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Abstract

Time crystals and space crystals: strongly correlated phases of matter with

space-time symmetries

by

Dominic Victor Else

This thesis is concerned with phases of matter, one of the central notions in con-

densed matter physics. Traditionally, condensed matter physics has been concerned

with phases of matter in thermal equilibrium, which means it is coupled to a heat

bath. The main interest of this thesis, however, is isolated systems, in which the sys-

tem is allowed to reach a steady state on its own, without interacting with a heat bath.

In such a context it is possible for the steady state to be non-thermal in character,

leading to many new phenomena.

A main interest of this thesis will be Floquet systems, which are systems that are

periodically driven, for example by a time-oscillatory electric field. In this thesis, we

will identify and charcterize phases of matter occuring in Floquet systems that are

entirely new, in the sense that they have no analog in equilibrium.

We introduce a “Floquet equivalence principle”, which states that Floquet topo-

logical phases with symmetry G are in one-to-one correspondence with stationary

topological phases with additional symmetry. This allows us to leverage the existing

literature on topological phases with symmetries to understand Floquet topological

phases. Such phases can be stabilized in driven strongly disordered systems through

the phenomenon of “many-body localization” (MBL). We discuss properties of Flo-

quet phases such as the “pumping” of lower-dimensional topological phases onto the

boundary at each time cycle.
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We then turn to spontaneous symmetry-breaking phases. We show that in Floquet

systems, there is a striking new kind of such phase: the Floquet time crystal, in which

the symmetry that is spontaneously broken is discrete time-translation symmetry.

Such systems, though driven at frequency ω, respond at a fractional frequency ω/n.

We show using analytical arguments and numerical evidence that such phases can be

stabilized in driven strongly disordered systems through the phenomenon of “many-

body localization” (MBL).

Next, we show that both Floquet time crystals and Floquet topological phases

can be stabilized even without disorder. We establish a new scenario for “pre-

thermalization”, a phenomenon where the eventual thermalization of the system takes

place at a rate that is exponentially small in a parameter. In the intermediate regime,

before pre-thermalization, there is a quasi-stationary pre-thermal regime in which

Floquet phases can be stabilized.

In a slight digression, we then develop a systematic theory of stationary topo-

logical phases with discrete spatial symmetries (as opposed to the discrete temporal

symmetry characterizing Floquet phases), showing that they also satisfy a “crystalline

equivalence principle” relating phases of matter with spatial symmetry to phases of

matter with internal symmetry. Our arguments are based on notions of “gauging

spatial symmetries” as well as a viewpoint based on topological quantum field theory

(TQFT).

Finally, we put the Floquet equivalence principle on a systematic footing, and

unify it with the crystalline equivalence principle for stationary topological phases,

by invoking a powerful homotopy-theoretic viewpoint on phases of matter. The end

result is a general theory of strongly correlated phases of matter with space-time

symmetries.
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Chapter 1

Introduction

1.1 Phases of matter

This thesis is concerned with phases of matter ; this is one of the central notions

in condensed matter physics. It has long been observed that as the parameters of a

system containing many particles are varied continuously, certain physical properties

can jump discontinuously, a phenomenon known as a “phase transition”. This is an

example of an emergent phenomenon, because the transition only becomes truly only

becomes discontinuous in the limit as the number of particles in the system goes to

infinity.

A phase of matter is a set of parameter values that can be interpolated between

without crossing a phase transition. Two parameter values are said to be in different

phases of matter if it impossible, even in theory, to connect them without a phase

transition. The way to show that two systems are in two phases is to describe some

discrete property which distinguishes them. Since the property is discrete, it follows

that it can only change via some sharp transition.

The classic example of such a discrete property is the spontaneously broken sym-

metry. This allows us to distinguish, for example, a liquid and a solid; a liquid has

continuous rotation and translational symmetry (on average), whereas a solid retains

1



Introduction Chapter 1

Parameter #2

Parameter #1

Solid

Liquid

Ferromagnet

Figure 1.1: Phases of matter

only discrete lattice symmetries. Similarly, in a magnetic system, a ferromagnet has

the magnetic moments aligned in a certain direction, breaking rotational symmetry,

whereas a paramagnet retains the full rotational symmetry.

More recently, it has been appreciated that there are other, much more subtle

discrete properties, that distinguish phases of quantum systems at zero temperature.

These are related to the pattern of quantum entanglement in the system, and are

referred to as topological order.

1.2 In and out of equilibrium

Traditionally, condensed matter physics has been concerned with phases of matter

in thermal equilibrium. This means that the system of interest is supposed to be

coupled to and exchange energy freely with its environment, which acts as a heat

bath. Well-known principles of statistical mechanics then imply that the long-time

2



Introduction Chapter 1

state of the system should be given by

ρthermal =
1

Z
e−βĤ , (1.1)

where Ĥ is the Hamiltonian describing the system’s evolution. We can then analyze

the phases and phase transitions of the state ρ as Ĥ is varied.

The main interest of this thesis, however, is isolated systems, in which the system

is allowed to reach a steady state on its own, without interacting with a heat bath.

In many cases, this does not actually make any difference, as subsystems of the

system can effectively act as heat baths for each other, so that at long times the

system still resembles the same thermal state ρthermal. But there are also many cases

in which this does not occur, and instead we obtain a different steady state ρsteady.

Specifically, in this thesis we will study phenomena that occur in the context of many-

body-localization (MBL), in which strong quenched disorder prevents the system from

thermalizing, and prethermalization, in which a separation of energy scales pushes

the thermalization time out to exponentially long times.

Finally, we note that in this dissertation we will mainly be concerned with Floquet

systems. These are systems which are periodically driven, for example by a time-

oscillatory electric field. Specifically, this means that the system evolves under a

time-dependent Hamiltonian Ĥ(t) which is periodic in time; that is, there exists a

period T such that Ĥ(t+ T ) = Ĥ(t).

1.3 Floquet phases

A main theme of this dissertation is the identification and classification of phases

of matter that occur in the long-time state of Floquet systems that are entirely new, in

3



Introduction Chapter 1

the sense that they have no analog in equilibrium. Specifically, the discrete properties

that distinguish them pertain to the “micro-motion”, which is the nature of the

evolution that the system undergoes in one drive period T . This micromotion can

have non-trivial features (for example quantized charge pumping), corresponding to

a genuinely non-equilibrium phase of matter.

However, the simplest and most dramatic example of a new Floquet phase of

matter introduced in this dissertation is the Floquet time crystal. This is an example

of a phase that occurs in the context of MBL. In this phase, the system fails to

synchronize with the drive, even at late times. Instead, the system oscillates with

period some multiple, for example 2T , of the drive period T .

The Floquet time crystals, although new to the Floquet context, can still be

thought of in terms of the paradigm of spontaneous symmetry breaking. However,

the relevant symmetry is the discrete time translation symmetry associated with the

time-periodicity of the drive, which is spontaneously broken if the system oscillates

with a larger period.

This thesis also contains various other results about the classification of Floquet

phases and scenarios in which they can occur. In order to make sense of the zoo of

potential new Floquet phases, symmetry-breaking and topological, that could exist, it

is useful to have an organizing principle. We will argue for an “equivalence principle”:

Floquet phases are in one-to-one correspondence with stationary phases, but with an

augmented symmetry group that takes into account the space-time symmetries of the

Floquet phase (for example, time translation symmetry).

4



Chapter 2

Review: Gapped quantum phases
of matter

In this chapter, we are concerned with phases of matter that occur in quantum systems

at zero temperature. Thus, they pertain to ground states of quantum Hamiltonians.

We can further subdivide these phases into two classes, gapped or gapless, depending

on whether there is a finite energy gap between the ground state and the first excited

state1. Here will be concerned only with gapped phases of matter. If a Hamiltonian

with local interactions is gapped, then its ground state necessarily has many special

properties. For example, correlations always decay exponentially with distance [1],

and it is believed (but proven only in one dimension) that the entanglement entropy

of any subregion scales like the boundary of that region (”area law”) rather than the

size of the interior (”volume law”) [2, 3]. For brevity, we will refer to zero-temperature

phases of matter in gapped local Hamiltonians as gapgrnd phases, and the ground

state of a gapped local Hamiltonian as a gapgrnd state.

Let us specify more precisely what we mean by classifying gapgrnd phases on

what we mean by classifying phases of matter. The ground states of two gapped

local Hamiltonians H0 and H1 are then said to be in the same gapgrnd phase

1In the definition of gapped, we will allow there to be several degenerate ground states, so long
as there is a gap to the other excited states

5
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if there exists a continuous path of Hamiltonians joining them without inducing a

ground-state phase transition. More precisely, since ground-state phase transitions

are associated with closing of the gap, we say that H0 and H1 are in the same phase

if there exists γ > 0 and a continuous path H(s), 0 ≤ s ≤ 1, of local Hamiltonians

such that H(0) = H0, H(1) = H1, and the gap of H(s) is at least γ for all 0 ≤ s ≤ 1.

We can also talk about phases of matter in the presence of a symmetry, in which case

we require H0, H1, and the path H(s) to respect the symmetry.

It is important to realize that, although we have introduced gapgrnd phases

and gapgrnd states in the context of Hamiltonians, the classification of gapgrnd

phases can be formulated as a statement purely about gapgrnd states [4]. Indeed,

later on in this thesis we will be talking about gapgrnd states for which the “parent

Hamiltonian” of which they are the ground state (though it, by definition, must exist)

has no physical significance. First of all, we note that a gapgrnd state |Ψ〉 will in

general admit several different parent Hamiltonians, say H0 and H1, but they always

correspond to the same gapgrnd phase, because one can easily show that if H0 and

H1 are gapped and have the same ground state |Ψ〉, then the path (1 − s)H0 + sH1

is also gapped (and has ground state |Ψ〉) for 0 ≤ s ≤ 1.

Next, we need to give a definition of “in the same phase” that does not refer to

parent Hamiltonians. We can do this by invoking the following (informally stated)

theorem [4–6].

Theorem. Two gapped Hamiltonians H0 and H1 are in the same phase if and

only if there exists a path of quasi-local Hamiltonians H(s), 0 ≤ s ≤ 1 such that

|Ψ1〉 = U |Ψ0〉, where |Ψ0〉 and |Ψ1〉 are the ground states of H0 and H1 respectively,

and

U = T exp

(
−i
∫ 1

0

H(t)dt

)
, (2.1)

6



Review: Gapped quantum phases of matter Chapter 2

where the symbol T denotes time-ordering. In other words, by time-evolving with

H(s) we can obtain |Ψ1〉 from |Ψ0〉. Here by “quasi-local” we mean that H(s) is a

sum of terms supported locally with tails decaying faster than any power law with

distance. (For phases in the presence of a symmetry, H(s) is required to respect the

symmetry).

We call a unitary U of the form Eq. (2.1) a local unitary. Thus, a concise statement

of the theorem is that two ground states are in the same phase if and only if they

are related by a local unitary. Local unitaries have a number of nice properties. For

example, they obey a Lieb-Robinson bound [7, 8], which means that the Heisenberg

evolution U †ôU only grows the support of an operator ô by a constant amount (up to

fast-decaying tails).

7



Chapter 3

Review: Thermalization and Lack
Thereof in Isolated Quantum
Systems

As we mentioned in the Introduction, in this thesis we are interested in isolated

systems (not coupled to a heat bath), and in particular isolated systems which do

not thermalize. In this chapter, we will first review the properties of isolated systems

that do thermalize, and then move on to the other possibilities.

3.1 Thermalization and the eigenstate thermaliza-

tion hypothesis

If an isolated quantum system, under the time evolution of its Hamiltonian, and

for any sufficiently physical initial state, approaches the thermal state ρgibbs at late

times, then we say that it thermalizes. Here we must add a caveat, because if the

system is initially in a pure quantum state |ψ〉, then it remains in a pure state for

all times, since the time evolution under a Hamiltonian is unitary. Meanwhile, the

thermal state ρgibbs is a mixed state. Therefore, the system can never precisely reach

the thermal state ρgibbs. Another way to say this is that since the microscopic time

8



Review: Thermalization and Lack Thereof in Isolated Quantum Systems Chapter 3

evolution in quantum mechanics is fundamentally reversible, the system cannot reach

the Gibbs state because there is only one such state at a given energy density, while

there are many possible initial states.

Nevertheless, we say that a system thermalizes if, at late times, it resembles the

Gibbs state on any finite subsystem. That is, for any finite subsystem R, we have

that

lim
t→∞

TrRc |Ψ(t)〉 〈Ψ(t)| = TrRcρgibbs (3.1)

where |Ψ(t)〉 is the state of the system at time t, and TrRc denotes the partial trace

over the complementary subsystem to R. This avoids the irreversibility problem: the

information about the initial state is still in principle present, but it would require

the (completely infeasible) measurement of highly non-local observables to recover it.

A very important property that appears (at least empirically) to be true of sys-

tems that thermalize is the eigenstate thermalization hypothesis (ETH) [9–12], which

postulates that a system will thermalize even if the initial state is an eigenstate of the

Hamiltonian. Since an eigenstate obviously does not evolve in time, it follows that

the eigenstate |Ψ〉 itself must be thermal, in the sense that for any finite subsystem

R,

TrRc |Ψ〉 〈Ψ| = TrRcρgibbs. (3.2)

This implies, in particular, that the entanglement entropy of the eigenstate on a

region R, defined by Sent = −Tr(ρ log ρ), where ρ = TrRc |Ψ〉 〈Ψ|, must scale with the

volume of R, since thermodynamic entropy is extensive. This is in contrast to the

area law for entanglement entropy for gapgrnd states (see Chapter 2).

9



Review: Thermalization and Lack Thereof in Isolated Quantum Systems Chapter 3

3.2 Floquet systems and thermalization

An (isolated) Floquet system is a system that evolves under a time-dependent

Hamiltonian H(t) that is periodic, that is there exists a period T such that H(t+T ) =

H(t). We can define the unitary time-evolution operator

Uf = T exp

(
−i
∫ T

0

H(t)dt

)
. (3.3)

At integer multiples of the driving period t = nT , the state of the system |Ψ(nT )〉

can then be expressed in terms of the initial state |Ψ(0)〉 as |Ψ(nT )〉 = Un
f |Ψ(0)〉.

Thus, a Floquet system can be thought of as the analog of an isolated system with

a time-independent Hamiltonian, but where the time evolution happens in discrete

steps rather than continuously.

The appropriate analog to the Gibbs state in a Floquet system, and the one

to which Floquet systems have been found to thermalize [13–15] is the infinite-

temperature, maximally mixed state, ρ ∝ I. A way to think about this is that

the Gibbs state is the state which maximizes the von Neumann entropy, subject to

the constraint of fixed energy (since energy is conserved). Floquet systems do not

have conservation of energy due to the time-dependence of the Hamiltonian, and so

nothing prevents them from thermalizing to the state of maximum entropy without

any constraints, which is the infinite temperature state. Of course, the infinite tem-

perature state cannot possibly exhibit any interesting phases of matter, so all the

phases of matter we will consider in this thesis will occur in systems for which ther-

malization is somehow inhibited (for example, by many-body-localization, the subject

of the next section).

10
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3.3 Many-body localization

An important class of systems which do not thermalize and violate the ETH are

those which are many-body-localized (MBL) [16–25]. MBL occurs in systems with

strong quenched disorder, which means that the Hamiltonian contains external fields

which vary randomly in space. MBL can be considered to be the deformation to

interacting systems of Anderson localization, which is a phenomenon that occurs in

systems of non-interacting fermions with quenched disorder (similarly to how a Fermi

liquid is a deformation to interacting systems of a Fermi gas).

3.3.1 Anderson localization

Before going onto many-body localization, we will briefly review its precursor,

Anderson localization [26]. This is a phenomenon that occurs in systems of non-

interacting electrons subjected to a random potential. If one places an electron in

such a system and then evolves according to Schrödinger’s equation, then we say

that the electron is localized if the wavefunction remains concentrated in the vicinity

of its intial position even at infinite times. That is, the electron does not diffuse.

An alternative way to think about localization is in terms of the eigenstates of the

Schrödinger equation. These are said to be localized if the probability amplitude is

concentrated near a given point, rather than being spread out over the whole system

as they would be for a periodic potential (by Bloch’s theorem).

An intuitive way to think about localization is by appealing to the atomic limit.

Consider, for example, a tight-binding model (the Anderson model), which we write

11
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in first-quantized notation as

H =
∑
i

ui|i〉〈i|+ t
∑
〈i,j〉

(|i〉 〈j|+ |j〉 〈i|). (3.4)

The states {|i〉} are the atomic orbitals, and ui are random potentials drawn from

some distribution. In the limit t = 0, there is no amplitude for electrons to hop

between atoms, so naturally the electrons are localized on the atoms. Indeed, this is

reflected in the fact that the eigenstates of H are the atomic orbitals {|i〉}. The ques-

tion is, what happens when we re-introduce nonzero hopping amplitude t? Naively,

we might expect to be able to treat this question in perturbation theory. By apply-

ing the standard time-independent perturbation theory, one finds that the first-order

correction to the eigenstates is

|i〉′ = |i〉+ t
∑
j,j∼i

1

ui − uj
|j〉 , (3.5)

where the sum is over nearest neighbors j to the orbital i. This is still localized, albeit

now with some amplitude on the neighboring atoms. Indeed, continuing to higher

orders, we find that the orbitals remain localized at any fixed order.

Therefore, we see that if a small hopping does cause the electrons to delocalize,

then it must happen non-perturbatively. The obvious culprit for a non-perturbative

localization would be resonances ; that is, nearby sites i and j which have nearly the

same energy, ui ≈ uj. Since denominators such as ui− uj appear in the perturbation

expansion, this is problematic from the point of view of convergence.

Nevertheless, there is reason to believe that resonances might not lead to delocal-

ization for small hopping t. For example, at first order the problematic resonances

occur when |ui − uj| . t. For t small the spots where this occurs will be rare. An

12
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isolated resonant spot must be dealt with nonperturbatively. However, this does not

necessarily ruin localization, because the effect will simply be a reorganization of the

orbitals in the vicinity of the location in space where the resonance occurs. There-

fore, heuristically, to prove localization one “just” has to prove that the resonances

remain sufficiently dilute through each order of perturbation theory, preventing them

from mediating any nonperturbative transport. This was attempted by Anderson [26]

through a statistical treatment. Rigorous mathematical proofs were given much later

[27–29].

3.3.2 Introduction to many-body localization from perturba-

tive analysis

Many-body localization (MBL) is an analog of Anderson localization that occurs in

interacting quantum systems. It is sometimes defined as the persistence of signatures

of localization when electron-electron interactions are turned on in a system with

Anderson localization. However, the phenomena characteristic of MBL are more

general than this and can occur, for example, in spin systems which do not have

any analog of Anderson localization. Therefore, we will instead introduce MBL in a

different way, as follows. A main lesson from Anderson localization is that behavior

which might appear to be very fine-tuned (electrons pinned to particular atoms)

turn out not to be in the presence of disorder, because perturbing the Hamiltonian

merely “dresses” the original orbitals. Therefore, we will now consider an interacting

Hamiltonian that appears similarly fine-tuned, and again we will find that perturbing

the Hamiltonian merely leads to a form of “dressing”.

Specifically, we consider the following Hamiltonian for a lattice of spin-1/2 parti-

13
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cles:

H = H0 + λV, (3.6)

H0 =
∑
j

hjσ
z
j , (3.7)

where the hj are quenched random fields drawn from some distribution. We will not

place any restrictions on V , except that it should be a sum of terms acting locally on

the lattice.

H0 appears to be a very fine-tuned Hamiltonian, because its eigenstates are prod-

uct states, specifically Szi eigenstates of the form | · · · ↑↑↓↑↓↑↑ · · · 〉 and so forth. This

means that the entanglement entropy of an eigenstate is zero, in sharp contrast to

the prediction of the ETH of a volume-law entanglement entropy (see Section 3.1).

However, we should now determine to what extent these properties are robust to

perturbation theory. As in the case of Anderson localization, we will proceed with a

perturbative treatment in λ, and then return to the question of its validity. Specifi-

cally, we will aim to perturbatively construct a local unitary U (see section 2) such

that Heff := UHU † is diagonal in the eigenstates of H0.

There are many different schemes to construct such a unitary U perturbatively,

but one which ensures that U is manifestly a local unitary at each order in pertur-

bation theory is called “van Vleck perturbation theory” [30]. In this scheme, we

attempt to write U = eiS := ei(λS1+λ2S2+··· ), for Hermitian operators S1, S2, · · · , and

compute order by order, imposing that at each order the diagonal matrix elements

〈Ψi|Sk |Ψi〉 = 0 (here {|Ψi〉} is a basis for the eigenstates of H0.) For example, at

first order we have

eiS(H0 + λV )e−iS = H0 + λV + iλ[S,H0] +O(λ2), (3.8)

14
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and imposing that the off-diagonal matrix elements of Eq. (3.8) and the diagonal

matrix elements of S are zero immediately gives the first-order contribution to S1:

S1 =
∑
i 6=j

|Ψi〉 〈Ψi|V |Ψj〉 〈Ψj|
Ei − Ej

(3.9)

=
∑
s

F(Vs), (3.10)

where we write V as a sum of local operators V =
∑

s Vs, and we define the map on

operators

F(ô) =
∑
i 6=j

|Ψi〉 〈Ψi| ô |Ψj〉 〈Ψj|
Ei − Ej

(3.11)

where Ei is the energy eigenvalue of |Ψi〉 for H0.

One can show that if ô acts on some local set of spins, then so does F(ô). Hence,

S1 is indeed a sum of local terms. Indeed, one can show that if we continue the van

Vleck perturbation to all orders then S remains local at any fixed order.

Hence, if we believe the perturbative approach is accurate, we find that there

exists a local unitary U which relates the eigenstates of H0 + λV . As in the case of

Anderson localization, the trouble for convergence arises due to “resonant spots”. In

the many-body context, a resonant spot is a location in physical space where there

exist local operators v̂ which have nonzero matrix element 〈Ψi| v̂ |Ψj〉 6= 0 between

states with Ei − Ej ≈ 0, since then Eq. (3.11) blows up. Nevertheless, when the

perturbation is small one hopes that such resonant spots are dilute. The reason is

for an H0 as written in Eq. (3.7) (and, it turns out, for any Hamiltonian exhibiting

MBL), the local spectrum – the possible energy differences in eigenstates connected by

local operators – is discrete and thus, at typical point in space, will not include zero.

Moreover, if a resonant spot can be treated in a non-perturbative fashion separately

from other resonant spots, then the result will be simply be some reorganization
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of energy levels described by a unitary operator supported near the resonant spot.

Therefore, dilute resonant spots do not prevent the existence of the local unitary U

mentioned above.

Giving a rigorous proof of the existence of MBL based on the ideas above is a chal-

lenging problem, due to the difficulty of treating resonances rigorously. Nevertheless,

such a proof has been given (albeit with an additional but very reasonable assump-

tion) in one dimension by Imbrie [23]. There is also substantial numerical evidence

for MBL in one dimension [17, 18], although one is restricted to only considering

relatively small system sizes.

3.3.3 Characteristics of MBL

The key feature of MBL as captured by the model of the previous section is

that there exists a single local unitary U which relates the eigenstates of H to the

eigenstates of a Hamiltonian H0 of the form

H0 =
∑
j

hjσ
z
j . (3.12)

Indeed, one could well take this as the definition of MBL [22]. (This definition can

be expanded slightly by allowing different forms of H0; the important thing is that

it is a sum of commuting terms). From this property one can deduce a number of

other interesting features of MBL. These features can be grouped into two (related)

groups: eigenstate properties and dynamical properties.

Eigenstate properties. Recall that the eigenstates of H0 were product states.

By assumption, if H is MBL this implies that the eigenstates of H are obtained from

those of H0 by a local unitary U . One can show that U can only create entanglement in

a region proportional to the boundary of that region, so we immediately conclude that
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the eigenstates of H0 obey an area law for the entanglement entropy [22]. This means,

in particular, that they do not satisfy the eigenstate thermalization hypothesis. Thus,

MBL systems constitute a counter-example to the conjecture that quantum systems

generically obey ETH.

Rather than appearing thermal, MBL eigenstates have properties characteristic

of gapped ground states of local Hamiltonians; in fact, in the language of Section

2, they are gapgrnd states. To see this, observe that any eigenstate of H0 can be

expressed as the gapped ground state of the Hamiltonian

∑
i

αiσ
z
i (3.13)

for some set of αi = ±1. Therefore, any eigenstate of H is the gapped ground state

of the Hamiltonian ∑
i

αi(Uσzi U †). (3.14)

Dynamical properties. A crucial feature of MBL systems is that they have

extensively many (in fact, a complete set) of quasi-local integrals of motion [21, 24].

To see this, observe that every eigenstate of H0 is also a simultaneous eigenstate of all

the operators σzi . Therefore, every eigenstate of H is also a simultaneous eigenstate

of the operators τ zi := Uσzi U † (often called “l-bits”). The existence of these local

integrals of motion means that the system cannot self-thermalize without a bath (as

one might have expected given the breakdown of ETH discussed above). Indeed, since

the τ zi are integrals of motion their expectation values cannot change, so the system

will always retain a memory of its initial state even at infinite times.
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3.3.4 Localization protected quantum order

Above, we mentioned that in an MBL system, all the eigenstates are gapgrnd

states. It follows that the classification of zero temperature phases matter discussed

in Chapter 2 can be extended to MBL systems as well, but it now applies to all the

eigenstates, not just the ground state [31, 32]. Generally, if all the eigenstates are in

a given topological or symmetry-breaking phase, this will have interesting signatures

in the dynamics. The most straightforward way to see this is in terms of the local

integrals of motion discussed above.

Let us discuss the simplest example, the Ising spin glass. This model has a

Hamiltonian of the form

H = −
∑
〈i,j〉

Ji,jσ
z
i σ

z
j + V, (3.15)

where V is some local perturbation that respects the Ising symmetry X :=
∏

i σ
x
i . As

long as the perturbation does not delocalize the system, then as before there will be

a local unitary U relating the perturbed eigenstates to the unperturbed eigenstates

which occur for V = 0. Moreover, the unperturbed eigenstates come in degener-

ate pairs, where the symmetry-respecting states are “cat state” superpositions of

symmetry-breaking states, just like in a zero-temperature phase with spontaneous

symmetry breaking (now, however, it is true throughout the whole spectrum). One

can show that the existence of a (symmetry-respecting) local unitary relating the

perturbed eigenstates to the unperturbed eigenstates ensures that these properties

also survive in the perturbed eigenstates.

We can use the local unitary U to define l-bits τ zi = Uσzi U †. The important

thing about these l-bits is they anti-commute with X, that is Xτ zi X = −τ zi . The

presence of l-bits not commuting with a symmetry can be taken to be the definition of

spontaneous symmetry-breaking in the MBL context. It has interesting consequences
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for the dynamics, as follows. Suppose we evolve the system with some generic initial

state. It will presumably have 〈τ zi 〉 6= 0, and therefore, under time evolution we will

find that 〈τ zi 〉 6= 0 at all times. Therefore, even at late times we find that the state of

the system does not respect the symmetry (because any symmetry-respecting state

has 〈τ zi 〉 = 0). By contrast, if the l-bits had commuted with X, one can show [33]

that at late times the state of the system would always respect the symmetry (at

least when looking at local observables), even if the initial state did not.

3.3.5 Floquet-MBL

MBL can also occur in Floquet systems [15, 34–37] Recall that these are systems

which evolve under a time-periodic Hamiltonian H(t), with H(t+T ) = H(t), so that

the time evolution at integer multiples of the driving period can be computed by

taking powers of the Floquet evolution operator

Uf = T exp

(
−i
∫ T

0

H(t)dt

)
(3.16)

Suppose that the Hamiltonian is of the form

H(t) = H0 + V (t), (3.17)

whereH0 is a time-independent Hamiltonian which is MBL, and V (t) is a weak driving

term. Without going into the details, let us note that one can perform a form of

perturbation theory [37], formally quite similar to the time-independent perturbation

theory of Section 3.3.2, in order to construct a time-periodic local unitary P (t) such
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that the transformed Hamiltonian

P †(t)H(t)P (t)− iP †(t)∂tP (t) = D (3.18)

is time-independent. As usual, resonant spots cause difficulty. Here, however, reso-

nances can also result from energy levels differing in energy by integer multiples of

Ω, the (angular) drive frequency. (Physically, this is because the drive can induce

transitions between such energy levels.) Nevertheless, if H0 is MBL, then we still

expect that the local spectrum is discrete, in which case a typical location in space

will not be a resonant spot.

For weak enough driving, D is close to H0. Hence, if H0 is MBL then we expect

that so is D. Thus, there are a complete set of local integrals of motion τ zi for D. The

existence of these local integrals of motion means that Floquet-MBL systems cannot

thermalize. Recall that, for a Floquet system, “thermalization” means heating to

infinite temperature. Thus, Floquet-MBL seems to be the only way to get a non-

trivial steady state at late times.

3.4 Prethermalization

MBL, discussed in the previous section, takes place only in strongly disordered

systems. As far as we know, it seems essential to have disorder to prevent a quantum

system from thermalizing, even in the infinite-time limit. On the other hand, in a

clean system it is possible to inhibit thermalization such that the thermalization time

becomes very large, which will be the subject of this section. There are two different

scenarios for prethermalization discussed in Refs. [38–42], and a new variant will be

described in Chapter 7. Here we will focus on prethermalization in a Floquet system
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at high frequency.

The basic idea is that heating in a weakly driven Floquet system, as in Section

3.3.5, occurs when there are resonances, that is, when the local spectrum of H0 con-

tains energy differences close to an integer multiple of the driving frequency Ω. In

an MBL system, the local spectrum is discrete and thus there are no resonances at a

typical location. By contrast, in a non-MBL system the local spectrum is continuous

and there are always resonances. That is, there exist |Ψi〉 and |Ψj〉 connected by local

operators such that Ei−Ej ≈ nΩ for some n. The case n = 0 acts to inhibit localiza-

tion, but does not lead to heating since the corresponding transition conserves energy.

On the other hand, resonances with n 6= 0 lead to heating at a rate proportional to

the matrix element 〈Ψi|Vn |Ψj〉, where V (t) =
∑∞

k=−∞ Vke
ikΩt is the Fourier series of

V (t). If this matrix element can be made very small, then the effect of heating does

not become apparent until correspondingly large time.

A case where this occurs is when the frequency Ω is very large compared to the

local energy scale J of the unperturbed Hamiltonian H0. In that case, any energy

levels with Ei − Ej = nΩ for n 6= 0 must be substantially different on at least Ω/J

sites, which means that the matrix element 〈Ψi|Vn |Ψj〉 is very small. Indeed, a

careful analysis shows that, in linear response in the strength λ of the perturbation

V , the heating rate scales like λe−Ω/J [38]. Moreover, going beyond linear response,

and following a similar procedure to the MBL case, one can find a time-dependent

local unitary change of basis such that the transformed Hamiltonian H(t) is time-

independent (and hence corresponds to a conserved “energy”), up to corrections that

are suppressed by a factor of e−Ω/J , that is, they do not become important for the

dynamics until the heating time t∗ ∼ eΩ/J .

Finally, let us note that for the above considerations, it turns out not to be required

that we are weakly driving a time-independent Hamiltonian H0. Indeed, suppose we
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have any time-periodic Hamiltonian H(t) with local energy scale J satisfying J � Ω.

Then one can show that there is a time-periodic change of basis such the transformed

Hamiltonian takes the form

H +O(J2/Ω), (3.19)

where H is the time-averaged Hamiltonian H = 1
T

∫ T
0
H(t)dt. Then we can apply

the discussion of the previous paragraphs as before, with H playing the role of the

“unperturbed” Hamiltonian.
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Chapter 4

Review: Spontaneous Symmetry
Breaking and Time Crystals

Spontaneous symmetry breaking, the phenomenon where the steady state of a system

has less symmetry than its Hamiltonian, is one of the most fundamental notions in

physics. Time translation symmetry is one of the most fundamental symmetries in

physics, since its generator is the Hamiltonian itself. Nevertheless, when it was first

introduced, the idea of a time crystal, a system which spontaneously breaks time-

translation symmetry (and therefore displays spontaneous oscillations even though

the Hamiltonian is time-independent) seemed radical and controversial [43–51]. In

this section, we will briefly review the idea of spontaneous symmetry breaking, and

what it would mean for a system in thermal equilibrium to be a time crystal. Sadly,

such ideas had not been around for very long before a no-go theorem was proven [52].

Nevertheless, they provided the starting point for the ultimately more successful

investigation of spontaneously broken time-translation symmetry in non-equilibrium

systems, which is presented in later chapters.
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4.1 Spontaneous symmetry breaking

Let us discuss what it means for a system in thermal equilibrium to exhibit spon-

taneous symmetry breaking. Normally, by standard arguments, we expect that in

thermal equilibrium the state of a quantum system is given by the canonical ensem-

ble

ρgibbs =
1

Z
e−βH, (4.1)

where H is the Hamiltonian. However, this cannot quite be right for a system exhibit-

ing spontaneous symmetry breaking. Indeed, if the Hamiltonian H has a symmetry,

which means that there is a unitary operator U such that UHU † = H, then it im-

mediately follows from Eq. (4.1) that UρU † = ρ, which is to say that ρ is invariant

under the symmetry.

The correction to Eq. (4.1) for the case of spontaneous symmetry breaking is

also well known, and is related to breaking of ergodicity. Let us first consider for

concreteness an Ising symmetry generated by the spin-flip operator X. Then, in the

ferromagnetic phase in which the Ising symmetry is spontaneously broken, there are

two different “thermal states” ρ↑ and ρ↓ in which the system can end up. These states

are not themselves invariant under the symmetry; rather, the symmetry interchanges

them. They can be distinguished by a macroscopic order parameter, for example the

net magnetization. They represent distinct ergodic sectors, because the time taken

for a system in one sector to reach the other sector by thermal fluctuations is expo-

nentially large in the system size. The thermal state ρgibbs is the state corresponding

to maximal uncertainty as to which sector the system is in:

ρgibbs =
1

2
(ρ↑ + ρ↓). (4.2)
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This state of uncertainty is, however, not very sustainable, since the order parameter

of the system is very easy to observe. Moreover, once the order parameter has been

observed we know that (for sufficiently large systems), it will not change. Hence, the

state of the system is best described by the symmetry-breaking states ρ↑ or ρ↓, not

ρgibbs.

These considerations can be extended to a general symmetry group G and un-

broken subgroup H. For simplicity, and because it will become relevant shortly, here

we will just consider the case G = R and H = Z. For example, this would describe

(leaving aside any Mermin-Wagner objections) a one-dimensional system in contin-

uous space forming a periodic charge density wave (CDW). In general, there should

be a Hermitian operator A generating a continuous symmetry eiαA (for any real α),

but the physical states are only invariant under the discrete symmetry generated

by ei(2π)A. The physical states are parameterized by a circle1, so we write them in

terms of an angular coordinate as ρθ, where ρθ+2π = ρθ. In the CDW example, θ is

the displacement of the CDW. The symmetry permutes the physical states accord-

ing to eiαAρθe
−iαA = ρθ+α. The Gibbs state is the state corresponding to maximal

uncertainty as to the sector,

ρgibbs =
1

2π

∫ 2π

0

ρθdθ (4.3)

but as before this uncertainty is quickly dispelled by observing the order parameter,

and we will observe a single ρθ.

