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ABSTRACT OF THE DISSERTATION

Towards Semi-Dense Indirect Visual-Inertial Odometry

by

Hongsheng Yu

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, March 2018

Dr. Anastasios Mourikis, Chairperson

In this work, we focus on motion estimation in unknown environments using measurements

provided by an inertial measurement unit (IMU) and a monocular camera. We are in-

terested in estimating the trajectory of a moving platform, a problem typically termed

visual-inertial odometry (VIO). Most of existing methods for vision-aided inertial localiza-

tion rely on the detection and tracking of point features in the images. These approaches

greatly reduce the amount of data to process in each image, and are thus suitable for

application in resource-constrained systems. However these treatments inevitably discard

information that is beneficial for motion estimation, since not all parts of the images are

used. Therefore there has been growing interest in direct methods which rely on directly

using image intensities for motion estimation. Although this approach makes it possible

to use more pixel locations, it also suffers a number of shortcomings (e.g. non-Lambertian

surface properties, and the dependence on camera photometric parameters). By contrast

we are interested in approaches that rely on geometry of straight lines or image contours

rather than raw image intensities (thus the proposed approaches are indirect methods).
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This enables our algorithms to operate in environments where point features are sparse,

while circumventing the shortcomings of direct methods.

This thesis is divided into two main parts. We first propose a visual-inertial

localization algorithm that employs lines as measurements, in addition to traditional point

features. Specifically, a novel parameterization and measurement model for line features are

proposed, and we show how line features can be used for self-calibration of the IMU and

camera. Our results demonstrate that the proposed approach not only leads to improved

localization accuracy in point-feature-poor environments, but also reduces calibration errors

compared to the point-only approach.

We then propose a method for monocular visual-inertial odometry that utilizes

image edges as measurements. We here relax the requirement for having straight lines,

and do not employ any assumption on the geometry of the scene. This enables us to use

measurements from all image areas with significant gradient. In addition, we have pro-

posed a novel edge parameterization and measurement model that explicitly account for

the fact that edge points can only provide useful information in the direction of the image

gradient. Through both Monte-Carlo simulations, as well as results from real-world experi-

ments, we demonstrate that the proposed edge-based approach to visual-inertial odometry

is consistent, and outperforms the point-based one.
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Chapter 1

Introduction

1.1 Problem description

Visual-inertial odometry (VIO), which uses the measurements provided by an IMU

and a monocular camera, is an attractive solution for localization in GPS-denied environ-

ments. The main objective of VIO is to estimate the pose (orientation and position) of

a moving platform. Building a feature map of the surrounding environment is not a goal

of VIO methods, even though one may be generated as a “by-product” of the estimator.

Due to the fact that images provided by visual sensors are high-dimensional measurements,

in most existing VIO methods, detection and tracking of point features in the of images

are typically employed to reduce the amount of data and maintain a low computational

cost. This enables real-time operation even in resource-constraint systems, but inevitably

discards information provided by images that is useful for motion estimation. Moreover,

the number of point features could be scarce in man-made environments such as indoor

office spaces. This may degrade the performance of VIO algorithms if only point features
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are used. Therefore there has been growing interest in using more image regions, and di-

rect photometric residuals, for motion estimation. Depending on the nature of the image

information used for localization, the approaches could be categorized as dense, where the

entire image is used [56], and semi-dense approaches, where regions with significantly large

gradient magnitude are used [17,73].

In this manuscript we are focusing on increasing the density of image regions used

for motion estimation in two ways. First, we extract additional types of features in the im-

ages: besides extracting commonly-used point features, we also extract and use straight-line

features. This is motivated by the fact that in man-made environments straight line fea-

tures could be prevalent. Therefore by processing them in addition to point features, VIO

algorithms could perform better in point-feature-poor environments. Second, we propose

using general image contours from the images. This is similar to semi-dense approaches in

that all image areas with significant image gradients are used. However our formulation

relies on the geometry of contours in the image, instead of raw intensities. The proposed

approach provides robustness against scene illumination changes, camera auto-exposure ad-

justment, and other factors which typically affect the performance of methods that directly

use raw image intensities to formulate measurements. Through simulation and real-world

experiments, we demonstrate that the proposed edge-based approach can outperform the

traditional point-based one. Therefore our proposed approaches are promising components

towards the development of a semi-dense VIO system.
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1.2 Key contributions

1.2.1 Visual-inertial localization using line features

The first contribution of this work is a visual-inertial localization algorithm that

uses line features. This is motivated by the fact that the vast majority of existing methods

for vision-aided inertial navigation rely on the detection and tracking of point features in the

images. However, in several man-made environments, such as indoor office spaces, straight

line features are prevalent, while point features may be sparse. Therefore, developing meth-

ods that will enable the use of straight-line features for vision-aided inertial navigation can

lead to improved performance. While limited prior work on the subject exists, it assumes

the use of a global-shutter camera, i.e., a camera in which all image pixels are captured

simultaneously. Most low-cost cameras, however, use rolling-shutter (RS) image capture,

which renders the existing methods inapplicable. To address these limitations, we here

present an algorithm for vision-aided inertial navigation that employs both point and line

features, and is capable of operation with RS cameras. The three key contributions of this

section are (i) a novel parameterization for 3D lines, which is shown to exhibit better lin-

earity properties than existing ones, (ii) a novel approach for the use of line observations in

images, that forgoes line-fitting and does not assume that a straight line in 3D projects to

a straight line in the image, and is thus suitable for use with RS cameras, and (iii) a self-

calibration approach to calibrate all parameters of a high-fidelity model for both the IMU

and camera by using line measurements. Our results demonstrate that the proposed ap-

proach not only leads to improved localization accuracy in point-feature-poor environments

but also reduces calibration errors compared to a point-only approach.
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1.2.2 Edge-based visual-inertial odometry

The second key contribution of our work is a method for monocular visual-inertial

odometry that utilizes image edges as measurements. In contrast to previous feature-based

approaches, the proposed method does not employ any assumption on the geometry of the

scene (e.g., it does not assume straight lines). It can thus use measurements from all image

areas with significant gradient, similarly to direct semi-dense methods. However, in contrast

to direct semi-dense approaches, the proposed method’s measurement model is invariant to

linear changes in the image intensity. In addition we propose a novel edge parameterization

and measurement model that explicitly account for the fact that edge points can only provide

useful information in the direction of the image gradient. We present both Monte-Carlo

simulations, as well as results from real-world experimental testing, which demonstrate that

the proposed edge-based approach to visual-inertial odometry is consistent, and outperforms

the point-based one.

1.2.3 Manuscript organization

This manuscript is organized as follows. In Chapter 2 we focus on the problem

visual-inertial localization by incorporation of line features. We show that improved per-

formance can be attained by using line features and how lines can be used for sensor self-

calibration. In Chapter 3 we describe the edge-based visual-inertial odometry. Through

Monte-Carlo simulations and real-world experiments, we demonstrate that the proposed

approach out-performs an analogous feature-based approach.
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Chapter 2

Visual-Inertial Localization with

Line Features

2.1 Introduction

In this chapter, we focus on the problem of motion estimation using inertial mea-

surements and visual observations of line features with a rolling-shutter (RS) camera. A

significant body of literature has focused on the problem of motion estimation using cameras

and inertial measurement units (IMUs). However, prior work typically assumes that the

camera has a global shutter (GS), i.e., that all the pixels in an image are captured simultane-

ously. By contrast, most low-cost cameras typically use CMOS sensors with a RS, capturing

each row of pixels at a slightly different time instant. To develop high-precision localiza-

tion methods, suitable for low-cost robots and for indoor navigation using consumer-grade

cameras, the RS effect must be explicitly addressed in the design of estimation algorithms.
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The (only few) methods that have been proposed to date for motion estimation

using an IMU and a RS camera rely on the detection and tracking of point features in

the scene. Point features are commonly used in motion-estimation methods, as they are

abundant in many real-world environments, and well-established algorithms exist for their

detection and tracking. In several man-made environments however, such as indoors and

in urban areas, straight-line features are equally common. In this work, we present an

algorithm that is able to use line features for motion estimation with a RS camera, either

as an alternative to or in addition to point features.

As discussed in Section 3.2, the subject of motion and structure estimation from

line features has been extensively studied. However, almost all prior work assumes that a

GS camera is used. This is a significant assumption, since it guarantees that straight lines in

the scene project into straight lines in the image. Consequently, the first step of all methods

for line-based motion estimation using GS cameras is to perform straight-line detection and

line-fitting, in order to obtain the equations of image lines. When a RS camera is used,

straight lines do not in general project into straight lines in the images, and therefore these

methods are not applicable. If restrictive assumptions on the camera motion (e.g., constant

velocity) are imposed, it is possible to obtain a parametric description of the projection of

a straight line (see, e.g., [1]). However, such assumptions do not hold in general-motion

cases, and thus imposing them would lead to loss of estimation precision.

The main contribution of this chapter is a formulation of line-based visual-inertial

motion estimation with a RS camera that addresses the above challenges. Specifically, we

develop a measurement model for straight lines that is based on using the observations of
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all pixels on the projection of a line individually. This approach makes a line-fitting step

to compute the equations of image lines unnecessary, and can thus be employed with either

a RS or a global-shutter camera. This measurement model is used in conjunction with a

novel minimal parameterization for straight lines. We demonstrate experimentally that this

parameterization exhibits better linearity than parameterizations proposed in prior work,

and is thus better suited for use in linearization-based estimators.

The new formulation of the line-measurement equations is general, and can be

employed for estimation in a variety of settings (e.g., using either known or unknown lines),

with either an extended Kalman filter (EKF) or an iterative-minimization method. We here

assume that the positions and directions of the lines in the scene are not known a priori, and

present a visual-inertial odometry algorithm based on the hybrid-EKF algorithm of [47]. In

order to enable the use of a RS camera, we employ the formulation of [45], which makes

it possible to use the RS-camera measurements without imposing any assumptions on the

camera motion.

We also note that to obtain high-precision state estimates in vision-aided inertial

navigation, one pre-requisite is the use of accurate sensor models for both the camera and

the IMU. The additional information provided by line features can be employed to improve

the accuracy of both localization and sensor calibration. Therefore, in this chapter we

also propose a self-calibration framework that uses both point and line measurements, to

concurrently localize and estimate the following parameters:

• the IMU biases

• the misalignment and scale factors of the IMU sensors
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• the acceleration dependence (typically called g-sensitivity) of the gyroscope measure-

ments

• the camera-to-IMU spatial configuration

• the camera intrinsic parameters, including lens distortion

• the image readout time of the rolling-shutter camera

• the time offset between the timestamps of the camera and the IMU

Our simulation and experimental results demonstrate that the proposed method

yields high-precision state estimates, and high-quality calibration of the parameters in sensor

models.

2.2 Related Work

We begin by discussing related work, divided into four areas:

a) Motion Estimation with a Rolling-Shutter Camera: The use of a RS camera, as opposed

to a GS one, for motion estimation requires a special treatment: with a RS camera each

image row is captured at a slightly different time instant, and therefore from a different

camera pose. Since including one state for each image row (the “exact” approach) is com-

putationally intractable, existing methods employ some assumption about the nature of the

camera trajectory [26, 42, 58]. By contrast, our approach employs no assumptions on the

form of the camera trajectory itself, and is thus able to model arbitrarily complex motions.

