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Systems/Circuits

Neural Representation and Causal Models in Motor Cortex

Kris S. Chaisanguanthum,1,2,3 Helen H. Shen,1,2 and X Philip N. Sabes1,2,3

1Department of Physiology, 2Center for Integrative Neuroscience, and 3Sloan-Swartz Center for Theoretical Neurobiology, University of California,
San Francisco, San Francisco, California 94143-0444

Dorsal premotor (PMd) and primary motor (M1) cortices play a central role in mapping sensation to movement. Many studies of these
areas have focused on correlation-based tuning curves relating neural activity to task or movement parameters, but the link between
tuning and movement generation is unclear. We recorded motor preparatory activity from populations of neurons in PMd/M1 as
macaque monkeys performed a visually guided reaching task and show that tuning curves for sensory inputs (reach target direction) and
motor outputs (initial movement direction) are not typically aligned. We then used a simple, causal model to determine the expected
relationship between sensory and motor tuning. The model shows that movement variability is minimized when output neurons (those
that directly drive movement) have target and movement tuning that are linearly related across targets and cells. In contrast, for neurons
that only affect movement via projections to output neurons, the relationship between target and movement tuning is determined by the
pattern of projections to output neurons and may even be uncorrelated, as was observed for the PMd/M1 population as a whole. We
therefore determined the relationship between target and movement tuning for subpopulations of cells defined by the temporal duration
of their spike waveforms, which may distinguish cell types. We found a strong correlation between target and movement tuning for only
a subpopulation of neurons with intermediate spike durations (trough-to-peak �350 �s after high-pass filtering), suggesting that these
cells have the most direct role in driving motor output.
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Introduction
A central question in the study of voluntary movement is how the
activity of cortical neurons effects the transition from motor in-
tention to motor output. Premotor and primary motor (M1)
cortices play a central role in this process, and historically most

studies of these areas have taken a representational approach,
asking whether and how the activity of individual neurons are
“tuned” to various task or movement parameters (Georgopoulos
et al., 1982; Wise et al., 1983; Scott and Kalaska, 1995; Crammond
and Kalaska, 1996; Cisek et al., 2003; Paninski et al., 2004). This
work has demonstrated that the activity of motor/premotor neu-
rons contains information about a range of parameters such as
target location, movement velocity, and endpoint force. This rep-
resentational approach is limited, however, in that these empiri-
cal descriptions of neural activity do not identify the mechanisms
by which activity tuning arises nor how the underlying neural
circuit drives movement. Other, more recent studies have fo-
cused on the causal role of premotor and motor cortices, arguing
that motor cortical activity is better understood as driving
movement or muscle activation, either directly (Todorov, 2000) or

Received March 17, 2016; revised Jan. 31, 2017; accepted Feb. 5, 2017.
Author contributions: K.S.C., H.H.S., and P.N.S. designed research; K.S.C. and H.H.S. performed research; K.S.C.,

H.H.S., and P.N.S. analyzed data; K.S.C. and P.N.S. wrote the paper.
This work was supported by the Swartz Foundation, the National Eye Institute, and the National Institute of

Mental Health–National Institutes of Health (Grants R01EY01569 and P50MH077970).
The authors declare no competing financial interests.
Correspondence should be addressed to Dr. Philip N. Sabes, Department of Physiology, University of California,

San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94143-0444. E-mail: sabes@phy.ucsf.edu.
DOI:10.1523/JNEUROSCI.1000-16.2017

Copyright © 2017 the authors 0270-6474/17/373413-12$15.00/0

Significance Statement

This study focuses on how macaque premotor and primary motor cortices transform sensory inputs into motor outputs. We
develop empirical and theoretical links between causal models of this transformation and more traditional, correlation-based
“tuning curve” analyses. Contrary to common assumptions, we show that sensory and motor tuning curves for premovement
preparatory activity do not generally align. Using a simple causal model, we show that tuning-curve alignment is only expected
for output neurons that drive movement. Finally, we identify a physiologically defined subpopulation of neurons with
strong tuning-curve alignment, suggesting that it contains a high concentration of output cells. This study demonstrates
how analysis of movement variability, combined with simple causal models, can uncover the circuit structure of sensori-
motor transformations.
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through induced neural dynamics (Church-
land et al., 2010; Lillicrap and Scott, 2013;
Shenoy et al., 2013), rather than in terms of
movement parameter tuning.

Here, we try to link these two ap-
proaches, analyzing tuning of a popula-
tion of neurons in the context of a causal
model. By “causality,” we refer to the flow
of information through the neural circuit:
we explicitly model the neural population
in dorsal premotor (PMd) cortex/M1 as
part of the causal chain between stimulus
and behavior. Using a center-out reaching
task, we measure two experimentally ac-
cessible “tuning” functions: how the pre-
paratory activity of a neuron covaries with
the task-relevant input to PMd/M1 (in
this case the location of the reach target) and how that activity
covaries with the output of the circuit (here the initial movement
velocity). Whereas these two tuning curves are often implicitly
assumed to be the same, e.g., when using target tuning to predict
movement velocity (Georgopoulos et al., 1982, 1988; Schwartz
and Moran, 2000), we find that this is generally not the case.

We propose that the observed relationship between target and
movement tuning curves reflects how the underlying neural cir-
cuit implements the sensorimotor transformation. We therefore
build a simple linear model of that transformation, using a nor-
mative assumption that the model parameters are chosen to min-
imize movement variability. The linear model as constructed is
directional, and thus causal, in the sense that information (both
signal and noise) moves only in one direction. We then compare
the predictions of the model with the empirical data. This com-
parison was performed for the whole population and for sub-
populations of neurons defined in terms of their spike waveform
durations, which have been used previously to identify cell types
from extracellular recordings in macaque (Mountcastle et al.,
1969; Mitchell et al., 2007; Merchant et al., 2008; Cohen et al.,
2009; Kaufman et al., 2010; Song and McPeek, 2010; Yokoi and
Komatsu, 2010).

This work provides a theoretical and empirical link between
correlation-based tuning-curve analyses of motor cortex and
causal models. Furthermore, it shows how simple, model-based
analyses of activity in motor cortical neurons can begin to un-
cover the circuit structure of those neurons and functional roles
that groups of neurons play in generating behavior.

Materials and Methods
Two male rhesus macaque monkeys were used in this experiment. All
procedures were approved by the Institutional Animal Care and Use
Committee of the University of California, San Francisco, and followed
NIH guidelines for care and treatment of laboratory animals.

