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Abstract

An Exploration in Optomechanics: from Trampoline Resonators to Multimode

Mechanics

by

Matthew James Weaver

The quantum to classical transition in large mechanical systems is still a mystery. An

ideal tool for exploring this new regime of physics is cavity optomechanics. The field

of optomechanics uses light in an optical cavity to finely control and detect mechanical

motion. Remarkable progress has been made in recent years with the generation of non-

classical states of motion. If such states can be extended into the macroscopic regime,

new physics may emerge due to the unprecedented scale.

In this dissertation we work towards the goal of macroscopic quantum optomechan-

ics by developing new mechanical devices, experimental techniques and experimental

protocols. First we fabricate nested trampoline resonators, devices with high mechani-

cal quality factor, excellent vibrational isolation from the mechanical environment and

mirrors which can support high finesse cavities. With these devices we explore a new

optomechanical interaction in which spatially separated, nondegenerate mechanical

modes can exchange their state. Finally, we investigate theoretically how this interac-

tion can generate a quantum entangled state between multiple mechanical modes, by-

passing many experimental difficulties of previously proposed schemes. These devel-

opments help pave the way towards phonon interference experiments in macroscopic

resonators.
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Chapter 1

Introduction

In 1935 Schrödinger proposed his famous thought experiment in which a cat is placed

into a quantum superposition state of alive and dead inside a box [1]. Since then, ex-

periments have verified the counterintuitive behavior of quantum systems repeatedly

in systems ranging from photons [2, 3] and atoms [4, 5] to large molecules like buckmin-

sterfullerene [6]. Nevertheless, nothing remotely resembling the scale of a cat has been

observed in a quantum superposition state. It is therefore natural to try and understand

the limitations of quantum mechanics and to discover if there is some fundamental limit

to the mass or size of a system with quantum behaviors.

In 2010, the first solid state mechanical system was cooled to its ground state and

controlled at the single quantum level [7]. Since then a plethora of mechanical sys-

tems interacting with electromagnetic fields have been explored [8]. These systems hold

the promise of extending the precise control demonstrated with photons, atoms and

molecules to macroscopic systems. Ultimately, we will hopefully be able to answer the

question of what happens to an object which you can see and touch when it is in a su-

perposition state of two different locations.

We attempt to investigate this question by performing tests of quantum mechanics

1



CHAPTER 1. INTRODUCTION

on systems which can be seen by eye and are at the limits of current quantum technolo-

gies. In Chapter 2 we discuss some of the novel decoherence effects which we might

observe and we review the capabilities of optomechanical devices. In the short term, we

develop an optomechanical system and experimental techniques to help address some

of these questions.

We need high quality optomechanical devices to perform these experiments. In

Chapter 3 we develop micromirrors integrated onto mechanical oscillators which can

support cavities with extremely slow optical loss rate. This is necessary both for a strong

interaction and to avoid loss of quantum information. We then construct a “box" for

our mechanical “cat", which isolates it from the outside mechanical vibrations in Chap-

ter 4. In Chapter 5 we study the mechanical losses in our resonators which could cause

unwanted decoherence. The trampoline resonators we develop have sufficient optical

and mechanical quality for optical cooling and interesting experiments in the quantum

regime.

Experiments to test decoherence in the quantum regime could be improved with

the use of multiple mechanical resonators. In Chapter 6 we demonstrate a method to

transfer excitations between two different types of trampoline resonators. This coupling

could be used to transfer quantum states or produce entanglement between two me-

chanical resonators. We develop a scheme for generating an entangled superposition

state between two mechanical resonators in Chapter 7 which makes use of this capabil-

ity. In Chapter 8 we discuss some preliminary results on moving towards the quantum

regime. Both the devices we fabricated and the techniques we have investigated could

form the basis for future tests of quantum mechanics in macroscopic objects.

This research was performed as part of a collaboration between a research group at

UC Santa Barbara and a research group at Leiden University. In Santa Barbara, we fab-

ricated and characterized the trampoline resonators used in these studies. In Leiden,

2



we executed more complicated optics experiments including: optical cooling, optome-

chanically induced transparency and state swapping between resonators as well as ex-

periments at cryogenic temperatures. The highly collaborative nature of the team led to

9 publications, some of which are included in this work.
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Chapter 2

Macroscopic Optomechanics and

Decoherence

We do not see quantum behavior of the macroscopic objects which surround us in ev-

eryday life. This most likely means that some sort of decoherence prevents large scale

quantum objects from exhibiting quantum effects. In this chapter we will discuss a

number of proposed decoherence mechanisms which might impact massive objects.

Optomechanical systems are an ideal testbed for such effects, and we will discuss two

cavity optomechanical geometries which could be useful for studying the quantum me-

chanics of large objects. Finally, we will briefly discuss the ways in which optomechanics

can be used to generate superposition states and probe decoherence.

2.1 Novel Decoherence Mechanisms

There are many counterintuitive features of quantum theory, including the fact that

an object can be in a superposition state in which it effectively occupies multiple lo-

cations at once. The breakdown of such interesting states can be described by decoher-

4



2.1. NOVEL DECOHERENCE MECHANISMS

ence of the system. There are a number of theories which have had success in explaining

the decoherence of systems interacting with a thermal environment [9]. However, the

subject is quite complex, and we still do not have a complete picture of the quantum

to classical transition, particularly in macroscopic systems. In this section we will de-

scribe a number of theoretical ideas for decoherence mechanisms which could affect

this transition.

Environmentally induced decoherence is a model for decoherence in which a system

couples to a bath of many harmonic oscillators in equilibrium at a certain temperature.

The oscillator we are studying gradually becomes entangled with the oscillators of the

bath. However, we only directly observe our oscillator, so if we perform a measurement

on the oscillator this corresponds to tracing out all the other oscillators [9, 10]. The net

result is an apparent decoherence of the oscillator with a timescale given by [11]:

τE I D ≈ ~2

D∆x2
(2.1.1)

D = 2mγkB T is the diffusion term which depends on the damping rate, γ, the mass, m

and the temperature T . ∆x is the spatial separation of the superposition state of the

oscillator. While this mechanism is expected to dominate for many of the current me-

chanical resonators which have been brought into spatial superposition states, it has

never been directly measured and characterized.

There are several other decoherence channels predicted by standard quantum the-

ory. The oscillator can decohere in a similar fashion from interactions with two level sys-

tems in the environment [12, 13, 14]. Decoherence from interactions with gas molecules

in the vacuum has been theoretically modeled [15, 16, 17] and experimentally observed

with matter wave interferometry [18], but not yet with solid mechanical resonators. Fi-

nally localization from blackbody radiation is possible, but it would likely be very slow at

5



CHAPTER 2. MACROSCOPIC OPTOMECHANICS AND DECOHERENCE

cryogenic temperatures [11]. An experiment which could distinguish these decoherence

mechanisms in a macroscopic object would already be important and interesting.

If these conventional decoherence processes are sufficiently slow, it might be possi-

ble to observe more exotic forms of decoherence. One of these forms is gravitationally

induced decoherence, a theoretical possibility suggested by Diósi [19] and Penrose [20].

These proposals posit that because of one of the fundamental incompatibilities between

quantum mechanics and general relativity massive quantum systems must decohere ac-

cording to their gravitational self-energy [21]:

τG I D ≈ ~
∆EG

(2.1.2)

∆EG = 4πG
∫ ∫ (

ρ1(~x)−ρ2(~x)
)(
ρ1(~y)−ρ2(~y)

)∣∣~x −~y∣∣ d 3xd 3 y (2.1.3)

∆EG is the gravitational self-energy calculated using the spatial mass distribution ρ in

each of the two components of the superposition. There is considerable theoretical de-

bate about which mass distribution to use. However, the decoherence scales up with

mass, and for some distributions the decoherence could be faster than conventional

decoherence mechanisms [21].

Gravitationally induced decoherence is just one example of a more generalized class

of spontaneous collapse models [22]. One such framework is known as continuous

spontaneous localization [23, 24]. In this framework the Schrödinger Equation is modi-

fied to include a localization length and extra terms with unknown prefactors [22]. Other

spontaneous collapse models include the GRW model [25, 26], the QMUPL model [19,

27] and quantum gravity effects [28, 29, 30]. For many of these mechanisms smaller

mass systems with large position uncertainties are expected to be the most likely to ex-

hibit anomalously fast decoherence [31, 22]. However, for some models a massive sys-

tem in a superposition state might be able to discern the novel decoherence [21]. There

is a great deal of theoretical uncertainty about the parameters for spontaneous local-

6



2.2. CAVITY OPTOMECHANICS

ization models, so experiments with massive systems could probe interesting regions of

parameter space. It is therefore important for fundamental physics to develop quantum

manipulation and observation tools for massive systems.

2.2 Cavity Optomechanics

Optomechanical systems enable the precise readout and control of mechanical mo-

tion, all the way down to the quantum level [8, 32]. In an optomechanical system an elec-

tromagnetic field inside a cavity interacts with the mechanical motion of a resonator, in

our case through the radiation pressure force. A number of key milestones have already

been reached on the road to macroscopic superposition states: near ground state cool-

ing [7, 33, 34, 35, 36], exchange of a single quantum between electromagnetic and me-

chanical resonators [7, 37], and projection into single phonon Fock states [38, 39]. We

will examine how these tools can play a part in studies with large mass devices.

Optomechanical systems can be described by the Hamiltonian [40, 8]:

H = ~ωc (x)a†a +~ωmb†b (2.2.1)

= ~ωc a†a +~ωmb†b +~g0a†a
(
b† +b

)
+~g2a†a

(
b† +b

)2 + ... (2.2.2)

ωc and ωm are the frequencies of the optical cavity and the mechanical resonator. The

second line comes from a Taylor Expansion of ωc (x). a and b are the lowering operators

for the optical cavity and the mechanical resonator. g0 is the single photon optomechan-

ical coupling rate, often modified to be g = g0a†a = g0
p

nc . g2 is the second order single

photon optomechanical coupling rate, which for most of this dissertation is either zero

or negligible. This simple equation generates an extensive range of interactions between

optics and mechanics.

7



CHAPTER 2. MACROSCOPIC OPTOMECHANICS AND DECOHERENCE

If we send a laser beam into the cavity which is detuned from resonance, the effective

temperature of the mechanical resonator changes [8]. If the beam is lower in frequency

than the cavity resonance, or red detuned, the mechanical resonator is cooled and if the

beam is blue detuned the mechanical resonator is heated. If the detuning, ∆ is equal to

the mechanical frequency, we can use the rotating wave approximation and rewrite the

interaction Hamiltonian as the beam splitter Hamiltonian [8]:

HI = ~g0
p

nc

(
a†b +ab†

)
(2.2.3)

This interaction swaps photons from the optical cavity with phonons from the mechan-

ical resonator. This allows cooling of the mechanical resonator if the light is constantly

removed from the cavity, as is almost always the case since the cavity decay rate, κ is

much greater than the mechanical decay rate, γ [41, 42]. For the rotating wave approxi-

mation to be valid, κ¿ωm . When this condition is met, it is possible to cool very close

to the mechanical ground state of the resonator [41, 42]. Another possibility is to per-

form optomechanically induced transparency [43, 44, 45] or to transfer the state of an

optical field to the mechanical resonator [46]. This is a means of precisely controlling

the quantum state of the resonator [47]. For a more detailed introduction to cavity op-

tomechanics see the reviews in Refs [8, 32] and the theses in Refs [48, 49, 50].

2.3 Generating a Spatial Superposition State

Now that we have introduced a means for precisely controlling a mechanical res-

onator, we would like to find a method for testing the novel decoherence mechanisms.

The most direct test of these mechanisms is to build a superposition state between two

different positions and to measure the decoherence of this state [22]. One possibility

is sending a superposition state of 0 and 1 photons into an optical cavity; this state
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2.3. GENERATING A SPATIAL SUPERPOSITION STATE

Figure 2.1: Generation of a spatial superposition state. We propose to take a mechan-
ical resonator in its ground state (top) and put it into a spatial superposition state of
moving and not moving in order to generate a spatial superposition.

would transfer to the mechanics via the radiation pressure force. This idea is at the

core of the proposal by Marshall et al. [51]. A single photon is sent to a beam split-

ter, which leads to two cavities: one with a mechanical resonator and one without. If the

interaction is strong enough the mechanical resonator is put into a superposition state:

1/
p

2(|0〉m +|1〉m). We can direct the single photon which leaks out of the two cavities

back onto the beam splitter. If decoherence occurred it should destroy the ability of the

photon to interfere with itself, giving a direct measurement of the decoherence time of

the system.

There are a number of technical challenges required by the Marshall scheme: κ <
ωm , ωm < g0 and κ < g0 [51]. The first requirement is feasible, but the second require-

ment is quite difficult and has only recently been achieved [52]. The final requirement

has not yet been realized in an optomechanical system. There have been a number of

schemes which extend the Marshall scheme and avoid some of these technical require-

ments. These include the use of postselection [53] and optical displacement of the pho-

tonic state [54, 55]. Both of these schemes dramatically reduce the requirements on g0,

but require long delay lines for storing the optical state during decoherence. In Chapter

7, we discuss a means of avoiding this issue by performing an interference experiment

with two mechanical resonators.
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CHAPTER 2. MACROSCOPIC OPTOMECHANICS AND DECOHERENCE

Figure 2.2: Two Optomechanical Cavity Configurations. a) A micromirror on a me-
chanical resonator is paired with a large mirror. b) A membrane is placed in the middle
of a high finesse optical cavity.

Before attempting to generate a superposition state, the mechanical resonator must

be brought close to its ground state using sideband cooling [56, 21]. As discussed in the

last section, this also requires that the system be well sideband resolved. In addition, the

coupling to the environment, γ must be small. In particular, we must meet the condi-

tion:

γ< ~ω2
m

kB T
(2.3.1)

Ground state cooling can be made easier by precooling the bath temperature of the res-

onator, T to cryogenic temperatures. However, the mechanical quality factor of the de-

vices, Q = ωm/γ must also be high enough, which will be discussed in Chapters 4 and

5. Finally, in order to observe novel decoherence, the environmentally induced deco-

herence time (Equation 2.1.1) must be long, as discussed in Section 2.1. Fortunately,

maximizing the decoherence time requires the same adjustments used for improving

sideband cooling.
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2.4 Macroscopic Cavity Optomechanics Implementations

Now that we have discussed some of the requirements for a system which might ob-

serve new physics, we will discuss two implementations, both with mm scale mechani-

cal resonators with effective masses between 10 ng and 1 µg. The first is an optical cav-

ity between a fixed external mirror and a mirror integrated into a mechanical device, as

shown in Figure 2.2a. These cavities were first conceived and investigated in relation to

gravitational wave detectors [57, 58, 59], which use macroscopic mirrors as test masses.

Although LIGO’s geometry is a little different (two moving mirrors instead of one), and

the scale is many orders of magnitude larger, many of the engineering features can be

applied to our system [60].

We choose to integrate a micromirror into a mechanical resonator. There are a num-

ber of implementations of this style of optomechanical cavity, including mirrors on sil-

icon [61, 62], quartz [63], and silicon nitride [64, 65]. We will focus on and extend work

on silicon nitride trampoline resonators [65]. In a single sided optomechanical cavity

the optomechanical coupling rate and optical loss are:

g0 = ωc

L

√
~

2mωm
(2.4.1)

κ = πc

F L
(2.4.2)

m is the effective mass, L is the length of the cavity and F is the finesse of the cavity.

The characteristics of trampoline resonators are chosen as a compromise. The cavity

length is 5 cm to match the achievable radius of curvature on superpolished substrates.

This limits the optomechanical coupling rate to a few hertz, well below ωm/2π = 300

kHz. The coupling rate is limited because the frequency must remain high enough for

sideband resolution and cooling to the ground state. m is 150 ng, a compromise between
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CHAPTER 2. MACROSCOPIC OPTOMECHANICS AND DECOHERENCE

Figure 2.3: Dispersion relationship for the two types of cavities. We numerically simu-
late the transmission fraction through the cavity, T using the transfer matrix method. a)
The dispersion relationship for a Fabry-Pérot cavity is linear, and the optomechanical
coupling rate is constant. b) The peak transmission gives the dispersion relationship,
which depends on the membrane position. The first and second derivative of this curve
determine the first and second order optomechanical coupling rates, respectively. We
can see that the dispersion relationship is the sum of two oppositely sloped cavities
with half the length and an avoided crossing.

high mass for decoherence experiments and large optomechanical coupling rate. While

the system is 5 orders of magnitude away from single photon strong optomechanical

coupling, this optomechanical coupling is strong enough to potentially achieve strong

multiphoton coupling. We investigate this type of cavity in Chapters 3,4 and 5.

Another optomechanical geometry is a high finesse cavity with two fixed mirrors and

a movable membrane in the middle as shown in Figure 2.2b. The membrane changes

the dispersion relationship inside the cavity and generates an optomechanical coupling

rate to both the position (g0) and the position squared (g2) of the membrane [66]. As

shown in Figure 2.3b, the optomechanical coupling rates, which are the first and second

derivative of the dispersion, vary greatly depending on the position of the membrane.

This can be useful for tuning optomechanical coupling rates. Such membrane in the

middle systems have been studied extensively, with a range of sizes and thicknesses [66,

67, 68, 69]. Most fall in the parameter ranges of m = 1-40 ng, ωm/2π = 200 kHz - 2 MHz
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and L = 1 - 100 mm. A more comprehensive discussion can be found in the theses in

Refs. [70, 71].