Instead, it uses an approximate representation for the time-evolution of the estimation er-
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rors during the image readout time. Since these errors are typically small, this leads to only

small modeling inaccuracies.

b) Structure from Motion and SLAM using Line Features: In both the computer vision

and robotics communities, several approaches have been proposed to estimate the motion

of camera and scene structure by extracting line features from images (see, e.g., [5, 9, 16,

70, 76] and references therein). However these approaches all employ GS cameras, and

thus suffer from the limitations discussed in Section 2.1. Similarly, the work of [39], which

employs line-feature observations in conjunction with inertial measurements, also utilizes

a GS camera. By contrast, motion estimation using straight-line features and RS camera

is a less-explored topic. In [1] a bundle-adjustment method that employs constant-velocity

motion assumptions is employed, while in [16] prior information about the lines’ directions

in space is assumed. By contrast, in our work none of these assumptions are necessary.

c) Line Measurement Models and Line Parameterizations: When a GS camera is used, the

projection of a 3D straight line in an image is a straight line. This property, which is

employed in all prior work on motion estimation with lines and a GS camera, is no longer

valid when a RS camera is used. To address this issue, we here propose a new way of using

the “raw” pixel measurements belonging to line features, which is applicable with both

types of cameras.

In addition to the way in which line measurements are processed, the parameter-

ization of a line will also have great impact on the performance of any linearization-based

estimator. Previous work has used Plücker coordinates [5] or a pair of vectors [13, 65]

to represent 3D lines in space. However, these parameterizations are not minimal, and
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this over-parameterization can lead to numerical issues in EKF-based estimators. We here

propose a novel, minimal error parameterization for 3D lines, which has favorable charac-

teristics. Specifically, it has inverse-depth properties, and is anchored in one of the camera

poses from which the line was observed. These properties are desirable in EKF-SLAM,

as discussed in [66]. Moreover, we demonstrate that the proposed parameterization has

favorable linearity characteristics, through an analysis similar to that in [66].

d) Calibration of visual and inertial sensors: In [46] sensor models that include all the

systematic errors that can be modeled linearly and significantly affect the precision are

presented. In addition an EKF-based self-calibration approach is presented to calibrate all

the parameters. However, this approach is not directly applicable for line measurements

when only coarse estimates of the calibration parameters and the initial state are available,

due to the increased nonlinearity inherent in the line measurement model. Therefore in

this paper we implement a nonlinear-minimization based formulation that can process the

line measurements to calibrate all parameters described earlier, as well as initialize the

trajectory estimates. After convergence, the line measurements can be used similarly to

point feature for sensor self-calibration as proposed in [46].

2.3 Line Parameterization

We begin by discussing the line parameterization we employ in our work, which we

term the two-point inverse depth parameterization (TPIDP). For each line we employ an

“anchor frame” {A}, which is a known, constant coordinate frame (e.g., the first frame from

which the line was observed), and use it to define the quantities used in the parameterization.
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Figure 2.1: Illustration of the line-projection geometry. The origin of the anchor frame A
and the line define a plane with normal vector nπA , while the origin of the camera frame
{C} and the line define a plane with normal vector nπC .

Let the position and orientation of the anchor frame with respect to the global reference

frame, {G}, be denoted as GpA and G
AR, respectively1. To present our proposed line

parameterization, we note that when a line is observed from a camera frame {C}, the

normal vector of the plane defined by the line and the camera optical center, nπC , is the

only quantity needed in order to derive the measurement equations (see Section 2.6.2). To

describe the line parameters that we define, we proceed to obtain an expression for nπC .

We start by considering two distinct points, p1 and p2 on the line. The unit vector

normal to the plane defined by the origin of the camera frame and the line, expressed with

respect to the camera frame, can be computed as:

CnπC ∼
Cp1 × Cp2

where ∼ denotes equality up to a normalizing scale factor. Using the equations relating

1Notation: The preceding superscript for vectors (e.g., G in Gp) denotes the frame of reference with
respect to which quantities are expressed. X

Y R is the rotation matrix rotating vectors from frame {Y } to
{X}. XpY represents the origin of frame Y with respect to frame X. I represents the identity matrix, and
0 the zero matrix. Finally, â is the estimate of a variable a, and ã

.
= a− â is the error of the estimate.
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the points’ coordinates in {C} with the points’ coordinates in {A}, Cpi = C
ARApi + CpA,

i = 1, 2, we obtain:

CnπC ∼
C
AR

(
Ap1 × Ap2

)
+ CpA ×

(
C
AR

(
Ap2 − Ap1

))
(2.1)

We now note that the term Ap1 × Ap2 can be written as:

Ap1 × Ap2 = ||Ap1|| ||Ap2||sin〈Ap1,
Ap2〉AnπA

where nπA is the unit vector normal to the plane defined by the line and the origin of {A}

(see Fig. 2.1). Using this result, and expressing the quantities in the above equation with

respect to the global reference frame, {G}, we obtain:

CnπC ∼
C
GR

(
||Ap1|| ||Ap2||sin〈Ap1,

Ap2〉GnπA +

(
GpC − GpA

)
×
(
G
ARAp1 − G

ARAp2

))
∼ C

GR
(
GnπA +

(
GpC − GpA

)
× Gv`

)
(2.2)

where

Gv` =
1

||Ap1|| ||Ap2||sin〈Ap1,Ap2〉
(
G
ARAp1 − G

ARAp2

)
Let us now examine the terms appearing in (2.2). First, we have the camera position and

rotation with respect to the global frame, GpC and C
GR. Second, we have the position of

the origin of the anchor frame, GpA, which is a known constant. Third, we have the vector

GnπA , which is the unit vector formed by the origin of {A} and the line, expressed with

respect to the global frame. This vector depends on the line’s position and orientation

in space, and therefore it will constitute part of the line parameters. Finally, turning our
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attention to the vector Gv`, we note that this vector is a linear combination of Ap1 and Ap2

(expressed in {G}). Since both vectors lie in the plane normal to GnπA , Gv` must also lie

in this plane, and thus can be written as a linear combination of two basis vectors within

this plane. We can therefore write Gv` as:

Gv` = a1
GnπA ×w1 + a2

GnπA ×w2 (2.3)

where w1 and w2 are two known constant vectors. Note that, for any choice of these two

vectors, both GnπA ×w1 and GnπA ×w2 lie in the plane normal to nπA , and therefore these

are two valid basis vectors, assuming they are linearly independent. In our work, to ensure

linear independence, we select wi = G
AR

(
Api × AnπA

)
, i = 1, 2.

To summarize, a 3D line in our work is parameterized by the unit vector GnπA

and the parameters a1, a2. Since the unit vector has two degrees of freedom, this parame-

terization corresponds to a total of four degrees of freedom, as required for a 3D line. We

note that since the norms of the vectors Ap1 and Ap2 (i.e., the “depth” of these points

with respect to the anchor frame {A}) appear in the denominator of the expression for Gv`,

the parameters a1 and a2 have units of “inverse depth”, hence the name of our proposed

parameterization.

Given this line parameterization, the vector normal to the plane defined by the

camera optical center and the line is given by equations (2.2) and (2.3). How this normal

vector is used in order to construct a measurement model in our EKF estimator is explained

in the next section. As a final remark, we note that to ensure a minimal representation for

the errors, the error-vector for a given line parameterization fL = [GnTπA a1 a2]
T is defined
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as:

f̃L =

[
k1 k2 ã1 ã2

]T

where ã1 and ã2 represent the errors in the estimates of a1 and a2, while k1 and k2 are used

to define a minimal representation for the error in the unit vector GnπA . Specifically, to a

first-order approximation, the relationship between the true and estimated unit vectors is

given by:

GnπA = Gn̂πA + BnπA

k1
k2

 (2.4)

where BnπA
is a matrix whose columns are chosen to be two orthogonal vectors perpendic-

ular to Gn̂πA .

2.4 Estimator formulation

We now turn to the problem of using line measurements to track the motion of

a platform equipped with an IMU and a RS camera in an unknown environment. The

EKF-based estimator that we employ to track this state is a modification of the “hybrid”

filter proposed in [45].

In prior work, the hybrid estimator was employed in conjunction with point-feature

measurements only. Here, in addition to point features, we utilize the observations of

straight-line features in the environment. Since the details of the hybrid estimator have

been presented in prior work, we here briefly describe the structure of the estimator (see

Algorithm 1), and refer the reader to [45] for further details.
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Our goal is to estimate the pose of the moving platform with respect to a global

coordinate frame {G}. To this end, we affix a “body” coordinate frame, {B}, to the IMU,

and track the motion of this frame with respect to {G}. The origin of the body frame

is chosen as the point where the three accelerometer axes intersect while its orientation is

determined based on the camera frame {C}. In our formulation the rotation of {B} with

respect to {C} is defined to be a known, constant matrix C
BR. In our implementation the

value of this constant matrix is selected to be prior estimate of the camera-to-IMU rotation.

As a result the axes of {B} are ”close” to axes of the IMU sensors, which we seek to calibrate

using self-calibration.

The state vector of the EKF at time-step k is given by:

xk =
[
xTEk xTc xTB1

· · · xTBm fT1 · · · fTs
]T

(2.5)

where xEk is the “evolving state” of the IMU, comprising the current body-frame position,

velocity, orientation, as well as the time-varying IMU biases; xc is the vector of parameters

we seek to calibrate, which is defined in 2.14; the states xBj , j = 1 . . .m are the body states

corresponding to the time instants the past m images were recorded; and fi, for i = 1, .., s

are the currently visible features. These features include both points, which are represented

in inverse-depth parameterization (IDP) [53], and straight lines, which are represented in

the TPIDP parameterization described in the preceding section.

When an IMU measurement is received, it is used to propagate the evolving state

and covariance. On the other hand, when a new image is received, the sliding window of

states is augmented with a new state. Note that each image is sampled over a time interval

of non-zero duration (the rolling shutter readout time). By convention, we here consider
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that the timestamp associated with each image corresponds to the time instant the middle

row of the image is captured. Therefore the state corresponding to each image in the filter

represents the body-frame state at that time instant.

The images are processed to extract and match point and line features, which are

used in one of two ways: if a feature’s track is lost after m or fewer images, it is used to

provide constraints involving the poses of the sliding window. For this purpose, the multi-

state-constraint method of [44, 54] is employed, which makes it possible to use the feature

measurements without including the feature in the EKF state vector. On the other hand,

if a feature is still being tracked after m frames, it is initialized in the state vector and any

subsequent observations of it are used for updates as in the EKF-SLAM paradigm.

At each time step, the hybrid filter processes a number of features with each of

the two approaches. For each feature the appropriate residuals and Jacobian matrices are

computed, and a Mahalanobis-distance gating test is performed. All the features that pass

the gating test are then employed for an EKF update. At the end of the update, features that

are no longer visible and old sliding-window states with no active feature tracks associated

with them are removed. Note that, to ensure the correct observability properties of the

linearized system model, and thus improve the estimation accuracy and consistency, the

hybrid filter employs fixed linearization points for each state [44].

2.5 IMU model and state propagation

Due to the physical characteristics of the sensors, as well as imperfections of the

manufacturing process, the IMU measurements are affected by systematic errors (in addi-
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tion to random noise). For a full description of the sources of errors and their modeling,

the reader is referred to [71]. In our work, we employ sensor models that include all the

systematic errors that can be modeled linearly and have the most impact on precision.