Behavioral task. The monkeys were trained to make planar reaching
movement to visual targets with an instructed delay. Data were then
collected in 12 sessions for Monkey D and in 14 sessions for Monkey E.
The experimental data used in this study were also used in a previous
study (Chaisanguanthum et al., 2014), and additional experimental de-
tails can be found there. Briefly, reach targets (7 cm from initial hand
position) and visual feedback were provided via a virtual reality setup
(McGuire and Sabes, 2011). For each trial, animals moved their hand to
a fixed “start” position, and a reach target was then presented. After an
instructed delay period (drawn uniformly between 800 and 1300 ms), an
audible “go” tone was presented, at which point the animal began move-
ment; visual feedback of the arm was extinguished at movement onset.
Eye position was monitored, and animals were required to maintain

visual fixation of the target from the initial target presentation until the
end of the movement. Fluid reward was delivered in a graded manner
based on final endpoint error, and trials with endpoint errors �2.5 cm
were not rewarded. The average endpoint error was �5 mm from the
center of the target. Our movement metric was initial velocity of the
reach y�, defined as the instantaneous velocity of the hand when its mag-
nitude first exceeds 40% of the peak speed for the trial. Here, we specif-
ically focus on the initial movement angle �y, i.e., the angle of the vector
y�. This metric was chosen since it reflects premovement motor planning
at a point too early to be influenced by sensorimotor feedback of the
movement.

For each experimental session, data were collected in two types of trial
blocks, which were interleaved. In “eight-target” blocks, five trials were
completed with each of eight reach targets spaced uniformly around the
azimuth (0, 45, 90, 135°, etc.). The trials were randomly interleaved, with
40 trials per block and a total of �200 trials per session. Data from the
eight-target blocks were used to measure the tuning of neurons to the
cued target direction. In “three-target” blocks, 70 trials were completed
with each of three targets in a single Cartesian quadrant (e.g., 90, 135, and
180°). The trials were randomly interleaved, with 210 trials per block
and a total of �900 reaches per session. The large number of repetitions
for each target in three-target blocks, combined with natural movement
variability (median SD, across target and sessions, of movement direc-
tion for each target was 19 and 10° for Monkeys D and E, respectively),
allowed us to study the relationship between that movement variability
and variability in the underlying neural response. The selected Cartesian
quadrant varied from session to session.

Electrophysiological recordings and analysis. Extracellular signals were
recorded from the PMd of both animals and also from M1 of Monkey E
using chronically implanted 96-microelectrode arrays (Blackrock Micro-
systems). Single units were identified by spike sorting with the Plexon
Offline Sorter, using a combination of automatic (t-Dist E-M algorithm;
Shoham et al., 2003) and manual processing. Across recordings from 12
experimental sessions for Monkey D and 15 sessions for Monkey E, we
identified 1560 well isolated units, though some of those are likely to
correspond to the same neurons.

Five trial epochs are defined for firing rate analysis: (1) the pretrial
epoch (500 ms before each trial began), (2) the trial start (variable inter-
val from trial start until the animal moves the arm to the start position),
(3) the trial-ready epoch (a fixed 300 ms interval between animal attain-
ing the start position and presentation of the reach target), (4) the delay
period (variable interval of 500 –1000 ms between the target presentation
and the go cue), and (5) the peri-movement period (variable interval
from the go cue until the time of peak speed). Most of the study focuses
on the delay-period activity, since this activity reflects the feedforward
movement plan and this period can be assumed if not otherwise noted.

For later analyses, we will study the activity of groups of cells sorted by the
shape of their waveforms. The grouping was motivated by the idea that spike
waveform shapes can distinguish some cortical cell types (Mountcastle et al.,
1969; Mitchell et al., 2007). Specifically, we sampled filtered waveforms at 30
kHz, computed the mean waveform for each unit, and characterized them by
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Figure 1. Spike waveform analysis. a, Mean spike waveforms, colored according to waveform trough-to-peak time. Colors are
for presentational clarity. b, Histogram of fraction of cells recorded in each spike waveform width bin. Spike-width distributions
vary across microarrays, likely attributable to implantation depth. Note that because the electrophysiological signals were high-
pass filtered, the waveform durations reported here are shorter than the true durations.
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the length of time between trough and the peak of the waveform. We use
cubic-spline interpolation to calculate this interval. Waveform shapes and
their distributions are shown in Figure 1.

Reach and movement tuning and tuning slopes. In Results, we model
firing rates as a linear function of a two-dimensional vector, either the
target location x� or, for a given target x�0, the initial movement velocity,
y� � y�0, where y�0 is the mean initial movement velocity for reaches to that
target. However, for simplicity and to increase statistical power, we ex-
perimentally manipulated only the target direction and not the target
distance or movement speed. When fitting these tuning models to the
data, then, we only want to compute the dependence of firing rate on
the directional component of these vectors, which we do as follows.

When describing an individual cell’s tuning to target location, the
linear tuning model is equivalent to cosine tuning in target angle �x:

R i�x�� � D� i � x� � N�0, �i
2� � �D� i��x��cos��Di

� �x� � N�0, �i
2�,

(1)

where �D, the angle of vector D� i, is the “preferred target direction” of cell
i. We fit the cosine tuning curves of Equation 1 with linear regression on
data from the eight-target blocks. From these fits, we compute the slope
di of the target tuning curve at target x�0:

d i �
�Ri

��x
�

x��x�0

� ��D� i � �x�0 � sin��x � �Di
�. (2)

Similarly, for repeated movements to target x�0, we define the slope of a
neuron’s tuning to initial movement angle �y:

f i �
�Ri

��y
�

y��y�0
� ��F� i � �y�0 � sin��y � �Fi

�, (3)

where �Fi, the angle of vector F� i, is the “preferred movement direction” of
cell i. Because the three-target blocks include many repeated trials to a
single target, we can take advantage of the natural variability in initial
angle y� across trials to fit these movement tuning slopes directly to the
data using linear regression.

