a uniform flow around a flat plate

and the point vortex now represents the starting vortex. The second demonstration of the

method (figure 3.9) is the repeated enforcement of the Kutta condition on a NACA0012

airfoil while advancing the positions of the point vortices in time after impulsively starting

the flow. This simulation, and all following simulations, use forward Euler time-stepping,

unless noted otherwise, and new point vortices are inserted at one-third of the way from the

edge to the last released vortex from that edge. The streamlines in the figure show that a

strong initial vortex and weaker subsequent vortices were created and convected downstream.

In turn, at each time step, the airfoil obtained a circulation that enforces the Kutta condition.

3.4.3 Applying more than one Kutta condition on a body

Suppose we wish to enforce the Kutta condition at two edges of the body—at points k1 and

k2—instead of one. Each such point has a constraint,

eTkj f̃ = 0, j = 1, 2. (3.61)

For two such constraints, we need two Lagrange multipliers: the strengths of two new vor-

tices, Γv,1 and Γv,2, immersed into the grid with d1 and d2, respectively; and we still need

the Lagrange multiplier s0 to ensure that Kelvin’s circulation theorem is also enforced. The
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Figure 3.8: (a) Contours (——) of the unsteady, discrete streamfunction for a flat plate

of length c at 30◦ in a uniform flow with release of vorticity into a point vortex (•) for

enforcement of the Kutta condition at the trailing edge. (b) The non-singular part of the

associated discrete vortex sheet strength. The simulation is performed with ∆x/c = 0.01

and ∆S/∆x = 2.
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Figure 3.9: Contours (——) of the unsteady, discrete streamfunction for a NACA0012 airfoil

with chord length c at 20◦, 3 convective times after impulsively starting a uniform flow U∞.

Vorticity is released into a stream of point vortices (•) for enforcement of the Kutta condition

at the trailing edge. The simulation is performed with ∆x/c = 0.01, ∆S/∆x = 1.5, and

∆tU∞/c = 0.075.
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system in the previous section is thus easily generalized to the following:

L
N
R̃S 0 d1 d2

SEN 0 1 0 0

0 eTk1 0 0 0

0 eTk2 0 0 0

0 f̂0
T

0 1 1





s

f̃

s0

Γv,1

Γv,2


=



−w

PΓs ′b

0

0

−Γw


. (3.62)

The system is reduced in the same manner as before, with the same intermediate solu-

tion obtained from the basic system (3.21). Now, the Schur complement problem for the

constraint forces takes the form
−1 eTk1 f̃1 eTk1 f̃2

−1 eTk2 f̃1 eTk2 f̃2

−f̂0
T
1 1 + f̂0

T
f̃1 1 + f̂0

T
f̃2,



s0

Γv,1

Γv,2

 =


−eTk1 f̃

∗

−eTk2 f̃
∗

−Γw − f̂0
T
f̃ ∗

 , (3.63)

where we have now defined bound vortex sheets associated with each of the two new vortices

(with unit strengths):

f̃j = S̃−1 SENL−1dj, (3.64)

for j = 1, 2. It is interesting to note that, if we take the difference between the two Kutta

constraints, we obtain (
eTk1 − eTk2

) (
f̃ ∗ + Γv,1f̃1 + Γv,2f̃2

)
= 0. (3.65)

It can be shown that this Schur complement problem can be split into1 + f̂0
T
PK
k1
f̃1 1 + f̂0

T
PK
k1
f̃2

1 + f̂0
T
PK
k2
f̃1 1 + f̂0

T
PK
k2
f̃2

Γv,1

Γv,2

 = −

Γw + f̂0
T
PK
k1
f̃ ∗

Γw + f̂0
T
PK
k2
f̃ ∗

 (3.66)

and

s0 =
1

2

(
eTk1 + eTk2

) (
f̃ ∗ + Γv,1f̃1 + Γv,2f̃2

)
. (3.67)

The latter equation, when combined with (3.65), reveals that the value of the vortex sheet

strength f̃ ∗ + Γv,1f̃1 + Γv,2f̃2 is the same at both Kutta points and equal to s0.
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Figure 3.10: (a) Contours (——) of the unsteady, discrete streamfunction for a flat plate

of length c at 30◦ in a uniform flow with release of vorticity into two point vortices (•)

for enforcement of the Kutta condition at both edges. (b) The non-singular part of the

associated discrete vortex sheet strength. The simulation is performed with ∆x/c = 0.01

and ∆S/∆x = 2.

Equation (3.66) can be solved easily for the strengths of the two new point vortices.

Then, the solution for the vortex sheet strength and streamfunction are

f̃ =
1

2

(
PK
k1
+ PK

k2

) (
f̃ ∗ + Γv,1f̃1 + Γv,2f̃2

)
, s = −L−1

(
w + Γv,1d1 + Γv,2d2 +

N
R̃S f̃

)
(3.68)

We now apply this method in figure 3.10 to enforce the Kutta condition at the leading

and trailing edge of our flat plate problem. We position a point vortex close to each edge

and observe again that f̃ shows strong variation at the surface points closest to the two

point vortices. The contours of the streamfunction indicate that the flow indeed leaves the

edges smoothly. Like the previous case, this solution corresponds to the flow right after

impulsively starting a uniform flow around a flat plate, but unlike the previous case, the flow

now separates at the leading edge.

It should be observed that these solutions are posed in a manner easily extensible to an
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arbitrary number of edges.

3.5 Generalized edge condition

In the previous section, we demonstrated the means of annihilating the (nearly) singular

behavior at edges on a discretized surface. In some cases, our desire is not to annihilate this

behavior, but simply to keep it within some bounds. In the analytical treatment of potential

flow problems, this objective is served by placing an inequality constraint on the edge suction

parameter [Ramesh et al., 2014, Darakananda and Eldredge, 2019, Eldredge, 2019]. That

parameter is proportional to the coefficient on the bound vortex sheet strength’s singularity

[Eldredge, 2019], so in this discrete setting, in which we have extracted the singular part of

f in the form of f0, we expect the suction parameter to be related to the value of f̃ at the

edge. In fact, by simple comparison, it can be shown that

eTk f̃ = −2πc

Γ0

σk (3.69)

for a flat plate of length c, where σk is the suction parameter at the edge corresponding to

point k.

Let σmin
k and σmax

k denote the minimum and maximum tolerable values of σk at edge

k. We then seek to confine the suction parameter to the range σmin
k ≤ σk ≤ σmax

k . This

generalized edge constraint is placed on the suction parameter of the intermediate sheet f̃ ∗.

To avoid confusion, we will redefine the bounds based on this non-singular part of the vortex

sheet rather than σk itself; for this, we define f̃min
k = −2πcσmax

k /Γ0 and f̃max
k = −2πcσmin

k /Γ0

if Γ0 is positive or f̃max
k = −2πcσmax

k /Γ0 and f̃min
k = −2πcσmin

k /Γ0 if Γ0 is negative. Thus,

we inspect whether the value eTk f̃
∗ lies in the range

f̃min
k ≤ eTk f̃

∗ ≤ f̃max
k . (3.70)

If eTk f̃ ∗ lies within this range, then no new vortex is created near the edge (or equivalently, a

new vortex of zero strength is created); if eTk f̃ ∗ > f̃max
k , then we create a new vortex so that
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eTk f̃ = f̃max
k ; and if eTk f̃ ∗ < f̃min

k , then we do the same, but now so that eTk f̃ = f̃min
k . Note

that the Kutta condition simply corresponds to setting f̃min
k = f̃max

k = 0.

We can easily accommodate these constraints into our solution approach for enforcing

the Kutta condition from the previous section: in the case of two edges, by modifying the

right-hand side vector of (3.66) (if the edge suction lies outside of its bounds) or setting the

vortex strength corresponding to that edge to zero. For example, suppose that eTk1 f̃
∗ < f̃min

k1

and eTk2 f̃
∗ > f̃max

k2
; then we solve the system1 + f̂0

T
PK
k1
f̃1 1 + f̂0

T
PK
k1
f̃2

1 + f̂0
T
PK
k2
f̃1 1 + f̂0

T
PK
k2
f̃2

Γv,1

Γv,2

 = −

Γw + f̂0
T
PK
k1
f̃ ∗ + Γ0f̃

min
k1

Γw + f̂0
T
PK
k2
f̃ ∗ + Γ0f̃

max
k2

 . (3.71)

But if, say, f̃min
k2

≤ eTk2 f̃
∗ ≤ f̃max

k2
, then we set Γv,2 = 0 and this system reduces to

Γv,1 = −
Γw + f̂0

T
PK
k1
f̃ ∗ + Γ0f̃

min
k1

1 + f̂0
T
PK
k1
f̃1

. (3.72)

The effect of applying these generalized edge conditions to the leading edge of a flat plate

is shown in figure 3.11 for the first instants after impulsively starting a uniform flow. The

positions of the point vortices emanating from the leading edge in the figure indicate that

as σmax
k increases, the stream of point vortices is swept back from the edge. At the trailing

edge, the Kutta condition is enforced in each case and the positions of the point vortices

overlap, as they are not yet influenced by the different situations at the leading edge in these

first instants.

3.6 Pressure, force, and the added mass

In this section, we present the means for calculating pressure and force (and moment) in the

grid-based treatment.
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Figure 3.11: Effect of increasing σmax
LE /U∞ from 0 (•) to 0.05 (■) and 0.1 (▲) on (a) the

positions of shedded point vortices and (b) the non-singular part of the associated discrete

vortex sheet strength for a flat plate of length c at 60◦, 0.15 convective times after im-

pulsively starting a uniform flow U∞. The inset enlarges the boxed area (— — —) and

overlays the positions of the vortices (◦,□, and △) obtained using the Biot-Savart method

of Darakananda and Eldredge [2019]. At the trailing edge, the Kutta condition is enforced.

The simulation is performed with ∆x/c = 0.01, ∆S/∆x = 2, and ∆tU∞/c = 0.025.
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3.6.1 Pressure

Here we devise a means of computing the pressure, both throughout the flow field, p ∈ C, as

well as on the surface of a body. As we will show below, our immersed boundary treatment

naturally gives rise to the jump in pressure across this surface, ∆p = p+ − p− ∈ SNs (with

+ in the direction of the surface normal, n ∈ VNs). Thus, to distinguish the pressures on

either side of the surface from one another, we use the fact that the interpolation of p onto

the surface produces the average of surface values, SECp = (p+ + p−)/2 ∈ S, where SEC

interpolates data from cell centers to the surface. It is thus easy to see that the pressure on

either side is

p± = SECp± 1
2
∆p. (3.73)

Thus, we seek ∆p and p. It should not be a surprise that our starting point for these

quantities is the Euler equations. However, our approach exploits the fact that the method-

ology we have presented thus far already solves the Euler equations in the fluid—in vorticity

form, via transport of vortex elements—and provides us with the instantaneous velocity field

v and strength of the bound vortex sheet f on any bodies. This approach, which satisfies

the incompressibility constraint by expressing velocity in the null space of the divergence

operator (i.e., as curl of a streamfunction), obviates the need for computing pressure, the

Lagrange multiplier for this constraint. However, now that we seek pressure, we use the

Euler equations in their velocity form to provide it.