1This is because the coset space R/Z is a circle.
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4.2 Time crystals

Let us now extend these considerations to the case of spontaneously broken time-

translation symmetry. Naively, one might expect that the notion of spontaneously

broken time-translation symmetry in thermal equilibrium is an oxymoron, because

the word “equilibrium” suggests a stationary state. Going beyond mere semantics,

one could formulate this argument as follows. In thermal equilibrium, the state of

the system should be given by the Gibbs state

ρgibbs =
1

Z
e−βH. (4.4)

However, if we now consider the time-evolution of this state under evolution by H

according to the Schrödinger equation, we find

d
ρgibbs

dt
= i[ρgibbs,H] = 0. (4.5)

Of course, this is actually only a slight variant of the argument in the previous section

that the Gibbs state always respects the symmetries, and it should be resolved in the

same way.

Specifically, for a time-translation symmetry the relevant symmetry group is R,

and for a time crystal we will want to break this down to time translations by multiples

of a discrete period T (that is, the unbroken subgroup is Z), so the structure we expect

is the one described in the last paragraph of the previous section. That is, there is

a family of symmetry-breaking states ρθ indexed by an angular variable θ, and the

Gibbs state is a superposition

ρgibbs =
1

2π

∫ 2π

0

ρθdθ. (4.6)
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Moreover, the symmetry-breaking states should be interchanged by the symmetry. In

this case the generator of the symmetry is the Hamiltonian H, so we have

eitHρθe
−itH = ρθ+ωt (4.7)

(for some fixed angular velocity ω). Assuming that the different states ρθ are dis-

tinguished by some observable order parameter, any uncertainty as to the sector the

system is in will quickly be resolved and at any instant we will observe the system

to be in a symmetry-breaking state ρθ. Crucially, however, Eq. (4.7) says that if we

observe the system again at a later time, the observed value of order parameter will

oscillate with angular frequency ω. This is the signature of a time crystal.

The scenario just described is very appealing, but we are left to wonder whether

it can ever occur for any physical Hamiltonian H. In fact, there is a simple example.

Suppose that the system has a U(1) particle number conservation symmetry generated

by an operator N̂ . In that case, ρgibbs should be replaced by the grand-canonical

ensemble state

ρgc = e−βH+µN̂ , (4.8)

where µ is the chemical potential, but the above discussion otherwise carries through

unchanged. In particular, if the system condenses into a superfluid, then the su-

perfluid order parameter 〈b†〉, where b† is the particle creation operator, acquires an

expectation value (this corresponds to the spontaneous breaking of the U(1) symme-

try). Moreover, it is a well-known fact about superfluids that the phase of this order

parameter rotates at angular frequency µ. Thus, the structure described above is

exactly realized in any superfluid.

On the other hand, this example is unsatisfying for several reasons. First, the
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time-translation symmetry breaking is just “piggy-backing” on another spontaneously

broken symmetry, which seems too trivial. Second, the superfluid order parameter

is difficult to observe – only phase differences between two different superfluids are

observable, through the Josephson effect. Actually, it is precisely the fact that U(1)

is a very good symmetry that makes its order parameter difficult to observe, since

measuring it requires breaking the symmetry2.

For this reason, we really would like to observe a time crystal in a system without

any symmetries other than time-translation itself. Unfortunately, it turns out that

this is impossible in thermal equilbrium. Specifically, it follows from the results

of Ref. [52] that the scenario contemplated above, in which Eq. (4.6) satisfied with

ρgibbs = 1
Z
e−βH, can never occur, at least assuming thatH is local, that the symmetry-

breaking states ρθ obey a cluster decomposition (correlations decay at large spatial

separation), and are distinguished by the expectation value of a local observable3.

One might ask why time-translation symmetry is the only symmetry that can

never be spontaneously broken in thermal equilibrium (without piggy-backing), when,

for example, spatial translation symmetry is spontaneously broken in any crystal. The

clue lies in the fact that H appears twice in the above discussion: firstly in Eq. (4.7),

as the symmetry generator, and secondly in the definition of ρgibbs ∝ e−βH. For

any other symmetry, H would be replaced by the appropriate symmetry generator

in Eq. (4.7), but it would still appear in the definition of ρgibbs. This is related to

the fact that the time direction indeed is a privileged one in statistical mechanics,

because it defines what we mean by “equilibrium”.

2To illustrate this, imagine replacing the U(1) number conservation symmetry with a U(1) spin
rotation symmetry. Then the order parameter is a magnetization, which is easy to measure, but the
symmetry will not be respected very precisely in any real system because of the presence of stray
magnetic fields. These fields will tend to pin the magnetization to a fixed value, preventing the
observation of time crystal oscillations.

3The assumptions of Ref. [52] are stated in a rather different form, but they can be shown to be
consequences of the assumptions stated here.
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This therefore concludes our consideration of time crystals in thermal equilibrium:

they do not exist, except in a trivial sense. Nevertheless, the ideas of this chapter

will reappear in later chapters when we discuss systems out of equilibrium.
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Chapter 5

The Floquet Equivalence Principle

In this chapter, we introduce a powerful way to think about Floquet phases of matter.

The main result, which we will call the Floquet Equivalence Principle, is that Floquet

phases with symmetry G are in one-to-one correspondence with stationary topological

phases with additional symmetry. This allows us to leverage the substantial existing

literature on topological phases with symmetries to understand Floquet topological

phases. In this chapter, we just give some suggestive arguments in favor of the Floquet

Equivalence Principle, prove it in certain cases, and discuss physical consequences.

For a more systematic approach, see Chapter 9.

This chapter is reprinted with permission from

D.V. Else and C. Nayak, “Classification of topological phases in periodically driven

interacting systems”, Phys. Rev. B 93, 201103 (2016).

c© 2016 American Physical Society

5.1 Introduction

There are now many known examples of phases of matter which are distinguished

not by the symmetries they break spontaneously but through more subtle “topo-

logical” orders [53]. Most such phases are not robust to thermal excitations and
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therefore were thought to exist only at zero temperature [54, 55]. However, recently

it has been appreciated that, in the presence of strong disorder, it is possible for

highly excited eigenstates of a many-body system to be many-body localized (MBL)

[16–25]. Such MBL states are not thermal, and indeed more closely resemble gapped

ground states; for example, they obey an area law for the entanglement entropy. This

means that they can exhibfit topological phases previously thought to be restricted

to zero temperature[31, 32, 56–58].

The lifting of the restriction to ground states also allows us to consider more

general “Floquet” systems [59–68], in which the Hamiltonian H(t) is allowed to vary

in time, but with periodicity T . The “eigenstates” of such a system are the eigenstates

of the Floquet operator U = U(T ) which describes the unitary evolution of the

system over one time period. Such eigenstates can also be MBL in the presence of

strong disorder [15, 34–38], and hence can exhibit topological phases. However, the

classification of topological phases in such “Floquet-MBL” systems is in general richer

than in the stationary case.

Recently, progress has begun to be made in understanding the classification of

topological phases in Floquet-MBL systems with interactions[69, 70]. In particular,

Ref. [70] classified phases with a symmetry G and no intrinsic topological order (i.e.

symmetry-protected topological (SPT) phases [71–89]) in (1+1)-D. The purpose of this

chapter is to re-express the classification of Ref. [70] in a concise way, which we feel

clarifies the issues involved and streamlines the derivation. We then consider natural

extensions, building up to a (conjectured) general correspondence between topological

phases in Floquet-MBL systems with symmetry group G, and topological phases in

stationary systems with symmetry group Z oG, where the extra Z accounts for the

discrete time-translation symmetry.
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5.2 Assumptions

We will assume that the Floquet operator U can be expressed as a time evolution

of a local time-dependent Hamiltonian H(t), with H(t+ T ) = H(t). Thus,

U = T exp

(
−i
∫ T

0

H(t)dt

)
, T = time-ordering. (5.1)

where we assume that the Hamiltonian H(t) is invariant under a representation V (g)

of a symmetry group G, where G can contain anti-unitary elements corresponding to

a time reversal symmetry. For anti-unitary g ∈ G, what we mean by the Hamiltonian

“being invariant” is that V (g)H(t)V (g)−1 = H(T − t). This ensures that, in general,

V (g)UV (g)−1 = Uα(g), (5.2)

where α(g) = −1 if g is anti-unitary and +1 otherwise.

5.3 The SPT classification

The classification of Ref. [70] can be re-expressed in the following way. We define

an enlarged symmetry group G̃ to be the full symmetry group of the system, including

the discrete time translation symmetry inherent in the Floquet setup. Thus, if all of

the symmetries of G are unitary, we have G̃ = G×Z. More generally, for anti-unitary

elements g ∈ G, we have gTg−1 = T−1, where T is the generator of time translations.

Thus, in general G̃ is a semi-direct product G̃ = Z o G. Then in the bosonic case,

the classification of Ref. [70] can be reformulated as follows (see Appendix A.1 for a

proof):
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Result 1. The symmetry-protected topological phases in a periodically driven

(1+1) bosonic system exhibiting MBL are classified by the second cohomology

group H2(G̃, U(1)).

(Here, and later, we will take it to be implicit that U(1) is to be interpreted as a

non-trivial G̃-module, with anti-unitary elements of G̃ acting as inversion, as in the

original classification of SPT phases with anti-unitary symmetries, e.g. see Ref. [80]).

Recall that the bosonic topological phases in a stationary system are classified

by H2(G,U(1)); to obtain the classification in a driven system one simply replaces

G by G̃. In retrospect, this result should be quite natural. Indeed, the classification

of stationary SPT phases in (1+1)-D [72, 73, 76, 77], though sometimes expressed in

terms of Hamiltonians, is really at its core a classification of short-range entangled

states (states which are equivalent to a product state by a local unitary) invariant

under some local (anti-)unitary representation of a symmetry group (see Appendix

A.2 for more details). The gapped ground states of a Hamiltonian are examples

of such states, but so are MBL eigenstates of a Floquet operator. (We could even

consider eigenstates of the Floquet operator which are not MBL but are separated

from all other eigenstates by a quasienergy gap). Thus, the standard classification

of (1+1)-D SPT phases can be applied to any such states. However, there is one

difference in the Floquet case: as well as the representation of the symmetry G, a

Floquet eigenstate is, by definition, also invariant (up to a phase factor) under the

Floquet operator U , which is a local unitary since it is the time evolution of a local

Hamiltonian. Therefore, we should really include U in the symmetry group to obtain

the full classification. [Eq. (5.2) ensures that we then have a representation of the

enlarged symmetry group G̃ = Z oG].
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It is true that, when classifying SPT phases, one normally assumes that the action

of the symmetry is “on-site”, that is, that each symmetry operator V (g) is a tensor

product of its action on each site of the lattice, V (g) = [v(g)]⊗N , which would not be

true of the Floquet unitary U . However, all we actually need is that all the symmetry

operators (including the Floquet unitary U) can be restricted to a region A with

boundary while still remaining a representation of G̃, where by “restriction” of a

local unitary U we mean[86] a unitary UA acting only on the region A which acts the

same as U in the interior of A, well away from the boundary. See Appendix A.2 for

the derivation of the classification, given such an assumption.

To see that such a restriction is possible, consider for simplicity the case of unitary

symmetries. Then if the Hamiltonian H(t) can be written as a sum H(t) =
∑

X hX(t)

of terms supported on local regions X [each of which commutes with the symmetry

V (g)], then we can define the restriction of the Floquet operator by simply retaining

only the terms which act within A, or in other words:

UA = T exp

(
−i
∫ T

0

dt
∑
X⊆A

hX(t)

)
. (5.3)

Meanwhile, we define the restriction of VA(g) in the obvious way, by only acting

with the on-site action on sites contained within A. It is easily seen that VA(g)

is still a representation of G, and UA commutes with VA(g), so together they form

a representation of G̃ = Z × G. Similar arguments can be made for anti-unitary

symmetries.

We emphasize that our derivation of Result 1 is actually more general than that

of Ref. [70]. Firstly, in Ref. [70] the result for non-Abelian G was only stated as a

conjecture. Our derivation clearly applies to such G as well. Secondly, we did not

need to assume, as did Ref. [70] that all the eigenstates of the Floquet operator are
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MBL; our classification result applies to any of the eigenstates that happen to be

MBL, or separated from the rest of the quasienergy spectrum by a gap. Finally, since

our derivation was based on individual eigenstates, it allows for the possibility of

different SPT phases coexisting as eigenstates of a single Floquet operator, separated

by an eigenstate transition [31, 56].

5.4 Higher dimensional results

When stated in the form given here, classification result of Ref. [70] has obvious

generalizations to higher dimensions. In particular, in Ref. [86] we derived the clas-

sification of (2+1)-D SPT phases in ground states by considering how the symmetry

acts on the boundary. In Ref. [86], we did use the Hamiltonian to argue that the

symmetry action on the boundary is well-defined; however, Appendix A.2 shows how

to formulate this concept for a single short-range entangled state without reference

to a Hamiltonian (and without assuming that the symmetry in the bulk is on-site).

Therefore, we can repeat the analysis of Ref. [86] (but taking care to include the

Floquet unitary U in the symmetry group), and one finds that

Result 2. The symmetry-protected topological phases in a periodically driven

(2+1)-D bosonic system exhibiting MBL are classified by the third cohomology

group H3(G̃, U(1)).

Again, we simply replace G → G̃ compared to the usual stationary case. The

anti-unitary case was not explicitly treated in Ref. [86], but it is a straightforward

generalization[90]. One can also prove a similar result for fermionic systems.

35



The Floquet Equivalence Principle Chapter 5

5.5 General correspondence between stationary and

Floquet-MBL topological phases

The above results relied on the method of Ref. [86], which did not consider (at

least, not in full generality) SPT phases in higher dimensions, or topological phases

beyond SPT. Nevertheless, they motivate us to formulate the following conjecture.

Conjecture 1. The topological phases in a (bosonic/fermionic) periodically

driven MBL system in d spatial dimensions with on-site symmetry group G are in

one-to-one correspondence with the topological phases in a (bosonic/fermionic)

stationary MBL system in d spatial dimensions with symmetry group G̃ = ZoG

(as defined above).

Here by “topological phases”, we mean both symmetry-protected topological

(SPT) phases and symmetry-enriched topological (SET) phases [91–97]. The ra-

tionale for this conjecture is as follows. The classification of gapped ground states is

known to depend only on the ground states themselves, not on their parent Hamilto-

nians [77]. Furthermore, since eigenstates in an MBL system look, roughly speaking,

like gapped ground states, one expects to obtain the same classification for such

eigenstates. However, in a periodically driven system there is an extra local unitary,

beyond the symmetries in the group G, under which these eigenstates are invariant

(up to a phase factor) – namely, the Floquet unitary U . Thus, one should treat U as

a symmetry for the purpose of obtaining the classification.

The only way we could envision this conjecture failing would be if the non-on-site

nature of the Floquet unitary U turned out to be important, in a way that it was not

in the case of (1+1)-D and (2+1)-D SPT’s. This seems to us unlikely. In fact, we
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expect that any derivation of the classification of SPT/SET phases – or at least, any

derivation which can be formulated in terms of short-range entangled states without

reference to Hamiltonians – could probably be applied just as well in the Floquet

context, which would prove the conjecture.

We note, however, that probably not all topological phases which can exist at zero

temperature can be stabilized in MBL excited states [57]; for this reason, we have

been careful to formulate Conjecture 1 in terms of a correspondence with stationary

MBL systems, not with zero-temperature states.

5.6 Interpretation of the classification in terms of

pumping

Results 1 and 2, and Conjecture 1 in higher dimensions, imply that the classi-

fication of SPT phases in bosonic Floquet-MBL systems in d spatial dimensions is

Hd+1(G̃, U(1)). In the case of a unitary symmetry, such that G̃ is just a direct product

Z×G, we can give a simple physical interpretation of this result. From the Künneth

formula for group cohomology [97], one finds that

Hd+1(Z×G,U(1)) = Hd+1(G,U(1))×Hd(G,U(1)). (5.4)

Thus, the classification is just the usual classification for ground states, plus an extra

piece of data given by an element of Hd(G,U(1)). We expect that this extra piece of

data can be interpreted as characterizing the fact that each application of the Floquet

unitary U “pumps” an additional (d− 1)-dimensional SPT phase onto the boundary.

This is a generalization of the observation in Ref. [70] that in (1+1)-D the extra data

is the charge pumped onto each component of the boundary by the Floquet unitary.
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A rough physical justification for this interpretation in (2+1)-D (which readily

generalizes also to higher dimensions) is as follows. For simplicity we assume that

G is Abelian. One can then show that the H2(G,U(1)) piece of Eq. (5.4) can be

extracted from a 3-cocycle ω(g̃1, g̃2, g̃3) of the full symmetry group G̃ by calculating

a 2-cocycle of G according to

ω(g1, g2) =
ω(T, g1, g2)ω(g1, g2,T)

ω(g1,T, g2)
. (5.5)

(where T is the generator of discrete time translations.) The object Eq. (5.5) has

a familiar interpretation [98]. Indeed, suppose we gauge the full symmetry group

G̃ = Z×G. Then the point excitations in the resulting twisted (2+1)-D gauge theory

can be classified by the flux g̃ ∈ G̃ they carry. In general, a particle carrying non-

trivial flux also carries a projective representation of the gauge group. In particular,

Eq. (5.5) describes the projective representation of the subgroup G on a particle

carrying flux T. Now, in the original ungauged SPT phase, the analog of a flux

is a “symmetry twist defect” [96, 99–101] which (since fluxes are confined) must

occur at the endpoint of a symmetry twist line. The fact that the endpoints of such

symmetry twist lines carry projective representations of G (which can also be derived

directly, using the theory of twist defects developed in Ref. [96]) shows that the lines

themselves must be in a (1+1)-D SPT phase with respect to G. On the other hand, a

closed symmetry twist line (with no endpoints) on the boundary ∂A of a region A can

be interpreted as the result of applying to the original MBL eigenstate the Floquet

unitary U , restricted to the region A. The fact that such a state carries a (1+1)-D

SPT on the boundary ∂A indeed shows that the effect of U is to pump a (1+1)-D

SPT to the boundary.

On the other hand, we do not expect there to be any similarly simple physical
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picture in the anti-unitary case; in Ref. [70] it was found that the extra data for

(1+1)-D systems is a somewhat strange “twisted” representation of the symmetry

with no obvious physical interpretation.

5.7 Topological phases without symmetry

The above considerations allow us to the establish the existence of topological

phases in driven MBL systems that are distinct in the Floquet context, even in the

absence of any additional symmetry, but not in the stationary case. Indeed, imagine

we take a Floquet system in (2+1) dimensions or higher, with symmetry group G̃ =

G × Z, and then gauge just the symmetry G. In general, gauging a subgroup of

the full symmetry group relates SPT phases to symmetry-enriched topological (SET)

phases protected by the remaining global symmetry [94–96]; which, in this case, is

simply the discrete time translation symmetry.

5.8 Explicit realization

We have already argued above that the invariants which classify Floquet-MBL

topological phases with symmetry G should be the same as in the case of stationary

topological phases with symmetry Z o G. However, one might ask whether there

might be an obstruction to realizing any of these “potential” Floquet-MBL topological

phases in an explicit model. We argue that this is not the case, provided that the

corresponding stationary topological phase with symmetry Z oG can be realized in

a stationary MBL system with symmetry G̃n = Zn oG for some sufficiently large n.

Such a system, by definition, consists of a Hamiltonian H which commutes with an

on-site representation V (g̃) of G̃n. (A faithful on-site representation of Z does not
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make sense in a lattice system with finite-dimensional Hilbert space per site, hence

why we consider Zn instead. A system acted on by Zn can always be thought of as

being acted on by Z non-faithfully). Then we claim that the Floquet system with

Floquet operator U = eiHTV (α) (where α is the generator of Zn) indeed realizes the

desired Floquet-MBL topological phase.

To see this, note that the eigenstates of H are also eigenstates of V (α) [since H

commutes with V (α) by assumption] and therefore of U . We can analyze the SPT

order of these states by thinking of them either as eigenstates of a stationary system

with symmetry G̃, or as eigenstates of a Floquet system with symmetry G. In fact, the

analysis proceeds identically in both cases, with only one difference: in the stationary

context, the Z part of the symmetry is taken to be generated by V (α), whereas in the

Floquet context, it is generated by U . However, we can make U = V (α) by sending

T → 0 continuously. Since the classification of topological phases is discrete, we do

not expect that this can change the diagnosed phase. This can be checked explicitly

in the (2+1)-D SPT case.

5.9 Conclusion

The perspective on topological phases in Floquet-MBL systems detailed in this

Communication opens up many intriguing questions for future study. Indeed, every

phenomenon that has been studied in the usual stationary case – for example, sym-

metry fractionalization on topological excitations in symmetry-enriched topological

(SET) phases [89, 92, 96] – ought to have analogs in the Floquet-MBL case, but in

many cases the possibilities will be richer due to the extra Z symmetry. We leave

further exploration of these phases and their physical properties for future work.

Note added.– Soon after we posted this work on the arXiv, two more preprints
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appeared[102, 103] whose results overlap with ours.

41



Chapter 6

Floquet Time Crystals

The previous chapter exposed the crucial role of the discrete time translation sym-

metry in understanding Floquet phases of matter. In this chapter, we discuss an

even more dramatic consequence: the discrete time-translation symmetry can be

spontaneously broken. The “Floquet time crystals” in which this occurs are striking

examples of entirely new dynamical phases of matter in the non-equilibrium setting.

This chapter is reprinted with permission from

D. V. Else, B. Bauer, C. Nayak, “Floquet Time Crystals”, Phys. Rev. Lett. 117,

090402 (2016).

c© 2016 American Physical Society

6.1 Introduction

Spontaneous symmetry-breaking (SSB) is a pivotal concept in physics, with im-

plications for condensed matter and high-energy physics. It occurs when the ground

state or low-temperature states of a system fail to be invariant under symmetries of

the Hamiltonian. The Ising model is a prototypical example for this behavior: Here,

the symmetry is a simultaneous flip of all the spins, which leaves the energy of a

state unchanged. In the ferromagnetic phase, low-energy states are formed with a
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non-zero magnetization. For almost every symmetry imaginable, there is a model

whose ground state breaks it: crystals break the continuous translational and ro-

tational symmetries of Coulomb interactions; magnetically ordered materials break

time-reversal symmetry and spin symmetry, and superfluids break global gauge sym-

metry. The lone holdout, thus far, has been time-translation symmetry. In this paper,

we give a definition of time-translation symmetry breaking, and construct an example

of this behavior in a driven many-body localized system.

6.2 Definition of Time Translation Symmetry Break-

ing

Systems that spontaneously break time-translation symmetry (TTS) have been

dubbed “time crystals,” in analogy with ordinary crystals, which break spatial trans-

lational symmetries [43, 44]. Even defining this notion correctly requires considerable

care, and putative models have proven inconsistent [45–51]. The most obvious defi-

nition of time-translation symmetry breaking (TTSB) would be that the expectation

values of observables are time-dependent in thermal equilibrium. However, this is

clearly impossible, since a thermal equilibrium state ρ = 1
Z
e−βH is time-independent

by construction (because [ρ,H] = 0). A more sophisticated definition of TTSB in

terms of correlation functions in the state ρ has been proposed – and ruled out by a

no-go theorem – in Ref. [52].

Therefore, we must look beyond strict thermal equilibrium. This should not be

too surprising, as the state ρ preserves all the symmetries of H, which would sug-

gest that no symmetry can be spontaneously broken. For symmetries other than

time translation, the resolution to this paradox is well-known: in a system with a
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spontaneously broken symmetry, there is ergodicity-breaking and the lifetime of a

symmetry-breaking state diverges as the system size grows. Thus, in the thermody-

namic limit, the state ρ is unphysical and is never reached. This suggests that an

analogous phenomenon should be possible for time translation symmetry, where the

time taken to reach a time-independent steady state (such as the thermal state ρ)

diverges exponentially with system size.

To turn these considerations into a more useful definition, we observe that, in a

quantum system, the ergodicity-breaking in a phase with a spontaneously broken sym-

metry can be seen at the level of eigenstates. For example, the symmetry-respecting

ground states of an Ising ferromagnet are |±〉 = 1√
2
(|↑ · · · ↑〉 ± |↓ · · · ↓〉. Such long-

range correlated “cat states” are unphysical, will immediately decohere given any

coupling to the environment, and can never be reached in finite time by any unitary

time evolution starting from a short-range correlated starting state. On the other

hand, the “physical” combinations |↑ · · · ↑〉 and |↓ · · · ↓〉 break the Ising symmetry.

In the TTSB case, we also need to invoke the intuition that oscillation under time

evolution requires the superposition of states whose phases wind at different rates.

That is, whereas in the Ising ferromagnet the two cat states |±〉 are degenerate in the

thermodynamic limit, in a time-crystal they would need to have different eigenvalues

under the time-evolution operator. Indeed, consider for simplicity a discrete time

evolution operator Uf (which describes periodically driven “Floquet” systems as we

discuss further below.) Suppose that the states |±〉 have eigenvalues eiω± under Uf .

Then, although the unphysical cat states |±〉 are time-invariant (up to a phase), a

physical state such as |↑ · · · ↑〉 will evolve according to (Uf )
n |↑〉 ∝ cos(ωn) |↑ · · · ↑〉+

i sin(ωn) |↓ · · · ↓〉, where ω = (ω+ − ω−)/2.

The above considerations motivate two equivalent definitions of TTSB, using the

following terminology/notation. We will say that a state |ψ〉 has short-ranged corre-
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lations if, for any local operator Φ(x), 〈ψ|Φ(x)Φ(x′)|ψ〉− 〈ψ|Φ(x)|ψ〉〈ψ|Φ(x′)|ψ〉 → 0

as |x−x′| → ∞, i.e. if cluster decomposition holds. Note that the superpositions de-

fined above are not short-range correlated under this definition, while a state such as

| ↑↑ . . . ↑〉 is. We assume that time-evolution is described by a time-dependent Hamil-

tonian H(t), with a discrete time translation symmetry such that H(t) = H(t + T )

for some T . Note that we have not assumed a continuous time translation symmetry,

which will allow us to consider “Floquet” systems driven at a frequency Ω = 2π/T .

Let U(t1, t2) be the corresponding time evolution operator from time t1 to t2. We

now define (in the thermodynamic limit):

TTSB-1: TTSB occurs if for each t1, and for every state |ψ(t1)〉 with short-

ranged correlations, there exists an operator Φ such that 〈ψ(t1 + T )|Φ |ψ(t1 + T )〉 6=

〈ψ(t1)|Φ |ψ(t1)〉, where |ψ(t1 + T )〉 = U(t1 + T, t1) |ψ(t1)〉.

TTSB-2: TTSB occurs if the eigenstates of the Floquet operator Uf ≡ U(T, 0)

cannot be short-range correlated.

In what follows, we will show how to construct a time-dependent Hamiltonian

H(t) which satisfies the conditions for TTSB given above. In such a system, even

though the time-evolution is invariant under the discrete TTS generated by time

translation by T , the expectation value of some observables is only invariant under

translations by nT for some n > 1. In other words, the system responds at a fraction

Ω/n of the original driving frequency.

The first definition puts the time-dependence front and center and is directly

connected to how TTSB would be observed experimentally: prepare a system in a

short-range correlated state and observe its subsequent time-evolution, which will

not be invariant under the TTS of the time evolution operator. But since, in a Flo-

quet eigenstate, observables would necessarily be invariant under the discrete TTS

generated by time translation by T , definition TTSB-1 implies that Floquet eigen-
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states cannot be short-range correlated, thereby implying TTSB-2. Conversely, if

it is impossible to find Floquet eigenstates that are short-range correlated (which is

TTSB-2), then it means that short-range correlated states can only be formed by tak-

ing superpositions of Floquet eigenstates with different eigenvalues. In such states,

observables will not be invariant under the discrete TTS generated by time trans-

lation by T , thereby implying TTSB-1. Hence, the two definitions are equivalent.

The second definition will prove to be particularly useful for analyzing the results

of numerical exact diagonalization of the Floquet operator. When discrete TTS by

T is broken down to TTS by nT , the eigenstates of Uf must be superpositions of n

different short-range-ordered states.1 Then, in any Floquet eigenstate, the mutual

information I(A,B) ≡ SA+SB−SAB, where A and B are spatially separated regions

of the system and SX is the von Neumann entropy of the reduced density matrix for

region X, satisfies I(A,B)→ lnn as the system size as well as the sizes of the regions

A and B and their separation is taken to infinity [104, 105].

6.3 Floquet-Many-Body-Localization

Generic translationally invariant many-body Floquet systems likely cannot have

TTSB, as their eigenstates resemble infinite temperature states and hence are short-

range correlated [13–15].2 This is analogous to the fact (which follows from the results

of Ref. [52]) that for continuous time-translation symmetry, TTSB is impossible so

long as the eigenstate thermalization hypothesis (ETH)[9–12] is satisfied. However,

we can build upon recent developments in the study of Floquet-many-body-localized

1To see this, note that we can choose a basis of short-range correlated eigenstates for (Uf )n. By
assumption, such states cannot be eigenstates of (Uf )k for 0 < k < n. Therefore, Uf generates an
orbit of n different short-range correlated states. An eigenstate of Uf is an equal-weight superposition
over such an orbit.

2Nevertheless, an initial state that is not an eigenstate could potentially heat very slowly, leading
to non-trivial intermediate-time dynamics [38, 40–42, 106].
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(Floquet-MBL) systems [15, 35–37, 67, 69, 70, 102, 103, 107, 108], for which the

eigenstates do not resemble infinite temperature states. Instead, the Floquet states

of such systems exhibit the characteristics of the energy eigenstates of static MBL [16–

21, 24, 109, 110] systems: the eigenstates are local product states, up to finite-depth

unitary quantum circuits [22].

In MBL systems, all eigenstates (of the Hamiltonian in the static case or of the

Floquet operator in the driven case) behave as ground states and, therefore, SSB or

topological order can occur in all eigenstates [22, 31, 58]. In the SSB case, simultane-

ous eigenstates of the Floquet operator and of the Cartan subalgebra of the symmetry

generators cannot be short range correlated. TTSB-2 can then be viewed as a special

case of this in which there are no other symmetry generators besides Uf .

In the next paragraph, we construct a Floquet operator and show that it exhibits

discrete TTSB. In subsequent paragraphs, we show that this soluble Floquet operator

sits in a finite window in parameter space over which TTSB occurs – i.e. that there

is a TTSB phase. Models which exhibit TTSB (though not identified as such) have

previously been considered in Refs. [69, 108]. These models also break another sym-

metry spontaneously, but this is not essential to achieve TTSB. Our model will be a

generalization of that of Refs. [69, 108], with the extra symmetry explicitly broken.

By contrast, the models of Refs. [111, 112] rely crucially on an additional symmetry.

6.4 Model and Soluble Point

We consider one-dimensional spin-1/2 systems with Floquet unitaries of the form:

Uf = exp (−it0HMBL) exp

(
it1
∑
i

σxi

)
(6.1)
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We choose t1 ≈ π/2, such that the application of
∑

iσ
x
i in this stroboscopic time

evolution has the effect of approximately flipping all of the spins since exp(iπ
2

∑
iσ
x
i ) =∏

iiσ
x
i . This is followed by time evolution for an interval t0 under the Hamiltonian

HMBL =
∑
i

(
Jiσ

z
i σ

z
i+1 + hziσ

z
i + hxi σ

x
i

)
(6.2)

where Ji, h
z
i , and hxi are uniformly chosen from Ji ∈ [J

2
, 3J

2
], hzi ∈ [0, hz], hxi ∈ [0, h]

where h � J is the regime of interest. The period of the drive is T = t0 + t1.

For h = 0 and t1 = π/2, the eigenstates of HMBL are eigenstates of the individ-

ual σzi . Call such an eigenstate |{si}〉 with si = ±1 so that σzk|{si}〉 = sk|{si}〉.

Then H|{si}〉 = (E+({si}) + E−({si}))|{si}〉 where E+({si}) =
∑

i(Jisisi+1) and

E−({si}) =
∑

i(h
z
i si). The Floquet eigenstates are eit0E

−({si})/2|{si}〉±e−it0E
−({si})/2|{−si}〉),

and the corresponding Floquet eigenvalues are ± exp(it0E
+({si})). Hence, TTSB-2

is satisfied for h = 0 and t1 = π/2.

6.5 Stability of TTSB

We now argue that the preceding conclusions are no fluke: arbitrary weak local

T -periodic perturbations of the Floquet operator, such as non-zero h or deviations

of the length of the second time-interval from π
2
, do not destroy TTSB, so long as

a reasonable but non-trivial assumption about resonances holds. Ordinarily, there

would be little doubt that SSB of a discrete symmetry is stable to weak perturbations

at zero-temperature in 1D. But since the symmetry in question is TTS, more care

seems necessary.

To build confidence in the stability of TTSB, we can exploit the discrete local

connectivity of fully MBL systems: that is, for any eigenstate |i〉, and point x, there is
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only a finite number of eigenstates |j〉 such that the matrix elements 〈i|Φ(x) |j〉 6= 0

for some operator Φ(x) acting locally at x. In particular, generically the (quasi-

)energy difference ωj−ωi for eigenstates connected in this way will not be close to zero.

In systems with such a local spectral gap, one expects that local perturbations perturb

locally [5, 113–115], or more precisely, that there exists a single local unitary U (that is,

a unitary which can be expressed as the time evolution of a local Hamiltonian S) which

relates perturbed eigenstates to unperturbed eigenstates [22]. Such a local unitary U

cannot possibly connect short-range correlated states with the long-range correlated

eigenstates found above. Therefore, the eigenstates of the perturbed Floquet operator

still satisfy TTSB-2.

We make these ideas more precise in the Supplementary Material. There, we con-

struct the unitary U order-by-order in perturbation theory and show that it remains

local at all orders, provided that the local spectral gap condition holds. The skeptic

might argue, however, that there will always be rare regions (known as “resonances”)

in which the local spectral gap is arbitrarily small, and that this will spoil the con-

vergence of the perturbation theory. A rigorous treatment of resonances is a difficult

problem; however, the principle of “local perturbations perturb locally” has in fact

been proven (given certain reasonable assumptions), at least for a particular model

of stationary MBL [23].

