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ABSTRACT OF THE DISSERTATION

Fault-susceptibility Mitigation and Efficient Use of Resources in Programmable
Hardware Accelerators

by

Atieh Lotfi

Doctor of Philosophy in Computer Science (Computer Engineering)

University of California San Diego, 2018

Professor Rajesh K. Gupta, Chair

Faced with the exponential growth in computing requirements, programmable hardware

accelerators, such as GPUs and FPGAs, are becoming increasingly popular in high performance

computing systems. In deference to energy efficiency and scalability challenges in these systems,

it is crucial to efficiently use hardware resources while maintaining their reliability requirements.

To meet system reliability requirements, traditional methods add redundancy in hardware or

software. However, these redundancy-based error mitigation techniques suffer from inefficient

use of hardware resources. The goal in this dissertation is to devise low-overhead approaches

to mitigate the fault-susceptibility of hardware accelerators, and use their available resources

efficiently.

xv



For fault-susceptibility mitigation in GPU accelerators, this dissertation proposes a

software-based approach that enables isolation of faulty components through task migration.

Due to lack of configurable scheduler for GPUs, the proposed solution makes use of introspective

kernels to enable effective task migration for isolating faulty components. This technique has

very low overhead in terms of performance and energy and improves the accelerator lifetime

and overall system cost. For FPGA accelerators, faulty component isolation is handled with a

directive-based method through the synthesis tool.

This dissertation presents practical optimization methods to efficiently use the available

resources on programmable hardware accelerators. These optimizations are performed at dif-

ferent levels of abstractions that are useful for GPUs and FPGAs, and the trade-offs among

them are elaborated. For GPUs, optimization opportunities are explored in hardware-level and

source-level. For FPGAs, optimizations are studied at the compiler-level, source-level, and

algorithm-level. These optimization methods seek to remove unnecessary redundancies from

program or hardware. This dissertation demonstrates practical and efficient approaches for

utilizing fault-susceptible programmable hardware accelerators and improving their efficiency in

terms of both cost per performance and energy.
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Chapter 1

Introduction

With the end of the classical Dennard scaling, the benefits from continued transistor

scaling are diminishing due to energy and power constraints, leading to prevalence of “dark

silicon”, that is, chips portions that must remain dark or unused due to limits of energy use

or thermal limits [47] [40]. The dark silicon phenomenon documents diminishing returns in

per-transistor speed and energy efficiency with increases in chip sizes. Further, the demand of

compute and power intensive tasks are rapidly growing while the general-purpose CPU platforms

are not able to keep pace with this increasing demand due to slowdown in scaling. Faced with

the large growth in computing requirements and the dark silicon problem, chip designers have

started using hardware accelerators to improve performance, cost, and energy efficiency. Among

these, programmable hardware accelerators such as graphic processing units (GPUs) or field

programmable gate arrays (FPGAs) have been gaining popularity.

For a long time GPUs were used for graphics and gaming purposes, and FPGAs were used

for ASIC prototyping and base stations. However, these programmable accelerators are now being

used in new systems ranging from embedded systems and IoT to high-performance computing

(HPC) and data centers. These new systems create new challenges for these accelerators. The

first challenge is that the penalty of inefficient use of their resources becomes more severe, and it

becomes more important to efficiently use hardware resources. The second challenge is that the
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probability of fault occurrence is increased due to their use at a large scale while there are no

error mitigation methods for handling permanent faults in these accelerators.

Regarding the first challenge, these accelerators have complicated programming model.

Developing a parallel program for GPUs that considers regular memory access patterns and

suitable memory managements is complicated. Moreover, writing a program for FPGAs either

by hardware description languages or through the use of high-level synthesis tools requires

hardware-aware programming. If our programs are not hardware-friendly, we lose the benefits

of using hardware accelerators. In addition, we have seen fast-paced development of code by

software developers, e.g. in cloud applications, resulting in codes that are not optimized and

tuned for the target platform. Executing an un-optimized code on these accelerators might result

in inefficient use of their resources. Therefore, there is a need for automatic tools to further

optimize the code and avoid inefficiencies that they may cause.

Regarding the second challenge, these accelerators have no error mitigation method

for addressing permanent faults. This means that these accelerators are no longer usable if

they become partially defective. This results in disposal of partially defective accelerators

which is costly. Various factors such as variation in manufacturing, aging effects and wearout

mechanisms, and dynamic variation such as temperature fluctuation and voltage drops may

initiate and accelerate the frequency of faults and system failure [11] [53]. As we go towards

smaller transistor technologies making a perfectly working die becomes even harder which

results in increasing costs of chips by a large factor [62]. In fact, hardware resource failures and

down times is a critical concern for large scale high-performance computing platforms, as they

adversely affect the performance and quality of service in a system [104].

Since reliability is an important factor in hardware design, different approaches exist to

detect and recover from failure. Several approaches add redundancy to perform recovery from

failures. These methods incorporate extra components, instructions, or data in the design of a

system so that the functionality is not impaired in the event of a failure. Possible ways to build a

redundantly reliable system include:
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1. Hardware redundancy: These methods replicate all or some part of the hardware device.

For example, triple modular redundancy (TMR) [78] is one technique in which the critical

components are replicated three times and the results are voted to produce the output. The

redundant component can be active at all time and a voter decides the correct output (static

hardware redundancy), or the spare components become activated upon the failure of a

currently active component (dynamic hardware redundancy). Even though hardware-based

redundancy approaches can detect and correct errors fast, they are very expensive in terms

of their impact on circuit area, energy, and cost of the system. In addition, for memory

elements, redundancy is augmented into data bits so that an error in the data can be detected

or corrected. Example of these techniques are using parity bits [54] or error correction

codes [34].

2. Software redundancy: These methods perform redundant code execution. For example,

SWIFT [98] executes each instruction twice on replicated inputs and compares their

outputs. In N-Version programming [36], N independently designed versions of a software

is executed either sequentially or in parallel and their results are compared by a decision

algorithm. While software-based techniques can be more flexible than hardware-based

approaches, they have considerable cost in terms of performance and energy efficiency [58].

Hardware and software redundancy add significant overhead on cost, performance, and energy.

These approaches repeat a part of computation and this increases the overall system energy

consumption. Applying redundancy-based methods are necessary for safety critical applications

such as autonomous driving and avionics, but they are not desirable in most other systems. For

example, energy efficiency in embedded systems or performance and scalability requirements in

high performance computing data centers can not afford these overheads [72].

An alternative approach is core isolation and task migration. This approach works for

systems that have a number of components that can work in parallel. Here, the faulty core

is isolated, and the tasks running on a faulty core are migrated to another non-faulty one as
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soon as a failure is predicted or detected [72]. This approach isolates the faulty component and

makes use of other available functional resources in the system to perform its task. For example,

[91] [90] [108] [56] propose dynamic workload allocation policies to mitigate core failures

in multicore architectures. In these works, the operating system effectively changes workload

scheduling method to isolate a faulty core and distribute its tasks to other available cores in the

system. In general, this approach has lower overhead than redundancy-based approach, since

it does not have expensive redundancies, there is no task duplication that needs to be run at all

time, and the fault-affected hardware is still being used. Naturally, this approach is only possible

if adequate hardware resources are still available.

