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Abstract of the Dissertation

The Analytic Structure of Scattering Amplitudes in

N = 4 Super-Yang-Mills Theory

by

Sean Christopher Litsey

Doctor of Philosophy in Physics

University of California, Los Angeles, 2016

Professor Zvi Bern, Chair

We begin the dissertation in Chapter 1 with a discussion of tree-level amplitudes in Yang-

Mills theories. The DDM and BCJ decompositions of the amplitudes are described and

related to one another by the introduction of a transformation matrix. This is related to the

Kleiss-Kuijf and BCJ amplitude identities, and we conjecture a connection to the existence

of a BCJ representation via a condition on the generalized inverse of that matrix. Under

two widely-believed assumptions, this relationship is proved. Switching gears somewhat, we

introduce the RSVW formulation of the amplitude, and the extension of BCJ-like features to

residues of the RSVW integrand is proposed. Using the previously proven connection of BCJ

representations to the generalized inverse condition, this extension is validated, including a

version of gravitational double copy.

The remainder of the dissertation involves an analysis of the analytic properties of loop

amplitudes inN = 4 super-Yang-Mills theory. Chapter 2 contains a review of the planar case,

including an exposition of dual variables and momentum twistors, dual conformal symmetry,

and their implications for the amplitude. After defining the integrand and on-shell diagrams,

we explain the crucial properties that the amplitude has no poles at infinite momentum and

that its leading singularities are dual-conformally-invariant cross ratios, and can therefore

be normalized to unity. We define the concept of a dlog form, and show that it is a feature

of the planar integrand as well. This leads to the definition of a pure integrand basis. The
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proceeding setup is connected to the amplituhedron formulation, and we put forward the

hypothesis that the amplitude is determined by zero conditions.

Chapter 3 contains the primary computations of the dissertation. This chapter treats

amplitudes in fully nonplanar N = 4 super-Yang-Mills, analyzing the conjecture that they

follow the pattern of having no poles at infinity, can be written in dlog form, and can

be decomposed into a pure integrand basis, with each basis element having unit leading

singularity. Through explicit calculation, we show that this is true for the two-loop four-

point, three-loop four-point, and two-loop five-point amplitudes, and discuss the features of

each case. We then discuss the zero condition hypothesis, showing explicitly that it holds for

the two-loop four-particle amplitude, and showing the set of conditions that fix the amplitude

in the three-loop four-particle and two-loop five-particle cases without explicitly performing

the fixing. This concludes the body of the dissertation.

Two appendices complete the dissertation. Appendix B includes an in-depth discussion of

dlog forms, including purely mathematical examples and a discussion of their appearance in

one-loop amplitudes. Finally, Appendix C redoes portions of the analysis of Chapter 3 for the

two- and three-loop four-particle amplitudes, but gives representations that are not in a pure

integrand basis. Instead diagram symmetry is imposed on the basis elements, and diagrams

that lack maximal cuts are pushed into maximal-cut diagrams. This gives representations

closer in spirit to the previously-constructed representations of these amplitudes, such as the

BCJ representations. It also highlights the role of color Jacobi identities and the freedom in

the amplitude representation they can generate, and contains an explicit discussion of these

features that is unpublished elsewhere.
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CHAPTER 1

Color-Kinematic Duality and Residues of Tree-Level

Amplitudes

In this chapter, we focus on tree-level amplitudes. There has been much work examining the

singularity structure of these amplitudes as functions of external momenta, for example the

development of BCFW recursion in Refs. [4, 5]. We will take a different approach, focusing

on the representation of the amplitude as an integral over a moduli space, and study the

singularity structure of the integrand. This will be analogous to the view we take in later

chapters when discussing loop-level amplitudes, although both the space of integration and

properties of the singularities we study will be quite different. This chapter is based on

Ref. [1], joint work done with James Stankowicz.

One of the more significant recent advances in the study of amplitudes is the discovery

by Bern, Carrasco, and Johansson (BCJ) of a duality between color and kinematics [6]. In

this duality, kinematic numerators of diagrams obey relations similar to the Jacobi identities

obeyed by color factors. One consequence of these relations is that color-ordered tree-level

partial amplitudes obey a set of nontrivial identities, known as BCJ amplitude identities.

These amplitude identities are even more constraining than the Kleiss-Kuijf identities [7], and

so reduce the number of partial amplitudes required to determine a full scattering amplitude.

Color-kinematic duality has been conjectured to hold for any number of loops or legs in a wide

variety of theories, including pure Yang-Mills theories and their supersymmetric extensions.

While no proof exists at loop level, a variety of nontrivial constructions exist [8–15], and its

original tree-level formulation has been fully proven.

One remarkable feature of color-kinematic duality is that one can use it to construct
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gravity amplitudes directly from gauge-theory amplitudes. To do so, one replaces the color

factors in a gauge-theory amplitude with corresponding kinematic numerators that obey the

duality. This gives what is known as the double-copy form of gravity amplitudes [6, 9].

At tree level, this encodes the Kawai-Lewellen-Tye (KLT) relations [16] between gauge and

gravity amplitudes [17]. The extension of the double-copy formula to loop level [9] requires

first constructing loop-level Yang-Mills amplitudes in a form where the duality is manifest.

Then, as at tree level, one obtains gravity amplitudes simply by replacing color factors with

the corresponding kinematic-numerator.

A parallel direction of research originated from writing the tree-level scattering amplitude

ofN = 4 super-Yang-Mills with the Roiban, Spradlin, Volovich, and Witten (RSVW) twistor

string formula [18–22]. (This is also known as the “connected prescription”.) The RSVW

formula expresses the scattering amplitude as an integral over a moduli space of curves in

CP3|4 supertwistor space, effectively reducing the entire scattering amplitude calculation to

solving an algebraic system of equations.

This method for determining tree-level scattering amplitudes as integrals was extended

to N = 8 supergravity, first in specific cases [23–25], and later in general [26–29]. Like

the RSVW formula, the integrals for N = 8 supergravity can be interpreted as contour

integrals, and hence as sums of residues. The formula appearing in Ref. [26] was originally a

conjecture, in part because the formula required the KLT relations to hold for the residues

in the same way that it holds for the amplitudes; this “KLT orthogonality conjecture” was

proven in [30].

Contemporaneously with the work of [1], N = 4 super-Yang-Mills amplitudes were con-

structed using the “scattering equations” [31], shown to have a color-kinematic structure, and

were explicitly related to color-dual numerators [32], using what is now called the Cachazo-

He-Yuan (CHY) formula. Because both the CHY formula and the kinematic numerator

decomposition of amplitudes represent the same mathematical object, it is not surprising

that the former can be written in terms of the latter. On the other hand, the discovery that

global relations, such as the KLT relations, hold at the residue level is intriguing because it
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suggests there is a Jacobi-like numerator structure for the residues as well.

Additional hints of a Jacobi-like numerator structure for residues appeared in a proof of

the BCJ amplitude identities in N = 4 super-Yang-Mills [33]. The proof uses the explicit

structure of the RSVW integrand to prove the BCJ identities. Further, Ref. [33] discusses

how the method of the proof indicates that the BCJ amplitude identities hold at the level of

the residues themselves, analogously to the KLT orthogonality conjecture. Given that the

original BCJ amplitude relations were originally derived by considering color-dual numera-

tors, the reappearance of amplitude relations for residues strongly hints at an analogous set

of numerators for the residues.

Following these hints, Ref. [1] defined objects called residue numerators. By construction,

the residue numerators are analogous to the kinematic numerators of partial amplitudes,

except that they hold for RSVW residues. Following Ref. [1], we use the KLT orthogonality

conjecture to show that the residue numerators obey both a double-copy formula and an

orthogonality condition. We also expound on the observation of Ref. [33] to verify that

RSVW residues do indeed satisfy the BCJ relations. To do all this, we work in the linear

algebra formalism of Refs. [34, 35]. To formally prove our results in this formalism, we prove

a conjecture of Ref. [35], establishing that the BCJ amplitude identities are equivalent to

an equation specifying a consistency condition for the existence of a solution to a certain

system of equations.

The structure of this chapter is as follows. Section 1.1 outlines the necessary background

material: the linear algebra formalism, the RSVW formula and its gravitational general-

izations, and the concepts of color-kinematic duality and double copy. Section 1.1 also

contains some novel material. Subsection 1.1.2 presents a proof that the BCJ amplitude

identities are equivalent to a system of constraint equations in the linear algebra formalism.

In subsection 1.1.4 we explicitly demonstrate that the BCJ amplitude identities (and hence

the constraint equations) apply to RSVW residues, as was noted in [33]. Section 1.2 defines

residue numerators, the central objects of this chapter, and proves their double-copy formula.

Finally, Section 1.3 summarizes the results and discusses future directions.
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1.1 Background Material and Lemmas

1.1.1 Linear Algebra

A convenient way of structuring discussions of kinematic numerators is the linear algebra

approach pioneered in Ref. [34] and extended in Ref. [35] (whose notation we largely adopt).

This formalism makes generalized gauge invariance manifest, and, as we shall demonstrate,

also reinterprets the BCJ amplitude identities as algebraic consistency conditions.

To motivate this approach, recall that Yang-Mills scattering amplitudes in four dimen-

sions can be written in a so-called Del Duca-Dixon-Maltoni (DDM) decomposition [36]. In

this form, the full n-particle amplitude at tree level is written as

An = gn−2
∑

τ∈Sn−2

cτAn (1, τ (2) , . . . , τ (n− 1) , n) , (1.1)

where the coupling constant is g, the notation τ ∈ Sn−2 indicates that the sum runs over

permutations τ of the particle labels 2, . . . , n − 1, the An are color-ordered partial ampli-

tudes, and the cτ are color factors1 of cubic diagrams. Cubic diagrams are diagrams whose

vertices are all degree three, and which conserve color and momentum at each vertex. Any

diagrams containing higher-point contact terms are absorbed into cubic diagrams with the

same color factor, with missing propagators P introduced by multiplying by 1 = P
P

. While

there is no known Lagrangian from which this decomposition can be directly generated by

Feynman rules (see however Ref. [37]), these cubic diagrams are a useful way of reorganizing

the usual sum over Feynman diagrams.

Another decomposition of the tree level amplitude, which we will refer to as the BCJ

decomposition, is

An = gn−2
(2n−5)!!∑

i=1

cini
Di

, (1.2)

1These are a product of group-theory structure constants; see [36] for details.
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Figure 1.1: The definition of the cτ color factors appearing in the DDM decomposition,
where the diagram represents its color factor. Notice that legs 1 and n are fixed, while τ
permutes legs 2 through n− 1.

where the sum is now over the unique set of (2n− 5)!! cubic diagrams, with color factors ci,

products of propagators Di, and so-called “kinematic numerators” ni. These last objects are

functions only of the external momenta and helicities, and are not uniquely defined. This is

because a generalized gauge transformation ni 7→ ni + ∆i, for functions ∆i that obey

(2n−5)!!∑

i=1

ci∆i

Di

= 0, (1.3)

will leave the BCJ decomposition Eq. (1.2) invariant. The notion of a generalized gauge

transformation will turn out to be nicely expressed in the linear algebra formalism.

We can relate the DDM and BCJ decompositions in a useful way. It was shown in

Ref. [36] that the (n− 2)! color factors cτ form a basis of the space of color factors of cubic

diagrams. This is possible because the Jacobi relations of the structure constants induce

linear relations among the color factors. In other words, any of the (2n− 5)!! color factors

ci that appear in the decomposition Eq. (1.2) can be written as

ci =
∑

τ∈Sn−2

Wiτcτ (1.4)

where Wiτ is a (2n− 5)!!×(n− 2)! matrix that encodes the Jacobi relations among the color

factors. Our notation expresses sums over permutations (as in the DDM decomposition) with

τ and ω, and sums over cubic diagrams by Latin indices i, j.

Color-kinematic duality states that there exists a set of color-dual numerators ni that

obey the exact same Jacobi relations as the color factors ci. In other words, for the same
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matrix Wiτ defined above in Eq. (1.4), we can write

ni =
∑

τ∈Sn−2

Wiτnτ (1.5)

for some set of (n− 2)! numerators nτ . Substituting Eq. (1.4) and Eq. (1.5) into the BCJ

decomposition, we find

An = gn−2
(2n−5)!!∑

i=1

∑

τ,ω∈Sn−2

cτnω
Di

WiτWiω

= gn−2
∑

τ,ω∈Sn−2

cτnωFτω, (1.6)

where Fτω is an (n− 2)! × (n− 2)! symmetric matrix with products of inverse propagators

as entries:

Fτω ≡
(2n−5)!!∑

i=1

WiτWiω

Di

. (1.7)

The matrix Fτω is a convenient way of simultaneously encoding both the color and numerator

Jacobi relations in the basis of partial amplitudes.

Equating Eq. (1.6) to the DDM decomposition and matching coefficients of the cτ , we

have the identity

An (1, τ (2) , . . . , τ (n− 1) , n) =
∑

ω∈Sn−2

Fτωnω. (1.8)

This can be thought of in matrix notation as a system of linear equations

FN = A (1.9)

in the (n− 2)!-dimensional space of partial amplitudes spanned by Kleiss-Kuijf basis am-

plitudes and indexed by τ ∈ Sn−2, and N is a column vector of numerators. Ideally we

could invert this formula to get an expression for the numerators in terms of the partial

amplitudes, but this is impossible because F is singular. This is no surprise: the invariance

of the full amplitude under generalized gauge transformations as in Eq. (1.3) ensures that
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the numerators are not unique, so F cannot be invertible.

Therefore F has a nontrivial kernel. To circumvent this problem, Ref. [35] suggested using

the machinery of generalized inverses (also called pseudoinverses). A generalized inverse is a

matrix F+ satisfying FF+F = F , and it can be shown that such an F+ always exists, but is

not unique. Generalized inverses are useful because of the following theorem [38]: a solution

to FN = A exists if and only if the consistency condition

FF+A = A (1.10)

holds for some generalized inverse F+. The general solution is then given by

N = F+A+
(
I − F+F

)
v (1.11)

for an arbitrary vector v that parametrizes the kernel of F .

Notice that I−F+F is a projection operator onto the kernel of F , since, by the definition

of F+, F (I − F+F ) = F − FF+F = 0. The consistency condition Eq. (1.10) has been con-

jectured to be equivalent to the BCJ amplitude identities [35], and we prove this conjecture

below. Note, however, that because the existence of color-dual numerators has been proven

at tree level [39, 40], we know that the consistency condition is satisfied thanks to the “if and

only if” logic. Our proof that the consistency condition Eq. (1.10) is equivalent to the BCJ

amplitude identities gives an alternative proof of the existence of color dual numerators, one

that will extend to the residue numerators defined in Section 1.2.

1.1.2 Equivalence of the BCJ Identities and the Consistency Condition

Our goal is to show that the equation FF+A = A is the same as the BCJ amplitude

identities, which we shall write formally as SA = 0, where S is a matrix that forms the

linear combination of amplitudes appearing in the BCJ identities. Since we chose the

A in FF+A to be a vector of amplitudes in the Kleiss-Kuijf basis, we have to be care-
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ful to choose the matrix S so that it acts on the same vector of Kleiss-Kuijf amplitudes

to produce the BCJ amplitude identities. One particularly nice choice for S that accom-

plishes this is a matrix representation of the momentum kernel [40–43], given explicitly by

Sτω = S [τ (2) , τ (3) , . . . , τ (n− 1) |ω (2) , ω (3) , . . . , ω (n− 1)]. This matrix has polynomials

of Mandelstam variables as entries, and many of its properties are discussed in Ref. [40].

There are two assumptions that will go into our proof. These assumptions are both widely

believed and have survived extensive low-point checks, but remain unproven for general n.

The first is that the basis of (n− 3)! amplitudes appears to be minimal [44–46]. In other

words, there are not further relations that will reduce the number of independent amplitudes

below the (n− 3)! BCJ-independent amplitudes. The second assumption is that Eq. (1.9)

only has solutions for A in the basis spanned by the (n− 3)! BCJ-independent amplitudes.

It is known that the span of these amplitudes is sufficient for a wide class of theories,

including both Yang-Mills theories and the colored trivalent scalar theories discussed in [45].

Our assumption is that this sufficiency holds for any theory that possesses color-kinematic

duality, and so this sufficiency also holds for any theories for which F can be defined.

We demonstrate that the two equations FF+A = A and SA = 0 impose the same

constraints on the elements of A using a simple dimension counting argument. As men-

tioned above, the BCJ amplitude identities are known to reduce the (n− 2)! Kleiss-Kuijf

independent amplitudes to (n− 3)! independent amplitudes [6, 44, 46], i.e. the rank of

S is (n− 2)! − (n− 3)!. Our two assumptions imply that for generic momenta, the so-

lution space of Eq. (1.9) necessarily has dimension (n− 3)! i.e. rankF = (n− 3)!. But

rank (FF+) = rank (F ) by a theorem of linear algebra [38], so the image of FF+ has dimen-

sion (n− 3)!. Then the solution space of FF+A = A has dimension at most (n− 3)!, since

it must be contained in the image of FF+. But then by the assumption that the (n− 3)!

basis is minimal, the solution space of FF+A = A must have dimension equal to (n− 3)!.

The basis vectors of this space must therefore be BCJ basis amplitudes, up to at most a

linear transformation. Therefore the operators FF+ and S + I must be equal up to this

linear transformation, proving the result. Explicitly, we write Q (FF+ − I) = S for some
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Q ∈ GL ((n− 3)!) embedded in an (n− 2)!× (n− 2)! matrix with all other entries zero, and

I the (n− 2)!× (n− 2)! identity matrix.

This may be understood geometrically. If the BCJ amplitudes form the true minimal

basis of color-ordered amplitudes, then the larger space spanned by Kleiss-Kuijf amplitudes

must be constrained to the smaller space spanned by the BCJ amplitudes. We illustrate

this for the four-point case in Figure 1.2. In this simplest example, there are (4− 2)! = 2

amplitudes in the Kleiss-Kuijf basis, and (4− 3)! = 1 amplitude in the BCJ basis. If the

Kleiss-Kuijf basis were minimal, then the vector

A = (A (1, 2, 3, 4) , A (1, 3, 2, 4)) (1.12)

in the plane2 C2 would fully determine all partial amplitudes. The four-point BCJ basis

linearly relates the two elements of the vector A by

A (1, 3, 2, 4) =
u

s
A (1, 2, 3, 4) or A (1, 2, 3, 4) =

s

u
A (1, 3, 2, 4) (1.13)

where either equation is valid, and amounts to choosing either A (1, 2, 3, 4) or A (1, 3, 2, 4)

as a basis amplitude. This is equivalent to projecting to one axis or the other in Figure 1.2.

Since the Kleiss-Kuijf vectors A describe physically valid partial amplitudes, they cannot lie

at an arbitrary point in the plane, but must instead lie on the BCJ line. For the four-point

case, both operators FF+ and S + I are rank one, and act on the Kleiss-Kuijf vector of

amplitudes. This means both operators necessarily map to a point along the BCJ line. The

linear transformation Q ∈ GL ((4− 3)!) in this case is just a constant that translates a point

along the BCJ line, but such movement does not alter the relation between the amplitudes.

The next-highest-point case, n = 5, has (5− 2)! = 6 amplitudes in the Kleiss-Kuijf basis

and (5− 3)! = 2 amplitudes in the BCJ basis; geometrically the n = 5 case corresponds

to a C6 hyperplane for the Kleiss-Kuijf basis with all points actually lying on the C2 plane

2We say “plane” for C2 and “line” for C to highlight the geometry.
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uA23
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(
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sA32, A32

)
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lin
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Rescaling by Q

Figure 1.2: Reduction of the Kleiss-Kuijf amplitude basis to the BCJ amplitude basis for
n = 4. In the figure, A (1, 2, 3, 4) ≡ A23 and A (1, 3, 2, 4) ≡ A32. Kleiss-Kuijf amplitude
vectors must lie on the BCJ line. The “rescaling by Q” arrows depict the GL (1) freedom
that translates the point A along the BCJ line.

spanned by the BCJ basis amplitudes. This same line of geometric reasoning supports the

rank-counting argument for all n.

1.1.3 RSVW Formula and Residues

As mentioned in the introduction, significant work has been done on the special case of

N = 4 super-Yang-Mills. In particular, the aforementioned RSVW formula that gives all

tree level partial amplitudes is

An (1, 2, . . . , n) =

∫
d2nσ

volGL (2)

1

(12) (23) · · · (n1)

k∏

α=1

δ2
(
Cαaλ̃a

)
δ0|4 (Cαaη̃a)

×
∫
d2ρα

n∏

b=1

δ2 (ρβCβb − λb) , (1.14)

where the Cαa are k × n matrices parametrized by σ, as discussed in the Grassmannian

formulations of Refs. [47–49], for particles in the R-charge sector given by k. The minors
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(12), (23), etc. are minors of Cαa, and are thus functions of the σ. The delta functions enforce

the conditions that the spinor helicity variables λ and λ̃ (along with η̃) are appropriately

orthogonal, and thus that overall supermomentum is conserved.

Notice that both the delta functions and the measure are invariant under permutations

of the particle labels. This means we can write

An (1, τ (2) , . . . , τ (n− 1) , n) =

∫
d2nσ

volGL (2)
Lτ

k∏

α=1

δ2
(
Cαaλ̃a

)
δ0|4 (Cαaη̃a)

×
∫
d2ρα

n∏

b=1

δ2 (ρβCβb − λb) , (1.15)

where

Lτ ≡
1

(1 τ (2)) · · · (τ (n− 1) n) (n 1)
. (1.16)

This representation has an important consequence. To understand the action of F on Aτ ,

we only need to understand how the inverse minor factor Lτ will be affected, since Lτ is

the only factor in Aτ that depends on the particle label ordering. We are in particular

interested in how the consistency condition FF+A = A manifests itself in this setting. By

the permutation invariance discussed above, FF+A = A holds provided (in matrix notation)

FF+L = L (1.17)

on the support of the delta functions. One goal in the remainder of this section will be to

establish this fact.

The proof employs two lemmas. The first lemma is the claim that FF+A = A and SA = 0

are algebraically equivalent, which was shown in Subsection 1.1.4. The second lemma states

that the BCJ amplitude identities descend to the level of residues. Mathematically, this is

the statement that SA = 0 implies SRr = 0 for all RSVW residues Rr (which will be defined

below). This was originally noted in Ref. [33]. Because Ref. [33] proves that SL = 0 (in our

notation) on the support of the delta functions, the residue consistency condition Eq. (1.17)
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will follow from these two lemmas. Explicitly, we can rewrite SL = 0 as

Q
(
FF+ − I

)
L = 0. (1.18)

Multiplying by Q−1 and rearranging gives Eq. (1.17).

1.1.4 Proof of the BCJ Amplitude Identities for RSVW Residues

Our argument proceeds by invoking several equivalent forms of Eq. (1.15) found in Section

3.1 of Ref. [48]. We begin by noting that in supertwistor space, Eq. (1.15) is

An (1, τ (2) , . . . , τ (n− 1) , n) =

∫
d2nσ

volGL (2)
Lτ

k∏

α=1

δ4|4 (CαaWαa) , (1.19)

with Lτ still defined as in Eq. (1.16). Here the Cαa are functions of σ as given by the Veronese

map discussed in Ref. [48]. This can be cleverly rewritten as

An (1, τ (2) , . . . , τ (n− 1) , n) =

∫
dk×nCαa

volGL (k)
Gτ (C)

k∏

α=1

δ4|4 (CαaWαa) (1.20)

where

Gτ (C) =

∫
d2nσ dk×kM

volGL (2)
Lτ

k∏

α=1

n∏

a=1

δ
(
Cαa −Mβ

αCβa
)
, (1.21)

with Mβ
α a set of k × k matrix integration variables. This form makes the integral look

more like the Grassmannian formulation of Ref. [47], but more importantly for our purposes,

it allows us to recast it into the form of a contour integral. The idea is that there are

(k − 2) (n− k − 2) delta functions beyond those that fix the kinematics.3 These extra delta

functions are factors of Gτ (C). Following the discussions in Refs. [22, 48, 50], we can

reinterpret integrating against one of these delta functions as instead integrating around a

contour that encloses a pole located at the argument of the delta function. This is known as

3In other words, delta functions other than
∏k
α=1 δ

4|4 (CαaWαa).
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treating the delta functions holomorphically. Therefore, using the notation of Ref. [48], the

integral can be recast as

An (1, τ (2) , . . . , τ (n− 1) , n) =

∫

S1=···=Sm=0

dk×nCαa
volGL (k)

Hτ (C)

S1 (C) · · ·Sm (C)
. (1.22)

There are m = (k − 2) (n− k − 2) functions S, called Veronese operators, and these contain

the locations of the poles. As the notation suggests, Hτ contains the (integrated) minor

factor Lτ , since Lτ was part of Gτ . Therefore Hτ depends on τ , while none of the Veronese

operators do.