Because of the similarities between the parameters of the optomechanical systems,

many of the investigations in this thesis apply to both systems. Membrane systems typi-

cally have higher mechanical quality factors than DBR based systems because junctions

between materials are lossy [69, 72, 65]. The higher mechanical frequency also makes it

easier to cool to the ground state, and a number of membrane systems have been cooled

close to the ground state [35, 36, 73]. In contrast DBR trampoline resonators have lower

frequency, and have a larger, more concentrated mass. This means they are less suscep-

tible to air damping and decoherence due to gas particles in the vacuum. This might

make it easier to study novel decoherence mechanisms. For this reason we focus on

DBR trampoline resonators for the first several chapters. In Chapter 6, we will discuss

hybrid devices that use a membrane in the middle of an optomechanical cavity.

2.5 Conclusion

Optomechanical cavities with mm-scale mechanical resonators are a promising plat-

form for investigating quantum behavior in massive systems. There are a number of

theoretical schemes for the creation of spatial superposition states using the optome-

chanical toolbox. With such states it may be possible to characterize the quantum to

classical transition in macroscopic systems, and maybe even find novel decoherence

mechanisms. In the chapters that follow we will study and construct optomechanical

systems and techniques that address the unique challenges discussed in this chapter.
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Chapter 3

High Finesse Optical Cavities

One half of an effective optomechanical system is an optimized optical cavity. We need a

system which is well sideband resolved for many of the interactions discussed in chapter

2, such as optical sideband cooling and optomechanical state transfer. A simple geom-

etry for creating an optomechanical interaction is a mirror integrated into a mechanical

resonator. In this chapter we explore the possibilities for building a high finesse optical

cavity between a large external mirror and a microfabricated integrated mirror in an op-

tomechanical system. We test the limits of high finesse cavities with a large difference in

mirror size and find that despite the challenging geometry we can achieve cavities which

fully realize the capabilities of state of the art deposited mirrors. Furthermore, we find

that the microfabrication process of the mirrors produces a curvature which can be used

for ultrashort cavities and polarization non-degenerate cavities. We discuss techniques

for verifying and testing the limits of a high finesse optical cavity.
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3.1. LIMITATIONS TO FINESSE

Figure 3.1: Experimental setup for measuring finesse. This is the experimental setup
used to measure finesse. An acousto-optic modulator is triggered with an avalanche
photodiode to take ringdown measurements in transmission.

3.1 Limitations to Finesse

We build an optomechanical cavity by placing a ‘large’ 1/2 in. or 5/8 in. mirror 5 cm

away from a trampoline resonator. See Figure 3.1 for a schematic. The trampoline res-

onator consists of four high stress (LPCVD) Si3N4 arms for springs and a ‘small’ mirror

60 - 130 µm in diameter [65]. The mirrors are distributed bragg reflectors (DBR) made of

alternating layers of SiO2 and Ta2O5. The trampoline resonator has a mechanical reso-

nance frequency around 300 kHz, which is lower than most optomechanical resonators,

and is just below the lowest frequency mechanical resonators that have been cooled to

the ground state to date [35, 73]. Because the mechanical frequency is so low, a high

quality cavity is necessary to have a linewidth lower than the mechanical frequency

(sideband resolution). We choose to optimize the finesse of the cavity, because the Q

and linewidth depend heavily on the length.

There are four main processes which can limit the finesse of an optical cavity: trans-

mission through the mirrors, scattering off the mirrors, absorption in the mirrors and

mode leakage around the sides of the mirrors. The finesse of an optical cavity is given

by the equation:
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CHAPTER 3. HIGH FINESSE OPTICAL CAVITIES

F = π (R1R2)1/4

1−p
R1R2

(3.1.1)

Ri = 1−Ti −Si − Ai −e−2w2
i /D2

i (3.1.2)

Ri is the reflection and Ti , Si and Ai are transmission, scattering and absorption losses

for the ith mirror, all given as a fraction of the power. wi is the beam waist at the mirror

and Di is the diameter of the mirror.

The transmission is determined by the number of layers in the DBR stack, and is a

parameter of the coatings we buy from coating companies. The ideal cavity is only lim-

ited in finesse by transmission, because all of the light lost from the cavity passes into

useful channels which can be sent to detectors. Fabrication errors and diffraction losses

can also act to lower the finesse. Absorption is a material property of the constituents of

the DBR stack: SiO2 and Ta2O5. These materials are a standard choice for DBR mirrors

because they typically have low optical absorption in the near infrared on the order of

1-2 ppm [74, 75, 76]. Finally, based upon previous investigations [77, 48], we use super-

polished substrates with ∼ Å surface roughness. This ensures that the scattering losses

are also kept below 3 ppm [48]. These constraints are all consistent with a finesse domi-

nated by transmission losses.

In order to understand the diffraction loss, we examine the Gaussian beam proper-

ties of the cavity mode. The mode must match the curvature of the large mirror and be

focused to a small point at the small mirror, leading to the following conditions on w1

and w2:

C = L

(
1+ π2w 4

1

λ2L2

)
(3.1.3)

w2 = w1

√
1+ λ2L2

π2w 4
1

(3.1.4)
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3.1. LIMITATIONS TO FINESSE

C is the curvature of the large mirror, which is fixed at 50 mm, and L is the length of the

cavity. Because of the large size difference between the mirrors, the only way to focus

the light down enough is to have L = C −δL, where δL is a small displacement. With

this assumption and the approximation that L is far greater than w1, we can simplify

Equations 3.1.3 and 3.1.4:

δL ≈ π2w 4
1

λ2C
(3.1.5)

w2 ≈ λC

πw1
(3.1.6)

The beam waist depends critically on the length of the cavity in this regime, because

our cavity operates in the near hemispherical regime. In contrast systems with two large

mirrors in a confocal configuration are more stable and less limited by the size of the

mirrors. Furthermore, if we make w smaller for one mirror, it will necessarily be bigger

for the other mirror. Ideally, however, we can find a beam waist where the loss on both

mirrors is small.

We measure finesse by observing the ringdown time of light leaking out of the cav-

ity. The setup is shown in Figure 3.1. We use two equivalent techniques: scanning the

laser frequency and scanning the length of the cavity with a ring piezo. When the laser

is resonant with the cavity we cut the beam off with an acousto-optic modulator (AOM).

We then measure the transmitted light on an avalanche photodetector (APD), and fit an

exponential to the ringdown signal. This only works for ringdowns significantly longer

than the response time of the AOM (several nanoseconds), so we measure low finesses

by scanning the cavity or laser frequency and fitting the linewidth of the Lorentzian pro-

file of the transmitted light directly.
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CHAPTER 3. HIGH FINESSE OPTICAL CAVITIES

Figure 3.2: Finesse vs small mirror size. Optical microscope images of trampoline res-
onators with mirror diameters of a) 60 µm and b) 120 µm, indicated by the scale bars.
c) shows the finesse for trampoline resonators fabricated with different sized DBR mir-
rors. The spread in the blue points is caused by fabrication imperfections, but the best
devices can be used to determine the overall trends. The green fit gives a theoretical
estimate of the parameters of the system with D = 6.4 mm for the large mirror and
T +S + A = 27.5 ppm for the two DBR mirrors.

3.2 Finesse vs Mirror Size

We begin our study of finesse with a systematic study of the size of mirrors necessary

to generate a high finesse cavity. For the short term, smaller mirrors are ideal, because

the devices have a higher resonance frequency, and are easier to optically cool. To in-

vestigate the diffraction and scattering losses in real fabricated devices, we fabricate a

series of trampoline resonators with mirror diameter ranging from 60 µm to 130 µm.

The results are shown in Figure 3.2. Because any imperfection in the fabrication process

will cause scattering, there is a large variation in finesse for each mirror size. However,

if we take the best device for each mirror diameter, finesse increases with mirror size for

small mirror sizes, but plateaus for larger mirror sizes. From this we estimate that we

need a mirror diameter of at least 80 µm to avoid diffraction losses.
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It is also interesting to compare to a theoretical limit based on diffraction losses. If

we assume the diameters of the small mirrors and optimize the beam waist to maximize

the finesse we get the green curve in Figure 3.2. From this we determine the diameter

of the large mirror, D = 6.4 mm, which is significantly smaller than the actual diameter

of 15.9 mm. Most likely, there is either long scale roughness or dirt on the large mirror

which limits its usable size. Because of the large size of the mirror it is quite vulnerable

to dust from the environment. The coating losses, T + S + A = 27.5 ppm, and plateau

finesse match the specifications of the coatings. Based on our estimates of S and A,

we can see that T is approximately 22 ppm. We have therefore demonstrated that for a

sufficiently large small mirror, we can achieve the ideal regime where the transmission

losses dominate the finesse.

3.3 Alignment and Maximal Finesse

Once we have a device with a good finesse, it is important to understand how align-

ment changes the finesse. Because the cavity is almost diffraction limited, the range of

cavity lengths that support a high finesse cavity mode is small. As we showed in the pre-

vious section, mirrors larger than 80 µm in diameter have excess space, and they can

support a larger beam waist. We also find that the cavities with larger mirrors can sup-

port a number of higher order modes up to approximately the (5,5) mode. There are a

number of optomechanical schemes which could use multiple of these optical modes

[78, 79]. However, for most experiments we only wish to use the fundamental mode.

Ultimately the goal is to cool these optical cavities down, so that the mechanics can

reach the quantum regime. The 5 cm long optical cavity is expected to shrink by several

hundred microns. It is therefore necessary to build in some flexibility in the length of

the cavity and the position of the beam on the mirror. We perform an experiment in
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Figure 3.3: Finesse vs mode size for a 70 µm mirror. a) The Gaussian beam profile on
the small mirror (outlined in a yellow dashed line.) b) We measure finesse as we change
the length of the cavity such that the beam waist on the small mirror changes. There
are three regions visible. From left to right, the finesse is limited by: losses due to the
finite large mirror size, transmission through the coating and diffraction losses around
the small mirror. Because the middle region is very small, we can deduce that a 70 µm
mirror is about the smallest we can make a mirror and maintain a high finesse.

which we vary the length of the cavity and measure the beam waist and finesse. Figure

3.3a shows a cross sectional image of the gaussian mode, which we used to extract the

beam waist at the mirror. Figure 3.3b shows the finesse as a function of mode size. In

this figure you can see three regions with different limits for the finesse. At small beam

waist, the finesse is limited by diffraction losses on the big mirror. At large beam waist,

the finesse is limited by diffraction around the edges of the small mirror. In the mid-

dle the finesse is limited by the quality of the optical coatings. The agreement with the

theory curve indicates that unlike in the previous section we can use almost the entire

surface area of both mirrors. This means the large mirror used in this section has less

long scale roughness and dirt. The relatively small intermediate region indicates that a

70 µm mirror is at the limit of devices which can achieve maximal finesse, which agrees

with the results of the previous section.

A number of different coatings have been used. These are discussed in detail in ap-
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pendix ???. With the best coating combination we obtained a finesse of 181,000 ± 1,000.

The data for this are shown in the next chapter.

3.4 Curved Mirrors and Polarization Non-degenerate Cav-

ities

The discussion in this section is based upon a publication with permission from the

authors [80].

So far we have treated the small trampoline mirrors as completely flat uniform ob-

jects, but in reality this is not the case. There are a number of stresses in the material

layers of the trampoline resonator which cause the mirror to curve. The SiO2 and Ta2O5

layers of the DBR mirror all have compressive stress, causing an outward radial force

while the Si3N4 layer at the bottom has tensile stress causing an inward radial force. The

net result is the buckling of the mirror into a convex shape. We characterize the mirror

profiles using confocal microscopy. The results for one such mirror are shown in Fig-

ure 3.4a and b. We find that the curvature depends on the size of the mirror and the

stress of the nitride, and we find mirrors with radius of curvature ranging from 1.4 mm

to almost flat. Mirrors with a broken trampoline arm have a much greater curvature,

indicating that larger curvature is possible through changing the geometry of the tram-

poline. Simulations in COMSOL verify that this curvature can be explained by the stress

in the layers.

Curved mirrors at the micron scale have recently been used to make short high fi-

nesse cavities which are tens to hundreds of microns long [81, 82]. These short cavi-

ties have a small mode volume, and hence have a large Purcell enhancement, which is

useful for cavity QED experiments. The short length also increases the single photon
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Figure 3.4: Polarization splitting in an optomechanical cavity. a) Differences in stress
between the layers of the mirror structure cause the mirror to bend into a convex shape.
The inset shows an optical microscope image of the device used in these studies. b) A
confocal microscopy image of the device in a) shows the height profile of the mirror. c)
From the height profile data we can extract the curvature at a certain point (the white
circle in b)). We take a line cut (also shown) and rotate to find the radius of curvature
at each angle. The net result of the polarization nondegeneracy in c) is a polarization
splitting of the fundamental cavity mode. d) shows the two split optical modes which
are both addressed by light at a 45◦ angle. Figure courtesy of Frank Buters.
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optomechanical coupling strength, g0 which is proportional to 1/L. Although the cavity

linewidth, κ also increases as 1/L, the single photon cooperativity, 4g 2
0 /κγ improves for

short cavities as 1/L. Even with the high finesses we achieve here, a cavity with a length

of several hundred microns would not be sideband resolved. However, cooling a me-

chanical resonator very close to its grounds state has recently been demonstrated using

feedback cooling in a non-sideband resolved cavity [83]. Our curved mirrors, which are

already integrated into a mechanical system, are a natural choice for exploring optome-

chanics in the short cavity regime.

In addition to enabling short cavities, the curvature of our mirrors also has polariza-

tion effects. Towards the center of the mirror, the cross sectional profiles of the mirrors

fit quite nicely to parabolas which are isotropic in different directions. This means that

the mirror can be used for a radially symmetric optical cavity. However, towards the

edges of the mirror the presence or absence of supporting Si3N4 legs lifts the degener-

acy between different directions. The resulting difference in radius of curvature along

orthogonal directions is shown in Figure 3.4c, and it leads to a polarization splitting in

the frequency of the horizontal and vertical cavity modes (Figure 3.4d.)

We investigate the effects of the polarization splitting on the optomechanical prop-

erties of the cavities. Two effects of a detuned laser in an optomechanical system are

shifting the resonance frequency via the optomechanical spring effect and damping (or

driving) the resonator because of sideband cooling (or heating.) If we send in linearly

polarized light at 45◦ to the vertical axis it should be possible to address both polar-

ization modes at the same time, and hence interact with the optomechanical cavity at

two different detunings with a single laser beam. In Figure 3.5 we perform a detuning

sweep of a laser at 45◦. We see that the frequency shift and mechanical damping match

perfectly with theoretical predictions based on the sum of the effects of the two cav-

ity modes (dashed green lines.) We observe a polarization splitting of 83 kHz, which
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Figure 3.5: Polarization nondegenerate detuning sweep. We inject a single laser beam
polarized at 45◦ with respect to the cavity modes, so that it addresses both modes
equally. If we adjust the detuning of the laser beam, we can recover the frequency
response a) and damping response b) of the two modes at detunings spaced by the
polarization splitting. ∆ is the detuning of the lower frequency mode from the cavity
resonance. The red curve is a fit to theory, and the two green dashed curves are the the-
oretical curves for each single mode optomechanical system. Figure courtesy of Frank
Buters.

is larger than the cavity linewidth, 52 kHz. The splitting is consistent with calculations

based upon the two radii of curvature [84].

This polarization splitting could enable a number of new optomechanics experi-

ments, because we can access two frequency detunings with a single laser beam. In par-

ticular, if the polarization splitting were tuned to two times the mechanical frequency,

we could address both the red and blue optomechanical sidebands at the same time.

First, if light were sent in at 45◦ it would be possible to measure the relative size of the

Stokes and anti-Stokes sidebands, and hence deduce the temperature based on the po-

larization angle exiting the cavity [80]. Second, access to the red and blue sidebands

could be used to generate and optomechanical superposition state. This has been sug-

gested with multiple laser beams as a means of state orthogonalization [85], but here

it can be done with a single laser beam and a polarizer. If the mechanical resonator

is prepared in a single phonon Fock state using postselection [86, 38], this would gen-

24



3.5. CONCLUSION

erate a superposition state of the second excited state and the ground state [80]. The

polarization splitting we demonstrate here is smaller than the mechanical frequency,

but by tweaking the geometry of the arms of the trampoline or by shortening the cavity

it should be possible to carry out these experiments.

3.5 Conclusion

We optimized a 5 cm long optical cavity with a micrometer scale end mirror for high

finesse, reaching the regime where finesse is only limited by the coatings and most light

lost from the cavity is transmitted into useful channels. The characterization techniques

for determining the limits of finesse are useful for maintaining an optomechanical sys-

tem with high finesse. Furthermore, we have demonstrated control over the polarization

and curvature of the mirrors, such that we could create very short cavities or cavities

with a large polarization splitting. The trampoline resonators fabricated in this section

were the basis for the more complex devices discussed in the rest of this thesis. Fur-

thermore, they were used for a number of optomechanical studies, including a study of

optical sideband cooling [87] and an exploration of the optomechanical attractor dia-

gram [88].
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Chapter 4

Nested Trampoline Resonators

Two major challenges in the development of optomechanical devices are achieving a

low mechanical loss rate and vibration isolation from the environment. We design and

fabricate a DBR trampoline resonator embedded within a lower frequency mechanical

resonator, with 80 dB of mechanical isolation from the mounting surface at the inner

resonator frequency. We also develop an electrical feedback system for stabilizing the

vibrations of the outer resonator. The consistency and high mechanical quality factor

provided are crucial for succesful optomechanics experiments, both in the classical and

quantum regime.1

4.1 Introduction

In this chapter we focus on our efforts to produce a large mass mechanical resonator

with both high mechanical and optical quality factor, which can realistically be cooled to

its ground state. There are several requirements for the devices to achieve this. The sys-

tem must be sideband resolved for optical sideband cooling to the ground state [41, 42].