Let us first consider the accelerometer measurements. Each of the three accelerom-

eter sensors in an IMU provides scalar measurements of specific force, modeled as:

ami = si
BuTi

Bas + bai + nai i = 1, 2, 3 (2.6)

where Bui is a unit vector along the sensing direction, si is a scale factor close to unity, bai

is a bias, nai is random measurement noise, and Bas is the specific-force vector:

Bas = B
GR(GaB − Gg)

with GaB being the acceleration of the body frame and Gg being the gravity vector. Stacking

the measurements of the three accelerometer sensors, we obtain the 3×1 vector:

am = Ta
Bas + ba + na

where Ta is a 3×3 matrix whose i-th row is si
BuTi , and ba and na are vectors with elements

bai and nai , respectively.

The gyroscope measurements are modeled as:

ωm = Tg
Bω + Ts

Bas + bg + nw

where Tg and Ts are 3× 3 matrices, bg is the measurement bias, and nw the measurement

noise. Similarly to the case of the accelerometer measurements, Tg arises due to the scale

factors in the gyroscope measurements and the misalignment of the gyroscope sensors to

the principal axes of {B}. On the other hand, the matrix Ts represents the acceleration
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dependence (g-sensitivity) of the measurements, which can be significant for low-cost MEMS

sensors [71].

Our goal is to estimate the values of the accelerometer and gyroscope bias, as

well as the matrices Ta, Tg, and Ts. We note that by estimating the matrices Ta and

Tg, we are effectively estimating the IMU sensors’ scale factors, the sensors’ misalignment,

and their direction with respect to the camera frame. Specifically, the scale factors of the

accelerometer and gyroscope sensors are given by the norm of the rows of Ta and Tg,

respectively, while the sensors’ direction in {B} is defined by the unit vector corresponding

to each row (see (2.6)). Knowing these unit vectors makes it possible to estimate the

misalignment of the sensors. Moreover, since the rotation between the camera frame and

{B} is by definition a known constant, these unit vectors also provide us with the direction

of the IMU sensors with respect to {C}.

Following standard practice, the bias vectors ba and bg are modeled as Gaussian

random-walk processes, while the matrices Ta, Tg, and Ts are assumed to be uncertain

but constant parameters2. Therefore, the evolving state of the EKF, xE , is given by:

xE =

[
B
Gq̄T GpTB

GvTB bTg bTa

]
(2.7)

On the other hand, the matrices Ta, Tg, and Ts are contained in the calibration-parameter

vector xc (see (2.5)). Specifically, we define a 27 × 1 vector xcIMU , comprising all the

elements of these three matrices, and this vector is included as part of xc (see (2.14)).

2Note that, if desired, it is straightforward to also model Ta, Tg, and Ts by random-walk models. This
however was not deemed necessary for the sensors used in our testing.
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IMU-based propagation

The IMU measurements are used for propagating the state estimates between

timesteps. Specifically, given the IMU measurements in a certain time interval, as well as

estimates for the IMU parameters, we compute the estimated acceleration and rotational

velocity of the body frame as:

Bâs = T̂−1a

(
am − b̂a

)
Bω̂ = T̂−1g

(
ωm − T̂s

Bâs − b̂g

)
These are subsequently be used to propagate the estimate of the evolving state via nu-

merical integration, as described in [44]. Moreover, the covariance matrix of the EKF

is propagated. For this step, we first compute the Jacobian matrices Φk and Γk, which

describe the relationship between the evolving-state errors in propagation:

x̃Ek+1
= Φkx̃Ek + Γkx̃cIMU + wk

where wk is the process-noise error, modeled as zero-mean Gaussian with covariance matrix

Qk. The matrices Φk and Γk are computed analytically, similarly to [44]. Note that the

above expression explicitly models the effects that errors in the IMU’s parameters have on

the state. This is also reflected in the EKF’s covariance propagation equation, given by:

Pk+1=


Φk Γk 0

0 I 0

0 0 I

Pk


Φk Γk 0

0 I 0

0 0 I



T

+ Diag(Qk,0) (2.8)
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2.6 Camera model

We here present the measurement model of the camera. In doing so, we will

introduce all the remaining calibration parameters, which together with xcIMU form the

parameter vector xc in (2.5). Let us consider that an image with timestamp t is received.

Due to the time delays inevitably affecting each sensor, this timestamp is affected by a

time offset, td, relative to the IMU timestamps [43]. Therefore, the middle image row was

actually captured at time t + td, and an image row that is n rows away from the middle

was captured at

tn = t+ td +
ntr
N

where tr is the image readout time, and N is the total number of image rows. Note that n

is a signed quantity: it is positive for rows below the middle, and negative for rows above

it.

If a feature with position Gpf is observed at a location that is n rows from the

middle, its image coordinates are described by the measurement model:

z = h(Cpf (tn)) + n (2.9)

where Cpf (tn) is the position of the feature with respect to the camera frame at time tn,

n is the measurement noise vector, and h(·) is the camera’s projection function, which is

a modeled as the standard perspective camera with radial and tangential distortion [28].

Denoting Cpf (tn) = [Cxf
Cyf

Czf ]T , the image projection is given by:

h
(
Cpf

)
= pc +

au 0

0 av


ud
vd

 (2.10)

20



where pc is the pixel location of the principal point, (au, av) are the camera focal length

measured in horizontal and vertical pixel units, andud
vd

=d

u
v

+

2t1uv + t2(u
2 + v2 + 2uv)

t1(u
2 + v2 + 2uv) + 2t2uv

 (2.11)

d = 1 + k1(u
2 + v2) + k2(u

2 + v2)2 + k3(u
2 + v2)3u

v

 =
1

Czf

Cxf
Cyf

 (2.12)

In the above, ki, i = 1, 2, 3 are the radial distortion coefficients, while t1, t2 are the tangential

distortion coefficients. Moreover, the position vector Cpf (tn) can be written as:

Cpf (tn) = C
BRB

GR(tn)
(
Gpf − GpB(tn)

)
+ CpB (2.13)

where CpB is the position of the origin of {B} in the camera frame, which must be estimated.

We can now define the 41× 1 vector containing the calibration parameters estimated in the

EKF:

xc=

[
xTcIMU

CpTB pTc au av k1 k2 k3 t1 t2 tr td

]T
(2.14)

The estimation of these parameters proceeds as normal in an EKF, by computing the Ja-

cobians of the measurement models with respect to these parameters, and updating their

estimates during EKF updates. In this process, the uncertainty of the calibration parame-

ters as well as the effect of this uncertainty on the state estimates, is modeled in a seamless

way via the EKF equations.
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2.6.1 Rolling-shutter modeling

We now show how the Jacobians of the feature measurements can be computed.

It is important to note that, as seen in (2.13), the feature measurements at different rows

(i.e., different n) in the same image of a rolling-shutter camera depend on states at different

time instants. Since it is impractical to include in the state vector all these states, previous

approaches typically employ assumptions about the nature of the motion during the image

readout time (e.g., constant-velocity motion [26, 42], or higher-order parametric forms [27,

58]). However, using low-dimensional models risks losing modeling fidelity, while high-

dimensional models incur high computational costs.

We here follow a different approach. Specifically, we begin by observing that

in any EKF based estimator (such as the one used here), the processing of the feature

measurements requires (i) the residual of each measurement, and (ii) a linear approximation

of the residual describing its dependence on the errors of the EKF state vector. The key

idea in our approach is that, in computing the residual, no assumptions on the form of

the trajectory during the readout time are imposed. Instead, we employ an approximate

representation for the error during the readout time: we express the error during this time

interval as a function of the state error at time the middle row of the image is captured.

This, in turn, allows us to only include this one state in the EKF sliding window, thus

obtaining a computationally efficient algorithm.

More specifically, the residual corresponding to the feature measurement (2.9) is

defined as:

r = z− h
(
C
BRB

GR̂(t̂n)
(
Gp̂f − Gp̂B(t̂n)

)
+ C p̂B

)
(2.15)
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where t̂n = t+ t̂d + nt̂r
N . To compute x̂B(t̂n), which is needed to evaluate this residual, we

integrate the IMU measurements in the time interval [t + t̂d, t̂n], starting from x̂B(t + t̂d)

(note that backward integration may be necessary). We stress that the state xB(t + td) is

the state at the time the middle row of the image is captured, and is part of the EKF sliding

window (see Section 3.3). Thus the estimate x̂B(t+ t̂d) is readily available. Note that since

we are employing direct integration of the IMU measurements to compute x̂B(t̂n), arbitrary

motions can be described (as long as they are within the bandwidth of the IMU).

To derive the linear expression relating the residual to the errors of the state

estimates, we begin by directly linearizing the camera observation model in (2.15), to obtain:

r ' Hθθ̃B(t̂n) + Hp
Gp̃B(t̂n) + Hcx̃c + Hf f̃ + n (2.16)

where Hθ and Hp are the Jacobians of the measurement function with respect to the

orientation and position errors at time t̂n, Hf is the Jacobian with respect to the feature

position, and Hc is the Jacobian with respect to xc. For details on the definition of the

orientation error, θ̃B, and the computation of the time-related Jacobians, please refer to [43].

We now explain how we express the errors at time t̂n as a function of the errors

at t+ t̂d. Starting with the position error, and using Taylor-series expansion, we obtain:

Gp̃B(t̂n) =Gp̃B(t+ t̂d)+
nt̂r
N

GṽB(t+ t̂d)+
(nt̂r)

2

2N2
GãB+. . .

This expression is exact if all terms are kept, but if only a finite number of terms is kept,

then we incur a truncation error. The key advantage here is that, since we have prior

knowledge about the magnitude of the estimation errors, we can predict the worst-case

modeling error incurred by any choice of truncation order. For example, if we only keep
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the first two terms, then the error in each direction is upper bounded by (ntr)2

2N2 εa where εa

is the worst-case acceleration error.

Thus if we model the position error using two terms, as

Gp̃B(t̂n) ' Gp̃B(t+ t̂d) +
nt̂r
N

GṽB(t+ t̂d)

we only incur a minimal loss of modeling accuracy. A similar analysis for the orientation

errors shows that even if we truncate the corresponding series after a single term, thus using

the approximation θ̃B(t̂n) ' θ̃B(t + t̂d), the worst-case unmodeled reprojection errors are

small.

Using these approximations in (2.16), we obtain the following linearized equation

for the measurement residual:

r ' Hθθ̃B(t+ t̂d) + Hp
Gp̃B(t+ t̂d) +

nt̂r
N

Hp
GṽB(t+ t̂d)

+ Hcx̃c + Hf f̃ + n (2.17)

This expression can be used for EKF updates, as it only involves the errors in the body

state at t + t̂d, the feature, and the calibration parameters, which are all part of the EKF

state vector.

2.6.2 Line measurement model

We now describe the formulation of the measurement model that we employ for

the straight-line features detected in the images. In prior work, the standard practice is to

employ line fitting in the images to obtain the equations of the lines in the images, and to

subsequently relate these equations to the configuration of the line and camera in space.
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However, when a moving RS camera observes straight lines, these are no longer guaranteed

to project into straight lines in the images. Therefore, our approach completely forgoes

the line-fitting step. Instead, all the pixels that are deemed to belong to a straight line

(see Section 3.5.2 for a description of our line-detection strategy) are directly used to define

measurement residuals for the EKF update.

