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ABSTRACT OF THE DISSERTATION

Multi-scale Human Behavior Modeling with Heterogeneous Data

by

Jyun-Yu Jiang

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2021

Professor Wei Wang, Chair

In this era of big data, massive data are generated from heterogeneous resources every day,

which provides an unprecedented opportunity for deepening our understanding of complex

human behaviors. Modeling human behaviors requires robust computational methods that

can not only capture semantics and useful insights from sparse and heterogeneous data, but

also unravel sophisticated human behaviors at different scales. In addition, the enormous

data velocity and the unparalleled scale of deep models also pose significant challenges to

efficiency.

In this dissertation, we demonstrate a collection of research results that systematically

improve the ecosystem of human behavior modeling based on representation learning. For

heterogeneous data in various settings, we present practical representation learning methods

to effectively and efficiently capture their semantics. Moreover, these representation learning

methods can actually fill a niche to comfortably model different behaviors with atomic,

compositional, and explainable operations, thereby modeling human behaviors at different

scales. As a result, our proposed approaches not only address various real-world challenges

in diverse domains, but also present the potentials to adopt valuable domain knowledge into

machine learning.
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CHAPTER 1

Introduction

We, humans, are indeed the most sophisticated species on this planet so that understanding

complex human behaviors remains one of the most critical challenges in many domains,

including web applications, social science, medicine, health care, and biology. Fortunately,

technology development in recent decades not only boosts our capability to collect immense

human data from various resources but also fuels unprecedented computational power to

manage and analyze massive datasets. The massive amount of heterogeneous data generated

from myriad motherlodes every day creates an excellent opportunity to unravel complex and

ambiguous behaviors at multiple scales from different angles.

Although there are several forces in both academia and industry for modeling human

behaviors in many fields, existing work has often focused on certain types of data and/or

specific behaviors, and therefore lacks generalizability to a broader range of data and behav-

iors. Moreover, most existing methods are too sophisticated to integrate with one another,

making it impossible to assemble a unified system that can handle data from heterogeneous

sources and behaviors across multiple scales. These deficiencies substantially limit the util-

ities and potential impacts of human behavior modeling. Indeed, there is an urgent need

to develop a robust end-to-end system that is capable of effectively and efficiently modeling

human behaviors at different scales using multidisciplinary data.

In this dissertation, we aim at improving mining of broad multidisciplinary data to re-

move these barriers in learning complex human behaviors for real-world applications, thereby

enhancing human productivity and well-being. Specifically, our research advances the whole

vertical ecosystem of human behavior modeling in three research layers as shown in Fig-
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ure 1.1, including heterogeneous data harnessing, interdisciplinary knowledge discovery, and

human behavior modeling. We first develop novel computational methods to surmount ob-

stacles in deriving machine-friendly representations of heterogeneous and multidisciplinary

data for both effectiveness and efficiency. We then leverage these semantic-rich represen-

tations to model complicated human behaviors by mining knowledge from interdisciplinary

resources, thereby benefiting real-world applications for improving human productivity and

well-being.

Layer 1: Heterogeneous Data Harnessing

Layer 2: Interdisciplinary Knowledge Discovery

Layer 3: Human Behavior Modeling

Real-world Applications for Improving
Human Productivity and Well-being

Interpersonal
Behaviors

Large-scale Multidisciplinary Data

Individual
Behaviors

Collective
Behaviors

Representation
Learning

Natural
Language
Processing

Genes, Texts, Sensor Data, System Logs, Images, Graphs, Social Networks, . . .

E�cient Data
Management

Social
Network
Analysis

Sequence
Modeling

· · ·

Machine
Learning

Joint
Modeling

Robust
Modeling

Transfer
Learning

· · ·Data
Mining

· · ·

Figure 1.1: Illustration of the three-layer approach for human behavior modeling with mul-
tidisciplinary and heterogeneous data.

1.1 Heterogeneous Data Harnessing with Structural Semantics

To tackle heterogeneous data with distinct formats and complex semantics, one of the feasible

approaches in the fields of modern machine learning is representation learning [32]. As shown

in Figure 1.2, representation learning methods can be developed to encode heterogeneous

data from various resources into machine-readable representations. These machine-readable

representations are usually derived as continuous vectors so that machine learning meth-

ods can conveniently treat the representations as numerical features to learn appropriate

hypotheses for downstream applications. In other words, developing effective and efficient

representation learning frameworks has become one of the most key challenges to under-

stand complicated heterogeneous data. Moreover, these frameworks can be also considered
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as universal backbone components to address various real-world applications.
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Figure 1.2: Illustration of representation learning for heterogeneous data.

One of the most significant common issues for modeling heterogeneous data is the spar-

sity. More specifically, large-scale data tend to have an extremely large data space, but the

available data are usually limited. For instance, natural languages have extensive vocabulary

lists and result in sparse corpora in many domains, such as natural language processing and

information retrieval. Large-scale graphs usually have only limited links between nodes with

low density. Although there are four types of nucleotides, genome sequences are intensely long

so that phenotypic expressions can still be sparse. As a result, conventional representation

learning methods can have a hard time deriving satisfactory and effective representations for

sparse data. To address this issue, in this thesis, we propose to leverage structural semantics

for representation learning. Specifically, we aim to encode structures with semantic meanings

into derived representations. As shown in Figure 1.3, most of the heterogeneous data types

could incorporate structural semantics. For example, text documents consist of paragraphs

and sentences while graphs could have several communities of nodes with tigher connections.

There are also some functional exons in genome sequences, which provide critical biological

evidences and their relations to RNA splicing. With structural semantics, representation

learning methods can not only absorb more knowledge into derived representations but also
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leverage information across different data with similar semantic structures.
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Figure 1.3: Examples with incorporated structural semantics in heterogeneous data.

Besides the effectiveness, there are several efficiency issues when it comes to the era of

big data. For example, the volume size of real-world data would reach more than 25ZB by

2025 with a significant growth rate [281]. Large-scale modern deep learning models also in-

troduce the difficulty of training representation learning models. For instance, Switch Trans-

former [113] as a contextualized language model has 1.6T model parameters and requires

355 years to be appropriately pre-trained using one NVidia V100 GPU while ELMo [265]

published in 2018 with 94M model parameters only needs an hour under the same situation.

In addition, the high velocity of popular online applications leads to an enormous amount

of incoming data generated every day [166] so that model efficiency becomes extensively im-

portant for rapidly training models and inferring results with repetitively updated data. To

address the efficiency issues, in this thesis, we propose to leverage the structural semantics

and navigate computations through the important and essential structure, thereby reducing

redundant computations and improving the model efficiency.
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1.2 Interdisciplinary Knowledge Discovery

Based on satisfactory representations derived from heterogeneous data, the next step of

this thesis is to develop novel machine learning and data science approaches for discover-

ing precious knowledge in data from different domains. This task is challenging because

heterogeneous data can be generated in completely distinct formats. For instance, a social

media post can simultaneously contain images, texts, and information about social networks

while each data type has different appropriate representation learning methods. In other

words, representations can be in different embedding spaces so that valuable knowledge can-

not be leveraged across heterogeneous data. In addition, resources can also have different

importance over diverse circumstances. To address the above issues, we propose to learn

representations in a universal latent space and estimate the importance of each resource

with the aspect attention.

As shown in Figure 1.4, we first project heterogeneous data into a shared embedding space

so that representations can be comparable to each other. Specifically, representations in the

universal latent space can be derived by extending individual representation learning methods

for heterogeneous data with non-linear projections [193, 375] and regularization [177].
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Figure 1.4: Illustration of the universal latent space and the aspect attention.

To integrate knowledge across heterogeneous resources, we propose the concept of aspect

attention. More precisely, a well-designed estimator function can appropriately computes

5



the corresponding importance scores αx for all resources x according to their representations

rx. For example, a context vector rc can be trained to estimate importance scores as:

αx =
exp(〈rx, rc〉)∑
y exp(〈ry, rc〉)

,

where the importance of each resource is calculated by a dot product and normalized by

a softmax function. The overall aspect attentive-representation can be further derived as∑
x αx · rx for downstream machine learning applications.

1.3 Compositional and Explainable Behavior Modeling

With learned representations for heterogeneous data, there still could be a gap from these

features to real-world applications in different domains. Moreover, various practical appli-

cations rely on domain knowledge of experts in the fields to reach more satisfactory results.

To provide a general and ubiquitous solution for diverse real-world applications, we propose

to treat representation learning methods as atomic blackboxes so that domain experts can

conduct compositional and explainable operations to establish machine learning models for

downstream applications.

As shown in Figure 1.5, different heterogeneous data with sparse and discrete formats

can be encoded by corresponding representation learning methods into continuous vectors

as informative and machine-readable representations. As a result, domain experts can treat

representation learning methods as blackboxes that proceed atomic processes of obtaining

useful representations as the basis for developing machine learning solutions. More pre-

cisely, these machine-readable and computable representations can be considered as puzzles

for researchers in different fields to model complex human behaviors with compositional

and explainable operations. For example, query reformulation in information retrieval leads

to transitions between submitted queries so that reformulation behaviors can be modeled

by compositional operations of computing directed Euclidean vectors between query rep-

resentations [173]. With atomic blackboxes of representation learning and the concepts of
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compositional operations, domain experts can not only more conveniently utilize the state-

of-the-art representation learning techniques, but also have more interpretable models based

on explainable operations.
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Figure 1.5: Illustration of the atomic blackboxes of representation learning and compositional
operations for human behavior modeling.

1.4 Thesis Contributions

In this dissertation, we emphasize the importance of modeling complex human behaviors

with multidisciplinary and heterogeneous data. Accordingly, we propose a series of machine

learning methods that can fit in the three-layer framework as shown in Figure 1.1.

To effectively and efficiently model heterogeneous data and derive robust representa-

tions, we propose various deep learning approaches to tackle data from diverse domains.

More specifically, we focus on leveraging structural semantics to not only encode more valu-

able knowledge but also reduce redundant computations. QDS-Transformer enhances the

state-of-the-art transformer-based retrieval models by introducing the navigational global

attention through the document structure, thereby improving relevance ranking and the ef-
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ficiency in both training and inference stages. JEDI is the first work to model biological

sequences with cross-attention layers and encode junctions in DNA sequences as the struc-

tural knowledge for circular RNA prediction. MARU leverages the node communities with

similar type distributions in neighbors by considering meta-contexts during representation

learning. CANTOR learns the coresets of user affinity groups with similar interests to ac-

celerate the inference of latent factor models for top-K recommender systems. TahcoRoll

indexes DNA sequences with a thinned Aho-Corasick automaton based on a binary structure

for efficient k-mer signature profiling.

To jointly model heterogeneous data, we propose to learn representations in a universal

latent space and conduct the aspect attention to integrate knowledge from different resources

based their importance. SHE-UI constructs a heterogeneous graph of different entities so that

graph representation learning methods can derive universal representations for identifying

users behind shared accounts in online streaming services. SPoD and HUG apply the aspect

attention to estimate the importance scores of heterogeneous resources on social media posts,

such as texts, social networks, and images for sponsorship detection and user geolocation.

To model complex user behaviors at different scales, we present the general framework

to treat representation learning methods as atomic blackboxes and demonstrate behaviors

with compositional and explainable operations based on the valuable knowledge of domain

experts. For individual behaviors, RIN is the first work to utilize homomorphic query em-

bedding to derive the representations of user reformulation behaviors in web search with

explainable Eucleadean vector computations while heterogeneous graph embedding plays a

role of the atomic blackbox to learn the base representations of queries, terms, and websites.

For interpersonal behaviors between people, SHCNN conducts link operations between text

messages based on the semantic similarity estimated by convolutional neural networks for

disentangling interleaved conversational threads. For community behaviors that reflect en-

vironmental situations, we also propose to model text data to enhance air quality prediction

for improving human well-being.

8



1.5 Thesis Overview

The rest of this dissertation can be logically categorized into the following segments.

Part I: Background and Survey. Chapter 2 provides the background survey and sum-

marizes related work for each research problem in this dissertation.

Part II: Effective and Efficient Heterogeneous Data Harnessing. Based on the

structural semantics, Chapters 3, 4, 5 describe our approach to improve the effectiveness

of representation learning for multi-displinary data, including text documents, biological

sequences, and heterogeneous networks. Chapters 6 and 7 further show how we reduce

redundant computations to accelerate computational inference for recommender systems

and signature profiling for biological sequences.

Part III: Interdisciplinary Knowledge Discovery. In this part, we demonstrate the use

cases of the universal latent space and the aspect attention. Chapter 8 presents our work to

learn universal representations based on heterogeneous graph embedding for identifying user

behind shared accounts. Chapters 9 and 10 propose to apply the aspect attention to model

heterogeneous resources in social media posts for sponsorship detection and user geolocation.

Part IV: Multi-scale Human Behavior Modeling. In this part, we present some

examples of treating representation learning methods as atomic blackboxes and utilizing

compositional and explainable operations to modeling human behaviors at different scales.

Chapter 11 focuses on individual behaviors of query reformulation in web search. Chapter 12

discusses interpersonal behaviors in multi-party conversations for conversation disentangle-

ment. Chapter 13 introduces our study to model community behaviors on social media for

enhancing air quality prediction.

Part V: Conclusion. As the final part of this dissertation, Chapter 14 concludes our

contributions with a summary of our works.
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CHAPTER 2

Related Work

In this chapter, we present previous studies related to our work as the background on various

applications of human behavior modeling with heterogeneous data.

2.1 Neural Language Models for Information Retrieval

Neural models have demonstrated significant advances across various ranking tasks [138].

Early approaches investigated diverse ways to capture relevance between queries and docu-

ments [84, 137, 162, 350]. And recently the state-of-the-art in many text ranking tasks has

been taken by BERT or other pretrained language models [80, 83, 95, 250, 251, 353], when

sufficient relevance labels are available for fine-tuning (e.g., on MS MARCO [25]).

The improved effectiveness comes with the cost of computing efficiency with deep pre-

trained transformers, especially on long documents. This stimulates studies investigating

ways to retrofit long documents to BERT’s maximum sequence length limits (512). A vanilla

strategy is to truncate or split the documents: Dai and Callan [83] applied BERT ranking

on each passage segmented from the document independently and explored different ways

to combine the passage ranking scores, using the score of the first passage (BERT-FirstP),

the best passage (BERT-MaxP) (also studied in Yan et al. [351]), or the sum of all passage

scores (BERT-SumP).

More sophisticated approaches have also been developed to introduce structures to trans-

former attentions. Transformer-XL employs recurrence on a sequence of text pieces [85],

Transformer-XH [372] models a group of text sequences by linking them with eXtra Hop

attention paths, and Transformer Kernel Long (TKL) [155] uses a sliding window over the
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document terms and matches them with the query terms using matching kernels [350].

On the efficiency front, Kitaev et al. [201] proposed Reformer that employed locality-

sensitive hashing and reversible residual layers to improve the efficiency of Transformers.

Child et al. [65] introduced sparse transformers to reduce the quadratic complexity to

O(L
√
L) by applying sparse factorizations to the attention matrix, making the use of self-

attention possible for extremely long sequences. Subsequent work [79, 304] leverage a similar

idea in a more adaptive way. Combining local windowed attention with a task motivated

global attention, Beltagy et al. [31] presented Longformer with an attention mechanism that

scales linearly with sequence length.

2.2 Circular RNA Prediction

Current works to discover circular RNA can be divided into two categories: one relies on de-

tecting back-spliced junction reads from RNA-Seq data; the other examines features directly

from transcript sequences.

The first category aims at detecting circRNA from expression data, specifically from

RNA-Seq reads. It is mainly achieved by searching for chimeric reads that join the 3′-end to

the upstream 5′-end with respect to a transcript sequence [30]. Existing algorithms include

MapSplice [331], CIRCexplorer [369], KNIFE [309], find-circ [237], and CIRI [123,

124]. These algorithms can be quite sensitive to the expression abundance, as circRNAs

are often lowly expressed and fail to be captured with low sequencing coverage [30]. In

the comparison conducted by Hansen et al. [145], the findings suggest dramatic differences

among these algorithms in terms of sensitivity and specificity. Other caveats are reflected in

long duration, high RAM usage, and/or complicated pipeline.

The second category focuses on predicting the circRNA based on transcript sequences.

Methods in this category leverage different features and learning algorithms to distinguish

circRNA from other lncRNAs. PredicircRNA [258] and H-ELM [60] develop different

strategies to extract discriminative features, and employ conventional statistical learning al-
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gorithms, i.e. multiple kernel learning for PredicircRNA and hierarchical extreme learning

machine for H-ELM, to build a classifier. Statistical learning approaches require explicit

feature engineering and selection. However, the extracted features are dedicated to specific

facets of the sequence properties and present a limited coverage on the interaction infor-

mation between the donor and acceptor sites. circDeep [54] and DeepCirCode [330] are

two pioneering methods that employ deep learning architectures to automatically learn com-

plex patterns from the raw sequence without extensive feature engineering. circDeep uses

convolution neural networks (CNNs) with the bi-directional long short term memory net-

work (Bi-LSTM) to encode the entire sequence, whereas DeepCirCode uses CNNs with max-

pooling to capture only the flanking sequences of the back-splicing sites. Although circDeep

has claimed to be an end-to-end framework, it requires external resources and strategies to

capture the reverse complement matching (RCM) features at the flanking sequence and the

conservation level of the sequence. In addition, the RCM features only measure the match

scores between sites on the nucleotide-level, and neglect the complicated interaction between

two sites. CNNs with max-pooling aim at preserving important local patterns within the

flanking sequences. As a result, DeepCirCode fails to retain the positional information of

nucleotides and their corresponding convoluted results.

Besides sequence information, a few conventional lncRNA prediction methods also present

the potential of discovering circRNA through the secondary structure. nRC [114] extracts

features from the secondary structures of non-conding RNAs and adopts CNNs framework

to classify different types of non-coding RNA. lncFinder [143] integrates both the sequence

composition and structural information as features and employs random forests. The learning

process can be further optimized to predict different types of lncRNA. Nevertheless, none of

these methods factor in the information specific to the formation of circRNAs, particularly

the interaction information between splicing sites.
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2.3 Network Representation Learning

Networks can be categorized into two types, including homogeneous and heterogeneous net-

works. Homogeneous networks contain a single node type, e.g., social networks of users,

whereas heterogeneous networks involve multiple types of nodes, such as citation networks

of authors, papers, and venues. Network representation learning for both categories aims at

mapping nodes in graphs to low-dimensional continuous vectors. These low-dimensional vec-

tors are learned to capture the essential information of the nodes, and consequently, better

preserve the structure and semantic similarity among nodes.

A range of network representation learning algorithms has been proposed for homo-

geneous network embedding learning [59, 135, 264, 313, 325] and heterogeneous network

embedding learning [57, 98, 122, 164, 312].

2.3.1 Homogeneous Network Embedding Models

DeepWalk [264] is a pioneering representation learning approach for homogeneous networks.

It explores the network structure through the random walks sampled from the network.

Mapping to the concepts in work2vec [241], nodes and random walks are treated as words

and sentences, respectively. The node representations can be learned by using the vanilla

skip-gram model [241] on the random walks. The paradigm of DeepWalk has inspired many

studies [98, 135, 255, 335] that are applied to diverse types of networks. node2vec [135] is one

of the examples that extend DeepWalk by relaxing the definition of network neighborhood

and designing a biased random walk procedure to explore more diverse node representations.

However, previous literature has demonstrated that such walk generation methods introduce

a bias towards the nodes with higher degrees [306]. Therefore, the structural and semantic

information of the isolated or less connected nodes becomes difficult to be captured by the

model, which eventually leads to the inefficiency of the training procedure and poor accuracy

of the trained representations of nodes with lower degree numbers. Most importantly, the

model is prone to preserve only the global structure [325], assuming that nodes with more
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common neighbors yield similar representations.

To better capturing the complicated underlying network structure, LINE [313] and

SDNE [325] use edge-sampling algorithms to preserve both the local and global network

structure. They model both the first-order proximity, defined as the proximity between di-

rectly connected nodes, and the second-order proximity, defined as the proximity between

nodes that share common neighbors.

2.3.2 Heterogeneous Network Embedding Models

In order to comprehensively capture the rich semantics in edges and to better understand

the different interactions between multi-typed nodes, heterogeneous information network

embedding models are proposed. These methods either construct the embeddings for each

modality defined beforehand, or learn all node embeddings together in the same latent space.

Most of the approaches that use predefined modality learn the node embeddings by

minimizing the loss over each modality. HNE [57] presents a deep embedding framework

that leverages a highly nonlinear multi-layered embedding function to capture the com-

plex interactions. Each modality, such as image and text, is constructed separately. The

embeddings of different modalities are then mapped to the same embedding space. Zhao

et al. [374] specifically model the network structure of Wikipedia data that consists of three

types of nodes: entities, words, and categories. It uses the coordinate matrix factoriza-

tion technique to jointly learn the representations of these three types of nodes. PTE [312]

is a semi-supervised representation learning method designed for text data. Based on the

edge types, it decomposes the heterogeneous network into a set of bipartite networks. The

method learns the embeddings of each node according to its one-hop neighbors, i.e. directly

connected nodes, of the resulting bipartite networks.

To address the caveat of explicit node types, several approaches have been proposed to

incorporate meta-paths, which are sequences of node types, for heterogeneous graph em-

beddings. For instance, metapath2vec [98] is another extension of DeepWalk that uses

meta-paths to capture the relationships between different node types. More specifically, a
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strategy for sampling random walks from heterogeneous networks is proposed to restrict

random walks to follow particularly predefined transitions of node types. However, the set

of meta-paths needs to be predefined while the selection of meta-paths significantly affects

the performance. To avoid the requirement of meta-paths, Fu et al. [122] propose HIN2Vec

to learn node representations by predicting the meta-paths as relations between nodes while

Hussein et al. [164] manipulate the procedure of sampling random walks.

2.4 Collaborative Filtering for Recommender Systems

Collaborative filtering (CF) [93] is one of the most popular solutions for recommendation

problems, including the task of top-K recommender systems. Moreover, the low-rank as-

sumption in CF further leads to the prominence of latent factor models or matrix factoriza-

tion (MF) [203]. For example, Kang et al. [187] exploited MF models to optimize numerical

ratings for top-K recommenders while Rendle et al. [278] observed pairwise implicit feedback

in a one-class preference matrix and enhanced the personalized ranking performance of MF

models. However, MF models can be time-consuming in inferring recommendations. More

specifically, although MF models can be trained efficiently with sparse preference matrices,

the number of possible recommendations can be enormous when the numbers of users and

items are massive. To tackle this problem, Duan et al. [102] proposed to separately compute

dot-product results in each dimension so that some items can be discarded if their dot-

product values are below a threshold for specific dimensions. However, separately processing

different dimensions and discarding certain entries not only lead to inaccuracy, but also give

up the opportunity to take advantage of low-level runtime optimization like BLAS [33] as

shown in our experiments. Moreover, this approach does not reduce the number of possi-

ble recommendations. On the other hand, although some of the previous studies [189, 252]

achieve acceleration by group recommendation, users in a certain group would receive iden-

tical recommendations that can be unsatisfactory for individual users.
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2.5 Maximum Inner Product Search

Maximum inner product search (MIPS) can be treated as a closely related problem to MF

based top-K recommender systems. Shrivastava and Li [295] and Neyshabur and Srebro

[249] proposed to reduce MIPS to nearest neighbor search (NNS) and then solve NNS by

Locality Sensitive Hashing (LSH) [167]. PCA tree [299] partitions the space according to

the directions of principal components and shows better performance in practice. Bachrach

et al. [20] showed tree-based approaches can be used for solving MIPS but the performance

is poor for high dimensional data. Malkov et al. [225], Malkov and Yashunin [226] recently

developed an NNS algorithm based on small world graph. Zhang et al. [366] applied the

MIPS-to-NNS reduction and showed that graph-based approach performs well on neural

language model prediction. Some algorithms were proposed to directly tackle MIPS problem

instead of transforming to NNS. For example, Yu et al. [359] proposed Greedy-MIPS and

showed a significant improvement over LSH and tree-based approaches. Another branch

of research exploited sampling techniques with guaranteed approximation precision. Liu

et al. [221] applied a bandit framework to iteratively query each dimension of the item

vector; Ding et al. [96] proposed a 2-stage entry-wise sampling scheme and constructed

an alias table to accelerate the sampling process. Despite having theoretical guarantee of

approximation precision, in practice these methods suffer from slow entry-wise computation

and the speedup is thus limited or even worse than the naive computation. Among all

previous works, learning to screen (L2S) proposed by Chen et al. [61] is most similar to our

method. L2S also leverages the clustering architecture to accelerate MIPS computation of

multiple NLP tasks. However, L2S takes a long preparation time as it finds the clustering

by end-to-end training and constructs a reduced search space by naive computation. In

addition, L2S does not use representative vectors which differs from our proposed method.

In our experiments, hierarchical graphical models [366], Greedy-MIPS [359] and L2S [61] are

selected as the state-of-the-art MIPS methods for comparison.
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2.6 k-mer Signiture Profiling

Existing k -mer counters index the reads into a compact and searchable structure, such as

a hash table, a burst trie, or a compact suffix array. The occurrences of a specific k -mer

can be retrieved by querying these data structures. Most of these counters are designed to

process reads with fixed-size k -mers; several of them restrict the choice of k to fall within a

threshold. These algorithms can be adapted to count k -mers of different sizes by repeating

the process with different k ’s. Here, we discuss these approaches.

Thread-Safe Shared Memory Hashing. Jellyfish [228] exploits the CAS (compare-and-

swap) assembly instruction to update a memory location in a multi-threaded environment,

and uses the “quotienting technique” and bit-packed data structure to reduce wasted mem-

ory. Squeakr [259] builds an off-the-shelf data structure based on counting quotient filter

(CQF). It maintains both global and local CQFs to facilitate updates of each thread.

Disk-Based Hashing. Disk-based hashing reduces memory with complementary disk

space. In general, this approach splits k -mers into bins, and stores them in files. Each bin

is then loaded into the memory for counting. DSK [17] divides k -mers using a specific hash

function based on the targeted memory and disk space. MSPKmerCounter (MSPKC) [216]

proposes Minimum Substring Partitioning to reduce the memory usage of storing k -mers.

Observing the fact that consecutive k -mers in a read often share a shorter substring, these

consecutive k -mers can be compressed and stored in one bin. KMC [90], KMC2 [91], and

KMC3 [202] are serial developments of parallel counters. These methods scan reads one

block at a time and use a number of splitter threads to process the blocks. KMC2 leverages

the concept of minimizer to further reduce disk usage. KMC3 accelerates the running time

and optimizes the memory by taking a larger part of input data and better balancing the

bin sizes.

Probabilistic Hashing. Probabilistic hashing approaches avoid counting the k -mers that

are likely to arise from sequencing errors. BFCounter [236] uses Bloom filter to identify

all k -mers that are present more frequently than a threshold with a low false positive rate.
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khmer [367] uses a streaming-based probabilistic data structure, CountMin Sketch [78].

Suffix-Arrays. Suffix-arrays present the potential of searching arbitrary k -mers without

any restriction of k on a single scan. However, constructing a suffix-array on read data can

be computationally expensive. Tallymer [205] is tailored to detect de novo repetitive ele-

ments ranging from 10 to 500bp in the genome. The algorithm first constructs an enhanced

suffix array (gt suffixerator), and indexes k -mers one k at a time. MSBWT [156] com-

presses raw reads via a multi-string variant of Burrows-Wheeler Transform (BWT). Instead

of concatenating all reads and sorting, it builds a BWT on each string and merges these

multi-string BWTs through a small interleave array. The final structure allows a fast query

of k -mers of arbitrary k.

Burst Tries. KCMBT [227] uses a cache efficient burst trie to store compact k -mers. The

trie structure stores k -mers that share the same prefix in the same container. When a

container is full, k -mers are sorted and burst. A good balance between the container size

and the tree depth is essential to avoid constant sorting and bursting. As a result, KCMBT

uses hundreds of trees.

2.7 Modeling Users behind Shared Accounts

Several studies have attempted to model user behaviors from session logs [4, 24, 323, 337,

355, 373]. They improve the performance of item recommendation according to the (latent)

preferences of individual users. Diverse types of items have been investigated, including

TV [4, 337, 355], movie [323, 363], and flight ticket [373]. The common approach to model

user preferences is to de-convolute a high dimensional feature space that characterizes the

relationships among accounts, items, and time [337, 355]. Techniques, such as subspace clus-

tering [363], graph partition [337], collaborative filtering [323], topic model [373], and latent

factor model with LDA [24], are used to obtain latent features so that the user preferences

can be captured. Although the performance of the recommender systems can be improved,

these studies assume each account is associated with one user and thus do not distinguish
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individual users sharing an account. We argue that identifying individual users can bring ad-

ditional values, as it allows for recovering lost revenue, better targeted marketing, designing

new service plans, among many other useful applications. In addition, a sequence of items

from a user can be regarded as a Markov process, so modeling interleaved Markov processes

[207] can be also treated as a related work for modeling user preferences in shared accounts.

To the best of our knowledge, Zhang et al. [363] is the first and only attempt that

can report whether an account is shared by multiple users and explicitly identify these

users. They focus on item ratings and show how conventional methods such as expectation

maximization and principal component analysis can be used for user identification via a

specialized subspace clustering.

Fraud detection can be treated as a special case of user identification. Previous work

detects malicious users based on context information such as social network structures [8, 51]

and unusual behavior patterns [157, 181]. However, all of them identify the only one user in

an account and cannot deal with the situations with multiple users.

2.8 Sponsorship Disclosure in Influencer Marketing

As influencer marketing has become a popular advertising method in recent years [26, 192,

223], several previous studies show the effect of disclosing sponsorship. Evans et al. [110] find

that sponsorship disclosure helps audiences recognize paid partnerships but lowers purchase

intention. Stubb and Colliander [302] find that impartiality disclosure, e.g., adding “This is

not sponsored post”, helps generate high influencer credibility. Moreover, Evans et al. [111]

investigate the effects of sponsorship text disclosure and sponsor pre-roll video advertising

on YouTube. They find that the sponsor pre-roll advertising help audiences to understand

sponsorship transparency. Yang et al. [354] reveal that distinct characteristics of sponsored

posts, e.g., less number of usertags, longer caption than non-sponsored posts, that help

exclusive promotion in advertising posts. Wojdynski et al. [342] present a metric to measure

sponsorship transparency based on consumers’ perceptions.
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2.9 Query Suggestion and Reformulation

To understand search intents behind queries, the context information including previous

queries and click-through data is usually employed for query suggestion. Most of the exist-

ing studies rely on query association and query similarity in the search session. For example,

association rules [115] and co-occurrence [116, 160] can be mined and calculated for query

suggestion. The connections between consecutive queries can be also learned by a query-

flow graph [37] or Markov models [50, 148]. The cosine similarity [29, 160] and the edit

distance [58] are popular metrics to recommend queries that are similar to the context. To

deal with the problems of data sparsity, some works attempt to cluster queries into denser

groups. For instance, a bipartite graph based on click-through data can be built for discover-

ing queries with similar concepts [49, 218, 234, 347]. The word distributions of queries can be

also utilized for EM clustering [136]. In addition to clustering, machine learning frameworks

with statistical features can also partially alleviate the sparsity problem [257, 287, 294]. To

learn how users reformulate queries, Jiang et al. [174] model syntactic reformulations based

on predefined reformulation strategies. Well-established ontologies can also be leveraged to

learn semantic reformulations [172]. Recently, Sordoni et al. [298] propose to suggest queries

with a hierarchical RNN as the first study of query suggestion with deep learning. Dehghani

et al. [88] then improve the approach by decomposing the generation process into two refor-

mulation strategies. Wu et al. [345] take the implicit user feedback into account to better

rank queries for suggestion.

Query reformulation is the process that users refine the preceding queries in order to ob-

tain more satisfactory search results. Previous studies focus on determining and predicting

reformulation strategies [86, 161]. These reformulation strategies can be analyzed in two

aspects, including syntactic and semantic reformulations. The syntactic reformulations are

the changes of terms between queries, such as adding and removing terms [38]. The semantic

reformulations address the changes of topics behind queries, such as generalization and spe-

cialization of the concepts [6]. Most of the works attempt to manually define reformulation

strategies based on the above two aspects. For example, Boldi et al. [37] design four prede-
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fined strategies of query transition while Huang and Efthimiadis [161] classify reformulations

into 15 different types.

In addition to query suggestion [174], understanding reformulations is also beneficial to

many other applications. Lee et al. [211] determine the term effectiveness for improving

the search quality. Based on reformulations in a search session, the search results can be

further personalized [171]. Ren et al. [276] leverage the concept of query reformulation to

understand conversation logs. All of these works demonstrate not only the effectiveness but

also the robustness of learning reformulations.

2.10 Conversation Disentanglement

Methods for conversation disentanglement can be simply categorized into unsupervised and

supervised approaches. Unsupervised approaches [333] estimate the relationship between

messages through unsupervised similarity functions such cosine similarity, and assign mes-

sages to conversations based on a predefined threshold. In contrast, supervised methods

exploit a set of user annotations [101, 106, 230, 233, 290] to adapt to different datasets.

In addition to conversations, some studies predict the partial structure of threaded data,

especially for online forums [18, 328, 332]. These studies merely classify parent-child rela-

tionships in disentangled, independent threads. Moreover, they focus only on comments to

the same post. Indeed, conversation disentanglement is a more difficult task.

Estimating the similarity of text pairs is an essential part in our approach. Many studies

also focus on similar tasks aside from conversation disentanglement, such as entailment

prediction [245, 334] and question-answering [11, 289, 357].
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CHAPTER 3

Long Document Modeling for Information Retrieval

Languages are the most widely utilized media for both communication and documentation.

Hence, text data are inherently one of the most popular and common data types in real-world

applications. In this chapter, we present a novel deep learning approach to simultaneously

enhance the effectiveness and efficiency in modeling text data by leveraging the structural se-

mantics in text documents. Moreover, we conduct extensive experiments to demonstrate the

improvements over state-of-the-art methods on the tasks of ad-hoc and few-shot document

retrieval with multiple benchmark datasets.

3.1 Introduction

Pre-trained Transformers such as BERT [95] effectively transfer language understanding to

better relevance estimation in many search ranking tasks [250, 251, 353]. Nevertheless, the

effectiveness comes at the quadratic cost O(n2) in computing complexity corresponds to the

text length n, prohibiting its direct application to long documents. Prior work adopts quick

workarounds such as document truncation or splitting-and-pooling to retrofit the document

ranking task to pretrained transformers. Whilst there have been successes with careful

architecture design, those bandit-solutions inevitably introduce information loss and create

complicated system pipelines.

Intuitively, effective document ranking does not require fully connected self-attention

between all query and document terms. The relevance matching between queries and docu-

ments often takes place at text segments as opposed to individual tokens [48, 178], suggesting

that a document term may not need information thousands of words away [65, 238], and
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that not all document terms are useful to calculate the relevance to the query [350]. The

fully connected attention matrix includes many unlikely connections that create efficiency

debt in computing, inference time, parameter size, and training convergence.

We present Query-Directed Sparse Transformer (QDS-Transformer) for long document

ranking. In contrast to retrofitted solutions, QDS-Transformer fundamentally considers the

desirable properties for assessing relevance by focusing on attention paths that matter. Us-

ing sparse local attention [65], our model removes unnecessary connections between distant

document tokens. Using global attention upon sentence boundaries, our model further in-

corporates the hierarchical structures within documents. Last but not the least, we use

global attention on all query terms that direct the focus to the relevance matches between

query-document term pairs. These three attention patterns in our Query-Directed Sparse at-

tention, as illustrated in Figure 3.1, permit global dissemination of IR-axiomatic information

while keeping computation compact and essential.

Figure 3.1: An example illustration of the attention mechanism used in Query-Directed
Sparse Transformer.

In our experiments with TREC Deep Learning Track [80] and three more few-shot

document ranking benchmarks [365], QDS-Transformer consistently improves the standard
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retrofitting BERT ranking baselines (e.g., max-pooling on paragraphs) by 5% NDCG. It also

shows gains over more recent transformer architectures that induces various sparse structures,

including Sparse Transformer, Longformer, and Transformer-XH, as they were not designed

to incorporate the essential information required in document ranking. In the meantime, we

also thoroughly quantify the efficiency improvement from our query-directed sparsity, show-

ing that with TVM support [62], different sparse attention patterns lead to variant training

and inference speed up, and in general QDS-Transformer enjoys 200%+ speed up compared

to vanilla BERT on long documents.

Our visualization also shows interesting learned attention patterns in QDS-Transformer.

Similar to the observation on BERT in NLP pipeline [316], in lower QDS-Transformer levels,

the attention focuses more on learning the local interactions and document hierarchies, while

in higher layers the model focuses more on relevance matching with the query terms. We also

show examples that QDS attention may center on the sole sentence that directly answers

the query, or may span across several sentences that cover different aspects of the query,

depending on the scope of the intent; this brings the advantage of better interpretability

based on sparse attention.

3.2 Preliminaries on Document Ranking

Given a query q and a set of candidate documents D = {d}, the document ranking task is

to produce the ranking score f(q, d) for each candidate document based on their relevance

to the query.

BERT Ranker. The standard way to leverage pretrained BERT in document ranking is to

concatenate the query and the document into one text sequence, feed it into BERT layers,

and then use a linear layer on top of the last layer’s [CLS] token [250]:

f(q, d) = Linear(BERT([CLS] ◦ q ◦ [SEP] ◦ d)).
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This BERT ranker can be fine-tuned using relevance labels on (q, d) pairs, as simple as

a classification task, and has achieved strong performances in various text ranking bench-

marks [25, 80].

Transformer Layer. More specifically, let {t0, t1, ..., ti, ..., tn} be the tokens in the concate-

nated q-d sequence, with query tokens t1:|q| ∈ q and document tokens t|q|+1:n ∈ |d|, considering

special tokens being part of q or d. The l-th transformer layer in BERT takes the hidden

representations of previous layer (H l−1), which is embedding for l = 1, and produces a new

H l as follows [321].

H l = W F (Ĥ l), (3.1)

Ĥ l = A ·M · V T , (3.2)

A = 1, (3.3)

M = softmax(
Q ·KT

√
dk

), (3.4)

(QT ;KT ;V T ) = (W q;W k;W v) ·H l−1. (3.5)

It first passes the previous representations through the self-attention mechanism, using three

projections (Eqn. 3.5), and then calculates the attention matrix between all token pairs using

their query-key similarity (Eqn. 3.4, as in single-head formation). The attention matrix M

then is used to fuse all other tokens’ representation V , to obtain the updated representation

for each position (Eqn. 3.2). In the end, another feed-foreword layer is used to obtain the

final representatio of this layer H l (Eqn. 3.1).

The matrix A is the n2 “adjencency” matrix in which each entry is one if there is an

attention path between corresponding positions: Aij = 1 means ti queries the value of tj using

the key of tj. In standard transformer and BERT, the attention paths are fully connected

thus A = 1.

Computation Complexity. In each of the BERT layers, all the feed-forward operations

(Eqn. 3.1 and 3.5) are applied to each individual token, leading to linear complexity w.r.t.

text length n and the square of the hidden dimension size dim. The self-attention operation
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in Eqn. 3.2 and 3.4 calculates the attention strengths upon all token pairs, leading to squared

complexity w.r.t text length but linear of the hidden dimension size.

The complexity of one transformer layer in BERT thus includes two components:

O(dim2n)︸ ︷︷ ︸
Feedforward

+O(n2dim)︸ ︷︷ ︸
Self-Attention

. (3.6)

The hidden dimension size (dim) is 768 in BERT Base and 1024 in BERT Large [95]. When

the text sequence is longer than 1000 or 2000 tokens, which is often the case in document

ranking [80], the self-attention part becomes the main bottleneck in both computation and

GPU memory. This leads to various retrofitted solutions that adapted the document ranking

tasks to standard BERT which takes at most 512 tokens per sequence [83, 251, 351, 353].

3.3 QDS-Transformer

Recent research has shown that with sufficient training and fully-connected self-attention,

BERT learns attention patterns that capture meaningful structures in language [71] or for

specific tasks [372]. However, this is not yet the case in long document ranking as computing

becomes the bottleneck.

This section first presents how we overcome this bottleneck by injecting IR-specific in-

ductive bias as sparse attention patterns. Then we discuss the efficient implementation of

sparse attention.

3.3.1 Query-Directed Sparse Attention

Mathematically, inducing sparsity in self-attention is to modify the attention adjacency

matrix A by only keeping connections that are meaningful for the task. For document

retrieval, we include two groups of informative connections as sparse adjacency matrices:

local attention and query-directed global attention.
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3.3.1.1 Local Attention

Intuitively, it is unlikely that a token needs to see another token thousands of positions away

to learn its contextual representation, especially in the lower transformer layers which are

more about syntactic and less about long-range dependencies [316]. We follow this intuition

used in the Sparse Transformer [65] and define the following local attention paths:

Alocal[i, j] = 1, iff |i− j| ≤ w/2. (3.7)

It only allows a token to see another token in each transformer layer if the two are w/2

position away, with w the window size. The local attention serves as the backbone for many

sparse transformer variations as it provides the basic local contextual information [31, 79,

304].

3.3.1.2 Query-Directed Global Attention

The local attention itself does not fully capture the relevance matches between the query and

documents. We introduce several query-directed attention patterns to incorporate inductive

biases widely used in document representation and ranking.

Hierarchical Document Structures. A common intuition in document representation

is to leverage the hierarchical structures within documents, for example, words, sentences,

paragraphs, and sections, and compose them into hierarchical attention networks [356]. We

use a two-level word-sentence-document hierarchy and inject this hierarchical structure by

adding fully connected attention paths to all the sentences.

Specifically, we first prepend a special token [SOS] (start-of-sentence) to each sentence in

the document, and form the following attention connections:

Asent[i, j] = 1, iff tj = [SOS]. (3.8)

Matching with the Query. For retrieval tasks, arguably the most important principle is
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to capture the semantic matching between queries and documents. Inducing this information

is as simple as adding dedicated attention paths on query terms:

Aquery[i, j] = 1, iff ti ∈ q. (3.9)

It allows each token to see all query terms so as to learn query-dependent representations.

3.3.2 Summary

The three attention patterns together form the query-directed attention in QDS-Transformer:

AQDS = Alocal ∪ Asent ∪ Aquery ∪ A[CLS]. (3.10)

We also add the global attention between all other tokens and [CLS]. Keeping everything

else standard in BERT and using this query-directed sparse attention (AQDS) in place of the

fully-connected self-attention (A), we obtain our QDS-Transformer architecture as illustrated

in Figure 3.2.
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Figure 3.2: The overall schema of our proposed QDS-Transformer.

Interestingly, QDS-Transformer also resembles various effective IR-Axioms developed in

past decades. For example, in QDS attention, a query term mainly focuses on the [SOS]

token through ASent, while the [SOS] token recaps the proximity [48] matches locally around
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it through ALocal. The local attention in the query part also resembles the effective phrase

matches [238] as the query term representations are contextualized using other query terms

through ALocal.

3.3.3 Efficient Sparsity Implementation

Our query-directed sparse attention reduces the self-attention complexity from O(n2dim) to

O(n · dim · (w + |q|+ |s|)), where the local window size w and query length |q| are constant

to document length, and the number of sentences is orders of magnitude smaller.

However, to implement this sparsity efficiently on GPU is not that straightforward.

Naively using for-loops or masking the adjacency matrix A may result in even worse efficiency

than the full self-attention in common deep learning frameworks. An efficient implementation

of sparse operations often requires customized CUDA kernels, which are inconvenient and

require expertise in low-level GPU operations [65]. Inspired by Longformer [31], we address

this issue by implementing QDS-Transformer with Tensor Virtual Machine (TVM) [62]. Pre-

cisely, we implement custom CUDA kernels using TVM to dynamically compile our attention

map AQDS into efficiency-optimized CUDA codes.

3.4 Experimental Methodologies

This section discusses our experimental settings.

TREC 2019 Deep Learning Track Benchmark. We evaluate QDS-Transformer based

on the document ranking task from this recent TREC benchmark [80], specifically using

the reranking subtask to rerank top-100 BM25 retrieved documents. The official evaluation

metric is NDCG@10 on the test set. We also report MAP on test and MRR@10 on the

development set.

Few-shot Document Ranking Benchmarks. We then evaluate the generalization ability

of QDS-Transformer in the few-shot setting [365] using TREC datasets Robust04 (RB04),

ClueWeb09-B (CW09), and ClueWeb12-B13 (CW12), in which labels are much fewer than
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Ad-hoc Few-shot (avg. over 5 folds)
TREC19 DL RB04 CW09-B CW12-B13

Train queries 367,013 150 120 60
Train qrels 384,597 186,846 28,278 17,343
Dev queries 5,193 50 40 20
Dev qrels 519,300 62,282 9,426 5,781
Test queries 43 50 40 20
Test qrels 16,258 62,282 9,426 5,781

Table 3.1: The statistics of the experimental datasets.

DL track. Our experimental settings are consistent with prior work [365] in using the“MS

MARCO Human Labels”. Specifically, neural rankers trained with MARCO labels are used

as feature extractors to enrich TREC documents, which are then tested with five-fold cross-

validation [84].

Table 3.1 summarizes the statistics of four datasets. We describe more details about

datasets and experimental settings in Appendix A.1.1.

Baselines. Our baselines include multiple neural IR models and the best official TREC

runs of single models. The main baselines cover:

• Relying on BERT models, RoBERTa (FirstP) only considers the first paragraph, while

RoBERTa (MaxP) encodes short paragraphs with BERT and combines them with a max-

pooling layer [83].

• Transformer-XH [372] retrofits data pipelines to create independent sentences which are

fed into BERT models, and aggregates them with an extra-hop attention layer.

• TK [154] and TKL [155] apply BERT-based kernels to estimate the relevance over document

tokens with full attention.

• Sparse-Transformer [65] applies length-w sparse local attention windows without consider-

ing query tokens.

• Longformer also uses sparse local attention and adds global attention by prepending one

special token respectively to the query and document, same as in their [31] QA setup.

For ad-hoc retrieval, we also consider CO-PACRR [163] which employs CNNs without us-

ing pretrained NLM (non-PLM). Note that IDST [351] is not comparable because it exploits
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external generators for document expansion. For the few-shot learning task, we addition-

ally compare with SDM, RankSVM, Coor-Ascent, and Conv-KNRM as reported in previous

studies [84, 350]. More details of the baselines can be found in Appendix A.2.

Implementation Details. We implement all methods with PyTorch [260] and the Hugging

Face transformer library [343], excluding the baselines that have previously reported their

scores. For sparse attention, we implement it using TVM with a custom CUDA kernel in

PyTorch [62]. Models are optimized by the Adam optimizer [196] with a learning rate 10−5,

(β1, β2) = (0.9, 0.999), and a dropout rate 0.1. The dev set is used for hyperparameter tuning

to decide the best model, which is then applied to the test set. We set the maximum length of

input sequences as 2,048. The dimension of the dense layer Fdense(·) in relevance estimation

is 768, while the local attention window size w is 128. All experiments are conducted on

an Nvidia DGX-1 server with 512 GB memory and 8 Tesla V100 GPUs. Each method is

limited to access only one GPU for fair comparisons.

3.5 Evaluation Results

This section evaluates QDS-Transformer in its effectiveness, attention patterns, and effi-

ciency. We also analyze the learned query-directed attention weights and show case studies.

3.5.1 Retrieval Effectiveness

Table 3.2 summarizes the retrieval effectiveness on the TREC-19 DL benchmark. Table 3.3

shows the few-shot performance on the three TREC datasets.

QDS-Transformer consistently outperforms baseline methods on all datasets in both ex-

perimental settings. Note that the higher MAP scores from some methods in TREC-19 DL

is because they have better first stage retrieval and are not using the same reranking setting.

QDS-Transformer outperforms the best BERT-based TREC run by 3.25% in NDCG@10

and is more effective than the concurrent sliding window approach, TKL. Moreover, QDS-

Transformer outperforms RoBERTa (MaxP), which is the standard retrofitted method for
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TREC Deep Learning Track Document Ranking

Method
Test Set Dev Set

NDCG@10 MAP MRR@10
BM25 0.488 0.234 0.252

TREC Best Models
BM25 (bm25tuned prf) 0.528 0.386 0.318
Trad (srchvrs run1) 0.561 0.349 0.306
Non-PLM (TUW19-d3-re) 0.644 0.271 0.401
BERT (bm25exp marcomb) 0.646 0.424 0.352

Baseline Models
CO-PACRR 0.550 0.231 0.284
TK 0.594 0.252 0.312
TKL 0.644 0.277 0.329
RoBERTa (FirstP) 0.588 0.233 0.278
RoBERTa (MaxP) 0.630 0.246 0.320

Sparse Attention based Models
Sparse-Transformer 0.634 0.257 0.328
Longformer-QA 0.627 0.255 0.326
Transformer-XH 0.646 0.256 0.347

QDS-Transformer 0.667 0.278 0.360

Table 3.2: The ad-hoc retrieval performance of our approach and baseline methods on the
TREC-19 DL track benchmark. Note that those baselines with higher MAP scores are all
full retrieval and benefited from additional data engineering like query expansion.

BERT, by 6% in NDGG@10 while also being a unified framework.

Compared with Sparse Transformers and Longformer-QA, QDS-Transformer provides

more than 5% improvement in nearly all datasets. The best baseline is Transformer-XH,

which creates structural sparsity by breaking a document into segments and introduces ef-

fective eXtra-hop attentions to jointly model the relevance of those segments. While these

methods show competitive effectiveness especially with our TVM implementation, QDS-

Transformer is consistently more accurate through the query-directed sparse attention pat-

terns in all evaluation settings.
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Method
RB04 CW09 CW12

NDCG ERR NDCG ERR NDCG ERR

Classical IR; Cross Validated
SDM 0.427 0.117 0.277 0.138 0.108 0.091
RankSVM 0.420 n.a. 0.289 n.a. 0.121 0.092
Coor-Ascent 0.427 n.a. 0.295 n.a. 0.121 0.095
Neural IR; Trained on MS MARCO and then Cross Validated.
Conv-KNRM 0.427 0.117 0.287 0.160 0.112 0.092
RoBERTa (FirstP) 0.437 0.110 0.262 0.161 0.111 0.086
RoBERTa (MaxP) 0.439 0.114 0.264 0.162 0.092 0.074
Sparse-Transformer 0.449 0.119 0.274 0.173 0.119 0.094
Longformer-QA 0.448 0.113 0.276 0.179 0.111 0.085
Transformer-XH 0.450 0.123 0.283 0.179 0.107 0.080
QDS-Transformer 0.457 0.126 0.308 0.191 0.131 0.112

Table 3.3: The few-shot learning retrieval performance of different methods on three bench-
mark datasets. NDCG and ERR are at cut-off 20.

Method
Attention TREC-19 DL Track
Q Sent NDCG@10 MAP

RoBERTa (MaxP) 3 7 0.630 0.246
Sparse Transformer 7 7 0.634 0.257
LongFormer-QA 7 7 0.627 0.255
Transformer-XH 3 3 0.646 0.256
QDS-Transformer (S) 7 3 0.633 0.244
QDS-Transformer (Q) 3 7 0.658 0.263
QDS-Transformer 3 3 0.667 0.278

Table 3.4: The retrieval performance of different models on the TREC-19 DL track bench-
mark dataset with different global attention patterns. Q and S indicate the usage of query
and sentence global attention. Note that QDS-Transformer with no global attention is equiv-
alent to Sparse-Transformer.

3.5.2 Effectiveness of Attention Patterns

This experiment studies the contribution of our query-directed sparse attention patterns to

QDS-Transformer’s effectiveness.

Table 3.4 shows the ablation results of the three attention patterns in TREC-19 DL

benchmark: local attention only (Alocal, Sparse Transformer), hierarchical attention on sen-

tence only (Asent, QDS-Transformer (S)), and query-oriented attention only (Aquery, QDS-
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Transformer (Q)). All three sparse attention patterns contribute. As expected, query-

oriented attention is most effective to capture the relevance match between query and docu-

ments. Note that the RoBERTa (MaxP) and Transformer-XH also attend to queries, but the

attention is more localized as the document is broke into separated text pieces and the query

is concatenated with each of them. In comparison, QDS-Transformer mimics the proximity

matches and captures the global hierarchical structures in the document using dedicated

attention from query terms to sentences.

Figure 3.3 depicts the change in retrieval effectiveness by varying the local attention

window size. Both NDCG@10 and MAP@10 grow at a steady pace starting from a window

size of 32 and peak at 128, but no additional gain is observed with bigger window sizes.

The information from a term 512 tokens away does not provide many signals in relevance

matching and is safely pruned in QDS-Transformer. Note that the dip at attention size 1024

is because our model is initialized from RoBERTa which is only pretrained on 512 tokens.

Window Size of Local Attention
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Figure 3.3: The performance of QDS-Transformer on TREC-19 DL track dataset with dif-
ferent local attention window sizes w.
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Method Length Sparsity
ms per q-d

Train Infer
RoBERTa 1024 100% 391 100
RoBERTa 2048 100% 799 205
RoBERTa (FirstP) 512 100% 138 17
RoBERTa (MaxP) 4*512 25% 305 55
Transformer-XH 4*512 25% 309 54
QDS-Transformer (128) 512 30.84% 218 45
QDS-Transformer (128) 1024 18.72% 249 52
QDS-Transformer (128) 2048 8.97% 321 92
Longformer-QA (128) 2048 4.70% 166 45
Sparse-Transformer (128) 2048 4.56% 154 40
QDS-Transformer (32) 2048 6.70% 201 50
QDS-Transformer (64) 2048 8.97% 309 86
QDS-Transformer (128) 2048 13.53% 321 92
QDS-Transformer (256) 2048 22.64% 475 127
QDS-Transformer (512) 2048 40.88% 512 160
QDS-Transformer (1024) 2048 77.34% 629 195
QDS-Transformer (Q) 2048 5.10% 316 108
QDS-Transformer (S) 2048 8.57% 322 105
Without TVM Implementation
Sparse-Transformer (128) 2048 4.56% 251 62
QDS-Transformer (128) 2048 13.53% 390 103

Table 3.5: Efficiency Quantification. The local attention window size is shown in parentheses.
Q and S indicate the usage of only query and sentence attention. Sparsity is compared with
fully attention at same text length.

3.5.3 Model Efficiency

This experiment benchmarks the efficiency of different sparse attention patterns. Their

training and inference time (ms per query-document pair, or MSpP) is shown in Table 3.5.

RoBERTa on 2048 tokens is prohibitive; we only measured its time with random param-

eters as we were not able to actually train it. Retrofitting was a natural choice to leverage

pretrained models.

Sparsity helps. Sparse-Transformer (128) is much faster than MaxP. Interestingly, its

attention matrix with only 4.56% non-zero entries leads to on par efficiency with retrofitted

solutions and also only 5 times faster compared to full attention; this is due to the required
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cost involved in feed-forward. This effect is also reflected in the efficiency of QDS-Transformer

with different local window sizes.

Different sparsity patterns dramatically influence the optimization of TVM. Intuitively,

patterns with more regular shape would be easier to optimize than more customized con-

nections in TVM. For example, the skipping patterns along sentence boundary in QDS-

Transformer (S) seems more forgiving than the query-oriented attentions (Q). Comparing

efficiency with and without our TVM implementation, the diagonal sparse shape in Sparse-

Transformer is much better optimized.

How to better utilize the advantage from sparsity and structural inductive biases is

perhaps a necessary future research direction in an era where models with fewer than one

billion parameters are no longer considered large [44]. Making progress in this direction may

need more close collaborations between experts in application, modeling, and infrastructure.

3.5.4 Learned Attention Weights

This experiment analyzes the learned attention weights in QDS-Transformer, using the ap-

proach developed by Clark et al. [71].

Figure 3.4 illustrates the average maximum attention weights of the three attention pat-

terns used in our model. Interestingly, the model tends to implicitly conduct hierarchical

attention learning [356], where lower layers focus on learning structures and pay more at-

tention to [SOS] tokens, while higher layers emphasize the relevance by attending to queries

more. Attention on both types of tokens is consistently stronger than on the [CLS] token.

The model is capturing the inductive biases emphasized by our sparse attention structures.

Figure 3.5 shows the average entropy of the attention weight distribution. Intuitively,

lower layer attention tends to have high entropy and thus a very broad view over many

words, to create contextualized representations. The entropy of query and [SOS] are in

general lower, as they focus on capturing information needs and document structures. The

entropy of all three types of tokens rises again in the last layer, implying that they may try
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Figure 3.4: The average maximum attention
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Figure 3.5: The average entropy scores of
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types over Transformer layers.

Q1: 1037798 (who is robert
gray)

Q2: 1110199 (what is wifi vs bluetooth)

docid: D3533931 docid: D1325409

Heads 1,2,4,6,9,10,11,12: Head 01: Bluetooth’s low power consumption make it useful where power is
limited.

Robert Gray (title) Head 02: Wi-Fi appliances are often plugged into wall outlets to operate.
Heads 3,5,7,8:

Robert Gray, (born May 10,
1755, Tiverton, R.I. died
summer 1806, at sea near
eastern U.S. coast), captain of
the first U.S. ship to
circumnavigate the globe and
explorer of the Columbia
River.

Head 07: The extremely low power requirements of the latest Bluetooth 4.0
standard allows wireless connectivity to be added to devices powered only by
watch batteries.
Head 09: A Wi-Fi enabled network relies on a hub.
Head 10: The advantages of using bluetooth from existing technology.
Head 11: Wi-Fi is more suited to data-intensive activities such as stream-
ing high-definition movies, while Bluetooth is better suited to tasks such as
transferring keyboard strokes to a computer.
Head 12: The greater power of Wi-Fi network also means it can move data
more quickly than Bluetooth network.

Table 3.6: Case study of two queries on the sentences with the highest attention weights in
the last transformer layer over different heads for the [CLS] token.

to aggregate representation for the whole input.

3.5.5 Case Study on Learned Attention Weights

Table 3.6 shows a case study of sentences with the highest attention weight from [CLS]

in the last layer for two example queries. For factoid query Q1, all heads center on precise

sentences that can directly answer the query. For Q2 that is on the exploratory side, different

attention heads exhibit diverse patterns focusing on partial evidence that can provide a
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Q3: 1112341 (what is the daily life of thai people)

Query Token Sentence with the highest attention weight in the document D1641978

life Children are expected to show great respect for their parents, and they maintain close
ties, even well into adulthood .

thai Culture of Thailand (title)

Table 3.7: Case study of the query 1112341 on the sentences in the document D1641978
with the highest attention weights among all heads from two query tokens. Note that we
use attention weights in the third transformer layer.

Sentence in the document D2944963 for Q4: 833860 (what is the most popular food in
switzerland)

Top Query Token

Top 10 Swiss foods with recipes (title) switzerland
You certainly won’t go hungry in Switzerland. food
You spear small cubes of bread onto long-stemmed forks and dip them into the hot cheese
(taking care not to lose the bread in the fondue).

food

Jamie Oliver has this easy cheese fondue recipe, and this five-star recipe has good reviews. popular

Table 3.8: Case study of the query 833860 with the query tokens with the highest attention
weights in the 10-th transformer layer among all heads from the [SOS] tokens of sentences
in the document D2944963.

broader understanding collectively.

Table 3.7 depicts the other case study on learned attention weights of sentences from

query tokens. We adopt the third transformer layer, where sentences obtain more attention

as shown in Figure 3.4, to emphasize significant sentences for query tokens. The results show

query-directed attention can capture sentences with different topics matched to individual

query tokens, thereby comprehending sophisticated document structure.

In addition to attention from the classification token [CLS] and query tokens as shown

in Section 3.5.5, here we analyze the attention from sentences. Table 3.8 shows the query

tokens with the highest attention weights in the 10-th transformer layer among all head

from the [SOS] tokens of sentences. Note that the 10-th transformer layer indicates higher

importance of query tokens as shown in Figure 3.4. The results show that QDS-Transformer

is capable of directing sentences to the tokens with matched topics, thereby understanding

sophisticated document structure with different topics.

These findings suggest that QDS-Transformer has an interesting potential to be applied

to not only retrieval but also the question-answering task in NLP, providing a generic and
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effective framework, while also being interpretable with its the sparse structural attention

connectivity.

3.6 Conclusion

QDS-Transformer improves the efficiency and effectiveness of pretrained transformers in long

document ranking using sparse attention structures. The sparsity is designed to capture the

principal properties (IR-Axioms) that are crucial for relevance modeling: local contextual-

ization, document structures, and query-focused matching. In four TREC document ranking

tasks with variant settings, QDS-Transformer consistently outperforms competitive baselines

that retrofit to BERT or use sparse attention not designed for document ranking.

Our experiments demonstrate the promising future of joint optimization of structural

domain knowledge and efficiency from sparsity, while its current form is somewhat at the

infancy stage. Our analyses also indicate the potential of better interpretability from sparse

structures and more unified models for IR and QA.
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CHAPTER 4

Sequence Modeling for Circular RNA Prediction

Similar to languages, many other types of human data are also in sequential forms. Although

their semantics may not be as easy as texts to be directly interpreted, there still could

have some structural information to implicitly indicate the semantics. In this chapter, we

take genome sequence modeling as an example to leverage the exon structures to learn

representations of human DNA reads for predicting the existence of circular RNAs. We also

demonstrate how our proposed framework can provide practical insights for domain experts

without computer science to discover unknown circular RNAs.

4.1 Introduction

The ENCODE project has revealed the vital role of different forms of nonprotein-coding

RNAs. Among these types of RNAs, much attention has been placed on cataloging and

studying the long non-coding RNAs (lncRNAs), due to their high relevancy to gene regu-

lation and diseases [92, 267]. Long non-coding RNAs are typical of 200bp to > 100kbp

in length [326]. As a particular type of lncRNA, endogenous circular RNA (circRNA) has

recently received a tremendous amount of research highlights not only because of its circular-

ity, but also its implications in a myriad of human diseases, such as cancer and Alzheimer’s

disease [103, 270]. circRNA arises during the process of alternative splicing of protein-coding

genes, where the 5′ end of an exon is covalently ligated to the 3′ end of the same exon or a

downstream exon, forming a closed continuous loop structure. This mechanism is also known

as “backsplicing.” The circular structure provides several beneficial properties over the lin-

ear RNAs. To be more specific, it can serve as templates for rolling circle amplification
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of RNAs [41], rearrange the order of genetic information [208], resistant to exonuclease-

mediated degradation [170], and create a constraint on RNA folding [208]. Although the

consensus of biological functions, mechanisms, and biogenesis remains unclear for most cir-

cRNAs [30, 358], there are emerging evidence suggesting their roles in acting as sponges for

microRNAs [144, 237], RNA-binding protein competition [15], and inducing host gene tran-

scription [217]. Evidently, as a fundamental step to facilitate the exploration of circRNA, it

is essential to have a high-throughput approach to identify the circRNAs.

Multiple factors can contribute to the formation of circRNAs. These factors include

complementary sequences in flanking introns [168], the presence of inverted repeats [104],

number of ALU and tandem repeats [170], and SNP density [317]. These factors, together

with the evolutionary conservation and secondary structure of RNA molecules, have been

considered as the discriminative features for circRNA identification. Several research ef-

forts [60, 258, 329] have leveraged these features to train a conventional statistical learning

model to distinguish circRNAs from other lncRNAs. These statistical learning algorithms in-

clude support vector machines (SVM), random forest (RF), and multi-kernel learning. How-

ever, methods along this line often require an extensive domain-specific feature engineering

process. Moreover, the selected features may not provide sufficient coverage to characterize

the backsplicing event.

Recently, the rising of deep learning architectures have been widely adopted as an alterna-

tive learning algorithm that can alleviate the inadequacy of conventional statistical learning

methods. Specifically, these deep learning algorithms provide powerful functionality to pro-

cess large-scale data and automatically extract useful features for object tasks [210]. In the

domain of circRNA prediction, the convolution neural network (CNN) is the architecture

that has been widely explored to automatically learn the critical features for prediction,

either from the primary sequence [54, 330] or secondary structure [114]. Although CNN is

capable of capturing relevant local patterns on gene sequences, positional information of the

splice junctions and global context of each splice site cannot be recognized. One of these

approaches [54] attempts to address this issue by applying recurrent neural networks (RNNs)
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to learn sequential and contextual information; however, the essential knowledge, such as

splice sites and junctions, are still ignored.

Understanding the properties of splice sites and their relationships is one of the keys to

master RNA splicing and the formation of circular RNAs because the splicing event can

be considered as interaction among those splice sites. To fathom the relations between

splice sites, circDeep [54] explicitly analyzes the nucleotide sequences of two splice sites to

predict the circular RNAs. DeepCirCode [330] utilizes CNNs to model the flanking regions

around two splice sites to identify if there is a backsplice event. However, all of the existing

methods fail in modeling deep interaction among splice sites for circular RNA prediction. For

example, circDeep only measures shallow interaction among splice sites on the nucleotide

level; DeepCirCode is limited to examine only a single pair of splice sites and lacks the

capacity of modeling more complex relations among splice sites on multi-isoform genes.

Hence, there is an immense gap to comprehensively understand the relationship between

splice sites and their interaction regarding the formation of circular RNAs.

In this work, we propose the framework of Junction Encoder with Deep Interaction (JEDI)

to address the limitations in circular RNA prediction. More precisely, we focus on predict-

ing the existence of circular RNAs from either the reference gene/isoform sequences or as-

sembled transcript sequences by modeling splice sites and their deep interaction with deep

learning techniques. First, the attentive junction encoders are presented to derive contin-

uous embedding vectors for acceptor and donor splice sites based on their flanking regions

around junctions. Based on the acceptor and donor embeddings, we propose the novel cross-

attention layer to model deep interaction between acceptor and donor sites, thereby inferring

cross-attentive embedding vectors. Finally, the attention mechanism is applied to determine

acceptors and donors that are more important than other ones to predict if there is a cir-

cRNA. It is also important to note that the interpretability of the attention mechanism

and the cross-attention layer enables JEDI to automatically discover backsplicing without

training on any annotated backspliced sites.

Our contributions are three-fold. First, to the best of our knowledge, this work is the
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first study to model the deep interaction among splice sites for circular RNA prediction. The

more profound understandings of the relationships among splice sites can intuitively benefit

circular RNA prediction in implying backsplicing. Second, we propose a robust and effective

end-to-end framework, JEDI, to deal with both isoform-level and gene-level circular RNA

prediction based on the attention mechanism and the innovative cross-attention layer. More

specifically, JEDI is capable of not only deriving appropriate representations from junction

encoders but also routing the importance of forming circular RNAs on different levels. Third,

JEDI creates a new opportunity of transferring the knowledge from circular RNA prediction

to backsplicing discovery based on its extensive usage of attention mechanisms. Moreover,

our approach can be utilized as a general and user-friendly detection tool to provide a ro-

bust estimated ranking for further validation. Extensive experiments on human circRNAs

have demonstrated that JEDI significantly outperforms eight competitive baseline methods

on both isoform-level and gene-level. The independent study on mouse circRNAs also in-

dicates that JEDI is robust to transfer knowledge learned from human sequence to mouse

for circRNA prediction. This phenomenon is supported by the observation of highly con-

served circular RNA across species [30, 170, 303]. In addition, we conduct the experiments to

demonstrate that JEDI can automatically discover backspliced site pairs without any further

annotations. Finally, an in-depth analysis of model hyper-parameters and run-time presents

the robustness and efficiency of JEDI.

4.2 Materials and Methods

In this section, we first formally define our objective, and then present our proposed deep

learning framework, Junction Encoder with Deep Interaction (JEDI), to predict circRNAs.

4.2.1 Preliminary and Problem Statement

The vocabulary of four nucleotides is denoted as V = {A, C, G, T}. For a gene sequence S,

s[i . . . j] ∈ Vj−i+1 indicates the subsequence from the i-th to the j-th nucleotide of a sequence
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S. For a gene or an RNA isoform with the sequence S, E(S) = {(ai, di)} represents the given

exons in the gene or the isoform, where ai and di are the indices of the acceptor and donor

junctions of the i-th exon in S. Using only sequence information, the two goals of this work

are listed as follows:

1. Isoform-level Circular RNA Prediction: Given a gene sequence S and the splicing

information of an isoform E(s), the goal is to identify whether this RNA isoform is a

circRNA.

2. Gene-level Circular RNA Prediction: Given a gene sequence S and all of its

exon-intron boundaries E(S), this task aims at predicting if any of the junction pairs

can backsplice to form a circRNA.

exon intron

A3
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Figure 4.1: The schema of the proposed framework, Junction Encoder with Deep Interac-
tion (JEDI), using the gene NM 001080433 with six exons as an example, where the second
exon forms backsplicing. Ai and Dj represent the i-th and j-th potential acceptors and
donors.

4.2.2 Framework Overview

Figure 4.1 illustrates the general schema of JEDI to predict circRNAs. Each acceptor ai and

donor dj in the gene sequence are first represented by flanking regions Ai and Di around

exon-intron junctions. Two attentive junction encoders then derive embedding vectors of

acceptors and donors, respectively. Based on the embedding vectors, we apply the cross-
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attention mechanism to consider deep interactions between acceptors and donors, thereby

obtaining donor-aware acceptor embeddings and acceptor-aware donor embeddings. Finally,

the attention mechanism is applied again to learn the provided acceptor and donor repre-

sentations so that the prediction can be inferred by a fully-connected layer based on the

representations.

4.2.3 Attentive Junction Encoders

To represent the properties of acceptors and donors in the gene sequence S, we utilize the

flanking regions around junctions to derive informative embedding vectors. Specifically, as

shown in Figure 4.2, we propose attentive junction encoders using recurrent neural net-

works (RNNs) and the attention mechanism based on acceptor and donor flanking regions.