It is important to note that the immersed boundary treatment enriches the Euler equa-

tions’ standard form with surface terms [Eldredge, 2022]. Written in their spatially-discrete

form, these immersed boundary Euler equations are

ρ
dv

dt
+ ρ

(
w + NRS f

)
× v = −G

(
p+ 1

2
ρ|v|2

)
+

FRV
[
n ◦∆p + ρ∆v

(VEFv − v
)
· n
]
, (3.74)

where ρ is the fluid density and VEF interpolates grid data from F to the space of vector-

valued surface data VNs . Note the appearance of a few terms that are not typically seen in
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the Euler equations. First, we note the final bracketed pair of surface terms on the right-

hand side, containing the jumps in pressure and velocity (∆v) across the surface, as well as

the difference between the normal components of the fluid velocity (interpolated onto the

surface) and the surface velocity itself, v ∈ VNs . (This difference is zero by virtue of the

no-flow-through condition, but we keep it here since it combines with other terms in later

manipulations.) These surface terms are immersed into the grid by the operator FRV . In

fact, if we had chosen to solve the Euler equations in velocity—instead of by streamfunction-

vorticity—form, then we would have used the pressure jump in this term as a Lagrange

multiplier for enforcing the no-flow-through condition on v. The second new term is the

bound vortex sheet strength, appearing alongside the fluid vorticity on the left-hand side.

This term emerges because the curl of the velocity field in the immersed boundary method

generates both of these: CT v = w + NRS f , where CT : F 7→ N . (Our notation for this

operator is consistent with that of previous authors, such as Colonius and Taira [2008].)

These quantities, ∆p and p, can be solved for simultaneously from the Schur complement

system that arises from solving the Euler equations (3.74) and the associated constraints of

divergence-free velocity and no-flow-through condition. Indeed, the approach we outline here

is the natural outcome of that system. However, rather than present a detailed derivation,

we present the equations with an intuitive explanation.

First, we develop an equation for ∆p by taking the discrete curl CT of (3.74) to elim-

inate the gradient term—since CTG is identically zero—and obtain a vorticity form of the

immersed-boundary Euler equations. With some manipulation to account for the motion of

the surface (embodied in the time variation of NRS), these equations can be written as

ρ

(
dw

dt
− CT (v × w)

)
+ ρNRS

df

dt
= CT FRVn ◦

[
∆p + ρ

(VEFv − v
)
· (f × n)

]
, (3.75)

where df /dt represents the time derivative of each element of f while following a point

moving with velocity v. We assume that each immersed point moves with this local surface

velocity, so this is simply the time derivative of the vector f . We have written the equation

in this intermediate form on purpose in order to make a few key points. First, it is important

53



to note that we have already satisfied the vorticity equation in the fluid—the first terms in

parentheses on the left-hand side—by advecting the point vortices. Thus, we can set these

terms to zero, leaving only those terms associated with the surface. Aside from ∆p, these

remaining terms involve only known quantities, and we could solve them in the current form

for ∆p using similar techniques to the ones we will describe below. However, we will first

write the equation in a more familiar form, and define some helpful operators and quantities

to enable this.

In equation (3.75) we see a composite of the curl of the regularization operator; let us

write this more compactly as CT
S : SNs 7→ N ,

CT
Sσ = CT FRV (n ◦ σ) , (3.76)

for some surface scalar data, σ ∈ SNs . We refer to this as a surface curl operator. Its

transpose, CS : N 7→ SNs , also arises in what follows, and can also be described as a surface

curl operator. It is defined as

CSs = n · VEFCs, (3.77)

for s ∈ N . The operator CS obtains the normal component of velocity on an immersed

surface for a given streamfunction s. Before we explain the role of its transpose, it is useful

to remember that any potential flow generated by (or about) an impenetrable surface can be

equivalently described by either a distribution of vortices (a vortex sheet, with strength f )

or a distribution of dipoles (a double layer) on the surface. In the latter case, the strength of

the double layer is given by the negative of the jump in scalar potential across the surface,

−∆ϕ ∈ SNs . In fact, the two distributions’ strengths can be related to each other, either

by using Stokes’ theorem or by the properties of the generalized functions that underpin the

immersed boundary method [Eldredge, 2022], leading to

NRS f = −CT
S∆ϕ. (3.78)

Thus, CT
S produces the equivalent bound vorticity distribution (immersed into the grid)

associated with a given jump in scalar potential on the surface. To calculate ∆ϕ in terms
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of f , we apply CSL
−1 to both sides of (3.78) to equate the normal velocity induced on the

surface by each distribution. The composite operator −CSL
−1CT

S is positive semi-definite,

and its null space can be shown to consist only of uniform values on the surface (i.e., the null

space has an equivalent bound vorticity equal to zero). Thus, the jump in scalar potential

associated with a vortex sheet of strength f is

∆ϕ = −
(
CSL

−1CT
S
)−1

CSL
−1 NRS f , (3.79)

to which we can add any constant value without affecting the result. Now, armed with this

insight, we can return to equation (3.75), and rewrite the surface terms on the left-hand side

in terms of ∆ϕ:

CT
S

[
∆p + ρ

(VEFv − v
)
· (f × n) + ρ

d∆ϕ

dt

]
= 0, (3.80)

where d∆ϕ/dt denotes the time derivative of ∆ϕ associated with a particular immersed

point, assumed to be moving with velocity v. This equation implies that the expression in

brackets must be equal to a uniform value, which we can take to be zero without loss of

generality. We can immediately write an immersed boundary Bernoulli equation,

∆p + ρ
(VEFv − v

)
· (f × n) + ρ

d∆ϕ

dt
= 0. (3.81)

This equation is the discrete equivalent of a continuous version that appears in previous

works, e.g. Jones [2003], Eldredge [2019]. At each time step, we use (3.80) to compute

the instantaneous jump in scalar potential associated with the vortex sheet f , and then use

(3.81) to find ∆p.

Now we can substitute ∆p from equation (3.81) into the Euler equations (3.74) and

operate on these equations with the discrete divergence operator, so that L = DG acts on p.

We solve the resulting equation, obtaining

p = −1

2
ρ|v|2 − ρL−1

[
D(w × v) + FRV

(
n ◦ d∆ϕ

dt
− v × f

)]
. (3.82)

It should be noted that any uniform value can be arbitrarily added to this expression. Also,

we note in passing that the final set of terms (with the inverse Laplacian acting on the
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term in brackets) is equivalent to the time derivative of the scalar potential field, rendering

the overall equation equivalent to a Bernoulli equation on the grid. However, there is no

particular advantage in writing the equation in that form. In the current form, the first term

in brackets (the divergence of the Lamb vector) represents the direct force exerted on the

fluid by the fluid vorticity. The remaining terms in brackets collectively constitute the effects

of surface motion and of the surface’s modification of the flow induced by fluid elements (e.g.,

vorticity, free stream).

We now demonstrate the pressure calculations with two examples that have an analytical

solution for the pressure distribution on the surface. Figure 3.12 and 3.13 depict the pressure

field and surface distribution for a vortex near a cylinder and a plate, respectively. The

pressure inside the cylinder is close to the exact solution of a uniform value, except for some

noise at the side near the vortex, which is visible on the interior surface distribution of the

pressure. The exterior surface pressure distribution on the cylinder shows good agreement

with the analytical solution. In the example of the flat plate, shown in figure 3.13, the

bottom and top surface pressure distributions again show good agreement with the analytical

solution except for at the edges, which is expected. Note that in these examples, we used

a smaller value for ∆S/∆x than before, which was necessary to prevent the low pressure

from the vortex from leaking through the surface. As a result, high-frequency components

of the surface pressure are incorrectly amplified through the regularization and interpolation

operators Goza et al. [2016], especially at the edges.

3.6.2 Impulse-based calculations of force and moment

The integral of the pressure distribution over the surface (plus any edge-suction parameters

in the case of sharp edges) will be equal to the force on the surface. However, in this section

we provide an alternative means of calculating the force and moment on the body through

the negative rate of change of impulse in the fluid. The continuous expressions for linear and
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Figure 3.12: (a) Contours (——) of the discrete pressure for a point vortex (•) with strength

Γv,1 at (Rv, 0) near a cylinder consisting of Ns points with radius Rc and a bound circula-

tion −Γv,1. (b) The scaled discrete pressure at the exterior (——) and interior (· · · · · ·)

of the cylinder. Overlaid is the exact continuous solution (- - - -) for the exterior pres-

sure. The simulation is performed with Rv/Rc = 3/2, ∆x/Rc = 0.05, ∆S/∆x = 1.4, and

∆tΓv,1/R
2
c = 0.01.
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Figure 3.13: (a) Contours (——) of the discrete pressure for a point vortex (•) with strength

Γv,1 at (0, Rv) near a flat plate consisting of Ns points with chord length c and a bound

circulation −Γv,1. The scaled discrete pressure (——) at (b) the top side and (c) the bottom

side of the plate. Overlaid is the exact continuous solution (- - - -). The simulation is

performed with Rv/c = 0.25, ∆x/c = 0.01, ∆S/∆x = 1.4, and ∆tΓv,1/c
2 = 0.005.
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angular impulse (about the origin) are, in two dimensions [Saffman, 1993, Eldredge, 2019],

P =

∫
Ω

x× ω dV +

∫
S
x× (n× u) dS (3.83)

Π[O] =
1

2

∫
Ω

x× (x× ω) dV +
1

2

∫
S
x× [x× (n× u)] dS (3.84)

If there is only a single body, then the force and moment (about the origin) exerted by the

fluid on that body are given by

F = −ρdP
dt
, M [O] = −ρdΠO

dt
, (3.85)

where ρ is the fluid density. In the two-dimensional applications of this paper, the angular

impulse and the moment have only a single component, e.g., ΠO = ΠOez, where ez is the

unit vector out of the plane.

It should be observed that, by definition, the bound vortex sheet strength γ is equal to

the jump in tangential velocity between the fluid and the surface, n × u = γez + n × ub,

where n is the unit surface normal vector directed into the fluid, u is the fluid velocity, and

ub is the velocity of the surface. Thus, the surface integrals in (3.83) and (3.84) can be

re-written in terms of the vortex sheet strength and the body motion.

We can easily develop discrete forms of the integrals (3.83) and (3.84) with the solutions

and notation described in this paper. For the volume integrals, let us denote diagonal

matrices containing the coordinates of the grid nodes by Dx and Dy. Thus, the expressions

in (3.83) and (3.84) can be written in discrete form as

Px = 〈y,w〉N + 〈ry, f + Dnxvy − Dnyvx〉SNs
, (3.86)

Py = −〈x,w〉N − 〈rx, f + Dnxvy − Dnyvx〉SNs
, (3.87)

and

ΠO = −1

2
〈Dxx+ Dyy,w〉N − 1

2
〈Drxrx + Dry ry, f + Dnxvy − Dnyvx〉SNs

. (3.88)

The overall force and moment exerted on the body are obtained from calculating these

impulses and computing their rates of change in (3.85). Part of this force and moment is
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attributable to the dynamics of vorticity in the fluid. The remaining part is due to surface

motion relative to the fluid, and we will discuss this in the next section.

To illustrate the accuracy of the impulse-based calculation of force, we apply the method

to two examples. In the first example, we simulate the trajectories of two point vortices of

opposite strength, in which case each vortex is convected past a cylinder due to the presence

of the other vortex. The time stepping in this example is carried out using a fourth-order

Runge-Kutta scheme. Figure 3.14 shows the trajectories and the x component of the impulse

together with their exact solutions, which show good agreement with the exact solution. In

the second example, we compare our simulation of the first instants of the unsteady, fully

separated flow around a flat plate after impulsively starting a uniform flow with the Biot-

Savart method from Darakananda and Eldredge [2019], using the same positioning rules to

insert point vortices and the same time step. The vortex positions and the corresponding

impulse and lift are compared in figure 3.15 and show good agreement as well.