On the other hand, for sufficiently large perturbations, resonances will proliferate

and TTSB (and possibly MBL) will be destroyed. As we argue in the Supplementary

Material, we expect this to occur when λ & min{T−1, J}, where λ measures the

strength of the deviation of the Hamiltonian from the exactly-solvable point.
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6.6 Numerical Analysis of Uf

In order to confirm the stability of TTSB, we will simulate the time evolution

for one class of perturbations, namely nonzero h in Eq. (1). In the Supplementary

Material, we also numerically demonstrate stability with respect to variations of t1

(see also Ref. [116]). Throughout, we will take J = hz = 1. First, we use the time-

evolving block decimation (TEBD) scheme [117] to compute the time evolution of

the short-range correlated initial state [cos(π/8)| ↑〉+ sin(π/8)| ↓〉]⊗L for system size

L = 200 and h = 0.3 and t0 = 1. The top panel of Figure 6.1 shows the expectation

values of the Pauli spin operators, averaged over 146 disorder configurations and over

the spatial interval i ∈ [50, 150]. The TEBD calculations were done with Trotter step

0.01T and bond dimension χ = 50. The spin-flip part of the Floquet operator is

applied instantaneously, which explains why the oscillation appears to be step-like.

After an initial transient, the expectation values oscillate at frequency π/T , half the

drive frequency.

Lest a skeptic wonder whether such oscillations continue to much later times

or decay just beyond the times accessible by TEBD, we analyze smaller systems by

numerical exact diagonalization (ED) of the Floquet operator. To extract the time on

which the magnetization decays, we consider the time evolution of the magnetization

starting from random initial product states that are polarized in the z direction, and

compute the average Z(t) = (−1)t〈σzi (t)〉sign(〈σzi (0)〉) over 500 disorder realizations

and for a fixed position i. As shown in the bottom panel of Fig. 6.1, there is an

initial decay of this quantity, which for the parameters chosen here occurs around

t/T = 10, and then a plateau that extends up to a time that diverges exponentially

in the system size, and even for these small system sizes reaches times comparable

to the inverse floating point precision. In the Supplementary Material, we explore
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Figure 6.1: The time evolution of a short-range correlated initial state satisfies
TTSB-1 for h = 0.3. Top Panel: the time-dependence of the disorder-averaged
〈σxi 〉, 〈σ

y
i 〉, and 〈σzi 〉 show that the former two decay rapidly while the latter dis-

plays persistent oscillations. (The spin-flip part of sthe Floquet operator is here
taken to be applied instantaneously.) Bottom Panel: The decay of the disorder-av-
eraged magnetization, Z(t), as defined in the main text, is found to decay zero on
a timescale that diverges exponentially in the system size.
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Figure 6.2: The mutual information between the n left- and rightmost sites, Fnn,
for n = 2 and n = 3. The main panel shows results for L = 12, as well as the extrap-
olated value of F22 for L→∞. To extrapolate, we fit F22(L) = F22(∞) + ce−L/ξ,
with F22(∞), c and ξ fit parameters. Example fits for h = 0.1 and h = 0.9 are
shown in the inset.

these timescales in more detail and describe ways in which signatures of TTSB can

be observed for individual disorder configurations (without disorder averaging).

We now turn to ED of the Floquet operator to verify that TTSB-2 holds. We

diagonalize Uf for L = 6, 8, 10, 12 sites and 3200 disorder realizations and compute

the mutual information between the left- and rightmost n sites, labelled Fnn. We

find that the mutual information obeys the scaling form: Fnn(h, L) = Fnn(g,∞) +

cn exp(−L/ξ(h)). We expect that Fnn(h,∞) = 0 in the TTS-invariant phase, h > hc;

and Fnn(g,∞) > 0 in the TTSB phase, h < hc, with Fnn(g,∞) → ln 2 as n → ∞.

The results in Fig. 6.2 are consistent with this form, with hc
>∼ 1. It is remarkable

that scaling holds even for such small systems, and that F22 ≈ F33 ≈ log 2 for h < 0.3;

evidently, L = 12 and n = 2, 3 are not so far from the thermodynamic limit.
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6.7 Implications of TTSB

In systems exhibiting MBL, it is commonly thought that there exists a complete set

of local integrals of motion (LIOMs): that is, there is a set of quasi-local operators τ zi

which commute with each other and with the Floquet operator Uf (or the Hamiltonian

in the static case), and such that the eigenvalues of τ zi uniquely specify a state in the

Hilbert space [21, 24]. Systems with TTSB violate this principle. Indeed, in our model

at its soluble point at h = 0, the locally indistinguishable states eit0E
−({si})/2|{si}〉 ±

e−it0E
−({si})/2|{−si}〉) No LIOM can distinguish between these two states, so no set

of LIOMs can be complete. (Though the existence of a complete set of LIOMs is

sometimes taken as the definition of MBL, the TTSB phase is still MBL in the sense

of, for example, long-time dynamics, since (Uf )
2 does have a complete set of LIOMs).

By a similar argument, one can show that there does not exist a quasi-local effective

Hamiltonian Heff such that Uf = exp(−iTHeff), whereas for Floquet-MBL systems

without TTSB this is likely to be the case [36, 37].

As noted earlier, the oscillations arise from the occurrence of multiplets of states

separated in Floquet eigenvalue by Ω/n, where Ω = 2π/T is the drive frequency. We

don’t use this to identify the TTSB phase in ED because the states are too closely

spaced in energy to pick out such multiplets. However, their existence suggests that

the system can radiate at frequency Ω/n. The fact that systems oscillating in time can

radiate has been cited as an argument against the existence of TTSB [46, 48], since

a system maintaining persistent oscillations while simultaneously radiating would

be inconsistent with conservation of energy. However, in the Floquet case, this is

not an issue since energy is being continually supplied by the drive. Nor does such

persistent radiation violate conservation of quasienergy, due the fact that physical

(i.e. short-range correlated) states are not quasienergy eigenstates. (For details, see
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the Supplementary Material.) On the other hand, in a system that breaks continuous

TTS, radiation would cause the system to decay to the ground state, which is reason

to doubt that continuous TTSB can occur.

6.8 Discussion

The model Eqs. (6.1) and (6.2) is soluble at h = 0 because the operator exp(iπ
2

∑
iσ
x
i ) =∏

iiσ
x
i that is applied at the beginning of each driving cycle maps eigenstates of HMBL

to eigenstates of HMBL. Analogous soluble models can be constructed for Zn spins in

which time translation by T is broken down to nT .

Our model has no symmetries, other than discrete time-translation symmetry.

Hence, the ln 2 that we find in the mutual information must be a consequence of

TTSB; there is no other symmetry to break. However, TTSB can occur in models

with other symmetries. A particularly interesting example is given by symmetry-

protected topological (SPT) phases of Floquet-MBL systems [70, 102, 103, 107]. In

d-dimensions, such phases are classified by Hd+1(G × Z, U(1)) = Hd+1(G,U(1)) ×

Hd(G,U(1)) [107]. The second factor on the right-hand-side of this equality is a

(d−1)-dimensional SPT phase that is ‘pumped’ to the boundary with each application

of the Floquet operator, thereby breaking TTS on the boundary.

The definition TTSB-1 naturally suggests an experiment that could observe the

phenomenon predicted here. Signatures of MBL have been observed in trapped sys-

tems of neutral atoms [118] and trapped ions [119], and signatures of single-particle

localization have been seen in coupled superconducting qubits [120]. In any of these

systems, one can prepare an arbitrary initial product state, evolve to late times ac-

cording to a drive in the class considered here, and measure the “spins” in the desired

basis. Our prediction is that persistent oscillations will be observed at a fraction of
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the drive frequency.
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Chapter 7

Prethermal Floquet phases

So far, we have discussed Floquet phases of matter in the context of Floquet-MBL

systems, which requires strong quenched disorder. In this chapter, we show that the

signatures of Floquet topological phases and Floquet time crystals can also arise in

clean systems without MBL. The difference is that, since a generic Floquet system

without MBL must inevitably heat to infinite temperature at late times, the Floquet

phases of matter manifest themselves only at intermediate times. Nevertheless, this

“prethermal” time window can last until a heating time that is exponentially large in

a small parameter.

This chapter is reprinted with permission from

D.V. Else, B. Bauer, C. Nayak, “Prethermal phases of matter protected by time-

translation symmetry”, Phys. Rev. X 7, 011026 (2017),

c© 2017 Dominic Else, Bela Bauer and Chetan Nayak.

Available under the terms of the Creative Commons Attribution License (3.0 Unported

or 4.0 International).
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7.1 Introduction

Much of condensed matter physics revolves around determining which distinct

phases of matter can exist as equilibrium states of physical systems. Within a phase,

the properties of the system vary continuously as external parameters are varied, while

different phases are separated by phase transitions, at which the properties change

abruptly. An extremely rich set of observed phases can be characterized by symme-

try. The best known example is spontaneous symmetry-breaking, as a result of which

the equilibrium state of the system is less symmetrical than the Hamiltonian. More

recently, a set of uniquely quantum phases—symmetry-protected topological (SPT)

phases [71–89], including topological insulators [121, 122], and symmetry-enriched

topological (SET) phases [91–97]—has been discovered. These phases, while symmet-

ric, manifest the symmetry in subtly anomalous ways, and are distinct only as long as

the symmetry is preserved. We can collectively refer to these three classes of phases

as symmetry-protected phases of matter.

Thus far, the concept of symmetry-protected phases of matter has not been as

succesful in describing systems away from equilibrium. Recently, however, it was re-

alized that certain periodically-driven “Floquet” systems can exhibit distinct phases,

akin to those of equilibrium systems [69]. In this paper, we show that there is, in fact,

a very general set of non-equilibrium conditions under which such phases can arise,

due to a remarkable phenomenon called ”pre-thermalization”. In Floquet systems,

pre-thermalization occurs when a time-dependent change of basis removes all but a

small residual time-dependence from the Hamiltonian, and thus allows the proper-

ties of the system to be mapped approximately onto those of a system in thermal

equilibrium. The residual time-dependence is nearly exponentially-small in a large

parameter α of the original Hamiltonian of the system. One can then talk about a
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“pre-thermal regime” in which the system reaches a thermal equilibrium state with

respect to the approximate effective time-independent Hamiltonian that results from

neglecting the small residual time dependence. In this regime, the system can ex-

hibit phases and phase transitions analogous to those seen in thermal equilibrium,

such as symmetry-protected phases. Nevertheless, in the original non-rotating frame,

the system remains very far from thermal equilibrium with respect to the instanta-

neous Hamiltonian at any given time. After the characteristic time t∗, which is nearly

exponentially-long in the large parameter α, other physics (related the residual time-

dependence) takes over.

In this paper, we show that pre-thermal systems can also exhibit phases of matter

that cannot exist in thermal equilibrium. These novel phases can also be understood

as symmetry-protected phases but of a variety that cannot occur in thermal equilib-

rium: these phases are protected by discrete time-translation symmetry. While these

include topological phases protected by time-translation symmetry [70, 102, 103, 107],

perhaps the most dramatic of these are “time crystals” that spontaneously break time-

translation symmetry. The idea of time crystals that spontaneously break continuous

time-translation symmetry was first proposed by Wilczek and Shapere [43, 44]f, but

finding a satisfactory equilibrium model has proven difficult and some no-go theorems

exist [45–50, 52]. In this paper, we construct pre-thermal “Floquet time crystals”,

which spontaneously break the discrete time-translation symmetry of periodically-

driven systems [123] 1. Floquet time crystals are the focus of this paper, but as a

by-product of our analysis, we also find pre-thermal – i.e. non-equilibrium – time

crystals that spontaneously break continuous time-translation symmetry. We also

construct SPT and SET phases protected by discrete time-translation symmetry.

1For an alternative view of such systems that focuses on other symmetries of the discrete time-
translation operator, see Refs. [33, 69, 108].
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Periodically-driven systems have long been considered an unlikely place to find

interesting phases of matter and phase transitions since generic driven closed systems

will heat up to infinite temperature [13–15]. It has been known that the heating

problem can be avoided [15, 35–37, 67] if the system is integrable or if the system

has sufficiently strong quenched disorder that it undergoes many-body localization

(MBL) [16–22, 24, 109, 110]. However, integrability relies on fine-tuning, and MBL

requires the system to be completely decoupled from the environment [124–132].

Furthermore, the disorder must be sufficiently strong, which may be difficult to realize

in an experiment but does not constitute fine-tuning.

The central result of this paper is therefore to show that pre-thermalization makes

it possible for non-equilibrium phases protected by time-translation symmetry to

occur in more generic non-equilibrium systems without the need for fine-tuning, strong

disorder, or complete decoupling from the environment. Remarkably, these non-

equilibrium phases and phase transitions, which have have no direct analogues in

thermal equilbrium, have a mathematical formulation that is identical to that of

equilibrium phases, though with a different physical interpretation. Since MBL is not

a requirement, it is conceivable that pre-thermal time-translation protected phases

could survive the presence of coupling to an environment. In fact, we will discuss a

plausible scenario by which these phases can actually be stabilized by coupling to a

sufficiently cold thermal bath, such that the system remains in the pre-thermal regime

even at infinite time.

The structure of the paper will be as follows. In Section 7.2, we state our main

technical result. In Section 7.3, we apply this to construct prethermal Floquet time

crystals which spontaneously break discrete time-translation symmetry. In Section

7.4, we show that a continuous time-translation symmetry can also also be spon-

taneously broken in the pre-thermal regime for a system with a time-independent
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Hamiltonian. In Section 7.5, we outline how our methods can also be applied to

construct SPT and SET phases protected by time-translation symmetry. In Section

7.6, we discuss what we expect to happen for non-isolated systems coupled to a cold

thermal bath. Finally, we discuss implications and interpretations in Section 7.7.

7.2 Pre-Thermalization Results

The simplest incarnation of pre-thermalization occurs in periodically-driven sys-

tems when the driving frequency ν is much larger than all of the local energy scales of

the instantaneous Hamiltonian [38–42] (see also Refs. [133–135] for numerical results).

The key technical result of our paper will be a theorem generalizing these results to

other regimes in which the driving frequency is not greater than all the local scales of

the Hamiltonian, but there is nevertheless some separation of energy scales. This will

allow us to show that time-translation protected phases can exist in the pre-thermal

regime. More precisely, in the models that we construct, one local coupling strength

is large and the others are small; the drive frequency is large compared to the small

couplings, and the parameter α is the ratio of the drive frequency to the largest of the

small local couplings. The term in the Hamiltonian with large coupling must take a

special form, essentially that of a symmetry generator, that allows it to avoid heating

the system.

Accordingly, we will consider a time-dependent Hamiltonian of the form H(t) =

H0(t) + V (t), where H0(t) and V (t) are periodic with period T . We assume that

λT � 1, where λ is the local energy scale of V . We further assume that H0(t) has the

property that it generates a trivial time evolution over N time cycles: U0(NT, 0) =
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U0(T, 0)N = 1, where

U0(t2, t1) = T exp

(
−i
∫ t2

t1

H0(t)

)
dt, T = time-ordering. (7.1)

We claim that such a time evolution will exhibit pre-thermalizing behavior for λT �

1/N even if the local energy scale of H0(t) is comparable to 1/T . In other words, such

a system exhibits pre-thermalizing behavior when the frequency is large compared

some of the couplings (those in V (t)) but not others (those in H0(t)), as promised in

the introduction.

An easy way to see that this claim is true is to work in the interaction picture

(treating V as the “interaction”). Then we see that the time evolution of the total

Hamiltonian H(t) over N time cycles is given by

U(NT, 0) = T exp

(
−i
∫ NT

0

V int(t)dt

)
, (7.2)

where V int(t) = U0(0, t)†V (t)U0(0, t) is the representation of V (t) in the interaction

picture, and U0(0, NT ) = 1 ensures that the time evolution operator Eq. (7.2) is the

same in the interaction and Schrödinger pictures. If we rescale time as t → t/λ,

then Eq. (7.2) describes a system being driven at the large frequency ν = 1/(λNT )

by a drive of local strength 1, which by the results of Refs. [38–42] will exhibit pre-

thermalizing behavior for ν � 1.

On the other hand, since the above argument for pre-thermalization required

coarse-graining the time period from T to NT , it prevents us from identifying phases

of matter, such as time crystals or Floquet SPT phases, that are protected by time

translation symmetry. The problem is that the time-translation symmetry by T is

what allows different phases of matter to be sharply distinguished. This symmetry is
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still present, of course (because the coarse-graining is a feature of our description of

the system, not the system itself), but it is no longer manifest. Therefore, it is not

at all transparent how to understand the different phases of matter in this picture.

In order to proceed further, we will need a new approach. In this paper, we

develop a new formalism that analyzes U(T, 0) itself rather than U(NT, 0), allowing

the effects of time-translation symmetry to be seen in a transparent way. Our central

tool is a theorem that we will prove, substantially generalizing those of Abanin et

al.[39]. A more precise version of our theorem will be given momentarily, and the

proof will be given in Appendix C; the theorem essentially states that there exists

a time-independent local unitary rotation U such that Uf ≈ Ũf = U †(Xe−iDT )U ,

where X = U0(T, 0) is the time evolution of H0 over one time cycle, and D is a quasi-

local Hamiltonian that commutes with X. The dynamics at stroboscopic times are

well-approximated by Ũf for times t� t∗, where t∗ = eO(1/(λT [log(1/λT )]3)). This result

combines ideas in Ref. [39] about (1) the high-frequency limit of driven systems and (2)

approximate symmetries in systems with a large separation of scales. Recall that, in

the high-frequency limit of a driven system, the Floquet operator can be approximated

by the evolution (at stroboscopic times) due a time-independent Hamiltonian, Uf ≈

exp(−iTHeff). Meanwhile, in a static system with a large separation of scales, H =

−uL+D0, where u is much larger than the couplings in D0 but [L,D0] 6= 0, Ref. [39]

shows that there is a unitary transformation U such that UHU † ≈ −uL + D where

[L,D] = 0, i.e. the system has an approximate symmetry generated by U †LU . Our

theorem states that, after a time-independent local unitary change of basis, a periodic

Hamiltonian H(t) = H0(t) + V (t), with H0(t) satisfying the condition given above,

can be approximated, as far as the evolution at stroboscopic times is concerned, by

a binary drive that is composed of two components: (1) the action of H0(t) over

one cycle, namely U0(T, 0) and (2) a static Hamiltonian that is invariant under the
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symmetry generated by U0(T, 0).

These results might seem surprising, because they imply that the evolution over

one time period commutes with a symmetry X = U0(T, 0) [or UXU † in the original

basis], despite the fact that the microscopic time-dependent Hamiltonian H(t) had

no such symmetry. We interpret this “hidden” symmetry as a shadow of the discrete

time-translation symmetry. (For example, the evolution over N time periods also

commutes with UXU †, but if we add weak NT -periodic perturbations to break the

discrete time-translation symmetry then this is no longer the case.) Thus, our theorem

is precisely allowing us to get a handle on the implications of discrete time-translation

symmetry. Compare Ref. [33], where a similar “hidden” symmetry was constructed

for many-body-localized Floquet time crystals.

The preceding paragraphs summarize the physical meaning of our theorem. A

more precise statement of the theorem, although it is a bit more opaque physically,

is useful because it makes the underlying assumptions manifest. The statement of

the theorem makes use of an operator norm ‖O‖n that measures the average over

one Floquet cycle of the size of the local terms whose sum makes up a Hamiltonian;

the subscript n parametrizes the extent to which the norm suppresses the weight of

operators with larger spatial support. An explicit definition of the norm is given in

Appendix C. The theorem states the following.

Theorem 1. Consider a periodically-driven system with Floquet operator:

Uf = T exp

(
−i
∫ T

0

H(t)dt

)
(7.3)

where H(t) = H0(t) + V (t), and X ≡ U0(0, T ) satisfies XN = 1 for some integer N .

We assume that H0(t) can be written as a sum H0(t) =
∑

i hi(t) of terms acting only
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on single sites i. Define λ ≡ ‖V ‖1. Assume that

λT ≤ γκ2
1

N + 3
, γ ≈ 0.14. (7.4)

Then there exists a (time-independent) unitary U such that

U Uf U † = X T exp

(
−i
∫ T

0

[D + E + V (t)]dt

)
(7.5)

where D is local and [D,X] = 0; D,E are independent of time; and

‖V ‖n∗ ≤ λ

(
1

2

)n∗
(7.6)

‖E‖n∗ ≤ λ

(
1

2

)n∗
(7.7)

The exponent n∗ is given by

n∗ =
λ0/λ

[1 + log(λ0/λ)]3
, λ0 =

(κ1)2

72(N + 3)(N + 4)T
(7.8)

Furthermore,

‖D − V ‖n∗ ≤ µ(λ2/λ0), µ ≈ 2.9, (7.9)

where

V =
1

NT

∫ NT

0

V int(t)dt

=
1

N

N−1∑
k=0

X−k
(

1

T

∫ T

0

V int(t)dt

)
Xk.

(7.10)
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The proof is given in Appendix C. The statement of the theorem makes use of a

number κ1. It is chosen so that ‖H‖1 is finite; the details are given when the norm is

given in Appendix C.

Unpacking the theorem a bit in order to make contact with the discussion above,

we see that it states that there is a time-independent unitary operator U that trans-

forms the Floquet operator into the form Xe−iDT with [D,X] = 0 and local D, up

to corrections that are exponentially small in n∗ ∼ 1/(λT [ln(1/λT )]3). These “error

terms” fall into two categories: time-independent terms that do not commute with X,

which are grouped into E; and time-dependent terms, which are grouped into V (t).

Both types of corrections are exponentially-small in n∗. Since they are exponentially-

small ‖E‖n∗ , ‖V ‖n∗ ∼ (1/2)n∗ , these terms do not affect the evolution of the system

until exponentially-long times, t∗ ∼ eCn∗ (for some constant C). It is not possible to

find a time-independent unitary transformation that exactly transforms the Floquet

operator into the form Xe−iDT because the system must, eventually, heat up to in-

finite temperature and the true Floquet eigenstates are infinite-temperature states,

not the eigenstates of an operator of the form Xe−iDT with local D. In the interim,

however, the approximate Floquet operator Xe−iDT leads to Floquet time crystal

behavior, as we will discuss in the next Section.

The proof of Theorem 1 constructs U and D through a recursive procedure, which

combines elements of the proofs of pre-thermalization in driven and undriven systems

given by Abanin et al. [39].

In the case of pre-thermal undriven systems, the theorem we need has essentially

already been given in Ref. [39], but we will restate the result in a form analogous

with Theorem 1, which entails some slightly different bounds (however, they are

easily derivable using the techniques of Ref. [39]).
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Theorem 2. Consider a time-independent Hamiltonian H of the form

H = −uL+ V, (7.11)

where e2πiL = 1. We assume that L can be written as a sum L =
∑

i Li of terms

acting only on single sites i. Define λ ≡ ‖V ‖1, and assume that

λ/u ≤ γκ2
1, γ ≈ 0.14. (7.12)

Then there exists a local unitary transformation U such that

UHU † = −uL+D + V̂ (7.13)

where [L,D] = 0 and V̂ satisfies

‖V̂ ‖n∗ ≤ λ

(
1

2

)n∗
(7.14)

where

n∗ =
λ0/λ

[1 + log(λ0/λ)]3
, λ0 =

uκ2
1

144
. (7.15)

Furthermore,

‖D − 〈V 〉‖n∗ ≤ µ(λ2/λ0), µ ≈ 2.9, (7.16)

Here, we have defined, following Ref. [39], the symmetrized operator 〈V 〉 according

to

〈V 〉 ≡
∫ 2π

0

dθ

2π
eiLθ V e−iLθ (7.17)

which, by construction, satisfies [L, 〈V 〉] = 0.
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7.3 Pre-thermalized Floquet time crystals

7.3.1 Basic Picture

The results of the previous section give us the tools that we need to construct a

model which is a Floquet time crystal in the pre-thermalized regime. Our approach

is reminiscent of Ref. [33], where the Floquet-MBL time crystals of Ref. [123] were

reinterpreted in terms of a spontaneously broken “emergent” Z2 symmetry. Here,

“emergent” refers to the fact that the symmetry is in some sense hidden – its form

depends on the parameters on the Hamiltonian in a manner that is not a priori

known. Furthermore, it is not a symmetry of the Hamiltonian, but is a symmetry of

the Floquet operator.

In particular, suppose that we have a model where we can set X =
∏

i σ
x
i . (Thus

N = 2). We then have Uf ≈ Ũf = U †(Xe−iDT )U , where the quasi-local Hamiltonian

D by construction respects the Ising symmetry generated by X. This Ising symmetry

corresponds to an approximate “emergent” symmetry UXU † of Uf (“emergent” for

the reason stated above and approximate because it an exact symmetry of Ũf , not

Uf , and therefore is approximately conserved for times t � t∗.) Suppose that D

spontaneously breaks the symmetry X below some finite critical temperature τc. For

example, working in two dimensions or higher, we could have D = −J
∑
〈i,j〉 σ

z
i σ

z
j

plus additional smaller terms of strength which break integrability. We will be inter-

ested in the regime where the heating time t∗ � tpre−thermal, where tpre−thermal is the

thermalization time of D.

Now consider the time evolution |ψ(t)〉, starting from a given short-range corre-

lated state |ψ(0)〉. We also define the rotated states |ψ̃(t)〉 = U |ψ(t)〉. At stroboscopic

times t = nT , we find that |ψ̃(nT )〉 = (Xe−iDT )n |ψ̃(0)〉. Since (Xe−iDT )2 = e−2iDT ,

we see that at even multiples of the period, t = 2nT , the time evolution of |ψ̃(t)〉 is
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described by the time-independent Hamiltonian D. Thus, we expect that, after the

time tpre−thermal, the system appears to be in a thermal state of D at temperature τ .

Thus, |ψ̃(2nT )〉 〈ψ̃(2nT )| ≈ ρ̃, where ρ̃ is a thermal density matrix for D at some tem-

perature τ , and the approximate equality means that the expectation values of local

observables are approximately the same. Note that for τ < τc, the Ising symmetry

of D is spontaneously broken and ρ̃ must either select a nonzero value for the order

parameter M2n = 〈σzi 〉ρ̃ or have long-range correlations. The latter case is impossible

given our initial state, as long-range correlations cannot be generated in finite time.

Then, at odd times t = (2n+ 1)T , we have

|ψ̃((2n+ 1)T )〉 〈ψ̃((2n+ 1)T )| ≈ (Xe−iDT )ρ̃(eiDTX) (7.18)

= Xρ̃X (7.19)

(since ρ̃ commutes with D.) Therefore, at odd times, the order parameter

M2n+1 = 〈σzi 〉Xρ̃X = −M2n. (7.20)

Thus, the state of the system at odd times is different from the state at even times,

and time translation by T is spontaneously broken to time translation by 2T .

The above analysis took place in the frame rotated by U . However, we can

also consider the expectation values of operators in the original frame, for exam-

ple 〈ψ(t)|σzi |ψ(t)〉 = 〈ψ̃(t)| U †σzi U |ψ̃(t)〉. The rotation U is close to the identity in

the regime where the heating time is large2, so σzi has large overlap with U †σzi U and

therefore will display fractional frequency oscillations. We recall that the condition

for fractional frequency oscillations in the pre-thermalized regime is that (a) D must

2Specifically, it follows from the construction of U that U = 1+O(λT ), and λT � 1 is the regime
where the heating time is large.
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Short
Time

Prethermal Long
Time

(a) Time crystal

Short
Time

Prethermal Long
Time

(b) Non-time crystal

Figure 7.1: The expected time dependence of 〈σzi 〉 at stroboscopic times, starting
from a state which is low-temperature with respect to UDU† (for example, for
a state with all spins polarized in the z direction.), in (a) the pre-thermal time
crystal phase, and (b) the non-time crystal pre-thermal phase.
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spontaneously break the Ising symmetry X up to a finite critical temperature τc; and

(b) the energy density with respect to D of U |ψ(0)〉 must correspond to a tempera-

ture τ < τc. In Figure 7.1, we show the expected behavior at low temperatures τ and

contrast it with the expected behavior in a system which is not a time crystal in the

pre-thermal regime.

7.3.2 Example: periodically-driven Ising spins

Let us now consider a concrete model which realizes the behavior descrived above.

We consider an Ising ferromagnet, with a longitudinal field applied to break the Ising

symmetry explicitly, and driven at high frequency by a very strong transverse field.

Thus, we take

H(t) = H0(t) + V, (7.21)

where

H0(t) = −
∑
i

hx(t)σxi (7.22)

V = −J
∑
〈i,j〉

σzi σ
z
j − hz

∑
i

σzi , (7.23)

and we choose the driving profile such that

∫ T

0

hx(t)dt =
π

2
, (7.24)

ensuring that the “unperturbed” Floquet operator U0 implements a π pulse, X =∏
i σ

i
x, and we can set N = 2. (If the driving does not exactly implement a π pulse,

this is not a significant problem since we can just incorporate the difference into V .)

This implies that hx ∼ 1/T , and we assume that hz . J � 1/T .
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Then by the results of Section 7.2 (with J playing the role of λ here), we find a

quasi-local Hamiltonian D = V + 1
T
O((JT )2), where

V =
1

2T

∫ 2T

0

Vint(t)dt. (7.25)

In particular, in the case where the π pulse acts instanteously, so that

hx(t) =
π

2

∞∑
k=−∞

δ(t− kT ), (7.26)

we find that

V = −J
∑
〈i,j〉

σzi σ
z
j (7.27)

(this Hamiltonian is integrable, but in general the higher order corrections to D will

destroy integrability.) More generally, if the delta function is smeared out so that the

π pulse acts over a time window δ, the corrections from Eq. (7.27) will be at most of

order ∼ Jδ/T . Therefore, so long as δ � T , then in two dimensions or higher, the

Hamiltonian D will indeed spontaneously break the Ising symmetry up to some finite

temperature τc, and we will observe the time-crystal behavior described above.

7.3.3 Field Theory of the Pre-Thermal Floquet Time Crystal

State

The universal behavior of a pre-thermal Floquet time crystal state can be encap-

sulated in a field theory. For the sake of concreteness, we derive this theory from the

model analyzed in the previous section. The Floquet operator can be written, up to
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nearly exponential accuracy, as:

Uf ≈ U(Xe−iDT )U † (7.28)

Consequently, the transition amplitude from an initial state |ψi〉 at time t0 to a final

state |ψf〉 at time t0 +mT can be written in the following form, provided tpre−thermal <

t0 < t0 +mT < t∗ :

〈ψf |
(
Uf

)m|ψi〉 = 〈ψf | U(Xe−iDT )mU † |ψi〉

= 〈ψ̃f | e−iDmT |ψ̃i〉 (7.29)

where |ψ̃i〉 ≡ U †|ψi〉 and |ψ̃f〉 ≡ Xm U †|ψf〉; recall that Xm is 1 or X for, respectively,

m even or odd.

The second line of Eq. (7.29) is just the transition amplitude for the quantum

transverse field Ising model in (d + 1)-dimensional spacetime, with d ≥ 2. The

model has nearest-neighbor interaction (7.27) together with higher-order terms that

are present in the full expression for D. Hence, it can be represented by the standard

functional integral for the continuum limit of the Ising model:

〈ψ̃f | e−iDmT |ψ̃i〉 = ∫
Dϕ ei

∫
ddx dt

[
1
2
K(∂tϕ)2− v2

2
K(∇ϕ)2−U(ϕ)

]
(7.30)

where U(ϕ) has minima at ϕ = ±ϕ0 when the parameters in the Ising model place it

in the ordered phase. This functional integral is only valid for wavevectors that are

less that a wavevector cutoff: |q| < Λ, where Λ � 1/a and a is the spatial lattice

spacing. Although the right-hand side of (7.30) has a continuous time variable, it is
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only equal to the original peridiodically-driven problem for stroboscopic times t = mT

for m ∈ Z. Note the left-hand side of (7.30) is also well-defined for arbitrary times,

i.e. for continuous m, although it, too, only corresponds to the original problem for

integer m. Thus the continuous-time effective field theory has a frequency cutoff Λω

that we are free to choose. Although the functional integral only corresponds to the

original problem for stroboscopic times, the functional integral is well-defined for all

times. As a result of the factor of X in Uf, the field ϕ is related to the Ising spin

according to ϕ(x, kT ) ∼ (−1)k σ(x, kT ). In other words, the field ϕ in the functional

integral has the intepretation of the temporally-staggered magnetization density, just

as, in the corresponding description of an Ising anti-ferromagnet, this field would be

the spatially-staggered magnetization. Discrete time-translation symmetry, t→ t+T

has the following action: ϕ → −ϕ. Thus, the symmetry-breaking phase, in which

ϕ = ±ϕ0, is a pre-thermal Floquet time crystal, in which TTSB occurs, as expected.

The rotated Floquet operator U †Uf U has an approximate Z2 symmetry generated

by the operator X since U †Uf U ≈ Xe−iDT and [D,X] = 0. Hence, U †XU com-

mutes with the (unrotated) Floquet operator Uf. It is not a microscopic symmetry

in the conventional sense, since U †XU does not commute with the time-dependent

Hamiltonian H(t), except for special fine-tuned points in the Floquet time crystal

phase. However, since it commutes with the Floquet operator, it is a symmetry of

the continuum-limit field theory (7.30). (See Ref. [33] for a discussion of Floquet

time crystals in the MBL context that focuses on such symmetries, sometimes called

“emergent symmetries”.) Within the field theory (7.30), this symmetry acts accord-

ing to ϕ→ −ϕ, i.e. it acts in precisely the same way as time-translation by a single

period. Again, this is analogous to the case of an Ising anti-ferromagnet, but with

the time-translation taking the place of spatial translation. Thus, it is possible to

view the symmetry-breaking pattern as ZTTS × Z2 → Z. The unbroken Z symmetry
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is generated by the combination of time-translation by one period and the action of

U †XU .

However, there is an important difference between a Floquet time crystal and an

Ising antiferromagnet. In the latter case, it is possible to explicitly break the the Ising

symmetry without breaking translational symmetry (e.g. with a uniform longitudinal

magnetic field) and vice versa (e.g. with a spatially-oscillating exchange coupling).

In a Floquet time crystal, this is not possible because there is always a Z2 symmetry

U †XU regardless of what small perturbation (compared to the drive frequency) is

added to the Hamiltonian. The only way to explicitly prevent the system from having

a Z2 symmetry is to explicitly break the time-translation symmetry. Suppose the

Floquet operator is UXe−iDTU †. When a weak perturbation with period 2T is added,

the Floquet operator can be written in the approximate form U ′e−2i(D+Y )T (U ′)† where

Y is due to the doubled-period weak perturbation, but it is not possible to guarantee

that [X, Y ] = 0. Thus there is a symmetry generated by an operator of the form

U †XU only if time-translation symmetry is present – i.e. it is a consequence of time-

translation symmetry and pre-thermalization.

