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 Probabilistic response of dynamical systems based on the global attractor with 

the compatible cell mapping method 
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Abstract 

  A generalized compatible cell mapping (CCM) method is proposed in this paper to take 

advantages of the simple cell mapping (SCM) method, the generalized cell mapping (GCM) method 

together with a subdivision procedure. A coarse cell partition is first used to obtain a covering set of 

the global attractor. Then, a finer global attractor is obtained by the subdivision process. The 

probabilistic response of stochastic dynamic systems is obtained by the sparse matrix analysis 

algorithm applied to the covering set of the global attractor. Because the computational domain is 

the covering set of the global attractor rather than the whole state space, the numerical efficiency of 

the proposed method can be greatly improved as compared to the GCM. A three-dimensional and a 

four-dimensional dynamical system under Poisson white noise excitation are studied to demonstrate 

the effectiveness of the proposed method for the probabilistic response analysis. Monte Carlo 

simulations show a good agreement with the proposed method. 

Keywords: global attractor, compatible cell mapping method, probabilistic response, Poisson white 

noise 

1 Introduction 

  Stochastic nonlinear dynamical systems have important application in various areas of science 

and engineering, such as physics, seismology, economics, aerospace structures, civil engineering 

structures, ocean structures and so on [1-4]. To obtain the probability density function (PDF) of the 

response is the main goal in stochastic analysis. The PDF solution of the system under Gaussian 

white noise is governed by the Fokker-Planck-Kolmogorov (FPK) equation and by the 

Kolmogorov-Feller (KF) equation under Poisson white noise [5]. However, exact analytical 

solutions for the PDF of the response are only available for very restricted classes of nonlinear 

systems [6-11]. Various approximate and numerical procedures have been developed to solve PDF 

                                                   
* Corresponding author. 

E-mail address: jqsun@ucmerced.edu 



solutions for the FPK equation or the KF equation [12-25], such as stochastic averaging method, 

path integral method, cell mapping method and exponential-polynomial closure method. Among 

these methods, the cell mapping method has been demonstrated to be a very efficient tool due to its 

ability of global analysis of the strongly nonlinear systems. It can evaluate the PDF solutions of the 

transient and steady state responses of the system driven by Gaussian and Poisson white noise 

excitations [26-28]. 

  The SCM method was first proposed by Hsu [29] to increase the computational efficiency of 

point mapping. Various improvements of the SCM method appeared and were applied to analyze 

the dynamical phenomena, such as bifurcation, stochastic response, first-passage problem [21, 

30-41]. As the most important improvement, the GCM method can determine all the global 

properties including stable and unstable manifolds with the help of the digraph theory [36, 41]. The 

transient and steady-state PDFs of the stochastic response can be obtained by the GCM method [37]. 

The CCM method is proposed and applied to deterministic and stochastic dynamical systems by 

combining the advantages of the SCM and GCM methods [32]. The set-oriented method is another 

extension of the cell mapping method and just concentrates on the invariant sets. It can find fine 

details of the unstable manifold and the global attractor of dynamical systems by the subdivision 

technique [30]. The GCM method originally computed the one-step transition probability matrix of 

stochastic systems by the Monte Carlo simulations, which proved to be time consuming. The 

short-time Gaussian approximation is a procedure to increase the computational speed of transition 

probability matrix, and is effective when the moment equations with the Gaussian closure are 

derived.  

  As shown in Ref. [30], the global attractor contains all the invariant sets. Then the global 

properties related to the stochastic response of dynamical systems, such as attractors, saddles and 

unstable manifold should also be contained in the global attractor. It is, however, a formidable task 

to find all these information. This paper proposes a new approach to conduct the global analysis 

with a goal to discover all the above properties for stochastic dynamical systems by developing the 

CCM method and applying an algorithm to focus the computational effort on the covering set of the 

global attractor. 