1The contents of this chapter are based on the work by Weaver et al. [89], and are used with permission
from the authors.
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Figure 4.1: Nested trampoline resonator fabrication. Optical (a) and SEM (b) images
of a nested trampoline resonator. The device was broken out of the chip to make the
structure visible for (b). Note the thin 10 µm wide, 500 nm thick arms supporting the
large 500 µm thick silicon mass. A properly sized mirror layer was necessary to protect
the nitride layer from sharp edges in the silicon and safely connect to the thin arms of
the outer resonator. (c) A schematic overview of the fabrication process (not to scale).
(i) The SiO2/Ta2O5 DBR stack is etched via CHF3 ICP etch. The front (ii) and back (iii)
Si3N4 is etched by CF4 plasma etch. (iv) Most of the Si is etched from the bottom us-
ing the Bosch process. (v) The remainder of the Si is etched via TMAH. (vi) A buffered
HF dip cleans the devices and removes a protective SiO2 layer. Only 6 layers of the
SiO2/Ta2O5 DBR stack are shown, and the shape of the outer resonator mass is approx-
imated as a hollow cylinder for simplicity.
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A high mechanical quality factor is also necessary to generate a higher cooperativity and

a lower mechanical mode temperature for the same cooling laser power. Furthermore,

in the quantum regime, the quality factor sets the timescale of environmentally induced

decoherence [9], which is crucial for proposed future experiments. Therefore, it is im-

portant to eliminate mechanical and optical loss sources.

One major source of loss in mechanical systems is clamping loss, which is coupling

to external mechanical modes [90, 91, 69]. As we will show, this is a critical source of

loss for Si3N4 trampoline resonators. Several methods of mechanically isolating a de-

vice from clamping loss have been demonstrated including phononic crystals [92, 93]

and low frequency mechanical resonators [94, 62, 95, 96, 97]. Due to the large size of

phononic crystals at the frequency of our devices (about 250 kHz), we have selected to

surround our devices with a low frequency outer resonator. We significantly improve

on the design of similar devices using silicon optomechanical resonators [98] by using a

lower frequency outer resonator and silicon nitride with weaker spring constant. Weaker

spring constants lead to higher optomechanical coupling, a requirement for our future

experiments. The outer resonator acts as a mechanical second order low pass filter with

the following mechanical transfer function [99]:

T (ω) = ω4
o

(ω2
o −ω2)2 +γ2

oω
2

(4.1.1)

ω is the frequency of vibration, ωo is the frequency of the outer resonator and γo is the

mechanical loss rate of the outer resonator. Choosing an outer resonator frequency of

2.5 kHz and an inner resonator frequency of 250 kHz leads to approximately 80 dB of iso-

lation of the inner resonator. This isolation is independent of γo (Ifω>>ωo , the transfer

function is well approximated as T (ω) =ω4
o/ω4, which falls off at 40 dB per decade and

is independent of the outer resonator quality factor.) The nested trampoline resonator
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scheme promises both a high mechanical quality factor independent of mounting and

mechanical isolation from the environment.

Our optomechanical system is a 5 cm long Fabry-Pérot cavity consisting of a large

distributed bragg reflector (DBR) mirror deposited on a SiO2 curved surface and a nested

trampoline resonator device. The nested trampoline resonator has a small DBR mirror

(80 µm in diameter) mounted on four Si3N4 arms, surrounded by a large silicon mass

held in place by four more Si3N4 arms (See Figure 4.1). Previously, we have fabricated

single resonator devices with plasma enhanced chemical vapor deposition (PECVD) low

stress nitride [65]. In this letter, we use high stress low pressure chemical vapor depo-

sition (LPCVD) Si3N4, because it generally has higher frequency and lower intrinsic loss

[100]. The stress is typically around 1 GPa for LPCVD Si3N4 [101], but comparisons be-

tween Finite Element Analysis models and the observed frequencies of fabricated de-

vices indicate that the stress is probably closer to 850 MPa in this case.

4.2 Fabrication

Devices are fabricated starting with a superpolished 500 micron thick silicon wafer.

Either 300 or 500 nm of high stress LPCVD Si3N4 is deposited on both sides of the wafer,

and a commercially procured SiO2/Ta2O5 DBR is deposited on top. The DBR is etched

into a small mirror on the inner resonator and a protective mirror layer on the outer

resonator using a CHF3 inductively coupled plasma (ICP) etch. Next, the Si3N4 arms of

the devices are patterned with a CF4 etch. A window is also opened on the back side

Si3N4 with a CF4 etch. Approximately 400 microns of silicon under the Si3N4 arms are

removed from the back using the Bosch deep reactive ion etch process. A large silicon

mass is left in place between the inner and outer arms of the device. The devices are then

released with a tetramethylammonium hydroxide (TMAH) etch. Finally a buffered HF
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etch removes the top protective buffer layer of SiO2 without damaging the underlying

Ta2O5 layer. Figure 4.1 shows a schematic summary of the fabrication process.

Devices are characterized using a 1064 nm NdYAG laser. To measure mechanical

motion, the Fabry-Pérot cavity is first intentionally misaligned to a finesse of around

100 to avoid any optomechanical effects. The cavity is then locked to the laser frequency

at the inflection point of a Fabry-Pérot fringe using a piezoelectric actuator moving the

position of the large mirror. Quality factors are taken from Lorentzian fits to the power

spectral density of the Brownian motion of the devices. Finesse is measured by optical

ringdown [65].

4.3 Results

4.3.1 Single Resonators

As an initial step, a series of single trampoline resonators with 60 µm diameter mir-

rors and varying geometries were fabricated and the mechanical quality factors mea-

sured [88, 87]. Three of the devices are pictured in Figure 4.2. We observed no significant

geometric trends in quality factor. However, we found that remounting the same sample

can change the quality factor of the devices by more than a factor of 10. Table 4.1 shows

the quality factors for the devices on one chip mounted three separate times. It is clear

that mounting drastically affects the quality factor; we attribute this to a change in the

clamping loss, because we observe mechanical modes in the system around the reso-

nance frequency that change in number, frequency and power with mounting. Clamp-

ing loss can be modeled as a coupling to these external mechanical modes [102, 90].
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Figure 4.2: Optical microscope images of three single resonator devices. A number
of different geometries were fabricated with different arm length, arm width and fillet
size.

Mounting Device a Device b Device c
1 425,000 ± 32,000 80,000 ± 4,000 33,000 ± 2,000
2 38,000 ± 2,000 5,000 ± 1,000 40,000 ± 2,000
3 264,000 ± 21,000 16,000 ± 1,000 113,000 ± 8,000

Table 4.1: Single resonator quality factor variance with mounting.This table shows
the quality factors for the three devices pictured in Figure 4.2 with three different
mountings. The importance of clamping loss is evident from the changes in quality
factor of more than a factor of ten based on the mounting.

4.3.2 Double Resonators

We now turn to the nested trampoline resonators (see Figure 4.1.) The outer res-

onator acts as a low pass filter, providing 40 dB of isolation for every decade of frequency

difference between the inner and the outer resonator (see Equation 4.1.1.) To test the

mechanical isolation we performed a vibration transmission experiment. We attached

a ring piezo to the sample mount with springs and applied a sinusoidal signal of varying

frequency to the piezo. We measured the motion of the chip using a Michelson inter-

ferometer and the motion of the inner mirror using a low finesse Fabry-Pérot cavity as

described above. The ratio of these two signals is the mechanical transmission from the

chip mounting to the inner mirror.

This challenging experiment required eight orders of magnitude to be measured in
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the same frequency scan. Because of insufficient laser scanning range, the Michelson

interferometer was uncalibrated and the DC response was used for calibration. Due

to the requirement for a single scan, measurement averaging time was limited by drift

in the interferometer. The mechanical response of the piezo also dropped off signifi-

cantly after 100 kHz, so it was not possible to measure the mechanical transmission at

the frequency of the inner resonator. Figure 4.3 shows the transmission for both a single

and a nested resonator. The data are binned for clarity, with the error bars reflecting

variations within each bin. The experimental data follow the trend predicted by Equa-

tion 4.1.1 quite well. The theory curve is not a fit; ωo and γo were determined through

independent measurements. The deviations at high frequency are likely due to insuffi-

cient signal to noise ratio. The results clearly indicate that the outer resonator provides

approximately 40 dB per decade of mechanical isolation. We can only measure a max-

imum of 45 dB of isolation, but we would expect 80 dB of isolation if we continued the

measurement up to the inner resonator frequency.

We also tested the mounting dependence of the quality factor. The results of re-

mounting a single nested resonator five times are shown in Table 4.2. The quality factor

of the outer resonator changes drastically between the mountings, indicating that the

mechanical clamping loss is changing. However, the inner resonator only demonstrates

changes in quality factor on the order of 10%. The relatively small variation in qual-

ity factor of the inner resonator and the absense of extra mechanical peaks around the

resonance frequency indicate that the clamping loss of the device has largely been elim-

inated. Indeed, all nested resonators fabricated without any obvious physical defects

had quality factors between 300,000 and 500,000. The highest quality factor achieved

was 481,000 ± 12,000, an order of magnitude larger than for comparable silicon devices

at room temperature [98]. Typical quality factor measurements for an inner and outer

resonator are shown in Figure 4.4.
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Mounting Inner Resonator Q Outer Resonator Q
1 418,000 ± 11,000 700,000 ± 100,000
2 427,000 ± 10,000 690,000 ± 100,000
3 481,000 ± 12,000 70,000 ± 20,000
4 462,000 ± 14,000 240,000 ± 40,000
5 457,000 ± 13,000 220,000 ± 40,000

Table 4.2: Nested resonator quality factor variance with mounting. This table shows
the quality factors of a nested trampoline resonator remounted five different times.
The outer resonator quality factor (measured via ringdown) has large variation be-
tween the mountings while the inner resonator quality factor (measured via a fit to
thermal motion) has only small variation between the mountings.

One concern for experiments with this system is the thermal motion of the outer

resonator (10-100 pm rms at room temperature). Because of the narrow linewidth of the

cavity, the optical response to such a large motion is nonlinear. However, the frequency

of the outer resonator is low enough that a PID controller can lock a laser to the cavity,

tracking the motion and removing any nonlinear effects. In addition, if the laser is locked

with a slight negative detuning from the cavity resonance, the outer resonator can be

optomechanically cooled, even without being sideband resolved [8]. Thus, the motion

of the outer resonator does not prevent experiments using the inner resonator.

4.3.3 Optical Finesse

Another concern is maintaining the high quality of the DBR mirror layer through the

fabrication process. Reducing the optical loss rate is critical to developing a system that

allows quantum optical manipulation of mechanical motion. One way to reduce the op-

tical loss rate is through superpolishing the wafer surfaces before deposition of the DBR,

to reduce scattering. The addition of this step, as well as the selection of very highly

reflective DBR coatings enable us to achieve a Fabry-Pérot cavity with finesse 181,000

± 1,000, (optical linewidth 17 kHz) the highest finesse reported in an optomechanical

Fabry-Pérot system. The ringdown measurement is shown in Figure 4.4. All of the nested
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Figure 4.3: Transfer function of a single and nested resonator. A sample mount with
a single (blue) and nested (green) resonator was mechanically driven at a range of fre-
quencies. The motion of the outer chip and the inner mirror were measured to get the
mechanical transfer function. The height at DC frequencies is adjusted to zero. This
plot demonstrates that the nested resonator scheme provides mechanical isolation as
predicted by Equation 4.1.1.
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resonators measured have finesse greater than 160,000, indicating that the nested tram-

poline fabrication process is completely compatible with maintaining highly reflective

mirror surfaces.

4.4 Discussion

Improvements in finesse and mechanics will enable new experiments with trampo-

line resonators. Our system (using the device in Figure 4.4) is fourteen times sideband

resolved, which is more than sufficient for experiments such as quantum nondemolition

measurements [103]. The elimination of the clamping loss will enable another system-

atic study of the geometry like the one attempted with single resonators. Many mechan-

ical devices using Si3N4 without a DBR have much higher quality factor [104, 93, 94].

Varying the design of the inner resonator could allow reduction of mirror-nitride loss

and fabrication of devices with even higher quality factors.

The improvements in mechanical isolation should also enable optomechanical cool-

ing to the ground state. The devices are shielded from environmental mechanical noise,

which previously could obscure motion at the quantum level. The fQ product of 1.1x1011

Hz (for the device from Table II) is also high enough for cooling to the ground state from

4 K, potentially alleviating the need for a dilution refrigerator. Our sideband resolution

yields a theoretical minimum of 3 x 10−4 phonons from optical cooling if there is no

heating of the system [41].One concern is the thermal conductivity of our design, be-

cause at 4 K the thermal conductivity of Si3N4 drops to about 10−2 W/mK [105, 106]. The

heat conduction is limited by the arms of the outer resonator, which are five to fifteen

times narrower than the arms of the inner resonator. We have previously thermalized

single resonators to 100 mK temperature, so thermalizing a double resonator sample to

4K, even with the narrower arms, should not be a problem.
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Figure 4.4: Measurements of a nested trampoline resonator (the same device as for
Figure 4.3.) (a) Optical microscope image. (b) Optical ringdown to measure the cavity
finesse. (c) Lorentzian fit to thermal motion of the inner resonator to measure quality
factor. (d) Mechanical ringdown of the outer resonator to measure quality factor taken
using a lock-in amplifier.
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4.5 Electrical Feedback and Active Stabilization

We have shown that passive filtering using an outer resonator effectively isolates a

mechanical resonator from the surrounding substrate. However, the price paid for this

is an increase in the transfer of external mechanical noise around the frequency of the

outer resonator, as can be seen in Figure 4.3. The reason for the large increase in noise is

the large Q of the outer resonator, but the isolation is independent of mechanical qual-

ity factor (see Equation 4.1.1 in the limit where ωÀ ω0.) Therefore, the ideal isolation

system is critically damped (Q=1), so that there is very little added noise at the outer

resonator frequency. This turns out to be crucial in cooling experiments, because our

cryostat has many vibrations in the low kHz regime, which make locking the optical

cavity with a high Q oscillator impossible.

We use electromechanical feedback on the outer resonator, because this can easily

be integrated into a separate feedback circuit without affecting optomechanics exper-

iments at the inner resonator frequency. We implement two geometries: a capacitor

plate and an electric needle. The capacitor is formed between the bottom surface of the

outer resonator, which is coated with aluminum, and an external chip which has an Al

plate recessed by 20 µm. The alignment between two chips and the bonding of wires

to inside facing surfaces are challenging. However, we can actuate motion of the me-

chanical resonator using this technique, and control the motion of the outer resonator

[50]. This plate to plate geometry could be useful for measurements of the Casimir force

between superconductors with the large force sensitivity of optomechanics.

Because of its simpler design, placing a ring shaped metal needle behind the sample

is an easier way to integrate electrical feedback into our existing optomechanical setup

[107]. We can build in a damping feedback circuit on the outer resonator which mea-

sures the outer resonator position with an interferometer and feeds back a voltage which
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Figure 4.5: Electrical feedback cooling of the outer resonator. a) Power spectral den-
sity curves for three different electrical gain factors. The area under the curve is pro-
portional to the effective temperature of the device. b) For increasing gain the quality
factor can be continuosly reduced, but the temperature increases for large gain. Figure
courtesy of Frank Buters.

induces a force on the dielectric material of the resonator. This can be run completely

independently from the optomechanical cavity experiment, and is a useful experimen-

tal technique for the experiments in Chapter 6. See [49] for a more complete discussion

of the operation of outer resonator vibration damping.2

We can now test the effectiveness of electrical feedback on damping the resonator.

Figure 4.5 shows effective temperature and Q measurements for varied gain in the elec-

trical circuit. The effective temperature lowers for increasing gain, but then increases

again as noise from the interferometer is fed back into the mechanical system. The qual-

ity factor can be reduced by more than three orders of magnitude, which is sufficient to

avoid large vibrations around the outer resonator frequency. This form of stabilization is

sufficient for locking a laser to a high finesse cavity in a dilution refrigerator with a noisy

mechanical environment [49].

2The electrical feedback results are based on the work by Buters et al. [107], and are used with permis-
sion from the authors.
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4.6 Conclusion

We have demonstrated that we can consistently fabricate nested trampoline devices

with both high quality factor and high finesse. We design the devices to have 80 dB

of mechanical isolation from the environment at the inner resonator frequnecy, and we

observe greater than 45 dB of mechanical isolation at lower frequencies and the elimina-

tion of clampling losses. With our mechanical isolation we can investigate the internal

losses of trampoline resonators (Chapter 5) and perform stronger optomechanical cool-

ing, particularly at cryogenic temperatures (Chapter 8). These devices were also used

for an investigation of optomechanically induced transparency (OMIT) [108].
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Chapter 5

Internal Mechanical Quality Factor

In the previous chapter we developed a method for isolating mechanical modes from

their substrate. However, mechanical energy and hence quantum information can still

be lost within the mechanical resonator itself to a number of dissipation mechanisms.

In this chapter we investigate three possible sources of intrinsic material dissipation in

trampoline resonators, and we develop new device geometries which mitigate these loss

sources.