A summary of key variables used is found in Table 1.
The main focus of analysis in the results is the relationship between the

target and movement tuning slopes, di and fi, across cells and across
targets in the three-target blocks, recognizing that these represent only
first-order approximations to the true response function of a cell. How-
ever, a direct comparison of these two tuning curves is potentially com-
plicated by the fact that the initial movement angle is not generally an
isotropic function of the target angle; rather, factors such as the inertia of
the arm lead to anisotropies in initial angle, which are well modeled by an

affine transformation, y� � Ax� � 	� (Gordon et al., 1994). Therefore, as a
conservative preprocessing step (to maximize the expected correspon-
dence between the two tuning curves), we removed the effect of this
anisotropy by applying an affine transformation to the initial angles: for
each recording session, we used linear regression to fit A and 	� to the data
from eight-target blocks. For simplicity of presentation, analyses of the
movement vector used these transformed values (although none of the
conclusions depend on this transformation).

Given that the study focuses on a comparison of linear fits performed
on trials from two different trials blocks, we need to verify that the rela-
tionship between neural activity and behavior does not change between
the three-target blocks and eight-target blocks. These blocks were inter-
leaved (typically about five of each per session), so we do not expect them
to differ simply because of drifts in behavior or neural activity over time
(Chaisanguanthum et al., 2014). Still, the context of these blocks could be
sufficient to change neural activity or behavior (Verstynen and Sabes,
2011). Therefore, we compared the firing rates for targets that appeared
in both trial block types, for both the delay period and the peri-
movement period (Fig. 2). The firing rates are highly correlated across
blocks, with correlation coefficients of �0.95, indicating that the neural
activity patterns for a given reach are independent of block type.

Results
We recorded from large numbers of neurons in PMd and M1
cortices as two monkeys performed a “center-out” reaching task,
in which targets appeared at one of eight locations arrayed 7 cm
from a fixed start point. Our goal here is to study the role that
these cortical areas play in transforming sensory signals into the
appropriate actions. To simplify the problem, we focus on the
relationship between preparatory neural activity, recorded dur-
ing an instructed delay period, and the initial movement trajec-
tory (see Materials and Methods). Although we will ultimately
build a causal model of the transformation from perception to
action, we begin with a more traditional “tuning curve” analysis
that will help motivate the causal model.

Distinguishing target and movement tuning
Many studies have used center-out reaching to fit tuning curves
that relate PMd/M1 firing rates to either the target angle or the
initial movement angle (Georgopoulos et al., 1982; Schwartz et
al., 1988; Schwartz and Moran, 2000). However, there has been
little analysis of how these two relate. Consider target tuning first.
Figure 3, a and b, shows standard cosine tuning curves as a func-

Table 1. Summary of key notations used, in alphabetical order by symbol

Symbol Meaning Remarks

ein ,eout Subpopulation variables Analogous to non-subscripted variables, for models with multiple subpopulations (see Fig. 6a)
B Motor weighting matrix Describes true mapping from firing rate to movement, e.g., implemented through synaptic weights
di Target tuning slope �Ri /��x , as implied by D�i

D, D�i , �Di Target tuning matrix, row vector, and preferred direction Describes firing rates as tuned to target x�
E Neural noise covariance
fi Movement tuning slope �Ri /��y , either as implied by F�i or via single-neuron

regressions against movement direction
F, F�i , �Fi Movement tuning matrix, row vector, and preferred direction Describes firing rates as though cosine tuned to movement y�
N(�, 	) Normally distributed random variable Mean �, (co)variance 	
Q Linear decoder coefficients Solution to multivariate regression y�0 � y�� Q T(R � R0 ). It is not generally true that Q � B or Q � F.

(See text for details.)
R, Ri Firing rate Bold variables denote full population written as vectors.
R0 , y�0 Mean neural and behavioral responses to presentation of target x�0

W Subpopulation connectivity matrix Describes connectivity across subpopulations in multiple subpopulation models
x�, �x , x�0 Target location, direction x�0 denotes a specific target
y�, �y (Initial) movement velocity, direction
	downstr Downstream motor noise Contribution to 	tot independent of measured neural population Ri

	pop Population motor noise Contribution to 	tot from neural population Ri

	tot Motor noise covariance Total covariance in y� for a fixed target x�0

Chaisanguanthum et al. • Neural Representation and Causal Models in Motor Cortex J. Neurosci., March 22, 2017 • 37(12):3413–3424 • 3415



tion of target angle (Eq. 1) for two exam-
ple neurons in our dataset, fit using data
from the eight-target trial blocks (see Ma-
terials and Methods). These tuning curves
can be thought of as the first-order (i.e.,
linear) approximation of the mapping
from target location to preparatory activ-
ity (Sanger, 1996). Because cosine tuning
can be used to predict movement velocity,
this target tuning function has been inter-
preted as a readout of the intended move-
ment direction or the causal movement
command signal (Georgopoulos et al., 1982;
Schwartz, 2004; Georgopoulos and Carpen-
ter, 2015). Similar arguments have been
made for cosine tuning in local field po-
tentials and surface electrocorticography
in motor cortex (Mehring et al., 2003,
2004). However, the standard center-out
reaching paradigm is a poor tool for
distinguishing between target tuning
and movement tuning, since the target
and movement directions covary so
strongly.

By having our animals perform large
numbers of repeated reaches to each target
in the three-target blocks (see Materials and
Methods), we can study the relationship be-
tween preparatory firing rates and move-
ment direction independent of target
location. Specifically, we performed a per-
turbative analysis, where for each cell and
each target we regress variation in the firing
rate against variation in the initial move-
ment angle (Eq. 3). The linear fit represents
a first-order approximation of the true rela-
tionship, for a given single target, between
firing rate and movement variability. We fo-
cus on the “movement tuning slope” fi for
each target and each cell (Eq. 3). Movement
tuning fits are shown for the same example
neurons in Figure 3, c and d.

If target and movement tuning are in-
deed just different measures of the same
mapping, then we would expect that for
each cell and each target, the movement
tuning slopes fi would match the slopes of
the cosine target tuning function. For the
cell in Figure 3c, the target and movement
tunings slopes do match well, meaning
that the neuron’s activity covaries with the
target location angle and the initial move-
ment angle in the same way. However, this
relationship does not always hold. In Fig-
ure 3d, the target and movement tuning
slopes appear to be out of phase with each
other, implying the cell’s activity covaries
oppositely with target angle and initial
movement angle.