  The example considered in this paper is a stochastic system subject to the Poisson white noise 

[42-44]. That is to say that the excitation consists of a sequence of independent, identically 

distributed pulses arriving at random times of a Poisson process and provides a more realistic 



description of random discrete events than the Gaussian white noise. Many engineering and science 

problems, such as traffic loads, ground acceleration due to earthquakes, forces acting on railway 

vehicles traveling on imperfect tracks, can be modeled as a dynamical system under Poisson white 

noise. Thus, the probabilistic response of dynamical systems under the Poisson white noise 

excitation is of great importance. The Poisson white noise is given in the form [5, 14, 27, 45] 
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where δ(t) is the Dirac delta function. N(t) is a Poisson counting process with mean arrival rate λ, 

which gives the total number of impulse occurrences in the time interval [0, t). {Yi, i≥1} is a family 

of independent and identically distributed variables and is independent of the impulse arrive time tk. 

The correlation function of the Poisson white noise is given by 

   (2) 

where E[·] is the mathematical expectation. In this paper, the random variable Y is assumed to the 

normal distribution with mean zero. I=λ·E[Y2] is the intensity of the Poisson white noise. 

  The rest of this paper is arranged as follows. Section 2 reviews the SCM and GCM methods and 

introduces the procedure of determining the global attractor with a generalized CCM method. The 

detailed scheme of analyzing the probabilistic response with the proposed method is presented in 

Sec. 3. Section 4 demonstrates the proposed method with two examples of different types. 

Concluding remarks are made in Section 5. 

2 The Cell Mapping Methods 

2.1 SCM Method 

  Consider a dynamical system governed by 

 .  (3) 

where t is the time variable, x is an N-vector and F is a nonlinear vector-value function of x. D is a 

given bounded domain in the state space RN. By discretizing the state space into a cell state space, 

the domain D is divided into finite small cells numbered from 1 to Nc. The region outside the 

domain D constitutes one single cell, defined as the 0th cell. The image of each cell can be 

represented by the point mapping of the original system from a point within the cell. 

  For the SCM method, only one trajectory of system (3) is generated to obtain the image from 

each cell with the time duration τ, starting at t=τ0. The cell mapping equation can be created as 



follows 

 ( ) ( )( )1n n+ =Z C Z   (4) 

where C is the cell function, which is a mapping from an integer to an integer, n is the mapping step 

and Z(n) is an integer representing the cell where the system resides at the nth step. When the 

mapping C is obtained, the global properties such as equilibrium cells, the periodic solutions 

consisting of periodic cells and basins of attraction can be studied in a systematic way. During the 

computational process, the group number array, the step number array and the periodicity number 

array are assigned to each cell for the global analysis. The original algorithms were developed by 

Hsu [29]. 

2.2 GCM Method 

  For the GCM method, V trajectories of system (3) are constructed out of each cell with the time 

duration τ, starting at t=τ0, corresponding to multiple image cells. For a cell j, if there are Si 

trajectories falling in the image cell i, then the one-step transition probability from cell j to cell i is 

pij=Vi/V such that 
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The evolution of the dynamical system is described by Markov chains 

 ( ) ( )1n n+ = p P p  or ( ) ( )0nn = p P p  (6) 

where P={pij} is the one-step transition probability matrix. p(n)={pi(n)} is the probability 

distribution of the system at the nth mapping step and pi(n) is the probability of finding the system 

in the ith cell. p(0) is the initial probability vector. With the GCM method, not only the probabilistic 

responses of the system but also the global properties such as basins of attraction, saddles and 

invariant manifolds can be obtained by analyzing the characteristics of the Markov chains with the 

digraph algorithms [28]. 

  The transient and steady-state responses of dynamical systems are described by the vector p(n) 

[37]. We should note that most elements of the transition probability matrix P are 0. Thus, from Eq. 

(6) it can be seen that the key point of computing the probabilistic response is the multiplication of a 

sparse matrix and a vector, which can be fast by using the sparse matrix computational methods. 

2.3 Global Attractor with the CCM Method 



  The SCM and GCM methods are both used for the global analysis of dynamical systems. The 

SCM method can quickly find the periodic motions while the GCM method can determine the 

saddle-like properties. By combing their advantages, the CCM method was proposed to treat the 

nonlinear vibration problems, which may be deterministic or stochastic [32]. In this section we will 

investigate a generalized CCM method to obtain the global attractor. 