5.1 Mechanical Dissipation in the Materials

The mechanical loss mechanisms within Si3N4 have been studied extensively [100,

109, 110, 69]. Within a one dimensional Si3N4 resonator the quality factor is given by

[110]:
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Q = Wtensi on

Wbend
Q0 (5.1.1)

Wtensi on = 1

2
σA

∫ (
∂u(x)

∂x

)2

d x (5.1.2)

Wbend = 1

2
E Iz

∫ (
∂2u(x)

∂x2

)2

d x (5.1.3)

u(x) is the displacement, Q0 is the intrinsic quality factor unenhanced by the stress, σ is

the stress and E is the Young’s modulus. A is the cross-section area and Iz is the moment

of inertia. Wtensi on is the energy stored in the nitride including the stress and Wbend is

the energy of bending in the nitride. These equations have also been generalized to two

dimensions [69]. However, because the arms of trampoline resonators stretch almost

entirely along the length, and the motion is uniform across the width, it is sufficient to

consider the one dimensional equations above. All calculations in COMSOL are per-

formed with the full two dimensional energies. In general Wtensi on is larger than Wbend

leading to an enhancement proportional to
p
σ/E . It is has been observed that ten-

sion and bending dominate over any surface dissipation effects [100, 109, 110, 69]. This

means that there are three ways to increase the Q of Si3N4 devices: increasing the stress,

decreasing the bending energy of the devices, and increasing Q0.

The stress in the Si3N4 is determined by the low pressure chemical vapor deposition

(LPCVD) process. Typically, this is limited to around a GPa, and for our fabrication pro-

cess we start with wafers with Si3N4 stress in the range of 800 MPa to 1 GPa. The stress

in Si3N4 nanostrings and trampolines can be increased by geometric stress engineer-

ing [111, 112]. However, applying these techniques to trampolines carrying a DBR load

would dramatically lower their frequency, because we would require narrower trampo-

line arms. Therefore, increasing stress is a challenging way forward for improving the

quality factor of our devices.

41



CHAPTER 5. INTERNAL MECHANICAL QUALITY FACTOR

Figure 5.1: Linecuts of trampoline resonator motion. COMSOL simulations of the
motion of trampoline resonators with a) and without b) a DBR mirror. The insets show
the full mode, and the main figures show a line cut along the dotted line. There are two
main regions where the DBR causes a difference in behavior: the green region where
the silicon nitride bends much more sharply and the yellow region where the DBR mir-
ror bends. Both types of resonators exhibit bending at the clamping point to the Si
substrate.

Next we consider bending losses in Si3N4 trampolines. We can break the resonators

into four regions: bulk Si3N4, the DBR mirror, the clamping point for the mirror and

the clamping point to the Si substrate, as illustrated in Figure 5.1a. In contrast (Figure

5.1b), devices constructed solely from Si3N4 only contain two regions: bulk Si3N4 and

clamping to the Si substrate. In bare Si3N4 devices, the losses tend to be dominated

by the clamping points on the edges, because this is where the devices experience the

most bending (∂2u/∂x2 is large) [69, 110]. The easiest way to reduce bending losses is

by using a thinner layer of nitride, such that there is less volume bending [111]. Because

pure Si3N4 devices carry no load in addition to their own mass, the spring constant and

effective mass decrease together and the frequency does not decrease. Recently these

losses have been avoided with soft clamping of the devices with a phononic crystal made

of Si3N4 [113]. In Section 5.3 we will describe our efforts to reduce the clamping losses

to the Si and to the DBR by changing the geometry, and in Section 5.4 we will compare
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the losses in trampoline resonators with and without a DBR mirror.

The final method to increase the Q factor of Si3N4 devices is to reduce the intrin-

sic losses. The exact mechanism for the losses in Si3N4 is still uncertain, but there is

evidence to suggest it relates to coupling to two level systems [114, 115]. These sys-

tems gradually get frozen out at low temperatures leading to a reduction in the losses of

the system [116, 117]. Most Si3N4 systems see an increase in the quality factor between

room temperature and 4K [104, 118, 114, 119]. Recently, it has been shown that there is a

second dramatic increase in the quality factor between 4K and 100 mK [120, 121]. Fortu-

nately, low temperatures are advantageous for quantum optomechanics, so our devices

could likely take advantage of this boost to the Q at low temperatures.

Our devices could also suffer from mechanical losses in the DBR mirror. As is shown

in Figure 5.1a, there is some mechanical motion within the mirror itself, and COMSOL

simulations determine that this accounts for 24% of the bending energy. Mechanical

losses within SiO2/Ta2O5 mirror coatings have been studied extensively in the last 20

years, because gravitational wave observatories use the same materials for their mirrors

[60, 122, 123, 124, 125, 126]. Mechanical losses lead to thermal Brownian motion of the

coatings, and these vibrations are a major contribution to the noise floor in the band

between 50 and 500 Hz [124, 60]. The loss angle φ= 1/Q is typically between 0.5 and 3 x

10−4 for SiO2 and between 2 and 6 x 10−4 for Ta2O5 [122, 123, 76, 126]. These loss angles

are measured between 10 Hz and 10 kHz, but there is evidence to suggest that the loss

angle has only weak dependence on frequency [126].

We can modify Equation 5.1.1 to include the bending losses of the DBR [126]:

Q = Wtensi on

WSi N /Q0 +WDBRφ
(5.1.4)

WSi N is the nitride bending energy and WDBR is the DBR bending energy, which can be

43



CHAPTER 5. INTERNAL MECHANICAL QUALITY FACTOR

calculated using Equations 5.1.2 and 5.1.3. Note that even though the tension is only

in the nitride layer, it still enhances the Q of the device, regardless of whether bending

losses occur in the nitride or the DBR. We can estimate the limits to the quality factor by

simulating the bending energies in COMSOL. If we assume no loss in the nitride and an

average loss angle of 4 x 10−4 in the DBR stack we find a Q of 500,000. In Section 5.5 we

develop trampoline resonators with reduced DBR bending in an attempt to surpass this

limit to the Q.

5.2 Measuring Mechanical Q

There are two methods we use to measure mechanical Q: thermal noise spectra and

ringdowns. We can measure the mechanical position continuously by locking to the

side of a Fabry-Pérot resonance feature, where the transmitted intensity varies linearly

with position. For any Q measurement, we must eliminate any optomechanical effects,

which might increase or decrease the damping rate. Therefore, we use a cavity with low

finesse in the range of 100-300. In Santa Barbara we shorten the cavity such that excess

light diffracts around the small mirror. In Leiden we use a laser at about 980 nm where

the coatings are less reflective. As a test to ensure optomechanical effects are absent we

take thermal spectra or ringdowns with the laser locked to opposite side of the Fabry-

Pérot resonance and verify that the Q is the same.

When a mechanical resonator is in equilibrium with its thermal environment, it

moves according to the imaginary part of its susceptibility [8]:

Sxx(ω) = 2kB T

ω
Im

[
χ(ω)

]= 2kB T

ω
Im

[
1

i me f f ωγ+me f f (ω2
m −ω2)

]
(5.2.1)

≈ kB Tγ

2me f f ω
2
m

(
γ2/4+ (ωm −ω)2

) (5.2.2)
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This equation simplifies to a Lorentzian expression near the mechanical resonance (ω=
ωm) with a linewidth of γ. We can therefore measure the linewidth and Q by measuring

the noise power spectral density Sxx(ω) and fitting a Lorentzian. Besides the simplicity

of this method, another advantage is that if our measurement is calibrated, we can also

extract the temperature of the mechanical resonator.

The thermal motion method works well when the system does not drift in frequency.

However, when the frequency drifts it will make the linewidth appear artificially larger,

and we take a ringdown measurement instead. We drive the system at the mechanical

resonance frequency, using either the dielectric force from a metal tip (as discussed in

Chapter 4) or the sinusoidal amplitude modulation of a laser beam. We then isolate the

amplitude of motion with a lock-in amplifier at the mechanical resonance frequency,

and measure the ringdown of this quadrature. This method is helpful for resonances

with low frequency, high Q, or low temperature.

5.3 Changing Clamping Conditions

As a first attempt at improving the mechanical quality factor of these systems, we

change the geometry of the Si3N4 arms, and in particular their direction of motion rela-

tive to the mirror. The trampoline resonators from Chapter 3 and 4 clamped perpendic-

ularly to the Si and DBR mirror. We fabricate several geometries in which the clamping

is parallel to the motion in an attempt to minimize bending.

The three geometries we compare are shown in Figure A.7. The best Q factors ob-

tained for each geometry are shown in Table 5.1, and parameter fits for device geometry

a) are shown in Figure 5.3. Despite the large changes to the geometry, there is not a sig-

nificant impact on the Q of the devices, and we do not see a noticeable increase for the

perpendicularly clamped geometries. We conclude that we will need a more compli-
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Figure 5.2: Devices with different clamping geometries. a) Optical microscope images
of a full device including the outer resonator and b)-d) only the inner resonator with
different clamping configurations. All devices were fabricated using the same process.
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Figure 5.3: Measurement of a clamping geometry. a) A Lorentzian fit to the thermal
motion determines inner resonator Q for the device shown in Figure A.7a,b. b) A ring-
down measures the Q of the outer resonator, because of its low frequency. c) Finesse is
measured via cavity ringdown. All devices in Table 5.1 were measured in this way.

Table 5.1: Q for different clamping geometries
Geometry Frequency (kHz) Q

b 216 418,000 ± 30,000
c 307 347,000 ± 18,000
d 293 419,000 ± 30,000

cated solution to increase the Q of these devices.

5.4 Comparison to Bare Trampolines

It is important to compare our results for trampolines with DBR mirrors to trampo-

lines without to ensure that the presence of the DBR mirror and not some fabrication

problem is responsible for the limited Q. We could fabricate devices with the same fab-

rication method explained in Chapter 4, starting from a chip without DBR layers and

skipping the processing steps for those layers. However, the back of the chips we use has

a layer of Si3N4 which matches the device layer on the front of the chips. In this section

we fabricate an additional trampoline resonator on the back of the device, so that we can

do a controlled comparison between front and back devices or DBR vs bare trampolines

all in one integrated structure.
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Figure 5.4: A double sided trampoline resonator device. a) The front side is a trampo-
line with a DBR mirror. The defects in the mirror ring do not affect the mechanical (or
optical) properties of the device. b) The back side is a bare trampoline resonator. The
purple haze surrounding each resonator is the defocused image of the resonator on the
other side.

The fabrication for these structures is quite similar to those of the previous chapters.

However, we begin the process by depositing about 1 µm of PECVD SiO2 followed by

about 300 nm of PECVD SiN on the back of the chip. This serves the same function as

the protective mirror ring from Chapter 4, and adds to the validity of this as a control

process. We first etch the DBR stack with an inductively coupled plasma (ICP) etch, fol-

lowed by a CF4 etch of the Si3N4 trampoline. We then flip the chip, and use IR contact

lithography to align the back of the device to the front with approximately 10-20 µm

accuracy. We etch the back with an ICP etch, followed by a CF4 etch of the Si3N4 tram-

poline. At this point we etch approximately 400 µm down into the silicon wafer with a

deep reactive ion etch (DRIE). We release both devices at once using a TMAH etch. Fi-

nally, without moving out of liquid, a thin protective layer of SiO2 is removed from the

devices with an HF dip, and the devices are transferred to ethanol, where they are dried

on a hot plate. A device made with this process is shown in Figure 5.4.

We start by comparing the Q factors of the two devices. We take ringdown mea-

surements, because the frequency of the bare membrane devices were observed to shift
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down in frequency over time. The highest Q obtained for the bare membrane device is

1,310,000 ± 110,000 compared to 476,000 ± 67,000 for the DBR device. (The fQ prod-

uct is about six times higher.) The bare membrane Q is still a little lower than is typical

for membrane systems [67, 69], likely due to the fact that our devices are 450 nm thick

instead of 50 nm thick. We would therefore like to test devices with thinner Si3N4 layers.

We thin out the devices using a directional CF4 etch at the end of the fabrication

process. This is also important for raising the finesse of the cavity with these devices,

because a thick membrane can cause optical losses, as will be discussed in the next

chapter. We observe a large increase of the quality factor of the bare nitride trampolines

to a maximum of 2,800,000 ± 200,000 for a membrane thickness of 56 nm. We thinned

the front device down to 170 nm, and the DBR trampoline Q only increased to 450,000

± 30,000, which did not improve on the maximal Q. We can simulate the bending losses

in the Si3N4 only devices and plug our results into Equation 5.1.1. With this analysis we

determine that Q0 is about 20,000, which is consistent with other results for stoichio-

metric Si3N4 [110]. If we apply Equation 5.1.1 to the DBR trampolines, and only assume

losses in the nitride, we determine a limit to the quality factor of 800,000. This is strong

evidence that Si3N4 intrinsic losses and the fabrication process are not limiting quality

factor for devices with a DBR mirror.

Other groups have observed an increase in quality factor at cryogenic temperatures,

and we would like to measure the effect of cooling on our trampoline resonators. In

order to measure Q at cryogenic temperatures without the need to align an optical cavity

we use an interferometric setup, shown in Figure 5.5. A fiber and an electrode with a

narrow (∼ 100 µm) tip are placed approximately 500 µm behind the device facing the

bare trampoline side. The electrode can be used to drive the two resonators as described

in Chapter 4. We send 1550 nm light into the fiber and use the interference between

reflections from the device and the end of the fiber to measure the position of the device.
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Figure 5.5: The interferometer setup. We can measure two resonators simultaneously
by aligning a fiber parallel to both devices. We drive the two resonators by applying a
voltage at the mechanical frequency to the electrode. We measure mechanical motion
by looking at the fluctuations in the interference between the fiber face and the surface
of the two resonators.

Table 5.2: Q dependence on Temperature
Temperature(K) DBR Resonator Q Bare Resonator Q

300 400,000 ± 50,000 2,700,000 ± 100,000
5 430,000 ± 30,000 5,700,000 ± 100,000

<0.5 380,000 ± 50,000 8,700,000 ± 200,000

We can measure both the bare trampoline and the DBR in this way, but it is only possible

to measure Q via ringdown, because the sensitivity is insufficient to measure thermal

motion at low temperatures.

The mechanical Q factors at three temperatures are shown in Table 5.2. At room

temperature and 5K, the system is well thermalized to its surroundings. Figure 5.6 shows

ringdowns for both types of resonators at 5K. However, when we cool the setup down to

50 mK, heating of the devices by the laser becomes significant. Interestingly, there is a

strong dependence of the Q on the laser power used in the measurement. We attempt

to use as little power as possible to perform the measurement, but we are limited by the

sensitivity at low powers. It is unclear whether the heating is due to optical heating in the
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Figure 5.6: Mechanical ringdowns of two trampoline resonators. a) A ringdown with
a DBR mirror and b) without a DBR mirror. The measurements are performed with an
interferometer at a temperature of 5K.

Si3N4 layer or in the Si frame of the outer resonator. A more advanced setup might yield

even higher Q’s at mK temperatures. The Q of the DBR trampoline resonators remains

relatively unaffected by the temperature, while the Q of the bare trampoline increases

dramatically. At the lowest temperature, the fQ product of the bare membranes is ap-

proximately 40 times that of the DBR resonators.

In general, we see that the devices made purely of Si3N4 follow the same trends that

have been observed in other Si3N4 optomechanical devices. The Q increases both for

thinning the layer and for lowering the temperature. The Q factors we achieve fall into

the range of what is typically observed for large square membranes [104, 67]. This is to

be expected, because we did not optimize the geometry of the trampolines for a system

with no load. Future steps could include making Si3N4 devices utilizing stress enhance-

ment [111, 112] and/or soft clamping [113]. However, for devices with a DBR we can

conclude that the intrinsic quality factor of the Si3N4 is not limiting. Furthermore, if the

system were dominated by bending losses we would also expect the Q to go up at cryo-

genic temperatures, because Q0 in Equation 5.1.1 has increased. This suggests that the

DBR mirror trampolines are limited in Q by bending losses in the mirror layers.
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5.5 A DBR Mirror on a Pedestal

Most evidence suggests that we must eliminate bending in the DBR mirror to raise

the mechanical Q of our devices. We investigate different mirror geometries in COMSOL

to find a solution. One possibility is extending the mirror to add flaps which counterbal-

ance the mirror motion [98]. The downside of this approach is that it will tremendously

increase the mode mass of the devices, making ground state cooling difficult. Alterna-

tively, we can construct the “flaps" out of the mirror layer by undercutting the bottom

layer. In this way, at a particular frequency of oscillation, the motion of the middle of

the mirror is balanced by the free-floating mirror. COMSOL simulations predict that it

should be possible to reduce the bending energy by at least a factor of 10 this way. The

undercut geometry is shown schematically in Figure 5.7a.

We modify the fabrication process to produce DBR mirrors which are undercut or

mounted on a pedestal. We start with the same layers as in previous chapters. When we

etch away the DBR layer to make the mirror, we stop at the top of the bottom SiO2 layer,

which is a half-wave layer (366 nm). We proceed with patterning the front and back of

the chip, as it was performed in previous chapters. Before the release, we coat the chip

with a 200 nm layer of Cr to protect the other layers of the DBR from being etched. We

found that this was not enough, however, so we also add a layer of resist. After removing

the Cr from the regions surrounding the DBR we undercut the mirror by placing the

sample in buffered HF for about 90 minutes. The radius of the pedestal depends on the

etch time. We remove the resist and Cr and release the devices.