In fact, both GPUs and FPGAs are great targets for implementing isolation due to their

architectures. GPU architecture contains many parallel cores that run in the Single Instruction

Multiple Data (SIMD) fashion. FPGA provides a customizable architecture containing many

primitive cells that can be configured through placement and routing. For FPGA accelerators,

the synthesis tool allows isolation of faulty components with fine-grained granularity. However,

due to lack of operating systems and configurable scheduler for GPUs, core isolation and

task migration is not possible for this platform. This result in disposal of partially defective

accelerators, which is expensive in terms of cost and replacement time especially in data centers

and IoT devices. Enabling error mitigation on accelerators can open up opportunities to use

hardware which were considered unusable due to their conditions for a longer time; leading to

reducing waste of available hardware resources, increasing the lifetime of defective hardware,

as well as reducing the manufacturing cost by accepting more range of defective hardware.

Reducing cost while keeping a system energy efficient can significantly help with today’s

exponentially growing computational requirements.

In this dissertation, we address the aforementioned two challenges. First, we add the

missing fault mitigation and isolation support for these accelerators. We develop automatic

software-level and directive-based methods to implement isolation and task migration with very

low overhead in terms of performance and energy. By isolating faulty components, we can make
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use of other available components in the hardware accelerator, and improve the cost and lifetime

of hardware. Moreover, efficient use of hardware resources becomes more advantageous in the

new use cases of these accelerators. To improve efficiency of using GPU and FPGA accelerators,

we perform optimizations in different levels of abstractions that are useful for each of them.

For GPUs, we seek opportunities to perform optimization in hardware-level and source-level,

to remove unnecessary overheads in hardware or optimize the program running on GPU. For

FPGAs, we target optimizations in compiler-level, source-level, and algorithm-level. These

optimizations either improve efficiency of high-level synthesis design process, tune the program

for hardware, or use a hardware-friendly algorithm and implementation.

To improve efficiency of using GPU accelerators, we seek methods to remove unnecessary

redundancy in hardware and software. For removing unnecessary hardware redundancy, we

perform a case study to seek opportunities to remove some reliability-related redundancy and

replace them with a more efficient design choice. Traditionally, memory structures are augmented

with reliability-related redundancy in order to become resilient to errors, which results in area and

energy overhead. We study the necessity of these redundancies and the resiliency of unprotected

caches in GPU. We further study the usefulness of a very low overhead error mitigation to

replace parity bits in some structures. For removing unnecessary redundancy in software, we

perform automated optimization of programs that are developed for GPUs. Especially, with

the growth in the number of software developers who are not familiar with low-level hardware

details, there exists unnecessary computations in these programs. We develop a source-to-source

compiler that selectively tunes the bitwidth of variables and operations in a program, and results

in efficient use of hardware resources. This optimization is also useful for FPGA accelerators, in

which the automatic transformation is done on the high-level design specification. In addition

to this optimization, we present two more optimization methods for efficient use of FPGA

resources. For improving the efficiency of synthesis results through high-level synthesis (HLS)

process, we perform automated transformation in the design specification through compiler and

enable task migration and resource sharing without any modification in the HLS tool. This
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transformation results in more efficient use of FPGA resources. We also present a case study

that uses algorithmic modification to increase efficiency of using FPGA hardware accelerators.

All presented approaches can be used to improve efficiency in either a fully functional or faulty

hardware accelerator.

1.1 Dissertation Organization and Contributions

In this dissertation, we focus on addressing the two important challenges that are caused

by the new use cases of programmable accelerators. We present methods that enable fault

mitigation through isolation for GPUs and FPGAs. We further present optimization techniques

that result in more efficient use of hardware resources for these commodity programmable

accelerators. This dissertation has two main parts. In the first part, we focus on presenting fault

mitigation and optimization methods for efficient use of resources in GPU accelerators. First, we

propose an efficient method to enable isolation and task migration on GPU accelerators, with

very low overhead in terms of performance and energy. Then, we study and propose techniques

for more efficient utilization of resources using hardware and software optimizations. The second

part, focuses on optimization for FPGA accelerators. We target two optimization approaches that

automatically modifies the FPGA design specification. The first approach removes unnecessary

computations in the design, and the second one exploits resource sharing opportunities by

regularity extraction. We also study the effect of algorithmic optimization on the efficiency of

FPGA accelerators. Figure 1.1 illustrates the scope and organization of this dissertation.

The contributions of this dissertation are:

1. Introducing primitive cell isolation for defective FPGAs by a directive-based approach,

2. Enabling component isolation and task migration for faulty GPUs through compiler,

3. Automatic source-level optimization and program transformation for programmable accel-

erators that results in better resource utilization in hardware,
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Figure 1.1: Dissertation organization.

4. Enabling automatic task migration to improve resource efficiency and throughput of

HLS-based FPGA design,

5. Presenting and evaluating optimizations in different levels, from hardware to algorithm,

for efficient use of hardware resources, and analyzing their trade-off and impact.

The organization of this dissertation is as follows:

First, we start by providing background information on GPU and FPGA architecture and

design flow in Chapter 2. We also discuss how we can guide the synthesis tool to enable isolation

of faulty primitives in FPGAs through a directive-based approach.

For GPU platforms with faulty components, we enable faulty components isolation and

task migration in the granularity of stream cores using a just-in-time compilation method. We

propose innovations in the static compiled code by introducing the notion of introspective kernels.

An introspective kernel adaptively monitors the health of a GPU device and triggers runtime

workload reallocation scheme to migrate tasks on healthy stream cores. After detection of faulty

stream cores (SCs), a just-in-time compilation process replaces the introspective kernel with a

healthy kernel that responds to the specific health state of the GPU device. This method can

efficiently isolate faulty stream cores, and migrate their tasks to other functional cores. We

further show the benefit of this approach for a GPU with aged stream cores. By shifting the

workload from aged stream cores to healthy ones, the faulty hardware components are gradually

healed. This results in efficient use of hardware components and increases the device lifetime
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which reduces the overall hardware cost. We discuss this approach in Chapter 3.

As mentioned earlier, it is becoming more important to use resources on programmable

hardware accelerators in a more efficient way. In the rest of dissertation, we propose methods at

different levels to efficiently use the available hardware resources. We perform a case study to

find out if there are any redundancy in the design of hardware accelerators that can be removed

or replaced with a more efficient design choice. Traditionally, memory structures are augmented

with reliability-related redundancy in order to become resilient to errors, which results in area

and energy overhead. We evaluate the necessity of these redundancies and the reliability of

unprotected caches in GPU. We further study the usefulness of a negligible overhead tag error

mitigation mechanism to replace parity bits. This method distributes memory accesses more

efficiently with a new cache indexing mechanism to mitigate some pathological address strides

that cause error and also increases memory throughput. At a negligible impact on resiliency, this

architecture eliminates the need for parity protection in the cache tag SRAM structures. This

approach is general and does not induce any constraints or inflexibility to the system and can be

integrated in newer generation of accelerators. This approach, which is discussed in Chapter 4,

can be applied to any system that uses cache memory, including off-the-shelf GPUs.

We further present a source-level optimization approach that targets both GPU and FPGA.

This technique identifies and removes unnecessary redundancy in programs developed for GPUs

or design specifications developed for FPGAs. The unnecessary redundancy in programs might

be caused by two reasons. First, these programs might be developed by software developers who

are not familiar with low-level hardware details. Second, the application might have inherent

tolerance to some degree of inexactness which can provide further optimization opportunity.

Optimizing the program manually, especially in the second case, is not easy. In Chapter 5, we

introduce GRATER which is a source-level automatic optimizer to reduce unnecessary computa-

tions. Our approach automatically simplifies expensive computations in the program. This results

in improved performance and reduced hardware resource requirements. For example, by per-

forming fixed-sized computations instead of floating point computations, using single-precision
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floating point instead of double-precision floating point, or fewer number of bits for integer

computations, GRATER can improve resource utilization and performance. These modifications

are all done automatically during compile time without any programmer intervention. GRATER

transcompiler is useful for both GPU and FPGA platforms. This optimization method is fast,

requires no effort from user, and can be applied to any program or design specification. This

approach can be applied to improve the efficiency in both fully functional and faulty hardware

accelerator.