· · · GCTTACTTCAGCCTCAACCTCCTGGGTTCAAG · · ·
xa

1 xa
2 xa

3 xa
4 xa

L

ha
1 ha

2 ha
3 ha

4 ha
L

k-mer
Embedding

· · ·

Bidirectional
GRUs

· · ·

k-mer
Attention

k-mer Attention
Vector ta

s

Acceptor Embedding wa

Length-L Acceptor Flanking Region A

Sequence

Figure 4.2: The illustration of the attentive encoder for acceptor junctions. Note that the
donor junction encoder shares the same model structure with different model parameters.

Flanking Regions as Inputs. For each exon (ai, di) ∈ E(S), length-L acceptor and donor

flanking regions Ai and Di can be computed as:

Ai =

[
ai −

⌊
L− 1

2

⌋
, · · · , ai − 1, ai, ai + 1, · · · , ai +

⌊
L

2

⌋]
,

Di =

[
di −

⌊
L− 1

2

⌋
, · · · , di − 1, di, di + 1, · · · , di +

⌊
L

2

⌋]
,

where Ai[j] and Di[j] denote the j-th positions on S for the flanking regions of the acceptor ai
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and the donor di; the region length L is a tunable hyper-parameter.

Suppose we are encoding an acceptor a and a donor d with the flanking regions A and

D in the gene sequence S for the simplicity.

k-mer Embedding. To represent different positions in the sequence, we use k-mers as rep-

resentations because k-mers are capable of preserving more complicated local contexts [185].

Each unique k-mer is then mapped to a continuous embedding vector as various deep learn-

ing approaches in bioinformatics [54, 242]. Formally, for each position A[j] and D[j], the

corresponding k-mer embedding vectors xa
j and xd

j can be derived as follows:

xa
j = F

(
S

[
A[j]−

⌊
K − 1

2

⌋
. . . A[j] +

⌊
K

2

⌋])
,

xd
j = F

(
S

[
D[j]−

⌊
K − 1

2

⌋
. . . D[j] +

⌊
K

2

⌋])
,

where F(·) : VK 7→ Rl is an embedding function mapping a length-K k-mer to a l-

dimensional continuous representation; the embedding dimension l and the k-mer length

K are two model hyper-parameters. Subsequently, A and D are represented by the corre-

sponding k-mer embedding sequences, xa = [xa
1 , · · · ,xa

L] and xd = [xd
1, · · · ,xd

L].

Bidirectional RNNs. Based on k-mer embedding vectors, we apply bidirectional RNNs (BiRNNs)

to learn the sequential properties in genes. The k-mer embedding sequences are scanned

twice in both directions as forward and backward passes. During the forward pass, BiRNNs

compute forward hidden states
−→
ha and

−→
hd as:

−→
ha = [

−→
ha

1 , · · · ,
−→
ha

L] and
−→
hd = [

−→
hd

1, · · · ,
−→
hd

L],

where
−→
ha

j =
−−−→
GRUa(

−−−→
ha

j−1,x
a
j );
−→
hd

j =
−−−→
GRUd(

−−−→
hd

j−1,x
d
j ).
−−−→
GRUa and

−−−→
GRUd are gated recurrent

units (GRUs) [69] with different parameters for acceptors and donors, respectively. Note that

we adopt GRUs instead of other RNN cells like long-short term memory (LSTM) [152] be-

cause GRUs require fewer parameters [183]. Similarly, the backward pass reads the sequences
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in the opposite order, thereby calculating backward hidden states
←−
ha and

←−
hd as:

←−
ha = [

←−
ha

1 , · · · ,
←−
ha

L] and
←−
hd = [

←−
hd

1, · · · ,
←−
hd

L],

where
←−
ha

j =
←−−−
GRUa(

←−−−
ha

j+1,x
a
j );
←−
hd

j =
←−−−
GRUd(

←−−−
hd

j+1,x
d
j ). To model k-mers with context infor-

mation, we concatenate forward and backward hidden states as the hidden representations

of k-mers in A and D as:

ha = [ha
1 , · · · ,ha

L] and hd = [hd
1, · · · ,hd

L],

where ha
j = [

−→
ha

j ;
←−
ha

j ]; hd
j = [

−→
hd

j ;
←−
hd

j ].

k-mer Attention. Since different k-mers can have unequal importance for representing the

properties of splice sites, we introduce the attention mechanism [23] to identify and aggregate

the hidden representations of k-mers that are more important than others. The motivation

of the attention mechanism is to learn a computational function for automatically estimating

the importance score of each item so that the ultimate representation can focus on items

that are more significant. More precisely, the importance scores of representations ha
j and

hd
k can be estimated by the k-mer attention vectors tas and tds as:

αa
j =

exp(taj
ᵀtas )∑

j′ exp(taj′
ᵀtas )

and αd
j =

exp(tdj
ᵀ
tds)∑

j′ exp(tdj′
ᵀ
tds)

,

where taj = tanh(Fa
t (h

a
j )); tdj = tanh(Fd

t (h
d
j )); Fa

t (·) and Fd
t (·) are fully-connected layers.

tanh(·) is the activation function for the convenience of similarity computation. The impor-

tance scores are first measured by the inner-products to the k-mer attention vectors and then

normalized by a softmax function over the scores of all k-mers. Note that the k-mer atten-

tion vectors tas and tds are learnable and updated during optimization as model parameters.

Finally, the acceptor embedding wa of A and the donor embedding wd of D can be derived

by aggregating the hidden representations of k-mers weighted by their learned importance
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scores as:

wa =
∑
j

αa
j · ha

j and wd =
∑
j

αd
j · hd

j .

4.2.4 Cross-attention for Modeling Deep Interaction

Modeling interactions among splice sites is essential for circular RNA prediction because

backsplices occur when the donors prefer the upstream acceptors over the downstream ones.

Inspired by recent successes in natural language processing [146] and computer vision [212],

we propose the cross-attention layer to learn deep interaction between acceptors and donors.

Cross-attention Layer. For acceptors, the cross-attention layer aims at deriving cross-

attentive acceptor embeddings that not only represent the acceptor sites and their flanking

regions but also preserve the knowledge of relevant donors from donor embeddings. Similarly,

the cross-attentive donor embeddings are simultaneously obtained for donors. To directly

model relations between embeddings, we adopt the dot-product attention mechanism [321]

for the cross-attention layer. For each acceptor embedding wa
i , the relevance of a donor em-

bedding wd
j can be computed by a dot-product wa

i
ᵀwd

j so that the attention weights βa
i,j can

be calculated with a softmax function over all donors. Likewise, the attention weights βd
j,i for

each donor embedding wd
j can also be measured by dot-products to the acceptor embeddings.

Stated formally, we have:

βa
i,j =

exp(wa
i
ᵀwd

j )∑
j′ exp(wa

i
ᵀwd

j′)
and βd

j,i =
exp(wd

j
ᵀ
wa

i )∑
i′ exp(wd

j
ᵀ
wd

i′)
.

Therefore, the cross-attentive embeddings of acceptors and donors can then be derived by

aggregations based on the attention weights as:

vai =
∑
j

βa
i,j ·wd

j and vdj =
∑
i

βd
j,i ·wa

i .

Note that we do not utilize the multi-head attention mechanism [321] because it requires

much more massive training data to learn multiple projection matrices. As shown in Sec-
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tion 4.3, the vanilla dot-product attention is sufficient to obtain satisfactory predictions with

significant improvements over baselines.

4.2.5 Circular RNA Prediction

To predict circRNAs, we apply the attention mechanism [23] again to aggregate cross-

attentive acceptor and donor embeddings into an acceptor representation and a donor rep-

resentation as ultimate features to predict circRNAs.

Acceptor and Donor Attention. Although the cross-attention layer provides information

cross-attentive embeddings for all acceptors and donors, most of the splice sites can be

irrelevant to backsplicing. To tackle this issue, we present the acceptor and donor attention to

identify splice sites that are more important than other ones. Similar to k-mer attention, the

importance scores of cross-attentive embeddings for acceptors and donors can be computed

as:

γai =
exp(cai

ᵀcas )∑
i′ exp(cai′

ᵀcas )
and γdj =

exp(cdj
ᵀ
cds)∑

j′ exp(cdj′
ᵀ
cds)

,

where cai = tanh(Fa
c(v

a
i )); cdj = tanh(Fd

c(v
d
j )); Fa

c(·) and Fd
c(·) are fully-connected layers.

Subsequently, the acceptor and donor representations ra and rd can be derived based on the

attention weights of cross-attentive embeddings as:

ra =
∑
i

γai · vai and rd =
∑
i

γdi · vdi .

Prediction as Binary Classification. Here we treat circular RNA prediction as a binary

classification task. More specifically, we estimate a probabilistic score ŷ to approximate

the probability of existing circRNA. The ultimate features r for machine learning are pro-

vided by concatenating the acceptor and donor representations as r = [ra; rd]. Finally, the

probabilistic score ŷ can be computed by a sigmoid function with a fully-connected layer as

follows:

ŷ = σ(Fp(ReLU(F r(r)))),
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where Fp(·) and F r(·) are fully-connected layers; ReLU(·) is the activation function for the

hidden layer [128]; σ(·) is the logistic sigmoid function [142]. The binary prediction can be

further generated by a binary indicator function as 1 (ŷ > 0.5).

4.2.6 Learning and Optimization

To solve circular RNA prediction as a binary classification problem, JEDI is optimized with

a binary cross-entropy [151]. Formally, the loss function for optimization can be written as

follows:

Loss =
1

N

N∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)] + λ‖θ‖2,

where N is the number of training gene sequences; yi is a binary indicator demonstrating

whether the i-th training sequence exists a circRNA; ŷi is the approximated probabilistic

score for the i-th training gene sequence; λ is the L2-regularization weight for the set of

model parameters θ.

4.2.7 Remarks on the Interpretability of JEDI

The usage of attention mechanisms is one of the most essential keys in JEDI, including the

donor and acceptor attention, the cross-attention layer, and the k-mer attention in junction

encoders. In addition to choosing important information to optimize the objective, one of

the most significant benefits of using attention mechanisms is the interpretability.

Application: Zero-shot Backsplicing Discovery. For circRNAs, the attention weights

can become interpretable hints for discovering backsplicing without training on the anno-

tated backspliced sites. For example, when the model is optimized for accurately predicting

circRNAs, the weights of donor attention are reformed to denote the important and relevant

donors, which are preferred for the upstream acceptors to backsplice. In other words, the

probabilistic attention weight γdj for each donor dj can be interpreted as the probability of

being a backsplice donor site as:

P (dj) = γdj ,
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where the softmax function guarantees
∑

j P (dj) = 1. Similarly, the attention weight βd
j,i of

each acceptor ai for deriving the cross-attentive embedding of the donor dj can be explained

as the conditional probability of being selected as the backsplice acceptor site from the

donor dj as:

P (ai | dj) = βd
j,i,

where we also have the probabilistic property ∀j :
∑

i β
d
j,i = 1 from the softmax function.

Based on the above interpretations, for any pair of a donor dj and an acceptor ai, the

probability of forming a backsplice can be approximated by decomposing the joint probabil-

ity P (dj, ai) as:

P (dj, ai) = P (dj)P (ai | dj) = γdj β
d
j,i.

Therefore, without any training backsplice site annotation as zero-shot learning [296], we

can transfer the knowledge in the training data for circular RNA prediction to discover po-

tential backsplice sites by ranking the pairs of acceptors and donors according to P (dj, ai).

Particularly, the interpretations can be also aligned with the process of RNA splicing, bring-

ing more biological insights into JEDI. In Section 4.3.6, we further conduct experiments to

demonstrate that JEDI is capable of addressing the task of zero-shot backsplicing discovery.

4.3 Experiments

In this section, we conduct extensive experiments on benchmark datasets for two tasks and

in-depth analysis to verify the performance and robustness of the proposed framework, JEDI.

4.3.1 Datasets

Human circRNA. We use the benchmark dataset generated by Chaabane et al. [54]. The

positive data generation follows a similar setting as described in Pan and Xiong [258] to derive

31,939 isoforms of human circRNAs covering a diverse range of tissues and cell types from the

circRNADb database [64]. The negative set is composed of other lncRNAs, such as processed
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transcripts, anti-sense, sense intronic and sense overlapping. It is constructed based on

the annotation provided by GENCODE v19 [118] with strong evidence. Specifically, only

the experimentally validated or manually annotated transcripts are considered, resulting in

19,683 negative isoforms. To avoid information leaks through training and evaluating on

paralogous genes, we group isoforms into the same cluster if they come from the same gene

or duplicated genes. The duplicated gene information is retrieved from the Duplicated Genes

Database [256]. Combining both the positive and negative cases, these 51,622 isoforms are

grouped into 23,674 clusters. The clusters are divided into five parts to conduct 5-fold cross

validation. The sequences of all positive and negative cases are based on hg19.

Mouse circRNA on isoform level. The mouse circRNAs are obtained through cir-

cbase [127] which contains public circRNA datasets for several species reported in literature.

There are 1,903 mouse circRNAs. Using the annotation provided by GENCODE vM1, we

randomly select other lincRNAs, generating 1,522 negative cases. The sequences of all posi-

tive and negative cases are based on mm9.

4.3.2 Experimental Settings

Baseline Methods. To evaluate the performance of JEDI, we compare with eight com-

petitive baseline methods, including circDeep [54], PredcircRNA [258], DeepCirCode [330],

nRC [114], Support Vector Machines (SVM), Random Forest (RF), attentive-CNN (Att-

CNN), and attentive-RNN (Att-RNN). Specifically, circDeep and PredcircRNA are the state-

of-the-art circular RNA prediction methods. DeepCirCode originally takes individual splice

site pairs for backsplicing prediction, which is another research problem, and leads to an

enormous number of false alarms in our problem settings. To conduct fair comparisons,

we modify DeepCirCode by extending the inputs to all sites and aggregating CNN repre-

sentations for acceptors and donors with two max-pooling layers before applying its model

structure. nRC represents lncRNA classification methods that are compatible to solve circu-

lar RNA prediction as a sequence classification problem. SVM and RF apply conventional

statistical learning frameworks with the compositional k-mer features proposed by Wang
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and Wang [329] for backsplicing prediction. Attentive CNN and RNN as popular deep learn-

ing approaches utilize CNNs and RNNs with the attention mechanism [23] for sequence

modeling, thereby predicting circRNAs based on a fully-connected hidden layer with the

ReLU activation function [128]. Note that we do not compare with CIRCexplorer2 [370]

and CIRI [123] because they aim at aligning the sequencing reads to known circRNAs, and

performing de-novo assembly of novo circRNAs, which is a completely different approach

than our proposed method.

Evaluation Metrics and Protocol. Six conventional binary classification metrics are

selected as the evaluation metrics for both tasks, including the overall accuracy (Acc), pre-

cision (Prec), sensitivity (Sens), specificity (Spec), F1-score, as well as Matthew correlation

coefficient (MCC) and the Area under the ROC curve (AUC) on positive cases. For all met-

rics, the higher metric scores indicate more satisfactory performance. We conduct a 5-fold

cross-validation for evaluation on both isoform-level and gene-level circular RNA prediction.

Specifically, for each task, the data are randomly shuffled and evenly partitioned into five

non-overlapping subsets. In the five folds of experiments, each subset has a chance to be

considered as the testing data for assessing the model trained by the remaining four sub-

sets, thereby ensuring an unbiased and fair evaluation. Finally, we evaluate the methods by

aggregating the scores over the 5-fold experiments for each metric.

Implementation Details. Our approach, JEDI, is implemented in Tensorflow [1] and

released in GitHub as shown in Abstract. The AMSGrad optimizer [275] is adopted to

optimize the model parameters with a learning rate η = 10−3, exponential decay rates

β1 = 0.9 and β2 = 0.999, a batch size 64, and an L2-regularization weight λ = 10−3. As

the hyper-parameters of JEDI, the k-mer size K and the number of dimensions l for k-

mer embeddings are set to 3 and 128. We set the length of flanking regions L to 4. The

hidden state size of GRUs for both directions in junction encoders is 128. The size of all

attention vectors is set to 16. The number of units in the fully-connected hidden layer F r(·)
for circular RNA prediction is 128. The model parameters are trained until the convergence

for each fold in cross-validation. For the baseline methods, the experiments for circDeep,
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Table 4.1: Evaluation of isoform-level circular RNA prediction based on the 5-fold cross-
validation. We report the mean and standard deviation for each metric.

Method Accuracy Precision Sensitivity Specificity F1-score MCC AUC
SVM 0.728 ± 0.069 0.748 ± 0.097 0.893 ± 0.108 0.453 ± 0.341 0.804 ± 0.026 0.403 ± 0.178 0.673 ± 0.120
RF 0.761 ± 0.008 0.776 ± 0.012 0.861 ± 0.008 0.598 ± 0.008 0.817 ± 0.010 0.480 ± 0.012 0.730 ± 0.005
Att-CNN 0.752 ± 0.007 0.774 ± 0.026 0.853 ± 0.039 0.587 ± 0.053 0.811 ± 0.008 0.461 ± 0.017 0.720 ± 0.010
Att-RNN 0.764 ± 0.008 0.777 ± 0.016 0.858 ± 0.035 0.617 ± 0.051 0.815 ± 0.009 0.496 ± 0.013 0.738 ± 0.011
nRC 0.756 ± 0.012 0.784 ± 0.039 0.841 ± 0.060 0.619 ± 0.100 0.809 ± 0.012 0.478 ± 0.028 0.828 ± 0.009
PredcircRNA 0.655 ± 0.008 0.698 ± 0.014 0.595 ± 0.007 0.720 ± 0.012 0.642 ± 0.009 0.317 ± 0.016 0.588 ± 0.010
circDeep 0.875 ± 0.010 0.939 ± 0.013 0.816 ± 0.022 0.941 ± 0.014 0.873 ± 0.011 0.758 ± 0.019 0.740 ± 0.013
DeepCirCode 0.900 ± 0.004 0.935 ± 0.023 0.902 ± 0.025 0.897 ± 0.038 0.918 ± 0.004 0.791 ± 0.007 0.899 ± 0.008
JEDI 0.988 ± 0.001 0.991 ± 0.003 0.991 ± 0.003 0.984 ± 0.004 0.990 ± 0.001 0.974 ± 0.001 0.987 ± 0.001

PredcircRNA, and nRC are carried out according to the publicly available implementations

released by the authors of original papers. SVM and RF are implemented in Python with the

scikit-learn library [262]. As for deep learning approaches, DeepCirCode, Attentive-CNN,

and Attentive-RNN are implemented in Tensorflow, which is the same as our proposed

JEDI. For all methods, we conduct parameter fine-tuning for fair comparisons. All of the

experiments are also equitably conducted on a computational server with one NVIDIA Tesla

V100 GPU and one 20-core Intel Xeon CPU E5-2698 v4 @ 2.20GHz.

4.3.3 Isoform-level Circular RNA Prediction

Table 4.1 shows the performance of all methods for isoform-level circular RNA prediction.

Among the baseline methods, circDeep as the state-of-the-art approach and DeepCirCode

considering junctions perform the best. It is because circDeep explicitly accounts for the

reverse complimentary sequence matches in flanking regions of the junctions, and DeepCir-

Code models the flanking regions with deep learning. Consistent with the previous study [54],

PredcircRNA performs worse than circDeep. With compositional k-mer based features de-

signed for backsplicing prediction, SVM and RF surprisingly outperform PredicrcRNA by

11.13% and 16.14% in accuracy. It not only shows that the k-mers are universally benefi-

cial across different tasks but also emphasizes the rationality of using k-mers for junction

encoders in JEDI. As an lncRNC classification method, nRC also shows its potential for

circRNA prediction with a 15.37% improvement over PredcircRNA in accuracy. Although

Att-CNN and Att-RNN utilize the attention mechanism, they can only model the whole
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Table 4.2: Evaluation of gene-level circular RNA prediction based on the 5-fold cross-
validation. We report the mean and standard deviation for each metric.

Method Accuracy Precision Sensitivity Specificity F1-score MCC AUC
SVM 0.712 ± 0.056 0.835 ± 0.060 0.584 ± 0.196 0.853 ± 0.107 0.665 ± 0.121 0.466 ± 0.072 0.719 ± 0.050
RF 0.732 ± 0.006 0.704 ± 0.010 0.850 ± 0.004 0.602 ± 0.013 0.770 ± 0.005 0.469 ± 0.011 0.726 ± 0.006
Att-CNN 0.725 ± 0.005 0.756 ± 0.028 0.830 ± 0.045 0.552 ± 0.062 0.790 ± 0.009 0.401 ± 0.007 0.691 ± 0.009
Att-RNN 0.730 ± 0.008 0.757 ± 0.025 0.834 ± 0.041 0.564 ± 0.054 0.792 ± 0.009 0.416 ± 0.015 0.699 ± 0.010
nRC 0.729 ± 0.009 0.738 ± 0.033 0.759 ± 0.059 0.696 ± 0.066 0.746 ± 0.015 0.459 ± 0.019 0.801 ± 0.008
PredcircRNA 0.619 ± 0.003 0.659 ± 0.009 0.573 ± 0.009 0.670 ± 0.012 0.613 ± 0.005 0.243 ± 0.008 0.609 ± 0.031
circDeep 0.839 ± 0.007 0.878 ± 0.014 0.806 ± 0.009 0.875 ± 0.013 0.840 ± 0.007 0.681 ± 0.014 0.752 ± 0.011
DeepCirCode 0.863 ± 0.022 0.894 ± 0.027 0.842 ± 0.061 0.886 ± 0.037 0.866 ± 0.027 0.730 ± 0.038 0.864 ± 0.020
JEDI 0.966 ± 0.006 0.967 ± 0.008 0.969 ± 0.018 0.963 ± 0.010 0.968 ± 0.006 0.932 ± 0.012 0.966 ± 0.005

sequences and present limited performance without any knowledge of junctions. As our

proposed approach, JEDI significantly outperforms all of the baseline methods across all

evaluation metrics. Particularly, JEDI achieves 9.80% and 7.90% improvements over Deep-

CirCode in accuracy and F1-score, respectively. The experimental results have demonstrated

the effectiveness of junction encoders and the cross-attention layer that models deep inter-

action among splice sites.

4.3.4 Gene-level Circular RNA Prediction

We further evaluate all methods on gene-level circular RNA prediction. Note that this task

is more difficult than the isoform-level prediction because each junction can be a backsplice

site. Since a full gene sequence can encode for multiple isoforms, there can be multiple site

pairs forming backsplices for different isoforms. Consequently, models cannot learn from

absolute positions for circRNA prediction. As shown in Table 4.2, all methods deliver worse

performance than the results in isoform-level circRNA prediction. Notably, the evaluation

metrics have demonstrated a similar trend as shown in Table 4.1. DeepCirCode and circDeep

are still the best baseline methods, showing the robustness of exploiting the knowledge

about splice junctions. SVM, RF, and nRC still outperform PredicircRNA by at least

15.08% in accuracy. Att-CNN and Att-RNN using the attention mechanism still fail to

obtain extraordinary performance because they are unaware of junction information, which

is essential for backsplicing events. In this more difficult task, JEDI consistently surpasses all

of the baseline methods across all evaluation metrics. For instance, JEDI beats DeepCirCode
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Table 4.3: Independent study of isoform-level circular RNA prediction for mouse circRNAs
based on the models trained on human circRNAs.

Method Acc Prec Sens Spec F1 MCC AUC
SVM 0.7328 0.7742 0.8108 0.6011 0.7921 0.4196 0.7059
RF 0.7186 0.7393 0.8523 0.4929 0.7918 0.3733 0.6726
Att-CNN 0.7264 0.7452 0.7957 0.6330 0.7696 0.4352 0.7143
Att-RNN 0.7030 0.7189 0.7930 0.5816 0.7541 0.3844 0.6873
PredicircRNA 0.5696 0.6218 0.5056 0.6437 0.5577 0.1501 0.6067
nRC 0.7410 0.7662 0.8455 0.5647 0.8039 0.4298 0.8097
circDeep 0.6140 0.7495 0.6982 0.7509 0.7229 0.4491 0.7669
DeepCirCode 0.8129 0.9271 0.7620 0.8989 0.8365 0.6392 0.8304
JEDI 0.8654 0.9074 0.8749 0.8493 0.8909 0.7162 0.8621

by 11.94% and 11.75% in accuracy and F1-score, respectively. The experimental results

further reveal that our proposed JEDI is capable of tackling different scenarios of circular

RNA prediction with consistently satisfactory predictions.

4.3.5 Independent Study on Mouse circRNAs

To demonstrate the robustness of JEDI, we conduct an independent study on the dataset

of mouse circRNAs. Previous studies have shown that circRNAs are evolutionarily con-

served [30, 170, 303], and thus we evaluate the potential of predicting the circRNAs across

different species. More precisely, we train each method using the human dataset on isoform-

level, thereby predicting the circuRNAs on the mouse dataset. Note that some of the re-

quired features for PredcircRNA are missing on the mouse datasets. In addition to this,

PredictcRNA perform the worst in other experiments. For these reasons, we exclude Pred-

circRNA from this study. Table 4.3 presents the experimental results of the independent

study. Compared to the experiments conducted on the same species as shown in Table 4.1,

most of the deep learning methods have slightly lower performance because they are specifi-

cally optimized for human data; SVM and RF have similar performance in the independent

study probably because k-mer features are simpler and more general to different species.

Interestingly, the accuracy of circDeep significantly drops in the study. It is likely due to the

fact that circDeep heavily pre-trains the sequence modeling on human data with the serious
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Figure 4.3: The ROC curves for zero-shot backsplicing discovery based on the 5-fold cross-
validation and JEDI trained for gene-level circular RNA prediction.

over-fitting phenomenon. As a result, our proposed JEDI still outperforms all of the baseline

methods. It demonstrates that JEDI is robust across the datasets of different species.

4.3.6 Zero-shot Backsplicing Discovery

As mentioned in Section 4.2.7, the interpretability of the attention mechanisms and the

cross-attention layer enables JEDI to achieve zero-shot backsplicing discovery. To evaluate

the performance of zero-shot backsplicing, we compute the probabilistic score P (dj, ai) using

the attention weights γdj and βd
j,i, thereby indicating the likelihood of forming a backsplice

for each pair of a candidate donor dj and a candidate acceptor ai. Hence, we can simply

evaluate the probabilistic scores with the receiver operating characteristic (ROC) curve and

the area under the ROC curve (AUC). Note that here we still apply 5-fold cross-validation

for experiments based on the gene-level human circRNA dataset. Since none of the existing

methods can address the task of zero-shot backsplicing prediction, we compare with random

guessing, which is equivalent to the chance line in ROCs with an AUC score of 0.5. Figure 4.3

depicts the ROC curves with AUC scores over five folds of experiments. The results show

that the backspliced site pairs discovered by JEDI are effective with an average AUC score

of 0.8002. In addition, JEDI is also robust in this task with a small standard deviation of
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Figure 4.4: The isoform-level circular RNA prediction performance of JEDI with different
flanking region lengths L based on the 5-fold cross validation. We report the mean for each
metric and apply error bars to indicate standard deviations.

AUC scores. Since the cross-attention layer is a major contribution in JEDI, we conduct

another study to analyze how donor and acceptor embeddings interact with each other in

Section S1 in the supplementary materials.

4.3.7 Analysis and Discussions

In this section, we first discuss the impacts of hyper-parameters for JEDI and then con-

duct the run-time analysis for all methods to verify the model efficiency of JEDI. Note

that, for hyper-parameter analysis, we adjust the target hyper-parameter while other hyper-

parameters are fixed as the values utilized in the experiments as mentioned in Section 4.3.2.

Length of Flanking Regions L. The flanking region length L for junction encoders plays

an important role in JEDI to represent splice sites. Figure 4.4 illustrates the circular RNA

prediction performance of JEDI over different flanking region lengths. For all evaluation
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Figure 4.5: The isoform-level circular RNA prediction performance of JEDI with different
k-mer sizes K based on the 5-fold cross validation. We report the mean for each metric and
apply error bars to indicate standard deviations.

metrics, the performance slightly improves when L increases to 4. However, the perfor-

mance significantly drops when L ≥ 32. It shows that nucleotides nearer to junctions are

more important than other ones for predicting backsplicing. This result is also consistent

with previous studies on RNA splicing [253]. Moreover, circRNAs tend to contain fewer

nucleotides than other transcripts from the same gene [169], so excessive and redundant

information could only lead to noises and lower the prediction performance.

Size of k-mers K. The derivation of k-mers is crucial for JEDI because JEDI treats k-

mers as the fundamental inputs over gene sequences. Figure 4.5 shows how the size of k-mers

affects the prediction performance. JEDI performs the best with 2-mers and 3-mers when

the performance gets worse with longer or shorter k-mers. It could be because a small k-

mer size makes k-mers less significant for representations. In addition, the embedding space

of long k-mers could be too enormous for JEDI to learn with limited training data. It is
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also worthwhile to mention that 1-mers lead to much higher standard deviations because of

their low significance induces high instability and sensitive embeddings during the learning

process. This finding is also consistent with previous studies [282].

In addition to the flanking region length L and the k-mer size K, we also conduct the

analysis to study how the embedding dimension l affects the performance in Section S2 in

the supplementary materials.

Table 4.4: Run-time analysis on isoform-level circular RNA prediction in seconds (s), min-
utes (m), and hours (h), based on the 5-fold cross-validation. We report the mean of the
training time (over five folds).

Method Time Method Time Method Time
SVM 28.76s Att-CNN 13.35m circDeep >24h

RF 21.03s Att-RNN 51.53m DeepCirCode 3.80m

nRC 4.07m PredcircRNA 43.66s JEDI 2.75m

Run-time Analysis. To verify the efficiency of JEDI, we conduct the run-time analysis for

all methods in our experiments based on the task of isoform-level circular RNA prediction.

For fair comparisons, all methods can access the same computational resources. Note that

we only consider the time in training and testing. The run-time of feature extraction and

disk I/O are ignored because the features can be pre-processed. Disk I/O can be affected by

many factors that are irrelevant to methods, such as I/O scheduling in operating systems.

As shown in Table 4.4, JEDI is efficient and averagely needs only less than three minutes

because it only focuses on junctions and flanking regions. Similarly, DeepCirCode, which

is also a junction based deep learning method, has comparable execution time to JEDI.

In contrast, Att-CNN and Att-RNN are relatively inefficient because they scan the whole

sequences in every training batch, where Att-RNN with non-parallelizable recurrent units

is slower. Although nRC reads the whole sequences, it runs faster than some attention-

based methods because of its simpler model structure. SVM, RF, and PredcircRNA are the

most efficient because they apply straightforward statistical machine learning frameworks

for training. As a side note, the feature extraction of PredcircRNA is extremely expensive

in execution time and averagely costs more than 28 hours to extract multi-facet features in
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our experiments. circDeep is the most inefficient in our experiments because it consists of

many time-consuming components, such as embedding and LSTM pre-training.

4.4 Conclusions

We propose a novel end-to-end deep learning approach for circular RNA prediction by learn-

ing to appropriately model splice sites with flanking regions around junctions and studying

the deep relationships among these sites. The attentive junction encoders are first introduced

to represent each splice site, and the innovative cross-attention layer is proposed to learn the

deep interaction among splice sites. Moreover, JEDI is capable of discovering backspliced

site pairs without training on annotated site pairs. The experimental results demonstrate

that JEDI is effective and robust in circular RNA prediction on different data levels and

across different species. Most importantly, the backspliced site pairs discovered by JEDI

are promising as they designate the hotspots for circular RNAs formation. The reasons and

insights for these observations and discoveries can be concluded as follows: (1) JEDI only

models valuable and essential flanking regions around the junctions of splice sites, thereby

discarding irrelevant and redundant information for circular RNA prediction; (2) the proper-

ties of splice sites and essential information for forming circular RNAs can be well-preserved

by junction encoders; (3) the attention mechanisms and the cross-attention layer provide

intuitive and interpretable hints to implicitly model the backsplicing events as demonstrated

in the experiments. Due to data limitation, we are only able to examine the effectiveness of

transferring the learned knowledge between humans and mice. As a future direction, we plan

to experiment with more species when more data is available. Additionally, we also plan

on exploring the potential to extend JEDI to support circRNA prediction from sequencing

reads.
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CHAPTER 5

Heterogeneous Network Representation Learning with

Meta-context Aware Random Walk

Graphs are one of the most universal data types to describe the complex relations among

heterogeneous entities in the real world. Therefore, it is very important to develop effective

and robust representation learning methods for heterogeneous graphs. In this chapter, we

propose a novel unsupervised learning framework to derive machine-readable representations

for nodes in heterogeneous networks based on the types of neighbor nodes as meta-context

information. We also demonstrate the wide impacts of our approach in diverse machine

learning tasks and various real-world applications.

5.1 Introduction

Network analysis has already been a prevalent research topic because of its enormous poten-

tial in many downstream applications, such as node classification [315], node clustering [254],

and link prediction [219]. More specifically, most of the important tasks in network anal-

ysis involve predictions over nodes and edges. However, the sparsity of networks usually

results in significant difficulty of generalization for machine learning models. To resolve this

issue, one of the most popular approaches is to map nodes to continuous low-dimensional

representations as embeddings that preserve the structural information and semantics of

nodes [47].

To efficiently learn node representations, random walks have been widely exploited to

preserve the proximity between node pairs [135, 264]. More precisely, the embedded repre-
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sentations of nodes are optimized to infer the nearby nodes on random walks [264] with a

skip-gram model [241] inspired by word embedding in the field of natural language process-

ing [241]. Moreover, the complicated proximity structures of networks can be also gained by

sampling biased random walks [135]. Practically, each of the generated random walks can

be treated as a word sequence so that the task of network embedding is equivalent to the

setting of word embedding [98, 135, 164, 264]. More specifically, a sliding window is applied

to capture the nearby nodes as the context for each node over random walks. To ensure

the coverage of the nodes for learning representations, most of the existing approaches sim-

ply sample a few random walks starting from each of the nodes. However, there are a few

shortcomings for the existing sampling approaches. First, one-directional random walks that

evenly start from all of the nodes would favor nodes with higher degree and betweenness

scores when nodes in the network should be equally important for the downstream applica-

tions. Second, tail nodes tend to be visited at the very beginning of random walks, especially

for the random walks starting from them. As a result, the number of context nodes in the

sliding window will be much underestimated for the tail nodes. In addition, the tail nodes

will have fewer chances to be observed as the context of other nodes during optimization.

Compared to homogeneous networks with a singular type of node, heterogeneous net-

works with various types of nodes are more common in real-world applications. Although

the homogeneous network embedding methods can still learn the representations for hetero-

geneous networks, the information of node types can be significantly neglected. As a result,

the semantics of the heterogeneous knowledge in networks is totally lost in the embeddings.

To leverage the heterogeneous knowledge in networks for representation learning, existing

methods usually rely on meta-paths [306], which are predefined sequences of node types. In

other words, different meta-paths indicate distinct human-explainable semantics. For exam-

ple, the meta-paths APA and APVPA are used to indicate that two authors had co-authorship

and published papers in the same venue respectively, where A, P, and V are the node types

referring to author, paper, and venue in a heterogeneous bibliographic network. To exploit

the meta-paths, most of the existing heterogeneous network embedding methods guide the
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generated random walks through a predefined set of meta-paths so that the prior knowledge

can be incorporated into the produced node sequences [63, 98, 122, 291]. For instance, each

meta-path can be solely applied to measure the relationship between two nodes with a short

random walk [122, 291]; different meta-paths may also overlap to approximate longer ran-

dom walks as a mixture of prior knowledge [63, 98]. However, the choices of random walk

significantly affect the quality of network representations [164]. Accordingly, the require-

ment of high-quality meta-paths that are hand-picked by domain experts leads to reduced

robustness for general tasks. In addition, the usage of meta-paths can limit and distort the

understanding of the network structures. More precisely, given a limited set of meta-paths,

a new path in a network is less likely to be induced. Even though some works [164] have

proposed to employ specific strategies to guide random walks instead of using meta-paths,

adjusted random walks can still be biased and overlook some vital network structures.

To learn network representations with random walks, one of the most popular optimized

approaches is the skip-gram model inspired by word embedding in the field of natural lan-

guage processing [241]. Each of the generated random walks can be treated as a word

sequence so that the task of network embedding is equivalent to the setting of word em-

bedding [98, 135, 164, 264]. More specifically, a sliding window is applied to capture the

nearby nodes as the context for each node over random walks. To ensure the coverage of

the nodes for learning representations, most of the existing approaches simply sample a few

random walks starting from each of the nodes. However, there are a few shortcomings for the

existing sampling approaches. First, one-directional random walks that evenly start from

all of the nodes would favor nodes with higher degree and betweenness scores when nodes

in the network should be equally important for the downstream applications. Second, tail

nodes tend to be visited at the very beginning of random walks, especially for the random

walks starting from them. As a result, the number of context nodes in the sliding window

will be much underestimated for the tail nodes. In addition, the tail nodes will have fewer

chances to be observed as the context of other nodes during optimization.

In this chapter, Meta-context Aware Random Walk (MARU) is proposed to address the
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limitations of the existing heterogeneous network embedding approaches. More specifically,

we focus on deriving robust embeddings that are more comprehensive and fair to represent

the heterogeneous networks. The algorithm of bidirectional extended random walks is first

introduced to alleviate the bias caused by classical random walks. Instead of manipulating

random walks [98, 135, 164], we employ general random walks for a more comprehensive

understanding of network structures and encode the types of surrounding nodes as meta-

contexts to incorporate heterogeneous knowledge. Given a node and its meta-contexts in

the random walk, we extend the skip-gram model to infer not only the nearby nodes but

also their corresponding meta-contexts. In other words, the learned representations can

reflect various situations in terms of different meta-contexts, thereby describing the nature

of heterogeneous networks more precisely. Here, we summarize our contributions in the

following.

• To the best of our knowledge, this is the first work to address the bias of classical ran-

dom walks for network representation learning. For the tail nodes with lower degree and

betweenness scores, the proposed bidirectional extended random walks can capture the

context and optimize the representations more fairly and comprehensively.

• We propose the framework MARU, generating network representations that simultane-

ously capture general network structures and local heterogeneous knowledge. More specif-

ically, leveraging the types of surrounding nodes as meta-contexts enable the model to

represent different semantics according to local contexts in random walks. Hence, the

learned network representations are more robust to preserve the properties of heteroge-

neous networks.

• Extensive experiments conducted on three large-scale real-world datasets indicate that

MARU significantly outperforms existing heterogeneous network embedding methods. A

study of parameter sensitivity then demonstrates the robustness of the proposed framework

across different situations. In addition, we will release our implementations to facilitate

future research.
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5.2 Problem Statement

In this section, we first introduce the notations of heterogeneous networks and then formally

define the objective of learning heterogeneous network representations.

5.2.1 Heterogeneous Network

We first formally define the notations to represent heterogeneous networks. Note that the

definition is consistent with previous studies [98, 305, 307].

Definition 5.1 (Heterogeneous Network). A heterogeneous network is defined as a graph

G = (V,E, T ), where V is the set of nodes; E ⊆ V × V is the set of edges connecting nodes;

T represents the set of node types. For each node v ∈ V , a mapping function ψ(v) ∈ T

indicates the corresponding type of the node.

To simplify the representation and implementation, for each node v, we denote the neigh-

bors in the graph as

N(v) = {vi | ∀(v, vi) ∈ E} ,

which can be treated as an adjacency list [77] generated by the edge set E.

5.2.2 Problem Definition

We formalize the problem of learning heterogeneous network representations based on the

aforementioned notations.

Problem 5.1 (Representation Learning for Heterogeneous Networks). Given a heteroge-

neous network G = (V,E, T ), for each node v ∈ V , the task aims to learn a d-dimensional

embedding vector Φ(v) : V → Rd, where d � |V |, so that Φ(v) can capture the structural

information and semantic knowledge of the node.

More specifically, the network representations project nodes onto a d-dimensional con-

tinuous latent feature space. Note that although nodes can belong to different types, all of
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the nodes are projected on the identical feature space for the convenience of representing re-

lationships among different nodes. As a result, the learned node representations can further

benefit various data mining tasks for heterogeneous networks, such as node classification,

node clustering, and link prediction. Moreover, heterogeneous network representation learn-

ing is an unsupervised machine learning task. In other words, the representations can be

acquired with only the network and then directly applied to various downstream applications

for heterogeneous network data mining. Therefore, the problem of heterogeneous network

representation learning is important and beneficial.

5.3 MARU for Heterogeneous Network Embedding

In this section, we present the proposed framework, Meta-context Aware Random Walks

(MARU), for learning heterogeneous network representations.
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Figure 5.1: The schema of the proposed framework Meta-context Aware Random Walks
(MARU).
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Table 5.1: Summary of notations and their descriptions.

Notation Descriptions
G the heterogeneous network for learning representations
V the set of nodes
E the set of edges connecting nodes
T the set of node types
ψ(v) the function mapping a node v to the corresponding type
N(v) the set of neighbors of the node v in the graph
d the embedding dimension
l the walk length for bidirectional extended random walk
k the neighborhood size in the skip-gram model
w the number of generated random walks per node
t the meta-context size
r the number of negative samples per neighbor
M the set of available meta-contexts

C(v,m,mc) the context nodes with mc ∈M for the node v with m ∈M
Φ(v,m) the embedding of the node v with the meta-context m

Φ(v) the ultimate embedding of the node v

5.3.1 Framework Overview

Figure 5.1 depicts the general schema of MARU. More specifically, the model mainly con-

sists of four stages, including bidirectional extended random walks, meta-context aware node

embedding, meta-context aware skip-gram, and embedding inference. To efficiently and ad-

equately capture the structural information, bidirectional extended random walks guarantee

the generality of sampled structures and the fairness of context information for each node

in random walks. To properly encode the heterogeneous knowledge, the stage of meta-

context aware node embedding represents a node with different embedding vectors for dis-

tinct meta-contexts, which are the types of surrounding nodes on random walks. Based

on the meta-context aware embeddings, the meta-context aware skip-gram model optimizes

the representations by inferring not only the context nodes but also their meta-contexts.

Finally, the ultimate representation of a node can be computed as an aggregation of meta-

context aware embeddings over the estimated distribution of meta-contexts for the node in

the stage of embedding inference. In sum, Table 5.1 summarizes the major notations and

the corresponding descriptions.
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Classical Random Walks

Bidirectional Extended Random Walks

Missing Nodes in Sliding Windows

Full Samples of Contexts

Figure 5.2: The illustrations of classical random walks and our proposed bidirectional ex-
tended random walks for learning network representations. The yellow nodes are the starting
nodes of random walks while the white nodes with dotted strokes are the extended nodes.
The lines are the sliding windows for the corresponding nodes for optimization.

5.3.2 Bidirectional Extended Random Walks

One of the most efficient approaches of capturing the network structures is to sample a few

random walks that cover the network and then optimize the proximity between nodes within

a sliding window on the random walks. However, classical random walks result in significant

biases. More precisely, simple random walks would favor the nodes with high degree and

betweenness scores, especially for the walks with longer lengths [89]. In addition, conven-

tional random walks also lead to the bias of underestimating the contextual information of

tail nodes while learning network representations. Figure 5.2 shows how classical random

walks are applied to network representation learning. For the endpoints of random walks,

there can be at most half of nodes that are missing in the sliding windows for deriving the

contexts. Moreover, the most typical approach to optimize tail nodes is to start a number

of random walks from them. In other words, the contexts for the tail nodes can be highly

underestimated, and thus reveal incorrect structural information.

To address this problem, we propose the algorithm of bidirectional extended random

walks as presented in Algorithm 5.1. Instead of walking through only a single direction, the

starting node is treated as the center of the walk that grows from both sides simultaneously.
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Algorithm 5.1: BidirectionalExtendedRandomWalk(G, u, l, k)

Input: the graph G, the starting node u, the walk length l, the neighborhood size k
Output: the bidirectional extended random walk L

1 W = [u]
2 vf = vb = u

3 for iter = 1 to d l−1
2
e+ k do

4 vf = RandomlySample(N(vf )) // forward step.
5 vb = RandomlySample(N(vb)) // backward step.
6 W = [vb] +W + [vf ]

7 return W

Furthermore, to secure the fairness of the observed contexts, the number of actual walking

steps is extended according to the size of sliding windows in optimization. As shown in

Figure 5.2, all of the nodes in the random walks can fairly have full samples of contexts

for optimization. Moreover, bidirectional random walks can theoretically retrieve more tail

nodes than one-directional random walks as shown in Corollary 5.1.

Corollary 5.1. Assume head nodes are never transitioning to tail nodes in random walks,

and the probability of transitioning between tail nodes is 0 < p < 1. Given a tail starting

node u and the walking length 2n + 1, the expected number of tail nodes in a bidirectional

random walk is greater than the expected number in a one-directional random walk.

Note that we show the proof of Corollary 5.1 in Appendix B.1. As a result, the algorithm of

bidirectional extended random walks is able to efficiently and fairly capture the structural

information and provide enough knowledge for the optimization of network representation

learning.

5.3.3 Meta-context Aware Skip-gram Model

To exploit the node types as heterogeneous information, most of the existing approaches

guide the random walk through predefined meta-paths [98, 122] or specific strategies [164]

before optimizing the proximity between nodes on random walks. However, these manipula-

tions of random walks can distort the understanding of network structures. More specifically,
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a portion of network structures can be ignored or inadequately covered by manipulated ran-

dom walks. Hence, we do not guide random walks with any external knowledge. Instead,

meta-contexts are taken into account to exploit heterogeneous knowledge.

Meta-contexts on Random Walks. Meta-contexts are defined as the node types within

a sliding window. The motivation is that a node should have different contexts of nodes for

different local meta-contexts. For example, if the meta-contexts for the node of an author

in a bibliographic network are APAPA, the corresponding contexts should be the authored

papers and the co-authors instead of the published venues. To some degree, meta-contexts

can be treated as the conditions of the particular segments in random walks. The idea is

beneficial for the model to learn the dynamic structures in the networks. Formally, given a

random walk as L =
[
v1, v2, · · · , v|L|

]
, the meta-contexts of the node vi can be defined as:

mi = (ψ (vi−t) , · · · , ψ (vi) , · · · , ψ (vi+t)) ,

where t is the window size for meta-contexts. For simplicity, we denote M as the set of all

possible meta-contexts that can be found in the sampled random walks.

Meta-context Aware Node Embedding. To incorporate the knowledge of meta-contexts

into the model, we propose the meta-context aware node embedding, which considers a node

with different meta-contexts separately. More precisely, instead of learning a stationary

representation Φ(v) for a node v, the node can have distinct representations Φ(v,m) for

different meta-contexts m ∈ M . Note that although meta-contexts can be encoded inde-

pendently with conditional bits [130] or individual embeddings [321], both of the methods

perform unsatisfactorily in our experiments. This observation is mainly due to the sophis-

ticated network structures of our framework. Independently learning representations with

different meta-contexts for a node can better model heterogeneous networks.

Meta-context Aware Skip-gram. Similar to the previous studies [98, 135, 164, 264],

we extend the skip-gram model originally proposed in the field of natural language process-

ing [241] to learn network representations with the concept of meta-contexts. In addition
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to the nearby nodes in random walks, we also optimize the likelihood of the corresponding

meta-contexts for the context nodes. Given a heterogeneous network G = (V,E, T ), the ob-

jective of meta-context aware skip-gram model is to maximize the proximity between nodes

in terms of local structures and meta-contexts as:

arg max θ
∑
v∈V

∑
m∈M

∑
uc∈C(v,m,mc)

log p(uc | v;m;mc; θ),

where θ is the set of model parameters; uc ∈ C(v,m,mc) denotes the context nodes uc

with specific meta-contexts mc for the node v with the meta-contexts m. Different from

conventional skip-gram models that output a single multinomial distribution of all available

nodes, the meta-context aware skip-gram model learns multiple multinomial distributions

for different meta-contexts. More specifically, as illustrated in Figure 5.1, the likelihood

p(uc | v;m;mc; θ) can be estimated by the learned meta-context aware node embeddings and

the softmax function [131] as:

p(uc | v;m;mc; θ) =
Φ(v,m) · Φ(uc,mc)∑

∀ui∈Vmc
Φ(v,m) · Φ(ui,mc)

,

where Vmc is the set of nodes that have been associated with the meta-context mc. During

the training process, positive samples are generated by retrieving neighbors in the random

walks with a length-k sliding window while a negative sample un can be randomly drawn

from the distribution P (un | mc) for each neighbor. Therefore, the model can be optimized

by using the stochastic gradient descent algorithm [274].

Embedding Inference. To generate the representations of individual nodes, the ultimate

node embeddings can be further computed by aggregating the meta-context aware node

embeddings as:

Φ(v) =
∑
m

P (m | v) · Φ(v,m), and P (m | v) =
#(v,m)∑
m′ #(v,m′)

,

where #(v,m) denotes the number of occurrences for the association of the node v and the
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Algorithm 5.2: MetaContextAwareSkipGram(G, w, l, k, t, r, M)

Input: the graph G = (V,E, T ), the number of walks per node w, the walk length l,
the neighborhood size k, the meta-context size t, the number of negative
samples per neighbor r, the set of available meta-contexts M .

Output: the node representations Φ(v) : V → Rd

1 Φmeta = Φnode = ∅
2 for iter w = 1 to w do
3 for u ∈ V do
4 W = BidirectionalExtendedRandomWalk(G, u, l, k)
5 for i = k + 1 to k + l do
6 for j = i− k to i+ k & i 6= j do
7 Φmeta = SGD(Φmeta, P (Wj | Wi;mi;mj; θ) = 1)
8 for iter n = 1 to r do
9 Draw a negative sample un ∼ P (un | mj)

10 Φmeta =
11 SGD(Φmeta, P (un | Wi;mi;mj; θ) = 0)

12 for v ∈ V do
13 Φnode(v) = 0
14 for m ∈M do
15 Φnode(v) = Φnode(v) + P (m | v) · Φmeta(v,m)

16 return Φnode

meta-context m in the training random walks. Finally, Algorithm 5.2 gives the pseudocode

of the whole meta-context aware skip-gram model.

5.3.4 Complexity Analysis

Here we analyze the complexity of MARU.

For the time complexity, the bidirectional extended random walk algorithm spends O(l+

k) time to generate each random walk so that the overall time complexity for random walk

generation is O(w|V |(l + k)). For each random walk, it costs O (lkd log (|V ||M |)) time to

update the skip-gram model with negative sampling for learning meta-context aware node

embeddings. Finally, the embedding inference takes O(|V ||M |) to derive the ultimate node
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Table 5.2: The statistics of three experimental datasets of heterogeneous networks.

Dataset Node Types and Number of Nodes
DBIS [306] Author (A) Paper (P) Venue (V)

(264,323 edges) 60,694 72,902 464
MovieLens [147] Movie (M) Actor (A) Director (D) User (U)
(1,097,495 edges) 10,197 95,321 4,060 2,113

Yelp [56] User (U) Business (B) Category (C) Location (L)
(411,263 edges) 16,239 14,284 511 47

embeddings. Therefore, the overall time complexity of MARU is:

O (wlkd|V | (log |V |+ log |M |) + |V ||M |) .

For the space complexity, random walk generation requires O(l + k) space as a buffer

for the generated random walks. The meta-context aware node embeddings and ultimate

node embeddings occupy O(d|V ||M |) and O(d|V |) memory space while the skip-gram model

has O(d|M ||V |) additional parameters. Hence, the overall space complexity of MARU is

O(l + k + d|M ||V |).

5.4 Experiments

In this section, we conduct extensive experiments and in-depth analysis to verify the quality

of learned heterogeneous network representations and the robustness of MARU in three

general machine learning tasks.

5.4.1 Datasets and General Experimental Settings

Dataset. In the experiments, we adopt three large-scale publicly available heterogeneous

network datasets, including DBIS [306], MovieLens [147], and Yelp [56]. Table 5.2 further

shows the statistics of three datasets with more details as follows.

• DBIS [306] is a bibliographic network dataset in the field of database and information

system. The network consists of papers (P), authors (A), and venues (V) as nodes while
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the relationships of authorship (P-A) and published venues (P-V) are edges.

• MovieLens [147] is a network dataset of a movie recommendation system. The nodes of

the network include movies (M), actors (A), directors (D), and users (U) while the edges

comprise of actorship (M-A), directorship (M-D), and user ratings (M-U).

• Yelp [56] is a dataset extracted from the social media released in the competition of Yelp

Dataset Challenge [56]. The nodes in the network involve users (U), businesses (B),

categories (C), and locations (L) while the edges represent the relationships of friend-

ships (U-U), user reviews (B-U), business locations (B-L), and business categories (B-C).

Baseline Methods. To evaluate the performance of MARU and the quality of learned rep-

resentations, we compare MARU with five state-of-the-art homogeneous and heterogeneous

network embedding methods as follows.

• DeepWalk (DW) [264] and node2vec (N2V) [135] represent random walk based homo-

geneous network embedding methods. DeepWalk generates a number of fixed-length plain

random walks starting from each node while node2vec employs alias-sampling to mimic

the process of breadth-first search and manipulate random walks. Both of the methods

are based on the vanilla skip-gram model [241].

• LINE [313] represents an edge-sampling based homogeneous network embedding method.

Based on the edge-sampling algorithm, LINE is able to efficiently capture both the first-

order and second-order proximity in the networks.

• HIN2Vec (H2V) [122] learns node embeddings by predicting the existence of particular

meta-paths between nodes with a meta-path conditioned binary classifier.

• metapath2vec (M2V) [98] stands for meta-path based heterogeneous network embed-

ding methods. With a predefined set of meta-paths, metapath2vec guides the random

walks through meta-paths so that the prior heterogeneous knowledge can be leveraged to

the learned embeddings.

• JUST [164] is a heterogeneous network embedding method that manipulates random

walks by specific strategies. JUST introduces a tactic for random walks to either jump to

other nodes of particular types or to stay on the current paths.
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• HeGAN [158] enhances HIN by adversarial learning that provides effective negative ex-

amples for more robust representations.

Note that we do not compare with GCN-based approaches because most of those methods

cannot tackle unsupervised representation learning. Although some methods like Graph-

SAGE [139] and GAE [199] are applicable, they heavily rely on node features are not in

major comparisons as shown in previous studies [109] For instance, the macro-F1 scores of

both GraphSAGE and GAE are less than 23% on the Yelp dataset when all of the other

baseline methods can reach over 30% with an arbitrary amount of training data.

Implementation Details. MARU is implemented by C and C++. The size of sliding

windows for meta-contexts t is set as 6. The walk length l in the algorithms is 40 while the

length of each generated random walks is 81. For all of the methods, the dimension of node

embeddings is set to 128; the neighborhood size k is set as 7; the initial learning rate of

stochastic gradient descent is set as 0.025; the number of negative samples for each neighbor

r is 5.

5.4.2 Task 1: Multi-label Node Classification

Experimental Setup. In the task of multi-label node classification, every node is associated

with one or more labels from a finite label set L. We adopt the author domains, movie

genres, and user compliments respectively for the DBIS, MovieLens, and Yelp datasets. The

statistics of these datasets are shown in Table 5.3. Moreover, the labels are encoded in the

networks so that the task is challenging because the node embeddings need to reflect the

semantics that is not explicitly presented in the networks. To evaluate the performance, we

randomly sample 10% of the nodes as testing data while the remaining nodes are treated as

labeled data for training. In addition, we also adjust the percentage of labeled data used in

the training process to demonstrate the robustness of methods. The node representations

of each method are treated as the input of a one-vs-rest logistic regression model with L2

regularization. Macro-F1 and Micro-F1 scores [269] are adopted as the evaluation metrics

for multi-label classification, thereby indicating the quality of different representations.
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Table 5.3: The statistics of three datasets for the task of multi-label node classification.

Dataset DBIS MovieLens Yelp
Node Type Author (A) Movie (M) User (U)
Semantics Domains Genres Compliments
|L| 8 19 11

Avg. #(labels) 1.00 2.04 5.33
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Figure 5.3: Performance of different methods for the multi-label node classification task in
three datasets. All improvements of our approach over baseline methods are statistically
significant at the 95% confidence level in a paired t-test. Note that the Micro-F1 scores
do not increase with more labeled nodes in some cases because of the imbalance of class
distribution.

Experimental Results. Figure 5.3 demonstrates the performance of six methods on the

task of multi-label node classification with three datasets. Among all of the baseline methods,

most of the heterogeneous network embedding methods, including H2V, M2V, and JUST,

outperform the other baselines in DBIS but perform worse than others in Yelp. It can be

because the structural information is more important than the heterogeneous knowledge in

Yelp. To be more precise, existing heterogeneous network embedding methods sacrifice the

comprehensive understanding of network structures to encode the heterogeneous knowledge
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and obtain unsatisfactory performance when the structural information is imperative. Al-

though HeGAN applies adversarial learning to obtain better robustness in Yelp, it performs

worse in both DBIS and MovieLens due to more parameters and overfitting. Our approach

MARU significantly outperforms all of the baselines across different percentages of training

labeled nodes in three datasets. MARU does not distort the generated random walks while

incorporating heterogeneous knowledge. At the same time, meta-contexts are also beneficial

for MARU as it picks up the tiny differences in local heterogeneous contexts.

5.4.3 Taks 2: Node Clustering

Experimental Setup. The problem of node clustering is an unsupervised machine learn-

ing task. We aim to cluster the nodes so that the generated groups are as close to the

true clusters as possible. In each dataset, we modify the classes in multi-label classification

to construct the ground truth. For the DBIS dataset, the authors can be categorized into

different research domains. Each research domain represents one type of cluster. For the

MovieLens dataset, five genres, including Adventure, Action, Crime, Horror, and Sci-Fi,

represent five clusters. For the Yelp dataset, we separate users into two groups. One group

represents those users who have received at least one compliment. The rest of the users

are labeled otherwise. For simplicity, the nodes in multiple clusters are removed. In total,

DBIS, MovieLens, and Yelp datasets have 8, 5, and 2 clusters, respectively. For evaluation,

the node representations of each method are treated as the input of the K-Means++ algo-

rithm [14] to derive clusters. Finally, normalized mutual information (NMI) and Adjusted

Mutual Information (AMI) [324] are the evaluation metrics that reveal the quality of node

representations.

Experimental Results. Figure 5.4 illustrates the performance of different methods for the

task of node clustering in three datasets. Similar to the results in the multi-label classifica-

tion task, H2V and M2V perform the best among all of the baselines in DBIS but obtain

worse performance than others in Yelp. Differently, JUST and HeGAN perform reasonably

well on all datasets. On the other hand, the homogeneous network embedding methods
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Figure 5.4: Performance of different methods for the node clustering task in three datasets.
All improvements of our approach over baseline methods are statistically significant at the
95% confidence level in a paired t-test.

perform poorly in all of the datasets. One explanation is that the heterogeneous knowl-

edge is important for the task of clustering. Interestingly, even though M2V exploits the

heterogeneous knowledge by using the meta-paths, the clustering performance significantly

drops in Yelp compared to other datasets. A possible reason could be the lack of meaningful

meta-paths for clustering in the Yelp network. On the other hand, JUST does not need

meta-paths and still performs well. Compared to all of the baseline methods, our proposed

MARU consistently presents significant improvements against all baseline methods across all

datasets. As a result, it demonstrates that meta-contexts and the algorithm of bidirectional

extended random walks are valuable for the node clustering task.

5.4.4 Task 3: Link Prediction

Experimental Setup. In the task of link prediction, we predict the missing edges in the

given network datasets. Here we randomly remove 50% of edges from the networks for

obtaining positive examples while generating an equal number of node pairs as negative
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Table 5.4: The AUC scores of different methods with four operators for link prediction in
three datasets.

Method Operator DBIS MOVIE YELP

DeepWalk [264]
Hadamard 0.6367 0.9110 0.7330

Weighted-L2 0.6094 0.7904 0.6872

node2vec [135]
Hadamard 0.6362 0.9060 0.6622

Weighted-L2 0.6292 0.7968 0.6848

LINE [313]
Hadamard 0.5001 0.8631 0.5689

Weighted-L2 0.5751 0.7611 0.6229

HIN2Vec [122]
Hadamard 0.8028 0.9651 0.8117

Weighted-L2 0.7240 0.7885 0.7137

metapath2vec [98]
Hadamard 0.6778 0.9151 0.7372

Weighted-L2 0.7363 0.6996 0.8240

JUST [164]
Hadamard 0.6463 0.9119 0.7453

Weighted-L2 0.6260 0.7845 0.6009

HeGAN [158]
Hadamard 0.9597 0.9207 0.6361

Weighted-L2 0.6714 0.7970 0.7289

MARU
Hadamard 0.9979 0.9963 0.7241

Weighted-L2 0.7468 0.7979 0.8315

examples. To generate the edge features, we follow the previous study [135] to exploit

two binary operators to represent edges by aggregating two node representations over all

dimensions, including the Hadamard product and weighted L2-distance. The features of

example edges are treated as the input of a logistic regression model to learn their existence.

Finally, the scores of Area Under Curve (AUC) can be applied to evaluate the performance

of link prediction and the quality of representations.

Experimental Results. Table 5.4 shows the performance of different methods for the task

of link prediction in three datasets. In the task of link prediction, our proposed approach

MARU significantly surpasses all of the baseline methods. Among the baseline methods,

HIN2Vec and metapath2vec perform the best as heterogeneous network embedding meth-

ods. Interestingly, although LINE does not have outstanding performances in the tasks

of multi-label node classification and node clustering, it has a satisfactory performance for

link prediction. It can be because LINE is an edge-sampling based method so that it has

more advantage in link prediction to model the edge distributions. Interestingly, Grover and

Leskovec [135] report that the Hadamard operator always performs the best in their study
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while only the datasets with homogeneous networks are evaluated. This is partially incon-

sistent with the experimental results of heterogeneous networks. The reason can be that

the embeddings become too sophisticated to estimate the relationship between nodes by a

simple dot-product when the types of nodes are heterogeneous. The results also show the

difference between homogeneous and heterogeneous network and emphasize the importance

of designing satisfactory algorithms to derive heterogeneous network representations.

5.4.5 Analysis and Discussions

In this section, we first analyze the effectiveness of the proposed algorithm of bidirectional

extended random walks and then discuss the sensitivity of the window size for observing

meta-contexts.
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Figure 5.5: The macro-F1 scores of MARU with classical random walks and our proposed
bidirectional extended random walks with 50% of training labeled nodes in the task of multi-
label node classification in DBIS and MovieLens.

Effectiveness of Bidirectional Extended Random Walks. To verify the contribution of

our proposed bidirectional extended random walks, we first investigate the effectiveness of the

algorithm. Figure 5.5 shows the macro-F1 scores of MARU with classical random walks and

the proposed bidirectional extended random walks with 50% of training labeled nodes in the

task of multi-label node classification in DBIS and MovieLens. After replacing the classical
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random walks with the bidirectional extended random walks, the classification performances

are significantly improved by 2.04% and 4.07% in DBIS and MovieLens, respectively. It shows

that the proposed algorithm to generate bidirectional extended random walks is actually

beneficial to alleviate the insensitivity of classical random walks to the tail nodes, thereby

improving the performance of downstream applications.
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Figure 5.6: The Macro-F1 scores of MARU as a function of percentage of labeled training
data and sliding window size for meta-contexts in Yelp.

Window Size of Meta-contexts. Here we study how the size of the sliding windows for

meta-contexts affects the performance. Figure 5.6 shows the macro-F1 scores of MARU over

different percentages of labeled training data with different window sizes for meta-contexts

in the Yelp dataset. It is obvious that greater window sizes lead to a better classification

performance because the observed contexts are more flexible and informative. However,

larger window sizes also lead to larger body of meta-contexts M . For example, in the Yelp

dataset with t = 6, the size of M is greater than 10,000, which can significantly increase the

memory or disk space consumption. On the other hand, the size of M is less than 1, 000

with t = 4, rendering memory footprints more manageable. Therefore, we set the window

size t as 4 in the parameter settings.

Walk Length l of Bidirectional Extended Random Walks. Here we study how the
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length of random walks affects the performance. Table 5.5 presents the classification per-

formance of MARU over different walk lengths l of bidirectional extended random walks

(See Algorithm 5.1 and 5.2) with 50% training labeled nodes in the Yelp dataset. While the

length of random walks increases, both micro-F1 and macro-F1 scores improve because of

more prevalent information. However, the performance peaks at l = 40 and then drops with

longer random walks. This can be because longer random walks cover more nodes with high

scores of degree and betweenness so that the contexts with tail nodes are less observed in

the generated random walks. The results also demonstrate that it is important to design a

good algorithm, such as the proposed bidirectional extended random walk, to alleviate the

bias of conventional random walk algorithms.

Table 5.5: The classification performance of MARU over different walk lengths l of bidi-
rectional extended random walks with 50% of training labeled nodes in Yelp. Note that
the length of generated random walks is 2 × l + 1 because MARU conducts random walks
bidirectionally.

Metric l = 10 l = 20 l = 40 l = 80 l = 100
Macro-F1 0.6842 0.6961 0.6999 0.6958 0.6969
Micro-F1 0.6998 0.7139 0.7186 0.7150 0.7151

Size of Embedding Dimensions. We also discuss how the size of embedding dimensions

affects the performance. Table 5.6 shows the classification performance of MARU over

different sizes of embedding dimensions d with 50% of training labeled nodes in the Yelp

dataset. When the dimension increases, the performance improves and peaks at 128. With

a larger size of embedding dimensions, the classification model becomes overfitted. As a

result, we apply d = 128 as the experimental setting across all experiments.

5.5 Conclusion

In this chapter, we propose MARU, a novel approach for heterogeneous network embedding

by exploiting meta-contexts in random walks. To address the bias caused by conventional

random walks, the algorithm of bidirectional extended random walks is proposed to effi-

ciently and fairly capture the comprehensive structural information in the networks. The

83



Table 5.6: The classification performance of MARU over different sizes of embedding dimen-
sions d with 50% of training labeled nodes in Yelp.

Metric d = 16 d = 32 d = 64 d = 128 d = 256
Macro-F1 0.6931 0.6933 0.6982 0.6999 0.6974
Micro-F1 0.7112 0.7114 0.7154 0.7186 0.7156

meta-context aware node embeddings are then designed and optimized to represent prop-

erties of the nodes for different local heterogeneous contexts, thereby inferring the node

representations based on aggregations over the meta-context distributions. Extensive exper-

iments demonstrate that our proposed approach significantly outperforms state-of-the-art

heterogeneous network embedding methods across three general network mining tasks, in-

cluding multi-label node classification, node clustering, and link prediction. The reasons

and insights can be concluded as follows: (1) the algorithm of bidirectional extended ran-

dom walks effectively alleviates the bias for tail nodes with a theoretical guarantee; (2) the

effectiveness of meta-contexts and meta-context aware node embeddings implies that a node

can have distinct properties with different local heterogeneous contexts, which benefit the

network representation learning; (3) the nature of heterogeneous networks can be much dif-

ferent from the traits of homogeneous networks, so it is crucial to tackle the problems of

heterogeneous networks with specific and appropriate technologies.
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CHAPTER 6

Learning User Coresets to Accelerate Large-scale

Top-K Recommender Systems

Although many machine learning models can be trained within a short time based on some

tactics like negative sampling, they usually suffer from the stage of inferring predictions

because of the need of examining all candidates for high accuracy. To overcome this effi-

ciency bottleneck, it is essential to develop a robust approximation method without losing

precision for the inference stage of machine learning models. In this chapter, we focus on

accelerating the inference stage of latent vector models for top-K recommender systems. By

leveraging the structure of clustered user affinity groups, we propose to discover a coreset of

users to construct a preferred item set, thereby significantly reducing the number of ranking

candidates and speeding up the inference.

6.1 Introduction

Building large-scale personalized recommender systems has already become a core problem

in many online applications since the explosive growth of internet users in the recent decade.

For example, user-item recommender systems achieve many successes in e-commerce mar-

kets [220] while link prediction in social networks can be treated as a variant of recommender

systems [21, 314]. To establish recommender systems, latent factor models for collaborative

filtering have become popular because of their effectiveness and simplicity. More precisely,

each user or item can be represented as a low-dimensional vector in a latent space so that the

inner products between user and item vectors are capable of indicating the user-item prefer-
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ences. Furthermore, these latent vectors can then be learned by optimizing a loss function

with sufficient training data. For instance, matrix factorization [203] has been empirically

shown to outperform conventional nearest-neighbor based approaches in a wide range of

application domains [100].

After obtaining user and item latent vectors, to make item recommendations for each

user, recommender systems need to calculate the inner products for all user-item pairs. Al-

though learning user and item latent vectors is efficient and scalable for most existing models,

recommender systems can take an enormous amount of time in evaluating all user-item pairs.

More specifically, the time complexity of learning latent vectors is only proportional to the

number of user-item pairs in the training data which is a small subset of all possible user-

item pairs, but finding the top recommendations entails examining all O(mn) inner products

between all m users and n items. As a result, the quadratic complexity becomes a hurdle

for large-scale recommender systems. For example, it can take more than a day to compute

and rank all preference scores, and consequently the systems cannot be updated on a daily

basis [102]. In order to make large-scale recommender systems practical, it is critical to

accelerate the process of computing and ranking the inner products of user and item latent

vectors, in order to efficiently obtain the top-K recommendations for all users.