We measured thermal spectra for each resonator to determine the Q. We found that

the Q factor for the pedestal devices was between 4000 and 15000, far lower than the Q of

other devices, even broken ones. This must be caused by changes to the surface chem-

istry of the devices in either the HF etch or the Cr deposition or removal. Degradation of
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Figure 5.7: Undercutting the DBR mirror. a) A schematic of the undercut mirror with
9 layers instead of 40 for clarity. b) An SEM image of a trampoline resonator with an
undercut DBR mirror. The inset shows the mirror layers which are perfectly intact and
the gap at the bottom of the mirror. c) Optical bright field image. The pedestal is purple,
and the rainbow colors are due to etching of the Si3N4 layer. d) Dark field image. The
lines show edges, and the outline of the pedestal is visible in the center.

53



CHAPTER 5. INTERNAL MECHANICAL QUALITY FACTOR

Figure 5.8: Etching the Si3N4 of the pedestal resonator. We etch away the top of the
Si3N4 layer with a CF4 etch to remove contamination from HF. The layer was 450 nm
thick before the HF etch and 385 nm thick after (corresponding to 0 on the x axis.) The
dashed vertical line is an estimate for the depth of contamination.

the Q in other stoichiometric Si3N4 systems has been observed during HF etching [127].

This is posited to be caused by surface contamination from the HF into the Si3N4. Our

HF etch was long, so this is a likely explanation.

If hydrogen or fluorine diffusion is the problem in our system, the quality factor

should improve if the surface layers are removed, particularly past the mean depth of

diffusion. We test this by etching away the top surface of the device with a CF4 etch, as

was described in the last section. The results are shown in Figure 5.8. We can improve

the quality factor by more than a factor of 10 using this method, but it does not return

to the value of devices with no pedestal. This could be due to the fact that we cannot

remove the HF contamination from under the mirror with the CF4 etch. We attempted

an H3PO4 etch to remove the contaminated Si3N4 layer under the mirror, but this did

not improve the Q, possibly because it also has many hydrogen ions present. As of this

writing, we do not have a solution for making pedestals using HF undercutting which

does not damage stoichiometric Si3N4.

There are a few possibilities for eliminating bending losses in the DBR which could
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be tried in the future. The first is to extend the mirror and create flaps, which coun-

terbalance, and prevent motion of the mirror [98]. This will lower the frequency of the

devices, but might increase their quality factor. Another solution is to change the com-

position of the DBR layer stack. There have been promising results with Ti doped Ta2O5,

which reduce both the optical absorption and the mechanical loss angle, but this is a

small difference [75]. A more drastic change would be to switch to GaAs/AlGaAs DBR

mirror which have a loss angle of 2.5 x 10−5, a significant improvement, but these coat-

ings suffer from high optical absorption of 12.5 ppm [128].

5.6 Conclusion

We have examined in detail the many different loss contributions to trampoline res-

onators. Interestingly, we found that there are two loss mechanisms which are of the

same order of magnitude: bending losses in the Si3N4 and DBR bending. Unfortunately,

to improve nitride bending, it is beneficial to have a smoother transition between the

nitride and the DBR, so that the mechanical impedance mismatch does not cause a

sharp corner in the mode. Conversely, to improve DBR bending, it is better to have a

weak clamping between the mirror and the nitride, so that there is a large mechanical

impedance mismatch. These conflicting design goals make the prospects for improve-

ments of DBR mirrors on Si3N4 membranes difficult.

Despite challenges in raising the Q, we have fabricated a series of devices which are

already useful for experiments with macroscopic optomechanics. The double sided de-

vice geometry developed in this chapter is a useful prototype for future experiments in-

volving state swapping and entanglement between different types of resonators. These

results will be discussed in the next two chapters. Our devices are well in the sideband

resolved regime, so that efficient optical cooling towards the quantum regime is possible
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as we will discuss in Chapter 8. Finally, the high finesse cavities we built could also be

used for efficient state transfer between mechanical resonators.
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Chapter 6

State Transfer between Disparate

Resonators

Systems of coupled mechanical resonators are useful for quantum information process-

ing and fundamental tests of physics. Direct coupling is only possible with resonators

of very similar frequency, but by using an intermediary optical mode, nondegenerate

modes can interact and be independently controlled in a single optical cavity. In this

chapter we demonstrate coherent optomechanical state swapping between two spa-

tially and frequency separated resonators with a mass ratio of 4. We find that, by using

two laser beams far detuned from an optical cavity resonance, efficient state transfer is

possible. Although the demonstration is classical, the same technique can be used to

generate entanglement between oscillators in the quantum regime. 1

1The contents of this chapter are based on the work by Weaver et al. [129], and are used with permission
from the authors.
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6.1 Introduction

Hybrid quantum systems have been developed with various mechanical, optical

and microwave harmonic oscillators [47, 130, 7, 131, 8, 78]. The coupling produces a

rich library of interactions including two mode squeezing [132, 133, 134, 135], swap-

ping interactions [47, 7, 46, 136], back-action evasion [137, 138] and thermal control

[139, 140, 141]. In a multimode mechanical system, coupling resonators of different

scales (both in frequency and mass) leverages the advantages of each resonance. For

example: a high frequency, easily manipulated resonator could be entangled with a low

frequency massive object for tests of gravitational decoherence [20, 19, 51]. Through a

process similar to STIRAP (Stimulated Raman Adiabatic Passage) [142] in atomic physics

it is possible to couple two very different mechanical resonators with an effective beam

splitter interaction. We investigate this interaction, and demonstrate efficient and co-

herent state transfer between two frequency separated mechanical resonators in the

same cavity.

Efforts are under way to control systems with several mechanical modes at the quan-

tum level [130, 73, 143]. Hybridization and coherent swapping have been observed

in optomechanical [136, 143, 144] and electromechanical [145, 146, 147] systems with

nearly degenerate modes. Because the interaction between two coupled resonators de-

creases dramatically with frequency separation, either precise fabrication or frequency

tuning is required to ensure degenerate mechanical modes. In many of these systems a

separate optical cavity is necessary to control the motion of each mechanical resonator,

which leads to complicated systems.[136, 147] Dynamically coupling non-degenerate

resonances together in a single cavity avoids these technical difficulties, while still al-

lowing for individual control of each resonance. In an optomechanical system where

mechanical resonances are spaced further apart than the optical cavity linewidth, each
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resonance can be addressed independently with a laser detuned to that mechanical res-

onance frequency.

Here we investigate the real time dynamics of a coupled mode system and show co-

herent optomechanical state swapping between two mechanical modes. High swapping

efficiency is possible in a region with large beam detuning from the cavity resonance. We

discuss implementation of this method in the quantum regime and some capabilities of

interacting quantum systems with large frequency separation.

6.2 Results

6.2.1 Optomechanical System

Our optomechanical system consists of a room temperature Fabry-Pérot cavity with

one fixed end mirror, one moving end mirror on a trampoline (resonator 1) and one

trampoline membrane (resonator 2)[112, 111, 66] inside the cavity as shown in Figure

6.1. The radiation pressure force on the resonators from photons in the cavity and

the position dependent cavity phase shift mediate an interaction between the two res-

onators and the optical cavity [8]. The resonator frequencies are ω1/2π = 297 kHz for

the end mirror and ω2/2π = 659 kHz for the membrane and the optical decay rate of the

cavity is κ/2π = 200 kHz, so the system is in the resolved sideband regime.

6.2.2 Optomechanical Swapping

We couple the two nondegenerate modes by modulating the inter-resonator cou-

pling coefficient between resonators 1 and 2 at their difference frequency. Buchmann

and Stamper-Kurn [148] found that an equivalent effect is produced by injecting two

laser beams separated by the mechanical difference frequency into an optomechanical
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Figure 6.1: Optomechanical setup with two resonators in an optical cavity. a) A
schematic diagram of the optical cavity with two mechanical trampoline resonators.
The resonators are constructed from Low Pressure Chemical Vapour Deposition
(LPCVD) Silicon Nitride. One resonator has a distributed bragg reflector (DBR) mir-
ror (b) and one resonator is a bare membrane (c). b) and c) are optical microscope
images of the two resonators, with 1 mm scale bars. The resonators are suspended
from a shared outer resonator to provide mechanical isolation from the environment.
This figure is not to scale.
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cavity. In the microwave regime it has been shown that driving with two tones leads

to an avoided crossing of the mechanical energy levels of two resonators with different

frequencies [73, 149]. Here, a single laser beam detuned from cavity resonance by the

mechanical frequency of one resonator swaps excitations between that resonator mode

and the optical cavity mode [150]. A second laser beam detuned by the other mechani-

cal frequency will concurrently swap excitations of the other resonator with the optical

mode, resulting in a net swapping between the two mechanical modes. A schematic di-

agram of the exchange operation and the effective Λ-type system produced is shown in

Figure 6.2. This interaction can be described by the beam splitter Hamiltonian [148]:

Hi nt = J

2

(
b†

1b2 +b1b†
2

)
(6.2.1)

J is the optomechanical swapping rate, and b j is the annihilation operator for the j th

mechanical mode.

To investigate this interaction we prepare one resonator in an excited state and then

observe the swapping dynamics of the coupled system. We excite resonator 2 into a

large coherent state by applying a voltage at its resonance frequency to an electrode be-

hind the sample and then turn on the two laser beams. Figure 6.3 shows the measured

amplitude of motion of the two resonators. We observe in real time as the mechanical

excitation is swapped back and forth between the two resonators in a repeatable fashion.

Figure 6.3b shows the response to a single optical swapping interaction. The operation

can be modelled as an underdamped exchange between two coupled harmonic oscilla-

tors, and the fits indicate that our system operates in this regime (see Section 6.4.4.) The

motion dips down to the thermal fluctuation level every time the state is exchanged, in-

dicating complete state swapping. We now investigate the efficiency of the system and

its coupling to different loss baths.
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Figure 6.2: Generating coupling between two resonators with two laser drives. a)
A single laser drive (red arrow) sent into the cavity produces four sidebands, two for
each resonator. The laser is detuned from a cavity resonance on the right. b) A second
laser can be added to generate optical swapping. (ii) and (v) are overlapping sidebands
of the two resonators. The insets indicate the analogy to state transfer in an atomic
Λ-type system. The quantum number states are the photon occupation of the cavity,
phonon occupation of resonator 1 and phonon occupation of resonator 2. Detuning
from the intermediary state avoids losses due to light leaking out of the cavity. (iii) and
(iv) are the unmatched sidebands of resonator 1 and (i) and (vi) are the unmatched
sidebands of resonator 2. By adjusting the laser detuning, the sidebands (i-vi) can be
separately aligned with the cavity resonance to interact with one resonator at a time
or both at once. In the case shown here, the state of resonator 2 is swapped with the
cavity, because sideband (vi) is aligned to the cavity. This figure is not to scale.
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Figure 6.3: Optomechanical swapping between mechanical resonators. a) We alter-
nate turning on a mechanical drive (black) and an optical swapping field (red), while
continuously measuring the root mean square (RMS) amplitude of motion of the two
resonators. This single shot measurement shows the repeatable dynamics of the sys-
tem. b) A single swapping interaction (the dashed box in a) shows phonon Rabi oscilla-
tions. Solid lines are fits to the measured data points, and the dotted line indicates the
thermal motion of the two resonators. Because the motion dips down to the thermal
noise level every period, there is complete state swapping. The inset shows one such
dip after a single complete state transfer.
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6.2.3 Power and Detuning Dependence of Swapping Parameters

If the transfer rate, J , is much slower than the mechanical frequencies, the classical

amplitudes of the modes b1 and b2 evolve slowly. Under this approximation the transfer

rate, J , and total loss rate Γ are given by:

J = 2g1g2
p

n1n2

(
ω̄− ∆̄

κ2/4+ (ω̄− ∆̄)2
− ω̄+ ∆̄
κ2/4+ (ω̄+ ∆̄)2

)
(6.2.2)

Γ = ∑
i , j=1,2

ni g 2
j κ

κ2/4+ (∆i −ω j )2
−

ni g 2
j κ

κ2/4+ (∆i +ω j )2
+ γ j

2
(6.2.3)

ni = Pi n

2~ωLi

κex

κ2/4+∆2
i

(6.2.4)

g j ,ω j andγ j are the single photon optomechanical coupling rate, mechanical frequency

and mechanical damping rate of the jth mode. ∆i and ni are the detuning to the red side

and cavity photon number of the ith cavity mode. ∆̄ and ω̄ are the mean detuning and

mean frequency of the two modes. ωLi is the laser frequency of the ith beam, κex is the

input coupling rate and Pi n is the input optical power. The swapping rate, J , is the sum

of two Fano-like resonances from each set of matched sidebands. These exchange the

mechanical state through a virtual state near the optical cavity resonance as pictured in

the two insets in Figure 6.2b. The Lorentzian resonances in the expression of the loss

rate, Γ, are the optically induced loss or gain of the j th mode due to the i th laser beam.

There is one term for each of the eight sidebands (Figure 6.2a and b). The complete

model is given in the Section 6.4.4.

Both optomechanical gain and loss should be avoided, as gain can introduce noise

into the system. Because Γ decreases more quickly than J with increasing ∆̄, the ideal

detuning is on the red side of the cavity, far from all resonances, in a region with negli-

gible optomechanical amplification. Figure 6.4 shows an exploration of state swapping

in a region with large detuning. The range is limited to regions of coherent swapping,
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Figure 6.4: Parameter dependence of optomechanical swapping rate and total loss
rate. Optomechanical swapping rate, J (a), and total loss rate, Γ (b), are measured as a
function of detuning (∆̄/2π). The dashed lines are two parameter fits based on Equa-
tions 6.2.2 and 6.2.3. For clarity the higher power measurements of Γ are vertically
offset by 2 and 4 Hz as indicated by the dotted lines. c) J and Γ are measured as a func-
tion of input power at a detuning of 1.87 MHz (indicated by black dotted line in a) and
b).) The dashed lines are two parameter fits based on Equations 6.2.2 and 6.2.3. The
ratio between the measured optical power and the input power Pi n and the mean bare
mechanical dissipation rate (γ1+ γ2)/2 are the fitting parameters (see Section 6.4.3.)
Statistical uncertainties are smaller than the point size.

where J>Γ. We observe the expected dependencies on detuning and input power for

the coupling and loss rates. For smaller detunings the dominant loss is residual optical

cooling of resonator 2, a by-product of its unmatched red sideband. For large detun-

ings mechanical leakage to the environment dominates, and the peak efficiency is in

the middle at ∆̄/2π = 2.3 MHz.
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6.3 Discussion

Two useful operations in a quantum network of oscillators are a complete state trans-

fer (π-pulse) and a partial state transfer (π/2-pulse) to generate an entangled state. If we

terminate the swapping after one of these pulses, 58% of the phonon occupation is con-

served in a π-pulse and 77% of the occupation is conserved in a π/2-pulse (see Section

6.4.4.) The swapping rate demonstrated here at room temperature is not sufficient to

overcome the large thermal decoherence rate (nthγ) from the environment even at mil-

likelvin temperatures. However, both the efficiency of transfer and the swapping rate

could be improved significantly by decreasing the cavity loss. The finesse of our cavity

is currently limited by absorption in the membrane trampoline, and we estimate that

using a thinner membrane would improve the finesse by at least a factor of four. Most of

the detunings close to the cavity resonance are in the overdamped regime, where energy

transfer is only possible with large losses. With an increased finesse, a point close to the

cavity resonance appears where the positive and negative components of Γ cancel, lead-

ing to nearly lossless classical state transfer (>99% efficiency). In the quantum regime,

the negative component of Γ introduces extra decoherence, so the quantum state trans-

fer is more limited (56% efficiency). However, the effects of coherent swapping should

still be visible (see Section 6.4.4.)

Although we have focused on swapping states between the fundamental modes of

two resonators, the technique is general and can also be applied to higher order modes

of the same resonator. We apply the exact same scheme to swap energy between the fun-

damental (ω1/2π = 659 kHz) and the first excited (ω2/2π = 1199 kHz) mode of the mem-

brane trampoline as shown in Figure 6.5. Sequential swapping pulses between many

mechanical modes in a cavity could generate a large network of coupled modes. Each

mode is individually addressable because of its frequency separation from the other
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Figure 6.5: Coherent optomechanical swapping between two membrane modes. The
same experimental procedure from the main text is repeated with two mechanical
modes of the resonator without the mirror. The system parameters for this plot are:
ω1/2π = 660 kHz, ω2/2π = 1199 kHz and ∆/2π = 2.7 MHz. The solid lines are fits to the
measured data points for each mode. Full coherent optomechanical swapping is also
possible using only a membrane in the middle setup.

modes. Low frequency resonators with long mechanical lifetimes could serve as stor-

age for quantum information generated with a high frequency resonator.

This technique can also be used to study quantum mechanics in a high-mass system.

Larger systems tend to suffer from small optomechanical coupling rates and slow inter-

actions. We can instead prepare a quantum superposition state in a high frequency res-

onator with large optomechanical coupling and transfer it into the high-mass resonator.

After letting the system evolve for an extended period, then transferring the motion back

to the high frequency resonator, we can determine if the state decohered. Finally, this

work could be extended to provide directional adiabatic transfer of states with STIRAP

by using separate time-varying intensity pulses for the two input laser beams [142].
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6.4 Methods

6.4.1 Optomechanical System

The optomechanical system is an extension of previous systems [87]. We use a Fabry-

PÃl’rot cavity with one fixed end mirror with a nominal radius of curvature of 50 mm.

The other side of the cavity is formed by two trampolines fabricated on opposite sides

of a tethered silicon block (see Figure 6.1.) The block acts as a mechanical low pass filter

and provides greater than 65 dB of vibration isolation from the environment [89]. The

cavity alignment uses the same technique used for single trampoline resonators [87].

Four piezo motors adjust the cavity in-coupling and three motors align the cavity itself.

