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Abstract

Semi-parametric graphical computation approach using loss-based estimation to estimate
exposure effects: applications on infant developmental outcomes.

by

Raul Eduardo Aguilar Schall

Doctor of Philosophy in Biostatistics

University of California, Berkeley

Associate Professor Alan Hubbard, Chair

In epidemiology, researchers try to answer questions about exposures and their effects
(associations) on a variety of outcomes of interest. Most times, the collected data comes from
observational studies, meaning that the researcher did not control the exposure to which each
subject under study was exposed, like it is done in clinical trials. Additionally, researches
collect information on other variables which could act as potential confounders of exposure.
Estimation of adjusted associations under these conditions, if not reliant on arbitrary and
thus biased parametric models, suffers from the curse of dimensionality. This dissertation
describes semi-parametric statistical approaches to address the correct estimation of the pa-
rameter of interest using targeted maximum likelihood estimation (TMLE) methodology,
which optimally adapts estimates of the data-generating distribution for estimation of the
association of interest. The process optimally relies on machine learning techniques and
is a modification of the likelihood-based algorithm where the parameter is defined by the
so-called G-computation formula.

Chapter 2 provides the estimation of direct effects, adjusting for the possible indirect
effects through intermediate variables. TMLE is used, with the help of model selection
using the SuperLearner algorithm,[74] to obtain estimators for the direct effect. General
methods on how to estimate the natural and controlled direct effects using TMLE control-
ling for the intermediate variables are implemented. These techniques are then used to
examine the direct effect of maternal depression on cognitive and language development in
350 Mexican-American children in the CHAMACOS birth cohort study. Children of moth-
ers with depressive symptoms scored significantly lower (−2.82 (p-value < 0.05) points in
the Preschool Language Scale) on the expressive communication compared to those of non-
depressed mothers after controlling for the intermediate effects of home environment and
breastfeeding duration. Depression did not show a significant direct effect on auditory com-
prehension, mental, or psychomotor scores.
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Chapter 3 present the use of TMLE and machine learning to estimate effects of organophos-
phate (OP) pesticides during infant stages of child growth. Many papers have been published
about the adverse effects of in utero pesticide exposure and the effects on fetal growth.[19, 18]
All the previous literature has used traditional analyses, while we implement a TMLE ap-
proach. The goal is to obtain estimates of the effects of exposure to OP pesticides not only
in utero but later, when the child is exposed directly and how this affects its physical growth
at different ages: 6, 12, 24 months, 3.5, and 5 years. Pesticides are widely used in the Sali-
nas Valley, CA where the population under study resides. We identify several statistically
significant negative effects of the exposure to OP pesticides on child’s growth.

Chapter 4 presents the longitudinal analysis of the intervention effect through the use of
machine learning techniques and G-computation, as well as TMLE. There are no available
studies about the longitudinal effects of organophosphate (OP) pesticides on child growth
measured by child weight. This is a first attempt to estimate the effects of continuous expo-
sure to OP pesticides in children living in the agricultural region of the Salinas Valley, CA.
Without a control group, we estimated the effects of an intervention where exposure was
controlled and fixed to the lowest level possible, and compared the estimated child weights
from this scenario with the actual weights at 3.5 years of age. We used an ad hoc, but
still double robust, targeting step on the outcome distribution estimate in conjunction with
simulation based on the G-computation formula. Our results show a negative effect of OP
pesticide exposure on the mean child weight at 3.5 years, however none of them reached
significance.

Chapter 5 concludes with a summary of the preceding chapters and a discussion of future
research directions.
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Chapter 1

Introduction

In epidemiology, researchers try to answer questions about exposures and their effects
(associations) on a variety of outcomes of interest. Most times the collected data comes from
observational studies. Thus the researcher cannot control the exposure to which each subject
under study was exposed, which introduces confounding. It has been a concern, for several
years now, that many of the published research findings are false.[33] This problem could be
due to a number of different reason. Perhaps the most important of them being bias, where a
combination of design, data, analysis, and presentation factors produce findings where there
should be none. There is strong evidence that selective analysis bias reporting, is a common
problem even for randomized trials.[14] Another problem is that modern epidemiology is
increasingly trying to find smaller effect sizes, with mode complex and often messy data.[69]
The problem is that over the past 50 years, epidemiologists have succeeded in identifying
the most obvious determinants of non-infectious diseases. Smoking, the greatest culprit, can
increase the risk of developing lung cancer by as much as 3000%. Now there are only more
subtle associations to look for between environmental causes and disease or health effects,
and thus the challenge to tease out “causa” associations from a large list of potential culprits.

Causal effects are generally defined on the basis of counterfactual outcomes, i.e., outcomes
that would have been observed on a subject had the exposure, possibly contrary to fact, been
set at a particular level. However, in an actual study, we only observe a single counterfactual
outcome for each subject, Y = YA corresponding to the exposure that the subject actually
received, say for example, the outcome Y1 is not observed for subjects that were not exposed
(A = 0), where A is the exposure. Since the counterfactual outcome is missing for these
subjects, we cannot directly estimate E(Y1). From the observed data, E(Y ∣ A = 1) can
be estimated, that is the mean of the counterfactual outcome for exposed subjects (a = 1)
among those subjects who were actually observed at that exposure level (A = 1). When the
group under study is truly a random sample of the population, E(Y ∣ A = 1) is equal to
E(Y1) since the group of subjects in the observed sample with A = 1 is indeed representative
of the entire study population.
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Now, suppose we are interested in the marginal effect of A on Y and define the parameter
of interest as  = E(Y1) − E(Y0). Under the assumption that we have a random sample
from the population under study, the natural estimate of the parameter of interest if given
by,

 ̂ = �̂1 − �̂0

where �̂1 = 1
n1

∑n
i=1 I(Ai = 1)Yi and �̂0 = 1

n0

∑n
i=1 I(Ai = 0)Yi, where n1 is the number

of exposed subjects, n0 is the number of unexposed subjects, and n = n1 + n0. Consider
the conditional expectation of the outcome given treatment and covariates W , denoted by
Q(A,W ) = E(Y ∣ A,W ). This function can be estimated with a linear regression model

such as Q̂(A,W ) = �̂0+�̂1A+�̂2W In this setting, �̂1 coincides with the unadjusted estimate

 ̂. However, when Q(A,W ) is estimated as

Q̂(A,W ) = �̂0 + �̂1A+ �̂2W + �̂3AW,

then �̂1 no longer coincides with  ̂1. In this case, to obtain the marginal effect, one must
integrate out or average over the covariate(s) W . The G-computation estimator, introduced
by Robins,[61, 62] is a maximum likelihood plug-in estimator that does provide an adjusted
marginal effect,

 ̂Gcomp =
1

n

n∑
i=1

[
Q̂(1,Wi)− Q̂(0,Wi)

]
When Q̂(A,W ) is estimated with a linear model, and it does not contain any interaction

terms, then  ̂Gcomp = �̂1. The G-computation estimator is not limited to a linear model
for Q(A,W ) when estimating the exposure effect, for example, when the outcome is binary,
one could use a logistic regression model to estimate Q(A,W ) and use the G-computation
formula to obtain the estimated risk difference.[43] The goal here is to not depend on any
restrictions of the model for Q, and thus provide an adjusted marginal association that re-
spects what we typically truly know about the data-generating distribution: almost nothing.

This dissertation proposes using targeted maximum likelihood estimation (TMLE), orig-
inally introduced in van der Laan and Rubin (2006).[76] This estimation procedure is a
new approach to statistical learning that can be applied to many estimation problems. In
short, TMLE is an estimation procedure that carries out a bias reduction specifically tar-
geted for the parameter of interest. This is in contrast to traditional maximum likelihood
G-computation estimation which aims for a bias variance trade-off for the whole density of
the observed data, rather than a specific parameter of it. TMLE is a type of likelihood based
estimator which provides an estimate that has the so-called efficient influence curve. Due
to this latter fact, it thereby inherits the properties of the solution of the efficient influence
curve estimating equation, including asymptotic linearity and local efficiency.[75] The ad-
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vantages of this methodology over traditional methodologies are discussed for each of the
applications in each chapter.

Chapter 2 of this dissertation present the framework for the proposed techniques in the
context of direct and direct effects and uses it to explore the effect of maternal depression,
measure using the Center for Epidemiological Studies Depression Scale (CES-D) [59] on in-
fant neurodevelopment, evaluated using the Bayley Scales of Infant Development, Second
Edition (BSID) [6] and the Pre-School Language Scale, Third Edition (PLS).[78]

Chapters 3 and 4 explore the effects of exposure to organophosphate (OP) pesticides on
infant growth. The main difference between the two chapters is the approach to the search
of potential effects. In Chapter 3 we perform an extensive series of cross-sectional analyses
where exposure is measured in the mother and in the child, and the outcome is evaluated
through four measures of infant growth - weight, length, body mass index (BMI), and waist
circumference at five different ages - 6, 12, and 24 months, 3.5 and 5 years. In Chapter 4,
the analysis is longitudinal and the outcome is reduced to the child weight at age 3.5 years
considering a series of three OP pesticide exposures in the child.

In summary, this dissertation provides a new approach to exposure analysis through
the application of targeted maximum likelihood estimation with extensive use of machine
learning techniques. Each of the chapters provides concrete examples of the potential of the
proposed methods to reduce bias in the search of potential effects from exposures of concern
for society. In Chapter 5, the dissertation concludes with a summary of the finding from
each of the applied analyses of the preceding chapters and a possible directions for future
research.
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Chapter 2

A general graphical computation
approach using loss-based estimation
to estimate direct effects: an
application to maternal depression on
infant neurodevelopment

2.1 Introduction

Many times the exposure of interest not only affects the outcome directly, but also
through intermediate pathways. In this paper, we combine machine learning tools within
a G-computation estimation framework to provide an easy-to-implement method to obtain
direct effect estimations.

In particular, we will analyze the effect of postpartum maternal depression on infant
neurodevelopment at 12 months postpartum. In our analysis, we measure two potential
intermediate pathways through which maternal depression could affect infant neurodevelop-
ment: 1) the Home Observation for the Measurement of the Environment (HOME) [12] and
2) breastfeeding duration. There is evidence that maternal depression negatively affects the
HOME-scale reducing its score and also shortens the duration of breastfeeding. Additionally,
there is evidence that a lower score in the HOME-scale as well as a shorter breastfeeding
period is negatively associated with infant neurodevelopment. [2, 70, 56]

The paper is presented in the following way: first we present the background of the
estimation of direct effects and review the existing estimators of direct and causal effects,
their necessary conditions and assumptions. Then, we briefly describe the use of machine



CHAPTER 2. 5

learning as a semi parametric approach for model selection. In this context, we review the
Super Learner procedure which combines models from different candidates (machine learn-
ing algorithms). In Section 2.3 we present the data structure and two detailed algorithms
to perform the calculations for the estimation of direct effects. Finally, in Section 2.4 we
conduct a complete data analysis of the effects of maternal depression on infant neurodevel-
opment. We present the results of these analyses and then, in the last section, we discuss
the advantages and limitations of the proposed methods.

2.2 Background

2.2.1 Counterfactual framework

The counterfactual framework was first introduced by Neyman [49] and further devel-
oped by Rubin [65] and Robins [61, 62]. Suppose we observer n independent and identically
distributed observations of the random vector O = (Y,A,W ) ∼ p0, where Y is the out-
come of interest, A is the exposure of interest, W is a vector of baseline covariates, and
p0 denotes the density of O. Direct effects are based on a hypothetical full data structure
X = ((Yaz : a�A),W ) containing the entire collection of counterfactual or potential out-
comes Ya for all possible treatments A. The observed data structure O only contains a single
counterfactual outcome Y = YA corresponding to the actual exposure of the subject. The
observed data O = (Y ≡ YA, A,W ) is thus a missing data structure. The randomization
assumption or coarsening at random assumption states that A is conditionally independent
of the full data X given W ; P (A ∣ X) = P (A ∣ W ).

Another related framework that is particularly helpful when estimating effects, direct
and indirect, as well as causal structures, is the graphical representation of the problem
in a directed acyclic graph (DAG). [50] Figure 2.1 represents a simple case in which the
exposure A has direct and indirect effects on the outcome Y . The direct effect which is
usually the question of research is represented by the solid arrow going out from A into Y .
In the same DAG we see that there is another way going from A through Z to Y ; the in-
direct effect. It shown by the pair of dashed arrows going out of A into Z and out of Z into Y .

2.2.2 Direct effect

The standard approach in estimating effects of exposure on outcome is to run a multivari-
ate regression of the outcome on the exposure and a group of believed relevant covariates. In
the presence of intermediate variables, the multivariate regression is only adequate to esti-
mate the direct effect if strong assumptions are made. Regardless, several minimal assump-
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Figure 2.1: Simple directed acyclic graph (DAG) representing the direct (solid arrow) and
indirect effects (dashed arrows) of exposure A on outcome Y . The indirect effect goes through
the intermediate variable Z.

tions need to be made additionally to the main and standard assumption of no unmeasured
confounders. It means that all covariates that affect the exposure and the outcome have been
recorded and are in the model. To obtain a consistent estimator of the direct effect we also
need to assume that there are no unmeasured confounders between the intermediate variable
and the outcome. In Figure 2.2 these two assumptions are represented by the absence of
unmeasured confounding between exposure and outcome, U1, and between the intermediate
variable and the outcome, U2.
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Figure 2.2: Causal diagram for main effect A on outcome Y with direct effect and indi-
rect effect through the intermediate variable Z. No unmeasured confounders between main
exposure nor intermediate variable and outcome, U1 and U2, respectively.

Petersen and van der Laan [53] present in detail the differences and assumptions required
to estimate the different direct effects. They also summarize the work of Robins and Green-
land [63] and Pearl [51]. In addition to the basic assumptions already stated, the different
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authors make additional assumptions that are presented in the order they were published.

First, Robins and Greenland [63] show identifiability of direct effects, this is that one can
measure it, assuming no interaction between the exposure and the intermediate variable at
the individual level. Second, Pearl [51] proposes an alternative identifying assumption which
states that within subgroups defined by the baseline covariates, the individual’s outcome
under a fixed level of exposure and intermediate variable is independent of the intermediate
counterfactual’s (or no exposure) level. This assumption can be formulated as:

Yaz ⊥ Z0 ∣ W (2.1)

Third, Petersen and van der Laan’s [53] show identifiability if no unmeasured confounding
between the exposure variable and the intermediate variable. All three assumptions of no
unmeasured confounders can be presented as the following conditions:

A ⊥ Yaz ∣ W (2.2)

Z ⊥ Yaz ∣ A,W (2.3)

A ⊥ Za ∣ W (2.4)

They further assume that within subgroups defined by covariates included in the mul-
tivariate regression model, the level of the intermediate variable in the absence of exposure
is not informative about the expected magnitude of the exposure’s effect at a fixed level of
the intermediate variable. They refer to this as the ”direct effect assumption”, which can be
formally stated as:

E[Yaz − Y0z ∣ Z0 = z,W ] = E[Yaz − Y0z ∣ W ] (2.5)

Two possible parameters measuring direct effect are:

∙ Natural Direct Effect: is equivalent to the counterfactual effect of exposure A = a
on outcome Y when the intermediate variable is set at a counterfactual value Z0 that
would have been observed had the individual been exposed to A = 0.

NDE = E[YaZ0 − Y0Z0 ] (2.6)

∙ Controlled Direct Effect: is equivalent to the counterfactual effect of exposure A = a
on outcome Y when the intermediate variable Z is held constant at a level specified
by the investigator Z = z - treating az as a joint treatment.

CDE = E[Yaz − Y0z] (2.7)
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Petersen and van der Laan use a different notation, calling the former Type 2 direct effect
and the latter Type 1 direct effect. We use the Natural/Controlled nomenclature because
we believe it is more intuitive to distinguish them.

In the fields of psychology and psychiatry there is a similar construction that tries to
explain the direct effect of an exposure or stimulus on a response variable. In those fields,
however, they refer to intermediate variables as mediators. The most cited paper is the one
by Baron.[3] They also talk about moderators, third variables that affect the relationship
between an exposure X and an outcome Y but in a different way. This literature often
contrasts the definition of mediators and moderators. Consider the variable Z which does
have an effect over the relationship between X and Y either as 1) a confounding variable
when it causes both the exposure and the outcome, 2) a covariate when information about it
improves the prediction of Y by X but does not substantially alter their original relationship,
and 3) a moderator or interaction effect, when it modifies the relation of X to Y such that
it depends of the value of Z.[41]

Estimators

There are two problems with traditional approaches when defining direct effect estima-
tors. The first one is that they assume arbitrary models that may or not be correct, and
additionally cannot be verified for their validity. The second problem is that they fail to ex-
plicitly define a parameter separate from the arbitrarily chosen regression model. We present
in developing order four different classes of estimators that can be used to calculate direct
effects . For simplicity we present estimators corresponding to the mean counterfactual out-
come  = E[Ya,z].