A concrete example is the n = 6, k = 3 Yang-Mills amplitude. In this case, there is

m = 1 function S (C) that determines the correct contour in the complex plane. Gauge

fixing in GL (3) and overall momentum conservation results in only one remaining complex

integration variable c, and so the calculation reduces to a standard contour integral in C. It

may be shown in this n = 6, k = 3 case, that S (c) is quartic for generic momenta [22, 48].

The correct contour for calculating the amplitude must enclose the four roots c1, c2, c3, and

c4 of S (c), as indicated in Figure 1.3. The remaining three points c̃1, c̃2, c̃3 in the c-plane

correspond to the poles of the function H (c).

For general n and k, we can then use the global residue theorem4 to write the amplitude

as a sum of residues (where we have absorbed factors of 2πi):

An (1, τ (2) , . . . , τ (n− 1) , n) =
∑

r

Rr (1, τ (2) , . . . , τ (n− 1) , n) . (1.23)

Letting Cr denote the location of residue Rr
5, the residues have the general form (with the

4This is necessary because we are dealing with a multidimensional contour integral. See [47] for details.

5We cannot simply say the Cr are the zeros of the Veronese operators, due to issues at high multiplicity
arising from so-called composite residues. A more complete discussions of these issues can be found in
[47, 48].
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Re {c}

Im {c}
c1c2

c3

c4

c̃3

c̃2
c̃1

Figure 1.3: The integral for the n = 6, k = 3 Yang-Mills amplitude has one integration
variable not fixed by gauge choice or momentum conservation, and so may be calculated as
a standard contour integral of a complex variable c ∈ C. The four poles c1, c2, c3, and c4
correspond to the four roots of S (c), and the three remaining poles c̃1, c̃2, and c̃3 match the
poles of the function H (c). The placement of the poles is schematic; their positions depend
on the external momenta.

τ -dependence explicit)

Rr,τ =
Hτ (Cr)

T (Cr)
. (1.24)

Here T (C) is a function consisting of the product of the nonvanishing Veronese operators

and containing the gauge fixing. Notice that T is independent of τ .

We can now apply the matrix S to each residue Rr. Doing so, we have

SτωRr,ω =
1

T (Cr)
SτωHω (Cr) . (1.25)

Remembering that Hτ is precisely Gτ with some integration variables fixed by delta functions

and the remaining delta functions stripped off, we see that Hτ (Cr) is proportional to Lτ

evaluated on the support of all of the delta functions. But, as proved in Ref. [33], SLτ = 0

on the support of the delta functions in the RSVW formula. Therefore SτωHω (Cr) = 0, and

so S annihilates the residues Rr individually, exactly as we wished to show.
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1.1.5 Gravity

We are ultimately interested in the application of the techniques developed so far to analyze

gravity. We therefore discuss how this material can be generalized to gravity.

The first concept is the double-copy formula. This states that tree level gravitational

amplitudes can be written as

Mn =
(κ

2

)n−2 (2n−5)!!∑

i=1

niñi
Di

, (1.26)

where the ni and ñi are both sets of kinematic numerators, possibly from different Yang-

Mills theories (such as with varying amounts of supersymmetry), at least one set of which

is color-dual. The gravitational coupling constant is κ. This formula was first proposed in

Ref. [9], and was proven in Ref. [17] using color-kinematic duality and the BCFW recursion

relations. Our ultimate goal is to derive an analogous formula valid at the level of residues.

The second concept defines exactly what the residues look like on the gravitational side.

The Cachazo-Geyer formula for gravitational amplitudes was proposed in Ref. [26]:

Mn =

∫
d2nσ

volGL (2)

Hn

Jn

k∏

α=1

δ2
(
Cαaλ̃a

)
δ0|8 (Cαaη̃a)

∫
d2ρα

n∏

b=1

δ2 (ρβCβb − λb) , (1.27)

which looks exactly the same as the RSVW formula Eq. (1.14) except for the four extra

supersymmetries and the replacement of the inverse minor factor with Hn

Jn
. The exact defi-

nition of Hn

Jn
is not important for our purposes, but it is also a function of the minors of Cαa.

All of the discussion involving writing the RSVW formula as a contour integral applies to

this formula as well. Indeed, since the delta functions in both formulas are the same, the

residues occur at the exact same points, and the same contours may be used. This is crucial,

as it allows us to put RSVW residues in one-to-one correspondence with the residues of this

formula. Explicitly, we write

Mn =
∑

r

RG
r , (1.28)
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with the index r matching the RSVW residue index r.

The formula Eq. (1.27) was conjectured in Ref. [26]; its proof depended on the resolution

of a conjecture called the KLT orthogonality conjecture. This conjecture was proven in

Ref. [51]. In addition to putting Eq. (1.27) on a solid foundation, it will play an important

role in proving the residue analog of Eq. (1.26). We will give a formal statement of the

conjecture at that time.

1.2 Residue Numerators

The lemmas proved in the previous section have important implications. In particular

Eq. 1.17, the consistency condition for residues, guarantees the existence of what we have

christened residue numerators, defined by

Nr ≡ F+Rr +
(
I − F+F

)
v, (1.29)

again for arbitrary v. These numerators obey all of the properties of full amplitude numer-

ators, essentially by definition. In particular, Rr = FNr.

Recall that the gravity amplitude Mn can be written in terms of Yang-Mills partial

amplitudes using the KLT relations, which in our notation take the form [35]

Mn =
(κ

2

)n−2
ATF+Ã. (1.30)

A and Ã are vectors of partial amplitudes associated with two (possibly different) Yang-Mills

theories. We can now address our central question: if we combine two N = 4 super-Yang-

Mills theories to get N = 8 supergravity, can we replace everything by residues and still get

an analogous result? In other words, we conjecture

RG
r

?
=
(κ

2

)n−2
RT
r F

+R̃r. (1.31)

16



To test this hypothesis, we substitute the expressions for Mn and An as sums of residues

into the KLT relations Eq. (1.30). This yields

∑

r

RG
r =

∑

r,r̃

RT
r F

+R̃r̃

=
∑

r

RT
r F

+R̃r +
∑

r 6=r̃

RT
r F

+R̃r̃, (1.32)

where we have separated out the cross terms in the second line. If our conjecture is true, it

must imply
∑

r 6=r̃

RT
r F

+R̃r̃ = 0. (1.33)

This is the aforementioned KLT orthogonality conjecture, and it was recently proved in

Ref. [51].

Now we have
∑

r

RG
r =

(κ
2

)n−2∑

r

RT
r F

+R̃r. (1.34)

However, this is insufficient to show the two sides are equal term-by-term. To show this

stronger statement, we need to go back to the derivation of Eq. (1.27) found in Ref. [26].

In particular, the residues RG
r and Rr are dependent only on the integrands of the RSVW

and Cachazo-Geyer formulas. After inserting two copies of the RSVW formula into the KLT

relations, the use of KLT orthogonality reduces the integral to an integral over a single set of

the RSVW variables (rather than one set for A and one for Ã). Therefore the integrands, not

just the integrals, are in fact equal. Since the integrands are evaluated at exactly the same

set of points in determining the residues, this implies that Eq. (1.34) holds term-by-term,

proving RG
r = (κ/2)n−2RT

r F
+R̃r.

We can now recast this in terms of residue numerators. Specifically, we can write

RG
r =

(κ
2

)n−2
RT
r F

+R̃r

=
(κ

2

)n−2
RT
r F

+FF+R̃r
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=
(κ

2

)n−2 ((
F+
)T
Rr

)T
FF+R̃r

=
(κ

2

)n−2
NT
r FÑr, (1.35)

where in going to the second line we have used the fact that the residues obey the consistency

condition R̃r = FF+R̃r, and in the last line we have used the fact that for F symmetric,

(F+)
T

is also a generalized inverse6. But the last line is precisely the double-copy formula

with ordinary kinematic numerators replaced by residue numerators, and the gravitational

amplitude replaced by the corresponding gravitational residue!

Notice that this argument holds in reverse. Assuming the double-copy formula for residue

numerators, we can reverse the logic in the equations leading to Eq. (1.35) and derive the

KLT relations for RSVW residues. The course of this argument uses “residue numerator

orthogonality”
∑

r̃ 6=r

NT
r FÑr̃ = 0, (1.36)

which follows from the residue numerator double-copy formula, to prove KLT orthogonality.

As a simple consistency check, we have numerically verified this result at six points (n = 6

is the smallest n for which nontrivial residues occur in the connected prescription[22]).

This equivalency between the KLT relations and the double-copy formula harks back to

the equivalency at the amplitude level [35], and we expect it will be important for similar

reasons. In particular, the double-copy formulation has two major advantages over the KLT

relations. First, the double-copy formula is much cleaner, making the “gravity is the square

of gauge theory” adage more transparent. Second, the KLT relations are restricted to tree

level, while the double-copy formula is conjectured to apply to all loop orders. This suggests

that the residue numerators, while only now defined at tree level, might have loop-level

analogs.

6Since (F+)
T

may be different than F+, the resulting numerators may differ from those generated by F+

by a generalized gauge transformation, but this is irrelevant for out purposes.
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We have now shown that not only do the BCJ amplitude identities and the KLT relations

descend from the full amplitude to their residues, but so do the concepts of kinematic nu-

merators and the double-copy formula. In the same vein, we emphasize that it is equivalent

to use residue numerators as a starting point, and derive the residue relations, much as the

original BCJ amplitude identities were originally derived from numerators.

1.3 Summary of Tree-Level Results

We have introduced residue numerators. These objects give a BCJ decomposition of RSVW

residues. They have the property that under replacement of a color factor by a residue

numerator we obtain gravity residues, and they obey an orthogonality condition equivalent

to the KLT orthogonality condition [30].

To do this, we proved two lemmas. First we proved that the consistency condition of

the generalized inverse is equivalent to the BCJ amplitude identities by counting the rank

of the matrices F and FF+, largely in the spirit of the arguments suggested in Ref. [35].

By replacing amplitudes with RSVW residues, A → Rr, and N → Nr in expressions for

amplitudes, our proof implies that RSVW residues obey BCJ amplitude identities if and

only if there exist decompositions of RSVW residues into residue numerators. It is possible

to explicitly construct such residue numerator solutions [32, 52], so we only needed to verify

that RSVW residues obey amplitude relations in general. We did this by demonstrating that

RSVW residues contain permutation-dependent factors which vanish in the BCJ amplitude

relation, as discussed in Ref. [33]. This was the second lemma that we proved.

From these two lemmas, our main result followed. We showed that the new proof of

KLT orthogonality for RSVW residues implies a residue numerator orthogonality condition.

Conversely, from the ab initio assumption that both RSVW and gravity residues could

be decomposed into residue numerators, we arrived at a residue numerator orthogonality

condition that implies the KLT orthogonality condition.

Most research building in the same general direction as the subjects discussed in this
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chapter now works within the CHY paradigm [32, 51]. That said, we expect that residue

numerators will offer insight into a variety of topics that are currently phrased in terms of

amplitudes. At tree-level, the interplay of combinatorics and linear algebra that go into

constructing F are suggestive of the positive Grassmannian [49] and amplituhedron [53,

54]. The numerator Jacobi relations may be relevant to lifting the theory described by

the amplituhedron out of the planar limit, since numerator Jacobi identities relate planar

and nonplanar diagrams. (See, for example, Ref. [10], as well as the later chapters of this

dissertation.) It would also be interesting to explore the role of residue numerators in theories

like ABJM, in which even the tree-level connection between color-kinematic duality and BCJ

amplitude identities is less well understood [55, 56].

Numerator decompositions have proven to be a powerful way to evaluate loop-level con-

tributions to amplitudes as well. The decomposition of residues into numerators performed

here may offer insight into improved ways of constructing loop integrands. We expect that

reexamining loop-level amplitudes where known color-dual numerators are available will of-

fer insight into how residue numerators might be applied in loop calculations. There are

good starting points in the literature pursuing such systematization at tree level [57], at

loop level with color-dual numerators [14], and at higher-loop level without color-dual nu-

merators [58, 59]. Recent work [8, 60] also explicitly illustrates a color-dual numerator con-

struction for pure Yang-Mills at one loop and two loops, providing nontrivial evidence that

numerator representations extend to nonsupersymmetric theories. We expect that residue

numerators might be applicable to theories with less supersymmetry.

That said, the extension of the RSVW formula (and more recently the scattering equa-

tions) to loop level has been fraught with difficulties [61, 62]. It has been difficult to under-

stand generalized gauge invariance at loop level [35], as the invariance applies at the level of

the integrand, and must therefore be extended to include terms that vanish upon integration

over loop momenta. Some progress has been made using ambitwistor string theory and the

CHY formulation [61, 63–65], but many problems remain. We hope the algebraic simplicity

of residue numerators will help these barriers be overcome.
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Finally, the existence of residue numerators reemphasizes the role of numerators in color-

kinematic duality. In the same way that color-kinematic duality underlies the BCJ amplitude

identities, we have demonstrated that these residue numerators imply KLT and BCJ relations

as well as the KLT orthogonality relations between RSVW residues.
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CHAPTER 2

Singularity Structure of Loop Amplitudes in N = 4

Super-Yang-Mills: Planar Background

We now turn to loop-level amplitudes. Since all particles of the theory will run in the loops,

we must now choose a specific theory to focus on. The subject of the remainder of this

dissertation will be nonplanar N = 4 super-Yang-Mills (SYM) theory. This is based on

work done with Zvi Bern, Enrico Herrmann, James Stankowicz, and Jaroslav Trnka, and

includes material from Refs. [2, 3].

Recent years have seen enormous advances in our understanding of scattering amplitudes

in N = 4 super-Yang-Mills theory. Most progress has been made in the planar sector, with

many calculations of new amplitudes with large numbers of loops and legs both at the inte-

grand and integrated levels now available. Discoveries of new structures and symmetries have

led to the development of deep theoretical frameworks which greatly aid new computations

while also connecting to new areas of mathematics.

In the planar theory there are a number of recently discovered structures, including

dual conformal symmetry [66–68], Yangian symmetry [69], integrability [70, 71], a dual

interpretation in terms of Wilson loops [72–77], amplitudes at finite coupling using OPE [78–

80], hexagon bootstrap [81–83], and symbols and cluster polylogarithmics [84–87], as well as

a variety of other structures. More recently, scattering amplitudes were reformulated using

on-shell diagrams and the positive Grassmannian [47–50, 88–90] (see related work in Ref. [91–

94]). This reformulation fits nicely into the geometric concept of the amplituhedron [53]

(see also Refs. [54, 95–100]), and makes connections to active areas of research in algebraic

geometry and combinatorics (see e.g. Refs. [101–106]).
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In the remainder of this dissertation, we investigate how some of these properties carry

over to the nonplanar sector. A basic difficulty in the nonplanar sector is that it is currently

unclear how to define a unique integrand, largely due to the lack of global variables with

which to describe a nonplanar integrand. Such ambiguities greatly obscure the desired

structures that might be hiding in the amplitude. In addition, we lose Yangian symmetry

and presumably any associated integrability constraints, as well as the connection between

amplitudes and Wilson loops. Naively we also lose the ability to construct amplitudes using

on-shell diagrams, the positive Grassmannian, and the amplituhedron.

Nevertheless, one might suspect that many features of the planar theory can be extended

to the full nonplanar theory. As discussed in 1, the conjectured duality between color and

kinematics [6, 107] suggests that nonplanar integrands are obtainable directly from planar

ones, and hence properties of the nonplanar theory should be related to properties of the

planar sector. However, it is not a priori obvious which features can be carried over.

The dual formulation of planar N = 4 super-Yang-Mills scattering amplitudes using

on-shell diagrams and the positive Grassmannian makes manifest that the integrand has

only logarithmic singularities, and can be written in a dlog form. Furthermore, the inte-

grand has no poles at infinity as a consequence of dual conformal symmetry. Arkani-Hamed,

Bourjaily, Cachazo, and Trnka conjectured the same singularity properties hold to all loop

orders for all maximally helicity violating (MHV) amplitudes in the nonplanar sector as

well [108]. Refs. [2, 3] provided significant evidence in favor of this conjecture. In Ref. [2],

the conjecture this was confirmed explicitly for the full three-loop four-point integrand of

N = 4 SYM by finding a basis of diagram integrands where each term manifests these

properties. Studies of this amplitude, along with examination of some properties of four-

and five-loop amplitudes, led to the conjecture that, to all loop orders, the singularity con-

straints give us the key analytic information contained in dual conformal symmetry. Ref. [3]

pursued this line of reasoning further and showed that in the planar case, dual conformal

invariance is equivalent to integrands with (i) no poles at infinity and (ii) special values

of leading singularities (maximal codimension residues). In the MHV sector, property (ii)
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and superconformal invariance imply that leading singularities are necessarily equal to ±1

times the usual Parke-Taylor factor [109, 110]. Moreover, the existence of a dual formulation

using on-shell diagrams and the positive Grassmannian implies that (iii) integrands have

only logarithmic singularities. While (i) and (iii) can be directly conjectured for nonplanar

amplitudes, property (ii) must be slightly modified. As proven in Ref. [111] for both planar

and nonplanar cases, the leading singularities are not just individual Parke-Taylor factors,

but more generally are linear combinations of Parke-Taylor factors with different orderings

and with coefficients ±1. This set of three conditions was first conjectured in [108], and

Ref. [3] gave a more detailed argument as to why the content of dual conformal symmetry is

exhausted by this set of conditions. It also provided direct nontrivial evidence showing they

hold for the two-loop five-point amplitude and the three-loop four-point amplitude, building

on the explicit analysis of Ref. [2].

All of these results provide evidence for the amplituhedron concept [53] beyond the pla-

nar limit. The amplituhedron is defined in momentum twistor variables, which intrinsically

require cyclic ordering of amplitudes, making direct nonplanar tests in these variables impos-

sible. However, we can test specific implications even for nonplanar amplitudes. In Ref. [97],

it was argued that the existence of the “dual” amplituhedron implies certain positivity con-

ditions of amplitude integrands. Indeed, these conditions were proven analytically for some

simple cases and numerically in a large number of examples. (Interestingly, these conditions

appear to hold even post-integration [97, 112]). The dual amplituhedron can be interpreted

as a geometric region of which the amplitude is literally a volume, in contrast to the original

definition where the amplitude is a differential form with logarithmic singularities on the

boundaries of the amplituhedron space. This implies a very interesting property when the

integrand is combined into a single rational function: its numerator represents a codimension

one surface which lies outside the dual amplituhedron space. The surface is simply described

as a polynomial in momentum twistor variables and therefore can be fully determined by the

zeros of the polynomial, which correspond to points violating positivity conditions defining

the amplituhedron. A nontrivial statement implied by the amplituhedron geometry is that
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all of these zeros can be interpreted as cuts where the amplitude vanishes.

This leads to a concrete feature that can be tested even in a diagrammatic representation

of a nonplanar amplitude: The integrand should be fixed entirely by homogeneous conditions,

up to an overall normalization. Concretely, by “homogeneous conditions” we mean the

conditions of no poles at infinity, only logarithmic singularities, and unitarity cuts that

vanish. That is, in the unitarity method, the only required cut equations are the ones

where one side of the equation is zero, as opposed to a nontrivial kinematic function of the

external momenta. These zeros occur either because the amplitude vanishes on a particular

branch of the cut solutions or because the cut is spurious1. This conjecture has exciting

implications, because this feature is closely related to the underlying geometry in the planar

sector, suggesting that the nonplanar contributions to amplitudes admit a similar structure.

This chapter will focus on the background material to this work, summarizing properties

connected to the amplituhedron picture of amplitudes in planar N = 4 SYM. The following

chapter 3 will discuss explicit results for nonplanar amplitudes, showing in various examples

that the consequences of dual conformal invariance and the logarithmic singularity condition

do carry over to the nonplanar sector. It will also give evidence for a geometric interpre-

tation of the amplitude by showing that the coefficients in the diagrammatic expansion are

determined by zero conditions.

2.1 Dual Picture for Planar Integrands

In this section we summarize known properties of planar amplitudes in N = 4 SYM theory

that we wish to carry beyond the planar limit to amplitudes of the full theory. We emphasize

those features associated with the amplituhedron construction. In the planar case, we strip

the amplitude of color factors. Later when we deal with the nonplanar case, we restore them.

The classic representation of scattering amplitudes uses Feynman diagrams. At loop level

1A spurious cut is one that exposes a nonphysical singularity, i.e. a singularity that is not present in the
full amplitude.
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the diagrams can be expressed in terms of scalar and tensor integrals. We can then write

the amplitude as2

M =
∑

j

dj

∫
dIj , (2.1)

where the sum is over a set of basis integrands dIj, and dj are functions of the momenta of

external particles, hereafter called kinematic functions. In general the integrations should be

performed in D = 4− 2ε dimensions as a means for regulating both infrared and ultraviolet

divergences. While the integrand can contain pieces that differ between four dimensions

and D dimensions, in this dissertation we ignore any potential contributions proportional to

(−2ε) components of loop momenta. At four points we do not expect any such contribution

through at least six loops [113], but they can enter at lower loop orders as the number of

legs increases [114]. We will not deal with such contributions in this paper, but we expect

that they can be treated systematically as corrections to any uncovered four-dimensional

structure.

In N = 4 SYM we can split off an MHV prefactor, including the supermomentum-

conserving delta function δ8(Q), from all dj,

PT(1234 · · ·n) =
δ8(Q)

〈12〉〈23〉〈34〉 · · · 〈n1〉 , (2.2)

which is called a Parke-Taylor factor [109, 110, 115]. Usually, we describe the dIj in terms

of local integrals that share the same Feynman propagators as corresponding Feynman di-

agrams. However, in the planar sector of the amplitude we do not need to rely on those

diagrams. Instead we can choose dual coordinates ki = xi−xi−1 to encode external kinemat-

ics, as well as analogously defined yj for different loop momenta. The variables are associated

with the faces of each diagram, are globally defined for all diagrams, and allow us to define

a unique integrand by appropriately symmetrizing over the faces [90]. With these variables,

2In general we drop overall factors of 1/(2π)D and couplings from the amplitude, since these play no role
in our discussion.
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we can sum all diagrams under one integration symbol and write an L-loop amplitude as

M∼
∫
dI(xi, yj) =

∫
d4y1 d

4y2 . . . d
4yL I(xi, yj) , (2.3)

where dI is the integrand form and I is the unique integrand of the scattering amplitude.

The integrand form dI for the n-point amplitude is a unique rational form with many ex-

traordinary properties that we will review in this chapter. Particularly effective ways of

constructing the integrand are unitarity cut methods [116–118] or BCFW recursion rela-

tions [5, 90].

2.2 Dual Conformal Symmetry

A key property of N = 4 SYM planar amplitudes is that they possess dual conformal

symmetry [66–68]. This symmetry acts like ordinary conformal symmetry on the dual vari-

ables xi and yj mentioned above. This can be supersymmetrically extended to a dual su-

perconformal symmetry, and closes with the ordinary superconformal symmetry into the

infinite-dimensional Yangian symmetry [69]. This is a symmetry of tree-level amplitudes,

and at loop level is a symmetry of quantities such as the integrand dI and IR safe quantities

like ratio functions [68].

We are interested in understanding the implications of dual conformal symmetry on the

analytic structure of the amplitude. Good variables for doing so are the momentum twistor

variables Zi, introduced in Ref. [119]. These are points in complex projective space CP3 and

are related to the spinor helicity variables λi ≡ |i〉, λ̃i ≡ |i] via

Zi =


 λi

µi


 where µȧi = xaȧi λi,a , (2.4)

where xaȧi are the dual variables defined above in spinor indices. The set of n on-shell external

momenta are then described by nmomentum twistors Zi, i = 1, 2, . . . , n. Momentum twistors

27



are unconstrained variables and trivialize momentum conservation, which is a quadratic

condition on the λi, λ̃i spinors. Each off-shell loop momentum `i is equivalent to a point

yi in dual momentum space, which in turn is represented by a line ZAi
ZBi

in momentum

twistor space.