To improve the efficiency of HLS-based FPGA design, we present an approach to au-

tomatically find reuse opportunities in the design specifications with inherent regularities and

implicitly change the scheduling. This approach uses compiler frontend as an independent

preprocessing step to explore the design space and adds an automated source-to-source trans-

formation step before HLS. In particular, it shows how inherent regularity in applications can

be used to construct a workflow that analyzes the specification, explores the design space for

resource optimization opportunity, and transforms the program accordingly. The transformed

program can be synthesized using the HLS tool. This approach, which is explained in Chapter 6,

takes advantages of resource sharing opportunities to reduce resource utilization while keeping

latency and energy efficiency similar to the original design.

Moreover, we perform a case study to examine the impact of algorithmic modification

to increase efficiency of FPGA accelerators. For the growing field of deep neural network

applications, in Chapter 7, we show resource saving and power reduction advantages of using

a more hardware-friendly algorithm and its harware-aware implementation over off-the-shelf

convolutional neural networks. This approach, despite its longer development time, is the most

effective solution for improving resource utilization of hardware accelerators. However, this

approach is cumbersome compared to automated source-level and compiler-level techniques.

Moreover, an algorithmic optimization of this kind does not necessarily work for other applica-

tions. This approach indicates that using hardware-friendly algorithms improves the efficiency,

in exchange for high development cost. In fact, this is the most effective approach for efficient
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use of hardware resources, since we are considering the full stack from algorithm to hardware.

Finally, Chapter 8 concludes the dissertation and gives future directions. We argue

that the use of our source-level and compiler-assisted optimization alongside the isolation and

task migration techniques is a general approach that can be easily applied to fault-susceptible

commodity programmable hardware accelerators and improve their efficiency in terms of both

cost per performance and energy.
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Chapter 2

Background

This section introduces some preliminary concepts and definitions useful to briefly build

a background for this work. First, we provide background information on FPGA architecture

and design flow. Further, we discuss the directive-based method to enable isolation of faulty

primitives in FPGAs. Then we discuss OpenCL programming model which can be used for both

FPGA and GPU accelerators. Furthermore, we briefly discuss a sample GPU architecture that

we mostly used in the dissertation.

2.1 Background on FPGA and Synthesis Process

Field Programmable Gate Array or FPGA is a reconfigurable hardware platform which

can be configured after manufacturing. FPGAs are composed of programmable logic and memory

blocks which are connected using programmable interconnects. FPGA reconfiguration allows

it to perform a wide variety of complex tasks. The basic structure of an FPGA is composed of

elements like look-up table (LUT) (which performs logic operations), Flip-Flop (FF) (register

element to store the result of operations), memory blocks (BRAM), and digital signal processing

(DSP) blocks that perform specific functions. The type and number of elements available on

an FPGA depends on the vendor, family, and specific device. FPGA is mainly an island of
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elements arranged in a two dimensional grid of sections called tiles. There are several different

types of tiles: CLB, DSP, BRAM, and interconnect. CLBs (Configurable Logic Blocks) are the

resources for implementing logic on the FPGA. A CLB occupies a single tile on the device and is

connected to a switch matrix to access the general routing structure. Each CLB is comprised of

number of interconnected slices. Many of the tiles can be broken down into smaller components

called primitive types. Primitive types are the smallest unit on FPGA. Each primitive is identified

by its (X,Y) location on the device (e.g SLICE X39Y53, DSP48A X1Y7). One example of

a primitive type found within a tile is a slice. For example, in our target FPGA, each slice is

made up of two LUTs, two storage units, wide-function multiplexers, carry logic, arithmetic

gates, and routing interconnect. Another primitive type is DSP slice. Each slice supports many

independent functions, including multiplier, multiplier followed by an adder, or barrel shifter.

The slices can also be connected together to form wide math functions. These function could be

implemented using more general logic resources such as CLBS. However, the use of DSPs can

decrease the amount of general logic resources resulting in higher performance, and efficient

device utilization.

High-Level Synthesis (HLS), also known as behavioral synthesis or algorithmic syn-

thesis, is a design process that given a high-level behavioral specification of a digital system

and a set of constraints, automatically generates a Register-Transfer Level (RTL) structure that

implements the desired behavior [79]. Different HLS tools use different high-level behavioral

specification languages like C, C++, SystemC, or OpenCL, which are untimed or partially timed

algorithmic descriptions, to describe the design. This description is transformed to a fully-timed

and bit-accurate RTL implementation by the HLS flow. HLS process usually consists of a

number of tasks which are done in different steps. HLS front-end performs lexical processing,

control and data flow analysis, and optimizations in order to build and optimize an intermediate

representation to be used in the subsequent steps. In HLS synthesis step, the design decisions are

taken, to obtain an RTL description of the target architecture that satisfies the design constraints.

By scheduling, resource allocation, and resource binding the number and type of hardware
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modules to be used is established and each instruction is scheduled and assigned to one of the

hardware resources that can execute it. Finally in the last step of HLS, an RTL implementation is

generated containing control and steering logic circuits.

Logic Synthesis and Implementation is the process to synthesize the RTL design and

implement the final design on FPGA. Synthesis optimizes a design for a specific implementation

target, such as a FPGA chip or a semi-custom ASIC chip. The outcome of high-level synthesis is

typically a structural netlist. The netlist contains the primitives on the FPGA and the connections

between them. Implementation is the process of taking the previously generated netlist and

preparing the design to be configured onto a specific device. It consists of a number of steps as

follows. Mapping is the process of pairing the generic logic to the specific primitives (slices,

BRAMS, etc.) in the target FPGA. After mapping, placement and routing is performed. During

placement, the placer assigns each primitive to a physical site on the device. Then it routes,

or connects, the components using the wires in the FPGA as defined by the netlist. Placement

and routing typically use sets of heuristics to achieve optimization objectives in an expeditious

manner. A placement takes as it inputs the netlist, together with a device map showing the

location of each of its functional units, in order to select a legal location on the FPGA for each

functional block in the netlist, such that the routing of these blocks is optimized. In general,

synthesis tools allow some freedom in the users preference of the placement of circuit. The

design is then passed on to the bitstream generator which generates all the information needed to

configure a design onto a device.

2.2 Isolating faulty primitives in FPGA

We earlier stated that faulty component isolation on FPGA is straightforward, here we

describe how it can be done. We employ a mechanism to periodically detect permanent faults on

FPGAs using testing methods [37]. If a permanent fault is detected, the system identifies and

reports the exact location of the fault [82, 89]. As soon as the location of the faulty primitive
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is known, we can isolate it on FPGA, and perform placement and route again. In order to

isolate the faulty block in FPGA, we can use the capability that the synthesis tool provides us

to include specific primitive cells in the design. To make sure our design is not mapped to the

faulty primitive, we can force the placement process to use it for a dummy operation that we

intentionally add to the design. For example, in Xilinx synthesis tool, to isolate a faulty primitive,

we define a dummy element in the RTL design and put a KEEP directive on it. This way the

synthesizer will keep this dummy element in the design despite the fact that it is not connected

anywhere and thus would be normally removed by synthesis tools. We then force this dummy

element to be placed on the faulty primitive using set property LOC command in the constraint

file. This way none of our blocks in the design is placed on that faulty primitive. This process

can be easily automated by generating a simple script.