The first class is known as G-computation estimation and was developed by Robins.
[61, 62] The G-computation estimator of  , under the basic assumptions, can be identified
by the observed data as

 (a) = E [Ya,z] = EW

[
E[Y ∣ A = a, Z = z,W ]

]
(2.8)

A substitution estimator is used; based on the marginal distribution of W , P (W ), and the
conditional distribution of Y givenA, Z andW , P (Y ∣ A,Z,W ). The first distribution can be
estimated non-parametrically by the empirical distribution of W in the sample. Estimation
of P (Y ∣ A,Z,W ) will usually require specification of a parametric model or a large sieve.
An estimate Qn of the regression Q(A,Z,W ) = E[Y ∣ A,Z,W ] on an appropriate model
defines the desired conditional distribution. The corresponding substitution estimator for  
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is given then by

 G−comp
n (a) =

1

n

n∑
i=1

Qn(a, z,Wi) (2.9)

The second and third classes of estimators are closely related. They are known as inverse
probability of treatment weighting (IPTW ), and double robust IPTW (DR − IPTW ).
These are based on the general estimating function methodology described in van der Laan
and Robins. [75] We will describe the IPTW estimator first and then explain how to build
the DR version of it. Recalling the DAG framework, we are interested in the arrow that
goes directly from A into Y , but we want to exclude the effects (arrows) of the covariates,
confounders and/or intermediated variables. All these work against our effort of disentan-
gling the true effect of A on Y . Using the counterfactual framework, we would like to know
the outcome of each individual at all possible levels of exposure, {Ya,z : a�A, z�Z}. In the
case of a binary exposure this simplifies to two levels, {Ya : a�{0, 1}} . Given the lack of
a real counterfactual full data set we estimate the probability that each individual received
the exposure that he did. We perform a weighted analysis of the exposure on the outcome.
The weights are defined by the inverse of a new function g(.) which explains the observed
exposures through the observed covariates g(A,Z ∣ W ) ≡ P (A,Z ∣ W ). Most times this
weights are stabilized by using the empirical distribution of the exposure in the numerator,
P (A,Z). The conditional distribution of the exposure given the covariates, P (A,Z ∣ W ),
can vary greatly when W and (A,Z) are strongly associated, creating also extremely large
weights for a few subjects in the population under study. [64] We omit the details of the
estimating function and the solution of the corresponding estimating equation; these can be
reviewed in Bembom and van der Laan. [7] The IPTW estimator of  is

 IPTW
n (a) =

1

n

n∑
i=1

I(Ai = a, Zi = z)

gn(Ai, Zi ∣ Wi)
Yi (2.10)

Additionally to the basic assumption, the model for gn is assumed to be correctly spec-
ified. The IPTW estimator has to fulfill two additional assumptions in order to be an
unbiased estimator. First, the expectation of the estimating function has to be well defined,
E[DIPTW (O ∣ g,  )] < ∞. Second, there is no deterministic assignment of A = a for given
covariates; this is known as the “Experimental Treatment Assignment” (ETA) assumption.
In case of violating this last assumption, g(A ∣ W ) will not provide a consistent estimate
even if it is correctly specified. [47]

The double robust version of the IPTW estimator, DR-IPTW, is robust against models’
misspecifications. For the DR-IPTW estimator we need to specify two models, Q0(Y ∣
A,Z,W ) and g0(A,Z ∣ W ), but only one of them needs to be correctly specified to obtain a
consistent estimate of our parameter of interest when the ETA assumption holds. [47] This
means that in case of a violation of the ETA assumption, we can still obtain a consistent
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estimate of our parameter as long as Q0(Y ∣ A,Z,W ) is correctly specified. This robustness
comes with a high price of a more complex estimating equations and resulting estimator:

 DR
n (a) =

1

n

n∑
i=1

I(Ai = a, Zi = z)

gn(Ai, Zi ∣ Wi)
[Yi −Qn(Ai, Zi,Wi)] +Qn(a, z,Wi). (2.11)

The forth class of estimators is targeted Maximum Likelihood Estimation (TMLE), which
is a sort of marriage of the G-comp and DR estimators. It carries out a targeted bias reduc-
tion specifically for the parameter of interest and not for the whole density of the observed
data; hence its name. Consider a model ℳ where the true distribution of the data is p0.
Consider and initial estimator p̂ of p0. The parameter of interest is given by  =  (p0).
TMLE has two goals. First, it aims to find an optimal density p̂∗�ℳ that solves the effi-
cient influence curve for the estimating equation for the parameter of interest. This results
in a bias reduction compared with the maximum likelihood estimate of  (p̂). Second, the
algorithm also requires that p̂∗ achieves an increase in the log-likelihood relative to p̂. The
resulting substitution estimator  (p̂∗) is a familiar type of likelihood-based estimator and
due to the fact that it solves the efficient influence curve estimating equation it thereby
inherits its properties including asymptotic linearity, and local efficiency.[44] For complete
technical and theoretical details about this general estimating approach we refer readers to
the seminal paper by van der Laan and Rubin.[76]

For a basic and applied introduction to the TMLE procedure we refer the interested reader
to the “Gentle Introduction” by Gruber. [25] We now present the basic steps involved in
TMLE:

1. Estimate the conditional expectation of Y given A, Z and W ; denoted by Q0
n(A,Z,W ).

2. Estimate the conditional distribution of the exposure given covariates; denoted by
g0n(A,Z ∣ W )

3. Calculate a specific covariate for each individual based on the subject’s observed values
A, Z, W and the estimate g0n(A,Z ∣ W ). This new covariate, whose form depends on
the parameter of interest and the model of Y ∣ A,Z,W , is denoted by ℎ(A,Z,W ) and
sometimes referred to as a “clever” covariate.

4. Update the initial regression Q0
n(A,W ) by adding the clever covariate ℎ(A,W ) and

estimating the corresponding coefficient by simple maximum likelihood, holding the
remaining coefficient estimates fixed at their initial values. This can be done with an
offset equal to m0

n(A,Z,W ). The updated regression is denoted (Q1) = (Q0 + �ℎ),
where  is the link function.
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5. Evaluate the updated regression at the exposure levels of interest, A = a. Taking the
mean across the population you obtain a TMLE of the mean outcome at the specified
exposure level.

The parameter of interest is not restricted to the difference between exposed and unex-
posed. It could easily be defined as the relative difference (ratio) or even odds ratio. Hence,
next we only present the key component of the TMLE:

 TMLE
n (a) =

1

n

n∑
i=1

Q1
n(a, z,Wi). (2.12)

Like the DR-IPTW estimator, the TMLE is consistent if at least one of the two functions
we have to estimate, g and Q, is correctly specified. Additionally, the estimator is locally
efficient in the sense that it is efficient if both models are estimated consistently.

2.2.3 Machine learning

We need to estimate models that predict the outcome Y given the exposure A, the in-
termediate variable Z, and a set of covariates W , P (Y ∣ A,Z,W ), as well as models to
predict the exposure A on the set of covariates W , P (A ∣ W ). We mentioned that the
different estimation procedures rely on their models being correctly specified. Therefore, in
order to avoid a misspecified model as much as possible, we will not use parametric models
specified a priori. We will use a data-adaptive model selection approach, a machine learn-
ing approach, which has the property of potentially approaching a non-parametric model as
n→∞. There are many such procedures available, like the Deletion/Substitution/Addition
(D/S/A) algorithm, Least Angle Regression [16], Random Forest [11], Support Vector Ma-
chine, Generalized Additive Models (GAM), and Polychotomous Regression. Each one of
the procedures listed here returns an “optimal” model, not all of them identical, based on
their own optimality criteria.

For example, the D/S/A algorithm performs data-adaptive estimation through selection
of the estimators based on heavy use of cross-validation and the L2− loss function. The can-
didate estimators will always be polynomials which comply to user-specified constrains like
maximal number of terms in the polynomial, maximum power of polynomial terms and max-
imum order of interaction.[68] Another example is GAM, which replaces the linear form for
the covariates (

∑
�iXi) by a sum of smooth functions (

∑
si(Xi)), where the functions si(⋅)

are unspecified and are estimated using an iterative procedure called local scoring algorithm,
resulting in a nonparametric regression method.[29] A third example is Polychotomous Re-
gression, which fits a regression model using linear splines and their tensor products.[21, 35]
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Super Learner

Above we mentioned a list of model selctors which we’ll refer to as “candidate learners”.
We can use them to define the models we need for our estimations. Van der Laan et al.[74]
propose an algorithm to select the best possible model using a convex combination of the
resulting models from each of the candidate learners. The resulting model will be as good
or better than every single model from the candidate learners.
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2.3 Methods

Consider the observed data given by n i.i.d. copies of O = (Y,A, Z,W ), where Y is the
outcome of interest, A is a binary exposure of interest, Z is the set of intermediate variables
on the causal pathway from A to Y , and W denotes the collection of measured confounders.

We intend to estimate the natural direct effect of A on Y , E(YaZ0 − Y0Z0), as well as
the controlled direct effect of A on Y , E(Yaz − Y0z). Remember from the previous definition
of these two types of direct effect that the first one allows for the intermediate variable to
fluctuate at the counterfactual level of no exposure, Z0 = Z(A = 0). The intermediate vari-
able’s level will assume the value it would have shown had there been no exposure, A = 0.
On the other hand, the controlled direct effect will set the intermediate variable at a fix
level, Z = z, and then perform the calculations of the effect of the exposure on the out-
come at the preset level for the intermediate variable. In the controlled case we consider the
intermediate variable to be binary for simplicity of calculations. If there is more than one
intermediate variable and we need to consider all the possible level-combinations at which
the n intermediate variables can be fixed, the total number of possibilities is 2n. In the data
analysis section we estimate both direct effects, natural and controlled, using the continuous
and categorical (binary) intermediate variables, respectively.

The basic assumption we make is the one of no unmeasured confounders between any of
the relations of A, Z, and Y (Figure 2.4) as defined by Petersen and van der Laan.[53] For
the natural direct effect we also assume that the model we propose for P (Y ∣ A,Z,W ) is
correctly specified and will return consistent estimates; hence the need of machine learning
procedures to define the model.

Finally, we will have the consistency assumption for both direct effect estimators, which
states that the observed data is a missing data case from the counterfactual’s full data.

2.3.1 Algorithms

We describe the guidelines for the implementation of two algorithms. Later, in the ap-
plied example, we will refer again to these algorithms in full detail, outlining the calculations
for the particular data.

Natural Direct Effect
Consider the observed data given by n i.i.d copies of O = (Y,A, Z,W ) where Y is a binary
outcome, A is a binary exposure, Z is an intermediate variable with continuous values and
W is the set of all measured confounders, discrete and continuous. To calculate the natural
direct effect we will have to impute the counterfactual observations for Z0 as if the interme-
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diate variable was not exposed to A. Next we present the steps to follow in order to obtain
the G-computation estimate of the desired direct effect.

1. Use Super Learner with J candidate learners to estimate the optimal model for the
intermediate variable given the exposure and the covariates: QZ = Q(Z ∣ A,W ). Q∗Z
represent the optimal model returned by the Super Learner procedure.

2. Predict the counterfactual level for the intermediate variable Z at A = 0 using the
previously defined model, Ẑ0 = Q∗Z(A = 0,W ).

3. Use Super Learner to define the optimal model for the outcome Y given the observed
exposure A, intermediate variable Z and covariates W : QY = Q(Y ∣ A,Z,W ). Q∗Y
represent the optimal model returned by the Super Learner procedure.

4. With the model defined in the previous step calculate the counterfactual values for the
whole group at the exposed (A = 1) and unexposed (A = 0) levels, holding the values
for the intermediate variable at the non-exposed values calculated in step 2.
Ŷ1 = Q∗Y (A = 1, Ẑ0,W ) and Ŷ0 = Q∗Y (A = 0, Ẑ0,W ).

5. Obtain the G-estimator of the natural direct effect as the mean over the population’s
difference between the two exposure levels:

NDE(a) = E(Ŷ1Z0 − Ŷ0Z0) =
1

n

n∑
i=1

(Ŷ1Z0 − Ŷ0Z0)

Controlled Direct Effect
Consider again the observed data given by n i.i.d copies of O = (Y,A, Z,W ). In contrast to
the previous definition of Z, this time it will be a binary variable. To avoid any confusion we
denote this new intermediate variable as Z ′. To estimate the parameter of interest this time
we will use TMLE. We define a new variable A∗ = I(A = a, Z ′ = z′) for the target step.

1. The new variable A∗ has different levels at which we want to estimate the controlled
direct effect. There will be a total of NA×NZ = 2×2 = 4 level combinations at which
we will estimate initial models for the TMLE procedure.

2. Use Super Learner to obtain an initial estimate of the model for the outcome Y on the
exposure A∗ and the covariates W , Q0

Y = Q(Y ∣ A∗,W ).

3. Calculate the nuisance parameters g(A∗ ∣ W ) for the targeted steps. Each one of these
nuisance parameters will be also estimated using Super Learner.
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4. Calculation of the new covariate to adjust the initial estimate Q0
Y will be defined as

ℎ(A,W ) =

(
I(A∗ = a∗)

ĝ(a∗ ∣ W )

)
.

5. Use ℎ(A∗,W ) to update the initial estimate Q0
Y . Perform a simple regression, using

the initial estimates m0(A,W ) as an offset, to obtain �;

Q1
Y (A∗,W ) = Q0

Y (A∗,W ) + �ℎ(A∗,W ).

6. Calculate the controlled direct effect of the exposure on the outcome as

CDE(a∗) = E(Q̂1
Y (a∗1,W )− Q̂1

Y (a∗0,W )) =
1

n

n∑
i=1

(
Q̂1

Y (a∗1,Wi)− Q̂1
Y (a∗0,Wi)

)
.

where we denote a∗1 = (1, z′) and a∗0 = (0, z′) as counterfactual levels for exposure
holding the levels of Z ′ = z′ fixed.

2.4 Data Analysis

The question of interest is the impact of maternal depression on cognitive and language
development in 350 Mexican-American children in the Center for the Health Assessment of
the Mothers and Children of Salinas (CHAMACOS) birth cohort study. This project is a
longitudinal birth cohort study mainly investigating the health consequences of pesticide
exposure to the mothers and children who live in the predominantly Mexican, migrant, farm
worker population in the Salinas Valley of California. Participants were enrolled between
October 1999 and October 2000. CHAMACOS’ staff recruited 601 pregnant women for par-
ticipation. Women were eligible to participate if they received prenatal care at the Natividad
Medical Center or at one of five affiliated clinics of the Clinica de Salud del Valle de Salinas
and planned to deliver at the Natividad Medical Center, were at least 18 years old, spoke
Spanish and/or English, were less than 20 weeks pregnant, and were entitled to health ben-
efits under Medi-Cal. All the infants in the CHAMACOS study were born between January
2000 and June 2001. The study was approved by the Institutional Review Board of the
University of California, Berkeley. Of the original 601 mothers enrolled, 42 were lost due
to relocation, 20 miscarried, three had stillbirths, and two had neonates who died. The
remaining 534 women delivered 539 infants. For this analysis we excluded 27 children of
non-Mexican origin to make the population more homogeneous, 10 twins, seven infants with
seizures, two infants with incomplete consents, and 30 preterm infants. Additionally, 113
dyads did not complete the assessment for both maternal depression and child neurodevel-
opment, leaving a total of 350 mothers and their infants.
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Figure 2.4 shows the corresponding DAG to the problem in hand, were the outcome Y
is any of the four outcomes of interest (Mental, Motor, Auditory, Expression). The expo-
sure of interest A, for which we want to estimate the direct effect on each of the outcomes,
is maternal depression, as classified during the 12-month postpartum interview and coded
into a binary variable. The intermediate variables Z1 and Z2 correspond to HOME-scale
score and breastfeeding duration in months, respectively. The set of measured confounders
is given by maternal age, maternal education, years in the U.S., language spoken at home,
marital status, presence of father at home, child’s gender, number of other children in home,
PPVT-III score, poverty level, infant cared for outside of home, social support score, exact
age of child in months, and psychometrician performing evaluations.

Women were interviewed twice during pregnancy at 13 and 26 weeks gestation. Later
they were interviewed again at delivery, at six and 12 months postpartum. These interviews
were designed to collect information on demographic characteristics, behaviors, medical, oc-
cupational, and family history.

Breastfeeding duration was derived from maternal report at the interviews. Mothers were
asked if they continued breastfeeding their children. If the answer was negative, the duration
of lactation was asked. Only 17 mothers did not breastfeed their children at all. The me-
dian duration was 6 months, but this was no symmetrical distribution; 30% of women were
still breastfeeding at 12 months. At six months postpartum, the mothers’ scholastic verbal
abilities were assessed using the Peabody Vocabulary Test - Third Edition (PPVT-III),[15]
an individually-administered test available in English and Spanish. Age-standardized scores
have a mean of 100 and a standard deviation of 15.

At the 12-month postnatal visit, the study’s staff evaluated the home environment using
the Infant/Toddler Home Observation for the Measurement of the Environment (HOME).[12]
This is an extensively used instrument that evaluates the degree to which the home envi-
ronment provides emotional support and offers experiences objects that foster intellectual
growth in children up to age three. The HOME contains 45 items, which cluster into six
subscales: parental responsivity, acceptance of the child, organization of the environment,
learning materials, parental involvement, an variety in experience. Scores were based on
mothers’ responses during the interview and on the psychometricians’ observations of the
mothers’ interactions with their children. Higher HOME scores indicate a better home en-
vironment.

At approximately 12 months postpartum, the mothers were also screened for depres-
sion using the Center for Epidemiological Studies Depression Scale (CES-D),[59] a 20-item
self-report scale which assesses five dimensions of depressed mood: feelings of guilt and
worthlessness; feelings of helplessness and hopelessness; psychomotor retardation; loss of ap-



CHAPTER 2. 18

petite; and sleep disturbance. Participants responses were rated on a four-point Likert-type
scale (0=rarely or none of the time to 3=most or all of the time) and a total score ranged
from 0-60. The validity and reliability of the CES-D have been well established in general
and clinical populations.[26] Women were classified as “depressed” and “non-depressed” if
they had scores ≥ 16 and < 16, respectively.

The key outcome variables were mental, motor, auditory, and expression development.
At age 12 months, psychometricians evaluated the infants in English and/or Spanish using
the Bayley Scales of Infant Development, Second Edition (BSID) [6] and the Pre-School
Language Scale, Third Edition (PLS).[78] The BSID is an individually-administered instru-
ment used to evaluate the development of children between the ages of three and 42 months.
Stimulus items designed to tap their memory, problem-solving, language, fine motor, gross
motor, and personal-social abilities are clustered together in three scales - the Mental Devel-
opment Index (MDI), the Psychomotor Development Index (PDI), and the Behavior Rating
Scale. Within each of these scales, raw scores are converted into scale (index) scores with a
mean of 100 and a standard deviation of 15. Reliability coefficients indicate that all three
scales of the BSID-II are internally consistent and stable.