To accelerate the computation of inner products, the maximum inner product search

(MIPS) [249, 295, 359] is one of the feasible approaches. Locality sensitive hashing (LSH) [167]

and PCA tree [299] may be applied to solve MIPS after reducing the problem to nearest-

neighbor search. To reduce the computation for making recommendations for a given user,

one may find a small group of candidate items whose latent vectors have large inner products

with the user’s latent vector using clustering algorithms [61], or sort entries of each dimension

in the latent vectors separately by some greedy algorithms [102, 359]. In essence, most of the

existing MIPS algorithms adopt a two-stage strategy, decomposing the computation into a

preparation process and a prediction process. In the preparation stage, these methods will

construct suitable data structures [359] or reduce the number of ranking candidates [61], and

these prepared data structures are used to conduct efficient maximum inner product search
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for query vectors in the inference stage. However, most of these existing MIPS algorithms

have the following two weaknesses, making them often impractical for real applications: (1)

they only focus on optimizing the inference speed for a given user at the cost of considerable

preparation time, but for recommender systems, the overall execution time (including both

preparation and inference time) matters more because the system needs to be re-trained

frequently as new data arrive. (2) All the MIPS approaches aim to quickly identify the top

item set for any query vector. However, in recommender systems queries are not arbitrary

vectors. They are user latent factors and usually have very strong clustering structure, which

is ignored in most of the MIPS algorithms.

In order to speed up the overall execution time, our main idea is to exploit the relation-

ships between users. More precisely, users with similar latent factors are more likely to share

similar item preferences which may be reflected by their high inner products. However, ex-

isting methods for accelerating recommender systems do not consider user relationships and

the distribution of user latent vectors. For instance, existing greedy strategies [102, 359] only

consider the values of item latent vectors. Some studies based on proximity graphs [226, 366]

and clustering algorithms [61] also solely reduce the search space of items. In the inference

stage, these approaches treat the recommendation to each user as an independent query to

the data structures and algorithms. As a consequence, it can be extremely time-consuming,

especially with myriad users and enormous spaces of candidate items.

We propose a novel model for clustering and navigating for top-K recommenders (CANTOR)

that leverages the knowledge of user relationships to accelerate the process of generating rec-

ommendations for all users with a given latent factor model. CANTOR consists of two stages:

preparation and prediction. In the preparation stage, we aim to cluster users sharing similar

interests into affinity groups and compute a small set of preferred items for each affinity

group. More specifically, the user vectors (generated from a given latent factor model) are

used in clustering affinity groups. To further accelerate the preparation time, a user coreset

of few representative vectors are derived for each affinity group, and are used to obtain a

small set of preferred items for users in this group by an efficient approximate nearest neigh-
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bor search algorithm. Finally, in the prediction stage, the top-K recommendations for each

user can be retrieved by ranking these preferred items of the corresponding affinity group,

which can be done much more efficiently than evaluating and ranking all items.

Our contributions are three-fold: (1) To the best of our knowledge, this is the first work

to focus on the preparation time and user relationships for accelerating the prediction pro-

cess of large-scale top-K recommender systems. (2) Clustering users into affinity groups

based on the distribution of user latent vectors provides significant speedup of the prediction

process, compared to conventional approaches that independently deal with each user. The

representative vectors of the affinity groups offer a theoretically guaranteed precision for

users with similar preferences. Approximate nearest neighbor search is applied to efficiently

retrieve the satisfactory recommendations for each user from a small set of candidate items.

(3) Experiments conducted on six publicly available datasets demonstrate that CANTOR

can significantly accelerate large-scale top-K recommender systems for both item recommen-

dation and personalized link prediction. An in-depth analysis then indicates the robustness

and effectiveness of the proposed framework.

6.2 Problem Statement

In this section, we first introduce the notations and then formally define the objective of this

work. Suppose that we have an incomplete m× n one-class matrix R = {Rij} ∈ {0, 1}m×n,

where m and n are the numbers of users and items in the system. Rij = 1 if user i prefers

item j in the training data; otherwise, Rij = 0. Based on R, a matrix factorization based

algorithm learns d-dimensional user and item latent vectors, denoted by P ∈ Rm×d and

Q ∈ Rn×d respectively, where R̂ = PQT ∈ Rm×n reflects the underlying preferences. To

compute top-K recommendations for each user, we need to find items with the K highest

scores among R̂(i) = {R̂ij′ | j′ ∈ 1 . . .m}. Note that m = n for personalized link prediction

in social networks, where the goal is to suggest other users as recommended items.

Although matrix factorization models can be learned expeditiously when R is sparse,
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inferring the top-K recommendations requires computing and sorting the scores R̂ij of all

items j for each user i. As a result, the inference process can be time-consuming with an

O(nmd) time complexity which becomes intractable when n and m are large. To address

this problem, our goal is to speed up the inference time of top-K recommenders with a

high precision. More specifically, given the trained matrices P and Q, we aim to propose an

efficient approach that approximates the top-K recommended items for each user.

6.3 Constructing User Coresets for Top-K Recommender Systems

In this section, we present CANTOR for accelerating top-K recommender systems, starting

with several key preliminary ideas.

6.3.1 Preliminary

In order to leverage the relationship between users, we first formally define the affinity groups

of users in recommender systems as follows:

Definition 6.1. (Affinity Group) An affinity group At is a set of users sharing similar

interests in items. Even though any similarity metrics may be used, we adopt cosine similarity

as the metric to define the affinity groups.

By this definition, the sets of satisfactory recommendations should be similar for users in the

same affinity group. This suggests that the top recommendations for all users in an affinity

group are confined to a small subset of the items and such item subset can be learned by

examining only a few carefully selected users in the group, leading to the following definition

of the preferred item set.

Definition 6.2. (Preferred Item Set) A preferred item set c for an affinity group is a set of

(potentially) satisfactory items for the users in the group, and the size of the preferred item

set is usually much smaller than the total number of items, i.e., | c | � n.

Therefore, we only need to examine the preferred item set to generate top recommendations,
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leading to significant time saving overs the alternative of examining all items.

In order to robustly generate the preferred item set for each affinity group, we generate

a few representatives from the group to compute the preferred item set. This is statistically

more robust than using only the “centroid” user in the latent space, and is more computa-

tionally efficient than using all users in the group.

Definition 6.3. (User Coreset of an Affinity Group) A δ-user coreset st of an affinity group

At is a (small) set of latent representative vectors to preserve the item preference of the users

in At such that ∀q ∈ Q, i ∈ At:

∣∣piqT −Nst (pi) q
T
∣∣ ≤ δ,

where Nst (pi) ∈ st is the nearest coreset representative for pi; δ > 0 is a small enough

constant.

The user interests in the affinity group can be well captured by the representative vectors in

the user coreset. Note that the representative vectors do not have to be identical to actual

user latent vectors in the group.

6.3.2 Framework Overview

Figure 6.1 shows the general framework of CANTOR. The framework consists of two stages:

preparation and prediction. In the preparation stage as shown in Algorithm 6.1, the m user

latent vectors P are first sub-sampled as P̂ and clustered into r affinity groups At with a

centroid vector vt computed from the corresponding user vectors Pt, where t = 1 . . . r. For

each affinity group At, we aim at deriving a small user coreset st. To do so, we propose an

adaptive representative selection method (Algorithm 6.2) to greedily construct a set cover of

user latent vectors for each affinity group after mathematically proving that the set covers

can be the coresets of affinity groups. Finally, a small preferred item set ct can be obtained

by approximate nearest neighbor search using its coreset st for each affinity group. In the

prediction stage (Algorithm 6.4), CANTOR first locates the corresponding affinity group At
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Figure 6.1: The general framework of the proposed clustering and navigating for top-K
recommenders (CANTOR).

for each user and then ranks the small number of items in the preferred item set ct, thereby

efficiently providing satisfactory recommendations.

6.3.3 Preparation Stage

To overcome the hurdle of extremely long preparation time experienced by conventional

methods, we propose to exploit similarities between user vectors in the latent space for

acceleration as shown in Algorithm 6.1.

Affinity Group Modeling by User Clustering. Most of the conventional algorithms only

rely on similarities of item latent vectors [293] and proximity graphs [134, 366] to accelerate

the recommendation, and have not used the relationships between users and the distributions

of user latent vectors in this endeavor. To exploit the knowledge of user relationships, we

propose a clustering based framework to model user affinity groups.
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Algorithm 6.1: Preparation Process for CANTOR

Input: User latent vectors P; item latent vectors Q; degree of each user degmi=1; the
number of desired recommendation K

Output: Centroid vectors vt and preferred item sets ct for each affinity cluster At

for t = 1 . . . r.
1 Hyperparameter: Number of affinity groups r; small world graph search size efs.;

number of sub-sampled users u;

2 P̂ = Multinomial Sampling(P, degmi=1, u); P̂ ∈ Ru×d ;
3 v1, · · · , vr = 0; I = 0, I ∈ Ru×1 ;
4 repeat
5 for i = 1, · · · , r do

6 vi =
∑

j∈{j|I[j]=i} P̂[j] ;

7 vi = vi / ‖ vi ‖2 ;

8 I = arg maxt vT
t P̂ ;

9 until Convergence;
10 G = CreateProximityGraph(Q, efs);
11 c1, . . . , cr = ∅, . . . , ∅ ;

12 I = arg maxt vT
t P̂ ;

13 for i = 1, · · · , r do

14 P̂i =
{
pj | pj ∈ P̂, I[j] = i

}
;

15 si = AdaptiveClustering(P̂i, ε, w) ;
16 for q ∈ si do

17 Îi = QueryProximityGraph(G, s, K) ;

18 ci = ct ∪Îi ;

19 return ct,vt for all t = 1, · · · , r.

Let r be the number of affinity groups for all m users, where r is a hyperparameter in

CANTOR. We partition all m users into r disjoint clusters as the affinity groups A = {At |
t = 1 . . . r} based on the user latent vectors P = {pi | i = 1 . . .m}. In addition, each affinity

group At has a centroid vector vt ∈ Rd in the latent space. Each user i with the latent vector

pi belongs to Az(pi), where z(pi) is the affinity group indicator represented as:

z(pi) = arg max
r

T
v
r
pi. (6.1)
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Let C(pi, K) be the top-K preferred items for user i which is defined as:

{j | pTi qj ≥ pTi qj′ ,∀j′ /∈ C(pi, K) and |C(pi, K)| = K},

where qj ∈ Q is the latent vector of item j. Intuitively, if users i and k are in the same affinity

group, their preferred sets C(pi, K) and C(pk, K) may have substantial overlap because of

their similar interests. This motivates us to compute a preferred item set ct for users in

the same affinity group At so that each ct contains only a small subset of all n items, i.e.,

| ct | � n. Instead of computing the inner products between pk and all item latent factors

q ∈ Q, we can narrow down the candidate set to be ct, and only evaluate the items in ct to

find the top-K predictions for user k.

Since our task is to accelerate the maximum inner product search, the centriod vector vt

for each affinity group At can then be updated by the maximum cosine similarity criteria as:

v
t

=

∑|Pt |
i=1 Pti

‖∑|Pt |
i=1 Pti ‖2

, (6.2)

where Pt = {pi | z(pi) = t} contains the latent vectors of users that belong to the affinity

group At. Therefore, each affinity group At can obtain a centroid vector vt by iteratively

running Equations (6.1) and (6.2). However, iteratively performing Equations (6.1) and (6.2)

can still cost a long computational time when the number of users m is large. To address

this issue, we propose to sub-sample a portion of the m user latent vectors to learn the

centroid vectors. Moreover, we sample the latent vectors based on the degree distribution

in the one-class matrix R. For example, Figure 6.2a shows that degree distribution of users

usually follows a power-law distribution. Hence, instead of using a uniform sampling, we

sample user i with a probability proportional to a log function of its degree as:

P (X = i) ∝ log
n∑

j=1

Rij, (6.3)

where X denotes the random variable of the target sampling process. We will later show
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Figure 6.2: The distributions of users and items over different degrees in the Amazon dataset.

in Theorem 6.2 that error of approximation based on sub-sampling will be asymptotically

bounded.

After learning the centroids v1, · · · , vr ∈ Rd and the corresponding user latent vectors

P1, · · · ,Pr for r affinity groups A1, · · · ,Ar, the preferred item set ct for each group At can

be constructed so that user vectors Pt only need to search over this set of preferred items

for top recommendations. However, the näıve approach to generate ct would require O(nd)

operations to examine all n items in order to derive the top candidates for each user in At.

Each affinity group At would need O(|Pt |nd) operations for considering all |Pt | users in the

group to construct the preferred item set ct.

Coreset Construction as Finding a Set Cover. To accelerate the process of constructing

the preferred item set ct for an affinity group At, we want to find a δ-user coreset of At, and

use it only instead of whole At to construct ct. We achieve this by first defining the idea of

ε-set cover, and then show that each ε-set cover corresponds to a δ-coreset.

Definition 6.4. (ε-Set Cover) st is an ε-cover of Pt if ∃Nst(p) ∈ st so that Nst(p)p
T ≥ ε for

all p ∈ Pt, where ε is a real number, and Nst (pi) ∈ st denotes the nearest vector in st of pi.

Theorem 6.1. Given an ε-cover st of At, there exists a δ such that ε-cover st is a δ-user

coreset of the affinity group At.
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The proof is shown in Appendix C.1. Therefore, we could construct a user coreset with an

arbitrarily small δ by finding a cover with a greater ε.

Another nice property is that we could find an ε-set cover on sampled subset of P and

generalize asymptotically with bounded error. Denote PAt to be same sampling process of P

generating user vectors pi belonging to At. We will have following result:

Theorem 6.2. For an affinity group At, given any query q, an ε-cover of k samples {pi}
drawn from PAt would satisfy following inequality with probability at least 1− γ:

min
i

(∣∣Nst (pi) q
T − ptqT

∣∣) ≤ δ +

√
2 log (1/γ)

k
.

Note that we demonstrate the proof in Appendix C.2.

Theorem 6.2 indicates that we could construct an ε-cover of sub-sampled vectors to have

an asymptotically guaranteed difference of inner-product values to true distributions within

the same affinity group. Consequently, our task becomes finding an ε-cover of all Ats and

constructing the preferred item set ct of it. Hence, we propose a fast adaptive representative

selection method to efficiently construct an ε-cover with sub-sampled user latent vectors

for each affinity group as summarized in Algorithm 6.2. For each affinity group At, the

adaptive representative selection method is applied to obtain a few representative ε-cover

st. If there exists at least one user whose latent vector has cosine similarity lower than ε

to all representative vectors, the algorithm iteratively generates more representatives until

every user has high cosine similarity to at least one representative vector. As a result, the

number of ε-cover | st | must be less than or equal to the number of user vectors in the cluster

|Pt |, and in practice, | st | � |Pt | in most cases. Note that the adaptive representative

selection method is applied on each affinity group At independently. Next, the ε-cover st

will be utilized to construct the preferred item set to reduce complexity from O(|Pt |nd) to

O(| st |nd).

Proximity Graph Navigation for Preferred Item Set Construction. To avoid ex-
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Algorithm 6.2: Adaptive Representative Selection

Input: User latent vectors for an affinity group P, the number of iterations T , the
threshold ε, the number of new representatives w ;

Output: Representative vectors s.
1 Initialize s = ∅ ;
2 I = arg maxt sT P ;
3 repeat
4 for i = 1 . . . | s | do
5 si =

∑
j∈{j|I[j]=i} P[j] ;

6 si = si / ‖ si ‖2 ;

7 I = arg maxt sT P ;
8 Outliers = {j| sTI[j] Pj < ε} ;

9 for j ∈ Outliers do
10 Draw i from 1 . . . w ;
11 I[j] = | s | + i ;

12 if Outliers 6= ∅ then
13 Append w vectors to s ;

14 until Outliers = ∅;
15 Outliers = {j| sTI[j] Pj < ε} ;

16 Append POutliers to s ;
17 return s.

amining all n items (O(nd) complexity) in preferred item set construction, we apply an

approximate nearest neighbor search (ANNS) method to accelerate the computation. We

adopt a model based on proximity graphs [226, 366] which has shown the state-of-the-art

performance in ANNS. Specifically, a proximity graph is generated in which item vectors are

nodes and nodes of similar item vectors are connected by edges. Since the item degree in

recommender systems tends to follow a power-law distribution as illustrated in Figure 6.2b,

this proximity graph has the small world properties [40] with sparse edges that offer high

reachability between nodes. Hence, we apply the model of hierarchical navigable small world

graphs [225, 226] to obtain the preferred item set ct for each affinity group At.

To construct the proximity graph of item vectors Q as a hierarchical small world graph G,

we iteratively insert the item vectors into the graph, where each node q has a list E(q) of at

most efs approximate nearest neighbors that could be dynamically updated when inserting

other item vectors, where efs is a hyperparameter. In addition, the edges in the graph are
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Algorithm 6.3: QueryProximityGraph

Input: Hierarchical small world graph G; the query vector q; the number of the
output approximate nearest neighbors K

Output: K nearest vectors in G
1 p = Randomly select an entry node in G ;
2 for l = 1 to L do
3 p = arg maxr∈{p′|p′ E(p,l)} q

Tr;

4 return K Nearest Nodes in E(p, L) to q ;

organized as a hierarchy so that edges connecting items that have a high inner product

value of their corresponding item vectors are at the bottom layers and edges connecting

items whose vectors have low inner product values are at the top layers, thereby shrinking

the search spaces for nearest neighbors. Let L(e) denote the corresponding layer of edge

e. Given two edges ei and ej, if L(ei) > L(ej), then the nodes connected by edge ei has

a smaller inner product score than that of edge ej. For simplicity, let E(q, l) denote the

list of nodes connected to node q by edges in the l-th layer. Finally, the hierarchical small

world graph G of item vectors Q can be constructed in O(dn log n) [226, 366], where n is the

total number of items; efs is treated a constant hyperparameter. Note that efs controls the

trade-off between efficiency and accuracy for searching nearest neighbors because it decides

the size of search space and the potential coverage of real nearest neighbors.

The hierarchical small world graph G provides the capability of efficiently querying K

nearest neighbors of a vector q with a hierarchical greedy search algorithm. More specifically,

we can greedily traverse the graph G by navigating the query vector from the bottom layer

to the top layer to derive K approximate nearest neighbors to q as shown in Algorithm 6.3

with a O(d log n) time complexity for each query. For each affinity group At, we perform a

small world graph query to approximate C(st,i, K) for each representative vector st,i ∈ st.

The preferred item set ct can then be constructed by taking the union operation to individual

top-k sets as

c
t

=

|st|⋃
i=1

C(st,i, K). (6.4)
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Algorithm 6.4: Prediction Process for CANTOR

Input: User latent vectors pi; item latent vectors Q; Number of top
recommendations K

Output: The indices of estimated top-K recommendations for the user i.
1 z(pi) = arg maxt vT

t pi ;

2 logits = pTi Q
[
cz(pi)

]
;

3 topIndices = argsort(logits, K) ;
4 return topIndices.

6.3.4 Prediction Stage

To predict top recommendations for a user with the latent vector pi, CANTOR relies on the

clustering model parameterized by the centroid vector vt ∈ Rd and the preferred item set ct

for each affinity group At. More precisely, we first compute the affinity group indicator z(p)

as:

z(pi) = arg max
r

T
v
r
pi, (6.5)

and evaluate full vector matrix product pT QI over the corresponding item vectors of the

preferred item set QI , I = {j|j ∈ cz(pi)}. The computed results are then sorted to provide

the final top-K recommendations for the user. Algorithm 6.4 shows the procedure of the

prediction process.

6.4 Experiments

In this section, we conduct extensive experiments and in-depth analysis to demonstrate the

performance of CANTOR.

6.4.1 Experimental Settings

Experimental Datasets. We evaluate the performance in two common tasks: item rec-

ommendation and personalized link prediction, using six publicly available real-world large-
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Table 6.1: The statistics of six experimental datasets. Note that the personalized link
prediction problem can be mapped to an item recommendation problem by treating each user
as an item and recommending other users to a user in a similar way to that of recommending
items to a user, and in this case the numbers of users and items are equal.

Task Item Recommendation

Dataset MovieLens Last.fm Amazon

#(Users) 138,493 359,293 2,146,057

#(Items) 26,744 160,153 1,230,915

Task Personalized Link Prediction

Dataset YouTube Flickr Wikipedia

#(Users) 1,503,841 1,580,291 1,682,759

#(Items) 1,503,841 1,580,291 1,682,759

scale datasets as shown in Table 6.1. For the task of item recommendation, the MovieLens

20M dataset (MovieLens) [147] consists of 20-million ratings between users and movies;

the Last.fm 360K dataset (Last.fm) [53] contains the preferred artists of about 360K users;

the dataset of Amazon ratings (Amazon) includes ratings between millions of users and

items [204]. For the task of personalized link prediction, we follow the previous study [102]

to construct three social networks among users: YouTube, Flickr, and Wikipedia [204]. Note

that four of the six experimental datasets, Amazon, YouTube, Flickr, and Wikipedia, are

available in the Koblenz Network Collection [204].

Evaluation Metrics. To measure the quality of an approximate algorithm for top-K

recommendation we evaluate the top-K approximated recommendations with Precision@K

(P@K), which is defined by
1

m

∑
i

|Y i
K ∩ Si

K |
K

,

where Y i
K and Si

K are the top-K items computed by the approximate algorithm and full

inner-product computations for user i; m is the number of users. To measure the speed of

each algorithm, we report the speedup defined by the ratio of wall clock time consumed by

the full set of O(mn) inner products to find the top-K recommendations divided by the wall

clock time of the approximate algorithm.
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Baseline Methods. To evaluate our proposed CANTOR, we consider the following five

algorithms as the baseline methods for comparison.

• ε-approximate link prediction (ε-Approx) [102] sorts entries of the latent factor for each

dimension to construct a guaranteed approximation of full inner products.

• Greedy-MIPS (GMIPS) [359] is a greedy algorithm for solving the MIPS problem with a

trade-off controlled by varying a computational budget parameter in the algorithm.

• SVD-softmax (SVDS) [293] is a low-rank approximation approach for fast softmax com-

putation. We vary the rank of SVD to control the trade-off between prediction speed and

accuracy.

• Fast Graph Decoder (FGD) [366] directly applies small world graph on all items Q and

navigates to derive recommended items with user latent vectors as queries on the proximity

graph. It also serves a direct baseline of only using proximity graph navigation.

• Learning to Screen (L2S) [61] is the first clustering-based method on fast prediction in NLP

tasks with the state-of-the-art results on inference time but suffers from long preparation

time. CANTOR is inspired by the clustering step in L2S, thus L2S serves as a direct

baseline. In our implementation, random sub-sampling is applied to choose a subset of

users for training L2S.

Note that [359] has shown that Greedy-MIPS outperforms other MIPS algorithms in-

cluding LSH-MIPS [249, 295], Sampling MIPS [27] and PCA-MIPS [20], so we omit those

other MIPS algorithms in our comparisons. Although bandit-based methods [126, 214, 215]

have elegant mathematical properties and theoretical bounds, we did not include them orig-

inally because they generally perform worse than other methods in practical cases. For

example, SCLUB [215], which is one of the state-of-the-art bandit-based approaches, only

achieves 0.81x and 0.62x speedups on the Amazon and Wikipedia datasets with the offi-

cial implementations. This is because bandit-based methods independently manipulate each

dimension and cannot benefit from low-level optimization for linear algebra operations.

Implementation Details. For each dataset, the LIBMF library [66] is used to train a

non-negative MF (NMF) model. More specifically, the number of dimensions for latent
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vectors is 10 while the models are trained with all data for 100 iterations. Note that we

adopt NMF models because of the restrictions of ε-Approx, but CANTOR does not have

any limitation on matrix types. We implement CANTOR in Python with NumPy optimized

by BLAS [33]. For the baseline methods, the implementations of GMIPS, SVDS, FGD, and

L2S are provided by the original authors and highly-optimized while we utilize an efficient

C++ implementation of ε-Approx. All experiments were run on a 64-bit Linux Ubuntu 16.04

server with 512 GB memory and single thread regime on an Intel® Xeon® CPU E5-2698 v4

2.2 GHz.

Hyperparameters in CANTOR. For the general settings of hyperparameters in CAN-

TOR, we fix the number of sub-sampled user latent vectors u as 50,000 and the number

of clusters r as 8. For adaptive representative selection, we set the number of iterations in

the adaptive selection T as 10 and the similarity threshold ε as 0.99. The number of new

representatives w in adaptive representative selection algorithm is set as 8. We also tune

the size of dynamic nearest neighbor lists efs in the construction of hierarchical small world

graphs for each dataset to achieve acceptable accuracy scores. As a result, the selections of

efs are 200, 200, 1,500, 500, 1,500, and 100 for the datasets MovieLens, Last.fm, Amazon,

YouTube, Flickr, and Wikipedia, respectively.

6.4.2 Performance Comparison

To fairly compare the performance, for each dataset, we tune the parameters such that

each method can roughly achieve 0.99 P@1 accuracy. Table 6.2 shows the efficiency and

the precision scores of CANTOR and all baseline methods on six datasets. Note that since

the open-sourced library of GMIPS does not provide the breakdown of execution time into

preparation and prediction time, the reported time includes both preparation and prediction

processes. Among the baseline methods, FGD performs the best because it exploits the state-

of-the-art algorithm for approximate nearest neighbor search to retrieve recommendations

for each user. Although L2S is the most efficient baseline in the inference process, its

preparation process is slow so that the overall speedup is further degraded. SVDS can
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Table 6.2: Comparisons of top-K recommendation results on six datasets in two tasks.
Note that P@K measures the precision of approximating the top-K recommendations of
full inner-product computations. SU indicates the ratio of speedup based on the original
full inner product time of inferring top-K recommendations. For example, 9.4x means the
computation time of the method is 9.4 times faster than the full inner product computation
time. PT means the preparation time and IT represents the inference time in prediction
process. The time units of seconds, minutes, and hours are represented as s, m, and h,
respectively. Computation time of the full inner product method for each dataset is 71s
(MovieLens), 1,017s (Last.fm), 92,828s (Amazon), 56,824s (Youtube), 71,653s (Flickr), and
72,723s (Wikipedia).

Task Item Recommendation
Dataset MovieLens Last.fm Amazon
Method SU PT IT P@1 P@5 SU PT IT P@1 P@5 SU PT IT P@1 P@5
ε-Approx 0.7x 0.19s 99.00s 0.753 0.671 0.5x 1.40s 36.78m 0.378 0.467 0.2x 23.42s 107.34h 0.529 0.559
GMIPS 3.9x N/A 18.41s 1.000 0.972 2.3x N/A 7.55m 0.997 0.966 1.8x N/A 14.57h 0.993 0.952
SVDS 1.0x 0.10s 69.00s 1.000 1.000 0.9x 0.10s 19.25m 0.984 0.984 1.3x 5.32s 19.46h 0.952 0.953
FGD 2.8x 4.94s 20.10s 1.000 0.999 10.9x 0.49m 1.07m 0.997 0.988 19.7x 42.76m 35.83m 0.986 0.977
L2S 3.0x 22.15s 1.72s 1.000 1.000 9.0x 1.77m 0.12m 0.993 0.980 21.2x 71.02m 1.86m 0.988 0.979

CANTOR 9.4x 6.17s 1.36s 1.000 0.999 37.1x 0.37m 0.09m 0.999 0.998 29.0x 52.13m 1.26m 0.994 0.991

Task Personalized Link Prediction
Dataset YouTube Flickr Wikipedia
Method SU PT IT P@1 P@5 SU PT IT P@1 P@5 SU PT IT P@1 P@5
ε-Approx 0.1x 0.3m 129.2h 0.364 0.432 0.4x 0.29m 53.44h 0.545 0.581 0.2x 0.39m 130.61h 0.374 0.480
GMIPS 1.4x N/A 11.12h 0.987 0.965 2.0x N/A 10.10h 0.987 0.962 3.6x N/A 5.64h 0.991 0.974
SVDS 1.0x 0.03m 15.30h 0.965 0.963 1.4x 0.03m 14.00h 0.952 0.946 1.4x 0.03m 14.83h 0.949 0.944
FGD 44.8x 10.28m 10.85m 0.989 0.981 37.5x 17.61m 14.25m 0.985 0.980 93.7x 4.18m 8.76m 0.990 0.985
L2S 6.9x 135.93m 0.79m 0.984 0.968 8.3x 142.84m 0.58m 0.989 0.980 22.4x 53.38m 0.84m 0.988 0.968

CANTOR 112.7x 7.75m 0.65m 0.993 0.985 54.7x 21.31m 0.53m 0.994 0.990 355.1x 2.45m 0.97m 0.995 0.991

efficiently decompose the preference matrix as its preparation process, but it still requires

to examine all items many times to achieve sufficient accuracy so that the acceleration is

unsatisfactory. In addition, it is worth noting that, although ε-Approx theoretically needs

fewer multiplications than the full evaluation, it actually does not provide any acceleration in

practice. Similar to bandit-based methods, this is because each dimension is independently

processed so that the model cannot benefit from any low-level optimization for linear algebra

operations.

Our approach CANTOR significantly outperforms all of the baseline methods in accel-

erating the overall execution time to provide top-K recommendations in all datasets. More

specifically, CANTOR has similar inference time for the prediction process to that of L2S

(that also reduces the candidate item sets for less computation) but the preparation process

of CANTOR is much faster. This is because similarities between user latent vectors are well

leveraged to avoid unnecessary and redundant computation.
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Figure 6.3: The ratios of speedup and the P@1 scores of CANTOR over different numbers
of sampled users u in six datasets.

6.4.3 Number of Sub-Sampled User Latent Vectors

Since only a small subset of user latent vectors will be sub-sampled for user clustering,

we verify how the number of sub-sampled users affects the performance in both efficiency

and accuracy. Figure 6.3 illustrates the P@1 scores and the ratios of speedup of CANTOR

for different numbers of sampled users in six datasets. It is obvious that smaller number

of sampled user latent vectors is accompanied with greater speedup and lower P@1 score.

However, CANTOR can generally achieve 99% P@1 scores after sampling more than around

104 users in all datasets. In other words, the distribution of the whole dataset can be

preserved by sampling a small portion of users. For example, the Wikipedia dataset needs

to sample only 5% of all users for high accuracy of recommendations.

6.4.4 Trade-off in Proximity Graph Construction

Proximity graph plays an important rule in CANTOR while the hyperparameter efs con-

trols a trade-off between the efficiency and accuracy for generating the preferred item sets.

103



Figure 6.4 depicts the P@1 scores and the speedup ratios of CANTOR for different efs in six

datasets. Obviously, a too-small efs leads to unsatisfactory approximation and low accuracy

scores. More precisely, the P@1 scores considerably drops when efs is below 102. On the

other hand, CANTOR works well when efs is greater than 103 in all datasets. Hence, we

suggest to tune efs in the range between 102 and 103 to reach a balance between efficiency

and accuracy.
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Figure 6.4: The ratios of speedup and the P@1 scores of CANTOR over different sizes of
the hyperparameter efs in six datasets.

6.4.5 Number of Affinity Groups

Figure 6.5 shows the performance of CANTOR with different numbers of user affinity groups

r in six datasets. When there are more affinity groups, the sizes of preferred item sets shrink

because of fewer representative vectors for each cluster. As a consequence, CANTOR with

larger group numbers considers fewer items in each affinity group, thereby achieving greater

speedup. It is also noted that the great speedup comes with slight drop in accuracy. For

example, there is only a 0.1% drop from r = 2 to r = 16. From these results, we suggest to
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Figure 6.5: The ratios of speedup and the P@1 scores of CANTOR over different numbers
of affinity groups r in six datasets.

set the number of user clusters r as a reasonable large number.

6.4.6 Effectiveness of Adaptive Representative Selection

The adaptive representative selection (ARS) method as shown in Algorithm 6.2 is important

for CANTOR to accelerate the preparation process, so we also evaluate its effectiveness and

robustness. Figure 6.6 illustrates the preparation time of CANTOR in six datasets with

and without applying ARS. As a result, CANTOR using adaptive representative selection

significantly outperforms the one without using ARS across all datasets when achieving

similar accuracy. This further demonstrates the effectiveness and robustness of the adaptive

representative selection method.
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Figure 6.6: The preparation time of CANTOR with (w/) and without (w/o) the adaptive
representative selection method (ARS) in six datasets.

6.5 Conclusions

In this chapter, we propose a novel framework for accelerating large-scale top-K recom-

mender systems by exploiting user relationships and the redundancy of user vectors in the

latent space. Our model, CAN TOR, first clusters users into affinity groups, thereby de-

termining as a user coreset of representative vectors for each group so that only a limited

number of preferred items need to be examined for the users in the affinity group. Moreover,

we mathematically prove that user coresets can be efficiently constructed by set covers of

sub-sampled user latent vectors with an asymptotically guaranteed bound. Experimental

results demonstrate that CANTOR significantly outperforms existing MIPS and approxi-

mate MF algorithms for accelerating top-K recommender systems. In particular, CANTOR

achieves 355x and 29x speedup on the largest Wikipedia and Amazon datasets in two tasks

while the accuracy scores still remain to be 99% for both P@1 and P@5. Moreover, the

results of analysis also show the effectiveness and robustness of CANTOR.
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CHAPTER 7

Efficient Signature Profiling in Genomic Data

With massive datasets in the era of big data, efficient data management also becomes an

inevitable part of modeling human behaviors with those data. In this chapter, we use

signature profiling in genomic data as an example to demonstrate how to efficiently manage

sequence data and retrieve significant patterns in any incoming queries.

7.1 Introduction

K -mer profiling is a widely used technique to decipher relevant knowledge from sequencing

data. These k -mers are short consecutive substring of a genomic sequence, and represent

certain signatures to characterize different genomes or different regions in one genome. In-

stead of alignment, existing lightweight approaches pre-compute a searchable database of

k -mers representing the “signatures,” and count the occurrences of these signatures in se-

quencing data. RNA and metagenomic sequencing are the predominant fields that use k -mer

approaches. To name a few methods, Sailfish [261], RNA-Skim [371], and Kallisto [43] are

the prevalent methods for RNA-Seq transcript quantification; LMAT [10] and Kraken [344]

present efficient strategies to assign taxonomic labels for each metagenomic read. Other

k -mer applications include studying the CpG island evolution in mammalian genomes using

k -mer and k -flank patterns [55], comparing k -mer profiles of family trios to detect disease-

causing variants [285], and mining differentially occurred k -mers between cases and controls

for association mapping [273].

Most of the existing applications employ a set of fixed-size k -mers; however, selecting

the appropriate k is challenging. If a k -mer is too long, it can fail to map a read with
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sequencing errors. On the other hand, if a k -mer is too short, it can appear everywhere

in the read data. In addition, the best k to characterize different genomic regions can

vary. Several genome assemblers, such as SPAdes [28], Velvet [362], and SOAPdenovo [349],

recognize the impact of k -mer sizes and consider building the de Bruijn graph with different

sizes of k -mers. Chae et al. [55] have shown that it is necessary to consider patterns of

3- to 10-mers to construct the phylogenetic tree. Rahman et al. [273] have proposed to

merge the differentially occurred k -mers to form longer sequences, resulting in variable-length

sequences, for downstream analysis. Ju et al. [184] have also demonstrated the advantage

of using variable-length k -mers for transcript abundance quantification. To the best of our

knowledge, there are two existing approaches capable of generating variable-length k -mers

as a set of signatures of interests. One exploits the suffix-tree structure to discover the

shortest uncommon substrings [184], which represent the signatures of different transcript

sequences. The other employs a pattern-growth approach to generate frequent k -mers of

variable sizes, vl -mers [364], for both DNA and protein sequences. Despite the efforts in

discovering variable-length k -mers in DNA sequences, current k -mer counters are optimized

to process k -mers of a fixed length. Inevitably, it is critical to have a feasible data structure

to store k -mers of different sizes, and to analyze sequencing data efficiently and accurately.

Given a set of k -mers with the same size, a straightforward counting method is to index

the given k -mers with a hash table, and scan through read sequences with a fixed-size

window. If a set contains k -mers of different sizes, the read sequences need to be scanned

multiple times with different k ’s. This repetition limits the analysis to evaluate only a small

range of k ’s. An alternative approach is to use existing efficient k -mer counting algorithms.

Read sequences are first indexed and stored as k -mers, and the number of occurrences of

each k -mer can be computed from the index. One of these counters, Jellyfish [228], has

been widely used as the underlying structure for Sailfish, Kraken, and DIAMUND [285].

Squeakr [259] is a newly developed algorithm that also employs the thread-safe approach to

efficiently query the counts of a specific k -mer. In addition, probabilistic hashing is commonly

used in k -mer counting. Its implementations include BFCounter [236] and khmer [367].
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Disk-based hashing is another popular technique, and its related algorithms are DSK [279],

MSPkmerCounter [216] and KMC [90, 91, 202]. Other data structures include burst

tries used in KCMBT [227], and suffix-array structures employed in Tallymer [205] and

MSBWT [156]. Several of these implementations, such as khmer and KCMBT, restrict the

choice of k to fall in a threshold to mitigate the memory consumption and running time.

Suffix-array based approach is the only one that presents the potential to process k -mers of

variable lengths. All other methods are designed to process sequences with a fixed k. Thus,

repeating the counting for different k’s is unavoidable.

Computing the frequencies of a set of k -mers with different sizes can be reduced to a

multiple pattern matching problem [248] in computer science. A linear solution to scan

the reads once is the Aho-Corasick algorithm [5], which constructs a tree automaton upon

the trie of keywords. In this trie, there are additional links between internal nodes to

facilitate the k -mer matching without backtracking, i.e., jumping back and forth of the

query sequence. A drawback of maintaining this automaton is the memory requirement for

storing long or large number of k -mers. As we increase the number or the length of k -

mers, the tree grows wider and deeper respectively, which generates more nodes and links to

facilitate the traversal. In addition, larger k -mers are usually more diverse and have shorter

common prefixes, requiring more space for k -mer representation. Fortunately, the concise

representation of DNA molecules allows further reduction in memory requirement of this

automaton. Since these k -mers are composed of only four different characters: A, C, G, and

T, they can be succinctly represented in a binary format. Traditionally, each nucleotide is

encoded into two bits for its binary representation. Here, we propose to use an even more

concise representation with one bit. We partition these four characters into two groups,

and use one bit, i.e., 0 or 1, to represent them. This binarized representation allows us

to significantly shrink the structure of the trie, and to substantially reduce the memory.

The degenerated representation can cause collisions where different k -mers are encoded with

identical binarized representation. To avoid this collision, each node on the tree contains a

hash table to facilitate recovering the original k -mers.
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It is important to note that the goal of our work is not to compute the frequencies of all

possible k -mers with different sizes, but to profile a pre-defined set of variable-length k -mers

as signatures in sequencing reads. The focus of our work is also different from assembling

reads with variable sizes of k -mers. An example of a pre-defined set can contain the ge-

netic markers of different microorganism in metagenomic studies. Since the term signatures

here refer to a set of representative k -mers, we use these two terminologies interchangeably

throughout this chapter. Our contributions are four-fold. First, we emphasize the needs

of having a viable data structure to store and to profile k -mers of different sizes in DNA

sequences. Second, to the best of our knowledge, this is the first work to profile a vast

amount of pre-defined set of variable-length k -mers simultaneously in genomic data. We

propose to apply the Aho-Corasick algorithm with a memory efficient automaton. Third, we

leverage the properties of DNA sequence to construct an efficient in-memory structure, and

employ the rolling hash technique to accelerate the match. Fourth, we adapt existing k -mer

counters to perform the same task, and conduct a comprehensive analysis over 13 different

methods. Results show that our method, TahcoRoll is more efficient in profiling signatures

with a wide range of sizes than conventional k -mer counters. It is also resistant to the change

of read length and quantity. The parallelization of TahcoRoll has demonstrated a promis-

ing improvement over different number of threads, where the parallelizations of KMCs and

MSBWT are constrained by the disk I/O. Most importantly, TahcoRoll is able to analyze

reads from Illumina, PacBio, and Oxford Nanopore on a commodity desktop computer while

KMC3 and MSBWT fail on long reads.

7.2 Materials and Methods

We propose the thinned Aho-Corasick automaton accelerated by rolling hash (TahcoRoll)

to profile variable-length k -mers in genomic data. In this section, we formally define the

problem of signature profiling, and provide the details of our algorithm. We also describe

how we adapt different k -mer counters to account for a set of variable-length k -mers. Lastly,

we report the source of different datasets.
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Figure 7.1: An example with five signatures and two sequencing reads in signature profiling.
Each segment represents an occurrence of the corresponding signature in the read.

7.2.1 Problem Statement

We focus on counting the occurrences of a set of representative k -mers instead of all pos-

sible variable-length k -mers because of the following two reasons. First, the number of all

variable-length k -mers in a DNA sequence is huge. More specifically, the lower-bound of

time complexity to examine all occurrences of possible k -mers with different k is at least

O(L2) for a read of length L. Second, there are existing works [184, 364] that focus on the

discovery of relevant variable-length k -mers for different applications. Given a list of these

signatures, it is not necessary to profile all possible variable-length k -mers.

Suppose that P is the set of representative k -mers as signatures, where the length k

is different across the set. Given a set of sequencing reads T , our goal is to profile the

occurrences of each signature p ∈ P . Note that the lengths of occurred patterns are

shorter than the read length. More formally, for each signature p ∈ P , we aim to de-

velop an efficient algorithm to compute the number of overall occurrences cp is: cp =∑
t∈T |{i | t [i . . . i+ |p| − 1] = p, 1 ≤ i ≤ |t| − |p|+ 1}| , where |p| and |t| indicate the lengths

of the signature p and the sequencing read t, and t [i . . . j] denotes the substring of t

from the i-th to the j-th character. Figure 7.1 shows an example with five signatures

P = {ATT, CA, TTC, ACAT, TG} and two sequencing reads T = {AATTCACAT, ATTCAGATGC}.
Each segment indicates an occurrence in the read for the corresponding signature. Occur-

rences can overlap with each other. A signature could have multiple occurrences in a single

read (e.g., CA) or across the set of reads (e.g., ATT). For each signature p ∈ P , occurrences
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Figure 7.2: The automaton of AC with five signatures. Black solid links are trie links,
and red dashed links are failure links. Colored nodes and thicker links are traversed while
profiling the read ATTTG.

in the read set T are counted as a number cp, which is the objective of signature profiling.

7.2.2 Aho-Corasick Automaton

To solve signature profiling, an intuitive way is to reduce the task into multiple pattern

matching [248] by mapping signatures onto patterns and each set of reads onto the input

text. Multiple pattern matching algorithms find all occurrences in a read for each signature,

so the signature profiling results can be obtained by aggregating these occurrences. We

propose to apply the Aho-Corasick algorithm (AC) [5], one of state-of-the-art approaches for

multiple pattern matching, to profile signatures.

AC conducts the matching process along a trie that corresponds to patterns. Each node

in AC has a failure link that allows fast transitions from one node to the other representing

its longest possible suffix without backtracking. Informally, AC constructs a finite state

machine (or an automaton) that resembles a trie and failure links. The pattern matching

process can be treated as transitions between nodes in the automaton, and failure links

provide efficient transitions between failed matches. Figure 7.2 shows an example of AC

with five signatures. For example, the node of signature ACAT has a failure link to the node

of AT. Given a sequencing read ATTTC to be profiled, AC will first match the signature ATT
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in the blue node. Then, it fails to match the third T and transits to the orange node that

still has no child of T. After traveling along the failure link again to the yellow node, both

the last two characters TC can proceed towards the orange and brown nodes that indicate a

match of signature TTC.

The construction of the automaton in AC with signatures p ∈ P only requires a simple

breadth-first search (BFS) with a O
(∑

p∈P |p|
)

linear time complexity. To profile signatures

in reads t ∈ T , AC only needs to simulate transitions on the automaton, which also has a

linear time complexity O
(∑

t∈T |t|+
∑

p∈P cp

)
. The space complexity of AC is also linear,

O
(∑

p∈P |p|
)

, to maintain a node and a constant number of links for each character. In

theory, AC is a perfect fit for signature profiling.

7.2.3 Thinned Automaton with Binarized Pattern Matching

Even though we have shown the theoretical capability of AC for signature profiling, there

are still some hurdles for AC in practice. One of the most critical issues is the memory

usage when the number of signatures is huge. More specifically, each individual character in

signatures can be referred to as a trie node, which provides plenty information and consumes

a considerable amount of memory. For example, the Python implementation of AC requires

more than 240 GB of memory to process 24 million signatures whose lengths range from

135 to 151. Especially for signatures with fewer and shorter common prefixes, nodes tend to

have more child nodes. The greater width leads to the increase of memory usage.

To reduce both the number of nodes and the width of the automaton, we propose

the thinned automaton with binarized pattern matching. More formally, each signature

p [1 . . . |p|] ∈ P is transformed into a binarized pattern p′ [1 . . . |p|] before being added into

the automaton. The i-th character p′ [i] of p′ is defined as follows:

p′ [i] = binarize (p [i]) , where binarize (c) =

 0 , c ∈ {A, G}
1 , c ∈ {C, T}

.

Note that these four characters can be randomly divided into two groups. From the analysis
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presented in Table S3, we use a balanced partition which groups A,G together. Compressing

two characters into one bit 0 or 1, binarized patterns improve the representation capability

of a depth-d node in the trie from 1 to 2d unbinarized pattern(s), thereby reducing both

the width of the automaton and the number of nodes. In this work, the automaton with

binarized patterns is named thinned automaton because of its reduced width. Here, we

conduct a theoretical analysis of the improvement of the thinned automaton against the plain

AC. For convenience, we assume that each character in a signature is uniformly distributed.

To estimate the worst-case scenario, we assume that every signature has the largest length

m observed in the set. While inserting a signature into a trie, the number of newly added

nodes depends on the presence of its prefixes in the trie. Proposition 7.1 gives an expectation

of finding prefixes for n signatures with c possible characters.

Proposition 7.1 (Proved in Appendix D.1). Given n signatures with c possible characters

to be added into a trie, the expected number of signatures that fail to find their length-i

prefixes along the trie during its insertion is ci
(

1−
(

ci−1
ci

)n)
− ci−1

(
1−

(
ci−1−1
ci−1

)n)
, where

0 ≤ i ≤ m.

Based on Proposition 7.1, we derive the expected number of nodes in a trie in Proposi-

tion 7.2.

Proposition 7.2 (Proved in Appendix D.2). Given n signatures of length m with c possible

characters to be added into a trie, the expected number of trie nodes is
∑m

i=1

[
ci − ci

(
ci−1
ci

)n]
.

Following Proposition 7.2, Proposition 7.3 derives the expected improvement on the num-

ber of trie nodes when the number of signatures is approaching to a large number.

Proposition 7.3 (Proved in Appendix D.3). When the number of signatures in the au-

tomaton is approaching to a large number, the expected number of nodes in the thinned

automaton is only 3
2
· 1

2m+1
of those in the plain AC.

As shown in Proposition 7.3, the improvement with the thinned automaton is guaranteed

under the assumption mentioned above. However, DNA sequences are biased. In this sce-
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Signature p Sequencing Reads T
Original ATT GA TTG AGAT TC AATTGAGAT ATTGACATCG

Binarized 011 10 111 0101 10 001110101 0111000101

Figure 7.3: The binarized representations for five patterns and two sequencing reads. Two
signatures GA and TC share the same binarized pattern (red). A substring in a sequencing
read ATCG has the identical binarized form to the signature AGAT (blue).

Failure Links

Trie Links

0

1

1
1
0 1

ATT

AGAT

0
1 1

GA TC

TTG

Figure 7.4: An example of the thinned automaton of AC with five signatures. Black solid
links are trie links, and red dashed links are failure links. The yellow node represents two
signatures GA and TC.

nario, where the characters of each signature are not uniformly distributed, the improvement

can be more pronounced because more duplicated segments lead to fewer trie nodes.

Even though the thinned automaton reduces the number of nodes, compressed repre-

sentations may lead to collisions. Figure 7.3 shows an example of binarized results for five

patterns and two sequencing reads, and Figure 7.4 further illustrates the corresponding

thinned automaton. Two signatures CA and TG share the same binarized pattern 10 and

result in a collision when reaching the yellow node in Figure 7.4. Substrings with identical

binarized representations may also lead to false matches. For instance, ATGC in the second

read, which is not a signature, has the same binarized representation 0101 as the signature

ACAT. To maintain the correctness of signature profiling, each match to a binarized pattern

needs to be verified with the original signatures. In other words, it is very time-consuming if

there are serious collisions in certain nodes. A näıve comparison costs O
(∑

p∈{p|p′=h,p∈P } |p|
)

time to verify signatures with the same representation h.
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7.2.4 Acceleration by Rolling Hash

Using hash functions is an intuitive idea to speed up comparisons between strings. As the

lengths of signatures vary, arbitrary substrings of the read t ∈ T is required to compute

hash values during verification. However, on-the-fly computation of hash values takes an

additional linear time O (|t|) for each checkup; precomputing all possible substrings is also

infeasible due to dispensable computations and extensive O(|t|2) additional memory.

To accelerate verification, we propose to apply rolling hash [74] that alleviates the time

complexity for each checkup from linear to constant with a linear-time preprocessing and

an additional linear memory consumption. Rolling hash is a family of hash functions where

the input is hashed with a window that moves through the input. A new hash value can be

rapidly calculated from the given old hash value in O(1) time. It also allows O(1) query time

on the hash value of any substring in the input with content-based slicing. We implement

the Rabin-Karp algorithm [188] as the rolling hash function. Formally, the hash value of a

length-L input t[1 . . . L] is defined as follows:

H (t[1 . . . L]) = t[1]aL−1 + · · ·+ t[L− 1]a1 + t[L]a0 (mod q),

where t[i] is the i-th character of the input; a is a constant multiplier; q is a constant prime

modulus. The hash value of a length-i prefix of t can be recursively calculated through the

hash value of the length-(i− 1) prefix:

H (t[1 . . . i]) =

 H (t[1 . . . i− 1]) · a+ t[i] , if i > 1

t[1] , if i = 1
(mod q).

With bottom-up computation, hash values of all prefixes H (t[1 . . . i]) can be preprocessed

in both O(L) time and space complexity. Given the hash values of all prefixes, the hash value

of a substring t[i . . . j] can be derived in O(1) as follows:
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H(t[i . . . j])

=

 H(t[1 . . . j])−H(t[1 . . . i− 1]) · aj−i+1 , if i > 1

H(t[1 . . . j]) , if i = 1
(mod q).

As a theoretical analysis, Proposition 7.4 gives a theoretical upper-bound of the collision

probability. The larger the prime modulus q, the smaller the hash collision probabilities.

Note that we employ the Rabin-Karp algorithm instead of cyclic polynomials for hashing.

This is due to the fact that the Rabin-Karp method has been demonstrated to be more

efficient than cyclic polynomials for general applications [213].

Proposition 7.4 (Gonnet and Baeza-Yates [129]). The probability of two different ran-

dom strings of the same length having the same hash value in Rabin-Karp rolling hash

is P (collision) ≤ 1/q, where q is the prime modulus in computations of the Rabin-Karp

algorithm.

To apply rolling hash for acceleration, each node contains a hash table that maps a hash

value onto the original signature. When transitioning to the node, the hash value of the

matching substring in the read can be rapidly calculated and verified for its presence in the

hash table. As a result, the average time complexity of each checkup reduces to O(1). The

overall time complexity of TahcoRoll is O
(∑

p∈P |p|+
∑

t∈T |t|+
∑

p∈P cp

)
, including the

construction of the automaton and the matching process. The only memory overhead is

hash tables with exactly |P | values, which is an amortized O(|P |) space.

7.2.5 Implementation Details

TahcoRoll is purely implemented by C++14 for universal usage in different platforms. It

builds a thinned automaton on a set of signatures represented by their canonical form (i.e.

the lexicographical minimum of itself and its reverse complementary sequence). Each node of

the automaton holds an unordered map for an average constant time complexity of searches

and insertions after querying binarized patterns on the structure. The memory consumption

of all automaton nodes is simultaneously pre-allocated for efficient memory operations after
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estimating the number of nodes by conducting binary searches on sorted patterns. The pro-

filing process scans each read twice, one for its forward sequence and the other for its reverse

complementary sequence. The operations of rolling hash are optimized by pre-computing

the powers of the prime modulus. In addition, the paralleled version of TahcoRoll using

multiple cores is also available for the scalability. More specifically, the paralleled TahcoRoll

applies the multi-threading capability of C++14 for implementation.

7.2.6 Software Adaptation

Since most of the k -mer counters process reads with a fixed k, we use a Python script as a

wrapper to handle different k -mer sizes and to call the appropriate functions from command

line. We include all the k -mer counters mentioned in the Introduction. We implement two

baseline methods. The first one is a näıve implementation in C++, denoted by “Näıve”. It

uses a hash table to store k -mers and scans through the reads multiple times with different

window sizes. Theoretically, Näıve is light in memory, but requires an extensive running

time. The second baseline is the conventional Aho-Corasick algorithm. We test two publicly

available implementations written in Python (PlainAC Py; pyahocorasick1.1.3) and C++

(PlainAC C++; cjgdev/aho corasick). Details of different softwares are described in the

Supplementary Materials and GitHub.

7.2.7 Synthetic K -mers Generation

To examine the effects of signature number and length, we generate four batches of k -mers

with different lengths, denoted by small (15-31bp), medium (65-81bp), large (131-151bp),

and wide (15-131bp). Each batch contains four sets of 1.2, 6, 12, and 24 million k -mers.

These numbers are arbitrarily chosen to examine the scalability of different methods. The

sequence of each k -mer is randomly assigned with four nucleotide characters, and a random

length that falls in the appropriate range. These random signatures are designed to test

the worst scenario as their characters are uniformly distributed and may not share as many

common prefixes as in the real sequencing data. Each k -mer is represented by its canonical
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form. Duplicated k -mers are removed from the list.

7.2.8 Synthetic Reads

We used polyester [119] to generate 15 sets of single-end RNA-Seq experiments, with read

lengths of 75, 100, 125, 150, and 180bp. Each set contains 10-115 million reads from randomly

selected transcripts based on Ensembl Human Genome GRCh38 [82]. The flexibility of

synthetic data allows us to examine the effects of read number and length.

7.2.9 Real Datasets

We examined public datasets from a diverse range of sequencing platforms. The first dataset

contains two experiments to study the transcriptomic analyses for lymphoblastoid cells [68]:

SRR1293901 is a 2x262 cycle run from Illumina MiSeq and SRR1293902 is a 2x76 cycle

run from Illumina HiSeq 2000. The second dataset, GSM1254204, aims to characterize the

transcriptome of human embryonic stem cells using PacBio long reads [16]. The third set is

generated by Oxford Nanopore to study the whole genome of breast cancer model cell line

with different read lengths: SRR5951587, SRR5951588, and SRR5951600. For the RNA-

Seq datasets, we use a list of 10,962,469 k -mers selected from transcript sequences that can

distinguish different transcript isoforms. For the WGS datasets, 10,935,397 short sequences

are randomly selected from the reference genome as signatures. Since long reads contain a

higher error rate, we cannot set the k -mer size too long. It ranges from 25-60bp.

7.3 Results and Discussion

7.3.1 Automaton Construction

The memory of AC is sensitive to the composition of signature patterns such as k -mer

lengths, the number of k -mers, and common prefixes shared by different k -mers. Fig-

ure 7.5 compares the computational resources used for automaton construction in TahcoRoll
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Figure 7.5: Run-time (left) and memory (right) for constructing the automaton given 16
sets of k -mer patterns. A lower value represents a more efficient approach. PlainAC C++
maxes out the memory capacity while constructing the “large” batch of 24 million k -mers
(large 240), and thus its recorded time and memory are truncated. TahcoRoll consistently
requires less time and memory than PlainAC Py

against PlainAC Py and PlainAC C++ over 16 sets of signatures. The implementation of

PlainAC C++ uses several additional data structures on each node to facilitate the traversal

on an automaton, causing a huge memory overhead. As a result, PlainAC C++ is fast in au-

tomaton construction, but requires twice and five times more memory than PlainAC Py and

TahcoRoll respectively. For the large batch of 24 million k -mers, PlainAC C++ maxes out

the memory capacity (>396GB) of our server, and thus the recorded run-time is truncated.

Our thinned automaton consistently requires less time than PlainAC Py in construction. As

we increase the number of k -mers, the construction time rises. The memory of the thinned

automaton is significantly reducing to nearly half of the memory required in PlainAC Py.

Larger k -mers are more diverse in their sequences, and often share shorter common prefixes

with others. This phenomenon is reflected in our analysis, where the large batches of k -mers

require more time and memory than others. The wide batches use less resource than the

large ones because their k -mer sizes are widely spread from 15-151bp and contain fewer long

k -mers.

7.3.2 Pilot Study of 13 Approaches

We perform a preliminary assessment of the memory footprint and run-time on 11 existing

counters, together with Plain AC and TahcoRoll. Since most of these counters are designed
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Figure 7.6: Run-time (x-axis) and memory (y-axis) of counting small batches of k -mers on
synthetic reads of 75bp. Each point represents a pair of measurements (run-time and mem-
ory). Points located on the lower left corner of each plot indicate more efficient approaches.
The top panel examines three different read sets with 1.2 million k -mers; the bottom panel
examines three different k -mer sets with 34,497,448 reads.

to process data with a fixed k, they present a limitation on handling a wide range of k ’s.

Moreover, few of these algorithms limit the choice of k. For these reasons, we inspect the

capability of different approaches with single thread using small datasets: synthetic reads

with 75bp and small batches of signatures. For all of the Aho-Corasick-based approaches,

we index the k -mers using their canonical representation. Each read is scanned twice, one for

its forward sequence and the other for its reverse complementary sequence. This technique

alleviates the memory burden of storing each k -mer twice in the automaton.

We separate the analyses into two panels as demonstrated in Figure 7.6. The top panel

focuses on different number of reads, and the bottom panel focuses on different number

of k -mers. Methods in the bottom-left corner of each plot indicate being both time and

memory efficient. As we predicted, Näıve uses very little memory, but takes a long time

to complete. PlainAC is fast, but requires a large amount of memory when increasing the

number of k -mers. Consistent with the analysis in Figure 7.5, PlainAC C++ uses twice as
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much memory as PlainAC Py.

TahcoRoll is the most efficient approach in five out of these six analyses. KMC3 and

Squeakr use less memory when there are 24 million k -mers, but requires more time than

TahcoRoll. When we fix the number of k -mers (top panel), the memory and run-time for

KMC3 and Squeakr increase with the number of reads, but the memory stays constant for

both TahcoRoll and Jellyfish. Jellyfish is memory efficient when counting a given list of

k -mers with the same size; however, repeating this process for different k’s makes it more

time-consuming than TahcoRoll.

We also validate the accuracy by comparing the counts reported in each approach to

Näıve. Probabilistic approaches, BFCounter and khmer, neglect singleton k -mers. The

exact counting mode of Squeakr is unable to count short k -mers if all of them exist in reads,

due to its implementation design. All other approaches agree with Näıve. The results are

omitted due to space limitations.

To avoid waiting on extremely slow counters, we remove Näıve, DSK, khmer, BFCounter,

MSPKC, and KCMBT for further analyses. From the memory usage prospective, we take

out Tallymer and PlainAC C++ since Tallymer does not scale well with more and longer

reads and PlainAC C++ uses up the memory for more and longer k-mers. Squeakr is also

removed as it often fails to count shorter k -mers. The remaining analyses are carried out for

PlainAC Py, Jellyfish, KMC3, MSBWT, and TahcoRoll.

7.3.3 Extensive Study on Synthetic Datasets with Both Single and Multiple

Threads

We use 1.2 million k -mers ranging from 15-151bp (wide) to evaluate the scalability on dif-

ferent read lengths and number of reads. We highlight the total run-time and memory

consumption of each approach in Table 7.1. The run-time is further broken down into the

automaton construction phase (Prep) and the read querying phase (Query) for TahcoRoll

and PlainAC Py. The two phases of MSBWT and KMC3 include indexing the reads (Prep)

and querying the k -mers (Query). Read processing is performed in the querying phase of
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Table 7.1: Time (Hour) and memory (GB) of synthetic signatures over different read sets.
Dagger (†) marks the most time efficient approach; asterisk (∗) marks the most memory
efficient approach.

Read Total TahcoRoll PlainAC Py MSBWT KMC3 Jellyfish
Length Reads Prep Query Time Mem Prep Query Time Mem Prep Query Time Mem Prep Query Time Mem Time Mem

10,128,312 0.006 0.09 0.10† 3.29∗ 0.02 0.11 0.13 6.75 0.40 0.01 0.41 5.86 1.49 0.02 1.51 3.30 1.83 4.74
75bp 34,497,448 0.005 0.28 0.29† 3.29∗ 0.02 0.37 0.39 6.75 0.90 0.01 0.91 7.88 2.45 0.09 2.53 5.52 5.55 4.74

97,011,938 0.005 0.78 0.78† 3.29∗ 0.02 1.04 1.06 6.75 3.26 0.02 1.95 17.57 5.82 0.68 6.50 8.00 15.24 4.74
11,397,007 0.005 0.13 0.14† 3.29∗ 0.03 0.17 0.20 6.75 0.45 0.01 0.46 6.40 2.42 0.33 2.75 3.83 3.32 4.74

100bp 41,054,662 0.005 0.47 0.48† 3.29∗ 0.02 0.59 0.61 6.75 1.29 0.01 1.30 11.10 4.81 0.61 5.42 7.56 11.25 4.74
114,813,452 0.006 1.35 1.36† 3.29∗ 0.02 1.59 1.61 6.75 3.49 0.02 3.51 26.00 16.23 3.35 19.58 20.10 31.78 4.74
10,822,319 0.004 0.15 0.15† 3.29∗ 0.03 0.19 0.22 6.75 0.63 0.01 0.65 6.83 2.81 0.81 3.61 4.15 5.26 4.74

125bp 58,012,701 0.005 0.77 0.78† 3.29∗ 0.03 0.99 1.02 6.75 2.59 0.02 2.61 17.48 10.53 2.51 13.04 19.03 27.22 4.74
107,375,244 0.005 1.37 1.38† 3.29∗ 0.02 1.84 1.87 6.75 4.56 0.02 4.58 29.75 18.46 3.92 22.37 34.59 50.41 4.74
27,628,054 0.006 0.35 0.36† 3.29∗ 0.02 0.55 0.57 6.75 1.69 0.01 1.71 11.46 9.09 1.88 10.97 14.87 18.78 4.74

150bp 57,437,772 0.007 1.20 1.21† 3.29∗ 0.02 1.20 1.22 6.75 3.50 0.02 3.51 20.31 17.26 3.98 21.24 31.10 36.86 4.74
114,306,300 0.006 2.01 2.01† 3.29∗ 0.03 2.42 2.44 6.75 5.86 0.02 5.88 37.27 33.45 8.25 41.69 58.23 74.29 4.74

180bp 16,197,631 0.006 0.35 0.35† 3.29∗ 0.03 0.40 0.43 6.75 2.43 0.01 2.45 9.30 7.45 1.99 9.44 14.61 15.51 4.74
37,836,905 0.005 0.86 0.87† 3.29∗ 0.02 0.87 0.90 6.75 3.20 0.02 3.22 16.96 16.05 4.20 20.26 33.34 35.14 4.74

Table 7.2: Time (Hour) and memory (GB) of synthetic reads over different k -mer sets.
Dagger (†) marks the most time efficient approach; asterisk (∗) marks the most memory
efficient approach.

K-mer Total TahcoRoll PlainAC Py MSBWT KMC3 Jellyfish
Batch K-mers Prep Query Time Mem Prep Query Time Mem Prep Query Time Mem Prep Query Time Mem Time Mem

1,200,000 0.0004 2.56 2.56 0.51∗ 0.003 1.81 1.81† 1.25 5.39 0.01 5.40 34.35 3.99 0.35 4.34 14.61 11.15 0.83
Small 6,000,000 0.002 4.83 4.83 2.09 0.02 2.42 2.44† 5.70 5.39 0.06 5.46 34.31 5.39 0.84 6.23 14.61 11.11 0.83∗

(15-31bp) 12,000,000 0.003 5.48 5.48 3.85 0.03 2.74 2.77† 10.93 5.39 0.12 5.51 34.35 5.89 0.95 6.84 14.61 11.17 0.83∗

24,000,000 0.006 7.22 7.23 7.13 0.09 3.11 3.21† 20.93 5.39 0.23 5.63 34.35 5.94 0.96 6.91 14.61 11.15 0.83∗

1,200,000 0.005 2.01 2.01† 2.82 0.03 2.42 2.45 5.83 5.39 0.01 5.40 34.35 5.03 2.59 7.62 58.16 11.41 2.47∗

Medium 6,000,000 0.02 2.47 2.49† 13.49 0.13 4.77 4.90 28.59 5.39 0.06 5.45 34.35 4.90 1.91 6.81 58.16 11.37 2.47∗

(65-81bp) 12,000,000 0.09 3.53 3.62† 26.52 0.27 5.27 5.54 56.71 5.39 0.11 5.50 34.33 4.90 1.93 6.83 58.16 11.07 2.47∗

24,000,000 0.16 4.00 4.16† 52.11 0.75 5.25 6.00 112.5 5.39 0.22 5.61 34.35 4.87 1.49 6.37 58.16 11.36 2.47∗

1,200,000 0.02 2.65 2.67† 6.10 0.06 2.98 3.04 12.24 5.39 0.02 5.41 34.35 3.51 2.35 5.87 67.27 6.66 4.74∗

Large 6,000,000 0.08 3.51 3.59† 29.91 0.29 4.34 4.63 60.63 5.39 0.08 5.47 34.35 4.28 4.04 8.32 67.27 6.72 4.74∗

(131-151bp) 12,000,000 0.18 4.37 4.55† 58.43 0.55 4.98 5.53 118.97 5.39 0.16 5.55 34.33 5.14 4.50 9.65 69.19 8.59 4.38∗

24,000,000 0.42 4.42 4.84† 117.79 1.33 4.90 6.23 240.67 5.39 0.29 5.69 34.35 4.10 3.05 7.17 67.27 6.73 4.74∗

TahcoRoll and PlainAC Py, but in the preparation phase of MSBWT and KMC3. Therefore,

the run-time of querying is not on the same scale across different approaches. For Jellyfish,

we use its function to count the list of k -mers directly, so the run-time cannot be split in

details. Its memory usage depends on the size of the list of k -mers, and can be as efficient as

TahcoRoll. However, its run-time does not scale well with datasets containing more or longer

reads. TahcoRoll consistently outperforms others across different read sets in both run-time

and memory. Our thinned automaton is more compact, which makes it more efficient than

the conventional automaton.

Next, we use 86,976,737 reads of 180bp to evaluate the scalability on different batches
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Figure 7.7: Multi-threads evaluation of MSBWT, KMC3, Jellyfish and TahcoRoll on profiling
86,976,737 synthetic reads of 180bp with wide batches k-mers.

of k -mers, which are designed to test the worst scenario. Table 7.2 shows that when the

k -mers are short (small), PlainAC Py uses the least amount of time. When k -mers get

longer, TahcoRoll is the most efficient approach. This observation is due to less collision

in the signature sets. Under a severe condition where there is a large number (12 and 24

million) of k -mers with uniformly distributed characters, TahcoRoll requires more memory

than MSBWT in three out of six cases. It is worth mentioning that both MSBWT and

KMC3 write a huge amount of intermediate files to disk (at least 16GB for MSBWT and

43GB for KMC3 in this dataset) to alleviate the memory bottleneck. In contrast, TahcoRoll

is an in-memory approach that does not generate any intermediate data.

MSBWT, KMC3, and Jellyfish allow indexing reads in parallel, so we evaluate the parallel

settings on the wide batches of k -mers. Figure 7.7 shows the run-time of analyzing 86,976,737

synthetic reads of 180bp across four sets of k -mers. Both Jellyfish and TahcoRoll scale well

with the number of threads, but the improvement of MSBWT and KMC3 is marginal. This

is mainly due to the limitation of I/O as these two approaches constantly read and write files

to disk. The run-time of TahcoRoll remains faster than others across different experiments

and threads. The four-thread TahcoRoll also demonstrates to be faster than others with 16

threads. Table 7.3 presents the run-time and memory usage in details for each setting. The

memory usage does not vary with different number of threads.
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Table 7.3: Time (Hour) and memory (GB) of profiling synthetic reads over different wide
batch of k -mer sets. Dagger(†) marks the most time efficient approach; asterisk (∗) marks
the most memory efficient approach.

Total K-mers Methods 4-Thread (Hour) 8-Thread (Hour) 16-Thread (Hour) Memory (GB)
TahcoRoll 0.70† 0.38† 0.22† 3.50∗

1,200,000 MSBWT 2.29 1.83 1.62 30.83
Jellyfish 18.29 9.66 6.10 4.74
KMC3 26.68 20.79 21.61 72.83

TahcoRoll 1.47† 0.77† 0.41† 16.07
MSBWT 2.35 1.89 1.71 30.83

6,000,000 Jellyfish 19.39 8.86 6.15 4.74∗

KMC3 26.55 22.47 16.65 72.77

TahcoRoll 1.24† 1.12† 0.64† 31.49
MSBWT 2.42 1.90 1.76 30.83

12,000,000 Jellyfish 18.66 9.94 6.29 4.74∗

KMC3 25.22 17.33 15.21 73.08

TahcoRoll 1.98† 1.32† 0.91† 61.86
MSBWT 2.51 2.33 2.11 30.83

24,000,000 Jellyfish 18.96 9.88 6.24 4.74∗

KMC3 22.22 18.74 15.97 73.08

7.3.4 Real Datasets from Different Sequencing Platforms

Synthetic studies demonstrate the worst case of signature sets. Here, we examine the prac-

tical usage by analyzing signatures from real DNA sequences with reads from different se-

quencing platforms. Experiments are conducted on a desktop machine of Coretm i7-3770

CPU@3.4.0GHz. Since TahcoRoll is more resistant to number of reads and different read

lengths than other methods as demonstrated from synthetic studies, we examine its compe-

tency on four sets of long read data.