2.3 OpenCL Execution Model on GPU and FPGA

OpenCL is a standard framework for developing parallel programs that execute across

heterogeneous platforms consisting of GPUs and FPGAs. OpenCL uses a subset of ISO C99

with added extensions for supporting data and task-based parallel programming models. The

programming model in OpenCL comprises of one or more device kernel codes in tandem with

the host code. The host code typically runs on a CPU and launches kernels on other compute

devices like the GPUs and/or FPGAs through API calls. These kernels execute on compute

devices that are a set of compute units (CUs), each comprising of multiple processing elements

having ALUs. Each instance of the OpenCL kernel is called a work-item. The work-items

execute on a single processing element and exercise the ALU. The OpenCL platform model

from the programming model to the framework of the compute devices is illustrated in Fig. 2.1.

To launch a kernel, the programmer determines a group of work-items to execute on the device

which is referred as an ND-Range. A group of work-items, typically 256 work-items, form a

work-group that shares a local memory space. Work-items from one work-group cannot access
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the local memory of other work-groups. Work-items are further grouped into wavefront which is

composed of 64 work-items, as the unit of scheduling.

…

…

…

…

…

…

…

…

…

Processing Element

Compute Unit (CU) Compute Device

Host

Host Code

Kernel Code

Work-item

Figure 2.1: OpenCL platform model.

GPUs and FPGAs exploit data-level parallelism differently. GPUs are single-instruction

multiple-data (SIMD) devices that exploit data-level parallelism: they group processing elements

in a CU to perform the same operation but on their own individual data. On the other hand,

FPGAs exploit pipeline parallelism in a CU where different stages of the instructions are applied

to different work-items concurrently. FPGAs can further improve the performance benefits by

creating multiple copies of the kernel pipelines (synthesized version of an OpenCL kernel). As

the kernel pipelines can be executed independently from one another, the performance would

scale linearly with the number of copies created owing to the data-level parallelism model

supported by OpenCL. Altera OpenCL SDK [1] and Xilinx SDAccel [6] allow programmers to

use high-level OpenCL kernels to generate an FPGA design with high performance per Watt [19].
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2.4 GPU Architecture

GPUs are large parallel structure of processing cores. The original intent when designing

GPUs was to use them exclusively for graphics rendering that often carry same operations

on multiple data items and the processed data is usually destined for termination on a screen

buffer. However, the massive parallelism of compute operations was quickly recognized as useful

beyond large scale graphics rendering, into solving scientific computational problems. To serve

these needs, GPUs evolved into General Purpose GPUs or GP-GPUs that feature an instruction

set sufficient to carry one entire computation without the need for a “main” general purpose

processor to be GPU would normally be an accelerator. In the big picture, the GPU consists of

many small processors and has its own data storage hardware. The main GPU vendors, NVIDIA

and AMD, use different terminologies for their structures. In this dissertation, we mainly use an

AMD GPU for our experiments, expect from chapter 4 that we target an NVIDIA GPU. Since

the high-level architecture of GPUs are similar, we introduce our target GCN-based AMD GPU

architecture here.

2.4.1 AMD GCN architecture

AMD Graphics Core Next (GCN) architecture is a RISC SIMD architecture that re-

places the older VLIW SIMD architecture. In this dissertation, we target Radeon HD 580 RX

(Ellesmere) device which has 36 compute units (CUs). The block diagram of this architecture is

shown in Fig. 2.2. Every CU has four SIMD units and a wavefront scheduler. Each of the four

SIMD units can be scheduled independently. The CU has its own hardware scheduler that is

able to assign wavefronts to available SIMD units with limited out-of-order capability to avoid

dependency bottlenecks. Each SIMD unit has 16 stream cores (SCs); therefore, it brings a total

number of 64 SCs per CU and 2304 SCs per Ellesmere device. The CU has a scratchpad memory,

where OpenCL local memory is allocated. In these GPUs, sixteen work-items are executed in

SIMD fashion, and the whole wavefront (64 work-items) is executed over four clock cycles.
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Figure 2.2: Block diagram of the Radeon GCN architecture

Therefore, a work-group is comprised of up to 4 wavefronts that share the execution resources

in a CU. To manage these resources, a wavefront scheduler dynamically selects wavefronts for

execution. For efficient hardware utilization, the work-item count should be an integer multiple

of 64. Each CU executes one or more work-groups at a time. When the CPU launches an

OpenCL kernel into the GPU, the work-groups are mapped into the CUs until all of them reach to

their maximum occupancy. When a work-group finishes execution, the associated CU allocates a

new waiting work-group, and this process is repeated until the entire ND-Range is executed.
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Chapter 3

Enabling Task Migration to Isolate

Corrupted Cores in GPUs

Graphic Processing Units (GPUs) offer high computational throughput using hundreds of

parallel cores. As technology scales down and device dimensions near atomic scales, manufactur-

ing features are no longer as ”chiseled” as in larger dimensions. This makes devices increasingly

more susceptible to different types of errors occurred during manufacturing or lifetime of device.

In this chapter, we present a software-based methodology to isolate faulty units and mitigate

hardware failures of GPUs. This method enables task migration and rescheduling to quarantine

the defective hardware units and ensure correct execution. The compilation strategy along with

proposed introspective and healthy kernels can adaptively shift the workload from less reliable

units to more reliable units. By isolating defective units, we can make use of other available units

and improve the cost and lifetime of the GPU. We evaluate the effectiveness of the proposed

method for various OpenCL kernels on AMD GPU architectures.
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3.1 Introduction

Due to many factors such as transistor scaling, low voltage, and high frequency, todays

processors are more than ever subject to fallouts. Defects can happen during the manufacturing

process, some of which might not be detected during factory testing and might progressively be

detected during processing. Variability of process parameters in conjunction with aging caused

by non-uniform stress is also one source of failure for GPUs with thousands of cores [12]. If a

core in GPU gets erroneous, it should no longer perform any task, or otherwise the GPU cannot

ensure functional correctness. In fact, the corrupted core should be isolated and its workload

should be assigned to other functional cores. However, scheduling and allocation is embedded

in GPU hardware, and it can not be modified. Therefore, with current GPUs, the device can no

longer be used in case any error is detected.

Parallel execution in GPUs provides an important ability to reallocate workloads in

response to the health state of the system. To increase the lifetime of GPU, we introduce a

software approach to enable rescheduling and faulty core isolation. Accordingly, we make the

following main contributions:

• We propose innovations in the static compiled code by introducing the notion of introspec-

tive kernels. An introspective kernel adaptively monitors the health state of a GPU device

and triggers runtime workload reallocation scheme. On detection of corrupted cores, a

just-in-time compilation process replaces the introspective kernel with a healthy kernel

that responds to the specific health state of the underlying GPU device.

• To isolate the faulty cores, the healthy kernel is customized to seamlessly bypass the

workload from the degraded cores by shifting the workload to the healthy counterparts.

To reduce the performance penalty due to the time-multiplexing of available cores, the

generated healthy kernels can be further tuned according to the number of degraded cores.

• We further show the benefit of this approach for a GPU with aged cores. By shifting the
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workload from an aged core to healthy ones, the aged hardware units can be gradually

healed. This reduces the overall hardware cost due to efficient use of hardware components

and increases its lifetime and improves system cost.

We evaluate our technique on the the AMD graphics core next (GCN) architecture introduced

in chapter 2. We implement our approach targeting OpenCL (Open Computing Language)

applications. OpenCL kernels can be executed on both AMD and Nvidia GPUs [87]. Moreover,

our technique can easily be extended for CUDA-based platform.