The PLS, available in English and Spanish, evaluates emerging language behaviors in
children between the ages of two weeks and six years. The Auditory Comprehension (AC)
and Expressive Communication (EC) subtests measure receptive and expressive language
abilities respectively, by assessing several recognized precursors of later verbal development:
attention, social communication, and vocalization skills. The PLS has a mean of 100 and a
standard deviation of 15.

In order to compare the proposed methods to traditional ones, we repeat the analyses
using standard parametric regression, where no model selection is performed, and move to-
wards more flexible, data adaptive methods, like GAM and Polymars and end up with the
implementation of Super Learner using all three previously listed methods as the candidate
learners.

The inference for all models was obtained through boot strapping the models 1,000 times.
This way we obtain a non parametric version of the confidence intervals for the parameters
of interest. We performed estimations for each one of the four outcomes of interest and for
each of the considered candidate learners; a total of sixteen runs for the natural and 16 runs
for the controlled direct effects. We will describe our calculations in detail only once because
they were analogous for each one of the cases. All the analyses were performed in R v 2.9.1
[58] using the SuperLearner-,[55] gam-, [30] and polspline-packages. [36]

In section 2.3.1 we described the general algorithms for estimating the natural and the
controlled direct effects. Those algorithms should be used as a general guideline.
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Natural Direct Effect

1. We used Super Learner with GLM, GAM and Polymars as the candidate learners and
obtained an estimate of the optimal models for the HOME-scale (Z1) and breastfeeding

duration (Z2) given maternal depression (A) and all the covariates (W ). Ẑ1 = Q(Z1 ∣
A,W ) and Ẑ2 = Q(Z2 ∣ A,W ).

2. With the predicted models for HOME-scale and breastfeeding, we calculated their
counterfactual levels had all the mothers been not depressed (A = 0), but holding all

the covariates at their recorded values, Ẑ1,0 = Ẑ1(A = 0,W ) and Ẑ2,0 = Ẑ1(A = 0,W ).

3. We calculated the optimal models for the four outcome variables of interest (Yi) cor-
responding to the infant neurodevelopment evaluated as Mental, Motor, Auditory,
and Expression. We used Super Learner with the same candidate learners as be-
fore (GLM, GAM and Polymars). For estimating these models we used the actual
recorded values. The main exposure (A) was maternal depression; the intermediate
variables were HOME-scale (Z1), and breastfeeding duration (Z2); and all the covari-
ates (W ). We obtained four different models, one for each of the outcomes of interest.
Q∗Yi

= Q(Yi ∣ A,Z1, Z2,W ).

4. With the defined models we calculated the counterfactual outcomes under maternal
depression and absence of it, holding the values for HOME-scale and breastfeeding
duration at the “no-depression” level in both calculations. For example, in the Mental
development case we calculated the Mental outcome had the mother been depressed but
had this depression not affected neither the HOME-scale nor the duration of breastfeed-
ing and then we perform the calculation again as if the mother had been not depressed,
for which case we also kept HOME-scale and breastfeeding at the non-depressed level.

Ŷi,1 = Q∗Yi
(1, Ẑ1,0, Ẑ2,0,W )

Ŷi,0 = Q∗Yi
(0, Ẑ1,0, Ẑ2,0,W )

5. With the values for the outcomes of interest at both the two exposure levels, depressed
and non-depressed, we calculated the average over the difference for each individual
between the two levels. This is our estimate of the natural direct effect of maternal
depression on infant neurodevelopment.

N̂DEi = E
(
Q̂Yi

(1, Ẑ1,0, Ẑ2,0,W )− Q̂Yi
(0, Ẑ1,0, Ẑ2,0,W )

)
where i � {mental, motor, auditory, expression}
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Controlled Direct Effect
We defined categorical values for HOME-scale and breastfeeding duration. In the case of
the HOME-scale, we performed a median split for low and high HOME-scale values. In the
case of the breastfeeding duration, the median split criteria coincides with the recommended
breastfeeding duration of 6 months by the World Health Organization.[37, 24] Our new
categorical variables for HOME-scale and breastfeeding duration were defined as shown in
Table 2.1:

Categorical variable 0=No 1=Yes
HOME-scale ≤ 36 points > 36 points
Breastfeeding ≤ 6 months > 6 months

Table 2.1: Cut point value to transform HOME-scale and breastfeeding variables from con-
tinuous to binary

1. For the controlled direct effect analyses we redefined the exposure variable as the triad
built by the recorded depression level (depressed vs non-depressed), the binary value
for the recorded HOME-scale, and the binary value for the recorded breastfeeding du-
ration. The combination of these three variables gave us a total of eight possible values
for the new exposure variable A∗. For the targeting step, instead of creating a variable
with eight levels we decided to use an indicator variable to denote if an individual
belonged to the level being targeted.

A∗ Maternal
depression

HOME-scale breastfeeding

a∗1 0 0 0
a∗2 0 0 1
a∗3 0 1 0
a∗4 0 1 1
a∗5 1 0 0
a∗6 1 0 1
a∗7 1 1 0
a∗8 1 1 1

Table 2.2: New exposure variable A∗ levels corresponding to the eight possible combinations
of maternal depression-, HOME-scale-, and breastfeeding duration-status. Each one of this
levels is targeted individually.
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2. We used Super Learner with GLM, GAM and Polymars as the candidate learners to
find the optimal model for each one of the four outcomes of interest given the recorded
exposure and covariates. Q0

Yi
= Q0(Yi, A, Z1, Z2,W ).

3. We estimated the nuisance parameters for each one of the level combinations of mater-
nal depression, HOME-scale, and breastfeeding duration. In Table 2.2 we see the eight
possible level combinations. We calculated the model for the particular level given the
set of covariates. In our example we used only one candidate learner, step-forward.
These calculations produced eight different models for g, one for each value of a∗j where
j�{1, 2, . . . , 8}. gj = Q(A∗ ∣ W ).

4. The target step has to be calculated assuming that A∗ = (A,Z1, Z2) is actually at
the a∗j = (a, z1, z2) level; once for each of the eight levels. To calculate the clever
covariate ℎ(A∗,W ) that is used to target the initial estimate of the model, we divided
the indicator variable of the new exposure at the particular level a∗j by the estimate of
the corresponding function ĝj(a∗ ∣ W ) at the same exposure level, given the observed
covariates. Notice that given the fact that we are targeting a particular level of exposure
for A∗ = a∗, we assume that all the observations are at this level, turning all the values
of the indicator variable in the numerator equal to one.

ℎj(A
∗,W ) =

1

ĝj(a∗j ∣ W )
.

5. Once we had the eight different estimates of ℎ̂j, we ran individual simple regressions

with GLM for each of the four outcomes on ℎ̂j and providing the initial estimates of the
Super Learner model, m0

Yi
as an offset. This returned the estimate of the parameter

�j.

6. The initial estimates were then updated by adding �̂ times ℎ̂ to them. This provided
the building blocks for the targeted controlled direct effect. Notice that these elements
have been already target.

Q̂1
j,Yi

= Q̂0
j,Yi

+ �̂j ∗ ℎ̂j(A∗,W )

7. The controlled direct effect is then calculated as the mean difference between the pairs
of a∗j − a∗k where these two only differ in their depression level; for example a∗5 − a∗1 in
Table 2.2.

ĈDEil = E
(
Q̂1

j,Yi
(a∗j ,W )− Q̂1

k,Yi
(a∗k,W )

)
where i corresponds to the four measures of infant neurodevelopment (mental, motor,
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auditory, expression) and l = {(j : k) : j and k differ at the depression status but are
identical fro HOME-scale and breastfeeding duration}.
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Table 2.3: Demographic characteristics of CHAMACOS’ study population, Salinas Valley,
CA, 2000-2001 (n=350)

Depression Score
Overal CES-D< 16 CES-D≥ 16

Independent variables (n=350) (n=176) (n=174) p-value

Maternal age, years (mean± sd) 26.5 ± 5.3 26.6 ± 5.2 26.5 ± 5.3 0.90

Maternal education, n(%)
≤6th grade 165 (47.1) 80(45.2) 85(49.1)

7-12th grade 128 (36.6) 58(32.8) 70(40.5)

Completed high school 57 (16.3) 39(22.0) 18(10.4) 0.01

Years in U.S., n(%)
≤ 1 81(23.1) 34(19.2) 47(27.2)

2− 5 93(26.6) 49(27.7) 44(25.4)

6− 10 87(24.9) 43(24.3) 44(25.4)

11+ 50(14.3) 29(16.4) 21(12.1)

U.S.-Born 39(11.1) 22(12.4) 17(9.8) 0.37

Language spoken at home, n(%)
Mostly Spanish 324(92.6) 162(91.5) 162(93.6)

Spanish & English equally 15(4.3) 7(4.0) 8 (4.6)

Mostly English 8(2.3) 7(4.0) 1(0.6)

Other 3(0.9) 1(0.6) 2(1.2) 0.18

Married or living as married, n(%)

Yes 291(83.1) 146(82.5) 145 (83.8)

No 59(16.9) 31(17.5) 28(16.2) 0.74

Father lives with mother & child, n(%)

All of the time 290(82.9) 152(85.9) 138(79.8)

Sometime or not at all 60(17.1) 25(14.1) 35(20.2) 0.13

Child sex, n(%)

Female 181(51.7) 99(55.9) 82(47.4)

Male 169(48.3) 78(44.1) 91(52.6) 0.11
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Depression Score
Overal CES-D< 16 CES-D≥ 16

Independent variables (n=350) (n=176) (n=174) p-value

Number of other children in home,
(mean ± sd) 2 ± 1.6 1.9 ± 1.4 2.1 ± 1.7 0.41

Breastfeeding duration,
months (mean ± sd) 6.4 ± 4.6 6.2 ± 4.5 6.6 ± 4.6 0.45

PPVT-III score, points
(mean ± sd)

86.0 ± 20.8 88.8 ± 20.4 83.1 ± 20.9 0.01

Within 100% of federal poverty
limits, n(%)

Yes 232(66.3) 107(60.5) 125(72.3)

No 118(33.7) 70(39.6) 48(278) 0.02

Infant cared for outside of home
> 15 hours/week, n(%)

Yes 107(30.6) 52(29.4) 55(31.8)

No 243(69.4) 125(70.6) 118(68.2) 0.62

HOME score, points (mean ± sd) 35.7 ± 3.0 36.1 ± 2.8 35.3 ± 3.1 0.01

Social Support score, points
(mean ± sd) 3.8 ± 1.0 4.2 ± .9 3.4 ± 1.0 0.00



CHAPTER 2. 26

2.5 Results

Table 2.3 on shows the demographic characteristics of the population; overall and by
depression status. Overall mean standardized scores (± SD) on the neurodevelopment as-
sessment were 100.8 (±8.8) for Bayley MDI (Mental), 106.6 (±12.5) on the Bayley PDI
(Psychomotor), 100.2 (±12.7) on the PLS-AC (Auditory) subtest and 95.5 (±13.7) on the
PLS-EC (Expression) subtest. Table 2.4 shows the crude association found between ma-
ternal depression and the four measures of interest. In the simplest association analysis
only the auditory and expression measures of infant neurodevelopment show significant dif-
ferences between the depressed and non-depressed mothers. Infants of depressed mothers
averaged 2.9 (95%CI: 0.2, 5.5) and 4.7 (95% CI: 1.8, 7.5) points lower than children of the
non-depressed group in the PLS-AC and PLS-EC subtests, respectively. However, the men-
tal and psychomotor measures of neurodevelopment do not differ significantly between the
two groups of mothers, depressed and non-depressed.

Table 2.4: Differences in scores on the neurodevelopment tests of 12 month-old children by
maternal postnatal depression status on the CES-D (¡16 vs. ≥16 points). CHAMACOS
Study, Salinas Valley California 2000-2001.

Overall Maternal Depression (CES-D score)
< 16 points ≥ 16 points

n 350 177 173
Neurodevelopment mean ± sd mean ± sd mean ± sd p-value

MDI 100.8 ± 8.8 101.0 ± 9.2 100.6 ± 8.3 0.66
PDI 106.6 ±12.5 105.7 ±13.5 107.4 ±11.5 0.19

PLS-AC 100.2 ±12.7 101.6 ±12.4 98.7 ±12.9 0.04
PLS-EC 95.5 ±13.7 97.82 ±13.7 93.17 ±13.3 0.001

Table 2.5 presents all the natural direct effect estimates with their respective confidence
intervals for the four candidates used and the four outcomes. The analyses’ methods are
presented from the most rigid to the most data adaptive; from Generalized Linear models
to Super Learner, respectively. For the first of our parameters of interest, the natural direct
effect, we observe that only language expression, as measured by the PLS-EC subtest, shows
a significant direct effect from maternal depression. It is a negative direct effect that results
in a drop of -2.82 (95%CI: (-5.61, -0.04), p-value=0.05) points compared to children of non-
depressed mothers. This reduction in the PLS-EC subtest score corresponds approximately
to a 20% of the observed standard deviation of the test.
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The apparent association between PLS-AC and maternal depression in Table 2.4 disap-
pears in our estimates of the natural direct effect. We only observe a possible direct effect of
maternal depression on the auditory development when using GLM as the single candidate
learner and this is with a non-significant p-value of 0.08, somewhat larger than the standard
0.05. Even though no other outcome besides PLS-EC turned out to be significantly affected
by maternal depression, we observe the hypothesized results of a negative effect of maternal
depression on infant neurodevelopment as we move away from GLM to Super Leaner. This
is, that for GLM we observe positive effects of maternal depression on mental and motor
infant neurodevelopment which turn negative in the estimates from Super Learner. The
negative effects are hypothesized and previously reported in the literature. [22, 45, 54] The
estimates remained non significant regardless of the candidate learner employed to estimate
them.

Table 2.6: Initial estimates, Q0, of the CDE of maternal depression on infant neurode-
velopment measured in four different outcomes. Estimates shown are before targeting the
parameter of interest and adjusting by the clever covariate of the TMLE procedure.

Mental Motor Auditory Expression
Method (MDI) (PDI) (PLS-AC) (PLS-EC)

GLM 0.80 2.21 −2.65 −4.56

GAM 0.43 1.42 −1.69 −3.75

Polymars −0.82 −0.13 −0.84 −2.87

SL −0.79 −0.05 −0.94 −2.90

The controlled direct effect estimates  CDE in Table 2.7 behave very similarly to the
previous results for the NDE. The direct effect on PLS-EC is the only one that is con-
sistently significant regardless of the candidate learner used to estimate it. We observe a
negative effect of maternal depression over the child’s expression development regardless of
the HOME-scale and breastfeeding duration level combination. Only three estimates did
not achieve statistical significance. The first one is using GLM at the low level for HOME-
scale and the short breastfeeding duration. The second and third cases occur at the low
level of HOME-scale but long breastfeeding duration for Polymars and the Super Learner,
respectively. For the auditory language development, we mostly lack significance just like
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in the natural case. Only three level combinations of HOME-scale and breastfeeding dura-
tion turned significant estimates and only when GLM was used to calculate them. For the
mental and psychomotor outcomes we observe again a change in sign in the estimates. The
effect of maternal depression changes from positive to negative as we move forward from the
rigid methods to the data adaptive ones. These last behaviors are observed at most level
combinations of the intermediate variables. The ones that do not show this change is sign
show at least a reduction of the estimate towards the null of no effect. Finally, the changes
that we observe from a low to a high level in the HOME-scale or between a breastfeeding
duration of less than six months to a duration exceeding this threshold should be interpreted
with out most caution because of the lack of significance.

We observe that the effect of the target procedure moderately modifies the initial esti-
mates (Q0) of the controlled direct effects at the HOME-scale and breastfeeding duration
fixed levels; compare the targeted estimates in Table 2.7 to Table 2.6. This could imply that
our original estimates of the controlled direct effect of maternal depression on the neurode-
velopment outcomes were not markedly off target, or did not present particularly large bias.
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2.6 Discussion

The purpose of this article was to estimate the direct effect of maternal depression on
infant neurodevelopment. Although our findings support the hypothesis that maternal de-
pression affects the expression development of economically-impoverished children, we failed
to confirm findings that children of depressed mothers have lower overall cognitive, motor
and language development.[67, 54] This analysis has a number of limitations. One limitation
is that mothers were not assessed for maternal depression until 12 months postpartum; thus,
we do not know the timing or severity of their depression during the first year of the child’s
development. Previous studies have included older children and their cognitive assessment
may have included a larger number of language-based items than the used on Bayley to
assess 12-month olds. Sharp et al. (1995) reported that depressed mothers were less likely
to breastfeed and that they breastfeed their male infants less than their female infants. The
authors suggested that this may in part explain why maternal depression impacts boys more
than girls. However, in the CHAMACOS population, where nearly all women breastfed,
depressed mothers tended to breastfed longer than non-depressed mothers. Although de-
pressed women breastfed their male infants for a slightly shorter period of time than their
female infants (data not shown), there were no differences in the impact of depression on
male and in female children.

Another potential limitation of this analysis is that CES-D may not have been an ap-
propriate tool for assessing maternal depression in this Mexican-origin population. Based
on the recognized cut-points for depression using the CES-D, 13% of the women in this
research sample obtained scores that signaled major depression (> 30) and 37% were mildly
to moderately depressed (≥ 16 and ≤ 30). Although the CES-D is a widely used tool of
depression and is available in Spanish, some have suggested it may not be a valid measure
of depression in an immigrant population or that a higher score should be used for defining
depression [77]. Compared to infants of mothers who were not depressed, we found that
infants of mothers with depression had poorer expressive language abilities (PLS-EC), but
that they did not differ in general cognitive (Bayley MDI), motor(Bayley PDI) or auditory
language (PLS-AC) performance when estimating the natural direct effect. The targeted
controlled direct effect estimates showed the exact same significance pattern as the natural
direct effect estimates.

We believe that the use of machine learning (data adaptive) techniques to determine the
underlying model of the observed data provides in the end better estimates of the direct
effects, both natural and controlled. When using machine learning techniques, there is no
predetermined model that needs to be justify, and the risk of violating some of the assump-
tions in the estimation of direct effects is reduced.