Dual conformal symmetry acts as SL(4) on Zi, and we can construct invariants from a

contraction of four different Z’s,

〈ijkl〉 ≡ 〈ZiZjZkZl〉 = εαβρσZ
α
i Z

β
j Z

ρ
kZ

σ
l , (2.5)

where εαβρσ is a totally antisymmetric Levi-Civita symbol. Any dual conformal invariant

can be written using these four-brackets. The contractions of spinor helicity variables λ can

be written as

〈ij〉 ≡ εabλ
a
i λ

b
j = εαβρσZ

α
i Z

β
j I

ρσ , (2.6)

where Iρσ is the infinity twistor defined in Ref. [119]. An expression containing Iρσ breaks

dual conformal symmetry because Iρσ does not transform as a tensor. There is a simple

dictionary between momentum space and momentum twistor invariants; we refer the reader

to Ref. [119] for details.

A simple example of a dual conformal invariant integrand is the zero-mass box,

dI =
d4` (k1 + k2)

2(k2 + k3)
2

`2(`− k1)2(`− k1 − k2)2(`+ k4)2
=

〈AB d2A〉〈AB d2B〉〈1234〉2
〈AB12〉〈AB23〉〈AB34〉〈AB41〉 . (2.7)

This represents the full one-loop four-point integrand form in N = 4 SYM. Note that the

integrand in Eq. (2.7) is completely projective in all variables Z, and the infinity twistor is

absent in this expression. This is true for any dual conformal invariant integrand.

This brings us to a key question: what is the content of dual conformal symmetry for

integrands in momentum space? In momentum twistor space the answer is obvious: the

infinity twistor Iρσ is absent. Suppose instead the infinity twistor is present. What is the

implication in momentum space? The first trivial case is when the prefactor of the integrand
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is not chosen properly. For example, if the factor (k2 + k3)
2 in the numerator of the zero-

mass box in Eq. (2.7) is replaced with, say (k1 + k2)
2, this will introduce a dependence on I,

signaling broken dual conformal invariance. In this case, the only dependence on the infinity

twistor is through four-brackets 〈ijI〉 involving only external variables. The presence of these

is easily avoided by correctly normalizing dI.

The nontrivial interesting cases occur when the infinity twistor appears in combination

with the line ZAZB that represents a loop momentum, e.g. 〈ABI〉. In this case no pref-

actor depending only on external kinematics can fix it, and the integrand form necessarily

violates dual conformal symmetry. The factor 〈ABI〉 (or its powers) can appear either in

the numerator or the denominator. If it is in the denominator, the integrand has a spurious

singularity at 〈ABI〉 = 0. In momentum space this corresponds to sending ` → ∞. To see

this, consider a simple example: the one-loop triangle given by

dI =
d4` (k1 + k2)

2

`2(`− k1)2(`− k1 − k2)2
=
〈AB d2A〉〈AB d2B〉〈1234〉〈23I〉
〈AB12〉〈AB23〉〈AB34〉〈ABI〉 . (2.8)

If we parametrize the loop momentum as ` = αλ1λ̃1+βλ2λ̃2+γλ1λ̃2+δλ2λ̃1 and send γ →∞
while keeping γδ = finite, there is a pole which corresponds to `→∞. Bubble integrals even

have a double pole at infinity, which corresponds to a double pole 〈ABI〉2 when written in

momentum twistor space. This sort of behavior is discussed further in Appendix B.

If the 〈ABI〉 factor is in the numerator, there is a problem with the values of leading

singularities. For an L-loop integrand, these are 4L-dimensional residues that are just ratio-

nal functions of external kinematics [120]. If the integrand form is dual conformal invariant,

all its leading singularities are dual conformal cross ratios (defined in Ref. [121]). A special

case is when they are all ±1, as for the box integrand in Eq. (2.7).

If the integrand has 〈ABI〉 in the numerator, the values of leading singularities, denoted

LS(·), depend on 〈(AB)∗I〉,

LS(dI) = 〈(AB)∗I〉 · F(Zi, 〈ab〉) , (2.9)
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where (AB)∗ is the position of the line AB with the leading singularity solution substituted

in. The function F is dual conformal invariant up to some two-brackets of external twistors

〈ab〉 from normalization. For one particular leading singularity we can choose the normal-

ization of dI and therefore force F to cancel 〈(AB)∗I〉, restoring dual conformal symmetry.

However, different leading singularities – of which each integrand has at least two by the

residue theorem – are located at different (AB)∗, so that it is not possible to simultaneously

normalize all leading singularities correctly using only external data. As a result, some of

the leading singularities necessarily are not dual conformal invariant. A simple example is

the scalar one-loop pentagon,

dI =
d4` (k1 + k2)

2(k2 + k3)
2(k3 + k4)

2

`2(`− k1)2(`− k1 − k2)2(`− k1 − k2 − k3)2(`+ k5)2

=
〈AB d2A〉〈AB d2B〉〈ABI〉〈1234〉〈2345〉〈5123〉
〈AB12〉〈AB23〉〈AB34〉〈AB45〉〈AB51〉〈23I〉 , (2.10)

which is not dual conformal invariant, as implied by the appearance of the infinity twistor.

The numerator of this pentagon can be modified to a chiral version studied in Ref. [122],

which restores dual conformal symmetry.

Based on these considerations, we can summarize the content of dual conformal symmetry

of individual integrands in momentum space in two conditions:

1. There are no poles as `→∞.

2. All leading singularities are dual conformal cross ratios.

Any integrand that satisfies these properties necessarily is dual conformal invariant.

In the context of integrands for MHV amplitudes in planar N = 4 SYM, if we strip off

the MHV tree-level amplitude, i.e. the Parke-Taylor factor PT(123 · · ·n) Eq. (2.2),

M = PT(123 · · ·n)

∫
dI , (2.11)

then the integrand dI is dual conformal invariant satisfying both properties above. There are
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Figure 2.1: Sample on-shell diagrams. The black and white dots respectively represent MHV
and MHV three-point amplitudes. Black lines are on-shell particles.

even stronger constraints: superconformal symmetry requires that all leading singularities

are holomorphic functions [18] of λi’s alone. The only functions that are holomorphic,

satisfy property 2 above, and have the correct mass dimension and little-group weight are

constants. In the normalization conventions adopted here, they are ±1 or 0. While we do

not have a direct formulation of dual conformal symmetry in the nonplanar sector, we shall

find analogous analytic structures in the amplitudes for all the examples we study. The role

of the Parke-Taylor factor will have to be modified slightly, however.

2.3 On-Shell Diagrams

On-shell diagrams provide another novel representation of the integrand [49]. These are

diagrams with black and white vertices connected by lines, as illustrated in Figure 2.1. Black

vertices represent MHV three-point amplitudes, white vertices MHV three-point amplitudes,

and all lines, both internal and external, represent on-shell particles. There are two indices

associated with any on-shell diagram: the number of external legs n and the helicity index

k. The k-index is defined as

k =
∑

V

kV − P , (2.12)

where the sum is over all vertices V , kV is the k-count of the tree-level amplitude in a

given vertex, and P is the number of on-shell internal propagators. Black and white vertices

have kB = 2 and kW = 1, respectively. As an example, the first diagram in Figure 2.1 has

k = (2 + 2 + 2) + (1 + 1 + 1 + 1)− 8 = 2. This k corresponds to the total number of external

negative helicities.
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The values of the diagrams are computed by integrating the product of tree-level ampli-

tudes Aj over the phase space dΩi of on-shell internal particles for each vertex

dΩ =
∏

i

∫
dΩi

∏

j

Aj . (2.13)

An on-shell diagram may be interpreted as a specific generalized unitarity cut of an ampli-

tude. In this interpretation, the internal lines of an on-shell diagram represent cut propaga-

tors. The on-shell diagram represents a nonvanishing valid cut of the amplitude only if the

labels n, k of the on-shell diagram coincide with the same labels of the amplitude.

A very different way to describe and calculate planar on-shell diagrams is as cells of a

positive Grassmannian G+(k, n) [49]. For each diagram we define variables αj associated

with edges or faces of the diagram. Using certain rules [49], we build a (k × n) matrix C

with positive main minors – a cell in the positive Grassmannian. Then the value of the

diagram is given by a logarithmic form in the variables of the diagram, multiplied by a

delta function which connects the C matrix with external variables (ordinary momenta or

momentum twistors),3

dΩ =
dα1

α1

dα2

α2

dα3

α3

. . .
dαm
αm

δ(C · Z) . (2.14)

This is known as a “dlog form” since all singularities have the structure dlogαi ≡ dαi/αi.

For further details we refer the reader to Ref. [49], as well as to Appendix B.

Since the planar integrand can be expressed as a sum of these on-shell diagrams via

recursion relations [49], all its singularities are also logarithmic. That is, if we approach a

singularity of the amplitude for αj → 0, the integrand develops a pole

dI αj=0−−−→ dαj
αj

dĨ where dĨ does not depend on αj. (2.15)

This property is not at all obvious in more traditional diagrammatic representations of

3We suppress wedge notation for forms throughout: dxdy ≡ dx ∧ dy.
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scattering amplitudes.

The on-shell diagrams are individually both dual-conformal and Yangian invariant, and

therefore are good building blocks that make both symmetries manifest. On the other hand,

rewriting the variables αj in terms of momenta results in spurious poles which only cancel

in the sum over all contributions, so this sort of representation obscures locality.

While Eq. (2.15) holds for all planar N = 4 SYM integrands for all helicities, in general

the variables αj are variables of on-shell diagrams that are nontrivially related to the loop

and external variables through the delta function δ(C ·Z). For MHV, NMHV (next-to-MHV)

and N2MHV (next-to-next-to-MHV) amplitudes, this change of variables implies that the

integrand also has logarithmic singularities in momentum space. But for NmMHV amplitudes

with m > 2, fermionic Grassmann variables enter in the change of variables, so the integrand

is no longer manifestly a dlog form in momentum variables. In this dissertation we only deal

with the case of MHV amplitudes, so that the dlog structure is clearly visible in momentum

space. As conjectured in Ref. [108], the same properties hold at the nonplanar level.

2.4 Pure Integrand Diagrams

In the MHV sector, we can check the dlog property for individual momentum-space planar

diagrams with only Feynman propagators. In this check, we consider different cuts4 of

a diagram and probe whether Eq. (2.15) is always valid in momentum space. If so, its

integrand form indeed has logarithmic singularities and can in principle be written as a sum

of dlog forms

dIj =
∑

k

bk dlog f
(k)
1 dlog f

(k)
2 . . . dlog f

(k)
4L , (2.16)

where f
(k)
m are some functions of external and loop momenta. Constraining these integrands

to be dual conformal invariant further enforces that the functions dlog f
(k)
m never generate a

pole if any of the loop momenta approach infinity, `i → ∞. In addition, for appropriately

4We use the words “cuts” and “residues” interchangeably throughout.
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normalized diagrams the coefficients bk are all equal to ±1. A form dIj with all these

properties is called a pure integrand form. A simple example of such a form is the box

integrand in Eq. (2.7), which can be expressed explicitly as a single dlog form [49]. More

complicated dlog integrands have been used to write explicit expressions for one-loop and

two-loop planar integrands for all multiplicities [123, 124]. Whenever the amplitude is built

from dIj’s that are individually pure integrands, we will refer to such an expansion as a pure

integrand representation of the amplitude, and to the set of dIj’s as a pure integrand basis.

We can now expand the n-point planar MHV integrand with Parke-Taylor factors factored

out as a sum of pure integrands,

dI =
∑

j

aj dIj . (2.17)

The existence of a diagram basis of pure integrands dIj with only local poles is a conjecture.

There is no guarantee that we can fix the aj coefficients of this ansatz to match the integrand

of the amplitude; it might be necessary to use impure integrands where unwanted singular-

ities cancel between diagrams. Presently, it seems that pure integrands are sufficient up to

relatively high loop order. The coefficients must all be aj = ±1, 0 based on the requirements

of superconformal and dual conformal symmetry. Their precise values are determined by

calculating leading singularities or other unitarity cuts, as is detailed in Chapter 3.

We note that the representation in Eq. (2.17) does not make the full Yangian symmetry

manifest, as there is a tension between this symmetry and locality. However, the represen-

tation does make manifest both dual conformal symmetry and logarithmic singularities.

2.5 Zero Conditions from the Amplituhedron

With on-shell diagrams, scattering amplitudes are built from abstract mathematical objects

with no reference to spacetime dynamics. This is an important step towards finding a

new description of physics where locality and unitarity are not fundamental, but rather are

derived from geometric properties of amplitudes. The on-shell diagrams individually have
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this flavor, but the particular sum that gives the amplitude is dictated by recursion relations

that are based on unitarity properties. A procedure that dictates which particular sum of

on-shell diagrams gives the amplitude without reference to unitarity would therefore be an

improvement on recursion relations. The amplituhedron exactly has this property [53], as it

is a self-consistent geometric definition of the planar integrand. Here we will not need the

details of this object, just some of its basic properties.

We focus mainly on the fact that a scattering amplitude’s integrand is defined as a

differential form dΩ with logarithmic singularities on the boundaries of the amplituhedron

space. This space is defined as a certain map of the positive Grassmannian through the

matrix of positive (bosonized) external data Z for the tree-level case, and its generalization

to loops. A given representation of the amplitude by on-shell diagrams gives a triangulation of

this space, but the amplituhedron’s definition is independent of any particular triangulation.

The underlying assumptions in this construction are logarithmic singularities, in terms of

which the form dΩ is defined, and dual conformal symmetry, which is manifest in momentum

twistor space and generalizations thereof. All other properties of the integrand, including

locality and unitarity, are derived from the amplituhedron geometry. This gives a complete

definition of the integrand in a geometric language; yet, as mentioned in Ref. [97], it is desir-

able to find another formulation that calculates the integrand as a volume of an object rather

than as a differential form with special properties. In search of this dual amplituhedron, it

was conjectured in Ref. [97] and checked in a variety of cases that the integrand I (without

the measure) is positive when evaluated inside the amplituhedron. This is exactly the prop-

erty we expect to be true for a volume function. If we write I as a numerator divided by all

local poles,

I =
N∏

(local poles)
, (2.18)

then, since N is a polynomial in the loop variables (AB)j (and for non-MHV cases also in

other objects), it must be completely fixed by its zeros (roots). An interesting conjecture is

that the zeros of N have two simple interpretations:
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• The zeros correspond to forbidden cuts generated by the denominator; geometrically

these are points outside the amplituhedron.

• The zeros cancel higher poles in the denominator to ensure that all singularities are

logarithmic.

This should be true for all singularities of the integrand, both in external and loop

variables. In the context of MHV amplitudes however, only the loop part is nontrivial. As

an example, we can write the MHV one-loop integrand in the following way,

I =
N(AB,Zi)

〈AB12〉〈AB23〉〈AB34〉 . . . 〈ABn1〉 , (2.19)

where N(AB,Zi) is a degree n− 4 polynomial in AB with proper little group weights in Zi.

In this case the denominator generates only logarithmic poles on the cuts, and the numerator

N is completely fixed (up to an overall constant) by requiring only that it vanishes on all

forbidden cuts. There are two types of forbidden cut solutions for MHV amplitudes:

• Unphysical cut solutions : all helicity amplitudes vanish. In the on-shell diagram rep-

resentation, no on-shell diagram exists.

• Non-MHV cut solutions: only MHV amplitudes vanish while other helicity amplitudes

can be nonzero. In the on-shell diagram representation, the corresponding on-shell

diagram has k 6= 2.

A simple example of the first case is the collinear cut ` = αk1, followed by cutting another

propagator (`− k1 − k2 − k3)2 of the pentagon integral in Eq. (2.10). In momentum twistor

geometry this corresponds to 〈AB12〉 = 〈AB23〉 = 〈AB45〉 = 0 (as well as setting a Jacobian

to zero) which localizes ZA = Z2, ZB = (123)∩ (45). This is an example of an unphysical cut

that vanishes for all amplitudes, including MHV. Therefore the numerator N in Eq. (2.19)

must vanish for this choice of ZA, ZB, and indeed one can verify that it does.

All forbidden cuts correspond to points outside the amplituhedron, and therefore we can

think about N as a codimension-one surface outside the amplituhedron. The amplituhedron
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Figure 2.2: A simple amplituhedron example [97]. The area of the pentagon formed by the
black solid line is the amplituhedron. The points Xi,i+2 define zeros of a numerator, so the
conic given by the outer (blue) solid lines connecting the points represents the numerator.

and the surface N can only touch on lower dimensional boundaries. This is completely con-

sistent with the picture of the amplitude being the actual volume of the dual amplituhedron,

making a clear distinction between the inside and outside of the space.

Consider the simple example discussed in Ref. [97] and shown in Figure 2.2. In this case

the amplituhedron is the area of the pentagon. The numerator N is given by the conic that

passes through five given points cyclically labeled by the Xi,i+2. These points correspond to

“unphysical” singularities of the form dΩ. Knowing the positions of the Xi,i+2 fully fixes the

numerator N , as there is a unique conic passing through five points. Knowing N fixes the

integrand I, per Eq. (2.18). Note that all five Xi,i+2 are outside the amplituhedron (in this

case the pentagon). The existence of a zero surface outside the amplituhedron in this example

directly leads to a geometric construction of the integrand. The same happens for more

complicated amplituhedra, which typically lack a low-dimensional intuitive visualization.

Now let us go several steps back and consider the standard expansion for the integrand

Eq. (2.17) in momentum space as the starting point, and think about the zero conditions

as coming from physics (unphysical cuts) rather than geometry (forbidden boundaries). We

can reformulate the conjecture about fixing N in Eq. (2.18) in terms of unknown coefficients

aj in the expansion in Eq. (2.17):
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M2−loop
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Figure 2.3: The planar two-loop four-point amplitude can be represented in terms of double-
box diagrams.

∣∣∣All coefficients aj are fixed by zero conditions, up to an overall normalization.

By zero conditions we mean both unphysical and non-MHV cuts (as defined above) for

which the integrand vanishes, dI|cuts = 0. The overall normalization just means the overall

scale of the amplitude is one undetermined coefficient of the aj, which may be fixed by one

inhomogeneous condition.

Assuming the integrand may be expanded as in Eq. (2.17) automatically assumes the

presence of only logarithmic singularities as well as the cancelation of some unphysical cuts,

viz. those which do not correspond to planar diagrams. On one hand, we can think about

this conjecture as a reduced version of the one stated in Ref. [97], where both logarithmic

singularities and diagram-like cuts were nontrivial conditions on the numerator N of the

planar integrand Eq. (2.18). On the other hand, a (dual) amplituhedron exactly implies

our conjecture about zero conditions given the diagrammatic expansion of the integrand in

Eq. (2.17). And most importantly, our new conjecture is now formulated in a language which

allows us to carry it over to the nonplanar sector in Chapter 3.

A simple example that illustrates our zero conditions conjecture is the planar two-loop

four-point amplitude [125], which can be represented using the diagrammatic expansion in

Figure 2.3. The diagrams represent the denominators of individual integrands and their

unit leading singularity normalizations are n1 = s2t, n2 = st2, where s = (k1 + k2)
2 and

t = (k1 + k4)
2 are the usual Mandelstam variables. The overall planar Parke-Taylor factor

PT(1234) is suppressed. We can consider a simple non-MHV cut on which the amplitude

should vanish and find that the coefficients must satisfy a1 = a2, which is indeed correct. We
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will elaborate on this example in the next chapter in the context of nonplanar amplitudes,

where more diagrams contribute.
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CHAPTER 3

Singularity Structure of Loop Amplitudes in N = 4

Super-Yang-Mills: Nonplanar Results

Chapter 2 covered the dual formulation of amplitudes in planar N = 4 super-Yang-Mills,

and discussed the conjecture that many of these features carry over to the nonplanar sector.

To test this conjecture, we use the three-loop four-point and two-loop five-point nonplanar

amplitudes as nontrivial examples. A key assumption is that the desired properties can all

be made manifest diagram-by-diagram [2, 3]. While it is unknown if this assumption holds

for all amplitudes to all loop orders, our results confirm that this is a good hypothesis at the

relatively low loop orders we work with. The three-loop four-point integrand was first ob-

tained in Ref. [126], while the two-loop five-point integrand was first calculated in Ref. [13] in

a format that makes color-kinematic duality manifest. Here we construct different represen-

tations that make manifest the facts that the amplitudes have only logarithmic singularities

and no poles at infinity. These representations are then compatible with the notion that

there exists a nonplanar analog of dual conformal symmetry and a geometric formulation of

nonplanar amplitudes. We organize the amplitudes in terms of basis integrands that have

only ±1 leading singularities. The coefficient of these integrals in the amplitudes are then

simply sums of Parke-Taylor factors, as proved in Ref. [111]. We also show that homogeneous

conditions are sufficient to determine both amplitudes up to an overall factor, as expected

if a nonplanar analog of the amplituhedron were to exist.

As noted previously, there is an essential difference between the planar and nonplanar

sectors. In the nonplanar case, it is not known how to construct a unique integrand prior

to integration. This is a direct consequence of the lack of global variables. Without those,
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the choice of variables in one nonplanar diagram relative to the choice in another diagram

is arbitrary. This is a nontrivial obstruction to carrying over the planar amplituhedron

construction directly to the full amplitude.

Here we circumvent this problem and follow the strategy developed in Refs. [2, 3, 108],

which is to consider diagrams as individual objects and to impose all desired properties

diagram-by-diagram. These elements then form a basis for the complete amplitude and

give us a representation in terms of a linear combination of said objects. Each integral is

furthermore dressed by color factors cj, as well as with some kinematic coefficients dj that

need to be determined,

M =
∑

j

djcj

∫
dIj . (3.1)

The individual pieces dIj, interpreted as integrand forms, are not really well-defined

because of the arbitrariness in their choice of variables, and they become well-defined only

when integrated over loop momenta. However, we can still impose nontrivial requirements

on the singularity structure of individual diagrams, as was done in Refs. [2, 3, 108]. This is

because unitarity cuts of the amplitude impose constraints in terms of a well-defined set of

cut momenta, just as they do in the planar sector. This implies that the integrand forms

dIj are interesting in their own right, and that we can systematically study their properties

with the tools at hand. In particular, we will see concrete examples where MHV integrands

may be expanded in a pure integrand basis.

3.1 Nonplanar Conjectures

In the context of N = 4 SYM it is natural to propose the following properties of the

“integrand”, even in the nonplanar case:

(i) The integrand has only logarithmic singularities.

(ii) The integrand has no poles at infinity.
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Let us now show that n= nW ′ , which implies that there are no black-to-black

internal edges. Let us say the number of white multi-vertices is n+q; we want to

show that q=0. From the definition of k,

k = 2nB + nW ′ − nI = 2nB + (n+ q)− nI = 3nB + 2 + q − nI , (2.5)

from which we see that for k = 2, 3nB = nI q. But 3nB ≥ nI on general grounds,

and so we must have that q=0, and hence 3nB =nI . Because q=0, there is one leg

connected to each white multi-vertex (nW ′ =n); and because 3nB =nI , there can be

no black-to-black internal edges. Thus every black vertex connects to precisely three

external legs via white multi-vertices, as we wanted to prove.

Therefore, any MHV (k = 2) on-shell diagram corresponding to an ordinary

function of the external data (nδ=0) with kinematical support will involve precisely

(n 2) black vertices, each of which is attached to exactly three external legs via

white vertices. Thus, we can label any such diagram by a set T consisting of triplets

τ ∈T of leg labels for each of the (n 2) black vertices.

We can illustrate how this labeling works with the following examples:

{
(1 2 4)

(2 3 4)

} 



(1 2 3)

(1 3 4)

(1 3 5)



 (2.6)





(1 2 3)

(2 5 6)

(3 4 6)

(4 5 1)









(1 2 4)

(1 8 9)

(2 9 3)

(3 6 4)

(4 6 5)

(6 8 7)

(6 9 8)





(2.7)

Notice that because there is no preferred way to order the external legs of a non-

planar diagram, there is no preferred way to order the triples. And so while we

have chosen a particular ordering for each triple in the examples above, these choices

should be viewed as completely arbitrary.

– 5 –

Figure 3.1: Example of a nonplanar on-shell diagram.

(iii) The leading singularities of the integrand all take on special values.

The presence of only logarithmic singularities (i) would be an indication of the “vol-

ume” interpretation of nonplanar amplitudes. We will give more detailed evidence for such

an interpretation in the next section. Demonstrating properties (ii) and (iii) would pro-

vide nontrivial evidence for the existence of an analog of dual conformal symmetry for full

N = 4 SYM amplitudes, including the nonplanar sector. Since we lack nonplanar momen-

tum twistor variables, we cannot formulate an analogous symmetry directly, yet the basic

constraints of properties (ii) and (iii) on nonplanar amplitudes would be identical to the

constraints of dual conformal symmetry on planar amplitudes.