3.6.3 Added mass

The added mass tensor provides a measure of the inertial influence of the fluid on the body

in response to changes in the body’s translational or rotational motion. The coefficients

of the added mass tensor of a body are obtained by computing the impulse components

associated with a unit-valued component of motion. The motion’s influence is both direct,

via the surface velocity, and indirect, in the bound vortex sheet that develops on the surface.

For example, suppose that we consider translation at unit velocity in the x direction, for

which the motion is described by vx = 1 , vy = 0, and s ′b = ry, and the associated bound

vortex sheet—obtained without the Kutta condition by solving the basic problem (3.21)—

is f = S−1PΓs ′b = S−1PΓry. The added mass coefficients corresponding to this motion are
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Figure 3.14: (a) Numerically simulated trajectories (——) of two point vortices (•) of op-

posite strengths Γv,1 and Γv,1 = −Γv,[2] being convected past a circular cylinder with radius

R, and (b) the x component of the associated, numerically simulated impulse (——) in the

fluid. Overlaid are the exact continuous trajectories and impulse (- - - -). The simulation is

performed with ∆x/R = 0.04, ∆S/∆x = 2, and ∆tΓv,1/R
2 = 0.1.
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Figure 3.15: Comparison of the simulated vortex shedding behind a flat plate of length c at

60◦ in a uniform flow using the method in this paper (• and ——) and using the Biot-Savart

method of Darakananda and Eldredge [2019] (◦ and - - - -). (a) The positions of the shedded

point vortices, (b) the lift coefficient, and (c) the moment coefficient, one convective time

after impulsively starting the uniform flow. At both edges, the Kutta condition is enforced.

The simulation is performed with ∆x/c = 0.01, ∆S/∆x = 2, and ∆tU∞/c = 0.05.
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derived by substituting these into the impulse formulas (3.86)–(3.88):

P (x)
x = 〈ry, S−1PΓry − Dny1〉SNs

(3.89)

P (x)
y = −〈rx, S−1PΓry − Dny1〉SNs

, (3.90)

Π
(x)
O = −1

2
〈Drxrx + Dry ry, S

−1PΓry − Dny1〉SNs
. (3.91)

Thus, the components of the added mass coefficients tensor associated with translation in

the x direction are

mF
xx = ρP (x)

x (3.92)

mF
xy = ρP (x)

y , (3.93)

mM
x = ρ

(
Π

(x)
O −Xc × P (x)

)
, (3.94)

where Xc is the centroid of the body, which can be calculated using (B.8), and the superscript

F and M are used to denote the coefficient for the force and moment, respectively.

A similar approach can be used to obtain the added mass coefficients due to unit trans-

lation in the y direction, for which vx = 0, vy = 1 , and s ′b = −rx. The coefficients due to

unit rotation follow from taking vx = −ry, vy = rx, and s ′b = −1
2
(Drxrx + Dry ry).

3.7 Multiple bodies

The previous sections provided the formulations for potential flow with the presence of a

body. The extension of these expressions to multiple bodies is straightforward and consists

of allocating partitions of f to the different bodies. The surface streamfunction has to be

partitioned accordingly, with the body motion streamfunction sb containing the values for the

discrete surface points from all the bodies and s0 =
∑

j 1js0,j allocating a uniform value s0,j
to the jth body, where 1j ∈ SNs is a vector whose ith component is one if it belongs to the

jth body and zero otherwise. The system (3.21) can then be solved for the streamfunction

field without modification.
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As in the single-body case, if we want to enforce an edge condition on the jth body, we

treat its uniform streamfunction value s0,j as a Lagrange multiplier and add a constraint

on f to the saddle point system. In the unsteady case, we add a circulation constraint for

each body and consider each new point vortex to be released from a specified body. For

example, let us consider two bodies, with each body having one sharp edge. We assume Γv,1

and Γv,2 are the strengths from the vortices that were released from the first and second

body, respectively. We can compute these strengths by enforcing the Kutta condition for

both bodies using the saddle point system

L
N
R̃S 0 0 d1 d2

SEN 0 11 12 0 0

0 eTk1 0 0 0 0

0 eTk2 0 0 0 0

0 f̂ T0,1 0 0 1 0

0 f̂ T0,2 0 0 0 1





s

f̃

s0,1

s0,2

Γv,1

Γv,2


=



−w

PΓs ′b

0

0

−Γw,1

−Γw,2


, (3.95)

where we defined Γw,j as the circulation of the existing vorticity in the flow that has previously

been released from the jth body and f0,j = Df01j. Again, these solutions are easily extensible

to an arbitrary number of edges per body. For example, Figure 3.16 demonstrates the method

for two flat plates in a uniform flow where the LE and TE are regularized for both plates by

releasing four point vortices during each time step.

The formulas for pressure, force and added mass also generalize to systems with multiple

bodies. For example, figure 3.17 demonstrates an example of a potential flow model with

an array of nine circular cylinders and compares the ratio of the largest eigenvalue of added

mass coefficient tensor and the largest self-added mass coefficient of the system with the

results of Chen [1975].
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Figure 3.16: Evolution of the flow around two flat plates of length c at 60◦, vertically

separated by a distance of c/2, at tU∞/c equal to (a) 0, (b) 0.3, (c) 0.6, and (d) 0.9 af-

ter impulsively starting a uniform flow. The simulation is performed with ∆x/c = 0.01,

∆S/∆x = 2, and ∆tU∞/c = 0.01.
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Figure 3.17: (a) Contours of the discrete streamfunction for an array of nine circular cylinders

with radius R, spaced with a gap distance G between each cylinder, of which the bottom

left cylinder translates horizontally. (b) Numerically simulated variation (•) of the ratio

between the largest eigenvalue of the added mass coefficient tensor and the largest self-added

mass coefficient with the gap-to-radius ratio G/R. Overlaid are the values (◦) obtained by

Chen [1975] from solving a system of truncated analytical expressions. The simulations are

performed with ∆x/R = 0.05 and ∆S/∆x = 2.
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CHAPTER 4

Modeling of wind tunnel walls

Experimental investigations of gust responses in wind tunnels provide information about

the true flow physics at a wide range of Reynolds numbers that are representative of flight

regimes, but they can suffer from drawbacks such as wind tunnel installation effects or

limited flow-field information due to sensor shortcomings. Computational predictions of gust

responses, on the other hand, provide data for the entire flow field and can mimic free flight

but suffer from their own limitations. These include model uncertainties and constraints

on spatial and temporal resolution, which result in limited capabilities to accurately model

turbulent or separated flow at flight Reynolds numbers Malik and Bushnell [2012].

Recent computational efforts that are based on wind tunnel gust experiments have mostly

been directed at validating numerical models for gust response predictions Badrya et al.

[2019], Moushegian and Smith [2019], Grubb et al. [2020], performing a computational pa-

rameter exploration Badrya et al. [2021], or investigating the gust-interaction physics solely

from the computational flow field Moriche et al. [2021]. In these studies, the similarity be-

tween the configurations of experiments and computations is usually compromised in order

to make the numerical computation tractable, for example by ignoring the wind tunnel walls,

using turbulence modeling instead of direct numerical simulations, or incomplete modeling

of the gust. However, the effect of some of these simplifications on the flow features can be

unclear.

This section investigates wind tunnel effects on a simulated, discrete gust response. To

this end, we develop a computational model of a wind tunnel and compare its prediction
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of the gust lift response with the responses predicted by a free-space numerical model and

classical unsteady aerodynamics. The numerical examples are two-dimensional at a low

Reynolds number, but their purpose is to describe wind tunnel effects that generalize to

higher Reynolds numbers. Furthermore, as a virtual counterpart (or digital twin) of an

actual wind tunnel, the wind tunnel model can be combined with the experimental data

using data assimilation to increase the accuracy of the gust prediction or estimate uncertain

parameters.

The computational wind tunnel model is described for a wind tunnel design that is

inspired by the low-speed Andrew Fejer Unsteady Wind Tunnel (AFUWT) at the Illinois

Institute of Technology He et al. [2022], which generates irrotational transverse gusts by

creating suction at the top wall of the wind tunnel. However, this is a computational

framework that applies to any wind tunnel design that can generate irrotational gusts. We

provide three two-dimensional examples of an airfoil’s gust response simulated using the

wind tunnel model. In the first example, we investigate the responses of a flat plate and

NACA0009 airfoil to a Gaussian suction gust. In the second example, we model the response

to the same gust but with higher strength and for a flat plate at an angle of attack to the inlet

flow to investigate the non-linear effects of the gust. In the last example, we use synthetic

velocity measurements that represent an actual opening and closing of the suction duct.

4.1 Approximation of the wind tunnel flow field

The velocity field u in a wind tunnel is governed by the Navier-Stokes equations. The

true boundary conditions at every solid surface are no slip and no flow through, and the

conditions at the inlets and outlets depend on the entire wind tunnel system, including the

flow resistance of each wind tunnel component and the fan operating conditions Rennie et al.

[2017]. Furthermore, most wind tunnels rely on a flow straightener (such as a honeycomb

screen) to reduce the turbulence intensity at the inlet of the test section, but the turbulence
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can usually not be removed entirely.

Ideally, our computational model of the wind tunnel flow preserves these same flow qual-

ities and boundary conditions. However, in this work, we limit ourselves to the computation

of low Reynolds number flows and model the wind tunnel walls using inviscid boundary con-

ditions, which account for the leading-order effect of the wind tunnel walls on the flow around

the airfoil. This results in the following computational modeling framework for approximat-

ing wind tunnel flows that, through simplifications, can use highly-efficient computational

methods from external flow solvers and lends itself well to the modeling of flows of higher

Reynolds numbers.

Consider the two-dimensional geometry in Figure 4.1. We are interested in obtaining the

aerodynamic forces on the stationary test subject ∂Ωb and a detailed description of the flow

near it. The overall velocity field u satisfies the incompressible Navier-Stokes equations

∂u

∂t
+ ω × u = −∇

(
p +

1

2
|u|2

)
+

1

Re
∇2u,

∇ · u = 0, (4.1)

with p the pressure and Re the Reynolds number. We specify the viscous boundary condition

on the surface of the test subject

u = 0 on ∂Ωb. (4.2)

We want to model the influence of the wind tunnel walls on the flow around the test

subject, but we want to avoid spending computational resources on accurately modeling

the viscous effects at the walls. Because the boundary layers are thin compared to the test

section height and width at the high-Reynolds flows we are interested in, we can approximate

them as infinitesimally thin and treat the walls as inviscid boundaries:

n · u = 0 on ∂Ωwt. (4.3)

Similar normal-component kinematic boundary conditions can be formulated to specify the
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Figure 4.1: Diagram of the wind tunnel with suction showing the streamlines (grey) and

contours of vorticity (colored). The position of a crosswire probe is indicated with the x

marker.

suction at ∂Ωs (which we will discuss later) and prescribe a uniform flow at ∂Ωin,

n · u = −U∞ on ∂Ωin. (4.4)

Furthermore, we idealize the test section as a semi-infinite domain of constant cross section,

and far downstream we prescribe the velocity to return to uniform flow

n · u → U, as x→ ∞, (4.5)

where U must be set so that the net volume flow rate due to inflow, suction, and outflow is

zero.

If we further assume that the inlet and initial flow are irrotational, the vorticity will be

confined to a region near the test subject and in its wake. The flow u that satisfies the

conditions (4.2) and (4.3), as well as any conditions similar to (4.3), can then be constructed

according to the Helmholtz decomposition from the sum of an external viscous flow uω with

non-zero vorticity around the test subject, a freestream U∞ = (U∞, 0), and an additional
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potential flow uϕ = ∇ϕ:

u = uω + uϕ +U∞. (4.6)

The purpose of the potential flow uϕ is to introduce the influence of the wind tunnel into the

problem: to correct the flow-through at the wind tunnel walls, prescribe the mass flow rate

at the test section inlet, and to create a suction flow along a portion of the wind tunnel wall

for gust generation. We will now focus on formulating the individual viscous and potential

flow problems.