  Let Q  RN, the global attractor relative to Q can be defined by [30] 
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where f is a discrete dynamical system xj+1=f(xj+1), j=0, 1, 2,… or a Poincare map of an ordinary 

differential equation. A global attractor A is an attracting set and contains all the invariant sets of the 

dynamical systems. The basin of attraction of A is the whole space RN. AQ is a subset of the global 

attractor A. The SCM method can obtain the periodic solutions of dynamical systems. These 

solutions may be stable or unstable. The trajectories generated from the periodic cells forward in 

time will approach the sets that contain the global attractors. By the subdivision process, which will 

be introduced in detail in Sec. 3, the fine structure of the global attractor can be delineated.  

  The algorithm of the generalized CCM method for finding the global attractor is presented as 

follows: 

  (1) Select a domain of interest D1 with a coarse partition, in which the GCM is constructed 

with V sampling points in each cell. A SCM is selected from the GCM so that the two 

mappings are compatible. 

  (2) The set of Ns periodic cells is extracted from the SCM. For each cell ci in this set, denote 

the cells that ci leads to as Fi. Then the covering set of the global attractor is given by 

   
1=

=
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i
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  (3) Construct the SCM and the GCM subsequently on the set Sg and repeat steps 2 and 3 to 

obtain the new sets of the global attractor until we reach the desired accuracy of the 

solution in terms of the size of the cells. 

  In general, the maximum or minimum transition probability is used to extract the SCM from the 

GCM. Since we are interested in the unstable and stable periodic solutions, which are small 

probability events, we have found that the image of the center of a cell should be used for the 

compatible SCM. When one of the image cells is the same as the pre-image cell, the mapping from 

the cell to itself is taken as the compatible SCM. 



3 Probabilistic Response Analysis with the CCM Method 

3.1 Approximation of Global Attractor with Subdivision 

  From Sec. 2.3, we can find that under the coarse partitions the global attractor is contained in the 

set Sg and we can find the global attractor by the iteration forward in time from the periodic 

solutions. The purpose of coarse partitions is to find the spread of the attractors in the state space so 

that we can have an estimate of the computational domain. The more accurate results of the set Sg 

can be obtained by the subdivision process, which is described as follows. 

(1) Numbering the Cells in the Subdivision Process 

  For a goal set S, create the cell state space in it. Because the set S is only a part of the whole 

space RN, the numbering rule is changed compared with the traditional GCM method. Supposed 

there are totally Km cells in S after m iterations, where K0 represents the number of cells in the 

original cell state space. If there are Mm small cells in each cell for the GCM in the mth iteration, 

then the cell numbers are assigned from 1 to Km-1·Mm. The cell numbers in the ith cell, which is the 

sequence number of output cells in the mth iteration, are from (i-1) ·Mm+1 to i·Mm. 

(2) Creation of the Cell Mapping in the New State Space 

  The region out of the current cell state space is called the sink cell. The image of a cell may be 

located within the cell state space or within the sink cell. For a cell in the mth iteration, if it is 

located in the ith cell of Km-1 cells and in the jth cell of Mm cells, then the cell number is (i-1) ·Mm+j. 

During the mth iteration, the initial point P0 with the cell c is mapped to the point P1 after one-step 

mapping. The cell number of point P1 can be determined just by computing its location in the cell 

sequence of Km-1 and Mm. Denote them as iʹ and jʹ, then the cell number of point P1 is 

cʹ=(iʹ-1) ·Mm+jʹ. The cell mapping from cell c to cell c´ is created. 

(3) Correspondence Between Computed Cells and its Coordinates 

  After the creation of the GCM for Km-1·Mm cells, the periodic solutions are calculated by the 

retrieved SCM and then the trajectories are generated from them to determine the global attractor. In 

order to output the computation results, we introduce an array of structures ARm[i] in the mth 

iteration step to determine the center coordinates of each cell, where i=1,2,…,Km-1·Mm. This 

structure has N+1 (N is the dimension of state space) elements, where the first N elements of ARm 

represent the coordinate of the ith cell, and the (N+1)th element represents the cell number of the ith 

cell in the cell state space of the (m+1)th iteration. With the aid of this cell number, we can 



determine its location by the correspondence rules of the GCM method between cells and points. 