This functional integral is computed with boundary conditions on ϕ at t = t0 and

t0 +mT . Time-ordered correlation functions can be computed by inserting operators

between the factors of Uf. However, if we are interested in equal-time correlation

functions (at stroboscopic times t = kT ),

〈ψ| Ô(x, kT )Ô(0, kT ) |ψ〉 ≡

〈ψ|
(
Uf

)−k
Ô(x, 0)Ô(0, 0)

(
Uf

)k |ψ〉 (7.31)

then we can make use of the fact that the system rapidly pre-thermalizes to replace
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(
Uf

)k|ψ〉 by a thermal state:

〈ψ|
(
Uf

)−k
Ô(x, 0)Ô(0, 0)

(
Uf

)k|ψ〉 =

tr(e−βDÔ(x)Ô(0)) (7.32)

where β is determined by tr(e−βDD) = 〈ψ|D|ψ〉. The latter has an imaginary-time

functional integral representation:

tr(e−βDÔ(x)Ô(0)) = ∫
Dϕ e−

∫
ddx dτ

[
1
2
K(∂τϕ)2+ v2

2
K(∇ϕ)2+U(ϕ)

]
(7.33)

This equation expresses equal-time correlation functions in a pre-thermal Floquet

time crystal in terms of the standard imaginary-time functional integral for the Ising

model but with the understanding that the field ϕ in the functional integral is related

to the Ising spins in the manner noted above.

In order to compute unequal-time correlation functions, it is convenient to use the

Schwinger-Keldysh formalism [136, 137] (see Ref. [138] for a modern review). This

can be done by following the logic that led from the first line of Eq. (7.29) to the

second and thence to Eq. (7.30). This will be presented in detail elsewhere [139].

We close this subsection by noting that the advantage of the field theory formu-

lation of a pre-thermal Floquet time crystal is the salience of the similarity with the

equilibrium Ising model; for instance, it is clear that the transition out of the Floquet

time crystal (e.g. as a function of the energy of the initial state) in the pre-thermal

regime is an ordinary Ising phase transition. The disadvantage is that it is difficult

to connect it to measurable properties in a quantitative way because the field ϕ has

a complicated relationship to the microscopic degrees of freedom.
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7.3.4 Relation to formal definitions of time crystals

In the above discussion, we have implicitly been adopting an “operational” defi-

nition of time-crystal: it is a system in which, for physically reasonable initial states,

the system displays oscillations at a frequency other than the drive frequency forever

(or at least, in the pre-thermal case, for a nearly exponentially long time.) This is a

perfectly reasonable definition of time crystal, but it has the disadvantage of obscur-

ing the analogies with spontaneous breaking of other symmetries, which tends not to

be defined in this way. (Although in fact it could be; for example, an “operational”

definition of spontaneously broken Ising symmetry, say, would be a system in which

the symmetry-breaking order parameter does not decay with time for physically rea-

sonable initial states[140].) It was for this reason that in Ref. [123] we introduced a

formal definition of time-translation symmetry-breaking in MBL systems in terms of

eigenstates (two equivalent formulations of which we called TTSB-1 and TTSB-2.)

The definitions TTSB-1 and TTSB-2 of Ref. [123] are natural generalizations of the

notion of “eigenstate order” used to define spontaneous breaking of other symmetries

in MBL [31, 140]. On the other hand they, like the notion of eigenstate order in

general, are not really appropriate outside of the MBL context. In this subsection,

we will review the usual formal definitions of spontaneous symmetry breaking in

equilibrium. Then we will show how they can be extended in a natural way to

time-translation symmetries, and that these extended versions are satisfied by the

pre-thermal Floquet time crystals constructed above.

Let us first forget about time-translation symmetry, and consider a time-independent

Hamiltonian H with an Ising symmetry generated by X. Let ρ be a steady state of

the Hamiltonian; that is, it is invariant under the time evolution generated by H.

(Here, we work in the thermodynamic limit, so by ρ we really mean a function which
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maps local observables to their expectation values; that is, we define a state in the

C∗-algebra sense [141].) Generically, we expect ρ to be essentially a thermal state.

If the symmetry is spontaneously broken, then ρ can obey the cluster decomposition

(i.e. its correlations can be short-ranged), or it can be invariant under the symmetry

X, but not both. That is, any state invariant under the symmetry decomposes as

ρ = 1
2
(ρ↑ + ρ↓), where ρ↑ and ρ↓ have opposite values of the Ising order parameter,

and are mapped into each other under X. Thus, a formal definition of spontaneously

broken Ising symmetry can be given as follows. We call a symmetry-invariant steady

state ρ state an extremal symmetry-respecting state if there do not exist states ρ1 and

ρ2 such that ρ = pρ1 + (1− p)ρ1 for some p ∈ (0, 1), where ρ1 and ρ2 are symmetry-

invariant steady states. We say the Ising symmetry is spontaneously broken if ex-

tremal symmetry-invariant steady states do not satisfy the cluster decomposition.

Similar statements can be made for Floquet systems, where by “steady state” we

fnow mean a state that returns to itself after one time cycle.

We can now state the natural generalization to time-translation symmetry. For

time-translation symmetry, “symmetry-invariant” and “steady state” actually mean

the same thing. So we say that time-translation symmetry is spontaneously broken

if extremal steady states do not satisfy the cluster decomposition. This is similar to

our definition TTSB-2 from Ref. [123] (but not exactly the same, since TTSB-2 was

expressed in terms of eigenstates, rather than extremal steady states in an infinite

system), so we call it TTSB-2′. We note that TTSB-2′ implies that any short-range

correlated state ρ, i.e. a state ρ which satisfies the cluster decomposition, must not be

an extremal steady state. Non-extremal states never satisfy the cluster decomposition,

so we conclude that short-range correlated states must not be steady states at all, so

they cannot simply return to themselves after one time cycle. (This is similar to, but

again not identical with, TTSB-1 in Ref. [123].)
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We note that, for clean systems, the only steady state of the Floquet operator Uf

is believed to be the infinite temperature state[13–15] which always obeys the cluster

property, and hence time translation symmetry is not broken spontaneously. This

does not contradict our previous results, since we already saw that time translation

symmetry is only spontaneously broken in the pre-thermal regime, not at infinitely

long times. Instead, we should examine the steady states of the approximate Floquet

operator Ũf which describes the dynamics in the pre-thermal regime. We recall

that, after a unitary change of basis, Ũf = Xe−iDT , where D commutes with X and

spontaneously breaks the Ising symmetry generated by X (for temperatures τ < τc).

Hence Ũ2
f = e−2iDT . Any steady state ρ of Ũf must be a steady state of Ũ2

f , which

implies (if its energy density corresponds to a temperature τ < τc) that it must be of

the form ρ = tρSB + (1 − t)XρSBX, where ρSB is an Ising symmetry-breaking state

of temperature τ for the Hamiltonian D. Hence, we see (since ρSB is invariant under

e−iDT ) that ŨfρŨ
†
f = tXρSBX+(1−t)ρSB. So if ρ is a steady state of Ũf and not just

Ũ2
f , we must have t = 1/2. But then the state ρ clearly violates the cluster property.

Hence, time translation is spontaneously broken.

7.4 Spontaneously-broken continuous time-translation

symmetry in the pre-thermal regime

7.4.1 Basic Picture

The pre-thermalized Floquet time crystals discussed above have a natural analog

in undriven systems with continuous time translation symmetry. Suppose we have a
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time-independent Hamiltonian

H = −uL+ V, (7.34)

where the eigenvalues of L are integers; in other words, for time T = 2π/u, the

condition einuLT = 1 holds for all n ∈ Z. We also assume that L is a sum of local

terms of local strength O(1); and V is a local Hamiltonian of local strength λ � u.

Then by Theorem 3.1 of Ref. [39], restated in Theorem 2 in Section 7.2), there exists

a local unitary U such that UH U † = −uL+D+ V̂ such that [D,L] = 0 and the local

strength of V̂ is ∼ λ e−O([log λT ]3/[λT ]). As noted in Theorem 2 in Section 7.2), the first

term in the explicit iterative construction of D in Ref. [39] is D = 〈V 〉 + 1
T
O(λT )2,

where

〈V 〉 ≡ 1

2π

∫ 2π

0

dθ eiLθV e−iLθ. (7.35)

As a result of this theorem, such a system has an approximate U(1) symmetry

generated by U †LU that is explicitly broken only by nearly exponentially-small

terms. Consequently, U †LU is conserved by the dynamics of H for times t � t∗ =

eO([− log λT ]3/[λT ]). We will call the Hamiltonian −uL + D the “pre-thermal” Hamil-

tonian, since it governs the dynamics of the system for times short compared to t∗.

We will assume that we have added a constant to the Hamiltonian such that L is

positive-definite; this will allow us to abuse terminology a little by referring to the

expectation value of L as the “particle number”, in order to make analogies with

well-known properties of Bose gases, in which the generator of the U(1) symmetry

is the particle number operator. In this vein, we will call u the electric potential, in

analogy with (negatively) charged superfluids.

We will further suppose that D is neither integrable nor many-body localized, so
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that the dynamics of D will cause an arbitrary initial state |ψ0〉 with non-zero energy

density and non-zero 〈ψ0|L|ψ0〉 to rapidly thermalize on some short (compared to t∗)

time scale tpre−thermal ∼ λ−1. The resulting thermalized state can be characterized by

the expectation values of D and L, both of which will be the same as in the initial

state, since energy and particle number are conserved. Equivalently, the thermalized

state can be characterized by its temperature β (defined with respect to D) and

effective chemical potential µ. In other words, all local correlation functions of local

operators can be computed with respect to the density matrix ρ = e−β(D−µL). The

chemical potential µ has been introduced to enforce the condition tr(ρL) = 〈ψ0|L|ψ0〉.

Now suppose that we choose V such that D spontaneously breaks the U(1) sym-

metry in some range of temperature 1/β and chemical potential µ. Suppose, further,

that we prepare the system in a short-range correlated initial state |ψ0〉 such that

the energy density (and hence, its temperature) is sufficiently low, and the number

density sufficiently high, so that the corresponding thermalized state spontaneously

breaks the U(1) symmetry generated by L. Then, the preceding statement must

be slightly revised: all local correlation functions of local operators can be computed

with respect to the density matrix ρ = e−β(D−µL−εX) for some X satisfying [X,L] 6= 0.

The limit ε→ 0 is taken after the thermodynamic limit is taken; the direction of the

infinitesimal symmetry-breaking field X is determined by the initial state. To avoid

clutter, we will not explicitly write the εXin the next paragraph, but it is understood.

Consider an operator Φ that satisfies [L,Φ] = Φ. (For example, if we interpret

L as the particle number, we can take Φ to be the particle creation operator.) Its
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expectation value at time t is given by

〈ψ0|e−i(−uL+D)tΦei(−uL+D)t|ψ0〉

= tr
([
e−i(−uL+D)tΦei(−uL+D)t

]
e−β(D−µL)

)
= ei(µ−u)t tr

([
e−i(−µL+D)t Φ ei(−µL+D)t

]
e−β(D−µL)

)
(7.36)

According to the discussion in Appendix D.1, which makes use of the result of Watan-

abe and Oshikawa [52], the trace on the right-hand-side of the second equality must

be independent of time. Hence, so long as Tr(Φe−β(D−µL)) 6= 0 (which we assume to

be true for some order parameter Φ in the symmetry-breaking phase), we find that

the expectation value of Φ oscillates with frequency given by the “effective electro-

chemical potential” µ− u due to the winding of the phase of Φ.

If the dynamics were exactly governed by −uL + D, then the system would os-

cillate with period 2π/(u − µ) forever. As it is, these oscillations will be observed

until the exponentially late time t∗. At infinitely long times, the system approaches a

thermal state of the full Hamiltonian −uL+D+ V̂ . Since V̂ is small, this is approx-

imately the same as a thermal state of −uL+D. However, because V̂ is not exactly

zero, the particle number is not conserved and in equilibrium the system chooses the

particle number that minimizes its free energy, which corresponds to the “electro-

chemical potential” being zero, µ − u = 0. Since this corresponds to zero frequency

of oscillations, it follows that no oscillations are observed at infinite time.

The above discussion is essentially the logic that was discussed in Refs. [50, 52,

111], where it was pointed out that a superfluid at non-zero chemical potential is a

time crystal as a result of the well-known time-dependence of the order parameter
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[142]. However, there is an important difference: the U(1) symmetry is not a symme-

try of the Hamiltonian of the problem and, therefore, does not require fine-tuning but,

instead, emerges in the u→∞ limit, thereby evading the criticism [50, 52, 143–145]

that the phase winds in the ground state only if the U(1) symmetry is exact.

7.4.2 Example: XY Ferromagnet in a Large Perpendicular

Field

Consider the concrete example of a spin-1/2 system in three spatial dimensions,

with Hamiltonian

H = −hz
∑
i

Szi − hx
∑
i

Sxi

−
∑
i,j

[
JxijS

x
i S

x
j + JyijS

y
i S

y
j + JzijS

z
i S

z
j

]
, (7.37)

We take L = Sz ≡
∑

i S
z
i , and the longitudinal magnetic field hz plays the role of u in

the preceding section. We take Jij and Jzij to vanish except for nearest neighbors, for

which Jxij = J + δJ , Jyij = Jy + δJ , and Jzij = Jz. (We do not assume δJ � J .) The

local scale of V is given by λ = max(J + δJ, hx), so that the condition λ� T−1 ∼ hz

is satisfied if J + δJ, hx � hz. In this case, D is (to first order) the Hamiltonian of

an XY ferromagnet:

D = −
∑
〈i,j〉

[
J(Sxi S

x
j + Syi S

y
j ) + JzSzi S

z
j

]
+

1

T
O(λ/hz)2. (7.38)

Then, starting from a short-range correlated state with appropriate values of

energy and 〈Sz〉, we expect that time evolution governed by D causes the system

to “pre-thermalize” into a symmetry-breaking state with some value of the order
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parameter 〈S+
i 〉 = n0e

iφ. According to the preceding discussion, the order parameter

will then rotate in time with angular frequency ω = µ−hz (where µ . λ is determined

by the initial value of 〈Sz〉) for times short compared to the thermalization time t∗.

Note, however, that we have assumed that the system is completely isolated. If

the system is not isolated, then the periodic rotation of the order parameter will cause

the system to emit radiation, and this radiation will cause the system to decay to its

true ground state [46, 48].

7.4.3 Field Theory of Pre-Thermal Continuous-TTSB Time

Crystal

For simplicity we will give only the imaginary-time field theory for equal-time

correlation functions deep within the pre-thermal regime; the Schwinger-Kelysh func-

tional integral for unequal-time correlation functions, with nearly exponentially-small

thermalization effects taken into account, will be discussed elsewhere [139]. Introduc-

ing the field φ ∼ (Sx + iSy)e
i(µ−u)t, we apply Eq. (7.36) to the XY ferromagnet of the

previous section, thereby obtaining the effective action:

Seff =

∫
ddx dτ

[
φ∗∂τφ− µφ∗φ+ g(φ∗φ)2 + . . .

]
(7.39)

The . . . represents higher-order terms. The U(1) symmetry generated by Sz acts ac-

cording φ→ eiθφ. Time-translation symmetry acts according to φ(t)→ ei(µ−u)a φ(t+

a) for any a. Thus, when φ develops an expectation value, both symmetries are broken

and a combination of them is preserved according to the symmetry-breaking pattern

RTTS × U(1)→ R, where the unbroken R is generated by a gauge transformation by

θ and a time-translation t→ t+ θ
µ−u .
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From the mathematical equivalence of Eq. (7.39) to the effective field theory of

a neutral superfluid, we see that (1) in 2D, there is a quasi-long-range-ordered phase

– an ‘algebraic time crystal’ – for initial state energies below a Kosterlitz-Thouless

transition; (2) the TTSB phase transition in 3D is in the ordinary XY universality

class in 3D; (3) the 3D time crystal phase has Goldstone boson excitations. If we write

φ(x, t) =

√(
µ
2g

+ δρ(x, t)
)
eiθ(x,t), and integrate out the gapped field δρ(x, t), then

the effective action for the gapless Goldstone boson θ(x, t) is of the form discussed in

Ref. [144].

7.5 Pre-thermalized Floquet topological phases

We can also apply our general results of Section 7.2 to Floquet symmetry-protected

(SPT) and symmetry-enriched (SET) topological phases, even those which don’t exist

in stationary systems. (We will henceforth use the abbreviation SxT to refer to either

SPT or SET phases.)

As was argued in Refs. [102, 107], any such phase protected by symmetry G is

analogous to a topological phase of a stationary system protected by symmetry ZoG,

where the extra Z corresponds to the time translation symmetry. Here the product

is semi-direct for anti-unitary symmetries and direct for unitary symmetries. For

simplicity, here we will consider only unitary symmetries. Similar arguments can be

made for anti-unitary symmetries.

We will consider the class of phases which can still be realized when the Z is

refined to ZN . That is, the analogous stationary phase can be protected by a unitary

representation W (g̃) of the group G̃ = ZN ×G. Then, in applying the general result

of Section 7.2, we will choose H0(t) such that its time evolution over one time cycle

is equal to X ≡ W (T), where T is the generator of ZN . Then it follows that, for a
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generic perturbation V of small enough local strength λ, there exists a local unitary

rotation U (commuting with all the symmetries of Uf ) such that Uf ≈ Ũf , where

Ũf = UXe−iDTU †, D is a quasi-local Hamiltonian which commutes with X, and Ũf

well describes the dynamics until the almost exponentially large heating time t∗.

Now let us additionally assume (since we want to construct a Floquet-SxT pro-

tected by the symmetry G, plus time-translation) that the Floquet operator Uf is

chosen such that it has the symmetry G. Specifically, this means that it is generated

by a periodic time evolution H(t) such that, for all g ∈ G, W (g)H(t)W (g)−1, By

inspection of the explicit construction for U and D (see Appendix C), it is easy to see

that in this case U is a symmetry-respecting local unitary with respect to W (g), and

D commutes with W (g). That is, the rotation by U preserves the existing symmetry

G as well as revealing a new ZN symmetry generated by X (which in the original

frame was “hidden”).

Therefore, we can choose D to be a Hamiltonian whose ground state is in the

stationary SxT phase protected by ZN × G. It follows (by the same arguments

discussed in Ref. [107] for the MBL case) that the ground state D will display the

desired Floquet-SxT order under the time evolution generated by U †UfU = Xe−iDT .

Furthermore, since Floquet-SxT order is invariant under symmetry-respecting local

unitaries, the ground state of UDU † will display the desired Floquet-SxT order under

Uf .

We note, however, that topological order, in contrast to symmetry-breaking order,

does not exist at nonzero temperature (in clean systems, for spatial dimensions d <

4). Thus, for initial state mean energies 〈D〉 that corresponds to temperatures β−1

satisfying 0 < β−1 � ∆, where ∆ is the bulk energy gap, the system will exhibit

exponentiall-small corrections ∼ e−β∆ to the quantized values that would be observed

in the ground state. This is no worse than the situation in thermal equilbirum where,
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for instance, the Hall conductance is not precisely quantized in experiments, but has

small corrections ∼ e−β∆. However, preparing such an initial state will be more

involved than for a simple symmetry-breaking phase. For this reason it is more

satisfactory to envision cooling the system by coupling to a thermal bath, as discussed

in Section 7.6, which is analogous to how topological phases are observed in thermal

equilibrium experiments – by refrigeration.

7.6 Open systems

So far, we have considered only isolated systems. In practice, of course, some

coupling to the environment will always be present. One can also consider the effect

of classical noise, for example some time-dependent randomness in the parameters

of the drive, so that successive time steps do not implement exactly the same time

evolution. The Floquet-MBL time crystals of Ref. [123] are not expected to remain

robust in such setups, since MBL will be destroyed. Since some amount of coupling to

the environment is inevitable in realistic setups, this limits the timescales over which

one could expect to observe Floquet-MBL time crystals experimentally.

However, the situation could be quite different for the pre-thermal time crystals

of this work. A complete treatment is beyond the scope of the present work, so in this

section we will confine ourselves to stating one very interesting hypothesis: Floquet

case time-crystals can actually be stabilized in open systems so that the oscillations

actually continue forever for any initial state (in contrast to the case of isolated

systems, in which, as discussed previously, the oscillations continue only up to some

very long time, and only for some initial states). We will not attempt to establish this

more rigorously, but simply discuss a plausible scenario by which this would occur.

The idea, as depicted in Figure 7.2, is that the heating due to the periodic driving,
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System

Floquet heating,
Noise

Cold thermal bath

Cold steady state
Implies fractional-frequency
oscillations

Figure 7.2: So long as the energy inflow due to noise and periodic driving is
balanced by the outflow to a cold thermal bath, giving a low-energy steady state,
oscillations at a fraction of the drive frequency will be observed.

as well as classical noise sources and other stray couplings to an environment, can be

counteracted by cooling from a coupling to a sufficiently cold thermal bath. Provided

that the resulting steady-state has sufficiently low “energy”, we will argue that that

oscillations at a fraction of the drive frequency will be observed in this steady state.

Here “energy” means the expectation value of the effective Hamiltonian D which

describes the dynamics in the prethermal regime. We discuss this hypothesis further,

and show that it indeed implies periodic oscillations, in Appendices D.2 and D.3.

We also note that this argument does not apply to the continuous-time time crystals

of Section 7.4, since in that case low energy is not a sufficient condition to observe

oscillations even in an isolated system; there is also a dependence on the chemical

potential µ.
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7.7 Discussion

In this paper, we have described how phases protected by time-translation sym-

metry can be observed in the pre-thermal regime of driven and undriven quantum

systems. This greatly increases the set of experimental systems in which such phases

can be observed, since, as opposed to previous proposals, we do not require many-

body localization to robustly prevent the system from heating to infinite temperature.

While many-body localization has been observed in experiments [118, 146, 147], the

ideas put forward in this paper significantly reduce experimental requirements as

strong disorder is not required.

Our Theorem 1 implies that the time-translation-protected behavior (for example,

the fractional-frequency oscillations in the Floquet time crystal) can be observed to

nearly exponentially-late times, provided that the drive frequency is sufficently high.

However, the rigorous bound given in the theorem – which requires a drive frequency

∼ 103 times larger than the local couplings in the time-dependent Hamiltonian –

may not be tight. Therefore, it would be interesting to check numerically whether

(in the Floquet time crystal case, say) long-lived oscillations are observed in systems

with drive frequency only moderately larger than the local couplings. This may be

challenging in small systems, in which there isn’t a large separation of energy scales

between the local coupling strength and the width of the many-body spectrum (which

the frequency should certainly not exceed). In one-dimensional systems, oscillations

will not be observed to exponentially-long (in the drive frequency) times, but will

have a finite correlation time for any non-zero energy density initial state. However,

there will be a universal quantum critical regime in which the correlation time will

be the inverse effective temperature.

Although naive application of Theorem 1 suggests that the ideal situation is the
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one in which the drive frequency becomes infinitely large, in practice very high-

frequency driving will tend to excite high energy modes that were ignored in con-

structing the model lattice Hamiltonian. For example, if the model Hamiltonian

describes electrons moving in a periodic potential in the tight-binding approxima-

tion, high frequency driving would excite higher orbitals that were excluded. Thus,

the driving frequency Ω needs to be much greater than the local energy scales of

the degrees of freedom included in the model Hamiltonian (except for one particular

coupling, as discussed in Section 7.3), but also much less than the local energy scales

of the degrees of freedom not included. (One cannot simply include all degrees of

freedom in the model Hamiltonian, because then the norm of local terms would be

unbounded, and Theorem 1 would not apply.)

In the case of undriven systems, we have shown that continuous time-translation

symmetry breaking can similarly occur on nearly exponentially-long time intervals

even without any fine-tuning of the Hamiltonian, provided that there is a large sepa-

ration of scales in the Hamiltonian. We show how in certain cases this can be described

in terms of approximate Goldstone bosons associated with the spontaneously-broken

time-translation symmetry.

Our analysis relied on the construction of hidden approximate symmetries that are

present in a pre-thermal regime. The analogous symmetries in MBL systems, where

they are exact, were elucidated in the interesting work of von Keyserlingk et al. [33].

In the time-translation protected phases discussed here, the symmetry generated by

the operator U †XU is enslaved to time-translation symmetry since, in the absence

of fine-tuning, such a symmetry exists exists only if time-translation symmetry is

present. (That is, if we add fields to the Hamiltonian that are periodic with period

nT and not period T , then the hidden symmetry no longer exists.) Moreover, this

symmetry is broken if and only if time-translation symmetry is broken. (Similar

89



Prethermal Floquet phases Chapter 7

statements hold in the MBL case[33].) In the Floquet time crystal case, the hidden

symmetry generated by U †XU acts on the order parameter at stroboscopic times in

the same way as time-translation by T (a single period of the drive), and therefore

it does not constrain correlation functions any more than they already are by time-

translation symmetry. The same observation holds for the approximate symmetry

generated by Lz in the undriven case.

However, there are systems in which time crystal behavior actually does “piggy-

back” off another broken symmetry. This does require fine-tuning, since it is necessary

to ensure that the system posseses the “primary” symmetry, but such tuning may

be physically natural (e.g. helium atoms have a very long lifetime, leading to a U(1)

symmetry). The broken symmetry allows a many-body system to effectively become

a few-body system. Thus, time crystal behavior can occur in such systems for the

same reason that oscillations can persist in few-body systems. Oscillating Bose con-

densates (e.g. the AC Josephson effect and the model of Ref. [112]) can, thus, be

viewed as fine-tuned time crystals. They are not stable to arbitrary time-translation

symmetry-respecting perturbations; a perturbation that breaks the “primary” sym-

metry will cause the oscillations to decay. Indeed, most few-body systems are actually

many-body systems in which a spontaneously-broken symmetry approximately decou-

ples a few degrees of freedom. A pendulum is a system of 1023 atoms that can be

treated as a single rigid body due to spontaneously-broken spatial translational sym-

metry: its oscillations owe their persistence to this broken symmetry, which decouples

the center-of-mass position from the other degrees of freedom.

With the need for MBL obviated by pre-thermalization, we have opened up the

possibility of time-translation protected phases in open systems, in which MBL is

impossible [124–132]. In fact, since the results of Appendix D.3 show that TTSB can

occur in non-thermal states, it is possible for the coupling to a cold bath to counteract
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the heating effect that would otherwise bring an end to the pre-thermal state at time

t∗. This raises the possibility of time-translation protected phases that survive to

infinite times in non-equilibrium steady states; the construction of such states is an

interesting avenue for future work.

Note added: After the submission of this paper, two experimental papers (J.

Zhang et al., arXiv:1609.08684 and S. Choi et al., arXiv:1610.08057) have appeared

with evidence consistent with the observation of a Floquet time crystal. We note that

the J. Zhang et al. paper implements disorder by addressing each ion sequentially. A

pre-thermal version of this experiment would not need disorder, thereby sidestepping

this bottleneck standing in the way of experiments on larger systems. The Choi et

al. paper occurs in a system that is unlikely to be many-body localize, and therefore

occurs during a slow approach to equilibrium. This is unlikely to correspond to

a prethermal regime, but the approximate short-time form of the time evolution

entailed in our Theorem 1 might still be relevant to understanding the results.
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Chapter 8

Classification of phases with spatial
symmetries

In this chapter, we develop a systematic framework to understand zero-temperature

topological phases with spatial symmetries. This might seem like something of a

departure from the rest of the dissertation, which is devoted to non-equilibrium phases

in periodically driven systems, but in fact many of the ideas involved here are closely

related to the classification of Floquet phases, which are after all protected by a

temporal symmetry (discrete time-translation symmetry). In fact, in Chapter 9 we

will extend the ideas developed here to propose a unified theory of systems with

general space-time symmetries, which will include both Floquet phases and stationary

crystalline phases as special cases.

This chapter is reproduced (in abridged form) with permission from

R. Thorngren and D. V. Else, “Gauging spatial symmetries and the classification of

topological crystalline phases”, Phys. Rev. X 8, 011040 (2018)

c© 2018 Ryan Thorngren and Dominic Else

Available under the terms of the Creative Commons Attribution License (3.0 Unported

or 4.0 International).
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8.1 Introduction

Symmetry is an important feature of many physical systems. Many phases of

matter can be characterized in part by the way the symmetry is implemented. For

example, liquids and solids are distinguished by whether or not they spontaneously

break spatial symmetries. In fact, it was once thought that all known phases could

be distinguished by their symmetries and that all continuous phase transitions were

spontaneous symmetry breaking transitions. The discovery of topological order [53]

showed that, at zero temperature, there are quantum phases of matter that can be

distinguished by patterns of long-range entanglement without the need to invoke sym-

metry. However, even for topological phases symmetry is important. Any symmetry

that is not spontaneously broken in a topological phase must have some action on

the topological structure of the phase, and different such patterns can distinguish dif-

ferent phases. Even a phase of matter that is trivial without symmetry can become

non-trivial when considering how symmetry is implemented. Topological phases dis-

tinguished by symmetry are known as symmetry-enriched topological (SET)[91–97] or

symmetry-protected topological (SPT)[71–80, 82–89] depending on whether they are

nontrivial or trivial without symmetry, respectively.

For internal symmetries, which do not move points in space around, very general

and powerful ways of understanding SPT and SET phases have been formulated in

terms of mathematical notions such as group cohomology[80], category theory[96],

and cobordisms[84, 148]. On the other hand, such techniques have not, so far, been

extended to the case of space group symmetries. We refer to these topological phases

enriched by space-group symmetries as topological crystalline phases. This is a signif-

icant omission because any system which arranges itself into a regular crystal lattice

is invariant under one of 230 space groups in three dimensions. Fermionic phases
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of matter protected by space-group symmetries are called topological crystalline in-

sulators or topological crystalline superconductors depending on whether charge is

conserved [149–154]. Progress towards a general classification in free-fermion systems

has been made [155–161] and some understanding of the effect of interactions been

achieved [162–166]. Meanwhile, intrinsically strongly interacting phases protected by

spatial symmetries have also been found [92, 96, 97, 167–174]. In particular Ref. [175]

gave an approach for deriving the general classification of interacting SPT phases pro-

tected by a group of spatial symmetries that leave a given point invariant. However,

for SETs and/or general space groups, there is so far no systematic theory analogous

to the one that exists for internal symmetries, except in one dimension [76]. Our goal

in this paper is to fill this gap.

We will adopt two complementary and related viewpoints to the classification.

The first viewpoint is in terms of topological quantum field theories (TQFTs), which

are believed to describe the low-energy physics of topological phases. We state and

motivate a proposal for how to implement a spatial symmetry in a TQFT.

Our second, more concrete, viewpoint is based on the idea of understanding the

SPT or SET order of a system by studying its response to a gauge field. For example,

SPTs in (2+1)-D protected by an internal U(1) symmetry can be identified by the

topological response to a U(1) gauge field. All such possible responses are described

by the Chern-Simons action

S =
k

4π

∫
A ∧ dA. (8.1)

The coefficient k has a physical interpretation as the quantized Hall conductance.

Because it is quantized, the only way to get between systems with different values

of k is if U(1) symmetry is broken or the gap closes. Further, since this is the
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only term that may appear, we learn that the different U(1) SPTs in 2+1D are

labelled by this integer. We call this procedure of coupling a G-symmetric system to

a background G gauge field “gauging” the G symmetry, though strictly speaking we

do not consider making the gauge field dynamical. Stricter terminology would call

the dynamical gauge theory the result of gauging and our procedure the first step,

called equivariantization, a mouthful, or pregauging. Many of the general approaches

to SPT and SET phases can be formulated in terms of gauging[81, 95, 96, 176].

We want to apply similar approaches to the study of systems with spatial sym-

metry. So we will ask the question

Question 1. What does it mean to gauge a spatial symmetry?

We will give what we believe to be the definitive answer to this question, motivated

by the intuition of “gauge fluxes” which for spatial symmetries are crystallographic

defects such as dislocations and disclinations. There seems to be a natural general-

ization of this to symmetries which act on spacetime as well, such as time reversal

symmetry or time translation. We will mention briefly this generalization and how

the classification extends to these spacetime symmetries, where it agrees with known

group cohomology classifications of time reversal-invariant and Floquet SPTs, respec-

tively.

Using the two viewpoints mentioned above, we will elucidate the general theory

of crystalline topological phases. Our results are based on a key physical assumption,

namely that the phases of matter under consideration are crystalline topological liquid,

which roughly means that, although crystalline, they preserve a certain degree of

“fluidity” in the low-energy limit. The idea is motivated by the notion of “topological

liquids” which have an IR limit that is described by a topological quantum field theory

(TQFT), i.e. the long-range physics is only sensitive to the topology of the background
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manifold. This is in contrast to “fracton” topological phases[177–180] where no such

topological IR limit exists. Crystalline topological liquids are a generalization of

topological liquids to systems with crystal symmetries.

The main result of this paper is the following.

Crystalline Equivalence Principle: The classification of crystalline topo-

logical liquids with spatial symmetry group G is the same as the classification of

topological phases with internal symmetry G.

Compare Ref. [107], where a similar principle was conjectured for symmetry

groups containing time translation symmetry. This result holds for systems living on

a contractible space, ie. Euclidean space in d dimensions. On other manifolds, for

example Euclidean space with some holes, some new things happen. We note for this

correspondence, orientation-reversing symmetries in the space group must correspond

to anti-unitary symmetries in the internal group.

We emphasize that the Crystalline Equivalence Principle is expected to hold for

both bosonic and fermionic1 systems, and for both SPT and SET phases. As an

example of results that one can deduce from this general principle, we find that

bosonic SPT phases protected by orientation-preserving unitary spatial symmetry G

are classified by the group cohomology Hd+1(G,U(1)), since that is the classification

of internal SPTs with symmetry G. This agrees with a recent classification of a class of

tensor networks with spatial symmetries[174]. In (3+1)-D, for space groups containing

orientation-reversing transformations, this classification is expected to be incomplete,

just as it is for internal symmetry groups containing anti-unitary symmetries[84].

Our results allow for the classification to be explicitly computed in many cases.

1There are some caveats for fermionic systems: systems with R2 = +1, where R is a reflection,
are in correspondence with systems with T 2 = (−1)F , where T is time-reversal, and vice versa.
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Number Name Classification
1 p1 0
2 p2 Z×4

2

3 pm Z×2
2

4 pg 0
5 cm Z2

6 p2mm Z×8
2

7 p2mg Z×3
2

8 p2gg Z×2
2

9 c2mm Z×5
2

10 p4 Z2 × Z×2
4

11 p4mm Z×6
2

12 p4gm Z×2
2 × Z4

13 p3 Z×3
3

14 p3m1 Z2

15 p31m Z2 × Z3

16 p6 Z×2
2 × Z×2

3

17 p6mm Z×4
2

Table 8.1: The classification of bosonic SPT phases in (2+1)-D protected by space
group symmetries, for each of the 17 2-D space groups (sometimes known as “wall-
paper groups”).
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For example, Table 8.1 shows the classification of bosonic SPT phases protected by

space-group symmetry in (2+1)-D as obtained from group cohomology. For more

details of how Table 8.1 was computed, and the (3+1)-D version of the table, see

Appendix E.1.