3.2 Detecting and locating faulty cores

Our approach can be used for isolating cores in the event of intermittent and permanent

faults or prediction of timing-induced faults. This type of faults can be caused by defects or

variations during the manufacturing process or aging during the lifetime of system. Due to aging,

the threshold voltage of a transistor increases, which causes delay-induced failures and raises the

propagation delay of logic gates over time. Due to static variation and different load on different

compute units, they age with different pace. The device lifetime is limited by the most aged

component in the chip.

We assume that only compute units are vulnerable as memory in GPU is protected by

parity or ECC bits. The objective is to build a map indicating which core is reliable and which one

is unreliable. For detecting and locating faults, we either can use functional testing techniques,

or delay monitoring sensors. The health result through testing or sensors are written in memory

and it can be accessed by software.

The first fault detection and location solution is to launch tests at a regular pace. This

test consists of a series of benchmarks targeting error detection such as [33] combined with the

ability of locating faulty unit at hardware level. The second solution is to use delay monitoring

sensors. To ensure necessary observability for non-uniform aging degradation, in situ delay

monitoring sensors with digital outputs have been proposed and validated on silicon [105]. These
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sensors enable high-volume data collection to guide dynamic management schemes and warn

of impending device failure. Using compact delay monitoring sensors [105] that provide ∆Vth

measurement with 3σ accuracy of 1.23 mV for a wide range of temperature, enables large scale

data-collection across all the components. Test chips that has been fabricated efficiently consider

multiple sensors banks containing up to total 256 NBTI sensors, hence the power overhead of

laying out thousands of these sensors would only be a few hundreds of µW at maximum, which

is a small fraction of power in our case [105].

3.3 Proposed methodology to quarantine faulty cores

We propose a compilation strategy to enable isolation of faulty stream cores and increase

the lifetime of a GPU device through adaptive workload shifting from degraded SCs to other

available SCs. A run-time system needs to observe the current health state of SCs to be able to

adapt the kernel code accordingly. As described in the previous section, this information is written

in part of memory that can be read by software. The AMD Compute Abstraction Layer (CAL)

provides an easy-to-use interface to the parallel processor arrays found in AMD GPUs. CAL,

part of the AMD accelerated parallel processing software stack, abstracts the hardware details

of the AMD stream processor. CAL provides a device driver library that allows applications to

interact with the stream cores at the lowest-level. We re-factor the naive kernel code by inserting

a custom API, check degradation status(), to access the test/sensor measurements. This

new version of the naive kernel is called an introspective kernel, in which every work-item

investigates the degradation information of its corresponding SCs. The introspective kernel can

query to check health information in memory to find out whether the SC used by the work-item

is faulty or not by calling check degradation status(). Figure 3.1 illustrates the overall

compilation flow for adapting kernels. The introspective kernel identifies the reported amount of

degradation, and consequently SC isolation might be triggered.
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Figure 3.1: Kernel adaptation flow

3.3.1 Stream core isolation

The key idea of SC isolation method is to generate healthy kernels by modifying the

normal distribution of workload so that the faulty SC is isolated. This is done by adaptively

idling faulty SCs and assigning its work-items to the other healthy SCs in the same CU. For

any given kernel, an introspective kernel is compiled and executed. When any of the SCs is

degraded, it should be isolated and the workload should be removed from it. Therefore, for each

naive kernel, a healthy version is generated in which all the work-items from those degraded

SCs are moved to the other healthy SCs within the same CU. Since in an OpenCL kernel, there

is no explicit mapping between a work-item and a SC, a set of extra work-items are spawned

that exactly perform the same task as those on the degraded SCs. The work-items that have been

assigned to any of the degraded SCs will not perform any operation.

Considering the adaptation flow in Fig 3.1, when the introspective kernel runs, each

work-item checks the memory corresponding to the test result or the output of delay monitoring

sensor for that SC. Fig 3.2 shows the code snippet for the introspective kernel. Besides the

normal execution of the naive kernel, the introspective kernel reports the required number of
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__kernel void IntrospectiveKernel (... default_parameters ...)
{

//naive kernel execution
kernel(default_parameters);

if (check_degradation_status() > 0)
RWIs++; // triggers SC isolation, increment redundant work-item

}

Figure 3.2: Introspective kernel

redundant work-items (RWIs), i.e., the number of extra work-items that a work-group requires to

bypass the faulty SCs. If this number is more than zero, the just-in-time compiler compiles a

healthy version of the naive kernel. The healthy kernel is launched with a different work-item

count which simply can be the default work-item count for the naive kernel plus the reported

redundant work-item count by the introspective kernel. In other words, for every work-item that

is mapped to the degraded SC, a new redundant work-item should be generated to be mapped on

another healthy SC. This is doable when the naive work-item count plus the required redundant

work-item count is less than 256 (which is the limit for work-item count per work-group in

Ellesmere GPUs). For cases that the new work-item count is greater than 256, the work-item

count is decreased and the work-group count is increased instead in the healthy kernel. Further,

the compiler is able to tune the number of work-items of a healthy kernel based on a specific

degradation scenario described in Section 3.4.1.2.

The healthy version of kernel takes the naive work-item count as an extra input parameter

as shown in Fig. 3.3. OpenCL kernels are usually written in a way that the work-item ID is

used to index a memory location. To preserve functionality, the redundant work-items should

exactly imitate those work-items that are not executed because they are mapped to the faulty

SC. Therefore, every work-item checks its corresponding memory location filled with the test

result or delay monitoring sensor information which forms its ‘meta data’. If the corresponding

SC is a faulty one, the work-item pushes its ID in a queue and performs no other operation.

This queue is a light weight data-structure protected with atomic index and is shared within the
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__kernel void HealthyKernel(... default_parameters ..., __const int work_item_count)
{

unsigned int work_item_id = get_local_id(0);
if (check_degradation_status()){

push(work_item_id);
go_to_end_of_kernel_and_do_nothing();

}
if (work_item_id >= work_item_count){ //redundant work-items

virtual_work_item_id = pop();
//naive kernel execution
kernel(virtual_work_item_id, ...default_parameters...);

}
else //normal work-items

kernel(work_item_id, ...default_parameters...);
}

Figure 3.3: Healthy kernel

work-group. The queue has a local memory of size 128 Bytes to store the local ID of degraded

work-items. Since every work-group has a maximum number of 256 work-items, this local

memory queue is sufficient for a 50% failure rate for SCs in a CU. Given that a CU can run up

to 6 simultaneous work-groups, the healthy kernel consumes 6*128=768 Bytes of 32K shared

memory of CU. This queue size does not impact performance of any kernels thanks to its limited

memory footprint. Other work-items that are mapped to a non-faulty SC execute normally. The

redundant work-items, which have the local ID greater than the naive work-item count, must be

executed on behalf of the resting work-items. This is done by a virtual ID redirection through a

conditional code for ID assignment. Every redundant work-item changes its local ID to the ID

of one of the disabled work-items by popping it from the queue, and then executes the kernel

with extracted virtual work-item ID. Using virtual ID redirection, the redundant work-item

can read the required data from the memory hierarchy exactly the same way as the disabled

naive work-item and there is no need to move any data. This forms a temporal fault-aware

rescheduling and workload shifting that improves the lifetime of a GPU device while imposing

low performance penalty discussed in Section 3.4.1.
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Table 3.1: Parameters for the Naive Kernels

Kernel abbreviation #WIs per WG #WGs

SobelFilter SF 256 1024

BlackScholes BSC 128 2048

Convolution CNV 256 1024

FastWalshTransform FWT 128 2048

FloydWarshal FW 256 1024

MatrixMultiplication MM 64 4096

QuasiRandomSequence QR 128 2048

3.4 Experimental Setup and Results

We focus on the AMD accelerated parallel processing (APP) software ecosystem [10]

suitable for stream applications written in OpenCL. The stream kernels are compiled into

GPU device-specific binaries using the OpenCL compiler tool-chain which uses a standard

off-the-shelf compiler front-end (g++), as well as the low-level virtual machine framework with

extensions for OpenCL as the back-end. Table 3.1 lists the kernels, the work-item (WI) count

per work-group (WG), the number of work-groups for the naive kernel. We have used Radeon

RX 580 GPU for our experiments in this section.