The first property (i) can be directly linked to the properties of on-shell diagrams, which

are well-defined beyond the planar sector [95, 111]. Nonplanar on-shell diagrams, one of

which is illustrated in Figure 3.1, are calculated following the same rules as in the planar

case [49]. In particular, they are given by the same logarithmic form Eq. (2.14), where the C-

matrix is now some cell in the (not necessarily positive) Grassmannian G(k, n). However, the

singularities are again logarithmic for MHV, NMHV, and N2MHV amplitudes; this property

holds directly in momentum space like in the planar case. At present it is not known whether

this is a property of the full amplitude, including nonplanar contributions. Unlike the planar

case, we do not currently have an on-shell diagram representation of the amplitude since it

is not known how to unambiguously implement recursion relations. If such a construction
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exists, then the amplitude would share the properties of the on-shell diagrams, including

their singularity structure. Therefore it is very natural to conjecture that the full amplitude

indeed has only logarithmic singularities [108].

Because there is no global definition for the integrand, it is reasonable to assume that

there exist dIj as in Eq. (3.1) such that each dIj has only logarithmic singularities [2]. That

is, we assume that there exists a dlog representation Eq. (2.16) for each diagram,

dIj =
∑

k

bk dlogf
(k)
1 dlogf

(k)
2 . . . dlogf

(k)
4L , (3.2)

where f
(k)
i are some functions of external and loop momenta, and the coefficients bk are

numerical coefficients independent of external kinematics.

In the planar sector, the other two properties (ii) and (iii) are closely related to dual

conformal symmetry. As discussed in Chapter 2, the exact constraints of dual conformal

symmetry on MHV amplitudes are that the amplitudes have unit leading singularities (when

combined with ordinary superconformal symmetry and stripped off Parke-Taylor factor) and

no poles at infinity. Property (ii) can be directly carried over to any nonplanar integrand; in

particular it would imply that the dlog forms in Eq. (3.2) never generate a pole as ` → ∞.

As for property (iii), the value of leading singularities cannot be directly translated to the

nonplanar case, since there is no single overall Parke-Taylor factor to strip off. Supercon-

formal invariance only allows us to write leading singularities as any holomorphic function

Fn(λ), but as proven in Ref. [111], the only allowed functions are

Fn =
∑

σ

aσPTσ , (3.3)

where aσ = (±1, 0) and PT stands for a Parke-Taylor factor with a given ordering,

PTσ ≡ PT(σ1σ2σ3 . . . σn) =
δ8(Q)

〈σ1σ2〉〈σ2σ3〉 . . . 〈σnσ1〉
. (3.4)
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The sum over σ runs over the (n−2)! Parke-Taylor amplitudes independent under the Kleiss-

Kuijf relations [7], as in Eq. (1.1). There are additional relations between the amplitudes,

the BCJ identities that played a starring role in Chapter 1, but they introduce ratios of

kinematic invariants [6] — which introduce spurious poles in external kinematics because

they involve λ̃ — and so we will not make use of them here.

As an example, consider the on-shell diagram from Figure 3.1 above, which is equal to

the sum of seven Parke-Taylor factors (see Eq. (3.11) of Ref. [111]),

F6 = PT(123456) + PT(124563) + PT(142563) + PT(145623)

+ PT(146235) + PT(146253) + PT(162345) . (3.5)

This is a nontrivial property, since there exist many holomorphic functions Fn(λ) for n ≥ 6

which are not of the form of Eq. (3.3).

Analogously to the planar case, we can define a pure integrand to take the form Eq. (2.16),

so that the integrand has unit logarithmic singularities with no poles at infinity. Putting

together the results from Refs. [2, 108, 111], our conjecture is that all MHV amplitudes in

N = 4 SYM theory can be written as

M =
∑

k,σ,j

aσ,k,j ck PTσ

∫
dIj , (3.6)

where aσ,k,j are numerical rational coefficients and dIj are pure integrands with leading

singularities (±1, 0). The PTσ are as in Eq. (3.4), and ck are color factors. For contribu-

tions with the maximum number of propagators, the unique color factors can be read off

directly from the corresponding diagrams, but contact term contributions may have multiple

contributing color factors. The aσ,k,j coefficients are such that, up to sums of Parke-Taylor

factors, the leading singularities of the amplitude are normalized to be (±1, 0), reflecting a

known property of the amplitude.
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3.1.1 Uniqueness and Total Derivatives

There is an important question about the uniqueness of our result. The standard wisdom is

that the final amplitude M is a unique object while the planar integrand dI is ambiguous,

as we can add any total derivative dItot,

∫
dItot = 0 , (3.7)

that leavesM invariant. Note that this is not true in our way of constructing the integrand,

which relies on matching the cuts of the amplitude. This was sharply stated in Ref. [90]: there

is only one function which satisfies all constraints (logarithmic singularities, dual conformal

symmetry) and cut conditions. Any total derivative dItot would violate one or the other. In

other words, if we demand dual conformal invariance and logarithmic singularities, then any

integrand would necessarily contribute to some of the cuts; the integrand therefore cannot

be left undetected by all cuts. It does not matter if it integrates to zero or not, its coefficient

is completely fixed by cut conditions.

The same is true in the case of nonplanar amplitudes in general. In practice, our bases of

pure integrands for all examples in the following sections are complete. The pure integrand

representation does not distinguish between forms that do integrate to zero and those that

do not. Therefore, once the cuts are matched, the pure integrand basis does not miss any

total derivatives that satisfy our constraints, and thus we cannot add any terms like
∫
dItot

to our amplitude. In fact, some linear combination of the basis elements dIj in Eq. (3.6)

might be total derivatives, but the linear combination must contribute to the amplitude prior

to integration with fixed coefficients to match all cuts. There is no freedom to change this

coefficient to some other value. As a result, like in the planar sector, the nonplanar result is

unique once we impose all constraints.

In the remainder of this chapter, we explicitly demonstrate that the two-loop four-point,

three-loop four-point, and two-loop five-point amplitudes may be written in this pure in-

tegrand expansion. In 3.5, we furthermore demonstrate that the coefficients aσ,k,j are all
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1
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(p) (np)

Figure 3.2: The integrals appearing in the two-loop four-point amplitude of N = 4 SYM
theory.

determined from homogeneous information.

3.2 Two-Loop Four-Point Amplitude

The simplest multi-loop example is the two-loop four-point amplitude, which was first ob-

tained in Refs. [125, 127]. In Ref. [108] these results were reorganized in terms of individual

integrals with only logarithmic singularities and no poles at infinity. There are two topologies:

the planar and nonplanar double boxes, as illustrated in Figure 3.2. Using our convention

that all external momenta are outgoing, the numerators for the planar and nonplanar double

box integrals with these properties are

Ñ (p) = s , Ñ (np) = (`5 − k3)2 + (`5 − k4)2 , (3.8)

up to overall factors independent of loop momentum. The integrand dInp with this numer-

ator has logarithmic singularities and no poles at infinity, but it is not a pure integrand.

That is, the leading singularities are not all ±1, but also contain ratios of the form ±u/t.
The kinematic invariants s = (k1 + k2)

2, t = (k1 + k4)
2 and u = (k1 + k3)

2 are the usual

Mandelstam invariants.

Here we want to decompose the Ñ numerators so that the resulting integrands dIj are

pure, and express the amplitude in terms of the resulting pure integrand basis. In practice,

we do this by retaining (with respect to Ref. [108]) the permutation invariant function
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K = stPT(1234) = suPT(1243), and by requiring each basis integrand to have correct mass

dimension — six in this case — and unit leading singularities ±1. This gives us three basis

elements:

N (p) = s2t , N
(np)
1 = su(`5 − k3)2 , N

(np)
2 = st(`5 − k4)2 . (3.9)

The two nonplanar basis integrals are related by the symmetry of the diagram, but to

maintain unit leading singularities we keep the terms distinct. The corresponding pure

integrand forms dI(p), dI(np)1 , dI(np)2 are obtained by including the integration measure and

the appropriate propagators that can be read off from Figure 3.2

We note that for the planar double box, an explicit dlog form is known [108],

dI(p) = dlog
`25

(`5 − `∗5)2
dlog

(`5 + k2)
2

(`5 − `∗5)2
dlog

(`5 + k1 + k2)
2

(`5 − `∗5)2
dlog

(`5 − k3)2
(`5 − `∗5)2

× dlog
(`5 − `6)2
(`6 − `∗6)2

dlog
`26

(`6 − `∗6)2
dlog

(`6 − k3)2
(`6 − `∗6)2

dlog
(`6 − k3 − k4)2

(`6 − `∗6)2
, (3.10)

where

`∗5 = −〈12〉
〈13〉λ3λ̃2 , `∗6 = k3 +

(`5 − k3)2
〈4|`5|3]

λ4λ̃3 , (3.11)

each denote solutions to the on-shell conditions. Ref. [108] gave the dlog form for the

nonplanar double box with numerators as in Eq. (3.9) as a sum of four dlog forms with

prefactors (leading to different Parke-Taylor factors). This representation has the advantage

that it naturally separates parity even and odd pieces. In Ref. [2] this was rewritten in a way

that manifestly splits into unit leading singularity pieces, so that there are single dlog forms

corresponding to each of the nonplanar numerators N
(np)
1 and N

(np)
2 . As usual, we suppress

the wedge notation and write,

dI(np)1 = dΩ1 dΩ2,(1), dI(np)2 = dΩ1 dΩ2,(2) . (3.12)
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More explicitly, these forms are

dΩ
(1)
1 = dlog

`26
(`6 − `∗6)2

dlog
(`6 − k3)2
(`6 − `∗6)2

dlog
(`6 − `5)2
(`6 − `∗6)2

dlog
(`6 − `5 + k4)

2

(`6 − `∗6)2
,

dΩ2,(1) = dlog
`25

〈4|`5|3]
dlog

(`5 + k2)
2

〈4|`5|3]
dlog

(`5 + k1 + k2)
2

〈3|`5|4]
dlog

(`5 − `∗5,1)2
〈3|`5|4]

,

dΩ2,(2) = dlog
`25

〈3|`5|4]
dlog

(`5 + k2)
2

〈3|`5|4]
dlog

(`5 + k1 + k2)
2

〈4|`5|3]
dlog

(`5 − `∗5,2)2
〈4|`5|3]

. (3.13)

where the cut solutions read

`∗6 = −λ3 `5 · λ4〈34〉 , `∗5,1 = −〈34〉
〈31〉λ1λ̃4 − k1 − k2 , `∗5,2 = −〈43〉

〈41〉λ1λ̃3 − k1 − k2 . (3.14)

Using these basis integrals, the full two-loop four-point amplitude can be written as a linear

combination dressed with the appropriate color and Parke-Taylor factors,

M2-loop
4 =

1

4

∑

S4

[
c
(p)
1234 a

(p)PT(1234)

∫
dI(p) (3.15)

+c
(np)
1234

(
a
(np)
1 PT(1243)

∫
dI(np)1 + a

(np)
2 PT(1234)

∫
dI(np)2

)]
,

where we sum over all 24 permutations of the external legs S4. The overall 1/4 divides out

the symmetry factor for each diagram to remove the overcount from the permutation sum.

The planar and nonplanar double-box color factors are

c
(p)
1234 = f̃a1a7a9 f̃a2a5a7 f̃a5a6a8 f̃a9a8a10 f̃a3a11a6 f̃a4a10a11 ,

c
(np)
1234 = f̃a1a7a8 f̃a2a5a7 f̃a5a11a6 f̃a8a9a10 f̃a3a6a9 f̃a4a10a11 , (3.16)

where the f̃abc = i
√

2fabc are appropriately normalized color structure constants.

Matching the amplitude on unitarity cuts determines the coefficients to be

a(p) = 1 , a
(np)
1 = −1 , a

(np)
2 = −1 , (3.17)

48



so that the amplitude in Eq. (3.15) is equivalent to the one presented in Ref. [108]. The trivial

difference is that there the two pieces dI(np)1 and dI(np)2 are combined into one numerator.

3.3 Three-Loop Four-Point Amplitude

Now consider the three-loop four-point amplitude. This amplitude has been discussed al-

ready in various papers [2, 107, 126, 128]. Here we will express the amplitude in a pure

integrand basis. In order to find such a basis, we follow the strategy of Ref. [2], wherein

integrands with only logarithmic singularities were identified. We proceed in the same way,

but at the end impose the additional requirement that the leading singularities be ±1 or 0.

The construction of diagram numerators which lead to pure integrands is very similar to the

previous representation of Ref. [2], so we will only summarize the construction here. Details

on direct construction of the amplitude can be found in Appendix C.

The construction starts from a general N = 4 SYM power counting of loop momenta.

For a given loop variable, we require the overall scaling of a given integrand to behave like

a box in that variable. For example, if there is a pentagon subdiagram for loop variable `,

we allow a nontrivial numerator in `, N ∼ ρ1`
2 + ρ2(` · Q) + ρ3, where Q is some complex

momentum (not necessarily massless). Similarly, if there is a hexagon subdiagram in loop

variable `, we allow N ∼ ρ1(`
2)2 + ρ2(`

2)(` · Q) + ρ3(` · Q1)(` · Q2) + . . . , and so on. Our

conventions require that the overall mass dimension of dIj is zero1, which fixes the mass

dimension of the ρj.

In Ref. [2], we then directly constructed the amplitude by constraining the ansatz numer-

ators to obey the symmetry of the diagrams and to vanish on poles at infinity and double

(or multiple) poles. We now take a slightly different approach: instead of constructing the

amplitude directly, focus on constructing the pure integrand basis. The approach of Ref. [2]

is followed in Appendix C.

1This mass dimension is different than in Ref. [2], where we factored out the totally crossing-symmetric
K = stPT(1234) = suPT(1243) = tuPT(1324).
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3.3.1 Basis of Unit Leading Singularity Numerators

The next step in constructing the pure integrand basis is to require the elements have unit

leading singularities. We write each basis element as an ansatz that has the same power

counting as the diagram numerators. We then constrain the elements so that any leading

singularity — codimension 4L residue — is either ±1 or 0.

The resulting basis elements differ slightly from those of Ref. [2]. Terms that were orig-

inally grouped so that the numerator obeyed diagram symmetry are now split to make

the unit leading singularity property manifest. This is exactly the same reason we rewrote

Eq. (3.8) as Eq. (3.9) in the two-loop four-point example. Additionally, the basis elements

are scaled by products st, su, or tu to account for differing normalizations. The results of

our construction of basis numerators yielding pure integrands are summarized in Table 3.1.

In Table 3.1 we use the relabeling convention N
∣∣
i↔j: “redraw the graph associated with

numerator N with the indicated exchanges of external momenta i, j and also relabel loop

momenta accordingly.” As a simple example look at N
(i)
1

∣∣∣
1↔3

,

N
(i)
1 = tu(`6 + k4)

2(`5 − k1 − k2)2 , N
(i)
2 = N

(i)
1

∣∣
1↔3

. (3.18)

Under this relabeling, the Mandelstam variables s and t transform into one another s =

(k1 + k2)
2 ↔ (k3 + k2)

2 = t and u stays invariant. Besides changing the external labels, we

are instructed to relabel the loop momenta as well. In the chosen example, this corresponds

to interchanging `5 ↔ `6, so that

N
(i)
2 = N

(i)
1

∣∣
1↔3

= su(`5 + k4)
2(`6 − k3 − k2)2 . (3.19)
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Diagram Numerators

(a)
1

2 3

4

5 6 7

N
(a)
1 = s3t ,

∣∣∣∣∣

(b)
1

2 3

4

5 6 7

N
(b)
1 = s2u(`6 − k3)2 , N

(b)
2 = N

(b)
1

∣∣
3↔4

,

(c)
1

2 3

4

5 6 7

N
(c)
1 = s2u(`5 − `7)2 , N

(c)
2 = N

(c)
1

∣∣
1↔2

,

(d)
1

2 3

4

5 6 7 N
(d)
1 = su

[
(`6 − k1)2(`6 + k3)

2 − `26(`6 − k1 − k2)2
]
,

N
(d)
2 = N

(d)
1

∣∣
3↔4

, N
(d)
3 = N

(d)
1

∣∣
1↔2

, N
(d)
4 = N

(d)
1

∣∣
1↔2
3↔4

,

(e)

1

2 3

45 6

7
−

5

N
(e)
1 = s2t(`5 + k4)

2 ,

(f)

1

2 3

45

6

7

N
(f)
1 = st(`5 + k4)

2(`5 + k3)
2 , N

(f)
2 = su(`5 + k4)

2(`5 + k4)
2 ,

(g)

1

2 3

45 6

7
−

5 N
(g)
1 = s2t(`5 + `6 + k3)

2 ,

N
(g)
2 = st(`5 + k3)

2(`6 + k1 + k2)
2 , N

(g)
3 = N

(g)
2

∣∣
3↔4

,

(h)

1

2 3

4

5

6

7

N
(h)
1 = st

[
(`6 + `7)

2(`5 + k2 + k3)
2 − `25(`6 + `7 − k1 − k2)2

−(`5 + `6)
2(`7 + k2 + k3)

2 − (`5 + `6 + k2 + k3)
2`27

−(`6 + k1 + k4)
2(`5 − `7)2 − (`5 − `7 + k2 + k3)

2`26

]
,

N
(h)
2 = tu

[
[(`5 − k1)2 + (`5 − k4)2][(`6 + `7 − k1)2 + (`6 + `7 − k2)2]
−4 `25(`6 + `7 − k1 − k2)2
−(`7 + k4)

2(`5 + `6 − k1)2 − (`7 + k3)
2(`5 + `6 − k2)2

−(`6 + k4)
2(`5 − `7 + k1)

2 − (`6 + k3)
2(`5 − `7 + k2)

2
]
,

N
(h)
3 = N

(h)
1

∣∣
2↔4

, N
(h)
4 = N

(h)
2

∣∣
2↔4

,

(i)

1

2 3

45

6

7

N
(i)
1 = tu(`6 + k4)

2(`5 − k1 − k2)2 , N
(i)
2 = N

(i)
1

∣∣
1↔3

N
(i)
3 = st

[
(`6 + k4)

2(`5 − k1 − k3)2 − `25(`6 − k2)2
]
, N

(i)
4 = N

(i)
3

∣∣
1↔3

(j)

1

2

3

45

6

7

N
(j)
1 = stu .

(k)

1

2

3

4

5

6

7 −
5 N

(k)
1 = su ,

Table 3.1: The basis of numerators for pure integrands for the three-loop four-point ampli-
tude. The notation N

∣∣
i↔j is defined in the text.
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3.3.2 Matching the Amplitude

The three-loop four-point amplitude is assembled from the basis numerators as

M3-loop
4 =

∑

S4

∑

x

1

Sx

∫
d4`5d

4`6d
4`7

N (x)

∏
αx
p2αx

, (3.20)

analogously to Eq. (3.15). Now the sum over x runs over all diagrams in the basis listed in

Table 3.1, the sum over S4 is a sum over all 24 permutations of the external legs, and Sx
is the symmetry factor of diagram x determined by counting the number of the diagram’s

graph automorphisms. The product over αx indicates the product of Feynman propagators

p2αx
of diagram x, as read from the graphs in Table 3.1. The Parke-Taylor factors, color

factors, and coefficients are absorbed in N (x), which we list in Table 3.2.

For four external particles, there are only two independent Parke-Taylor factors. We

abbreviate these as

PT1 = PT(1234) , PT2 = PT(1243) . (3.21)

The third possible factor (after imposing cyclic symmetry), PT(1423), is related to the other

two by a U(1) decoupling identity or dual Ward identity [129]:

PT(1423) = −PT(1234)− PT(1243) , (3.22)

and is therefore linearly dependent on PT1 and PT2.

When checking cuts of the amplitude, certain cuts may combine contributions from dif-

ferent terms in the permutation sum of Eq. (3.20), resulting in a cut expression that involves

diagrams that are relabelings of those in Table 3.1. In that case, the procedure is to relabel

the numerators, propagators, Parke-Taylor factors, and color factors given in the tables into

the cut labels. The resulting Parke-Taylor factors may not be in the original basis of Parke-

Taylor factors; however every Parke-Taylor in the relabeled expression can be expanded in

the original Parke-Taylor basis.
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The diagrams with 10 propagators contain only three-point vertices and therefore have

unique color factors included in N (x). For the two diagrams with fewer than 10 propagators,

we include in our ansatz for N all independent color factors from all 10-propagator diagrams

that are related to the lower-propagator diagrams by collapsing internal legs. For example,

three 10-propagator diagrams are related to diagram (j) in this way, with color factors c
(i)
1234,

c
(i)
1243 and c

(i)
3241, where

c
(i)
1234 = f̃a1a8a5 f̃a6a2a9 f̃a3a11a10 f̃a12a4a13 f̃a9a10a8 f̃a11a12a14 f̃a13a5a7 f̃a14a7a6 (3.23)

is the standard color factor in terms of appropriately normalized structure constants, and

the others c’s are relabelings of 1234 of this color factor. The Jacobi relation between the

three color factors allows us to eliminate, say c
(i)
1243. This is exactly what we do for diagram

(j). In diagram (k), there are nine contributing parent diagrams. Typically there are four

independent color factors in the solution to the set of six Jacobi relations, but in this case

two of the color factors that contribute happen to be identical up to a sign, and thus there

are only three independent color factors.

In Ref. [2], the final representation of the amplitude contained arbitrary free parameters

associated with the color Jacobi identity that allowed contact terms to be moved between

parent diagrams without altering the amplitude. Here we removed this freedom by assigning

the contact terms to their own diagrams and keeping only a basis of independent color factors

for each. See Appendix C for more details on how this works.

One advantage of the Parke-Taylor expansion of the amplitude is that we can compactly

express the solution to the cut equations in the set of matrices listed on the right hand side

of Table 3.2. For example, N (i) can be read off from the table as

N (i) = c
(i)
1234(−1)

(
N

(i)
1 (PT1 + PT2) +N

(i)
2 PT2 −N (i)

3 PT1 +N
(i)
4 PT1

)
. (3.24)

This expression supplies the Parke-Taylor and color dependence required for Eq. (3.20), in

agreement with the general form of Eq. (3.6).
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Color Dressed Numerators PT Matrices

N (a) = c
(a)
1234

∑

1≤σ≤2

N
(a)
1 a

(a)
1σ PTσ , a

(a)
1σ =

(
1 0

)
,

N (b) = c
(b)
1234

∑

1≤ν≤2
1≤σ≤2

N
(b)
ν a

(b)
νσ PTσ , a

(b)
νσ = (−1)

(
0 1
1 0

)
,

N (c) = c
(c)
1234

∑

1≤ν≤2
1≤σ≤2

N
(c)
ν a

(c)
νσPTσ , a

(c)
νσ = (−1)

(
0 1
1 0

)
,

N (d) = c
(d)
1234

∑

1≤ν≤4
1≤σ≤2

N
(d)
ν a

(d)
νσ PTσ , a

(d)
νσ =

(
0 1 1 0
1 0 0 1

)T
,

N (e) = c
(e)
1234

∑

1≤σ≤2

N
(e)
1 a

(e)
1σPTσ , a

(e)
1σ =

(
1 0

)
,

N (f) = c
(f)
1234

∑

1≤ν≤2
1≤σ≤2

N
(f)
ν a

(f)
νσPTσ , a

(f)
νσ = (−1)

(
1 0
0 1

)
,

N (g) = c
(g)
1234

∑

1≤ν≤3
1≤σ≤2

N
(g)
ν a

(g)
νσPTσ , a

(g)
νσ =

(
−1 1 0
0 0 1

)T
,

N (h) = c
(h)
1234

∑

1≤ν≤4
1≤σ≤2

N
(h)
ν a

(h)
νσ PTσ , a

(h)
νσ =

1

2

(
1 1 1 0
0 1 0 −1

)T
,

N (i) = c
(i)
1234

∑

1≤ν≤4
1≤σ≤2

N
(i)
ν a

(i)
νσPTσ , a

(i)
νσ = (−1)

(
1 0 −1 1
1 1 0 0

)T
,

N (j) = c
(i)
1234

∑

1≤σ≤2

N
(j)
1 a

(j)
1σ,(1234)PTσ a

(j)
1σ,(1234) =

(
1 1

)
,

+ c
(i)
3241

∑

1≤σ≤2

N
(j)
1 a

(j)
1σ,(3241)PTσ , a

(j)
1σ,(3241) =

(
−1 0

)
,

N (k) = c
(g)
1234

∑

1≤σ≤2

N
(k)
1 a

(k)
1σ,(1234)PTσ a

(k)
1σ,(1234) =

(
−2 0

)
,

+ c
(g)
4312

∑

1≤σ≤2

N
(k)
1 a

(k)
1σ,(4312)PTσ a

(k)
1σ,(4312) = 0 ,

+ c
(f)
2431

∑

1≤σ≤2

N
(k)
1 a

(k)
1σ,(2431)PTσ . a

(k)
1σ,(2431) = 0 .