At a precise level, our results our based on a conjecture about the form of the

TQFT which describes the low-energy physics of a crystalline topological phase. We

conjecture that, at least for some such phases (i.e. the crystalline topological liquids),

the low-energy physics is described by a “spatially dependent TQFT”, or in other

words a map from the physical space X in which the system lives (usually we would

take X = Rd) into the space Θ of TQFTs. For such spatially dependent TQFTs the

Crystalline Equivalence Principle is a mathematical theorem which can be rigorously

proven.

The outline of our paper is as follows. In Section 8.2, we introduce the notion of a

crystalline topological liquid. Then, in Section 8.3 we introduce the key ideas involved

in gauging a spatial symmetry. Specifically, in section 8.3.1 we discuss our definition

of crystalline gauge field. Then in 8.3.2 we argue that crystalline topological liquids

naturally couple to such crystalline gauge fields. In 8.3.3 we use the gauging picture to

derive the Crystalline Equivalence Principle, which applies to the physically relevant

case of phases of matter in contractible space Rd. In 8.3.4 we discuss extensions to

non-contractible spaces and a general classification result for crystalline gauge fields.

In Section 8.4 we give a construction of many crystalline topological liquids from

ordinary topological liquids by considering systems which carry both a spatial G

symmetry and an internal G symmetry.

In Section 8.5 we describe our approach towards classifying crystalline topological

liquids using topological response. In 8.5.1, this is defined in terms of fusion and

braiding of symmetry fluxes. In 8.5.2 it is described in terms of effective topological
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actions.

In Section 8.6, we describe how our methods can be placed into a general context

of position-dependent topological limit, and discuss implications of emergent Lorentz

invariance or lack thereof.

In Section 8.7 we discuss questions for future work.

We hope this paper will inspire the discovery of many curious quantum crystals.

8.2 The topological limit of a crystalline topolog-

ical phase

In this section, we will briefly outline the arguments based on topological quan-

tum field theory (TQFT) which lead to the Crystalline Equivalence Principle. The

mathematical details are left to Section 8.6. The underlying physical concept is that

of a smooth state. A smooth state is a ground state of a lattice Hamiltonian that is

defined on a lattice which is much finer than the unit cell with respect to the transla-

tion symmetry, such that the lattice spacing l and the correlation length ξ are much

smaller than the minimum radius R of spatial variation within the unit cell. The

condition ξ, l � a (where a is the unit cell size) was discussed as an assumption for

classifying crystalline phases in Ref. [181]; our “smooth state” assumption is slightly

stronger since we require ξ, l � R. This implies the condition of Ref. [181] since

R < a, but the converse need not be true if there are regions in the unit cell where

spatial variation happens rapidly (so that R� a).

A smooth state might not seem like the kind of system one would normally con-

sider; a physical example would be a graphene heterostructure in which a lattice

mismatch between two layers results in a Moire pattern with very large unit cell
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(a) Smooth state (b) Topological limit

Figure 8.1: (a) In a smooth state, the lattice spacing and the correlation length
ξ are much less than the unit cell size a and the radius of spatial variation. (b)
The topological response of a crystalline topological liquid is captured by a spa-
tially-dependent TQFT that captures the spatial dependence within each unit cell
but “forgets” about the lattice.
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[182]. Nevertheless, it is reasonable to expect that the classification of smooth states

would be the same as the classification of states in general. We will leave a rigorous

proof for future work; presently, we merely state it as a conjecture and examine the

consequences.

A very important property of a smooth state is that it can be coarse-grained while

preserving the spatial symmetries. This is allowed only so long as the coarse-grained

lattice is still small compared to the unit cell size, but given the assumption ξ � a

this still allows us to reach a “topological limit”, by which we mean that ξ becomes

much smaller than the coarse-grained lattice spacing. Importantly, since the RG can

take place in the neighborhood of any given point in the unit cell, the effective field

theory that we obtain in this topological limit will still be spatially-dependent. (For

this reason, we will avoid referring to the topological limit as an “IR limit”, which

would be misleading since the unit cell size – but not the lattice spacing! – is still an

important length scale).

We expect that this topological limit will, as in the case of systems without spatial

symmetries, be described by a topological quantum field theory (TQFT). In fact,

given the afore-mentioned spatial dependence, it should be described by a spatially-

dependent TQFT. We give the precise mathematical definition of this concept in

Section 8.6.

Hence, we can define

Definition 1. A crystalline topological liquid is a phase of matter that is character-

ized by a spatially-dependent TQFT acted upon by spatial symmetries.

We expect that this class of systems is quite large. Certainly, it includes ordinary

topological liquids (which, by definition, have no explicit spatial symmetries and

can be characterized by a spatially-constant TQFT). Moreover, spatially-dependent
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TQFTs can capture a wide range of other topological crystalline phenomena, as we

shall see.

In Section 8.6, we sketch a proof that on contractible spaces, spatially-dependent

TQFTs with spatial symmetries are in one to one correspondence with spatially con-

stant TQFTs with internal symmetries. Since the latter are expected to characterize

topological phases with internal symmetries, the Crystalline Equivalence Principle

follows. In the following sections, we we will discuss how to understand this result in

more concrete ways without resorting to the highly abstract formalism of TQFTs.

8.3 Crystalline gauge fields

8.3.1 Gauge fluxes and crystal defects

In order to understand crystalline topological phases, we want to study what it

might mean to couple to a background gauge field for a symmetry group G involving

some transformation of space itself. More generally, we believe a framework exists

where one can also consider symmetries that transform space-time. However, for

simplicity and to maintain contact with Hamiltonian models we will focus on purely

spatial symmetries. We call our object of study the crystalline gauge field.

A special case of a background gauge field is an isolated gauge flux. Isolated

gauge fluxes are familiar objects for internal symmetries. They are objects in space

of codimension 2 (i.e. points in 2-D, curves in 3-D) which are labelled by a group

element g ∈ G, and a particle moving all the way around one is acted upon by g.

Actually, for a non-Abelian group only the conjugacy class of g is gauge-invariant.

Gauge fluxes for spatial symmetries are also labelled by conjugacy classes of G.

They are also well-known, but not under that name; they are more commonly referred
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Figure 8.2: An angular defect of 90 degrees in a vertex-centered square lattice and
an angular excess of 120 degrees in a face-centered kagome lattice.

to as crystal defects. For example, a gauge flux for translational symmetry is a

dislocation and a gauge flux for a rotational symmetry is a disclination (Fig 8.2). In

3d, the direction of dislocation does not have to be in the plane perpendicular to the

defect, as in a screw dislocation. A defect for reflection symmetry is like the Möbius

band (a cross cap). For a glide reflection we also insert a shift in the lattice as we

go around the band. We will see how this zoo of defect configurations is tamed by

topology.

Generalizing these examples, we can give a systematic definition of crystalline

gauge flux, and more generally of a crystalline gauge field. For motivation, one can

look again at Fig 8.2. The original lattice Λ is a regular square or kagome lattice.

The crucial property the defect lattice Σ is that away from the singular point in the

middle, it looks locally the same as Λ, meaning that in a neighborhood of every face

except the central one there is an invertible map sending Σ to Λ. However, there is

no global map sending Σ to Λ. Indeed, if we try to extend the domain of our map, we

will eventually create a discontinuity after encircling the singularity. This is shown

in Fig 8.3. For the 90 degree angular defect, the discontinuity is a branch cut such

that the limits on either side are related by a 90 degree rotation. For a crystal defect,
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Figure 8.3: A 90 degree disclination maps discontinuously to the square lattice, as
indicated with the colored quadrants. The red line is the branch cut across which
the image rotates by 90 degrees. Because the discontinuity is by a rotation in G,
this map descends to a continuous map from the disclination to the quotient of
the square lattice by G.

this discontinuity is always by a G transformation and labels the symmetry flux of

the defect.

To further motivate the definition, let us recall the definition of a gauge field for

an internal (discrete) symmetry. Gauge fields for discrete symmetries are somewhat

more esoteric than gauge fields for continuous groups (like the familiar electromag-

netic vector potential Aµ). One way to think about them is that they encode “twisted

boundary conditions”. For example, threading a non-trivial gauge flux for an Ising

symmetry through a system living on a circle means that we make a cut and identify

spin-up on one side of the cut with spin-down on the other side of the cut (“anti-

periodic boundary conditions”). In general, to specify a gauge field on a manifold

M we can build M up out of “patches”. The boundaries between patches (“domain

walls”) are “twisted” by an element g ∈ G of the symmetry group (“transition func-

tions”), which tells us how to identify the patches. A discrete gauge field must be

“flat”, which is to say there can be no non-trivial holonomy around a vertex where

several patches intersect, as shown in Figure 8.4. This is to say there is no G-flux
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(a) (b)

(c)

(d)

Figure 8.4: The “patches” picture of a gauge field for an internal symmetry. (a):
The manifold M is divided up into patches, and the boundaries between patches
are twisted by a group element g ∈ G. (b): The flatness constraint implies that the
holonomy around a vertex must be trivial. (c) and (d): We identify configurations
that differ by dividing patches or by acting on a patch with some g ∈ G.
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through the vertices (or along such line-like junctions in a 3d picture). There is

some inherent gauge freedom: firstly, we can merge or split patches, provided that

the boundaries thus created or destroyed are twisted by the trivial element 1 ∈ G;

secondly, we can apply an element gp ∈ G of the symmetry group to a given patch p,

which has the effect of multiplying the twist carried by the boundaries of this patch

by gp. This gauge freedom relates two different representations of the same gauge

field. More abstractly (but equivalently), we can define a gauge field as a principal

G-bundle over M [183].

As an example, we can consider a g-flux at the origin of the plane. This g-flux

is defined as a G gauge field on the plane minus the origin. It may be defined using

a single (simply-connected) patch which meets itself along a domain wall extending

from the origin to infinity. This domain wall is labeled with the transition function g,

indicating that a point charge taking along a path encircling the origin will return to

its original position with any internal degrees of freedom transformed by the symmetry

g. The similarity between the internal symmetry flux and the crystal defect is striking.

It leads us to identify the role of the branch cut in the latter with the domain wall of

the former.

With this identification in hand, we are ready to state our definition of crystalline

gauge field, by directly generalizing the patches picture of internal symmetry gauge

fields. An important novelty will be that the lattice geometry is defined by the

crystalline gauge background. That is, we fix our physical space X containing the

lattice Λ. X is usually Rd, a torus, or some related spacetime. G acts on X preserving

Λ. The lattice with defects Σ will be embedded in a different space M . For example,

in the disclination, M is the plane minus the origin.

To specify a crystalline gauge field, we will start with the same data we had

before: a collection of patches Ui dividing M =
⋃
i Ui, with domain walls between
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intersecting patches Ui ∩Uj 6= 0 labelled by elements gij = g−1
ji ∈ G, with the flatness

condition
∏

i gi,i+1 = 1 imposed over all contractible loops. This is the definition of

an internal symmetry G gauge field, but it is not the end of the story, because as

we saw in the examples above, there is an extra feature of crystalline gauge fluxes

which needs to be captured: a map f : M → X. This represents the (continuum

limit) of the identification between the lattices Σ embedded in M and Λ embedded in

X. Inside each patch Ui, this map f : Ui → X is continuous, but on the boundaries

between intersecting patches Ui ∩ Uj 6= 0 we impose the twisted continuity condition

that for any m ∈ Ui ∩ Uj, the limit of f(m′) as m′ → m in Ui and the limit of f(m′)

as m′ → m in Uj are related in X from the former to the latter by application of

gij. For example, in Figure 8.3, the different colored quadrants are patches on M

(which in this case is the punctured plane R2 \ {0}), and the thick red line denotes

a boundary between patches which is twisted by a 90 degree clockwise rotation as

we pass from the teal patch to the violet patch. We impose the same gauge freedom

as before [Figure 8.4(c) and 8.4(d)], except that when we act on a patch by g, as

shown in Figure 8.4(d), then inside the patch we replace the function f according to

f(m)→ gf(m).

There is a final condition we need to impose, related to the orientation (or lack

thereof) of the manifold M . It is standard lore that a topological phase that is not

reflection invariant cannot be put on an unorientable manifold, and moreover, that

for a reflection invariant system, putting it on a unorientable manifold is essentially

threading a “flux” of the reflection symmetry. So in order to enforce compatibility

with these notions, we define µ(g) = −1 if g acts in an orientation-reversing way on

X, and µ(g) = 1 otherwise. For any closed loop γ in M , we can define the “flux”

gγ, which is the product of the twist over each boundary crossed by γ. We also

define λ(γ) = ±1 depending on whether going around the loop γ would reverse the
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orientation on M . We require that λ(γ) = µ(gγ).

For completeness, we will also formulate a more abstract mathematical definition.

Basically we are specifying some extra data on top of a principal G-bundle. Formally,

we have

Definition 2. A crystalline gauge field is a pair (π, f̂), where π : P →M is a principal

G bundle, and f̂ : P → X is a continuous map satisfying satisfying f̂(gp) = gf̂(p) for

all p ∈ P , g ∈ G. We require that the homomorphism µ : G→ Z2 (where µ(g) = −1

if g has orientation-reversing action on X) reduces π to the orientation bundle of

M . We say that two pairs (π, f̂), (π′, f̂ ′) represent the same crystalline gauge field

if the principal G-bundles π : P → M and π′ : P ′ → M are isomorphic by a map

σ : P → P ′ such that f̂ ′ ◦ σ = f̂ .

The map f̂ in the definition above always induces a map g from P/G = M into

X/G. Hence, we have the following commutative diagram:

P X

M X/G

f̂

π mod G

g
. (8.2)

It should be clear, from the disclination example, that crystalline gauge fields can

describe the crystal defects which were our original motivation. However, now that

have given a general definition, we had better ask whether all crystalline gauge fields

admit such a physical interpretation. In particular, there ought to be a well-defined

sense of what it means to couple to a general crystalline gauge field.

For internal symmetries it is familiar how to couple to a gauge field, at least

when that gauge field lives on M = X. Given a gauge field A for a (discrete)

internal symmetry G, described using patches and transition functions, and given a
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Hamiltonian H that commutes with the symmetry, we can define a Hamiltonian H[A]

that describes the system coupled to the gauge field. To do this, we assume that H

can be written as a sum of local terms. Then, H[A] contains a local term for each

local term in H. The terms in H which act only within a patch carry over to H[A]

without change, while for terms in H which act in multiple patches, we must first

perform a gauge transformation so that the term acts in a single patch, add it to the

Hamiltonian, and then reverse that gauge transformation. See, for example [96].

Now suppose that we want to do the same thing for crystalline gauge fields. For

crystal defects (for example, the disclination in Figure 8.3) it should be clear how to

do this; locally, the defect lattice looks the same as the original lattice, so we just

pull local terms in X back into M . On the other hand, this construction doesn’t

necessarily work for a general crystalline gauge field. We have to impose a condition

which we call rigidity.

Definition 3. A crystalline gauge field (expressed in terms of patches, twisted bound-

ary conditions, and a map f : M → X) is rigid if near any point m ∈ M that maps

into a lattice point in X under f , there exists a local neighborhood U containing m

such that, after making a gauge transformation such that U is contained in a single

patch, f is injective (one-to-one) when restricted to U ; and, moreover, the image

of U under f contains all lattice points that are coupled to f(m) by a term in the

Hamiltonian.2

This somewhat technical definition is best understood by considering examples of

crystalline gauge fields which are not rigid. An extreme example is the case where

f : M → X is the constant function: there is some x∗ ∈ X such that f(m) = x∗ for

all m ∈M . In other words, every point in M gets identified with a single point in X.

2For certain applications, this last condition may be relaxed near a boundary of M . Terms in the
Hamiltonian which fall of the edge may need to be discarded or modified in some arbitrary manner.
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If the Hamiltonian in X has terms coupling x∗ with some other nearby point, then

there is no way to define corresponding terms acting in M , since the nearby point

does not correspond to any point in M . More generally, rigidity fails when there are

points at which f is not locally invertible; if f is a smooth map between manifolds,

this is equivalent to saying that there are points at which its Jacobian vanishes.

For a rigid crystalline gauge field, on the other hand, there is always a well-defined

procedure to couple it to the Hamiltonian. The idea is that rigidity guarantees that

the local neighborhood is always sufficiently well-behaved that it makes sense to pull

terms in the Hamiltonian from X back into M . This is illustrated in Appendix E.2

Finally, let us remark on a interesting property of the the definition of crystalline

gauge field: in the case that the whole symmetry group acts internally (that is, the

action of G on X is trivial), we might have expected the definition to reduce to the

usual notion of a gauge field for an internal symmetry. However, this is evidently not

the case, because there is still the map f : M → X (which in this case must be globally

continuous). We believe that, in fact, this may be a more complete formulation of a

gauge field for an internal symmetry.

8.3.2 Crystalline topological liquids

From the discussion in the preceding discussion, it might seem that we should only

consider rigid crystalline gauge fields. Now, however, we want to argue that this is

too restrictive. One indeed should require a crystalline gauge field A to be rigid if one

wants to go from a Hamiltonian H to a Hamiltonian H[A] coupled to A. But such a

microscopic lattice Hamiltonian is a property of the system in the ultra-violet (UV).

On the other hand, when classifying topological phases, what we actually care about

is the low-energy limit. The central conjecture of this work is that it is well-defined
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to discuss the low-energy topological response to any crystalline gauge field (not just

a rigid one).

One reason for this is that a spatially-dependent TQFT that is invariant under

a spatial symmetry can be expressed as a single TQFT coupled to a background

field which is precisely our crystalline gauge background of Def 2 (with no rigidiy

constraints)! This should be compared with the result for internal G symmetry which

says that a G action on a (single) TQFT is equivalent to a TQFT with an ordinary

background G gauge field. In other words, topological field theories can be gauged

and the resulting topological gauge theory retains all the information of the original

theory and its symmetry action[184]3. We discuss this further in section 8.6.

Such considerations provide the mathematical basis for our conjecture about the

gauge response. Nevertheless, since these arguments are very abstract and potentially

unappealing to readers not familiar with TQFTs, we will also give a more concrete

prescription for coupling smooth states (recall that we introduced this concept in

Section 8.2) to a general crystalline gauge field. For simplicity, we will only consider

the case where there are no orientation-reversing symmetries, although we expect

that this restriction can be lifted.

The idea is that there is a simple set of data which one can use to specify a

smooth state. Firstly, in the neighborhood of every point in space, we need to specify

the orientation of the fine lattice; this can be specified through a framing of the

manifold M (i.e. a continuous choice of basis for the tangent space at every point).

Moreover, in the neighborhood of every point in space, the state looks like it respects

the (orientation-preserving) spatial symmetries of the fine lattice (globally, of course,

this is not the case). Hence, there is a map ψ : M → Ω, where Ω is the space of

all ground states invariant under the spatial symmetries of the fine lattice. (For our

3In the mathematics literature, this is often stated “equivariantization is an equivalence”.
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arguments, it won’t be important to characterize Ω precisely). For a smooth state,

we require this map to be continuous.

As a warm-up, we will first show how to define coupling to a gauge field for

an internal discrete unitary symmetry G in terms of smooth states. Let Ω be a

space of ground states, with G acting on Ω as a tensor product over every site,

with the action at a given site described by the representation u(g). Let ψ ∈ Ω

be a G-invariant state. Now, given a framed manifold M and a G gauge field A

(i.e. collection of patches on M with G-twisted boundary condition; alternatively, a

principal G-bundle over M), we will show how to define a smooth state ψ[A] : M → Ω.

For each g we define a continuous path u(g; t), t ∈ [0, 1] such that u(g; 0) = I and

u(g; 1) = u(g). Given that ψ is G-invariant, acting with [u(g; t)]⊗N on ψ defines a

loop ψg(t) ∈ Ω, such that ψg(0) = ψg(1) = ψ. Then, inside each patch we just set

ψ[A](m) = ψ. But we decorate patch boundaries twisted by a group element g ∈ G

by the corresponding loop. That is, we require that, as m crosses such a boundary,

ψ[A](m) goes through the loop described by ψg(m; t). One might wonder whether

this procedure is well-defined at the intersections between patch boundaries. For

example, an obstruction would occur if the composition of the paths ψg1 , ψg2 and

ψ(g1g2)−1 defines a non-contractible loop, i.e. a non-trivial element in the fundamental

group π1(Ω). In Appendix E.3, we show that such obstructions can never arise,

provided that we sufficiently enlarge the on-site Hilbert space dimension. We also

give a more rigorous formulation in terms of the classifying space BG.

Now we return to the case of a crystalline gauge field, but by way of simplification

we first consider the case where there is no symmetry. Then a crystalline gauge field

A on a manifold M is simply a continuous map f : M → X. In general, there is

no way to define the Hamiltonian H[A]. But for a smooth state ψ : X → Ω there

is a well-defined way to define a corresponding smooth state ψ[A] : M → Ω which
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describes ψ coupled to A. Indeed, we just define ψ[A](m) = ψ(f(m)). (To completely

specify the state, we also have to choose a framing on M). This should be compared

with Kitaev’s “weak symmetry breaking” paradigm[185], where our Ω plays the role

of Kitaev’s Y .

Finally, we can combine the ideas from the previous two paragraphs to give a

prescription for coupling a smooth state to a crystalline gauge field for a symmetry

G acting on X, living on a manifold M . The crystalline gauge field is specified

(according to the discussion in Section 8.3.1) by a collection of patches on M with

twisted boundaries, and a function f : M → X respecting the twisted boundary

conditions. We assume the symmetry action takes the form U(g) = S(g)[u(g)]⊗N ,

where S(g) is a unitary operator that simply permutes lattice sites around according

to the spatial action, and [u(g)]⊗N is an on-site action. Then we define a path u(g; t)

for t ∈ [0, 1] such that u(g, 0) = I, u(g, 1) = u(g). By acting with [u(g; t)]⊗N we

obtain a path ψg(x; t) in M . It’s not a loop this time, though; instead G-invariance

of ψ implies that ψg(x; 0) = ψ(x), ψg(x; 1) = ψ(gx). Now we can define the coupled

state ψ[A] as follows. Inside each patch, we have ψ[A](m) = ψ(f(m)). Then, for

patches connected by boundaries twisted by g ∈ G, we connect up the ψ[A] in the

respective patches by means of the paths ψg(x; t). The previously noted endpoints

of these paths are consistent with the fact that f(m) jumps to gf(m) as one crosses

the boundary. Again, we defer the proof that this procedure is well-defined at the

intersection of boundaries to Appendix E.3.

At this point, the careful reader might raise an objection. In our statement

of the conjecture about coupling to a crystalline gauge field, we did not require

the manifold M to be framed, only orientable (the orientability condition comes

from our stipulation that there are no orientation-reversing symmetries, and from the

compatibility condition between the orientation bundle of M and the crystalline gauge
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field discussed in Section 8.3.1 and again in Section 8.6). But so far, our smooth state

arguments only showed how to couple to crystalline gauge fields on framed manifolds.

There are two questions that still need to be addressed:

• Question 1. Does the topological response depend on the choice of framing?

• Question 2. Can the topological response be defined on oriented manifolds that

do not admit a framing?

These questions need to be addressed in any formulation of continuum limit. For

bosonic systems we expect that the continuum limit, if it exists, can be defined on any

oriented manifold and doesn’t depend on any extra structure. For fermionic systems

it also can depend on a spin or spinc structure. There are of course systems which,

while gapped, still exhibit some metric or framing dependence in the IR, eg. Witten’s

famous framing anomaly of Chern-Simons theory [186]. We will later approach these

questions in the TQFT framework of section 8.6. For now let us think about these

questions from the perspective of smooth states.

For Question 1, we observe that that changing the framing corresponds to changing

the fine lattice, and generally speaking, most topological phases have a “liquidity”

property that ensures that the ground states on different lattices can be related by

local unitaries. Since the states live on different lattices, this requires bringing in

and/or removing additional ancilla spins that are not entangled with anything else,

as is standard protocol when defining local equivalence of quantum states. Such a

liquidity property will be necessary for the crystalline topological liquid condition to

be satisfied. There are some notable exceptions, such as fracton phases [179], of which

a simple example is a stack of toric codes. We do not expect such fracton phases to

be crystalline topological liquids.

As for Question 2, we believe that the answer is probably yes. To illustrate the
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issues at play, consider the 2-sphere. This is an orientable 2-manifold which does not

admit a framing. As a consequence, there is no way to put a regular square lattice on

a 2-sphere; there must be at least a singular face which is not a square or a singular

vertex which is not 4-valent. So one cannot strictly define a smooth state. But we

expect that there are ways to “patch up” such singular points so that they don’t affect

the long-range topological response. For example, the toric code is usually defined

on a square lattice, which cannot be placed onto the sphere, but it is easy to put a

toric-code-like state on the sphere by allowing a few non-square faces.

We emphasize that coupling to non-rigid crystalline gauge fields is what allows us

to establish the crystalline equivalence principle. For example, for internal symmetries

one could consider braiding symmetry fluxes around each other. Does this make sense

in the case of, for example, disclination defects? If the disclinations were interpreted

strictly as lattice defects this would not be possible, since there is no continuous

deformation of a lattice containing two disclinations such that the two disclinations

move around each other with the lattice returning to its original configuration. But

if we interpret disclination defects as special cases of (generally non-rigid) crystalline

gauge fields, then this braiding process is allowed. The physical interpretation is that

in the course of the braiding process, additional sites get coupled to, and superfluous

sites decoupled from, the system by means of local unitaries (as discussed above in

the context of the framing dependence). That is, the lattice geometry changes along

the path.

In conclusion, this discussion motivates our terminology of “crystalline topological

liquid”: although such systems are “crystalline” in the sense that they have spatial

symmetries, they are also “topological liquids” in the sense that the lattice is not

fixed but can be transformed into other geometries by means of local unitaries (with

ancillas). This is also consistent with our picture from Section 8.2 that the topological
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response of crystalline topological liquids “forgets” about the lattice.

8.3.3 The Crystalline Equivalence Principle

Most of the time, we will be interested in topological crystalline phases in Eu-

clidean space X = Rd. Moreover, the topological response should only depend on the

deformation class of the crystalline gauge field. It turns out that for X = Rd there is

a very simple characterization of the collapsible homotopy classes of crystalline gauge

fields:

Theorem 3. If X is contractible (e.g. X = Rd), then the deformation classes of

crystalline gauge fields are in one-to-one correspondence with internal gauge fields.

That is, in the “patches” formulation of crystalline gauge fields, the deformation

classes remember only the twisted boundary conditions and not the function f :

M → X. This theorem is a corollary of the more general classification theorem for

crystalline gauge fields. See Thm 7. However, here we remark on an elementary

way to see one part of Thm 3: namely, that homotopy classes can only depend on

the twisted boundary conditions. (For the moment we will not attempt to prove

the other part, namely that any configuration of twisted boundary conditions has at

least one function f respecting it). Although the proposition holds more generally,

for simplicity we consider the case where X = Rd and where the G action on X is

affine linear:

gx = Agx+ bg, (8.3)

where Ag is a (d × d) matrix and bg is a length d vector. We then observe that

given a patch configuration on M with twisted boundary conditions, and two maps

f0 : M → X and f1 : M → X respecting the same twisted boundary conditions, then
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there is a continuous interpolation

fs = (1− s)f0 + sf1, (8.4)

which respects the same twisted boundary conditions all the way along the path.

Thm 3 allows us to deduce the most important result of this paper. Thm 3 shows

that deformation classes of crystalline gauge fields are in one-to-one correspondence

with principle G-bundles. On the other hand, deformation classes of gauge fields for

an internal symmetry also correspond to principal G-bundles. Topological phases are

distinguished by their response to background gauge fields. Therefore we conclude

the

Crystalline Equivalence Principle: The classification of crystalline topo-

logical liquids on a contractible space with spatial symmetry group G is the same

as the classification of topological phases with internal symmetry G.

To be precise, the orientation-reversing symmetries on the spatial side are identi-

fied with the anti-unitary symmetries on the internal side.

8.3.4 Beyond Euclidean space

Before we delve into the details of how to classify crystalline topological liquids by

their topological response to gauge fields, we recall that the above considerations refer

to topological phases that exist in Euclidean space Rd. In principle one can consider

the more exotic problem of classifying topological phases on non-contractible spaces;

for example, the d-sphere, the d-torus, or a Euclidean space with holes4. The practical

4We emphasize that, in the absence of translation symmetry, it does not make sense to relate
a topological phase defined on one compact space to one defined on another space with different
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relevance of this problem may be a bit obscure, but from a theoretical point of view

we find it more enlightening to formulate the problem we are interested in – Euclidean

space – as a special case of the more general problem. It also illustrates an important

conceptual point: the Crystalline Equivalence Principle is not something that a priori

had to be true. Rather, it is a consequence of the fact that systems of physical interest

live in Euclidean space.

On contractible spaces, we had the classification Theorem 3 for crystalline gauge

fields. This classification theorem is a special case of the more general result (see

Appendix E.4 and Theorem 7) that deformation classes of crystalline gauge fields

M → X are classified by homotopy classes of maps from M into the “homotopy

quotient” X//G, pronounced “X mod mod G”. For X contractible, X//G is ho-

motopic to the “classifying space” BG, so we recover Theorem 3 if we invoke the

well-known fact that principal G-bundles over M are classified by homotopy classes

of maps M → BG.

8.4 Exactly solvable models

It is of course important to show that we can explicitly construct Hamiltonians

realizing topological crystalline phases classified in this work. We do this using a

“bootstrap” construction. This is really a meta-construction, in the sense that it is

a prescription for going from a construction for an SPT or SET phase with internal

symmetry to a construction for a topological crystalline phase. A similar idea was used

by one of us to construct phases of matter protected by time-translation symmetry

in Ref. [107].

For simplicity we consider the case where the entire symmetry group G acts spa-

topology. That is, the classification can depend on the background space.
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tially, i.e. the internal subgroup is trivial. We will also consider the case where G

does not contain any orientation-reversing transformations, and we work in Euclidean

space, X = Rd. First of all, let ϕ be a surjective homomorphism from the symmetry

group G to a finite group Gf . We use one of many approaches to construct a topo-

logical liquid with an internal symmetry Gf . In most of these approaches, there is

no obstacle to construct the Hamiltonian to also have a spatial symmetry G, which

commutes with Gf so that the full symmetry group is G̃ = G × Gf (for example,

in the case of bosonic SPTs, this can be shown explicitly using the construction of

Ref. [80], as detailed in Appendix E.5). We then can imagine deforming Hamiltonian

to break the full symmetry group G̃ down to the diagonal subgroup

G′ = {(g, ϕ(g)) ∈ G̃} ∼= G. (8.5)

We expect that this model will be in the topological crystalline phase that corresponds

to the internal symmetry-protected phase we started with via the crystalline equiva-

lence principle. Indeed, we can do this construction on a lattice with lattice spacing

much less than the unit cell size (thus giving a smooth state), and verify that, for

the original model (without the G̃-breaking perturbation), following the prescription

given in Section 8.3.1 to couple to a crystalline gauge field for the diagonal subgroup

G′ gives the same result as coupling to an internal gauge field for the internal sub-

group G. (A similar argument can be given in the spatially-dependent TQFT picture

of Section 8.6).

Let us briefly sketch how to extend the above construction to symmetry groups

G containing orientation-reversing transformations. A general topological phase is

not reflection-invariant, so the above argument needs to be modified. We expect that

a topological liquid can always be made invariant under a spatial symmetry G if
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we make the orientation-reversing elements of G act anti-unitarily ; we can call this

suggestively the “CPT princple”5 We prove this explicitly for bosonic SPT phases

in Appendix E.5. We then proceed as before, starting from a (G × Gf )-symmetric

topological phase, where the internal symmetry ϕ(g) ∈ Gf acts anti-unitarily if g was

orientation-reversing. Then eventually the symmetry gets broken down to the diag-

onal subgroup G′, which contains spatial symmetries, possibly orientation-reversing,

but all acting unitarily (since the orientation-reversing elements of G, which we have

taken to act anti-unitarily, get paired with anti-unitary elements of Gf ). We expect

that this gives the topological crystalline phase corresponding to the original internal

symmetry-protected phase via the crystalline equivalence principle, but explicitly de-

termining the topological response would involve explaining what it means to gauge

an anti-unitary symmetry, which we will not attempt to do (but see Ref. [187].)

8.5 Topological Response and Classification

In this section, we will discuss how our understanding of what it means to gauge

a spatial symmetry allows us to classify topological phases by their topological re-

sponses. Basically, any approach to understanding topological phases with internal

symmetries which relies on gauging the symmetry, can be applied equally well to

space-group symmetries by coupling to crystalline gauge fields. Moreover, in Eu-

clidean space, Theorem 7 should imply that we obtain the same classification as for

internal symmetries, in accordance with the Crystalline Equivalence Principle. In

non-contractible spaces we may obtain a different classification.

There are two main approaches to thinking about topological response. The first

5This is related to, but not a consequence of, the CPT theorem, because here we are talking
about lattice models, not relativistic quantum field theories. The CPT principle doesn’t claim that
every lattice model is CPT invariant, which would be demonstrably false; rather, it posits that in
any topological phase there is at least one CPT-invariant point.
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is a bottom-up approach where one starts with a Hamiltonian in a lattice model and

one attempts to work out all the topological excitations. For example in 2+1D, one

has anyons and symmetry fluxes and one can ask about how they interact. This is

tabulated mathematically in a G-crossed braided fusion category [96, 188] and one

can try to work out a classification of these objects or at least find some interesting

examples and then look for lattice realizations.

The second approach is a top-down one where one first assumes the existence

of a low energy and large system size (”IR”) limit of the gapped system. This is a

topological quantum field theory (TQFT) of some sort and one can just try to guess

what it is from the microscopic symmetries, entanglement structure (short-range vs.

long-range), and so on. One can make a bold statement that all possible IR limits are

of a certain type of TQFT and then try to classify all of those. Despite its obvious

lack of rigor, this approach has proven successful.

One reason for this is that it is often possible to bridge the two perspectives. For

example, aG-SPT can be understood in terms of an effective action ω ∈ HD+1(BG,Z)[80,

176] leading ultimately to a TQFT. But considering the fusion of symmetry fluxes

also leads to an element of HD(G,U(1)) through a higher associator of symmetry

fluxes (in 2 + 1-D, it is the F symbol). These are equivalent under the isomorphism

HD+1(BG,Z) = HD(G,U(1)). In general, defects such as anyons and symmetry

fluxes can be described in the TQFT framework through the language of “extended

TQFT”.

Let us now discuss how these methods can be extended to the case of spatial

symmetries.
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8.5.1 Flux fusion and braiding for SET phases in (2+1)-D

with spatial symmetry

If we want to classify symmetry-enriched phases in (2+1)-D phases we can consider

the “bottom-up” approach of Ref. [96]. There, one has a topological phase with an

internal symmetry G, and one envisages coupling to a classical background gauge

field. In particular, one can consider gauge-field configurations in which the gauge

fluxes are localized to a discrete set of points. One can then consider the algebraic

structure of braiding and fusion of such gauge fluxes, which is an extension of the

braiding and fusion of the intrinsic excitations (anyons) that exist without symmetry.