Figure 3, e and f, shows the relationship, across the population
of recorded neurons and across targets, between target tuning
slopes and movement tuning slopes. Perhaps counterintuitively,
the correlation between the two slopes appears to have near-zero

correlation: the way an individual neuron’s activity covaries with
target angle has little bearing on how it covaries with initial move-
ment. In the following, we try to make sense of this result in terms
of a more explicit casual model for how PMd/M1 implements the
mapping from sensory input to motor output.
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Figure 2. Neural activity does not exhibit context dependence between experimental block types. Scatter plots show a com-
parison of the mean firing rates in the three-target and eight-target blocks. Each data point is the mean rate for a given recorded
cell and target, during the delay period (left) or the peri-movement period (right). Log–log plots are shown for clarity, but the
Pearson correlation coefficients were computed on the raw values. Similar results ( p 
 0.94) were obtained with Spearman
rank-order correlations.
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Figure 3. Relationship between target and movement tuning. a, b, Target tuning. For two example cells (Monkey E, same
experimental session), delay-period firing rate is plotted against the reach target angle (gray points represent trials; open circles
and error bars show per-target means and SDs, respectively) for trials in the eight-target blocks. The black trace is the best-fit cosine
tuning curve (Eqs. 1, 4). c, d, Movement tuning. Scatter plots show delay-period firing rates versus initial movement angle for
individual trials, color-coded by target. For each target in the three-target blocks, the reach regression slope (Eq. 3) is drawn. The
cosine target tuning curve from a and b is shown for comparison in black. e, f, Scatter plot of reach slope versus target slope for each
cell and each target in the three-target blocks of all sessions.
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Neural tuning curves in the context of a causal model of
movement initiation
A linear casual model
Here, we model the causal link between perception and action in
two steps: how sensory cues such as the target angle drive prepa-
ratory activity, and how that activity affects movement variables
such as the initial movement angle (Fig. 4). In both cases, we use
linear approximations to the true mapping, since we will apply
these only to variations about the mean (firing rate and initial
movement) for a given target.

The first causal step is how sensory inputs, in this case the
two-dimensional target location x�, drive the firing rates R of a
population of n cells:

R � Dx� � �, � � N�0, E�, (4)

where trial-to-trial variability in the firing rates, �, is modeled as
a normal distribution with covariance matrix E and each row of D
(an n 
 2 matrix) is a vector representing a given cell’s target
tuning, with the angle of the vector representing the preferred
direction and length determining the modulation depth and
speed sensitivity. Note that for center-out reaching, Equation 4 is
simply the matrix notation for a population of cells with cosine
tuning in target angle (Eq. 1), except that variability can be cor-
related across neurons. This term will model variability that is
likely attributable to multiple sources, including variations in the
afferent signals to PMd/M1 as well as local neural “noise” (e.g.,
Poisson sampling), with correlations between cells arising from
common neural inputs as well as local circuit dynamics. Whereas
estimation of the full covariance structure of E may be data lim-
ited, it is straightforward to estimate D and the diagonal elements
of E via linear regression on a per-cell basis.

The second step is to model the causal link from PMd/M1
preparatory activity R to the initial velocity vector y�. We avoid the
very difficult prospect of modeling both local circuit dynamics
and downstream neuromuscular dynamics, with a perturbative
model that approximates the relationship between variability in
neural activity and variability in movement for a single target x�0:

y� � y�0 � BT�R � R0� � N�0, 	downstr�, (5)

where R0 and y�0 are the mean firing rates and initial velocity,
respectively, for reaches to x�0 and each row of B (an n 
 2 matrix)
is a vector representing the effect a cell’s preparatory activity has
on y, i.e., its weighting in the motor output for reaches to this
target. Here, the covariance matrix 	downstr models all of the
movement variability not ascribable to neuronal variability,
which can arise downstream, e.g., through motor noise (Harris
and Wolpert, 1998; Todorov and Jordan, 2002), or otherwise
independently of the PMd/M1 population that we record. The
motor weighting matrix B here is not simply a statistical quantity
but is intended to reflect the underlying biophysical system; the
rows in B determine how the motor output would change from

one trial to the next if the response of only a single neuron were
changed.

Unlike the target tuning matrix D, the motor weighting ma-
trix B cannot be easily measured from the data. This is because the
problem is poorly conditioned: the number of neurons (n) is
large compared with the low dimensionality of the behavioral
measure (2): simply requiring BTD � I, i.e., the movement to
match the cue, leaves the inference of B severely undercon-
strained. For example, adding or subtracting a small subset of
neurons would have a large impact on the best-fit bi for the re-
maining neurons. Of course, one can find a linear population
“decoder” Q, such that y� � Q T(R � R0) provides an empirical
mapping from neural population activity to the predicted initial
movement vector ŷ. But because this matrix is underconstrained,
good movement prediction does not imply that Q is a good pre-
dictor of B. Furthermore, because we are, in practice, unable to
record from every relevant neuron, the entries in Q also include
the effects of all missing neurons that are correlated with those in
our population.

The fact that B cannot be directly measured or inferred from
the data motivates the rest of this work.

Movement tuning and its relationship to the causal model
Instead of estimating the motor weighting matrix B from the
data, we will estimate the inverse mapping, i.e., the movement
tuning model that describes firing rates as a function of initial
velocity. Here again, we model perturbations around the mean
for repeated reaches to the same target, x�0:

R � R0 � FT�y� � y�0� � noise, (6)

where each row of F represents the movement tuning for a given
cell. (Note that movement tuning is fit independently for each
cell and so is different from the putative decoder matrix Q de-
scribed above.) For our center-out reaching task, Equation 6 sim-
plifies to the cosine tuning for reach angle, as in Equation 3 (see
Materials and Methods) and Figure 3. For each recording session,
target, and cell, we fit this model and, in particular, the movement
tuning slope fi, using simple linear regression. Examples were
shown in the linear fits of Figure 3, c and d.

Whereas Equation 6 is intended to capture correlation, not
causality, the causal model of Equations 4 and 5 provides an
explicit link between the movement tuning matrix F and the
motor weighting matrix B: with Equation 5, we can write the
solution to the regression problem of Equation 6 as follows:

F � ���y� � y�0�
T���y� � y�0��y� � y�0�

T�
�1

� EB	tot
�1, (7)

where angle brackets denote averages over repeated reaches to
target x�0 and 	tot � BTEB � 	down is the 2 
 2 total movement
covariance matrix, which is the sum of the effects of neural vari-
ability and downstream movement variability and which can be
measured directly from data.