For example, if the cell state space of the mth iteration step is Cm1×Cm2×···×CmN, then the (N+1)th 

element represents the cell number in the next cell state space with the cell structure of 

(Cm1×Cm2×···×CmN) ·Mm, where Mm is usually taken as 2N during the computation. 

(4) Determination of Global Attractor 

  Once the cell mapping is created, the SCM method is used to find the periodic solution. The 

iteration process forward in time is carried out by the search algorithm of digraph from these 

periodic solutions to obtain the global attractor. The other global properties such as attractors and 

saddles can be found by analyzing the mth cell state space with digraph GCM method. Repeat all 

the above steps until the accuracy is met. Suppose that the initial cell state space is 

K0=C1×C2×···×CN, then the number of cells in the cell state space at the mth iteration step becomes 

into Lm=(2m-1C1)×(2m-1C2)×···×(2m-1CN) that is considered in the framework of the GCM. However, 

the actual number of cells at the mth iteration step is Km-1, which is far less than Lm-1. The 

computation efficiency is improved by Lm-1/Km-1 times with the proposed method at the mth 

iteration step. 

3.2 Probabilistic Response on the Global Attractor 

  The steady-state response of the dynamical system under stochastic excitation should be 

contained in its global attractor. Consider a nonlinear dynamical system under stochastic excitation, 

the probabilistic response analysis based on the covering set of the global attractor under given 

partition scales is shown as follows: 

  Firstly, find the covering set of the global attractor according to the process shown in Sec. 3.1. 

and take the set as the initial cell state space for computing the probabilistic response. The only 

difference is that the image cells are determined by the random trajectories from the center point of 

each cell. Under the stochastic condition, the global attractor is just used to cover the region of 

steady state response, so the cell state space is not required to be too refined. Suppose that the 

partition scale in the framework of the GCM is H0=C1×C2×···×CN and there are K0 cells in the set of 

the global attractor. Then the computation efficiency under stochastic condition is improved by 

H0/K0 times. 

  Secondly, based on the numbering rules and correspondences between cells and points of Sec. 3.1, 

the set of the obtained global attractor is considered as the initial cell state space to create the 

one-step transition probability matrix. For a cell j, if there are V randomly sampled trajectories 



generated from each cell, and Vi trajectories falling in the image cell i, then the one-step transition 

probability pij=Vi/V. We just consider the one-step transition probability of the cells within the 

global attractor. 

  Finally, the probabilistic response is obtained with the help of the matrix analysis algorithm [37]. 

Because most elements of the transition probability matrix are zero, it can be stored as a sparse 

matrix. 

  If we want to improve the precision of the probabilistic response, the initial cell state space 

should be further divided. Suppose that Mm small cells are divided from each cell and V random 

trajectories are generated from each small cell, then in this way, the final cell state space equivalent 

to GCM is changed into H0⸱Mm. 

  Under stochastic excitations, the sampling points for one-step transition probability may be 

numerous, especially when the dimension of dynamical systems is high. The parallel technique can 

be used to further increase the computational efficiency [46]. The most time-consuming part is the 

creation of transition probability matrix. The generation process of image cells is independent with 

each other. Therefore, a simple and easy parallel strategy can be implemented [47]. 

4 Illustrative Examples 

  Two examples are presented in this section to demonstrate the ability of the proposed method in 

the probabilistic response analysis. The dimension of these two examples is respectively 3 and 4. 

The results by the generalized CCM method and the Monte Carlo simulation are both obtained on a 

laptop with Intel core i7 6820 4-core processor. 

Example 1: In this example we will present the probabilistic responses of a nonlinear system with 

non-viscous exponential damping under stochastic excitation, the governing equation of which can 

be expressed as [48] 

    (9) 

By using the Leibnitz rule for differentiation of an integral [49], the equation can be rewritten as a 

three-dimensional system as follows 

    (10) 



The parameters are taken as ζ=0.1, β=0.2, a=0.5, b=0.5, f=1.5, ω=2.0, η(t) is the Poisson white 

noise. The time duration for the CCM method is τ = T = 2π/ω, which is the period of harmonic 

excitation. The domain D1={-6≤x1≤6, -8≤x2≤10, -6≤x3≤10} is firstly divided into a coarse cell 

structure of 16×16×16 (K0) cells. 30×30×30 (V) points are uniformly selected within each cell to 

determine the image cells with the CCM method. In the subdivision process, 1000 (V) random 

sampling points are generated. Under deterministic condition, Figs. 1(a), 1(b) and 1(c) show the 

coverings of the global attractor (unstable manifold) of the system (10) with different divisions. A 

fine structure of the global attractor can be obtained after 8 iteration steps, which is equivalent to the 

cell structure of 2048×2048×2048 cells for the GCM method. 