The proposed algorithms should be followed just as a guideline. We performed more
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analyses and evaluated other candidate learners, like support vector machine (SVM) and
D/S/A. However, we found difficulties with some of them and decided to exclude them. The
main problem with most data adaptive techniques used to determine the optimal model
of a data set is that they do not allow the user to fix or force variables into the model.
This presented a major issue in our calculations, when the exposure was not selected by
the candidate learner and was simply left out of the model. We could have complicated the
algorithms and forced the exposure into the optimal models after they had been selected
by those candidate learners, but this would have just obscured what might already seem a
convoluted procedure to the less experimented programmers.

Another issue consider when using this type of calculations is the time needed to run
them. The extended duration to perform these analyses occurs in the bootstrap procedure
which obtains distribution estimates. Some candidate learners are inefficient, resulting in
an extended time for each run. The calculations for the natural direct effect using all three
candidates in the Super Learner procedure took ten hours to run; while the ones for the
controlled direct effect took over five days. In particular we were forced to drop D/S/A
as one of the candidate learner because each run in the TMLE estimation took on average
26 minutes. This would have made the estimation of the inferences, a thousand bootstrap
cycles for each outcome, take about 20 days to complete. The time constrains should be
considered before starting a full run which might take extremely long time. On the other
hand we believe that anything within the time frame of one week is reasonable if we consider
how much time is invested in collecting the data; sometimes years.
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Chapter 3

Semi-parametric estimation of
adjusted (marginal) associations in
high-dimensional studies of
environmental exposures: an example
from estimating the potential effects
of organophosphate pesticides on
infant growth

3.1 Introduction

The Environmental Protection Agency’s Pesticide Program report estimated that more
than 1.2 billion pounds of pesticide active ingredients are used every year in the United States,
with approximately 700 million pounds used in agriculture. [34] California is the state with
the largest agricultural output, and in particular the Salinas Valley in Monterey County,
which is often referred to as the ”Nation’s Salad Bowl”. There is evidence of widespread
pesticide exposure for all the population in the U.S., including pregnant women and chil-
dren. [1, 8, 9, 31, 40, 20] There have been few studies that have examined the association
of prenatal pesticide exposure and fetal growth or gestational duration in humans, but they
show inconclusive results.[60, 19, 18] Restrepo et al (1990) found that potential exposure
of women to pesticides during pregnancy was associated with an increased risk of low birth
weight, small for gestational age (SGA), preterm delivery, or shortened gestation, whereas
Fensterd and Coye (2003) found no association. Eskenazi et al. (2004) failed to demonstrate
an adverse relationship between fetal growth and any measure of in utero organophosphate
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pesticide exposure. No studies have examined the relationship of in utero OP exposure and
subsequent effects in children’s growth nor child exposure and subsequent effects.

The purpose of the present analyses is to determine if there is evidence of an effect be-
tween the exposure to organophosphate (OP) pesticides and the child’s growth at 6, 12, 24
months, 3.5 and 5 years. Exposure is assessed by measurement of urinary OP metabolites
at seven different time points: prenatally (twice) and at delivery in the mother and later in
the child at the same times that the outcome of interest was recorded. Growth in children
was evaluated in four measures: weight, length/height, body mass index (BMI) (kg/m2),
and waist circumference. We use Targeted Maximum Likelihood Estimation with a G-comp
approach to obtain the desired effect estimates of exposure on outcome. This is a semipare-
metric approach that allows us to avoid defining models a priori.

3.2 Materials and methods

Participants

The population are participants of the longitudinal birth cohort study of the Center for
the Health Assessment of the Mothers and Children of Salinas (CHAMACOS), which is
conducted by the Center for Children’s Environmental Health Research at the University of
California, Berkeley. The study focuses on the effects of pesticides and other environmen-
tal exposures on the health of pregnant women and their children living in the Salinas Valley.

Participants, pregnant women, were enrolled between October 1999 and October 2000 as
they entered prenatal care at Natividad Medical Center or at any of five centers of the Clin-
ica de Salud del Valle de Salinas. This is a low-income, mainly agricultural, migrant, and of
Mexican descent population. For a detailed description of the population and the enrollment
criteria see Eskenazi et al. [18] The women were interviewed twice during pregnancy and
shortly after delivery. The women and their children were followed and interviewed after
birth on pre-established time intervals at 6, 12, 24 months, and at 3.5, and 5 years. Dur-
ing these interviews, trained bilingual bicultural personnel conducted extensive and detailed
questionnaires about the child’s health, family status, and life events during the time since
the last interview. The children biometrics were carefully measured and recorded. Biological
samples including urine were also collected.
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Pesticide exposure measurement

The exposure to organophosphate pesticides was assessed by measuring non-specific
organophosphate dialkyl phosphate metabolites in urine. Maternal urine was collected dur-
ing pregnancy (twice) and at delivery. The first and second samples during pregnancy
occurred at a mean of 13 weeks gestation (range, 4-29 weeks) and at 26 weeks (range, 18-39
weeks), respectively. Child’s urine was then collected at each of the subsequent interviews
after birth. Spot urine samples were collected at each of the interviews mentioned above.
Urine specimens were aliquoted and stored at -80C until shipment to the Center for Disease
Control and Prevention (CDC; Atlanta, GA) for analysis of dialkyl phosphate metabolite
levels. [18]

Six dialkyl phosphates metabolites were measured in the urine samples using gas chro-
matography and mass spectrometry and quantified using isotope dilution calibration.[10] The
dialkyl phosphates measured were dimethylphosphate, dimethyldithiophosphate, dimethylth-
iophosphate, diethylphosphate, diethyldithiophosphate, and diethylthiophosphate. This six
metabolites are grouped into dimethyl phosphates (DMs) and diethyl phosphates (DEs).
Approximately 80% of the organophosphate pesticides used in the Salinas Valley devolve to
one or more of these metabolites, which are excreted in urine. The most commonly used
pesticides in this region that devolve to dialkyl phosphates are presented in Table 4.1

Table 3.1: Dialkyl phosphate pesticides metabolites and parent compounds

Marker of exposure Parent compounds or class
Dialkyl phosphate metabolites (nmol/L)

Dimethyl phosphates Malathion, oxydemeton-methyl
dimethoate, naled, methidathion

Diethyl phosphates Diazinon, chlorpyrifos, disulfoton

At each time of exposure the following procedures were applied to urine samples and their
metabolites measurements: given that dialkyl phosphates come from more than one OP pes-
ticide, quantities of the six metabolites were converted to molar concentration (nanomols per
liter) and summed to obtain the total concentrations of dialkyl phosphate (DAP) metabolites
for each sample. We averaged the two prenatal sample concentrations. The sum of all six
metabolites provided an estimate of the total organophosphate exposure for each individual
at each of the time points listed in Table 3.2. The three DMs and three DEs were also added
to obtain total concentrations of dimethyl and diethyl phosphate metabolites, Total DAPs.

When working with urine samples, it is a standard procedure to adjust for creatinine con-
centration. Creatinine gives a reference for how diluted the samples are. The concentrations
were determined using a commercially available diagnostic enzyme method (Vitros CREA
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slides; Ortho Clinical Diagnostics, Raritan, NJ). Samples with creatinine levels < 10mg/dL
were considered too dilute for accuracy of analysis, and therefore excluded. Table 3.2 shows
the number of available records by time point.

Definition of outcomes

We studied the effects of the three considered exposures (Total DAPs, DMs, and DEs) on
four measures of growth in children (weight, length/height, BMI, and waist circumference).
Child’s recumbent length or standing height in centimeters, and child’s weight in kilograms
were collected at each one of the considered time points. Infant birth crown-heel length and
weight were obtained from hospital delivery logs and medical records. The following mea-
surements were performed by trained staff of the CHAMACOS project. Infants length up to
two years were measured using a table or board, and children two years and older using a wall
mounted stadiometer. These measurements were performed three times and then averaged.
Weight was recorded once using an appropriately adjusted scale. BMI, adjusted for sex and
exact age in months, were calculated using the collected data starting at 24 months because
this is the minimum age that the Center for Disease Control and Prevention (CDC) has
established on its growth charts for this variable. Child’s waist circumference in centimeters
was only collected starting the 5-years interview. Given that this is the end point for the
collection of data we only present this child outcome at this particular age.

Table 3.2: Sample size of the four outcomes under study at each of the considered time
points.

Exposure Outcome

Time of
measurement

Total DAPs /
Creatinine

Weight
(kg)

Length
(cm)

BMI
(kg/m2)

Waist
Circum. (cm)

Prenatal 5331/ 533 - - - -

Delivery 493 / 493 - - - -

6 months 417 / 414 425 423 ND NA

12 months 405 / 405 415 415 ND NA

24 months 381 / 380 389 386 386 NA

3.5 years 298 / 281 339 336 335 NA

5 years 330 / 319 332 331 331 332

1 There was an additional observation for DMs, 534.
ND: Not Defined
NA: Not Applicable
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Eskenazi et al. (2004) performed a first attempt to identify adverse effects from organophos-
phate pesticides on fetal growth in this same population.[18] In their analysis, exposure was
collected on the mothers and then birth length, weight, head circumference and gestational
age were the outcomes under analysis. They used multivariate regression, adjusting for se-
lected covariates, and those were the parametric models presented in their results.

Parameter of interest

Our parameter of interest is the marginal adjusted effect difference of the exposure A on
the outcome Y. A is a discrete exposure with three possible levels: low, medium, high. Given
a full unobserved (counterfactual) dataset Xfull = (Ya,W, a ∈ A), where Ya corresponds
to the observed outcome under exposure A = a, we define our parameter of interest as
 a,0 = E(Ya)−E(Y0). We define (for each contribution of the risk factor of interest, A, and
outcome, Y ) the observed data as O = (YA, A,W ) ∼ P . Specifically, under identifiability
assumptions discussed below, we can estimate  as function of the observed data,  (P ).

 a,0 = E [Ya − Y0]
U.A.
=

EW [E(Y ∣ A = 1,W )− E(Y ∣ A = 0,W )] U.A. = under assumptions

The estimation will only be valid for the observed dataset if the following assumptions hold.

The first assumption is the consistency assumption which states that the observed data,
O = (YA, A,W ), is only a missing data case from the counterfactual’s full data, or  a,0(P ) =
 a,0, and the potential outcome for any particular unit is stable in the sense that it would
take the same value under its exposure, independently of what other units get for an expo-
sure. This is also know as the stable unit treatment value assumption (SUTVA).[66]

The second assumption is known as coarsening at random (CAR) and it states that the
treatment assignment is independent of the outcome conditional on the measured covariates.
Consider the dataset O = (Y,A,W ), where Y is the outcome, A is the exposure or treatment
assignment which can take values a ∈ A, and W is the set of covariates. Under the CAR
assumption we have: A ⊥ Ya,∀a ∈ A ∣ W .

The third assumption is known as the experimental treatment assignment (ETA) assump-
tion. It requires that the probability of receiving treatment conditional on the covariates
is not fully determined. In practical terms, the conditional probability needs to be away
from 0 and 1. Observations within strata of the covariates W must have a probability
greater than 0 of receiving treatment at all possible levels of the treatment assignment,
∀a ∈ A, P (A = a ∣ W ) > 0. When the ETA assumption does not hold it is said that there is
a “theoretical ETA violation”. On the other hand, there are also “practical ETA violations”.
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These occur when ∃a ∈ A such that P (A = a ∣ W ) < �n or P (A = a ∣ W ) > 1 − �n, for a
small �n (e.g. �n = 0.1) and n is the sample size.[47]

Given the defined levels of exposure, we can estimate the adjusted marginal effect at each
one of them before calculating the effect difference between them, as suggested in Moore and
van der Laan (2008).[44] We refer to them as the elements of our parameter of interest, and
denote them as �a = EW [E(Y ∣ A = a,W )].

Estimators

We estimated the effects of organophosphate pesticides on child’s growth using targeted
maximum likelihood estimation (TMLE).[76] TMLE carries out a targeted bias reduction
specifically for the parameter of interest, hence its name. Consider a model ℳ where the
true distribution of the data is p0. Consider and initial estimator p̂ of p0. The parameter
of interest is given by  =  (p0). TMLE has two goals. First, it aims to find an optimal
density p̂∗ ∈ ℳ such that the plug-in estimator of the parameter of interest based on this
density is asymptotically equivalent to an estimator that solves an estimation equation based
on the so-called efficient influence curve. This results in a bias reduction compared to the
estimate of  (p̂MLE). Second, the algorithm also requires that p̂∗ achieves an increase in the
log-likelihood relative to p̂. The resulting substitution estimator  (p̂∗) is a familiar type of
likelihood-based estimator, where the parameter of interest is based on the G-computation
formula, but the original MLE density estimate is modified such that the resulting estimate
is asymptotically linear with the desired efficient influence curve. [44] For complete technical
and theoretical details about this general estimating approach we refer readers to the seminal
paper by van der Laan and Rubin.[76]. Next, we present the basic steps involved in TMLE
of �a:

1. Estimate the conditional expectation of Y given A, and W ; denoted by E [Y ∣ A,W ] =
(Q(A,W )) = Q0

n(A,W ), where  is the link function.

2. Estimate the conditional distribution of the exposure A given covariates W ; denoted
by g0n(A ∣ W )

3. Calculate a specific covariate for each individual target based on the subjects observed
values A, W and the estimate g0n(A ∣ W ). This new covariate, whose form depends
on the parameter of interest and the model of Y ∣ A,W , is denoted by ℎ(A,W ) and
sometimes referred to as a “clever” covariate.

4. Update the initial regression Q0
n(A,W ) by adding the clever covariate ℎ(A,W ) and esti-

mating its corresponding coefficient by simple maximum likelihood, holding Q0
n(A,W )
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fixed at their initial values by using it as offset. The updated regression is denoted
(Q1) = (Q0 + �ℎ).

5. Implement the estimator by using Q1 to predict with all A = a and keeping the original
values for W .

Specifically, the TMLE estimate of �a:

�TMLE
a =

1

n

n∑
i=1

Q1
n(a,Wi). (3.1)

The TMLE is consistent if at least one of the two, Q and g, is consistently estimated.
Additionally, the estimator is locally efficient in the sense that it is efficient if both models
are estimated consistently.

We need to estimate Qn0 and gn0 and the different estimation procedures rely on these
models being correctly specified. Therefore, in order to avoid misspecified models, we will
not use parametric models specified a priori. We will use a data-adaptive model selection
approach, a machine learning approach, which has the property of potentially approaching
a non-parametric model as n → ∞. There are many such procedures available, like the
Deletion/Substitution/Addition (D/S/A) algorithm, Least Angle Regression [16], Random
Forest [11], Support Vector Machine, Generalized Additive Models (GAM), and Polychoto-
mous Regression[35]. Each one of the procedures listed here returns an “optimal” model,
not all of them identical, based on their own optimality criteria.

For example, the D/S/A algorithm performs data-adaptive estimation through selection
of the estimators based on heavy use of cross-validation and the L2 − loss function. The
candidate estimators will always be polynomials which comply to user-specified constraints
like maximum number of terms in the polynomial, maximum power of polynomial terms and
maximum order of interaction.[68] Another example is gam, which replaces the linear form of
the covariates (

∑
�iXi) by a sum of smooth functions (

∑
si(Xi)), where the functions si(⋅)

are unspecified and are estimated using an iterative procedure called local scoring algorithm,
resulting in a nonparametric regression method.[29] A third example is Polychotomous Re-
gression, which fits a regression model using linear splines and their tensor products.[21, 35]

Above, we mentioned a list of model selectors which we will refer to as “candidate learn-
ers”. We can use them to define the models we need for our estimations. Van der Laan et
al.[74] propose an algorithm to select the “best possible model” using a convex linear com-
bination of the resulting models from each of the candidate learners. The resulting model
will be as good or better than every single model from the candidate learners.
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Data analysis

In our analyses, we ran all possible combinations of exposure on outcomes as long as
the time of exposure occurred prior or concurrent to the time of the outcome. The three
exposures considered were the total sum of dialkyl phosphate metabolites (Total DAPs), the
sum of dimethyl phosphates (DMs), and the sum of diethyl phosphates (DEs). We already
presented the outcomes and their frequency can be seen in Table 3.2. We have that weight
and length were measured at 5 time points; BMI was measured at 3 time points; and waist
circumference only measured at one time point. Given the temporal constraint defined above
for times of exposure and times of outcome, we ran 75 cross sectional analyses for weight
and length; 54 cross sectional analyses for BMI; and 21 cross sectional analyses for waist
circumference. For example, these last 21 cross sectional analyses correspond to the three
different exposures (Total DAPs, DEs, and DMs), and the 7 valid times of exposure (Prena-
tal, Delivery, 6M, 12M, 24M, 3.5Y, and 5Y), prior or concurrent to the waist circumference
measurement at 5 years.

An important consideration in all these analyses was that only complete pairs of exposure-
outcome could be included. In those cases where one of the six metabolites was not readable
because of analytic interference, the missing value was imputed using simple regression anal-
ysis on the other metabolites within the same group (i.e. diethyl or dimethyl phosphates,
respectively) at the corresponding time point. This imputation was justified because of the
high correlation of the metabolites within groups at the same time point. Metabolites which
were missing because their levels were below the limit of detection (LOD) were given the
value of the LOD divided by the square root of two. [32]

Among the complete exposure-outcome pairs, some of their covariates had missing values.
We decided to impute these covariates to avoid further loss of observations. The imputations
were performed in R using the multiple imputations package “mi”.[58, 23] The strength of
this package is that it performs an iterative regression imputation of the missing values until
approximate convergence is achieved. In our case, the matrix W of covariates could be split
into those covariates with missing observations, M with columns M(1), . . . ,M(K), and those
covariates with complete observations, C. First, the missing values of M are imputed using
a crude approach (for example, imputing by randomly selecting from the observed outcomes
for that variable). Then the algorithm continues imputing M(1) given M(2), . . . ,M(K) and
C; imputing M(2) given M(1), . . . ,M(K) and C; and so forth, randomly imputing each
variable and looping until approximate convergence.