3.4.1 Performance and Energy Overhead

The number of faulty SCs is process-voltage-temperature-workload dependent and

changes from chip-to-chip and overtime. Therefore, we assess the performance overhead

of our approach for two distinct degradation scenarios:

1. We measure the performance overhead when the number of degraded SCs is increased

from 1 to 32 in a single CU. A CU with 32 degraded SCs shows a pessimistic aging

scenario where 50% of its resources (the SCs) are degraded. This tests the performance

overhead of our technique in the worst case.
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2. We also measured the sensitivity of the performance overhead for different number of

degraded CUs (from 1 to 10 degraded CUs).

Figure 3.4 measures the performance overhead of the SC healing method when the

number of degraded SCs is increased from 1 to 32 for Ellesmere GPU, and the degraded SCs

are all located in one CU. As can be seen, if we have one degraded SC in a CU our method

incurs 0.14%–8.16% (with geometric mean 1.3%) extra performance overhead depending upon

the type of kernel. As we can see, for some applications like FWT and CONV, this overhead is

higher than others. This is because for those applications the number of work-items is a more

important factor in the execution time of the application. In fact, finding the optimum number of

work-items in a work-group is one important knob in GPU program optimization. Therefore,

as we discuss later, we find the best number of work-items in order to reduce this performance

overhead. As we increase the number of degraded SCs, this overhead increases. For the very

pessimistic scenario, when we have 32 degraded SCs per CU, the performance overhead for

different applications changes between 1.6%-13% with geometric mean of 7.1%. This is because

the number of working work-items in work-groups are reduced and the number of workgroups

that is mapped to CUs are increased. In fact, there are a few factors that affects the performance

overhead of healthy kernel, which we discuss later in this section.

Figure 3.5 shows the energy overhead of using healthy kernels in comparison to the naive

kernel. The energy overhead comes from the fact that the execution time of healthy kernels

are more than the naive kernel. As can be seen, the energy overhead follows the behaviour

of performance overhead shown in figure 3.4. For one degraded SC, this number is between

0.045%-7.83% for different applications. For 32 degraded SCs, the energy overhead changes

between 1.61%-9.97% with geometric mean 6.37%.

If there is any degraded SC in any CU, the required number of redundant work-items is

generated for all the work-groups. The number of work-items and work-groups are only con-

trollable from clEnqueueNDRangeKernel API in an OpenCL application; and all workgroups
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kernels

has the same number of workitems. Consequently, if we have one faulty SC in a CU or one

degraded SC in more than one CUs the performance overhead would not vary. Figure 3.6 shows

the performance overhead when the number of degraded CUs is increased from 1 to 10 – each

CU has one degraded SC.

The difference between performance overhead of different kernels using our approach

comes from a couple of factors. The first factor is the number of work-groups which is discussed

in Section 3.4.1.1. The other factor is related to the intrinsic characteristics of each kernel. The

memory access pattern, and location of barriers for synchronization would affect the performance

of the healthy kernel. As an example, if the naive kernel only benefits from intra-wavefront

locality, then changing the order of work-items within a work-group may hurt the performance

of healthy kernel due to higher cache miss rate.

In the following, we have performed a sensitivity analysis on the execution time of

the naive and healthy kernels considering different parameters: the number of work-items,

the number of work-groups, the compilation optimization options, and finally the target GPU

architecture.
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(a) BlackScholes (b) SimpleConvolution

Figure 3.7: Effect of changing number of work-groups (input size) on Radeon RX 580 for (a)
Blackscholes (b) SimpleConvolution as the number of degraded SCs is changed from 1 to 32 in
a CU

3.4.1.1 Effect of Number of Work-Groups (Input Size)

Fig 3.7 illustrates the effect of changing the input size, i.e., the number of work-groups on

the performance overhead of our method using. I) With a small input size (light workload) that

utilizes all compute-units only once in the naive version (with 36 work-groups, device utilization

= 100%), the performance penalty is very small, under 1%. II) With a large input size (heavy

workload) containing a number of work-groups that is comparatively larger that the number

of CUs (number of work-groups = 16384 for naive kernels), the performance penalty is larger,

between 5%-10% for Convolution and 4%-6% for Blackscholes. The side effect of temporal

scheduling in our reshceduling method is pronounced with larger number of work-groups, since

more work-groups are mapped to the available SCs.

3.4.1.2 Effect of Number of Work-items for Performance Tuning

Figure 3.8 shows the execution time of naive SobelFilter kernel with different number of

work-item for the same workload. As can be seen, number of work-items has a large impact on

the performance of the program. For this kernel, we changed the work-item count from 116 to

252, for executing the same workload, and the execution time varies between 16.55 ms and 23.04
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ms. This is one of the main reasons that the our method has performance overhead comparing

to the naive kernels. The SC healing method is able to tune the number of work-items of

Figure 3.8: Effect of changing work-item count in the naive kernel for SobelFilter
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SC isolation

#degraded SCs > 1

#degraded SCs

Look-up Table

#naiveWI#degSC #healthyWI

Tuned Healthy KernelTuned Healthy Kernel

Naive Kernel

JIT Compiler

Figure 3.9: Performance tuning for healthy kernels.

a healthy kernel based on a specific degradation scenario to boost performance. The method

determines an optimal number of work-items as a function of degraded SCs per CU for a healthy

kernel such that its performance penalty is minimum. To implement this feature, a lookup
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table (LUT) is designed for each kernel which takes the number of degraded SCs – calculated

using the reported RWIs – and the number of naive work-items as the inputs and returns the

best number of work-items suitable for the degradation scenario such that the performance

overhead is minimized. This LUT is constructed through an offline pre-processing phase by

measuring the performance using various possible work-item counts for the kernel. The off-line

preprocessing is a one-off activity.After constructing LUT, the recompilation process is guided

to further reshape the healthy kernel for improved performance as shown in Fig. 3.9. This is

done as part of the aging-aware kernel adaptation flow in Fig. 3.1.

Figure 3.10: Effect of changing (#WI, #WG) on the execution time of healthy kernel for a
synthetic kernel with a fixed input size (1209600 integers) on Radeon 580rx

Fig. 3.10 shows the effect of changing work-item count and work-group count on the

execution time of a synthetic healthy kernel. This kernel gets a number of integer inputs and

performs arithmetic calculations on each entry in the global memory. For a given fixed input size,

the work-item count is changed to the all possible values between 64 and 256. The experiment

is repeated for different work-item counts when there is 1, 2, and 3 degraded SCs in a CU. As

shown, for each pair of degradation scenario and naive work-item count there is an optimal point

in a close proximity that yields shorter execution time. This information is stored in the LUT in

a discretized manner to infer the best work-item count.