4.1.1 Viscous flow problem

The viscous part of our modeling framework is defined to be an unbounded external flow. If

we replace the velocity in (4.1) by its Helmholtz decomposition, the viscous flow problem in

our incompressible model becomes the problem of finding the velocity uω that satisfies

∂uω

∂t
+ ω × u = −∇P̃ +

1

Re
∇2uω,

∇ · uω = 0, (4.7)

subject to

uω = −U∞ − uϕ on ∂Ωb,

uω(x, t) → 0, P̃ (x, t) → p∞ as |x| → ∞, (4.8)

with P̃ = p+ 1
2
|u|2 + ∂ϕ/∂t.

We choose to solve this problem on a nominally infinite Cartesian grid using a fast

Fourier transform implementation of the lattice Green’s function (LGF) Liska and Colonius

[2014b], combined with an immersed boundary Liska and Colonius [2016] or immersed lay-

ers Eldredge [2022] method to immerse the body in the grid. Alternatively, one can solve

the problem on a truncated domain using artificial boundary conditions Colonius and Taira

[2008]. However, one must be able to evaluate uω on the wind tunnel inlet and walls, as

we will discuss in the next section. The benefit of using the LGF in the wind tunnel model
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is that the computational domain for the viscous flow problem only has to be large enough

to encompass the vorticity Yu [2021], while the solved flow field can easily be evaluated

outside of the solver’s computational domain, for example, to obtain uω on the wind tunnel

walls. Figure 4.2 shows the contours of the vorticity field ω and the streamlines of the uω

field, which generally pass through the wind tunnel walls, indicating the need to correct the

velocity at those walls.

Figure 4.2: Streamlines of uω (grey), contours of vorticity (colored), and the location of the

wind tunnel walls ( ). The arrows indicate the relative magnitude and direction of the

normal component of uω at the locations of those walls.

4.1.2 Potential flow problem

The role of the potential flow in (4.6) is to correct uω at the walls and inlet and introduce

the suction into the flow. Due to the linear nature of potential flow, we can view uϕ as a

superposition of both effects:

uϕ = uϕ,c + uϕ,s, (4.9)
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where uϕ,c is the correction flow at the walls and inlet and uϕ,s is the suction flow, and each

flow is a potential flow:

∇2ϕc = 0, ∇2ϕs = 0,

uϕ,c = ∇ϕc, uϕ,s = ∇ϕs.

We don’t constrain the flow on ∂Ωb in either potential flow problem, but each flow has

different constraints on the test-section boundaries.

To ensure that u satisfies the no-flow-through condition at the wind tunnel walls (4.3),

we specify the Neumann condition

n · uϕ,c = −n · uω on ∂Ωwt ∪ ∂Ωs (4.10)

as a boundary condition for the potential flow problem for uϕ,c.

So far, our only means of controlling the test section mass flow rate is choosing the

freestream velocity U∞. However, the normal velocity at the inlet and outlet is potentially

modified by uω. The potential flow correction provides a way to fix the flow rate to a

prescribed value because we can set the boundary condition for this correction flow so that

the overall flow satisfies the normal-velocity requirement Eq. (4.4). Thus, the correction

potential is constrained to satisfy the Neumann condition at the inlet

n · uϕ,c = −n · uω − U∞ on ∂Ωin. (4.11)

At the idealized outlet of the test section at x→ ∞, we have a similar Neumann condition,

n · uϕ,c → U∞ + Uω,∞ as x→ ∞, (4.12)

where Uω,∞ is equal to the total volume flow rate of uω through the other boundaries

divided by the height of the outlet. This ensures that the total volume flow rate through all

boundaries is zero.

This potential flow problem does not require the fine grid resolution that the viscous

problem generally needs, since the length scales of the correction flow are generally much
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coarser. It can be solved by a traditional finite-difference or finite-volume method on a finite

domain, in which the truncated outlet boundary is set reasonably far downstream of the

airfoil Wang [1999]. However, we instead choose to solve the problem with the LGF on a

Cartesian grid slightly larger than the test section, immersing the inlet and wind tunnel walls

into the grid with the immersed layers method Beckers and Eldredge [2022]. Because the

LGF automatically satisfies the condition uϕ,c → 0 at infinity, no explicit outlet boundary

condition (4.12) is needed. The immersed wind tunnel walls are truncated around five chord

lengths downstream of the airfoil.

Figure 4.3 shows the streamlines of the potential flow correction for the wind tunnel walls

with a fixed inlet mass flow rate and without suction, together with the normal velocities used

as boundary conditions. The streamlines indicate that the flow accelerates at the position

of the airfoil toward the outlet, which is the confinement effect of the walls and which will

thus be present in the combined flow u as well.

Figure 4.3: Streamlines of uϕ,c (grey). The arrows indicate the relative magnitude and

direction of the normal component of uϕ,c at the walls and inlet.

To model the suction at the top wall in our framework, we can treat the entrance to the

suction duct as a distribution of sinks on the wall. Due to our inviscid treatment of the walls,

the resulting suction flow without the presence of the airfoil is then entirely irrotational. The
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airfoil’s response to the suction flow emerges in uω through its boundary condition (4.8) and

in the convective acceleration in (4.7). We can thus include the irrotational suction flow in

uϕ,s through the boundary condition

n · uϕ,s = Vs on ∂Ωs, (4.13)

where Vs is a prescribed suction velocity. The suction flow field furthermore satisfies no-flow-

through on the other sections,

n · uϕ,s = 0 on ∂Ωwt ∪ ∂Ωin, (4.14)

and a similar boundary condition downstream of the test section,

n · uϕ,s → −Us,∞ as x→ ∞, (4.15)

where Us,∞ is equal to the suction volume flow rate divided by the height of the outlet. We

could solve this problem on a finite domain with a truncated downstream boundary. As

with the correction flow, the grid resolution requirement is similarly coarse. However, as we

did for uϕ,c, we solve this problem with the LGF/immersed layers method with no explicit

outlet boundary.

Figure 4.4 demonstrates that, when this suction flow is active, the overall mass flow rate

through the test-section outlet is reduced for a fixed inlet mass flow rate, and, depending

on the location of the suction, the horizontal velocity at the test subject is also potentially

reduced.

Note that the viscous flow depends on the potential flow and vice versa. In the presented

framework, one can implement the coupled problem monolithically or in a weakly-coupled

way. In the examples in this work, we choose the latter and exchange information between

the viscous flow solver and the potential flow solver at every stage of the time-stepping

algorithm.
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Figure 4.4: Streamlines of uϕ,s (grey). The arrows indicate the relative magnitude and

direction of the normal component of uϕ,s at the suction boundary.

4.1.3 Gust model in free space and the modified Wagner response

Irrotational gusts can straightforwardly be modeled with a potential flow, just as we did

by using potential-flow boundary conditions in our viscous flow solver. If we consider a flat

plate at zero angle of attack in our previously introduced wind tunnel model, the setup is

similar to that of the Wagner configuration and differs only in the manner in which unsteady

forcing is introduced: in the computational wind tunnel, it is created through the suction of

flow around a stationary airfoil; in the Wagner response, it is introduced through the airfoil’s

motion. To compare the simulated wind tunnel gust response to the Wagner response, we

need to interpret the gust as a vertical motion.

Figure 4.5 shows the velocity uϕ and its components during suction for a wind tunnel
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Figure 4.5: Distribution of uϕ along the airfoil’s location (with uω = 0) during suction,

represented by (a) its vectors and (b) the magnitude of its components scaled by the suction

velocity.

without an airfoil at the location where the airfoil would be. The vertical component is

almost constant over the airfoil length for the given wind tunnel geometry. The horizontal

component varies slightly more, but we can reasonably approximate both components of

the suction flow in our wind tunnel reference frame with the components of a time-varying

uniform flow UO equal to uϕ(xO, t) +U∞ evaluated in the airfoil-free wind tunnel, with xO

the center of the airfoil. This approximation provides us with an easy method to simulate

the same gust without wind tunnel walls or, equivalently, in free space.

In an inertial reference frame, where the fluid would be at rest at infinity, the airfoil

experiences the same approximate flow if it would move at a velocity ub = (−Ub, Vb) that is

equal and opposite to UO, as illustrated in Figure 4.6. To compare the force and moment

responses in both reference frames, one needs to account for a buoyant force ρVbU̇O on a

body with volume Vb due to the accelerating freestream.

The Wagner formulation (2.17) is expressed in the inertial reference frame but does not
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Figure 4.6: Illustration of (a) the wind tunnel gust setup and the approximating setups used

in this work: (b) a stationary airfoil in an unbounded, time-varying uniform flow and (c) an

accelerating airfoil in an unbounded fluid that is at rest at infinity.

account for the variation in streamwise velocity during the gust, which is of the same order

as the vertical velocity variation. Furthermore, we would like to account for an airfoil at high

angle of attack. For this purpose, we make three modifications to the previous formulation.

Firstly, we consider the Wagner response as a perturbation on top of the steady lift fss,y of the

viscous flow we want to compare it to, which usually differs from the steady lift πρUbc sinα

predicted by potential flow theory. Secondly, we account for the angle of attack in the added

mass force by computing the translational added mass matrix MFV for the force on a flat

plate in free space as

MFV =

cos θ − sin θ

sin θ cos θ

0 0

0 π
4
ρc2

 cos θ sin θ

− sin θ cos θ


=
π

4
ρc2

 sin2 θ − sin θ cos θ

− sin θ cos θ cos2 θ

 . (4.16)

Finally, to account for streamwise velocity variations, we include the time-varying Ub(t) =

UO(t) in Γqs := πc[Vb(t)+Ub(t)θ] and we compute a convected time t+ based on Ub(t) instead
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of U∞ as

t+ =

∫ t

0

Ub(τ)

c
dτ, (4.17)

which is equivalent to the thin-airfoil approach of van der Wall and Leishman van der Wall

and Leishman [1994] for arbitrary free-stream velocity fluctuations. The expression for the

modified Wagner equation in the wind-tunnel problem then becomes:

fy(t
+) = fss,y −MFV U̇ b(t

+)− ρUb(t
+)

∫ t+

0

Γ̇qs(τ+)Φ(t+ − τ+)dτ+. (4.18)

In the next section, we numerically compute the lift using this formulation and use

Jones’ Jones [1938] approximation (2.18) for the indicial response function.

4.2 Investigation of wind tunnel effects

In this section, we demonstrate the wind tunnel framework by simulating two types of

suction gusts in a two-dimensional setting. First, we examine the response of several airfoil

configurations to a suction gust that has a Gaussian time profile. Afterward, we do the

same exercise for a suction gust that arises from impulsively opening and closing the suction

duct, but where we infer the time profile of Vs from synthetic measurements that mimic

real experimental data. The two-dimensional wind tunnel geometry in these examples is

chosen to match the longitudinal section of the AFUWT test section (2.1m×0.61m), scaled

by a representative chord length c = 0.245m of an airfoil He and Williams [2020], which

is positioned at the center of the test section. For each simulation, the Reynolds number

Re = U∞c/ν is equal to 400, the grid cell size is ∆x = 2.5c/Re, and the time step size is

∆t = 0.5∆x/U∞.