This structure is argued to be described by a mathematical object called a “G-crossed

braided tensor category”. For a crystalline topological liquid on Euclidean space, we

expect that the equivalence between crystalline gauge fields and G-connections allows

the arguments to carry over without significant change. (We will leave a detailed

derivation for future work.) On non-contractible spaces, presumably a generalization

of the arguments of Ref. [96] should be possible, but we will not explore this.

8.5.2 Topological Response as Effective Action

Another way to compute topological response, which does not involve braiding or

fusing fluxes is by computing twisted partition functions. That is, given a background

gauge field (ordinary or crystalline) A on a spacetimeM , we can compute the partition

function of Z(M,A) and compare it to the untwisted partition function Z(M). The

assumption is that

Z(M,A)/Z(M)
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tends to a complex number of modulus 1 in the limit that M becomes very large

compared to the correlation length. In favorable situations, such as a crystalline

topological liquid, the limiting phase is a topological invariant of M and its gauge

background A. We call this the topological response of our system to A and its log

the effective action for the gauge background A. In some cases, like M = Y × S1,

Z(M,A) can be interpreted as some kind of “twisted trace” of symmetry operators,

as we soon discuss. In general there is such an interpretation but it involves topology-

changing operators [189]. 6. What is most important for classification of phases is

that it is a number that captures some (or all) of the data in a “spatially-dependent

TQFT”, which we introduce in Section 8.6 as the mathematical way to describe a

“crystalline topological liquid” phase of matter.

For internal symmetries of bosonic systems, we know that in this case, the limiting

ratio can be written

Z(M,A)/Z(M)→ exp

(
2πi

∫
M

ω(A)

)
, (8.6)

where ω(A) is a gauge-invariant top form made out of the gauge field. In the case

of a crystalline gauge field A = (P,M, π, f̂), we will also assume that the topological

response is an exponentiated integral:

Z(X,A)/Z(X)→ exp

(
2πi

∫
M

ω(α, f̂)

)
, (8.7)

where ω(α, f̂) is a top form on M made of the twisting field α ∈ H1(M,G) which

6Indeed, on a general spacetime, a generic choice of time direction defines a Morse function and
a foliation of spacetime by spatial slices. At critical points of this Morse function, the spatial slice is
singular and we have a topology changing operator that gets us from the Hilbert space just before the
critical point to the Hilbert space just after. These are all handle attachments and can be thought
of as generalized flux fusion processes.
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classifies the cover P and the map f̂ , used to pull back densities from X. In the case

that G is purely internal, α plays the role of A in (8.6).

As discussed in Ref [176], responses of the form (8.6) are the same thing as cocycles

in group cohomology, defined as cohomology of the classifying space HD+1(BG,Z),

where D is the dimension of spacetime X. This reproduces the classification of

internal symmetry bosonic SPTs in Ref [80]. To construct the effective action of A,

we use the fact that the gauge field A itself is the same as a map A : X → BG, and

given a D-cocycle on BG, we can pull it back along this map to get ω(A) over X.

Analogously, we can think of our crystalline gauge field as a map A : M → X//G

(see Appendix E.4) and take any form in HD(X//G,U(1)), pull it back along this

map to M to get a ω(α, f̂) and integrate it. We just need to be a little careful

with coefficients. We intend to integrate ω(α) over M , but if G contains orientation-

reversing elements like mirror and glide reflections (or time reversal), then M may

likely be unorientable. Integration on an unorientable M is done by choosing a

local orientation: orienting M away from some hypersurface N and performing the

integration on M − N with its orientation. To ensure the integral does not depend

on this local orientation, we need our top form ω(α) to switch sign with the local

orientation is reversed. Mathwise, this means that ω(α) should live in cohomology

HD(M,U(1)or) with twisted coefficients U(1)or. Luckily, if X is orientable, then the

unorientability of M is entirely due to orientation-reversing elements of G, so if we use

twisted cohomology HD(X//G,U(1)or) where orientation-reversing elements of G act

on U(1) by θ 7→ −θ, then the coefficients will pull back properly. This cohomology

group is well known in algebraic topology as the equivariant cohomology of X, and

is written

HD
G (X,U(1)or) := HD(X//G,U(1)or).
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Another subtlety comes from considering the identity map M = X → X as a

crystalline gauge field. Any non-trivial topological response to the identity cover is

equivalent to a shift of all the partition functions by a phase. We may as well consider

only the subgroup of all equivariant cohomology classes which pulled back along the

identity map are trivial. This is called reduced cohomology and is denoted with a

tilde H̃.

Summarizing, we find:

Theorem 4. Homotopy-invariant effective actions in D = d+1 spacetime dimensions

for crystalline gauge fields A : M → X//G which may be written as integrals over M

are in correspondence with “twisted reduced equivariant cohomology”:

H̃D+1
G (X,Zor).

8.6 Spatially-dependent TQFTs

Here, we will explain our proposal for the description of the low-energy limit of

a crystalline topological phase in terms of a TQFT. In this setting, our results, such

as the crystalline equivalence principle, and the fact that the low-energy limit can be

coupled to an arbitrary crystalline gauge field, can be proven mathematically. We

will focus here on the physical motivations; however, we give enough detail that the

full mathematically rigorous treatment should be apparent to TQFT experts.

Recall that the starting point is that a phase of matter should have a spatially-

dependent “topological limit”, which we expect to be described by a spatially-dependent

TQFT. Indeed, we define

Definition 4. A (d + 1)-dimensional spatially-dependent TQFT on a space X is a

continuous map σ : X → Θ, where Θ is the space of all (d+ 1)-dimensional TQFTs.
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Now, what exactly do we mean by “space of all TQFTs”? Familiar notions of

TQFTs (at least in 2+1D) look quite rigid, suggesting that any such space would be

discrete. However, we want to argue that there is a natural way to think about TQFTs

as living in a richer topological space Θ. First of all, we note that for classifying

phases of matter it will not be necessary to specify Θ exactly, only up to homotopy

equivalence. Let us discuss a physical motivation for the homotopy type of Θ.

Generally, specifying the homotopy type of a topological space involves identifying

points, paths between points, deformations between paths, and so on. The idea

is that the structure of Θ should represent features of ground states of quantum

lattice models. Thus, the points in Θ should correspond to ground states of quantum

lattice models; the paths in Θ should correspond to continuous paths of ground

states of quantum lattice models; and so on. There is another way to interpret these

statements. A path in the space of ground states of quantum lattice models can

also be implemented spatially, giving rise to an interface of codimension 1. Similarly,

deformations between paths give rise to interfaces of codimension 2 between interfaces

of codimension 1, and so on. (See Figure 8.5).

Roughly, therefore, the idea is that Θ should have the homotopy type of a cell

complex with vertices v labeled by (d+1)-dimensional TQFTs T (v). Edges e : v → w

are labeled by invertible d-dimensional topological defects D(e) between T (v) and

T (w). 2-Cells f with ∂f = v1
e12−→ · · · vn

en1−−→ v1 are labeled by invertible d − 1-

dimensional junctions between the defects D(e12) · · ·D(en1). This continues all the

way down to 0-dimensional defects, which for topological field theories with a unique

ground state on a sphere is a copy of the complex numbers. 7 In [188], this space

7Note that if two topological theories share an invertible topological defect, it means they are
isomorphic, so in a formulation of TQFT up to isomorphism, eg. modular tensor category, each
component of Θ will have a single vertex, perhaps with many other cells attached to it. In a state
sum or tensor network formulation, on the other hand, there could be lots of state sums giving rise
to the same TQFT with invertible MPO defects between them[180].
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(a)

(b)

Figure 8.5: (a) Specifying the homotopy type of the space Θ of all TQFTs involves
specifying points in this space, paths between arrows (single arrows), deformations
between paths (double arrow), and so on. We want these to capture features of
the space of quantum ground states. (b) These features can also be interpreted
as interfaces. Depicted is a spatial configuration of interfaces in a 2-dimensional
system, with two 1-dimensional interfaces separated by a junction of dimension
0. We can imagine that these interfaces are “smoothed out” such that the spatial
variation occurs on scales large compared to the lattice spacing (thus, we have a
a “smooth state” as discussed in Sections 8.2 and 8.3.2). Traversing a path in
R2 from the left half-plane to the right half-plane, the local quantum state goes
through the path γ0 or γ1 depending on whether the path in R2 goes through
the upper 1-dimensional interface or the lower one. As one deforms the path in
R2 through the 0-dimensional junction (black dot), the corresponding path in the
space of quantum states goes through the deformation described by d.
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was considered for d = 3 in the tensor category framework and was referred to as the

Brauer-Picard 3-groupoid.

A version of the bulk-boundary correspondence says that the set of boundary con-

ditions and boundary operators determines the bulk topological field theory (see [190]

for some perspective on this in general dimensions and [191–193] in 2+1D especially).

For theories admitting gapped (therefore topological in the IR) boundary conditions,

this is the Baez-Dolan-Lurie cobordism theorem (sometimes “hypothesis”) [189, 194],

which characterizes possible boundary data as special objects in a d + 1-category

C. This characterization can be used to construct Θ in a mathematically precise

way. (Specifically, it is a space whose homotopy type is described by the core of the

category C).

Let us now consider the effect of symmetries. There is a natural way to define a G-

action on a TQFT. From the Baez-Dolan-Lurie framework, one can show that a TQFT

with symmetry G is equivalent to TQFT coupled to a background G gauge field.

What we mean by the latter is the following. A (d + 1)-dimensional TQFT assigns

topological invariants to manifolds; for example, it assigns complex numbers (the

partition function) to (d + 1)-dimensional manifolds, and finite-dimensional Hilbert

spaces (the state space) to d-dimensional manifolds. A (d + 1)-dimensional TQFT

coupled to a background G gauge field assigns invariants to G-manifolds: manifolds

decorated with G gauge fields. Physically, this is supposed to describe response the

topological response of the system to background gauge fields. We want to extend

this result to systems with spatial symmetries.

Let us first review the case of a TQFT θ ∈ Θ with an internal unitary G-action.

Indeed, we define:

Definition 5. A G action on a TQFT is a collection of isomorphisms φg : θ → θ for

128



Classification of phases with spatial symmetries Chapter 8

each g ∈ G, with consistency data.

In fact, in the Baez-Dolan-Lurie framework discussed above, isomorphisms are

just paths in the space Θ. These have the interpretation of defects of codimension

1. In fact, these are just symmetry twist branch cuts (e.g. see Ref. [96]), such that

particles moving through them get acted upon by the symmetry G. What we mean

by “consistency data” is that the implementation of the relations of G are also data in

the G-action (see for instance [195]). This data describes the codimension 2 junctions

where domain walls fuse, the codimension 3 singularities where two junctions slide

past each other, and so on. In fact, a more succinct way to formulate this definition

is that a (anomaly-free, see below) TQFT with G symmetry is a continuous map

φ : BG → Θ. The statement about equivalence between TQFTs with G-action and

TQFTs coupled to background gauge field then follows from the following general

consequence of the Baez-Dolan-Lurie framework (see Thm 2.4.18 of [194]):

Lemma 1. For any space W , a continuous map f : W → Θ is equivalent to a TQFT

for manifolds equipped with maps into W .

Indeed, we set W = BG and note that maps into BG are the same as G gauge

fields.

Finally, we are ready to consider the general case of a spatially-dependent TQFT

with a spatial symmetry G. We define:

Definition 6. A (d + 1)-dimensional spatially-dependent TQFT with symmetry G

on a space X is an action of the group G on X along with a G-equivariant map

σ : X → Θ, meaning for all x and g we have a choice of isomorphism

φg,x : σ(g · x) ' σ(x). (8.8)
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(with consistency data).

Note that the isomorphisms should be taken to be unitary or anti-unitary for

orientation-preserving or orientation-reversing symmetries respectively.

Once all the appropriate consistency data has been taken into account, we find

that a spatially-dependent TQFT with an orientation-preserving spatial symmetry G

corresponds to a map from the homotopy quotient X//G (discussed in section 8.3.4

and appendix E.4) into Θ. (We will not discuss the orientation-reversing case here).

Applying Lemma 1, we find

Theorem 5. A (d+ 1)-dimensional spatially-dependent TQFT on X with symmetry

G is equivalent to a TQFT for (d+ 1)-manifolds M equipped with a (homotopy class

of) map M → X//G, where X//G is the homotopy quotient we have discussed in

section 8.3.4.

This statement suggests that we can consider any map M → X//G as a crys-

talline gauge background, whereas in section 8.3.1 we only showed how to couple

a Hamiltonian to a rigid crystalline gauge background. Indeed, spatially-dependent

TQFT mathematically formalizes our notion of smooth states in section 8.3.2 and

appendix E.3. Further, restricting to the case that X is contractible, X//G is homo-

topy equivalent to BG, so we find the same classification whether G acts internally

or on X.

8.7 Open problems

In this work we have presented a general framework for understanding the clas-

sification of interacting topological crystalline phases, for both bosons and fermions.
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An important question for future work is to understand the physical signatures of

these phases.

The classic signature of an SPT phase is the protected gapless modes on the

boundary (though in strongly interacting systems the boundary can also sponta-

neously break the symmetry or be topologically ordered). One would expect similar

statements to hold for crystalline SPT phases, but there are some caveats. Firstly,

of course, a boundary will in general explicitly break the spatial symmetry down to

a subgroup, and one only expects protected modes when the phase is still non-trivial

with respect to this subgroup. But even then there are exceptions. For example, an

SPT protected in 1-D by inversion symmetry about x = 0 does not have a protected

degeneracy when placed on the interval [−L,L], even though the entire boundary

(comprising two points) is in fact invariant under the symmetry [72]. Another exam-

ple is a phase in 2-D with a C4 rotation symmetry, which can be constructed using

the techniques of Ref. [175]. A ground state in this phase is equivalent by a local

unitary to a product state, with a C4 charge pinned to the origin; therefore, there will

not be any non-trivial edge states for any choice of boundary. Thus, it is still an open

question to determine what is the criterion which ensures protected boundary modes.

A way to answer this would be to extend our spatial symmetry gauging procedure to

systems with boundary. This is, however, beyond the scope of the present work.

Another question is the robustness of the topological crystalline phases that we

have found to disorder, which explicitly breaks the spatial symmetries. There are

some topological crystalline phases which have been argued to be robust to disorder,

so long as the spatial symmetry is respected on average [161]. It would be interesting

to determine the general circumstances under which this happens.
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Systematic treatment of various
“Equivalence Principles”

In this chapter, I will extend and unify some of the ideas touched on in previous

chapters into a more coherent framework.

9.1 Homotopy theory viewpoint on the classifica-

tion

The main tool in this chapter will be a powerful viewpoint on topological phases

with and without symmetries, that allows us to reason in very general terms about

such phases. It was introduced by Kitaev in Appendix F of Ref. [185], and we review

it here.

The central idea is that in each spatial dimension d, the set of all possible gap-

grnd states (recall the discussion of gapgrnd states in Section 2) with dimension-k

spins at each site should form a topological space Ω
(k)
d . As we do not want to have

any restriction coming from local Hilbert space dimension, we will consider the limit

Ωd := Ω
(∞)
d . The problem of classifying topological phases amounts to finding the

connected components π0(Ωd).
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To classify topological phases with symmetry, we have to specify an action of a

symmetry group G on Ωd, and then we can find the connected components of ΩG
d ,

the subspace of Ωd left fixed by the action of G. However, generally in classification

of phases we want to identify phases in systems transforming under different repre-

sentations of G as being in some sense the “same phase” (in the sense, for example,

that they have the same low energy physics).

The key insight of Kitaev was to identify an invariant that is not sensitive to

the microscopic details. Specifically, it can be shown (see Appendix F of Ref. [185])

that for any unitary action of G on ω ∈ ΩG
d , there is a corresponding map from

BG → Ω
(∞)
d := Ωd, where BG is the so-called “classifying space” of the group G,

which is defined to be BG = EG/G, where EG is a contractible space on which G

acts freely. (The resulting BG is independent of the choice of EG, up to homotopy

equivalence1). It is then reasonable to conjecture that topological phases correspond

to homotopy classes of maps BG → Ωd. The classification problem is then reduced

to understanding the structure of the space Ωd.

Most of the well-known partial classification results for topological phases with

symmetry can be interpreted as arising from some partial understanding of or ap-

proximation to the space Ωd. For example, Kitaev (Appendix F of Ref. [185]) derives

the classification of symmetry fractionalization on anyons from this point of view.

Moreover, all of the proposed partial classifications for invertible phases seem to take

the form of generalized cohomology theories, and any such generalized cohomology

theory classifies homotopy classes of maps BG → Ωd for some appropriate choice of

space Ωd for each dimension d (the “spectrum”) [196, 197].

We will also mention an even more abstract point of view. Generally, we expect

1Two spaces X and Y are homotopy equivalent if there exist maps f : X → Y and g : Y → X
such that f · g and g · f are homotopic to the identity maps Y → Y and X → X respectively.
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that the low-energy physics of a topological phase should be described by a topological

quantum field theory (TQFT). As discussed in Section 8.6, there is a well-defined sense

in which we can define a space of n-dimensional TQFTs, which we call Θ. A TQFT

with a symmetry action G turns out to be equivalent to a map BG→ Θ. Therefore,

we can conjecture that topological phases with symmetry G should be classified by

homotopy classes of maps BG→ Θ. This is equivalent to the previous classification

(homotopy classes of maps BG→ Ω) if the spaces Θ and Ω are homotopy equivalent,

which we conjecture to be the case. In fact, since the definition of TQFT is not entirely

fixed – in mathematical language, we have the freedom to choose the category which

the TQFT functors should target – one might even say that we ought to choose the

target category in order to ensure that the homotopy equivalence Θ ' Ω holds, since

that ensures that the TQFTs are accurately capturing the physics of microscopic

ground states.

Finally, let us note that all the statements we have made relate to systems with

unitary symmetries. In general, we also want to consider systems with anti-unitary

symmetries (such as time reversal). In the TQFT formalism, there is a natural

extension of the above discussion to anti-unitary symmetries, but we do not know

how to extend Kitaev’s more microscopic argument. Therefore, in this chapter we

will mainly restrict ourself to unitary symmetries. However, we do expect that the

results will hold also for anti-unitary symmetries, for reasons that we will mention.

9.2 The Floquet equivalence principle

The Floquet Equivalance Principle conjectured in Chapter 5 can be rigorously

proven if we assume the homotopy-theoretic viewpoint discussed above. Recall that

this Floquet Equivalence Principle states that
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Floquet topological phases with symmetry G are in one-to-one correspondence

with stationary topological phases with symmetry G× Z.

First we need to give a precise definition of what we mean by “Floquet topological

phase”. Here we will be mainly concerned with the non-trivial topological features

that can be observed in a single eigenstate of the Floquet evolution operator, as in

the cases considered in Chapter 5. (In Floquet-MBL systems, where every eigenstate

of the Floquet evolution operator is localized, there may be non-trivial topological

features of the entire Floquet evolution that are not observable in a single eigenstate

[198–202]; we are explicitly not considering such features here).

The new ingredient in a Floquet system, compared to a stationary system, is

that even an eigenstate of the Floquet evolution undergoes a non-trivial evolution

over one driving period. Let us consider a time-periodic Hamiltonian H(t), with

H(t+ T ) = H(t), and we define the Floquet evolution operator

Uf = T exp

(
−i
∫ T

0

H(t)dt

)
. (9.1)

Then for any eigenstate |Ψ〉 of Uf , we can define a family of states,

|Ψ(t)〉 = T ′ exp

(
−i
∫ t

0

H(t′)dt′
)
|Ψ〉 (9.2)

which describes the micromotion of the eigenstate over a driving period. Now let us

assume that |Ψ〉 is a gapgrnd state (as it is in a Floquet-MBL system, for example).

It follows that |Ψ(t)〉 is a gapgrnd state for all t, because according Eq. (9.2), |Ψ(t)〉

is related to |Ψ〉 by a local unitary U(t), and if K is a local Hamiltonian which has |Ψ〉

as its gapped ground state, then U(t)KU(t)−1 has |Ψ(t)〉 as its gapped ground state.
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In particular, since |Ψ(T )〉 ∝ |Ψ〉, |Ψ(t)〉 defines a loop in the space of gapgrnd states

in d dimensions, Ωd, introduced in Section 9.1, which means a map from the circle

S1 → Ωd. Hence, it is reasonable to define a Floquet topological phase (without

symmetry) to be a homotopy class of such maps (i.e. an equivalence class under

continuous deformations).

But now we can recall that, in the homotopy theoretic framework, a stationary

phase with a Z symmetry is supposed to correspond to a map BZ→ Ωd, where BZ is

the classifying space of Z. The Floquet Equivalence Principle for Floquet topological

phases without symmetries then immediately follows from the mathematical fact that

BZ ' S1. (9.3)

Here the “'” symbol denotes homotopy equivalence.

We can easily generalize this argument to systems with symmetries. Suppose

that the Hamiltonian H(t) commutes (at all times) with a representation U(g) of an

internal symmetry G. Suppose that we have an eigenstate |Ψ〉 of Uf which is also

invariant under G (that is, the symmetry G is not spontaneously broken). It then

follows that the path |Ψ(t)〉 also is invariant under U(g) for all t. Then, following

similar arguments again to Appendix F of Ref. [185], one wants to classify maps

S1 × BG → Ωd. A Floquet topological phase with symmetry G corresponds to an

equivalence class of this map. The Floquet Equivalence Principle then follows from

the equation

B(Z×G) ' S1 ×BG. (9.4)
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9.3 Symmetry-breaking phases

The Floquet Equivalence Principle introduced in Chapter 5 was initially stated

for Floquet topological phases: that is, those which do not spontaneously break any

symmetries. However, it is natural to ask whether the correspondence also holds

for spontaneous symmetry-breaking phases. For example, a stationary phase with

symmetry Z ought to be able to spontaneously break Z → nZ. The corresponding

Floquet phases are, of course, the time crystals discussed in Chapter 6.

In fact, it is straightforward to argue that the correspondence does indeed hold for

all kinds of phases of matter with symmetry, both spontaneous symmetry breaking

and topological. Indeed, we expect that all such phases are describable in terms of the

homotopy theoretic framework discussed in the previous sections, provided that one

replaces the space Ωd discussed in the previous section (the space of ground states

in d spatial dimensions) with the space Ω̃d of all possible gapgrnd multiplets. A

gapgrnd multiplet is just a set of n orthogonal gapgrnd states.

By similar arguments to before, we find that any gapgrnd multiplet that is

mapped onto itself by a symmetry G (the individual gapgrnd states may get per-

muted among themselves) gives rise to a map BG→ Ω̃d. The rest of the arguments

from Section 9.2 carry over, and so we obtain a more general form of the Floquet

Equivalence Principle that holds for all phases, topological and spontaneous symme-

try breaking.

9.4 More general temporal symmetries

Now that we have put the Floquet equivalence principle on general footing, we are

able to make a more general statement. Let |Ψ(t)〉 be any time-dependent family of
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states, i.e. a map R→ Ωd. It is not important for the argument that the parameter

represent time, but in applications to Floquet systems, this will be its interpretation.

Now we consider a symmetry G with some continuous action α : G×R→ R, (g, t) 7→

αg(t). For example, in the case of discrete time translation generated by T, we have

αTn(t) = t + nT . Moreover, the specification of the symmetry action also involves

an on-site unitary representation U(g). We say that the family of states |Ψ(t)〉 is

invariant under the temporal symmetry described by the pair (α,G) if

U(g) |Ψ(αg(t))〉 ∝ |Ψ(t)〉 . (9.5)

More generally, we can say that a family of multiplets P(t) is a representation of the

temporal symmetry (α,G) if

U(g)P(αg(t)) = P(t) (9.6)

Thus, we are considering a notion of symmetry that generalizes both discrete

time-translation symmetry [αTn(t) = t + nT ], U(g) = I and the usual equal-time

symmetries [αg(t) = t].

By similar arguments to Appendix F of Ref. [185], we find that for a symmetric

family of states |Ψ(t)〉, there is a map (R×EG)/G→ Ωd, where EG is a contractible

space with a free action of G. Similarly, for a family of ground state multiplets that

is a representation, there is a map (R× EG)/G→ Ω̃d.

Then we can invoke the mathematical fact that

(R× EG)/G ' BG, (9.7)

where the left-hand side means the quotient of R×EG by the diagonal action, where
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G acts freely on EG as mentioned, and G acts on R through α. To see Eq. (9.7), we

just observe that R × EG is also a contractible space with a free action of G, and

therefore Eq. (9.7) follows from the uniqueness of BG up to homotopy equivalence.

This gives us a more powerful version of the equivalence principle: the clas-

sification of symmetric families of states with symmetry group G as described is

the same as the classification of stationary topological phases with symmetry group

G. The Floquet equivalence principle described above is a special case when G =

Ztime translation × Gequal-time. However, we can also consider more general sym-

metries, for example a time translation followed by a spin-flip.

So far, we have only been talking about symmetric families of states/multiplets.

Let us show how they arise from dynamics. We say that a time-dependent Hamilto-

nian is invariant under the temporal symmetry (α, U) if

U(g)H(t)U(g)† = α′g(t)H(αg(t)), (9.8)

where α′g(t) = d
dt
αg(t). In particular, this implies that the unitary propagator

U(t2; t1), which is defined by

U(t; t) = I, i
∂

∂t2
U(t2; t1) = H(t2)U(t2; t1) (9.9)

satisfies

U(g)U(t2; t1)U(g)−1 = U(αg(t2);αg(t1)). (9.10)

We can then define

V (g) = U(0;αg(0))U(g). (9.11)
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It can be shown that V (g) is a representation of G. Indeed, we have

V (g1)V (g2) = U(0;αg1(0))U(g1)U(0;αg2(t))U(g2) (9.12)

= U(0;αg1(0))

[
U(g1)U(0;αg2(0))U(g1)−1

][
U(g1)U(g2)

]
(9.13)

= U(0;αg1(0))U(αg1(0);αg1(αg2(0)))U(g1g2) (9.14)

= U(0;αg1g2(0))U(g1g2) (9.15)

= V (g1g2). (9.16)

Moreover, defining the time evolution of a state as |Ψ(t)〉 = U(t; 0) |Ψ〉, we see that

|Ψ(t)〉 is invariant under the temporal symmetry action (α, U) if and only if it is

invariant under V . Similarly, the time evolution of a subspace gives a representation

of (α, U) if and only if the subspace is a representation of V . Hence, if we decompose

the Hilbert space as a sum of irreps under V (g), each irrep will lead to an (irreducible)

representation of (α, U).

In particular, consider the case of a Floquet system, so that G has a discrete

subgroup Z corresponding to discrete time translations, generated by T. Any irrep

of V can be decomposed into irreps of Z, which (since Z is Abelian) necessarily will

be eigenstates of Uf = U(0, T )† = V (T)†. If the system is Floquet-MBL, then these

eigenstates are gapgrnd states, therefore, the whole irrep under V will constitute

a gapgrnd multiplet, which can be classified using the general approach described

above. We find that the possible phases are in one-to-one correspondence with the

phases for a system with the same symmetry group, but leaving points in space

invariant and acting at equal times.

It is also possible to argue directly for this result along the same lines as in Chapter

5: namely, that the representation V (g) defined above should be treated the same
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as an on-site representation of the same symmetry group, and its non-on-site nature

seems unlikely to make any difference. (In particular, this point of view suggests that

the same result should hold for anti-unitary symmetries).

9.5 Space-time symmetries

Recall that we argued for a crystalline equivalence principle in Chapter 8, for

stationary phases of matter with spatial symmetries, i.e. symmetries which relate

different points in space (at equal times). One of the main ideas of Chapter 8 was

that crystalline phases on a space X (for example, X = Rd) should correspond to

homotopy classes of maps

σ : (X × EG)/G→ Θd, (9.17)

and G acts both on EG as usual, and on X corresponding to the spatial action of

the symmetry. Here Θd is the space of d-dimensional TQFTs, and the formulation

as stated is for systems without orientation-reversing symmetries, though it can be

generalized. (We did not, however, give a rigorous proof of this result starting from

microscopic lattice models).

If X is a contractible space, then (X × EG)/G is homotopy equivalent to BG,

and so there is a one-to-one correspondence between phases with spatial symmetry

and phases with the same symmetry group, but acting internally, i.e. without moving

points in space around.

By contrast, we showed above that families of states with temporal symmetries,

which relate different times but at the same point in space, should correspond to
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homotopy classes of maps

(R× EG)/G→ Ωd, (9.18)

where Ωd is the space of ground states in d dimensions. As mentioned in Section 9.1,

we expect that Ωd and Θd are homotopy equivalent spaces, and so we can also replace

Ωd with Θd in Eq. (9.18).

Now we can imagine going further, and consider symmetries which relate different

points in space-time. An example would be a time-translation followed by a spatial

rotation (a “time-screw” [203]) or spatial reflection (“time-glide”) [203, 204]. (The

latter symmetry is orientation reversing, so we would have to use the appropriate

extension of the framework described here). We will not attempt to give a careful

justification here, but it is natural to conjecture, given the preceding results, that

phases with such symmetries correspond to homotopy classes of maps

(R×X × EG)/G→ Ωd (9.19)

where G has some specified action on space-time R × X. If X is contractible then

(R × X × EG)/G ' BG, and hence there is a general spatiotemporal equivalence

principle: phases with space-time symmetry are in one to correspondence with phases

with the same symmetry group, but acting internally and at equal times.
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Floquet-SPT classifications

A.1 Equivalence of 1-D Floquet classifications

Here we will show that the classification of Ref. [70] is equivalent to H2(Z o

G,U(1)), as claimed in Section 5.3. We do this by exploiting the connection between

the second cohomology group and projective representations.

Suppose we have a projective representation V (gTn) : g ∈ G, n ∈ Z of Z o G.

Then we can define a new representation V ′(gTn) = V (g)V (T)n. Clearly, since V is a

projective representation, V ′(gTn) can differ from V (gTn) at most by a phase factor

χ(gTn). Thus, defining the corresponding 2-cocycles ω and ω′ by

V (x1)V (x2) = ω(x1, x2)V (x1x2), (A.1)

where x1 = g1Tn1 , etc. (and similarly for ω′), we find that they are in the same

equivalence class [thus, they correspond to the same element of H2(ZoG,U(1))]. On

the other hand, ω′ is completely determined once we know its restriction ω′G to G and

the extra data χ(g) = V (g)TV (g)−1T−α(g) (where α(g) = 1 for unitary g and −1 for

143



Floquet-SPT classifications Chapter A

anti-unitary g). One can verify that χ must satisfy the equation

χ(gh) = χ(g)α(h)χ(h)α(g). (A.2)

Thus, up to equivalence, the 2-cocycle ω of Z oG is fully determined by a 2-cocycle

ω′G of G, and χ satisfying Eq. (A.2). This is indeed the classification of Ref. [70].]

A.2 Deriving the SPT classification

Here we will briefly recap the argument for the Hd+1(G,U(1)) classification of

SPT ground states in d = 1 and d = 2, taking care to formulate it in such a way as

to make it clear that it can also be applied to give a Hd+1(ZoG,U(1)) classification

in Floquet systems. Suppose we have some short-range entangled state |Ψ〉 defined

on a system without boundary, such that |Ψ〉 is invariant under the local unitary (or

anti-unitary) representation V (g) of a symmetry. Now imagine some subregion M of

the whole system, and consider the subspace PM,|Ψ〉 of “boundary states” defined in

the Hilbert space of M which complete to |Ψ〉, in the sense that they are identical to

|Ψ〉 away from the boundary of M . The restriction VM(g) of the symmetry operation

V (g) to the region M must preserve this subspace (note that this restriction is still

well-defined even for anti-unitary symmetries, since we can take it to act only on the

Hilbert space of M .) Thus, it is well-defined to talk about the action of the symmetry

on the boundary states.

Moreover, if we assume that |Ψ〉 is short-range entangled, this implies that there

exists a local unitary D which transforms |Ψ〉 into a product state |φ〉⊗N . The re-

striction DM must then transform the states in PM,|Ψ〉 into the states which look

like a product of |ψ〉’s away from the boundary. Thus, if we started with a system
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in d spatial dimensions, we can identify the boundary states with the states of a

(d − 1)-dimensional system. In the case d = 1, the boundary is just a set of points

and we classify the SPT order from the projective representation of the symmetry

on a boundary point [72, 73, 75, 77]. In d = 2, we can classify the SPT order by

considering a symmetry restriction procedure as described in Ref. [86].
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More on Floquet Time Crystals

B.1 Local structure of Floquet perturbation the-

ory

Consider a soluble Floquet operator

U0
f = T e−i

∫ 1
0 H0(t)dt, (B.1)

and a time-dependent local perturbation λV (t), and define

Uf = T exp

(
−i
∫ 1

0

[H0(t) + λV (t)]dt

)
, T = time-ordering. (B.2)

By Trotterizing, we can show that

Uf = U0
f × T exp

(
−i
∫ 1

0

(U0)†(t)λV (t)U0(t)

)
, (B.3)

where U0(t) = T e−i
∫ t
0 H0(t′). Hence, without loss of generality we can just consider a

perturbed Floquet operator Uf = U0
f U

′, where where U ′ = T exp
(
−i
∫ 1

0
λV (t)dt

)
for

some local time-dependent V . We label the eigenstates of U0
f as |i〉, with quasienergies
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ωi. We will now construct, order-by-order, a local unitary rotation that diagonalizes

the perturbation.

First order. At first order we look for a unitary eiλS such that eiλSUfe
−iλS is

diagonal (to first order in λ). Expanding eiλSU0
f U
′e−iλS to first-order in λ and taking

the matrix elements with 〈i| and |j〉, we see that we can make it diagonal to this

order by taking:

〈i|S |j〉 =
〈i|V |j〉

ei(ωi−ωj) − 1
(i 6= j) (B.4)

where V =
∫ 1

0
V (s)ds. We can choose to set 〈i|S |i〉 = 0.

It might not be clear whether this S is local, given that the eigenstates |i〉 might

be highly non-local “cat states”. To see that it is, we adapt an idea originally due to

Hastings [205] (as refined in Ref. [6]) to the Floquet case. First write V as a sum of

local terms V =
∑

X V X , where V X is supported on a bounded region X. Then we

can write S =
∑

X SX , where

SX =
∑
i 6=j

|i〉 〈i|V X |j〉 〈j|
ei(ωi−ωj) − 1

≡
∑
i 6=j

f(ωi − ωj) |i〉 〈i|V X |j〉 〈j| , (B.5)

Now suppose that there are no “resonances” nearX, by which we mean that |ei(ωi−ωj)−

1| > γ > 0 for all i, j for which the matrix element 〈i|V X |j〉 is nonzero. Then we

can replace f(ω) with f̃(ω) in Eq. (B.5), where f̃(ω) is an infinitely differentiable

function with period 2π such that f̃(0) = 0 and f̃(ω) = f(ω) for |ei(ωi−ωj) − 1| > γ.