Table 7.4 summarizes the nature and analysis of each dataset. MSBWT, KMC3, and

Jellyfish are run with eight threads; TahcoRoll is run with single thread and eight threads.

For the measurement that is less efficient than TahcoRoll, we compute the fold-change to

those reported by the eight-thread TahcoRoll. MSBWT is unable to finish indexing for the

PacBio data within two days. KMC3 cannot index long reads from Nanopore as the data

exceeds the buffer size automatically set by the program; it also uses up all the memory

available on the machine (32G) for the PacBio data. Overall, the run-time of single-thread

TahcoRoll is as efficient as Jellyfish with eight threads, and significantly outperforms KMC3

in short reads and MSBWT in long reads. In the parallel settings, TahcoRoll runs at least
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Table 7.4: Evaluation of real datasets across different sequencing platforms. MSBWT,
KMC3, and Jellyfish are run with eight threads. Fold-change is relative to the measure-
ments reported by eight-thread TahcoRoll.

Dataset SRR1293902 SRR1293901 GSM1254204 SRR5951587 SRR5951588 SRR5951600
Source RNA-Seq RNA-Seq RNA-Seq WGS WGS WGS
Platform Illumina HiSeq Illumina MiSeq PacBio Nanopore Nanopore Nanopore
Number of Reads 38,278,052 9,524,186 3,239,918 205,685 171,398 161,148
Average Read Length 75 262 1113 3kb 8kb 12kb
Number of Sig-mers 10,962,469 10,962,469 10,962,469 10,935,397 10,935,397 10,935,397
Lengths of Sig-mers 25-60 25-60 25-60 25-60 25-60 25-60

TahcoRoll (1-thread) 1.20 1.40 1.17 0.27 0.44 0.65
TahcoRoll (8-thread) 0.23 0.28 0.22 0.06 0.09 0.16

Time MSBWT 0.95 (4.1X) 1.64 (5.8X) NA 3.03 (53.4X) 2.79 (29.5X) 12.31 (77.7X)
(Hour) KMC3 15.85 (68.5X) 14.16 (50.7X) 19.26 (87.3X) exceed buffer size

Jellyfish 0.94 (4.0X) 1.56 (5.6X) 1.13 (5.1X) 0.27 (4.8X) 0.48 (5.1X) 0.68 (4.2X)

TahcoRoll 4.18 4.17 4.18 10.5 10.5 10.5
Memory MSBWT 7.76 (1.8X) 70.10 (16.8X) NA 1.89 3.16 4.65

(GB) KMC3 28.76 (6.8X) 24.84 (5.9X) 31.34 (7.4X) exceed buffer size
Jellyfish 1.79 1.79 1.79 1.79 1.79 1.79

Table 7.5: Evaluation of different binarized representations. Time is reported in hour and
memory is reported in gigabyte. Nucleotides can be divided into balanced or unbalanced
partitions. The p-values are computed through paired t-tests on time against the default
setting: [{A,G}, {C,T}], and adjusted by Bonferroni correction.

Mapping 0={A,C}; 1={G,T} 0={A,T}; 1={C,G} 0={A}; 1={C,G,T} 0={C}; 1={A,G,T} 0={G}; 1 ={A,C,T} 0={T}; 1={A,C,G}
Time Mem Time Mem Time Mem Time Mem Time Mem Time Mem

SRR1293902 1.28 4.49 1.27 4.42 1.54 3.36 1.42 3.20 1.54 3.12 1.93 2.98
SRR1293901 1.35 4.49 1.39 4.42 1.72 3.36 1.71 3.20 1.79 3.12 1.96 2.98
GSM1254204 1.26 4.49 1.26 4.42 1.46 3.36 1.64 3.20 1.70 3.12 2.01 2.98
SRR5951587 0.32 11.11 0.30 10.84 0.34 9.85 0.47 7.93 0.57 7.85 0.54 9.27
SRR5951588 0.52 11.11 0.48 10.84 0.58 9.85 0.83 7.93 1.21 7.85 0.81 9.27
SRR5951600 0.76 11.11 0.74 10.84 0.78 9.85 1.46 7.93 1.36 7.85 1.11 9.27

p-value 0.3408 0.12714 0.033552 0.043938 0.008988 0.010212

four times faster than MSBWT and Jellyfish, and demonstrates a drastic improvement over

KMC3.

Lastly, we examine the impact of different binary representations of the nucleotides un-

der the single-thread setting. The concise representation requires a many-to-one mapping

between four nucleotides and two single binary values. The four characters can be divided

into balanced partitions: [{A,C}, {G,T}], [{A,T}, {C,T}], and [{A,G}, {C,T}], or unbalanced

partitions: [{A}, {C,G,T}], [{C}, {A,G,T}], [{G}, {A,C,T}], and [{T}, {A,C,G}]. The default

setting groups {A,G} together, and {C,T}. Table 7.5 summarizes the comparison of alter-

native mappings using real datasets. On average, the default mapping runs faster (shown

in Table 7.4) than alternative mappings. We use two-tailed paired t-tests to compare the
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run-time of each mapping against the default choice. The p-values are adjusted by Bon-

ferroni correction [39] to account for the issue of multiple hypothesis testing. Among all

balanced partitions, the default setting uses the least amount of memory, but its run-time

is not significantly different from others (p-values > 0.05). Unbalanced partitions provide

more compact representations as revealed by their memory usages, but require more time to

resolve collisions than the default setting (p-values < 0.05).

7.4 Conclusion

In this chapter, we propose a novel task of variable-length k-mer profiling in genomic se-

quences. While the necessity of diversifying k-mer lengths has already been shown in many

studies [55, 184, 364], most of these works only support fixed-length k-mers and need an

enormous amount of memory, disk space, and time to profile k-mers with a wide range of

k’s.

By leveraging the techniques of binarization and rolling hash for Aho-Corasick automa-

ton, we construct a thinned Aho-Corasick automaton accelerated by rolling hash (TahcoRoll)

to profile variable-length k-mers in genomic data. The main advantage of TahcoRoll is its

in-memory property which does not require any disk space.

A pilot study first gives a comprehensive overview of the strengths and limitations of 13

different k -mer counting approaches. Additional experimental results show that TahcoRoll

scales well with both longer reads and a larger number of reads, especially that its memory

usage is independent of the read data. It is the only approach that can efficiently process

data from different sequencing platforms. In the evaluation of k -mer sets, Aho-Corasick ap-

proaches use less time than others in all cases. Between the two implementations, TahcoRoll

requires half of the memory needed in PlainAC Py.

Although all of our experiments focus on counting the frequency of a set of k -mers,

the structure of this thinned automaton can be expanded to store essential information for

each k -mer, such as its explicit positions in a genome for occurrence profiling. TahcoRoll
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opens up the opportunity to profile a set of variable-length k -mers, especially in long read

datasets. It can be used as a stand alone software or to be integrated into existing pipelines

for transcript quantification and microbial community profiling. We also plan to explore

applying TahcoRoll in other sequencing applications, such as error correction for long read

sequencing and profiling epigenetic marks through Bisulfite-Seq, to address various challenges

in computational biology.
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CHAPTER 8

Identifying Users behind Shared Accounts

In the previous chapters, we learn how to derive and manage robust representations for dif-

ferent heterogeneous data, but the knowledge in those representations could be disconnected

across different data types. As an example to address this challenge, in this chapter, we

present our work to unify the knowledge in diverse domains by aggregating them into a

heterogeneous network for interdisciplinary knowledge discovery. We also demonstrate the

impacts of our work in user identification for online streaming services.

8.1 Introduction

Online streaming services, such as Netflix1 and Spotify2, have become popular and accumu-

lated massive user bases. Premium users have the privileges to enjoy high-quality contents

and real-time streaming events, but these services usually come at a fee. Because of the

membership fee of the premium accounts, it is not rare that users share a premium account

to split the cost between themselves. However, illegal sharing may compromise not only the

service provider’s financial interests but also the service quality in general. First, account

sharing implies loss of potential customers who may bring additional revenue to the service

provider. Second, current customer profiling and recommendation systems operate under the

assumption that each account is used by a single user and hence cannot accurately model

individual user preferences from a mixture of activities by multiple users. This may impair

its ability to provide high quality recommendations to users. Consequently, unsatisfied users

1Netflix: https://www.netflix.com/

2Spotify: https://www.spotify.com/
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may decide to switch to other providers.

To detect account sharing and enhance the quality of recommender systems in the pres-

ence of account sharing, we aim to identify individual users behind shared accounts. The

goal of our work is three-fold. First, given a list of registered accounts, along with the corre-

sponding session logs that record the activities of the accounts, we aim to accurately identify

the set of users behind each account based on its session activities from the set of users who

are using this account. Then we can accordingly predict whether an account is shared by

multiple users. Second, given a newly-coming session issued by a certain account, we aim

to identify the corresponding user from the identified users of that account. Third, we will

enhance the performance of item recommendation by integrating account-level and user-level

item recommendation. The session log of an account contains lists of entries. Each entry

records the item requested and the timestamp of such request. We organize the log of each

account into a list of consecutive sessions. In addition, each item may be associated with

several metadata attributes (e.g., a song may have genres, artists, albums, and published

years).

It has been shown in the literature that modeling multi-user behaviors in shared accounts

[4, 323, 337, 355, 373] and session-based recommendations [150, 319] successfully improve

the performance of item recommendation. However, these studies do not attempt to identify

individual users. To the best of our knowledge, Zhang et al. [363] is the first and only

attempt to identify users in shared accounts by a specialized subspace clustering, which is

employed as a baseline in our experimental studies. In addition, the information of metadata

is not taken into account in their approach.

Since we do not know the accounts that may be shared by multiple users and the users

that share the same account, we propose an unsupervised learning-based framework, Session-

based Heterogeneous graph Embedding for User Identification (SHE-UI). The main idea is

to model the preference of individual users via a novel technique of session embedding that

learns a unique feature representation for each session. We first create a heterogeneous in-

formation network to represent the relationships among items and their meta information.
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Then, by applying a specialized random walk mechanism, the feature representation of each

node can be derived using the skip-gram learning architecture [240, 263]. Subsequently the

item-based session embedding is learned through the node embedding. For each account, the

user identification problem is then mapped to the problem of session clustering. We develop

a clustering algorithm based on Affinity Propagation [120] to simultaneously determine the

number of clusters and group sessions into clusters. Each cluster represents the sessions is-

sued by the same user, and the number of clusters represents the number of users sharing this

account. For any incoming session of this account, we may find the potential user who issues

the session by computing its representation (from the first few items in the session) in the

space of session embedding and finding its nearest cluster. Last, to boost the performance of

recommender systems, we propose a hybrid recommender, termed AURec, which combines

conventional account-level and user-level (derived by SHE-UI) item recommendation.

We summarize the contributions of this work in the following.

• We propose to deal with two research tasks: (1) identifying users behind a shared account

based on historical sessions and metadata of the items, and (2) given a new session initiated

by a multi-user account, identifying which user issued this session. The former can benefit

the service provider to detect multi-user accounts so that new pricing strategies can be

established, while the latter boosts the performance of item recommendation. It is also

worth mentioning that no prior knowledge about the mappings between users and accounts

are given here.

• We develop an unsupervised framework SHE-UI that cannot only identify users in shared

accounts, but also learn the preferences of individual users. Through a novel session em-

bedding technique, SHE-UI effectively learns feature representations from a heterogeneous

graph that represents the relationships between items and their metadata.

• Experiments conducted on two large-scale datasets of online streaming services, Last.fm

and KKBOX, demonstrate that SHE-UI clearly outperforms existing item-based and

embedding-based methods on both tasks of user identification. A study of parameter

sensitivity also manifests the robustness of SHE-UI.
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• Based on the identified users behind accounts, we devise a hybrid recommender AU-

Rec that combines account-level and user-level item recommendation. Experiments on

KKBOX data show that AURec is able to significantly outperform the state-of-the-art

account-level recommendation methods by 39% in terms of Precision@1.

8.2 Problem Statement

In this section, we first formally define the problem of user identification in online streaming

services. Let I be the set of items, e.g., songs and movies. For each item i ∈ I, it may have

multiple attributes, e.g., artist(s) and genre(s) of a song, denoted by Mi, as its metadata. We

denote the collection of all metadata as M =
⋃

i∈I Mi. Here the metadata can be any discrete

attribute that can describe items. Relationships may exist between attributes in metadata.

For example, an album mj may include a song performed by an artist mk. These relationships

can be denoted as R = {(mj,mk) | (mj,mk) ∈M2,mj 6= mk,mj is related to mk}.

Let A be the set of accounts. For each account a ∈ A, the set of users of the account

is denoted as U(a), which is unknown in advance. In the following discussion, we refer to

accounts with only one user as single-user accounts and the remaining ones as multi-user

accounts. The activity log of each account a ∈ A contains a sequence of sessions S(a). Each

session s ∈ S(a) is a sequence of Ts items (successively requested by a user us without a long

period of inactivity): s = 〈i1, i2, · · · , iTs〉 ∈ ITs . For multi-user accounts, we assume that

each session may be issued by one user. Note that the actual user us of every session s is

also unknown to the system. The two goals of this work are as follows:

1. User Identification in Past Sessions (UI-Past): Given a set of accounts A and their

corresponding sessions, for each account a ∈ A, the first goal is to group sessions S(a)

into Ka clusters (i.e., users), C(a) = {ca1, ca2, · · · , caKa
} such that the sessions from the

same user are grouped into the same cluster where 1 ≤ Ka ≤ |S(a)|. Ka is also unknown

and needs to be estimated from the data. In other words, we would like to estimate the

ideal clusters C∗(a) grouping sessions by their actual users.
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2. User Identification for New Sessions (UI-New): Given the identified users C(a) of

an account a, for any new incoming session s /∈ S(a) of account a, the next goal is to

predict which user is the actual issuer of this session as early as possible. Based on the

first few items in s, we want to identify the cluster cak to which s belongs.

8.3 Session-based Heterogeneous graph Embedding for User Iden-

tification

In this section, we present the proposed framework, Session-based Heterogeneous graph

Embedding for User Identification (SHE-UI).

8.3.1 Framework Overview

Figure 8.1 shows the framework of SHE-UI. A heterogeneous graph is constructed to represent

the relations among items and metadata. We first compute node embeddings from which

we generate session embeddings. Then an algorithm based on affinity propagation [120] is

proposed to simultaneously determine the cluster number Ka for each account a and to group

sessions S(a) into clusters.

1. Heterogeneous
Graph Construction

Meta

Item ⋯

⋯

2. Graph and Session
Embedding

3. User Identification
by Clustering

⋯
⋯

⋯
⋯

⋯
⋯

Figure 8.1: The framework overview of SHE-UI.

133



Lady Gaga

Born This Way
(album)

The Fame Monster
(album)

Bad Kids

Born This Way

Bad Romance

Taylor Swift

Fearless
(album)

Love Story

Speak Now
(album)

Item-Item Edges

Item-Meta Edges

Meta-Meta Edges

Figure 8.2: An example of heterogeneous graph construction with a session that begins with
three songs by Lady Gaga and ends with a song by Taylor Swift.

8.3.2 Node Embedding in Heterogeneous Graph

As the first stage of SHE-UI, we encode items and metadata into an undirected graph

G = (V,E) with heterogeneous nodes V = {I,M} and edges E. Specifically, each node in

the graph represents an item or an attribute in metadata; each edge represents a relationship

between nodes. The set of edges E can be constructed in the following three manners. Figure

8.2 shows an example of these three types of edges within a session.

1. Item-Item Edges: Any two items consecutively requested in the same session are linked

to each other;

2. Item-Meta Edges: The node of each item is connected to nodes representing attributes

in its metadata;

3. Meta-Meta Edges: Each meta relationship (mj,mk) ∈ R is represented by an edge

between the two corresponding nodes.

Given the heterogeneous graph G = (V,E), we will first compute a low-dimensional

feature representation for each node. We aim to find a mapping function f : V → Rd from

nodes to their low-dimensional feature representations, where d is the number of dimensions

of the feature representation, and f can be considered as a |V |×d matrix, where |V | denotes

the number of nodes.
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8.3.3 Learning Node Features

We extend the skip-gram architecture [240, 263] from natural language processing to learn the

feature representations of nodes in a heterogeneous graph. In natural language processing,

the skip-gram architecture learns relations between words and their context. Here each node

in the network is treated as a word, and some random walk paths are sampled as sentences.

We define NS(v) ⊆ V as the neighbor nodes for each node v via a sampling method S.

Here we use a sampling method based on normalized random walk, which is presented in

Section 8.3.4. The skip-gram model is extended to optimize the log-likelihood of the observed

NS(v), conditioned on node v’s feature representation f(v) as follows:

max
f

∑
v∈V

logP (NS(v) | f(v)).

To make optimization more efficient, we adopt two standard assumptions [135]. First, we

assume that, given node v’s feature representation, v’s neighbor nodes NS(v) can be observed

conditionally independent of each other. Then P (NS(v) | f(v)) can be factorized by the

neighbor nodes as follows:

P (NS(v) | f(v)) =
∏

n∈NS(v)

P (n | f(v)).

Second, we assume that any pair of neighboring nodes symmetrically affect each other in

the d-dimensional space of feature representation. Therefore, given a node v, the conditional

likelihood of every neighbor node n ∈ NS(v) can be modeled as a softmax unit [12] by

reversing the previous formula:

P (n | f(v)) =
exp(f(n) · f(v))∑
u∈V exp(f(u) · f(v))

.
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Algorithm 8.1: LearningNodeFeatures(G, t, d, l)

Input: the graph G = (V,E), walks per node t, the feature dimensions d, the fixed
length l

Output: the embedding function f
1 walkset = ∅
2 for iter = 1 to t do
3 foreach v ∈ V do
4 W = NormalizedRandomWalk(v, l, G)
5 walkset = walkset ∪ {W}

6 f = StochasticGradientDescent(walkset, d)
7 return f

With these assumptions, the objective function can be rewritten as:

max
f

∑
v

− logZv +
∑

n∈NS(v)

f(n) · f(v)

 ,

where Zv =
∑

u∈V exp(f(u) · f(v)) can be approximated by negative sampling [241]. In

addition, this objective function can be optimized by stochastic gradient descent [42]. Al-

gorithm 8.1 presents the detailed procedure to learn node features. Each node in the graph

will be treated as the source of t random walks. These generated t× |V | random walks will

be exploited to learn the node features by stochastic gradient descent. After learning node

features, we will use the feature representations of items to compute session embeddings in

Section 8.3.5.

8.3.4 Normalized Random Walk

We now present our sampling method based on normalized random walk. Random walk is

one of the most popular solutions for graph-based embedding [135, 264]. However, traditional

random walk that treats every edge equally important is not suitable for the heterogeneous

graph constructed above in which popular items and metadata attributes may have much

higher node degrees than the rest. For example, popular songs can be requested by more

than ten thousand sessions while others are requested by ten sessions. Consequently, a
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Figure 8.3: An illustration for the procedure of normalized random walks. The walk is going
to be transited from p and evaluating transition probabilities of neighbor nodes.

random walk is likely to be confined to a small number of high degree nodes and ignores the

rest of the graph. To solve this problem, we use the normalized random walk to learn node

embedding in the heterogeneous graph.

Consider a source node r ∈ V and a random walk W from r with a given length l. Let

wj be the j-th node in the walk, where w0 = r is the first node in W . The degree of node

v is denoted as d(v); N(v) denotes the set of neighbors of node v. Then node wj can be

generated by the normalized probability P (wj | wj−1):

P (wj = q | wj−1 = p) =


1/d(q)
Zp

if (p, q) ∈ E
0 otherwise

,

where Zp =
∑

q′∈N(p)
1

d(q′)
is the term for normalization. Figure 8.3 shows an example. Node

p has four neighboring nodes N(p) = {q1, q2, q3, q4}; the degree of q3 is d(q3) = 3, and the

probability of transiting to q2 is P (wj = q2 | wj−1 = p) = 0.24. The detailed procedure of

generating a l-length random walk from r is provided in Algorithm 8.2. We will investigate

how l affects the performance in Section 8.4.3.

8.3.5 Item-based Session Embedding

Since each session s = 〈i1, i2, · · · , iTs〉 ∈ ITs consists of a sequence of items, the feature

representation of a session can be computed by a combination of item features. A näıve way
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Algorithm 8.2: NormalizedRandomWalk(r, l, G)

Input: the source node r, the fixed length l and the graph G
Output: the random walk W

1 w0 = r
2 W = [w0]
3 for j = 1 to l do
4 Draw wj ∼ P (wj | wj−1)
5 W .append(wj)

6 return W

to derive session features is to simply compute the average features over all item occurrences.

However, a user’s affinity to an item may not be linearly correlated with the number of

occurrences of the item in the session. For example, a user may play a song 100 times and

another song 10 times. The affinity to the latter song is underestimated if we treat each play

equally important.

To alleviate this problem, we model user’s affinity to an item in a session by a kernel

function of the number of item occurrences in this session. It has been shown [132, 133] that

item sequences modeled after user behaviors tend to follow a Poisson distribution. Then we

can adopt a square-root function to approximate the variance-stabilizing transformation to

model user’s affinity [112]. Let Γ(s) be the set of distinct items in session s, and Occ(s, i)

be the number of occurrences of item i in session s. The feature representations of session s

can be defined as follows:

f(s) =
1∑

i∈Γ(s)

√
Occ(s, i)

∑
i∈Γ(s)

√
Occ(s, i) · f(i).

These session features f(s) can appropriately represent the characteristics of items in the

session.

8.3.6 User Identification

After obtaining session features, we want to detect the number of users of each account

a and group sessions by their actual issuers automatically. While most of the clustering
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Algorithm 8.3: UserIdentification(S(a), f)

Input: the set of sessions S(a) and the embedding function f
Output: The set of cluster exemplars C(a)

1 Initialize X and Y as |S(a)| × |S(a)| matrices with zeros
2 repeat
3 for j = 1 to |S(a)| do
4 for k = 1 to |S(a)| do
5 ∆jk = maxk′ 6=k {Yjk′ + Score (sj, sk′)}
6 Xjk = Score(sj, sk)−∆jk

7 for j = 1 to |S(a)| do
8 for k = 1 to |S(a)| do
9 if j 6= k then

10 Yjk = min
(

0,
∑

j′ /∈{j,k}max (0, Xj′k)
)

11 else
12 Ykk =

∑
j′ 6=k max(0, Xj′k)

13 until Convergence;
14 return C(a) = {sk | ∀sk ∈ S(a), Xkk > 0}

algorithms require the number of clusters Ka as an input parameter, we propose using affinity

propagation [120] algorithm to automatically discover the appropriate clustering number.

Specifically, we propose to cluster these sessions via a message passing mechanism between

sessions, in which the exemplars are found and considered as the cluster representatives.

The algorithm passes messages between sessions and iteratively updates two |S(a)| × |S(a)|
matrices: responsibility matrix X and availability matrix Y . The responsibility value Xjk

represents how session sk is suitable to be the exemplar of session sj compared to other

exemplars. The availability value Yjk estimates how appropriate for session sj to pick sk

as its exemplar. Both X and Y are log-probability matrices. At the beginning, they are

initialized to zero. In each iteration, all elements in X are estimated by Yjk and a score

function Score(sj, sk) between features of two sessions sj and sk. Here Score(sj, sk) is

defined as the L2-distance between two feature vectors. Then we update Yjk by summing

up responsibilities in X. We iteratively update X and Y until convergence. The sessions

which remain positive responsibilities are the exemplars. The cluster number is the number

of exemplars found in an account. This procedure is described in Algorithm 8.3. These
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exemplars will be used for user identification in past and future sessions.

User Identification using Cluster Exemplars. Recall that Section 8.2 introduced two

goals of user identification, UI-Past and UI-New. To identify users from past sessions (i.e.,

UI-Past), Algorithm 8.3 can directly output the clusters of past sessions issued by an account,

and each cluster corresponds to a user. To predict the user of a new session (i.e., UI-New) in

account a, we need to, from all users detected for account a from UI-Past, find the one who is

most likely to issue the new session only using the first few (say, ρ) items in the new session.

These ρ items are treated as a shorter session from which we derive its feature representation

follow the same procedure in Section 8.3.5. Then we can obtain its corresponding exemplar

and cluster assignment by computing the L2-distance between feature vectors. The cluster

with the shortest distance to the given new session is considered as the corresponding user.

Here, ρ should be a small integer because our task is to identify the user as soon as he/she

issues a new session. We will also investigate how ρ affects the performance in Section 8.4.3.

8.3.7 Complexity Analysis

Here we analyze the time and space complexity of SHE-UI.

Time Complexity. It costs O(|R| +∑i∈I |t(i)| +
∑

a∈A
∑

s∈S(a) Ts) time to construct the

heterogeneous graph. Assume that the number of metadata |t(i)| for each item i and the

length Ts of each session s are small constants. It becomes O(|R| + |I| + |S|), where S =⋃
a∈A S(a) is the set of all sessions of all accounts. Then SHE-UI spends O(t·|V |·l) = O(|I|+
|M |) time on collecting normalized random walk paths, where t and l are also treated as

small constants. To obtain feature representations of nodes, the stochastic gradient descent

process takes O(|V |2) = O(|I|2 + |M |2). Finally, the affinity propagation-based method

determines the cluster number and clusters sessions in O(
∑

a∈A |S(a)|2) time. In addition,

user identification cluster each account independently, so the algorithm is parallelizable. In

summary, the time complexity of SHE-UI is acceptable as O(|R|+|I|2+|M |2+
∑

a∈A |S(a)|2).

Space Complexity. The heterogeneous graph occupies O(E) = O(|R| + |I| + |S|) to

store the edges. The random walk paths need O(|V |) = O(|I| + |M |). Node and session
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features takes O(|V | + |S|) = O(|V | + |I| + |M |) space. Finally, the affinity propagation

costs O(|S(a)|2) space to create the responsibility and availability matrices for each account.

If the algorithm runs sequentially, it takes O(maxa∈A |S(a)|2); otherwise, the parallelized

algorithm has to spend O(
∑

a∈A |S(a)|2) on storing matrices for all accounts simultaneously.

Therefore, the space complexity of SHE-UI is O(|R|+ |I|+ |M |+maxa∈A |S(a)|2) or O(|R|+
|I|+ |M |+∑a∈A |S(a)|2).

8.4 Experiments

8.4.1 Datasets and Experimental Settings

The experiments are conducted on two datasets:

• Synthetic Last.fm (Last.fm). Last.fm [53] provides publicly available datasets for music

recommendation. The Last.fm-1K dataset contains streaming (or listening) history of 1K

users from Feb 2005 to May 2009. Since Last.fm-1K does not provide any information

about account sharing, we manually create synthetic accounts by merging several users’

history together following a similar procedure to that in [323]. 25% of accounts have 1, 2,

3, and 4 users respectively. Each user only belongs to one account.

• Real data from KKBOX (KKBOX). The dataset comprises listening logs of 100K

accounts from the KKBOX music streaming service from December 1, 2014 to November

30, 2015. In this dataset, we use the device ID as the bronze standard to evaluate the

accuracy of our user identification. Sessions with the same device ID are treated as be-

ing issued by the same user. Figure 8.4 shows the percentage of accounts over different

number of sharing users. More than 75% of accounts in the real-world dataset are shared

by multiple users. Figure 8.5 further illustrates the percentage of session pairs sharing

common items or metadata. We observe that, among all sessions of a given multi-user

account, sessions issued by the same user are much more likely to share common items or

metadata than that of different users.

Data Preprocessing. In online streaming services, the log of each account is a sequence
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Table 8.1: Statistics of Two Datasets.

(a) Session Information

Last.fm KKBOX
training

209,313 10,783,556
sessions
testing

209,925 10,782,507
sessions
accounts 370 88,399

unique users 922 343,723
items 314,763 564,164

(b) Metadata

Last.fm
artists 60,410

KKBOX
artists 43,157
albums 253,896
published years 77
genres 48

of entries, each of which contains a selected item with a timestamp. The log of each account

can be partitioned into a list of sessions. We use 30 minutes of inactivity to define session

boundaries. We exclude items of fewer than ten occurrences and accounts and sessions with

fewer than ten entries. For the Last.fm dataset, the only available metadata are the artists

of songs. For the KKBOX dataset, the available metadata include artists, albums, published

years and genres. For both Last.fm and KKBOX datasets, we use 50% sessions for training

and 50% sessions for testing for the UI-Past task (clustering sessions into groups of users

sharing an account) and the UI-New task (identifying the user of an incoming session),
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respectively. Table 8.1 shows the statistics of the two datasets after data cleaning and

preprocessing.

Default Parameter Settings. Unless we specify otherwise, we set the length of random

walks l to 5, and the dimension of features d to 512. For each node in the graph, 10 random

walks are generated (i.e., t = 10 in Algorithm 8.1). For each session in UI-New, the first 5

items are used to derive session features (i.e., ρ = 5 in Section 8.3.6). The effects of these

parameters are analyzed in Section 8.4.3.

Evaluation Tasks. There are three evaluation tasks as follows.

• (1) User Number Estimation: we examine whether SHE-UI can accurately determine

the number of users using the same account (i.e., the number of clusters among sessions of

an account). Note that this evaluation can be regarded as Multi-user Account Detection.

That says, accounts with two or more estimated users can be treated as multi-user ones.

We consider this task as a regression problem, and thus use Mean Absolute Error (MAE)

and Root Mean Squared Error (RMSE) [165] as the evaluation metrics to measure the

difference between the number of users |U(a)| and the number of estimated clusters |C(a)|
for every account a ∈ A. We examine the performance of our approach with affinity

propagation (AP) [120], which can automatically determine the number of clusters (i.e.,

users).

• (2) Performance in UI-Past and (3) Performance in UI-New: we aim to evaluate

the performance of SHE-UI for the tasks of UI-Past and UI-New, compared with a series of

baseline methods. To further evaluate the effectiveness of session embedding in SHE-UI,

experiments were conducted two times, with and without giving the number of users (i.e.,

session clusters) as input. If the numbers of users are known, K-Means++ [14] is applied

to cluster sessions; otherwise, Algorithm 8.3 is applied. We compare the performance

of SHE-UI using three conventional clustering evaluation metrics, including Normalized

Mutual Information (NMI) [301], Macro F-Score (MAF) and Micro F-Score (MIF) [269].

Baseline Methods. To evaluate the performance in UI-Past and UI-New, we compare

SHE-UI with several state of the art item-based clustering and embedding-based clustering
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Figure 8.6: The performance of determining the cluster number. The lower MAE and
RMSE indicate the better performance. All improvements are statistically significant at
95% confidence level by a paired t-test.

methods. The item-based clustering methods treat items in sessions as features, which in-

clude KMeans++ (KM) [14], affinity propagation (AP) [120] and subspace clustering (SS)

[363]. The embedding-based clustering methods derive d-dimensional representations of ses-

sions for clustering, which include word2vec (W2V) [241], LINE [313] and DeepWalk (DW)

[264]. Note that these embedding-based clustering methods only derive the feature repre-

sentations of items and need to apply our approach in Section 8.3.5 and Section 8.3.6 to

obtain session embedding and the clustering results. We do not furnish a comparison with

node2vec [135] since it is too time-consuming to compute probabilities for alias edges in a

large dense graph.

8.4.2 User Identification Performance

User Number Estimation. Figure 8.6 shows the performance of detecting cluster numbers

for accounts with different numbers of users. SHE-UI significantly outperforms AP, especially

in accounts with multiple users. Such results prove the usefulness of session embedding in

SHE-UI. The improvement is more significant in KKBOX dataset. KKBOX has much richer

metadata that translate into a much larger and more diverse graph, which creates significant
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Table 8.2: The results of user identification behind shared accounts. The higher values in
metrics indicate the better performance. All improvements of SHE-UI against DW [264] are
statistically significant at 95% confidence level by a paired t-test.

Dataset
Synthetic Last.fm Real Data from KKBOX

UI-Past UI-New UI-Past UI-New
Metric NMI MAF MIF NMI MAF MIF NMI MAF MIF NMI MAF MIF

Known Numbers of Users
KM [14] 0.2956 0.6109 0.7400 0.2802 0.6106 0.7400 0.3640 0.5710 0.6516 0.3286 0.5644 0.6592
SS [363] 0.2954 0.6109 0.7405 0.2793 0.6105 0.7403 0.3627 0.5707 0.6612 0.3258 0.5642 0.6585

W2V [241] 0.4865 0.7022 0.7982 0.4428 0.6823 0.7769 0.3828 0.5855 0.6524 0.3571 0.5739 0.6488
LINE [313] 0.2667 0.5611 0.6544 0.2622 0.5724 0.6768 0.3830 0.5874 0.6463 0.3456 0.5634 0.6183
DW [264] 0.5597 0.7372 0.8162 0.5148 0.7161 0.7947 0.3995 0.5976 0.6656 0.3587 0.5775 0.6419
SHE-UI 0.6108 0.7613 0.8393 0.5718 0.7455 0.8236 0.4281 0.6111 0.6804 0.3880 0.5948 0.6625

Unknown Numbers of Users
AP [120] 0.1677 0.3413 0.3474 0.1546 0.4825 0.5408 0.1884 0.4828 0.4978 0.1783 0.5225 0.5569
KM [14] 0.1189 0.5842 0.7003 0.1061 0.5622 0.6697 0.1856 0.5264 0.5849 0.1516 0.5041 0.5642
SS [363] 0.1518 0.5838 0.6856 0.1312 0.5616 0.6582 0.1927 0.5312 0.5904 0.1841 0.5151 0.5851

W2V [241] 0.2981 0.6413 0.6587 0.2560 0.6148 0.6347 0.2081 0.5337 0.6025 0.1807 0.5149 0.5818
LINE [313] 0.0813 0.5641 0.6687 0.0964 0.5546 0.6552 0.1955 0.5365 0.6083 0.1010 0.4782 0.5394
DW [264] 0.3053 0.6286 0.6557 0.2669 0.5966 0.6244 0.2158 0.5508 0.6249 0.1941 0.5322 0.6024
SHE-UI 0.3375 0.6563 0.6782 0.3214 0.6323 0.6568 0.2426 0.5610 0.6309 0.2218 0.5451 0.6117

challenges for AP. We can further observe that both MAE and RMSE of AP fluctuate as the

number of users increases. In contrast, SHE-UI consistently has lower errors. Such results

demonstrate that SHE-UI can make accurate prediction even for accounts shared by a large

number of users (e.g., 8, in Figure 8.6b).

Performance in UI-Past. Table 8.2 shows the results. Note that the result of AP is not

reported under the section ”Known Numbers of Users” since it cannot take a predefined

cluster number. Also note that under “Unknown Numbers of Users”, all compared methods

except AP utilize our method (Section 8.3.6) to determine cluster numbers because they need

it as an input parameter. We observe that SHE-UI consistently outperforms other methods

in every metric for the real-world data and almost all metrics for the synthetic dataset,

especially the improvement in NMI is more than 10% over the best competitor DW. Note

that NMI values are relatively low (compared with MAF and MIF) since NMI is sensitive

to the cluster size. As expected, when the cluster number is unknown, the performance

of all methods degrades (comparing to the case where the cluster number is unknown).

Nevertheless, SHE-UI can still perform reasonably well since it can accurately estimate the

numbers of users in accounts (as proved in Figure 8.6). Furthermore, the embedding-based

methods generally outperform item-based methods. Note that LINE performs the worst
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in Last.fm dataset because the information of metadata is too sparse for LINE to capture

appropriate features through edge sampling. Such result not only shows the effectiveness of

embedding-based approaches but also verifies the capacity of SHE-UI to accurately derive

session embedding.

Performance in UI-New. Table 8.2 shows the results of UI-New as well. We observe

similar performance to that in UI-Past: SHE-UI outperforms other competing methods in

every metric for the real-world dataset and almost all metrics for the synthetic dataset. For

instance, SHE-UI outperforms the best competitor (i.e., DW) by around 15% of NMI in

Last.fm and by around 12% in KKBOX on average for both cases with known and unknown

numbers of users. In addition, the performance in UI-New is generally worse than that in

UI-Past because only the first ρ items of a new session are used. In summary, SHE-UI is able

to efficiently identify the user of any incoming session (among all users sharing an account).

We will demonstrate its utility in improving the performance of online item recommendation

customized for the identified user in Section 8.4.4.

8.4.3 Study of Parameter Sensitivity

This section presents how parameter settings in SHE-UI may affect its performance in user

number estimation and user identification. We present only the performance using the

KKBOX dataset, as we observe a similar performance on Last.fm.

Figure 8.7a and 8.7e exhibit the performance of user identification measured by NMI as a

function of the length of normalized random walk (i.e., l in Algorithm 8.2) for the scenarios of

known and unknown numbers of users respectively. Even though the performance generally

improves as the length increases, we observe that it saturates when the length reaches five.

Longer random walk does not necessarily warrant additional benefit. We thus set our default

length to 5.

Figure 8.7b and 8.7f show the performance by varying the feature dimensions (i.e., d in

Algorithm 8.1). The results show that, while higher dimensions can in general lead to more

accurate user identification, the performance plateaus at 512 dimensions. We thus choose
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Figure 8.7: Results of Parameter Sensitivity Study.

512 as our default setting.

Figure 8.7c and 8.7g exhibit how the performance of SHE-UI is affected by the number

of random walks generated for each node (i.e., t in Algorithm 8.1). The results are generally

consistent with the intuition that more sampled walks lead to better performance. However,

the performance saturates when the number reaches to 10, which is our choice of default

value. This is because too many random walks starting from a node tend to bring duplicate

information into feature representation.

Figure 8.7d and 8.7h demonstrate the performance of SHE-UI in UI-New by varying the

number of items used to derive session features (i.e., ρ in Section 8.3.6). The performance

is significantly better when the number of users is known than otherwise. It is also reason-

able that more items seen in a new session lead to better performance of identifying the

corresponding user. We set the default value to 5.
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8.4.4 Item Recommendation with SHE-UI

Conventional recommender systems [35, 53, 149] do not attempt to distinguish users sharing

the same account and thus can only recommend items to “accounts”, termed account-level

recommendation (ARec) here. The preferences of individual users are not adequately cap-

tured. It is expected that by adding user-level recommendation (URec), we can effectively

model the user preferences. Therefore, we propose a hybrid recommender that linearly com-

bines the Account-level and User-level item RECommendation, which is termed AURec.

Let RA(a, i) and RU(u, i) be item i’s recommendation scores that ARec gives to account

a and URec gives to the identified user u of account a, respectively. We employ the Bayesian

personalized ranking matrix factorization (BPRMF) [278] model to compute the RA and RU

scores. For a session s issued by the user u in the account a, AURec estimates the score of

the item i by

RAU(a, u, i) = (1− α) ·RA(a, i) + α ·RU(u, i),

where α is the parameter to control the weights of URec and ARec, and we set α = 0.6 by

default.

Evaluation Settings.. The evaluation is conducted by using KKBOX data, in which items

are songs. The split of training and testing is the same as in Section 8.4.1. We ran these

experiments under the setting of UI-New with unknown numbers of users. We consider

item recommendation as a ranking task. For each session s in the testing data, we want

to examine how well we can predict the remaining items in the session based on the first 5

items. We first compute the RAU for every item and sort them by descending order of their

RAU scores. We then examine the rankings of the items appear in the remainder part of the

session s. Ideally, we want to see that these items are top ranked by the RAU scores. To

quantitatively measure the recommendation performance, we use standard evaluation metrics

[81], including Mean Reciprocal Rank (MRR), Mean Average Precision (MAP) and Precision

at k (P@k) to compare AURec with four ARec recommender systems: recommendation by

item popularity (PopRec), maximum margin matrix factorization (MMMF) [338], Bayesian
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Table 8.3: Results of item recommendation with AURec.

PopRec MMMF [338] BPRMF [278] CLiMF [292] AURec
MRR 0.1242 0.1421 0.1353 0.1400 0.1727 (+22%)
MAP 0.0317 0.0331 0.0330 0.0337 0.0439 (+30%)
P@1 0.0597 0.0608 0.0577 0.0597 0.0846 (+39%)
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Figure 8.8: Results of recommendation by varying k and α.

personalized ranking matrix factorization (BPRMF) [278], and collaborative less-is-more

filtering (CLiMF) [292].

Experimental Results.. Table 8.3 shows the results. It is clear that AURec significantly

outperforms the best ARec competitor (i.e., MMMF) by a wide margin (from 22% to 39%

in the three metrics). Such result reveals that user identification using SHE-UI can truly

enhance the accuracy of item recommendation. To understand how parameters influence the

recommendation performance, we further vary k in P@k and α in AURec. The results are

shown in Figure 8.8. We observe that AURec consistently outperforms others as k increases.

In Figure 8.8b, the best performance is achieved at α = 0.6 which demonstrates the need for

combining URec and ARec. Using either ARec (α = 0) or URec (α = 1) along will produce

substantially worse performance. It is worth noting that this task is extremely challenging.

A session may be relatively short, consisting only a small number of items. A user may have

broad interests and may not always play all of his/her favorite songs in one single session.
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In the above setting, a favorite item is counted as a negative instance if it does not appear

in the current testing session.

8.5 Conclusions and Discussions

This chapter investigates the problem of identifying individual users behind shared accounts

in two settings: for historical data (UI-Past), and for incoming sessions (UI-New). An

unsupervised learning-based framework, Session-based Heterogeneous graph Embedding for

User Identification (SHE-UI), is proposed. Experiments conducted on KKBOX and Last.fm

datasets demonstrate that SHE-UI can not only outperform the best competitor by at least

10% in UI-Past and 12% in UI-New in terms of NMI, but also significantly improve the

performance of music recommendation by 39% measured by Precision@1. Accurate user

identification is beneficial to both users and service providers. Users can enjoy a “true”

recommendation while service providers can establish more desirable marketing strategies

according to the behaviors of sharing accounts. The content providers (e.g. artists and

publishers) can also gain insights in the taste and trend of different user groups.

The Session-based Heterogeneous graph Embedding (SHE) learns the feature represen-

tation for each session, which may be applicable to inferring account attributes, predicting

session life-cycle, and detecting abnormal accounts, in addition to user identification. More-

over, the proposed SHE-UI can be applied to any activity and event sequences, allowing for

incorporation of metadata. For example, one may study activity traces from smart devices

and apply SHE-UI for activity recognition.
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CHAPTER 9

Modeling Heterogeneous Data in Social Media Posts

for Sponsorship Detection

In this chapter, we demonstrate the first example of our proposed aspect attention for in-

terdisciplinary knowledge discovery as shown in Chapter 1. For social media posts with

heterogeneous resources, we project them into a universal latent space and learn an aspect

attention function for deriving ultimate aspect-attentive representations. As a real-world

use case, we demonstrate significant improvements of our approach in sponsorship detection

as a post classification task.

9.1 Introduction

Influencer marketing has been gaining significant attention from marketers as an essential

advertising method recently [229]. As the rapid growth of the influencer marketing in-

dustry results in numerous paid advertisements in social media, the transparency issue of

advertising posts has been raised. According to the regulations from the Federal Trade

Commission (FTC) [76], the Advertising Standards Authority (ASA) [19], and the Organi-

sation for Economic Co-operation and Development (OECD) [117], influencers are required

to conspicuously disclose sponsorship when they publish paid advertisements. That is, men-

tioning brand names and the relationship between a mentioned brand and an influencer in

paid advertisements, thereby having transparency in advertising posts. However, a notice-

able number of influencers fail to disclose paid partnerships with brands in their advertising

posts, either because they are not aware of the regulations [3] or because they are concerned
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about lowering the effectiveness of the advertisement [110]. Surprisingly, the recent survey [3]

reveals that only 52% of influencers and 60% of marketers have a good understanding of the

regulation. This implies that the lack of legal knowledge and education for social media users

can lead to social issues amid the rapid growth of social media. Figure 9.1 shows an example

of a paid media where the influencer advertises the product of the brand in the absence of

mentioning sponsorship.

Figure 9.1: An example of paid media that fails to disclose sponsorship. Despite the influ-
encer advertises a product and mentions a certain brand name, no sponsorship is disclosed.

The sponsored posts without disclosing the sponsorship may cause the following problem.

Audiences will be increasingly skeptical toward the influencers’ posts, and hence influencers

lose the trust. Influencer marketing can only become effective when people think that in-

fluencers are trusted sources of information [223]. Furthermore, the lack of transparency in

the advertising posts can negatively impact brand image [110]. For the steady growth of the

influencer marketing industry with proper advertising practice, the FTC has monitored and

warned a few famous celebrities in social media who violated the endorsement regulations.

However, it is impractical to monitor the millions of influencers on social media.

Although influencer marketing has gained noticeable attention recently, only a limited

number of studies focused on sponsorship disclosure in influencer marketing. Some previous

works examine the effect of the presence of sponsorship in social media [110, 302, 354] and

suggest that disclosing sponsorship helps audiences to identify the post as an advertisement

but lowers purchase intention. Moreover, Wojdynski et al. [342] attempt to measure the

sponsorship transparency of paid advertisement by considering audiences’ perceptions. While

the previous works discuss the importance of detecting undisclosed sponsorship of social

media posts, no study has proposed a method yet. Additionally, the previous works solely
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rely on a small number of survey results, thereby lacking evaluation with a large dataset.

In this chapter, we propose a learning-to-rank based model, Sponsored Post Detec-

tor (SPoD), that can detect sponsorship of social media posts. Our model incorporates three

different aspects (i.e., modalities) on social media including graph, text, and image to repre-

sent the social media posts. We first employ the Graph Convolutional Networks (GCNs) [198]

to leverage the characteristics of posts and the social relationship among influencers and

brands. To adopt GCNs, we construct a heterogeneous network that connects influencers,

posts, and brands. Besides the graph features, we also generate image and text features

of each post to further describe the characteristics of the posts. Particularly, we use the

pre-trained Inception-V3 model to obtain the image object features which have 1,000 cat-

egories [310] and utilize BERT [94] to create contextualized features of social media post

captions. Moreover, we apply attention [321] over the three sets of features to estimate the

importance of each aspect of social media posts, thereby utilizing more important aspects to

detect hidden sponsorship. In addition to the attentive post features, we conduct a manifold

regularization method to optimize the model performance. More specifically, we propose to

exploit posting time and mentioned brands from social media posts for temporal regulariza-

tion. For example, we place more weight on posts created at similar times and mentioning

the same brand, that is, posts that likely belong to the same marketing campaign. With

the proposed temporal regularization, our model takes the attentive post features as input

to rank given social media posts by their sponsorship scores.

We summarize our contributions as follows:

• To the best of our knowledge, this is the first attempt to rank social media posts by their

sponsorship scores. We believe that our proposed SPoD can be beneficial for marketers

and government organizations to find brands and influencers in violation of endorsement

guides [19, 76, 117], thereby protecting consumers. Besides, social media platforms can

utilize SPoD to help users recognize the sponsorship disclosing regulation. As SPoD exploits

the prevalent social media features, our model can be practically adopted to any social

media.
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• We propose a novel learning-to-rank model, SPoD, that incorporates with texts, images,

and relationships among influencers and brands. Moreover, we estimate the importance of

the different modalities by using attention to acquire decent post representation. Besides,

we employ the redundancy between the posts and their published times to learn tempo-

ral sponsored relationships. We conduct extensive experiments on a real-world dataset

collected from Instagram which is known as the most popular social media for influencer

marketing [229]. Our extensive experimental results demonstrate that SPoD improves per-

formance by 54.3% in detecting undisclosed sponsorship compared to the best baseline

method.

• Our analysis further reveals that the text features significantly improve the ranking per-

formance. We find that contextualized features improve SPoD by 53.8%. We also observe

that SPoD properly ranks the posts which are in various caption lengths. Particularly,

SPoD obtains 216% improvement over the state-of-the-art text baseline method with very

short caption posts by taking advantage of the graphical structural information.

9.2 Problem Statement

In this section, we formally define the goal of this paper. Suppose we have a set of posts

P = {pn}|P |n=1 published by a set of users U = {um}|U |m=1. Each post can be represented as

pn = (tn, an, bn, ln) where tn, an, bn, and ln denote text, image(s), mentioned brand(s), and

posting time of the post, respectively. Note that a post mentions at least one brand where

the brand is in the set of brands B = {bk}|B|k=1. Given text and images of a post, we extract

text features and image features, XT ∈ Rn×f and XI ∈ Rm×g, respectively, where f and

g are the numbers of features. Moreover, we have graph features, XG ∈ Rn×h, where h is

the number of features. The graph features can be generated from a heterogeneous network

G = (E, V ) where the vertices V = (U, P,B) are composed of users, posts, and brands,

respectively. Given a set of posts P , we aim to rank the posts by learning the distinctive

features of sponsored posts so that sponsored posts with the absence of sponsorship disclosure

can be discovered.
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Figure 9.2: The overall framework of the SPoD. The aspect-attentive heterogeneous post
encoder generates post representations. The estimated sponsorship scores are optimized by
conducting temporal regularization for detecting sponsored posts.

9.3 Methodology

9.3.1 Framework Overview

Here we briefly give an overview of our proposed framework, SPoD, as shown in Figure 9.2.

To leverage multimodal inputs of social media posts, we utilize three encoders, including

graph encoder, text encoder, and image encoder. The graph encoder takes the heterogeneous

network that includes users, posts, and brands as an input. Moreover, each node in the graph

has a set of features as contextual representations to indicate the entity characteristics. Based

on the heterogeneous structures of different entities and their features, graph convolutional

networks (GCNs) are applied to derive appropriate node representations. In addition to

GCN-encoded features, the text and image of each post are encoded by a contextualized text

encoder and an image encoder, respectively. We then apply attention [321] over the three

sets of features to estimate their importance and generate the post representations. The

sponsorship scores of candidate posts are then computed based on all of the corresponding

features and ranked for discovering sponsored posts. Finally, we optimize the sponsorship
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Figure 9.3: The illustration of the post encoder using heterogeneous information.

scores by conducting temporal regularization based on posting time and mentioned brands

from the input post set.

9.3.2 Aspect-Attentive Heterogeneous Post Encoder

To acquire decent representations of posts, we utilize three encoders including the graph,

text, and image encoders to capture knowledge from different aspects, and apply aspect-

attention over the three sets of features as shown in Figure 9.3.

9.3.2.1 Graph Encoder

To model posts with the graphical structure, we first construct a heterogeneous network and

then apply graph convolutional networks (GCNs) [198] to derive GCN-encoded features for

each candidate post.

Heterogeneous Network Construction. To construct a heterogeneous network, we con-
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sider three different entities including posts, users (i.e., influencers), and brands mentioned

in posts. Note that the constructed heterogeneous network in our framework can be flexibly

expanded with any additional relevant entities. The edges in the heterogeneous network

indicate the interactions between entities behind nodes. The node of each post is linked to

the node of the author user. If a brand is mentioned in a post, the post node has an edge to

the brand node. Note that since more than one brand can be mentioned in a post, a post

node can have multiple edges to brand nodes. More specifically, the edges of the network

are represented by a sparse matrix A ∈ RN×N , where Aij = 1 if the i-th and j-th nodes are

connected; otherwise, Aij = 0.

Node Features. Each node in the network has a set of features while all of the features

can be represented as

Z = [ZP ;ZU ;ZB] ∈ RN×d,

where ZP , ZU , and ZB are the features of nodes for posts, influencers, and mentioned

brands, respectively; N and d are the number of all nodes in the network and the number

of features for each node, respectively. The detailed features in this paper are defined in

Section 9.3.2.5.

Graph Convolutional Networks To leverage the knowledge of structural information, we

propose to apply GCNs to encode node representations with both node features and net-

work structures. First, the adjacency matrix A is transformed into a normalized adjacency

matrix Â as follows:

Â = D−
1
2AD−

1
2 ,

where D is the diagonal matrix of node degrees. GCNs can then be operated based on the

normalized adjacency matrix Â and the feature matrix Z.

To model complicated network structures, we consider multi-layer GCNs by propagating

information through different layers. Formally, the outputs of the i-th layer in GCNs, H(i) ∈
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RN×k, can be computed as follows:

H(i) = σ
(
ÂH(i−1)W (i−1)

)
,

where k is the number of hidden dimensions in GCNs; H(i−1) is the outputs of the previous

layer; W (i−1) is a matrix of layer-specific trainable weights; σ(·) is a nonlinear activation

function. Note that H(0) = Z as the base case. Finally, the GCN-encoded representations

X can be computed by concatenating the outputs of different layers as follows: XG =[
H(1),H(2), . . . ,H(L)

]
, where L is the number of layers in GCNs.

9.3.2.2 Text Encoder

To model contextualized knowledge from text in posts, we encode the text tn in a given post

pn. Instead of learning from scratch, we apply the pre-trained state-of-the-art neural lan-

guage model, BERT [94]. Note that any potential language model can be applied to the text

encoder. Given the text in a post tn, a length j sequence of words c = [c1, c2, · · · , cj],
BERT adds an initial token [CLS] to alleviate the positional bias in input embedding

c′ = [[CLS], c′1, c
′
2, · · · , c′j′ ]. The input word sequences of n posts, Q(j′+1)×n, then goes

to the transformer FT with o layers. We generate the output of the o-th transformer

FT (Fo−1
T ) = Do = [do[CLS], d

o
1, d

o
2, · · · , doj′ ] as the representation of each word in the word

sequences. Finally, we only adopt the do[CLS] to form the text representation XT .

9.3.2.3 Image Encoder

In addition to the graph and text, we use images attached in the posts since images are

known as one of the most important factors in effectively advertising products in social media

marketing [231]. For example, the influencer in Figure 9.1 holds the product in the image for

advertising purposes. We apply the pre-trained Inception-V3 model trained with one-million

images in 1,000 object categories [310] to avoid training images from scratch. Particularly,

the image encoder takes input images from a post and generates a feature vector with g
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dimensions where each dimension represents the probability that the image contains the

corresponding object. That is a list of sn images from a post pn, an = [an1, an2, · · · , ans].
We use the maximum value for each dimension while aggregating the feature vectors as

follows: FI(an) = max-pool({ani | 1 ≤ i ≤ sn}), where the function max-pool(·) remains the

maximum value for each dimension over the feature vectors of sn images. Finally, the image

representation XI contains the image object vectors from n posts.

9.3.2.4 Aspect-Attention

To estimate the importance of features from different aspects, including the heterogeneous

graph, texts, and images, we apply the attention mechanism over the three sets of features.

We first apply a fully-connected hidden layer to each set of features to have the same dimen-

sion of the features as:

V G = FG

(
XG

)
,V T = FT

(
XT

)
,V I = FI

(
XI
)
,

where FG(·), FT (·), and FI(·) are fully-connected layers for the graph, text, and image

features, respectively. The sets of features from different modalities can be represented as:

V = [V G,V T ,V I ].

The importance αi of feature Vi can be estimated as:

αi =
exp(ri · rc)∑
j exp(rj · rc)

,

where ri = tanh (F (Vi)) is the hidden representation of the feature Vi; F(·) is a fully-

connected layer; tanh(·) is the activation function; rc is the context vector for importance

estimation. The estimated score αi is multiplied with corresponding features Vi to get

weighted values, and the representation of the post can be derived by taking all the weighted
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Table 9.1: Node features that represent characteristics of each type of node in GCNs.

Category Feature Description

Node Node Type Node type in the heterogeneous network.

Influencer

Keywords The normalized frequency of keywords.
Followers Number of followers.
Followees Number of followees.

Posts Number of published posts.
Influncer Category Major interest of the influencer.

Posts

Likes Number of likes in a post.
Comments Number of comments in a post.
Hashtags Number of hashtags(#) in a post.
Usertags Number of usertags(@) in a post.

Caption Length Length of text in a post.
Images Number of images in a post.

Posting Day The day a post was published.

Brand

Followers Number of followers.
Followees Number of followees.

Posts Number of published posts.
Brand Category Business type of the brand.

values of the graph, text, and image features as follows:

X =
∑
i

αi · Vi.

9.3.2.5 Node Features in GCNs

To represent characteristics of nodes in the network, we incorporate four types of node

features, including node type, influencer, post, and brand as shown in Table 9.1. Note that

our proposed framework is not limited to these features, therefore, any potential feature can

be additionally applied to the model.

• Node type features. To indicate one of the three types of nodes, including post, influ-

encer, and brand, we apply the one-hot coded node type feature in this category.

• Influencer features. We exploit the normalized frequency of keywords to capture textual

patterns of influencers. We select the frequently used keywords based on their Chi-square
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values. Note that we use the top 100 keywords in this study. We also use the number of

followers, followees, and published posts features that represent the reputation of influ-

encers [191]. Moreover, we exploit the major interest of the influencers such as Food and

Interior [192].

• Post features. To represent post characteristics, we exploit the features which are widely

used in any social media. We first obtain the numbers of likes and comments in a post

which can represent the popularity of the given post. Since it is well known that peo-

ple tend to avoid advertising [67, 190], such post popularity features can help provide a

distinguishable representation of sponsored posts. We also employ the numbers of hash-

tags and usertags that are particularly used for disclosing names of brands, products, or

marketing campaigns in paid advertisements [354]. Additionally, we use the number of

images in a post while most social media accept multiple images in a post, and the day a

post was published (e.g., Sunday, Monday) since publishing time affects the popularity of

advertising posts in social media [244].

• Brand features. To characterize the brand nodes, we have the business type of the

brands3. Additionally, we use the number of followers, followees, and published posts to

measure brand awareness [354].

9.3.3 Sponsorship Estimation and Ranking

To estimate the sponsorship score of a post, all of the GCN-encoded features, text features,

and image features can be useful because many aspects of the post are considered.

For a post i, all of the features are concatenated as the ultimate representation Xi. The

predicted sponsorship score ŷi of the post i can then be generated by a linear unit with a

fully-connected hidden layer as follows:

ŷi = Fp (σ (Fh (Xi))) ,

3https://business.instagram.com/

161

https://business.instagram.com/


where Fh(·) and Fp(·) are two fully-connected hidden layers; σ(·) is a nonlinear activation

function. Therefore, the candidate posts can be ranked by the predicted sponsorship scores.

9.3.4 List-wise Learning to Rank

Since our goal is to rank posts by their likelihood scores to be sponsored posts, it is intuitive

to apply learning to rank approaches to deal with the problem. More specifically, in this

paper, we modify the ListMLE [348], which is list-wise learning to rank approach that can

benefit overall ranking performance.

Suppose that X is the set of features for posts to be ranked; Y is the output space of

permutations of the posts; PXY is an unknown but fixed joint probability distribution of X

and Y . If a ranking function can be represented by ŷ : X → Y , the expected loss R(ŷ) to

be optimized can be derived as follows:

R(ŷ) =

∫
X×Y

L(ŷ(Xi),y)∂P (Xi,y),

where y ∈ Y is a permutation; Xi ∈ X; L(ŷ(Xi),y) is the 0-1 loss between the ranked

result ŷ(Xi) and the position in the permutation y such that

L(ŷ(Xi),y) =

 1 , if ŷ(Xi) 6= y

0 , if ŷ(Xi) = y

To make the training process more efficient, candidate lists with n labeled posts are

sampled from the whole training space in each iteration. Given independently and identically

distributed samples in a candidate list S = {(Xi,yi)}ni=1 ∼ PXY , we minimize the empirical

loss RS as follows:

RS(ŷ) =
1

n

n∑
i=1

L(ŷ(Xi),yi),

where yi is the ground truth permutation.
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9.3.5 Temporal Regularization

Timing is important for publishing posts in influencer marketing [244], so the redundancy

between different posts with similar published times can be leveraged to improve the perfor-

mance for sponsorship estimation. In addition, brands usually hire a number of influencers

for a marketing campaign at a time. For example, the posts that are published at a similar

time and mention the same brand name are more likely to be sponsored posts. In this pa-

per, therefore, we conduct manifold regularization [176] by using the redundancy between

the posts and their published times. Formally, the regularization loss Q(ŷ) can be defined

as:

Q(ŷ) =
1

n2

n∑
i=1

n∑
j=1

(|ŷi − ŷj| ×
wb(i, j)

max (|li − lj|, 1)
),

wb(i, j) =

 1 , if bi = bj

10−1 , if bi 6= bj
,

where ŷi and ŷj are the estimated sponsorship scores of the posts pi and pj mentioning the

brands bi and bj at time li and lj; wb(i, j) indicates the brand-based regularization weight.

Note that the posting time difference, |li − lj|, is measured in days. Finally, the ultimate

objective for discovering sponsorship L can be a combination of two loss functions as;

L(ŷ) = RS(ŷ) + wl ·Q(ŷ),

where wl is the weight for manifold regularization.

9.4 Experiments

9.4.1 Experimental Dataset

Dataset Construction. To evaluate our proposed model, our dataset samples influencer

posts from Instagram, which is the most popular social media platform for influencer market-

ing [229]. Note that we implement the data collection method in [192] and comply with the
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Instagram policy4. To find posts that mention brand names, we first collect a set of brands

on Instagram by searching branded content, i.e., sponsored posts. Note that Instagram pro-

vides the branded content tool for influencers to disclose sponsorship by showing a partnered

brand name on the top of a post5. From the searched sponsored posts, we obtain 26,910

brand names. Next, we find brand mentioning posts that contain at least one brand name

by searching user tags in the corresponding caption. To reduce noises in the dataset, we

filter out a post if it is published by a user with less than 1,000 followers which is a generally

required number of followers to be considered as an influencer6. Finally, we collect 1,601,074

brand mentioning posts that are published from 2013 to 2019 by 38,113 influencers. Note

that the number of posts is exponentially grown over time; the average follower count of the

influencers is 127,279.

Sponsorship Labeling. Since our goal is to find sponsored posts that do not disclose paid

partnerships, we first classify the posts in the dataset into two classes, including “Spon-

sored” and “Unknown”. We label the posts as ‘Sponsored’ if the posts explicitly disclose

sponsored relationships by using certain keywords. More specifically, a given post is labeled

as ‘Sponsored’ if the post either uses the branded content tool from Instagram or has one

of the following hashtags, #ad, #sponsored, and #paidAD, which are widely used hashtags

for sponsorship disclosure in influencer marketing [110, 354]. The remaining posts that are

not identified as sponsored posts are labeled as ‘Unknown’. That is, the ‘Unknown’ posts

may contain non-sponsored and sponsored posts with no sponsorship disclosure. We label

all posts in the dataset and finally have 221,710 ‘Sponsored’ posts and 1,379,364 ‘Unknown’

posts which account for 13.8% and 86.2%, respectively. After labeling the posts, we remove

all of the sponsorship-related keywords and hashtags from the posts to prevent information

leakage in the experiments. Therefore, our model can detect sponsored posts without rely-

ing on such keywords. To evaluate the performance of detecting sponsored posts from the

4https://help.instagram.com/325135857663734

5https://business.instagram.com/a/brandedcontentexpansion

6https://www.digitalmarketing.org/blog/how-many-followers-do-you-need-to-be-an-influencer
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‘Unknown’ posts, we further manually investigate the unknown posts. The details of manual

labeling procedure are described in Section 9.4.4.2.

Heterogeneous Network. We build the heterogeneous network by using the 1,601,074

posts which include 2,273,578 brand mentions. As a result, the network has 38,113 influencer

nodes, 26,910 brand nodes, and 1,601,074 post nodes with 3,874,652 edges.

9.4.2 Experimental Settings

To measure the performance of the proposed SPoD, we treat the task as a one-class ranking

problem and assign a relevance score for each post so that posts with higher scores are

more likely to be sponsored posts. That is, the posts labeled as ‘Sponsored’ have relevance 1

while the ‘Unknown’ posts have the relevance 0. As SPoD ranks the candidate posts by their

sponsorship scores, the relevances are used to evaluate the rank quality. More specifically, we

use mean average precision (MAP), mean reciprocal rank (MRR), and average precision (AP)

as our evaluation metrics.

We use TensorFlow [1] to implement our model. We split the dataset into three partitions

for training, validation, and testing with a ratio of 7:1:2 by randomly selecting the posts.

Therefore, the ratios of sponsored posts and unknown posts on three partitions are the

same. Additionally, we ensure that the same influencers are not included across the training,

validation, and testing sets to avoid information leakage from learning relationships between

influencers and brands (e.g., a certain influencer repetitively advertises a certain brand). We

tune the parameters with the validation set and set a single hidden layer with 128 hidden

nodes. The learning rate and the dropout probability are set as 10−3 and 0.5, respectively.

We set the regularization weight, wl, as 10−4.

9.4.3 Comparative Baseline Methods

We compare the performance of the proposed model with the baseline methods in three

different categories, including Ranking, Graph, and Text.
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Ranking Baselines. As our model applies the learning-to-rank approach, we apply the

identical feature sets of the proposed model for the ranking baselines, therefore, we can

evaluate the model capability for the ranking task of the proposed model. We deploy three

ranking baseline methods as follows: ListNet (LN) [52] is a list-wise learning-to-rank algo-

rithm that exploits gradient descent on neural networks to optimize a list wise loss function.

MART [121] is a pair-wise learning-to-rank algorithm that uses gradient boosted decision

trees for prediction tasks. LambdaMART (LM) [45] directly optimize rank cost functions by

using gradient boosted regression trees based on MART.

Graph Embedding Baselines. The baseline methods in this category only exploit the

graphical structure without other information. We deploy the LINE [313] and the GCN [198]

as two graph baseline methods. The baselines use the heterogeneous network as input

features and disregard the text and image features.

Text Modeling Baselines. In addition to the ranking and the graph baselines, we also

have two text baseline methods since influencers usually reveal paid partnerships using text.

As the baselines, we deploy two state-of-the-art language models, Embeddings from Lan-

guage Models (ELMo) [266] and Bidirectional Encoder Representations from Transformers

(BERT) [94].

9.4.4 Experimental Results

In this section, we evaluate the performance of our proposed SPoD compared to the baseline

methods with the following two steps: (i) We first examine the sponsored post ranking

performance without taking into account sponsored posts in the unknown posts. (ii) We

then investigate highly ranked unknown posts to evaluate the performance of detecting

hidden sponsored posts in the unknown posts.
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Table 9.2: Performance comparison with the baseline methods. SPoD significantly out-
performs all types of baseline methods. The temporal regularization and aspect-attentive
components improve the ranking performance.

Method MAP MRR
AP@k

10 100 1000 10000

LN [52] 0.250 0.500 0.714 0.643 0.487 0.380
LM [45] 0.269 1.000 0.867 0.451 0.461 0.395

MART [121] 0.290 1.000 0.507 0.398 0.432 0.421
LINE [313] 0.317 1.000 0.894 0.701 0.587 0.473
GCN [198] 0.370 1.000 0.935 0.744 0.709 0.566
ELMo [266] 0.352 1.000 0.926 0.751 0.714 0.608
BERT [94] 0.376 1.000 0.947 0.788 0.755 0.653

SPoD w/o regularization 0.558 1.000 1.000 0.967 0.956 0.902
SPoD w/o aspect-attention 0.573 1.000 1.000 0.973 0.960 0.913

SPoD 0.592 1.000 1.000 0.994 0.984 0.941

9.4.4.1 Sponsored Posts Ranking Performance

Table 9.2 shows the performance of the proposed SPoD and the baseline methods. We find

that ranking baselines show poor ranking performance compared to the graph and the text

baselines. Despite the graph and the text baselines only exploit the network features and the

contextualized text features, respectively, these baselines outperform the ranking baselines

which use all the proposed features. This is because the text features can be easily over-fitted

over the complicated structures in ranking baseline methods. In other words, the ranking

baselines fail to leverage the contextualized features. We also find that, in the graph and the

text baselines, GCN and BERT have better rank quality than LINE and ELMo, respectively,

which are adopted to our proposed post encoder.

Finally, our proposed model, SPoD, significantly outperforms all of the other baseline

methods. More specifically, SPoD obtains a 57.45% improvement in mean average precision

over BERT. Unlike ranking baselines, SPoD separates text and image features from GCN

features and then applies attention over the features, thus effectively utilizing more important

post features for ranking. Furthermore, SPoD shows a more robust ranking performance than

other baselines. Note that average precision at 10,000 of SPoD is 0.941 while the performance

other baseline methods tend to decrease if the ranked list size increases. Figure 9.4 shows
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Figure 9.4: Precision at retrieval rates of the proposed model and the baseline methods.
SPoD shows efficient and robust ranking performance compared to the baseline methods.

precision at retrieval rates of SPoD and the other baseline methods. While the precision of the

baseline methods significantly drops as the retrieval rates increase, SPoD shows highly robust

performance. That is, SPoD has high ranking accuracy even while finding a large number

of sponsored posts. Furthermore, we perform an ablation study by removing the temporal

regularization and the aspect-attention. As shown in Table 9.2, SPoD loses a 5.74% and

3.21% rank performances in the measure of MAP without using the proposed regularization

and the aspect-attention, respectively. This suggests that the proposed regularization that

exploits the redundancy between the posts and their published times plays an important role

in discovering sponsorship of social media posts. This also reveals that the aspect-attention

effectively generates post representations by finding more important features.

9.4.4.2 Detecting Unlabeled Sponsored Posts

Since the goal of SPoD is to detect sponsored posts which do not clearly disclose sponsored

relationship with brands, we evaluate the performance of detecting such sponsored posts by

investigating the ranking results from Section 9.4.4.1. To this end, we first extract a set

of highly ranked unknown posts and then examine their images and captions to manually

label the posts. To ensure the quality of our labeling procedure, two authors of this paper

have carefully read and understood the FTC’s endorsement regulation, then investigated
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Table 9.3: Precision results on the top-ranked unknown posts. SPoD outperforms other
baseline methods in detecting undisclosed sponsorship of the unknown posts.