4.2.1 Gaussian gust response at zero angle of attack

In our first example, we compare the responses to a known gust of a flat plate and a

NACA0009 airfoil at a zero-degree angle of attack. Consider a suction velocity with a
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Gaussian profile in time that is uniformly distributed over a width of 1.714c on the top wall

centrally above the airfoil. As in equation (4.11), we fix the inlet velocity to be equal to

the free stream velocity U∞, and we formulate the gust strength in terms of a suction ratio

V̇s/V̇in = 0.2 exp[− (t∗ − t∗0)
2 /b2], where V̇ =

∫
∂Ω

u · ndA, b = 0.15, and t∗ = U∞t/c. In the

following examples, we first allow the impulsively-started simulation to reach a steady state

before starting the gust, which is centered at t∗0 = 10.

Figure 4.7 shows the streamlines and Q contours for the flow near the airfoil, where

Q = 1
2
(||Ω||2 − ||S||2) and S and Ω are the symmetric and anti-symmetric components of

∇u. The contours indicate that the features of the flow during and after the gust for both

the flat plate and NACA airfoil are comparable.

The lift response of the flat plate and NACA0009 airfoil in our wind tunnel can be broken

down into four components: the added mass force, the circulatory force, the viscous force,

and the buoyancy force due to the time-varying free stream, which is zero for the infinitely-

thin flat plate. The viscous lift force is typically negligible, and the added mass force depends

on the entire wind tunnel geometry but can be approximated by that of the modified Wagner

response (4.18) (which is the same as that for the flat plate in the equivalent uniform flow).

The circulatory lift force can then be approximated for each case by subtracting the other

contributors from the total lift. The lift response and its contributors are shown in Figure 4.8

in terms of the lift coefficient cL = 2fy/ (ρU
2
∞c) for both airfoils in the wind tunnel, a flat plate

in an equivalent uniform flow (without the wind tunnel walls), and the Wagner response. The

lift response for the flat plate predicted by the wind tunnel model and equivalent uniform-

flow model (the two viscous models) is nearly identical, indicating that the wind tunnel

effects are negligible for small angles of attack and low suction strength. Interestingly, the

Wagner response predicts the same peak lift as the viscous models. After the initial increase

in suction, however, the Wagner response overpredicts the circulatory lift (provided that

the added mass forces are indeed similar for each case). Part of this difference in behavior

is because classical unsteady aerodynamics only models linear behavior, while the vortex-
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shedding mechanism that drives the circulatory force is typically non-linear. Furthermore,

the difference between the flat plate and NACA0009 airfoil responses is mainly due to the

buoyancy force on the latter airfoil.

4.2.2 Gaussian gust response with flow separation

Suppose we increase the effective angle of attack by positioning the airfoil at an angle or

creating a stronger gust. In that case, one can expect more substantial effects from flow

non-linearities and the wind tunnel confinement, resulting in increasingly different behavior

between the different models.

To illustrate these effects, we change the angle of attack α to 10◦ and increase the

maximum V̇s/V̇in to 0.4. The angle of the airfoil with the positive x-axis is then θ = −α,

which is positive for counterclockwise rotations. Figure 4.9 compares the flow response of a

flat plate in a wind tunnel with that of a flat plate in an equivalent, time-varying uniform flow.

The snapshots show the same flow features as in the previous example, with the exception

that the flow is now fully separated during the gust. The flows with and without the wind

tunnel look almost identical. We look at the lift response to observe their differences.

Looking at the lift response in Figure 4.10 and the circulatory contribution in Figure 4.10,

it is clear that the main difference between the responses with and without the wind tunnel

lies in the steady-state value of the circulatory force. This force is higher for the case with

the wind tunnel, which can be attributed to the confinement effect of the wind tunnel walls,

considering that the wind tunnel inlet velocity is U∞. The higher angle of attack partly

obstructs the wind tunnel flow, which significantly increases the flow velocity around the

airfoil, leading to a higher lift. Aside from the steady-state lift difference, the lift responses

of the viscous models are again almost identical. The modified Wagner model is applied

here as a perturbation to the steady-state lift of the wind tunnel model. Its steady-state lift

fss,y is set to the total lift of the flat plate at α = 10◦ in the wind tunnel model right before

the gust is introduced. However, it overpredicts the lift response, most likely as a result of
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the flow completely separating during the gust, which is a highly non-linear effect that the

Wagner model cannot account for.

4.2.3 Realistic step opening and closing of the suction duct

In the previous examples, we assumed the gust profile and strength were known. Now we look

at a more realistic example where the time profile of the gust is estimated from measurements.

Since no experimental data have been published yet for an airfoil’s gust response in the

AFUWT setup using the suction duct, we will generate synthetic measurements that are

loosely based on the experiments by He et al. He et al. [2022] of impulsively opening and

closing the suction duct louvers without an airfoil. They measure the vertical velocity at

the center of the test section, but because our airfoil is positioned at the center, we consider

measurements upstream of the airfoil. Specifically, we create a synthetic, noisy signal that

simulates the vertical velocity measurements z = V (xprobe)+ν of a crosswire probe positioned

at a quarter of the length of the test section (2.14c upstream from the center of the airfoil),

with the noise ν normally distributed with variance σ2
ν and zero mean. A random-walk

state-space model in combination with a Kalman filter is used to estimate the parameter

θ̂k|k = Vs/U∞ and its associated variance σ2
ω at every time tk that the measurement signal was

sampled. For illustrative purposes, we arbitrarily choose a σ2
ν = 1× 10−7 and σ2

ω = 1× 10−7.

For more details on the Kalman filter equations and this data assimilation approach, we

refer the reader to appendix C.

The measurements and the resulting estimated signal are presented graphically in Fig-

ure 4.11. The figure also shows the estimated flow acceleration at the center of the wind

tunnel V̇O which amplifies the fluctuations and uncertainty in Vs through numerical differ-

entiation, which is performed at the time steps of the flow solver using linear interpolation

to find the velocity values between successive measurements. This acceleration appears in

cL, scaled by π/4, through the added mass contribution.

The flow-field snapshots in Figure 4.12 show that, for this gust, the flow separates by
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the time the suction reaches its steady-state value if we model the wind tunnel environment.

This does not happen if we only model the airfoil in the equivalent uniform flow, indicating

that the wind tunnel walls (or concentrated suction) can alter the features of the flow. The

associated lift response is shown in Figure 4.13 for these two cases and the Wagner case.

The effect of the flow separation on the lift response is partly obscured by the added-mass

fluctuations, but it causes the lift response in the wind tunnel to decrease to below that of

the unseparated uniform-flow case as the suction approaches a steady state.
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Figure 4.7: Streamlines (light grey) and Q contours (dark grey) for (a) a flat plate and (b) a

NACA0009 airfoil at a zero-degree angle of attack experiencing a Gaussian gust created in

a wind tunnel with suction.
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Figure 4.8: Zero-degree angle of attack lift response to a Gaussian gust with a maximum

suction ratio of 0.2 for the following models: flat plate in the wind tunnel ( ), NACA0009

in the wind tunnel ( ), flat plate in an equivalent uniform flow ( ), and the modified

Wagner model ( ). Panel (a) shows the total lift responses (colored lines without markers)

and the suction ratio ( ), and panel (b) shows the contributors: circulatory lift (colored

lines without markers), added mass lift ( ), and the buoyancy lift for the NACA0009 airfoil

( ).
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Figure 4.9: Streamlines (light grey) and Q contours (dark grey) for a flat plate at a ten-degree

angle of attack experiencing a Gaussian gust created (a) in a wind tunnel through suction

and (b) in an equivalent time-varying uniform flow.
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Figure 4.10: Ten-degree angle of attack lift response to a Gaussian gust with a maximum

suction ratio of 0.4 for the following models: flat plate in the wind tunnel ( ), flat plate

in an equivalent uniform flow ( ), and the modified Wagner model ( ). Panel (a) shows

the total lift responses (colored lines without markers) and the suction ratio ( ), and panel

(b) shows the contributors: circulatory lift (colored lines without markers) and the added

mass lift ( ).
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Figure 4.11: Vertical velocity measurement data (dots) and the filtered measurement signal

( ) at the location of the probe, and the derived vertical acceleration ( ) at the center

of the wind tunnel, including their 95% confidence intervals.
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Figure 4.12: Streamlines (light grey) and Q contours (dark grey) for a flat plate at a zero-de-

gree angle of attack experiencing a gust created (a) in a wind tunnel through impulsively

opening and closing the suction duct and (b) in an unbounded fluid through an equivalent,

time-varying uniform flow.
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moving average (dark color) to the indicated suction ratio ( ) for the following models: a

flat plate in the wind tunnel ( ), a flat plate in an equivalent uniform flow ( ), and the

Wagner model ( ).
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CHAPTER 5

Deep reinforcement learning of airfoil pitch control

In this chapter, we apply reinforcement learning to learn a control strategy for an airfoil’s

pitch angle while disturbances or a change in the reference trajectory are introduced, resulting

in an unsteady flow. When the disturbances or pitch variations are strong enough, the flow

will exhibit nonlinear behavior, complicating the control design. Deep reinforcement learning

is a powerful tool that can leverage neural networks to provide nonlinear control in response

to nonlinear flow variations. The focus here is to explore its use in designing a control

strategy, or policy, for a viscous flow system at low Reynolds number, but first, we will

introduce the reinforcement learning setup and turn our attention to the equivalent problem

in the classical unsteady aerodynamics context introduced in Section 2.3.1. In this setup,

the problem becomes much simpler to train and analyze since it consists of a linear system

with only two states. Afterward, we apply the same framework to a viscous flow, modeled

with the body-fixed reference frame immersed-boundary method described in Section 2.4,

and analyze its performance for a test case using a point force pulse as disturbance.

5.1 Flow disturbances and the control problem

Consider an inertial reference frame with coordinate system (x, y) and a flat plate airfoil

oriented at an angle α with the negative x-axis (positive in the clockwise direction) and with

its centroid positioned at XC in the inertial reference frame. We describe the kinematics of

the airfoil in the inertial reference frame in terms of the velocity ẊP of a pivot point, which

we will place at the mid-chord point, and the angular velocity α̇ about this pivot point.
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Figure 5.1: Diagram of the airfoil and wake.

The airfoil moves forward in the negative x-direction with a constant flight speed U , while it

possibly encounters flow disturbances. The disturbances we consider in this work can consist

of random vertical freestream disturbances V∞(t) or local flow disturbances that are inserted

through a point force F(x, t) with random parameters. Note that for a flat plate airfoil, a

variation in the vertical freestream has the same effect on the relative flow as an equal but

opposite vertical motion ḣ = −V∞ of the airfoil. Thus, in this work, we will assume the

airfoil’s pivot point can undergo random variations of its vertical motion and its velocity is

thus ẊP = (−U, ḣ(t)), as shown in Figure 5.1.

The control problem is to design the partial-state feedback controller K in Figure 5.2 that

manipulates the flow around the airfoil, represented by the system G, through pitching, by

controlling the angular acceleration α̈ , such that the lift force tracks a prescribed reference

lift (the servo problem) and that lift variations due to the disturbances are minimized (the

regulator problem), while limiting the control signal to a prescribed range. In this work we

will only focus on the regulator problem, but the servo problem is a straightforward extension.

The feedback consists of the observation vector O, which contains only specific parts of the

state vector S of the system. Note that in a real application, this control problem should be

extended to account for model uncertainties and measurement noise. However, in this work,

we will assume that we have a perfect model of the system dynamics and observe the states

or output without noise. In other words, we look at the nominal stability and performance
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Figure 5.2: Closed-loop control diagram.

of the system. In this case, we can afford to use a feedback controller with high bandwidth,

leading to fast rise times but also high sensitivity to noise and parameter variations. Such a

controller should, therefore, only be viewed as an upper limit for performance (i.e. without

any guarantees of robustness). Lastly, we will not directly measure the disturbances. If we

would, combined feedback and feedforward controllers (two-degree-of-freedom controllers)

could perfectly eliminate the disturbance in the case of a linear aerodynamic model [Åström

and Murray, 2021].