By taking matrix elements one can then verify that

SX =
∞∑

n=−∞
an(U0

f )−nV X(U0
f )n, (B.6)

where an are the Fourier series coefficients of f̃ : f̃(ω) =
∑∞

n=−∞ e
inωan. From this,
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we can show that SX is quasi-local provided that U0
f obeys a Lieb-Robinson bound.

In particular, however, if we choose U0
f such that (U0

f )n doesn’t increase the support

of operators by more than an n-independent constant, we see that SX is still strictly

local on a region of slightly larger size. In particular, this can be shown to be true of

the Floquet operator U0
f in Eq. (6.1) in the main text. To see this, note that in (U0

f )n

we can move all the spin flips to the end at the cost of simply changing the sign of

the hi’s during the course of the evolution, and the time evolution of a Hamiltonian

which is the sum of terms, each of which is a product of Pauli σz operators (even if

the coefficients vary with time) never increases the support of operators by more than

a constant amount.

All orders. Suppose that we have found a unitary rotation which diagonalizes the

perturbation to order λn, such that Uf = U0
f U
′, with

V = exp
(
−i
{
Vd + λn+1Vnd +O(λn+2)

})
, (B.7)

where Vd is diagonal, Vd = O(λ) and Vnd is non-diagonal. (At first-order, i.e. n = 0, if

U ′ was originally the evolution of a time-dependent Hamiltonian we can still generate

such an expression for V using the Campbell-Baker-Haussdorf formula.) Then we

want to find S such that eiSUfe
−iS is diagonal to order λn+1, or equivalently, writing

eiSUfe
−iS = U0

f U
′′, that U ′′ is diagonal. We see that

U ′′ = (U0
f )†eiS(U0

f )U ′e−iS = ei(U
0
f )†SU0

fU ′e−iS. (B.8)

From the Campbell-Baker-Haussdorf formula, we see that

U ′′ = exp
(
i
{
−Vd − λn+1Vnd + (U0

f )†SU0
f − S

}
+O(λn+2)

)
, (B.9)
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and hence we set the expression in {...} to be diagonal. Taking off-diagonal matrix

elements gives

〈i|S |j〉 =
〈i|λn+1Vnd |j〉
ei(ωi−ωj) − 1

(i 6= j), (B.10)

and we choose to set 〈i|S |i〉 = 0. We can then repeat the process at next order, with

n′ = n + 1, V ′d = Vd + λn+1Vnd − (U0
f )†SU0

f + S, and V ′nd equal to the coefficient of

λn+2 in the Campbell-Baker-Haussdorf expansion Eq. (B.9).

We observe that at all orders in the perturbation theory, locality is preserved.

The only operations contained in the exponentials are addition, conjugation by U0
f ,

taking nested commutators (through the Campbell-Baker-Haussdorf expansion), and

evaluating expressions of the form Eq. (B.10). The first three manifestly preserve

locality, and the last one preserves locality in the absence of resonances for the same

reasons discussed in the first-order section above. Therefore, the unitary rotation

that relates the eigenstates of Uf to the eigenstates of U0
f is indeed a local unitary at

all orders.

Effect of resonances. In the above discussion, we have ignored the effect of reso-

nances. At low orders, resonances can be accounted for by treating the dilute resonant

spots separately[23]. Therefore, we expect that a modified version of the perturbation

theory will remain valid provided that the non-resonant terms in the series converge

sufficiently fast. This corresponds to the requirement that, for typical levels i and j

which are connected locally, the perturbation denominator

∆i,j =

∣∣∣∣ λ

ei(ωj−ωi) − 1

∣∣∣∣� 1. (B.11)

For the exactly solvable Floquet operator U0
f considered in this paper, the typical

value of ei(ωj−ωi) is set by the parameter J . (See the eigenvalues of U0
f calculated
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Figure B.1: The Fourier transform of the time evolution at late times (taken over
the interval 200 < t < 300) for two individual disorder realizations (shown as solid
and dotted lines respectively), at h = 0.3. The dominant peaks at ω = (2k+1)π/T
are universal, whereas the smaller peaks at other locations are disorder-dependent.

in the main text). We note that, if J � 1, then typically |ωj − ωi| ∼ J and thus,

∆i,j ∼ λ/J . On the other hand, if J & 1, then typically |ωj − ωi| & 1 and hence

∆i,j ∼ λ. Therefore, we see that the condition for Eq. (B.11) to hold is λ� min{1, J},

or (restoring the driving period T , which was set to 1 in the above discussion):

λ� min{T−1, J}. (B.12)

B.2 Numerical Observation of Persistent Oscilla-

tions at Very Late Times

In a single disorder realization, we can go to much later times in TEBD. Moreover,

experiments might be carried out in a small number of disorder realizations. As

noted in the main text, 〈σxi 〉 and 〈σyi 〉 are noisier in individual disorder realizations.

However, one can still observe a clear signature of TTSB by looking at the Fourier

transform of the time dependence of a single disorder realization, as shown in Fig. B.1.

There are strong peaks at π/T , with subleading peaks at (2k+ 1)π/T , indicating the

fractional frequency response. (The other peaks in the Fourier transform have their
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Figure B.2: Histogram of the characteristic timescale τ , as defined in the text,
for different values of the magnetic field. From top to bottom: h = 0.1 deep in
the TTSB phase, h = 0.3 in the same regime as discussed in the main text, and
h = 1.5 beyond the TTSB phase.
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origins in the discreteness of the local quasienergy spectrum near a given point, and

can be distinguished by the fact that their positions vary depending on the disorder

realization.) These results indicate that the oscillations persist to later times than

shown in the upper panel of Fig. 6.1 in the main text and that they are visible even

in a single disorder realization.

To more carefully examine the decay of the oscillations, we turn again to exact

diagonalization. For a given disorder realization and initial state, we can determine

a characteristic timescale τ by computing (−1)t〈σzi (t)〉sign(〈σzi (0)〉). This is defined

such that it is positive for small times, and we define τ to be the time at which

this observable first changes its sign. In Fig. B.2, we show a histogram of these τ

for different system sizes and strengths of the magnetic field. We observe a very

interesting structure: deep in the TTSB phase, at h = 0.1, we find a single large peak

at very large times (here, we show only L = 8 since for larger systems the τ are too

large compared to the floating point precision). In an intermediate range, such as

h = 0.3, we find two pronounced peaks, where the location of the first peak does not

depend on system size while the second peak is centered around a time that diverges

exponentially. The relative weight of the two peaks seems unaffected by system size.

In this regime, the average of τ is dominated by rare instances with very large τ ,

while the typical value is dominated by instances with short characteristic times. In

the disorder-averaged value of the magnetization Z(t), which was discussed in the

main manuscript, the first peak in the distribution of τ manifests in the decay from

the initial value to the intermediate plateau, and the second peak corresponds to the

decay from this plateau to zero. Finally, in the limit of very large h where the system

has been driven out of the TTSB phase, we find the histogram to be dominated by a

peak at short times.
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Figure B.3: Mutual information between the two left- and right-most sites, F22,
in eigenstates of Uf for t1 6= π/2 (see Eq. (B.13)). The data shown here is ex-
trapolated to the thermodynamic limit using the techniques discussed in the main
manuscript and from data for L = 6− 12 and t0 = 1.

B.3 Perturbation of the driving pulse time

We now consider the evolution under the Floquet operator

Uf = exp (−it0HMBL) exp

(
it1
∑
i

σxi

)
(B.13)

for t1 6= π/2. By the arguments given above, the TTSB phase should be stable against

small perturbations of the Floquet drive, which includes changing t1 away from π/2.

We confirm this numerically by performing exact diagonalization of Uf for a range of

t1 (with J = hz = 1) and measuring the mutual information between well-separated

regions in the eigenstates, analogous to the computation performed for Fig. 2 of the

main manuscript. Our results are shown in Fig. B.3. We also calculated the real time

evolution for h = 0.1, t1/π = 0.475, and verified that it shows qualitatively similar

behavior to that depicted in Figure 1 in the main text.
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B.4 Radiation Emitted from a TTSB System at

Lowest Order in Perturbation Theory

Let us suppose, for illustrative puposes, that our spin system is coupled to the

electromagnetic field through the Jaynes-Cummings Hamiltonian

H1 = V (a+ a†), V = g
∑
i

σzi , (B.14)

where a†, a are creation/annihilation operators for photons of frequency Ω/2 (where

Ω = 2π/T is the drive frequency.) The most general Hamiltonian will include cou-

plings of the electromagnetic field to σxi , σyi , and σzi . Here, we focus on the last of

these three types of couplings, since this is the only one that can cause transitions

between Floquet eigenstates separated by quasi-energy Ω/2 in lowest-order perturba-

tion theory about the soluble h = 0 point. The transition amplitude between initial

and final Floquet eigenstates |m〉, |n〉 is given, in the interaction picture, by:

Am,n = 〈n, 1| T exp

(
−i
∫ ∞
−∞

dtH1(t′)

)
|m, 0〉 (B.15)

where 〈n, 1| is the state with the spin system in the state |n〉 and a single pho-

ton (and similarly for |m, 0〉), and H1(t) ≡ U †0(t,−∞)H1U0(t,−∞) and U0(t,−∞) ≡

T exp
(
−i
∫ t
−∞ dt

′H(t′)
)
. The unperturbed HamiltonianH(t) is the stroboscopic Hamil-

tonian given in Eq. (6.1) in the main text and the text below it. We write t = kT +s,

where s ∈ [0, T ). Then we can write U0(t, jT ) = U0(s, 0)Uk−j
f . To lowest-order, the
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transition amplitude can be written in the form:

Am,n = −i
∞∑

k=−∞

∫ T

0

ds〈n, 1|(Uk
f )†U †0(s, 0)H1U0(s, 0)Uk

f |m, 0〉

= −i
∞∑

k=−∞
eikT (ωn−ωm+Ω/2)

∫ 1

0

dsei(Ω/2)s〈n|U †0(s, 0)V U0(s, 0)|m〉 (B.16)

≡ −if(ωn − ωm)

∫ T

0

dsei(Ω/2)s〈n|U †0(s, 0)V U0(s, 0)|m〉, (B.17)

where

f(ω) =
2π

T

∞∑
k=−∞

δ

(
ω +

[
k +

1

2

]
Ω

)
. (B.18)

This matrix element is generally non-zero. For instance, consider the soluble point

h = 0. We take the spin-flip part of the Floquet operator to act instantaneously

such that
∫ T

0
dsei(Ω/2)sU †0(s, 0)σziU0(s, 0) ∝ σzi . Then the initial and final states are

|±〉 ≡ (exp(it0E
−({si})/2)|{si}〉 ± exp(−it0E−({si})/2)|{−si}〉)/

√
2, we find that

〈−|σzi |+〉 = 〈+|σzi |−〉 = 1 for any i, and hence

A+− = A−+ ∝ −
2πigN

T
δ(0). (B.19)

Now consider a locally-prepared initial state, such as

|{si}〉 = (|+〉 ± |−〉)/
√

2, (B.20)

[Here we have set hzi = 0 in order to unclutter the equations, so that E−({si}) =

0.] Then, in the absence of a coupling to the electromagnetic field, it would not

change with time in the interaction picture. (The fractional frequency response in

the interaction picture comes from the time evolution of observables.) However,

Eq. (B.19) tells us that at lowest-order in perturbation theory, the system can emit a
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photon at frequency Ω/2 and transition from |−〉 ↔ |+〉. However, this only changes

the superposition Eq. (B.20) by a global phase factor ±1. One might wonder why

this does not violate conservation of quasienergy modulo Ω, given that a photon of

frequency Ω/2 has been emitted. However, we observe that the state Eq. (B.20) is

not a quasienergy eigenstate; rather, it is a superposition of two eigenstates with

quasienergies differing by Ω/2. Therefore, its quasienergy is only well-defined modulo

Ω/2. We note that neither |+〉 nor |−〉 is “higher” in quasienergy. The system

can emit a photon of energy Ω/2 while transitioning from |+〉 to |−〉 or from |−〉

to |+〉 since since −Ω/2 ≡ Ω/2 (mod Ω). [Mathematically, this corresponds to the

statement that f(Ω/2) = f(−Ω/2) in Eq. (B.17).]
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Appendix C

Proof of prethermalization results

C.1 Definition of the norm

Let’s suppose, for the sake of concreteness, that we have a spin system with a

local time-dependent Hamiltonian of the form:

H(t) =
∑
i,j

Jαβi,j (t)Sαi S
β
j +

∑
i,j,k

Kαβγ
i,j,k (t)Sαi S

β
j S

γ
k + . . .

=
∑
p

∑
p−tuples

Ai1,...,ip (C.1)

Here α = x, y, z are the components of the spins, and i, j, k are lattice sites. In the

first line, we have explicitly written the 2-site and 3-site terms; the . . . represents

terms up to n-site terms, for some finite n. It is assumed that these interactions

have finite range r ≥ n such that all of the sites in a k-site term are within distance

r. In the second line, we have re-expressed the Hamiltonian in a more generic form

in terms of p-site terms Ai1,...,ip with i1 6= . . . 6= ip. To avoid clutter, we have not

explicitly denoted the t-dependence of Ai1,...,ip . We define the local instantaneous
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norm ‖Ai1,...,ip‖n according to

‖Ai1,...,ip‖inst
n ≡ epκn‖Ai1,...,ip‖ (C.2)

where ‖Ai1,...,ip‖ is the operator norm of Ai1,...,ip at a given instant of time t and

κn ≡ κ1/[1 + lnn]. (C.3)

We make this choice of n-dependence of κn, following Ref. [39] for reasons that will

be clear later. We then average the instantaneous norm over one cycle of the drive:

‖Ai1,...,ip‖n ≡
1

T

∫ T

0

dt ‖Ai1,...,ip‖inst
n (C.4)

It is only in this step that we differ from Abanin et al. [39], who consider the

supremum over t rather than the average. In analyzing the Floquet operator, i.e.

the evolution due to H at stroboscopic times, it is the total effect of H, which is

determined by its integral over a cycle, that concerns us. Error terms that act over

a very short time, even if they are relatively strong, have little effect on the Floquet

operator so long as their norm, as defined above, is small. Finally, we define the

global time-averaged norm of the Hamiltonian H:

‖H‖n ≡ sup
j

∑
p

∑
p−tuples

[∑
k

δj,ik

]
‖Ai1,...,ip‖n (C.5)

The term in square braces restricts the sum to p-tuples that contain the site j.
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C.2 More technical statement of Theorem 1

Theorem 1 stated above will follow from the following slightly more technical

formulation. For notational simplicity we work in units with T = 1. ?

Theorem 1′. Consider a periodically-driven system with Floquet operator:

Uf = T exp

(
−i
∫ T

0

[H0(t) + V (t)]dt

)
, (C.6)

where X ≡ T exp
(
−i
∫ T

0
H0(t)

)
satisfies XN = 1 for some integer N , and we assume

that H0 can be written as a sum H0(t) =
∑

i hi(t) of terms acting on single sites i.

Define λ ≡ ‖V ‖1. Then there exists a sequence of quasi-local An such that, defining

Un = e−iAn · · · e−iA1, we have

UnUf U †n = X T exp

(
−i
∫ 1

0

[Dn + En + Vn(t)]dt

)
, (C.7)

where [Dn, X] = 0; Dn, En are independent of time; and

‖Vn‖n, ‖En‖n ≤ 2Knλ
n, (C.8)

‖An‖n ≤ (N + 1)Knλ
n, (C.9)

‖Dn −Dn−1‖n ≤ Knλ
n, (C.10)

where we have defined λ ≡ ‖V ‖1, and

Kn = Cn−1

n−1∏
k=1

m(k), C = 2(N + 3)(N + 4),

m(n) =
18

κn+1(κn − κn+1)
. (C.11)
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These bounds hold provided that n ≤ n∗, with

n∗ =
λ0/λ

[1 + log(λ0/λ)]3
, λ0 = (36C)−1 (C.12)

and provided that

λ <
µ

N + 3
, µ ≈ 0.07. (C.13)

Theorem 1 follows from Theorem 1′, because n∗ is chosen such that n ≤ n∗ implies

Cm(n) ≤ 1
2λ

. It then follows that Kn+1λ
n+1/(Knλ

n) = Cm(n)λ ≤ 1
2
, and hence that

Knλ
n ≤ λ/2n−1. Moreover, we obtain Eq. (7.9) by summing Eq. (C.10), from which

we see that ‖Dn−D1‖n ≤
∑∞

k=2 Kkλ
k ≤ K2λ

2
∑∞

k=2

(
1
2

)k−2
= 2K2λ

2 = 2Cm(1)λ2 ≈

2.9λ2/λ0. (Here we use the fact that ‖ · ‖n+1 ≤ ‖ · ‖n.)

In the next sections, we will give a proof of Theorem 1′.

C.3 Iterative construction

The idea is to construct the Dn, Vn, En, An discussed above iteratively. That is,

suppose that at the n-th step, we have

UnUf U †n ≡ U
(n)
f = X T exp

(
−i
∫ 1

0

Hn(t)dt

)
, (C.14)

whereHn(t) = Fn+Vn(t), with Fn =
∫ T

0
Hn(t)dt time-independent. We will choose to

separate the time-independent piece Fn according to Fn = Dn+En, where Dn = 〈Fn〉,

and we have defined the symmetrization

〈O〉 =
1

N

N−1∑
k=0

X−kOXk. (C.15)
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In particular, this implies that [Dn, X] = 0 and 〈Dn〉 = Dn, and therefore 〈En〉 =

〈Fn〉 − 〈Dn〉 = Dn −Dn = 0.

We will now introduce a local unitary An = e−iAn , which we use to rotate the

Floquet operator U
(n)
f , giving a new Floquet operator

U
(n+1)
f ≡ AnU (n)

f A
†
n = XT exp

(
−i
∫ 1

0

Hn+1(t)dt

)
. (C.16)

The ultimate goal, decomposing Hn+1(t) = Dn+1 + En+1 + Vn+1(t) as before, is to

ensure that the residual error terms En+1 and Vn+1 are much smaller than En and

Vn. This goal is achieved in two separate steps. The first step ensures that En+1 is

small (that is, the time-independent part of Hn+1(t) nearly commutes with X), and

the second step ensures that Vn+1 is small.

Step One.– This step proceeds similarly to the recursion relation of Abanin et al

[39] for the time-independent case (Section 5.4 of Ref. [39]). There the recursion re-

lation was designed to make the Hamiltonian commute with its zero-th order version.

This is analogous to our present goal of making the Floquet operator commute with

X. Here, we adapt the analysis of Ref. [39] to the Floquet case.

We observe that

U
(n+1)
f = AnU (n)

f A
†
n (C.17)

= X

[
X†AnX × T exp

(
−i
∫ 1

0

Hn(t)dt

)
×A†n

]
, (C.18)

= X

[
e−X

†iAnX × T exp

(
−i
∫ 1

0

Hn(t)dt

)
× eiAn

]
(C.19)

= X × T exp

(
−i
∫ 1

0

H′n(t)dt

)
, (C.20)
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where

H′n(t) =



1
a
(−An) 0 ≤ t ≤ a

1
1−2a
Hn

(
t−a

1−2a

)
a ≤ t ≤ (1− a),

1
a
(X†AnX) (1− a) ≤ t ≤ 1,

(C.21)

(for some constant a ∈ [0, 1/2] which can be chosen arbitrarily.) Let us decompose

H′n(t) = D′n+V ′n(t), where D′n = 1
T

∫ 1

0
H′n(t). Our goal will be to ensure that the time-

independent part D′n commutes with X. It turns out this can actually be achieved

exactly, and in particular we can choose An such that D′n = Dn.

To this end, we first observe that

D′n = Dn + En +X†AnX − An. (C.22)

We now claim that D′n = Dn if we choose

An :=
1

N

N−1∑
k=0

k∑
p=0

E(p)
n , E(p)

n = X−pEXp. (C.23)

To see this, note that, by construction,

X†AnX − An =
1

N

N−1∑
k=0

k∑
p=0

[E(p+1)
n − E(p)

n ] (C.24)

=
1

N

N−1∑
k=0

[E(k+1)
n − En] (C.25)

= −En + 〈En〉, (C.26)

= −En, (C.27)

since 〈En〉 = 0.

Step Two.– The next step is now to find a new time-dependent Hamiltonian

162



Proof of prethermalization results Chapter C

Hn+1(t) which gives the same unitary evolution as H′n(t) over the time interval [0, 1],

while making the time-dependent part smaller. That is, making the decomposition

Hn+1(t) = Dn+1 + En+1 + Vn+1(t) as before, the goal is to make Vn+1 small. In fact,

this is precisely the problem already considered by Abanin et al[39], and we can use

the procedure described in Section 4.1 of that paper.

One might worry whether Step Two undoes the good work done by Step One.

That is, does making Vn+1 small come at the cost of making En+1 larger again?

However, this turns out not to be a problem, as the bounds we derive below will

make clear.

C.4 Bounds on Error terms

Now we will derive bounds that quantify the success of the iterative procedure

described in the previous subsection at making the residual error terms En and Vn

small. Analysis proceeds in similar way to Abanin et al[39]. We define

d(n) = ‖Dn‖n, v(n) = ‖Vn‖n, v′(n) = ‖V ′n‖n,

e(n) = ‖En‖n, δd(n) = ‖Dn+1 −Dn‖n+1, (C.28)

First of all, from Eq. (C.23) we have a bound on An:

‖An‖n ≤
N + 1

2
e(n) (C.29)
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From Eq. (C.21) we observe that

V ′n(t) =



1
a
(−An)−Dn 0 ≤ t ≤ a

1
1−2a

[
2aDn + En + Vn

(
t−a

1−2a

)]
a ≤ t ≤ (1− a),

1
a
(X†AnX)−Dn (1− a) ≤ t ≤ 1,

(C.30)

and hence

v′(n) ≤ 2‖An‖n + ‖En‖n + ‖Vn‖n + 4a‖Dn‖n (C.31)

Hence, we can send a→ 0 to give (using Eq. (C.29))

v′(n) ≤ (N + 2)e(n) + v(n). (C.32)

Then, as our construction of Hn+1 from H′n is the one described in Section 4.1 of

Abanin et al, we can use their bounds

‖Dn+1 + En+1 −Dn‖n+1 ≤ εn/2 (C.33)

v(n+ 1) ≤ εn (C.34)

where

εn = m(n)v′(n)
(
d(n) + 2v′(n)), (C.35)

m(n) =
18

(κn+1 − κn)κn+1

. (C.36)
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These bounds hold provided that

3v′(n) ≤ κn − κn+1 (C.37)

Since Dn+1 −Dn = 〈Dn+1 + En+1 −Dn〉, we see that

δd(n) ≤ ‖Dn+1 + En+1 −Dn‖n+1 ≤ εn/2 (C.38)

and

e(n+ 1) ≤ ‖Dn+1 + En+1 −Dn‖n+1 + ‖Dn+1 −Dn‖n+1 ≤ εn (C.39)

C.5 Proof of Theorem 1′ by induction

The idea now is to apply the bounds of the previous subsection recursively to give

bounds expressed in terms of the original Floquet operator,

Uf = U
(1)
f = T exp

(
−i
∫ 1

0

[H0(t) + V (t)]

)
(C.40)

= XT exp

(
−i
∫ 1

0

Vint(t)dt

)
, (C.41)

and in particular the quantity λ ≡ ‖Vint‖1 = ‖V ‖1. First of all, we write H1(t) ≡

Vint(t) = F1 + V1(t), where F1 =
∫ 1

0
Vint(t)dt, and then separate F1 = D1 +E1, where

D1 = 〈F1〉. We note that ‖F1‖1 ≤ λ, which implies that v(1) ≤ ‖Vint‖1 + ‖F1‖1 ≤ 2λ,

and d(1) ≤ λ. In turn this gives e(1) ≤ ‖D1‖1 + ‖F1‖1 ≤ 2λ.

Now we proceed by induction. Suppose that we have some n such that, for all

1 ≤ k ≤ n, we have

e(k), v(k) ≤ 2Kkλ
k, (C.42)

165



Proof of prethermalization results Chapter C

and for all 1 ≤ k < n,

δd(k) ≤ Kk+1λ
k+1 (C.43)

where the coefficients Kk satisfy Kk+1/Kk ≤ 1
2λ

. (The preceding discussion shows

that this induction condition is satisfied for n = 1 with K1 = 1.)

Then from Eq. (C.32) we find that

v′(n) ≤ 2cNKnλ
n, cN = N + 3, (C.44)

and hence

εn ≤ m(n)2cNKnλ
n(d(n) + 2cNKnλ

n). (C.45)

We note that the triangle inequality and the fact that ‖ · ‖n decreases with n ensures

that d(n+ 1)− d(n) ≤ δd(n). Hence we can bound d(n) by

d(n) ≤ d(1) +
n−1∑
k=1

δd(k) (C.46)

≤ λ+
n−1∑
k=1

Kk+1λ
k+1 (C.47)

=
n∑
k=1

Kkλ
k (C.48)

≤
n∑
k=1

λ

(
1

2

)k−1

(C.49)

≤ 2λ (C.50)

In Eq. (C.49), we used the inequality Kk+1/Kk ≤ 1/(2λ). This same inequality also
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ensures that Knλ
n ≤ λ, so inserting into Eq. (C.45) gives

εn ≤ m(n)2cNKn(2 + 2cN)λn+1

≡ 2Cm(n)Knλ
n+1

≡ Kn+1λ
n+1. (C.51)

Here we chose

Kn+1 = Cm(n)Kn, C = 2cN(1 + cN). (C.52)

Next we need to examine the conditions under which Eq. (C.37) holds. Given the

bounds on v′(n) and using the inequality Knλ
n ≤ λ(1/2)n−1, it is sufficient to demand

that

3cN(1/2)n−1λ ≤ κn+1 − κn, (C.53)

or in other words

λ ≤ 1

3cN
max
n∈N

[
2n−1(κn+1 − κn)

]
=

1

3cN
(κ2 − κ1) ≈ 0.14κ1

N + 3
. (C.54)

Provided that Eq. (C.54) holds, we then find that

δd(n), v(n+ 1)/2, e(n+ 1)/2 ≤ Kn+1λ
n+1. (C.55)

Therefore, we can continue the induction provided that Kn+1/Kn ≤ 1
2λ

. Since

Kn+1/Kn = Cm(n), this is true provided that n ≤ n∗. This completes the proof

of Theorem 1′.
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More details on prethermalization

D.1 Proof of phase-winding when a U(1) symmetry

is spontaneously broken

Here we intend to prove the claim made in Section 7.4.1 above that the expectation

value

Tr(ρXe
itKΦe−itK) ≡ gX(t) (D.1)

must be independent of time t, where we have defined K ≡ D − µL and ρX ≡

limε→0+
1
Z e
−β(K+εX). The idea is to make a connection with results of Ref. [52]; how-

ever, these were expressed in terms of two-point correlation functions, and also did

not have the εX term in the definition of the density matrix. To make a connec-

tion, we assume that the symmetric density matrix ρ = 1
Z e
−βK can be recovered by

symmetrizing a symmetry-breaking state,

ρ =
1

2π

∫ 2π

0

e−iθLρXe
iθLdθ, (D.2)

and that the symmetry-breaking state ρX is short-range correlated. Now we calculate

the two-point correlation function (where Φ(x) and Φ(y) are two operators acting at
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different spatial locations x and y)

f(t) = Tr[ρeitKΦ(x)eitKΦ†(y)] (D.3)

=
1

2π

∫ 2π

0

dθTr[e−iθLρXe
iθLeitKΦ(x)e−itKΦ(y)] (D.4)

=
1

2π

∫ 2π

0

dθTr[ρXe
itK{eiθLΦ(x)e−iθL}e−itK{eiθLΦ†(y)e−iθL}] (D.5)

= Tr[ρX{e−itKΦ(x)eitK}Φ†(y)}] (D.6)

= gX(t)[gX(0)]∗, (D.7)

where we used the fact that L and K commute and that eiθLΦe−iθL = eiθΦ. In the

last line we sent |x − y| → ∞ and used the assumption that ρX has short-range

correlations.

Now, the theorem of Ref. [52] rigorously proves that the function f(t) must be

independent of time. Hence, unless gX(0) = 0, we conclude that gX(t) must be

independent of time. (If gX(0) = 0 but gX(t) is not independent of time then there

must be some t such that gX(t) 6= 0. Then we can just relabel the time-coordinate so

that gX(0) 6= 0 and repeat the argument.)

D.2 Open systems

In this section, we will elaborate on our hypothesis for open systems introduced

in Section 7.6 above, namely that in a large class of systems the steady state will

have low energy. First we need to clarify what we mean by “energy” and “steady

state” in the Floquet context. Let HS(t) be the time-evolution of the system alone

(not taking to account the coupling to the environment.) We define the Floquet

operator Uf = T exp
(
−i
∫ T

0
HS(t)dt

)
. Recall that in the regime discussed in Section
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7.3, where λ as defined there satisfies λT � 1, we can write HS(t) = H̃S(t) + V (t).

Here V (t) is a very weak residual perturbation, and H̃S(t) is such that, if we define

the approximate Floquet operator by Ũf = T exp
(
−i
∫ T

0
H̃S(t)

)
, then it can be

expressed, following a local unitary time-independent change of basis (which we will

here set to 1 for notational simplicity), as Ũf = Xe−iDT , where X2 = 1 and D is

a quasi-local Hamiltonian D that commutes with X. In particular, we have Ũf
2

=

e−2iDT . This implies that we can make a time-dependent local unitary change of basis

W (t), periodic with period 2T and satisfying W (0) = 1, such that the transformed

Hamiltonian, which is related to H̃S(t) according to

H̃ ′S = WHSW
† + i[∂tW ]W †, (D.8)

is time-independent and equal to D. Therefore, in this new reference frame, it is clear

that we should refer to the expectation value of D as “energy”. We emphasize that

we have not gotten rid of the time-dependence completely: even in the new reference

frame the residual driving term V (t), as well as any couplings to the environment,

will still be time-dependent. (Due to the time-dependent change of basis, the latter

will gain a time-dependence even if it was originally time-independent.)

The steady state is now determined by some balance between the residual periodic

driving V (t), the classical noise, and the coupling to the environment. We leave a

detailed analysis of this open system process for future work1, but we expect that

in a suitable regime the energy-density of the steady state will be low. We will now

explain why this implies oscillations (which are observed in the original reference

frame, not the rotating one defined above.)

Consider a short-range correlated steady state ρ whose energy density with respect

1For one study of steady states of many-body Floquet systems coupled to a bath, see Ref. [206]
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to D is small. Recall that in Section 7.3.1 we argued that if ρ is a thermal state it

must spontaneously break the symmetry generated by X, and it follows that under

Ũf it oscillates at twice the drive frequency. Of course, for an open system the steady-

state need not be thermal, and time evolution of the open system is not exactly given

by Ũf . However, as we prove in Appendix D.3, even non-thermal states must fail

to be invariant under the symmetry X if their energy density with respect to D is

sufficiently small, provided that they satisfy a physically reasonable “thermalizability”

condition. Moreover, if λT � 1 (so that we can approximate Ũf ≈ X), and the

coupling to the environment sufficiently weak, then the resulting state after one time

period is approximately given by XρX†, which by the preceding discussion is not the

same as ρ. (We make this argument more precise in Section D.3.) Thus, provided

that the energy of the steady-state is sufficiently small, it does not return to itself

after one time period, and oscillations with period 2T will be observed.

Generic baths will destroy continuous-time time crystals. The difference with the

discrete-time case is the existence of an extra variable characterizing thermal states

of D; namely, the chemical potential µ. This extra variable is needed because of the

presence of the hidden U(1) symmetry in the continuous-time regime. (There is no

analogous variable when the hidden symmetry is discrete). Thus, one certainly cannot

make any statement that all low-energy states of D oscillate, because, in particular, a

thermal state of D in which the electrochemical potential µ−u = 0 does not oscillate.

A coupling to a generic bath will not preserve the hidden U(1) symmetry, and thus to

the extent that the steady state of an open system process is close to a thermal state

of D, we in fact expect it to have µ−u = 0, since this corresponds to minimizing the

free energy.

In principle, one could fine-tune the bath so that it repects the symmetry. This

would allow the time crystal to survive, but is clearly contrived. One might wonder
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whether the bath itself could also pre-thermalize: if we could consider the bath to be

included in the Hamiltonian (7.34) then it could have an approximate U(1) symmetry

along with the rest of the system. This would require the local terms in the bath

Hamiltonian to be much smaller than the coupling u in Eq. (7.34). However, for

most of the physically relevant baths that one would want to consider (for example,

phonons), the local terms in the bath Hamiltonian are in fact unbounded.

D.3 Spontaneous symmetry breaking for non-thermal

states

Let D be a quasi-local Hamiltonian for which the thermal states spontaneously

break an on-site ZN symmetry generated by X for energy densities e < ec. More

precisely, what we mean is the following, where we define the local distance between

two states on a region A according to

‖ρ1 − ρ2‖A = ‖(ρ1)A − (ρ2)A‖1 (D.9)

where ‖ · ‖1 is the trace norm, and (ρ)A = TrAcρ is the reduced state of ρ on A.

Assumption 1 (Spontaneous symmetry-breaking). There exists some finite region

A and some γ > 0, such that, for any short-range correlated thermal state ρτ with

energy density e < ec, we have ‖ρτ −XkρτX
−k‖A ≥ γ for all 0 < k < N .

Now let ρ be any state (not necessarily thermal) such that the energy density

ε ≡ 〈D〉ρ/V < εc (with V the volume of the system.) We assume the following

thermalizability condition, which roughly states that ρ can thermalize when time-

evolved under D. More precisely:
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Assumption 2 (Thermalizability). There exist a time t1 and a short-range correlated

thermal state ρτ with the same energy density as ρ, such that ‖ρ(t1) − ρτ‖A ≤ γ/8,

where ρ(t) = e−iDt1ρeiDt1 .

From Assumptions 1 and 2 we derive the following lemma, which quantifies the

sense in which the state ρ must break the symmetry.

Lemma 1. There exists a finite region A′ such that ‖ρ−XkρX−k‖A′ ≥ 3γ/4.

Proof. From the triangle inequality it follows that

‖ρ(t1)−Xkρ(t1)X−k‖A (D.10)

≥ ‖ρτ −XkρτX
−k‖A − ‖ρ(t1)−Xkρ(t1)X−k − (ρτ −XkρτX

−k)‖A (D.11)

≥ γ − 2γ/8 (D.12)

= 3γ/4. (D.13)

Using the characterization of the trace norm as

‖ρ‖1 = sup
ô:‖ô‖=1

|〈ô〉ρ|, (D.14)

it follows that there exists an operator ôA supported on A, with ‖ôA‖ = 1, such

that |〈X−kôAXk − ôA〉ρ(t1)| ≥ 3γ/4. Now, since D is quasi-local, it must obey a

Lieb-Robinson bound [207, 208], which implies that there exists a local operator

ÔA′ supported on a finite region A′ such that ‖ô(t1) − ÔA′‖ ≤ γ/8, where ô(t1) =
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eiDt1 ôe−iDt1 . Hence we see that

|〈X−kÔA′X
k − ÔA′〉ρ| (D.15)

≥ −γ/4 + |〈X−kôA(t1)Xk − ôA(t1)〉ρ| (D.16)

= −γ/4 + |〈X−kôAXk − ôA〉ρ(t1)| (D.17)

≥ −γ/4 + 3γ/4. (D.18)

= γ/2. (D.19)

To get to line Eq. (D.17), we used the fact that X and D commute. The lemma

follows.