Precision@k 10 50 100 150 200
GCN [198] 0.600 0.540 0.420 0.380 0.355
BERT [94] 0.800 0.820 0.750 0.673 0.580

SPoD w/o regularization 1.000 0.960 0.910 0.873 0.810
SPoD w/o aspect-attention 1.000 1.000 0.950 0.920 0.860

SPoD 1.000 1.000 0.990 0.967 0.920

the top 200 unknown posts from each ranking result of SPoD, SPoD without regularization,

BERT, and GCN. More specifically, we decide an unknown post as a sponsored post when

an influencer exclusively promotes a certain product or service by expressing appreciation for

sponsorship indirectly in text and holding the product to show brands in images. Cohen’s

kappa coefficient of our labels is 0.784 which suggests that our labeling result is highly

reliable [232]. Note that there are only 9 disagreements out of the 200 posts. We consider

an unknown post as a sponsored post only if both labelers agree.

Table 9.3 shows the precision of detecting sponsored posts from the unknown posts. The

result demonstrates that SPoD is very effective in discovering the sponsored posts with the

absence of sponsorship disclosure compared to the baseline methods. Note that SPoD gains

58.6% and 159.2% improvements in precision scores at 200 over BERT and GCN, respectively

by achieving 0.920 precision score. This implies that the proposed post representations are

remarkably useful to identify sponsorship of social media posts even if the paid partnership

is not explicitly disclosed. On the other hand, using only graph structural or contextualized

information may fail to detect such posts. We also find that SPoD loses 11.96% and 6.52%

performance in the precision at 200 without using the temporal regularization and the aspect-

attention, respectively. This suggests that proposed temporal regularization significantly

improves the performance of detecting undisclosed sponsorship by detecting advertising posts

in the same marketing campaigns. This also reveals that the aspect-attention is useful to

obtain more important knowledge from different aspects of social media posts.

Figure 9.5 showcases the example posts that are in the top 200 of the rank result of

SPoD. The posts in Figure 9.5a and 9.5b are the sponsored posts with absence of sponsorship
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(a) Sponsored Post 1 (b) Sponsored Post 2

(c) Non-sponsored Post 1 (d) Non-sponsored Post 2

Figure 9.5: Examples of successfully detected sponsored posts with absence of sponsorship
disclosure, and highly ranked non-sponsored posts.

disclosure. In the sponsored posts, the influencers tend to describe details of the products

by sharing their experience and recommending the products in the captions. In addition

to the text, we observe the evidence of sponsorship in the image as they hold the products

for advertising. However, the sign of sponsorship disclosure is not found from the text and

hashtags. On the other hand, Figure 9.5c and 9.5d show the non-sponsored posts that are

in high-rank positions. These posts may have been highly ranked due to an object in the

images (e.g., products), contextual similarity, and social relation between influencers and

brands.

9.4.5 Analysis and Discussions

In this section, we first study the effectiveness of the proposed model with different feature

sets to understand the impact of features to discover sponsored posts. We then evaluate the

performance of SPoD with the sets of posts that have different caption lengths.
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Figure 9.6: The post node features and the text features play an important role in detecting
sponsorship of posts. SPoD significantly improves the performance in the short post set.

Feature Importance. To understand the importance of each feature set in the proposed

SPoD for detecting sponsored posts, we evaluate the rank performance over different feature

sets. Figure 9.6a shows the performance loss of MAP scores of the models trained with the

features excluding one particular node feature against the full model as the leave-one-out

analysis. We find that the post features have a larger loss value than other node features since

sponsored posts have distinct characteristics from non-sponsored posts [354]. Figure 9.6a also

shows that the node type features have a large loss value. This suggests that social relations

between influencers and brands that are indirectly learned from node types provide valuable

information to detect sponsorship of posts.

Figure 9.6b shows the average precision scores of the proposed SPoD over (i) only image

features, (ii) only GCN features, (iii) only text features, (iv) GCN and image features, (v)

image and text features, (vi) GCN and text features, and (vii) All features. The result

reveals that the text features significantly improve the performance while the image features

contribute to the slight improvement. Note that SPoD loses 27.86%, 12.55%, and 6.47%

performance in MAP when it excludes text, GCN, and image features, respectively. This

suggests that the contextualized information from captions is very useful for discovering

sponsored posts. Due to the nature of paid advertisements, influencers try to recommend

the products, convey detailed information of products, and to make a good impression on the
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Figure 9.7: The MAP scores of methods with different caption lengths of posts.

brand in the text [342]. This consequently makes the paid advertisements to have distinct

contextualized features from non-sponsored posts. The image features, on the other hand,

have fewer benefits in discovering sponsored posts compared to the other features. Unlike

the text features, which naturally show similar characteristics due to the commonality of

language, images can be generated in various ways by different users, thereby making it

difficult to rank the posts.

Caption Length of Posts. Since we find that textual information plays an important role

in determining whether given social media posts are sponsored, we investigate the perfor-

mance of the proposed model over different sets of posts with various caption lengths. We

split the test dataset into three subsets, including short, medium, and long posts, which have

less than 250 (34.5%) and 500 (31.9%), and more than 500 (33.6%) characters in a caption,

respectively. Note that we use the same training set for the post sets with different caption

lengths thus our model can be used for posts with various caption lengths to detect spon-

sorship. Figure 9.7 shows the performance of SPoD and two baseline methods over the post

sets in different caption lengths. By comparing the performance of MART and BERT, we

observe that BERT obtains noticeable improvement in medium and long length posts. This

reveals that the contextualized information greatly help detect paid partnership in the posts.
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However, because of the same reason, BERT fails to improve the performance on the short

posts due to insufficient contextualized information from captions. As shown in Figure 9.7,

the proposed SPoD outperforms the baseline methods over all the post sets in various cap-

tion lengths. Particularly, SPoD remarkably improves the performance in the short post set.

This implies that SPoD effectively leverages the knowledge of both graph structures and the

various features to detect the sponsorship of social media posts. For example, a sponsored

post with a very short caption can be detected by our model by understanding the social

relations and characteristics of adjacent influencers and brands.

9.5 Conclusion

In this paper, we propose a learning-to-rank model for discovering undisclosed sponsorship

on social media. Our proposed model, SPoD, employs the aspect-attentive heterogeneous

post encoder that incorporates graph, text, and image features to estimate their importance

for representing the characteristics of social media posts, and then optimizes the ranking

performance by using the regularization based on posting time and mentioned brands. As

our proposed model effectively discover undisclosed sponsorship on social media, we strongly

believe that SPoD can be deployed as follows: Companies and marketers can utilize SPoD

to avoid influencers who frequently hide sponsorship in their advertising social media posts

so they can collaborate with highly transparent influencers. SPoD also can be used by social

media platforms to alert social media users to be conscious of undisclosed sponsorship,

thereby helping them recognize the regulations on advertising posts. As a consequence,

SPoD can help resolve the undisclosed sponsorship issue in influencer marketing by making

influencers and brands comply with the regulations.

As future work, we intend to conduct the following studies: First, we plan to apply the

proposed model to other datasets from various social media platforms as companies have

started collaborating with influencers in video-based social media, including YouTube, and

TikTok. In addition, we will further collect data from Instagram to include regular posts

since the current dataset only contains brand mentioning posts. Next, our proposed SPoD
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is designed to be a ranking model to discover a set of untransparent influencers and their

advertising posts with high confidence. We aim at improving the proposed model by changing

it from a ranking model to a binary classifier so that the model can decide the sponsorship

of a given post rather than making a ranked list of posts.
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CHAPTER 10

Social Media User Geolocation via Hybrid Attention

Similar to Chapter 9, we show the other example of using the aspect attention to model het-

erogeneous resources in this chapter. With aspect-attentive representations, we demonstrate

great progress in identifying the geolocations of users based on social media posts and their

social networks. The in-depth analysis also indicates that the aspect attention can effectively

recognize resources that are more important for different situations.

10.1 Introduction

Nowadays, social media has become one of the most powerful tools for myriad real-world

applications, such as online marketing [197] and event detection [339]. To facilitate those

applications, the geolocations of social media users are usually required. For example, online

marketing needs to decide the target audience based on their locations. A real-world event

may be only related to the users within a certain geographical region. However, there are

only a limited amount of social media posts annotated with posting geolocations because

position sensors and services can be unavailable or prevented. In addition, most of the social

media users also do not denote their locations in the user profiles due to the data privacy

issue. Hence, it is important to identify user geolocations with only their behaviors on social

media.

One of the most intuitive approaches for user geolocation is to analyze the natural lan-

guages utilized in social media posts. Users can mention specific entities or events related to

geolocations and people living in a certain region may reveal noticeable habits or patterns

in their languages. For example, Rahimi et al. [271] extract bag-of-words features from user
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posts; Wing and Baldridge [341] estimate the word distributions for different regions; Han

et al. [141] conduct feature selection to discover location indicative words. However, user

language usage sometimes can be too vague and ambiguous to recognize their locations,

especially in social media posts with only limited and noisy texts. Several less active users

that rarely publish posts may also have insufficient data for geolocation.

In addition to social media posts published by users, social interactions with other users

can also be applied to user geolocation. More precisely, a user can be more likely to reach out

to the users living in closer areas. For instance, Davis Jr et al. [87] and Jurgens [186] exploit

label propagation and rely on the location redundancy through user relationships. Wang

et al. [327] derive node embeddings of social networks and location networks as features for

user geolocation. Nevertheless, the sparsity of social networks can still lead to unsatisfactory

performance. Social connections can be relationships with users living in other locations.

Although previous studies utilize text frequency in social networks [272] and train machine

learning models with heterogeneous features [97], conventional approaches are significantly

affected by the network structures. Moreover, the importance of social networks can be

distinct across different users.

In this chapter, the framework, Hybrid-attentive User Geolocation (HUG), is proposed

to tackle the above issues. Social media posts of each user are first encoded by a hierarchical

language attention network. The social network of users is modeled by a graph attention

network so that the relations between users can be leveraged in representation learning.

Finally, the hybrid attention mechanism is applied to automatically decide the individual

importance scores of user posts and the social network for each user, thereby identifying

her geolocation. To improve the prediction performance of tail locations, we also propose a

novel location regularizer that leverages the knowledge from other locations. In the end, we

conduct extensive experiments to show the effectiveness of HUG with in-depth analysis. We

also demonstrate the interpretability of HUG with several concrete examples.
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uw
<latexit sha1_base64="2KsOLGd14awtMj2WGo8fnULLF18=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDbbSbt0swm7G6WE/AgvHhTx6u/x5r9x2+agrQ8GHu/NMDMvSATXxnW/ndLa+sbmVnm7srO7t39QPTxq6zhVDFssFrHqBlSj4BJbhhuB3UQhjQKBnWByO/M7j6g0j+WDmSboR3QkecgZNVbqZOkge8rzQbXm1t05yCrxClKDAs1B9as/jFkaoTRMUK17npsYP6PKcCYwr/RTjQllEzrCnqWSRqj9bH5uTs6sMiRhrGxJQ+bq74mMRlpPo8B2RtSM9bI3E//zeqkJr/2MyyQ1KNliUZgKYmIy+50MuUJmxNQSyhS3txI2pooyYxOq2BC85ZdXSfui7rl17/6y1rgp4ijDCZzCOXhwBQ24gya0gMEEnuEV3pzEeXHenY9Fa8kpZo7hD5zPH/0Jj/s=</latexit><latexit sha1_base64="2KsOLGd14awtMj2WGo8fnULLF18=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDbbSbt0swm7G6WE/AgvHhTx6u/x5r9x2+agrQ8GHu/NMDMvSATXxnW/ndLa+sbmVnm7srO7t39QPTxq6zhVDFssFrHqBlSj4BJbhhuB3UQhjQKBnWByO/M7j6g0j+WDmSboR3QkecgZNVbqZOkge8rzQbXm1t05yCrxClKDAs1B9as/jFkaoTRMUK17npsYP6PKcCYwr/RTjQllEzrCnqWSRqj9bH5uTs6sMiRhrGxJQ+bq74mMRlpPo8B2RtSM9bI3E//zeqkJr/2MyyQ1KNliUZgKYmIy+50MuUJmxNQSyhS3txI2pooyYxOq2BC85ZdXSfui7rl17/6y1rgp4ijDCZzCOXhwBQ24gya0gMEEnuEV3pzEeXHenY9Fa8kpZo7hD5zPH/0Jj/s=</latexit><latexit sha1_base64="2KsOLGd14awtMj2WGo8fnULLF18=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDbbSbt0swm7G6WE/AgvHhTx6u/x5r9x2+agrQ8GHu/NMDMvSATXxnW/ndLa+sbmVnm7srO7t39QPTxq6zhVDFssFrHqBlSj4BJbhhuB3UQhjQKBnWByO/M7j6g0j+WDmSboR3QkecgZNVbqZOkge8rzQbXm1t05yCrxClKDAs1B9as/jFkaoTRMUK17npsYP6PKcCYwr/RTjQllEzrCnqWSRqj9bH5uTs6sMiRhrGxJQ+bq74mMRlpPo8B2RtSM9bI3E//zeqkJr/2MyyQ1KNliUZgKYmIy+50MuUJmxNQSyhS3txI2pooyYxOq2BC85ZdXSfui7rl17/6y1rgp4ijDCZzCOXhwBQ24gya0gMEEnuEV3pzEeXHenY9Fa8kpZo7hD5zPH/0Jj/s=</latexit><latexit sha1_base64="2KsOLGd14awtMj2WGo8fnULLF18=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDbbSbt0swm7G6WE/AgvHhTx6u/x5r9x2+agrQ8GHu/NMDMvSATXxnW/ndLa+sbmVnm7srO7t39QPTxq6zhVDFssFrHqBlSj4BJbhhuB3UQhjQKBnWByO/M7j6g0j+WDmSboR3QkecgZNVbqZOkge8rzQbXm1t05yCrxClKDAs1B9as/jFkaoTRMUK17npsYP6PKcCYwr/RTjQllEzrCnqWSRqj9bH5uTs6sMiRhrGxJQ+bq74mMRlpPo8B2RtSM9bI3E//zeqkJr/2MyyQ1KNliUZgKYmIy+50MuUJmxNQSyhS3txI2pooyYxOq2BC85ZdXSfui7rl17/6y1rgp4ijDCZzCOXhwBQ24gya0gMEEnuEV3pzEeXHenY9Fa8kpZo7hD5zPH/0Jj/s=</latexit>

w21
<latexit sha1_base64="oKMesZsmPAs7PD8q5r1QZOxrgpc=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9kUQY9FLx4r2A9ol5JNs21sNlmSrFKW/gcvHhTx6v/x5r8xbfegrQ8GHu/NMDMvTAQ31ve/vcLa+sbmVnG7tLO7t39QPjxqGZVqyppUCaU7ITFMcMmallvBOolmJA4Fa4fjm5nffmTacCXv7SRhQUyGkkecEuuk1lM/q+Fpv1zxq/4caJXgnFQgR6Nf/uoNFE1jJi0VxJgu9hMbZERbTgWblnqpYQmhYzJkXUcliZkJsvm1U3TmlAGKlHYlLZqrvycyEhsziUPXGRM7MsveTPzP66Y2ugoyLpPUMkkXi6JUIKvQ7HU04JpRKyaOEKq5uxXREdGEWhdQyYWAl19eJa1aFftVfHdRqV/ncRThBE7hHDBcQh1uoQFNoPAAz/AKb57yXrx372PRWvDymWP4A+/zB0E2juc=</latexit><latexit sha1_base64="oKMesZsmPAs7PD8q5r1QZOxrgpc=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9kUQY9FLx4r2A9ol5JNs21sNlmSrFKW/gcvHhTx6v/x5r8xbfegrQ8GHu/NMDMvTAQ31ve/vcLa+sbmVnG7tLO7t39QPjxqGZVqyppUCaU7ITFMcMmallvBOolmJA4Fa4fjm5nffmTacCXv7SRhQUyGkkecEuuk1lM/q+Fpv1zxq/4caJXgnFQgR6Nf/uoNFE1jJi0VxJgu9hMbZERbTgWblnqpYQmhYzJkXUcliZkJsvm1U3TmlAGKlHYlLZqrvycyEhsziUPXGRM7MsveTPzP66Y2ugoyLpPUMkkXi6JUIKvQ7HU04JpRKyaOEKq5uxXREdGEWhdQyYWAl19eJa1aFftVfHdRqV/ncRThBE7hHDBcQh1uoQFNoPAAz/AKb57yXrx372PRWvDymWP4A+/zB0E2juc=</latexit><latexit sha1_base64="oKMesZsmPAs7PD8q5r1QZOxrgpc=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9kUQY9FLx4r2A9ol5JNs21sNlmSrFKW/gcvHhTx6v/x5r8xbfegrQ8GHu/NMDMvTAQ31ve/vcLa+sbmVnG7tLO7t39QPjxqGZVqyppUCaU7ITFMcMmallvBOolmJA4Fa4fjm5nffmTacCXv7SRhQUyGkkecEuuk1lM/q+Fpv1zxq/4caJXgnFQgR6Nf/uoNFE1jJi0VxJgu9hMbZERbTgWblnqpYQmhYzJkXUcliZkJsvm1U3TmlAGKlHYlLZqrvycyEhsziUPXGRM7MsveTPzP66Y2ugoyLpPUMkkXi6JUIKvQ7HU04JpRKyaOEKq5uxXREdGEWhdQyYWAl19eJa1aFftVfHdRqV/ncRThBE7hHDBcQh1uoQFNoPAAz/AKb57yXrx372PRWvDymWP4A+/zB0E2juc=</latexit><latexit sha1_base64="oKMesZsmPAs7PD8q5r1QZOxrgpc=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9kUQY9FLx4r2A9ol5JNs21sNlmSrFKW/gcvHhTx6v/x5r8xbfegrQ8GHu/NMDMvTAQ31ve/vcLa+sbmVnG7tLO7t39QPjxqGZVqyppUCaU7ITFMcMmallvBOolmJA4Fa4fjm5nffmTacCXv7SRhQUyGkkecEuuk1lM/q+Fpv1zxq/4caJXgnFQgR6Nf/uoNFE1jJi0VxJgu9hMbZERbTgWblnqpYQmhYzJkXUcliZkJsvm1U3TmlAGKlHYlLZqrvycyEhsziUPXGRM7MsveTPzP66Y2ugoyLpPUMkkXi6JUIKvQ7HU04JpRKyaOEKq5uxXREdGEWhdQyYWAl19eJa1aFftVfHdRqV/ncRThBE7hHDBcQh1uoQFNoPAAz/AKb57yXrx372PRWvDymWP4A+/zB0E2juc=</latexit>

w22
<latexit sha1_base64="dsqxR5z0+1Y108bAQ0g5+UK6Qgs=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY9BLx4jmAckS5idzCZj5rHMzCphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0cto1JNaJMornQnwoZyJmnTMstpJ9EUi4jTdjS+mfntR6oNU/LeThIaCjyULGYEWye1nvpZrTbtlyt+1Z8DrZIgJxXI0eiXv3oDRVJBpSUcG9MN/MSGGdaWEU6npV5qaILJGA9p11GJBTVhNr92is6cMkCx0q6kRXP190SGhTETEblOge3ILHsz8T+vm9r4KsyYTFJLJVksilOOrEKz19GAaUosnziCiWbuVkRGWGNiXUAlF0Kw/PIqadWqgV8N7i4q9es8jiKcwCmcQwCXUIdbaEATCDzAM7zCm6e8F+/d+1i0Frx85hj+wPv8AUK7jug=</latexit><latexit sha1_base64="dsqxR5z0+1Y108bAQ0g5+UK6Qgs=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY9BLx4jmAckS5idzCZj5rHMzCphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0cto1JNaJMornQnwoZyJmnTMstpJ9EUi4jTdjS+mfntR6oNU/LeThIaCjyULGYEWye1nvpZrTbtlyt+1Z8DrZIgJxXI0eiXv3oDRVJBpSUcG9MN/MSGGdaWEU6npV5qaILJGA9p11GJBTVhNr92is6cMkCx0q6kRXP190SGhTETEblOge3ILHsz8T+vm9r4KsyYTFJLJVksilOOrEKz19GAaUosnziCiWbuVkRGWGNiXUAlF0Kw/PIqadWqgV8N7i4q9es8jiKcwCmcQwCXUIdbaEATCDzAM7zCm6e8F+/d+1i0Frx85hj+wPv8AUK7jug=</latexit><latexit sha1_base64="dsqxR5z0+1Y108bAQ0g5+UK6Qgs=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY9BLx4jmAckS5idzCZj5rHMzCphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0cto1JNaJMornQnwoZyJmnTMstpJ9EUi4jTdjS+mfntR6oNU/LeThIaCjyULGYEWye1nvpZrTbtlyt+1Z8DrZIgJxXI0eiXv3oDRVJBpSUcG9MN/MSGGdaWEU6npV5qaILJGA9p11GJBTVhNr92is6cMkCx0q6kRXP190SGhTETEblOge3ILHsz8T+vm9r4KsyYTFJLJVksilOOrEKz19GAaUosnziCiWbuVkRGWGNiXUAlF0Kw/PIqadWqgV8N7i4q9es8jiKcwCmcQwCXUIdbaEATCDzAM7zCm6e8F+/d+1i0Frx85hj+wPv8AUK7jug=</latexit><latexit sha1_base64="dsqxR5z0+1Y108bAQ0g5+UK6Qgs=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY9BLx4jmAckS5idzCZj5rHMzCphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0cto1JNaJMornQnwoZyJmnTMstpJ9EUi4jTdjS+mfntR6oNU/LeThIaCjyULGYEWye1nvpZrTbtlyt+1Z8DrZIgJxXI0eiXv3oDRVJBpSUcG9MN/MSGGdaWEU6npV5qaILJGA9p11GJBTVhNr92is6cMkCx0q6kRXP190SGhTETEblOge3ILHsz8T+vm9r4KsyYTFJLJVksilOOrEKz19GAaUosnziCiWbuVkRGWGNiXUAlF0Kw/PIqadWqgV8N7i4q9es8jiKcwCmcQwCXUIdbaEATCDzAM7zCm6e8F+/d+1i0Frx85hj+wPv8AUK7jug=</latexit>

w2T
<latexit sha1_base64="Aoa6nqj7r8YGjC+rkbAeWI4dvIg=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY9BLx4j5CEkS5idzCZj5rHMzCphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0dto1JNaIsorvR9hA3lTNKWZZbT+0RTLCJOO9H4ZuZ3Hqk2TMmmnSQ0FHgoWcwItk5qP/WzWnPaL1f8qj8HWiVBTiqQo9Evf/UGiqSCSks4NqYb+IkNM6wtI5xOS73U0ASTMR7SrqMSC2rCbH7tFJ05ZYBipV1Ji+bq74kMC2MmInKdAtuRWfZm4n9eN7XxVZgxmaSWSrJYFKccWYVmr6MB05RYPnEEE83crYiMsMbEuoBKLoRg+eVV0q5VA78a3F1U6td5HEU4gVM4hwAuoQ630IAWEHiAZ3iFN095L96797FoLXj5zDH8gff5A3Zljwo=</latexit><latexit sha1_base64="Aoa6nqj7r8YGjC+rkbAeWI4dvIg=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY9BLx4j5CEkS5idzCZj5rHMzCphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0dto1JNaIsorvR9hA3lTNKWZZbT+0RTLCJOO9H4ZuZ3Hqk2TMmmnSQ0FHgoWcwItk5qP/WzWnPaL1f8qj8HWiVBTiqQo9Evf/UGiqSCSks4NqYb+IkNM6wtI5xOS73U0ASTMR7SrqMSC2rCbH7tFJ05ZYBipV1Ji+bq74kMC2MmInKdAtuRWfZm4n9eN7XxVZgxmaSWSrJYFKccWYVmr6MB05RYPnEEE83crYiMsMbEuoBKLoRg+eVV0q5VA78a3F1U6td5HEU4gVM4hwAuoQ630IAWEHiAZ3iFN095L96797FoLXj5zDH8gff5A3Zljwo=</latexit><latexit sha1_base64="Aoa6nqj7r8YGjC+rkbAeWI4dvIg=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY9BLx4j5CEkS5idzCZj5rHMzCphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0dto1JNaIsorvR9hA3lTNKWZZbT+0RTLCJOO9H4ZuZ3Hqk2TMmmnSQ0FHgoWcwItk5qP/WzWnPaL1f8qj8HWiVBTiqQo9Evf/UGiqSCSks4NqYb+IkNM6wtI5xOS73U0ASTMR7SrqMSC2rCbH7tFJ05ZYBipV1Ji+bq74kMC2MmInKdAtuRWfZm4n9eN7XxVZgxmaSWSrJYFKccWYVmr6MB05RYPnEEE83crYiMsMbEuoBKLoRg+eVV0q5VA78a3F1U6td5HEU4gVM4hwAuoQ630IAWEHiAZ3iFN095L96797FoLXj5zDH8gff5A3Zljwo=</latexit><latexit sha1_base64="Aoa6nqj7r8YGjC+rkbAeWI4dvIg=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY9BLx4j5CEkS5idzCZj5rHMzCphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0dto1JNaIsorvR9hA3lTNKWZZbT+0RTLCJOO9H4ZuZ3Hqk2TMmmnSQ0FHgoWcwItk5qP/WzWnPaL1f8qj8HWiVBTiqQo9Evf/UGiqSCSks4NqYb+IkNM6wtI5xOS73U0ASTMR7SrqMSC2rCbH7tFJ05ZYBipV1Ji+bq74kMC2MmInKdAtuRWfZm4n9eN7XxVZgxmaSWSrJYFKccWYVmr6MB05RYPnEEE83crYiMsMbEuoBKLoRg+eVV0q5VA78a3F1U6td5HEU4gVM4hwAuoQ630IAWEHiAZ3iFN095L96797FoLXj5zDH8gff5A3Zljwo=</latexit>

s1
<latexit sha1_base64="FhhIGJ4rXe6fXrf7zblMRlZ9FXQ=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48VTFtoQ9lsN+3SzSbsToQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74STu7nfeeLaiEQ94jTlQUxHSkSCUbSSbwa5NxtUa27dXYCsE68gNSjQGlS/+sOEZTFXyCQ1pue5KQY51SiY5LNKPzM8pWxCR7xnqaIxN0G+OHZGLqwyJFGibSkkC/X3RE5jY6ZxaDtjimOz6s3F/7xehtFNkAuVZsgVWy6KMkkwIfPPyVBozlBOLaFMC3srYWOqKUObT8WG4K2+vE7aV3XPrXsP17XmbRFHGc7gHC7BgwY04R5a4AMDAc/wCm+Ocl6cd+dj2VpyiplT+APn8wfIno6n</latexit><latexit sha1_base64="FhhIGJ4rXe6fXrf7zblMRlZ9FXQ=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48VTFtoQ9lsN+3SzSbsToQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74STu7nfeeLaiEQ94jTlQUxHSkSCUbSSbwa5NxtUa27dXYCsE68gNSjQGlS/+sOEZTFXyCQ1pue5KQY51SiY5LNKPzM8pWxCR7xnqaIxN0G+OHZGLqwyJFGibSkkC/X3RE5jY6ZxaDtjimOz6s3F/7xehtFNkAuVZsgVWy6KMkkwIfPPyVBozlBOLaFMC3srYWOqKUObT8WG4K2+vE7aV3XPrXsP17XmbRFHGc7gHC7BgwY04R5a4AMDAc/wCm+Ocl6cd+dj2VpyiplT+APn8wfIno6n</latexit><latexit sha1_base64="FhhIGJ4rXe6fXrf7zblMRlZ9FXQ=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48VTFtoQ9lsN+3SzSbsToQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74STu7nfeeLaiEQ94jTlQUxHSkSCUbSSbwa5NxtUa27dXYCsE68gNSjQGlS/+sOEZTFXyCQ1pue5KQY51SiY5LNKPzM8pWxCR7xnqaIxN0G+OHZGLqwyJFGibSkkC/X3RE5jY6ZxaDtjimOz6s3F/7xehtFNkAuVZsgVWy6KMkkwIfPPyVBozlBOLaFMC3srYWOqKUObT8WG4K2+vE7aV3XPrXsP17XmbRFHGc7gHC7BgwY04R5a4AMDAc/wCm+Ocl6cd+dj2VpyiplT+APn8wfIno6n</latexit><latexit sha1_base64="FhhIGJ4rXe6fXrf7zblMRlZ9FXQ=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48VTFtoQ9lsN+3SzSbsToQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74STu7nfeeLaiEQ94jTlQUxHSkSCUbSSbwa5NxtUa27dXYCsE68gNSjQGlS/+sOEZTFXyCQ1pue5KQY51SiY5LNKPzM8pWxCR7xnqaIxN0G+OHZGLqwyJFGibSkkC/X3RE5jY6ZxaDtjimOz6s3F/7xehtFNkAuVZsgVWy6KMkkwIfPPyVBozlBOLaFMC3srYWOqKUObT8WG4K2+vE7aV3XPrXsP17XmbRFHGc7gHC7BgwY04R5a4AMDAc/wCm+Ocl6cd+dj2VpyiplT+APn8wfIno6n</latexit>

s2
<latexit sha1_base64="jaehd5TLdyD6hKXF5c9qg/96iP0=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48VTFtoQ9lsN+3SzSbsToQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74STu7nfeeLaiEQ94jTlQUxHSkSCUbSSbwZ5Yzao1ty6uwBZJ15BalCgNah+9YcJy2KukElqTM9zUwxyqlEwyWeVfmZ4StmEjnjPUkVjboJ8ceyMXFhlSKJE21JIFurviZzGxkzj0HbGFMdm1ZuL/3m9DKObIBcqzZArtlwUZZJgQuafk6HQnKGcWkKZFvZWwsZUU4Y2n4oNwVt9eZ20G3XPrXsPV7XmbRFHGc7gHC7Bg2towj20wAcGAp7hFd4c5bw4787HsrXkFDOn8AfO5w/KI46o</latexit><latexit sha1_base64="jaehd5TLdyD6hKXF5c9qg/96iP0=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48VTFtoQ9lsN+3SzSbsToQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74STu7nfeeLaiEQ94jTlQUxHSkSCUbSSbwZ5Yzao1ty6uwBZJ15BalCgNah+9YcJy2KukElqTM9zUwxyqlEwyWeVfmZ4StmEjnjPUkVjboJ8ceyMXFhlSKJE21JIFurviZzGxkzj0HbGFMdm1ZuL/3m9DKObIBcqzZArtlwUZZJgQuafk6HQnKGcWkKZFvZWwsZUU4Y2n4oNwVt9eZ20G3XPrXsPV7XmbRFHGc7gHC7Bg2towj20wAcGAp7hFd4c5bw4787HsrXkFDOn8AfO5w/KI46o</latexit><latexit sha1_base64="jaehd5TLdyD6hKXF5c9qg/96iP0=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48VTFtoQ9lsN+3SzSbsToQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74STu7nfeeLaiEQ94jTlQUxHSkSCUbSSbwZ5Yzao1ty6uwBZJ15BalCgNah+9YcJy2KukElqTM9zUwxyqlEwyWeVfmZ4StmEjnjPUkVjboJ8ceyMXFhlSKJE21JIFurviZzGxkzj0HbGFMdm1ZuL/3m9DKObIBcqzZArtlwUZZJgQuafk6HQnKGcWkKZFvZWwsZUU4Y2n4oNwVt9eZ20G3XPrXsPV7XmbRFHGc7gHC7Bg2towj20wAcGAp7hFd4c5bw4787HsrXkFDOn8AfO5w/KI46o</latexit><latexit sha1_base64="jaehd5TLdyD6hKXF5c9qg/96iP0=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48VTFtoQ9lsN+3SzSbsToQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74STu7nfeeLaiEQ94jTlQUxHSkSCUbSSbwZ5Yzao1ty6uwBZJ15BalCgNah+9YcJy2KukElqTM9zUwxyqlEwyWeVfmZ4StmEjnjPUkVjboJ8ceyMXFhlSKJE21JIFurviZzGxkzj0HbGFMdm1ZuL/3m9DKObIBcqzZArtlwUZZJgQuafk6HQnKGcWkKZFvZWwsZUU4Y2n4oNwVt9eZ20G3XPrXsPV7XmbRFHGc7gHC7Bg2towj20wAcGAp7hFd4c5bw4787HsrXkFDOn8AfO5w/KI46o</latexit>

sL
<latexit sha1_base64="+1aENnBjGNSx/gUqecgeW6cQEo8=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRiwcPFUxbaEPZbDft0s0m7E6EEvobvHhQxKs/yJv/xm2bg7Y+GHi8N8PMvDCVwqDrfjultfWNza3ydmVnd2//oHp41DJJphn3WSIT3Qmp4VIo7qNAyTup5jQOJW+H49uZ337i2ohEPeIk5UFMh0pEglG0km/6+f20X625dXcOskq8gtSgQLNf/eoNEpbFXCGT1Jiu56YY5FSjYJJPK73M8JSyMR3yrqWKxtwE+fzYKTmzyoBEibalkMzV3xM5jY2ZxKHtjCmOzLI3E//zuhlG10EuVJohV2yxKMokwYTMPicDoTlDObGEMi3srYSNqKYMbT4VG4K3/PIqaV3UPbfuPVzWGjdFHGU4gVM4Bw+uoAF30AQfGAh4hld4c5Tz4rw7H4vWklPMHMMfOJ8/8aWOwg==</latexit><latexit sha1_base64="+1aENnBjGNSx/gUqecgeW6cQEo8=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRiwcPFUxbaEPZbDft0s0m7E6EEvobvHhQxKs/yJv/xm2bg7Y+GHi8N8PMvDCVwqDrfjultfWNza3ydmVnd2//oHp41DJJphn3WSIT3Qmp4VIo7qNAyTup5jQOJW+H49uZ337i2ohEPeIk5UFMh0pEglG0km/6+f20X625dXcOskq8gtSgQLNf/eoNEpbFXCGT1Jiu56YY5FSjYJJPK73M8JSyMR3yrqWKxtwE+fzYKTmzyoBEibalkMzV3xM5jY2ZxKHtjCmOzLI3E//zuhlG10EuVJohV2yxKMokwYTMPicDoTlDObGEMi3srYSNqKYMbT4VG4K3/PIqaV3UPbfuPVzWGjdFHGU4gVM4Bw+uoAF30AQfGAh4hld4c5Tz4rw7H4vWklPMHMMfOJ8/8aWOwg==</latexit><latexit sha1_base64="+1aENnBjGNSx/gUqecgeW6cQEo8=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRiwcPFUxbaEPZbDft0s0m7E6EEvobvHhQxKs/yJv/xm2bg7Y+GHi8N8PMvDCVwqDrfjultfWNza3ydmVnd2//oHp41DJJphn3WSIT3Qmp4VIo7qNAyTup5jQOJW+H49uZ337i2ohEPeIk5UFMh0pEglG0km/6+f20X625dXcOskq8gtSgQLNf/eoNEpbFXCGT1Jiu56YY5FSjYJJPK73M8JSyMR3yrqWKxtwE+fzYKTmzyoBEibalkMzV3xM5jY2ZxKHtjCmOzLI3E//zuhlG10EuVJohV2yxKMokwYTMPicDoTlDObGEMi3srYSNqKYMbT4VG4K3/PIqaV3UPbfuPVzWGjdFHGU4gVM4Bw+uoAF30AQfGAh4hld4c5Tz4rw7H4vWklPMHMMfOJ8/8aWOwg==</latexit><latexit sha1_base64="+1aENnBjGNSx/gUqecgeW6cQEo8=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRiwcPFUxbaEPZbDft0s0m7E6EEvobvHhQxKs/yJv/xm2bg7Y+GHi8N8PMvDCVwqDrfjultfWNza3ydmVnd2//oHp41DJJphn3WSIT3Qmp4VIo7qNAyTup5jQOJW+H49uZ337i2ohEPeIk5UFMh0pEglG0km/6+f20X625dXcOskq8gtSgQLNf/eoNEpbFXCGT1Jiu56YY5FSjYJJPK73M8JSyMR3yrqWKxtwE+fzYKTmzyoBEibalkMzV3xM5jY2ZxKHtjCmOzLI3E//zuhlG10EuVJohV2yxKMokwYTMPicDoTlDObGEMi3srYSNqKYMbT4VG4K3/PIqaV3UPbfuPVzWGjdFHGU4gVM4Bw+uoAF30AQfGAh4hld4c5Tz4rw7H4vWklPMHMMfOJ8/8aWOwg==</latexit>

v
<latexit sha1_base64="Y1VFGg6QQHrr//k/0PvW2lPMVyo=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N4US+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikpeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx/dxvT1BpHstHM03Qj+hQ8pAzaqzUmPTLFbfqLkDWiZeTCuSo98tfvUHM0gilYYJq3fXcxPgZVYYzgbNSL9WYUDamQ+xaKmmE2s8Wh87IhVUGJIyVLWnIQv09kdFI62kU2M6ImpFe9ebif143NeGtn3GZpAYlWy4KU0FMTOZfkwFXyIyYWkKZ4vZWwkZUUWZsNiUbgrf68jppXVU9t+o1riu1uzyOIpzBOVyCBzdQgweoQxMYIDzDK7w5T86L8+58LFsLTj5zCn/gfP4A4zGM+g==</latexit><latexit sha1_base64="Y1VFGg6QQHrr//k/0PvW2lPMVyo=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N4US+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikpeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx/dxvT1BpHstHM03Qj+hQ8pAzaqzUmPTLFbfqLkDWiZeTCuSo98tfvUHM0gilYYJq3fXcxPgZVYYzgbNSL9WYUDamQ+xaKmmE2s8Wh87IhVUGJIyVLWnIQv09kdFI62kU2M6ImpFe9ebif143NeGtn3GZpAYlWy4KU0FMTOZfkwFXyIyYWkKZ4vZWwkZUUWZsNiUbgrf68jppXVU9t+o1riu1uzyOIpzBOVyCBzdQgweoQxMYIDzDK7w5T86L8+58LFsLTj5zCn/gfP4A4zGM+g==</latexit><latexit sha1_base64="Y1VFGg6QQHrr//k/0PvW2lPMVyo=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N4US+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikpeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx/dxvT1BpHstHM03Qj+hQ8pAzaqzUmPTLFbfqLkDWiZeTCuSo98tfvUHM0gilYYJq3fXcxPgZVYYzgbNSL9WYUDamQ+xaKmmE2s8Wh87IhVUGJIyVLWnIQv09kdFI62kU2M6ImpFe9ebif143NeGtn3GZpAYlWy4KU0FMTOZfkwFXyIyYWkKZ4vZWwkZUUWZsNiUbgrf68jppXVU9t+o1riu1uzyOIpzBOVyCBzdQgweoQxMYIDzDK7w5T86L8+58LFsLTj5zCn/gfP4A4zGM+g==</latexit><latexit sha1_base64="Y1VFGg6QQHrr//k/0PvW2lPMVyo=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N4US+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikpeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx/dxvT1BpHstHM03Qj+hQ8pAzaqzUmPTLFbfqLkDWiZeTCuSo98tfvUHM0gilYYJq3fXcxPgZVYYzgbNSL9WYUDamQ+xaKmmE2s8Wh87IhVUGJIyVLWnIQv09kdFI62kU2M6ImpFe9ebif143NeGtn3GZpAYlWy4KU0FMTOZfkwFXyIyYWkKZ4vZWwkZUUWZsNiUbgrf68jppXVU9t+o1riu1uzyOIpzBOVyCBzdQgweoQxMYIDzDK7w5T86L8+58LFsLTj5zCn/gfP4A4zGM+g==</latexit>

words
<latexit sha1_base64="qZzi5y6GoVlTD5C7J/pDY16KFQU=">AAAB83icbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHoxWMF2wptKJvNpl262Q27E7WE/g0vHhTx6p/x5r9x2+agrQ8GHu/NMDMvTAU36HnfTmlldW19o7xZ2dre2d2r7h+0jco0ZS2qhNL3ITFMcMlayFGw+1QzkoSCdcLR9dTvPDBtuJJ3OE5ZkJCB5DGnBK3U6yF7wvxR6chM+tWaV/dmcJeJX5AaFGj2q1+9SNEsYRKpIMZ0fS/FICcaORVsUullhqWEjsiAdS2VJGEmyGc3T9wTq0RurLQtie5M/T2Rk8SYcRLazoTg0Cx6U/E/r5thfBnkXKYZMknni+JMuKjcaQBuxDWjKMaWEKq5vdWlQ6IJRRtTxYbgL768TNpndd+r+7fntcZVEUcZjuAYTsGHC2jADTShBRRSeIZXeHMy58V5dz7mrSWnmDmEP3A+fwDksZI6</latexit><latexit sha1_base64="qZzi5y6GoVlTD5C7J/pDY16KFQU=">AAAB83icbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHoxWMF2wptKJvNpl262Q27E7WE/g0vHhTx6p/x5r9x2+agrQ8GHu/NMDMvTAU36HnfTmlldW19o7xZ2dre2d2r7h+0jco0ZS2qhNL3ITFMcMlayFGw+1QzkoSCdcLR9dTvPDBtuJJ3OE5ZkJCB5DGnBK3U6yF7wvxR6chM+tWaV/dmcJeJX5AaFGj2q1+9SNEsYRKpIMZ0fS/FICcaORVsUullhqWEjsiAdS2VJGEmyGc3T9wTq0RurLQtie5M/T2Rk8SYcRLazoTg0Cx6U/E/r5thfBnkXKYZMknni+JMuKjcaQBuxDWjKMaWEKq5vdWlQ6IJRRtTxYbgL768TNpndd+r+7fntcZVEUcZjuAYTsGHC2jADTShBRRSeIZXeHMy58V5dz7mrSWnmDmEP3A+fwDksZI6</latexit><latexit sha1_base64="qZzi5y6GoVlTD5C7J/pDY16KFQU=">AAAB83icbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHoxWMF2wptKJvNpl262Q27E7WE/g0vHhTx6p/x5r9x2+agrQ8GHu/NMDMvTAU36HnfTmlldW19o7xZ2dre2d2r7h+0jco0ZS2qhNL3ITFMcMlayFGw+1QzkoSCdcLR9dTvPDBtuJJ3OE5ZkJCB5DGnBK3U6yF7wvxR6chM+tWaV/dmcJeJX5AaFGj2q1+9SNEsYRKpIMZ0fS/FICcaORVsUullhqWEjsiAdS2VJGEmyGc3T9wTq0RurLQtie5M/T2Rk8SYcRLazoTg0Cx6U/E/r5thfBnkXKYZMknni+JMuKjcaQBuxDWjKMaWEKq5vdWlQ6IJRRtTxYbgL768TNpndd+r+7fntcZVEUcZjuAYTsGHC2jADTShBRRSeIZXeHMy58V5dz7mrSWnmDmEP3A+fwDksZI6</latexit><latexit sha1_base64="qZzi5y6GoVlTD5C7J/pDY16KFQU=">AAAB83icbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHoxWMF2wptKJvNpl262Q27E7WE/g0vHhTx6p/x5r9x2+agrQ8GHu/NMDMvTAU36HnfTmlldW19o7xZ2dre2d2r7h+0jco0ZS2qhNL3ITFMcMlayFGw+1QzkoSCdcLR9dTvPDBtuJJ3OE5ZkJCB5DGnBK3U6yF7wvxR6chM+tWaV/dmcJeJX5AaFGj2q1+9SNEsYRKpIMZ0fS/FICcaORVsUullhqWEjsiAdS2VJGEmyGc3T9wTq0RurLQtie5M/T2Rk8SYcRLazoTg0Cx6U/E/r5thfBnkXKYZMknni+JMuKjcaQBuxDWjKMaWEKq5vdWlQ6IJRRtTxYbgL768TNpndd+r+7fntcZVEUcZjuAYTsGHC2jADTShBRRSeIZXeHMy58V5dz7mrSWnmDmEP3A+fwDksZI6</latexit>

softmax
<latexit sha1_base64="RdwXG5TrPEjGigIVyRuJ9onccwI=">AAAB9XicbVDLSgNBEJz1GeMr6tHLYBA8hV0R9Bj04jGCeUCyhtnJbDJkHstMryYs+Q8vHhTx6r9482+cJHvQxIKGoqqb7q4oEdyC7397K6tr6xubha3i9s7u3n7p4LBhdWooq1MttGlFxDLBFasDB8FaiWFERoI1o+HN1G8+MmO5VvcwTlgoSV/xmFMCTnroABtBZnUMkowm3VLZr/gz4GUS5KSMctS6pa9OT9NUMgVUEGvbgZ9AmBEDnAo2KXZSyxJCh6TP2o4qIpkNs9nVE3zqlB6OtXGlAM/U3xMZkdaOZeQ6JYGBXfSm4n9eO4X4Ksy4SlJgis4XxanAoPE0AtzjhlEQY0cINdzdiumAGELBBVV0IQSLLy+Txnkl8CvB3UW5ep3HUUDH6ASdoQBdoiq6RTVURxQZ9Ixe0Zv35L14797HvHXFy2eO0B94nz95N5Mh</latexit><latexit sha1_base64="RdwXG5TrPEjGigIVyRuJ9onccwI=">AAAB9XicbVDLSgNBEJz1GeMr6tHLYBA8hV0R9Bj04jGCeUCyhtnJbDJkHstMryYs+Q8vHhTx6r9482+cJHvQxIKGoqqb7q4oEdyC7397K6tr6xubha3i9s7u3n7p4LBhdWooq1MttGlFxDLBFasDB8FaiWFERoI1o+HN1G8+MmO5VvcwTlgoSV/xmFMCTnroABtBZnUMkowm3VLZr/gz4GUS5KSMctS6pa9OT9NUMgVUEGvbgZ9AmBEDnAo2KXZSyxJCh6TP2o4qIpkNs9nVE3zqlB6OtXGlAM/U3xMZkdaOZeQ6JYGBXfSm4n9eO4X4Ksy4SlJgis4XxanAoPE0AtzjhlEQY0cINdzdiumAGELBBVV0IQSLLy+Txnkl8CvB3UW5ep3HUUDH6ASdoQBdoiq6RTVURxQZ9Ixe0Zv35L14797HvHXFy2eO0B94nz95N5Mh</latexit><latexit sha1_base64="RdwXG5TrPEjGigIVyRuJ9onccwI=">AAAB9XicbVDLSgNBEJz1GeMr6tHLYBA8hV0R9Bj04jGCeUCyhtnJbDJkHstMryYs+Q8vHhTx6r9482+cJHvQxIKGoqqb7q4oEdyC7397K6tr6xubha3i9s7u3n7p4LBhdWooq1MttGlFxDLBFasDB8FaiWFERoI1o+HN1G8+MmO5VvcwTlgoSV/xmFMCTnroABtBZnUMkowm3VLZr/gz4GUS5KSMctS6pa9OT9NUMgVUEGvbgZ9AmBEDnAo2KXZSyxJCh6TP2o4qIpkNs9nVE3zqlB6OtXGlAM/U3xMZkdaOZeQ6JYGBXfSm4n9eO4X4Ksy4SlJgis4XxanAoPE0AtzjhlEQY0cINdzdiumAGELBBVV0IQSLLy+Txnkl8CvB3UW5ep3HUUDH6ASdoQBdoiq6RTVURxQZ9Ixe0Zv35L14797HvHXFy2eO0B94nz95N5Mh</latexit><latexit sha1_base64="RdwXG5TrPEjGigIVyRuJ9onccwI=">AAAB9XicbVDLSgNBEJz1GeMr6tHLYBA8hV0R9Bj04jGCeUCyhtnJbDJkHstMryYs+Q8vHhTx6r9482+cJHvQxIKGoqqb7q4oEdyC7397K6tr6xubha3i9s7u3n7p4LBhdWooq1MttGlFxDLBFasDB8FaiWFERoI1o+HN1G8+MmO5VvcwTlgoSV/xmFMCTnroABtBZnUMkowm3VLZr/gz4GUS5KSMctS6pa9OT9NUMgVUEGvbgZ9AmBEDnAo2KXZSyxJCh6TP2o4qIpkNs9nVE3zqlB6OtXGlAM/U3xMZkdaOZeQ6JYGBXfSm4n9eO4X4Ksy4SlJgis4XxanAoPE0AtzjhlEQY0cINdzdiumAGELBBVV0IQSLLy+Txnkl8CvB3UW5ep3HUUDH6ASdoQBdoiq6RTVURxQZ9Ixe0Zv35L14797HvHXFy2eO0B94nz95N5Mh</latexit>

loss
<latexit sha1_base64="1BAl1McS1UdONCi0Rprd6h2pr2o=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0lE0GPRi8cK9gPSUDbbSbt0kw27E7GE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco0hxZXUuluyAxIkUALBUrophpYHErohOPbmd95BG2ESh5wkkIQs2EiIsEZWsnvITxhLpUx03615tbdOegq8QpSIwWa/epXb6B4FkOCXDJjfM9NMciZRsElTCu9zEDK+JgNwbc0YTGYIJ+fPKVnVhnQSGlbCdK5+nsiZ7Exkzi0nTHDkVn2ZuJ/np9hdB3kIkkzhIQvFkWZpKjo7H86EBo4yokljGthb6V8xDTjaFOq2BC85ZdXSfui7rl17/6y1rgp4iiTE3JKzolHrkiD3JEmaRFOFHkmr+TNQefFeXc+Fq0lp5g5Jn/gfP4AFBuRwg==</latexit><latexit sha1_base64="1BAl1McS1UdONCi0Rprd6h2pr2o=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0lE0GPRi8cK9gPSUDbbSbt0kw27E7GE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco0hxZXUuluyAxIkUALBUrophpYHErohOPbmd95BG2ESh5wkkIQs2EiIsEZWsnvITxhLpUx03615tbdOegq8QpSIwWa/epXb6B4FkOCXDJjfM9NMciZRsElTCu9zEDK+JgNwbc0YTGYIJ+fPKVnVhnQSGlbCdK5+nsiZ7Exkzi0nTHDkVn2ZuJ/np9hdB3kIkkzhIQvFkWZpKjo7H86EBo4yokljGthb6V8xDTjaFOq2BC85ZdXSfui7rl17/6y1rgp4iiTE3JKzolHrkiD3JEmaRFOFHkmr+TNQefFeXc+Fq0lp5g5Jn/gfP4AFBuRwg==</latexit><latexit sha1_base64="1BAl1McS1UdONCi0Rprd6h2pr2o=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0lE0GPRi8cK9gPSUDbbSbt0kw27E7GE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco0hxZXUuluyAxIkUALBUrophpYHErohOPbmd95BG2ESh5wkkIQs2EiIsEZWsnvITxhLpUx03615tbdOegq8QpSIwWa/epXb6B4FkOCXDJjfM9NMciZRsElTCu9zEDK+JgNwbc0YTGYIJ+fPKVnVhnQSGlbCdK5+nsiZ7Exkzi0nTHDkVn2ZuJ/np9hdB3kIkkzhIQvFkWZpKjo7H86EBo4yokljGthb6V8xDTjaFOq2BC85ZdXSfui7rl17/6y1rgp4iiTE3JKzolHrkiD3JEmaRFOFHkmr+TNQefFeXc+Fq0lp5g5Jn/gfP4AFBuRwg==</latexit><latexit sha1_base64="1BAl1McS1UdONCi0Rprd6h2pr2o=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0lE0GPRi8cK9gPSUDbbSbt0kw27E7GE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco0hxZXUuluyAxIkUALBUrophpYHErohOPbmd95BG2ESh5wkkIQs2EiIsEZWsnvITxhLpUx03615tbdOegq8QpSIwWa/epXb6B4FkOCXDJjfM9NMciZRsElTCu9zEDK+JgNwbc0YTGYIJ+fPKVnVhnQSGlbCdK5+nsiZ7Exkzi0nTHDkVn2ZuJ/np9hdB3kIkkzhIQvFkWZpKjo7H86EBo4yokljGthb6V8xDTjaFOq2BC85ZdXSfui7rl17/6y1rgp4iiTE3JKzolHrkiD3JEmaRFOFHkmr+TNQefFeXc+Fq0lp5g5Jn/gfP4AFBuRwg==</latexit>

location regularizer
<latexit sha1_base64="VP5MiGqI1ccndf/KjP3ka07LlAk=">AAACBHicbVA9SwNBEN2LXzF+nVqmWQyCVbgTQcugjWUE8wHJEfY2c8mSvQ9258R4pLDxr9hYKGLrj7Dz37hJrtDEBwOP92aYmecnUmh0nG+rsLK6tr5R3Cxtbe/s7tn7B00dp4pDg8cyVm2faZAiggYKlNBOFLDQl9DyR1dTv3UHSos4usVxAl7IBpEIBGdopJ5d7iLcYybjuUAVDFLJlHgANenZFafqzECXiZuTCslR79lf3X7M0xAi5JJp3XGdBL2MKRRcwqTUTTUkjI/YADqGRiwE7WWzJyb02Ch9GsTKVIR0pv6eyFio9Tj0TWfIcKgXvan4n9dJMbjwMhElKULE54uCVFKM6TQR2hcKOMqxIYwrYW6lfMgU42hyK5kQ3MWXl0nztOo6VffmrFK7zOMokjI5IifEJeekRq5JnTQIJ4/kmbySN+vJerHerY95a8HKZw7JH1ifPwf1mPc=</latexit><latexit sha1_base64="VP5MiGqI1ccndf/KjP3ka07LlAk=">AAACBHicbVA9SwNBEN2LXzF+nVqmWQyCVbgTQcugjWUE8wHJEfY2c8mSvQ9258R4pLDxr9hYKGLrj7Dz37hJrtDEBwOP92aYmecnUmh0nG+rsLK6tr5R3Cxtbe/s7tn7B00dp4pDg8cyVm2faZAiggYKlNBOFLDQl9DyR1dTv3UHSos4usVxAl7IBpEIBGdopJ5d7iLcYybjuUAVDFLJlHgANenZFafqzECXiZuTCslR79lf3X7M0xAi5JJp3XGdBL2MKRRcwqTUTTUkjI/YADqGRiwE7WWzJyb02Ch9GsTKVIR0pv6eyFio9Tj0TWfIcKgXvan4n9dJMbjwMhElKULE54uCVFKM6TQR2hcKOMqxIYwrYW6lfMgU42hyK5kQ3MWXl0nztOo6VffmrFK7zOMokjI5IifEJeekRq5JnTQIJ4/kmbySN+vJerHerY95a8HKZw7JH1ifPwf1mPc=</latexit><latexit sha1_base64="VP5MiGqI1ccndf/KjP3ka07LlAk=">AAACBHicbVA9SwNBEN2LXzF+nVqmWQyCVbgTQcugjWUE8wHJEfY2c8mSvQ9258R4pLDxr9hYKGLrj7Dz37hJrtDEBwOP92aYmecnUmh0nG+rsLK6tr5R3Cxtbe/s7tn7B00dp4pDg8cyVm2faZAiggYKlNBOFLDQl9DyR1dTv3UHSos4usVxAl7IBpEIBGdopJ5d7iLcYybjuUAVDFLJlHgANenZFafqzECXiZuTCslR79lf3X7M0xAi5JJp3XGdBL2MKRRcwqTUTTUkjI/YADqGRiwE7WWzJyb02Ch9GsTKVIR0pv6eyFio9Tj0TWfIcKgXvan4n9dJMbjwMhElKULE54uCVFKM6TQR2hcKOMqxIYwrYW6lfMgU42hyK5kQ3MWXl0nztOo6VffmrFK7zOMokjI5IifEJeekRq5JnTQIJ4/kmbySN+vJerHerY95a8HKZw7JH1ifPwf1mPc=</latexit><latexit sha1_base64="VP5MiGqI1ccndf/KjP3ka07LlAk=">AAACBHicbVA9SwNBEN2LXzF+nVqmWQyCVbgTQcugjWUE8wHJEfY2c8mSvQ9258R4pLDxr9hYKGLrj7Dz37hJrtDEBwOP92aYmecnUmh0nG+rsLK6tr5R3Cxtbe/s7tn7B00dp4pDg8cyVm2faZAiggYKlNBOFLDQl9DyR1dTv3UHSos4usVxAl7IBpEIBGdopJ5d7iLcYybjuUAVDFLJlHgANenZFafqzECXiZuTCslR79lf3X7M0xAi5JJp3XGdBL2MKRRcwqTUTTUkjI/YADqGRiwE7WWzJyb02Ch9GsTKVIR0pv6eyFio9Tj0TWfIcKgXvan4n9dJMbjwMhElKULE54uCVFKM6TQR2hcKOMqxIYwrYW6lfMgU42hyK5kQ3MWXl0nztOo6VffmrFK7zOMokjI5IifEJeekRq5JnTQIJ4/kmbySN+vJerHerY95a8HKZw7JH1ifPwf1mPc=</latexit>

Graph Attention Network
<latexit sha1_base64="UkAViDKsrBmmNDQSWJn5840AkvY=">AAACB3icbVDLSgMxFM34rPU16lKQYBFclRkRdFl1oSupYB/QDiWTZtrQzGRI7qhl6M6Nv+LGhSJu/QV3/o2ZdhbaeiBwOOfeJOf4seAaHOfbmptfWFxaLqwUV9fWNzbtre26lomirEalkKrpE80Ej1gNOAjWjBUjoS9Ywx9cZH7jjinNZXQLw5h5IelFPOCUgJE69l4b2AOkl4rEfXwGwKJMx9cM7qUajDp2ySk7Y+BZ4uakhHJUO/ZXuytpEpp7qCBat1wnBi8lCjgVbFRsJ5rFhA5Ij7UMjUjItJeOc4zwgVG6OJDKnAjwWP29kZJQ62Hom8mQQF9Pe5n4n9dKIDj1Uh7FiQlIJw8FicAgcVYK7nLFKIihIYQqbv6KaZ8oQsFUVzQluNORZ0n9qOw6ZffmuFQ5z+sooF20jw6Ri05QBV2hKqohih7RM3pFb9aT9WK9Wx+T0Tkr39lBf2B9/gCX6ZnC</latexit><latexit sha1_base64="UkAViDKsrBmmNDQSWJn5840AkvY=">AAACB3icbVDLSgMxFM34rPU16lKQYBFclRkRdFl1oSupYB/QDiWTZtrQzGRI7qhl6M6Nv+LGhSJu/QV3/o2ZdhbaeiBwOOfeJOf4seAaHOfbmptfWFxaLqwUV9fWNzbtre26lomirEalkKrpE80Ej1gNOAjWjBUjoS9Ywx9cZH7jjinNZXQLw5h5IelFPOCUgJE69l4b2AOkl4rEfXwGwKJMx9cM7qUajDp2ySk7Y+BZ4uakhHJUO/ZXuytpEpp7qCBat1wnBi8lCjgVbFRsJ5rFhA5Ij7UMjUjItJeOc4zwgVG6OJDKnAjwWP29kZJQ62Hom8mQQF9Pe5n4n9dKIDj1Uh7FiQlIJw8FicAgcVYK7nLFKIihIYQqbv6KaZ8oQsFUVzQluNORZ0n9qOw6ZffmuFQ5z+sooF20jw6Ri05QBV2hKqohih7RM3pFb9aT9WK9Wx+T0Tkr39lBf2B9/gCX6ZnC</latexit><latexit sha1_base64="UkAViDKsrBmmNDQSWJn5840AkvY=">AAACB3icbVDLSgMxFM34rPU16lKQYBFclRkRdFl1oSupYB/QDiWTZtrQzGRI7qhl6M6Nv+LGhSJu/QV3/o2ZdhbaeiBwOOfeJOf4seAaHOfbmptfWFxaLqwUV9fWNzbtre26lomirEalkKrpE80Ej1gNOAjWjBUjoS9Ywx9cZH7jjinNZXQLw5h5IelFPOCUgJE69l4b2AOkl4rEfXwGwKJMx9cM7qUajDp2ySk7Y+BZ4uakhHJUO/ZXuytpEpp7qCBat1wnBi8lCjgVbFRsJ5rFhA5Ij7UMjUjItJeOc4zwgVG6OJDKnAjwWP29kZJQ62Hom8mQQF9Pe5n4n9dKIDj1Uh7FiQlIJw8FicAgcVYK7nLFKIihIYQqbv6KaZ8oQsFUVzQluNORZ0n9qOw6ZffmuFQ5z+sooF20jw6Ri05QBV2hKqohih7RM3pFb9aT9WK9Wx+T0Tkr39lBf2B9/gCX6ZnC</latexit><latexit sha1_base64="hP+6LrUf2d3tZaldqaQQvEKMXyw=">AAAB2XicbZDNSgMxFIXv1L86Vq1rN8EiuCozbnQpuHFZwbZCO5RM5k4bmskMyR2hDH0BF25EfC93vo3pz0JbDwQ+zknIvSculLQUBN9ebWd3b/+gfugfNfzjk9Nmo2fz0gjsilzl5jnmFpXU2CVJCp8LgzyLFfbj6f0i77+gsTLXTzQrMMr4WMtUCk7O6oyaraAdLMW2IVxDC9YaNb+GSS7KDDUJxa0dhEFBUcUNSaFw7g9LiwUXUz7GgUPNM7RRtRxzzi6dk7A0N+5oYkv394uKZ9bOstjdzDhN7Ga2MP/LBiWlt1EldVESarH6KC0Vo5wtdmaJNChIzRxwYaSblYkJN1yQa8Z3HYSbG29D77odBu3wMYA6nMMFXEEIN3AHD9CBLghI4BXevYn35n2suqp569LO4I+8zx84xIo4</latexit><latexit sha1_base64="sG55CNUTrvSrOk4eQQgYkbxKWrY=">AAAB/HicbVC7SgNBFL3rM8aoq60gg0GwCrs2WioWWkkE84BkCbOTSTJkdmeZuauGJZ2Nv2JjoYjfYeffOJuk0MQDFw7nzOOeEyZSGPS8b2dpeWV1bb2wUdwsbW3vuLululGpZrzGlFS6GVLDpYh5DQVK3kw0p1EoeSMcXuZ+455rI1R8h6OEBxHtx6InGEUrddyDNvJHzK40TQbkApHHuU5uOD4oPRx33LJX8SYgi8SfkTLMUO24X+2uYmlk32GSGtPyvQSDjGoUTPJxsZ0anlA2pH3esjSmETdBNskxJkdW6ZKe0nZiJBP1942MRsaMotCejCgOzLyXi/95rRR7Z0Em4iS1Adn0o14qCSqSl0K6QnOGcmQJZVrYXQkbUE0Z2uqKtgR/PvIiqZ9UfK/i33pQgH04hGPw4RTO4RqqUAMGT/ACb/DuPDuvzse0riVn1tse/IHz+QP8RJhQ</latexit><latexit sha1_base64="sG55CNUTrvSrOk4eQQgYkbxKWrY=">AAAB/HicbVC7SgNBFL3rM8aoq60gg0GwCrs2WioWWkkE84BkCbOTSTJkdmeZuauGJZ2Nv2JjoYjfYeffOJuk0MQDFw7nzOOeEyZSGPS8b2dpeWV1bb2wUdwsbW3vuLululGpZrzGlFS6GVLDpYh5DQVK3kw0p1EoeSMcXuZ+455rI1R8h6OEBxHtx6InGEUrddyDNvJHzK40TQbkApHHuU5uOD4oPRx33LJX8SYgi8SfkTLMUO24X+2uYmlk32GSGtPyvQSDjGoUTPJxsZ0anlA2pH3esjSmETdBNskxJkdW6ZKe0nZiJBP1942MRsaMotCejCgOzLyXi/95rRR7Z0Em4iS1Adn0o14qCSqSl0K6QnOGcmQJZVrYXQkbUE0Z2uqKtgR/PvIiqZ9UfK/i33pQgH04hGPw4RTO4RqqUAMGT/ACb/DuPDuvzse0riVn1tse/IHz+QP8RJhQ</latexit><latexit sha1_base64="in2yMCTJ3lNAGkKei5KTEoOGxcs=">AAACB3icbVC7TsMwFHXKq5RXgBEJWVRITFXCAmOBASZUJPqQ2qhyXKe16sSRfQNUUTcWfoWFAYRY+QU2/ganzQAtR7J0dM69ts/xY8E1OM63VVhYXFpeKa6W1tY3Nrfs7Z2GlomirE6lkKrlE80Ej1gdOAjWihUjoS9Y0x9eZH7zjinNZXQLo5h5IelHPOCUgJG69n4H2AOkl4rEA3wGwKJMx9cM7qUajrt22ak4E+B54uakjHLUuvZXpydpEpp7qCBat10nBi8lCjgVbFzqJJrFhA5Jn7UNjUjItJdOcozxoVF6OJDKnAjwRP29kZJQ61Hom8mQwEDPepn4n9dOIDj1Uh7FiQlIpw8FicAgcVYK7nHFKIiRIYQqbv6K6YAoQsFUVzIluLOR50njuOI6FffGKVfP8zqKaA8doCPkohNURVeohuqIokf0jF7Rm/VkvVjv1sd0tGDlO7voD6zPH5apmb4=</latexit><latexit sha1_base64="UkAViDKsrBmmNDQSWJn5840AkvY=">AAACB3icbVDLSgMxFM34rPU16lKQYBFclRkRdFl1oSupYB/QDiWTZtrQzGRI7qhl6M6Nv+LGhSJu/QV3/o2ZdhbaeiBwOOfeJOf4seAaHOfbmptfWFxaLqwUV9fWNzbtre26lomirEalkKrpE80Ej1gNOAjWjBUjoS9Ywx9cZH7jjinNZXQLw5h5IelFPOCUgJE69l4b2AOkl4rEfXwGwKJMx9cM7qUajDp2ySk7Y+BZ4uakhHJUO/ZXuytpEpp7qCBat1wnBi8lCjgVbFRsJ5rFhA5Ij7UMjUjItJeOc4zwgVG6OJDKnAjwWP29kZJQ62Hom8mQQF9Pe5n4n9dKIDj1Uh7FiQlIJw8FicAgcVYK7nLFKIihIYQqbv6KaZ8oQsFUVzQluNORZ0n9qOw6ZffmuFQ5z+sooF20jw6Ri05QBV2hKqohih7RM3pFb9aT9WK9Wx+T0Tkr39lBf2B9/gCX6ZnC</latexit><latexit sha1_base64="UkAViDKsrBmmNDQSWJn5840AkvY=">AAACB3icbVDLSgMxFM34rPU16lKQYBFclRkRdFl1oSupYB/QDiWTZtrQzGRI7qhl6M6Nv+LGhSJu/QV3/o2ZdhbaeiBwOOfeJOf4seAaHOfbmptfWFxaLqwUV9fWNzbtre26lomirEalkKrpE80Ej1gNOAjWjBUjoS9Ywx9cZH7jjinNZXQLw5h5IelFPOCUgJE69l4b2AOkl4rEfXwGwKJMx9cM7qUajDp2ySk7Y+BZ4uakhHJUO/ZXuytpEpp7qCBat1wnBi8lCjgVbFRsJ5rFhA5Ij7UMjUjItJeOc4zwgVG6OJDKnAjwWP29kZJQ62Hom8mQQF9Pe5n4n9dKIDj1Uh7FiQlIJw8FicAgcVYK7nLFKIihIYQqbv6KaZ8oQsFUVzQluNORZ0n9qOw6ZffmuFQ5z+sooF20jw6Ri05QBV2hKqohih7RM3pFb9aT9WK9Wx+T0Tkr39lBf2B9/gCX6ZnC</latexit><latexit sha1_base64="UkAViDKsrBmmNDQSWJn5840AkvY=">AAACB3icbVDLSgMxFM34rPU16lKQYBFclRkRdFl1oSupYB/QDiWTZtrQzGRI7qhl6M6Nv+LGhSJu/QV3/o2ZdhbaeiBwOOfeJOf4seAaHOfbmptfWFxaLqwUV9fWNzbtre26lomirEalkKrpE80Ej1gNOAjWjBUjoS9Ywx9cZH7jjinNZXQLw5h5IelFPOCUgJE69l4b2AOkl4rEfXwGwKJMx9cM7qUajDp2ySk7Y+BZ4uakhHJUO/ZXuytpEpp7qCBat1wnBi8lCjgVbFRsJ5rFhA5Ij7UMjUjItJeOc4zwgVG6OJDKnAjwWP29kZJQ62Hom8mQQF9Pe5n4n9dKIDj1Uh7FiQlIJw8FicAgcVYK7nLFKIihIYQqbv6KaZ8oQsFUVzQluNORZ0n9qOw6ZffmuFQ5z+sooF20jw6Ri05QBV2hKqohih7RM3pFb9aT9WK9Wx+T0Tkr39lBf2B9/gCX6ZnC</latexit><latexit sha1_base64="UkAViDKsrBmmNDQSWJn5840AkvY=">AAACB3icbVDLSgMxFM34rPU16lKQYBFclRkRdFl1oSupYB/QDiWTZtrQzGRI7qhl6M6Nv+LGhSJu/QV3/o2ZdhbaeiBwOOfeJOf4seAaHOfbmptfWFxaLqwUV9fWNzbtre26lomirEalkKrpE80Ej1gNOAjWjBUjoS9Ywx9cZH7jjinNZXQLw5h5IelFPOCUgJE69l4b2AOkl4rEfXwGwKJMx9cM7qUajDp2ySk7Y+BZ4uakhHJUO/ZXuytpEpp7qCBat1wnBi8lCjgVbFRsJ5rFhA5Ij7UMjUjItJeOc4zwgVG6OJDKnAjwWP29kZJQ62Hom8mQQF9Pe5n4n9dKIDj1Uh7FiQlIJw8FicAgcVYK7nLFKIihIYQqbv6KaZ8oQsFUVzQluNORZ0n9qOw6ZffmuFQ5z+sooF20jw6Ri05QBV2hKqohih7RM3pFb9aT9WK9Wx+T0Tkr39lBf2B9/gCX6ZnC</latexit><latexit sha1_base64="UkAViDKsrBmmNDQSWJn5840AkvY=">AAACB3icbVDLSgMxFM34rPU16lKQYBFclRkRdFl1oSupYB/QDiWTZtrQzGRI7qhl6M6Nv+LGhSJu/QV3/o2ZdhbaeiBwOOfeJOf4seAaHOfbmptfWFxaLqwUV9fWNzbtre26lomirEalkKrpE80Ej1gNOAjWjBUjoS9Ywx9cZH7jjinNZXQLw5h5IelFPOCUgJE69l4b2AOkl4rEfXwGwKJMx9cM7qUajDp2ySk7Y+BZ4uakhHJUO/ZXuytpEpp7qCBat1wnBi8lCjgVbFRsJ5rFhA5Ij7UMjUjItJeOc4zwgVG6OJDKnAjwWP29kZJQ62Hom8mQQF9Pe5n4n9dKIDj1Uh7FiQlIJw8FicAgcVYK7nLFKIihIYQqbv6KaZ8oQsFUVzQluNORZ0n9qOw6ZffmuFQ5z+sooF20jw6Ri05QBV2hKqohih7RM3pFb9aT9WK9Wx+T0Tkr39lBf2B9/gCX6ZnC</latexit><latexit sha1_base64="UkAViDKsrBmmNDQSWJn5840AkvY=">AAACB3icbVDLSgMxFM34rPU16lKQYBFclRkRdFl1oSupYB/QDiWTZtrQzGRI7qhl6M6Nv+LGhSJu/QV3/o2ZdhbaeiBwOOfeJOf4seAaHOfbmptfWFxaLqwUV9fWNzbtre26lomirEalkKrpE80Ej1gNOAjWjBUjoS9Ywx9cZH7jjinNZXQLw5h5IelFPOCUgJE69l4b2AOkl4rEfXwGwKJMx9cM7qUajDp2ySk7Y+BZ4uakhHJUO/ZXuytpEpp7qCBat1wnBi8lCjgVbFRsJ5rFhA5Ij7UMjUjItJeOc4zwgVG6OJDKnAjwWP29kZJQ62Hom8mQQF9Pe5n4n9dKIDj1Uh7FiQlIJw8FicAgcVYK7nLFKIihIYQqbv6KaZ8oQsFUVzQluNORZ0n9qOw6ZffmuFQ5z+sooF20jw6Ri05QBV2hKqohih7RM3pFb9aT9WK9Wx+T0Tkr39lBf2B9/gCX6ZnC</latexit>