The DBR mirror on the trampoline is only 75 µm in diameter, so we align the beam

waist of the cavity mode close to the DBR to avoid clipping losses. Mode calculations

indicate that the beam radius should be approximately 16 µm at both the DBR and bare

membrane trampoline. Based on the free spectral range of the cavity we estimate an

exact length of 50.18 mm. The cavity is slightly longer than 50 mm because the mismatch

in stress between the silicon nitride and the DBR mirror leads a slight inward curvature

with a radius of approximately 1.5 mm [80]. Because the two resonators are fabricated

on the same chip, no extra alignment is needed for the additional membrane trampoline

in the middle. This technique could be extended to even more resonators by attaching

multiple chips together.

The system behaves as the sum of its two constituent parts: a traditional optome-

chanical cavity with a single moving end mirror and a membrane in the middle system

[66]. A membrane in the middle system has a finesse which depends on the position of

the membrane with respect to the nodes of the cavity [72, 67]. Supplementary Figure

6.6a shows a periodic finesse response as we vary the node position by changing wave-

length. The optical cavity loss is dominated by absorption in the membrane trampoline.
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Figure 6.6: Characterization of the hybrid membrane and moving end mirror cavity.
a) Finesse is measured as a function of laser wavelength. Periodic variations in finesse
are expected of a membrane in the middle system. The solid line is a numerical model
using the transfer matrix method and two adjustable parameters, the imaginary index
of the nitride film, ni m , and the thickness of the chip, t . b) We change the detuning
of a single laser beam and measure the optical damping of each resonator indepen-
dently. The dotted lines are fits to the theory of a single resonator, indicating that the
hybrid system behaves as the sum of two linear optomechanical systems. Note that
the separation of the two peaks shows that each resonator can be controlled indepen-
dently. Error bars in a) reflect the standard deviation of statistical fluctuations between
ten measurements and in b) indicate the deviations from a fit for the linewidth of each
resonator.
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We numerically model the system with the transfer matrix method [70] and extract the

imaginary refractive index (ni m = 3.2 x 10−5) of the Si3N4 membrane and the chip thick-

ness (470µm.) Both values match expectations [72]. The nitride we use is about 10 times

thicker than many other membrane in the middle setups [131, 112, 111, 66], so we can

likely reduce optical losses with a thinner membrane. We have achieved finesses up to

180,000 in the same setup without the membrane present [89].

We also investigate the optomechanics of each individual mode. Supplementary Fig-

ure 6.6b shows the optical damping of each resonator as a function of detuning. The

damping can be modelled perfectly using the linear optomechanical Hamiltonian for

a single resonator,5 indicating that with a single laser beam the modes can be treated

independently. From these measurements and others, we extract the optical decay rate,

κ/2π = 200 ± 10 kHz, the mechanical frequenciesω1/2π = 297 kHz andω2/2π = 659 kHz,

the mechanical damping rates γ1/2π = 1.5 ± 0.1 Hz and γ2/2π = 1.0 ± 0.1 Hz, and the

single photon optomechanical coupling rates g1/2π = 0.9 ± 0.1 Hz and g2/2π = 1.3 ± 0.1

Hz. From finite element analysis simulations we determine that the effective masses are

approximately m1 = 150 ng and m2 = 40 ng.

6.4.2 Fabrication

The fabrication process is a slight modification of the procedure for nested tram-

poline resonators [89]. We summarize here: 450 nm of LPCVD (Low Pressure Chemi-

cal Vapour Deposition) high stress silicon nitride is deposited on both sides of a silicon

wafer, followed by a commercial SiO2/Ta2O5 DBR mirror on the front and a SiO2/SiN

layer on the back. The mirror is etched with inductively coupled plasma (ICP) CHF3

into disks for the cavity end mirror and a protective ring. The back SiO2/SiN films are

etched with CHF3 ICP into a protective ring. The silicon nitride layers on both sides are
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then etched with CF4 to produce the front and back side trampolines. The silicon under-

neath the devices is removed with a deep reactive ion etch, followed by an etch in TMAH

(Tetramethylammonium Hydroxide) solution. The devices are dipped in buffered HF to

remove the top protective layer of SiO2 from the mirror.

6.4.3 Experimental Procedure

We now turn to the generation of optomechanical state swapping. We use a two laser

scheme as depicted in Supplementary Figure 6.7. One laser is locked to the cavity res-

onance with the Pound-Drever-Hall technique [151] using an avalanche photo diode as

a detector, and the error signal is sent to two lock-in amplifiers, each of which moni-

tors one mechanical frequency and extracts the amplitude of motion of the correspond-

ing resonator. Before the swapping experiment shown in Figure 6.3 is performed, we

calibrate the mechanical motion of the devices by measuring the thermal motion for

approximately one minute. The optomechanical gain rate is less than 20% of the me-

chanical damping rate, and hence we do not expect or observe notable contributions to

the noise from optomechanics. Another laser is passed through an acousto-optic mod-

ulator (AOM) with an RF drive that we modulate fully at half the mechanical difference

frequency. The first order diffracted mode contains the two frequencies that we use to

drive optomechanical swapping in the cavity. We have verified that the carrier frequency

is completely suppressed and that higher harmonics are insignificant with cavity trans-

mission measurements. We can’t measure the optical input power directly, so we split

off some power before the cavity to measure. Finally, a ring electrode behind the outer

resonator is used to excite the motion of the trampoline resonators using the dielectric

force from the gradient of the electric field [107].

We repeat this experiment for many powers and detunings, and extract the swap-
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Figure 6.7: Complete experimental setup. One measurement laser is locked to the
optomechanical cavity, and used to read out the motion of the two resonators. A sec-
ond control laser is locked to the first laser approximately one free spectral range (FSR)
away, and the frequency separation is tuned to control the detuning, ∆. An acous-
to-optic modulator (AOM) generates the two laser tones at the mechanical difference
frequency (ω2-ω1.) A pulse generator controls two function generators connected to
the AOM and a ring electrode, which drives resonator 2 using the dielectric force. Other
abbreviations are: electro-optic modulator (EOM), proportion integral feedback con-
troller (PI) and polarizing beam splitter (PBS). The inset (bottom right) shows the fre-
quencies of the measurement laser beam (pink) and control laser beam (green) input
to the cavity relative to its optical resonances.
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ping rate and loss rate for each instance. The unmatched sidebands in Figure 6.2b pro-

duce loss, but they also shift the frequencies of the two mechanical resonances. There-

fore, when performing the detuning and power sweeps shown in Figure 6.4 the spacing

between the two laser beams must be continuously adjusted to match the mechanical

difference frequency. The readout laser can optomechanically decrease or increase the

bare mechanical linewidths of the resonators a small amount depending on the lock

settings. We therefore fit the mean bare mechanical linewidth and the ratio between

the measured optical power and the input power for every sweep shown in Figure 6.4.

We also perform a swapping experiment using the two lowest order modes of the mem-

brane trampoline to verify that the exact same scheme works for a single membrane in

the middle. The swapping is shown in Figure 6.5.

6.4.4 Two-Tone Swapping Theory

Because the experiment performed here is entirely classical we limit ourselves to

the classical optomechanical equations of motion following a similar path to Shkarin

et. al [143] However, the results can be generalized to the quantum regime [148]. The

linearized equations of motion for the cavity field fluctuations, a, and mechanical dis-

placements, b1 and b2, are given by:

ȧ = −
(κ

2
+ iωc

)
a +∑

j
i

g j a

xzpm
(b j +b∗

j ) (6.4.1)

+ p
κex

(
ai n1e−i (ωc+∆1)t +ai n2e−i (ωc+∆2)t

)
ḃ j = −

(γ
2
+ iω j

)
b j + i g j a∗a (6.4.2)

After some algebraic manipulation we arrive at the following equations for the adiabatic

time evolution of the amplitude of the two resonators:
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ḃ1 =
(
−γ1tot

2
+ iδω1

)
b1 +

(
−γ12

2
+ i

J̃

2

)
b2 (6.4.3)

ḃ2 =
(
−γ2tot

2
+ iδω2

)
b2 +

(
−γ12

2
+ i

J̃

2

)
b1 (6.4.4)

γ j tot = γ j +
∑

i=1,2

2ni g 2
j κ

κ2/4+ (δi −ω j )2
−

2ni g 2
j κ

κ2/4+ (δi +ω j )2
(6.4.5)

δω j = ∑
i=1,2

ni g 2
j (∆i −ω j )

κ2/4+ (∆i −ω j )2
−

ni g 2
j (∆i +ω j )

κ2/4+ (∆i +ω j )2
(6.4.6)

J̃ = 2g1g2
p

n1n2

(
ω̄− ∆̄

κ2/4+ (ω̄− ∆̄)2
− ω̄+ ∆̄
κ2/4+ (ω̄+ ∆̄)2

)
(6.4.7)

γ12 = g1g2
p

n1n2

(
κ

κ2/4+ (ω̄− ∆̄)2
− κ

κ2/4+ (ω̄+ ∆̄)2

)
(6.4.8)

Although these equations look complex, they can be matched up term for term with the

effects of each sideband. γ j tot and δω j are the optical damping and optically induced

frequency shift on the j th resonator due to the ith beam in the cavity. There are eight of

these terms total, one for both sidebands on both lasers from both resonators. J̃ and γ12

are the bare optomechanical transfer rate and the loss induced decrease in the transfer

rate. The first term in J̃ is produced as the net effect of two optomechanical swapping

interactions with the cavity as depicted in the right inset of Figure 6.2b. The second

term in J̃ is produced by two optomechanical two-mode squeezing interactions with

the cavity (left inset of Figure 6.2b.) If we absorb the frequency shifts into b1 and b2, the

solutions are of the following form:

b1(t ) = c1e−Γt/2
∣∣∣∣sin

(
J t

2

)∣∣∣∣ (6.4.9)

b2(t ) = c2e−Γt/2
∣∣∣∣cos

(
J t

2

)∣∣∣∣ (6.4.10)

J =
√

J̃ 2 − γ2
12 +

(
γ1tot −γ2tot

)2

2
(6.4.11)

Γ = γ1tot

2
+ γ2tot

2
(6.4.12)
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c1 and c2 are constants dependent on the initial conditions of the system. When we ap-

ply the swapping pulses to the optical cavity we see decaying oscillations which can be

fitted precisely with the above equations. For large detunings where J>Γ, J is approxi-

mately J̃ , so we treat them interchangeably in the main text.

We define the classical efficiency of an exchange pulse as the total number of phonons

in the system after the pulse divided by the initial number of phonons in resonator 2.

The efficiency of aπ-pulse is exp(-πΓ/J ) and the efficiency of aπ/2-pulse is exp(-πΓ/2J ).

The efficiency of a π-pulse both theoretically and experimentally is plotted in Figure 6.8

as a function of detuning. A number of regions are inaccessible, because the optical

damping is too large, and J becomes imaginary. In these overdamped regions, energy

can still be transferred, but there is no coherent state transfer. If the optical cavity losses

are reduced by a factor of four, more regions of small detuning would become accessible.

Thus far we have focused on the losses in the system, or the positive contributions to

Γ. However, Γ has some contributions which are negative and correspond to parametric

driving of the system. Parametric driving leads to an exponential increase in the motion

of the resonators and is therefore equally as unsuited to efficient state transfer as config-

urations with large loss. However, it is possible to find detunings for which the heating

and cooling contributions cancel, and Γ goes to zero. For these detunings classical state

transfer is lossless, and the efficiency of state transfer goes to 1. In the current system

such cancelation points only exist on the blue side of the cavity where the system is

inherently unstable. However, if the cavity losses were reduced, a cancelation point ap-

pears on the red side, indicated by the star in Figure 6.8b. At this point the driving due to

one laser beam just on the blue side of the cavity resonance is cancelled by the cooling

due to the other laser close to the red sideband of resonator 1. This leads to significantly

higher classical efficiency (>99%) and faster state transfer (J = 18 kHz.)

In the quantum regime, calculations of the efficiency are more complicated. The
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Figure 6.8: Optomechanical swapping rate and efficiency. Theoretical predictions for
optomechanical swapping rate, J , and state transfer efficiency of a π-pulse are shown
forκ/2π = 200 kHz and Pi n = 65µW in (a) and forκ/2π = 50 kHz and Pi n = 195µW in (b).
The shaded regions indicate detunings for which the coupled system is overdamped
and full coherent state transfer is impossible. We note that by improving the finesse
by a factor of 4, a point appears (at the star) where the classical losses go to zero. The
maximum swap rate can be increased to 18 kHz and the state transfer efficiency to
greater than 99% at this point. The quantum case is more limited, but can still reach
reasonable efficiencies at the central detuning.
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parametric driving, which can allow for efficient classical transport, also introduces ex-

tra noise. Furthermore, quantum states with small phonon occupation have a large

thermalization rate due to the high thermal occupation of the bath, even when the res-

onator is cooled down to millikelvin temperatures. In Figure 6.8b, we compare the clas-

sical and quantum efficiencies. At small detunings the quantum efficiency is limited by

parametric driving and at large detunings by thermalization. Figure 6.8b also assumes

a bath temperature of 10 mK and an improved linewidth of 10 mHz, which is in line

with the improvements seen at cryogenic temperatures for many silicon nitride devices

[121, 120]. These improvements should be enough to start using this protocol in the

quantum regime. 2

6.5 Conclusion

Exchange of mechanical energy between modes which are naturally uncoupled opens

up many possibilities in quantum and classical physics. We have investigated the real

time dynamics of such a system. We demonstrate that despite the many loss effects

present, efficient coherent state transfer between two spatially and frequency separated

mechanical resonators is possible. These results can be extended to the quantum regime

to investigate quantum effects with many diverse mechanical oscillators. In the next

Chapter we will investigate theoretically how this experimental setup and technique

could be used to generate an entangled superposition state.

2The authors would like to acknowledge a related manuscript which appeared during the completion
of this manuscript [152].
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Chapter 7

Phonon Interferometry to Measure

Decoherence

So far an optomechanical system which satisfies all of the constraints for the Marshall

scheme [51] still remains out of reach, as discussed in Chapter 2. One particular chal-

lenge is the storage of the optical states, because optical loss rates are many orders of

magnitude higher than mechanical loss rates. In this chapter we present a scheme for

entangling two mechanical resonators in spatial superposition states such that all quan-

tum information is stored in the mechanical resonators. The scheme is general and

applies to any optomechanical system with multiple mechanical modes. By analytic

and numeric modeling, we show that the scheme is resilient to experimental imperfec-

tions such as incomplete pre-cooling, faulty postselection and inefficient optomechan-

ical coupling. 1

1The contents of this chapter are based on the work by Weaver et al. [153], and are used with permission
from the authors.
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7.1 Introduction

In recent years macroscopic mechanical resonators have been developed with ex-

ceptionally high quality factors [154, 113, 120]. At the same time devices with a single

photon strong cooperativity [112, 111, 52] are enabling manipulation of optomechani-

cal systems at the single quantum level [7, 155, 38]. One promising technique for testing

decoherence is to produce a spatial superposition state of one of these resonators, but

this requires a controlling interaction with some other quantum system. We investigate

a method for entangling two mechanical resonances and harnessing the advantageous

capabilities of each resonator to study decoherence.

There are many proposed methods of producing a superposition state in an opto-

or electromechanical system, all of which require the introduction of some nonlinearity.

Examples of this include electromechanical systems coupled to a superconducting qubit

[7, 155, 37] and optomechanical systems interacting with a single photon sent through

a beam splitter [51]. However, the latter scheme is unfeasible with almost all current

optomechanical systems, because it requires single photon strong coupling [51]. This

requirement can be circumvented by postselection [53] or displacement [54], but these

experiments are limited by the need for long storage of photons, which is lossy, and the

requirement that cavity photons predominantly couple to a single mechanical mode.

Here we propose a method to eliminate these constraints by entangling two mechanical

modes optomechanically to avoid the losses and decoherence in optical and electrical

systems.

Methods to generate optomechanical entanglement between multiple mechanical

devices have been investigated extensively [156, 157, 158, 132, 133, 159, 160]. To gen-

erate a superposition, an interaction with two mechanical resonators is required [161,

162]. So far demonstrations of entanglement in optomechanical systems have used el-
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Figure 7.1: Proposed experimental setup. Two mechanical resonators are optome-
chanically coupled to an optical cavity. Here we show a membrane and a trampoline
resonator with a mirror, but the procedure could be used for any two mechanical res-
onators coupled via an optical cavity field. A continuous wave laser is sent to an optical
pulse generation setup, which produces pulses of varying frequency, duration, and in-
tensity. The light enters the optomechanical cavity, and subsequently the reflected light
is filtered to remove the control pulses. The filtered signal contains the single photons
used for heralding and readout, which are measured with a superconducting single
photon detector (SSPD).
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ements with similar structure and frequency [163, 164, 165]. Flayac and Savona sug-

gested that single photon projection measurements could generate an entangled super-

position state between two resonators of similar frequency [162]. We propose a scheme

which entangles resonators of different frequencies, so that it is easy to manipulate one

resonator and to use the other (possibly more massive) resonator for tests of quantum

mechanics.

7.2 Experimental Scheme

We consider an optomechanical system with one optical cavity and two mechanical

resonators: an interaction resonator (resonator 1) and a quantum test mass resonator

(resonator 2). The Hamiltonian for the system is the standard optomechanics Hamilto-

nian for multiple resonators [8]:

Ĥ0 = ~ωc â†â + ∑
j=1,2

~ω j b̂†
j b̂ j +~g j â†â(b̂†

j + b̂ j ) (7.2.1)

ωc , â,ω j , b̂ j are the frequencies and bosonic ladder operators of the cavity and resonator

j respectively. g j are the single photon optomechanical coupling rates. The system is

sideband resolved, with ω j À κ, the optical cavity linewidth. In Figure 7.1 the optome-

chanical setup is shown. A laser is modulated to generate control pulses, for instance

by a series of acousto-optic modulators (AOMs). The pulses are sent into the cavity, and

are filtered out of the light exiting the cavity so that only the remaining resonant light is

incident on a single photon detector.