 

 

Fig. 1 The coverings of the global attractor for system (10) with different divisions. (a) m=3, I=0; (b) m=5, I=0; (c) 

m=8, I=0; (d) 32×32×32, λ=0.5, I=0.05. 

For the response analysis of stochastic dynamical systems, it is not needed to find the global 

attractor very fine and a proper cell structure is sufficient. Under the Poisson white noise excitation, 

the same initial coarse partition is carried out in the domain D1. 2500 (V) random sampling points 

are generated to determine the image cells. After 2 iteration steps, the covering of the global 



attractor of system (10) is obtained with the cell structure of 32×32×32 for GCM method. Fig. 1(d) 

shows the covering of the global attractor with λ=0.5, I=0.05 for Poisson white noise, where 

H0=32×32×32 and K0=1543. Therefore, the computation efficiency is improved by around 21 times. 

 

Fig. 2 The marginal PDFs of system (10) for x1 and x2 with different intensities of Poisson white noise with λ=0.5. 

Lines: the GCM method. Circles: the direct Monte Carlo simulations. 

    

Fig. 3 The surface plots of joint PDFs of system (10) on different planes for λ=0.5 and I=0.5. (a) x1- x2 plane; (b) 

x2- x3 plane. 

  In the following we fix the mean arrive rate λ=0.5 and consider the influences of Poisson white 

noise intensity on the probabilistic response based on the obtained global attractor. The response 

results are obtained when the time t > 200T. For each cell, Mm=2×2×2 small cells are divided and 

3200 (V) random sampling trajectories are generated to determine the one-step transition probability. 

Figure 2 gives the marginal PDFs of system (10) for x1 and x2 when the intensities of Poisson white 

noise are respectively taken as I=0.05, I=0.1, I=0.5. The accuracy of the proposed CCM method is 

examined by the Monte Carlo simulation, where 5×106
 sample points are used. When the noise 

intensity I=0.5, Figure 3 shows the surface plots of joint PDFs on different planes to exhibit the 

space structure of probabilistic responses. 



  Figure 4 shows the contour plots of joint PDFs of system (10) on x1- x2 plane as the intensity of 

Poisson white noise is varied with λ=0.5. When I=0.05, shown in Fig. 4(a), the system (10) has two 

stable states and the probability distribution is concentrated around them. As the intensity I 

increases, the probability distribution of two stable states becomes broader and gradually merges. 

The probabilistic response becomes more random on a broader scale. We can also find that the 

evolutionary direction of steady-state probability distributions of response is in accordance with the 

unstable manifold shown in Fig. 1(c). 

 

 

Fig. 4 The contour plots of joint PDFs of system (10) on x1- x2 plane for different intensities of Poisson white 

noise with λ=0.5. (a) I=0.05; (b) I=0.1; (c) I=0.3; (d) I=0.5. 

Example 2: Now, we consider a coupled nonlinear system, which describes the escape from a 

two-dimensional potential well [50]. The equation of motion under sinusoidal and stochastic 

excitations is given by 

    (11) 

where η(t) is the Poisson white noise and the parameters are taken as β=0.05, γ=0.05, k=3.0, F=3.0, 

ω=0.75. We rewrite the equation as 



   (12) 

The selected domain D2={-1.5≤x1≤1.5, -1.5≤x2≤1.5, -1.5≤x3≤1.5, -1.5≤x4≤1.5} is divided into a 

coarse cell structure of 16×16×16×16 (K0) for the CCM method with the time duration τ = T = 2π/ω. 