Language Attention Network
<latexit sha1_base64="tJ+o4Fx+I9+tZFADTYWjdQQFy3I=">AAACCnicbVC7TsMwFHV4lvIKMLIYKiSmKkFIMBZYGBAqEn1IbVQ5rtNadZzIvgGqqDMLv8LCAEKsfAEbf4PTZoCWI1k6Ouc+fI8fC67Bcb6tufmFxaXlwkpxdW19Y9Pe2q7rKFGU1WgkItX0iWaCS1YDDoI1Y8VI6AvW8AcXmd+4Y0rzSN7CMGZeSHqSB5wSMFLH3msDe4D0isheQnoMnwEwmVn4msF9pAajjl1yys4YeJa4OSmhHNWO/dXuRjQJzRwqiNYt14nBS4kCTgUbFduJZjGhA7OuZagkIdNeOj5lhA+M0sVBpMyTgMfq746UhFoPQ99UhgT6etrLxP+8VgLBqZdyGSfmQDpZFCQCQ4SzXHCXK0ZBDA0hVHHzV0z7RBEKJr2iCcGdPnmW1I/KrlN2b45LlfM8jgLaRfvoELnoBFXQJaqiGqLoET2jV/RmPVkv1rv1MSmds/KeHfQH1ucP/RabEg==</latexit><latexit sha1_base64="tJ+o4Fx+I9+tZFADTYWjdQQFy3I=">AAACCnicbVC7TsMwFHV4lvIKMLIYKiSmKkFIMBZYGBAqEn1IbVQ5rtNadZzIvgGqqDMLv8LCAEKsfAEbf4PTZoCWI1k6Ouc+fI8fC67Bcb6tufmFxaXlwkpxdW19Y9Pe2q7rKFGU1WgkItX0iWaCS1YDDoI1Y8VI6AvW8AcXmd+4Y0rzSN7CMGZeSHqSB5wSMFLH3msDe4D0isheQnoMnwEwmVn4msF9pAajjl1yys4YeJa4OSmhHNWO/dXuRjQJzRwqiNYt14nBS4kCTgUbFduJZjGhA7OuZagkIdNeOj5lhA+M0sVBpMyTgMfq746UhFoPQ99UhgT6etrLxP+8VgLBqZdyGSfmQDpZFCQCQ4SzXHCXK0ZBDA0hVHHzV0z7RBEKJr2iCcGdPnmW1I/KrlN2b45LlfM8jgLaRfvoELnoBFXQJaqiGqLoET2jV/RmPVkv1rv1MSmds/KeHfQH1ucP/RabEg==</latexit><latexit sha1_base64="tJ+o4Fx+I9+tZFADTYWjdQQFy3I=">AAACCnicbVC7TsMwFHV4lvIKMLIYKiSmKkFIMBZYGBAqEn1IbVQ5rtNadZzIvgGqqDMLv8LCAEKsfAEbf4PTZoCWI1k6Ouc+fI8fC67Bcb6tufmFxaXlwkpxdW19Y9Pe2q7rKFGU1WgkItX0iWaCS1YDDoI1Y8VI6AvW8AcXmd+4Y0rzSN7CMGZeSHqSB5wSMFLH3msDe4D0isheQnoMnwEwmVn4msF9pAajjl1yys4YeJa4OSmhHNWO/dXuRjQJzRwqiNYt14nBS4kCTgUbFduJZjGhA7OuZagkIdNeOj5lhA+M0sVBpMyTgMfq746UhFoPQ99UhgT6etrLxP+8VgLBqZdyGSfmQDpZFCQCQ4SzXHCXK0ZBDA0hVHHzV0z7RBEKJr2iCcGdPnmW1I/KrlN2b45LlfM8jgLaRfvoELnoBFXQJaqiGqLoET2jV/RmPVkv1rv1MSmds/KeHfQH1ucP/RabEg==</latexit><latexit sha1_base64="tJ+o4Fx+I9+tZFADTYWjdQQFy3I=">AAACCnicbVC7TsMwFHV4lvIKMLIYKiSmKkFIMBZYGBAqEn1IbVQ5rtNadZzIvgGqqDMLv8LCAEKsfAEbf4PTZoCWI1k6Ouc+fI8fC67Bcb6tufmFxaXlwkpxdW19Y9Pe2q7rKFGU1WgkItX0iWaCS1YDDoI1Y8VI6AvW8AcXmd+4Y0rzSN7CMGZeSHqSB5wSMFLH3msDe4D0isheQnoMnwEwmVn4msF9pAajjl1yys4YeJa4OSmhHNWO/dXuRjQJzRwqiNYt14nBS4kCTgUbFduJZjGhA7OuZagkIdNeOj5lhA+M0sVBpMyTgMfq746UhFoPQ99UhgT6etrLxP+8VgLBqZdyGSfmQDpZFCQCQ4SzXHCXK0ZBDA0hVHHzV0z7RBEKJr2iCcGdPnmW1I/KrlN2b45LlfM8jgLaRfvoELnoBFXQJaqiGqLoET2jV/RmPVkv1rv1MSmds/KeHfQH1ucP/RabEg==</latexit>

Hybrid Attention
<latexit sha1_base64="fHQ1CPbKSROxSdYrOUWcucasogc=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaL4KokIuiy6qbLCvYBbSiTyaQdOnkwcyOGkI2/4saFIm79DHf+jZM2C209MHA4517unOPGgiuwrG+jsrK6tr5R3axtbe/s7pn7B10VJZKyDo1EJPsuUUzwkHWAg2D9WDISuIL13Olt4fcemFQ8Cu8hjZkTkHHIfU4JaGlkHg2BPULWSl3JPXwNwMLCyEdm3WpYM+BlYpekjkq0R+bX0ItoEuh9KohSA9uKwcmIBE4Fy2vDRLGY0CkZs4GmIQmYcrJZgByfasXDfiT1CwHP1N8bGQmUSgNXTwYEJmrRK8T/vEEC/pWT8TBOdDA6P+QnAkOEizawxyWjIFJNCJVc/xXTCZGEgu6spkuwFyMvk+55w7Ya9t1FvXlT1lFFx+gEnSEbXaImaqE26iCKcvSMXtGb8WS8GO/Gx3y0YpQ7h+gPjM8fW+6W4g==</latexit><latexit sha1_base64="fHQ1CPbKSROxSdYrOUWcucasogc=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaL4KokIuiy6qbLCvYBbSiTyaQdOnkwcyOGkI2/4saFIm79DHf+jZM2C209MHA4517unOPGgiuwrG+jsrK6tr5R3axtbe/s7pn7B10VJZKyDo1EJPsuUUzwkHWAg2D9WDISuIL13Olt4fcemFQ8Cu8hjZkTkHHIfU4JaGlkHg2BPULWSl3JPXwNwMLCyEdm3WpYM+BlYpekjkq0R+bX0ItoEuh9KohSA9uKwcmIBE4Fy2vDRLGY0CkZs4GmIQmYcrJZgByfasXDfiT1CwHP1N8bGQmUSgNXTwYEJmrRK8T/vEEC/pWT8TBOdDA6P+QnAkOEizawxyWjIFJNCJVc/xXTCZGEgu6spkuwFyMvk+55w7Ya9t1FvXlT1lFFx+gEnSEbXaImaqE26iCKcvSMXtGb8WS8GO/Gx3y0YpQ7h+gPjM8fW+6W4g==</latexit><latexit sha1_base64="fHQ1CPbKSROxSdYrOUWcucasogc=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaL4KokIuiy6qbLCvYBbSiTyaQdOnkwcyOGkI2/4saFIm79DHf+jZM2C209MHA4517unOPGgiuwrG+jsrK6tr5R3axtbe/s7pn7B10VJZKyDo1EJPsuUUzwkHWAg2D9WDISuIL13Olt4fcemFQ8Cu8hjZkTkHHIfU4JaGlkHg2BPULWSl3JPXwNwMLCyEdm3WpYM+BlYpekjkq0R+bX0ItoEuh9KohSA9uKwcmIBE4Fy2vDRLGY0CkZs4GmIQmYcrJZgByfasXDfiT1CwHP1N8bGQmUSgNXTwYEJmrRK8T/vEEC/pWT8TBOdDA6P+QnAkOEizawxyWjIFJNCJVc/xXTCZGEgu6spkuwFyMvk+55w7Ya9t1FvXlT1lFFx+gEnSEbXaImaqE26iCKcvSMXtGb8WS8GO/Gx3y0YpQ7h+gPjM8fW+6W4g==</latexit><latexit sha1_base64="hP+6LrUf2d3tZaldqaQQvEKMXyw=">AAAB2XicbZDNSgMxFIXv1L86Vq1rN8EiuCozbnQpuHFZwbZCO5RM5k4bmskMyR2hDH0BF25EfC93vo3pz0JbDwQ+zknIvSculLQUBN9ebWd3b/+gfugfNfzjk9Nmo2fz0gjsilzl5jnmFpXU2CVJCp8LgzyLFfbj6f0i77+gsTLXTzQrMMr4WMtUCk7O6oyaraAdLMW2IVxDC9YaNb+GSS7KDDUJxa0dhEFBUcUNSaFw7g9LiwUXUz7GgUPNM7RRtRxzzi6dk7A0N+5oYkv394uKZ9bOstjdzDhN7Ga2MP/LBiWlt1EldVESarH6KC0Vo5wtdmaJNChIzRxwYaSblYkJN1yQa8Z3HYSbG29D77odBu3wMYA6nMMFXEEIN3AHD9CBLghI4BXevYn35n2suqp569LO4I+8zx84xIo4</latexit><latexit sha1_base64="ywTv53sF33i/a+8MYdBhD7ft8Vk=">AAAB9XicbVC7SgNBFL0bXzFGXW0sbAaDYBV2bbRUbFJGMA9IljA7O5sMmX0wc1cMyzb+io2FIv6KnX/jbJJCEw9cOJxzLzPn+KkUGh3n26psbG5t71R3a3v1/YND+6je1UmmGO+wRCaq71PNpYh5BwVK3k8Vp5Evec+f3pV+75ErLZL4AWcp9yI6jkUoGEUjjeyTIfInzFszX4mA3CLyuDSKkd1wms4cZJ24S9KAJdoj+2sYJCyLzD2TVOuB66To5VShYJIXtWGmeUrZlI75wNCYRlx7+TxAQc6NEpAwUWZiJHP190VOI61nkW82I4oTveqV4n/eIMPw2stFnGYmGFs8FGaSYELKNkggFGcoZ4ZQpoT5K2ETqihD01nNlOCuRl4n3cum6zTdeweqcApncAEuXMENtKANHWBQwAu8wbv1bL1aH4u6Ktayt2P4A+vzB96nlXc=</latexit><latexit sha1_base64="ywTv53sF33i/a+8MYdBhD7ft8Vk=">AAAB9XicbVC7SgNBFL0bXzFGXW0sbAaDYBV2bbRUbFJGMA9IljA7O5sMmX0wc1cMyzb+io2FIv6KnX/jbJJCEw9cOJxzLzPn+KkUGh3n26psbG5t71R3a3v1/YND+6je1UmmGO+wRCaq71PNpYh5BwVK3k8Vp5Evec+f3pV+75ErLZL4AWcp9yI6jkUoGEUjjeyTIfInzFszX4mA3CLyuDSKkd1wms4cZJ24S9KAJdoj+2sYJCyLzD2TVOuB66To5VShYJIXtWGmeUrZlI75wNCYRlx7+TxAQc6NEpAwUWZiJHP190VOI61nkW82I4oTveqV4n/eIMPw2stFnGYmGFs8FGaSYELKNkggFGcoZ4ZQpoT5K2ETqihD01nNlOCuRl4n3cum6zTdeweqcApncAEuXMENtKANHWBQwAu8wbv1bL1aH4u6Ktayt2P4A+vzB96nlXc=</latexit><latexit sha1_base64="Nc8hiPI7iM7cEaBK22xXtekTtdI=">AAACAHicbVC7SgNBFL3rM8bXqoWFzWAQrMKujZZRm5QRzAOSJczOTpIhsw9m7ophSeOv2FgoYutn2Pk3ziZbaOKBgcM593LnHD+RQqPjfFsrq2vrG5ulrfL2zu7evn1w2NJxqhhvsljGquNTzaWIeBMFSt5JFKehL3nbH9/mfvuBKy3i6B4nCfdCOozEQDCKRurbxz3kj5jVJ74SAblG5FFuTPt2xak6M5Bl4hakAgUaffurF8QsDc0+k1Trrusk6GVUoWCST8u9VPOEsjEd8q6hEQ259rJZgCk5M0pABrEyL0IyU39vZDTUehL6ZjKkONKLXi7+53VTHFx5mYiS1ARj80ODVBKMSd4GCYTiDOXEEMqUMH8lbEQVZWg6K5sS3MXIy6R1UXWdqnvnVGo3RR0lOIFTOAcXLqEGdWhAExhM4Rle4c16sl6sd+tjPrpiFTtH8AfW5w9arpbe</latexit><latexit sha1_base64="fHQ1CPbKSROxSdYrOUWcucasogc=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaL4KokIuiy6qbLCvYBbSiTyaQdOnkwcyOGkI2/4saFIm79DHf+jZM2C209MHA4517unOPGgiuwrG+jsrK6tr5R3axtbe/s7pn7B10VJZKyDo1EJPsuUUzwkHWAg2D9WDISuIL13Olt4fcemFQ8Cu8hjZkTkHHIfU4JaGlkHg2BPULWSl3JPXwNwMLCyEdm3WpYM+BlYpekjkq0R+bX0ItoEuh9KohSA9uKwcmIBE4Fy2vDRLGY0CkZs4GmIQmYcrJZgByfasXDfiT1CwHP1N8bGQmUSgNXTwYEJmrRK8T/vEEC/pWT8TBOdDA6P+QnAkOEizawxyWjIFJNCJVc/xXTCZGEgu6spkuwFyMvk+55w7Ya9t1FvXlT1lFFx+gEnSEbXaImaqE26iCKcvSMXtGb8WS8GO/Gx3y0YpQ7h+gPjM8fW+6W4g==</latexit><latexit sha1_base64="fHQ1CPbKSROxSdYrOUWcucasogc=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaL4KokIuiy6qbLCvYBbSiTyaQdOnkwcyOGkI2/4saFIm79DHf+jZM2C209MHA4517unOPGgiuwrG+jsrK6tr5R3axtbe/s7pn7B10VJZKyDo1EJPsuUUzwkHWAg2D9WDISuIL13Olt4fcemFQ8Cu8hjZkTkHHIfU4JaGlkHg2BPULWSl3JPXwNwMLCyEdm3WpYM+BlYpekjkq0R+bX0ItoEuh9KohSA9uKwcmIBE4Fy2vDRLGY0CkZs4GmIQmYcrJZgByfasXDfiT1CwHP1N8bGQmUSgNXTwYEJmrRK8T/vEEC/pWT8TBOdDA6P+QnAkOEizawxyWjIFJNCJVc/xXTCZGEgu6spkuwFyMvk+55w7Ya9t1FvXlT1lFFx+gEnSEbXaImaqE26iCKcvSMXtGb8WS8GO/Gx3y0YpQ7h+gPjM8fW+6W4g==</latexit><latexit sha1_base64="fHQ1CPbKSROxSdYrOUWcucasogc=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaL4KokIuiy6qbLCvYBbSiTyaQdOnkwcyOGkI2/4saFIm79DHf+jZM2C209MHA4517unOPGgiuwrG+jsrK6tr5R3axtbe/s7pn7B10VJZKyDo1EJPsuUUzwkHWAg2D9WDISuIL13Olt4fcemFQ8Cu8hjZkTkHHIfU4JaGlkHg2BPULWSl3JPXwNwMLCyEdm3WpYM+BlYpekjkq0R+bX0ItoEuh9KohSA9uKwcmIBE4Fy2vDRLGY0CkZs4GmIQmYcrJZgByfasXDfiT1CwHP1N8bGQmUSgNXTwYEJmrRK8T/vEEC/pWT8TBOdDA6P+QnAkOEizawxyWjIFJNCJVc/xXTCZGEgu6spkuwFyMvk+55w7Ya9t1FvXlT1lFFx+gEnSEbXaImaqE26iCKcvSMXtGb8WS8GO/Gx3y0YpQ7h+gPjM8fW+6W4g==</latexit><latexit sha1_base64="fHQ1CPbKSROxSdYrOUWcucasogc=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaL4KokIuiy6qbLCvYBbSiTyaQdOnkwcyOGkI2/4saFIm79DHf+jZM2C209MHA4517unOPGgiuwrG+jsrK6tr5R3axtbe/s7pn7B10VJZKyDo1EJPsuUUzwkHWAg2D9WDISuIL13Olt4fcemFQ8Cu8hjZkTkHHIfU4JaGlkHg2BPULWSl3JPXwNwMLCyEdm3WpYM+BlYpekjkq0R+bX0ItoEuh9KohSA9uKwcmIBE4Fy2vDRLGY0CkZs4GmIQmYcrJZgByfasXDfiT1CwHP1N8bGQmUSgNXTwYEJmrRK8T/vEEC/pWT8TBOdDA6P+QnAkOEizawxyWjIFJNCJVc/xXTCZGEgu6spkuwFyMvk+55w7Ya9t1FvXlT1lFFx+gEnSEbXaImaqE26iCKcvSMXtGb8WS8GO/Gx3y0YpQ7h+gPjM8fW+6W4g==</latexit><latexit sha1_base64="fHQ1CPbKSROxSdYrOUWcucasogc=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaL4KokIuiy6qbLCvYBbSiTyaQdOnkwcyOGkI2/4saFIm79DHf+jZM2C209MHA4517unOPGgiuwrG+jsrK6tr5R3axtbe/s7pn7B10VJZKyDo1EJPsuUUzwkHWAg2D9WDISuIL13Olt4fcemFQ8Cu8hjZkTkHHIfU4JaGlkHg2BPULWSl3JPXwNwMLCyEdm3WpYM+BlYpekjkq0R+bX0ItoEuh9KohSA9uKwcmIBE4Fy2vDRLGY0CkZs4GmIQmYcrJZgByfasXDfiT1CwHP1N8bGQmUSgNXTwYEJmrRK8T/vEEC/pWT8TBOdDA6P+QnAkOEizawxyWjIFJNCJVc/xXTCZGEgu6spkuwFyMvk+55w7Ya9t1FvXlT1lFFx+gEnSEbXaImaqE26iCKcvSMXtGb8WS8GO/Gx3y0YpQ7h+gPjM8fW+6W4g==</latexit><latexit sha1_base64="fHQ1CPbKSROxSdYrOUWcucasogc=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaL4KokIuiy6qbLCvYBbSiTyaQdOnkwcyOGkI2/4saFIm79DHf+jZM2C209MHA4517unOPGgiuwrG+jsrK6tr5R3axtbe/s7pn7B10VJZKyDo1EJPsuUUzwkHWAg2D9WDISuIL13Olt4fcemFQ8Cu8hjZkTkHHIfU4JaGlkHg2BPULWSl3JPXwNwMLCyEdm3WpYM+BlYpekjkq0R+bX0ItoEuh9KohSA9uKwcmIBE4Fy2vDRLGY0CkZs4GmIQmYcrJZgByfasXDfiT1CwHP1N8bGQmUSgNXTwYEJmrRK8T/vEEC/pWT8TBOdDA6P+QnAkOEizawxyWjIFJNCJVc/xXTCZGEgu6spkuwFyMvk+55w7Ya9t1FvXlT1lFFx+gEnSEbXaImaqE26iCKcvSMXtGb8WS8GO/Gx3y0YpQ7h+gPjM8fW+6W4g==</latexit>

x1
<latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit><latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit><latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit><latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit>

x2
<latexit sha1_base64="sU5hbPAK+kK9DlSNNuLNHNxer84=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9Sv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnVqp5b9e4uKvXrPI4inMApnIMHl1CHW2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gANNI2h</latexit><latexit sha1_base64="sU5hbPAK+kK9DlSNNuLNHNxer84=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9Sv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnVqp5b9e4uKvXrPI4inMApnIMHl1CHW2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gANNI2h</latexit><latexit sha1_base64="sU5hbPAK+kK9DlSNNuLNHNxer84=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9Sv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnVqp5b9e4uKvXrPI4inMApnIMHl1CHW2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gANNI2h</latexit><latexit sha1_base64="sU5hbPAK+kK9DlSNNuLNHNxer84=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9Sv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnVqp5b9e4uKvXrPI4inMApnIMHl1CHW2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gANNI2h</latexit>

x3
<latexit sha1_base64="TQ33fRXyPFetK0LUClcfydpelNI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8eK9gPaUDbbSbt0swm7G7GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/Vbj6g0j+WDGSfoR3QgecgZNVa6f+qd98oVt+rOQJaJl5MK5Kj3yl/dfszSCKVhgmrd8dzE+BlVhjOBk1I31ZhQNqID7FgqaYTaz2anTsiJVfokjJUtachM/T2R0UjrcRTYzoiaoV70puJ/Xic14ZWfcZmkBiWbLwpTQUxMpn+TPlfIjBhbQpni9lbChlRRZmw6JRuCt/jyMmmeVT236t1dVGrXeRxFOIJjOAUPLqEGt1CHBjAYwDO8wpsjnBfn3fmYtxacfOYQ/sD5/AEOuI2i</latexit><latexit sha1_base64="TQ33fRXyPFetK0LUClcfydpelNI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8eK9gPaUDbbSbt0swm7G7GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/Vbj6g0j+WDGSfoR3QgecgZNVa6f+qd98oVt+rOQJaJl5MK5Kj3yl/dfszSCKVhgmrd8dzE+BlVhjOBk1I31ZhQNqID7FgqaYTaz2anTsiJVfokjJUtachM/T2R0UjrcRTYzoiaoV70puJ/Xic14ZWfcZmkBiWbLwpTQUxMpn+TPlfIjBhbQpni9lbChlRRZmw6JRuCt/jyMmmeVT236t1dVGrXeRxFOIJjOAUPLqEGt1CHBjAYwDO8wpsjnBfn3fmYtxacfOYQ/sD5/AEOuI2i</latexit><latexit sha1_base64="TQ33fRXyPFetK0LUClcfydpelNI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8eK9gPaUDbbSbt0swm7G7GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/Vbj6g0j+WDGSfoR3QgecgZNVa6f+qd98oVt+rOQJaJl5MK5Kj3yl/dfszSCKVhgmrd8dzE+BlVhjOBk1I31ZhQNqID7FgqaYTaz2anTsiJVfokjJUtachM/T2R0UjrcRTYzoiaoV70puJ/Xic14ZWfcZmkBiWbLwpTQUxMpn+TPlfIjBhbQpni9lbChlRRZmw6JRuCt/jyMmmeVT236t1dVGrXeRxFOIJjOAUPLqEGt1CHBjAYwDO8wpsjnBfn3fmYtxacfOYQ/sD5/AEOuI2i</latexit><latexit sha1_base64="TQ33fRXyPFetK0LUClcfydpelNI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8eK9gPaUDbbSbt0swm7G7GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/Vbj6g0j+WDGSfoR3QgecgZNVa6f+qd98oVt+rOQJaJl5MK5Kj3yl/dfszSCKVhgmrd8dzE+BlVhjOBk1I31ZhQNqID7FgqaYTaz2anTsiJVfokjJUtachM/T2R0UjrcRTYzoiaoV70puJ/Xic14ZWfcZmkBiWbLwpTQUxMpn+TPlfIjBhbQpni9lbChlRRZmw6JRuCt/jyMmmeVT236t1dVGrXeRxFOIJjOAUPLqEGt1CHBjAYwDO8wpsjnBfn3fmYtxacfOYQ/sD5/AEOuI2i</latexit>

x4
<latexit sha1_base64="AlKM6oMHVKv8OS4xnuSaxrc1A3Q=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9Sv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmldVD236t3VKvXrPI4inMApnIMHl1CHW2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gAQPI2j</latexit><latexit sha1_base64="AlKM6oMHVKv8OS4xnuSaxrc1A3Q=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9Sv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmldVD236t3VKvXrPI4inMApnIMHl1CHW2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gAQPI2j</latexit><latexit sha1_base64="AlKM6oMHVKv8OS4xnuSaxrc1A3Q=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9Sv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmldVD236t3VKvXrPI4inMApnIMHl1CHW2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gAQPI2j</latexit><latexit sha1_base64="AlKM6oMHVKv8OS4xnuSaxrc1A3Q=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9Sv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmldVD236t3VKvXrPI4inMApnIMHl1CHW2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gAQPI2j</latexit>

↵12
<latexit sha1_base64="BUqGKqtKl+lss8oPbbzXbB7KuW4=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BIvgqSRF0GPRi8cK9gPSUDbbTbt0sxt2J0IJ/RlePCji1V/jzX/jts1BWx8MPN6bYWZelApu0PO+ndLG5tb2Tnm3srd/cHhUPT7pGJVpytpUCaV7ETFMcMnayFGwXqoZSSLButHkbu53n5g2XMlHnKYsTMhI8phTglYK+kSkYzLI/cZsUK15dW8Bd534BalBgdag+tUfKpolTCIVxJjA91IMc6KRU8FmlX5mWErohIxYYKkkCTNhvjh55l5YZejGStuS6C7U3xM5SYyZJpHtTAiOzao3F//zggzjmzDnMs2QSbpcFGfCReXO/3eHXDOKYmoJoZrbW106JppQtClVbAj+6svrpNOo+17df7iqNW+LOMpwBudwCT5cQxPuoQVtoKDgGV7hzUHnxXl3PpatJaeYOYU/cD5/APG7kQQ=</latexit><latexit sha1_base64="BUqGKqtKl+lss8oPbbzXbB7KuW4=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BIvgqSRF0GPRi8cK9gPSUDbbTbt0sxt2J0IJ/RlePCji1V/jzX/jts1BWx8MPN6bYWZelApu0PO+ndLG5tb2Tnm3srd/cHhUPT7pGJVpytpUCaV7ETFMcMnayFGwXqoZSSLButHkbu53n5g2XMlHnKYsTMhI8phTglYK+kSkYzLI/cZsUK15dW8Bd534BalBgdag+tUfKpolTCIVxJjA91IMc6KRU8FmlX5mWErohIxYYKkkCTNhvjh55l5YZejGStuS6C7U3xM5SYyZJpHtTAiOzao3F//zggzjmzDnMs2QSbpcFGfCReXO/3eHXDOKYmoJoZrbW106JppQtClVbAj+6svrpNOo+17df7iqNW+LOMpwBudwCT5cQxPuoQVtoKDgGV7hzUHnxXl3PpatJaeYOYU/cD5/APG7kQQ=</latexit><latexit sha1_base64="BUqGKqtKl+lss8oPbbzXbB7KuW4=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BIvgqSRF0GPRi8cK9gPSUDbbTbt0sxt2J0IJ/RlePCji1V/jzX/jts1BWx8MPN6bYWZelApu0PO+ndLG5tb2Tnm3srd/cHhUPT7pGJVpytpUCaV7ETFMcMnayFGwXqoZSSLButHkbu53n5g2XMlHnKYsTMhI8phTglYK+kSkYzLI/cZsUK15dW8Bd534BalBgdag+tUfKpolTCIVxJjA91IMc6KRU8FmlX5mWErohIxYYKkkCTNhvjh55l5YZejGStuS6C7U3xM5SYyZJpHtTAiOzao3F//zggzjmzDnMs2QSbpcFGfCReXO/3eHXDOKYmoJoZrbW106JppQtClVbAj+6svrpNOo+17df7iqNW+LOMpwBudwCT5cQxPuoQVtoKDgGV7hzUHnxXl3PpatJaeYOYU/cD5/APG7kQQ=</latexit><latexit sha1_base64="BUqGKqtKl+lss8oPbbzXbB7KuW4=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BIvgqSRF0GPRi8cK9gPSUDbbTbt0sxt2J0IJ/RlePCji1V/jzX/jts1BWx8MPN6bYWZelApu0PO+ndLG5tb2Tnm3srd/cHhUPT7pGJVpytpUCaV7ETFMcMnayFGwXqoZSSLButHkbu53n5g2XMlHnKYsTMhI8phTglYK+kSkYzLI/cZsUK15dW8Bd534BalBgdag+tUfKpolTCIVxJjA91IMc6KRU8FmlX5mWErohIxYYKkkCTNhvjh55l5YZejGStuS6C7U3xM5SYyZJpHtTAiOzao3F//zggzjmzDnMs2QSbpcFGfCReXO/3eHXDOKYmoJoZrbW106JppQtClVbAj+6svrpNOo+17df7iqNW+LOMpwBudwCT5cQxPuoQVtoKDgGV7hzUHnxXl3PpatJaeYOYU/cD5/APG7kQQ=</latexit>

↵13
<latexit sha1_base64="/7azgbBnBhVS85N7pg9iaB8wFLI=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6LHoxWMF+wFpKJvtpl262Q27E6GE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvSgU36HnfTmltfWNzq7xd2dnd2z+oHh61jco0ZS2qhNLdiBgmuGQt5ChYN9WMJJFgnWh8N/M7T0wbruQjTlIWJmQoecwpQSsFPSLSEenn/uW0X615dW8Od5X4BalBgWa/+tUbKJolTCIVxJjA91IMc6KRU8GmlV5mWEromAxZYKkkCTNhPj956p5ZZeDGStuS6M7V3xM5SYyZJJHtTAiOzLI3E//zggzjmzDnMs2QSbpYFGfCReXO/ncHXDOKYmIJoZrbW106IppQtClVbAj+8surpH1R9726/3BVa9wWcZThBE7hHHy4hgbcQxNaQEHBM7zCm4POi/PufCxaS04xcwx/4Hz+APNAkQU=</latexit><latexit sha1_base64="/7azgbBnBhVS85N7pg9iaB8wFLI=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6LHoxWMF+wFpKJvtpl262Q27E6GE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvSgU36HnfTmltfWNzq7xd2dnd2z+oHh61jco0ZS2qhNLdiBgmuGQt5ChYN9WMJJFgnWh8N/M7T0wbruQjTlIWJmQoecwpQSsFPSLSEenn/uW0X615dW8Od5X4BalBgWa/+tUbKJolTCIVxJjA91IMc6KRU8GmlV5mWEromAxZYKkkCTNhPj956p5ZZeDGStuS6M7V3xM5SYyZJJHtTAiOzLI3E//zggzjmzDnMs2QSbpYFGfCReXO/ncHXDOKYmIJoZrbW106IppQtClVbAj+8surpH1R9726/3BVa9wWcZThBE7hHHy4hgbcQxNaQEHBM7zCm4POi/PufCxaS04xcwx/4Hz+APNAkQU=</latexit><latexit sha1_base64="/7azgbBnBhVS85N7pg9iaB8wFLI=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6LHoxWMF+wFpKJvtpl262Q27E6GE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvSgU36HnfTmltfWNzq7xd2dnd2z+oHh61jco0ZS2qhNLdiBgmuGQt5ChYN9WMJJFgnWh8N/M7T0wbruQjTlIWJmQoecwpQSsFPSLSEenn/uW0X615dW8Od5X4BalBgWa/+tUbKJolTCIVxJjA91IMc6KRU8GmlV5mWEromAxZYKkkCTNhPj956p5ZZeDGStuS6M7V3xM5SYyZJJHtTAiOzLI3E//zggzjmzDnMs2QSbpYFGfCReXO/ncHXDOKYmIJoZrbW106IppQtClVbAj+8surpH1R9726/3BVa9wWcZThBE7hHHy4hgbcQxNaQEHBM7zCm4POi/PufCxaS04xcwx/4Hz+APNAkQU=</latexit><latexit sha1_base64="/7azgbBnBhVS85N7pg9iaB8wFLI=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6LHoxWMF+wFpKJvtpl262Q27E6GE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvSgU36HnfTmltfWNzq7xd2dnd2z+oHh61jco0ZS2qhNLdiBgmuGQt5ChYN9WMJJFgnWh8N/M7T0wbruQjTlIWJmQoecwpQSsFPSLSEenn/uW0X615dW8Od5X4BalBgWa/+tUbKJolTCIVxJjA91IMc6KRU8GmlV5mWEromAxZYKkkCTNhPj956p5ZZeDGStuS6M7V3xM5SYyZJJHtTAiOzLI3E//zggzjmzDnMs2QSbpYFGfCReXO/ncHXDOKYmIJoZrbW106IppQtClVbAj+8surpH1R9726/3BVa9wWcZThBE7hHHy4hgbcQxNaQEHBM7zCm4POi/PufCxaS04xcwx/4Hz+APNAkQU=</latexit>

↵11
<latexit sha1_base64="Wnt2CZuqUF49iOSHUdBdjklrDmg=">AAAB8nicbVA9SwNBEJ2LXzF+RS1tFoNgFW5F0DJoYxnBxEByhL3NXrJk7/bYnRPCkZ9hY6GIrb/Gzn/jJrlCEx8MPN6bYWZemCpp0fe/vdLa+sbmVnm7srO7t39QPTxqW50ZLlpcK206IbNCyUS0UKISndQIFodKPIbj25n/+CSMlTp5wEkqgpgNExlJztBJ3R5T6Yj1c0qn/WrNr/tzkFVCC1KDAs1+9as30DyLRYJcMWu71E8xyJlByZWYVnqZFSnjYzYUXUcTFgsb5POTp+TMKQMSaeMqQTJXf0/kLLZ2EoeuM2Y4ssveTPzP62YYXQe5TNIMRcIXi6JMEdRk9j8ZSCM4qokjjBvpbiV8xAzj6FKquBDo8surpH1Rp36d3l/WGjdFHGU4gVM4BwpX0IA7aEILOGh4hld489B78d69j0VryStmjuEPvM8f8DaRAw==</latexit><latexit sha1_base64="Wnt2CZuqUF49iOSHUdBdjklrDmg=">AAAB8nicbVA9SwNBEJ2LXzF+RS1tFoNgFW5F0DJoYxnBxEByhL3NXrJk7/bYnRPCkZ9hY6GIrb/Gzn/jJrlCEx8MPN6bYWZemCpp0fe/vdLa+sbmVnm7srO7t39QPTxqW50ZLlpcK206IbNCyUS0UKISndQIFodKPIbj25n/+CSMlTp5wEkqgpgNExlJztBJ3R5T6Yj1c0qn/WrNr/tzkFVCC1KDAs1+9as30DyLRYJcMWu71E8xyJlByZWYVnqZFSnjYzYUXUcTFgsb5POTp+TMKQMSaeMqQTJXf0/kLLZ2EoeuM2Y4ssveTPzP62YYXQe5TNIMRcIXi6JMEdRk9j8ZSCM4qokjjBvpbiV8xAzj6FKquBDo8surpH1Rp36d3l/WGjdFHGU4gVM4BwpX0IA7aEILOGh4hld489B78d69j0VryStmjuEPvM8f8DaRAw==</latexit><latexit sha1_base64="Wnt2CZuqUF49iOSHUdBdjklrDmg=">AAAB8nicbVA9SwNBEJ2LXzF+RS1tFoNgFW5F0DJoYxnBxEByhL3NXrJk7/bYnRPCkZ9hY6GIrb/Gzn/jJrlCEx8MPN6bYWZemCpp0fe/vdLa+sbmVnm7srO7t39QPTxqW50ZLlpcK206IbNCyUS0UKISndQIFodKPIbj25n/+CSMlTp5wEkqgpgNExlJztBJ3R5T6Yj1c0qn/WrNr/tzkFVCC1KDAs1+9as30DyLRYJcMWu71E8xyJlByZWYVnqZFSnjYzYUXUcTFgsb5POTp+TMKQMSaeMqQTJXf0/kLLZ2EoeuM2Y4ssveTPzP62YYXQe5TNIMRcIXi6JMEdRk9j8ZSCM4qokjjBvpbiV8xAzj6FKquBDo8surpH1Rp36d3l/WGjdFHGU4gVM4BwpX0IA7aEILOGh4hld489B78d69j0VryStmjuEPvM8f8DaRAw==</latexit><latexit sha1_base64="Wnt2CZuqUF49iOSHUdBdjklrDmg=">AAAB8nicbVA9SwNBEJ2LXzF+RS1tFoNgFW5F0DJoYxnBxEByhL3NXrJk7/bYnRPCkZ9hY6GIrb/Gzn/jJrlCEx8MPN6bYWZemCpp0fe/vdLa+sbmVnm7srO7t39QPTxqW50ZLlpcK206IbNCyUS0UKISndQIFodKPIbj25n/+CSMlTp5wEkqgpgNExlJztBJ3R5T6Yj1c0qn/WrNr/tzkFVCC1KDAs1+9as30DyLRYJcMWu71E8xyJlByZWYVnqZFSnjYzYUXUcTFgsb5POTp+TMKQMSaeMqQTJXf0/kLLZ2EoeuM2Y4ssveTPzP62YYXQe5TNIMRcIXi6JMEdRk9j8ZSCM4qokjjBvpbiV8xAzj6FKquBDo8surpH1Rp36d3l/WGjdFHGU4gVM4BwpX0IA7aEILOGh4hld489B78d69j0VryStmjuEPvM8f8DaRAw==</latexit>

↵14
<latexit sha1_base64="P7gHn6CJBAAnjr8CFgl5tAM1tGY=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BIvgqSRS0GPRi8cK9gPSUDbbTbt0sxt2J0IJ/RlePCji1V/jzX/jts1BWx8MPN6bYWZelApu0PO+ndLG5tb2Tnm3srd/cHhUPT7pGJVpytpUCaV7ETFMcMnayFGwXqoZSSLButHkbu53n5g2XMlHnKYsTMhI8phTglYK+kSkYzLI/cZsUK15dW8Bd534BalBgdag+tUfKpolTCIVxJjA91IMc6KRU8FmlX5mWErohIxYYKkkCTNhvjh55l5YZejGStuS6C7U3xM5SYyZJpHtTAiOzao3F//zggzjmzDnMs2QSbpcFGfCReXO/3eHXDOKYmoJoZrbW106JppQtClVbAj+6svrpHNV9726/9CoNW+LOMpwBudwCT5cQxPuoQVtoKDgGV7hzUHnxXl3PpatJaeYOYU/cD5/APTFkQY=</latexit><latexit sha1_base64="P7gHn6CJBAAnjr8CFgl5tAM1tGY=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BIvgqSRS0GPRi8cK9gPSUDbbTbt0sxt2J0IJ/RlePCji1V/jzX/jts1BWx8MPN6bYWZelApu0PO+ndLG5tb2Tnm3srd/cHhUPT7pGJVpytpUCaV7ETFMcMnayFGwXqoZSSLButHkbu53n5g2XMlHnKYsTMhI8phTglYK+kSkYzLI/cZsUK15dW8Bd534BalBgdag+tUfKpolTCIVxJjA91IMc6KRU8FmlX5mWErohIxYYKkkCTNhvjh55l5YZejGStuS6C7U3xM5SYyZJpHtTAiOzao3F//zggzjmzDnMs2QSbpcFGfCReXO/3eHXDOKYmoJoZrbW106JppQtClVbAj+6svrpHNV9726/9CoNW+LOMpwBudwCT5cQxPuoQVtoKDgGV7hzUHnxXl3PpatJaeYOYU/cD5/APTFkQY=</latexit><latexit sha1_base64="P7gHn6CJBAAnjr8CFgl5tAM1tGY=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BIvgqSRS0GPRi8cK9gPSUDbbTbt0sxt2J0IJ/RlePCji1V/jzX/jts1BWx8MPN6bYWZelApu0PO+ndLG5tb2Tnm3srd/cHhUPT7pGJVpytpUCaV7ETFMcMnayFGwXqoZSSLButHkbu53n5g2XMlHnKYsTMhI8phTglYK+kSkYzLI/cZsUK15dW8Bd534BalBgdag+tUfKpolTCIVxJjA91IMc6KRU8FmlX5mWErohIxYYKkkCTNhvjh55l5YZejGStuS6C7U3xM5SYyZJpHtTAiOzao3F//zggzjmzDnMs2QSbpcFGfCReXO/3eHXDOKYmoJoZrbW106JppQtClVbAj+6svrpHNV9726/9CoNW+LOMpwBudwCT5cQxPuoQVtoKDgGV7hzUHnxXl3PpatJaeYOYU/cD5/APTFkQY=</latexit><latexit sha1_base64="P7gHn6CJBAAnjr8CFgl5tAM1tGY=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BIvgqSRS0GPRi8cK9gPSUDbbTbt0sxt2J0IJ/RlePCji1V/jzX/jts1BWx8MPN6bYWZelApu0PO+ndLG5tb2Tnm3srd/cHhUPT7pGJVpytpUCaV7ETFMcMnayFGwXqoZSSLButHkbu53n5g2XMlHnKYsTMhI8phTglYK+kSkYzLI/cZsUK15dW8Bd534BalBgdag+tUfKpolTCIVxJjA91IMc6KRU8FmlX5mWErohIxYYKkkCTNhvjh55l5YZejGStuS6C7U3xM5SYyZJpHtTAiOzao3F//zggzjmzDnMs2QSbpcFGfCReXO/3eHXDOKYmoJoZrbW106JppQtClVbAj+6svrpHNV9726/9CoNW+LOMpwBudwCT5cQxPuoQVtoKDgGV7hzUHnxXl3PpatJaeYOYU/cD5/APTFkQY=</latexit>

↵v
<latexit sha1_base64="vL2217OcUUeGssLCorXxBVj2ajA=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Ae2oUy2m3bpZhN2N4US+i+8eFDEq//Gm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikpeNUUdaksYhVJ0DNBJesabgRrJMohlEgWDsY38399oQpzWP5aKYJ8yMcSh5yisZKTz0UyQj72WTWL1fcqrsAWSdeTiqQo9Evf/UGMU0jJg0VqHXXcxPjZ6gMp4LNSr1UswTpGIesa6nEiGk/W1w8IxdWGZAwVrakIQv190SGkdbTKLCdEZqRXvXm4n9eNzXhjZ9xmaSGSbpcFKaCmJjM3ycDrhg1YmoJUsXtrYSOUCE1NqSSDcFbfXmdtK6qnlv1Hq4r9ds8jiKcwTlcggc1qMM9NKAJFCQ8wyu8Odp5cd6dj2VrwclnTuEPnM8f5jeRDQ==</latexit><latexit sha1_base64="vL2217OcUUeGssLCorXxBVj2ajA=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Ae2oUy2m3bpZhN2N4US+i+8eFDEq//Gm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikpeNUUdaksYhVJ0DNBJesabgRrJMohlEgWDsY38399oQpzWP5aKYJ8yMcSh5yisZKTz0UyQj72WTWL1fcqrsAWSdeTiqQo9Evf/UGMU0jJg0VqHXXcxPjZ6gMp4LNSr1UswTpGIesa6nEiGk/W1w8IxdWGZAwVrakIQv190SGkdbTKLCdEZqRXvXm4n9eNzXhjZ9xmaSGSbpcFKaCmJjM3ycDrhg1YmoJUsXtrYSOUCE1NqSSDcFbfXmdtK6qnlv1Hq4r9ds8jiKcwTlcggc1qMM9NKAJFCQ8wyu8Odp5cd6dj2VrwclnTuEPnM8f5jeRDQ==</latexit><latexit sha1_base64="vL2217OcUUeGssLCorXxBVj2ajA=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Ae2oUy2m3bpZhN2N4US+i+8eFDEq//Gm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikpeNUUdaksYhVJ0DNBJesabgRrJMohlEgWDsY38399oQpzWP5aKYJ8yMcSh5yisZKTz0UyQj72WTWL1fcqrsAWSdeTiqQo9Evf/UGMU0jJg0VqHXXcxPjZ6gMp4LNSr1UswTpGIesa6nEiGk/W1w8IxdWGZAwVrakIQv190SGkdbTKLCdEZqRXvXm4n9eNzXhjZ9xmaSGSbpcFKaCmJjM3ycDrhg1YmoJUsXtrYSOUCE1NqSSDcFbfXmdtK6qnlv1Hq4r9ds8jiKcwTlcggc1qMM9NKAJFCQ8wyu8Odp5cd6dj2VrwclnTuEPnM8f5jeRDQ==</latexit><latexit sha1_base64="vL2217OcUUeGssLCorXxBVj2ajA=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Ae2oUy2m3bpZhN2N4US+i+8eFDEq//Gm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikpeNUUdaksYhVJ0DNBJesabgRrJMohlEgWDsY38399oQpzWP5aKYJ8yMcSh5yisZKTz0UyQj72WTWL1fcqrsAWSdeTiqQo9Evf/UGMU0jJg0VqHXXcxPjZ6gMp4LNSr1UswTpGIesa6nEiGk/W1w8IxdWGZAwVrakIQv190SGkdbTKLCdEZqRXvXm4n9eNzXhjZ9xmaSGSbpcFKaCmJjM3ycDrhg1YmoJUsXtrYSOUCE1NqSSDcFbfXmdtK6qnlv1Hq4r9ds8jiKcwTlcggc1qMM9NKAJFCQ8wyu8Odp5cd6dj2VrwclnTuEPnM8f5jeRDQ==</latexit>

↵u
<latexit sha1_base64="k+vanoIXztVkzEVezmensR/ydEc=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPbUCbbTbt0swm7G6GE/gsvHhTx6r/x5r9x0+agrQ8GHu/NMDMvSATXxnW/ndLa+sbmVnm7srO7t39QPTxq6zhVlLVoLGLVDVAzwSVrGW4E6yaKYRQI1gkmt7nfeWJK81g+mGnC/AhHkoecorHSYx9FMsZBls4G1Zpbd+cgq8QrSA0KNAfVr/4wpmnEpKECte55bmL8DJXhVLBZpZ9qliCd4Ij1LJUYMe1n84tn5MwqQxLGypY0ZK7+nsgw0noaBbYzQjPWy14u/uf1UhNe+xmXSWqYpItFYSqIiUn+PhlyxagRU0uQKm5vJXSMCqmxIVVsCN7yy6ukfVH33Lp3f1lr3BRxlOEETuEcPLiCBtxBE1pAQcIzvMKbo50X5935WLSWnGLmGP7A+fwB5LKRDA==</latexit><latexit sha1_base64="k+vanoIXztVkzEVezmensR/ydEc=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPbUCbbTbt0swm7G6GE/gsvHhTx6r/x5r9x0+agrQ8GHu/NMDMvSATXxnW/ndLa+sbmVnm7srO7t39QPTxq6zhVlLVoLGLVDVAzwSVrGW4E6yaKYRQI1gkmt7nfeWJK81g+mGnC/AhHkoecorHSYx9FMsZBls4G1Zpbd+cgq8QrSA0KNAfVr/4wpmnEpKECte55bmL8DJXhVLBZpZ9qliCd4Ij1LJUYMe1n84tn5MwqQxLGypY0ZK7+nsgw0noaBbYzQjPWy14u/uf1UhNe+xmXSWqYpItFYSqIiUn+PhlyxagRU0uQKm5vJXSMCqmxIVVsCN7yy6ukfVH33Lp3f1lr3BRxlOEETuEcPLiCBtxBE1pAQcIzvMKbo50X5935WLSWnGLmGP7A+fwB5LKRDA==</latexit><latexit sha1_base64="k+vanoIXztVkzEVezmensR/ydEc=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPbUCbbTbt0swm7G6GE/gsvHhTx6r/x5r9x0+agrQ8GHu/NMDMvSATXxnW/ndLa+sbmVnm7srO7t39QPTxq6zhVlLVoLGLVDVAzwSVrGW4E6yaKYRQI1gkmt7nfeWJK81g+mGnC/AhHkoecorHSYx9FMsZBls4G1Zpbd+cgq8QrSA0KNAfVr/4wpmnEpKECte55bmL8DJXhVLBZpZ9qliCd4Ij1LJUYMe1n84tn5MwqQxLGypY0ZK7+nsgw0noaBbYzQjPWy14u/uf1UhNe+xmXSWqYpItFYSqIiUn+PhlyxagRU0uQKm5vJXSMCqmxIVVsCN7yy6ukfVH33Lp3f1lr3BRxlOEETuEcPLiCBtxBE1pAQcIzvMKbo50X5935WLSWnGLmGP7A+fwB5LKRDA==</latexit><latexit sha1_base64="k+vanoIXztVkzEVezmensR/ydEc=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPbUCbbTbt0swm7G6GE/gsvHhTx6r/x5r9x0+agrQ8GHu/NMDMvSATXxnW/ndLa+sbmVnm7srO7t39QPTxq6zhVlLVoLGLVDVAzwSVrGW4E6yaKYRQI1gkmt7nfeWJK81g+mGnC/AhHkoecorHSYx9FMsZBls4G1Zpbd+cgq8QrSA0KNAfVr/4wpmnEpKECte55bmL8DJXhVLBZpZ9qliCd4Ij1LJUYMe1n84tn5MwqQxLGypY0ZK7+nsgw0noaBbYzQjPWy14u/uf1UhNe+xmXSWqYpItFYSqIiUn+PhlyxagRU0uQKm5vJXSMCqmxIVVsCN7yy6ukfVH33Lp3f1lr3BRxlOEETuEcPLiCBtxBE1pAQcIzvMKbo50X5935WLSWnGLmGP7A+fwB5LKRDA==</latexit>

�21
<latexit sha1_base64="MYt0CpotA3AdV2kTj3XdVfc0Gt8=">AAAB8XicbVBNS8NAEJ34WetX1aOXYBE8laQIeix68VjBfmAbymY7bZduNmF3IpTQf+HFgyJe/Tfe/Ddu2xy09cHA470ZZuaFiRSGPO/bWVvf2NzaLuwUd/f2Dw5LR8dNE6eaY4PHMtbtkBmUQmGDBElsJxpZFEpshePbmd96Qm1ErB5okmAQsaESA8EZWemxGyKxXlb1p71S2at4c7irxM9JGXLUe6Wvbj/maYSKuGTGdHwvoSBjmgSXOC12U4MJ42M2xI6likVogmx+8dQ9t0rfHcTaliJ3rv6eyFhkzCQKbWfEaGSWvZn4n9dJaXAdZEIlKaHii0WDVLoUu7P33b7QyElOLGFcC3ury0dMM042pKINwV9+eZU0qxXfq/j3l+XaTR5HAU7hDC7AhyuowR3UoQEcFDzDK7w5xnlx3p2PReuak8+cwB84nz8oBJCQ</latexit><latexit sha1_base64="MYt0CpotA3AdV2kTj3XdVfc0Gt8=">AAAB8XicbVBNS8NAEJ34WetX1aOXYBE8laQIeix68VjBfmAbymY7bZduNmF3IpTQf+HFgyJe/Tfe/Ddu2xy09cHA470ZZuaFiRSGPO/bWVvf2NzaLuwUd/f2Dw5LR8dNE6eaY4PHMtbtkBmUQmGDBElsJxpZFEpshePbmd96Qm1ErB5okmAQsaESA8EZWemxGyKxXlb1p71S2at4c7irxM9JGXLUe6Wvbj/maYSKuGTGdHwvoSBjmgSXOC12U4MJ42M2xI6likVogmx+8dQ9t0rfHcTaliJ3rv6eyFhkzCQKbWfEaGSWvZn4n9dJaXAdZEIlKaHii0WDVLoUu7P33b7QyElOLGFcC3ury0dMM042pKINwV9+eZU0qxXfq/j3l+XaTR5HAU7hDC7AhyuowR3UoQEcFDzDK7w5xnlx3p2PReuak8+cwB84nz8oBJCQ</latexit><latexit sha1_base64="MYt0CpotA3AdV2kTj3XdVfc0Gt8=">AAAB8XicbVBNS8NAEJ34WetX1aOXYBE8laQIeix68VjBfmAbymY7bZduNmF3IpTQf+HFgyJe/Tfe/Ddu2xy09cHA470ZZuaFiRSGPO/bWVvf2NzaLuwUd/f2Dw5LR8dNE6eaY4PHMtbtkBmUQmGDBElsJxpZFEpshePbmd96Qm1ErB5okmAQsaESA8EZWemxGyKxXlb1p71S2at4c7irxM9JGXLUe6Wvbj/maYSKuGTGdHwvoSBjmgSXOC12U4MJ42M2xI6likVogmx+8dQ9t0rfHcTaliJ3rv6eyFhkzCQKbWfEaGSWvZn4n9dJaXAdZEIlKaHii0WDVLoUu7P33b7QyElOLGFcC3ury0dMM042pKINwV9+eZU0qxXfq/j3l+XaTR5HAU7hDC7AhyuowR3UoQEcFDzDK7w5xnlx3p2PReuak8+cwB84nz8oBJCQ</latexit><latexit sha1_base64="MYt0CpotA3AdV2kTj3XdVfc0Gt8=">AAAB8XicbVBNS8NAEJ34WetX1aOXYBE8laQIeix68VjBfmAbymY7bZduNmF3IpTQf+HFgyJe/Tfe/Ddu2xy09cHA470ZZuaFiRSGPO/bWVvf2NzaLuwUd/f2Dw5LR8dNE6eaY4PHMtbtkBmUQmGDBElsJxpZFEpshePbmd96Qm1ErB5okmAQsaESA8EZWemxGyKxXlb1p71S2at4c7irxM9JGXLUe6Wvbj/maYSKuGTGdHwvoSBjmgSXOC12U4MJ42M2xI6likVogmx+8dQ9t0rfHcTaliJ3rv6eyFhkzCQKbWfEaGSWvZn4n9dJaXAdZEIlKaHii0WDVLoUu7P33b7QyElOLGFcC3ury0dMM042pKINwV9+eZU0qxXfq/j3l+XaTR5HAU7hDC7AhyuowR3UoQEcFDzDK7w5xnlx3p2PReuak8+cwB84nz8oBJCQ</latexit>

�22
<latexit sha1_base64="efI6Zp/XiaOgC4gTeNBXRBPYvsY=">AAAB8XicbVBNS8NAEJ34WetX1aOXYBE8laQIeix68VjBfmAbymY7bZduNmF3IpTQf+HFgyJe/Tfe/Ddu2xy09cHA470ZZuaFiRSGPO/bWVvf2NzaLuwUd/f2Dw5LR8dNE6eaY4PHMtbtkBmUQmGDBElsJxpZFEpshePbmd96Qm1ErB5okmAQsaESA8EZWemxGyKxXlatTnulslfx5nBXiZ+TMuSo90pf3X7M0wgVccmM6fheQkHGNAkucVrspgYTxsdsiB1LFYvQBNn84ql7bpW+O4i1LUXuXP09kbHImEkU2s6I0cgsezPxP6+T0uA6yIRKUkLFF4sGqXQpdmfvu32hkZOcWMK4FvZWl4+YZpxsSEUbgr/88ippViu+V/HvL8u1mzyOApzCGVyAD1dQgzuoQwM4KHiGV3hzjPPivDsfi9Y1J585gT9wPn8AKYmQkQ==</latexit><latexit sha1_base64="efI6Zp/XiaOgC4gTeNBXRBPYvsY=">AAAB8XicbVBNS8NAEJ34WetX1aOXYBE8laQIeix68VjBfmAbymY7bZduNmF3IpTQf+HFgyJe/Tfe/Ddu2xy09cHA470ZZuaFiRSGPO/bWVvf2NzaLuwUd/f2Dw5LR8dNE6eaY4PHMtbtkBmUQmGDBElsJxpZFEpshePbmd96Qm1ErB5okmAQsaESA8EZWemxGyKxXlatTnulslfx5nBXiZ+TMuSo90pf3X7M0wgVccmM6fheQkHGNAkucVrspgYTxsdsiB1LFYvQBNn84ql7bpW+O4i1LUXuXP09kbHImEkU2s6I0cgsezPxP6+T0uA6yIRKUkLFF4sGqXQpdmfvu32hkZOcWMK4FvZWl4+YZpxsSEUbgr/88ippViu+V/HvL8u1mzyOApzCGVyAD1dQgzuoQwM4KHiGV3hzjPPivDsfi9Y1J585gT9wPn8AKYmQkQ==</latexit><latexit sha1_base64="efI6Zp/XiaOgC4gTeNBXRBPYvsY=">AAAB8XicbVBNS8NAEJ34WetX1aOXYBE8laQIeix68VjBfmAbymY7bZduNmF3IpTQf+HFgyJe/Tfe/Ddu2xy09cHA470ZZuaFiRSGPO/bWVvf2NzaLuwUd/f2Dw5LR8dNE6eaY4PHMtbtkBmUQmGDBElsJxpZFEpshePbmd96Qm1ErB5okmAQsaESA8EZWemxGyKxXlatTnulslfx5nBXiZ+TMuSo90pf3X7M0wgVccmM6fheQkHGNAkucVrspgYTxsdsiB1LFYvQBNn84ql7bpW+O4i1LUXuXP09kbHImEkU2s6I0cgsezPxP6+T0uA6yIRKUkLFF4sGqXQpdmfvu32hkZOcWMK4FvZWl4+YZpxsSEUbgr/88ippViu+V/HvL8u1mzyOApzCGVyAD1dQgzuoQwM4KHiGV3hzjPPivDsfi9Y1J585gT9wPn8AKYmQkQ==</latexit><latexit sha1_base64="efI6Zp/XiaOgC4gTeNBXRBPYvsY=">AAAB8XicbVBNS8NAEJ34WetX1aOXYBE8laQIeix68VjBfmAbymY7bZduNmF3IpTQf+HFgyJe/Tfe/Ddu2xy09cHA470ZZuaFiRSGPO/bWVvf2NzaLuwUd/f2Dw5LR8dNE6eaY4PHMtbtkBmUQmGDBElsJxpZFEpshePbmd96Qm1ErB5okmAQsaESA8EZWemxGyKxXlatTnulslfx5nBXiZ+TMuSo90pf3X7M0wgVccmM6fheQkHGNAkucVrspgYTxsdsiB1LFYvQBNn84ql7bpW+O4i1LUXuXP09kbHImEkU2s6I0cgsezPxP6+T0uA6yIRKUkLFF4sGqXQpdmfvu32hkZOcWMK4FvZWl4+YZpxsSEUbgr/88ippViu+V/HvL8u1mzyOApzCGVyAD1dQgzuoQwM4KHiGV3hzjPPivDsfi9Y1J585gT9wPn8AKYmQkQ==</latexit>