Specifically, let us consider an image point that belongs to the projection of a 3D

line, and lies in the i-th row of the RS image. If we denote the normalized coordinates of

the point as (ui, vi), then the following equation is satisfied:

[
ui vi 1

]
CinπC = 0

where Ci is the camera pose at time ti, i.e., at the time instant the i-th image row was

recorded, and CinπC is defined by equations (2.2) and (2.3). We note that the above equation

involves the noise-less image projection coordinates, as well as the true line parameters. In

any real-world estimation problem, however, the measurements will be corrupted by noise,

and only estimates of the line parameters are available. Therefore, using these quantities,

we obtain a residual:

ri =

[
zTi 1

]
Cin̂πC

=

[
zTi 1

]
C
GR̂(t̂i)

(
Gn̂πA +

(
Gp̂C(t̂i)− GpA

)
× Gv̂`

)
(2.18)

where

Gv̂` = â1
Gn̂πA ×w1 + â2

Gn̂πA ×w2
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In the above, zi represents the normalized-image measurement vector,

zi =

ui
vi

+ ηi

where ηi is the image measurement noise, modeled as zero-mean, Gaussian, with covariance

matrix σ2I2, and ·̂ denotes the estimated value of a quantity. By employing linearization,

we can express the residual, up to a first order approximation, as a function of the errors

in the state estimates, the line-parameter estimates, and the measurement noise:

ri ' Hθθ̃B(t̂i) + Hp
Gp̃B(t̂i) + Hf f̃L + Hcx̃c + Γiηi (2.19)

where θ̃B(t̂i) and Gp̃B(t̂i) are the errors in the orientation and position estimates at time

instant t̂i, Hθ and Hp are the corresponding Jacobians, f̃L is the error in the estimates of

the line parameters and Hf is the corresponding Jacobian, x̃c is the error in the estimates

of the calibration parameters and Hc is the corresponding Jacobian and Γi is the Jacobian

of ri with respect to ηi. Having defined a residual in (2.18) and its linearized expression

in (2.19), we can now directly apply the method of [45] for performing an EKF update.

2.7 Maximum-a-posteriori self-calibration

We now describe a maximum-a-posteriori (MAP) estimator used to process both

IMU and image measurements for self-calibration when large initial errors do not allow

successful use of the EKF method described in the preceding section. In this formulation

the history of IMU states, estimates of feature parameters (IDP for points and TPIDP

for lines) and sensor model parameters are jointly optimized. Specifically, we assume that

there are N images and inertial measurements during the history of recorded images are
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available. The MAP estimates for all these quantities are determined by minimizing the

following cost function:

J = J1 + J2 + J3 + J4

= ‖xB1 − xBp‖Qp + ‖xc − xco‖Qc +
∑
`, j

‖z(j)` − h (fj , xB` , xc)‖R(j)
`

+

`=N∑
`=1

‖xB`+1
(t`+1 + td)−Φ

(
xB` (t` + td) ,

Bωm,
Bam

)
‖Qd`

(2.20)

In the equation above, notation ‖v‖Q denotes the Mahalanobis norm vTQ−1v.

There are four terms involved in the overall cost function and each part corresponds to one

type of information available to the estimation problem at hand.

• Terms J1 and J2 convey the prior information that is available to the system. Specif-

ically, the term J1 is the prior on the initial state of the IMU, with the prior estimate

and its covariance denoted by xBp and Qp, respectively. Typically estimates of the

initial pose and velocity of the system at the start of a trajectory may be available if it

is known that the system is kept static initially. On the other hand, J2 expresses the

prior information for the calibration parameters. The prior estimates of these quan-

tities may be obtained from earlier calibrations, CAD models, and/or use of “ideal”

sensor models (e.g., assuming perfect orthogonality of IMU axes, zero biases, and unit

scale factors).

• Term J3 expresses the weighted measurement residual for both line and point features.

We use the index ` to refer the body pose that observes the feature and j.

• The last term, J4, expresses the constraints due the process model of IMU. This
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includes the weighted difference between the state estimates and predicted estimates

at t`+1 by integrating IMU measurements. Due to temporal misalignment between

IMU and image timestamp, the time offset td is involved in term J4. The Jacobians

with respect to the IMU states and the time offset td are computed similarly to [43,44]

In order to minimize the cost function above, we employ Gauss-Newton iterative

minimization. The information matrix Λ resulting from all constraints is built at each

iteration, and the Gauss-Newton system is solved via Cholesky factorization.

Due to the higher computational cost of the iterative minimization algorithm com-

pared to the EKF approach, we only employ this this batch algorithm for estimator initial-

ization. Once the minimization has converged, the estimates of the IMU states and sensor

parameters are used to initialize the hybrid filter. The EKF covariance matrix is also com-

puted given the available Cholesky factorization. Specifically, let us assume that the state

vector defined in the Gauss-Newton minimization is partitioned as xMAP = [xTd xTk ]T , and

we seem to compute the covariance of xk. Then, if the upper triangular Cholesky factor

corresponding to xBA is given by:

RMAP =

 Rdd Rdk

0 Rkk

 (2.21)

The covariance matrix of xk is obtained as Pkk = R−1kk R−Tkk . Once the hybrid filter is

appropriately initialized, it begins to process inertial and visual data as described in Algo-

rithm 1.
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2.8 Simulation Results

In this section we present simulation results which demonstrate the properties of

the proposed line parameterization compared to alternatives by using the metric proposed

in in [66]. Based on this result, we further evaluate the performance of the proposed visual-

inertial odometry estimator which processes both point and line measurements by adopting

different parameterization for line.

2.8.1 Comparison of line parameterizations

We first examine the linearity characteristics of the proposed line parameterization.

We note that, as discussed in [53, 66], one of the key properties a state parameterization

must have, when used in an EKF estimator, is that it has to result in measurement models

with “small” nonlinearity. This is necessary, as large nonlinearities result in non-Gaussian

errors, and violate the small linearization-error assumptions of the EKF, leading to poor

performance. Hence, we here compare the linearity of the proposed TPIDP against the

following parameterizations: (i) the orientation-depth parameterization (ODP) employed

in [39], (ii) the orientation-depth parameterization with the depth represented by its inverse,

which we term orientation-inverse depth (OIDP), (iii) the Cayley parameterization of [80],

(iv) the Roberts parameterization [61], and (v) the orthonormal representation (Ortho)

of [6]. Note that while additional parameterizations have been proposed in the literature

(e.g., Plücker coordinates, two-point parameterizations), we are only interested in minimal-

error-representation parameterizations, due to their numerical advantages in EKF-based

estimation.
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The metric that we use to measure linearity is the measurement-linearity index

defined in [66]. Specifically, if we denote by y the n×1 vector containing the line parameters

and the poses from which this line was observed, the linearity index is defined as:

λ = ‖ε‖2, ε =



ε1

ε2

...

εq


, εi '

1

2

n∑
j=1

n∑
k=1

HijkPjk (2.22)

where q is the number of pixel observations corresponding to the line, Hijk = ∂2ri
∂yj∂yk

is

the second-order derivative of the measurement residual function (3.9), and Pjk is the (j, k)

element of the joint covariance matrix of y. Intuitively, the above metric evaluates the

magnitude of the second-order and higher terms in the measurement model, which are

ignored during EKF’s linearization.

To evaluate the linearity of the different parameterizations, we perform Monte-

Carlo simulations. In each trial, we randomly generate a line feature and m camera poses,

with m randomly selected between 8 and 15. The joint covariance matrix of the camera

poses is selected to be identical to the joint covariance matrix observed at a certain time in

one of our real-world experiments. For each randomly generated configuration we generate

simulated line-pixel measurements, and employ them to estimate the line parameters using

least-squares minimization. Subsequently, following the approach in [48], we compute the

joint covariance matrix of the line and camera poses, and use it to compute the linearity

index λ as shown in (2.22). In Table 2.1 we present the average linearity index, averaged

over the 6000 Monte-Carlo trials, for all the compared parameterizations. Recall that in
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Table 2.1: Linearity Index of Different Line Parameterizations

Parameterization Average Linearity Index

TPIDP 0.000049

OIDP 0.0013

ODP 0.0149

Roberts 0.0045

Ortho 0.0017

Cayley 0.0055

this table smaller values indicate smaller nonlinearity, and are preferable. We can clearly

see that the linearity index associated with the TPIDP parameterization is substantially

smaller than the index associated with all other parameterizations. Specifically, it is ap-

proximately 3.7 percent of the linearity index of the second-best parameterization, which

is the OIDP. This result demonstrates that the TPIDP results in a measurement model

that is “closer to linearity”, and thus we expect to obtain improved performance when us-

ing this parameterization in an EKF-based estimator. Moreover, this result indicates that

the covariance matrix computed by linearization of the measurement models using TPIDP

provides a more accurate description of the uncertainty.

2.8.2 Comparison of the hybrid EKF with different parameterizations

We next examine the effect of using straight-line measurements, and parameteriz-

ing these lines in different ways, in the hybrid EKF estimator. To demonstrate the effect
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Figure 2.2: Hybrid EKF simulations: average NEES and RMSE over 100 Monte-Carlo trials

caused by different choice of line parameterization, we assume that all calibration param-

eters in sensors’ model except the time-varying IMU biases are known in advance. To

this end, we perform Monte-Carlo simulations in a simulation environment that emulates

a real-world dataset. Specifically, in each Monte-Carlo trial, we generate a ground-truth

trajectory that follows the trajectory of the actual dataset, and in each image we generate

simulated point and straight-line feature measurements with characteristics (noise levels,

feature numbers, track lengths) as in the real-world dataset. The trajectory’s length was
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402 m, lasting about 328 s. The average number of point features per image is 30, while

the average number of line features is 15, and each line consists of 20 pixels on average.

We process the data by the following methods: (i) the hybrid EKF estimator that uses

point features only, (ii) the proposed hybrid EKF that uses both points and lines, using the

TPIDP representation for the lines included in the state, (iii) the hybrid EKF using points

and lines with the OIDP representation, and (iv) the hybrid EKF using points and lines

with the Orthogonal representation of [6]. The three line parameterizations used here are

the best three parameterizations in terms of linearity, as shown in the preceding tests.

The metrics we use to evaluate the performance of the different methods are (i)

the root-mean square error (RMSE) of the orientation and position estimates, and (ii) the

normalized estimation error squared (NEES) for the IMU state consisting of the orientation,

position, and velocity. The RMSE gives us a measure of the accuracy of the estimator,

while the NEES provides us with a measure of consistency [4, 44]. Specifically, for zero-

mean Gaussian errors the NEES should equal the dimension of the error-state, i.e., 9 in this

case. Larger values indicate that there exist unmodeled errors (e.g., linearization errors)

in the estimator, and that the covariance matrix reported by the EKF underestimates the

actual magnitude of the estimation errors. Examining both metrics provides us with a more

complete picture of the estimator’s performance.

Both the RMSE and NEES are averaged over 100 Monte-Carlo trials, and the

results are plotted over time in Fig. 2.2. Table 2.2 lists the average values over all Monte-

Carlo trials and all time instants. From these results, we can first observe that, as expected,

using line features in addition to point features provides additional information to the
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Table 2.2: Average RMSE and NEES for Fig. 2.2

Simulation Position Orientation NEES

Settings RMSE (m) RMSE (deg)

TPIDP 0.7059 0.6964 11.8096

OIDP 0.8192 0.7875 14.4869

Ortho 0.8947 0.8793 15.5772

Points Only 0.9554 0.8699 11.6510

estimator, and leads to lower estimation errors. Moreover, we can clearly see that the

TPIDP parameterization results in both lower estimation errors, as well as in lower NEES,

compared to the alternative parameterizations examined. These results agree with the

linearity-index results presented earlier, and demonstrate the advantages of the proposed

TPIDP representation for EKF-based estimation using line features.