Figure 7.2 illustrates the method we propose to study decoherence. First both me-

chanical modes must be cooled close to the ground state using standard sideband cool-

ing with two long laser pulses red detuned from the cavity resonance by ω1 and ω2

[41, 34, 33]. Next, we excite resonator 1 to its first excited state using a weak pulse
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Figure 7.2: Schematic control pulse overview. This figure shows the four control pulses
sent into the optomechanical cavity to execute the experiment. The pulses are: (i)
Cooling to the ground state. (ii) Excitation to a coherent state, followed by postselec-
tion of the first excited state. (iii) A mechanical-mechanical interaction with J t = π/2.
(iv) Readout of a resonator. On the bottom, the equivalent optics experiment is shown
with the corresponding steps. The greyed out detector is the optional addition of a
readout pulse for resonator 2.

and projection measurement [86]. We perform a Mach-Zehnder type interference ex-

periment on this initial state. To generate a beam splitter interaction between the me-

chanical resonators, we apply a two laser pulse, resulting in an entangled state: |ψ〉 =
1p
2

[|1〉1 |0〉2 + i |0〉1 |1〉2]. The system now evolves freely for a time τ, possibly decohering

during that interval. The frequency difference between the resonators causes the state

|ψ〉 to pick up a phase difference of (ω2 −ω1)τ. A second mechanical-mechanical in-

teraction rotates the system to sin((ω2−ω1)τ/2) |1〉1 |0〉2+cos((ω2−ω1)τ/2) |0〉1 |1〉2 if the

system did not decohere. Finally, a laser pulse red detuned byω1 is used to swap the me-

chanical state of resonator 1 with that of the cavity and read it out with a photodetector.

We will now examine the steps in more detail, starting with the heralded generation

of a single phonon mechanical Fock state [86], which has already been used to produce

single phonon Fock states with reasonably high fidelity [38, 39]. Here we will review
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the process briefly, including some of the imperfections in the generated state. A weak

pulse of light, blue detuned in frequency by ω1, is sent into the cavity, creating an ef-

fective interaction described by the Hamiltonian: H(ii) = ~pncav g1(âb̂1 + â†b̂†
1). ncav is

the number of photons in the cavity from the laser pulse. This generates an entangled

state between the cavity and resonator 1: |ψ〉 = 1/
p

2(|0〉c |0〉1 +p
p |1〉c |1〉1 +p |2〉c |2〉1),

where p ¿ 1 is the excitation probability. The light leaks out of the cavity and passes

through a filter to isolate the resonant light from the blue-detuned pulse. By detecting

a single photon, the mechanical resonator is projected onto |1〉1, a single phonon Fock

state. Because of the limited detection efficiency of cavity photons η, and the dead time

of the detector, higher number states will be mistaken as single photons, so the prob-

ability p must be kept small to avoid inclusion of these states. Control pulse photons

which leak through the filter and detector dark counts will incoherently add in |0〉1 to

the single phonon Fock state. Using a good filter and superconducting single photon

detectors avoids the inclusion of the ground state [38]. Taken together these steps pro-

duce, with probability ηp, a heralded single phonon Fock state, and we can proceed to

the interference experiment.

Exchange of quantum states is the essence of the interference experiment. In recent

years there have been many demonstrations of opto- and electro-mechanically con-

trolled coherent coupling between mechanical resonators [130, 146, 143, 73, 149, 136,

147]. All of these could be used to create an effective beam splitter interaction between

two mechanical resonators. We will use the swapping method proposed by Stamper-

Kurn et al. [148](and experimentally demonstrated in [129]), because it is quite general

and couples resonators with a large frequency separation, which is important for the in-

dividual readout of each resonator. Two pulses of light, red-detuned and separated by

ω2 −ω1 are sent into the cavity. These pulses each exchange excitations between one

mechanical resonator and the cavity mode, resulting in a net swapping interaction with
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rate J between the two resonators: H(iii) = ~J (b̂†
1b̂2 + b̂1b̂†

2). This interaction can be used

for both beam splitter interactions in the proposed experiment.

Finally, the readout for the system consists of a pulse of light, red detuned in fre-

quency by ω1. The readout interaction, H(iv) = ~pncav g1(â†b̂1 + âb̂†
1), exchanges excita-

tions of resonator 1 with photons on resonance in the cavity. The anti-Stokes photons

from the cavity are filtered and sent to a superconducting single photon detector to de-

termine the phonon occupation of resonator 1 with a collection efficiency of η. Because

of the difference in frequency of the two resonators, the measured phonon occupation

of resonator 1 after the second mechanical-mechanical interaction oscillates as a func-

tion of the delay time τ at the frequency ω2 −ω1. However, if decoherence occurs dur-

ing free evolution, the visibility of the oscillations will decrease. These features in the

readout enable a simultaneous comparison of the coherent evolution, decoherence and

thermalization of the system.

7.3 Expected Results

First we model the experiment analytically. We assume that in step (ii) of Figure 7.2

a perfect entangled state is generated, but that the off-diagonal elements of the density

matrix decay exponentially with a decoherence time τd . The environment heats res-

onator 2, adding incoherently to the mechanical state. As an approximation, we assume

that the state thermalizes from its average initial value of 1/2 to the thermal occupation

of the environment, nenv . The average readout, R on the SSPD in step (iv) after many

trials is the sum of the two effects:
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Figure 7.3: Simulated decoherence results. Expected results of a decoherence mea-
surement with two entangled resonators in which one interacts with a thermal envi-
ronment. The red (blue) indicates the readout of resonator 1 (2). Dotted lines are the
limits set by the analytical model. Three effects are visible: coherent oscillations due
to the frequency difference between the resonators, a decay of that coherence due to
environmentally induced decoherence, and thermalization with the environment. The
parameters for this plot are: ω1 = 2 GHz, ∆ω = 30 kHz, γ = 2 kHz, Tenv = 0.1K, and η =
0.01.
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Figure 7.4: Degradation of visibility from experimental imperfections. The effects of
several experimental imperfections on the resulting interference experiment, using the
initial visibility as a metric. a) The two resonators are only cooled to a phonon occu-
pancy of nth in step (i). b) The detector has a dark count probability of ξtr for different
probabilities of excitation, p in step (ii). c) Step (iii) also induces an optical cooling
rate Jc and an optical heating rate Jh in addition to the mechanical-mechanical cou-
pling J . The greyed out regions indicate regimes in which the dominant behavior is not
the desired entangled state. The purple stars indicate parameters already achieved in
experiments: b)[39] and c) [129]. The unvaried parameters for these plot are: nth=0.01,
p=0.01, ξtr =10−6, η=0.01, and Jc =Jh=0.

〈ndec〉2 = 1

2
− cos[(ω2 −ω1)τ]e−τ/τd

2
(7.3.1a)

〈nth〉2 =
(
nenv − 1

2

)(
1−e−τ/τth

)
(7.3.1b)

R = η
(〈ndec〉2 +〈nth〉2

)
(7.3.1c)

nenv =kB Tenv /~ω2 is the thermal occupation of the environment at temperature Tenv

and τth is the thermalization time constant. Three key features are visible in the readout

signal: an oscillation at ω2 -ω1 which is evidence of coherence, an exponential decay of

the coherent signal and an exponential increase in the phonon number as the system

thermalizes.

We verify Equation 7.3.1 by performing a numerical simulation of the interaction

between a mechanical resonator and its environment in the quantum master equation

formalism. We assume that one resonator, the test mass resonator, has a much greater

interaction rate γ with the environment, dominating the decoherence effects. Environ-
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mentally induced decoherence can be modeled as an interaction with a bath of har-

monic oscillators, leading to the following master equation [10, 9]:

ρ̇ = i

~
[
ρ, Ĥ0

]− D

~2

[
x̂,

[
x̂,ρ

]]− iγ

~
[
x̂, {p̂,ρ}

]
(7.3.2)

x̂ and p̂ are the position and momentum operators for resonator 2, and D=2mγkB Tenv

is the phonon diffusion constant. The numerical results are shown in Figure 7.3, and

have excellent agreement with Equation 7.3.1.

We now discuss the experimental feasibility of this scheme with currently available

technologies. We numerically simulate density matrices with the phonon states of each

resonator as basis states. (Details in Appendix 7.6.) The initial visibility of the oscillations

between the two resonators is a direct measure of the entanglement generation, and the

decay of the visibility is the essential result of the experiment. Although the limit would

depend on the exact experimental implementation, we estimate that the experiment

would likely require an initial visibility greater than 10%. First we consider imperfections

in step (i), cooling to the ground state. Figure 7.4a shows the visibility achieved with a

nonzero thermal phonon occupation. This occupation must be below about 0.7 for the

experiment to be feasible.

Next we consider step (ii), the postselection of a single phonon state. By changing

the pulse strength, the probability p of an excitation can be adjusted. Dark counts on

the single photon counter during the postselection will skew the produced state. Figure

7.4b shows the visibility as a function of p and dark count rate. There is a large region of

parameter space with good visibility, and experiments are already well within this region

(purple star) [39].

Finally, in step (iii), the optomechanical beam splitter nominally only causes an in-

teraction between the two mechanical resonators. However, the beams used to produce
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Figure 7.5: Simulated results with imperfections. Expected results of a decoherence
measurement with imperfections present and an initial visibility of 30%. The parame-
ters for this plot are the same as for Figure 7.3 with additional imperfections: nth = 0.4,
p = 0.1, Jc = Jh = 0. Despite the limited initial visibility all three effects are still visible:
coherent oscillations due to the frequency difference between the resonators, a decay
of that coherence due to environmentally induced decoherence, and thermalization
with the environment. We estimate that the experimental limit on the initial visibility
is around 10%.

the interaction also have heating and cooling effects. In Figure 7.4c the visibility as a

function of cooling rate, Jc and heating rate Jh are shown. Again, experimental demon-

strations of this type of beam splitter interaction are already sufficient to produce an

interference experiment [129]. In Figure 7.5 we show numerical simulations of decoher-

ence and thermalization that include experimental imperfections and an initial visibility

of 30%. All of the qualitative features of Figure 7.3 are still easily discernable, indicating

that the experiment should be feasible with these or even slightly worse parameters.

There is a large area of experimentally achievable parameter space in all dimensions

with visibility greater than 10%.
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7.4 Timing Considerations

A number of experimental factors such as timing also play a critical role in the fea-

sibility of the experiment. The probability of a successful postselection is ηp, and given

this successful postselection the probability of measuring the result on the detector is

η. Therefore, the experiment must be run 1/η2p ∼ 106 times to expect a single detection

event. For many experimental implementations this is impossible, because it would

take years to build up enough detection events. However, if there is no heralding of a

single photon in step (ii), there is no reason to continue the experiment. If we only con-

tinue to step (iii) after a successful postselection the time T required is:

T = nanp

(
t12(1−ηp)

η2p
+ ttotηp

η

)
≈ nanp

t12

η2p
(7.4.1)

t12 and ttot are the time required for step (i) and (ii) and for the total experiment respec-

tively, and na and np are the number of averages and the number of points. In general,

step (iii) and τ should dominate the experiment time, so this would drastically reduce

the total experiment time. For a high frequency resonator with ∼GHz frequency, reason-

able parameters might be: na = 1000, np = 30, η = 0.01, p = 0.01 and t12 = 1µs, leading

to an experiment time of about 8 hours. For lower frequency resonators, t12 might be

closer to 100 µs, leading to an experiment time of about 35 days. The number of aver-

ages needed depends inversely on η, so T ∼ 1/η3, and the experiment can be drastically

sped up by increasing η.

Many experiments which are proposed for testing novel decoherence mechanisms

are in the lower frequency range. These experiments have the difficulty that their ther-

mal environment contains more thermal quanta. In order to measure the full thermal-

ization in addition to the decoherence, we must be able to count ηnenv photons. If an

SSPD has a relatively short dead time (∼100 ns) compared to the leakage time from the
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cavity and filter (∼50 µs) it may be possible to observe more than one photon. In gen-

eral, however, the experiment should be constrained to η¿ 1/nenv . For low frequency

resonators η may need to be artificially lowered. If this is the case, we suggest different

detectors for step (ii) and step (iv) with different optical paths. If step (ii) has high ef-

ficiency η1 and step (iv) has low efficiency η2 the experiment time only slows down to

T ≈ nanp t12/η1η2p and it is possible to count higher phonon numbers with a reason-

able increase in experiment time.

7.5 Experimental Implementations

This scheme can be performed with any two mechanical resonators coupled to an

optical cavity. Here we will discuss three potential experimental setups, with an em-

phasis on using the technique to access decoherence information in large mass sys-

tems. One possible system is a Fabry-Pérot cavity with two trampoline resonators: one

with a distributed bragg reflector (DBR) and one without. This system has already been

constructed [129]. The two resonators have frequencies in the hundreds of kHz range,

a mass of 40 ng and 150 ng and a single photon cooperativity 0.0002 and 0.0001 re-

spectively. The authors suggest methods for lowering optical and mechanical damp-

ing, which would improve the single photon cooperativity to 0.2 and 0.01. The scheme

presented here enables single phonon control of the massive DBR device despite its rel-

atively small single photon cooperativity.

Another possible system would be a membrane in the middle at one end of a Fabry-

Pérot cavity and a cloud of atoms trapped in the harmonic potential of the standing wave

in the cavity at the other end. The optomechanical coupling enables the direct coupling

between the∼zg cloud of atoms and the∼100 ng membrane. Clouds of atoms and mem-

branes have already been coupled between different cavities [166, 167], and this scheme
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Figure 7.6: Density matrix representation of decoherence and thermalization. Each
matrix is plotted during step (iii) after a delay time τ of a) 0 ms b) 190 ms c) 950
ms d) 3.8 s. The states labeled 1 to 22 in the figure correspond to the basis states
{00,01, ...,09,010,10,11, ...,19,110}. The relevant parameters are ω2 = 10 GHz, γ = 1 Hz
and Tenv = 0.2 K.

could be modified to use that interaction for step (iii). One could also imagine making a

cavity with a bulk acoustic wave resonator coupled to a small high frequency membrane.

These modes can have exceptionally high Q-factors and large mode mass [154].

7.6 Numerical Methods

In the main text we investigate two main problems. The first is the interaction of a

mechanical entangled state with the bath of one resonator. We use a numerical differen-

tial equation solver to solve the Master Equation (Equation 7.3.2) with density matrices.

After some algebraic manipulation, this can be rewritten as a set of differential equa-

tions:
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ρ =
∞∑

p,q,r,s=0
apqr s(t ) |pr 〉〈qs| (7.6.1)

[x̂, [x̂, |r 〉2 〈s|2]] = ∑
k,l
Γklr s |k〉2 〈l |2 (7.6.2)[

x̂,
{

p̂, |r 〉2 〈s|2
}] = ∑

k,l
Φklr s |k〉2 〈l |2 (7.6.3)

ȧpqr s(t ) = −i
(
ω1(p −q)+ω2(r − s)

)
apqr s(t )

− D

~2

∞∑
k,l=0

Γr skl apqkl (t )

− iγ

~

∞∑
k,l=0

Φr skl apqkl (t ) (7.6.4)

The commutation relationships in the equations lead to a number of overlap integrals

between number states, which can be evaluated and plugged in to create numerically

solvable equations. To solve for the dynamics of this system we use a density matrix with

basis states {00,01,...0n,10,11,...1n} where n is a number much larger than nenv . Figure

7.6 shows the results of the simulations for n=10 at four different times before the second

swapping pulse. Two main effects are observable in the evolution of the density matrix.

First, the population of the density matrix spreads out along the diagonal of each of the

four quadrants. Second, the non-diagonal matrix elements decay away. These effects

match with the expected behavior for thermalization and decoherence.

We also need to simulate a mechanical-mechanical π/2 pulse. Because it is equiv-

alent to a beam splitter the effect on the two modes is the same. Here we expand the

density matrix to have basis states {00,01,...0n,10,11,...1n,n0,n1,...nn}. The beam split-

ter interaction conserves energy, so it can represented as a n2xn2 transformation matrix,

which recombines the elements of common phonon number. The transformation ma-

trix SBS for the three lowest energy levels with basis states {00,01,10,02,11,20} is:
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SBS =



1 0 0 0 0 0

0 1/
p

2 −1/
p

2 0 0 0

0 1/
p

2 1/
p

2 0 0 0

0 0 0 1/2 −1/
p

2 1/2

0 0 0 −1/2 0 1/2

0 0 0 1/2 1/
p

2 1/2


(7.6.5)

After the beam splitter interaction the density matrix ρ′ is ST
BSρSBS . The combination

of these two techniques lets us fully model how the ideal state interacts with its thermal

environment.