Three main approaches exist for the design of a controller [Skogestad and Postlethwaite,

2005]: the signal-based approach (or time-domain approach), loop-shaping (or frequency-

domain approach), and numerical optimization. Most controller designs follow one of these

approaches, but the distinction is not always clear and sometimes a combination of ap-

proaches is used.

In the signal-based approach, we assume we have some information available about the

disturbance. In the context of unsteady aerodynamics, this could mean that we know the

shape or time profile (but perhaps not the parameters) of the flow disturbance (e.g. sinusoidal

or one of the discrete canonical gust shapes), or we know that the disturbance is a stochastic

signal for which we know the statistical measures. With the availability of such information,

the disturbance can be modeled and any unknown states can be estimated by an observer.

An example of this approach is the use of a linear quadratic regulator to control the vortex
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shedding behind an airfoil at large angle of attack [Ahuja and Rowley, 2010]. Because

of the wide variety of canonical gust models and the nonlinear response of flows to large

disturbances, which prevents the superposition of modeled responses to a rapid sequence

of those, we will avoid the use of signal-based approaches in this work. In other words, to

keep our approach generalizable, we assume that we have no information available on the

disturbance.

In the loop-shaping, or frequency-based, approach, one aims first to shape the open-loop

or closed-loop transfer functions to achieve specific robustness or performance objectives and

then design a controller whose transfer functions approximate those shapes. This approach

includes H∞-synthesis, which has been applied by Brunton and Rowley [2013] to the same

control problem we look in this work. Several experimental examples of this approach in the

context of aerodynamic flow control have been summarized in Williams and King [2018].

The numerical optimization approach encompasses a wide array of controller design tech-

niques. Such techniques employs computational methods to optimize a metric that combines

control objectives and constraints, which otherwise would be intractable to solve. The evolv-

ing landscape of these techniques is witnessing rapid advancement, with notable contribu-

tions emerging from domains like machine learning and data science [Brunton and Kutz,

2022]. As a result, these methods offer effective means to address the complexities inherent

in nonlinear systems, making them ideal for use in flow control. Some examples include

model predictive control of cylinder rotation to control the wake [Bieker et al., 2020], itera-

tive maneuver optimization for pitch control to regulate the lift during gust encounters Xu

et al. [2023], and the use of reinforcement learning for active flow control [Vignon et al.,

2023].

Here we look at the use of deep reinforcement learning of the pitch control in two types

of environments: a classical unsteady aerodynamics environment and a viscous flow envi-

ronment.
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5.2 Reinforcement learning framework

We apply deep reinforcement learning to the previously introduced control problem using

discrete-time, finite-horizon episodes with randomly-generated disturbances. The reinforce-

ment learning framework in this work consists of an environment with a single agent, which

uses a learning algorithm to learn a control strategy, or policy. For simplicity, the agent

learns its policy only through interactions with the environment’s flow model and does

not rely on a reduced- or low-order model for model-based training. Interacting with the

viscous flow environment is expensive to simulate and warrants using an off-policy learn-

ing algorithm designed to make the most efficient use of each sampled interaction (for a

model-free training algorithm). For this reason, and because we desire a control law for a

continuous-valued action, the training uses the twin delayed deep deterministic policy gra-

dient (TD3) algorithm [Fujimoto et al., 2018], which we found to perform better in this

problem than alternative state-of-the-art, off-policy, continuous-action algorithms, such as

soft actor-critic [Haarnoja et al., 2018].

The training algorithm stores interactions in a standard first-in-first-out replay buffer,

which can store up to 200000 interactions. The training starts after 10000 interactions have

been generated. During training, the algorithm randomly samples 256 interactions from the

replay buffer for stochastic gradient descent updates of the agent’s six neural networks using

the Adam optimization algorithm with a learning rate of 0.001. These networks are two

policy, or actor, networks and their target networks and one state-action value (Q-function)

approximation, or critic, network and its target network. These networks all have the same

feedforward architecture: an input layer whose size depends on the observations, two fully-

connected hidden layers with 400 and 300 rectified linear units (ReLU), respectively, and an

output layer representing the action in the case of an actor network or the state-action value

in case of a critic network. The training uses a discount factor of 0.98 for future rewards

and applies target policy smoothing by adding a zero-mean Gaussian noise with a standard
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Figure 5.3: Diagram of the reinforcement learning framework.

deviation of 0.1 to the action generated by the target critic network. Lastly, the algorithm

adds zero-mean Gaussian noise with a standard deviation of 0.1 to the actions of the policy

when collecting training data to promote the exploration of the state and action spaces.

The environment contains all setup elements that the agent cannot control. These are

the flow model, the reward function, the reference lift, and the disturbances, as shown in the

diagram in Figure 5.3.

The flow model can be of any fidelity, and we will look at a classical unsteady aerody-

namics model and a viscous, low-Reynolds number flow model. Its only requirements are

that it should accept the angular acceleration α̈ , the vertical pivot acceleration ḧ, and any

other disturbances as its input and that we have access to the state vector S describing the

flow and airfoil. If the agent observes this state vector, the control problem is a Markov de-

cision process (MDP). However, in fluid dynamics, it is often unfeasible to observe the entire

state of the wake around the airfoil, and sensor data could be limited to, e.g., only pressure,
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force, and airfoil kinematic info. In that case, the agent has to make control decisions based

on observations O that don’t contain all the state information of the environment, and the

problem is called a partially observable Markov decision process. This could result in less

optimal solutions than if the agent observed the entire state, but it often makes the problem

computationally more tractable.

The reward function maps the state of the flow and airfoil, the control input, and the

reference lift value to a scalar reward for the agent. The formulation of this reward has

a significant impact on the training, and we will discuss different implementations in the

following sections. Lastly, the environment contains the reference lift and disturbance gen-

erators. These can generate a reference lift value and a vertical acceleration or point force

that can be randomized for each episode.

5.3 Training an agent in a classical unsteady aerodynamics envi-

ronment

In our first training case, the environment flow model in the environment is the classical

unsteady aerodynamics model introduced in Section 2.3.1, and the goal is to maintain a zero

lift while random variations of ḧ are applied. One can easily solve this linear control problem

with classical or robust control theory [Brunton and Rowley, 2013], but its purpose here is

to introduce the reinforcement learning setup.

For the training data, we simulate episodes that last 20 convective times with the discrete-

time state-space sytem (2.28)-(2.29) (with d = 0) using a timestep size ∆t = 0.1. The ḧ vari-

ations consist of a random number (uniformly sampled from [0, 20]) of steps and impulses of

random amplitude (uniformly sampled from [0, ḧmax]). Because of the linearity, the variables

in this system can be scaled arbitrarily (by the same constant) without changing the system’s

behavior. However, we will choose for our example values that match the assumptions for

the model. Specifically, the ḧ variations will have a maximum value of ḧmax = 0.01U2/c, the
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control input α̈ is constrained to [−α̈max, α̈max], where α̈max = 0.1U2/c2, and the lift fy is

thresholded at fy,thres = 0.01ρcU2. Once the absolute value of the lift exceeds this value, the

episode is terminated. Note that the action space we choose is large enough to avoid satu-

ration of the control input. However, if the action space were smaller, the nonlinear nature

of deep reinforcement learning is expected to deal adequately with the nonlinear saturation,

which might not always be possible with linear control theory.

To train the agent to minimize the lift variations, the reward after every timestep consists

of a positive reward for maintaining the lift within the allowed threshold and a negative

reward for a lift that is not zero, which increases as the lift magnitude increases:

Rk+1 = 1− |fy,k|
fy,thres

(5.1)

Even though giving the positive part of the reward is not required to learn to minimize the

lift variations, we found that the training improved if we did.

As discussed earlier, in a real flow environment, it is often intractable to have the agent

observe the entire flow state and train with this data because of the high dimensionality.

Furthermore, in a practical application, only limited information is usually available through,

e.g., pressure sensors on the surface. The classical unsteady aerodynamics environment does

not suffer from this same limitation because it only has two states representing the wake. It,

therefore, allows us to try out and compare the reinforcement learning framework with three

types of agents: one that observes no info about the wake, one that observes pressure, and

one that observes all the system states. All the agents observe α, α̇ , and fy. Note that ḧ

is never directly observed to mimic a realistic application where the disturbance cannot be

measured. These cases are summarized in table 5.1. The pressure-observing agent observes

the pressure at two points on the plate that are asymmetrically positioned w.r.t. the mid-

chord point. It allows the agent to distinguish the circulatory pressure from the added-mass

pressure, according to (2.15)-(2.16). Any additional pressure observations do not introduce

additional independent information.
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Agent type Description Observation vector for one

timestep

No wake info Only the lift and angular states

are observed.

[αk, α̇k, fy,k−1]
⊤

Full wake info The full state of the wake is ob-

served in addition to the lift and

angular states.

[αk, α̇k, fy,k−1, αeff,k−1, x̂k−1]
⊤

Pressure The pressure jump at x̃1 = 0 and

x̃2 = c/4 is observed in addition

to the lift and angular states.

[αk, α̇k, fy,k−1, p1,k−1, p2,k−1]
⊤

Table 5.1: Description and observation vectors for the three types of agents trained in the

classical unsteady aerodynamics environment.

We conduct the training for each case with ten environments initialized with random

seeds and train the agents with 750000 environment interactions (or steps). Figure 5.4

shows the training progression, or learning curve, in terms of the average episode return

versus the number of environment interactions. The episode return represents the sum

of the rewards collected over one episode. With the reward function (5.1), the maximum

possible return for one episode is 200, which only occurs if the lift is zero at all times. The

reported average episode return is computed every 1000 steps, with the average measured

across ten episodes simulated with the latest policy version without applying action noise.

The learning curves are smoothed with a moving average using a window of 20 averaged

episode returns. As anticipated, the training curves show that the performance increases

when the agent observes more states. In this simplified case, observing the pressure can

adequately increase the agent’s performance when full-wake observations are unavailable,

aligning with the expectations.
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Figure 5.4: Mean (solid line) and standard deviation (shaded) of the average evaluation

episode return for the three types of agents in the classical unsteady aerodynamics environ-

ment observing the most recent timestep: no wake info ( ), pressure ( ), and full wake

info ( ).
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Figure 5.5: Mean (solid line) and one standard deviation (shaded) of the average evaluation

episode return for the three types of agents in the classical unsteady aerodynamics environ-

ment observing the two most recent timesteps: no wake info ( ), pressure ( ), and full

wake info ( )

Another interesting experiment is giving the agent access to the observations from the

last two timesteps instead of one, similar to the reinforcement learning setup used to learn

to play Atari games [Mnih et al., 2013]. Observing multiple timesteps gives access to more

information about the states of the system and allows the agent to learn to make better

decisions. Figure 5.5 clearly shows that the training drastically improves for each of the

three cases, and their performances become indistinguishable for the chosen environment

parameters.