Table 3.2: The three-loop four-point numerators that contribute to the amplitude. The N
(x)
ν

are listed in Table 3.1. The four-point Parke-Taylor factors PTσ are listed in Eq. (3.21). The
numerators including color factors are denoted as N (x). The symbol T denotes a transpose.
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3.4 Two-Loop Five-Point Amplitude

The integrand for the two-loop five-point amplitude was first obtained in Ref. [13] in a format

that makes color-kinematic duality manifest. Here we find a pure integrand representation.

An additional feature of our representation is that it is manifestly free of spurious poles in

external kinematics.

3.4.1 Basis of Unit Leading Singularity Numerators

Following the three-loop four-point case, our first step is to construct a pure integrand basis.

Constructing this basis is similar to constructing the three-loop four-point amplitude in

Ref. [2] and summarized in Sec. 3.3. Although deriving the numerators for the two-loop

five-point case is in principle straightforward, it does require a nontrivial amount of algebra,

which we suppress. We again split the basis elements according to diagram topologies and

distinguish between parent diagrams and contact diagrams. The numerators of each pure

integrand are given in Table 3.3.

Table 3.4 contains an additional pure integrand. However we do not include it in our basis

because it is linearly dependent on two other basis elements: N
(h)
1 −N (h)

2 +N
(j)
1 (`6−k1)2 = 0.

In our result, we choose N
(h)
1 and N

(h)
2 as our linearly independent pure integrands, and only

mention N
(j)
1 because it might be an interesting object in future studies.

In contrast to the three-loop four-point basis, in the two-loop five-point case it is useful

to allow spinor-helicity variables associated with external momenta. Specifically, several of

the expressions in Table 3.3 have the structure (`+αλiλ̃j)
2, where α is such that both mass

dimension and little group weights are consistent. For example, the penta-box numerator

N
(b)
1 ∼

(
`6 +

Q45 · λ̃3 λ̃1
[13]

)2

= (`6 − `∗6)2 , (3.25)

is a “chiral” numerator that manifestly vanishes on the MHV solution `6 = `∗6 [122]. As a
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shorthand notation, we use Qij = ki + kj. Therefore we have, in this example,

Q45 · λ̃3 = (λ4λ̃4 + λ5λ̃5) · λ̃3 = [43]λ4 + [53]λ5. (3.26)

3.4.2 Matching the Amplitude

Following the construction of the pure integrand basis in Subsection 3.4.1, we are ready to

build up the amplitude. In complete analogy to Eq. (3.20), the two-loop five-point amplitude

is assembled from the basis numerators as,

M2-loop
5 =

∑

S5

∑

x

1

Sx

∫
d4`6d

4`7
N (x)

∏
αx
p2αx

, (3.27)

where the sum over x runs over all diagrams in the basis listed in Table 3.3, the sum over

S5 is a sum over all 120 permutations of the external legs, and Sx is the symmetry factor

of diagram x. The product over αx indicates the product of Feynman propagators p2αx
of

diagram x, as read from the graphs in Table 3.3.

We refer the reader to the discussion in Subsection 3.3.2 for explicit examples on how

to read Table 3.5. We choose the following set of independent five-point Parke-Taylor basis

elements:

PT1 = PT(12345) , PT2 = PT(12354) , PT3 = PT(12453) ,

PT4 = PT(12534) , PT5 = PT(13425) , PT6 = PT(15423) .
(3.28)

The basis elements N
(x)

in Table 3.5 do not contribute to the MHV amplitude, so that data

is omitted from the a
(x)
νσ .
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Diagram Numerators

(a)
6 71

2

3

4

5

N
(a)
1 = 〈13〉〈24〉

[
[24][13]

(
`7 + [45]

[24]
λ5λ̃2

)2 (
`6 − Q12·λ̃3 λ̃1

[13]

)2

−[14][23]
(
`7 + [45]

[14]
λ5λ̃1

)2(
`6 − Q12·λ̃3 λ̃2

[23]

)2]
,

N
(a)
2 = N

(a)
1

∣∣
1↔2
4↔5

, N
(a)
3 = N

(a)
1

∣∣
2↔4
1↔5

, N
(a)
4 = N

(a)
1

∣∣
1↔4
2↔5

,

N
(a)
5 = N

(a)

1 , N
(a)
6 = N

(a)

2 , N
(a)
7 = N

(a)

3 , N
(a)
8 = N

(a)

4 ,

(b)
6 7

1

2

3
4

5

N
(b)
1 = 〈15〉[45]〈43〉s45[13]

(
`6 + Q45·λ̃3 λ̃1

[13]

)2
,

N
(b)
2 = N

(b)

1 ,

(c)
6

7

1

2

3

4 5
N

(c)
1 = [13]

(
`6 + Q45·λ̃3 λ̃1

[13]

)2
〈15〉[54]〈43〉(`6 + k4)

2 ,

N
(c)
2 = N

(c)
1

∣∣
4↔5

, N
(c)
3 = N

(c)

1 , N
(c)
4 = N

(c)

2 ,

(d)
6

7

1

2
3

4

5

N
(d)
1 = s34(s34 + s35)

(
`7 − k5 + 〈35〉

〈34〉λ4λ̃5

)2
,

N
(d)
2 = N

(d)
1

∣∣
4↔5

, N
(d)
3 = N

(d)

1 , N
(d)
4 = N

(d)

2 ,

(e)
6 71

2
3 4

5

N
(e)
1 = s115s

2
45 ,

(f)
6

7

1

2

3

4 5 N
(f)
1 = s14s45(`6 + k5)

2 , N
(f)
2 = N

(f)
1

∣∣
4↔5

,

(g)
6 71

2

3

4

5

N
(g)
1 = s12s45s24 ,

(h)
6

7

1

2

3 5

4

N
(h)
1 = 〈15〉[35]〈23〉[12]

(
`6 − 〈12〉〈32〉λ3λ̃1

)2
, N

(h)
2 = N

(h)
1

∣∣
3↔5

,

N
(h)
3 = s12〈13〉[15]〈5|`6|3] , N

(h)
4 = s12[13]〈15〉〈3|`6|5],

N
(h)
5 = N

(h)

1 , N
(h)
6 = N

(h)

2 ,

(i)
6− 1 7

2

4

3

1

5 N
(i)
1 = 〈2|4|3]〈3|5|2]− 〈3|4|2]〈2|5|3] .

Table 3.3: The parent diagram numerators that give pure integrands for the two-loop five-
point amplitude. Each basis diagram is consistent with requiring logarithmic singularities
and no poles at infinity. The overline notation means [·]↔ 〈·〉.
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Diagram Numerators

(j)
6 7

1
2

3

4

5 N
(j)
1 = s12s35 = (N

(h)
2 −N (h)

1 )/(`6 − k1)2 ,

Table 3.4: A diagram and numerator that gives a pure integrand. However, as indicated in
the table and explained in the text, it is not a an independent basis element.

Color Dressed Numerators PT Matrices

N (a) = c
(a)
12345

∑

1≤ν≤4
1≤σ≤6

N
(a)
ν a

(a)
νσPTσ , a

(a)
νσ =

1

4




−1 0 1 0 0 2
1 0 −1 0 0 2
−3 0 −1 0 0 2
−1 0 −3 0 0 2


 ,

N (b) = c
(b)
12345

∑

1≤σ≤6

N
(b)
1 a

(b)
1σ PTσ , a

(b)
1ν =

(
−1 0 0 0 0 0

)
,

N (c) = c
(c)
12345

∑

1≤ν≤2
1≤σ≤6

N
(c)
ν a

(c)
νσPTσ , a

(c)
νσ =

(
−1 0 0 0 0 0
0 −1 0 0 0 0

)
,

N (d) = N (e) = N (f) = 0 ,

N (g) = c
(a)
12345

∑

1≤σ≤6

N
(g)
1 a

(g)
1σ,(12345)PTσ a

(g)
1σ,(12345) =

1

4

(
1 0 3 0 0 −2

)
,

+ c
(b)
31245

∑

1≤σ≤6

N
(g)
1 a

(g)
1σ,(31245)PTσ , a

(g)
1σ,(31245) =

(
0 0 −1 0 0 0

)
,

N (h) = c
(a)
12345

∑

1≤ν≤4
1≤σ≤6

N
(h)
ν a

(h)
νσ,(12345)PTσ a

(h)
νσ,(12345) =

1

4




4 0 4 0 0 −4
2 0 3 0 1 −2
−2 0 −3 0 −1 2
4 0 4 0 0 −4


 ,

+ c
(a)
12543

∑

1≤ν≤4
1≤σ≤6

N
(h)
ν a

(h)
νσ,(12543)PTσ , a

(h)
νσ,(12543) = a

(h)
νσ,(12345) ,

N (i) = c
(a)
12345

∑

1≤σ≤6

N
(i)
1 a

(i)
1σ,(12345)PTσ a

(i)
1σ,(12345) = 2

(
0 0 −1 0 0 1

)
,

+ c
(a)
13245

∑

1≤σ≤6

N
(i)
1 a

(i)
1σ,(13245)PTσ a

(i)
1σ,(13245) = 2

(
0 0 0 0 0 1

)
,

+ c
(a)
12543

∑

1≤σ≤6

N
(i)
1 a

(i)
1σ,(12543)PTσ a

(i)
1σ,(12543) = 2

(
1 0 1 0 1 −1

)
,

+ c
(a)
15243

∑

1≤σ≤6

N
(i)
1 a

(i)
1σ,(15243)PTσ , a

(i)
1σ,(15243) = 2

(
0 0 0 0 −1 0

)
.

Table 3.5: The two-loop five-point numerators that contribute to the amplitude. The N
(x)
ν

are listed in Table 3.3. The five-point PTσ are listed in Eq. (3.28). We denote the numerators
including color information as N (x).
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3.5 Zeros of the Integrand

In the previous section we gave explicit examples of the expansion of the amplitude, Eq. (3.1),

in terms of a basis of pure integrands, giving new nontrivial evidence that the analytic

consequences of dual conformal symmetry hold beyond the planar sector. In this section we

take a further step and present evidence that the amplituhedron concept, which is a complete

and self-contained geometric definition of the integrand, may exist beyond the planar sector

as well.

As already mentioned in previous sections, beyond the planar limit we currently have no

alternative other than to use diagrams representing local integrals, Eq. (3.1), as a starting

point for defining nonplanar integrands. The lack of global variables makes it unclear how to

directly test for a geometric construction analogous to the amplituhedron in the nonplanar

sector. However, as discussed in Chapter 2, in the planar sector the (dual) amplituhedron

construction implies that all coefficients in the expansion in Eq. (2.17) are determined by

zero conditions, up to an overall normalization. We expect that if an analogous geometric

construction exists in the nonplanar sector, then zero conditions should also determine the

amplitude. This can be tested directly. Indeed, we conjecture that for the representation in

Eq. (3.1):

All coefficients dj are fixed by zero conditions, up to overall normalization.

This is the direct analog of the corresponding planar statement in Chapter 2. In the MHV

case, which we consider here, the coefficients dj are linear combinations of Parke-Taylor fac-

tors, so that only numerical coefficients aσ,k,j in Eq. (3.6) need to be determined. The above

conjecture is a statement that we can obtain these coefficients using only zero conditions, up

to an overall constant. Here we confirm this proposal for all amplitudes constructed in the

previous section.

As a simple first example, consider the two-loop four-point amplitude. The integrand is

given as a linear combination of planar and nonplanar double boxes, c.f. Section 3.2. The
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1

2

3 = 0

4

5 + 2 6

Figure 3.3: The two-loop four-point MHV amplitude vanishes on this cut. The four-point
trees in the diagram have k = 2, so the overall helicity counting is k = 1.

M2−loop
4

∣∣∣
cut

= N
(p)
1234c

(p)
1234

1

2 3

4

+ N
(p)
4123c

(p)
4123

4

1 2

3

+ N
(np)
1234c

(np)
1234

1

2
3 4 + N

(np)
4123c

(np)
4123

4

1
2 3

+ N
(np)
3214c

(np)
3214

3

2
1 4 + N

(np)
3412c

(np)
3412

3

4
1 2

+ N
(np)
4213c

(np)
4213

4

2
1 3

Figure 3.4: The two-loop four-point amplitude evaluated on the cut of Figure 3.3. In each
diagram the two shaded propagators are uncut, and every other propagator is cut. Eq. (3.35)
gives the value of the cut.

only required condition to determine the unknown conditions is the cut in Figure 3.3.

In the full amplitude, we have contributions from the planar and nonplanar double boxes

in Figure 3.2 and their permutations of external legs. All permutations of diagrams that

contribute to the cut in Figure 3.3 are shown in Figure 3.4, along with their numerators and

color factors. For convenience, we indicate the permutation labels of external legs of the

seven contributing diagrams. There are only seven diagrams rather than nine because two

of the nine diagrams have triangle subdiagrams, and so have vanishing numerators in N = 4

SYM.

For the cut in Figure 3.3, five propagators are put on-shell so that the cut solution
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depends on α, γ, and δ, three unfixed parameters of the loop momenta. Explicitly, the cut

solution is given by

`∗5 + k2 = λ1

[
αλ̃1 +

1

δ〈13〉[23]

(
δt− α(s+ δu+ γ〈13〉[12])

)
λ̃2

]
,

`∗6 = λ3

[
δλ̃3 + γλ̃2

]
. (3.29)

On this k = 1 cut, the MHV amplitude vanishes for any values of α, γ, δ. By cutting the

Jacobian

J = γ
(
δt− α(s+ δu+ γ〈13〉[12])

)
, (3.30)

the amplitude remains zero, and this condition simplifies. Specifically, this allows us to

localize `5 + k2 to be collinear with k1 and to localize `6 to be collinear with k3. This is

equivalent to taking further residues of the already-cut integrand at γ = 0, α = δt/(s+ δu).

On this cut, the solution for the loop momenta simplifies,

`∗5 + k2 =
δt

s+ δu
λ1λ̃1 , `∗6 = δλ3λ̃3 , (3.31)

with the overall Jacobian J ′ = s+ uδ. Even in this simplified setting with one parameter δ

left, the single zero cut condition Figure 3.3 is sufficient to fix the integrand up to an overall

constant.

The numerators for the pure integrands, using the labels in Figure 3.2, are given in

Eq. (3.9). Including labels for the external legs to help us track relabelings, these are

N
(p,1)
1234 = s2t, N

(np,1)
1234 = su (`5 − k3)2 , N

(np,2)
1234 = st (`5 − k4)2 . (3.32)

As noted near Eq. (3.21), there are only two Parke-Taylor factors independent under the

U(1)-decoupling relations for four-particle scattering, namely PT1 = PT (1234) and PT2 =
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PT (1243). Therefore the numerator ansatz for the planar diagram is

N
(p)
1234 =

(
a
(p)
1,1 PT1 + a

(p)
1,2 PT2

)
N

(p,1)
1234 . (3.33)

For the nonplanar diagram, there are two pure integrands, each of which gets decorated with

the two independent Parke-Taylor factors, so that the ansatz takes the form

N
(np)
1234 =

[ (
a
(np)
1,1 PT1 + a

(np)
1,2 PT2

)
N

(np,1)
1234

+
(
a
(np)
2,1 PT1 + a

(np)
2,2 PT2

)
N

(np,2)
1234

]
, (3.34)

and both numerators are then decorated with corresponding color factors c
(p)
1234, c

(np)
1234 and

propagators. The a
(x)
i,j coefficients are determined by demanding the integrand vanishes on

the cut solution in Eq. (3.31).

Explicitly, the zero condition from the cut corresponding to Figure 3.4 is:

0 =

(
c
(p)
1234N

(p)
1234

`25 (`6 − k3 − k4)2
+

c
(p)
4123N

(p)
4123

(`5 − k3)2 (`6 + k2)
2 +

c
(np)
1234N

(np)
1234

`25 (`5 − `6 − k4)2

+
c
(np)
4123N

(np)
4123

(`5 − k3)2 (`5 − `6 + k2)
2 +

c
(np)
3214N

(np)
3214

(`6 + k2)
2 (`5 − `6 − k4)2

+
c
(np)
3412N

(np)
3412

(`6 − k3 − k4)2 (`5 − `6 + k2)
2 +

c
(np)
4213N

(np)
4213

(`5 − `6 + k2)
2 (`5 − `6 − k4)2

)∣∣∣∣∣
`∗5 ,`

∗
6

. (3.35)

The sum runs over the seven contributing diagrams, following the order displayed in Figure

3.4. The denominators are the two propagators that are left uncut in each diagram when

performing this cut. One of the terms in the cut equation, for example the fifth term, is

N
(np)
3214

(`6 + k2)
2 (`5 − `6 − k4)2

=
1

(`6 + k2)
2 (`5 − `6 − k4)2

(3.36)

×
[(
a
(np)
1,1 PT (3214) + a

(np)
1,2 PT (4213)

)
tu (`6 + k1 + k2)

2

+
(
a
(np)
2,1 PT (3214) + a

(np)
2,2 PT (4213)

)
st (`6 + k2 + k4)

2
]
.
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This has been relabeled from the master labels of Eq. (3.32) to the labels of the third

nonplanar diagram in Figure 3.4, including the two uncut propagators. Specifically `5 7→
−`6 − k2 and `6 7→ −`5 − k1 is the relabeling for this diagram. A key simplifying feature

is that the a
(x)
i,j coefficients do not change under this relabeling so as to maintain crossing

symmetry; the same four coefficients contribute to all five of the nonplanar double boxes that

appear, for example. As discussed in Subsection 3.3.2, the Parke-Taylor factors that appear

in Eq. (3.36) do not necessarily need to be in the chosen basis, although here PT(3214) = PT1

and PT(4213) = PT2.

The single zero condition Eq. (3.35) determines five of the six a
(x)
ij parameters. This

is, consistent with our conjecture above, the maximum amount of information that we can

extract from all zero conditions. To do so in this example, we reduce to the two-member

Parke-Taylor basis mentioned before, and also use Jacobi identities to reduce the seven

contributing color factors to a basis of four. Since the remaining Parke-Taylor and color

factors are independent, setting the coefficients of PT · c to zero yields eight potentially

independent equations for the six coefficients. It turns out only five are independent:

a
(p)
1,2 = a

(p)
1,1 + 3a

(np)
1,1 + a

(np)
2,1 = a

(p)
1,1 + a

(np)
1,1 + a

(np)
2,1 = 0, (3.37)

2a
(p)
1,2 − a(np)1,1 + a

(np)
1,2 − a(np)2,1 + a

(np)
2,2 = a

(p)
1,2 + a

(np)
1,1 + a

(np)
1,2 − a(np)2,1 + 3a

(np)
2,2 = 0.

The solution for this system is

a
(p)
1,2 = a

(np)
1,1 = a

(np)
2,2 = 0 , a

(np)
1,2 = a

(np)
2,1 = −a(p)1,1 , (3.38)

and any of a
(np)
1,2 , a

(np)
2,1 , or a

(p)
1,1 is the overall undetermined parameter. This matches the result

in Eq. (3.17), if we take a
(p)
1,1 = 1. This last condition is exactly the overall scale that the

zero conditions cannot determine, and must fixed by matching to an inhomogeneous cut.

Finally, we confirmed that the three-loop four-point and two-loop five-point amplitudes

can also be uniquely determined via a zero cut condition up to a single overall constant.
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Figure 3.5: The three-loop four-point MHV amplitude vanishes on this cut. The five-point
tree at the bottom of the diagram has k = 2 or k = 3, so the overall helicity counting is
k = 3 or k = 4.

1
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4

5 = 0

6− 1 7

Figure 3.6: The two-loop five-point MHV amplitude vanishes on this cut. The five-point
tree at the bottom of the diagram has k = 2 or k = 3, so the overall helicity counting is
k = 3 or k = 4.

We used the cut in Figure 3.5 to determine the arbitrary parameters in the three-loop four-

point amplitude, and we used the cut in Figure 3.6 to determine the parameters of the

two-loop five-point amplitude. We also confirmed in both cases that using one cut where

the amplitude does not vanish is sufficient to determine the overall unfixed parameter to

the correct value. To confirm that the so-constructed amplitudes are correct, we verified a

complete set of unitarity cuts needed to fully determine the amplitudes, matching to the

corresponding cuts of previously known results in Refs. [13, 107, 126].

We thus conclude that in all three examples that we analyzed, the coefficients in the

expansion Eq. (3.6) are determined up to one constant by zero conditions. The set of

relations is more complicated in the three-loop four-point and two-loop five-point examples

than in the two-loop four-point example, but in all cases all coefficients are determined as

simple rational numbers without any kinematic dependence, leaving one overall coefficient

free.
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While far from a proof, these results point to the existence of an amplituhedron-like

construction in the nonplanar sector of the theory. As discussed in Chapter 2, in the planar

sector the existence of such a construction implies that homogeneous conditions determine

the amplitudes up to an overall normalization. This is indeed what we have found in the var-

ious nonplanar examples studied above: the homogeneous requirements of only logarithmic

singularities, no poles at infinity, and vanishing of unphysical cuts do determine the am-

plitudes. In any case, the notion that homogeneous conditions fully determine amplitudes

opens a door to applying these ideas to other theories where no geometric properties are

expected. Of course, we ultimately would like a direct amplituhedron-like geometric formu-

lation of N = 4 SYM amplitudes, including the nonplanar contributions. As a next step, we

would need sensible global variables that allow us to define a unique integrand, generalizing

the power of momentum twistors in the planar sector.

3.6 Summary of Loop-Level Results

In this chapter, we found evidence that an amplituhedron-like construction of nonplanar

N = 4 SYM theory scattering amplitudes may exist. We did so by checking the expected

consequences of such a construction: that the integrand should be determined by homo-

geneous conditions, such as vanishing on certain cut solutions. We also gave additional

nontrivial evidence for the conjecture that only logarithmic singularities appear in nonpla-

nar amplitudes [2, 108], which is another characteristic feature of planar amplitudes resulting

from the amplituhedron construction.

An important complication is that unlike in the planar sector, there is no unique integrand

of scattering amplitudes which can be directly interpreted as a volume of some space. This

forced us to chop up the amplitude into local diagrams containing only Feynman propagators.

As pointed out in Ref. [108] and further developed in Ref. [2], analytic properties that follow

from dual conformal invariance can be imposed on such local diagrams. We developed the

notion of a pure integrand basis: a basis of integrands with only logarithmic singularities,
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no poles at infinity, and only unit leading singularities. The first property is motivated by

the analogous statement for on-shell diagrams in N = 4 SYM. If, like in the planar case, we

understood how to formulate nonplanar recursion relations, we expect that it would then be

possible to express nonplanar amplitudes directly as sums of on-shell diagrams [49, 111, 130]

and manifestly expose their dlog structure. The latter two properties lift the exact content

of the planar sector’s dual conformal symmetry to the nonplanar one.

We constructed a pure integrand basis for each of the two-loop four-point, three-loop

four-point and two-loop five-point amplitudes, and showed that the amplitudes could be

expanded in their respective bases. This confirmed that the three example amplitudes share

the three properties of the pure integrands. Our pure integrand representations here are

closely related to Refs. [2, 108] for four-point amplitudes at two- and three-loops, while our

representation of the two-loop five-point amplitude, first published in Ref. [3], has completely

novel properties compared to the result in Ref. [13]. The fact that we exposed analytic

properties in the nonplanar sector similar to those connected to dual conformal symmetry

in the planar sector suggests that an analog of dual conformal symmetry may exist in the

nonplanar sector. (For Yangian symmetry a similar statement is less clear, although there

has been some recent work in this direction in Ref. [131].)

One particularly bold future goal is to lift the amplituhedron [53] paradigm from the

planar sector to the nonplanar sector of N = 4 SYM. The amplituhedron provides a ge-

ometric picture of the planar integrand where all standard physical principles like locality

and unitarity are derived. In such a picture, traditional ways of organizing amplitudes, be

it via Feynman diagrams, unitarity cuts, or even on-shell diagrams, are consequences of

amplituhedron geometry, rather than a priori organizational principles. The amplituhedron

reverses traditional logic, as logarithmic singularities and dual conformal symmetry, rather

than locality and unitarity, are fundamental inputs into the definition of the amplituhedron.