625 (V) points are uniformly selected within each cell to determine the image cells in the following 

subdivision process. For the system without stochastic excitation, Figs. 5(a), 5(b) and 5(c) show the 

coverings of the global attractor of system (12) with different divisions in the three-dimensional 

space of (x1, x2, x3). It can be found that the structure of the global attractor is already very fine after 

6 iteration steps, which is equivalent to the cell structure of 256×256×256×256 cells for the GCM 

method. 

 

   

Fig. 5 The coverings of the global attractor of system (12) with different divisions in the three-dimensional space 

of (x1, x2, x3). (a) m=2, I=0; (b) m=3, I=0; (c) m=5, I=0; (d) 64×64×64×64, λ=1.0, I=0.002. 

  Under the Poisson white noise excitation, firstly a coarse cell structure of 16×16×16×16 (K0) for 



the CCM method is carried out in the domain D2. And the image cells are generated by 800 (V) 

random sampling points. After 3 iteration steps, the covering of the global attractor is obtained 

equivalent to the cell structure of 64×64×64×64 for GCM method. For example, when the mean rate 

and intensity of Poisson white noise are taken as λ=1.0 and I=0.002, shown in Fig. 5(d), the number 

of cells in the initial cell state space for response analysis is K0=76126 and H0=64×64×64×64. 

Therefore, the computation efficiency is improved by around 220 times. 

 

Fig. 6 The marginal PDFs of system (12) for x1 and x2 with different intensities of Poisson white noise with λ=1.0. 

Lines: the GCM method. Circles: the direct Monte Carlo simulations. 

 

 

Fig. 7 The surface plots of joint PDFs of system (12) on different planes for λ=1.0 and I=0.005. (a) x1- x2 plane; (b) 

x1- x4 plane; (c) x2- x3 plane; (d) x2- x4 plane. 



  The influences of Poisson white noise intensity on the probabilistic response based on the 

obtained global attractor is then considered by fixing λ=1.0. 2560 (V) random sampling trajectories 

are selected within each cell to compute the one-step transition probability. Figure 6 gives the 

marginal PDFs of system (12) for x1 and x2 with the noise intensities I=0.001, I=0.002, I=0.05. The 

response results are obtained when the time t > 200T. The Monte Carlo simulation with 109 

sampling points is used to demonstrate the efficiency of the proposed compatible cell mapping. In 

order to exhibit the space structure of probabilistic responses, Fig. 7 shows the surface plots of joint 

PDFs on different planes when the noise intensity I=0.005. 

  When the intensity of Poisson white noise is small, the probability distribution is concentrated 

around the attractor. The system is located in the safe basin and disturbed by a minor perturbation, 

shown in Fig. 8(a). As the intensity I increases, we can find from Fig. 8 that the probabilistic 

response becomes more and more random. The system will escape from the safe basin with a high 

probability. And also, the evolutionary direction of steady-state probability distributions of response 

is in accordance with the unstable manifold shown in Fig. 5(c). 

 

 

Fig. 8 The contour plots of joint PDFs of system (12) on x1- x2 plane for different intensities of Poisson white 

noise with λ=1.0. (a) I=0.001; (b) I=0.002; (c) I=0.005; (d) I=0.01. 

5 Conclusions 

  A generalized CCM method is presented in this paper. With the subdivision process, our proposed 



method can find the fine global attractor of dynamical systems. Based on the coarse covering of the 

global attractor, the probabilistic response can be efficiently obtained. Two examples, a 

three-dimensional nonlinear stochastic dynamical system and a coupled nonlinear stochastic 

dynamical system, are presented to show the effectiveness of our proposed method. The fine global 

attractor is presented for the three-dimensional and four-dimensional systems, which is usually 

difficult for the traditional GCM method. For the stochastic response analysis, the covering set of 

the global attractor with a coarse partition is enough. The Monte Carlo results verify the accuracy of 

solving the PDFs of the stochastic response. Because the covering set of the global attractor is a 

small percentage of the whole state space, the computational efficiency of the proposed method can 

be greatly improved compared with the traditional GCM method. For the coupled nonlinear system, 

the computation efficiency is improved by around 220 times. With such efficiency, the solution can 

be computed on a laptop. 
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