We cannot use Equation 7 to infer the causal model parame-
ters from cells’ movement tuning, i.e., to infer B directly from F,
as this would require knowledge of the full neuronal covariance
matrix, E, including all neurons that affect behavior, which is, of
course, experimentally intractable. Instead, we predict values for
B, and hence for F, using an experimentally supported normative
model.

Neural tuning curves prediction with a normative model
A minimum-variance causal model
Since we cannot directly estimate the motor weights B of Equa-
tion 5 from the fit tuning curves F, we instead ask what values of

yx R BD

Figure 4. A simple schematic of the circuit that drives visually guided reach. A stimulus x� is
presented; information about this stimulus is encoded by the firing rates R of cells in a neural
population, which in turn drive a motor command y�. D is the target tuning matrix (Eq. 4), and
B is the motor weighting matrix (Eq. 5).
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B would be best, given the empirically
measured target tuning parameters D. To
accomplish this, we posit the normative
principle of minimal variance in sensori-
motor control, which has considerable
empirical backing (Harris and Wolpert,
1998; Todorov and Jordan, 2002; Todo-
rov, 2004; van Beers, 2009). Specifically,
we hypothesize that the map B between
population activity and behavior should
generate maximally precise movements,
while also yielding an unbiased estimate,
i.e., BTD � I. It is easily shown, by the
method of Lagrange multipliers, that the
solution for the map B that minimizes
the trace of the covariance matrix 	tot in
the model defined by Equations 4 and 5 is
as follows:

B � E�1DDTE�1D��1. (8)

(This form minimizes any linear function
of 	tot as well as its determinant.) The
(minimized) contribution of the neural
population to the behavioral covariance is
thus 	pop � BTEB � [D TE �1D]�1. To
gain intuition for Equation 8, note that
were E isotropic (independent and identi-
cally distributed neural variability), the
optimal motor weighting matrix B would be the pseudo-inverse
of the target tuning matrix D. If E were instead only diagonal
(independent neural variability), then from the numerator of
Equation 8 we see that the motor weighting vectors B� i would be
scaled inversely by the variance of each neuron’s preparatory
firing rates, akin to the well known solution for minimum-
variance cue combination (Ernst and Banks, 2002).

The minimum-variance principle (Eq. 8), when combined
with Equation 7, leads to the primary prediction of this model:

F � D	pop	tot
�1 � D�I � 	downstr	pop

�1 ��1, (9)

where I is the identity matrix. In words, the minimum-variance
principle predicts that the target tuning of each cell is related to its
movement tuning by a simple two-dimensional, positive definite
linear transformation, 	pop	tot

�1, which is constant across the
population (though it may be different for each target).

Predictions of the minimum-variance model
To get an intuition for Equation 9, consider the limiting case
where there is no downstream noise. In this case, the target and
movement tunings should be identical, up to fitting noise. More
generally, the simple linear relationship mapping D to F implies
that the slope of neurons’ movement tuning, fi, should correlate
(across cells and targets) with the local slopes of their target tun-
ing curves di.

The idea that a neuron should be similarly tuned to the cued
and actual movement is consistent with the intuition of popula-
tion coding: if a task cue drives activity in a subset of neurons,
those neurons should drive the movement in the appropriate
directions. Here, it might seem that the minimum-variance prin-
ciple provides a normative justification of this intuition. How-
ever, as described above, this prediction does not appear to be
consistent with our data: Figure 3, e and f, shows a very weak
correlation, if any, between the target and movement tuning
slopes across our large population of cells.

One other notable feature of Equation 9 is the different (and
unrelated) origins of scale between the elements of the tuning
coefficients F and the motor weighting matrix B. Given the large
population of relevant motor cortical neurons, the rows of B
should scale with D as 1/n, on average. In contrast, the magnitude
of the movement tuning coefficients F are related to those of the
target tuning parameters D by a transformation that depends
only on the distribution of sources of variability. If � is some
measure of the fraction of motor variability manifest in this neu-
ral population (i.e., not downstream), then 	pop	tot

�1 � �. Thus,
the coefficients in F will be of order � times the size of the ele-
ments in D. Given the large number of motor cortical neurons,
we presume that �  1/n.

If downstream variability is the dominant contributor to the
total movement variability, then 	pop	tot

�1 will be small, and so
the slope of neurons’ movement tuning, fi, will be small and the
correlation between fi and di is expected to be weak. This possi-
bility is investigated next.

Effects of downstream noise
Here, we consider whether the presence of downstream variabil-
ity could explain the lack of correlation between movement and
target tuning slopes. We address the problem by simulating da-
tasets with different downstream noise levels. Examples are
shown in Figure 5a– c. As expected, both the strength of correla-
tion and the regression slope between di and fi decrease as the
fraction of downstream noise increases. This relationship is sum-
marized in Figure 5d, which shows a linear decrease in the d-f
slope as a function of the fraction of movement variability attrib-
utable to downstream noise.

We can use the linear relationship of Figure 5d to estimate the
contribution of downstream noise, given the empirical d-f slope
from Figure 3, e and f. To explain the nearly absent correlation
between di and fi observed in the empirical data, nearly all of the
behavioral variability (99% for Monkey D, 95% for Monkey E)
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Figure 5. Simulation of the effect of downstream noise. a– c, The expected relationship between target and reach slopes
predicted by the minimum-variance model (Eq. 9) for 0% (a), 50% (b), and 100% (c) of total motor variance arising downstream
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experimental data (see Fig. 3) lie.
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would have to arise downstream of PMd/M1 (empirical data
points in Fig. 5d). This estimate is not consistent with previous
studies showing significant cortical contributions to motor vari-
ability (Churchland et al., 2006; Huang and Lisberger, 2009).
Some of the discrepancy may be caused by movement variability
not captured by the model of Equations 4 and 5, including error
attributable to the linear approximations in the model. However,
by focusing on variation about the mean initial movement for
repeated trial conditions, our experimental design minimizes
such error, and so we do not expect that this could explain the
discrepancy. Rather, the result suggests that either the minimum-
variance hypothesis or the simple causal model of Figure 4 is
wrong. We next show how a simple addition to the causal model
can rescue the minimum-variance hypothesis and provide new
insight into the causal link from PMd/M1 activity to motor
output.