We note that the NEES values computed using all three line parameterizations,

as well as for the point-only EKF, are higher than the “ideal” value of 9. While TPIDP

performs better than the other parameterizations, it also appears to be mildly inconsistent.

We attribute this result primarily to the small number of features used. Being able to track

only a small number of features, which is typical of low-texture indoor environments (such

as office environments with textureless walls), results in increased errors and thus more

pronounced nonlinearities in all the methods tested.
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Table 2.3: Simulations: RMS errors of calibration parameters xIMU

Time (sec) Simulation Settings bg (rad/sec) ba (m/sec2) Tg Ta Ts (rad/sec/g)

0 All approaches 0.0162 0.3126 0.0603 0.0605 0.0012

8.4

Method 1 0.0052 0.1432 0.0080 0.0195 0.00086

Method 2 0.0048 0.1185 0.0054 0.0166 0.00074

Method 3 0.0063 0.2393 0.0095 0.0311 0.0010

Proposed method 0.0044 0.1071 0.0051 0.0145 0.00068

40

Method 1 0.0026 0.0363 0.0028 0.0053 0.00036

Method 2 0.0024 0.0356 0.0022 0.0050 0.00033

Method 3 0.0025 0.0508 0.0028 0.0071 0.00035

Proposed method 0.0020 0.0327 0.0018 0.0046 0.00029

2.8.3 Self-calibration using line feature

Next, we evaluate the performance of self-calibration when using straight-line mea-

surements. In this simulation data generation is performed the same way as in the previous

simulation, but for a 40-second-long trajectory hat involves significant rotation and trans-

lation. For the parameter values in the sensor models of the camera and IMU, in each trial

we draw errors from zero-mean Gaussian distributions and add them to known nominal

values. To demonstrate the effectiveness of the proposed algorithm even when only coarse

estimates of sensor parameters are available, the magnitude of errors that are added to the

nominal values of the parameters are larger than what we typically find in practice. The

characteristics of the generated features (both points and lines) are also the same as in the
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Table 2.4: Simulations: RMS errors of calibration parameters Cp
T
B and td

Time (sec) Simulation Settings CpB (cm) td (msec)

0 All approaches 0.0605 0.0012

8.4

Method 1 0.0195 0.00086

Method 2 0.0166 0.00074

Method 3 0.0311 0.0010

Proposed method 0.0145 0.00068

40

Method 1 0.0053 0.00036

Method 2 0.0050 0.00033

Method 3 0.0071 0.00035

Proposed method 0.0046 0.00029

previous simulation, with an average number of 100 points and 20 lines per image.

The datasets are processed by the following four approaches: (i) the hybrid filter

using point features only (referred to as ’Method 1’), (ii) the hybrid filter using point

features only with batch MAP initialization (referred to as ’Method 2’), (iii) the hybrid

filter using both point and line features (referred to as ’Method 2’), and (iv) the hybrid filter

using both point and line features with batch MAP initialization (referred to as ’Proposed

Method’). To demonstrate the performance of calibration accuracy using these 4 different

approaches, we compare the RMS errors of all calibration parameters over 50 time Monte-

Carlo trials as shown in Table 2.3, Table 2.4, Table 2.5 and Table 2.6. In all tables,

0 sec corresponds to the initial errors, 8.4 sec corresponds to the errors at the end of
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Table 2.5: Simulations: RMS errors of principal points, focal length and image readout
time of the calibration parameters xcam

Time (sec) Simulation Settings au (pix.) av (pix.) uo (pix.) vo (pix.) tr (msec)

0 All approaches 5.1123 4.4315 5.3862 5.1604 4.4

8.4

Method 1 1.2655 1.8116 2.0804 2.0669 0.31

Method 2 0.7362 0.9990 1.4920 1.4653 0.17

Method 3 1.3529 2.0570 2.6034 2.6805 0.43

Proposed method 0.5636 0.7973 1.4889 1.4640 0.12

40

Method 1 0.5440 0.8337 0.5499 0.5885 0.11

Method 2 0.4416 0.5137 0.5287 0.5441 0.09

Method 3 0.4617 0.8679 0.5603 0.6065 0.09

Proposed method 0.3399 0.4032 0.4609 0.4848 0.07

batch minimization (when used), and 40 sec corresponds to the final errors. As we can

see from the final errors of all calibration parameters, approaches that rely on bundle-

adjustment-based initialization achieve better accuracy for all calibration parameters. We

also notice that due to the increased linearization errors of line measurement model, the

performance of self-calibration approach directly using the EKF-based estimator (without

iterative minimization for initialization) is lower. This clearly shows the advantage of a

bundle-adjustment-based approach in handling the greater nonlinearities encountered when

line measurements and large initial calibration errors exist. Moreover, the improvement in

calibration accuracy ultimately leads to improvement of both the accuracy and consistency

of the hybrid filter as shown in Table 2.7.
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Table 2.6: Simulations: RMS errors of radial distortion and tangential distortion coefficients
of the calibration parameters xcam

Time (sec) Simulation Settings k1 k2 k3 t1 t2

0 All approaches 0.0975 0.0890 0.0969 0.00091 0.00087

8.4

Method 1 0.0097 0.0391 0.0500 0.00076 0.00061

Method 2 0.0067 0.0277 0.0364 0.00064 0.00045

Method 3 0.0082 0.0361 0.0487 0.00073 0.00064

Proposed method 0.0060 0.0242 0.0326 0.00047 0.00036

40

Method 1 0.0048 0.0217 0.0295 0.00039 0.00030

Method 2 0.0042 0.0194 0.0263 0.00028 0.00027

Method 3 0.0026 0.0116 0.0149 0.00034 0.00029

Proposed method 0.0026 0.0115 0.0150 0.00025 0.00023

It is also interesting to examine the result of one typical trial as shown in Fig. 2.3.

We here compare the result from the hybrid filter using point feature only, with the only

difference being the way the estimator is initialized. We notice that the errors of the calibra-

tion parameters quickly decrease in the first few seconds, and the errors are all within the

3-sigma bound reported by either EKF-based approach or the bundle-adjustment approach.

These results also corroborate the fact that all calibration parameters are identifiable for

sufficiently exciting motion.
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Table 2.7: Average RMSE and NEES of pose in Calibration dataset

Simulation Position Orientation NEES

Settings RMSE (m) RMSE (deg)

Method 1 0.0571 0.5008 7.7590

Method 2 0.0517 0.4217 6.4032

Method 3 0.0926 0.7222 32.8058

Proposed method 0.0440 0.3807 6.6688

2.9 Real-World Experiment

2.9.1 Use of line features in point-feature poor environments

In addition to the simulation tests, we also tested our proposed approach in a

real-world experiment, which was conducted using the sensors of a Nexus 4 device. The

experiment was conducted in an indoor office area of the UCR Engineering Building, where

line features are the most visually dominant ones. The device was hand-held by a person

walking the halls of three floors of the building during the experiment. For point-feature

extraction and matching, Shi-Tomasi features are used [64], and matched by normalized

cross-correlation. To detect and match line features, we first use the Canny edge detec-

tor [8] to identify edge pixels. The normalized coordinates of these pixels are computed

using the pre-computed calibration parameters, and subsequently we perform partial RS

compensation. Specifically, we employ the rotation estimates from the IMU to remove the

rotational component of the RS distortion. The resulting compensated coordinates are

employed for straight-line detection using a split-and-merge approach. We point out that
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compensation is performed only to aid in detecting straight lines in the environment, and

the compensated coordinates are not used for EKF updates. For line matching, a template

is generated at the midpoint of each line, and matching is performed by normalized-cross

correlation.

In this experiment, an average of 29.71 point features and 16 line segments are

extracted per image. The trajectory length of the experiment is approximately 400 m. The

IMU sample rate is 200 Hz, while the images are captured at 22 Hz (sample images are

shown in Fig. 2.5). All the data are post-processed off-line on a desktop computer, to enable

comparing the performance of different approaches. In this test, we are comparing (i) the

hybrid EKF estimator using point features only (referred to as Points only), (ii) the proposed

hybrid EKF using point and line features concurrently (referred to as Proposed method),

and (iii) the hybrid EKF using point and line features where only lines are processed as if

they are acquired from a GS camera (referred to as Lines without RS model). Since the

ground truth for the entire trajectory is not available, the fact that the trajectory starts

and ends at the same point is used to evaluate the performance of the algorithms.

The 3D trajectory estimated by each approach is shown in Fig. 2.6. Moreover,

the computed final position errors for each of the methods are 1.48 m for the proposed

method using both points and lines (corresponding to 0.37% of the traveled distance), 3.05

m for the hybrid EKF that uses point measurements only and 4.05 m for the hybrid EKF

that uses both points and lines with partial RS compensation. Thus we can clearly see

that processing line features, especially in environments that are poor in point features

and rich in straight lines, can lead to measurable performance gains in vision-aided inertial
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navigation, compared to algorithms that only employ point features. Furthermore, we

notice that simply performing RS compensation, and treating the resulting measurements

as if they come from a global shutter camera, leads to worse performance than the proposed

approach. This is due to the fact that RS compensation can only be reliably performed for

the rotational effects, while the effects of the camera translational motion during the image

readout time cannot be exactly compensated for.

2.9.2 Self-calibration using line features

In this section we demonstrate that improved performance can be achieved by using

line measurements in calibration. In this experiment a Nexus 4 phone is used to collect the

data. The experiment was conducted in an indoor area of the UCR Science Library, where

the point features are abundant and line features are also prevalent. This experiment lasted

about 11 min, and the trajectory length is approximately 900 m. All the data are post-

processed off-line on a desktop computer, to enable comparing the performance of different

approaches. The prior estimates of calibration parameters are initialized as follows: the

camera intrinsics are set to values from previous calibration; the image readout time is set

equal to the image period; the prior of time-offset between IMU and camera was set to

zero; the camera-to-IMU translation is set to zero; both the g-sensitivity matrix Ts and

IMU biases are initialized to zero, and finally the prior estimates for the misalignment

matrices Tg and Ta are set to the identity matrix. The initial standard deviations for all

these parameters are shown in Fig. 2.9.
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In this test, we are comparing the performance difference of proposed hybrid EKF

algorithm when using points only, vs. when using both point and line features. In both

approaches, the estimator is initialized by batch iterative minimization as described in Sec-

tion 2.7. In Fig. 2.7, the 3D-trajectory estimates of these two approaches are shown. Similar

to the first experiment, the cellphone starts and ends at the same physical location. The

final position errors of the proposed approach that uses both points and lines is [-0.04 -1.56

0.16] m, which corresponds to 0.17% of the travelled distance, compared to 0.22% when

using point features only. By inspection of result from Fig. 2.8, these final errors are com-

mensurate with the uncertainty reported by the estimator, which indicates consistency of

the estimator. In addition, Fig. 2.9 shows that the uncertainty of the calibration parameters

significantly decreases during the first few seconds. As expected, the reported uncertainties

when using both points and lines are smaller than those reported when using points only,

as in the simulation.

2.10 Conclusion

In this chapter, we have presented two main contributions. First, we propose a

novel parameterization for 3D lines, which is shown to exhibit better linearity properties

than alternatives, and thus is better suited for use in linearization-based estimators such

as the EKF. Second, we describe a method for processing the observations of lines that

is suitable for use with RS sensors, which are found in the majority of low-cost cameras.