The definition then invokes intuitive geometric ideas about the inside of a projective triangle,

generalized to the more complicated setting of Grassmannian geometry.

We would like to carry this geometric picture over to the nonplanar sector. However, a

66



lack of global variables limits us to demanding that the amplitude be a sum of local integrals.

This already imposes locality and some unitarity constraints. Nevertheless, after imposing

special analytic structures on the basis integrals — unit logarithmic singularities with no

poles at infinity — one can extract the “remaining” geometric information. Motivated by

the discussion in Ref. [97], we conjecture that this remaining information is a set of zero

conditions, i.e. cuts on which the amplitude vanishes. This is exactly the statement which

we successfully carried over to the nonplanar sector and tested in examples in Section 3.5.

Here we propose that after constructing a pure integrand basis, zero conditions are sufficient

for finding the complete amplitude, up to normalization.

This provides nontrivial evidence that an amplituhedron-like construction might very well

exist beyond the planar limit for amplitudes in N = 4 SYM theory. However there are still

many obstacles including, among other things, a choice of good variables and a geometric

space in which nonplanar scattering amplitudes are defined as volumes. If such a nonplanar

amplituhedron really exists, it would be phrased in terms of very interesting mathematical

structures going beyond those of the planar amplituhedron.

If our zero condition conjecture indeed holds, how might it extend to other theories? The

most naive possibility is that N = 4 SYM amplitudes are the most constrained amplitudes

and so need no inhomogeneous conditions except for overall normalization, while amplitudes

in other theories, with less supersymmetry for example, do need additional inhomogeneous

information. Even in such theories the zero conditions would still constrain the amplitudes,

and it would be interesting to see which and how many additional inhomogeneous conditions

are required to completely determine the amplitudes.

It may be possible to link the N = 4 SYM results we presented here directly to iden-

tical helicity amplitudes in quantum chromodynamics (QCD) via dimension shifting rela-

tions [132, 133]. These relations were recently employed to aid in the construction of a

representation of the two-loop five-point identical helicity QCD amplitude where the duality

between color and kinematics holds [134]. It should also be possible to find a new represen-

tation of the identical helicity QCD amplitude in terms of the N = 4 SYM representation
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we gave here.

Another line of research is to concentrate on individual integrals rather than on the full

amplitude. After integration, integrands with only logarithmic singularities are expected

to have uniform maximum transcendental weight at the loop order of the integrand [135].

This provides a nice connection between properties of the integrand and conjectured prop-

erties of final integrated amplitudes. On the practical level, having a good basis of master

integrals under integral reduction is important for many problems, including applications to

phenomenology. As explained in Refs. [136, 137], uniformly transcendental integrals obey

relatively simple differential equations, making them easy to work with [138, 139]. This also

makes our basis of pure integrands useful for five-point scattering in NNLO QCD. For a

recent discussion of the planar case see Ref. [140].

As already noted in Ref. [2], the types of gauge-theory results described here can have

a direct bearing on issues in quantum gravity, through the double-copy relation of Yang-

Mills theories to gravity [107]. We expect that developing a better understanding of the

nonplanar sector of N = 4 SYM will aid our ability to construct corresponding gravity

amplitudes, where no natural separation of planar and nonplanar contributions exists.

In summary, we have presented evidence that nonplanar integrands of N = 4 SYM

share important analytic structure with planar ones. We have also presented evidence for a

geometric structure similar to the amplituhedron [53], based on the idea that such a structure

implies that zero conditions are sufficient to fix the amplitude, up to an overall normalization.

While there is much more to do, these results suggest that the full theory has structure at

least as rich as the planar theory.
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APPENDIX A

Logarithmic Singularities and Poles at Infinity
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APPENDIX B

Logarithmic Singularities and Poles at Infinity

B.1 Logarithmic Singularities and dlog Forms

In this appendix, we give a thorough review of the concept of dlog forms in the context

of ordinary momentum-space variables. This serves to clarify the mathematics, as well as

strip away any confusion that may result from the use of momentum twistors and notational

conveniences. It is natural to define an integrand form Ω(x1, . . . , xm) of the integral F by

stripping off the integration symbol

F =

∫
Ω(x1, . . . , xm) , (B.1)

and to study its singularity structure. There is a special class of forms that we are interested

in here: those that have only logarithmic singularities. As defined in Eq. (2.15), a form has

only logarithmic singularities if near any pole xi → a it behaves as

Ω(x1, . . . , xm)→ dxi
xi − a

∧ Ω̂(x1, . . . , x̂i, . . . , xm) , (B.2)

where Ω̂(x1, . . . , x̂i, . . . xm) is an (m − 1)-form1 in all variables except x̂i. An equivalent

terminology is that there are only simple poles. That is, we are interested in integrands

1The signs from the wedge products will not play a role because at the end we will construct basis elements
whose normalization in the amplitude is fixed from unitarity cuts.
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where we can change variables xi → gi(xj) such that the form becomes

Ω = dlog g1 ∧ dlog g2 ∧ · · · ∧ dlog gm , (B.3)

where we denote

dlog x ≡ dx

x
. (B.4)

We refer to this representation as a “dlog form”.

A simple example of such a form is Ω(x) = dx/x ≡ dlog x, while Ω(x) = dx or Ω(x) =

dx/x2 are examples of forms which do not have this property. A trivial two-form with

logarithmic singularities is Ω(x, y) = dx ∧ dy/(xy) = dlog x ∧ dlog y. A less trivial example

of a dlog form is

Ω(x, y) =
dx ∧ dy

xy(x+ y + 1)
= dlog

x

x+ y + 1
∧ dlog

y

x+ y + 1
. (B.5)

In this case, the property of only logarithmic singularities is not obvious from the first

expression, but a change of variables resulting in the second expression makes the fact that

Ω is a dlog form manifest. This may be contrasted with the form

Ω(x, y) =
dx ∧ dy
xy(x+ y)

, (B.6)

which is not logarithmic because near the pole x = 0 it behaves as dy/y2; this form cannot

be written as a dlog form. In general, the nontrivial changes of variables required can make

it difficult to find explicit dlog forms even where they exist.

In a bit more detail, consider the behavior of a form near x = 0. If the integrand

scales as dx/xm for integer m, we consider two different regimes where integrands can fail

to have logarithmic singularities. The first is when m ≥ 2, which results in double or higher

poles at x = 0. The second is when m ≤ 0, which results in a pole at infinity. Avoiding

unwanted singularities, either at finite or infinite values of x, leads to tight constraints on our

integrands, as is covered in Section 2.4. Since we take the denominators to be the standard
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Figure B.1: The (a) bubble, (b) triangle and (c) box one-loop diagrams.

Feynman propagators associated to a given diagram, in our expansion of the amplitude the

only available freedom is to adjust the kinematic numerators. As a simple toy example,

consider the form

Ω(x, y) =
dx ∧ dy N(x, y)

xy(x+ y)
. (B.7)

As noted above, for a constant numerator N(x, y) = 1 the form develops a double pole at

x = 0. Similarly, for N(x, y) = x2 + y2 the form behaves like dy for x = 0 and again it is

not logarithmic. There is only one class of numerators that make the form logarithmic near

x = 0 and y = 0 : N(x, y) = a1x+ a2y for arbitrary a1 and a2.

Our discussion of loop integrands in Chapter 3 follows this pattern: constant numerators

(i.e. those independent of loop momenta) are dangerous, for they may allow double or higher

poles located at finite values of loop momenta, while a numerator with too many powers

of loop momentum can develop higher poles at infinity. It turns out that the first case

is generally the problem in gauge theory, whereas the second case usually arises for gravity

amplitudes, because the power counting of numerators is boosted relative to the gauge-theory

case. For N = 4 SYM integrands, we carefully tune numerators so that only logarithmic

singularities are present. The desired numerators live exactly on the boundary between too

many and too few powers of loop momenta.
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B.2 Loop Integrands and Poles at Infinity

Now consider the special class of four-forms that correspond to one-loop integrands. Standard

integral reduction methods [141, 142] reduce any massless one-loop amplitude to a linear

combination of box, triangle and bubble integrals. In nonsupersymmetric theories, there are

additional rational terms arising from loop momenta outside of D = 4; these are not relevant

for our discussion of N = 4 SYM theory. While it will eventually be necessary to include

the (−2ε) dimensional components of loop momenta, since these are in general required by

dimensional regularization, for the purposes of studying the singularities of the integrand we

simply put this matter aside. In any case, direct checks reveal that these (−2ε) dimensional

pieces do not lead to extra contributions through at least six loops in N = 4 SYM four-point

amplitudes [113]. That is, the naive continuation of the four-dimensional integrand into D

dimensions yields the correct results. As usual, infrared singularities are regularized using

dimensional regularization. (See for example, Refs. [126, 128, 143].) We focus here on the

four-point case, but a similar analysis can be performed for larger numbers of external legs

as well, although in this case we expect nontrivial corrections from (−2ε) components of the

loop momenta.

Consider the bubble, triangle and box integrals in Fig. B.1, taking all external legs as

outgoing. The explicit forms in D = 4 are

dI2 = d4`5
1

`25(`5 − k1 − k2)2
,

dI3 = d4`5
s

`25(`5 − k1)2(`5 − k1 − k2)2
, (B.8)

dI4 = d4`5
st

`25(`5 − k1)2(`5 − k1 − k2)2(`5 + k4)2
,

where we have chosen a convenient normalization. (Note this matches Eq. (2.7).) The vari-

ables s = (k1 + k2)
2 and t = (k2 + k3)

2 are the usual Mandelstam invariants, depending only

on external momenta. Under integration, these forms are infrared or ultraviolet divergent

and need to be regularized, but as mentioned above we set this aside and work directly in
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four dimensions.

In D = 4, we can parametrize the loop momentum in terms of four independent vectors

constructed from the spinor-helicity variables associated with the external momenta k1 =

λ1λ̃1 and k2 = λ2λ̃2. A clean choice for the four degrees of freedom of the loop momentum

is

`5 = α1λ1λ̃1 + α2λ2λ̃2 + α3λ1λ̃2 + α4λ2λ̃1 , (B.9)

where the αi are now the independent variables. Writing dI2 in this parametrization we

obtain

dI2 =
dα1 ∧ dα2 ∧ dα3 ∧ dα4

(α1α2 − α3α4)(α1α2 − α3α4 − α1 − α2 + 1)
. (B.10)

In general, since we are not integrating the expressions, we ignore Feynman’s iε prescription

and any factors of i from Wick rotation.

To study the singularity structure, we can focus on subregions of the integrand by im-

posing on-shell or cut conditions. As an example, the cut condition `25 = 0 can be computed

in these variables by setting

0 = `25 = (α1α2 − α3α4)s . (B.11)

We can then eliminate one of the αi, say α4, by computing the residue on the pole located

at α4 = α1α2/α3. This results in a residue,

Res
`25=0

dI2 =
dα3

α3

∧ dα2

(α2 + α1 − 1)
∧ dα1 . (B.12)

Changing variables to α± = α1 ± α2, this becomes

Res
`25=0

dI2 =
dα3

α3

∧ dα+

(α+ − 1)
∧ dα− . (B.13)

We can immediately see that the form dI2 is non-logarithmic in α−, and thus the bubble

integrand has a nonlogarithmic singularity in this region.

Carrying out a similar exercise for the triangle dI3 using the parametrization in Eq. (B.9),
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we obtain

dI3 =
dα1 ∧ dα2 ∧ dα3 ∧ dα4

(α1α2 − α3α4)(α1α2 − α3α4 − α2)(α1α2 − α3α4 − α1 − α2 + 1)
. (B.14)

We can make a change of variables and rewrite it in the manifest dlog form,

dI3 = dlog (α1α2−α3α4)∧dlog (α1α2−α3α4−α2)∧ dlog(α1α2−α3α4−α1−α2+1)∧ dlogα3 .

(B.15)

Translating this back into momentum space:

dI3 = dlog`25 ∧ dlog(`5 − k1)2 ∧ dlog(`5 − k1 − k2)2 ∧ dlog(`5 − k1) · (`∗5 − k1) , (B.16)

where `∗5 ≡ βλ2λ̃1 + λ1λ̃1 is one of the two solutions to the triple cut. The parameter β

is arbitrary in the triple cut solution, and the dlog form is independent of it. For the box

integral, a similar process followed in Ref. [49] results in

dI4 = dlog
`25

(`5 − `∗5)2
∧ dlog

(`5 − k1)2
(`5 − `∗5)2

∧ dlog
(`5 − k1 − k2)2

(`5 − `∗5)2
∧ dlog

(`5 + k4)
2

(`5 − `∗5)2
, (B.17)

where `∗5 ≡ − 〈14〉〈24〉λ2λ̃1 + λ1λ̃1.

While both triangle and box integrands can be written in dlog form, there is an important

distinction between the triangle form dI3 and the box form dI4. On the cut α4 = α1α2/α3,

one dlog-factor in dI3 depends only on α3 and develops a singularity in the limit α3 → ∞
(which implies `5 → ∞); this does not occur with dI4. We refer to any singularity that

develops as a loop momentum approaches infinity (in our example, `5 →∞) at any step in

the cut structure as a pole at infinity. To be more specific, even if a dlog form has no pole at

infinity before imposing any cut conditions, it is possible to generate such poles upon taking

residues, as we saw in the example of the triangle integrand above. In this sense, the pole

at infinity property is more refined than simple power counting, which only considers the

overall scaling of an integrand before taking any cuts.
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`
K1

K2 K3

K4

→ 1

J`
×

K1

K2 K3

K4

Figure B.2: The left diagram is a generic L-loop contribution to the four-point N = 4
SYM amplitude. The thick (red) highlighting indicates propagators replaced by on-shell
conditions. After this replacement, the highlighted propagators leave behind the simplified
diagram on the right multiplied by an inverse Jacobian, Eq. (B.20). The four momenta
K1, . . . , K4 can correspond either to external legs or propagators of the higher-loop diagram.

The issue of poles at infinity is important for both N = 4 SYM and N = 8 supergravity

amplitudes. While a lack of poles at infinity implies ultraviolet finiteness, having poles at

infinity does not necessarily mean that there are divergences. For example, the triangle

integral contains such a pole in the cut structure but is ultraviolet finite. In principle, there

can also be nontrivial cancelations between different contributions.

To find numerators that do not allow these poles at infinity and also ensure only loga-

rithmic singularities, it is not necessary to compute every residue of the integrand. This is

because cutting box subdiagrams from a higher loop diagram, as on the left in Fig. B.2, can

only increase the order of remaining poles in the integrand. To see this, consider computing

the four residues that correspond to cutting the four highlighted propagators in Fig. B.2,

`2 = (`−K1)
2 = (`−K1 −K2)

2 = (`+K4)
2 = 0 . (B.18)

This residue is equivalent to computing the Jacobian obtained by replacing the box propa-

gator with on-shell delta functions. This Jacobian is then

J` = |∂Pi/∂`µ| , (B.19)

where the Pi correspond to the four inverse propagators placed on shell in Eq. (B.18). (See,

for example, Ref. [120] for more details.) Another way to obtain this Jacobian is by reading
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off the rational factors appearing in front of the box integrals—see appendix I of Ref. [142].

In the generic case, J` contains square roots, making it difficult to work with. In special

cases it simplifies. For example for K1 = k1 massless, the three-mass normalization is

J` = (k1 +K2)
2(K4 + k1)

2 −K2
2K

2
4 . (B.20)

If in addition K3 = k3 is massless, the so-called “two-mass-easy” case, the numerator fac-

torizes into a product of two factors, a feature that is important in many calculations.

Specifically,

J` = (K2 + k1)
2(K4 + k1)

2 −K2
2K

2
4 = (K2 · q)(K2 · q) , (B.21)

where q = λ1λ̃3 and q = λ3λ̃1. If instead both K1 = k1 and K2 = k2 are massless, we get the

“two-mass-hard” normalization

J` = (k1 + k2)
2(K3 + k2)

2 . (B.22)

These formulas are useful at higher loops, where the Kj depend on other loop momenta.

Notice that these Jacobians go into the denominator of the integrand after a box-cut is

applied. Therefore they can only raise the order of the remaining poles in the integrand.

Our basic approach utilizes this fact: we cut embedded box subdiagrams from diagrams of

interest and update the integrand by dividing by the obtained Jacobian (B.19). Then we

identify all kinematic regions that can result in a double pole in the integrand.

It would be cumbersome to write out all cut equations for every such sequence of cuts,

so we introduce a compact notation:

cut = {. . . , (`−Ki)
2 , . . . , B(`) , . . . , B(`′, (`′ −Q)) , . . .} . (B.23)

Here:

• Cuts are applied in the order listed.
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• A propagator listed by itself, as (`−Ki)
2 is, means: “Cut just this propagator.”

• B(`) means: “Cut the four propagators that depend on `.” This exactly corresponds

to cutting the box propagators as in Eq. (B.18) and Fig. B.2.

• B(`′, (`′−Q)) means: “Cut the three standard propagators depending on `′, as well as

a fourth 1/(`′ −Q)2 resulting from a previously obtained Jacobian.” The momentum

Q depends on other momenta besides `′. The four cut propagators form a box.

We use this notation in Appendix C.
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APPENDIX C

Direct Construction of the Amplitude

In this appendix, we discuss how to directly construct the two-loop and three-loop four-

point amplitudes in N = 4 super-Yang-Mills without first constructing a pure integrand

basis. This was the approach followed in Ref. [2], and this appendix is based largely on

the discussion therein. While very similar to the methods of Chapter 3, there are some

differences. In particular, there is some additional material on freedom in the final expression

for the amplitude due to color Jacobi relations, a feature which does not exist when a pure

integrand basis is used.

C.1 Strategy for Nonplanar Amplitudes

As discussed in Chapter 3, instead of trying to define a nonplanar global integrand, we

subdivide the amplitude into diagrams with their own momentum labels and analyze them

one by one. In Ref. [108], the N = 4 SYM two-loop four-point amplitude was rewritten in

a form with no logarithmic singularities and no poles at infinity. In this section, we develop

a strategy for doing the same at higher loop orders. We emphasize that we are working at

the level of the amplitude integrand prior to integration. In particular, we do not allow for

any manipulations that involve the integration symbol (e.g. integration-by-parts identities)

to shuffle singularities between contributions; this is discussed further in Subsection 3.1.1.

Our general procedure has four steps:

1. Define a set of parent diagrams whose propagators are the standard Feynman ones. The

parent diagrams are defined to have only cubic vertices and loop momentum flowing
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through all propagators.

2. Construct dlog numerators. These are a basis set of numerators constructed so that

each diagram has only logarithmic singularities and no poles at infinity. These numer-

ators also respect diagram symmetries, including color signs. There is no requirement

that these numerators give unit leading singularity integrands. Each dlog numerator,

together with the diagram propagators, forms a basis diagram.

3. Use simple unitarity cuts to determine the linear combination of basis diagrams that

gives the amplitude.

4. Confirm that the amplitude so constructed is correct and complete. We use the method

of maximal cuts [118] for this task.

There is no a priori guarantee that this will succeed. In principle, requiring dlog numerators

could make it impossible to expand the amplitude in terms of independent diagrams with

Feynman propagators. Indeed, at a sufficiently high loop order we expect that even in

the planar sector it may not be possible to find a covariant diagrammatic representation

manifesting the desired properties; in such circumstances we would expect that unwanted

singularities cancel between diagrams. This may happen even earlier in the nonplanar sector.

As in many amplitude calculations, we simply assume that we can construct a basis with

the desired properties, and then, once we have an ansatz, we check that it is correct by

computing a complete set of cuts.

In this section, we illustrate the process of finding diagram integrands with the desired

properties and explain the steps in some detail. For simplicity, we focus on the four-point

amplitude, but we expect that a similar strategy is applicable for higher-point amplitudes

in the MHV and NMHV sectors as well.

We use the one- and two-loop contributions to the four-point amplitudes to illustrate the

procedure, before turning to three loops in Section C.2. We find that the canonical one-loop

numerator is already a dlog numerator, while the two-loop result illustrates the issues that
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Figure C.1: Two-loop four-point parent diagrams for N = 4 SYM theory. These are the
same diagrams as appear in Figure 3.2.

we face at higher loops. The two-loop amplitude was first obtained in [125], but in a form

that does not make the singularity structure clear. In Ref. [108], the two-loop amplitude was

rewritten in a form that makes these properties manifest by rearranging contact terms in

the amplitude by using a color Jacobi identities. In this section, we replicate this result by

following our strategy of systematically constructing a basis of integrands with the desired

properties. In subsequent sections, we apply our strategy to higher loops.

C.1.1 Constructing a Basis

The construction of a basis of integrands starts from a set of parent diagrams. We focus on

graphs with only cubic vertices. Furthermore, we restrict to diagrams that do not have tri-

angle or bubble subdiagrams, since these are not necessary for the N = 4 amplitudes that we

study. We also exclude any diagrams in which a propagator does not carry loop momentum,

because such contributions can be absorbed into diagrams in which all propagators contain

loop momenta. At the end, we confirm this basis of diagrams is sufficient by verifying a set

of unitarity cuts that fully determine the amplitude.

At one loop, the parent diagrams are the three independent box integrals, one of which is

displayed in Figure B.1(c), and the other two of which are cyclic permutations of the external

legs k2, k3 and k4 of this one. At two loops, the four-point amplitude of N = 4 SYM theory

has twelve parent diagrams, two of which are displayed in Figure C.1; the others are again

just given by relabelings of external legs.
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Unlike the planar case, there is no global, canonical way to label loop momenta in all

diagrams. In each parent diagram, we label L independent loop momenta as `5, . . . , `4+L.

By conserving momentum at each vertex, all other propagators have sums of the loop and

external momenta flowing in them. We define the L-loop integrand I(x) of a diagram labeled

by (x) by combining the kinematic part of the numerator with the Feynman propagators of

the diagram as

I(x) ≡ N (x)

∏
α(x)

p2α(x)

. (C.1)

The product in the denominator in Eq. (C.1) runs over all propagators p2α(x)
of diagram (x),

and the kinematic numerator N (x) generally depends on loop momenta. From this we define

an integrand form

dI(x) ≡
4+L∏

l=5

d4`l I(x) . (C.2)

This integrand form is a 4L form in the L independent loop momenta `5, . . . , `4+L. We

have passed factors of i, 2π, and coupling constants into the definition of the amplitude,

Eq. (C.21). As mentioned previously, we focus on D = 4.

We define an expansion of the numerator

N (x) =
∑

i

a
(x)
i N

(x)
i , (C.3)

where the N
(x)
i are the dlog numerators we aim to construct, and the a

(x)
i are coefficients.

We put off a detailed discussion of how to fix these coefficients until Subsection C.1.2, and

here just mention that the coefficients can be obtained by matching an expansion of the

amplitude in dlog numerators to unitarity cuts or other physical constraints, such as leading

singularities.

Starting from a generic numerator N
(x)
i , we impose the following constraints:

1. Overall dimensionality. N
(x)
i must be a local polynomial of momentum invariants

(i.e. ka · kb, ka · `b, or `a · `b) with dimensionality N
(x)
i ∼ (p2)K , where K = P − 2L− 2,
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and P is the number of propagators in the integrand. We forbid numerators with

K < 0.

2. Asymptotic scaling. For each loop momentum `l, the integrand I(x) must not scale less

than 1/(`2l )
4 for `l →∞ in all possible labelings.

3. No double/higher poles. The integrand I(x) must be free of poles of order two or more

in all kinematic regions.

4. No poles at infinity. The integrand I(x) must be free of poles of any order at infinity

in all kinematic regions.

The overall dimensionality and asymptotic scaling give us power counting constraints on the

subdiagrams. In practice, these two constraints dictate the initial form of an ansatz for the

numerator, while the last two conditions of no higher degree poles and no poles at infinity

constrain that ansatz to select “dlog numerators”. The constraint on overall dimensionality

is the requirement that the overall mass dimension of the integrand is −4L−4;1 in D = 4 this

matches the dimensionality of gauge-theory integrands. The asymptotic scaling constraint

includes a generalization of the absence of bubble and triangle integrals at one-loop order in

N = 4 SYM theory and N = 8 supergravity [144, 145]. This constraint is a necessary, but

not a sufficient, condition for having only logarithmic singularities and no poles at infinity.