Causal models with nonprojection neurons
The simple, feedforward model of Equations 4 and 5 and Figure 4
assumes that the whole population of neurons we recorded in
PMd/M1 are input sensory-receiving neurons as well as motor-
projecting neurons. In reality, the intrinsic circuitry of PMd and
M1 has substantial structure, with task-related sensory inputs
(Wise et al., 1983; Cisek et al., 2003; Song and McPeek, 2010),
cortical output units originating in layer 5, as well as extensive

connectivity within PMd/M1 mediated by both excitatory cells
and inhibitory interneurons (Jones and Wise, 1977; Huntley and
Jones, 1991; Tokuno and Nambu, 2000). Figure 6a shows an
incrementally more realistic schematic that incorporates some
of this structure, while remaining amenable to simple analysis.
This schematic has two subpopulations of neurons: output pro-
jection neurons that have direct effects on movement with rate
vector Rout and nonprojection neurons with rate vector Rin,
where the subscript “in” reflects the fact that these are sensory
input neurons, interneurons, or other intracortical neurons.
These nonprojection neurons only affect movement through
their connections to the projection neurons.

We formalize the schematic of Figure 6a with a simple exten-
sion to the causal model of Equations 4 and 5 that includes these
two separate populations:

Rin � Din
T x� � N�0, Ein�, (10a)

Rout � Dout
T x� � WRin � N�0, Eout�, (10b)

where Din and Ein are the nonprojection target tuning matrix and
firing rate covariance, respectively, and the matrix W describes
the connections from the nonprojection neurons to the output
projection neurons. Dout and Eout in Equation 10b are the target
tuning and covariance matrices that would be observed in pro-
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jection cells if the nonprojection inputs were silenced. (Note that
Dout would be 0 if neurons that receive sensory input are a distinct
population from those that directly effect downstream move-
ment, since the causal effect of x� on Rout is only through the
activity of the input neurons). Combining Equations 10a and 10b
yields the effective target tuning and covariance for the output
projection neurons in the intact network:

Rout � Deff
T x� � N�0, Eeff�. (11)

Equation 11 shows that the causal model for the output projec-
tion neurons alone has the same structure as the original model of
Equations 4 and 5, with the target tuning and covariance matrices
replaced by the effective parameters: Deff � Dout � DinW T and
Eeff � Eout � WEinW T. It is these effective matrices that would be
estimated empirically from the target tuning regression.

We can next use Equations 10 and 11 to predict the relation-
ship between target and movement tuning. For output neurons,
the prediction is analogous to that derived from the original
model: if we define 	pop,eff � �Deff

T Eeff
�1Deff�, then the movement

tuning matrix should be as follows:

F � Deff	pop,eff
�1 	tot

�1. (12a)

For the nonprojection neurons, the result takes on a different
form, since variability in these cells only affects behavior through
the output neurons:

Fin � EinWTEeffDeff	tot
�1. (12b)

Notably, the movement tuning matrix for nonprojection cells,
Fin, depends on the nonprojection target tuning matrix Din only
through the effective target tuning of the output neurons, Deff.

Figure 6b– d illustrates the predictions of Equations 12a and
12b for three intuitive examples of the projection matrix W. For
each case, we simulated a network with 200 output cells and 200
nonprojection cells, with target tuning vectors evenly spaced
around the circle, with fixed modulation depth, and with pair-
wise neural correlations randomly drawn from the distribution
of correlations observed in data. Since the goal of the simulation
is to explore the effects of the projection matrix on the relation-
ship between target and movement tunings, downstream noise
(which would simply weaken this relationship) was not included.

As a first example (Fig. 6b), we considered projection matrices
W where nonprojection neurons are randomly (and sparsely)
connected to output neurons, in a way that is independent of
their target tunings. This connectivity randomizes the effect of
the nonprojection neurons on the output, so that there is little
observed relationship between the target and movement tuning
for this population (Fig. 6e, gray data points). In contrast, there is
still a tight correlation between target and movement tuning for
the output population (Fig. 6e, yellow data points), as expected
for the case of no output noise (compare Fig. 5a).

Second, we considered the case where nonprojection neurons
connect to output neurons with similar target tuning angles. Spe-
cifically, the elements of W were chosen to be Gaussian in the
difference between their preferred target directions (Fig. 6c). In
this case, we found that the target and movement tuning are
correlated for nonprojection cells, albeit not as strongly as for
output cells (Fig. 6f). From the perspective of nonprojection neu-
rons, the diffuse connectivity with and neural variability in the
output neurons acts as “downstream noise” (compare Fig. 5b).

Finally, we considered the case where nonprojection neurons
connect to output neurons with similar target tuning angles, as
above, but with negative weights, as if the nonprojection neur-

ons were primarily inhibitory interneurons (Fig. 6d). In this case,
there is negative correlation between the target and movement
tuning slopes (Fig. 6g).

We stress that the linear models in Figure 6 are not intended to
be taken literally, as accurate descriptions of the circuit connec-
tivity. Rather, they are meant as schematic descriptions of the
dominant feedforward cortical connectivity patterns that might
underlie sensorimotor transformations in PMd/M1. These pat-
terns, along with the first-order approximation of their activity,
lead to different predicted relationships between target and
movement tuning slopes. The results of this analysis (Fig. 6e– g)
suggest that the lack of correlation we observe between these
slopes (Fig. 3) may be because our dataset includes a heteroge-
neous sampling of cells. We consider this possibility next.

Comparison of target and movement tuning in
neural subpopulations
The results in Figure 6 suggest that target and movement tuning
correlations should be computed separately for functionally dis-
tinct cell types, such as input neurons, inhibitory interneurons,
and output projection neurons. Of course, such information is
not directly available from our extracellular recordings. Some
reports have indicated that cell types can be identified from the
shape of the action potential waveform recorded extracellularly
in macaque, specifically from the trough-to-peak time (Mount-
castle et al., 1969; Mitchell et al., 2007; Merchant et al., 2008;
Cohen et al., 2009; Kaufman et al., 2010; Song and McPeek, 2010;
Yokoi and Komatsu, 2010). However, more recent evidence sug-
gests that in PMd and M1, whereas different cell types have dif-
ferent waveform shapes in the aggregate, waveform shape does
not provide reliable identification of cells at the level of individual
neurons (Vigneswaran et al., 2011). Therefore, rather than at-
tempting to positively categorize cells, we bin them coarsely by
trough-to-peak time (Fig. 1), with the expectation that different
bins may contain very different distributions of cell types.