It is important to mention that the covariates changed depending on the time of the
outcome under consideration. This means that not all the same covariates were considered
for all time points. Some of them were baseline covariates that did not change and others
were time depending covariates that became relevant at a later age of the child. For example,
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the variable corresponding to the child being breastfed at the time of the interview did not
make sense after two years of age; preschool was not considered until 3.5 years when it is
seemed plausible that children started attending preschool. For a complete list of covariates
considered at each time point see Table 4.2 . Only some covariates were included in the
optimal model.

Table 3.3: Covariates used in the multiple analyses

Covariate 6M 12M 24M 3.5Y 5Y
Sex ✓ ✓ ✓ ✓ ✓
Age in months ✓ ✓ ✓ ✓ ✓
Birthweight ✓ ✓ ✓ ✓ ✓
Infant’s chest circumference at delivery ✓ ✓ ✓ ✓ ✓
Gestational age ✓ ✓ ✓ ✓ ✓
Breastfeeding status ✓ ✓ ✓
Breastfeeding length ✓ ✓ ✓ ✓ ✓
Husband’s agricultural worker ✓ ✓ ✓ ✓ ✓
Maternal smoking status ✓ ✓ ✓ ✓ ✓
Child around smokers ✓ ✓ ✓ ✓ ✓
WIC ✓ ✓ ✓ ✓ ✓
Child attended child care ✓ ✓ ✓ ✓ ✓
Mother’s height ✓ ✓ ✓ ✓ ✓
Mother’s pre pregnancy weight ✓ ✓ ✓ ✓ ✓
Mother’s pre pregnancy BMI ✓ ✓ ✓ ✓ ✓
Poverty status at baseline ✓ ✓ ✓ ✓ ✓
Poverty status at the time ✓ ✓ ✓ ✓ ✓
Maternal education ✓ ✓ ✓ ✓ ✓
Paternal education ✓ ✓ ✓ ✓ ✓
Years in the US at baseline ✓ ✓ ✓ ✓ ✓
Maternal calories consumption at 26wks ✓ ✓ ✓ ✓ ✓
Diet Quality Index for Pregnancy at 26wks ✓ ✓ ✓ ✓ ✓
Child attended preschool at 42M ✓ ✓
TV hours/weekday ✓ ✓
TV hours/weekend day ✓ ✓
Hours/day child played outside in past week ✓ ✓
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For simplicity of calculations, all exposures of interest were categorized into tertiles within
their specific time point. This simplification makes the targeted step of our estimation much
simpler. Hence, we calculated the targeted mean outcome value for each of the outcomes of
interest (weight, length, BMI, and waist circumference) at each tertile of exposure. Using
these estimates, it was easy to calculate our parameters of interest, the targeted mean differ-
ence between tertiles of exposure. We then calculated all three possible differences between
the tertiles.

The inference for all models was obtained using the Influence Curve (IC). Assuming Q
and g are known (that is, variability introduced by modeling uncertainty is a second order

phenomena), the IC for our final estimate,  ̂TMLE
a,0 = �̂TMLE

a − �̂TMLE
0 is given by:

IC(O;Q1
n; g1n;  ̂a,0) = ℎ(A = a,W ) ∗ (Y −Q1

n(A,W )) +Q1
n(A = a,W )−  (3.2)

so

SE( ̂a,0) =

√
1
n

∑n
i=1 ÎC

2
(Oi)√

n
(3.3)

The IC is very sensitive to violations of the ETA assumption, and when there is a practical
violation, the estimate can be extremely variable. Whenever there was evidence of an ETA
violation, an ad hoc procedure was implemented to reduce the set of covariates to correct
the problem. Covariates that did not show any variability within the discrete exposure lev-
els were eliminated since these would create a deterministic assignment of the value of the
exposure given the covariate. Clearly this is an ad hoc procedure and we note that it also
could introduce bias if these variables are true confounders. Another robust alternative to
deal with this problem is the use of Collaborative TMLE, suggested by van der Laan and
Gruber (2009) where the selection of the treatment mechanism is based on an algorithm that
maximizes, over candidate estimators of the treatment mechanism, the log-likelihood of the
corresponding candidate targeted maximum likelihood of the relevant factor.[73]

We describe our calculations in detail only once even though we did the same calculation
for each one of the four outcomes of interest at each of the tertiles of exposure for each of
the three exposures of interest. All the analyses were performed in R v 2.9.1 [58] using the
SuperLearner-,[55] gam-, [30], polspline-packages (polymars),[36] and D/S/A.[48] See Ap-
pendix A for computational details.

We performed multiple tests searching for effects of the exposures on the outcomes.
Therefore, the risks of a false positive discovery increased and we adjusted the significance
of our results using Bonferroni. This way, we reduced the probability of false discovery and
were more confident of the validity of the discoveries that remain significant after the adjust-
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ment. The four different outcomes had a different number of tests for each type of exposure.
We adjusted individually for that number; weight and length were adjusted by a factor of 75,
BMI was adjusted by a factor of 54, and waist circumference only by a factor of 21. The mul-
tiple testing adjustment was performed on the Wald Test p-values obtained for each analysis.

Comparison of traditional methods

We also ran traditional analyses, crude- and adjusted linear regressions, to compare the
results we would have got against the proposed TMLE approach returns. We only ran the
traditional analyses on a subset small subset of all the analyses. The subset was one where
we observed significant results. The adjusted linear regression used the same covariates that
were provided to SuperLearner at the corresponding time point. Thus, in the end we com-
pared the three estimates:  UNADJ

a1,a2
,  ADJUST

a1,a2
,  TMLE

a1,a2
.

For the linear regression, the standard output for categorical exposures is the coefficients
for the change from baseline level to the corresponding level of exposure. Therefore the
compared results only correspond to the differences between baseline exposure, lowest level
of exposure, against the middle ( 2,1) and high exposure levels ( 3,1), respectively. For the
estimation of the standard errors and corresponding p-values, we used the robust estimates.
In the TMLE case we used the already defined IC and the Wald Test p-value. In the case of
the linear regression, we used the “robcov” function from the Design package in R which uses
the Huber-White method to adjust the variance-covariance matrix of a fit from maximum
likelihood. In our particular case, the corrected covariance matrix returned is the “sandwich”
estimator.[28, 39]

3.3 Results

We split the analyses into two groups, creatinine unadjusted and creatinine adjusted.
In both groups we observe a small number of significant results, even before adjusting for
the multiple testing. For each of the two result groups, we ran a total of 225 models and
tested 3 differences within each one of them, leaving us with 675 tests. The full results are
in Appendix B, where Tables B.1 - B.16 show the results for the analyses without adjusting
the urine samples for creatinine concentration and Tables B.17 - B.32 present the results for
the analyses after having adjusted the exposures for creatinine.

For convenience, we present in Table 3.4 only those effects that remained significant after
adjusting for multiple testing. In the cases of the creatinine unadjusted analyses we ob-
tained 54 significant effects, but only 12 remained significant after adjusting for the multiple
testing. In the creatinine adjusted models we observed close to twice as many significant
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results; 90 before adjusting for multiple testing and 28 after this adjustment. We will go
over the individual results by outcome, starting with child weight, followed by child length,
child BMI, and child waist circumference.

Table 3.4: Significant effects, after adjusting for multiple testing, of organophosphate (OP)
pesticides on mean child outcome by tertiles of exposure. OP exposure is measured by Total
DAPs, DEs, and DMs.

Creatinine unadjusted

Outcome Exposure TMLE Differences Wald Test p-values

Source Time Source Time  2,1  3,1  3,2 p2,1 p3,1 p3,2

Weight 24M DAPs 24M -0.511 -0.969 -0.457 0.00 ‡ 0.00 ‡ 0.01
Weight 24M DEs 24M -0.464 -0.965 -0.501 0.01 0.00 ‡ 0.03
Weight 24M DMs 12M -0.321 -0.623 -0.302 0.22 0.00 ‡ 0.29
Weight 24M DMs 24M -0.408 -0.858 -0.450 0.01 0.00 ‡ 0.00

Length 24M DAPs 24M -0.74 -1.31 -0.56 0.00 ‡ 0.00 ‡ 0.04
Length 24M DEs 24M -0.46 -1.24 -0.78 0.42 0.00 ‡ 0.19
Length 24M DMs 24M -0.60 -1.26 -0.66 0.02 0.00 ‡ 0.01

BMI 24M DAPs 24M -0.37 -0.71 -0.34 0.00 0.00 ‡ 0.06
BMI 24M DEs 24M -0.39 -0.79 -0.39 0.09 0.00 ‡ 0.18
BMI 24M DMs 24M -0.31 -0.62 -0.31 0.06 0.00 ‡ 0.06

PN: prenatal; DL: delivery; 6M: 6 months; 12M: 12 months; 24M: 24 months; 42M: 3.5 years; 60M: 5 years.
★: adjusted p-value < 0.1, †: adjusted p-value < 0.05, ‡: adjusted p-value < 0.01

Before adjusting for multiple testing, we observed 55 effect differences by tertiles of ex-
posure with Wald Test p-values < 0.05; after the adjustment only 17 weight differences
remained significant (see Table 3.4). The creatinine unadjusted results showed fewer sig-
nificant results than the creatinine adjusted analyses, five against twelve, respectively. We
describe the creatinine unadjusted significant results first. For Total DAPs exposure we only
observe significant differences at the 24 months outcome-exposure combination. The weight
differences between the first and second tertiles and the first and third tertiles are -0.511 kg
(adjusted p-value= 0.003), and -0.969 (adjusted p-value< 0.001), respectively. The difference
between the second and third tertiles was similar in size, -0.457kg, but lost significance after
adjusting for the multiple testing. The exposure to DEs at 24 months also shows significant
effects on weight at 24 months between the third and first tertiles of exposure; −0.965kg
(adjusted p-value< 0.001). The other two differences between tertiles of DEs exposure lost
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significance after adjusting for multiple testing. These differences were still the second and
third largest differences by tertile, for all DEs exposures on child weight: −0.464kg between
second and first tertiles and −0.501kg between third and second tertiles, respectively.
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Table 3.5: Significant effects, after adjusting for multiple testing, of organophosphate (OP)
pesticides on mean child outcome by tertiles of exposure. OP exposure is measured by Total
DAPs, DEs, and DMs.

Creatinine adjusted

Outcome Exposure TMLE Differences Wald Test p-values

Source Time Source Time  2,1  3,1  3,2 p2,1 p3,1 p3,2

Weight 12M DAPs 6M -0.134 -0.296 -0.162 0.01 0.00 ‡ 0.03
Weight 12M DAPs 12M -0.081 -0.224 -0.144 0.55 0.00 † 0.21
Weight 24M DAPs DL -0.182 -0.363 -0.181 0.60 0.00 ★ 0.58
Weight 24M DAPs 6M -0.241 -0.476 -0.235 0.00 0.00 ‡ 0.07
Weight 24M DAPs 12M -0.464 -0.636 -0.172 0.01 0.00 ★ 0.22
Weight 24M DAPs 24M -0.420 -0.822 -0.402 0.04 0.00 ‡ 0.01
Weight 24M DEs 24M -0.462 -0.922 -0.460 0.00 ★ 0.00 ‡ 0.00 †
Weight 42M DEs 24M -0.411 -0.954 -0.544 0.33 0.00 ‡ 0.15
Weight 24M DMs 12M -0.278 -0.501 -0.223 0.05 0.00 ‡ 0.04
Weight 42M DMs 12M -0.694 -0.457 0.238 0.00 ‡ 0.01 0.17

Length 12M DAPs 6M -0.27 -0.51 -0.24 0.01 0.00 ‡ 0.13
Length 12M DAPs 12M -0.16 -0.49 -0.33 0.57 0.00 † 0.19
Length 24M DAPs 24M -0.87 -1.54 -0.67 0.00 0.00 ‡ 0.00
Length 42M DAPs 12M -0.74 -1.25 -0.51 0.03 0.00 † 0.07
Length 12M DEs 6M -0.40 -0.84 -0.43 0.15 0.00 ‡ 0.02
Length 24M DEs 24M -0.55 -1.25 -0.70 0.17 0.00 ‡ 0.08
Length 42M DEs 24M -0.48 -0.90 -0.42 0.28 0.00 ‡ 0.33
Length 24M DMs 24M -0.59 -1.20 -0.60 0.04 0.00 ‡ 0.04

BMI 24M DAPs 6M -0.29 -0.55 -0.26 0.00 0.00 ‡ 0.07
BMI 24M DEs 24M -0.36 -0.70 -0.34 0.04 0.00 ‡ 0.03
BMI 42M DEs 24M -0.26 -0.55 -0.29 0.25 0.00 ‡ 0.16
BMI 24M DMs DL -0.20 -0.37 -0.17 0.54 0.00 ★ 0.56
BMI 24M DMs 12M -0.24 -0.42 -0.17 0.12 0.00 ★ 0.14
BMI 42M DMs 12M -0.66 -0.12 0.54 0.00 ‡ 0.42 0.00 ‡

PN: prenatal; DL: delivery; 6M: 6 months; 12M: 12 months; 24M: 24 months; 42M: 3.5 years; 60M: 5 years.
★: adjusted p-value < 0.1, †: adjusted p-value < 0.05, ‡: adjusted p-value < 0.01
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DMs exposure at 12 and 24 months showed significant differences in child weight at 12 and
24 months, but only between the first and third tertiles of exposure. With 12 months DMs,
only the difference between extreme tertiles of exposure was significant even before the mul-
tiple testing adjustment, −0.623kg (adjusted p-value= 0.007). For 24 months DMs, all three
differences were significant before adjusting for multiple testing, but only the one between
the lowest and highest levels remained significant, −0.858kg (adjusted p-value< 0.001). The
other two differences were −0.408kg between the first and second tertiles and −0.450kg
between the second and third tertiles, respectively. The creatinine adjusted analyses show
significant differences on child weight at more time points than 24 months only. Total
DAPs at 6 and 12 months, between the first and third tertiles of exposure, have a signifi-
cant negative effect on child weight at 12 months. The effect from 6 months Total DAPs
is −0.296kg (adjusted p-value< 0.001) and from 12 months exposure is −0.224 (adjusted
p-value== 0.022). Total DAPs exposure, between the lowest and highest levels, also show
negative effects on child weight measured at 24 months. Delivery and 12 months exposures
showed nominal significant effects of −0.363kg (adjusted p-value= 0.081) and −0.636kg (ad-
justed p-value= 0.091), respectively. Total DAPs exposures at 6 and 24 months showed neg-
ative significant effects on child weight of −0.476kg (adjusted p-value= 0.007) and −0.822kg
(adjusted p-value< 0.001), respectively. Effects from DEs exposure at 24 months on weight
measured also at 24 months, was the only group of effects that remained, at least nominally,
significant for all exposure level differences after adjusting for multiple testing. The effects
between first and second tertiles were −0.462kg (adjusted p-value= 0.081); between first
and third tertiles were −0.922kg (adjusted p-value< 0.001); and between second and third
tertiles were −0.460kg (adjusted p-value= 0.040). Additionally, we observed a significant
child weight difference at 42 months between the lowest and highest levels exposure from
DEs at 24 months; −0.954kg (adjusted p-value< 0.001). Exposure to DMs only showed two
significant weight differences after adjusting for multiple testing. Both significant differences
corresponded to 12 months exposure, but weight measured at 24 and 42 months. The for-
mer corresponded to the difference between lowest and highest tertiles of exposure, −0.501kg
(adjusted p-value= 0.003) and the latter to the difference between the first and second ter-
tiles of exposure, −0.694kg (adjusted p-value= 0.002). At 42 months outcome, the weight
difference between the first and third tertiles of exposure, −0.457kg, lost significance after
adjusting for multiple testing. Additionally, this particular exposure-outcome combination
presented a “U” shape effect with respect to exposure, showing a decrease in weight between
the first and second tertiles of exposure, but an increase when DEs exposure increased from
the second to the third tertile.

For the length outcome, before adjusting for multiple testing, we had 58 statistical signif-
icant differences between tertiles of exposure for all three exposure measures: Total DAPs,
DEs, and DMs. After adjusting for multiple testing, only twelve differences remained sig-
nificant. Eleven of these corresponded to the difference between the highest and the lowest
tertiles of exposure. In the creatinine unadjusted analyses, all four significant differences
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corresponded to exposure at 24 months and child length also at 24 months of age. We ob-
serve the only significant difference between the first and second tertiles of exposure under
Total DAPs exposure; all others correspond to differences between extreme tertiles of expo-
sure. Child length differences between low-middle and low-high Total DAPs exposure were
−0.74cm (adjusted p-value= 0.003) and −1.31cm (adjusted p-value< 0.001), respectively.
The effects of DEs and DMs exposures at 24 months, between lowest and highest expo-
sure levels, were −1.24cm (adjusted p-value< 0.001) and -1.26cm (adjusted p-value= 0.002),
respectively. The creatinine adjusted analyses presented also significant effect differences
with 24 month exposure on 24 month child length. The effects are −1.54cm (adjusted p-
value< 0.001) for Total DAPs, −1.25cm (adjusted p-value< 0.001) for DEs, and −1.20cm
(adjusted p-value= 0.001) for DMs. The latter was the only significant effect for DMs expo-
sure. However, Total DAPs and DEs also showed significant effects on child length measured
at 12 months and 42 months. Both exposures showed a significant effect from 6 months ex-
posure on 12 months outcome with negative effect of −0.51cm (adjusted p-value< 0.001)
for Total DAPs and −0.84cm (adjusted p-value= 0.009) for DEs. Total DAPs exposure at
12 months showed a significant negative difference in child length at 12 months, between
the lowest and highest tertiles, of −0.49cm (p-value= 0.01). The last significant effect from
Total DAPs occurred at the 12 months exposure and child length measure at 42 months,
with a difference of −1.25cm (adjusted p-value= 0.019) between the two extremest levels
of exposure. DEs exposure at 24 months showed a significant effect child length at the 42
months with a decrease in length of −0.90cm (adjusted p-value< 0.001). All other TMLE
length differences between tertiles of exposure are close the null, being less than one unit (1
cm), but show almost consistently a negative effect on exposure’s increase.