The other problem we investigate is how various experimental imperfections can

impact the initial visibility of the experiment. For this we use density matrices with ba-

sis states going up to n=3. To model imperfect cooling in step (i) we start with a thermal

state of both resonators. The modeling of step (ii) is a little more complex. A successful

postselection means that 1 phonon has been added to resonator 1. However, with prob-

ability p, the phonon occupation should be incremented by 2, and with probability p2

by 3, and so on. Conversely, if there is a dark count or leaked pulse photon (probability

ξtr ) the phonon occupation should remain the same. Finally, we implement the beam

splitter, step (iii), in the same way as above. We add in an additional cooling pulse with

a probability Jc /J of removing a phonon from one of the resonators and a heating pulse

with a probability Jh/J of adding a phonon to a resonator. The cooling matrix transfor-

mation Sc with basis states {00,01,02,10,11,12,20,21,22} is:
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Sc =
(
1− Jc

J

)
I + Jc

J



0 1 0 1 0 0 0 0 0

0 0
p

2 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 1 0
p

2 0 0

0 0 0 0 0
p

2 0
p

2 0

0 0 0 0 0 0 0 0
p

2

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0
p

2

0 0 0 0 0 0 0 0 0



(7.6.6)

The heating matrix transformation is ST
c . All of these imperfections are combined to

determine their impact on the proposed experiment.

7.7 Additional Experimental Considerations

The first additional consideration relates to the pulses used in the experiment. It

is possible to perform the experiment with simple square-shaped pulses. However, it is

more efficient to use an exponentially shaped pulse, resulting in a more even interaction

time [168]. We suggest using pulses of that shape, as is performed in [39]. In particular,

it is crucial that the area under the readout pulse:
∫ ∞

0 ncav (t )g1d t is π/2 to fully readout

the phonon occupation of resonator 1.

We also consider the most effective detuning of the two laser beams for performing

a π/2 pulse. The two laser tone exchange method relies on exchanging the state of each

mechanical resonator with that of the cavity. This is fastest if the two laser beams are

red detuned to ω1 and ω2. However, at this detuning quantum information leaks out

of the cavity, leading to large values of Jc and Jh . In Figure 7.7 we examine the effects
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Figure 7.7: Visibility as a function of detuning. Greyed out regions have too high Jc

or Jh to run the experiment. The value of J depends on the exact experimental param-
eters, so it is normalized to the highest value. Parameters are ω2/ω1 = 2, ω1/κ = 10,
nth=0.01, p=0.01, ξtr =10−6 and η=0.01.

of the average detuning ∆ of these two laser beams. Ideally the two beams should be

quite far detuned from the cavity, but there is a tradeoff between efficient exchange and

the exchange rate, J , shown in red [129]. The best detuning depends on experimental

parameters such as sideband resolution and frequency of the resonators.

7.8 Discussion

There are a number of distinct advantages of the method proposed here. First, the

readout of phonon occupation naturally lends itself to studying thermalization and de-

coherence together in the same system and on the same time scale. This has never been

observed before in mechanical resonators. A thorough understanding of the mechanics

of thermalization and decoherence is necessary in order to verify that unknown faster

decoherence processes can be attributed to new physics. Second, this experiment can

easily be compartmentalized into the four constituent steps, and each one tested indi-
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vidually. This would make it easier to build up to the final experiment with confidence

in the results. In particular, one could obtain interference results from two resonators in

a classical state, so it is essential to demonstrate that the procedure is performed with

a single phonon. Finally, this scheme can use mechanical resonators with different fre-

quencies and masses, so that large systems with relatively small optomechanical cou-

pling rates can be studied.

7.9 Conclusion

We have proposed a scheme to entangle two mechanical resonators with a shared

single phonon. Using interferometry and phonon counting we could simultaneously

measure decoherence and thermalization of a macroscopic mechanical mode. The meth-

ods proposed are quite general, and can be applied to any sideband resolved two mode

opto- or electro-mechanical system. Furthermore, the scheme is resilient to experimen-

tal imperfections in its constituent steps. This technique could greatly expand our un-

derstanding of the quantum to classical transition in mechanical systems.
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Chapter 8

Towards the Quantum Regime

There is still work that needs to be done before nanogram scale objects can be placed

into spatial superposition states. In this chapter we discuss some of the efforts that

are ongoing or starting up with the goal of performing quantum optomechanics experi-

ments. We start off with efforts to cool trampoline resonators close to their ground state

of motion. We then discuss some basic experiments with silicon nitride membranes,

and finally some theoretical work on displacement of quantum states with a coherent

light beam.

8.1 Cooling Trampoline Resonators

We will use two methods of cooling to lower the phonon occupation of our resonator:

regular cryocooling and laser sideband cooling. In order to have more than a 50% prob-

ability of occupying the ground state, a 300 kHz resonator must be cooled to below 10

µK. We can cool to approximately 15 mK with a dillution refrigerator, but to reach the

ground state we must laser cool the rest of the way down.

We first investigate the effectiveness of optical sideband cooling a nested trampoline
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Figure 8.1: Optical sideband cooling of a nested trampoline resonator. a) As the pump
laser power is increased the effective temperature of the resonator decreases linearly,
reaching a minimum temperature of 23± 5 mK. b The power spectral density of the me-
chanical motion is used to extract the effective temperature. Figure courtesy of Hedwig
Eerkens.

resonator from room temperature. One laser, the probe beam, is locked to the cavity res-

onance to measure the mechanical motion. A second laser, the pump beam, is locked to

the first with a phase lock loop one FSR away, red detuned by the mechanical frequency

(See [87] and Chapter 6.) We measure the dependence of optical cooling on laser power

by varying the strength of the pump beam. The results are shown in Figure 8.1. We can

cool to an effective temperature of 23 ± 5 mK from room temperature. Note that the

spectrum of the nested trampoline resonator remains free of other mechanical peaks,

a result of the vibration isolation (Chapter 4.) The amount of cooling is limited by the

linewidth of the resonator and by an instability due to the optical spring effect on the

outer resonator at large pump powers [50]. The instability can be ameliorated by elec-

trical feedback on the outer resonator. Nevertheless, a cooling fraction of 1.3 x 104 is

achieved, which would be sufficient for ground state cooling from 100 mK.

We place the optomechanical cavity in a dilution refrigerator with a base tempera-

ture of around 15 mK. The cavity shrinks significantly, so the system must be actively
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aligned during the cooldown. Due to scattering and absorption in the system, the opti-

cal bench heats up to around 200 mK when the lasers are sent into the cavity. Unfortu-

nately, this means that we have a starting temperature of the resonator between 100 mK

and 1 K, depending on the laser power in the cavity. So far efforts to reach the ground

state have been unsuccessful because of classical laser noise [169] and absorptive heat-

ing in the device [49]. Classical laser noise can be eliminated with a filter cavity [169].

Eliminating absorptive heating is more difficult, but it could possibly be achieved with

off-resonant readout of the mechanical motion [170]. A more likely route forward is to

reduce mechanical losses, so that the same optical laser power achieves greater cooling,

and to reduce the optical losses directly through different materials or geometries.

8.2 Membrane in the Middle

The membrane in the middle geometry has a number of advantages over DBR tram-

poline resonators for optical cooling. First, the membrane in the middle can have a

thickness of 20 to 80 nm. This means that there is a much smaller volume of the caviy

optical modes within the nitride compared to DBR mirrors where the optical mode pen-

etrates microns into the material. As discussed in Chapter 5, membrane only devices

have also acheived a much higher Q due in part to the lack of material junctions in the

device [113, 111, 171]. With these advantages membrane in the middle systems have

been cooled to near the ground state [35, 36, 73]. As we showed in Chapter 6, a mem-

brane in the middle is fully compatable with the optical setup and measurement tech-

niques we used in this thesis. We therefore build up a membrane in the middle system

as another alternative for macroscopic quantum optomechanics.

We construct a 10 cm long cavity out of invar with fixed end mirrors, and place a

Norcada Si3N4 membrane with a thickness of 50 nm [104] in the middle. Because of the
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Figure 8.2: Optical spring effect, damping and effective temperature as a function
of detuning. As we vary detuning the optical spring effect (blue), the optomechani-
cal damping (orange) and the effective temperature (purple) vary with excellent agree-
ment to theory. Figure courtesy of Sameer Sonar.
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asymmetry induced by the presence of a membrane in the middle, it is preferable to lock

two lasers with a separation of two FSRs, so that both cavity modes adressed have the

same optomechanical coupling (see Figure 2.3.) The cavity length is twice the original 5

cm used in earlier chapters, so the FSR is 1.5 GHz, and we can lock two lasers at a spacing

of 3 GHz with the same optical setup used in Chapter 6.

To show that this system has similar capabilities to the DBR trampoline system, we

perform a detuning sweep of a pump laser with respect to the cavity resonance. When

the detuning matches the mechanical frequency, the damping is maximal and the opti-

cal spring effect switches sign. Even in this first exploratory experiment with intermedi-

ate power we cool the mechanical resonator to an effective temperature below 1 K. The

results are shown in Figure 8.2 and show excellent agreement to theory indicating excel-

lent control over the laser detuning and a good cavity lock over the long periods of time

necessary to take such a sweep. These large square membranes have many mechanical

modes available for performing swapping experiments. The successful detuning sweep

makes this a promising system for experiments which extend the results of Chapter 6.

In particular, it could be interesting to investigate STIRAP-like protocols for an optome-

chanical system [142, 172]. These might make the swapping procedure quicker, a helpful

addition for attempting the scheme of Chapter 7.

8.3 Conclusion

We have continued to push macroscopic optomechanical resonators towards the

quantum regime and spatial superposition states. The phonon occupation of DBR tram-

poline resonators has been reduced significantly, and we have also demonstrated pre-

liminary optomechanical capabilities in a membrane in the middle system. The investi-

gations we have performed in the classical regime will play an important part in setting
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up quantum experiments and many of the techniques from this thesis will inform future

quantum superposition generation experiments.
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Appendix A

Fabrication

In this Appendix, we give details about the fabrication of the devices contained in this

dissertation, including materials, complete fabrication steps, and mask design layouts.

As a fun way to keep track of different designs, each design is named after a chimera.

A.1 Overview of Fabrication Runs and Materials

We start out with three tables. Tables A.1 and A.2 detail all of the different processes

we ran, the materials used and the experimental purpose of each run. These tables con-

nect results from the main text with mask designs and specific fabrication steps. Table

A.3 gives information about the starting materials we used for fabrication, which were

procured from academic and industrial clean rooms.
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A.2 Detailed Fabrication Steps

A.2.1 Fabrication for Nested Resonators

1. DBR Layer

(a) Cleave chips out of starting material.

• 15 x 15 mm squares

• Carefully blow off all dust from surface.

(b) Solvent Clean

• Acetone 3 min., Isopropanol 3 min., DI Water 1 min, blow dry

(c) Contact Lithography with SPR 220-7 resist.

• Spin on resist 3500 rpm for 45s. Edge bead removal with a razor. 120s

bake at 115◦C

• Contact aligner, using best corner for angular reference, 60s exposure.

• Wait 20 min.

• Develop 75s in AZ300MIF.

(d) Inductively Coupled Plasma Etch (ICP)

i. O2 clean 10 min, CHF3 coat 1 min

ii. Etch 10 min with CHF3, then take and fit a reflectance spectra from the

filmetrics to determine etch depth and rate

iii. 15 min O2 clean, necessary because this is a dirty process.

iv. Repeat and etch down through the DBR, leaving only the Si3N4 layer and

50-100 nm of the bottom SiO2 layer.

(e) Solvent Clean
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2. Top Nitride Layer

(a) Stepper Lithography with SPR 220-3 resist.

• Spin on resist 2500 rpm for 30s. 90s bake at 115◦C

• Stepper Aligner (GCA 6300), 2.4s exposure, focus offset 10.

• Develop 65s in AZ300MIF.

(b) CF4 etch in asher

• Keep chips away from center and make sure to avoid dirt and excessive

scratches to avoid etching the back nitride.

• Check rate with nanometrics and etch all the way down to the Si.

(c) Do not remove resist.

3. Si Removal

(a) IR Contact Lithography with SPR 220-7 resist on back of chip.

• Spin on resist 3500 rpm for 45s. No edge bead removal. 120s bake at

115◦C

• IR Contact aligner, 60s exposure. Suggestion: use an IR setting of about

5.5 and align to the outer resonator arms.

• Wait 20 min

• Develop 75s in AZ300MIF.

(b) CF4 etch in asher

• Check rate with nanometrics and etch all the way down to the Si.

(c) Deep Reactive Ion Etch (Bosch) to remove 400 µm of Si.

• Check etch rate with optical microscope.
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4. Device Release

(a) Solvent Clean

(b) Piranha Clean

• 5:1 H2SO4:H2O2 at 90-100◦C for 10 min

(c) Solvent Clean

(d) 10 % TMAH etch for approximately 2 hours until device is released

• Use condenser with chiller at 10◦C to maintain concentration.

(e) Dilution under water

(f) 60s Buffered HF dip

• This must again be followed by dilution.

(g) Transfer to Ethanol, remove, then place on a hot plate.
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A.2.2 Fabrication for Double Sided Nested Resonators

1. Deposition

(a) Cleave chips out of starting material.

(b) Deposite approximately 1 µm of SiO2 using PECVD1

(c) Deposite approximately 300 nm of SiN using PECVD1

2. DBR Layer

• same as above

3. Top Nitride Layer

• same as above

4. Back Protective Layer

(a) IR Contact Lithography with SPR 220-3 resist on back of chip.

(b) CHF3 etch in ICP

• Approximately 10 min.

(c) Solvent Clean

(d) Spin SPR 220-3 resist on front of chip and bake for 5 min.

5. Si Removal

• same as above

6. Device Release

• same as above
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A.2.3 Fabrication for Undercut DBR mirrors

1. DBR Layer

(a) Cleave chips out of starting material.

(b) Contact Lithography with SPR 220-7 resist.

(c) Inductively Coupled Plasma Etch (ICP)

• Etch down to the top of the bottom SiO2 layer, etching approximately 50

nm into the layer. It is crucial that this layer not be removed, and that

the trenching next to the DBR mirror does not go into the Si3N4 layer.

It is also crucial that there is no Ta2O5 left. This is a somewhat difficult

“Goldilocks" condition to meet.

(d) Solvent Clean

2. Top Nitride Layer

(a) Stepper Lithography with SPR 220-3 resist.

(b) CHF3 etch in ICP

• Should take about 10 min.

3. Si Removal

• same as above

4. DBR Undercut

(a) Solvent Clean

(b) Deposit Cr
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• Using E-beam 1, deposite 2000 Å of Cr on the device while rotating the

chip at an angle of 80◦ to the vertical. This is so that the Cr will coat the

edges of the DBR mirror.

(c) Stepper Lithography with SPR 220-3 resist.

• Bake for 5 min at 115◦C

(d) Cr removal

• Use Cr etchant for 2 min.

(e) HF Undercut

• Etch for approximately 90 min in BHF.

(f) Solvent Clean and Cr removal

• Use Cr etchant for 3 min.

5. Device Release

• same as above
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A.2.4 Fabrication of an SOI metal back chip

1. Deposition

• Deposite 250 nm of SiO2 with PECVD 1 on front.

2. Front Side

(a) Contact Lithography with SPR200-3

(b) 90 s HF dip

(c) XeF2 etch

• Continue etch until the bottom of the channel appears completely smooth.

(d) Deposit 1000 Å of Al with the thermal evaporator

(e) Liftoff the top layer of Al

• Use 1165 stripper overnight to remove top layer of resist and Al

(f) Solvent Clean

3. Back Side

(a) IR Contact Lithography with SPR200-7

(b) DRIE Bosch etch all the way through the chip

A.3 Masks
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Figure A.1: The Cama mask design. This mask set tests out different mirror sizes. The
device diagonal is 500 µm. Black is the mirror layer and green is the nitride layer.
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Figure A.2: The first Liger mask design. This mask set surrounds the inner resonator
with an outer resonator with various designs. The device diagonal is 2 mm. Black is the
mirror layer and green is the nitride layer.
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Figure A.3: The second Liger mask design. This mask set surrounds the inner res-
onator with an outer resonator with various designs. The device diagonal is 2 mm.
Black is the mirror layer, green is the nitride layer and magenta is the back nitride layer.
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Figure A.4: The Wolphin mask design. This mask set tests out a single resonator on a
chip. The device diagonal is 500 µm. Black is the mirror layer, green is the nitride layer
and magenta is the back nitride layer. We include alignment markers in this mask to
give a sense of what they look like in all of the designs.
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Figure A.5: The Zorse front chip mask design. This mask set tests a single nested res-
onator on a chip. The device diagonal is 2 mm. Black is the mirror layer, green is the
nitride layer and magenta is the back nitride layer. In order to provide electrical control,
the back side of the chip is coated with Al everywhere outside the purple.
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Figure A.6: The Zorse back chip mask design. This mask set is for a recessed capacitor
pad. Red is the recessed Al layer, and blue is a hole through the chip for optical access
from the back. Ideally the red region should be aligned with the purple region on the
other chip to avoid excess stray capacitance. Note that the actual mask is flipped.
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Figure A.7: The Jackalope mask design. This mask set tests clamping geometries in
the inner resonator. The device diagonal is 2 mm. Black is the mirror layer, green is the
nitride layer and magenta is the back nitride layer.
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Figure A.8: The Grolar Bear undercut mask design. This mask set is used to make a
series of trampoline resonators with DBR mirrors mounted on pedestals. The device
diagonal is 2 mm. Black is the mirror layer, green is the nitride layer, red is the Cr
and resist mirror protection layer and magenta is the back nitride layer. Note that the
undercut etch starts from a narrow circle around the mirror.
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Figure A.9: The double sided Grolar Bear mask design. This mask set is used to make
double sided trampoline resonators with bare trampolines on one side and DBR mir-
rors on the other. The device diagonal is 2 mm. Black is the mirror layer, green is the
nitride layer on both sides, and blue is the nitride protection ring on the back. Note
that the same design is used for the trampolines on both sides of the devices.
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