We examine the relationship between target and movement
tuning separately for each waveform bin. One might expect that
in the short waveform bin (�300 �s trough-to-peak), a high
proportion of interneurons (Mountcastle et al., 1969; Mitchell et
al., 2007; Merchant et al., 2008; Kaufman et al., 2010) would yield
a negative correlation between target and movement tuning, as in
the synthetic example of Figure 6g. Conversely, for longer wave-
form bins, one might expect that a large proportion of pyramidal
cells, including output pyramidal tract neurons, would yield pos-
itive correlations between target and movement tuning, as for the
output neurons in Figure 6e– g.

The results for three representative waveform bins are shown
in Figure 7a– c. For both short and long waveforms (200 –250 and
500 –550 �s peak-to-trough; Fig. 7a,c), there is no correlation
between target and moving tuning slopes. However, for cells with
intermediate waveforms (350 – 400 �s peak-to-trough; Fig. 7b),
there is a significant and positive correlation between the two
tuning slopes. Summary data are shown in Figure 7, d and e. For
each animal and each brain area, there is no significant correla-
tion between target and movement tuning for short (�300 �s) or
long (�400 �s) waveforms. (One exception is the shortest bin,
150 –200 �s for PMd in Monkey E, where there was a small neg-
ative correlation.) In contrast, for both monkeys and both brain
areas, we observe a peak in the slope relating movement and
target tuning for intermediate waveforms, with significantly pos-
itive correlations between tunings in the 350 – 400 �s bin. This
bin contains 3, 11, and 12% of recorded cell sessions in Monkey D
PMd, Monkey E PMd, and Monkey E M1, respectively (Fig. 1).
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Note that because we high-pass filter our electrophysiological
signals, the reported trough-to-peak times are somewhat faster
than the true physiological values (Gold et al., 2006; Quian
Quiroga, 2009; Vigneswaran et al., 2011). We estimate the true
trough-to-peak times of the waveforms in the 350 – 400 �s bin to
be �460 –520 �s (Gold et al., 2006; Quian Quiroga, 2009).

Since only one bin in Figure 7d shows a significantly positive
slope, it is important to demonstrate that the effect is not spuri-
ous. First note that we obtain highly consistent results if we con-
sider the regression coefficient of determination (R 2) instead of
regression slopes. Moreover, the computed significance level of
the 350 – 400 �s bin in Figure 7d is p � 0.0001, which with a naive
multiple-comparisons correction remains at the p � 0.001 level.
Furthermore, the removal of the three apparent outlying points
in first quadrant of Figure 7b does not affect the significance of
the positive slope. More importantly, that same bin is significant
for each of three recording arrays (Fig. 7e). Indeed, the probabil-
ity of getting three spurious false positives in the same time bin, at
only the p � 0.05 level, is p � 0.001.

We also need to ensure that the results of Figure 7, d and e, are
not simply artifacts of the degree of target or motor tuning

across cells groups. Therefore, we also examined the target tuning
strength, quantified as the modulation depth �D� i� in Figure 7f, and
the movement tuning strength, quantified as the coefficient of
determination R 2 for neuron-behavior correlations in Figure 7g.
There is no pattern in the modulation depths or neuron-behavior
R 2 values in Figure 7, f and g, that would appear to explain the
slopes in Figure 7, d and e. In fact, the smaller R 2 values in the
350 – 400 �s bin in Figure 7g might lead one to conclude that
these cells are the least directly connected to the motor output,
the typical interpretation of neuron-behavior correlations. How-
ever, these R 2 values conflate the empirical variability of a cell and
its direct effect on behavior. Our modeling work shows that this
confound can be circumvented: cells that contribute more di-
rectly to the motor output can be identified through the relation-
ship between target and movement tunings.

Intermediate waveform durations and motor output
By the logic of the toy models in Figure 6, the positive correlations
between movement and target tuning for intermediate wave-
forms suggests that these bins have a large concentration of out-
put pyramidal neurons, or at least that these cells have the most
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direct effect on behavior. This interpretation is supported by the
observation that for Monkey E, where we recorded from both M1
and PMd, the slope relating movement and target tuning is sig-
nificantly larger for M1 than PMd (p � 0.05, z test).

Assuming that the 350 – 400 �s bin contains mostly output
neurons, we can compare the empirical slopes for that bin in
Figure 7d to the simulated values in Figure 6d to estimate the
relative contributions of neural and downstream variability to
total movement variability. With this approach, we estimate that
variability in PMd (and upstream) contributes 16 � 7 and 20 �
4% to the overall movement variability in Monkeys D and E,
respectively, and variability in M1 (and upstream) contributes
38 � 10% for Monkey E. These numbers are consistent with
previously reported values measured in different ways: van Beers
(2009) used motor learning in a human reach task, Churchland et
al. (2006) directly measured neuron-behavior correlations (in a
different type of task), and in another study, we estimated this
quantity from autocorrelations in behavior (Chaisanguanthum
et al., 2014).

If this intermediate waveform bin contains many output cells,
then their causal effect should persist into the movement period.
Therefore, we predict a correlation between target movement
tuning for these cells during the peri-movement epoch as well. In
contrast, no such correlation should be observed before move-
ment planning begins. To test these predictions, we repeated the
analysis of Figure 7a– d using data from six different trial epochs
(see Materials and Methods). Results are shown in Figure 8. For
the subpopulation of cells with intermediate waveform durations
(350 – 400 �s; Fig. 8b), we find that there is significant correlation
between target and movement tuning in the last three trial ep-
ochs. We also find that the target tuning during the delay period
correlates strongly with the movement tuning during the peri-
movement period, but not vice versa, consistent with a causal
flow of information. In contrast, no correlations between target
and movement tuning are observed early in trial activity nor for
the shorter or longer waveform cell populations (Figs. 8a,c).

As noted above, fast waveforms have previously been associated
with motor cortical interneurons (Mountcastle et al., 1969; Mitchell
et al., 2007; Merchant et al., 2008; Kaufman et al., 2010). Here, how-
ever, we only see a significant negative correlation between move-
ment and target tuning for the shortest waveform bin and in only
one dataset (Monkey E PMd). This suggests that either that the in-
terneurons do not have a strong and tuned influence on output
neurons or that the short waveform bins are not dominated by in-

terneurons, as seen in the study by Vigneswaran et al. (2011). Neu-
rons with the longest waveforms might represent pyramidal cells
with smaller somata (Vigneswaran et al., 2011) and, therefore, may
not include a predominance of output neurons. The lack of correla-
tion between movement and target tuning would be expected if, for
example, the role of these cells were to coordinate the intrinsic dy-
namics of motor cortex (Churchland et al., 2010), rather than to
directly drive movement.