Our approach forgoes line-fitting, and relies on processing the measurement of each line
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pixel individually, thus avoiding assumptions on the shape of the projection of a line in the

image. Last but not least, we propose a self-calibration approach that use line feature in

addition to traditional point features to calibrate all parameters of a high-fidelity model

of both IMU and camera. We demonstrate that the proposed approach is able to process

line feature even only coarse estimates of sensors’ model parameters are available. These

three contributions are employed in conjunction with the hybrid EKF estimator for visual-

inertial odometry. The simulation and experimental results we present demonstrate that

the proposed approach leads to an improvement in performance, compared to using point

features alone, and that the proposed line parameterization outperforms those proposed in

prior works.
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Algorithm 1 Hybrid EKF algorithm

Propagation: Propagate the state vector and the state covariance matrix using the IMU

readings.

Update: When camera measurements become available:

• Augment the sliding window with a new state, and begin image processing.

• For each feature track that is complete after m or fewer images, do the following

– Acquire feature estimates for both points and lines

– Computer all feature measurements residuals and associated Jacobians, and then

use method in [54] to marginalize feature parameters

– Perform a Mahalanobis-distance gating test.

• For the features within the state vector, compute the residuals and measurement

Jacobians.

• Perform an EKF update using all the features.

• Initialize into the state vector features that are still actively tracked after m images.

State Management:

• Remove from the state vector features that are no longer tracked.

• Remove all sliding-window states that have no active feature tracks associated with

them.
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Figure 2.3: Results of a representative simulation trial: estimation errors and the reported
±3 standard deviations. (Left to right, top to bottom ) (a) gyroscope biases, (b) accelerom-
eter biases, (c) gyroscope misalignment/scale, (d) accelerometer misalignment/scale, (e)
g-sensitivity, (f) camera-to-IMU time offset, (g) camera-to-IMU position (h) camera focal
lengths, (i) camera principal point, (j) camera radial distortion, (k) camera tangential dis-
tortion, and (l) rolling shutter readout time. For all vectorial parameters the least accurate
element is shown.
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Figure 2.4: Sample images recorded during the experiment in office area.

Figure 2.5: Sample images recorded during the experiment in library.
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Figure 2.9: Results of real world experiment: the reported ±3 standard deviations. (Left
to right, top to bottom ) (a) gyroscope biases, (b) accelerometer biases, (c) gyroscope
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Figure 2.10: Results of real world experiment: the reported ±3 standard deviations,
zoomed-in at the end of experiment. (Left to right, top to bottom ) (a) gyroscope biases,
(b) accelerometer biases, (c) gyroscope misalignment/scale, (d) accelerometer misalign-
ment/scale, (e) g-sensitivity, (f) camera-to-IMU time offset, (g) camera-to-IMU position
(h) camera focal lengths, (i) camera principal point, (j) camera radial distortion, (k) cam-
era tangential distortion, and (l) rolling shutter readout time.
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Chapter 3

Edge-based Visual-Inertial

Odometry

3.1 Introduction

The vast majority of algorithms developed for VIO to date rely on the use of point

features (e.g., Shi-Tomasi corners [64], SIFT features [50], or FAST corners [62], among

others), detected and tracked in consecutive images. Using point features greatly reduces

the amount of data that needs to be processed (going from hundreds of thousands of pixels

to a few hundreds of point features), and therefore makes operation possible even on heavily

resource-constrained systems.

However, point-feature extraction also leads to loss of information, as not all parts

of the image are used. Therefore, there has been increased interest recently in direct meth-

ods, which directly use the image intensities as measurements for estimation [17–20, 56].
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These methods make it possible to use significantly more pixel locations (theoretically, even

the entire image), and thus potentially exploit more information for motion estimation.

However, direct approaches also face a number of shortcomings. First, they are very sensi-

tive to errors in the projection geometry (caused, for instance, by inaccurate estimates of

the camera intrinsics, or from the errors in the pose estimates themselves) [18]. Thus direct

methods may fail in cases where low-cost hardware and/or low-texture environments lead

to significant errors in the predicted location of the projection of scene points. Second, the

process of image formation in a camera is complex, making it difficult to derive a precise

photometric model that considers all possible factors. For example, the image intensity

at a given pixel location is affected by the surface properties of scene objects, the viewing

angle between the camera and the observed objects, global lighting conditions, camera ex-

posure time, camera gains, and lens characteristics such as vignetting. These factors may

be hard to model (e.g., the surface reflectance properties), and may change unpredictably

(e.g., lighting conditions), thus leading to unmodeled errors.

To address this problem, direct methods may employ a photometric model in

which the intensities of the projection of the same 3D point in two different images, I1(r, c)

and I2(r
′, c′), are related by a linear expression of the form I2(r

′, c′) = αI1(r, c) + β [18].

The “gain” and ”offset” parameters α, β are good representations of some of the factors

mentioned above (e.g., global illumination changes and camera gain/exposure changes), but

in practice are also necessary in order to approximately model additional effects, such as non-

Lambertian surface properties. Estimating these parameters reliably presents challenges

(e.g., using the same values for all pixels in an image may not work well), and also increases
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the computational cost, as extra states need to be estimated.

Motivated by the above, we here propose a different approach to motion estimation

that lies, in some respects, between direct methods and point-feature-based ones. Specif-

ically, in our approach we employ image contours, detected by applying edge-detection in

an image. In contrast to point-feature methods, we are able to utilize information from all

parts of an image where gradients with large magnitude exist. This is similar to semi-dense

direct methods that use all image areas with significant gradient [17]. However, in contrast

to such direct methods our measurement model relies on the geometry of contours in the

image, rather than the raw image intensities (in that sense, our method is an indirect one).

Importantly, the edge contours we employ (defined as the locations where the image gra-

dient magnitude is maximum, along the gradient direction) are invariant to linear image

intensity changes of the form αI(r, c) + β. This provides robustness against scene illumina-

tion changes and camera gain/exposure changes, and potentially to additional unmodeled

effects, if these can be locally well approximated by a linear model.

The use of measurements derived from edge contours provides a number of ad-

ditional advantages. For instance, edges may be abundant in environments where point

features are sparse (e.g., indoors). This observation has also been exploited in previous

work, where straight-line features have been used for pose estimation [39, 78]. In contrast

to such approaches, however, we do not employ any parametric model for the shape of the

edges we are using. Instead, each curve in the world is represented as a collection of 3D

points, each parameterized by a minimal, two-parameter representation. This allows us to

utilize any edge detected in an image, not only those that conform to a certain model, mak-
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ing the approach applicable in any environment. It also allows for a simple measurement

model to be derived, based on the reprojection errors of the 3D curve points.

In what follows, we present the details of our approach. The proposed contour-

based formulation is employed for VIO within the multi-state constraint Kalman filter

(MSCKF) [44, 54], which relies on maintaining in the state vector a sliding window of

camera poses, while features are directly marginalized and never included in the state. This

formulation results in computational complexity that is only linear in the number of edge

points. In addition to our novel parameterization of the 3D curves, and the associated

measurement model, we here describe a method for computing the accuracy of the edge

pixels’ location, based on a local bicubic approximation of the image. Our simulation and

experimental results show that the resulting formulation outperforms the corresponding

point-based approach.

3.2 Related Work

The vast majority of VIO methods to date have relied on the use of point features,

which are detected and tracked in the images (see, e.g., [29,32,44] and references therein). In

these methods, the measurements are formulated in geometric space (i.e., the coordinates

of a feature’s projection in the image). By contrast, direct methods for pose estimation

formulate a measurement model in the image intensity space, computed for either all image

pixels [56], or for image regions with significant gradient magnitude [17–19, 73], or only

around a set of extracted feature points [20, 31, 68]. As discussed in the preceding section,

the method we propose in this paper seeks to leverage the advantages of both approaches.
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By computing measurement residuals in geometric space, we obtain robustness to changes

in the lighting and imaging conditions, similarly to point-feature based methods. Moreover,

by utilizing image edges, we are able to exploit information from more parts of the image,

similarly to semi-dense direct methods.

The use of edge information for model-based pose estimation has a long history

in computer vision (see, e.g., [3, 23, 38]). In these approaches and their descendants, the

3D structure of the scene (or of an object whose pose is being tracked) is assumed to be

known. The 3D camera pose is obtained by minimizing the “reprojection errors” between

the observed edges and those predicted based on the known 3D model. In our work, however,

we are focusing on estimating trajectory only without prior knowledge of environment.

Therefore, knowledge of a 3D model of the scene cannot be assumed, and this type of

methods are not applicable.

For edge-based pose estimation in unknown environments, a number of approaches

exist that employ a stereo pair of cameras [60,72] or a depth camera [41]. These approaches

are conceptually similar to the model-based ones. Specifically, in both cases, given either a

stereo image pair or a depth image, one can create a 3D model for the locations of the edge

points in the scene. Then, pose estimation can proceed by finding the transformation that

optimally aligns a new image pair or depth scan to that 3D model. These methods rely cru-

cially on having a depth estimate for each of the edge pixels detected in an image (obtained

via stereo triangulation or via the depth camera). However, since in our work we employ a

monocular camera, this requirement is not met, and the aforementioned approaches cannot

be used.
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For monocular localization in unknown environments, the VIO algorithms of [39,

78] rely on the use of straight-line edges. Since only straight lines can be used, the ap-

plicability of these methods is limited to environments where such features are abundant.

Moreover, there is a risk of introducing unmodeled errors, when lines that are slightly

curved are treated as straight. In a similar vein, the methods of [13, 37, 65] rely on the

use of straight-line segments. By contrast, in our work we make no assumptions on the

shape of the curves that result in the observed image edges. We also note that higher-

order curve parameterizations have been employed in the literature, such as B-splines and

NURBS models [57, 77]. While able to handle a larger class of curves than straight lines,

these representations are also susceptible to modeling errors, and make the correspondence

problem harder, as typically the entire curve must be visible in all images.

The work that is closest to ours is that of Tarrio and Pedre [69]. Similarly to

our approach, [69] employs a monocular camera for localization, and a general, point-based

parameterization for the edges. However, pose constraints are only computed between pairs

of images. By contrast, in our work, all the constraints created when an edge is observed

in multiple images are utilized, via the use of the MSCKF formulation. Additionally, the

algorithm of [69] uses an over-parameterization of edge points, representing each of them

as a general 3D point. In our work, a minimal, 2-parameter representation of the edge

points is used. Finally, we model the accuracy of the detection of each edge pixel, instead

of treating it as a constant. In what follows, we describe the details of our approach.
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3.3 Estimator formulation

We begin by describing the formulation of the estimator that we employ for VIO.

This is based on the MSCKF algorithm [44,54], which is an extended-Kalman-filter (EKF)-

based method. The state vector of the estimator contains a sliding window of poses, cor-

responding to the time instants the latest m images were recorded. The IMU readings are

used to propagate the IMU state, while the image observations are used to derive proba-

bilistic constraints on the camera poses. We here briefly present the MSCKF estimator,

to introduce the notation for the remainder of the paper. The interested reader is referred

to [44,54] for additional details.

Our goal is to estimate the pose of a moving platform with respect to a gravity-

aligned global coordinate frame {G}, using IMU readings and images recorded by a global-

shutter camera. To formulate the estimator equations, we affix a coordinate frame {I} to

the IMU, and a coordinate frame {C} to the camera, respectively. We here assume that

the intrinsic parameters of the camera, as well as the relative transformation between the

camera and the IMU are known via prior calibration. This is done for ease of presentation,

and also because these assumptions hold true for our experimental setup. However, these

are not requirements for the method we present. If any of the sensor calibration parameters

are not accurately known, they can be estimated online, as described in [46].