Notice that there is no requirement that the numerators lead to integrands with unit

leading singularity; compare to the crieteria listed in Section 3.1. Indeed, relaxing this

requirement will allow us to combine integrands with different leading singularities to re-

spect diagram symmetries. It will also allow for additional freedom in our expression of the

amplitude itself, due to color Jacobi identities discussed in Subsection C.2.3.

At one loop, the asymptotic scaling constraint implies that only Figure B.1(c), the box

diagram, appears; coupling that with the overall dimensionality constraint implies that the

1 The −4 in the mass dimension originates from factoring out a dimensionful quantity from the final
amplitude in Eq. (C.21).
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numerator is independent of loop momentum. The box numerator must then be a single

basis element which we can normalize to be unity:

N
(B)
1 = 1 . (C.4)

In the one-loop integrand, neither higher-degree poles nor poles at infinity arise. Thus

everything at one loop is consistent and manifestly exhibits only logarithmic singularities.

A more thorough treatment of the one-loop box, including the sense in which logarithmic

singularities are manifest in a box, is found in the context of dlog forms in Ref. [2].

Next consider two loops. The analysis here will largely resemble that of Section 3.2, but

the result for the nonplanar double box will be a symmetrized combination of the two pure

integrands found there. First, notice that the asymptotic scaling constraint implies that only

the planar and nonplanar double box diagrams in Figure C.1 appear, since the constraint

forbids triangle or bubble subdiagrams. We now wish to construct the numerators N (P ) and

N (NP ) for the planar (Figure C.1(a)) and nonplanar (Figure C.1(b)) diagrams respectively.

There are different ways of labeling the two graphs. As already mentioned, we prefer labels

in Figure C.1, where the individual loop momenta appear in the fewest possible number of

propagators. This leads to the tightest power counting constraints in the sense of our general

strategy outlined above. We consider the planar and nonplanar diagrams separately.

For the planar diagram in Figure C.1, only four propagators contain either loop momen-

tum `5 or `6. By the asymptotic scaling constraint, the numerator must be independent of

both loop momenta: N (P ) ∼ O((`5)
0, (`6)

0). Since overall dimensionality restricts N (P ) to

be quadratic in momentum, we can write down two independent numerator basis elements:

N
(P )
1 = s , N

(P )
2 = t . (C.5)

The resulting numerator is then a linear combination of these two basis elements:

N (P ) = a
(P )
1 s+ a

(P )
2 t , (C.6)
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where the a
(P )
j are constants, labeled as discussed after Eq. (C.3). Again, as in the one-loop

case, there are no hidden double poles or poles at infinity from which nontrivial constraints

could arise.

The nonplanar two-loop integrand I(NP ) is the first instance where nontrivial constraints

result from requiring logarithmic singularities and the absence of poles at infinity, so we

discuss this example in more detail. The choice of labels in Figure C.1(b) results in five

propagators with momentum `5 but only four with momentum `6, so N (NP ) is at most

quadratic in `5 and independent of `6: N
(NP ) ∼ O((`5)

2, (`6)
0). Overall dimensionality again

restricts N (NP ) to be quadratic in momentum. This dictates the form of the numerator to

be

N (NP ) = c1`
2
5 + c2(`5 ·Q) + c3s+ c4t , (C.7)

where Q is some vector and the ci are coefficients independent of loop momenta.

Now we search the integrand

I(NP ) =
c1`

2
5 + c2(`5 ·Q) + c3s+ c4t

`25(`5 + k1)2(`5 − k3 − k4)2`26(`5 + `6)2(`5 + `6 − k4)2(`6 + k3)2
(C.8)

for double poles as well as poles at infinity, and impose conditions on the ci and Q such that

any such poles vanish. For the nonplanar double box, we apply the following cut on the four

propagators carrying momentum `6,

`26 = (`5 + `6)
2 = (`5 + `6 − k4)2 = (`6 + k3)

2 = 0 . (C.9)

The Jacobian for this cut is

J6 = (`5 − k3)2(`5 − k4)2 − (`5 − k3 − k4)2`25 = (`5 · q)(`5 · q) , (C.10)

where q = λ3λ̃4, q = λ4λ̃3.

After imposing the quadruple cut conditions in Eq. (C.9), the remaining integrand, in-
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cluding the Jacobian (C.10), is

Res
`6-cut

[
I(NP )

]
≡ Ĩ(NP ) =

c1`
2
5 + c2(`5 ·Q) + c3s+ c4t

`25(`5 + k1)2(`5 − k3 − k4)2(`5 · q)(`5 · q)
, (C.11)

where the integrand evaluated on the cut is denoted by a new symbol Ĩ(NP ) for brevity.

To make the potentially problematic singularities visible, we write the four-dimensional

part of the remaining loop momentum as

`5 = αλ3λ̃3 + βλ4λ̃4 + γλ3λ̃4 + δλ4λ̃3 . (C.12)

This gives us

Ĩ(NP ) =
(
c1(αβ − γδ)s+ c2 [α(Q · k3) + β(Q · k4) + γ〈3|Q|4] + δ〈4|Q|3]] + c3s+ c4t

)

×
[
s2(αβ − γδ)(αβ − γδ − α− β + 1)

×
(

(αβ − γδ)s+ αu+ βt− γ〈13〉[14]− δ〈14〉[13]
)
γδ
]−1

, (C.13)

where we use the convention 2ki · kj = 〈ij〉[ij] and 〈i|km|j] ≡ 〈im〉[mj]. Our goal is to

identify double- or higher-order poles. To expose these, we take residues in a certain order.

For example, taking consecutive residues at γ = 0 and δ = 0, followed by β = 0, gives

Res
γ=δ=0
β=0

[
Ĩ(NP )

]
=
c2α(Q · k3) + c3s+ c4t

s2uα2(1− α)
. (C.14)

Similarly, taking consecutive residues first at γ = δ = 0, followed by β = 1, we get

Res
γ=δ=0
β=1

[
Ĩ(NP )

]
= −c1αs+ c2 [α(Q · k3) + (Q · k4)] + c3s+ c4t

s2tα(1− α)2
. (C.15)

In both cases we see that there are unwanted double poles in α. The absence of double poles

forces us to choose the ci in the numerator such that the integrand reduces to at most a

single pole in α. Canceling the double pole at α = 0 in Eq. (C.14) requires c3 = c4 = 0.
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Similarly, the second residue in Eq. (C.15) enforces c1s+ c2(Q · (k3 + k4)) = 0 to cancel the

double pole at α = 1. Thus the solution that ensures N (NP ) is a dlog numerator is

N (NP ) =
c1
s

[`25(Q · (k3 + k4))− (k3 + k4)
2(`5 ·Q)] . (C.16)

The integrand is now free of the uncovered double poles, but requiring the absence of poles

at infinity imposes further constraints on the numerator. If any of the parameters α, β, γ or

δ grow large, the loop momentum `5, given by Eq. (C.12), also becomes large. Indeed, such

a pole can be accessed by first taking the residue at δ = 0, followed by taking the residues

at α = 0 and β = 0:

Res
δ=0

α=β=0

[
Ĩ(NP )

]
=

〈3|Q|4]

γs2〈13〉[14]
. (C.17)

The resulting form dγ/γ has a pole for γ → ∞. Similarly, taking a residue at γ = 0,

followed by residues at α = 0 and β = 0 results in a single pole as δ → ∞. To prevent

such poles at infinity from appearing requires 〈3|Q|4] = 〈4|Q|3] = 0, which in turn requires

that Q = σ1k3 + σ2k4, with the σi arbitrary constants. This is enough to determine the

numerator, up to two arbitrary coefficients.

To illustrate a second approach, we could also consider the cut sequence {B(`6) }, fol-

lowing the notation defined at the end of Section B.2. The resulting Jacobian is

J6 = (`5 − k4)2(`5 − k3)2 − (`5 + k1 + k2)
2`25 . (C.18)

The two terms on the right already appear as propagators in the integrand, and so to avoid

double poles, the dlog numerator must scale as N (NP ) ∼ (`5 + k1 + k2)
2`25 in the kinematic

regions where (`5−k4)2(`5−k3)2 = 0. This constraint is sufficient to fix the ansatz Eq. (C.7)

for N (NP ).

In both approaches, the constraints of having only logarithmic singularities and no poles

87



at infinity results in a numerator for the nonplanar double box of the form,

N (NP ) = a
(NP )
1 (`5 − k3)2 + a

(NP )
2 (`5 − k4)2 , (C.19)

where a
(NP )
1 and a

(NP )
2 are numerical coefficients. Finally, we impose the requirement that

the numerator should respect the symmetries of the diagram. Because the nonplanar double

box is symmetric under k3 ↔ k4, this forces a
(NP )
2 = a

(NP )
1 , resulting in a unique numerator

up to an overall constant:

N
(NP )
1 = (`5 − k3)2 + (`5 − k4)2 . (C.20)

Compare this numerator to Eq. (3.9). Note that it combines the two nonplanar numerators

found there, and that it therefore respects the automorphism symmetry of the nonplanar

double box. The difference in Mandelstam factors results from the overall K that will be

factored out of the amplitude in Eq. (C.21), as defined in Eq. (C.22), compared to Eq. (3.6).

C.1.2 Expansion of the Amplitude

In the previous subsection, we outlined a procedure to construct a basis of integrands where

each element has only logarithmic singularities and no pole at infinity. The next step is to

actually expand the amplitude in terms of this basis. As mentioned before, we primarily

focus on the L-loop contribution to the N = 4 SYM theory, four-point amplitudes. Fol-

lowing the normalization conventions of Ref. [128], these can be written in a diagrammatic

representation (compare to Eq. (3.6))

AL−loop4 = g2+2L iLK
(2π)DL

∑

S4

∑

x

1

S(x)
c(x)
∫
dI(x)(`5, . . . , `4+L) , (C.21)

where dI(x) is the integrand form defined in Eq. (C.2), and we have implicitly analytically

continued the expression to D dimensions to be consistent with dimensional regularization.

In Eq. (C.21) the sum labeled by x runs over the set of distinct, non-isomorphic diagrams
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with only cubic vertices, and the sum over S4 is over all 4! = 24 permutations of external

legs. The symmetry factor S(x) then removes overcounting that arises from automorphisms

of the diagrams. The color factor c(x) of diagram (x) is given by dressing every three-vertex

with a group-theory structure constant, f̃abc = i
√

2fabc. In the sum over permutations in

Eq. (C.21), any given dI(x′) is a momentum relabeling of dI(x) in Eq. (C.2).

For the cases we consider, the prefactor is proportional to the color-ordered tree ampli-

tude,

K = stAtree
4 (1, 2, 3, 4) . (C.22)

Furthermore K has a crossing symmetry, so it can also be expressed in terms of the tree

amplitude with different color orderings,

K = suAtree
4 (1, 2, 4, 3) = tuAtree

4 (1, 3, 2, 4) . (C.23)

The explicit values of the tree amplitudes are

Atree
4 (1, 2, 3, 4) = i

δ8(Q)

〈12〉〈23〉〈34〉〈41〉 , (C.24)

where the other two orderings are just relabelings of the first. This is (up to an i) the

Parke-Taylor factor defined in Eq. (3.4), but since we are not constructing a pure integrand

basis, we are free to factor out a common K for the full amplitude, and not have to use

Eq. (C.23) to distribute it among the basis integrands as in Chapter 3. The factor δ8(Q) is

the supermomentum-conserving delta function, as described in e.g. Ref. [146]. For external

gluons with helicities 1−, 2−, 3+, 4+ it is just 〈12〉4, up to Grassmann parameters.

A simple method for expanding the amplitude in terms of dlog numerators is to use

previously constructed representations of the amplitude as reference data, rather than sew

together lower-loop amplitudes directly. Especially at higher loops, this drastically simplifies

the process of determining the coefficients a
(x)
i . To ensure that the constructed amplitude

is complete and correct, we also check a complete set of unitarity cuts via the method of
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maximal cuts [147].

As an illustration of the procedure for determining the coefficients, consider the two-

loop amplitude. A representation of the two-loop four-point amplitude is [125] Eqs. (C.21)

and (C.3) with numerators

N
(P )
old = s , N

(NP )
old = s , (C.25)

where we follow the normalization conventions of Ref. [128]. Following our strategy, we

demand that the numerators are linear combinations of the basis elements constructed in

Eqs. (C.6) and (C.19):

N (P ) = a
(P )
1 s+ a

(P )
2 t , N (NP ) = a(NP )((`5 − k3)2 + (`5 − k4)2) , (C.26)

where, for comparison to N
(NP )
old , it is useful to rewrite the nonplanar numerator as

N (NP ) = a(NP )(−s+ (`5 − k3 − k4)2 + `25) . (C.27)

We can determine the coefficients by comparing the new and old expressions on the maximal

cuts. By “maximal cuts” we mean replacing all propagators with on-shell conditions p2α(x)
=

0, defined in Eq. (C.1). The planar double-box numerator is unchanged on the maximal cut,

since it is independent of all loop momenta. Comparing the two expressions in Eqs. (C.25)

and (C.26) gives

a
(P )
1 = 1 , a

(P )
2 = 0 . (C.28)

For the nonplanar numerator, we note that under the maximal cut conditions `25 = (`5−k3−
k4)

2 = 0. Comparing the two forms of the nonplanar numerator in Eqs. (C.25) and (C.27)

after imposing these conditions means

a
(NP )
1 = −1 , (C.29)
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so that the final numerators are

N (P ) = s , N (NP ) = −((`5 − k3)2 + (`5 − k4)2) . (C.30)

Although this fixes all coefficients in our basis, it does not prove that our construction gives

the correct SYM amplitude. At two loops this was already proven in Ref. [108], where the

difference between amplitudes in the old and the new representation was shown to vanish

via the color Jacobi identity. More generally, we can appeal to the method of maximal cuts,

since it offers a systematic and complete means of ensuring that our constructed nonplanar

amplitudes are correct. Notice that our result for the full amplitude matches the coefficients

in Eq. (3.17).

C.1.3 Amplitudes and Sums of dlog Forms

At any loop order, assuming the four-point N = 4 SYM amplitudes have only logarithmic

singularities, we can write integrand forms as a sum of dlog forms. At the relatively low loop

orders that we are working, we can do this diagram by diagram, using the expansion of the

diagrams given in Eq. (C.21). We then take each diagram form in Eq. (C.21) and expand it

as a linear combination of dlog forms,

dI(x) =
3∑

j=1

Cj dI(x),dlogj , (C.31)

where the dI(x),dlogj are (potentially sums of) dlog 4L forms. As discussed in Ref. [111], for

MHV amplitudes the coefficients Cj are Park-Taylor factors with different orderings. This

follows from super-conformal symmetry of N = 4 SYM theory, which fixes the coefficients

Cj to be holomorphic functions of spinor variables λ and normalizes dI(x) to be a dlog form.

In the four-point nonplanar case this means that there are only three different coefficients
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we can get,

C1 = Atree
4 (1, 2, 3, 4) , C2 = Atree

4 (1, 2, 4, 3) , C3 = Atree
4 (1, 3, 2, 4) , (C.32)

where the explicit form of the tree amplitudes are given in Eq. (C.24). The three coefficients

are not independent, as they satisfy C1 + C2 + C3 = 0. Suppose that the basis elements in

Eq. (C.21) are chosen such that they have only logarithmic singularities. Then it was shown

in Ref. [2] that we can indeed write the diagram as dlog forms with coefficients given by the

Cj.

C.2 Three-Loop Amplitude

In this section, we follow the recipe of the previous section to find a basis of three-loop dia-

gram integrands that have only logarithmic singularities and no poles at infinity. The three-

loop four-point parent diagrams are shown in Figure C.2; this matches the ten-propogator

diagrams of 3.1. These have been classified in Ref. [126, 148], where an unintegrated repre-

sentation of the three-loop four-point amplitude of N = 4 SYM theory, including nonplanar

contributions, was first obtained. As mentioned in Subsection C.1.1, we restrict to parent

diagrams where no bubble or triangle diagrams appear as subdiagrams; otherwise we would

find a pole at infinity that cannot be removed. A key difference with the analysis in Chapter

3 is that diagrams with contact terms will be incorporated into a parent diagram by includ-

ing inverse propagators in the numerator that cancel propagators. This procedure wreaks

havok with the unit leading singularities necessary for pure integrand forms, but is a useful

simplification valid for the procedure followed in this appendix.

Next, we assign power counting of the numerator for each parent diagram. Applying the

power-counting rules in Subsection C.1.1, we find that the maximum powers of allowed loop

momenta for each parent diagram are

N (a) = O(1) , N (b) = O(`26) , N (c) = O(`25 , (`5 · `7), `27) ,
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Figure C.2: The distinct parent diagrams for three-loop four-point amplitudes. The re-
maining parent diagrams are obtained by relabeling external legs. These are the first nine
diagrams of Table 3.1.

N (d) = O(`46) , N (e) = O(`25) , N (f) = O(`45) , N (g) = O(`25`
2
6) ,

N (h) = O(`25`
2
6, `

2
5`

2
7, `

2
5(`6 · `7)) , N (i) = O(`25`

2
6) , (C.33)

where we use the labels in Figure C.2, since these give the most stringent power counts.

For diagram (h) we need to combine restrictions from a variety of labelings to arrive at this

stringent power count. Ignoring the overall prefactor of K, the overall dimension of each

numerator is O(p4), including external momenta.
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C.2.1 Diagram Numerators

The next step is to write down the most general diagram numerators that are consistent with

the power counting in Eq. (C.33), respect diagram symmetry, are built only from Lorentz

dot products of the loop and external momenta, have only logarithmic singularities, and

have no poles at infinity. Although the construction is straightforward, the complete list of

conditions is lengthy, so here we only present a few examples and then write down a table

of numerators satisfying the constraints.

We start with diagram (a) in Figure C.2. The required numerators are simple to write

down if we follow the same logic as in the two-loop example in Subsection C.1.1. Since the

numerator of diagram (a) is independent of all loop momenta as noted in Eq. (C.33), we can

only write numerators that depend on the Mandelstam invariants s and t. There are three

numerators that are consistent with the overall dimension,

N
(a)
1 = s2 , N

(a)
2 = st , N

(a)
3 = t2 . (C.34)

Following similar logic as at two loops, it is straightforward to check that there are no double

poles or poles at infinity.

The numerator for diagram (b) is also easy to obtain, this time by following the logic

of the two-loop nonplanar diagram. From Eq. (C.33), we see that the only momentum

dependence of the numerator must be on `6. The two-loop subdiagram on the right side

of diagram (b) in Figure C.2 containing `6 is just the two-loop nonplanar double box we

already analyzed in Subsection C.1.1. Repeating the earlier nonplanar box procedure for

this subdiagram gives us the most general possible numerator for diagram (b),

N
(b)
1 = s

(
(`6 − k3)2 + (`6 − k4)2

)
. (C.35)

This is just the two-loop nonplanar numerator with an extra factor of s. A factor of t instead

of s is disallowed because it violates the k3 ↔ k4 symmetry of diagram (b).
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As a somewhat more complicated example, consider diagram (e) in Figure C.2. Because

this diagram is planar we could use dual conformal invariance to find the desired numerator,

although this would give a unit leading singularity numerator after normalization, as dis-

cussed in Chapter 3. (It turns out for this diagram that we’ll end up with such a numerator

anyway.) Instead, for illustrative purposes we choose to obtain it only from the requirements

of having logarithmic singularities and no poles at infinity, without invoking dual conformal

invariance. The relation to dual conformal symmetry is discussed further in Ref. [2].

From Eq. (C.33), we see that the numerator depends on the loop momentum `5 at most

quadratically. Therefore we may start with the ansatz

N (e) = (c1s+ c2t)
(
`25 + d1(`5 ·Q) + d2s+ d3t

)
, (C.36)

where Q is a vector independent of all loop momenta and the ci and di are numerical

constants. We have included an overall factor depending on s and t so that the numerator

has the correct overall dimensions, but this factor does not play a role in canceling unwanted

singularities of the integrand.

In order to extract conditions on the numerator ansatz Eq. (C.36), we need to find any

hidden double poles or poles at infinity in the integrand. The starting integrand is

I(e) =
N (e)

`26(`6 + `5)2(`6 + `7)2(`6 + k4)2(`7 − `5)2(`7 − k1 − k2)2(`7 + k4)2

× 1

`25(`5 − k1)2(`5 − k1 − k2)2
. (C.37)

Since our numerator ansatz (C.36) is a function of `5, we seek double poles only in the

regions of momentum space that we can reach by choosing convenient on-shell values for `6

and `7. This leaves the numerator ansatz unaltered, making it straightforward to determine

all coefficients.
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To locate a double pole, consider the cut sequence

cut = {B(`6), B(`7, `7)} , (C.38)

where we follow the notation defined at the end of Section B.2. Here B(`7, `7) indicates that

we cut the 1/`27 propagator produced by the Jacobian of the B(`6) cut. This produces an

overall Jacobian

J6,7 = s
[
(`5 + k4)

2
]2
. (C.39)

After this sequence of cuts, the integrand of Eq. (C.37) becomes:

Res
`6–cut
`7–cut

[
I(e)
]

=
N (e)

`25(`5 − k1)2(`5 − k1 − k2)2 [(`5 + k4)2]
2 s

, (C.40)

exposing a double pole at (`5 + k4)
2 = 0.

To impose our desired constraints on the integrand, we need to cancel the double pole

in the denominator with an appropriate numerator. We see that choosing the ansatz in

Eq. (C.36) to have Q = k4, d1 = 2, d2 = 0, d3 = 0 gives us the final form of the allowed

numerator,

N (e) = (c1s+ c2t)(`5 + k4)
2 , (C.41)

so we have two basis numerators,

N
(e)
1 = s(`5 + k4)

2 , N
(e)
2 = t(`5 + k4)

2 . (C.42)

We have also checked that this numerator passes all other double-pole constraints coming

from different regions of momentum space. In addition, we have checked that it has no poles

at infinity. It is interesting that, up to a factor depending only on external momenta, these

are precisely the numerators consistent with dual conformal symmetry. As is discussed in

Ref. [2], this is no accident.

Next, consider diagram (d) in Figure C.2. From the power counting arguments sum-
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marized in Eq. (C.33), we see that the numerator for this diagram is a quartic function of

momentum `6, but that it depends on neither `5 nor `7. When constructing numerators al-

gorithmically we begin with a general ansatz, but to more easily illustrate the role of contact

terms, we start from the natural guess that diagram (d) is closely related to a product of

two two-loop nonplanar double boxes. Thus our initial guess is that the desired numerator

is the product of numerators corresponding to the two-loop nonplanar subdiagrams:

Ñ (d) =
[
(`6 + k1)

2 + (`6 + k2)
2
] [

(`6 − k3)2 + (`6 − k4)2
]
. (C.43)

We label this numerator Ñ (d) because, as we see below, it is not quite the numerator N (d)

that satisfies our pole constraints. As always, note that we have required the numerator to

satisfy the symmetries of the diagram.

Although we do not do so here, one can show that this ansatz satisfies nearly all con-

straints on double poles and poles at infinity. The double pole not removed by the numerator

is in the kinematic region:

cut = {`25, (`5 + k2)
2, `27, (`7 − k3)2, B(`6)} . (C.44)

Before imposing the final box cut, we solve the first four cut conditions in terms of two

parameters α and β:

`5 = αk2 , `7 = −βk3 . (C.45)

The final B(`6) represents a box-cut of four of the six remaining propagators that depend

on α and β:

(`6 − αk2)2 = (`6 − αk2 + k1)
2 = (`6 + βk3)

2 = (`6 + βk3 − k4)2 = 0 . (C.46)
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Before cutting the B(`6) propagators, the integrand is

Res
`5–cut
`7–cut

Ĩ(d) =
Ñ (d)

`26(`6 + k1 + k2)2(`6 − αk2)2(`6 − αk2 + k1)2(`6 + βk3)2(`6 + βk3 − k4)2
.