For BMI, we observed a total of 26 significant effects before adjusting for multiple test-
ing; Wald Test p-values < 0.05. Table 3.4 shows the eight effects that remained statistically
significant, and two more were nominally significant with an adjusted p-value < 0.1, after
adjusting for the multiple testing. In the creatinine unadjusted analyses, we only observe
significant effects with 24 months exposure and child BMI measure at 24 months. The
significant effects only showed between the highest and lowest tertiles of exposure as ex-
pected. The differences are −0.71kg/m2 (adjusted p-value= 0.003), −0.79kg/m2 (adjusted
p-value= 0.013), and−0.62kg/m2 (adjusted p-value= 0.036) for Total DAPs, DEs, and DMs,
respectively. For the creatinine adjusted analyses we have more significant differences, but
only DEs exposure coincided with the previous results at 24 month exposure and 24 month
outcome, with an effect difference between extreme tertiles of exposure of −0.70kg/m2 (ad-
justed p-value< 0.001). This exposure-outcome effect was also significant for Total DAPs,
but only before adjusting for multiple testing. Most significant differences occur between
the highest and lowest tertiles of exposure. However, we also have two highly significant
differences between the first and second tertiles (−0.66kg/M2 (adjusted p-value< 0.000)),
and between the second and third tertiles (0.54kg/M2 (adjusted p-value< 0.000)) for DMs
exposure at the 12 months and child BMI at 42 months. These results suggest a “U” shape
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effect from DMs exposure on the child’s BMI. Except for this case, we see increasing negative
effects of the exposure on child BMI.

Child’s waist circumference measured at five years of age only showed five significant
differences between tertiles of exposure before adjusting for multiple testing; this was for
both, creatinine- unadjusted and adjusted, analyses. After adjusting for multiple testing all
findings lost their significance. In Tables B.16 and B.32 we observe that the differences in
child’s waist circumference for the tertiles of exposure did not show a consistent direction
relative to exposure increase. The largest effect difference that we observe is only 2.3cm. A
waist circumference this size is less than a 4% difference given the range of waist circumfer-
ence measured in our population.
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Table 3.6: Estimated effect differences from tertiles of creatinine adjusted Total DAPs
exposure on child’s weight at 24 months; p-values shown inside parentheses. For the crude
and adjusted regression, the estimated values correspond to the coefficients from the linear
models with exposure defined as factors corresponding to the tertiles of exposure, and the
first tertile of exposure defined as baseline. Difference between second and third tertiles
of exposure is the difference of the coefficients and hence no p-value is provided. TMLE
estimates were extracted from Table ??.

Unadjusted Regression

Exposure
Time

 UNADJ

2,1  UNADJ

3,1

PN -0.131 (0.597) -0.038 (0.879)

DL -0.290 (0.249) -0.419 (0.100)

T
o
ta

l
D

A
P

s
o
n

C
h

il
d

W
e
ig

h
t

(k
g
)

@
2
4

m
o
n
th

s 6M -0.209 (0.420) -0.574 (0.027)

12M -0.667 (0.008) -0.645 (0.011)

24M -0.121 (0.628) -0.669 (0.008)

Adjusted1 Regression

Exposure
Time

 ADJUST

2,1  ADJUST

3,1

PN -0.156 (0.524) -0.469 (0.017)

DL -0.213 (0.376) -0.523 (0.009)

6M -0.199 (0.421) -0.390 (0.060)

12M -0.674 (0.005) -0.444 (0.025)

24M -0.412 (0.086) -0.481 (0.014)

TMLE

Exposure
Time

 TMLE

2,1  TMLE

3,1

PN -0.040 (0.868) -0.027 (0.854)

DL -0.182 (0.604) -0.363 (0.001) ★

6M -0.241 (0.003) -0.476 (0.000) ‡
12M -0.464 (0.008) -0.636 (0.001) ★

24M -0.420 (0.040) -0.822 (0.000) ‡

PN: prenatal; DL: delivery; 6M: 6 months; 12M: 12 months; 24M: 24 months
1: Covariates are defined in Table 4.2 in the column for 24M outcome.
★: adjusted p-value < 0.1, †: adjusted p-value < 0.05, ‡: adjusted p-value < 0.01
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Table 3.6 presents the comparative results between unadjusted linear regression, adjusted
linear regression and the TMLE G-computation estimation we proposed. As we mentioned
before, this comparison only considered a small extract from all the analyses. Given that the
creatinine adjusted analyses of Total DAPs on child weight were the ones that showed the
most significant effect differences, we decided to use these for our comparisons. In particular
we only replicated the analyses for child weight measured at 24 months. A similitude between
all three classes of analyses is that child weight is negatively affected by increasing exposure
in almost all cases. However, if we had performed the unadjusted linear regression or the
adjusted linear regression for all the cases we performed the TMLE, none of the results for
the first two analyses would have remained significant after adjusting for multiple testing.
The effect differences from TMLE are not always larger than the estimates from the other
two methods, what could explain the statistical significance even after adjusting for multiple
testing. Actually, the effect difference for Total DAPs at 6 months on child weight is smaller
in TMLE than in the unadjusted linear regression, −0.476kg and −0.574kg, respectively.

3.4 Discussion

In our analyses we used TMLE and a G-computation approach to estimate the effects
of organophosphate pesticides, assessed by urinary dialkyl phosphate metabolites, on child
growth because we believe this is the best way to provide unbiased and accurate estimates of
our parameter of interest. We only found few significant effects, and all of them corresponded
to outcomes measured at 12, 24, and 42 months. Outcomes measured at 6 months or 5 years
did not show significant effects from exposure at any time point. All significant effects sup-
ported the hypothesis that exposure to organophosphate pesticides has a negative effect on
child’s growth measured as weight, length and BMI. Our analyses failed to show any neg-
ative effect of OP pesticide exposure on child waist circumference measured at 5 years of age.

There are no results available about the effects of organophosphate pesticide exposure on
child growth after delivery. Therefore, it is impossible to compare our results with any other
study. All the studies we could find analyzing OP pesticides exposure focused on maternal
exposure and fetal growth.[18, 19, 52, 60] A recent study by Barr et al. (2010), again only
presents results of exposure to pesticides, measured in maternal and umbilical cord sera, and
their relation to birth outcomes. [4]

A possible weakness of our analyses is the source of the exposure measurement, urine.
Other studies of the effects of organophosphate pesticide exposure measure the pesticides in
blood instead of measuring the metabolites in urine. [52] One advantage of the blood mea-
surements is that they provide a direct measure of exposure to parent compounds and may
more accurately reflect the dose.[5, 46] However, the dialkyl phosphate metabolites reflect
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exposure to about 80% of the organophosphate pesticides used in the Salinas Valley [17],
even if not all organophosphate pesticides, like acephate, devolve into these urinary metabo-
lites. Although the source of exposure is not traceable by measurement of the non specific
metabolites, they represent an excellent and integrated measure of exposure to a whole class
of pesticides. Another important reason for measuring these non specific metabolites of
organophosphate pesticides in urine was that at the time of the initial study by Eskenazi et
al. [18] there were no analytical methods to measure specific exposure to many important
organophosphate pesticides in urine or in blood. For consistency and ease, we considered
that measurement of dialkyl phosphate metabolites was an adequate measure to character-
ize and integrate exposure to multiple organophosphate pesticides that come from different
sources.

We find intriguing that for the creatinine unadjusted exposure, only exposure measured
at 24 months showed significant effects on child’s growth, measured also at 24 months. At
this time, we ignore why these effects are only present at 24 months of age. According to
our analyses, 24-months exposure lacked significant in effects on later outcomes, either at
3.5 or 5 years. Given the characteristics of our population, it is very unlikely that there
will be another study with a similar set up in order to verify our results. It is also worth
noting that the majority of the significant effects that we observed were not just borderline
significant, but highly significant even after adjusting by a stringent method like Bonferroni’s
adjustment.

All significant effects were in the a priori hypothesized direction; this is that an increase
in OP pesticides exposure harms child growth. However, our population is very different
from the average children population at age 3.5 years. For example, the mean weight for
girls and boys in our group was 17.878kg and 17.267kg, respectively. These mean weights
are above the 95th percentile for girls and above the 75th percentile for boys, compared
to the national US weight distribution for children the same age. At age five years, the
mean weights for girls and boys in our cohort are 21.928kg and 21.997kg, respectively; both
values just below the 90th percentile of the national distribution.[13] On the other hand,
the height of the children, boys and girls, is just around the national mean. Therefore, the
mean BMI for girls at age 24 months is 17.5kg/m2 (above the 75th percentile); at age 3.5
years is 17.8kg/m2 (close to the 95th percentile); and at age 5 years is again 17.8kg/m2

(close to the 95th percentile). For boys the situation is similar, with a mean BMI at age
24 months of 17.2kg/m2 (below the 75th percentile); at age 3.5 years it is 17.4kg/m2 (close
to the 90th percentile); and at age 5 years it is 18.0kg/m2 (just above the 95th percentile).
Given that we are dealing with an extreme population, where obesity is the norm and not the
exception, the true effects of OP pesticides on child growth could be actually underestimated.

Relative to the comparison of the traditional methods, crude and adjusted, against the
TMLE we propose, we believe this is the best example of how traditional methods return
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biased results and are inefficient. This latter fact is shown by the lac of significant effects
after adjusting for multiple testing. While some of the effects were also detected by the
traditional methods, their significance disappeared, while TMLE remained significant even
after the stringent adjustment using Bonferroni’s method.

Finally, we expect that future data from the same cohort study is analyzed for the
same effects of OP pesticides exposure on child growth as the CHAMACOS study continues
interviewing and evaluating its children as they grow older. Data should be analyzed as
it becomes available using the same techniques presented in this document. A possible
modification to the analyses could be the way we simplified the exposure from a continuous
variable to tertiles of exposure. It would be feasible to extend the categories of exposure,
maybe to five or ten. We considered that any truly significant effects would be noticeable
with the split defined as low, medium and high exposures. The strength of this study is the
use of machine learning techniques with the emphasis of implementing TMLE to focus on the
effects of OP pesticides on the outcome of interest only, without getting lost on the definition
of a model. Considering the number of models estimated, 450, it would have been illogical
to assume that all models had the same form a priori and performing a model selection by
hand for each explored association would not have been possible either. Machine learning
for semi-parametric estimation in such high-dimensional studies is the best way to proceed.
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Chapter 4

Semi-parametric estimation of
longitudinal effects of environmental
exposures: simulation of intervention
effects on infant weight at 3.5 years of
age

4.1 Introduction

The Environmental Protection Agency’s Pesticide Program reported that more than 1.2
billion pounds of pesticide active ingredients are used every year in the United States, with
approximately 700 million pounds used in agriculture. [34] California is the State with the
largest agricultural output. One major agricultural area of the State is the Salinas Valley in
Monterey County, which is often referred to as the ”Nation’s Salad Bowl”. There is evidence
of widespread pesticide exposure to all the population in the U.S., including pregnant women
and children. [1, 8, 9, 31, 40, 20] There have been several studies which have analyzed the
effects of in utero OP pesticide exposure and fetal growth. [19, 52, 60, 18] However, these
studies have shown conflicting results. For example, Berkowitz et al. (2004) found that
maternal levels of chlorpyrifos above the limit of detection coupled with low maternal PON1
activity were associated with a significant but small reduction in head circumference. The
pesticide metabolite levels alone were not associated with any of the fetal growth indices.
Perera et al. (2003) found that, in residents of upper Manhattan, New York, increasing
levels of OP pesticide chlorpyrifos in umbilical cord blood were associated with decreased
birth weight and birth length but not with head circumference. Eskenazi et al. (2004) failed
to demonstrate an adverse relationship between fetal growth and any measure of in utero
OP pesticide exposure as measured by dialkyl phosphate metabolites in urine. Furthermore,
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they found an increase in body length and head circumference associated with some exposure
measures.

Although there are not studies in humans, there is some evidence of postnatal weight
gain in rats that were chronically exposed to OP pesticides. [38, 42] Meggs and Brewer
(2007) found that rats in the exposed group were significantly heavier than those in the
control group and the increase occur concretely in adipose tissue. Lassiter and Brimijoin
(2007) found that male rats, exposed between gestational day 7 and till the end of lactation,
showed excess weight gain and larger volumes than control rats 45 days after birth and that
the differences increased with time.

The purpose of the present study is to investigate the longitudinal effect of OP pesticides
exposure on child’s weight at 3.5 years of age. These children are participants in a longi-
tudinal birth cohort where information about their exposure to organophosphate pesticides,
weight, and other covariates were measured at several time points during this period. Our
particular question of interest is to estimate the impact on the mean weight of this popula-
tion that an hypothetical intervention, where exposure was reduced to its minimum at all
time points, would have compared to the mean weight given the actual levels of exposure.
The estimation of this particular parameter of the intervention-specific counterfactual dis-
tribution is identified by the so called G-computation formula. The parameter we estimated
was simple, but at the same time it is considered the gold standard of any intervention. It
is unreasonable to ask what would have been the effect between the highest and the lowest
levels of exposure because we will not try to expose the children to the highest levels ever,
for health and ethical reasons, but we will certainly try to lower their exposure to the lowest
levels possible. For the targeted estimation, we considered a degenerate initial estimator
of the intermediate conditional distribution. This way we only needed to target the final
step at the outcome, child weight at 3.5 years, given the history of covariates and history of
exposures.[72]

4.2 Materials and methods

Participants

The population under analysis participated in the longitudinal birth cohort study of the
Center for the Health Assessment of the Mothers and Children of Salinas (CHAMACOS),
which is conducted by the Center for Children’s Environmental Health Research at the Uni-
versity of California, Berkeley. The study focuses on the effects of pesticides and other
environmental exposures on the health of pregnant women and their children living in the
Salinas Valley, CA. The population and its characteristics have been previously described in
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detail by Eskenazi et al. [18].

The women and their children have been followed and interviewed after birth on pre-
established time intervals at 6, 12, 24 months, and 3.5 years. During these interviews,
trained, bilingual and bicultural personnel conducted extensive and detailed questionnaires
about the child’s health, family status, and life events during the time since the last inter-
view. The children biometrics were carefully measured and recorded. Biological samples,
blood and urine, were also collected.

Pesticide exposure measurement

The exposure to organophosphate (OP) pesticides was assessed by measuring non-specific
organophosphate dialkyl phosphate metabolites in urine. Maternal urine was collected during
pregnancy (twice) and at delivery. The first and second samples during pregnancy occurred
at a mean of 13 weeks gestation (range, 4-29 weeks) and at 26 weeks (range, 18-39 weeks),
respectively. Spot urine samples were collected from the children at each of the subsequent
interviews after birth. Urine specimens were aliquoted and stored at -80∘ C until shipment
to the Center for Disease Control and Prevention (CDC; Atlanta, GA) for analysis of dialkyl
phosphate metabolite levels. [18]

Six dialkyl phosphates metabolites were measured in the urine samples using gas chro-
matography and mass spectrometry and quantified using isotope dilution calibration.[10] The
dialkyl phosphates measured were dimethylphosphate, dimethyldithiophosphate, dimethylth-
iophosphate, diethylphosphate, diethyldithiophosphate, and diethylthiophosphate. The six
metabolites are grouped into dimethyl phosphates and diethyl phosphates. Approximately
80% of the organophosphate pesticides used in the Salinas Valley devolve to one or more of
these metabolites, which are excreted in urine. The most commonly used pesticides in this
region that devolve to dialkyl phosphates are presented in Table 4.1

Table 4.1: Dialkyl phosphate pesticides metabolites and parent compounds

Marker of exposure Parent compounds or class
Dialkyl phosphate metabolites (nmol/L)

Dimethyl phosphates Malathion, oxydemeton-methyl
dimethoate, naled, methidathion

Diethyl phosphates Diazinon, chlorpyrifos, disulfoton

Quantities of the six metabolites were converted to molar concentration (nmols per liter)
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allowing us to add them. From these elements we defined our three measures of exposure:
total concentrations of dialkyl phosphate metabolites (Total DAPs), total concentration of
diethyl phosphate metabolites (DEs), and total dimethyl phosphate metabolites (DMs). The
two maternal prenatal sample were averaged to create a single prenatal exposure value.

It is a standard procedure to adjust for creatinine concentration when exposure is mea-
sured in urine samples. Creatinine gives a reference on how diluted the samples are. The
concentrations were determined using a commercially available diagnostic enzyme method
(Vitros CREA slides; Ortho Clinical Diagnostics, Raritan, NJ). Samples with creatinine lev-
els < 10mg/dL were considered too diluted for accuracy of analysis and therefore excluded.
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4.2.1 Parameter of interest

Figure 4.1 shows the hypothesized directed acyclic graph (DAG) for our analysis.[62] The
main outcome is child’s weight at 3.5 years of age. However, child weight was also collected
at each of the preceding time points: delivery, 6 months, 12 months, and 24 months.

The complete technical details supporting our estimations can be found in van der Laan
(2010).[71, 72] Here, we only present the basic elements needed to perform this estima-
tion. We define the observed data as O =

(
L(0), A(0), L(1), A(1), L(2), A(2), Y = L(3)

)
=(

A,L(A)
)
∼ P . L(A) is the observed covariate process over all time points up to the out-

come Y . It is assumed that L(t) occurs before A(t), and we are interested in the effect of
interventions on the A-nodes of this graph. In particular, our parameter of interest is the
marginal effect difference between the child exposure fixed at its lowest level at each time
point, A = 0, and the actual exposure levels on the observed outcome at 3.5 years, Y .