�2T
<latexit sha1_base64="qq1k+5Q4Ty5wrd3iavPqQXDDKik=">AAAB8XicbVBNS8NAEN3Ur1q/qh69LBbBU0mKoMeiF48V+oVtKJvtpF262YTdiVBC/4UXD4p49d9489+4bXPQ1gcDj/dmmJkXJFIYdN1vp7CxubW9U9wt7e0fHB6Vj0/aJk41hxaPZay7ATMghYIWCpTQTTSwKJDQCSZ3c7/zBNqIWDVxmoAfsZESoeAMrfTYDwDZIKs1Z4Nyxa26C9B14uWkQnI0BuWv/jDmaQQKuWTG9Dw3QT9jGgWXMCv1UwMJ4xM2gp6likVg/Gxx8YxeWGVIw1jbUkgX6u+JjEXGTKPAdkYMx2bVm4v/eb0Uwxs/EypJERRfLgpTSTGm8/fpUGjgKKeWMK6FvZXyMdOMow2pZEPwVl9eJ+1a1XOr3sNVpX6bx1EkZ+ScXBKPXJM6uScN0iKcKPJMXsmbY5wX5935WLYWnHzmlPyB8/kDXTOQsw==</latexit><latexit sha1_base64="qq1k+5Q4Ty5wrd3iavPqQXDDKik=">AAAB8XicbVBNS8NAEN3Ur1q/qh69LBbBU0mKoMeiF48V+oVtKJvtpF262YTdiVBC/4UXD4p49d9489+4bXPQ1gcDj/dmmJkXJFIYdN1vp7CxubW9U9wt7e0fHB6Vj0/aJk41hxaPZay7ATMghYIWCpTQTTSwKJDQCSZ3c7/zBNqIWDVxmoAfsZESoeAMrfTYDwDZIKs1Z4Nyxa26C9B14uWkQnI0BuWv/jDmaQQKuWTG9Dw3QT9jGgWXMCv1UwMJ4xM2gp6likVg/Gxx8YxeWGVIw1jbUkgX6u+JjEXGTKPAdkYMx2bVm4v/eb0Uwxs/EypJERRfLgpTSTGm8/fpUGjgKKeWMK6FvZXyMdOMow2pZEPwVl9eJ+1a1XOr3sNVpX6bx1EkZ+ScXBKPXJM6uScN0iKcKPJMXsmbY5wX5935WLYWnHzmlPyB8/kDXTOQsw==</latexit><latexit sha1_base64="qq1k+5Q4Ty5wrd3iavPqQXDDKik=">AAAB8XicbVBNS8NAEN3Ur1q/qh69LBbBU0mKoMeiF48V+oVtKJvtpF262YTdiVBC/4UXD4p49d9489+4bXPQ1gcDj/dmmJkXJFIYdN1vp7CxubW9U9wt7e0fHB6Vj0/aJk41hxaPZay7ATMghYIWCpTQTTSwKJDQCSZ3c7/zBNqIWDVxmoAfsZESoeAMrfTYDwDZIKs1Z4Nyxa26C9B14uWkQnI0BuWv/jDmaQQKuWTG9Dw3QT9jGgWXMCv1UwMJ4xM2gp6likVg/Gxx8YxeWGVIw1jbUkgX6u+JjEXGTKPAdkYMx2bVm4v/eb0Uwxs/EypJERRfLgpTSTGm8/fpUGjgKKeWMK6FvZXyMdOMow2pZEPwVl9eJ+1a1XOr3sNVpX6bx1EkZ+ScXBKPXJM6uScN0iKcKPJMXsmbY5wX5935WLYWnHzmlPyB8/kDXTOQsw==</latexit><latexit sha1_base64="qq1k+5Q4Ty5wrd3iavPqQXDDKik=">AAAB8XicbVBNS8NAEN3Ur1q/qh69LBbBU0mKoMeiF48V+oVtKJvtpF262YTdiVBC/4UXD4p49d9489+4bXPQ1gcDj/dmmJkXJFIYdN1vp7CxubW9U9wt7e0fHB6Vj0/aJk41hxaPZay7ATMghYIWCpTQTTSwKJDQCSZ3c7/zBNqIWDVxmoAfsZESoeAMrfTYDwDZIKs1Z4Nyxa26C9B14uWkQnI0BuWv/jDmaQQKuWTG9Dw3QT9jGgWXMCv1UwMJ4xM2gp6likVg/Gxx8YxeWGVIw1jbUkgX6u+JjEXGTKPAdkYMx2bVm4v/eb0Uwxs/EypJERRfLgpTSTGm8/fpUGjgKKeWMK6FvZXyMdOMow2pZEPwVl9eJ+1a1XOr3sNVpX6bx1EkZ+ScXBKPXJM6uScN0iKcKPJMXsmbY5wX5935WLYWnHzmlPyB8/kDXTOQsw==</latexit>

h21
<latexit sha1_base64="OLrqSudJYa75xSRhuDI0ko+IclA=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hd0g6DHoxWME84BkCbOTSTJmdmaZ6RXCkn/w4kERr/6PN//GSbIHTSxoKKq66e6KEiks+v63t7a+sbm1Xdgp7u7tHxyWjo6bVqeG8QbTUpt2RC2XQvEGCpS8nRhO40jyVjS+nfmtJ26s0OoBJwkPYzpUYiAYRSc1R72sGkx7pbJf8ecgqyTISRly1Hulr25fszTmCpmk1nYCP8EwowYFk3xa7KaWJ5SN6ZB3HFU05jbM5tdOyblT+mSgjSuFZK7+nshobO0kjlxnTHFkl72Z+J/XSXFwHWZCJSlyxRaLBqkkqMnsddIXhjOUE0coM8LdStiIGsrQBVR0IQTLL6+SZrUS+JXg/rJcu8njKMApnMEFBHAFNbiDOjSAwSM8wyu8edp78d69j0XrmpfPnMAfeJ8/Ki+O2A==</latexit><latexit sha1_base64="OLrqSudJYa75xSRhuDI0ko+IclA=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hd0g6DHoxWME84BkCbOTSTJmdmaZ6RXCkn/w4kERr/6PN//GSbIHTSxoKKq66e6KEiks+v63t7a+sbm1Xdgp7u7tHxyWjo6bVqeG8QbTUpt2RC2XQvEGCpS8nRhO40jyVjS+nfmtJ26s0OoBJwkPYzpUYiAYRSc1R72sGkx7pbJf8ecgqyTISRly1Hulr25fszTmCpmk1nYCP8EwowYFk3xa7KaWJ5SN6ZB3HFU05jbM5tdOyblT+mSgjSuFZK7+nshobO0kjlxnTHFkl72Z+J/XSXFwHWZCJSlyxRaLBqkkqMnsddIXhjOUE0coM8LdStiIGsrQBVR0IQTLL6+SZrUS+JXg/rJcu8njKMApnMEFBHAFNbiDOjSAwSM8wyu8edp78d69j0XrmpfPnMAfeJ8/Ki+O2A==</latexit><latexit sha1_base64="OLrqSudJYa75xSRhuDI0ko+IclA=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hd0g6DHoxWME84BkCbOTSTJmdmaZ6RXCkn/w4kERr/6PN//GSbIHTSxoKKq66e6KEiks+v63t7a+sbm1Xdgp7u7tHxyWjo6bVqeG8QbTUpt2RC2XQvEGCpS8nRhO40jyVjS+nfmtJ26s0OoBJwkPYzpUYiAYRSc1R72sGkx7pbJf8ecgqyTISRly1Hulr25fszTmCpmk1nYCP8EwowYFk3xa7KaWJ5SN6ZB3HFU05jbM5tdOyblT+mSgjSuFZK7+nshobO0kjlxnTHFkl72Z+J/XSXFwHWZCJSlyxRaLBqkkqMnsddIXhjOUE0coM8LdStiIGsrQBVR0IQTLL6+SZrUS+JXg/rJcu8njKMApnMEFBHAFNbiDOjSAwSM8wyu8edp78d69j0XrmpfPnMAfeJ8/Ki+O2A==</latexit><latexit sha1_base64="OLrqSudJYa75xSRhuDI0ko+IclA=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hd0g6DHoxWME84BkCbOTSTJmdmaZ6RXCkn/w4kERr/6PN//GSbIHTSxoKKq66e6KEiks+v63t7a+sbm1Xdgp7u7tHxyWjo6bVqeG8QbTUpt2RC2XQvEGCpS8nRhO40jyVjS+nfmtJ26s0OoBJwkPYzpUYiAYRSc1R72sGkx7pbJf8ecgqyTISRly1Hulr25fszTmCpmk1nYCP8EwowYFk3xa7KaWJ5SN6ZB3HFU05jbM5tdOyblT+mSgjSuFZK7+nshobO0kjlxnTHFkl72Z+J/XSXFwHWZCJSlyxRaLBqkkqMnsddIXhjOUE0coM8LdStiIGsrQBVR0IQTLL6+SZrUS+JXg/rJcu8njKMApnMEFBHAFNbiDOjSAwSM8wyu8edp78d69j0XrmpfPnMAfeJ8/Ki+O2A==</latexit>

h22
<latexit sha1_base64="axX+E2XIAakZ2t23X365RAwFhNk=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hd0g6DHoxWME84BkCbOTSTJmdmaZ6RXCkn/w4kERr/6PN//GSbIHTSxoKKq66e6KEiks+v63t7a+sbm1Xdgp7u7tHxyWjo6bVqeG8QbTUpt2RC2XQvEGCpS8nRhO40jyVjS+nfmtJ26s0OoBJwkPYzpUYiAYRSc1R72sWp32SmW/4s9BVkmQkzLkqPdKX92+ZmnMFTJJre0EfoJhRg0KJvm02E0tTygb0yHvOKpozG2Yza+dknOn9MlAG1cKyVz9PZHR2NpJHLnOmOLILnsz8T+vk+LgOsyESlLkii0WDVJJUJPZ66QvDGcoJ45QZoS7lbARNZShC6joQgiWX14lzWol8CvB/WW5dpPHUYBTOIMLCOAKanAHdWgAg0d4hld487T34r17H4vWNS+fOYE/8D5/ACu0jtk=</latexit><latexit sha1_base64="axX+E2XIAakZ2t23X365RAwFhNk=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hd0g6DHoxWME84BkCbOTSTJmdmaZ6RXCkn/w4kERr/6PN//GSbIHTSxoKKq66e6KEiks+v63t7a+sbm1Xdgp7u7tHxyWjo6bVqeG8QbTUpt2RC2XQvEGCpS8nRhO40jyVjS+nfmtJ26s0OoBJwkPYzpUYiAYRSc1R72sWp32SmW/4s9BVkmQkzLkqPdKX92+ZmnMFTJJre0EfoJhRg0KJvm02E0tTygb0yHvOKpozG2Yza+dknOn9MlAG1cKyVz9PZHR2NpJHLnOmOLILnsz8T+vk+LgOsyESlLkii0WDVJJUJPZ66QvDGcoJ45QZoS7lbARNZShC6joQgiWX14lzWol8CvB/WW5dpPHUYBTOIMLCOAKanAHdWgAg0d4hld487T34r17H4vWNS+fOYE/8D5/ACu0jtk=</latexit><latexit sha1_base64="axX+E2XIAakZ2t23X365RAwFhNk=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hd0g6DHoxWME84BkCbOTSTJmdmaZ6RXCkn/w4kERr/6PN//GSbIHTSxoKKq66e6KEiks+v63t7a+sbm1Xdgp7u7tHxyWjo6bVqeG8QbTUpt2RC2XQvEGCpS8nRhO40jyVjS+nfmtJ26s0OoBJwkPYzpUYiAYRSc1R72sWp32SmW/4s9BVkmQkzLkqPdKX92+ZmnMFTJJre0EfoJhRg0KJvm02E0tTygb0yHvOKpozG2Yza+dknOn9MlAG1cKyVz9PZHR2NpJHLnOmOLILnsz8T+vk+LgOsyESlLkii0WDVJJUJPZ66QvDGcoJ45QZoS7lbARNZShC6joQgiWX14lzWol8CvB/WW5dpPHUYBTOIMLCOAKanAHdWgAg0d4hld487T34r17H4vWNS+fOYE/8D5/ACu0jtk=</latexit><latexit sha1_base64="axX+E2XIAakZ2t23X365RAwFhNk=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hd0g6DHoxWME84BkCbOTSTJmdmaZ6RXCkn/w4kERr/6PN//GSbIHTSxoKKq66e6KEiks+v63t7a+sbm1Xdgp7u7tHxyWjo6bVqeG8QbTUpt2RC2XQvEGCpS8nRhO40jyVjS+nfmtJ26s0OoBJwkPYzpUYiAYRSc1R72sWp32SmW/4s9BVkmQkzLkqPdKX92+ZmnMFTJJre0EfoJhRg0KJvm02E0tTygb0yHvOKpozG2Yza+dknOn9MlAG1cKyVz9PZHR2NpJHLnOmOLILnsz8T+vk+LgOsyESlLkii0WDVJJUJPZ66QvDGcoJ45QZoS7lbARNZShC6joQgiWX14lzWol8CvB/WW5dpPHUYBTOIMLCOAKanAHdWgAg0d4hld487T34r17H4vWNS+fOYE/8D5/ACu0jtk=</latexit>

h2T
<latexit sha1_base64="ktTWar0AuE+Vfyev64u2unqJ1OE=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BIvgqewWQY9FLx4r9AvapWTTbBubTZYkK5Sl/8GLB0W8+n+8+W9M2z1o64OBx3szzMwLE8GN9bxvVNjY3NreKe6W9vYPDo/Kxydto1JNWYsqoXQ3JIYJLlnLcitYN9GMxKFgnXByN/c7T0wbrmTTThMWxGQkecQpsU5qjwdZrTkblCte1VsArxM/JxXI0RiUv/pDRdOYSUsFMabne4kNMqItp4LNSv3UsITQCRmxnqOSxMwE2eLaGb5wyhBHSruSFi/U3xMZiY2ZxqHrjIkdm1VvLv7n9VIb3QQZl0lqmaTLRVEqsFV4/joecs2oFVNHCNXc3YrpmGhCrQuo5ELwV19eJ+1a1feq/sNVpX6bx1GEMziHS/DhGupwDw1oAYVHeIZXeEMKvaB39LFsLaB85hT+AH3+AF9ejvs=</latexit><latexit sha1_base64="ktTWar0AuE+Vfyev64u2unqJ1OE=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BIvgqewWQY9FLx4r9AvapWTTbBubTZYkK5Sl/8GLB0W8+n+8+W9M2z1o64OBx3szzMwLE8GN9bxvVNjY3NreKe6W9vYPDo/Kxydto1JNWYsqoXQ3JIYJLlnLcitYN9GMxKFgnXByN/c7T0wbrmTTThMWxGQkecQpsU5qjwdZrTkblCte1VsArxM/JxXI0RiUv/pDRdOYSUsFMabne4kNMqItp4LNSv3UsITQCRmxnqOSxMwE2eLaGb5wyhBHSruSFi/U3xMZiY2ZxqHrjIkdm1VvLv7n9VIb3QQZl0lqmaTLRVEqsFV4/joecs2oFVNHCNXc3YrpmGhCrQuo5ELwV19eJ+1a1feq/sNVpX6bx1GEMziHS/DhGupwDw1oAYVHeIZXeEMKvaB39LFsLaB85hT+AH3+AF9ejvs=</latexit><latexit sha1_base64="ktTWar0AuE+Vfyev64u2unqJ1OE=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BIvgqewWQY9FLx4r9AvapWTTbBubTZYkK5Sl/8GLB0W8+n+8+W9M2z1o64OBx3szzMwLE8GN9bxvVNjY3NreKe6W9vYPDo/Kxydto1JNWYsqoXQ3JIYJLlnLcitYN9GMxKFgnXByN/c7T0wbrmTTThMWxGQkecQpsU5qjwdZrTkblCte1VsArxM/JxXI0RiUv/pDRdOYSUsFMabne4kNMqItp4LNSv3UsITQCRmxnqOSxMwE2eLaGb5wyhBHSruSFi/U3xMZiY2ZxqHrjIkdm1VvLv7n9VIb3QQZl0lqmaTLRVEqsFV4/joecs2oFVNHCNXc3YrpmGhCrQuo5ELwV19eJ+1a1feq/sNVpX6bx1GEMziHS/DhGupwDw1oAYVHeIZXeEMKvaB39LFsLaB85hT+AH3+AF9ejvs=</latexit><latexit sha1_base64="ktTWar0AuE+Vfyev64u2unqJ1OE=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BIvgqewWQY9FLx4r9AvapWTTbBubTZYkK5Sl/8GLB0W8+n+8+W9M2z1o64OBx3szzMwLE8GN9bxvVNjY3NreKe6W9vYPDo/Kxydto1JNWYsqoXQ3JIYJLlnLcitYN9GMxKFgnXByN/c7T0wbrmTTThMWxGQkecQpsU5qjwdZrTkblCte1VsArxM/JxXI0RiUv/pDRdOYSUsFMabne4kNMqItp4LNSv3UsITQCRmxnqOSxMwE2eLaGb5wyhBHSruSFi/U3xMZiY2ZxqHrjIkdm1VvLv7n9VIb3QQZl0lqmaTLRVEqsFV4/joecs2oFVNHCNXc3YrpmGhCrQuo5ELwV19eJ+1a1feq/sNVpX6bx1GEMziHS/DhGupwDw1oAYVHeIZXeEMKvaB39LFsLaB85hT+AH3+AF9ejvs=</latexit>

h1
<latexit sha1_base64="xzhp7x9yuM3gSIT7z0jjmcXW+KM=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48VTFtoQ9lsN+3SzSbsToQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74STu7nfeeLaiEQ94jTlQUxHSkSCUbSSPx7k3mxQrbl1dwGyTryC1KBAa1D96g8TlsVcIZPUmJ7nphjkVKNgks8q/czwlLIJHfGepYrG3AT54tgZubDKkESJtqWQLNTfEzmNjZnGoe2MKY7NqjcX//N6GUY3QS5UmiFXbLkoyiTBhMw/J0OhOUM5tYQyLeythI2ppgxtPhUbgrf68jppX9U9t+49XNeat0UcZTiDc7gEDxrQhHtogQ8MBDzDK7w5ynlx3p2PZWvJKWZO4Q+czx+3xo6c</latexit><latexit sha1_base64="xzhp7x9yuM3gSIT7z0jjmcXW+KM=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48VTFtoQ9lsN+3SzSbsToQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74STu7nfeeLaiEQ94jTlQUxHSkSCUbSSPx7k3mxQrbl1dwGyTryC1KBAa1D96g8TlsVcIZPUmJ7nphjkVKNgks8q/czwlLIJHfGepYrG3AT54tgZubDKkESJtqWQLNTfEzmNjZnGoe2MKY7NqjcX//N6GUY3QS5UmiFXbLkoyiTBhMw/J0OhOUM5tYQyLeythI2ppgxtPhUbgrf68jppX9U9t+49XNeat0UcZTiDc7gEDxrQhHtogQ8MBDzDK7w5ynlx3p2PZWvJKWZO4Q+czx+3xo6c</latexit><latexit sha1_base64="xzhp7x9yuM3gSIT7z0jjmcXW+KM=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48VTFtoQ9lsN+3SzSbsToQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74STu7nfeeLaiEQ94jTlQUxHSkSCUbSSPx7k3mxQrbl1dwGyTryC1KBAa1D96g8TlsVcIZPUmJ7nphjkVKNgks8q/czwlLIJHfGepYrG3AT54tgZubDKkESJtqWQLNTfEzmNjZnGoe2MKY7NqjcX//N6GUY3QS5UmiFXbLkoyiTBhMw/J0OhOUM5tYQyLeythI2ppgxtPhUbgrf68jppX9U9t+49XNeat0UcZTiDc7gEDxrQhHtogQ8MBDzDK7w5ynlx3p2PZWvJKWZO4Q+czx+3xo6c</latexit><latexit sha1_base64="xzhp7x9yuM3gSIT7z0jjmcXW+KM=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48VTFtoQ9lsN+3SzSbsToQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74STu7nfeeLaiEQ94jTlQUxHSkSCUbSSPx7k3mxQrbl1dwGyTryC1KBAa1D96g8TlsVcIZPUmJ7nphjkVKNgks8q/czwlLIJHfGepYrG3AT54tgZubDKkESJtqWQLNTfEzmNjZnGoe2MKY7NqjcX//N6GUY3QS5UmiFXbLkoyiTBhMw/J0OhOUM5tYQyLeythI2ppgxtPhUbgrf68jppX9U9t+49XNeat0UcZTiDc7gEDxrQhHtogQ8MBDzDK7w5ynlx3p2PZWvJKWZO4Q+czx+3xo6c</latexit>

h2
<latexit sha1_base64="W2HhTDZkqxeq2FbbVos3QEhx9Es=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48VTFtoQ9lsJ+3SzSbsboQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MBVcG9f9dkobm1vbO+Xdyt7+weFR9fikrZNMMfRZIhLVDalGwSX6hhuB3VQhjUOBnXByN/c7T6g0T+SjmaYYxHQkecQZNVbyx4O8MRtUa27dXYCsE68gNSjQGlS/+sOEZTFKwwTVuue5qQlyqgxnAmeVfqYxpWxCR9izVNIYdZAvjp2RC6sMSZQoW9KQhfp7Iqex1tM4tJ0xNWO96s3F/7xeZqKbIOcyzQxKtlwUZYKYhMw/J0OukBkxtYQyxe2thI2poszYfCo2BG/15XXSbtQ9t+49XNWat0UcZTiDc7gED66hCffQAh8YcHiGV3hzpPPivDsfy9aSU8ycwh84nz+5S46d</latexit><latexit sha1_base64="W2HhTDZkqxeq2FbbVos3QEhx9Es=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48VTFtoQ9lsJ+3SzSbsboQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MBVcG9f9dkobm1vbO+Xdyt7+weFR9fikrZNMMfRZIhLVDalGwSX6hhuB3VQhjUOBnXByN/c7T6g0T+SjmaYYxHQkecQZNVbyx4O8MRtUa27dXYCsE68gNSjQGlS/+sOEZTFKwwTVuue5qQlyqgxnAmeVfqYxpWxCR9izVNIYdZAvjp2RC6sMSZQoW9KQhfp7Iqex1tM4tJ0xNWO96s3F/7xeZqKbIOcyzQxKtlwUZYKYhMw/J0OukBkxtYQyxe2thI2poszYfCo2BG/15XXSbtQ9t+49XNWat0UcZTiDc7gED66hCffQAh8YcHiGV3hzpPPivDsfy9aSU8ycwh84nz+5S46d</latexit><latexit sha1_base64="W2HhTDZkqxeq2FbbVos3QEhx9Es=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48VTFtoQ9lsJ+3SzSbsboQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MBVcG9f9dkobm1vbO+Xdyt7+weFR9fikrZNMMfRZIhLVDalGwSX6hhuB3VQhjUOBnXByN/c7T6g0T+SjmaYYxHQkecQZNVbyx4O8MRtUa27dXYCsE68gNSjQGlS/+sOEZTFKwwTVuue5qQlyqgxnAmeVfqYxpWxCR9izVNIYdZAvjp2RC6sMSZQoW9KQhfp7Iqex1tM4tJ0xNWO96s3F/7xeZqKbIOcyzQxKtlwUZYKYhMw/J0OukBkxtYQyxe2thI2poszYfCo2BG/15XXSbtQ9t+49XNWat0UcZTiDc7gED66hCffQAh8YcHiGV3hzpPPivDsfy9aSU8ycwh84nz+5S46d</latexit><latexit sha1_base64="W2HhTDZkqxeq2FbbVos3QEhx9Es=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48VTFtoQ9lsJ+3SzSbsboQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MBVcG9f9dkobm1vbO+Xdyt7+weFR9fikrZNMMfRZIhLVDalGwSX6hhuB3VQhjUOBnXByN/c7T6g0T+SjmaYYxHQkecQZNVbyx4O8MRtUa27dXYCsE68gNSjQGlS/+sOEZTFKwwTVuue5qQlyqgxnAmeVfqYxpWxCR9izVNIYdZAvjp2RC6sMSZQoW9KQhfp7Iqex1tM4tJ0xNWO96s3F/7xeZqKbIOcyzQxKtlwUZYKYhMw/J0OukBkxtYQyxe2thI2poszYfCo2BG/15XXSbtQ9t+49XNWat0UcZTiDc7gED66hCffQAh8YcHiGV3hzpPPivDsfy9aSU8ycwh84nz+5S46d</latexit>

hL
<latexit sha1_base64="pjBPvppy9pYqjb4b9/Fqj9Uz7rg=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRiwcPFUxbaEPZbCft0s0m7G6EEvobvHhQxKs/yJv/xm2bg7Y+GHi8N8PMvDAVXBvX/XZKa+sbm1vl7crO7t7+QfXwqKWTTDH0WSIS1QmpRsEl+oYbgZ1UIY1Dge1wfDvz20+oNE/ko5mkGMR0KHnEGTVW8kf9/H7ar9bcujsHWSVeQWpQoNmvfvUGCctilIYJqnXXc1MT5FQZzgROK71MY0rZmA6xa6mkMeognx87JWdWGZAoUbakIXP190ROY60ncWg7Y2pGetmbif953cxE10HOZZoZlGyxKMoEMQmZfU4GXCEzYmIJZYrbWwkbUUWZsflUbAje8surpHVR99y693BZa9wUcZThBE7hHDy4ggbcQRN8YMDhGV7hzZHOi/PufCxaS04xcwx/4Hz+AODNjrc=</latexit><latexit sha1_base64="pjBPvppy9pYqjb4b9/Fqj9Uz7rg=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRiwcPFUxbaEPZbCft0s0m7G6EEvobvHhQxKs/yJv/xm2bg7Y+GHi8N8PMvDAVXBvX/XZKa+sbm1vl7crO7t7+QfXwqKWTTDH0WSIS1QmpRsEl+oYbgZ1UIY1Dge1wfDvz20+oNE/ko5mkGMR0KHnEGTVW8kf9/H7ar9bcujsHWSVeQWpQoNmvfvUGCctilIYJqnXXc1MT5FQZzgROK71MY0rZmA6xa6mkMeognx87JWdWGZAoUbakIXP190ROY60ncWg7Y2pGetmbif953cxE10HOZZoZlGyxKMoEMQmZfU4GXCEzYmIJZYrbWwkbUUWZsflUbAje8surpHVR99y693BZa9wUcZThBE7hHDy4ggbcQRN8YMDhGV7hzZHOi/PufCxaS04xcwx/4Hz+AODNjrc=</latexit><latexit sha1_base64="pjBPvppy9pYqjb4b9/Fqj9Uz7rg=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRiwcPFUxbaEPZbCft0s0m7G6EEvobvHhQxKs/yJv/xm2bg7Y+GHi8N8PMvDAVXBvX/XZKa+sbm1vl7crO7t7+QfXwqKWTTDH0WSIS1QmpRsEl+oYbgZ1UIY1Dge1wfDvz20+oNE/ko5mkGMR0KHnEGTVW8kf9/H7ar9bcujsHWSVeQWpQoNmvfvUGCctilIYJqnXXc1MT5FQZzgROK71MY0rZmA6xa6mkMeognx87JWdWGZAoUbakIXP190ROY60ncWg7Y2pGetmbif953cxE10HOZZoZlGyxKMoEMQmZfU4GXCEzYmIJZYrbWwkbUUWZsflUbAje8surpHVR99y693BZa9wUcZThBE7hHDy4ggbcQRN8YMDhGV7hzZHOi/PufCxaS04xcwx/4Hz+AODNjrc=</latexit><latexit sha1_base64="pjBPvppy9pYqjb4b9/Fqj9Uz7rg=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRiwcPFUxbaEPZbCft0s0m7G6EEvobvHhQxKs/yJv/xm2bg7Y+GHi8N8PMvDAVXBvX/XZKa+sbm1vl7crO7t7+QfXwqKWTTDH0WSIS1QmpRsEl+oYbgZ1UIY1Dge1wfDvz20+oNE/ko5mkGMR0KHnEGTVW8kf9/H7ar9bcujsHWSVeQWpQoNmvfvUGCctilIYJqnXXc1MT5FQZzgROK71MY0rZmA6xa6mkMeognx87JWdWGZAoUbakIXP190ROY60ncWg7Y2pGetmbif953cxE10HOZZoZlGyxKMoEMQmZfU4GXCEzYmIJZYrbWwkbUUWZsflUbAje8surpHVR99y693BZa9wUcZThBE7hHDy4ggbcQRN8YMDhGV7hzZHOi/PufCxaS04xcwx/4Hz+AODNjrc=</latexit>

posts
<latexit sha1_base64="sXcnuJX0FW07jhx2mf70+vExv4c=">AAAB83icbVBNSwMxEM3Wr1q/qh69BIvgqeyKoMeiF48V7Ad0l5JNs21oNgnJrFiW/g0vHhTx6p/x5r8xbfegrQ8GHu/NMDMv1oJb8P1vr7S2vrG5Vd6u7Ozu7R9UD4/aVmWGshZVQpluTCwTXLIWcBCsqw0jaSxYJx7fzvzOIzOWK/kAE82ilAwlTzgl4KQwBPYEuVYW7LRfrfl1fw68SoKC1FCBZr/6FQ4UzVImgQpibS/wNUQ5McCpYNNKmFmmCR2TIes5KknKbJTPb57iM6cMcKKMKwl4rv6eyElq7SSNXWdKYGSXvZn4n9fLILmOci51BkzSxaIkExgUngWAB9wwCmLiCKGGu1sxHRFDKLiYKi6EYPnlVdK+qAd+Pbi/rDVuijjK6ASdonMUoCvUQHeoiVqIIo2e0St68zLvxXv3PhatJa+YOUZ/4H3+APPZkkQ=</latexit><latexit sha1_base64="sXcnuJX0FW07jhx2mf70+vExv4c=">AAAB83icbVBNSwMxEM3Wr1q/qh69BIvgqeyKoMeiF48V7Ad0l5JNs21oNgnJrFiW/g0vHhTx6p/x5r8xbfegrQ8GHu/NMDMv1oJb8P1vr7S2vrG5Vd6u7Ozu7R9UD4/aVmWGshZVQpluTCwTXLIWcBCsqw0jaSxYJx7fzvzOIzOWK/kAE82ilAwlTzgl4KQwBPYEuVYW7LRfrfl1fw68SoKC1FCBZr/6FQ4UzVImgQpibS/wNUQ5McCpYNNKmFmmCR2TIes5KknKbJTPb57iM6cMcKKMKwl4rv6eyElq7SSNXWdKYGSXvZn4n9fLILmOci51BkzSxaIkExgUngWAB9wwCmLiCKGGu1sxHRFDKLiYKi6EYPnlVdK+qAd+Pbi/rDVuijjK6ASdonMUoCvUQHeoiVqIIo2e0St68zLvxXv3PhatJa+YOUZ/4H3+APPZkkQ=</latexit><latexit sha1_base64="sXcnuJX0FW07jhx2mf70+vExv4c=">AAAB83icbVBNSwMxEM3Wr1q/qh69BIvgqeyKoMeiF48V7Ad0l5JNs21oNgnJrFiW/g0vHhTx6p/x5r8xbfegrQ8GHu/NMDMv1oJb8P1vr7S2vrG5Vd6u7Ozu7R9UD4/aVmWGshZVQpluTCwTXLIWcBCsqw0jaSxYJx7fzvzOIzOWK/kAE82ilAwlTzgl4KQwBPYEuVYW7LRfrfl1fw68SoKC1FCBZr/6FQ4UzVImgQpibS/wNUQ5McCpYNNKmFmmCR2TIes5KknKbJTPb57iM6cMcKKMKwl4rv6eyElq7SSNXWdKYGSXvZn4n9fLILmOci51BkzSxaIkExgUngWAB9wwCmLiCKGGu1sxHRFDKLiYKi6EYPnlVdK+qAd+Pbi/rDVuijjK6ASdonMUoCvUQHeoiVqIIo2e0St68zLvxXv3PhatJa+YOUZ/4H3+APPZkkQ=</latexit><latexit sha1_base64="sXcnuJX0FW07jhx2mf70+vExv4c=">AAAB83icbVBNSwMxEM3Wr1q/qh69BIvgqeyKoMeiF48V7Ad0l5JNs21oNgnJrFiW/g0vHhTx6p/x5r8xbfegrQ8GHu/NMDMv1oJb8P1vr7S2vrG5Vd6u7Ozu7R9UD4/aVmWGshZVQpluTCwTXLIWcBCsqw0jaSxYJx7fzvzOIzOWK/kAE82ilAwlTzgl4KQwBPYEuVYW7LRfrfl1fw68SoKC1FCBZr/6FQ4UzVImgQpibS/wNUQ5McCpYNNKmFmmCR2TIes5KknKbJTPb57iM6cMcKKMKwl4rv6eyElq7SSNXWdKYGSXvZn4n9fLILmOci51BkzSxaIkExgUngWAB9wwCmLiCKGGu1sxHRFDKLiYKi6EYPnlVdK+qAd+Pbi/rDVuijjK6ASdonMUoCvUQHeoiVqIIo2e0St68zLvxXv3PhatJa+YOUZ/4H3+APPZkkQ=</latexit>

u
<latexit sha1_base64="HdrHs+9WrEY+c6wp70bq3BGtMmw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipmQ7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8A4a2M+Q==</latexit><latexit sha1_base64="HdrHs+9WrEY+c6wp70bq3BGtMmw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipmQ7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8A4a2M+Q==</latexit><latexit sha1_base64="HdrHs+9WrEY+c6wp70bq3BGtMmw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipmQ7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8A4a2M+Q==</latexit><latexit sha1_base64="HdrHs+9WrEY+c6wp70bq3BGtMmw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipmQ7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8A4a2M+Q==</latexit>

y
<latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit><latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit><latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit><latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit>

�1
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Figure 10.1: The overview of the proposed framework, HUG.

10.2 Hybrid-attentive User Geolocation

In this section, we first formally define the task of social media user geolocation and then

introduce our proposed approach, Hybrid-attentive User Geolocation (HUG).

Problem Statement. Suppose we have a set of social media users U and their social

network G. For each user k ∈ U , W k = {wk
ij} denotes the social media posts published by

the user, where wk
ij represents the j-th word of the i-th post in W k. The social network

G = (U,A) treats each user k ∈ U as a node and models their relations with an edge set

A ⊆ U × U that indicates the relations between users. Given the social media posts W k of

a user k and the social network G, the goal of this work is to predict the geolocation of the

user Lk ∈ L, where L is a set of candidate locations.
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Framework Overview. Here we propose HUG for social media user geolocation as shown

in Figure 10.1. For each user, the language attention network encodes the social media posts

of each user into a user language vector v when the graph attention network derives an infor-

mative node vector u based on the graphical structure of the given social network. Finally,

the hybrid attention mechanism learns the importance scores of two resources, thereby pre-

dicting the geolocation. Moreover, the location-based model regularization further improves

the model performance by leveraging knowledge across different locations.

10.2.1 Multi-head Graph Attention Network

To learn the structural knowledge from social networks, we employ the graph attention

network [322] to derive node representations as user graph vectors.

Node Features. For each user k, the input node features xink are the node attributes such

as user profiles or bag-of-words features. We use a fully-connected layer to learn the hidden

node features as x0
k = F(W 0xink ), where W 0 is the weight matrix and F(·) is a nonlinear

activation function.

Multi-head Graph Attention Layer. The graph attention network consists of several

stacked graph attention layers passing node features xik on different levels. For the i-th layer,

the importance score sijk of each edge ajk ∈ A between the users j and k can be estimated

by the self-attention mechanism [376, 378] as sijk = 〈Qixi−1
j ,Qixi−1

k 〉, where Qi is the weight

matrix applied to every node. The node features in the i-th layer xik can then be obtained

as:

xik = σ

 ∑
j∈N (k)

αi
jkW ixi−1

j

 , αi
jk =

exp(sijk)∑
j′∈N (k) exp(sij′k)

where N (k) indicates the neighbors of the user k in the social network; W i is a weight

matrix for feature projection; σ(·) is a nonlinear activation function. Specifically, we utilize

the multi-head attention mechanism to have a greater capability of modeling structural

knowledge by concatenating the features generated by different weight matrices Qi
z andW i

z,

where 1 ≤ z ≤ H; H is the number of heads. Finally, in the last layer, we average the
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multi-head features and delay the employment of the nonlinear activation to derive the user

graph vector uk as:

uk = σ

 1

H

H∑
z=1

∑
j∈N (k)

αN
jk,zW i

zx
N−1
j

 ,

where N is the number of graph attention layers.

10.2.2 Language Attention Network

We use a hierarchical language attention network [356] to encode the textual features for

each user. The language attention model is composed of several parts, including a word

embedding layer, a post encoder, and a user encoder.

Word Embedding Layer. We convert each word wij into a one-hot encoding representa-

tion w̃ij and embed the words to vectors e with an embedding matrix E, where eij = E · w̃ij.

Post Encoder. For each post of a user, we feed the word embeddings to a bidirectional

Recurrent Neural Network (BiRNN) to learn a hidden state of each word with sequential

information as:

←−
h ij = GRU(

←−
h i,j+1, eij),

−→
h ij = GRU(

−→
h i,j−1, eij), hij = [

←−
h ij,
−→
h ij],

where GRU(·) is the recurrent neural unit of the BiRNN. Here we choose GRU instead

of LSTM because of its computational efficiency. To derive the post representation, we

introduce an attention layer to obtain a weighted sum of the hidden states from the BiRNN

layer. To be specific, we initialize a context vector uw and calculate the attention scores βij

for the words in the post as:

uij = tanh(Ww · hij + bw), βij =
exp(uTij · uw)∑
j exp(u

T
ij · uw)

, si =
∑
j

βij · hij,

where Ww and bw are the weight matrix and the bias to map each word into a hidden space

for estimating importance.
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User Encoder. Similarly, we employ a BiRNN model using GRU units to derive the hidden

representations hi for the posts of each user according to their published times as:

←−
h i = GRU(

←−
h i+1, si),

−→
h i = GRU(

−→
h i−1, si), hi = [

←−
h i,
−→
h i].

The other context vector us is then learned to estimate the importance score βi for each post

and aggregate the post representations hi to form a user language vector v as follows:

ui = tanh(Wu · hi + bu), βi =
exp(uTi · us)∑
j exp(u

T
i · us)

, v =
∑
i

βi · hi,

where Wu and bu are the weight matrix and the bias.

10.2.3 Hybrid Attention

To dynamically adjust the importance of two resources for a certain user, we propose the

hybrid attention to jointly model texts and social networks. Precisely, a context vector ch is

applied to estimate the importance scores of graph and language user vectors as:

αv =
exp(ov · ch)

exp(ov · ch) + exp(ou · ch)
, αu =

exp(ou · ch)

exp(ov · ch) + exp(ou · ch)
,

where ov = tanh(Wh · v + bh); ou = tanh(Wh · u+ bh); Wh and bh are the weight matrix and

the bias for a nonlinear projection. Therefore, the ultimate feature vector produced by the

hybrid attention can be obtained as y = αv · v + αu · u.

10.2.4 Location-regularized User Geolocation

User Geolocation. Based on the feature vector y, we use a fully-connected hidden layer

without a bias to estimate the probability of being the geolocation of the user k for each

location i as:

P (Lk = i) = Softmax(Wgy),
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where Wg is the weight matrix for the hidden layer.

Location-based Regularization. To leverage the knowledge across different locations,

we regularize the model weights Wg for inferring location probabilities by the corresponding

distances. Specifically, we have the location-based regularization loss LossR as:

LossR =
∑
j∈L

∑
k∈L−j

|Wg(j)−Wg(k)|2
D(j, k)

,

where D(j, k) denotes the distance between the locations j and k.

Learning and Optimization. Finally, the loss function of HUG for optimization can be

derived by the cross-entropy loss for classification and the location-based regularization loss

as:

Loss =
∑
i

1[Lk = i] · P (Lk = i) + γ · LossR,

where γ is the weight of regularization loss.

10.3 Experiments

10.3.1 Experimental Setup

Datasets. We employ three public Twitter user geolocation datasets: (1) GeoText [105],

(2) Twitter-US [280] and (3) Twitter-World [141]. The datasets are pre-partitioned

into training, development and test sets. In each dataset, user tweets are concatenated into

single documents. The social graphs are extracted with the mention relations between users,

where two users are connected if one mentions the other, or they co-mention a third user.

The node attributes in the social graphs are the bag-of-words and TFIDF features. The

labels are the discretized geographical coordinates of the training users using a k-d tree

[280]. Dataset statistics are summarized in Table 10.1.

Baselines. We compare the proposed HUG against 6 baselines that are trained based on

the text and network features to determine user geolocations, including: (1) MLP + k-d tree
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Table 10.1: Dataset statistics.

GeoText Twitter-US Twitter-World

Users 9,475 449,200 1,386,766
Classes 129 256 930
Train 5,685 429,200 1,366,766
Dev 1,895 10,000 10,000
Test 1,895 10,000 10,000

[271], a text-based multilayer perceptron model; (2) GCN-LP [272], a network-based model

using one-hot neighbor encoding as the node attributes; (3) MENET [97], a multiview neural

network model that utilize multi-entry data to infer users’ locations; (4) MLP-TXT+NET

[272], a multilayer perceptron model with the concatenation of text features and adjacent

lists as input; (5) GCN [272], a graph convolution network model [200] with the bag-of-

words as node attributes; (6) HLPNN [159], a feature fusion model with city and country

objectives.

Evaluation. We evaluate the models with three commonly used metrics: (1) Acc@161,

the accuracy of predicting a user within 161km or 100 miles from the labeled location; (2)

Mean, the mean error between the predicted and labeled location; (3) Median, the median

error between the predicted and labeled location.

Implementation Details. We implement the proposed HUG in PyTorch framework for

efficient GPU computation. The language attention network has bidirectional GRUs with

hidden dimensions in {50, 100, 200} and the word embeddings are initialized with the Glove

vectors [263] pre-trained on the Twitter corpus. The entity-level aggregation network has

two layers with the hidden dimension De ∈ {64, 128, 256}. The number of heads in multi-

head graph attention is searched in {1, 2, 4, 8, 16}. We apply Adam optimizer for training

and the initial learning rate is set as 5.0× 10−4. The activation functions are ELU [72].
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Table 10.2: Twitter user geolocation prediction performance.

GeoText Twitter-US Twitter-World
Acc@161 ↑ Mean ↓ Median ↓ Acc@161 ↑ Mean ↓ Median ↓ Acc@161 ↑ Mean ↓ Median ↓

MLP + k-d tree 38% 844 389 54% 554 120 34% 1456 415
GCN-LP 58% 576 56 53% 653 126 45% 2357 279
MENET 62% 532 32 66% 433 45 53% 1044 118

MLP-TXT+NET 58% 554 58 66% 420 56 58% 1030 53
GCN 60% 546 45 62% 485 71 54% 1130 108

HLPNN - - - 71% 362 32 59% 828 60
HUG 64% 516 30 72% 359 31 62% 818 49

Table 10.3: Ablation study on Twitter-US.

Acc@161 ↑ Mean ↓ Median ↓
HUG 72% 359 31

w/o graph attention 51% 531 57
w/o language attention 58% 612 63

w/o location regularization 59% 562 51

10.3.2 Experimental Results

Table 10.2 summarizes the model performance of Twitter user geolocation prediction on

all datasets. Overall, HUG is able to outperform other baselines across the three datasets

on all metrics. We make the following observations. (1) Compared with MLP + k-d tree

[271] and GCN-LP [272] that only utilizes a single source of data, e.g. text or network

features, HUG outperforms by simultaneously learning the important language features and

network structure features. (2) As the feature fusion models, MENET [97], MLP-TXT+NET

[272] and HLPNN [159] incorporate the fixed network embeddings as features. In contrast,

our proposed HUG can adaptively fine-tune both attention models to favor the geolocation

prediction by the hybrid attention mechanism. (3) Compared with GCN [272], our attention-

based approach can better understand the hierarchical language features and assign different

importance to nodes of the same neighborhood. (4) We conduct the ablation study by

removing the graph attention, language attention and location-based regularization one by

one at a time. As the results on the Twitter-US dataset shown in Table 10.3, each

module contributes to the performance improvement and the proposed HUG benefits from

the combination and the hybrid attention mechanism.

We further investigate the interpretability of the proposed HUG. Figure 10.2 shows the
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I just found out I’m doin 2 shows tonite in Louisville becuz the 1st show sold out thats
lol sorry I just saw your screen name and seen the area code! My bad for bothering u.
lol so why gon’ be in louisville tonight that’s gon’ be funny man!
yeah well r spr break actually start the 13 but we dnt leave til the 17th so I’ll
omg they got me weak everything they keep sayin and doin is sooo hilarious

(a) User A
I can’t wait to move bck to LA
thanks i did that one a few hours ago i havent had no sleep but there stil more
Why is everyone moving to culver city ugh I wanna move to west hollywood nxt omg 2morrow is
Live today like its the last don’t worry about thee future n don’t dwell in the past just
USC gon cost me $42,000 smhshyt there prices went down it use to be 55,000

(b) User B

(c) User C (d) User D

Figure 10.2: Attention weight analysis. (a)-(b) Documents of users A and B. (c)-(d) Geolo-
cations and attention weights of users C and D with their one-hop neighbors.

text and graph examples from the GeoText dataset. In (a) and (b), we show the so-

cial media posts of two users (A, B), whose hybrid attention weights for texts are αv =

0.643 and 0.794, respectively. The blue blocks denote the tweet-level attention weights. The

orange denotes the word attention weights and our model can select the words with a strong

indication of geolocations like Louisville, LA, USC and West Hollywood. Figure 10.2 (c) and

(d) demonstrate two users (C, D) with the geolocations and attention weights of their one-

hop neighbors. The hybrid attention weights for graph vector are αu = 0.844 and 0.942 for

user C and D, respectively. We plot the geolocations of user C and D in red dots. The green

dots are the geolocations of the one-hop neighbors and the dot sizes denote the attention

weights. Our proposed HUG also works in terms of the graph attention and location-based

regularization, by assigning the higher weights to closer neighbors and lower weights to

farther neighbors.
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10.4 Conclusion

In this chapter, we propose a novel end-to-end framework, Hybrid-attentive User Geoloca-

tion (HUG), to jointly model the post texts and user interactions in social media and predict

user geolocations. We introduce the hybrid attention mechanism to automatically determine

the importance of texts and social networks while social media posts and interactions are

modeled by a graph attention network and a language attention network. The experimental

study on three benchmark geolocation datasets from Twitter shows that HUG consistently

renders superior prediction performance against baseline approaches. We also demonstrate

the interpretability of HUG with in-depth analysis of attention weights.
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CHAPTER 11

Reformulation Inference Network for Context-Aware

Query Suggestion

In this chapter, we demonstrate an example of modeling individual human behaviors in web

search for query suggestion based on compositional and explainable behavior modeling as

introduced in Chapter 1. We treat network representation learning as a blackbox to derive

representations of query terms. Based on those query term representations, we propose

the novel idea of homomorphic query embedding so that we can conduct compositional

operations to compute representations of query reformulation that jointly reflect semantic

and syntactic changes.

11.1 Introduction

Although search engines have already become indispensable in our daily life, the difficulty

of deciding the ideal queries is everlasting. The search intents are often sophisticated while

queries are usually not only short but also ambiguous [49]. As a consequence, in order to

refine the search results, users have to articulate their information needs by reformulating the

queries. The burden is on users. To make searching easier, most modern search engines turn

to query suggestion that provides recommendations for next queries. Because users may be

unfamiliar with the topics or the vocabulary for formulating queries, the concise suggestions

can further accelerate search satisfaction. Moreover, query suggestion also benefits various

applications such as query auto-completion.

To capture the search intents, it is intuitive to exploit the context information, including
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previous queries and click-through information in the same search session. The idea of

utilizing the context has been widely studied in both query suggestion [37, 50, 148, 160, 234,

297] and query auto-completion [29, 58, 294]. Many conventional context-aware methods

solely rely on query association or similarity between queries. For example, reused terms [29,

160, 294] and query co-occurrence [37, 148, 182, 234, 297] are advantageous to discover

promising queries. However, query association and similarity based methods suffer from data

sparsity. Even though some works [49, 50] attempt to alleviate the hardship by clustering

queries based on click-through data, query clusters can still be too sparse to raise the roof of

the limitations. In addition, queries in search sessions are issued successively, but the order

of queries is generally ignored by query co-occurrence and similarity. The search sessions are

not only diverse but also highly complicated, so methods considering only query association

or similarity may fail in learning how users reformulate queries.

Fully understanding query reformulations is the grail of context-aware query suggestion

because the context of search sessions are affected by reformulating queries to refine search

results. To analyze reformulation behaviors, pioneer researchers categorized query reformu-

lations into predefined strategies [86, 161]. More specifically, these reformulation strategies

can be typecast into syntactic and semantic reformulations. Syntactic reformulations consist

of predefined syntactic changes between queries such as adding terms, deleting terms, and

acronym expansion [38, 161]. The clear definitions of syntactic reformulation strategies come

in handy to design features for machine learning models of query suggestions [174]. On the

contrary, semantic reformulations incorporate strategies changing the meanings of queries

such as generalization and specialization [6]. In practice, the semantic interoperability of

queries is usually achieved by resorting to established ontologies, thereby exteriorizing se-

mantic reformulations for query suggestion [6, 171, 172]. However, most of the reformulation-

based methods are restricted and count on predefined reformulation strategies or assistance

of ontologies, suffering from out-of-scope strategies and ambiguous queries.

The growth of deep learning, especially recurrent neural networks (RNNs) on sequences,

provides the opportunity to generalize the use of reformulations in query suggestion. Fol-
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lowed by the success in machine translation [22, 308], sequence-to-sequence (seq2seq) models

based on RNNs are adopted for query suggestion [88, 298]. The seq2seq models read the

previously issued queries as a sequence, and then freely generate a sequence of terms as

the suggested query. The terms of each query can be also treated as a sequence to derive

information through another RNN [298]. Furthermore, since diverse search sessions increase

the difficulty of learning reformulations, Dehghani et al. [88] decompose the generation of a

query into reformulation strategies of appending and copying terms. However, there are a few

shortcomings of existing deep learning based methods in query suggestion. First, although

reformulations have been guided during generation [88], reformulations in the context still

remain an open problem. The lack of understanding of previous reformulations can result

in unsatisfactory query suggestions as shown in previous studies [6, 174]. Second, prede-

fined strategies are too restricted to learn sophisticated reformulations that can be hard to

decompose or even out of the scope. A better representation of reformulation is needed.

Last but not least, although to some degree RNNs consider the transition between queries

in the search session, models can still have a hard time learning reformulations because re-

lationships between queries are sparse and implicit. As a consequence, existing RNN-based

models [88, 298, 345] rely on additional features for discriminative query suggestion and

hence often fail in predicting the intended query.

Here we propose Reformulation Inference Network (RIN) to address the limitations. More

precisely, we focus on modeling reformulation behaviors for query suggestion with the re-

formulation representations capturing both syntactic and semantic relations. The system

of homomorphic query embedding based on term embeddings is first introduced to preserve

the syntactic property of reformulations. In addition, a heterogeneous network embedding

model integrates click-through data in search logs into the foundational term embeddings

to capture semantic reformulations. Simultaneously reading both the query and the recent

reformulation for each step, RIN encodes the search session into a context vector by an

RNN with the attention mechanism [22]. The reformulation inferencer then improves the

capability of the context vector by predicting the next reformulation. Based on the context

188



vector, multi-task learning is employed to train a query discriminator and a query generator

with the reformulation inferencer. We then can utilize the model to suggest queries. Here

we summarize our contributions in the following.

• To the best of our knowledge, this is the first work to model user behaviors based on queries

and reformulations with homomorphic encoding that simultaneously preserves syntactic

and semantic properties. The general and flexible representations can benefit the learning

of how users reformulate queries along search sessions for query suggestion.

• We propose the framework RIN that deals with the data sparsity by inferring not only the

intended query but also the next reformulation for query suggestion. More specifically,

the reformulation representations enable the opportunity to leverage the knowledge across

syntactically and semantically similar reformulations. When the model becomes more

proficient in forecasting the next reformulations, the ability to discriminate and generate

suggested queries can be also sharpened as well with multi-task learning.

• Experiments conducted on the publicly available AOL search engine logs demonstrate

that RIN significantly outperforms existing methods for either discriminative or generative

query suggestion. A study of parameter sensitivity then indicates the robustness of the

proposed framework.

11.2 Problem Statement

In this section, we first formally define the objectives. A search session can be formally

represented as a sequence of queries 〈q1, q2, · · · , qL〉 submitted successively by a single user

within a time interval. Each query q is composed of a set of terms T (q) and associated with

the corresponding click-through information u, which is a set of clicked URLs. Suppose the

user intends to submit a query qL+1 after the search context 〈q1, q2, · · · , qL〉. The two goals

are listed as follows:

1. Discriminative Query Suggestion: Given a set of candidate queries Qcan, we would

like to give a ranking of candidates qcan ∈ Qcan so that qL+1 ranks as high as possible.
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Figure 11.1: The schema of the proposed Reformulation Inference Network (RIN).

Some previous work [298] also call this task next-query prediction.

2. Generative Query Suggestion: Different from the discriminative task, the generative

task does not rely on candidate sets. With only the search context, generative query

suggestion aims to generate a query q′L+1, which is expected to be as similar as possible

to the intended query qL+1 based on some similarity measures, such as cosine similarity

and position independent word error rate [88].

For simplicity, the context is referred to as the search context 〈q1, q2, · · · , qL〉; the context

length is the number of queires in the search context.

11.3 Reformulation Inference Network

In this section, we present the proposed framework, Reformulation Inference Network (RIN),

for modeling queries in search sessions.

11.3.1 Framework Overview

Figure 11.1 demonstrates the general schema of RIN. The model mainly consists of four

components, including query session encoder, reformulation inferencer, query discriminator,

and query generator. Based on reformulation representations derived from homomorphic

query embeddings, the query session encoder wraps the search session into a vector using
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a recurrent neural network and session-level attention. The reformulation inferencer plays

the main role in RIN to infer the next query reformulation with the encoded vector from

the query session encoder. Finally, to solve either the discriminative or generative task,

the query discriminator and generator can be learned with the reformulation inferencer by

multi-task learning.

11.3.2 Distributed Reformulation Representation

We first formally define how to represent reformulations in our model. For syntactic refor-

mulations, some works designed several discrete features to measure reformulations [174];

other works simplified reformulations as a few basic syntactic operations, such as copying

a term from the context and appending a new term [88]. For semantic reformulations, the

topics of queries can be utilized to observe the changes of concepts behind queries [172]. In

this work, we propose to model reformulations from both perspectives.

Inspired by homomorphic encryption that allows computations on ciphertexts [246], we

want to design an embedding system that can reflect reformulations with subtraction com-

putations. Theoretically, every reformulation can be syntactically factorized into adding and

removing terms. Based on this concept, we come up with the homomorphic query embedding

to represent each query as follows:

Definition 11.1 (Homomorphic Query Embedding). Suppose that every term t has a rep-

resentative embedding vt. The homomorphic embedding of a query q is defined as:

vq =
∑

t∈T (q)

vt,

where T (q) consists of all terms in the query.

Based on the homomorphic query embeddings of queries, the reformulation ri from qi to qi+1

can be represented as the difference between embeddings as follows:

vqi+1
− vqi ,
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Figure 11.2: An example of the heterogeneous network constructed by a search session of
four queries for deriving term embeddings. Note that the queries in the graph are auxiliary
nodes connecting the domains of terms and websites.

which can be also considered as a vector from qi to qi+1 in the hidden space of homomor-

phic query embeddings. There are at least three benefits to apply homomorphic query

embeddings to perform reformulations. First, the syntactic relations are homomorphically

preserved as adding and subtracting term embeddings. Second, the latent space of embed-

dings also implicitly captures the semantic information of queries. Last but not least, the

linear substructures of embeddings [241, 263] are helpful to understand the semantic relation-

ships between reformulations and offer high interpretability. For example, the reformulation

from “Japan travel” to “Tokyo travel” can be shown as vTokyo − vJapan, which is close to

vRome−vItaly from “Italy hotel” to “Rome hotel” under the country-capital reformulation

substructure.

In this work, we propose to exploit heterogeneous network embedding to learn the features

of queries and terms. To learn the semantics of queries, term dependencies [209, 241, 263] and

click-through data [172, 175, 218, 234] have been demonstrated to be useful. Here we propose

to unify terms, queries, click-through data, and their relationships using a heterogeneous

network. Figure 11.2 shows an example of the network constructed by a search session of

four queries. Each of terms, queries, and websites has a representative node in the network.

192



Consecutive terms in each query and consecutive queries in each search session are connected.

Each query also links to the first term and has bidirectional edges to the relevant websites

clicked in the training logs. Finally, any of network embedding methods can be applied.

Here node2vec [135], which is one of the state-of-the-art methods, is utilized to learn term

embeddings as the base of homomorphic query embedding.

11.3.3 Query Session Encoder

The encoder of query sessions in RIN is a bidirectional recurrent neural network (Bi-RNN)

with attention. The input of the encoder is a sequence X = [x1, x2, · · ·xL], where xi =

[vqi ; ri−1] concatenates the homomorphic query embedding vqi and the reformulation ri−1

from the last query qi−1 for each query qi in the search session. Note that r0 is set as a zero

vector because the first query has no reformulation. The Bi-RNN reads the input sequence

twice as the forward pass and the backward pass. During the forward pass, the Bi-RNN

creates a sequence of forward hidden states
−→
h = [

−→
h1,
−→
h2, · · · ,

−→
hL], where

−→
hi = RNN(

−−→
hi−1, xi)

is generated by a dynamic function such as LSTM [152] and GRU [69]. Here we use GRU

instead of LSTM because it requires fewer parameters [183]. The backward pass processes

the input sequence in reverse order. The backward hidden states are then generated as
←−
h = [

←−
h1,
←−
h2, · · · ,

←−
hL], where

←−
hi = RNN(

←−−
hi+1, xi). Finally, the forward and backward

hidden states are concatenated as the encoder hidden representations h = [h1,h2, · · · ,hL],

where hi = [
−→
hi;
←−
hi].

Since each query in the search session can have unequal importance for inferring the next

query, the attention mechanism [22] is introduced to extract and aggregate representations

that are more important than others. More specifically, the representation hi will first be

transformed by a fully-connected hidden layer to ui to measure the importance αi as follows:

ui = tanh(Fs(hi)),

αi =
exp(uT

i us)∑
i′ exp(uT

i′us)
,
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where Fs is the fully-connected hidden layer; tanh is chosen as the activation function for

the convenience of similarity computation; us is a vector to measure the importance by

computing uT
i us. Finally, the normalized importance αi is obtained through a softmax

function. The context vector c can be represented as the weighted sum of the encoder

hidden representations h as follows:

c =
∑
i

αihi.

11.3.4 Reformulation Inferencer

To enhance the capability of inferring the intended query, we assume that a model that

accurately predicts the next reformulation can also correctly forecast the next query. More

precisely, the intended query qL+1 is equivalent to the reformulation rL with the last query

qL. Additionally, inferring reformulations is more trainable than directly predicting next

queries because similar reformulations may be shared across different queries.

The aim of the reformulation inferencer is to predict the next reformulation rL =

vqL+1
− vqL established by homomorphic query embeddings. Taking the context vector c,

the reformulation inferencer first applies a fully-connected hidden layer for the non-linearity

of prediction as follows:

ur = ReLU(Fhr(c)),

where ReLU(·) is the rectified linear unit [247] as the activation function; Fhr(·) is the fully-

connected layer. The predicted reformulation r̂L can then be modeled as a linear combination

of the result as follows:

r̂L = Wrur + br,

where Wr and br are the weights and the biases for the combination. If the predicted refor-

mulation r̂L is close to the actual reformulation rL, the model should also have considerable

potential to infer the next query qL+1.
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11.3.5 Query Discrimination and Generation

The reformulation inferencer predicts the next reformulation, but the tasks mentioned in

Section 11.2 cannot directly be solved by reformulations represented as homomorphic em-

beddings. Hence, query discriminator and query generator are proposed to directly solve

discriminative and generative tasks, respectively.

Query Discriminator. Given a candidate query qcan and the context vector c from the

query session encoder, the goal of the query discriminator is to assess how likely qcan is the

intended query. More precisely, we want to predict a probabilistic score ŷ to approximate

the probability of being the intended query

y = P (qcan = qL+1 | 〈q1, q2, · · · , qL〉)

for each candidate query qcan.

The input of the query discriminator concatenates the homomorphic query embedding

of qcan and the context vector c as xd = [vqcan ; c]. The probabilistic score ŷ can then be

generated by a sigmoid unit with a fully-connected hidden layer as follows:

ud = ReLU(Fhd
(xd)),

ŷ = σ(Fd(ud)),

where Fhd
(·) and Fd(·) are two fully-connected hidden layers; ReLU(·) is the activation

function for the hidden layer; σ(·) is the logistic sigmoid function [142]. Query Generator.

Without any candidate query, the query generator aims to produce a sequence of terms as the

generated query q′L+1 that estimates the intended query qL+1. Inspired by seq2seq [22, 308]

in machine translation, the query generator is designed as a decoder to generate a sequence

of terms based on the output of the query session encoder.

The query generator as a decoder also relies on RNN. To generate the t-th term wt, the
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hidden state of RNN can be computed based on the last predicted query wt−1 as follows:

st = RNN(st−1, [wt−1; ct]),

where ct is the context vector of the t-th term; similar to the query session encoder, the

dynamic function RNN(·) is GRU in the experiments. Instead of always using the general

context vector c, ct estimates a more appropriate context vector because each query in the

context may play different role in generating wt. More precisely, the last hidden state of the

decoder st−1 is taken into account to compute the importance and construct the dynamic

context vector ct as follows:

ut,i = tanh(Fg([st−1;hi])),

αt,i =
exp(uT

t,iug)∑
i′ exp(uT

t,i′ug)
,

ct =
∑
i

αt,ihi,

where Fg(·) is a fully-connected hidden layer. Based on ct, we further define the conditional

probability for generating wt as follows:

P (wt | w1, · · · , wt−1, c) = f(st),

where f(·) is a projection layer that estimates the conditional distribution over the vocabu-

lary.

11.3.6 Learning and Optimization

The multi-task learning is applied to simultaneously train different components in RIN.

Each of the reformulation inferencer, the query discriminator, and the query generator has

a corresponding loss function jointly optimized with other components.

For the reformulation inferencer, the loss function lossR optimizes the distance between
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the actual reformulation rL and the predicted reformulation r̂L as follows:

lossR =
1

2
||rL − r̂L||2F ,

where || · ||F is the Frobenius norm [320].

For the discriminative tasks, the query discriminator solves a binary classification prob-

lem. Hence the loss function lossD focuses on reducing the binary cross-entropy [151] between

the predicted probabilistic score ŷ and the gold standard y as follows:

lossD = − (y log(ŷ) + (1− y) log(1− ŷ)) ,

where y is a binary indicator demonstrating if the candidate query qcan is the intended query

qL+1.

To solve the generative tasks, the query generator produces a probability distribution

over the vocabulary, so the loss function lossG can be modeled by the cross-entropy between

the generated sequences of words and the actual intended query as follows:

lossG = −
∑
wt

logP (wt | St),

where wt is the t-th term in the intended query, and St is the preceding terms of wt.

Finally, the objective of multi-task learning combines the loss functions of different com-

ponents as follows:

loss = lossR + losstask,

where losstask can be either lossD or lossG based on the task to be solved. Moreover, the loss

can also consider both of the loss functions, such as lossD + lossG, to simultaneously solve

both problems.
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11.4 Experiments

In this section, we conduct extensive experiments and in-depth analysis to verify the perfor-

mance and robustness of RIN for both discriminative and generative query suggestions.

11.4.1 Datasets and Experimental Settings

Datasets. We adopt the largest publicly available AOL search logs for experiments as

previous studies [29, 172, 174, 294, 298, 345, 360, 361]. The 3-month dataset consists of

queries submitted to the AOL search engine from 1 March, 2006 to 31 May, 2006. We first

remove all non-alphanumeric characters and rare queries with less than ten occurrences in

the whole log. The query logs are then segmented into sessions with a 30-minute threshold as

the session boundary. Single-query sessions with only a single query are discarded because

there must be at least one preceding query as the context for context-aware approaches.

Every query with at least a preceding query as the context information is treated as the

ground truth of the intended queries. The pre-processing process is consistent with previous

studies [172, 174, 294]. To partition search sessions into training and testing sets, the first

2-month data are utilized for training while the remaining sessions are the testing data.

Among the training data, 10% of sessions are randomly sampled as the validation set for

parameter tuning. Finally, there are 1,357,500 training queries within 852,350 sessions and

647,559 testing queries within 403,772 sessions. Furthermore, to evaluate the performance

using different context lengths, the testing set is partitioned into three subsets, including

Short Context (1 query), Medium Context (2 to 3 queries), and Long Context (4 or more

queries). As a result, Table 11.1 shows the statistics of queries with different context lengths

in the training and testing datasets.

Evaluation. Similar to previous studies [88, 298, 345], the evaluation of discriminative

query suggestion relies on candidate queries. The top-20 queries based on the frequency of

the co-occurrences with the last query in the context are selected as candidate queries as

Most Popular Suggestion (MPS) [88, 298] for re-ranking. The re-ranked results can then
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Table 11.1: The statistics of queries with different context lengths in the training and testing
datasets.

Context Length

Dataset Short Medium Long

(1 query) (2-3 queries) (4+ queries)

Training 852,350 386,970 118,180

Testing 403,772 184,843 58,944

be evaluated by mean reciprocal rank (MRR). For generative query suggestion, we follow

the previous study [88] to employ the position independent word error rate (PER) [318] to

estimate the word overlap based similarity between the generated queries and the actual

intended queries.

Implementation Details. The model is implemented by TensorFlow [1]. The Adam opti-

mizer [196] is adopted to optimize the parameters and perform back-propagation algorithm

based on gradients. The initial learning rate and the dropout parameter are set as 10−3 and

0.5. After the parameter tuning with the validation set, the number of hidden neurons for

GRUs is set as 128, and the number of dimensions for homomorphic embeddings is 256.

Baseline Methods. To evaluate the performance of RIN, we compare with the following

baseline methods in different categories.

• Most Popular Suggestion (MPS) [88, 298] is a maximum likelihood method, which relies

on “wisdom of the crowd” and ranks queries by the co-occurrence to the last query in the

context. Note that the candidate queries in the experiments are generated by MPS.

• Query-based Variable Markov Model (QVMM) [148] learns the probability of query tran-

sitions over sessions with the variable memory Markov model implemented by a suffix

tree.

• Hybrid Suggestion (Hybrid) [29] considers both the context information and the popularity

by ranking candidate queries based on a linear combination between the popularity (i.e.,

MPS in our experiments) and the similarity to recent queries.

• In addition to the popularity of queries, Personalized Completion (PC) [294] also incorpo-

rates the personal query logs as long-term history to provide a personalized ranking model
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based on LambdaMART [46], which is one of the state-of-the-art ranking models.

• Reformulation-based Completion (RC) [174] is the only non-deep learning baseline method

exploiting query reformulation. 43 reformulation-based features are proposed to capture

user reformulation behaviors over search sessions with LambdaMART.

• Hierarchical Recurrent Encoder-Decoder (HRED) [298] and Seq2Seq with Copiers (ACG) [88]

are deep learning based query suggestion methods. HRED constructs a hierarchical

encoder-decoder structure to model the sequential and hierarchical dependencies across

terms and queries. ACG extends the seq2seq structure to read the terms in the search

session and then learn whether to copy the used term or to add a new term.

Note that two deep learning baseline methods HRED and ACG solve the discriminative

tasks by requiring an external feature set to train a LambdaMART model. Although our

approach is also a deep learning based method, the query discriminator of RIN can address

the task without any support of external features.

11.4.2 Experimental Results

Discriminative Query Suggestion. We first evaluate the performance for discriminative

query suggestion. Table 11.2 shows the MRR performance of different methods over various

context lengths. Note that a high MRR score indicates the actual intended queries are

ranked more favorably.

The hybrid suggestion method (Hybrid) slightly boosts the suggestion performance of

the popularity-based baseline method (MPS) by considering the similarity between candi-

date queries and the local context. On the contrary, the performance of the personalized

completion method (PC) drops after considering the historical logs of users as long-term

historical data. It is because an enormous amount of users in the search logs have only

little or even no historical data so that the sparsity causes a severe over-fitting phenomenon.

QVMM based on a variable-memory Markov model is also marginally better than MPS but

not as well as Hybrid. The reason can be explained by the complicated search sessions that

are too sparse to be modeled by query dependencies as shown by the lower performance
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Table 11.2: The MRR performance of different methods in the testing sets with different
context lengths for the task of discriminative query suggestion. All improvements of our
approach over baseline methods are statistically significant at the 95% confidence level in a
paired t-test.

Dataset MPS [88, 298] Hybrid [29] PC [294] QVMM [148] RC [174] HRED [298] ACG [88] RIN
Overall Context 0.5471 0.5823 0.5150 0.5671 0.6202 0.6207 0.6559 0.8254

Short Context (1 query) 0.5680 0.5822 0.5343 0.5862 0.5960 0.6100 0.6471 0.8361
Medium Context (2 to 3 queries) 0.5167 0.5841 0.4865 0.5338 0.6689 0.6489 0.6542 0.8190
Long Context (4 or more queries) 0.4826 0.5768 0.4575 0.5026 0.6704 0.6122 0.6669 0.7611

with longer context. The reformulation-based completion method (RC) is the best non-deep

learning method in the experiments. The promising results of the reformulation features

used in RC show again that reformulations are helpful for modeling search sessions as pre-

vious studies [88, 174]. Two deep learning methods, HRED and ACG, outperform all of the

other baseline methods because RNNs carefully capture the sequential information of terms

and queries in search sessions. ACG is further better than HRED since two reformulation

strategies are considered in the model. As the proposed approach, RIN surpasses all of the

baseline methods. More precisely, RIN achieves 50.87% and 25.83% improvements in the

dataset of overall context over MPS and ACG, respectively. It is also worth noting that the

improvements are consistent across all datasets with different context lengths. All of these

improvements are significant at the 95% confidence level in a paired t-test.

To discuss the performance with different context lengths, we investigate the improve-

ments of all methods over the näıve baseline method MPS because the performance on

different datasets is not comparable. Figure 11.3 shows the improvements of three best

baseline methods and RIN over MPS with different context lengths. It is reasonable to see

the improvements are generally greater with longer contexts because sequential information

and reformulations are more sufficient in longer sessions. An interesting observation is that

the improvements of RIN over MPS are similar in the datasets of medium and long contexts.

It demonstrates that RIN needs fewer queries to understand the search intents of users. The

other observation is that RC outperforms HRED and achieves similar performance to that of

ACG while there are multiple queries in the context. The results indicate reformulations are

hard to be instinctively captured by RNNs. As a consequence, as shown in Table 11.2, HRED
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Figure 11.3: The MRR improvment of four methods over the MPS baseline method with
different context lengths.

performs worse with long contexts, compared to other baselines considering reformulations

as predefined features and strategies. Furthermore, RIN effectively learns reformulations and

achieves the best performance.

Generative Query Suggestion.. Here we evaluate the performance for generative query

suggestion. Note that only HRED and AGC are compared as the baseline methods because

other methods are not generative models. PER as the evaluation metric treats each query

as a bag of words and measures the difference between word sets. A low PER indicates high

coverage of the predicted query to the intended query. Table 11.3 shows the PER perfor-

mance of RIN and both baseline methods. Among two baseline methods, ACG outperforms

HRED because of the consideration of reformulations. For HRED, it is interesting that PER

dramatically improves when it comes to the long context dataset. It may be because longer

contexts have more queries to capture the user behaviors. The proposed approach RIN

outperforms both two baseline methods. More specifically, RIN obtains 22.02% and 4.72%

improvements over HRED and ACG. For different context lengths, the improvements are

greater with longer contexts. For instance, the improvement over ACG with short contexts

is only 2.39%, but RIN improves ACG by 8.64% and 9.13% for the datasets of medium and

long contexts, respectively. In addition, these results are also consistent with Figure 11.3 in
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Table 11.3: The PER performance of three methods. The improvements of our approach
over baseline methods are statistically significant at the 95% confidence level in a paired
t-test.

Dataset HRED [298] ACG [88] RIN
Overall 0.8069 0.6925 0.6612

Short (1 query) 0.8179 0.7015 0.6851
Medium (2 to 3 queries) 0.8338 0.6733 0.6197
Long (4 or more queries) 0.6753 0.6673 0.6115

Methods

ACG RIN (Q) RIN (R) RIN (Q+R)

M
R

R

55%

60%

65%

70%

75%

80%

85%

Overall
Short
Medium
Long

Figure 11.4: The MRR performance of RIN with either or both of homomorphic query and
reformulation embeddings. Q denotes the homomorphic query embeddings while R indicates
the embeddings of reformulations.

the experiments of discriminative query suggestion.

11.4.3 Analysis and Discussions

In this section, we first analyze the effectiveness of the proposed model and then study the

sensitivity of parameters.

Effectiveness of Homomorphic Embedding. We first investigate the effectiveness of

the proposed homomorphic embedding of queries reformulations for query suggestion. As a

leave-one-out analysis, we train RIN with only query embedding vqi or reformulation em-

beddings ri−1 to verify their individual capability. Figure 11.4 shows the MRR performance
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Figure 11.5: The MRR performance of RIN with homomorphic and non-homomorphic em-
beddings. Note that RINNH replaces the original homomorphic query embeddings with
non-homomorphic query embeddings from node2vec.

of RIN with and without homomorphic query and reformulation embeddings, where Q and

R denote the use of query embeddings and reformulation embeddings. It is obvious that

although the query embeddings are excluded, RIN (R) only lowers MRR by 5.18% from the

comprehensive RIN (Q+R). However, when RIN (Q) only considers the query embeddings,

the MRR drops by 21.96%. Moreover, RIN (Q) performs even worse than the best baseline

method AGC. Even though reformulations are much beneficial for query suggestion, they are

so hard to learn without directly being represented. The other observation is that the gain

from the reformulation embeddings, i.e., the improvement of RIN (Q+R) over RIN (Q), is

more substantial for shorter contexts. For example, MRR improves by 23.73% for the short

context dataset while the improvement in the long context dataset is only 16.97%. When

the reformulations are clearly given, it becomes more convenient for models to understand

user behaviors and predict the intended queries.

Homomorphic vs. Non-homomorphic Embeddings. In addition to the effectiveness

of homomorphic embeddings, we also want to show its advantage against non-homomorphic

embeddings. Here we replace the query embeddings vq in RIN with the query node em-

beddings from node2vec (see Section 11.3.2), which are non-homomorphic. Note that the
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Figure 11.6: The MRR performance of RIN with and without the reformulation inferencer.
Note that RIN (-I) removes the reformulation inferencer.

reformulation embeddings will be calculated based on the updated query embeddings af-

ter the replacement, although they are not theoretically homomorphic. Figure 11.5 shows

the MRR performance of RIN with homomorphic and non-homomorphic embeddings. Note

that RINNH represents RIN using non-homomorhpic embeddings. When the query em-

beddings of RIN become non-homomorphic, the MRR drops substantially. It is because

non-homomorphic query embeddings fail in representing how users reformulate queries, es-

pecially for syntactic reformulations. Although the previous work [243] demonstrates some

examples of syntactic relationships, non-homomorphic embeddings still cannot adequately

preserve the syntactic reformulations.

Effectiveness of Reformulation Inferencer. Here we examine how the reformulation

inferencer works in RIN. Similar to the previous analysis, we remove the component of

reformulation inferencer and observe the performance. Figure 11.6 depicts the MRR per-

formance of RIN with and without the reformulation inferencer, where RIN (-I) is trained

without the inferencer component. After removing the component, the MRR performance

decreases by 3.22%. It shows that the reformulation inferencer is actually helpful to predict

the intended queries. Moreover, although the reformulation inferencer is ignored, RIN (-I)

still outperforms the best baseline method ACG by 17.89% with reformulation embeddings
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Figure 11.7: The MRR performance of RIN over different numbers of embedding dimensions.

as the inputs of query session encoder. Hence, the results also demonstrate the effectiveness

of the proposed embedding method.

Size of Embedding Dimensions. Here we try to study how the size of reformulation

embeddings (i.e., the nubmer of embedding dimensions) affects the performance. Figure 11.7

shows the MRR performance of RIN over different numbers of embedding dimensions. When

the dimension number increases from a small size, MRR improves and peaks at the dimension

number of 256. With a larger size of dimensions, RIN becomes overfitted because of the

sparsity of search sessions. There is another interesting finding about long sessions. MRRs

of datasets with shorter contexts are more sensitive to the embedding size than MRRs of

the long context dataset. When the context consists of multiple queries, the embeddings of

all queries and previous reformulations are fed into the model. Therefore, even though the

embedding size is small, the combination of multiple queries in the RNN can still lead to a

high degree of freedom for the prediction capability.
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11.5 Conclusion

In this chapter, we propose a novel approach for context-aware query suggestion by learn-

ing to represent query reformulations and model how users reformulate queries over search

sessions. Inspired by homomorphic encryption, the homomorphic query embedding is in-

troduced to reflect reformulations with computations based on semantic term embeddings.

Our model, RIN, is then formulated as a neural network architecture to read the previous

reformulations and infer the next reformulation in the embedding space, thereby addressing

either discriminative or generative query suggestion. The extensive experiments demon-

strate that our proposed model significantly outperforms seven baseline methods for both

the discriminative and generative tasks of query suggestion. The improvements are consis-

tent across different datasets of various context lengths. Moreover, the results of analysis

also show the effectiveness and robustness of the proposed model. The reasons and insights

can be concluded as follows: (1) reformulations are important to model search sessions, so

homomorphic reformulations embeddings that precisely capture both syntactic and semantic

reformulations can essentially benefit query suggestion; (2) the effectiveness of the reformu-

lation inferencer in RIN implies that a model can be more capable of predicting the intended

query if the next reformulation can be also anticipated; (3) longer contexts would not be

necessarily required for understanding the search intents if the model can capture how users

reformulate queries.
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CHAPTER 12

Learning to Disentangle Interleaved Conversations

In this chapter, we discuss how to model interpersonal behaviors with compositional and

explainable behavior modeling presented in Chapter 1. We take the task of conversation

disentanglement as an example to model human interactions in multi-party conversations.