Discussion
Tuning curves in the context of causal models
We have analyzed the preparatory neural activity of cells recorded
in PMd and M1 and have found that target and movement tuning
are not correlated across cells and targets. This observation is at
odds with an implicit assumption in the field, dating to at least
Georgeopoulos et al. (1986), that spatial tuning is a singular
property of cortical neurons. In contrast, recent models have
emphasized the causal role that PMd/M1 activity plays in move-
ment generation, de-emphasizing the sensory tuning of these
cells (Todorov, 2000; Churchland et al., 2010; Lillicrap and Scott
2013; Shenoy et al., 2013). Here, we have attempted to link these
approaches, using a simple, linear causal model.

Whereas a general first-order model is underconstrained, al-
lowing for accurate movement with many combinations of target
and movement tuning, concrete predictions can be made by
adopting the commonly used and empirically supported princi-
ple of minimum-variance movement control. With this model,
we find that the movement and target tuning are only expected
to correlate for output cells that directly project to the motor
periphery. Therefore, we separately analyzed subpopulations of
neurons, defined by their spike waveform lengths. We found one
subpopulation with intermediate waveforms that exhibits a siz-
able and significant correlation between target and movement
tuning, suggesting that this subpopulation includes many cells
that directly drive motor output.

Our modeling approach is predicated on the existence of a
well defined, causal link between the preparatory activity in
PMd/M1 and motor behavior, but it is agnostic to the particulars
of this link. The true causal link may be the result of complex
neural dynamics (Shenoy et al., 2013; Sussillo et al., 2015), the
mechanics of the population decoding computation (Deneve et
al., 1999; Jazayeri and Movshon, 2006; Hohl et al., 2013) or other
gross network phenomena (Carandini and Heeger, 2011). We
only assume that such intermediate dynamics can be well de-
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(*p � 0.02, **p � 0.005, ***p � 0.0001).
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scribed by a first-order perturbative approximation. Our model
also focuses on the information about the target that flows
through the recorded neural population; any independent influ-
ence of other neurons will simply act as a source of downstream
noise. Nonetheless, the assumption of minimum-variance motor
weightings allows us to predict properties of these measured neu-
rons, despite being unable to record from all the relevant neurons
in the circuit.

Several recent studies have drawn a distinction between “repre-
sentational” and “dynamical” views of motor cortex (Churchland et
al., 2010; Shenoy et al., 2013). We see two separate distinctions be-
tween these approaches: the distinction between causal and non-
causal models of motor cortex and the distinction between static and
dynamical models. Here, we have focused on the first of these, ex-
ploring the relationship between traditional, representational tun-
ing-curve analyses and a simple causal model. We show that a static
analysis of the mapping from delay-period activity to initial move-
ment can help elucidate the role that the neurons play in transform-
ing sensory input to motor output. A similar approach was used by
Lillicrap and Scott (2013), who showed that a static approximation
of their dynamic causal model of M1 movement generation could
explain the anisotropic distribution of preferred directions observed
in M1.

Comparison with other efforts to categorize neuronal
function in PMd and M1
We have shown that computing tuning curves from center-out
reaching data in the standard way (Georgopoulos et al., 1982) con-
flates target and movement tuning. Nonetheless, many groups have
used center-out reaching combined with sophisticated experimental
manipulations and analyses to distinguish neurons whose activity is
more related to either task-relevant sensory cues or motor output.
For example, sensory and motor activity have been dissociated by
varying, independently from the spatial target cue, the presence of
motor response (Wise et al., 1983) or the effector used (Cisek et al.,
2003). Similar distinctions have been made based on the difference
between movement and posture-related activity (Scott and Kalaska,
1995; Crammond and Kalaska, 1996). Also, many studies have used
the time course of activity during the trial as a means of categorizing
neural responses (Song and McPeek, 2010; Suminski et al., 2015).
These previous studies focused on mean firing rates across trials,
either in particular trial epochs or in peri-stimulus and peri-
movement histograms. In contrast, we have focused on understand-
ing how the trial-by-trial variability of neural activity relates to the
trial-by-trial variability of behavior, which has allowed us to test
causal models of how information flows through the PMd/M1 net-
work (Fig. 6).

A key finding of our study is that neurons with intermediate
waveform durations are most consistent, at a population level,
with the predictions for output neurons. Although previous stud-
ies have identified cells with the shortest waveforms as putative
inhibitory neurons and those with the longest waveforms as pu-
tative output cells (Mountcastle et al., 1969; Mitchell et al., 2007),
we did not see corroborating evidence for this pattern in our data.
Rather, these populations showed little or no correlations be-
tween the target and movement tuning, suggesting that they
mostly consist of nonprojection neurons, or at least that they are
heterogeneous. This is consistent with the results of Vigneswaran
et al. (2011), who found primarily overlapping distributions of
waveform lengths for identified pyramidal tract neurons and for
nonidentified cells.

Two other groups have examined the relationship between the
functional roles of individual neurons in the sensorimotor trans-

formation and their waveform shape. Song and McPeek (2010)
took advantage of reaction time variability in reaching to catego-
rize cells as being aligned to cue onset or to movement initiation.
They found that cells with short waveforms (�300 �s) were
primarily cue aligned (but see Kaufman et al., 2010), whereas
longer waveform (300 –500 �s) cells included a mix of cue- and
movement-aligned cells. A very similar analysis was performed in
macaque frontal eye fields by Cohen et al. (2009), who found a
broad distribution of waveform lengths, similar to our own. They
found that although putative output cells (those whose activity is
saccade aligned) had a broad distribution of waveform lengths,
the mode of that distribution was at intermediate lengths. More-
over, in remarkable agreement with our own results, they found a
narrow bin of waveform lengths, centered at 370 �s, which was
composed almost entirely of putative output cells.

In addition to its inherent scientific interest, the electrophys-
iological identification of neurons by their functional/circuit
roles may be of practical use. For example, in brain-machine
interface applications, this might allow for the selection of a sub-
population of cells that are more relevant neurons for decoding
(Best et al., 2016). Furthermore, because output neurons may be
more representative of what the animal “believes” to be the out-
put of the circuit, use of these cells may allow for faster learning
and easier brain-machine interface control.
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