 (0) = E
[
Y
]
− E

[
Y (0)

]
(4.1)

For simplicity, we used the definition in van der Laan (2010), to estimate the G-computation
at a degenerate initial estimator. This method assumes that the initial estimator provides
deterministic predictions of the intermediate time-dependent covariates, so that the clever
covariate for all intermediate factors equals zero. Therefore, the targeted Maximum Like-
lihood Estimation (TMLE) only involves updating the conditional distribution of the final
node Y , given its predecessors.[72]

Estimators

We targeted our initial estimate of the OP pesticides effect on child’s weight holding
exposures at their lowest level. TMLE carries out a targeted bias reduction specifically for
the parameter of interest. For complete technical and theoretical details about this general
estimating approach we refer readers to the seminal paper by van der Laan and Rubin.[76]

Below we present the targeted element for the parameter of interest. Remember that the
other element necessary to calculate our parameter of interest does not need to be targeted
since it is the mean child weight of the observed data at the actual levels of exposure. We
will only target the weight of the children holding the exposure level low at all three time
points. TMLE steps:

1. Estimate the conditional expectation of Y given A, and L(A); denoted by

E
[
Y ∣ A,L(A)

]
= 

(
Q
(
A,L(A)

))
= Q0

n

(
A,L(A)

)
, (4.2)

where  is the link function.
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2. Estimate the conditional distribution of the exposure A given covariates L(K) and
previous exposures A(K − 1), where K is the end point. In order to estimate g(A ∣
L(2)), we factorize it into three treatment times and fit each of them separately. For
instance:

g(A ∣ L(2)) =
2∏

t=0

g
(
A(t) ∣ L(t), A(t− 1)

)
(4.3)

= g (A(0) ∣ L(0))× g (A(1) ∣ A(0), L(0), L(1))× g (A(2) ∣ A(0), A(1), L(0), L(1), L(2))

3. Calculate a specific covariate for each individual target based on the subjects observed
values L(A), A and the estimate g0n

(
A(K) ∣ L(K), A(K − 1)

)
. This new covariate,

whose form depends on the parameter of interest and the model of Y ∣ A,L(A), is
denoted by ℎ(A,L) and sometimes referred to as a “clever” covariate. In our case

ℎ(A,L(A)) =
I
(
A = (0, 0, 0)

)
g
(
A ∣ L(2)

) (4.4)

4. Update the initial regression Q0
n

(
A,L(A)

)
by adding the clever covariate ℎ(A,L)

and estimating its corresponding coefficient by simple maximum likelihood, holding
Q0

n

(
A,L(A)

)
fixed at their initial values by using it as offset. The updated regression

is denoted (Q1) = (Q0 + �ℎ).

5. Implement the estimator by using Q1 to predict with all A = a and keeping the original
values for L

(
a = (0, 0, 0)

)
.

Specifically, the TMLE of �(0):

�TMLE(0) =
1

n

n∑
i=1

Q1
n(0, Li). (4.5)

TMLE is consistent if at least one of the two functions, Q and g, is consistently estimated.
Additionally, the estimator is locally efficient in the sense that it is efficient if both models
are estimated consistently.
We need to estimate both, Q0

n and g0n, and their models need to be correctly specified for
the estimating procedure. We will not use parametric models specified a priori. Instead,
we will use a data-adaptive model selection approach, a machine learning approach, which
has the property of potentially approaching a non-parametric model as n → ∞. There
are many such procedures available, like the Deletion/Substitution/Addition (D/S/A) al-
gorithm, Least Angle Regression [16], Random Forest [11], Support Vector Machine, Gen-
eralized Additive Models (GAM), and Polychotomous Regression[35]. Each one of these
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procedures returns an “optimal” model, not all of them identical, based on their own opti-
mality criteria.

For example, the D/S/A algorithm performs data-adaptive estimation through selection
of the estimators based on heavy use of cross-validation and the L2 − loss function. The
candidate estimators will always be polynomials which comply to user-specified constraints
like maximum number of terms in the polynomial, maximum power of polynomial terms and
maximum order of interaction.[68] Another example is gam, which replaces the linear form of
the covariates (

∑
�iXi) by a sum of smooth functions (

∑
si(Xi)), where the functions si(⋅)

are unspecified and are estimated using an iterative procedure called local scoring algorithm,
resulting in a nonparametric regression method.[29] A third example is Polychotomous Re-
gression, which fits a regression model using linear splines and their tensor products.[21, 35]

Above we mentioned a list of model selectors which we will refer to as “candidate learn-
ers”. We can use them to define the models we need for our estimations. Van der Laan
et al. (2007) propose an algorithm, the SuperLearner, to select the best possible model
using a convex combination of the resulting models from each of the candidate learners.
The resulting model will be as good or better than every single model from the candidate
learners.[74]

4.3 Data analysis

We limited our analysis to those participants with complete records. This is, those whose
exposure had been evaluated and their weight measured at each of the considered time points.
Our final sample size was 265 children. In those cases were one of the six metabolites was
not readable because of analytic interference, the missing value was imputed using simple
regression analysis on the other metabolites within the same group (i.e. diethyl or dimethyl
phosphates, respectively) and the same time point. This imputation was justified because
of the high correlation of the metabolites within groups by time point. Metabolites missing
because their levels were below the limit of detection (LOD) were given the value of the LOD
divided by the square root of two. [32]

We measured child exposure at 6, 12, and 24 months as well as the child weight at birth,
6, 12, 24 months, and 3.5 years of age - the end point of our analysis. To estimate our
parameter of interest, we needed to specify three different models. From Figure 4.1, The
first model corresponded to the categorical child weight at 12 months (L1) given the baseline
covariates (L0) and the child exposure at 6 months (A0). The second model corresponded
to the categorical child weight at 24 months (L2) given baseline covariates, child exposures
at 6 and 12 months(A1), and the previous categorical weight at 12 months. Finally, we
estimated the model for child weight, as a continuous variable, at 3.5 years (Y ) given the
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baseline covariates, child exposures at 6, 12, and 24 months(A2), and the intermediate cat-
egorical weights at 12 and 24 months.

We categorized OP pesticide exposure into three levels: 0 =low, 1 =medium, and
2 =high. This procedure simplified our calculations and still allowed us to obtain the param-
eter of interest fixing the exposure at the desired level. We also categorized the intermediate
child weights at 12 and 24 months into low-, medium- and high weight. Simulating the
intermediate weights at the desired exposure level in the continuous case is a much harder
problem. It implies estimating the full conditional density instead of only estimating the
probability of being at each weight level given the exposure and covariates. Child weight at
3.5 years was left as a continuous variables since no simulation of it was needed for a later step.

Baseline covariates were defined as maternal exposure (measured during pregnancy and
delivery), child weight (delivery and 6 months), and covariates recorded up to the 6 months
interview. Both, birth and 6 months weights were also left as continuous variables because
no simulation was performed with them. The full list of covariates at each time point can
be found in Table 4.2. Some of the covariate were time dependent and therefore recorded at
each of the interviews.
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Table 4.2: Covariates used in the different model selection procedures

Model
Covariate L1 L2 Y
Sex ✓ ✓ ✓
Age in months ✓ ✓ ✓
Birthweight ✓ ✓ ✓
Infant’s chest circumference at delivery ✓ ✓ ✓
Gestational age ✓ ✓ ✓
Breastfeeding status ✓ ✓
Breastfeeding length ✓ ✓ ✓
Husband’s agricultural worker ✓ ✓ ✓
Maternal smoking status ✓ ✓ ✓
Child around smokers ✓ ✓ ✓
WIC ✓ ✓ ✓
Poverty status at baseline ✓ ✓ ✓
Poverty status at the time ✓ ✓ ✓
Child attended child care ✓ ✓ ✓
Mother’s height ✓ ✓ ✓
Mother’s pre pregnancy weight ✓ ✓ ✓
Mother’s pre pregnancy BMI ✓ ✓ ✓
Maternal exposure during pregnancy ✓ ✓ ✓
Maternal exposure at delivery ✓ ✓ ✓
Maternal education ✓ ✓ ✓
Paternal education ✓ ✓ ✓
Years in the US at baseline ✓ ✓ ✓
Maternal calories consumption at 26wks ✓ ✓ ✓
Diet Quality Index for Pregnancy at 26wks ✓ ✓ ✓
Child weight at 6M (continuous) ✓ ✓ ✓
Categorical child weight at 12M ✓ ✓
Categorical child weight at 24M ✓
Child attended preschool at 42M ✓
TV hours/weekday ✓
TV hours/weekend day ✓
Hours/day child played outside in past week ✓
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There were missing values among the covariates at the different time points. We de-
cided to impute those values because we did not want to lose more observations and we
considered that imputing them would not substantially affect or influence our results in a
strong way. The imputations were performed in R using the multiple imputations package
“mi”.[23, 58] The strength of this package is that it performs an iterative regression imputa-
tion of the missing values until approximate convergence is achieved. In our case, the matrix
of covariates could be split into those covariates with missing observations, M with columns
M(1), . . . ,M(K), and those covariates with complete observations, C. First, the missing val-
ues of M are imputed using a crude approach (for example, imputing by randomly selecting
from the observed outcomes for that variable). Then the algorithm continues imputing M(1)
given M(2), . . . ,M(K) and C; imputing M(2) given M(1), . . . ,M(K) and C; and so forth,
randomly imputing each variable and looping until approximate convergence. Additionally,
the fact that these covariates were considered to be potentially included in the models does
not imply that the machine learning processes used actually selected them as part of their
optimal model.

Table 4.3: Age range and distribution of the children at each of the planned interviews

Planned Interview distribution of age in months

6 months actual age: 5 6 7 8 9 10 11
n: 69 129 38 15 7 4 3

12 months actual age: 11 12 13 14 15 16 17
n: 76 122 35 14 8 7 3

24 months actual age: 23 24 25 26 27 28 29
n: 90 122 32 11 5 3 2

42 months actual age: 41 42 43 44 45 46 ≥ 47
n: 54 114 38 34 7 6 12

Table 4.3 shows the age range of the children for each of the interview cycles. The data
in this order violates the time-ordering assumption because, for example, the exposure mea-
surement of a 12-month old child will clearly have occurred before the weight measurement
of a 13-month old child, but we assumed in our model that the exposure measured at the 12-
months interview happened after the weight measured at the same interview, for all children.
Even though for most children we had the weight at the exact age of the planned interview,
we could not adjust the other weights to this age. Having done so would have violated
the time ordering assumption for those who were interviewed ahead of time. Therefore, we
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decided to adjust the weights to the earliest age within each interview cycle.

We performed a linear interpolation procedure to set all child weights at the lowest age
of the corresponding interview. The interpolated values corresponded to 5 months of age at
the 6-months interview, 11 months of age at the 12-months interview, 23 months of age at
the 24-months interview, and 41 months of age at the 42-months or 3.5 years interview. The
interpolating points were the unadjusted weights at the immediately preceding interview and
the weight record to be adjusted. This is a valid estimation since children of the ages under
study follow almost a linear piece-wise pattern within short periods of time, as can be seen
from the available national growth charts. [13] Finally, we remark that even though these
adjustments modify our original data, and in particular our outcome variable, it was not
possible to adjust the exposure values in a consistent way since those cannot easily be esti-
mated or interpolated from their other measurements as the weights are. Dialkyl phosphate
metabolites are highly variable and we could not support the validity of any interpolation
between two measurements.

We mentioned above that complete analysis required estimating three different mod-
els, L1(A0, L0), L2(A1, L1), and Y (A2, L2). All three models were estimated using machine
learning techniques through the use of SuperLearner.[74] We used four different candidate
learners for each one of the model selections: glm, gam, polymars, and D/S/A. The last two
candidate learners had to be tailored for each of the model selections. We specified internal
parameters to guarantee that the exposure would always be part of the end model. There
was a possibility that the exposure was left out of the main model if the candidate learner
did not consider it significant for the model under its selection criteria. Forcing the exposure
into the models was necessary for later stages when we simulated exposure at the lowest
levels.

Since the intermediate child weights were defined as categorical, with more than two lev-
els, we had to specify multinomial models for them. The estimation of these models required
us to go over a few more steps because, currently, the SuperLearner package in R only allows
model selection of binary or continuous outcomes, where the family is either binomial or
gaussian, respectively.[55, 58] Neither of these two families was directly appropriate for the
model selection of the intermediate outcomes. We defined an alternative way to obtain the
optimal model: the models for 12 and 24 months categorical child weight were estimated by
weighting three individual models for each of them. These individual models corresponded
to a dummy variable (Z) indicating if the weight corresponded to the low, medium, or high
level, respectively. For simplicity of notation we denote the corresponding covariates for each
of the two intermediate models with W , not without emphasizing that W is not the same
for both time points. We estimated the redefined binary models with SuperLearner using
the previously named candidate learners.
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Model 1 : P̂low(I(Z = low) ∣ W )

Model 2 : P̂medium(I(Z = medium) ∣ W )

Model 3 : P̂ℎigℎ(I(Z = ℎigℎ) ∣ W )

SW = P̂low(I(Z = low) ∣ W ) + P̂medium(I(Z = medium) ∣ W ) + P̂ℎigℎ(I(Z = ℎigℎ) ∣ W )

P̃ (Z = i ∣ W ) =
P̂i(Z = i ∣ W )

SW

where: i ∈ {low,medium, ℎigℎ}

This weighting provided us with three probabilities, which added to one, and corre-
sponded to the chance of being at each one of the weight levels given the sets of covariates.
These probabilities were used to simulate the discrete weights later, when we fixed the ex-
posure at its lowest level.

The model selection for the end outcome was also performed using SuperLearner and
the same four candidate learners. This estimation did not require additional steps since the
outcome was continuous and the package was capable of accommodating it. Nevertheless,
we also fine tuned polymars and D/S/A to guarantee that the exposures remained in the
final model.

All the models were estimated using the original sample size of 265 observations. How-
ever, for the calculation of the parameter of interest we resampled with replacement 10,000
observations. This provided us with an estimate that should be closer to the actual popu-
lation. From these 10,000 observations, it was straight forward to calculate the mean child
weight under their actual exposure and covariates, E

[
Y
]
, the first element of our parameter

of interest. Then, we conducted the simulation to obtain the child weight if the exposure
levels had been low at all three times of exposure. Using the estimated model for the cat-
egorical weight at 12 months, we passed the actual covariate values but fixed the 6 month
child exposure to “low” for everybody, A(0) = 0. This returned a matrix of 10,000 rows and
three columns, corresponding to the probability of being at each of the three weight levels at
12 months of age. We used this probabilities and sampled the weight level at 12 months for
each child. Using these newly simulated weight levels, the actual covariate values, and the 6-
and 12-month exposures fixed at the “low” level (A(1) = (0, 0)), we calculated the probabil-
ities of being at each of the three weight levels at 24 months of age; new 10, 000× 3 matrix.
Using the probabilities in the last matrix, we sampled the weight level for the children at
24 months. Using the simulated child weight categories at 12- and 24-months, the fixed
exposure levels at the low level (A(2) == (0, 0, 0) = 0), and the actual covariate levels, we
calculated the weight for the 10,000 children at age 3.5 years. With the simulated weights we
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calculated the mean child weight at the desired level of exposure, �(0). The last calculation
provided the second element necessary to estimate the mean weight difference between the
actual level of exposure and the intervention level.

To improve the estimation of our parameter of interest, we targeted the above simulated
estimate. This procedure required additional model estimations for g (see Eq.4.3) which
was actually factorized into three models. These models were selected using only polymars.
Nevertheless, we performed the model selection using SuperLearner with a single candidate
learner. The target exposure is not a frequent level of exposure in our population; only
6% of the children showed exposure levels being low at all three time points. Once each of
these models was estimated, we simulated them at the low level of exposure and obtained
our clever covariate for the targeted step, ℎ(A,L(A). After performing the full target proce-
dure we updated our initial estimates of the simulation at the level of interest and obtained
the new targeted values, �TMLE(0). We calculated the mean targeted weight and the mean
targeted difference between the child weights at the actual exposure levels, E

[
Y
]
, and the

targeted exposure levels,  (0).

We used bootstrap with 1,000 cycles to estimate the inference of our estimates. Each
bootstrap cycle involved sampling with replacement 265 observations from our original 265
records. The newly sampled population was used to recalculate the coefficients of the op-
timal models provided by SuperLearner. The convex combination of the models would be
the same as in the original model selection for all cycles. With the updated coefficients and
sampling with replacement 10,000 observations from this new population, we re-estimated
the parameter of interest and its targeted version once more, just as described above. This
process allowed us to build confidence intervals for our estimates, initial and targeted.

The whole analysis was performed again using creatinine adjusted exposures. The meth-
ods used were identical and the purpose of it was only a comparative analysis of the two
ways to present the exposure given that it was measured in urine samples.

See Appendix C for a simplified guideline algorithm of all the calculations.

4.4 Results

All our results showed negative effects of being exposed to higher levels of OP pesticides.
We observe that the actual levels of exposure, out of which only 6% were low all the time,
decrease the mean weight of the population compared to the mean weight if all individuals
had been exposed to the low levels at all time points. The simulated mean child weight
increased under the different conditions of our analyses: initial (before target adjustment),
targeted, creatinine unadjusted, and creatinine adjusted. However, none of the differences
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between the mean child weight at 3.5 years of age at the actual levels of exposure minus the
mean child weight at the simulated level of interest were significant. Table 4.4 shows all the
mean weight differences and their p-values; all of them are far from reaching significance.

Except for the case of the creatinine adjusted DMs exposure analysis, last row of Table
4.4, the targeted analyses showed a small shift away from the null compared to the initial
estimate equivalents. However, the differences between these two estimates were not sig-
nificant either (results not shown). It is interesting to notice that the creatinine adjusted
analyses for Total DAPs and DMs showed also a shift towards the null. In the case of DEs
exposure, the creatinine adjusted values shifted away from the null compared to their cre-
atinine unadjusted versions. The latter are the largest differences we observe; above 0.5kg,
but just reached a p-value of 0.6.

Figures 4.2-4.4 present the histograms of the 1,000 cycles of the bootstrap estimates
for Total DAPs, DEs, and DMs exposure analyses, respectively. We purposely marked the
histograms within each set only with the letters a-d. The intention was to show how similar
the results are for the four analyses. The order of the histograms corresponds to the same
order of the analyses presented in Table 4.4 by exposure: a)initial - creatinine unadjusted,
b)targeted- creatinine unadjusted, c)initial - creatinine adjusted, d)targeted - creatinine
adjusted. The red lines in the histograms denote the point estimates from Table 4.4.