(C.47)

Localizing further to the B(`6) cuts produces a Jacobian

J6 = su(α− β)2 , (C.48)

while a solution to the box-cut conditions of Eq. (C.46),

`∗6 = αλ4λ̃2
〈12〉
〈14〉 − βλ1λ̃3

〈34〉
〈14〉 , (C.49)

turns the remaining uncut propagators of Eq. (C.47) into

`26 = sαβ , (`6 + k1 + k2)
2 = s(1 + α)(1 + β) . (C.50)

The result of completely localizing all momenta in this way is

Res
cuts
Ĩ(d) = − s2(α(1 + β) + β(1 + α))2

s3uαβ(1 + α)(1 + β)(α− β)2
. (C.51)

We see that there is a double pole located at α− β = 0. To cancel this double pole, we are

forced to add an extra term to the numerator. A natural choice is a term that collapses both

propagators connecting the two two-loop nonplanar subdiagrams: `26(`6 + k1 + k2)
2. On the

support of the cut solutions Eq. (C.49), this becomes s2αβ(α+ 1)(β+ 1). We can cancel the

double pole at α− β = 0 in Eq. (C.51) by choosing the linear combination

N
(d)
1 =

[
(`6 + k1)

2 + (`6 + k2)
2
] [

(`6 − k3)2 + (`6 − k4)2
]
− 4`26(`6 + k1 + k2)

2 . (C.52)

Indeed, with this numerator the diagram lacks even a single pole at α− β = 0.

It is interesting to note that if we relax the condition that the numerator respects the
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diagram symmetry k1 ↔ k2 and k3 ↔ k4, there are four independent numerators with no

double pole. For example,

Ñ (d) = (`6 + k1)
2(`6 − k3)2 − `26(`6 + k1 + k2)

2 , (C.53)

is a dlog numerator. These are precisely the four numerators that appear for diagram (d)

in Table 3.1. When we require that N (d) respect diagram symmetry, we need the first four

terms in Eq. (C.52), each with its own “correction” term −`26(`6 + k1 + k2)
2. This accounts

for the factor of four on the last term in Eq. (C.52).

We have carried out detailed checks of all potentially dangerous regions of the integrand

of diagram (d), showing that the numerator of Eq. (C.52) results in a diagram with only

logarithmic singularities and no poles at infinity. In fact, the numerator (C.52) is the only

one respecting the symmetries of diagram (d) with these properties. We showed this by

starting with a general ansatz subject to the power counting constraint in Eq. (C.33) and

demonstrating that no other solution exists other than the one in Eq. (C.52).

We have gone through the diagrams in Figure C.2 in great detail, finding the numera-

tors that respect diagram symmetry (including color signs), and that have only logarithmic

singularities and no poles at infinity. This gives us a set of basis dlog numerators associated

with each diagram. For the diagrams where numerator factors do not cancel any propaga-

tors, the set of numerators is collected in Table C.1. In addition, there are also diagrams

where numerators do cancel propagators. For the purpose of constructing amplitudes, it

is convenient to absorb these contact contributions into the parent diagrams of Figure C.2

to make color assignments manifest. This allows us to treat all contributions on an equal

footing, such that we can read off the color factors directly from the associated parent di-

agram by dressing each trivalent vertex with an f̃abc. This distributes the contact term

diagrams in Table C.3 among the parent diagrams, listed in Table C.2. When distributing

the contact terms to the parent diagrams, we change the momentum labels to those of each

parent diagram and then multiply and divide by the missing propagator(s). The reason the
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numerators in Table C.2 appear more complicated than those in Table C.3 is that a single

term from Table C.3 can appear with multiple momentum relabelings in order to enforce the

symmetries of the parent diagrams on the numerators. This process is not done in Chapter

3, as diagrams (j) and (k) are associated with pure integrands. Merging them with parent

diagrams in this manner would lead to integrands that are not pure, as they would have

leading singularities that are not unit.

As an example of the correspondence between the numerators in Table C.2 and Table C.3,

consider diagram (j) and the associated numerators, N
(j)
1 and N

(j)
2 , in Table C.3. To convert

this into a contribution to diagram (i) in Table C.2, we multiply and divide by the missing

propagator 1/(`5+`6+k4)
2. Then we need to take the appropriate linear combination so that

the diagram (i) antisymmetry (including the color sign) under {k1 ↔ k3, `5 ↔ `6, `7 ↔ −`7}
is satisfied. This gives,

N
(i)
2 =

1

3
(`5 + `6 + k4)

2 [t− s] . (C.54)

In fact, there are three alternative propagators that can be inserted instead of 1/(`5+`6+k4)
2;

these are all equivalent to the three relabelings of external lines for diagram (i). We have

absorbed a combinatorial factor of 1
3

into the definition of the numerator because of the

differing symmetries between diagram (i) in Table C.2 and diagram (j) in Table C.3.

As a second example, consider diagram (k) in Table C.3, corresponding to the basis

element N
(k)
1 . If we put back the two missing propagators by multiplying and dividing by

the appropriate inverse propagators, diagram (k) contributes to the to numerators N
(c)
2 , N

(f)
2 ,

N
(g)
5 , N

(g)
6 , N

(h)
2 and N

(i)
3 in Table C.2.

In summary, the diagrams and numerators in Table C.1 and C.2 are a complete set with

the desired power counting, have only logarithmic singularities, and lack poles at infinity.

They are also constructed to satisfy diagram symmetries, including color signs.
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Diagram Numerators

(a) 1

2 3

4 N
(a)
1 = s2 , N

(a)
2 = st , N

(a)
3 = t2 ,

(b)

6

1

2 3 4

N
(b)
1 = s [(`6 − k3)2 + (`6 − k4)2] ,

(c)
5

71

2 3 4

N
(c)
1 = s [(`5 − `7)2 + (`5 + `7 + k1 + k2)

2] ,

(d)

6

1 2
3 4 N

(d)
1 = [(`6 + k1)

2 + (`6 + k2)
2]

2 − 4`26(`6 + k1 + k2)
2 ,

(e)
5

1

2

3

4

N
(e)
1 = s(`5 + k4)

2 , N
(e)
2 = t(`5 + k4)

2 ,

(f)
5

1

2
3

4

N
(f)
1 = (`5 + k4)

2 [(`5 + k3)
2 + (`5 + k4)

2] ,

(g)
5

6

1

2

4

3

N
(g)
1 = s(`5 + `6 + k3)

2 , N
(g)
2 = t(`5 + `6 + k3)

2 ,

N
(g)
3 = (`5 + k3)

2(`6 + k1 + k2)
2 , N

(g)
4 = (`5 + k4)

2(`6 + k1 + k2)
2 ,

(h) 5

6

7

1

2

3

4

N
(h)
1 =

[
(`6 + `7)

2(`5 + k2 + k3)
2 − `25(`6 + `7 − k1 − k2)2

−(`5 + `6)
2(`7 + k2 + k3)

2 − (`5 + `6 + k2 + k3)
2`27

−(`6 + k1 + k4)
2(`5 − `7)2 − (`5 − `7 + k2 + k3)

2`26

]

−
[
[(`5 − k1)2 + (`5 − k4)2][(`6 + `7 − k1)2 + (`6 + `7 − k2)2]
−4× `25(`6 + `7 − k1 − k2)2
−(`7 + k4)

2(`5 + `6 − k1)2 − (`7 + k3)
2(`5 + `6 − k2)2

−(`6 + k4)
2(`5 − `7 + k1)

2 − (`6 + k3)
2(`5 − `7 + k2)

2
]
,

(i)
5

6

1
2

3

4

N
(i)
1 = (`6 + k4)

2 [(`5 − k1 − k2)2 + (`5 − k1 − k3)2]
− (`5 + k4)

2 [(`6 + k1 + k4)
2 + (`6 + k2 + k4)

2]

− `25(`6 − k2)2 + `26(`5 − k2)2 .
Table C.1: The parent numerator basis elements corresponding to the labels of the diagrams
in Figure C.2. The basis elements respect the symmetries of the diagrams. Compare to the
first nine diagrams of Table 3.1.
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Diagram Numerator

(c)
5

71

2 3 4 N
(c)
2 = (`5)

2 (`7)
2 + (`5 + k1 + k2)

2 (`7)
2 + (`5)

2 (`7 + k1 + k2)
2

+ (`5 + k1 + k2)
2(`7 + k1 + k2)

2 ,

(f)
5

1

2
3

4

N
(f)
2 = `25(`5 − k1 − k2)2 ,

(g)
5

6

1

2

4

3

N
(g)
5 = (`5 − k1 − k2)2(`6 − k4)2 ,

N
(g)
6 = `25(`6 − k4)2 ,

(h) 5

6

7

1

2

3

4

N
(h)
2 = `26(`5 − `7)2 + `27(`5 + `6)

2 + (`6 + k4)
2(`5 − `7 + k2)

2

+ (`5 + `6 − k1)2(`7 + k3)
2 ,

(i)
5

6

1
2

3

4

N
(i)
2 = 1

3
(`5 + `6 + k4)

2 [t− s] ,
N

(i)
3 = (`6)

2 (`5 − k1)2 − (`5)
2 (`6 − k3)2 .

Table C.2: The parent diagram numerator basis elements where a numerator factor cancels
a propagator. Each term in brackets does not cancel a propagator, while the remaining
factors each cancel a propagator. Each basis numerator maintains the symmetries of the
associated diagram, including color signs. The associated color factor can be read off from
each diagram. There is no analog of these in Table 3.1, as these pieces are in diagrams (j)
and (k).

Diagram Numerator

(j)
1 2

3

4

N
(j)
1 = s , N

(j)
2 = t ,

(k)
1

2

4

3 N
(k)
1 = 1 .

Table C.3: The numerator basis elements corresponding to the contact term diagrams. Black
dots indicate contact terms. Written this way, the numerators are simple, but the color
factors cannot be read off from the diagrams. Compare to the final two diagrams of Table
3.1.
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C.2.2 Determining the Coefficients

We now express the three-loop four-point N = 4 SYM amplitude in terms of our constructed

basis. We write the numerator in Eq. (C.21) directly in terms of our basis via Eq. (C.3).

Because we have required each basis numerator to reflect diagram symmetry, we must specify

only one numerator of each diagram topology; we can obtain the remaining ones simply by

relabeling the external legs.

The coefficients in front of each basis element are straightforward to determine using

simple unitarity cuts, together with previously determined representations of the three-loop

four-point amplitude. We start from the N = 4 SYM numerators as originally determined

in Ref. [126], since they happen to be in a particularly compact form. Rewriting these

numerators using our choice of momentum labels gives

N
(a)
old = N

(b)
old = N

(c)
old = N

(d)
old = s2 ,

N
(e)
old = N

(f)
old = N

(g)
old = s(`5 + k4)

2 ,

N
(h)
old = −st+ 2s(k2 + k3) · `5 + 2t(`6 + `7) · (k1 + k2) ,

N
(i)
old = s(k4 + `5)

2 − t(k4 + `6)
2 − 1

3
(s− t)(k4 + `5 + `6)

2 . (C.55)

To match to our basis, we start by considering the maximal cuts, where all propagators of

each diagram are placed on-shell. The complete set of maximal cut solutions is unique to

each diagram, so we can match coefficients by considering only a single diagram at a time.

We start with diagram (a) in Table C.1. Here the numerator is a linear combination of three

basis elements

N (a) = a
(a)
1 N

(a)
1 + a

(a)
2 N

(a)
2 + a

(a)
3 N

(a)
3 , (C.56)

corresponding to N
(a)
j in Table C.1. The a

(a)
j are numerical parameters to be determined.

This is to be compared to the old form of the numerator in Eq. (C.55). Here the maximal cuts

have no effect, because both the new and old numerators are independent of loop momenta.

Matching the two numerators, the coefficients in front of the numerator basis are a
(a)
1 = 1,
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a
(a)
2 = 0 and a

(a)
3 = 0.

Now consider diagram (b) in Figure C.2. Here the basis element is of a different form

compared to the old version of the numerator in Eq. (C.55). The new form of the numerator

is

N (b) = a
(b)
1 N

(b)
1 = a

(b)
1 s
[
(`6 − k3)2 + (`6 − k4)2

]
. (C.57)

In order to make the comparison to the old version, we impose the maximal cut conditions

involving only `6:

`26 = 0 , (`6 − k2 − k3)2 = 0 . (C.58)

Applying these conditions:

[
(`6 − k3)2 + (`6 − k4)2

]
→ −s . (C.59)

Comparing to N
(b)
old in Eq. (C.55) gives us the coefficient a

(b)
1 = −1.

As a more complicated example, consider diagram (i). In this case, the numerators

depend only on `5 and `6. The relevant cut conditions read off from Figure C.2(i) are

`25 = `26 = (`5 − k1)2 = (`6 − k3)2 = (`5 + `6 − k3 − k1)2 = (`5 + `6 + k4)
2 = 0 . (C.60)

With these cut conditions, the old numerator in Eq. (C.55) becomes

N
(i)
old

∣∣
cut

= 2s (k4 · `5)− 2t (k4 · `6) . (C.61)

The full numerator for diagram (i) is a linear combination of the three basis elements for

diagram (i) in Table C.1 and C.2:

N (i) = a
(i)
1 N

(i)
1 + a

(i)
2 N

(i)
2 + a

(i)
3 N

(i)
3 . (C.62)

The maximal cut conditions immediately set the last two of these numerators to zero, because
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they contain inverse propagators. Applying the cut conditions Eq. (C.60) to the nonvanishing

term results in

N (i)
∣∣
cut

=a
(i)
1 [−2(`6 · k4)t+ 2(`5 · k4)s] . (C.63)

Comparing Eq. (C.61) to Eq. (C.63) fixes a
(i)
1 = 1. The two other coefficients for diagram

(i), a
(i)
2 and a

(i)
3 , cannot be fixed from the maximal cuts.

In order to determine all coefficients and to prove that the answer is complete and cor-

rect, we need to evaluate next-to-maximal and next-to-next-to-maximal cuts. We need only

evaluate the cuts through this level because of the especially good power counting of N = 4

SYM. We do not describe this procedure explicitly here. Details of how this is done may be

found in Ref. [118]. Using these cuts, we have the solution of the numerators in terms of the

basis elements as

N (a) = N
(a)
1 ,

N (b) = −N (b)
1 ,

N (c) = −N (c)
1 + 2d1N

(c)
2 ,

N (d) = N
(d)
1 ,

N (e) = N
(e)
1 , (C.64)

N (f) = −N (f)
1 + 2d2N

(f)
2 ,

N (g) = −N (g)
1 +N

(g)
3 +N

(g)
4 + (d1 + d3 − 1)N

(g)
5 + (d1 − d2)N (g)

6 ,

N (h) = N
(h)
1 + 2d3N

(h)
2 ,

N (i) = N
(i)
1 +N

(i)
2 + (d3 − d2)N (i)

3 ,

where the three di are free parameters not fixed by any physical constraint.
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C.2.3 Free Parameters and Color Jacobi Identites

The ambiguity represented by the three free parameters, di in Eq. (C.64), derives from color

factors not being independent, but instead related via color Jacobi identities. This allows us

to move contact terms between different diagrams without altering the amplitude. Different

choices of d1, d2, d3 correspond to three degrees of freedom from color Jacobi identities. These

allow us to move contact contributions of diagram (k), where two propagators are collapsed,

between different parent diagrams. The contact term in diagram (j) of Table C.3 does not

generate a fourth degree of freedom because the three resulting parent diagrams all have

the same topology, corresponding to relabelings of the external legs of diagram (i). The

potential freedom then cancels within a single diagram. We have explicitly checked that

the di parameters in Eq. (C.64) drop out of the full amplitude after using appropriate color

Jacobi identities. One choice of free parameters is to take them to all vanish

d1 = 0 , d2 = 0 , d3 = 0 . (C.65)

In this case every remaining nonvanishing numerical coefficient in front of a basis elements is

±1. (Recall that N
(i)
2 absorbed the 1/3 combinatorial factor mismatch between diagram (i)

and diagram (j).) Of course this is not some “best” choice of the di, given that the amplitude

is unchanged for any other choice of di.

Power counting of the loop momenta forbids numerators from canceling more than two

propagators, so the topologies with the fewest allowed number of propagators contain eight

propagators. There is only one such topology that is not forbidden by our pole constraints:

diagram (k). Since this topology has four-point contact terms, its color coefficient cannot

simply be read off. Instead, we must consider expanding the diagram (k)’s two four-point

contact vertices in each of the three possible ways (i.e. s, t, and u channels) to obtain nine

10-propagator topologies. Fixing the selected channel on one of the vertices and cycling

through the three channels on the other vertex, we see that the color coefficients from each

of the three resulting 10-propagator diagrams form a color Jacobi relation. Considering
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the other two channels on the fixed vertex and doing the same procedure yields two more

10-propagator diagram triplets whose color factors satisfy color Jacobi identities.

Diagram (k) receives color contributions from all nine of these color factors. However,

some of these factors are simply noncyclic permutations of each other, and thus correspond

to the same 10-propagator topology. In all, diagram (k) receives color contributions to five

of the nine 10-propagator topologies, corresponding to diagrams (c), (f), (g), (h), and (i).

The overall coefficients of these contributions to the amplitude are not fixed, however.

Indeed, the Jacobi identities corresponding to the three Jacobi triplets each contribute one

degree of freedom to our full solution, the di discussed above. The reason is that one can

take the sum of three color factors in a Jacobi triplet (which is by definition zero) and

multiply it by propagators of the diagram (k), along with an arbitrary coefficient. We can

then distribute this zero among the three members of the Jacobi triplet. For each member

of the triplet, take the two propagators that were generated by expanding the four-point

vertices in diagram (k). Divide them by themselves to get unity, and then multiply this

times the member’s corresponding color factor. In this way, the arbitrary coefficient of our

Jacobi times the two inverse propagators becomes a basis element in the numerator of each

of the three (now color-dressed) 10-propagator diagrams in the triplet.

Let’s see an explicit example of this. Diagram (k) takes the form shown in Table C.3.

First, let’s expand the four-point vertex connected to leg k2 into its s-channel, i.e. moving

the k2 leg to the upper-right. We then consider all three expansions of the four-point vertex

connected to k4; the sum of their color factors is a Jacobi identity. The first term is isomorphic

to diagram (i); indeed it’s in a cyclic permutation of the master labels of that topology, and

thus has the master color factor c(1234). The second term is a permutation of diagram (f);

specifically, (1234) → (2431). However, the sign of the color vertex factor adjoining leg k3

must be flipped for this identification, so its color factor is −cf(2431), where cf(2431) denotes

the color factor of the master labels for f under the permutation (1234)→ (2431). The final

term is a copy of diagram (g), with the permutation (1234) → (4312). The vertex factors

for both legs k1 and k4, as well as the four internal vertices, must all be flipped to make this
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4
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2

1
= 0

(i) (f) (g)

Figure C.3: A diagrammatic representation of the color Jacobi relation described in the text.
The red leg is the shared expanded propagator, while the blue propagator is the propagator
on which the Jacobi identity is applied. Collapsing these leads to diagram (k).

identification; since there are an even number of sign flips, the color factor is still just cg(4312).

Note that these last two diagrams contribute to pieces that appear in the permutation sum

of the master diagram, rather than to the labels that appear in Table C.1. We’ll deal with

this complication below.

We now wish to add this Jacobi relation (which is just zero) to the full integrand, and

distribute its three pieces among the appropriate master topologies. We’ll give it an overall

coefficient named af , as this is the only Jacobi relation that contributes to diagram (f). We

drew our diagrams to match the signs of the usual Jacobi relation cs− ct− cu = 0. As noted

above, our t-channel (the diagram (f) contribution) has a sign flip when discussed in terms

of the master labeling. Thus we instead add

af
(
ci(1234) + cf(2431) − cg(4312)

)
, (C.66)

labeling each color factor by its master topology and permutation of external legs, modulo

cyclic permutations. This is graphically depicted in Figure C.3.

We need to distribute this among the three master topologies, and this requires giving

each piece the appropriate propagator structure. All three diagrams share the eight prop-

agators inherited from diagram (k). They also all share the first propagator we expanded.

We’ll call the product of these nine propagators D, and multiply it by our Jacobi relation.

Next, we need the remaining propagator, which is unique to each diagram. We divide this

108



propagator by itself and multiply it against its corresponding color factor:

af

(
ci,(1234)Di,(1234)

`i,(1234)
`i,(1234)

+ cf,(2431)Df,(2431)

`f,(2431)
`f,(2431)

− cg,(4312)Dg(4312)

`g,(4312)
`g,(4312)

)
, (C.67)

where we have distributed D throughout and labeled it according to the labels of the appro-

priate topology.

Remember that we are ultimately interested in the contribution this has to our basis

elements, which are defined under the sum over noncyclic permutations of the external legs.

Of course if we apply any permutation of the external legs to our entire Jacobi relation,

it will still be a Jacobi relation, so this means we can add it to the integrand under the

permutation sum. But this means that the specific permutations that show up in our Jacobi

are irrelevant; since all permutations are summed over, they’ll all appear in the sum anyway.

Therefore, our Jacobi clearly contributes af`i(1234) to the master numerator for diagram (i);

it also contributes af`f(1234) to the master numerator for diagram (f), and −af`g,(4312) to the

numerator of diagram (g).

Now notice that if we had initially fixed the vertex connected to k2 in its t- or u-channel

instead, we would have gotten two other sets of Jacobi triplets. The first triplet consists

of two copies of diagram (g) and one of (c). The first copy of (g) is already in exactly the

master labels, contributing to cg(1234). The second is −cg(2134), with seven color vertex flips

to get the sign, and the third is a copy of diagram (c) with color factor −cc,(1234). The second

triplet gives a master copy of diagram (h), with color factor ch(1234); additionally there is a

copy of diagram (i) with a cyclic permutation of the master labels, so we get ci(1234), and

last a copy of diagram (g), with −cg(3412). We name their arbitrary coefficients ac and ah

respectively, after the diagrams that appear only in those triplets:

ac

(
cg,(1234)Dg,(1234)

`g,(1234)
`g,(1234)

+ cg,(2143)Dg,(2143)

`g,(2143)
`g,(2143)

+ cc,(1234)Dc,(1234)

`c,(1234)
`c,(1234)

)
(C.68)

ah

(
ch,(1234)Dh,(1234)

`h,(1234)
`h,(1234)

− ci,(1234)Di,(1234)

`i,(1234)
`i,(1234)

+ cg,(3412)Dg(3412)

`g,(3412)
`g,(3412)

)
. (C.69)
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There is one more issue to deal with. We have chosen our basis elements to respect

the automorphisms of their topologies, and we should expect no less from the contributions

provided by Jacobi triplets. For example, diagram (i) possesses a reflection symmetry that

leads to ci,(1234) = −ci(3214). This means that in the permutation sum, the coefficients of

ci,(1234) and ci,(3214) will be combined. We want this behavior to be manifest in the basis

elements themselves, so instead of our first Jacobi contributing

afci,(1234)Di,(1234)

`i,(1234)
`i,(1234)

(C.70)

to the full numerator for diagram i, we’ll have it contribute

1

2
afci,(1234)

(
Di,(1234)

`i,(1234)
`i,(1234)

−Di,(3214)

`i,(3214)
`i,(3214)

)
. (C.71)

Up to these symmetry factors, we can finally read off that af corresponds to d2, ac to d1, and

ah to d3, explaining the origin of these extra degrees of freedom. Note that the imposition of

unit leading singularities in the pure integrand basis of Chapter 3 eliminates this freedom,

as diagram (k) takes on a status equivalent to that of diagrams (a) through (i), and thus

cannot have its contribution pushed around in this manner. Such rearrangement would also

mess up the purity of the integrands corresponding to diagrams (a) through (i).

In any event, once the coefficients in front of each basis numerator are determined, we

are left with the question of whether the basis numerators properly capture all terms that

are present in the amplitude. To answer this we turn to the method of maximal cuts [118].

This is a variation on the standard generalized unitarity method, but organized by starting

with maximal cuts and systematically checking cuts with fewer and fewer propagators set

on shell. This method has been described in considerable detail in Ref. [118], so we only

mention a few points.

The overall power counting of the three-loop N = 4 SYM amplitude is such that it can

be written with at most two powers of loop momenta in the numerator [107, 126], as dis-

cussed above. This means that in principle we can fully determine the amplitude using only
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next-to-maximal cuts. However, here we use a higher-power counting representation with up

to four powers of loop momenta in the numerator corresponding to as many as two canceled

propagators. This implies that to completely determine the amplitude using our represen-

tation we need to check cuts down to the next-to-next-to-maximal level. We have explicitly

checked all next-to-next-to-maximal cuts, proving that the amplitudes obtained by insert-

ing the numerators in Eq. (C.64) into Eqs. (C.21) and (C.3) gives the complete amplitude,

and that it is entirely equivalent to earlier representations of the amplitude [107, 126, 148].

Because each numerator basis element is constructed such that each integrand has only log-

arithmic singularities and no poles at infinity, this proves that the full nonplanar three-loop

four-point N = 4 SYM amplitude has these properties, as conjectured in Ref. [108].
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