Now consider a system which in isolation would evolve under a time-dependent

Hamiltonian H(t), which is periodic with period T . We assume that H(t) exhibits

the pre-thermalization phenomena discussed in the main text. That is, we assume

that the Floquet operator can be approximated according to Uf ≈ Ũf = Xe−iDT ,

where D is quasi-local and commutes with X, and where Uf is close to Ũf in the

sense that

‖U †fOA′Uf − Ũf
†
OA′Ũf‖ ≤

γ

8
‖OA′‖ (D.20)

for any operator OA′ supported on A′.

Let ρopen(t) be the reduced state of the system (tracing out the bath) at time

t, taking into account the system-bath coupling, and we assume that ρopen(0) ≡ ρ

satisfies Assumption 2 above. We assume the coupling to the bath is sufficiently weak,

in the following sense:

Assumption 3 (Weak coupling). For any time 0 ≤ t ≤ T , we have ‖ρint
open(t)−ρ‖A′ ≤

γ/8.
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Here we defined the interaction picture state ρint
open(t) = U(0, t)−1ρopen(t)U(0, t),

where U(0, t) is the time evolution generated by H(t). If we were to set the coupling

to the bath to zero then the state ρint
open(t) would be constant in time, so Assumption

3 corresponds to weak coupling. Finally, we will assume that the strength of DT is

small enough so that

Assumption 4. For any observable OA′ supported on A′, we have

‖e−iDTOA′e
iDT −OA′‖ ≤

γ

8
‖OA′‖ (D.21)

This will always be true in the regime of interest, λT � 1 (where λ is as defined

in Section 7.2), because ‖D‖n∗ is O(λ) [see Eq. (7.9) in Theorem 1].

From the above assumptions we can now derive our main result:

Theorem 6.

‖ρopen(T )− ρ‖A′ ≥ γ/8. (D.22)

Proof.

‖ρopen(T )− ρ‖A′ (D.23)

= ‖Ufρint
open(T )U †f − ρ‖A′ (D.24)

≥ −γ/8 + ‖Ũfρint
open(T )Ũ †f − ρ‖A′ (D.25)

= −γ/8 + ‖e−iDTρint
open(T )eiDT −X†ρX‖A′ (D.26)

≥ −γ/8− γ/8 + ‖ρint
open(T )−X†ρX‖A′ (D.27)

≥ −γ/8− γ/8− γ/8 + ‖ρ−X†ρX‖A′ (D.28)

≥ −γ/8− γ/8− γ/8 + γ/2. (D.29)

= γ/8. (D.30)
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In other words, the state of the open system at times t = T and t = 0 are locally

distinguishable. That is, for the stated assumptions, the state of the system does not

synchronize with the drive and time translation symmetry is spontaneously broken.

176



Appendix E

More on topological phases with
spatial symmetries

E.1 Computing the bosonic classification

A nice feature of our results, at least in the case of bosonic crystalline SPTs (in

Euclidean space) is that the classification is readily computable. According to the

general discussion of Section 8.5.2, we see that the classification in d space dimensions

for a given space group G is given by Hd+2(BG,Zor). Computing this object turns out

to be within the capabilities of the GAP computer algebra program [209]. We show

the results in Table 8.1 (in the introduction) for the (2+1)-D case and in Table E.1 for

the (3+1)-D case. There were 3 space groups in (3+1)-D for which the classification

took too long to compute and is not shown.

We recall that this classification is expected to be complete in (2+1)-D, and for the

Sohncke groups (those not containing any orientation-reversing elements) in (3+1)-

D. What about explicit constructions of these phases? Let us fix some element

ω ∈ Hd+2(BG,Zor). Suppose that there exists a finite group Gf and a group ho-

momorphism ϕ : G→ Gf such that ω is in the image of the map Hd+1(Gf ,U(1)or) ∼=

Hd+2(BGf ,Zor) → Hd+2(BG,Zor) induced by ϕ. Then indeed we have an explicit
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construction of the crystalline SPT correponding to ω, using the bootstrap argument

of Section 8.4 (leveraging, for example, the construction of Ref. [80] for the SPT pro-

tected by Gf acting internally). We conjecture that there will always be some such

Gf for any element of Hd+2(BG,Zor).

E.2 Coupling a Hamiltonian to a rigid crystalline

gauge field

In this appendix, we explain how to couple a finite range Hamiltonian to a crys-

talline gauge field. To fix notation, X will be the physical space with G action, Λ

the crystalline lattice therein, M the test space, divided into patches
⋃
i Ui = M with

local homeomorphisms f : Ui → X and transition functions gij ∈ G such that for

all x ∈ Ui ∩ Uj, fi(x) = gijfj(x). We will use the shorthand A to denote the whole

crystalline gauge field.

We begin by defining the Hilbert space on M , assuming that the Hilbert space

of X is local to the lattice Λ, that is, there is a space Hx for every x ∈ Λ and

HX =
⊗

x∈ΛHx. We define the pulled-back lattice Σ =
⋃
j f
−1
j Λ and assign to each

m ∈ f−1
j Λ the Hilbert space Hm(A) := Hfj(m). The total Hilbert space may be

written H(A) =
⊗

m∈ΣHm(A).

Next we discuss (rigid) gauge transformations. These come in three sorts. The

first are homotopies of the maps fj (fixing the boundary). We suppose that the

patches are transverse to the lattice (this is generic) so that each m ∈ Σ lies in a

unique Uj =: Uj(m). In the rigid case, these are simply continuous deformations of

the lattice in M1.

1In the non-rigid case, new lattice sites could appear or disappear in conjugate pairs by creating
“folds” of fj .
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Number Name Classification

1 P1 0

2 P1 Z×8
2

3 P2 Z×4
2

4 P21 0

5 C2 Z×2
2

6 Pm Z×4
2

7 Pc 0

8 Cm Z×2
2

9 Cc 0

10 P2/m Z×18
2

11 P21/m Z×6
2

12 C2/m Z×11
2

13 P2/c Z×6
2

14 P21/c Z×4
2

15 C2/c Z×5
2

16 P222 Z×16
2

17 P2221 Z×4
2

18 P21212 Z×2
2

19 P212121 0

20 C2221 Z×2
2

21 C222 Z×9
2

22 F222 Z×8
2

23 I222 Z×8
2

24 I212121 Z×3
2

25 Pmm2 Z×16
2

26 Pmc21 Z×4
2

27 Pcc2 Z×4
2

28 Pma2 Z×4
2

29 Pca21 0

30 Pnc2 Z×2
2

31 Pmn21 Z×2
2

32 Pba2 Z×2
2

33 Pna21 0

34 Pnn2 Z×2
2

35 Cmm2 Z×9
2

36 Cmc21 Z×2
2

37 Ccc2 Z×3
2

38 Amm2 Z×9
2

39 Aem2 Z×4
2

Number Name Classification

40 Ama2 Z×3
2

41 Aea2 Z2

42 Fmm2 Z×6
2

43 Fdd2 Z2

44 Imm2 Z×8
2

45 Iba2 Z×2
2

46 Ima2 Z×3
2

47 Pmmm Z×42
2

48 Pnnn Z×10
2

49 Pccm Z×17
2

50 Pban Z×10
2

51 Pmma Z×17
2

52 Pnna Z×4
2

53 Pmna Z×10
2

54 Pcca Z×5
2

55 Pbam Z×10
2

56 Pccn Z×4
2

57 Pbcm Z×5
2

58 Pnnm Z×9
2

59 Pmmn Z×10
2

60 Pbcn Z×3
2

61 Pbca Z×2
2

62 Pnma Z×4
2

63 Cmcm Z×10
2

64 Cmce Z×7
2

65 Cmmm Z×26
2

66 Cccm Z×13
2

67 Cmme Z×17
2

68 Ccce Z×7
2

69 Fmmm Z×20
2

70 Fddd Z×6
2

71 Immm Z×22
2

72 Ibam Z×10
2

73 Ibca Z×5
2

74 Imma Z×13
2

75 P4 Z2 × Z×2
4

76 P41 0

77 P42 Z×3
2

78 P43 0

Table E.1: The “230-fold way”. This table shows the classification of bosonic
crystalline SPT phases in (3+1)-D for each of the 3-D space groups. For space
groups 227, 228 and 230 the classification has not been computed.
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Number Name Classification

79 I4 Z2 × Z4

80 I41 Z2

81 P4 Z×3
2 × Z×2

4

82 I4 Z×2
2 × Z×2

4

83 P4/m Z×12
2 × Z×2

4

84 P42/m Z×11
2

85 P4/n Z×3
2 × Z×2

4

86 P42/n Z×4
2 × Z4

87 I4/m Z×8
2 × Z4

88 I41/a Z×3
2 × Z4

89 P422 Z×12
2

90 P4212 Z×4
2 × Z4

91 P4122 Z×3
2

92 P41212 Z2

93 P4222 Z×12
2

94 P42212 Z×5
2

95 P4322 Z×3
2

96 P43212 Z2

97 I422 Z×8
2

98 I4122 Z×5
2

99 P4mm Z×12
2

100 P4bm Z×4
2 × Z4

101 P42cm Z×6
2

102 P42nm Z×5
2

103 P4cc Z×3
2

104 P4nc Z2 × Z4

105 P42mc Z×9
2

106 P42bc Z×2
2

107 I4mm Z×7
2

108 I4cm Z×4
2

109 I41md Z×4
2

110 I41cd Z2

111 P42m Z×13
2

112 P42c Z×10
2

113 P421m Z×5
2 × Z4

114 P421c Z×2
2 × Z4

115 P4m2 Z×13
2

116 P4c2 Z×7
2

117 P4b2 Z×5
2 × Z4

Number Name Classification

118 P4n2 Z×5
2 × Z4

119 I4m2 Z×9
2

120 I4c2 Z×6
2

121 I42m Z×8
2

122 I42d Z×2
2 × Z4

123 P4/mmm Z×32
2

124 P4/mcc Z×13
2

125 P4/nbm Z×13
2

126 P4/nnc Z×8
2

127 P4/mbm Z×15
2 × Z4

128 P4/mnc Z×8
2 × Z4

129 P4/nmm Z×13
2

130 P4/ncc Z×5
2

131 P42/mmc Z×24
2

132 P42/mcm Z×18
2

133 P42/nbc Z×8
2

134 P42/nnm Z×13
2

135 P42/mbc Z×8
2

136 P42/mnm Z×14
2

137 P42/nmc Z×8
2

138 P42/ncm Z×10
2

139 I4/mmm Z×20
2

140 I4/mcm Z×14
2

141 I41/amd Z×9
2

142 I41/acd Z×5
2

143 P3 Z×3
3

144 P31 0
145 P32 0
146 R3 Z3

147 P3 Z×4
2 × Z×2

3

148 R3 Z×4
2 × Z3

149 P312 Z×2
2

150 P321 Z×2
2 × Z3

151 P3112 Z×2
2

152 P3121 Z×2
2

153 P3212 Z×2
2

154 P3221 Z×2
2

155 R32 Z×2
2

156 P3m1 Z×2
2

Table E.1: (continued)
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Number Name Classification

157 P31m Z×2
2 × Z3

158 P3c1 0
159 P31c Z3

160 R3m Z×2
2

161 R3c 0

162 P31m Z×9
2

163 P31c Z×3
2

164 P3m1 Z×9
2

165 P3c1 Z×3
2

166 R3m Z×9
2

167 R3c Z×3
2

168 P6 Z×2
2 × Z×2

3

169 P61 0
170 P65 0

171 P62 Z×2
2

172 P64 Z×2
2

173 P63 Z×2
3

174 P6 Z×4
2 × Z×3

3

175 P6/m Z×10
2 × Z×2

3

176 P63/m Z×4
2 × Z×2

3

177 P622 Z×8
2

178 P6122 Z×2
2

179 P6522 Z×2
2

180 P6222 Z×8
2

181 P6422 Z×8
2

182 P6322 Z×2
2

183 P6mm Z×8
2

184 P6cc Z×2
2

185 P63cm Z×2
2

186 P63mc Z×2
2

187 P6m2 Z×9
2

188 P6c2 Z×3
2

189 P62m Z×9
2 × Z3

190 P62c Z×3
2 × Z3

191 P6/mmm Z×22
2

192 P6/mcc Z×9
2

193 P63/mcm Z×9
2

194 P63/mmc Z×9
2

195 P23 Z×4
2 × Z3

Number Name Classification

196 F23 Z3

197 I23 Z×2
2 × Z3

198 P213 Z3

199 I213 Z2 × Z3

200 Pm3 Z×14
2 × Z3

201 Pn3 Z×4
2 × Z3

202 Fm3 Z×6
2 × Z3

203 Fd3 Z×2
2 × Z3

204 Im3 Z×8
2 × Z3

205 Pa3 Z×2
2 × Z3

206 Ia3 Z×3
2 × Z3

207 P432 Z×6
2

208 P4232 Z×6
2

209 F432 Z×4
2

210 F4132 Z2

211 I432 Z×5
2

212 P4332 Z2

213 P4132 Z2

214 I4132 Z×4
2

215 P43m Z×7
2

216 F43m Z×5
2

217 I43m Z×5
2

218 P43n Z×4
2

219 F43c Z×2
2

220 I43d Z2 × Z4

221 Pm3m Z×18
2

222 Pn3n Z×5
2

223 Pm3n Z×10
2

224 Pn3m Z×10
2

225 Fm3m Z×13
2

226 Fm3c Z×7
2

227 Fd3m ???
228 Fd3c ???

229 Im3m Z×13
2

230 Ia3d ???

Table E.1: (continued)
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The second type are given by the action of a group element gj ∈ G on a Uj and are

analogous to ordinary gauge transformations. To define these, we need to assume the

symmetry action on HX is “ultralocal”, meaning that it is a tensor product operator

U(g) =
⊗

x∈Λ U(g)x where U(g) : Hx → Hgx. Then we can isolate the part acting

on fj(Uj), U(gj)j =
⊗

x∈Λ∩fj(Uj) U(g)x and apply this to H(A). This takes us to a

different Hilbert space H(Agj), where Agj is the crystalline gauge field obtained from

A by replacing fj with gjfj and gij with gijg
−1
j for all adjacent Ui to Uj.

The third type involve moving the patches themselves. This is actually a com-

bination of the previous type of gauge transformation as well as splitting or joining

patches. A patch U becomes split into U1 ∪ U2 with f1, f2 defined by restricting f

and g12 = 1. Likewise, if there are every any adjacent patches Ui,j with gij = 1, then

fi and fj can be joined to a continuous function across both patches which can then

be considered a single patch Ui ∪ Uj. In both cases the adjacent transition functions

do not change. Moving a domain wall can then be achieved by first splitting a patch,

applying a G element to the new patch, and joining patches again.

Now we discuss how to couple a Hamiltonian to this crystalline gauge field. For

each m ∈ Σ and each term h in the Hamiltonian H acting on fj(m), we will have

a corresponding term in the Hamiltonian H(A) acting on H(A). If the support of h

lies entirely inside fj(Uj), then it acts on
⊗

x∈fj(Uj)∩ΛHx =
⊗

m∈Uj∩ΣHm, which is a

tensor factor of H(A) so we can include h in H(A) with no issue.

Difficulty comes when the support of h is not contained inside any one fj(Uj).

This is where we have to use the rigidity assumption. We assume that it is possible

to move the patch Uj by a gauge transformation so that h is contained in fj(Uj) (the

Hamiltonian built so far comes along for the ride according to our gauge transforma-

tion operator). Then we add h to the Hamiltonian and perform the inverse gauge

transformation to return to the original gauge field configuration. Compare Appendix
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E.4, especially Fig E.4.

As a simple example of this technique, consider a 1+1D spin-1/2 Ising model,

focusing on a specific edge 12 with Hamiltonian term X1X2 and global Z2 symmetry⊗
j Zj, where X,Z denote Pauli spin operators. Suppose that 1 and 2 belong to

different patches with a non-trivial transition function. Then rather than adding

X1X2 to the Hamiltonian, we first perform a gauge transformation Z2, which pushes

the domain wall off to the right and we get the term −X1X2. Note because Z2 is a

symmetry, it doesn’t matter which way we push the domain wall off. Using Z1 would

result in the same term.

We end this appendix with a second method for describing the Hamiltonian cou-

pled to a crystalline gauge field, which is equivalent but does not require one to

perform gauge transformations to obtain all the terms in the Hamiltonian. In this

version, the patches Uj are taken to be an open covering of M and are allowed to

overlap. Then a lattice (hence a Hilbert space) is first defined on the disjoint union⊔
j Uj by Σ̃ :=

⊔
j f
−1
j Λ. We denote the associated Hilbert space HM̃ =

⊗
jHUj ,

where HUj =
⊗

m∈Σ∩Uj Hm. Note that the map
⊔
j Uj →

⋃
j Uj = M sends Σ̃ to Σ.

Then rigidity means that for each m ∈ Σ, and for each term h acting on f(m), there

is some Uj 3 m such that the support of h is contained in fj(Uj). We choose h to

act on the Uj part of the Hilbert space HM̃ . Then we project everything to HM by

identifying duplicated vertices m ∈ Uj,m′ ∈ Uk in the disjoint union by the transition

maps U(gij) : HUj → HUk . A simple example is shown in Fig E.1.

This method is particularly convenient for describing crystal defects. In the case

of a single defect in Rd supported along ∂H, where H is a d− 1-dimensional branch

cut (which, fixing ∂H, is a choice of gauge), the defect space M = Rd − ∂H can be

covered with a single patch U given by a thickening of Rd−H, which intersects itself

in M along a neighborhood of H. In other words, the degrees of freedom near the
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1 2

2' 3

U_left
U_right

g

Figure E.1: In this approach to defining the Hamiltonian coupled to crystalline
gauge field, patches are allowed to overlap to include some vertices. In this partic-
ular example, Uleft ∩Uright includes vertex 2, which gets duplicated. Hamiltonian
terms (denoted by solid edges) lying entirely inside Uleft or Uright are taken to
act on those Hilbert spaces. Then spurious degrees of freedom are eliminated by
applying a projection operator which in a product state basis identifies the state
at 2 with g applied to the state at 2’. This is indicated by the green curve labelled
by g cutting the dashed vertical line from 2 to 2’.

branch cut are doubled (see Figure 8.3, coupled to either side of the branch cut, and

then reglued by a projection map twisted by the crystal symmetry.

E.3 Coupling smooth states to gauge fields

Here we prove the claims made in Section 8.3.2 about the well-definedness of the

construction to couple smooth states to gauge fields. We first consider the case of

an internal symmetry G. We adapt an argument due to Kitaev (Appendix F of

Ref. [185]). We assume that our original ground state ψ lives on a lattice with a spin

of Hilbert space dimension d at each site. However, we will define the space Ω which

our smooth states target to be the space of states with Hilbert space dimension m > d

per site. Of course, given a choice of isometric embedding e : Cd → Cm, we could

think of our original state ψ as living in Ω too. The resulting state depends on e and

we call it e(ψ).
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Recall that the symmetry is assumed to act on-site, with the action on each site

described by a representation u(g) ∈ U(d). For each g ∈ G, we also considered a

path u(g; t), t ∈ [0, 1] such that u(g; 0) = I and u(g; 1) = u(g). Then, (at least

locally) we can reformulate the prescription in Section 8.3.2 for defining the smooth

state ψ[A] : M → Ω as follows in terms of a spatially-dependent isometric embedding

em : Cd → Cm, according to ψ[A](m) = em(Ψ). We then require that when passing

over a patch boundary twisted by g ∈ G, em goes through the continuous path

obtained by acting with u(g; t). But now we see that there will not be any obstructions

to making this process well-defined due to non-contractible loops (or higher non-trivial

homotopy groups) at intersections between patch boundaries, provided that we take

m sufficiently large. This is because in the limit m → ∞ the space Emb(d,m) of

all isometric embeddings Cd → Cm is contractible, i.e. all its homotopy groups are

trivial.

A more rigorous (and succinct) way to think about the above construction is ob-

tained by thinking about the classifying spaceBG. Indeed, since EG := limm→∞Emb(d,m)

is a contractible space with a free action of G, it follows that EG/G is a model for

BG, and we find that there is a continuous map BG → Ω. A G gauge field over

M is the same as a principal G-bundle over M , which can be represented by a a

continuous map M → BG. Hence, composing these two maps gives a smooth state

ψ[A] : M → Ω.

The “patch” version of the argument for a crystalline gauge field proceeds similarly

to above and we will not write it out again. Let us simply note that a rigorous version

of the construction can be formulated in terms of the homotopy quotient X//G.

Indeed, given a smooth state ψ : X → Ωd (where Ωd is the space of ground states

with Hilbert space dimension d per site), there is a map from X × Emb(d,m) → Ω

defined by (x, e) 7→ e(ψ(x)). This map is invariant under the diagional action of G.
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Therefore, taking the limit m→∞, we find a map from (X ×EG)/G = X//G→ Ω.

A crystalline gauge field on M can be represented by a map from M → X//G. By

composing these two maps we obtain a smooth state ψ[A] : M → Ω.

E.4 Lattice Crystalline Gauge Fields

The cellular description we give in this section is dual to the patch picture we

gave in Section 8.3.1, where g elements labelled codimension 1 walls between volumes

in the crystal. Here in order to compare with the usual definition of a lattice gauge

field, we label edges with g elements.

Recall for a discrete group G a lattice gauge field has a very nice description where

each edge e gets a group label ge ∈ G and any 2-face τ imposes a flatness constraint

∏
e∈∂τ

ge = 1, (E.1)

where the multiplication is performed in the order the edges are encountered in a

circular traversal of the boundary. This conservation law allows us to express these

labels as a configuration of domain walls running about our manifold. The conserva-

tion law says that a g1 and a g2 fuse to a g1g2. The domain walls are codimension

one so fusion can be non-commutative in this way.

Let’s imagine drawing a configuration like this on X where the G elements act

non-trivially on X. Does this make sense? Let’s look at a particular edge, Fig E.2.

It looks like an edge from x→ y, but if we push the domain wall out of the way, we

see the actual data there is an edge (actually path; see below) from x to gy! This

means that while our underlying manifold has points labelled by points in X, it is

perhaps a different space M ! To see what data is assigned to a face or higher facet,
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gx

y g

x

y

g

Figure E.2: When the g domain wall is pulled off of this edge, it is revealed to be an
edge from x → gy. Note the similarity with the Hamiltonian coupling procedure
in Appendix E.2.

one performs a similar procedure, pushing all the domain walls off and collecting g

labels. The flatness condition on G implies that this is always unambiguous. At

a symmetry defect like the core of a disclination, the flatness condition is violated

and it is impossible to unambiguously assign a face of X to the core of the defect.

When this happens, the underlying space M may have different topology from X! In

fact, we may end up with a space M whose labels don’t even close up unto a map

to X! In such a case, we end up with only a map P → X, where P is the G-cover

corresponding to the g labels (equivalently the G gauge bundle).

Note that if X is contractible the extra information beyond the G gauge field, the

X labels, contributes no non-trivial data up to homotopies of this map. Indeed this

is basically another proof of the Crystalline Equivalence Principle.

Let us try to be more systematic about the construction. We start with a warm-up,

just describing cellular maps f̂ : M → X in a lattice gauge theoryish way. A cellular

map means the n-skeleton of M gets sent to the n-skeleton of X for every n. This

means every vertex m ∈ M gets a vertex f̂(m) ∈ X, every edge e : m1 → m2 ∈ M

gets a path f̂(e) : f̂(m1)  f̂(m2) ∈ M , every plaquette τ gets a chain f̂(τ) with

∂f̂(τ) = f̂(∂τ), every volume gets a 3-chain with prescribed boundary and so on.
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1 2

2

3

4 1

2

4

3

5

Figure E.3: Here we depict of a piece of M (northwest) mapping to a piece of
X (southeast). We have given the vertices of X unique labels and labelled the
vertices of M with their image vertices in X. Note that vertex 2 has two adjacent
preimages. This edge of M is mapped to a degenerate edge and the triangle it
lies on (grey) is mapped to a degenerate face 122 in X. Note also that vertex
5 ∈ X has no preimage and to map faces to faces we must refine the lattice of M ,
depicted by the dotted blue lines.

This data describes a general partial covering M → X (i.e. a map which gives a rigid

crystalline gauge field with trivial transition functions).

To account for maps which are not locally homeomorphisms, we need to include

in this definition the degenerate facets of X. For example, if we had the constant map

M 7→ x ∈ X, this definition only makes sense if there is a hidden edge id : x → x,

hidden faces x→ x→ x, x→ x→ y, and so on. All higher degenerate facets should

be included as well.

This means that any map f̂ : M → X is homotopic to one given first by refinement

of the lattice in M and then by labelling vertices, edges, faces, ... of the refinement

with vertices, edges, faces, ... (possibly degenerate ones) of X. This should be

intuitive, since the cell structure in M is not really physical. It’s just a way to encode

the topology of M combinatorially.

Now let us consider maps with G-twisted continuity conditions. As before we
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assign vertices of X to vertices of M . Before to an edge in M we would assign a path

x  y connecting the X labels x and y of the endpoints. For G-fs, these paths can

pass through domain walls, resulting in something we call a G-path:

x1  y1
g1−→ x2  · · ·

gk−→ yk.

Around the boundary of a face τ ∈M , we get a G-path by concatenating the G-paths

on each edge. Our conservation law

∏
j

gj = 1

must be supplemented by the condition that the boundary G-path forms a G-loop:

yk = x1.

If this is the case, then we can push all the g’s to the right, acting on the paths as

we do to obtain an honest path x1  g−1
k · · · g

−1
1 x1. If the G conservation law holds

then this path is a loop in X. This is just like pushing the domain walls off τ towards

vertex 1. We ask that τ be assigned a chain with boundary equal to this loop. A

picture of this is depicted in Fig E.4.

Now we discuss homotopies of this data (collapsible crystalline gauge transforma-

tions). Such a homotopy A(0) 7→ A(1) is itself a crystalline gauge field A(t) but on

the prism M × [0, 1] with boundary conditions equal to A(0) and A(1) on each copy

of M .

As a first warm-up, let’s just consider ordinary G gauge fields. See Fig E.5. There

is a cell complex of M × [0, 1] with one inner p + 1-cell for every p cell of M . These

inner cells are the only ones where the boundary conditions do not fix the data. For
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g3g1*1 g3g2g1*2

g3g2g1*2

g2g1*3

4 1

2

4

3

5

g1

g2
g3

g1*4

Figure E.4: The conservation law for G labels allows us to draw them as G domain
walls in X. Then in any contractible patch of M we can describe our local map
M → X by “pushing off the domain walls”. Then we look at the northwest picture
of our patch in M . See how the vertices have been transformed; so have the edges.
Then we fill in the transformed picture with faces of X as we would in describing
an ordinary map M → X. This always requires a choice of basepoint. Here our
basepoint is 4 and we have pushed all the domain walls (green) straight to the
east. The choice of basepoint is like a local choice of gauge. It should be compared
with the construction for coupling to Hamiltonians in Appendix E.2.

190



More on topological phases with spatial symmetries Chapter E

g1

g2

g2g1

1

Figure E.5: A prism M× [0, 1] mapping to BG means an assigning of G labels also
to the interior edges. These correspond with the vertices of M so we can think
of them as a function g : M0 → G where M0 is the set of vertices of M . Then
the conservation law on the internal faces of the prism forces a constraint between
corresponding edge labels in each M . The constraint reads that the top labels are
the gauge transformation of the bottom labels by g. The direction is fixed by an
orientation of the internal prism edges. If we reverse all of them, it takes g 7→ g−1

(and locally as well).

an ordinary G gauge field we must specify the G labels on the inner edges. These

correspond to vertices of M , so the data is like an element of G for each vertex of M .

The flatness condition on the inner faces determines how these must act on the edge

variables.

A second warm-up, really getting going this time, is to consider homotopies of

a map M → X. This is the case with no symmetry, G = 1. This gets quite

complicated but it is possible to divide homotopies into elementary pieces, where all

the inner p-cells but one are degenerate but one: τp, meaning the map M → X does

not change away from τp. The map h : M × [0, 1] → X identifies τp with a p-chain

h(τp) and because all other inner cells in M × [0, 1] are degenerate, ∂h(τp) is divided

into two p− 1-chains in the image of the boundaries: ∂h(τp) = h(N0)t h(N1), where

Nj ⊂ M × {j} are p − 1-chains in M . In fact these are the same p − 1-chains and

191



More on topological phases with spatial symmetries Chapter E

h(τp) is telling us how they move inside X during the homotopy h. A general gauge

transformation of A is essentially a combination of these two ingredients.

Just as the cellular description of G gauge fields reflects a convenient cellular

structure of BG, what we have described above amounts to a cellular structure on

the homotopy quotient X//G. One can see what we’ve written as a simultaneous

construction of X//G and a proof of

Theorem 7. A crystalline gauge field is the same as a cellular map A : M → X//G

with the cell structure induced by the action of G on a compatible cell structure of X.

Thus, gauge equivalence classes of crystalline gauge fields are the same as homotopy

classes of maps A : M → X//G.

There is a nice way to get a handle on the homotopy type of X//G. Recall from,

eg. Ref. [210], that BG, the classifying space for ordinary G-gauge fields and the

special case of our construction when X is a point, is itself constructed as an ordinary

quotient EG/G, where EG is some (usually very large) contractible space on which G

acts freely. For discrete groups, EG can be constructed as a simplicial complex where

vertices are group elements g ∈ G, edges are pairs, triangles are triples, and so on.

The gluing maps use the G multiplication. For example, an edge (g0, g1) is glued to

g1 and to g0g1; a triangle (g0, g1, g2) is glued to (g1, g2), (g0, g1g2); and (g0g1, g2), and

so on. This space has a G action which acts on all the labels simultaneously. It’s also

contractible. The quotient structure is the usual structure on BG. Likewise, we can

invent a cell structure on the space EG×X so that the quotient structure is the one

we’ve described on X//G. This proves X//G = EG×X/G where G acts diagonally.

In fact, to preserve the homotopy type of X//G, we just need any space EX which

is homotopy equivalent to X and on which G acts freely. EG×X is an example, but

if G already acts freely on X, then X itself is an example and the homotopy quotient
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reduces to the ordinary quotient X//G = X/G. In the other extreme, which G is a

purely internal symmetry, X//G = BG×X.

E.5 Explicit constructions for bosonic SPTs

In Ref. [80], a prescription was given to construct a ground-state wavefunction

for an SPT phase protected by a finite internal symmetry group Gint. As stated

in the main text, we want to leverage this construction in a “bootstrap” procedure

to construct a wavefunction for an SPT phase protected by a spatial symmetry, as

outlined in Section 8.4. For our current discussion, the important requirement is

that we must be able to choose the wavefunction to be invariant under both an

internal symmetry Gint and a spatial symmetry Gspatial. Ultimately, the symmetry

protecting the crystalline SPT phase will be the diagonal subgroup Gphys. Recall

that we take orientation-reversing elements of Gspatial to also act anti-unitarily, in

accordance with the CPT principle. (Thus, the orientation-reversing symmetries in

Gphys are a composition of two anti-unitary operators, and so end up being unitary.)

Let us briefly review the construction of Ref. [80]. This construction starts from

an element of the group cohomology group Hd+1(Gint,U(1)). This cohomology class

is represented by a (d + 1)-cocycle in homogeneous form, which is a function ν :

G×d+1
int → U(1) satisfying

g · ν(g1, · · · , gd+1) = ν(gg1, · · · , ggd+1) ∀g ∈ Gint (E.2)

d+2∏
i=0

ν(−1)i(g0, · · · , gi−1, gi+1, · · · , gd+2) = 1, (E.3)

where g · ν denotes the action of Gint on U(1), i.e. anti-unitary elements of Gint act

by inversion.
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To construct the wavefunction on some d-dimensional spatial manifold, one first

chooses a triangulation of the manifold. The spins will live on the vertices of this

triangulation, and they will each carry a Hilbert space with basis {|g〉 : g ∈ Gint},

on which Gint acts by left-multiplication: |h〉 g−→ |gh〉. Then one chooses a branching

structure, which is a choice of direction on the edges of the triangulation, such that

there are no directed cycles on any d simplex. A branching structure allows us to

define an ordering of the vertices on any d-simplex. The wavefunction of Ref. [80] is

then defined as a superposition

|Ψ〉 =
∑
{gi}

(∏
∆

α∆ (g∆)

)
|{gi}〉 , (E.4)

where the sum is over all configurations {gi} of group elements g ∈ Gint for every

vertex, and the product is over all d-simplices. The phase factor α∆ associated to a

d-simplex ∆ is defined by

α∆(g∆) = νs(∆)(g∗, g1, · · · , gd), (E.5)

where g1, · · · , gd are the group elements living on the vertices of the simplex (ordered

according to the branching structure), g∗ ∈ Gint is some fixed group element which is

chosen to be the same for every d-simplex (the resulting wavefunction turns out not

to depend on g∗ on any closed manifold); and s(∆) = ±1 is the orientation of the

d-simplex (see Ref. [80] for further details). It can be verified that the wavefunction

|Ψ〉 so defined is indeed invariant under the action of Gint.

Now it remains to show that |Ψ〉 can also be taken to be invariant under the action

of a spatial symmetry Gspatial. We take the action of Gspatial on the Hilbert space of the

spins to be inherited from its action on the space manifold; that is, it simply permutes
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Figure E.6: A p4m-invariant triangulation and branching structure. The block
dots are the vertices of the original p4m-invariant cellulation (the simple square lat-
tice) and the red dots are the vertices that had to be added (through the barycentric
subdivision) to get a p4m-invariant triangulation and branching structure.

the spins. (For orientation-reversing elements of Gspatial, this is followed by complex

conjugation, in accordance with our stipulation that orientation-reversing elements of

Gspatial should act anti-unitarily). This will evidently be the case provided that the lo-

cations of the vertices, the triangulation, and the branching structure are all invariant

under the action of Gspatial. (For orientation-revering elements, note that the effect

of the complex conjugation is cancelled by the reversal of the orientation of the sim-

plices). To achieve this, we can start from a Gspatial-invariant cellulation of the spatial

manifold (which can be obtained, for example, via the Wigner-Seitz construction),

then take its barycentric subdivision, which gives a Gspatial-invariant triangulation.

Moreover, one can show that there is always a Gspatial-invariant branching structure

on this triangulation. The resulting triangulation and branching structure is illus-

trated in Figure E.6 for the case d = 2 and Gspatial = p4m (the symmetry group of

the simple square lattice).
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