We show the effectiveness of leveraging this performance tuning knob. Figure 3.11 shows

the speedup of a tuned healthy synthetic kernel (used in Figure 3.10) compared to a normal
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healthy kernel which is unaware of tuning. Theses experiments are repeated for 3 different

degradation scenarios (1, 2, and 3 degraded SCs in a CU) and 18 different input sizes with heavy

workload, and the speedup of using a tuned healthy kernel to the non-tuned healthy kernel is

reported. The naive kernel has 256 work-items per work-group; therefore, the non-tuned healthy

kernel decreases its active work-item count to 128 to have enough space in the wavefronts for

the redundant work-items. As shown, for any input size, the performance tuning method has a

speedup range of 10%–20%.

Figure 3.11: Performance benefit of using a tuned healthy kernel over a healthy kernel which
is unaware of tuning (The benchmark is the same as Figure 3.10)

3.5 Mitigation of Effects Caused by Aging in Microelectron-

ics

3.5.1 NBTI-Induced Performance Degradation

Aging has been a main factor in performance and reliability degradation of nanoscale

devices. Aging decreases the lifetime of system. NBTI is an aging mechanism which manifests

itself as an increase in the PMOS transistor threshold voltage (Vth) and causes delay-induced

failures. When a PMOS transistor is negatively biased (Vgs = -Vdd), the dissociation of Si–H

bonds along the silicon oxide interface causes the generation of interface traps, while removal
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of the bias (Vgs = 0) causes a reduction in the number of interface traps due to annealing

[13, 17, 20, 21]. The rate of generation of these traps is accelerated by temperature, and the

time of applied stress. The threshold voltage (Vth) of the PMOS transistors increases as more

traps form, reducing the drive current, which in turn raises the propagation delay of logic gates

over time. Thus, the NBTI-induced performance degradation strongly depends on the amount

of time during which a PMOS transistor is stressed, that is, when a logic ‘0’ is applied to the

gate. The increase in Vth is a logarithmic function of the corresponding stress time [68], which

is distributed non-uniformly across a logic circuit, leading to 2–5× difference in the degradation

rate of Vth [115] across a chip. When the stress condition is relaxed, aging can be recovered

partially, and the Vth decreases toward the nominal value [14, 115].

NBTI is best captured by the Reaction-Diffusion (RD) model [86]. This model describes

NBTI in two stress and recovery phases. NBTI occurs due to the generation of the interface traps

at the Si-SiO2 interface when the PMOS transistor is negatively biased (Vgs = -Vdd) (i.e., stress

phase). In the stress condition, some holes in the channel interact with the Si-H bonds in the

interface which causes disassociation of Si-H bonds. The resulting hydrogen atom diffuses away

and leaves positive traps in the interface. As a result, the Vth of the transistor increases which in

turn slows down the device. Equation 3.1 shows this increase in the Vth due to stress [115]:

∆Vth−stress = (Kv
√

tstress +
2n
√

∆Vth−t0)
2n (3.1)

where tstress is the amount of time that PMOS transistor is under stress; Kv has dependence on

electrical field, temperature (T), and Vdd; n is the time exponent parameter which is 1/6 for H2

diffusion; and ∆Vth−t0 is the initial Vth variation of PMOS at time zero.

Removing stress from the PMOS transistor (Vgs = 0) can eliminate some of the traps by

diffusing back dissociative H atoms, which partially recover the Vth shift. This is known as the
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recovery phase:

∆Vth−recov = ∆Vth−stress(1−
2ξ1te +

√
ξ2Ctrecov

(1+δ)tox +
√

Ct
) (3.2)

where trecov is the time under recovery; tox is the oxide thickness; te is the effective oxide

thickness; t is the total time; C has temperature dependence; ξ1, ξ2, and δ are constants [115].

[14] derived a long-term cycle-to-cycle model as follows. In this model, the stress

and recovery cycles can be simulated for i cycles to find the Vth degradation. ∆Vth−stress,i and

∆Vth−recov,i are temporal changes in Vth at the end of i-th stress and recovery cycles, respectively:

∆Vth−stress,i = (Kv
√

αTclk +
2n
√

∆Vth−recov,i)
2n (3.3)

∆Vth−recov,i = ∆Vth−stress,i(1−
2ξ1te +

√
ξ2C(1−α)Tclk

(1+δ)tox +
√

CiTclk
) (3.4)

where α is duty cycle or the ratio of time spent in the stress to one period of stress-recovery;

Tclk is the period of one stress-recovery cycle; and i = t/Tclk. The NBTI rate depends on many

factors including process-related parameters, temperature, voltage, and workload. Here we focus

on the impact of workload or α in the above equations. The duty cycle (α) is controlled by the

software to reduce the NBTI-induced effects.

A transistor with a larger Vth than expected has lower drive current, and higher delay

during a transition. The switching delay of a transistor can be roughly expressed as the alpha-

power law:

τ ∝
VddL

µ(Vdd−Vth)α′
(3.5)

where µ is the mobility of carriers; α′ ≈ 1.3 is the velocity saturation index; and L is the channel

length. Therefore, the delay variation ∆τ/τ can be derived as follows:

∆τ/τ =
∆L
L

+
∆µ
µ

+
α′

Vdd−Vth
∆Vth (3.6)

Considering only the effect of ∆Vth shift and neglecting other terms, the delay degradation ∆τ is
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Figure 3.12: Vth shift for different kernels at the end of 360 hours on HD 5870 with one
degraded SC.

shown in Equation 3.7:

∆τ =
α′∆Vth

Vdd−Vth−t0
τ0 (3.7)

where Vth−t0 is the original transistor threshold voltage (at time t0), and τ0 is its corresponding

delay before degradation. We consider the largest ∆Vth to calculate the worst case delay degra-

dation [18, 59, 85, 109] in a circuit to assess the potential benefits of proposed NBTI mitigation

techniques. In our analysis, we set all the internal node states to ‘0’ during the stress mode to

determine the worst case circuit degradation that limits the lifetime of a chip.

3.5.2 Improvement in ∆Vth

We consider cycle-by-cycle architectural NBTI analysis [14] in the 65nm PTM tech-

nology with Vgs =1.2V, T=300K. The stress statistics of the kernels execution obtained from

Multi2Sim simulator which is a cycle-accurate CPU-GPU simulation framework [111]. It is

common to assume that all PMOS in a circuit degrade by the same amount [18, 59, 85, 109].

Figure 3.12 shows the Vth shift at the end of 360 hours due to the naive kernel execution for

different kernels. As we can see in this figure, for these kernels, Vth can change from 41.2 mV to

94.5 mV after 360 hours of execution.

In order to reduce the Vth, as explained above, we can have periods of recovery, in which
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we use our healthy kernel and put the degraded SCs in recovery mode. Figure 3.13 shows the

behaviour of Vth shift based on the model explained above. It shows that it takes a few seconds

to reduce Vth from 100 mV. Although this NBTI model seems optimistic, but it shows that if we

remove stress from transistors, they can be healed. Therefore, we can recover aged SCs in the

GPU using the method we have proposed in this chapter.

Figure 3.13: Vth shift behaviour during recovery phase based on the NBTI model in [14].