Specifically, we treat the well-designed convolutional neural network as a blockbox for deriv-

ing the representation of each message. The construction of the similarity graph is considered

compositional operations to leverage the redundancy of messages with similar semantics in

the latent space. Therefore, messages in the same similarity graph can be treated as a

conversational thread with the same topic.

12.1 Introduction

With the growth of ubiquitous internet and mobile devices, people now commonly com-

municate in the virtual world. Among the various methods of communication, text-based

conversational media, such as internet relay chat (IRC) [340] and Facebook Messenger7, has

been and remains one of the most popular choices. In addition, many enterprises have started

to use conversational chat platforms such as Slack8 to enhance team collaboration. However,

multiple conversations may occur simultaneously when conversations involve three or more

participants. Aoki et al. [13] found an average of 1.79 conversations among eight participants

at a time. Moreover, some platforms like chatrooms in Twitch may have more concurrent

conversations [140]. Interleaved conversations can lead to difficulties in both grasping dis-

7Facebook Messenger: https://www.messenger.com/

8Slack: https://slack.com/

208

https://www.messenger.com/
https://slack.com/


Thread Message
...

...

T31 Malcolm: If running as root, I need to set up a global config rather than ∼/.fetchmailrc ?

T38 Elma: i’m sure i missed something but fonts rendering in my gimp works isn’t at its best

T39 Sena: is there anyway to see what the CPU temperature is?

T38 Elma: is it because of gimp or i missed some tuning or such?

T31 Rache: Specify a non-default name run control file.

T41 Denny: so how does one enforce a permission set and ownership set on a folder and all its children?

T31 Malcolm: in the man page it doesn’t mention any global fetchmailrc file... that is what was confusing
me...

T42 Shenna: hi, are sata drives accessed as sda or hda?

T41 Elma: -R for recursive...

T42 Elma: sda
...

...

Figure 12.1: A segment of real-world conversations involving six users and five (annotated)
threads from the IRC dataset.

cussions and identifying messages related to a search result. For example, Figure 12.1 shows

a segment of conversations from the real-world IRC dataset as an example. Five interleaved

threads are involved in only ten messages. Messages in the same thread may not have iden-

tical keywords. Moreover, a user (i.e., Elma) can participate in multiple threads. Hence, a

robust mechanism to disentangle interleaved conversations can improve a user’s satisfaction

with a chat system.

One solution for conversation disentanglement is to model the task as a topic detection

and tracking (TDT) [9] task by deciding whether each incoming message starts a new topic

or belongs to an existing conversation. Messages in the same conversation may have higher

similarity scores [230, 290] or similar context messages [333]. However, similarity thresh-

olds for determining new topics vary depending on context. Embedding of earlier messages,

resulting in duplication of parts of messages, can alter the similarity score. More specifi-

cally, the similarity scores obtained in previous work cannot well represent conversation-level

relationships between messages.

Several studies have examined the use of statistical [101] and linguistic features [106,

107, 108, 230] for predicting user annotations of paired message similarity. These studies
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employed bag-of-words representations which do not capture term similarity and cannot

distinguish word importance and relationships between words in a message. Thus, better

representations of messages and their relationships are needed.

Recent studies have demonstrated the effectiveness of deep learning methods in represen-

tation learning [32], aiming to infer low-dimensional distributed representations for sparse

data such as text [151]. These representations can be derived not only for words [241] but

also sentences and documents [209]. In particular, convolutional neural networks (CNNs)

have been shown to efficiently and effectively preserve important semantic and syntactic

information from embedded text sequences [34]. It has been demonstrated that CNNs pro-

duce state-of-the-art results in many NLP tasks such as text classification [194, 206, 368]

and sentiment analysis [268, 311]. Existing approaches, however, do not take advantage of

deep learning techniques to model relationships between messages for disentangling conver-

sations. [233] defined many statistical features for use with a random forest for in-thread

classification and used a recurrent neural network (RNN) only to model adjacent messages

with an external dataset as a feature.

In this work, we aim to leverage deep learning for conversation disentanglement. Our

proposed approach consists of two stages: (1) message pair similarity estimation and (2) con-

versation identification. In the first stage, we propose the Siamese hierarchical convolutional

neural network (SHCNN) to estimate conversation-level similarity between pairs of closely

posted messages. SHCNN is framed as a Siamese architecture [245] concatenating the out-

puts of two hierarchical convolutional neural networks and additional features. Compared

to other conventional CNN-based Siamese networks [289, 357], SHCNN models not only

local information in adjacent words but also more global semantic information in a mes-

sage. In the second stage, the algorithm of conversation identification by similarity ranking

(CISIR) ranks messages within a time window paired with each message and constructs a

message graph involving high-rank connections with strong confidence. Although only high-

confidence relations are represented in the constructed graph, the redundancy of pairwise

relationships can capture the connectivity of messages within a conversation.
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In summary, the main contributions of this work are threefold: (1) Deep similarity

estimation for conversation disentanglement: To the best of our knowledge, this is the

first study applying deep learning to estimate similarities between messages for disentangling

conversations. SHCNN simultaneously captures and compares local and global characteris-

tics of two messages to estimate their similarity. Message representations are also optimized

towards the task of conversation disentanglement. (2) Efficient and effective method:

The selection of message pairs posted closely in time and the proposed CISIR algorithm

significantly reduces the computational time from O (|M |2) to O (k|M |), where |M | is the

number of messages, and k is the maximum number of messages posted within a fixed-length

time window. When many messages are posted over a long period, the computational time of

our approach could be near-linear. (3) Empirical improvements over previous work:

Extensive experiments have been conducted on four publicly available datasets, including

three synthetic conversation datasets and one real conversation dataset from Reddit9 and

IRC conversations. Our approach outperforms all comparative baselines for both similarity

estimation and conversation disentanglement.

12.2 Conversation Disentanglement

In this section, we formally define the objective of this work and notations used. A two-stage

approach is then proposed to address the problem.

12.2.1 Problem Statement

Given a set of speakers S, a message m is defined as a tuple m = (w, s, t), where w =

〈w1, w2, · · · , wn〉 is a word sequence posted by the speaker s ∈ S at time t in seconds. Each

message m is associated with a conversation z (m). Messages in different conversations can

be posted concurrently, i.e., conversations can be interleaved.

Following the settings of previous work [106, 107, 108, 230], a set of pairwise annotations

9Reddit: https://www.reddit.com/
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Stage 1: Similarity Estimation Stage 2: Conversation Identification

Disentangled
Conversations

C1

C2

(1b) SHCNN for
Similarity Estimation

(1a) Message Pair
Selection

(2) CISIR for
Identification

mi mj

P (z (mi) = z (mj)) =?

SHCNN

Figure 12.2: Illustration of our proposed two stage method. In the first stage, (1a) message
pairs are selected for (1b) estimating pairwise similarity with a Siamese hierarchical CNN
(SHCNN). In the second stage, (2) the algorithm of conversation identification by similarity
ranking (CISIR) constructs a graph with strong relationships among messages and finds
conversations as connected components.

A = {(mi,mj, y)}, where y ∈ {0, 1}, is given for training the model. More specifically, a

Boolean value y indicates whether two messages mi and mj are in the same conversation,

i.e., z(mi) and z(mj) are identical.

Given a set of messages M and the pairwise annotations A as training data, the goal

is to learn a model that can identify whether messages are posted in the same conversation

z(m). Note that the number of conversations |Z = {z(m) | ∀m ∈M} | is always unknown

to the system.

12.2.2 Framework Overview

Figure 12.2 illustrates our two-stage framework. The first stage aims to estimate pairwise

similarity among messages. Message pair selection is applied to focus on the similarity

between messages that are posted closely in time and thus more likely to be in the same

conversation. The Siamese hierarchical CNN (SHCNN) is proposed for learning message rep-

resentations and estimating pairwise similarity scores. The overlapping hierarchical structure

of SHCNN models a message at multiple semantic levels and obtains representations that

are more comprehensive.

In the second stage, our conversation identification by similarity ranking (CISIR) algo-

rithm exploits the redundancy and connectivity of pairwise relationships to identify conver-
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Figure 12.3: The percentage of messages in the same conversation as a given message with
elapsed time between messages no greater than i hours for four experimental datasets.

sations as connected components in a message graph.

12.2.3 Message Pair Selection

Most of the previous work on conversation disentanglement focused on pairwise relationships

between messages [230]. Especially for single-pass clustering approaches, all pairs of messages

need to be enumerated during similarity computation [333]. However, if messages have been

collected for a long time, the number of message pairs could be too mammoth to be processed

in an acceptable amount of time. More precisely, it leads to at least O(n2) computational

time, where n is the number of messages. As shown in Figure 12.3, the percentage of messages

in the same conversation as a given message becomes significantly lower with a longer elapsed

time between consecutive messages. In light of this observation, an assumption is made as

follows:

Assumption 12.1. The elapsed time between two consecutive messages posted in the same

conversation is not greater than T hours, where T is a small number.

More specifically, in our dataset every message mi is posted within T hours earlier or later
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than any other message mj in the same conversation, i.e.,
|ti−tj |
3600

< T for all pairs (mi,mj),

where t is in seconds. For example, in the IRC dataset the average elapsed time between

consecutive messages in a conversation is only 7 minutes. If a conversation is ongoing, there

may not be an extended silence before a new message; conversely, an extended silence could

be treated as the start of a new conversation. With this assumption, the number of pairs

can be reduced to O(kn), where k is the maximum number of messages posted in a T -hour

time window. By default T is set to 1 hour in our experiments.

In addition, it is worth mentioning that it may be possible to include conversational

structure, such as replied-to relations, into the model. For example, after using CISIR to

identify conversational threads, structure inference may be performed using methods such

as described in [18] or [332] and the structure used to refine the threads. In this study, we

focus on only conversation disentanglement.

12.2.4 Similarity Estimation with the Siamese Hierarchical CNN (SHCNN)

Given a set of message pairs, we propose the Siamese hierarchical CNN (SHCNN) to estimate

the similarity between a pair of messages.

12.2.4.1 Hierarchical CNN for Message Representation

The effectiveness of CNNs for representing text has already been addressed in previous

studies. However, single-layer CNNs [194, 289] may not represent high-level semantics while

low-level information could be diluted with multiple-layer CNNs [357]. The hierarchical

CNN (HCNN) is designed to simultaneously capture low- and high-level message meanings

as shown in Figure 12.4.

A message mi is first represented by a d×|w| message matrixW ∈ Rd×|w|, where d is the

dimension of a word embedding, and |w| is the number of words in a message. For low-level

information, we exploit single-layer CNNs [194, 289] with a set of d × kL kernels, where L

denotes “Low”, to extract n-gram semantics of kL contiguous words. In our experiments, 64
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Figure 12.4: Illustration of hierarchical CNN (HCNN) for message representation. The labels
with a larger font size indicate the corresponding tensors, and the labels with a smaller font
size explain the operations between tensors.

d× kL kernels, where kL = 5, are applied to obtain 64 low-level features m̂L. Note that the

kernel row dimension is identical to the word embedding dimension to jointly consider the

full embedding vector. As a consequence, convolution with each kernel produces a vector

cLi , which is then aggregated by max-over-time pooling [75, 194].

To acquire high-level semantics across a message, HCNN uses another multiple-layer CNN

for feature extraction. A 1× kC kernel is applied to W , thereby generating a convolutional

message matrix WC . Features covering broader contents are computed by applying a 1× 2
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Figure 12.5: The siamese hierarchical CNN (SHCNN) for similarity estimation. Note that
the model structure of an HCNN is shown in Figure 12.4.

kernel to a max-pooling layer with a stride of 2, producing a high-level message matrix WH .

The row sizes of the two kernels are set to 1 to capture relations within each embedding

dimension, and convolution is performed on WH with 64 d×kH kernels to capture relations

across embedding dimensions. The generated convolutional feature maps cHi are subject to

max-over-time pooling, resulting in 64 features m̂H . Finally, a message representation m̂ is

constructed by concatenating m̂L and m̂H , i.e., creating a 128-dimensional feature vector,

for characterizing both low- and high-level semantics of a message m. In our experiments,

both kC and kH are set to 5 while computing high-level representations.

12.2.4.2 Siamese Hierarchical CNN (SHCNN)

A Siamese structure with two identical sub-networks is useful to exploit the affinity between

representations of two instances in the same hidden space [289, 334, 357]. For similarity

estimation, we propose the Siamese hierarchical CNN (SHCNN) using a Siamese structure

that blends the outputs from two HCNNs as well as some context features.

Figure 12.5 shows the structure of the SHCNN for estimating the similarity between

two messages mi and mj where the message representations m̂i and m̂j are generated by
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two sub-networks HCNNs (See Figure 12.4). There are many ways to deal with two sub-

networks, such as using a similarity matrix [289] or an attention matrix [357]. However,

both methods lead to an enormous number of parameters for long messages. We propose to

independently compute the element-wise absolute differences [245] between a pair of message

representations m̂i and m̂j, each from a sub-network. More formally, the absolute difference

d is a vector where the k-th element is computed as |m̂i(k)−m̂j(k)|. This approach provides

not only fewer parameters but also the flexibility to observe interactions among different

dimensions in representations. Our experiments also show it outperforms the other two

approaches in similarity estimation (See Section 12.3).

In addition to message contents, contexts such as temporal and user information were also

usually considered in previous studies about conversation disentanglement [107, 108, 333].

Here we focus on the performance of message content representations and only incorporate

four context features: speaker identicality, absolute time difference and the number of du-

plicated words with and without weighting by inverse document frequency [70]. SHCNN

concatenates the context features x(mi,mj) with the absolute difference d as the input of a

fully-connected layer of the same size.

The final output of SHCNN ŷ (mi,mj) is normalized by a logistic sigmoid function [142],

representing the probability P (z(mi) = z(mj)).

12.2.4.3 Activation Functions

All convolutional layers and the fully-connected layer require activation functions, and the

choice affects the performance [224]. Popular functions include rectified linear units (ReLUs)

[210], hyperbolic tangent units (tanh) and exponential linear units (ELUs) [73]. In this study,

we conducted informal comparison experiments and ELU was finally chosen for all functions

because it performed the best.
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12.2.4.4 Optimization and Implementation Details

Given a set of annotated message pairs A = {(mi,mj, y)}, where y is a Boolean value

indicating whether two messages are in the same conversation, SHCNN is optimized with

binomial cross entropy [131]. More formally, the objective function is as follows:

∑
(mi,mj ,y)∈A

[y · log(ŷ + ε) + (1− y) · log(1− ŷ + ε)] + λ||θ||2

where ŷ simplifies ŷ(mi,mj), and ε is a small number, i.e., 10−9 in our experiments, prevent-

ing underflow errors. The term λ serves as the weight for L2-regularization for the set of

parameters θ.

In our experiments, SHCNN is implemented by TensorFlow [1] and trained by the Adam

optimizer [195] with an initial learning rate of 10−3. The dropout technique [300] is utilized in

the fully-connected layer with a dropout probability of 0.1. Word embeddings are initialized

using the publicly available fastText 300-dimensional pretrained embeddings from Facebook

[36]. The batch size is set to 512, and the maximum number of training epochs is 1,000. The

final model is determined by evaluating the mean average precision (MAP) on a validation

dataset every 100 iterations.

12.2.5 Conversation Identification by SImilarity Ranking (CISIR)

In the second stage of conversation disentanglement, i.e., part (2) in Figure 12.2, we aim to

separate conversations based on the identified message pairs and their estimated similarity.

12.2.5.1 Graph-based Methods and Conversation Connectivity

It is intuitive to apply graph-based methods if pairwise relationships of messages are exploited

[106]. Furthermore, methods based on single-pass clustering [333] can be also be treated as

graph-based methods. However, graph-based methods have a risky drawback: A single

false positive connection between two messages can be propagated to several messages from
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Algorithm 12.1: The algorithm of conversation disentanglement by similarity
ranking (CISIR).

1 CISIR (M ,D, r, h);
Input : Message set M , the set of selected message pairs D, the threshold of

similarity ranks r and the threshold of similarity scores h.
Output: A set of conversations C

2 Let G = (M , ∅) be an undirected message graph
3 for m ∈M do
4 Dm = {(mi,mj, ŷ) | mi = m ∨mj = m}
5 Rank entries in Dm by ŷ in a descending order
6 for k = 1 to min(r, |Dm|) do
7 Let (mi,mj, ŷ) be the k-th entry in ranked Dm

8 if ŷ < h then
9 break

10 Add an edge (mi,mj) into G

11 C = ConnectedComponents(G)
12 return C

different conversations. As shown in Figure 12.3, a certain percentage of message pairs are

in different conversations, which can lead to numerous false positive connections.

False alarms may be reduced by raising the threshold that determines whether two mes-

sages are connected [333]. However, a high threshold can make disentangled conversations

fragmented and the best threshold for each pair could vary.

12.2.5.2 The CISIR Algorithm

Instead of setting a high threshold, we propose the algorithm of Conversation Identification

by SImilarity Ranking (CISIR). CISIR focuses on the top messages ranked by similarity

scores. Based on Assumption 12.1, for each message, there exists at least one or more other

messages in the same conversation posted closely in time. With this redundancy, a few

pairs with stronger confidence, i.e., the top-ranked pairs, can be enough to extend a correct

connectivity to earlier or later messages, while the low-ranked pairs can be ignored to reduce

the risk of error propagation.

Given a set of selected message pairs with estimated similarity scores D = {(mi,mj, ŷ)},
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Algorithm 12.1 shows the procedure of CISIR with two parameters r and h, where r is a high

threshold of similarity ranks and h is a lower threshold of similarity scores. Note that CISIR

filters out pairs with low scores because a message can have more than r same-conversation

pairs posted in its T -hour time window. For each message, CISIR ranks all of its associated

pairs by the estimated similarity and only retrieves the top-r pairs whose similarity scores are

greater than h. These retrieved high-confidence pairs are treated as the edges in a message

graph G. Finally, CISIR divides G into connected components, and the messages in each

connected component are treated as a conversation. In the experiments, we use grid search

to set r and h as 5 and 0.5, respectively.

12.2.5.3 Improvement of Time Complexity

The efficiency of Algorithm 12.1 can be further improved. The top-r qualified pairs for each

message can be pre-processed by a scan of D with |M | min-heaps which always contain at

most r + 1 elements. When r is a small constant number, it only takes O(|D|) = O(k · |M |)
for pre-processing, where k is the maximum number of messages posted in a T -hour time

window. With pre-processed top pairs, CISIR can do graph construction and find connected

components in O(k|M |), which compares favorably to conventional methods in O(|M |2).

12.3 Experiments

In this section, we conduct extensive experiments on four publicly available datasets to

evaluate SHCNN and CISIR in two stages.

12.3.1 Datasets and Experimental Settings

12.3.1.1 Datasets

Three datasets from Reddit and one dataset of IRC are used as the experimental datasets.
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• Reddit Datasets10 The Reddit dataset is comprised of all posts and corresponding com-

ments in all sub-reddits (i.e., forums in Reddit.com) from June 2016 to May 2017. Com-

ments under a post can be treated as messages in one conversational thread. Here we

manually merge all comments in a sub-reddit to construct a synthetic dataset of inter-

leaved conversations. Note that although it is called a “synthetic dataset,” all messages

are written by real users. Three sub-reddits with different popularity levels as shown in

Table 12.1 are selected to build three datasets: gadgets, iPhone and politics.

• IRC Dataset. An annotated IRC dataset used in [106] is also included in our experiments.

The IRC dataset consists of about 6 hours of messages in interleaved conversations. Even

though the IRC dataset is significantly smaller and shorter than the Reddit datasets, it

consists of natural, interleaved conversations with ground truth annotations, including

thread id.

12.3.1.2 Experimental Settings

Humans may not participate in a large number of simultaneous conversations. e.g., an av-

erage of 1.79 for eight people [13], but there could be hundreds of concurrent posts in a

subreddit. Hence, we adjusted the datasets to be more similar to real conversations. Specif-

ically we removed some conversations so that every dataset has at most ten conversations

at any point in time. Short messages with less than five words are also removed because

even for humans they are frequently ambiguous. Too short conversations with less than ten

messages are also discarded as outliers [277]. Training and validation data are randomly

chosen from only 10% of the selected message pairs, respectively, because in real situations

obtaining labels could be very costly. The remaining 80% of pairs are regarded as testing

data. As a result, Table 12.1 shows the statistics of the four datasets after pre-processing.

10The organized Reddit dataset is publicly available in https://files.pushshift.io/reddit/.
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Dataset
Reddit

IRC
gadgets iPhone politics

Conversations 287 617 3,671 39
Messages 8,518 12,433 105,663 497
Speakers 5,185 5,231 25,289 71

Train/Valid Pairs 3,445 5,556 244,492 5,995
Test Pairs 27,565 44,450 1,955,943 47,966

Table 12.1: Statistics of four datasets after pre-processing.

Table 12.2: Performance of pairwise similarity estimation in four datasets. Our approach
is denoted as SHCNN.The performance with only low-level or high-level representations are
denoted as SHCNN (L) and SHCNN (H). All improvements of SHCNN against the best
baseline are significant at the 1% level of significance in a paired t-test.

Dataset
Reddit Datasets

IRC Dataset
gadgets iPhone politics

Metric P@1 MRR MAP P@1 MRR MAP P@1 MRR MAP P@1 MRR MAP
TimeDiff 0.6916 0.8237 0.8170 0.6085 0.7651 0.7495 0.4412 0.6362 0.5644 0.3262 0.5180 0.4384
Speaker 0.5643 0.7046 0.7425 0.5364 0.6595 0.6590 0.4021 0.4620 0.3914 0.4356 0.6263 0.6891

Text-Sim 0.7913 0.8746 0.8440 0.7347 0.8318 0.7872 0.5245 0.6672 0.5326 0.3712 0.5269 0.3108
Elsner 0.7758 0.8651 0.8321 0.6809 0.7935 0.7471 0.4643 0.6132 0.4884 0.1094 0.1886 0.2063

DeepQA 0.8011 0.8755 0.8511 0.7156 0.8112 0.7766 0.5593 0.6759 0.5685 0.7811 0.8182 0.8050
ABCNN 0.8374 0.8511 0.8502 0.8112 0.8520 0.8118 0.7419 0.6221 0.6644 0.7008 0.4142 0.5858
SHCNN 0.8834 0.9281 0.9005 0.8375 0.8944 0.8497 0.7696 0.8392 0.6967 0.9785 0.9838 0.9819

SHCNN (L) 0.8470 0.9080 0.8702 0.8066 0.8792 0.8275 0.7225 0.8070 0.6438 0.9807 0.9834 0.9750
SHCNN (H) 0.8490 0.9105 0.8704 0.8158 0.8851 0.8313 0.7228 0.8110 0.6283 0.9635 0.9728 0.8632

12.3.2 Pairwise Similarity Estimation

Message pair similarity estimation is treated as a ranking task and evaluated with three

ranking evaluation metrics: precision at 1 (P@1), mean average precision (MAP) and mean

reciprocal rank (MRR) [70]. We compare the performance with six baseline methods, in-

cluding the difference of posted time (TimeDiff ), sameness of speakers (Speaker), cosine

similarity of text (Text-Sim), the approach proposed by Elsner and Charniak [106] (Elsner),

DeepQA [289] and ABCNN [357]. Note that DeepQA and ABCNN are neural network-

based models for question-answering. The approach of Mehri and Carenini [233] was not

compared in our experiments because the RNN requires additional message sequences; more-

over, its performance was only mildly better than Elsner, which performed poorly on IRC

in Table 12.2.

Table 12.2 shows the performance of similarity estimation. Among all methods, neural

network approaches [289, 357] perform better than other methods in most cases, indicating
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z(mi) Message

T16 “Arlie: Wow, maybe we just missed it when we were driving around”

T18 “Arlie: i’ve been very close to that situation myself”

Figure 12.6: An example message pair in two different conversations from IRC shows how
SHCNN discriminates between messages on different topics. The leftmost column is the
conversation IDs of the corresponding messages. SHCNN predicts 0.67% of being in the
same conversation for this pair while DeepQA with single-layer CNNs predicts 69.81%.

that message content representation has considerable impact on estimating pairwise similar-

ity. SHCNN outperforms most of the baselines even if only low-level (L) or high-level (H)

representations are exploited. When SHCNN captures both low- and high-level semantics,

it significantly outperforms all baselines across the four datasets. For example, ABCNN

can outperform SHCNN using only either low- or high-level representations in the politics

dataset; however, SHCNN turns the tables after using both representations. An interesting

observation is that ABCNN is the best baseline in every dataset except for IRC; this may

be because the IRC data is too small to train complicated attention structures. On the

contrary, our SHCNN can precisely capture semantics even with few parameters and limited

data.

To shed deeper insights of how SHCNN surpasses other methods, we exhibit the predic-

tion results of the IRC data and demonstrate the capability of SHCNN to simultaneously

preserve local and more global information. Figure 12.6 presents an example to show how

SHCNN is better than other methods in capturing more high-level topical information. Even

though the main sentences of two messages are clearly on different topics, the baseline method

DeepQA [289] still predicts a high similarity. This could be attributed to the context of au-

thor mention [333] and a bias on the local information, i.e., the exact same term “Arlie”, in

the Siamese network used in DeepQA. On the contrary, SHCNN can capture more global in-

formation that differentiates the topics and correctly predicts a very low score. Figure 12.7

illustrates another example of how SHCNN outperforms other methods in preserving the

similarity of local information. Both of the messages in the example have some segments

related to software engineering. A baseline method ABCNN [357] with multiple-layer CNNs,

however, still predicts a low score. This might be because both sentences are long so that the
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z(mi) Message

T16
“Very well, I seem to be trying to show Arlie how its done and am coding
a webserver.”

T16
“Arlie: Good enough doesnt cut it! Is the ’faster’ method a big change
in design? Could I implement later without wanting to kill myself?”

Figure 12.7: An example message pair in a conversation from IRC shows how SHCNN
captures similarity in local information. The leftmost column is the conversation IDs of the
corresponding messages. SHCNN predicts 70.41% for this pair while ABCNN with multiple-
layer CNNs predicts 36.50%.

local information is diluted after processing by multiple CNN layers. Differently, SHCNN is

able to seize local information, correctly predicting a high score.

12.3.3 Conversation Identification

For conversation identification, three clustering metrics are adopted for evaluation: normal-

ized mutual information (NMI), adjusted rand index (ARI) and F1 score (F1). Six meth-

ods are implemented as the baselines for conversation disentanglement, including Doc2Vec

[209], blocks of 10 messages (Block-10 ), messages of respective speakers (Speaker) [108],

context-based message expansion (CBME ) [333] and a graph-theoretical model with chat-

and content-specific features [106] (GTM ). The embedding-based clustering method, i.e.,

Doc2Vec, applies affinity propagation [120] to cluster messages embedded using Doc2Vec

without being given the number of clusters, with the idea that messages in the same con-

versation would form a cluster. Note that message pairs in the training and validation data

are not utilized in prediction for a fair comparison to all methods.

Table 12.3 shows the performance of conversation disentanglement. Note that “Oracle”

represents the optimal performance for CISIR when all message pairs in identical conver-

sations in D are correctly retrieved. Because pairs in D may not have enough coverage

to connect all messages in a coversation, the optimal performance could be lower than 1.0.

CISIR performs better than all baseline methods for all datasets, and achieves excellent per-

formance in IRC, due in part to the high-performing similarity estimates from the first stage.

Among the baseline methods, GTM performs relatively well on all datasets except for IRC.
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Table 12.3: Performance of conversation disentanglement in four datasets. Our approach is
denoted as CISIR. “Oracle” indicates the optimal performance if CISIR correctly retrieves
all message pairs in identical conversations. All improvements of CISIR against the best
baseline are significant at the 1% level of significance in a paired t-test.

Dataset
Reddit Datasets

IRC Dataset
gadgets iPhone politics

Metric NMI ARI F1 NMI ARI F1 NMI ARI F1 NMI ARI F1
Doc2Vec 0.1757 0.0008 0.0589 0.2318 0.0002 0.0718 0.2672 0.0001 0.0506 0.2046 0.0048 0.1711
Block-10 0.7745 0.1840 0.3411 0.8203 0.2349 0.4251 0.8338 0.1724 0.3451 0.4821 0.0819 0.2087
Speaker 0.7647 0.0440 0.2094 0.7861 0.1001 0.3339 0.7480 0.0637 0.2207 0.7394 0.4572 0.6310
CBME 0.6913 0.0212 0.1465 0.7280 0.0339 0.1966 0.7883 0.0165 0.1382 0.2818 0.0324 0.1970
GTM 0.7942 0.1787 0.2986 0.8198 0.0536 0.2566 0.8496 0.3076 0.4292 0.0226 0.0001 0.2064

CISIR 0.8254 0.4287 0.4939 0.8552 0.4236 0.5187 0.8825 0.3561 0.4950 0.9330 0.9543 0.8798
Oracle 0.8608 0.4852 0.5560 0.9003 0.5448 0.6358 0.9651 0.8286 0.8863 0.9838 0.9850 0.9819

This is because messages are more frequently posted in the IRC dataset, thereby increasing

the number of incorrect pairs in the constructed graph. Examining the graph constructed by

GTM, there are only two connected components, indicating that many conversations were

incorrectly combined; in contrast, CISIR may be exempt from error propagation because

it only relies on top-ranked pairs. Doc2Vec is trained to predict words in a document in

an unsupervised manner. Its lowest performance in the experiments may point out a need

for supervised learning in the specific task of conversation disentanglement to tackle the

variation in semantic patterns. Time and author contextual cues do help conversation dis-

entanglement as seen in the results of Block-10 and Speaker. Both of these contexts are

integrated into our model.

12.4 Conclusion

In this chapter, we propose a novel framework for disentangling conversations, including

similarity estimation for message pairs and conversation identification. In contrast to pre-

vious work, we assume that we do not need to select all message pairs in the first stage,

thereby reducing computational time without sacrificing performance too much. To esti-

mate conversation-level similarity, a Siamese Hierarchical Convolutional Neural Network,

SHCNN, is proposed to minimize the estimation error as well as preserve both the low- and

high-level semantics of messages. In the second stage, we developed the Conversation Identi-
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fication by SImilarity Ranking, CISIR, algorithm, which exploits the assumption made in the

first stage and identifies individual, entangled conversations with high-ranked message pairs.

Extensive experiments conducted on four publicly available datasets show that SHCNN and

CISIR outperform several existing approaches in both similarity estimation and conversation

identification.
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CHAPTER 13

Enhancing Air Quality Prediction with Online

Community Behaviors in Social Media

In this chapter, we focus on modeling community behaviors jointly achieved by multiple

people with compositional and explainable behavior modeling proposed in Chapter 1. As an

example, we study joint online behaviors in social media with a task of air quality prediction.

As the blackbox of representation learning, we use a convolutional neural network to encode

each tweet into a tweet representation. An attention function with a learnable context vector

can conduct compositional operations to fuse the representations of tweets posted by users

in a certain location within the time period.

13.1 Introduction

In recent centuries, industrialization has considerably changed human society by providing

a stimulus to economic growth and improved life quality. However, the advancement is

accompanied by the increase in air pollutant emissions and risks to public health. As a

consequence, predicting real-time air quality information (AQI), such as the concentration

of PM2.5, has attracted more and more attention. Air quality prediction may help the

government and society to better protect their citizens from potentially harmful effects of

poor air quality.

To forecast AQI, one of the most conventional approaches is to exploit historical air

quality and treat the task as a time series prediction problem [125, 377]. However, the air

quality information can be too sophisticated to be predicted by only past AQI without any
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additional knowledge. For example, other environmental factors like humidity and tempera-

ture can affect the air quality when real-world events like wildfires may also play a role. To

learn the additional information, most of the relevant studies collect data from additional

sensors like images [180] and ground sensors [377]. Nevertheless, these sensors are expensive

in not only installation but also maintenance. As a result, exploiting sensors for air quality

prediction may be too costly for most of the cities.

To learn additional knowledge without physical sensors, one of the most effective ap-

proaches is to leverage the wisdom of the crowd on the internet. For example, 81% of the

adults in the USA spend on average two hours on social media and collectively publish 170

million tweets11 every day on their feelings and observations [346]. In other words, social

media users can be considered as “social sensors” to perceive environmental changes and

real-world events. Although social sensing has been applied to detect or predict several

real-world events, such as influenza surveillance [2, 99, 286] and earthquakes [283, 284], none

of them focuses on predicting the air quality information. Note that although Jiang et al.

[179] and Wang et al. [336] exploit social media to infer AQIs at current or past time, they

cannot predict the future air quality. Moreover, the AQIs in these previous studies usually

have considerable fluctuations, under which circumstance users tend to publish related posts,

which makes the inference task much more manageable than general cases. In general cases,

air quality changes gradually most time, which may be not sufficiently documented in social

media. For instance, in California, more than 80% of the changes in air quality conditions

are between good and moderate.

In this work, we aim to leverage social media for air quality prediction. Our approach

consists of three stages, including (1) tweet filtering, (2) feature extraction, and (3) air quality

prediction. In the first stage, all of the incoming tweets are filtered by geographical locations

and keywords extracted from statistical and topical modeling. After filtering the tweets, a

convolutional neural network is applied to extract the individual feature vector for each tweet

with a max-over-time pooling layer. A max-over-tweet layer is then proposed to aggregate

11For simplicity, the posts published on social media are called tweets in this work.
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Figure 13.1: The framework of the proposed approach.

the feature vectors of all tweets as the social media features for predicting air quality using a

fully-connected hidden layer to combine with historical measurements. Finally, experiments

conducted on 7-month large-scale Twitter datasets show that our approach significantly

outperforms all comparative baselines.

13.2 Air Quality Prediction with Social Media and NLP

Following the previous studies [377], we model the problem as a multi-class classification

task. According to the Environmental Protection Agency 12 (EPA) in USA, AQIs can be

categorized into six classes as shown in Figure 13.1. Note that more than 99% of daily AQIs

in the USA are similar and falling in the first two classes so that the classification task is

more laborious than predicting numerical AQIs. Given a location l and a time t, the corpus

D(l, t) is defined as the N tweets published by any user located at the location l at time t.

a(l, t) denotes the AQI value in the location l at time t while the historical measurements

H(l, t) = a(l, t), a(l, t− 1), · · · , a(l, t− T + 1) provide AQIs at T time points. Given the

corpus D(l, t) and the historical measurements H(l, t) at location l at time t, our goal is to

predict the corresponding class y of the AQI at the next time point t+ 1.

Framework Overview. Figure 13.1 illustrates the proposed three-stage framework. In the

12EPA: https://www.epa.gov/
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AQI Level of Concern
0-50 Good

51-100 Moderate
101-150 Unhealthy for Sensitive Groups
151-200 Unhealthy
201-300 Very Unhealthy
301-500 Hazardous

Table 13.1: Categorization of AQI from EPA.

first stage, the incoming tweets are filtered to remove irrelevant information. In the second

stage, representative features are extracted from filtered tweets and historical measurements.

In the last stage, we predict the category of air quality with a hidden layer and a softmax

function.

13.2.1 Stage 1: Tweet Filtering

In most of the cities, the majority of tweets should be irrelevant to air quality because users

are less likely to discuss air quality situations unless there is a dramatic change. Hence,

we need to filter tweets before using them for air quality prediction. Following the previous

work [235], we use three groups of keywords for filtering tweets, including (1) environment-

related terms like smog released by EPA, (2) health-related terms like choke provided

by the National Library of Medicine13, and (3) significant terms including the most sig-

nificant 128 words correlated to high AQIs in χ2 statistics [288].

The incoming tweets are filtered by the aforementioned keywords in the three groups.

The tweets containing at least one of these keywords are likely to be relevant to the topics

about air quality. We denote the corpus of relevant tweets as D′(l, t). The features extracted

from relevant tweets are expected to be more robust.

13https://www.nlm.nih.gov/medical-terms.html
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13.2.2 Stage 2: Feature Extraction

To extract features from text data, the effectiveness of convolutional neural networks (CNNs)

has been demonstrated in many studies [194]. In this work, CNNs with max-over-time pool-

ing are applied to derive the representation for every tweet. We then propose max-over-tweet

pooling to aggregate tweet representations across all relevant tweets as the corpus represen-

tation. Finally, the features can be acquired by concatenating the corpus representation and

the historical measurements for prediction.

Tweet Representation. A tweet wi can be represented by a matrix Wi ∈ Rd×|wi|, where

d is the dimension of word embeddings; and |wi| is the number of words in the tweet. As

shown in Figure 13.1, a CNN with d×k kernels extracts the n-gram semantics of k contiguous

words. Note that the row dimension of kernels is identical to the word embedding dimension

to jointly consider the overall embedding vector. The convolution with the j-th kernel

produces a numerical vector cji , which is then aggregated by max-over-time pooling [75, 194].

As a result, the representation of a tweet mi can be derived by chaining the pooled results

of all kernels.

Corpus Representation. Since relevant tweets in the corpus can be myriad and not

fixed, we need to aggregate various representations into an ultimate representation for the

whole corpus. Here we propose max-over-tweet pooling to derive the corpus representation.

The layer of max-over-tweet pooling reads all tweet representations and aggregates them by

deriving the maximum value for each representation dimension. More precisely, a dimen-

sion of the representation can be treated as the sensor about a particular topic while the

max-over-tweet pooling layer attempts to find the maximum sensor value among the sensor

values of all relevant tweets. Finally, the max-over-tweet pooling layer can derive the corpus

representation mall by considering all tweet representations.

After determining the corpus representation mall, the final features x(l, t) for air quality

prediction can be constructed by concatenatingmall and the historical measurements H(l, t).

As a consequence, the final features incorporate the knowledge of existing observations and

the crowd power on social media.
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13.2.3 Stage 3: Air Quality Prediction

To address the air quality prediction, we apply a fully-connected hidden layer to estimate the

logits of all classes. More precisely, the logits z(l, t) can be computed as z(l, t) = F (x(l, t)),

where F (·) is a fully-connected hidden layer with L hidden units; the dimension of z(l, t)

is identical to the number of classes in air quality categorization. Then the probabilistic

score for each class can be obtained with a softmax function [131] when the prediction can

be finally determined as the class with the highest score. Finally, the whole system can be

computed and trained in an end-to-end manner and optimized by the cross-entropy loss [131].

13.3 Experiments

13.3.1 Experimental Settings

Data Collection. For social media data, we exploit the Twitter developer API14 to crawl

1% of general English tweets published in the USA with location tags from November 17,

2015, to June 12, 2016. Each of the crawled tweets is associated with the corresponding

county and state. EPA releases daily AQIs for every county in the USA publicly, which

serve as the historical measurements and the gold standard.

Experimental Datasets. We conduct experiments to predict daily air quality conditions

for locations fine-grained to the county level. More specifically, each of the samples can be

represented by a tuple (l, t), where l is a county in the USA; t is a date with crawled tweets.

For each tuple, the historical measures are the AQIs in the previous seven days as seven

numerical features. Five experimental datasets are then constructed with the data of the

five most polluted states according to the annual report from America Health Ranking15,

including California (CA), Idaho (ID), Illinois (IL), Indiana (IN), and Ohio (OH). The overall

datasets are further partitioned by time into a 30-week training dataset, two 5-week datasets

14https://developer.twitter.com/en/docs.html

15https://www.americashealthrankings.org
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Dataset CA ID IN IL OH
Overall tweets 85.3M 1.2M 9.2M 23.2M 31.7M

Relevant tweets 11.8M 0.07M 0.5M 1.0M 1.4M
Training tuples 7,435 1,175 2,990 1,804 3,647

Validation tuples 1,487 235 598 361 729
Testing tuples 1,483 235 599 361 730

Table 13.2: Statistics of five experimental datasets. The relevant tweets refer to the remain-
ing tweets after the stage of tweet filtering.

for validation and testing. As a result, Table 13.2 shows the statistics of five experimental

datasets. Note that more than 90% tweets are filtered as irrelevant tweets in the stage of

tweet filtering. It also shows the necessity of filtering irrelevant tweets that can probably be

noises for air quality prediction.

Implementation Details Our approach is implemented by Tensorflow [1] and trained by

the Adam optimizer [196] with an initial learning rate 10−3. After parameter tuning, λ is set

to 10−3 while the number of hidden units in the hidden layer L is 128. The dimension of the

word embeddings is 300. All of the activation functions in the model are set to exponential

linear units (ELUs) [72]. For CNNS, 96 kernels with different sizes from 2 to 4 are applied

to obtain a 96-dimensional representation for each relevant tweet in the corpus.

Baseline Methods. Because we are the first study using social media to predict air quality

situation, there are much few available methods. Even though some studies [179] claim the

capability of inferring ongoing AQIs with social media, they apply strong restrictions to

derive features for highly polluted cities so that they are incapable of tackling most of the

cases in our experiments. In the experiments, we compare with two baseline methods as

follows: (1) Prediction with only AQIs (PAQI): To understand the base performance,

PAQI predicts the air quality conditions with only historical measurements. The knowledge

of social media is ignored for this baseline method. (2) Bag-of-words Features (BOW):

To demonstrate the effectiveness of extracted features, we replace the extracted features

with conventional bag-of-words features as a baseline method. Note that all baselines apply

a neural network with a hidden layer for prediction.
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Dataset Method
Micro Average Macro Average

Prec. Rec. F1 Prec Rec. F1
BOW 0.807 0.829 0.809 0.687 0.619 0.631

ID PAQI 0.816 0.728 0.757 0.611 0.677 0.617
Ours 0.863 0.811 0.828 0.691 0.776 0.714
BOW 0.792 0.786 0.786 0.508 0.508 0.501

IN PAQI 0.847 0.682 0.737 0.567 0.649 0.548
Ours 0.855 0.849 0.852 0.640 0.652 0.645
BOW 0.775 0.802 0.791 0.506 0.499 0.484

IL PAQI 0.834 0.686 0.737 0.580 0.666 0.566
Ours 0.844 0.847 0.845 0.646 0.638 0.640
BOW 0.744 0.780 0.760 0.515 0.512 0.510

OH PAQI 0.800 0.683 0.724 0.569 0.622 0.562
Ours 0.813 0.813 0.815 0.629 0.627 0.627
BOW 0.647 0.683 0.660 0.495 0.488 0.485

CA PAQI 0.826 0.725 0.745 0.700 0.772 0.694
Ours 0.830 0.786 0.798 0.728 0.786 0.742

Table 13.3: The overall classification performance of the baseline methods and our approach.
All of the improvements of our approach (ours) over PAQI are significant with a paired t-test
at a 99% significance level.

13.3.2 Experimental Results

For evaluation, micro- and macro-F1 scores are selected the evaluation metrics. Table 13.3

demonstrates the performance of the three methods. Micro-F1 scores are generally better

than macro-F1 scores because the trivial cases like the class of good air quality are the

majority of datasets with higher weights in micro-F1 scores. PAQI is better than BOW

although BOW uses the knowledge of social media. It is because BOW features involve all

irrelevant words so that the actual essential knowledge cannot be recognized. Our approach

significantly outperforms all baseline methods in almost all metrics. More precisely, our

approach improves the air quality prediction over PAQI from 6.92% to 17.71% in macro-F1

scores. The results demonstrate that social media and NLP can benefit air quality prediction.

In addition to the unbalanced datasets based on the categorization of EPA, we also

conduct the experiments with relatively balanced datasets to show the robustness of our

proposed approach. More specifically, the categorization is refined to four classes with finer
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Figure 13.2: Micro F1 scores with four-class
categorization. All of the improvements of
our approach over the baseline method are
significant with a paired t-test at a 99% sig-
nificance level.
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Figure 13.3: Macro F1 scores with four-class
categorization. All of the improvements of
our approach over the baseline method are
significant with a paired t-test at a 99% sig-
nificance level.

windows of AQIs, including: [0, 25), [25, 50), [50, 75), and [75,∞). Figures 13.2 and 13.3

illustrate the Micro- and Macro-F1 scores of PAQI and our approach in the refined datasets.

The experimental results show that the improvements are consistent with the experiments in

unbalanced datasets of extreme air quality prediction. It also demonstrates the robustness

of our proposed approach.

13.4 Conclusion and Discussions

In this chapter, we propose a novel framework for leveraging social media and NLP to air

quality prediction. After filtering irrelevant tweets, a CNN derives a feature vector for each

tweet with max-over-time pooling. We also propose the novel max-over-tweet pooling to

aggregate the feature vectors of all tweets over numerous hidden topics. Finally, the corpus

representation can be taken into account to predict air quality with historical measurements.

The results of extensive experiments show that our proposed approach significantly outper-

forms two comparative baseline methods across both balanced and unbalanced datasets for

different locations in the USA. This is because: (1) Most noisy and irrelevant tweets are

effectively filtered in the stage of tweet filtering; (2) The convolutional neural network and

235



the proposed max-over-tweets are able to extract essential knowledge about air quality pre-

diction from myriad tweets in social media; (3) There are some limitations on only using

historical measurements, such as the capability of recognizing real-world events.
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CHAPTER 14

Conclusion

We have introduced a three-layer universal framework to model complex human behaviors at

different scales. In the first layer, we develop effective and efficient machine learning methods

to derive robust representations for heterogeneous data. Precisely, we leverage the structural

semantics in diverse data to not only encode more knowledge into representations but also

reduce redundant computations for better efficiency. In the second layer, we learn represen-

tations of diverse resources in a universal latent space and estimate the importance of each

resource with the aspect attention, thereby deriving satisfactory joint representations for het-

erogeneous data. In the third layer, we treat the representation learning methods as atomic

blackboxes so that domain experts can conveniently conduct compositional and explainable

operations to describe complex human behaviors at different scales for machine learning

methods. The contributions of this dissertation in advancing human behavior modeling with

heterogeneous data can be further summarized as follows:

• Our proposed end-to-end framework comprehensively addresses the research problems

through all stages of human behavior modeling from harnessing heterogeneous data to

tackling behaviors at different scales. We also provide various concrete examples with

real-world applications and sufficient experiments for each layer.

• We propose various machine learning algorithms to capture structural semantics from

heterogeneous data resources, such as texts (Chapter 3), sequences (Chapter 4), net-

works (Chapter 5), for deriving better machine-readable representations. The extensive

experiments indicate that representations with structural semantics consistently lead

to more satisfactory results than the outcomes of state-of-the-art approaches for down-

stream applications across different data resources.

237



• We present how to improve the efficiency of machine learning methods with the seman-

tic structure for harnessing heterogeneous data, especially in the serving stage that is

extremely important for practical applications. CANTOR (Chapter 6) finds the core-

sets of user affinity groups to accelerate the inference of generating recommendations

for latent factor models. TahcoRoll (Chapter 7) fits biological sequences in a binary

structural automaton to speed up the process of signature profiling. These results

demonstrate our contributions in addressing the research problems of high volume and

high velocity in the era of big data.

• We integrate heterogeneous data with the universal latent space and the aspect at-

tention. SHE-UI (Chapter 8) leverages the connections between entities with different

types and derives universal representations with graph embedding algorithms for iden-

tifying users behind shared accounts. SPoD (Chapter 9) and HUG (Chapter 10) apply

the aspect attention to model completely distinct resources in social media posts (i.e.,

texts, images, networks) to tackle the research problems of sponsor detection and

user geolocation. The empirical results show that methods with universal and aspect-

attentive attention significantly outperform conventional methods that independently

consider different resources.

• We demonstrate the potential impacts of our proposed framework to model multi-scale

human behaviors with concrete examples. For individual behaviors, RIN (Chapter 11)

learns reformulation behaviors with homomorphic query embedding for query sugges-

tion in web search. For interpersonal behaviors, SHCNN (Chapter 12) establishes the

similarity graph of text messages by estimating the semantic similarity for disentan-

gling multi-party conversations. For community behaviors, we apply deep learning

methods to capture collective reflection of social media users to the environment for

enhancing air quality prediction.
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APPENDIX A

Appendix in QDS-Transformer

A.1 Experimental Details

In this section, we clarify the details about experimental datasets and experimental settings.

A.1.1 Experimental Datasets

TREC-19 DL Track Dataset. For ad-hoc retrieval, we adopt the TREC-19 DL track

benchmark as the experimental dataset with training, dev, and test sets. Training and

dev sets consist of large-scale human relevance assessments derived from the MS MARCO

collection [25] with no negative labels and sparse positive labels for each query while relevance

judgments in the test sets are annotated by NIST judges.

Few-shot Document Ranking Benchmarks. For few-shot learning, three retrieval

benchmark datasets are utilized in our experiments, including Robust04, ClueWeb09-B, and

ClueWeb12-B13. Robust04 provides 249 queries from TREC Robust track 2014 with rele-

vance labels. ClueWeb09-B includes of 200 queries with relevance labels from TREC Web

Track 2009-2012. ClueWeb12-B13 consists of 100 queries from TREC Web Track 2013-2014

with relevance labels.

Note that Table 3.1 in the paper summarizes the statistics of four experimental datasets.

Datasets of all benchmarks are publicly available. The TREC-19 DL track provides all

dataset on its offical website16. The queries and relevance assessments of three few-shot

16https://microsoft.github.io/TREC-2019-Deep-Learning/
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document ranking datasets can be found at the TREC website17 while document collocations

are also publicly available on the corresponding sites181920.

A.1.2 Experimental Settings

Ad-hoc Retrieval. Experiments follow the protocol of the TREC-19 deep learning track.

Each method is trained with the training set. The model parameters can be further fine-

tuned with the dev set and the MRR@10 metric. The fine-tuned model is finally applied to

the test set for evaluation. Following the official metrics, MRR@10 is used in dev set runs

as labels are incomplete and shallow, while the test set is comprehensively evaluated using

NDCG@10 and MAP@10.

Few-shot Document Ranking. All experimental settings for few-shot learning are consis-

tent with the“MS MARCO Human Labels” setting in previous studies [365]. Each method

first trains a neural ranker on MARCO training labels, which are identical as in the TREC

DL track. The latent representations of trained models are then considered as features for a

Coor-Ascent ranker for low-label datasets using five-fold cross-validation [83, 84] to rerank

top-100 SDM retrieved results [239]. Standard metrics NDCG@20 and ERR@20 are used

to compare the different approaches. The results are reported by taking the average of each

test fold from the total 5 folds, wherein the rest 4 folds in each round are used as training

and dev queries.

Hyperparameter Settings and Search. We adopt the pretrained model for sparse atten-

tion [31] and fix all of the hidden dimension numbers as 768 and the number of transformer

layers as 12. BERT-based models use RoBERTa as pretrained models [222]. To hyperpa-

rameter tuning, we search the local attention window size w in {32, 64, 128, 256, 512, 1024}
with the dev set and determine w = 128. Models are optimized by the Adam optimizer [196]

17https://trec.nist.gov/

18RB04: https://trec.nist.gov/data/qa/T8 QAdata/disks4 5.html

19CW09: http://lemurproject.org/clueweb09/

20CW12: https://lemurproject.org/clueweb12/
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with a learning rate 10−5, (β1, β2) = (0.9, 0.999), and a dropout rate 0.1. Under the hy-

perparameter settings, the parameter numbers of our implemented methods are shown in

Table A.1 summarizing the sizes of parameters based on model.parameters() in PyTorch.

Method #Params Method #Params
RoBERTa (FirstP) 124M RoBERTa (MaxP) 124M
Sparse-Transformer 149M Longformer-QA 149M

Transformer-XH 128M QDS-Transformer 149M

Table A.1: Number of parameters for methods.

A.1.3 Evaluation Scripts

All evaluation measures are computed by the official scripts. For ad-hoc retreival, we use

trec eval21 as the standard tool in the TREC community for evaluating ad-hoc retreival runs.

This is also the official setting of the TREC-19 deep learning track. For few-shot document

ranking, we use graded relevance assessment script (gdeval)22 as the evaluation script mea-

suring NDCG and ERR. Note that this setting is consistent with previous studies [83, 365].

A.2 Baseline Methods

In this section, we introduce each baseline method.

TREC Best Runs.

• bm25tuned prf [352] fine-tunes the BM25 parameters with pseudo relevance feedback

as the best BM25 based method in official runs.

• srchvrs run1 is marked as the best traditional ranking method among official runs

[80].

• TUW19-d3-re [153] as the best method without using non-pretrained language mod-

els (non-PLM) in official runs utilizes a transformer to encode both of the query and the

21https://github.com/usnistgov/trec eval

22https://trec.nist.gov/data/web/10/gdeval.pl
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document, thereby measuring interactions between terms and scoring the relevance.

• bm25 expmarcomb [7] combines sentence-level and document-level relevance scores

with a pretrained BERT model.

Classical IR Methods.

• SDM [238] as a sequential dependence model conducts ranking based on the theory

of probabilistic graphical models. We obtain ranking results of SDM from previous

studies [83]. SDM is not only treated as a baseline method but also providing the

candidate documents for reranking in the few-shot learning task.

• Coor-Ascent [239] is a linear feature-based model for ranking. It is also considered

as the trainer in few-shot learning with representations from methods.

Neural IR Methods.

• CO-PACRR [163] utilizes CNNs to model query-document similarity matrices and

provide a score using a max-pooling layer.

• Conv-KNRM [84] applies CNNs to independently encode the query and the doc-

ument. The encoded representations are then integrated by a cross-matching layer,

thereby deriving relevance scores.

Transformer-based Methods.

• TK [154] and TKL [155] apply transformers to independently model the query and

document, thereby measuring term interactions at the embedding level.

• RoBERTa (FirstP) and RoBERTa (MaxP) [83] adapt long-form documents by

considering the first paragraph and combining RoBERTa outputs with max-pooling

over paragraphs. Note that each paragraph is also attached with query tokens before

being fed into the model.

• Transformer-XH [372] encodes each sentence independently and considers their re-

lations with an extra-hop attention layer. Note each sentence is also attached with

query tokens as the model input.

• Sparse-Transformer [65] simply uses sparse local attention to tackle the efficiency

issue of transformers.
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• Longformer-QA [31] extends Sparse-Transformer by attaching two global attention

tokens to the query and the document as their settings for question answering. Note

that their global attention would not consider document structural information.
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APPENDIX B

Appendix in MARU

B.1 The proof of Corollary 5.1

Proof. For the one-directional random walk, the expected number of visited tail nodes is

Eo = 1 +
∑2n

i=0 i · pi · (1 − p). For the bidirectional random walk, the expected number of

visited tail nodes is Eb = 1 + 2 ·∑n
i=0 i · pi · (1− p). Therefore, we have

lim
n→∞

Eb − Eo = lim
n→∞

(1− p) ·
(

n∑
i=1

i · pi − (i+ n) · pi+n

)

= lim
n→∞

p · (1− pn) · (2 · n · pn+1 − (2n+ 1) · pn + 1)

1− p
=

p

1− p > 0
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APPENDIX C

Appendix in CANTOR

C.1 Proof of Theorem 6.1

Proof. Without loss of generality, we assume that vectors in At, Q, and st have unit norms.

∀q ∈ Q, i ∈ At, we have:

|piqT −Nst (pi) q
T | =

∣∣(pi −Nst(p))q
T
∣∣

(a)

≤
√
d‖pi −Nst(pi)q

T ‖2 ≤
√
d‖pi −Nst(pi)‖2 ≤

√
d‖pi −Nst(pi)‖22

=
√
d
(
‖pi‖22 + ‖Nst(pij )‖22 − 2Nst(pi)p

T
i

) (b)

≤
√
d [2− 2ε] = δ,

where we define δ =
√
d [2− 2ε]. (a) follows from the fact that ‖ · ‖1 ≤

√
d‖ · ‖2, where d is the

dimension of the vector. (b) follows from the condition of theorem.

C.2 Proof of Theorem 6.2

Proof. Since st is a ε set cover of pis, there exist a δ such that st is a δ-user coreset of pis.

Therefore, for any given query q and vector pt sampled from PAt , we have

|Nst(pi)q
T − ptqT | = |Nst(pi)q

T − piqT + piq
T − ptqT |

≤ |Nst(pi)q
T − piqT |+ |piqT − ptqT | ≤ δ + |piqT − ptqT |
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Since pi and pt follow the same distribution, pi and pt will have same expectation value and

we have:

E[|Nst(pi)q
T − ptqT |] ≤ E[δ + |piqT − ptqT |]

= δ + E[|piqT − ptqT |]
(a)

≤ δ + |E[piq
T ]− E[ptq

T ]|

= δ,

where (a) follows the Jensen’s inequality. Therefore, by Hoeffding’s inequality, with proba-

bility at least 1 - γ,

1

k

k∑
i=1

∣∣Nst (pi) q
T − ptqT

∣∣ ≤ δ +

√
2 log (1/γ)

k
.

By the fact that for any set S, min(S) ≤ mean(S), we will have:

min
i

(∣∣Nst(pi)q
T − ptqT

∣∣) ≤ 1

k

k∑
i=1

∣∣Nst(pi)q
T − ptqT

∣∣
≤ δ +

√
2 log(1/γ)

k
,
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APPENDIX D

Appendix in TahcoRoll

D.1 Proof of Proposition 7.1

Proof. Given the prefix length i and the number of possible characters c, there are ci possible

prefixes in total. Assuming the characters are uniformly distributed, the probability that a

particular prefix exists in n signatures is:

1−
(

1− 1

ci

)n

.

Therefore, the expected number of collided prefixes is:

n− ci
(

1−
(

1− 1

ci

)n)
,

and the expected number of prefixes without any collision is:

n−
(
n− ci

(
1−

(
1− 1

ci

)n))
= ci

(
1−

(
1− 1

ci

)n)
= ci

(
1−

(
ci − 1

ci

)n)
.

However, the expected number above includes the cases that fail before reaching the i-th

character. Hence, the expected number of these cases should be deducted from the above

number. Finally, the expected number of signatures that fail to find their length-i prefixes

along the trie during its insertion is:

ci
(

1−
(
ci − 1

ci

)n)
− ci−1

(
1−

(
ci−1 − 1

ci−1

)n)
.
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D.2 Proof of Proposition 7.2

From Proposition 7.1, the expected number of node for prefix length i in n signatures is

ci
(

1−
(

ci−1
ci

)n)
. Intuitively, summing all possible prefix lengths up to the length of signa-

ture m, the expected number of trie nodes is
∑m

i=1 c
i
(

1−
(

ci−1
ci

)n)
. We provide the proper

proof below.

Proof. Denote the expected number of signatures that fail to find their length-i prefixes on

the trie during its insertion as f(i). Given the length of signatures m, each signature that

fails to find the length-i prefix along the trie during its insertion will result in the addition

of m− i+ 1 nodes. Based on Proposition 1, the expected number of nodes in the trie is:

m∑
i=1

(m− i+ 1) · f(i)

=
m∑
i=1

(m− i+ 1)

[
ci
(

1−
(
ci − 1

ci

)n)
− ci−1

(
1−

(
ci−1 − 1

ci−1

)n)]

=
m∑
i=1

(m− i+ 1)

[
ci
(

1−
(
ci − 1

ci

)n)]
−

m−1∑
i=1

(m− i)
[
ci
(

1−
(
ci − 1

ci

)n)]

=
m−1∑
i=1

[(m− i+ 1)− (m− i)]
[
ci
(

1−
(
ci − 1

ci

)n)]
+ cm

(
1−

(
cm − 1

cm

)n)
=

m∑
i=1

ci
(

1−
(
ci − 1

ci

)n)
.
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D.3 Proof of Proposition 7.3

Proof. Suppose that the number of signatures to be added into a trie is extremely large. The

expected number of nodes with c possible characters is:

lim
n→∞

m∑
i=1

ci
(

1−
(
ci − 1

ci

)n)
=

m∑
i=1

ci =
c (cm − 1)

c− 1
=
cm+1 − c
c− 1

.

For the plain AC, there are four possible characters, i.e., A, C, G and T. Hence, the expected

number of its nodes NA is:

NA =
4m+1 − 4

4− 1
=

(22)
m+1 − 4

3
=

22m+2 − 4

3
=

4 (22m − 1)

3
.

For the thinned automaton, there are two possible characters, i.e., 0 and 1. Hence, the

expected number of its nodes NT is:

NT =
2m+1 − 2

2− 1
= 2(2m − 1).

Finally, we compute the ratio of the expected number of two approaches as follows:

NT

NA

=
2(2m − 1)

4(22m−1)
3

=
3

2
· 2m − 1

22m − 1
=

3

2
· 2m − 1

(2m + 1) (2m − 1)
=

3

2
· 1

2m + 1 .
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[230] E. Mayfield, D. Adamson, and C. P. Rosé, “Hierarchical conversation structure pre-

diction in multi-party chat,” in SIGDIAL’12. ACL, 2012, pp. 60–69. 21, 209, 211,

213

275

http://www.ncbi.nlm.nih.gov/pubmed/27283950
http://www.cbcb.umd.edu/


[231] M. Mazloom, R. Rietveld, S. Rudinac, M. Worring, and W. Van Dolen, “Multimodal

popularity prediction of brand-related social media posts,” in Proceedings of the 24th

ACM international conference on Multimedia (MM). ACM, 2016, pp. 197–201. 158

[232] M. L. McHugh, “Interrater reliability: the kappa statistic,” Biochemia medica: Bio-

chemia medica, vol. 22, no. 3, pp. 276–282, 2012. 169

[233] S. Mehri and G. Carenini, “Chat disentanglement: Identifying semantic reply relation-

ships with random forests and recurrent neural networks,” in IJCNLP’17, vol. 1, 2017,

pp. 615–623. 21, 210, 222

[234] Q. Mei, D. Zhou, and K. Church, “Query suggestion using hitting time,” in CIKM ’08.

ACM, 2008, pp. 469–478. 20, 187, 192

[235] S. Mei, H. Li, J. Fan, X. Zhu, and C. R. Dyer, “Inferring air pollution by sniffing social

media,” in 2014 IEEE/ACM International Conference on Advances in Social Networks

Analysis and Mining (ASONAM 2014). IEEE, 2014, pp. 534–539. 230

[236] P. Melsted and J. K. Pritchard, “Efficient counting of k-mers in DNA sequences

using a bloom filter,” BMC Bioinformatics, vol. 12, no. 333, 2011. [Online]. Available:

http://pritch.bsd.uchicago.edu/bfcounter.html 17, 108

[237] S. Memczak, M. Jens, A. Elefsinioti, F. Torti, J. Krueger, A. Rybak, L. Maier, S. D.

Mackowiak, L. H. Gregersen, M. Munschauer et al., “Circular rnas are a large class of

animal rnas with regulatory potency,” Nature, vol. 495, no. 7441, pp. 333–338, 2013.

11, 41

[238] D. Metzler and W. B. Croft, “A markov random field model for term dependencies,”

in Proceedings of the 28th annual international ACM SIGIR conference on Research

and development in information retrieval, 2005, pp. 472–479. 22, 29, 242

[239] ——, “Linear feature-based models for information retrieval,” Information Retrieval,

vol. 10, no. 3, pp. 257–274, 2007. 240, 242

276

http://pritch.bsd.uchicago.edu/bfcounter.html


[240] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word repre-

sentations in vector space,” in Proceedings of Workshop at International Conference

on Learning Representations, 2013. 131, 135

[241] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed repre-

sentations of words and phrases and their compositionality,” in Advances in neural

information processing systems, 2013, pp. 3111–3119. 13, 63, 64, 71, 75, 136, 144, 145,

192, 210

[242] X. Min, W. Zeng, N. Chen, T. Chen, and R. Jiang, “Chromatin accessibility pre-

diction via convolutional long short-term memory networks with k-mer embedding,”

Bioinformatics, vol. 33, no. 14, pp. i92–i101, 2017. 46

[243] B. Mitra, “Exploring session context using distributed representations of queries and

reformulations,” in SIGIR ’15. ACM, 2015, pp. 3–12. 205

[244] S. Moro, P. Rita, and B. Vala, “Predicting social media performance metrics and

evaluation of the impact on brand building: A data mining approach,” Journal of

Business Research, vol. 69, no. 9, 2016. 161, 163

[245] J. Mueller and A. Thyagarajan, “Siamese recurrent architectures for learning sentence

similarity.” in AAAI’16, 2016, pp. 2786–2792. 21, 210, 217

[246] M. Naehrig, K. Lauter, and V. Vaikuntanathan, “Can homomorphic encryption be

practical?” in Proceedings of the 3rd ACM workshop on Cloud computing security

workshop. ACM, 2011, pp. 113–124. 191

[247] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann ma-

chines,” in ICML ’10, 2010, pp. 807–814. 194

[248] G. Navarro and M. Raffinot, Flexible pattern matching. Cambridge University Press,

2008. 109, 112

277



[249] B. Neyshabur and N. Srebro, “On symmetric and asymmetric lshs for inner product

search,” in ICML, 2015. 16, 86, 100

[250] R. Nogueira and K. Cho, “Passage re-ranking with bert,” arXiv preprint

arXiv:1901.04085, 2019. 10, 22, 24

[251] R. Nogueira, W. Yang, K. Cho, and J. Lin, “Multi-stage document ranking with bert,”

arXiv preprint arXiv:1910.14424, 2019. 10, 22, 26

[252] E. Ntoutsi, K. Stefanidis, K. Nørv̊ag, and H.-P. Kriegel, “Fast group recommendations

by applying user clustering,” in International Conference on Conceptual Modeling.

Springer, 2012, pp. 126–140. 15

[253] Y. Ohshima and Y. Gotoh, “Signals for the selection of a splice site in pre-mrna:

computer analysis of splice junction sequences and like sequences,” J. Mol. Biol, vol.

195, no. 2, pp. 247–259, 1987. 59

[254] T. Opsahl and P. Panzarasa, “Clustering in weighted networks,” Social networks,

vol. 31, no. 2, pp. 155–163, 2009. 62

[255] M. Ou, P. Cui, J. Pei, Z. Zhang, and W. Zhu, “Asymmetric transitivity preserving

graph embedding,” in KDD. ACM, 2016, pp. 1105–1114. 13

[256] M. Ouedraogo, C. Bettembourg, A. Bretaudeau, O. Sallou, C. Diot, O. Demeure, and

F. Lecerf, “The duplicated genes database: identification and functional annotation

of co-localised duplicated genes across genomes,” PloS one, vol. 7, no. 11, p. e50653,

2012. 52

[257] U. Ozertem, O. Chapelle, P. Donmez, and E. Velipasaoglu, “Learning to suggest: a

machine learning framework for ranking query suggestions,” in Proceedings of the 35th

international ACM SIGIR conference on Research and development in information

retrieval. ACM, 2012, pp. 25–34. 20

278



[258] X. Pan and K. Xiong, “Predcircrna: computational classification of circular rna from

other long non-coding rna using hybrid features,” Mol. Omics, vol. 11, no. 8, pp.

2219–2226, 2015. 11, 41, 51, 52

[259] P. Pandey, M. A. Bender, R. Johnson, and R. Patro, “Squeakr: an exact and

approximate k-mer counting system,” Bioinformatics, p. btx636, 2017. [Online].

Available: +http://dx.doi.org/10.1093/bioinformatics/btx636 17, 108

[260] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,

N. Gimelshein, L. Antiga et al., “Pytorch: An imperative style, high-performance

deep learning library,” in Advances in Neural Information Processing Systems, 2019,

pp. 8024–8035. 31

[261] R. Patro, S. M. Mount, and C. Kingsford, “Sailfish enables alignment-

free isoform quantification from RNA-seq reads using lightweight algorithms.”

Nature biotechnology, vol. 32, no. 5, pp. 462–4, 2014. [Online]. Available:

http://dx.doi.org/10.1038/nbt.2862 107

[262] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-

del, P. Prettenhofer, R. Weiss, V. Dubourg et al., “Scikit-learn: Machine learning in

python,” JMLR, vol. 12, no. Oct, pp. 2825–2830, 2011. 54

[263] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for word repre-

sentation.” in Proceedings of Empirical Methods in Natural Language Processing, ser.

EMNLP ’14, vol. 14, 2014, pp. 1532–1543. 131, 135, 182, 192

[264] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of social repre-

sentations,” in Proceedings of the 20th ACM SIGKDD international conference on

Knowledge discovery and data mining, ser. KDD ’14, 2014, pp. 701–710. xxv, 13, 62,

63, 64, 71, 75, 80, 136, 144, 145

[265] M. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettlemoyer,

“Deep contextualized word representations,” in Proceedings of the 2018 Conference of

279

+ http://dx.doi.org/10.1093/bioinformatics/btx636
http://dx.doi.org/10.1038/nbt.2862


the North American Chapter of the Association for Computational Linguistics: Human

Language Technologies, Volume 1 (Long Papers), 2018, pp. 2227–2237. 4

[266] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettle-

moyer, “Deep contextualized word representations,” in Proc. of NAACL, 2018. 166,

167

[267] C. P. Ponting, P. L. Oliver, and W. Reik, “Evolution and functions of long noncoding

rnas,” Cell, vol. 136, no. 4, pp. 629–641, 2009. 40

[268] S. Poria, E. Cambria, and A. Gelbukh, “Deep convolutional neural network textual fea-

tures and multiple kernel learning for utterance-level multimodal sentiment analysis,”

in EMNLP’15. ACL, 2015, pp. 2539–2544. 210

[269] D. M. Powers, “Evaluation: from precision, recall and f-measure to roc, informedness,

markedness and correlation,” 2011. 76, 143

[270] S. Qu, Z. Liu, X. Yang, J. Zhou, H. Yu, R. Zhang, and H. Li, “The emerging functions

and roles of circular rnas in cancer,” Cancer letters, vol. 414, pp. 301–309, 2018. 40

[271] A. Rahimi, T. Cohn, and T. Baldwin, “A neural model for user geolocation and lexical

dialectology,” in ACL, 2017. 175, 182, 183

[272] ——, “Semi-supervised user geolocation via graph convolutional networks,” arXiv

preprint arXiv:1804.08049, 2018. 176, 182, 183
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