The state vector of the MSCKF at time-step k is given by:

xk =
[
xTEk xTIk−1

· · · xTIk−m

]T
(3.1)
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Algorithm 2 Edge-based MSCKF Algorithm

Propagation: Propagate the state vector and the state covariance matrix using the IMU

readings.

Update: When camera measurements become available:

• Augment the sliding window with a new state, and begin image processing.

• For each completed edge-point track

– Obtain the maximum-likelihood estimate, f̂i, for the edge point’s parameters

shown in (3.8), using all the observations of this edge point in a least-squares

minimization.

– Compute the residuals associated with all the edge point measurements, as shown

in (3.9), and their Jacobians (equation (3.10)), and apply the method of [54] to

remove the term involving f̃i.

– Perform a Mahalanobis-distance gating test.

• Perform an EKF update using all the edge points that pass the Mahalanobis test

State Management:

• Remove all sliding-window states that have no active edge point tracks associated

with them, or poses older than m.
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where xEk is the “evolving state” of the IMU:

xEk =

[
Ik
G q̄T GpTk

GvTk bTgk bTak

]T
(3.2)

The IMU state comprises the unit quaternion Ik
G q̄, representing the rotation from frame {G}

to the IMU frame {I} at time-step k, the IMU position and velocity in the global frame,

Gpk and Gvk, respectively, as well as the gyroscope and accelerometer biases, bgk and bak ,

respectively, which are modeled as Gaussian random-walk processes.

The error-state for the evolving IMU state is defined as [44]:

x̃Ek =
[
Gθ̃

T
k

Gp̃Tk
GṽTk b̃Tgk b̃Tak

]T
(3.3)

where the standard additive error definition is used for the position, velocity and biases (i.e.,

for a random variable y, its estimate is denoted ŷ, and the estimation error is defined as

ỹ = y− ŷ), while for the orientation errors we use a minimal 3-dimensional representation,

defined in [44].

Each of the states xIj , j = k − m, . . . , k − 1 comprises the IMU position and

orientation at the time instant the corresponding image was recorded:

xIj =

[
Ij
G q̄T GpTj

]T
j = k −m, . . . , k − 1

and the errors in the estimates of these states are defined accordingly:

x̃Ij =

[
Gθ̃

T
j

Gp̃Tj

]T
j = k −m, . . . k − 1

When an IMU measurement is received, it is used to propagate the evolving state

and the filter covariance matrix, as described in [44]. On the other hand, when a new

image is received, the sliding window of states is augmented with a new pose, and the
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Figure 3.1: Edge Parameterization. Left: Given the first observation of a new curve, we
define a number of edge points ei, spaced at regular intervals along the edge. Right: Each
of the edge points, ei, together with the corresponding edge normal, ni, and the camera
optical center, define a plane πi. We parameterize the intersection point of πi with the 3D
curve, pci , with a 2-parameter vector fi, representing the position of pci in πi.

image is processed to extract and match edge points. Each edge point is tracked for as long

as possible (or until the maximum limit of m poses is reached), and all its measurements

are processed together once the tracking is complete, to provide constraints involving the

poses of the sliding window. For this purpose, the multi-state-constraint method of [54] is

employed, which makes it possible to use the feature measurements without including the

feature in the EKF state vector.

Prior to using an edge point’s measurements for an EKF update, a Mahalanobis-

distance gating test is performed, to remove outliers. All the edge points that pass the

gating test are then employed for an EKF update. At the end of the update, edge points

that are no longer visible and old sliding-window states with no active edge-point tracks

associated with them are removed. Note that, to ensure the correct observability properties

of the linearized system model, and thus improve the estimation accuracy and consistency,

the estimator employs fixed linearization points for each state [44].
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3.4 EKF Update with Edges

In this section we present the key contributions of this paper, namely the param-

eterization of 3D curves that we employ for estimation, and the derivation of the accompa-

nying measurement model for edge observations.

3.4.1 Edge Point Parameterization

In this work, we do not assume any parametric form for the edges in the images, or

for the 3D curves whose projection forms these edges. Instead, a 3D curve C is represented

by a set of points, pci , i = 1, . . . , N (the number of points on each curve will generally be

different). To define these points, we start with the first observation of the curve. Let E

denote the edge that results from the first observation of C in an image. We define a number

of edge points ei, i = 1, . . . , N , spaced at regular intervals along E (see Fig. 3.1). Each of

the 3D curve points pci is defined as the intersection of the 3D curve with the plane πi that

contains the edge point ei, the camera optical center, and the edge normal vector ni (see

Fig. 3.1).

The motivation for defining the set of points pci as described above, i.e., via the

intersection of C with a set of planes πi, is that this leads to a two-dimensional parame-

terization for each of the points pci . These two parameters describe the position of the

intersection of the curve C with the known two-dimensional plane πi. This is a desirable

property: note that changes in the position of pci along the curve are unobservable, since,

in general, we cannot distinguish different points along an edge in an image. Therefore, if

the point pci was represented by three parameters (the standard representation for points
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in 3D), this would be an over-parameterization, which is not suitable for the problem at

hand.

We now describe the definition of the two parameters that we use to represent

each of the points pci , i = 1, . . . , N . Given the normalized image coordinates of an edge

point, ei, and the edge-normal vector at this point (i.e., the image gradient vector), ni, we

define a known, constant coordinate frame {Ai}, whose origin coincides with the estimate

of the camera coordinate frame, and whose coordinate axes are defined in the global frame

as:

Gx̄i =
1

ηx
G
CR̂

ei

1

 (3.4)

Gz̄i =
1

ηz
G
CR̂


ei

1

×
ni

0


 (3.5)

Gȳi = Gz̄i × Gx̄i (3.6)

where G
CR̂ is the estimate for the rotation matrix between the camera frame and the global

frame, and ηx and ηz are normalization constants to ensure unit length of the corresponding

vectors. Intuitively, the above definitions mean that the x-axis of the frame {Ai} is along

the vector from the camera optical center to ei, and the z-axis is normal to the plane πi.

With this definition of {Ai}, the point pci has a z-coordinate of zero, and we therefore

parameterize it as:

Aipci =
1

ρi


cos θi

sin θi

0

 (3.7)
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In the above parameterization, ρi has the role of inverse depth, which is known to lead to

improved linearity properties in vision-based estimation [53]. Moreover, we note that with

our frame definition, the initial estimate of the parameter θi is by definition zero.

To summarize, given the image edge corresponding to a new 3D curve, we define

a set of points along the image edge, ei, i = 1, . . . , N , and subsequently we define a set

of known, constant coordinate frames {Ai}, whose origin coincides with the origin of the

estimated camera frame, and their principal axes are defined as shown in (3.4)-(3.6). We

subsequently parameterize the intersections of the 3D curve with the x− y planes of these

frames by the two-parameter vector:

fi =

[
ρi θi

]
, i = 1, . . . , N (3.8)

which defines the points according to (3.7).

3.4.2 Measurement model

To derive a measurement model based on the parameterization described in the

preceding section, we rely on the fact that the projections of all points pci , i = 1, . . . , N

of a 3D curve, should lie on the edges corresponding to the curve in all images. Therefore,

if we denote by h(x̂Ij , f̂i) the predicted projection of pci on the image at time step j, the

following quantity can be viewed as a measurement residual:

rdij = dist(Ej ,h(x̂Ij , f̂i))

where Ej denotes the observed edge resulting from the projection of the curve on the image

at time step j, while x̂Ij and f̂i are the estimates for the IMU pose and the curve-points’
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parameters, used to predict the projection of pci on the image (the exact form of the

projection function, h, is shown in Section 3.4.3). While valid, the above expression is not

suitable for use in an EKF estimator, as it is a nonnegative quantity. To address this issue,

we instead define the following residual, which is a signed quantity:

rij = nTij

(
zij − h(x̂Ij , f̂i)

)
(3.9)

where zij is the point on Ej that is closest to h(x̂Ij , f̂i), and nTij is a constant unit vector.

Note that, for any unit vector, the above quantity would be a valid residual, in the sense

that if the estimates were perfect and the edge measurement noiseless, it would equal zero.

However, to obtain a meaningful residual, we choose the vector nij as the gradient of the

image at zij . This is illustrated in Fig. 3.2. It is important to point out that the residual

in (3.9) is a scalar quantity, which is desirable, since edge observations can only provide

useful information in the direction normal to the gradient.

To obtain a linearized approximation of the residual, we begin by using first-order

Taylor expansion of h(xIj , fi), which yields:

h(xIj , fi) ' h(x̂Ij , f̂i) + Hxij x̃Ij + Hfij f̃i

where x̃Ij and f̃i are the errors in the estimates for the IMU pose at time step j and for

the point’s parameters, respectively, and Hxij and Hfij are the corresponding Jacobians.

Moreover, let zij = žij +ηij , where žij is the true location of the point on the edge, and ηij

the noise in its detection. Substituting in (3.9), and noting that žij = h(xIj , fi), we obtain

the following linearized form of the residual:

rij ' Hxij x̃Ij + Hfij f̃i − nTijηij (3.10)
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Figure 3.2: Illustration of the measurement model.

It is important to note that the term nTijηij represents the noise in the detection of the

point that is closest to h(x̂Ij , f̂i), along the direction of the gradient. In other words, this

noise term corresponds to the accuracy with which the edge can be detected in the image.

In Section 3.4.4, we describe how the covariance of this noise term can be computed.

Once the residuals defined in (3.9), as well as their corresponding Jacobians in (3.10),

have been computed for all the images in which the curve point can be tracked, the method

described in [54] is employed in order to marginalize out the parameter error fi, and a Ma-

halabobis gating test is performed. If the test is successful, the measurements of this curve

point are used for an EKF update, along with all other curve points available at this time,

as detailed in [54].
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3.4.3 Geometric Model

We now present the function h, which describes the projection of a curve point pci

with parameter vector fi, on the image at time step j. We begin by computing the position

of pci with respect to the camera at time step j:

Cjpi = C
I R

Ij
GR

(
GpAi + G

AiR
Aipci − GpIj

)
+ CpI

where C
I R and CpI are the known rotation and translation between the camera and IMU

frames,
Ij
GR and GpIj describe the IMU pose in the global frame, GAiR and GpAi are the

known, constant parameters of the frame {Ai} associated with the point pci , and Aipci is

given by (3.7).

Given the vector Cjpi = [Cjxi
Cjyi

Cjzi]
T , the image coordinates of its projection

on image j depend only on the imaging geometry of the camera. In our experiments,

we employ a fisheye-lens camera, and we use the model of [12] to describe the projection

geometry:

h
(
xIj , fi

)
=

1

ruω
arctan

(
2rutan

(ω
2

))auu
avv

+ pp (3.11)

where pp is the pixel location of the principal point, (au, av) are the camera focal length

measured in horizontal and vertical pixel units, ω is the distortion parameter, and

ru =
√
u2 + v2 (3.12)u

v

 =
1

Cjzi

Cjxi
Cjyi

 (3.13)

All the camera intrinsic parameters, namely pp, au, av, and ω, are known through prior

calibration.
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3.4.4 Edge Detection And Uncertainty Model

We now describe our approach for detecting edges in the image with subpixel

precision, and estimating the accuracy with which they are localized. Our approach is

based on the method of [24], where a bicubic polynomial is employed to model the local

image intensity. In particular, edges are first detected to pixel-level accuracy by applying a

Canny-like edge detection method on the images [8]. Then, for those pixels where subpixel

accuracy is required (i.e., those used to define the curve points as described in Section 3.4

and their correspondences) we fit the following bicubic polynomial to model the intensity

of the image in a local 7× 7 pixel neighborhood:

f (c, r) = k1 + k2c+ k3r + k4c
2 + k5cr + k6r

2

+ k7c
3 + k8c

2r + k9cr
2 + k10r

3 (3.14)

where c and r are the column and row coordinates with respect to the center edge pixel.