Lastly, we select the full-wake policy and simulate an episode with the random ḧ vari-

ations used during training, and we compare it with an arbitrarily chosen proportional

control law α̈/α̈max = 1.71fy/fy,thres. Figure 5.6 shows the results and confirms that the
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Figure 5.6: Values for the disturbance ḧ, the control input α̈ , and the lift fy during a

simulated evaluation episode in the classical unsteady aerodynamics environment using no

controller ( ), a proportional controller ( ), and the trained agent observing the two

most recent timesteps with full wake info ( ) and pressure info ( ).

reinforcement learning policy adequately rejects the disturbances. The comparison with the

proportional controller does not indicate that the reinforcement learning method is a better

approach than linear control because the proportional controller only observes the lift error,

and better controllers can be developed using the many powerful tools available from linear

control theory.
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Parameter Description Range

A Amplitude [−1, 1]

x0 Spatial center x-coordinate relative

to mid-chord point

[−0.74c,−0.76c]

y0 Spatial center y-coordinate relative

to mid-chord point

[−0.1c, 0.1c]

t∗0 Temporal center 0.5

σx, σy Spatial width [0.08c, 0.12c]

σt∗ Temporal width [0.049, 0.051]

Table 5.2: Parameters of the point forcing used in the viscous flow environment.

5.4 Training an agent in a viscous flow environment

Now we focus again on the regulation problem, aiming to minimize the lift variations caused

by disturbances, but in a viscous flow environment. Note that the problem can be easily

extended to follow a varying reference lift and to minimize the lift variations from, e.g., bluff-

body vortex shedding. Here we look at a different type of disturbance than in the previous

section: a transient vertical point force F = (0, Fy) introduced upstream of the airfoil with

random parameters for each episode. Specifically, the disturbance is Gaussian in space and

time and has the form

Fy(x, y, t) = ρU2c
A

π3/2σxσyσt
exp

(
−(x− x0)

2

σ2
x

)
exp

(
−(y − y0)

2

σ2
y

)
exp

(
−(t∗ − t∗0)

2

σ2
t∗

)
(5.2)

where the parameters are uniformly sampled from the ranges shown in Table 5.2. Eldredge

et al. [2021] shows that the aerodynamic response of the flat plate is nonlinearly dependent

on the strength of this disturbance. The control input α̈ is limited to [−α̈max, α̈max] with

α̈max = 10U2/c2.
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Each episode has one disturbance and lasts for three convective times. One agent-

environment interaction occurs every three timesteps of the flow solver, and the control

input is held constant between those interactions. We apply the same training algorithm

as we used in the previous section, but for the evaluation, we only simulate one episode

with parameters A = 1, x0 = −0.75c, y0 = 0, t∗0 = 0.5, σx = σy = 0.1c, and σt∗ = 0.05.

Furthermore, we initialize each episode with a steady-state flow field with fully developed

boundary layers, obtained by running one simulation for five convective times with α = 0

before the training.

We also modify the reward function from the previous section with the following ad-

ditions: a negative reward for high variations α̈ between two timesteps to prevent rapid

oscillatory behavior, a negative reward when the lift variations exceed the lift threshold

fy,thres = 0.6ρcU2 to accelerate the learning, and a negative reward when |α̇ | exceeds its

limit α̇max = 2U/c to prevent numerical instabilities. In the latter two cases, the episode is

terminated early. Furthermore, we scale the lift by the smaller fy,scale = 0.1ρcU2 instead of

its threshold, which also improves the training. Thus, the reward function is as follows,

Rk+1 = 1− |fy,k|
fy,scale

−|α̈k − α̈k−1|
α̈max

+


−100, if |α̇k| > α̇max

0, otherwise
+


−100, |fy,k| > fy,thres

0, otherwise
. (5.3)

Because of the computational cost of the simulations, we limit the total training steps

in this exploratory study to 100000. Furthermore, while it is possible to observe the entire

vorticity field (and thus the state of the flow) and feed this to a convolutional layer in the

policy network, the number of required training steps for adequate results with the TD3

algorithm would be too high. We limit ourselves, therefore, to the following three types

of agents: one that observes no info about the wake, one that observes the pressure jump

over the plate at three positions, and one that observes the pressure jump over the plate

at seven positions. All the agents additionally observe α, α̇ , and fy, and they observe this

information from the four most recent timesteps. These cases are summarized in table 5.3.
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Agent

type

Description Observation vector for one

timestep

No wake

info

Only the lift and angular

states are observed.

[αk, α̇k, fy,k−1]
⊤

3 pressure

sensors

The pressure jump at x̃/c =

−0.3, 0, 0.3 is observed in ad-

dition to the lift and angular

states.

[αk, α̇k, fy,k−1, p1,k−1, p2,k−1, p3,k−1]
⊤

7 pressure

sensors

The pressure jump at x̃/c =

−0.3,−0.2,−0.1, 0, 0.1, 0.2, 0.3

is observed in addition to

the lift and angular states.

[αk, α̇k, fy,k−1, p1,k−1, ..., p7,k−1]
⊤

Table 5.3: Description and observation vectors for the three types of agents trained in the

viscous flow environment.
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Figure 5.7: Mean (solid line) and one standard deviation (shaded) of the average evaluation

episode return for the three types of agents in the viscous flow environment observing the four

most recent timesteps: no wake info ( ), pressure from three sensors ( ), and pressure

from seven sensors ( ). Overlaid is the return for the same episode when no control is

applied ( ).

Figure 5.7 shows the training curves for the three cases using a moving average window

of 20 evaluation episodes. We can make several observations. Firstly, the policy rapidly

learns to keep the lift and angular velocity within their limits and avoid the large negative

rewards. Secondly, the training has not converged yet. Nevertheless, the performance of the

learned policies easily exceeds the no-control case with a static airfoil. Thirdly, the agents

that observe pressure outperform the agent that doesn’t. Finally, the training does not yet

show a clear advantage of using seven pressure sensors instead of three for this case.

We can compare the performance of the trained policies by observing the flow fields,

shown in Figure 5.8, and the trajectory of the lift, shown in Figure 5.9. Because the two
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cases that observe pressure perform similarly, we only show an evaluation episode simulated

with an agent using seven pressure sensors and compare it to when no control is applied. The

point force in the evaluation episode is upward, and the generated vortex dipole travels over

the top side of the airfoil. Note that the point force is not divergence-free and will induce an

instantaneous pressure on the plate while active [Eldredge et al., 2021]. This effect is visible

as a drop in lift in both cases and is hard for the controller to counteract. The upward point

force generates a vortex dipole that propels itself upward and is convected downstream by

the relative freestream flow. Therefore, the vortex dipole and the associated low-pressure

region travel over the top side of the airfoil and exert an upward suction on the plate while

also drawing in more vorticity from the sharp leading edge. The suction manifests itself as

a positive lift force when no control is applied. The trained reinforcement learning agent

responds by decreasing its angle of attack to about minus nine degrees while the dipole

is reaching the leading edge, reducing the interaction of the dipole with the leading edge.

The combination of the added-mass effect from the angular velocity and the weaker vortex

interactions greatly reduces the lift peak that appears in the no-control case, which indicates

a successful, although not converged, training of the agent.

107



−1.0 −0.5 0.0 0.5 1.0 1.5

x/c

−0.5

0.0

0.5

y
/c

t∗ = 0.3

−1.0 −0.5 0.0 0.5 1.0 1.5

x/c

−0.5

0.0

0.5

y
/c

t∗ = 0.6

−1.0 −0.5 0.0 0.5 1.0 1.5

x/c

−0.5

0.0

0.5

y
/c

t∗ = 0.9

−1.0 −0.5 0.0 0.5 1.0 1.5

x/c

−0.5

0.0

0.5

y
/c

t∗ = 1.2

−1.0 −0.5 0.0 0.5 1.0 1.5

x/c

−0.5

0.0

0.5

y
/c

t∗ = 1.5

−1.0 −0.5 0.0 0.5 1.0 1.5

x/c

−0.5

0.0

0.5

y
/c

t∗ = 0.3

−1.0 −0.5 0.0 0.5 1.0 1.5

x/c

−0.5

0.0

0.5

y
/c

t∗ = 0.6

−1.0 −0.5 0.0 0.5 1.0 1.5

x/c

−0.5

0.0

0.5
y
/c

t∗ = 0.9

−1.0 −0.5 0.0 0.5 1.0 1.5

x/c

−0.5

0.0

0.5

y
/c

t∗ = 1.2

−1.0 −0.5 0.0 0.5 1.0 1.5

x/c

−0.5

0.0

0.5

y
/c

t∗ = 1.5

(𝑎) (𝑏)

Figure 5.8: Snapshots of the flow field showing the vorticity contours during a simulated

evaluation episode in the viscous flow environment using the trained agent observing the

four most recent timesteps with pressure info from seven sensors (a) and no controller (b).
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Figure 5.9: Values for the control input α̈ , the angular velocity α̇ , the angle of attack α, and

the lift fy during a simulated evaluation episode in the viscous flow environment using no

controller ( ) and the trained agent observing the four most recent timesteps with pressure

info from seven sensors ( ).
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CHAPTER 6

Conclusion

The modeling and control of unsteady aerodynamics is often complicated by the high dimen-

sionality and nonlinearity of the flow. Specifically, the high dimensionality greatly increases

the cost to model or analyze the flow, while the nonlinearity increases the complexity of

the flows and reduces the effectiveness of the abundant linear tools to perform flow control.

Recent advancements in data-driven techniques and machine learning provide a growing

number of tools that deal with these challenges. Still, these tools require large amounts of

accurate data to be available.

In this work, we investigated numerical methods that can accurately and efficiently model

unsteady aerodynamic flows and explore the use of reinforcement learning to control such

flows. We introduced different approaches for modeling incompressible flows with various

levels of fidelity in Chapter 2: linear classical unsteady aerodynamics models that assume

small perturbations and inviscid flow, inviscid vortex models that discretize the vorticity and

can model nonlinear flow behavior using potential flows, and viscous flow models that can

be efficiently computed in the body-fixed reference frame using the immersed boundary or

immersed layers projection method.

In Chapter 3, we presented a treatment of potential flow on Cartesian grids for use

in vortex models. This work is based on the computation of the discrete streamfunction

through the streamfunction-vorticity Poisson equation with singular vortex elements as vor-

ticity sources. In our potential flow treatment, we used two algebraic techniques that allowed

us to mimic the analytical treatment of potential flows around sharp-edged bodies with bound
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vortex sheets. The first technique is to account for surfaces in the flow by using the immersed

boundary projection method. We introduced a Lagrange multiplier for the no-penetration

constraint in the streamfunction-vorticity Poisson equation and identified it as a discrete

version of the continuous strength distribution of a bound vortex sheet on the body. The

discrete equations that solve the associated saddle-point system are then completely analo-

gous to the continuous boundary integral equations. The second algebraic technique is to

decompose the discrete bound vortex sheet strength for sharp-edged bodies into a singular

and non-singular part. One can then add constraints on the elements of the non-singular

part that are located at the edges to make the recomposed bound vortex sheet well-behaved.

This way, we enforced the Kutta condition in a way that is similar to analytical treatments

of the Kutta condition and that allows for generalized edge conditions as well.

In Chapter 4, we investigated the effects of wind tunnel walls and an irrotational gust

generator on the numerical simulations of airfoil gust responses, as these types of simulations

commonly accompany wind tunnel experiments but often don’t fully account for wind tunnel

effects. To analyze these effects, we developed a computational framework to model a wind

tunnel with an irrotational gust-generating mechanism. The framework couples a viscous

flow solver to model the flow near the test subject and a potential flow solver to compute

an irrotational and inviscid flow that cancels out the normal velocity of the viscous flow

at the wind tunnel walls. The potential flow also serves to introduce the irrotational gust

into the overall flow. We found that at zero angle of attack and low gust strength, viscous

models with and without wind tunnel corrections predict the same response and flow field,

indicating that the wind tunnel effects are negligible. However, when the angle of attack of

the airfoil is increased or the gust strength increases, (1) nonlinear effects such as separation

cause the predictions by the viscous models to differ from the linear Wagner model, and (2)

the confinement effect of the wind tunnel walls becomes an important factor that cannot

be ignored. We also demonstrated that the wind tunnel model can be used in a data-

assimilation approach for, e.g., parameter estimation by inferring the gust strength from
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synthetic velocity measurements upstream of the airfoil. We computed the corresponding

flow response of a flat plate and noted that the inclusion of the wind tunnel corrections causes

the flow to separate, which is not the case for the flat plate in an equivalent time-varying

uniform flow.