Table 4.4: Simulated mean child weight differences in kg between the observed weights at
the actual levels of exposure and the weights at the simulated levels, holding exposure low
at all time points of exposure. (Walt Test’s p-values shown in parenthesis.)

Exposure Creatinine Initial estimate
 (0)

Targeted estimate
 TMLE(0)

Total DAPs unadjusted -0.246 (0.745) -0.273 (0.734)

adjusted -0.117 (0.786) -0.146 (0.779)

DEs unadjusted -0.039 (0.797) -0.179 (0.772)

adjusted -0.512 (0.604) -0.566 (0.566)

DMs unadjusted -0.339 (0.714) -0.356 (0.706)

adjusted -0.169 (0.771) -0.150 (0.776)
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Figure 4.2: Histogram for the mean child weight difference in kg between the actual levels
of Total DAPs exposure and the level of interest, holding Total DAPs exposure at its
low level at all time points. Left and right columns correspond to the initial and targeted
estimates, respectively. Upper row and lower row correspond to the creatinine unadjusted
and creatinine adjusted exposures, respectively. The purpose of having labeled the four
variants of our analyses only with letters a, b, c, and d was to emphasize how all of them
show the same consistent result. The red line corresponds to the point estimate and the bars
are the result of a 1,000 cycles of bootstrap. The blue dashed line corresponds to the mean
of the bootstrap cycles.
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Figure 4.3: Histogram for the mean child weight difference in kg between the actual levels
of DEs exposure and the level of interest, holding DEs exposure at its low level at all time
points. Left and right columns correspond to the initial and targeted estimates, respectively.
Upper row and lower row correspond to the creatinine unadjusted and creatinine adjusted
exposures, respectively. The purpose of having labeled the four variants of our analyses only
with letters a, b, c, and d was to emphasize how all of them show the same consistent result.
The red line corresponds to the point estimate and the bars are the result of a 1,000 cycles
of bootstrap. The blue dashed line corresponds to the mean of the bootstrap cycles.
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Figure 4.4: Histogram for the mean child weight difference in kg between the actual levels
of DMs exposure and the level of interest, holding DMs exposure at its low level at all time
points. Left and right columns correspond to the initial and targeted estimates, respectively.
Upper row and lower row correspond to the creatinine unadjusted and creatinine adjusted
exposures, respectively. The purpose of having labeled the four variants of our analyses only
with letters a, b, c, and d was to emphasize how all of them show the same consistent result.
The red line corresponds to the point estimate and the bars are the result of a 1,000 cycles
of bootstrap. The blue dashed line corresponds to the mean of the bootstrap cycles.

a

−2 −1 0 1 2

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

b

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

c

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

d

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6



CHAPTER 4. 72

4.5 Discussion

In the cross-sectional analyses of OP pesticides exposure and child weight in Chapter
3, there were several significant associations of Total DAPs, DE, and DM on child weight
evaluated at 24 months. However, among numerous comparisons, we found that creatinine
adjusted DM levels at 12 months and DE levels at 24 months were the only associations
with child weight at 3.5 years. There was no evident reason to explain the change in results
by age 3.5 years. Therefore, in an effort to understand exposure effects on a longer time
period, we decided to define the outcome of interest at 3.5 years instead of 24 months in the
present chapter. Looking for effects longitudinally increased the space in which we defined
our parameter of interest, diminishing power to fine significant effects.

To our knowledge and given the available literature, this is the first analysis where child
exposure to OP pesticides and child weight, as a measure of growth, have been analyzed
longitudinally. Having found no significant effects of the current exposure levels on the chil-
dren’s weights at 3.5 years could be interpreted as no adverse risk to their health from this
source, but a single study is clearly not conclusive. The observed distributions from the
bootstrap procedures have a wide range of effects from -2kg to +2kg, making it also impos-
sible to claim that there is truly no effect. However, we are very confident of our results
given their consistency under modified conditions: adjusting for creatinine and targeting the
parameter of interest. We do observe a small shift which could be interpreted as a reduction
in the bias, and as an improvement from the initial estimates, but all results remained not
significant.

This study has been able to collect great amounts of data over the years and it contin-
uously monitored a consistent population for exposure and health effects. We manipulated
the collected data to make sure that the exposures and outcomes followed the specified time-
ordering assumption. This meant that all exposures did occur before the outcome and not
later or even at the same time. For this reason, exposure measured at the 6-months interview
was considered as exposure for the child weight at 12 months; the exposure measured at the
12-months interview was defined as the exposure for the child weight at 24 months; and the
exposure measured during the 24-months interview was considered to affect the outcome at
3.5 years. This way, weight- and exposure-measurements were defined in a logical time order.

We are aware of some of the weakness of our study. The first one being the source of
the exposure measurement. We measured nonspecific metabolites of OP pesticides in urine
samples and not their parent compounds in blood. Second, DAPs are a measure of short-
term exposure to OP pesticides and may not reflect the “real” exposure over time. Third,
DAPs in urine may reflect exposure to preformed DAP metabolites already present in the
environment in addition to OP pesticide exposure.[57] Additionally, it is not known how
DAP metabolite levels and excretion patterns may differ by PON1 status, even with individ-
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uals with similar exposures.[27] Another limitation of this study is that we manipulated the
original data in order to comply with the set of assumptions that are needed in longitudinal
analyses, e.g., the time ordering assumption.

A further limitation of the study is observational studies like CHAMACOS will always
have to deal with participants not being fully compliant to the requirements of the study,
that could even end in a loss to follow-up. Figure 4.1 showed the assumed time order for
the interviews and the collection of samples. However, the actual times of sample collections
were different (see Table 4.3). Even though visits/interviews were scheduled, people would
miss their appointments and be weighted at a later time, e.g., children could have been ten
months old at the time of their “6-months” interview. There were also situations in which
the participants, aware of the coming interview, would go to the CHAMACOS’s facilities
ahead of time to be evaluated. It was impossible to refuse evaluating them at the risk of them
not returning at the precise time. The population under study is a low income farm worker
community with a high index of migration, making it extremely hard to follow scheduled
appointments with exactitude.

Our results may not generalizable to the rest of the US population. This population had
higher exposure to OPs based on DAPs that the general US population because of their
close proximity to agricultural activity in the Salinas Valley.[20] The population also belongs
to a very low income stratum. In addition, the children in this study were heavier than in
the general US population. For example, the children’s mean weight, 17.1kg, is over the
80th percentile for children their same age nationwide.[13] The CHAMACOS children had
a median weight of 16.2kg, indicating that it is skewed to the right. CDC growth charts
show that the nation wide median weight (3th-97th percentiles) for 3.5 year old boys and
girls is 15.3kg (12.5kg-19.5kg) and 14.9kg (12.1kg-19.6kg), respectively. In our population
38 children (14%) are over 20 kg at the same age.

The biggest limitation of the implemented method is that it completely depends on the
data and it might overfit the selected model. Because the whole process happens in a black
box type of procedure, the quality of the output (model) will heavily depend on the quality
of the input (data). We need to further investigate the difference between the point esti-
mates and the mean of the bootstrap procedures observed in all the histograms from Figures
4.2-4.4. At this time we ignore what can be causing such difference, given that theoretically
both values should coincide. We performed the target procedure to improve the initial esti-
mates of the parameter of interest by reducing the possible bias, even if none of the results
reached significance .

The assumed structure for exposures and effects, as depicted in Figure 4.1, should only
be considered as a guideline for how we believe the exposure to OP pesticides affects child
weight. We used it to establish the order in which we assume these variables interact. In a
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traditional setting, this could be considered a strong assumption of the model for the anal-
yses. In our case, on the contrary, this is just the minimum assumption required to perform
the machine learning process and the model selection at each time point. It is important to
remember that even if we forced certain variables into some of the machine learning algo-
rithms, their coefficients could have been very close to zero when they were considered to be
of no importance for the model. We learned in previous experimental runs that the inference
on variables, which were not forced into the model selection ended up with a degenerate
distribution peaking at zero, corresponding to every cycle where the variable of interest was
dropped by the selection algorithm.

We believe that the use of machine learning techniques are adequate for the task at
hand. Its strength is that we do not try to define a complete model of the data generating
distribution, but instead we focus our efforts in estimating the parameter of interest. Previ-
ously, epidemiological analyses would rely on much stronger assumptions like stratification
or informal model selection techniques. This erroneous approach delivers erroneous results.
Now, we find ourselves at a point of convergence between semi-parametric efficiency theory,
machine learning techniques, pathway graph theory, and statistical software like R. Previous
double robust methods provided the needed theory for the correct estimation of parameters
of interest, but those methods were too hard to implement. There is a learning curve for the
implementation of the techniques proposed in this analysis, but they are at the reach of any
researcher, with free software that is constantly developed and peer reviewed and tested.[58]
Moreover, if for any reason there is a preconceived model that the researcher believes is true,
he should include it in the Super Learner as another of the candidate learners and it will be
selected if it truly provides information on the data generating distribution. This inclusion
will not weaken the proposed method nor affect its efficiency.

For future directions, we believe that our analyses need to be repeated on the same pop-
ulation at later ages as well as on other measures of growth, like length and BMI. Lassiter et
al. (2007) found that overweight effects in rats were not noticeable before onset of puberty,
at least 95 days after birth in rats. Similar results were observed by Meggs, where chronic
exposure to OP insecticide chlorpyrifos had bigger effects on increased weight in rats at older
ages.[38, 42] In the CHAMACOS Study, data will continue to be collected and it is possi-
ble that longer periods of exposure will have a significant and different effect on children’s
growth. At this point, our results hint that a higher exposure to OP pesticides causes a
decrease in weight, contrary to what has been found in animal studies. The relative early
end point of our study, 3.5 years of age, did not allow us to see the long term effects of OP
pesticides exposure. We will continue to follow these children through puberty to determine
the longer term associations with weight.
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Chapter 5

Conclusion

5.1 Summary

The preceding chapters presented statistical methods for the robust estimation of po-
tential parameters of interest over the standard methods in observational studies. The
methodology for targeted maximum likelihood estimation was originally proposed in van der
Laan and Rubin (2006).[76] Here we have applied this general statistical approach to the
estimation of exposure effects in child development. These applications represent a novel
contribution to the literature for analyzing data from observational studies.

Chapter 2 provided the natural and controlled direct effect estimation of maternal de-
pression, evaluated by the Center for Epidemiological Studies Depression Scale (CES-D),
on infant neurodevelopment, evaluated by the Bayley Scales of Infant Development and the
Pre-School Language Scale.[59, 6, 78] In these particular analyses, one of the assumptions
was that the main exposure had two pathways in which it affected the outcome of interest,
directly and indirectly. The parameter of interest was defined in two ways. First, the di-
rect effect of exposure holding the intermediate pathways at the unexposed levels. Second,
the direct effect of exposure holding the intermediate pathways at fixed levels. The results
in section 2.5 indicated that maternal depression only had a negative effect on the child’s
expression development with an a average of −2.8 in the scale. Most important was the
comparison of the traditional methods to estimate the parameter of interest to the proposed
one. We observed that traditional methods tended to overestimate the effect, showing bias,
by at least 50%.

Chapter 3 presented a large set of cross-sectional analyses where the effects of organophos-
phate pesticides on four measures of child growth were estimated. Exposure was measured
at seven different time points and outcomes were recorded at five time points. In these
analyses, the efficiency and bias reduction of TMLE was shown. In particular, the com-
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parison of a fraction of all the test (Table 3.6) showed how traditional methods, crude and
adjusted linear regression, fail to provide significant estimates of the parameter of interest.
The TMLE approach also proved to be adequate for the search of potential effects in high
dimensional studies like the one under analysis. However, being this the first analysis of its
kind, we remind the readers that further verification of the findings is needed and that the
fact that effects were mainly present when outcomes were evaluated at 24 months, raises
questions about the validity of the findings.

Chapter 4 followed naturally from Chapter 3 even if presented as an independent analy-
sis. After an extensive cross-sectional search, the next logical step, when the data is available
and its structure allows it, is the longitudinal analysis of the data. Just like it occurs with
standard analysis techniques, TMLE also encounters more technical challenges in its im-
plementation in the longitudinal scenario. However, we were able to present a simplified,
yet adequate, analysis using TMLE based on the technical specifications from van der Laan
(2010).[72] No analyses conducted in this study resulted in significant associations. Being
this the same population under study as in Chapter 3, the longitudinal structure of the data
increases the sample space, reducing power to detect potential significant effects. Addition-
ally, the extensive pre-analysis preparation of the data could have also negatively influence
our capability to detect longitudinal effects from OP pesticide exposure on child weight.
Finally, we repeat that further analyses are required and in particular over the same popu-
lation as data becomes available.

5.2 Directions for future research

The methods discussed in this dissertation can be applied to many epidemiological stud-
ies in useful ways. Under the analysis of Ioannidis (2005), most of the published research
findings are false. This problem is due to many causes, but one of them is certainly the
erroneous analysis of the collected data.[33] The studies should focus and clearly identify
their parameter of interest before jumping into the definition of arbitrary parametric mod-
els, which will provide a biased answer to the original question.

The expected treatment assumption (ETA), required for the estimations conducted in all
chapters, states that each exposure levels has positive probability of being observed within
each strata of covariates. In the present dissertation ad hoc methods were implemented to
correct practical violations of this assumption. However, as me briefly mentioned before,
collaborative targeted maximum likelihood estimation can be applied.[73] Essentially, in this
latter approach, covariates are only included in the treatment (exposure) mechanism fit if
they improve the targeting of the parameter of interest while not heavily affecting the mean
square error (MSE).
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Robust methods for estimating associations and causal effects are required since tradi-
tional methods fail in this task. The goal is not just to gain efficiency and power, but perhaps
to reduce bias.

. . .

In summary, this dissertation presents a novel contribution to the literature for methods
to estimate effects in observational studies using targeted maximum likelihood estimation
(TMLE). The analyses presented here suggest that these methods are in fact a useful addition
to the current set of tools most commonly used, and should become standard practice in the
future.
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Appendix A

TMLE of the mean outcome by tertile
of exposure

Given the characteristics of our analyses, we wrote a single function to perform the TMLE
for all allowed pairs of exposure and outcome. We only needed to pass the desired exposure
and outcomes of interest as the input to our estimating function. The use of SuperLearner
was critical for the estimations, but the necessary candidate learners had to be specifically
defined for our analyses. While SuperLearner provides a series of ready to use candidate
learners or libraries, they not need to address the particular needs of every analysis and
custom libraries have to be defined. For the estimation of polymars and D/S/A we had to
define libraries where the exposure of interest was specifically forced into the model selection.
The way these two model selection algorithms work might well leave the main exposure out
of the optimal model, leading to inference errors later. Additionally the constrains of the
available D/S/A libraries within SuperLearner did not provide us with sufficient degrees
of freedom on the degree of the polynomial and this had also to be customized. Next we
describe the estimating procedure algorithm in detail.

1. Function parameters:

(a) the vector of actual outcomes, only one at the time from the four of interest
(weight, length, BMI, and waist circumference). The outcome also corresponded
to a single time of interest.

(b) the vector of actual main exposures, only one at the time from the three of interest
(Total DAPs, DEs, DMs). The exposure had to comply to the time constrain of
having occurred prior or concurrent with the outcome.

(c) the complete matrix of recorded covariates W corresponding to the time of the
outcome. The set of covariates changed depending the time of the outcome.

(d) the candidate learners for the estimation of Q0 (glm, gam, Polymars, and D/S/A)
and g (step.forward).
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2. Obtain the initial model for the outcome given the exposure and the set of covariates
using Super Learner and the first set of candidate learners. Q0 = Q0(Yi ∣ A,W ).

3. Target each of the tertiles of exposure, one at the time.

(a) With the optimal models, we calculated the counterfactual outcomes at each one
of the tertiles of exposure. For example, in the case of length, we calculated the
mean length outcome had all participants been exposed at the same tertile, for
each level.

(b) Estimate g using Super Learner again, but with the corresponding candidate
learner.

(c) Update the initial estimate of Q̂0 through the targeted estimation. Q∗1 = Q̂0+�∗ℎ
where ℎ = 1

ĝ(a∣W )

(d) Calculate the populations mean at the targeted level of exposure.

Ê[Y1] = Ê[Q∗(1,W )] =
1

n

n∑
i=1

Q∗(1,Wi)

Ê[Y2] = Ê[Q∗(2,W )] =
1

n

n∑
i=1

Q∗(2,Wi)

Ê[Y3] = Ê[Q∗(3,W )] =
1

n

n∑
i=1

Q∗(3,Wi)
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Appendix B

Complete cross-sectional result tables
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Appendix C

Longitudinal effect estimation
algorithm

1. Estimate the intermediate and final outcome models using SuperLearner with the de-
sired library of candidate learners. In our case: glm, gam, polymars, and D/S/A.

2. Sample with replacement 10,000 observations from the original data set to begin the
estimation of our parameter of interest.

(a) Simulate the first intermediate model fixing the level of exposure at the one of
interest and using the actual values of the covariates. This returns a matrix of
probabilities for the weight levels at the first intermediate time point.

(b) Using the probabilities obtained in the previous step, sample the weight level for
each subject at the first intermediate time point.

(c) Simulate the second intermediate model fixing the level of exposure at the one of
interest which is also consistent with the first simulation, the actual covariate val-
ues, and the simulated weight levels calculated in the previous step. This returns
a second matrix of probabilities for the weight levels at the second intermediate
time point.

(d) Using the probabilities obtained in the last step, sample the weight level for each
of the individuals at the second intermediate time point.

(e) Simulate the final model fixing the level of exposure at the one of interest which
is also consistent with the first two simulations, the actual covariate values, and
the simulated weight categories for the intermediate time points. This returns a
vector of weights for your population at the desired level of exposure.

3. Target the level of exposure used in the simulations and update your estimates. This
returns the targeted estimate under the exposure of interest.
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4. To obtain the inference on the estimate, and build confidence intervals around it,
bootstrap n ≥ 1, 000 times. Sample with replacement from the original population a
new population of the same size. Then perform steps 2 and 3 on the new population.