We then obtain the sub-pixel location of the edge, as well as its accuracy, based on the

parameters of this polynomial. Specifically, note that the direction of the image gradient

at the edge pixel under consideration is given by [k2 k3]
T . The location of the edge is the

point, along this direction, where the second-order directional derivative along the gradient

is zero. By solving the resulting set of equations, we obtain the following subpixel offset for

the location for the edge, along the direction of the gradient:

o(k) =
(−k22k4 − k2k3k5 − k23k6)

√
k22 + k23

3(k32k7 + k22k
2
3 + k2k33k9 + k33k10)

(3.15)

where we have made explicit the fact that this offset is a function of the parameter vector k =

[k1 k2 . . . k10]
T . As explained in the preceding section, the accuracy with which this offset
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can be determined represents the “measurement noise” in our measurement model (3.10).

To compute the variance of this noise, we employ linearization to compute the error in o(k)

as:

õ(k) ' ∂o

∂k

∂k

∂I
Ĩ

where I represents the values of the image intensity in the local 7× 7 image neighborhood,

and Ĩ the corresponding image-intensity noise. Therefore, the variance of the measurement

noise is given by:

σ2o =
∂o

∂k
Ck

∂o

∂k

T

(3.16)

where Ck is the covariance matrix of the errors in the estimate of k that we obtain from

fitting the model (3.14). This matrix is a function of the image intensity noise variance,

but, importantly, it does not depend on the value of k itself, and can thus be precomputed.

By contrast, σ2o will depend on the local image appearance, which affects the Jacobian ∂o
∂k .

This allows us to model the fact that sharper edges can be localized more accurately than

smoother ones.

We note that the process for computing the noise variance described above models

the effects of image noise, but does not account for additional sources of error. For example,

the true image intensity in the local region will, in general, not follow a bicubic-polynomial

model. To account for these additional effects, in our implementation we use a threshold on

the minimum allowable value of σo. Specifically, the value of σo that we use is the maximum

of the value computed by (3.16), or 0.5 pixels.
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3.4.5 Edge point tracking

To perform edge tracking across images we have tested two different approaches:

1) frame-to-frame constraint tracking (termed FFC in the following), and 2) multi-frame

constraint tracking (termed MFC). In the first case, matching from image j to image j + 1

is performed using search along epipolar lines, computed using the predicted relative pose

between the two camera frames. For a given edge point in image j, if an edge point is

found along the epipolar line in image j + 1, and the directions of the gradient vectors are

close (within a threshold of 30o), then normalized cross-correlation is used as the matching

criterion. Once matching for all points from image j is complete, new points are introduced

in the edge segments of image j + 1 where no matches have been detected.

The MFC approach relies on the minimization of a matching cost, computed over

multiple frames. This cost function is defined as:

c = min
ρ

N∑
i=2

d
(
ρ, CiC1

R̂, CiC1
p̂
)

(3.17)

where ρ is the inverse depth of an edge point with respect to camera frame {C1}, and

d
(
ρ, CiC1

R̂, CiC1
p̂
)

is the distance of this point to the closest edge in image i. This distance

is computed efficiently by use of the distance transform. To reduce the number of false

matches, the edge points in each image are clustered according to their orientation, and a

separate distance transform is computed for each set.

When a new edge-point track is initialized, we start with the latest image, and

perform the above minimization to find correspondences in the previous N − 1 images.

This minimization takes place using a discrete search (note that a continuous inverse-depth

parameter is estimated and used in the filter). To help avoid spurious matches, we reject
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matches when the resulting minimum cost is above certain threshold. Additionally we

perform a normalized cross-correlation test of all the related intensity patches. A similar

process is followed to extend the edge point track into a newly received image. To this

end, we project the edge point using the previous depth estimate into the new image and

compute the corresponding cost given by the distance transform. If the cost remains below

the threshold, and the point also passes the normalized cross-correlation test, we accept

this match.

3.5 Experimental results

To test the performance of the proposed method, we conducted a set of Monte-

Carlo simulations to evaluate its consistency, as well as a set of real-world experiments to

evaluate its accuracy in real-world settings. For the edge-based VIO approach, we define

the 3D curve points via edge points spaced every 3 pixels along the first observation of a

curve, as described in Section 3.4. These points are detected at subpixel accuracy, using

the method in Section 3.4.4.

3.5.1 Monte-Carlo simulations

For the simulations, the trajectory of a hand-held device in a room-sized environ-

ment, recorded in a prior experiment, is used to generate a realistic ground-truth motion.

Based on this ground truth trajectory, inertial measurements are subsequently generated,

with random noise realizations used in each Monte-Carlo trial. To generate simulated cam-

era images, we texture-map images recorded during real-world experiments onto the four
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Figure 3.3: Sample images generated by the simulator.

simulated walls of the room, as well as the floor and ceiling. The simulated camera images

are created with a different realization of Gaussian noise added to the image intensities in

each trial. Two sample images generated in the simulation are shown in Fig. 3.3. The IMU

measurements are available at 200 Hz, and the camera images at 10 Hz. The trajectory is

approximately 181 m long, traversed in about 2.9 mins.

To evaluate the accuracy and consistency of the edge-based VIO approaches using

different tracking methods in comparison to the point-based one, we perform 50 Monte-Carlo

simulations. For both formulations, we compute the RMS error for the IMU orientation

and position, as well as the normalized estimation error squared (NEES) of the IMU pose at

each time step. The RMS errors provide us with a measure of accuracy, while the NEES is a

measure of consistency [44]. Specifically, if the estimator is consistent (i.e., if the estimation

errors are zero mean, and have ensemble covariance equal to the covariance reported by

the filter [4]) the average value of the NEES over all Monte Carlo trials should equal six
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Figure 3.4: Average RMS error and NEES over 50 Monte-Carlo trials.

(i.e., should equal the dimension of the pose-error vector). The average RMS and NEES

over all 50 Monte Carlo trials are shown in Fig. 3.4, plotted over time. We observe that

the use of MFC tracking yields more accurate results than the FFC approach, and both

outperform the point-based formulation in terms of estimation precision. In addition, we

note that the NEES of the edge-based approach for using FFC and MFC tracking are 7.36

and 7.69 respectively, close to the ideal value of 6 for consistency.
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Figure 3.5: Sample images recorded during the experiments.

3.5.2 Real-World Experiments

We next present results from real-world experiments that were conducted to com-

pare the performance of the proposed edge-based approach to the original, point-based

formulation of the MSCKF in real-world settings. In the proposed edge-based approach,

point features extracted out of image are not used. We collected six datasets in both indoor

and outdoor environments, with trajectory lengths ranging from 314 m to 465 m (sample

images from the experiments are shown in Fig. 3.5). For data collection a Tango developer

platform was used, which records IMU data at a sample rate of 200 Hz and images at 30 Hz.

All datasets were processed offline, so that comparisons between the different approaches

could be performed.

We evaluate the performance of the proposed edge-based MSCKF formulation,

against the point-based one, using the performance metrics of [22]. Specifically, we com-

pute the error in the position and orientation estimates of each method as a function of
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Figure 3.6: Trajectory estimates computed using the edge-based and point-based MSCKF,
as well as the bundle-adjustment ground truth, in one of the datasets.

path length. For this to be feasible, the ground truth of the trajectory is required. Since an

external ground-truth system is not available in the mixed indoor-outdoor settings where

the datasets were collected, we here employ global visual-inertial bundle adjustment to

obtain a trajectory estimate that is used as ground truth. This bundle adjustment uti-

lizes point features as the image measurements, and makes use of loop-closure constraints.

While collecting data, care was taken so that a significant number of “loop closure events”

occur along the trajectories. This ensures that the accuracy of the bundle adjustment is

significantly higher than the accuracy of the point- and edge-based VIO, and using it as

a ground truth is a reasonable approximation. The trajectory estimates produced by the

three approaches in one of the datasets are shown in Fig. 3.6.
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The evaluation of the accuracy of the point-based and edge-based approaches is

shown in Fig. 3.7. To compute the error for a path length L, the errors in the relative-

position and relative-orientation estimates of each method are computed and averaged over

all trajectory segments of length L in all datasets. The errors are then divided by L, to

obtain the position error as a percentage of the traveled distance, and the orientation-error

growth in degrees per meter traveled:

Errortrans(L) =
1

L
average

(∣∣∣∣∣∣ItipIti+L − Iti p̂Iti+L

∣∣∣∣∣∣
2

)
Errororient(L) =

1

L
average

(∣∣∣∣∣∣Iti θ̃Iti+L ∣∣∣∣∣∣2)
where the average is taken over all time intervals [ti, ti+L] corresponding to path segments of

length L, and Iti θ̃Iti+L represents the error of the estimate of the relative orientation
Iti
Iti+L

R.

The results of Fig. 3.7 show that, due to the use of more information in the images, the

proposed edge-based approach outperforms the point-based one, both in terms of position

and orientation errors. The average reduction in error for the edge-based method using

FFC, over all path lengths, is 41.6% for the orientation, and 26.1% for the position. The

MFC edge tracking approach leads to additional improvement in performance, with 43.6%

lower errors for the orientation and 44.3% for the position.

3.6 Conclusion

In this chapter, we have presented a novel, edge-based algorithm for monocular

visual-inertial odometry. The proposed method relies on a point-based parameterization

of 3D curves in which each point is parameterized by only two parameters, defining the
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Figure 3.7: Performance comparison of the edge-based MSCKF to the original point-based
one. The apparent lower accuracy of the methods over small path lengths is attributed to
errors in the estimate of the bundle adjustment that is used as ground truth.

intersection of a known plane with the curve. This minimal parameterization, in conjunction

with a measurement model that only employs measurement residuals along the direction

of the edge gradient, results in an approach that can use all image edges, without any

assumptions on scene geometry. Through extensive experimental validation, both in a

simulated 3D environment, as well as in real-world experiments in both indoor and outdoor

settings, we have shown that the proposed approach is consistent, and leads to improved
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estimation accuracy, compared to the “traditional” point-based one. In addition the use of

multi-frame constraint tracking approach leads to additional improvement, due to tighter

restrictions on edge point tracking.
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Chapter 4

Conclusions

Traditional VIO approaches rely on detection and tracking of feature points in

images to reduce the amount of image data to be processed. However, this leads to loss

of information for motion estimation, and we have therefore focused on approaches that

use more image regions for motion estimation. Specifically, we first examined the use of

straight-line features, and demonstrated how they can be used in the hybrid EKF estimator

formulator for both GS and RS cameras. We showed that the additional information pro-

vided by line features not only improves localization accuracy, but can also lead to better

calibration of the sensor models parameters. In addition we proposed a novel, edge-based

algorithm for monocular visual-inertial odometry. This approach enables the use of all im-

age areas with significant gradient, without assuming the presence of straight lines in the

scene. The results presented in this thesis demonstrate that the use of more general features,

in addition to traditional point features, can lead to improved precision in visual-inertial

odometry, and holds promise for real-time applications.
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