In Chapter 5, we explored the use of deep reinforcement learning to train an agent to

regulate the lift on a flat plate through the control of the angular acceleration of the plate

while encountering or experiencing disturbances. The agents’ task is to minimize the lift

variations, and they learn to do so by maximizing the sum of the rewards they receive during

a finite-time episode. These rewards decrease if the absolute value of the lift increases. The

learning was conducted using the TD3 algorithm in two types of environments with different

disturbances. The first environment was a classical unsteady aerodynamics environment,

and the disturbances were random vertical accelerations of the plate (or freestream). We

compared three types of agents: one that observes all the states of the system, one that

observes the angular states of the plate, the lift, and pressure, and one that only observes

the angular states of the plate and the lift. The training showed that all agents learned

to reject the disturbances but with different levels of success. As expected, the agent that

doesn’t observe any information about the wake states performs the poorest, and the agent

that observes all the states performs the best. The agent that observes pressure performs

almost as well as the latter. When the agents observe the same type of observations but

for each of the two most recent timesteps, their performance drastically increases, and all

agents perform equally well. The second environment was a viscous flow environment, and

the disturbance was a single point-force pulse with random parameters applied upstream of

the airfoil. We compared three agents: one that observes the angular states and the lift, one

that observes additional information from three pressure sensors, and one from seven sensors.

All agents observe their observations from the four most recent timesteps. The aerodynamic

response of the flow to the point force exhibits strong nonlinear behavior, partly due to

interactions with the leading edge, and the lift variations depend nonlinearly on the forcing
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parameters. Nevertheless, the reinforcement learning algorithm again successfully trained

the agents to reject the disturbance by performing a pitching maneuver. The two agents

that observed pressure performed better than the one agent that didn’t. Interestingly, the

agent that observed information from three pressure sensors performed as well as the agent

that observed information from seven pressure sensors.

The tools and frameworks introduced in this work provide promising pathways for future

research:

• The grid-based potential flow framework only considered the streamfunction and vor-

tices in detail. One can easily extend this to compute the discrete scalar potential

and account for sources and sinks in the flow. A more elaborate study could lead

to a framework for computing the discrete scalar potential as the discrete conjugate

harmonic of the discrete streamfunction and vice versa.

• One can apply the reinforcement learning framework to obtain many interesting flow

control results with different types of airfoils, reward functions, and disturbances than

the ones considered here. Interesting performance objectives that could affect the

reward are, for example, the required power, drag, lift-to-drag ratio, etc.

• The policies obtained with the reinforcement learning framework can be compared to

other types of control, such as model-predictive control, dynamic mode decomposition

with control, balanced proper orthogonal decomposition with control, etc.

• The viscous flow environment is still very expensive to evaluate on modern computers

and can be too slow for comprehensive reinforcement learning campaigns that include

multiple types of disturbances. A promising alternative to the model-free, off-policy

algorithms used in this work is model-based reinforcement learning, where the agent

can access a cheaper model for fast, short-horizon trajectory predictions between en-

vironment interactions, resulting in an even higher sample efficiency.
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APPENDIX A

Solution of general saddle-point systems

A general block system (with positive semi-definite matrix A) can be decomposed as follows:A BT
1

B2 −C

 =

A 0

B2 S

 I A−1BT
1

0 I

 , (A.1)

where

S ≡ −C − B2A−1BT
1 (A.2)

is the Schur complement of the matrix system and I is the identity. By this decomposition,

we can develop an algorithm for the solution of the block systemA BT
1

B2 −C

x

y

 =

r1

r2

 . (A.3)

We will refer to x as the solution vector and y as the constraint force. We define the

intermediate solution vector (x∗, y∗)T as the solution of the lower-triangular systemA 0

B2 S

x∗

y∗

 =

r1

r2

 (A.4)

and then the solution we seek can be found by back substitution of I A−1BT
1

0 I

x

y

 =

x∗

y∗

 (A.5)
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The algorithm we derive from this is

Ax∗ = r1,

Sy∗ = r2 − B2x
∗, (A.6)

y = y∗,

x = x∗ −A−1BT
1 y.

It is also useful to have an inverse representation of the block matrix system:x

y

 =

A−1 +A−1BT
1 S−1B2A−1 −A−1BT

1 S−1

−S−1B2A−1 S−1

r1

r2

 . (A.7)
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APPENDIX B

Some geometric relations for discrete surfaces

Consider a closed surface Sb with unit normal n. We will recall some basic geometric relations

here, and then provide some discrete versions of these relations based on the set of points

with coordinates rx, ry, normal components nx and ny (which, the reader will recall, contain

the surface length or area of each segment or panel associated with the points).

The volume Vb of the region enclosed by Sb can be computed from the integral

Vb =
1

nd

∫
Sb

x · n dS, (B.1)

where nd is the number of spatial dimensions (2 or 3). Using the notation above, the

approximate form of this expression is

Vb ≈
1

nd

∑
j

rTj nj, (B.2)

where the sum is taken over the nd components.

An alternative formula for the volume is

Vbej = − 1

nd − 1

∫
Sb

x× (n× ej) dS. (B.3)

The components of this integral can be written discretely as

Vbej ≈
ej

nd − 1

∑
k ̸=j

rTk nk (B.4)

And finally, a third alternative is

VbI =

∫
Sb

xn dS, (B.5)
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where I is the identity. The discrete form of this is a diagonal matrix with rTx nx, rTy ny, and

rTz nz along the diagonal.

Thus, we can conclude that the volume of the body is approximately

Vb ≈ 〈rx, nx〉SNs ≈ 〈ry, ny〉SNs ≈ 〈rz, nz〉SNs , (B.6)

or any average of some combination of these.

The centroid of the body can be derived from the equation

XcVb =
1

2

∫
Sb

x · xn dS, (B.7)

or, in discrete form,

Xc ≈
1

2Vb

〈Drxrx + Dry ry, nx〉SNs
, Yc ≈

1

2Vb

〈Drxrx + Dry ry, ny〉SNs
. (B.8)
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APPENDIX C

Data assimilation with experiments

The wind tunnel model in 4 contains uncertainties that arise from simplifications and approx-

imations. This includes the simplifications mentioned in that chapter, but also, unknown

inlet, outlet, and suction boundary conditions, or the geometry and turbulence modeling.

On the other hand, experiments observe the real flow but with measurements that are often

sparse and noisy. Data assimilation can combine experimental measurements with a dynam-

ical model to improve the accuracy of either. Experiments can improve state or parameter

estimates in a dynamical model West and Harrison [1997] the dynamical model can help to

filter, smooth, or forecast measurements Durbin and Koopman [2012].

The computational wind tunnel model can serve as the dynamical model for a data

assimilation procedure. For example, it can predict the flow field for the next time step based

on an estimate of the flow at the current time step. Measurements from pressure, hot-wire,

or force balance sensors from the next time step can be observed in the actual wind tunnel

to correct the a priori estimate from the dynamical model such that its error with respect

to those measurements is minimized. Because the numerical model is high dimensional and

non-linear, appropriate estimation techniques such as the ensemble Kalman filter should be

considered da Silva and Colonius [2018].

In the examples in this work, we demonstrate data assimilation using the simpler example

of inferring a single parameter of the wind tunnel model from experiments. Suppose we

have vertical velocity measurements zk available at discrete times tk, with k = 1, . . . , N ,

from a single crosswire probe positioned at xprobe, upstream of the airfoil, such as shown
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in Figure 4.1. The measurements are disturbed by measurement noise νk, which we will

assume is normally distributed with constant variance σ2
ν and zero mean. We wish to model

the experiments with the computational wind tunnel model to obtain more information about

the flow, but we need to know what the suction velocity was to match the experiments. The

suction velocity was not directly measured but can be estimated through the observation

model

zk = h(θk, tk) + νk

= vω(xprobe, θ, tk) + vϕ(xprobe, θ, tk) + V∞ + νk, (C.1)

where we consider θ = Vs a parameter (or state) of the system. Notice that, in this case, the

measurements depend non-linearly on the state. However, for simplicity, we will make the

assumption that, if the probe is far enough upstream of the test subject, the influence of the

test subject on the flow at xprobe is negligible. Furthermore, by construction in our model,

the vertical component of the uniform flow V∞ is zero at all times. If we assume vω(xprobe)

and vϕ,c(xprobe) are zero, then we obtain an observation function that is linear1 in θ:

zk = vϕ,s(xprobe, θ, tk) + νk

= Hθk + νk (C.2)

where H is called the observation matrix, which in this case is just a constant scalar, repre-

senting the vertical velocity component of the suction flow uϕ,s evaluated at the probe when

the suction velocity is set to unity. Note that H is time invariant in this case and can be

computed a priori.

To accommodate a non-stationary suction velocity, we provide an evolution (or dynami-

cal) model for θk. It is possible that the dynamics of the suction flow are known, for example

through knowledge of its opening and closing step response (see, e.g., He et al. [2022]). In

1Note that vω(xprobe) = 0 and vϕ,c(xprobe) = 0 are not necessary assumptions to obtain a linear obser-
vation equation. It is sufficient to assume that they are insensitive to θ or that vω(xprobe) depends only
linearly on θ and that vϕ,c(xprobe) does not depend non-linearly on θ through its coupling with uω.
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that case, one can predict the suction velocity based on the user commands for the louvers.

For conciseness, we won’t try to model the actual dynamics here. Instead, we model the

evolution of θ as a purely stochastic process, an approach that would be appropriate if we

expect θ to vary slowly. Specifically, we use a Gaussian random walk

θk+1 = θk + ωk, (C.3)

where ωk is the step size (or process noise) that is normally distributed with constant vari-

ance σ2
ω and zero mean. Overall, equations (C.2) and (C.3) comprise a simple linear state

estimation problem and can easily be solved using linear state space methods. However, if

we had used a more thorough wind tunnel model, e.g., to account for bias errors due to grid

resolution errors, then the resulting non-linear estimation could be treated with ensemble

methods, e.g., Mons et al. Mons et al. [2016] and da Silva & Colonius da Silva and Colonius

[2018], in which the state vector would comprise the discretized viscous velocity field. Nev-

ertheless, the current formulation is more cost-efficient, because the expensive Navier-Stokes

solution is not in the estimation loop, and the framework can be trivially added to a flow

solver.

If we assume that θ0, νk, and ωk are all mutually independent, the linear estimation (or

filtering) problem (C.2) and (C.3) can be straightforwardly solved for θ at every timestep

tk using Kalman filtering (or, equivalently, recursive Bayesian estimation). For this one-

dimensional random walk model, the Kalman filter equations that give the filtered estimate

θ̂k|k and the one-step-ahead prediction θ̂k+1 for θk, with associated variances Pk+1|k+1 and

Pk, to update a known θ̂k and Pk from tk to tk+1 are

θ̂k|k = θ̂k +Kk(zk −Hθ̂k), Pk|k = Pk(1−KkH),

θ̂k+1 = θ̂k|k, Pk+1 = Pk|k + σ2
ω, (C.4)

where Kk = HPk/(H
2σ2

ω + σ2
ν).
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