3.6 Related Work

For mitigating error effect on GPU, [117] proposed a hardware redundancy method. This

method uses two vector lanes or two stream processors along with redundant data storage to

perform the same computation. This approach induces high overhead in resource utilization

and energy. In contrast to this approach, our method does not require redundant hardware

resources. [74] [73] propose task migration by modifying GPU hardware scheduler and the

instruction dispatcher to cluster the computational cores and distribute instructions to different

cores based on the health state of system. This work requires intrusive modification in hardware,

it is inflexible, and can not make error recovery possible for the available GPU devices. Two

methods have been proposed to tolerate faults in GPU lanes [38]. They perform intra-cluster and

inter-cluster thread shuffling that requires modifications in pipeline and warp scheduler. These

methods incur inevitable area and performance overhead for intrusive hardware modification. A
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coarse-grained method for mitigating aging-induced degradation for GPUs is proposed in [23]

that performs power-gating at the granularity of compute units. They use an online algorithm to

find optimal number of compute units which imposes extra time overhead to the execution time

of each kernel. A linear programming scheme is employed to find a new instruction to replace

the cores default NOP instruction for minimizing aging effects [42]. This approach also requires

intrusive architectural supports and pipeline modification. Wearout-aware compiler-directed

register assignment techniques have been proposed in [9] that attempt to distribute the stress-

induced wearout throughout the register file. Even though [9] does not impose architectural

overheads and modification, their compiler strategies are limited to healing the register file. In

contrast to all these methods, our method is a low overhead software-level solution that can

mitigate permanent error and aging effect on GPUs in the granularity of stream cores.

3.7 Chapter Summary

We propose innovations in the static compiled kernel code in conjunction with adaptive

rescheduling and workload reallocation strategies to isolate the degraded components and

mitigate hard error effect and lifetime uncertainty in GPUs. This method leverages a compiler-

directed scheme to generate and launch healthy kernels that respond to the health state of a GPU.

By isolating degraded units, we can make use of other available units and improve the cost and

lifetime of the GPU. Online monitoring and software calibrations schemes, such as ours, enhance

benefits of GPU accelerations as their reliability is an important issue.
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Chapter 4

Case Study: Reducing Redundant

Hardware Overheads

In the previous chapters, we have proposed effective compiler-level solutions for isolating

faulty components in GPU and FPGA accelerators. These methods allows us to continue using

the faulty accelerator through isolation and task migration. In the rest of this dissertation, we

address the other challenge of programmable hardware accelerators and present methods to

utilize their available hardware resources more efficiently. In this chapter, we perform our

resource optimization study at the level of hardware. The goal in this chapter is to find out if

there are any reliability-related redundancies in the design of hardware accelerators that can be

removed or replaced with a more efficient design choice. Traditionally, memory structures are

augmented with reliability-related redundancies in order to become resilient to errors, which

results in area and energy overhead. We study the necessity of these redundancies and the

resiliency of unprotected tag caches in GPU. We further study the usefulness of a very low

overhead tag error mitigation method to replace parity bits, which can be applied to read-only

and write-through caches in the GPUs. The new cache indexing mechanism distributes memory

accesses more efficiently and mitigates some pathological address strides that cause error. This

method also increases cache throughput. This architecture can eliminate the need for parity
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protection in a portion of tag SRAM cache structures, while it is required to use redundancy

for the rest of structures. This approach can be applied to any system that uses cache memory,

including off-the-shelf GPUs.

4.1 Introduction

Performing resource optimization in hardware-level at design time is one of the most

effective solutions to avoid resource waste. All applications that are run on the hardware would

benefit from any optimization that is performed in this level of abstraction. There are traditional

reliability-related redundancies that are augmented in the design of hardware to mitigate the

effect of error. The most common reliability-related redundancy is found in memory structures.

Due to dark silicon effect, the memory portion of chips are getting larger. Therefore, it becomes

more effective to reduce unnecessary overheads from memory.

GPUs have multiple levels of cache memory structures to improve performance and

reduce energy overhead for accessing data from the main memory. These cache structures are

vulnerable to transient hardware errors, especially as their sizes increase and due to operating

at low voltage levels. These transient errors can cause failures and corrupt application output.

To protect against transient errors, cache memories typically use error detection/correction

mechanisms, such as parity/error correcting codes (ECC) bits. When a cache line is augmented

with parity/ECC bits, every cache access also requires error detection/correction encoding. It

is useful to study the necessity of using these parity/ECC bits, and investigate if there is any

other method with lower overhead that can be used instead while the reliability requirement is

satisfied.

To have a reliable system, the overall FIT (failures in time)1 rate of the system should be

lower than a specific value. For example, for HPC purposes, FIT rate of 10 can be acceptable.

The overall FIT rate of system is the addition of FIT rate of each component. The FIT rates of

1One FIT is defined as a failure rate of 1 per billion hours of operation
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each component is proportional to its size. Therefore, the FIT rate is higher for larger cache

structures. If a parity/ECC protection is used, the SDC (silent data corruption) FIT rate becomes

nearly zero; meaning that the errors that happen will not affect the output. Each cache structure

has a tag SRAM structure and a data portion. The tag SRAM has a smaller size, and it has a

lower impact on the overall SDC FIT rate of the GPU. This can be a good option for removing

parity protections and replacing it with an alternative method with lower overhead. We found

this opportunity in the tag structure of read-only instruction caches or write-through data caches

to eliminate the need for parity protection. On the other hand the data portion of cache has a

higher size and a higher impact on the reliability of system. It is not easy to replace the parity

protection with a lower overhead method which can satisfy the required reliability of system.

Therefore, it is necessary for the data portion of the cache structures to have the reliability related

redundancies.

A single-bit error in the tag memory of a set-associative cache is unsafe if the entries

that map to the same set are separated by a Hamming distance of 1. If an error happens in a tag

entry and this bit flip results in an incorrect match to the reference tag, the wrong data is read

from the cache. This false hit event might cause silent data corruption. Therefore, if we change

the distribution of tag entries to reduce the chance of mapping two tags with 1-bit Hamming

distance to the same set, the probability of an SDC event is reduced. It has been shown that hash

functions derived from Galois Field [106] primitive polynomials satisfy this requirement. Using

this hash function, all address references that hash to the same location would be at least 3-bit

Hamming distance away from each other. The Galois Field with base 2 (GF2) is very low cost

and easily implemented using eXclusive OR (XOR) gates in hardware.

We propose an architecture that uses hash functions for set-index calculation to change

the distribution of tags in the cache. Specifically, this chapter makes the following contributions:

1. We use Galois-based hash functions, for set-index calculation, in high performance and

energy efficient GPU computing, to mitigate false hit events and improve performance.
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This work is the first to investigate the effectiveness of hash-based cache indexing schemes

for reliability purpose.

2. We provide a sensitivity analysis of cache reliability to key architectural parameters: cache

tag width, and associativity. We quantify the reliability and performance of the hash-based

cache indexing schemes for the read-only instruction and write-through data caches of the

GPU architecture. We conclude that the error probability is a function of workload address

trace characteristics and tag SRAM structure.

3. We demonstrate, for the high-performance computing (HPC) benchmarks, the probability

of false-hit events in the tag structures is very low and has a negligible impact on the

overall SDC FIT rate of the GPU. Furthermore, we show that Galois-based hash functions

for tag structures in write-through data caches further reduce the false hit probability by a

factor of 10.

4.2 Target GPU Architecture

This section provides a brief background on GPU architecture and its resilience support.

Figure 4.1 shows a simplified, representative GPU architecture for NVIDIA Volta generation

[8]. The GPU architecture comprises multiple GPU Processing Clusters (6 GPCs) and multiple

streaming multiprocessors (14 SMs per GPC) within each GPU. Large SRAM structures like

the Register File (RF) and the L1 Data Cache within each SM and the L2 Cache Data are ECC

protected. There are a significant number of tag SRAM structures within each SM (L1 Instruction

Cache, L1 Data Cache), within each GPC (uTLBs) and within each GPU (TLBs). Some of these

tag SRAM structures (L1 Data Cache, for example) are already protected. Since the point of

coherence in the GPU is the L2 Cache, it turns out that the L1 Data cache is write-through. The

point of articulation of the GPU tag SRAM structures is to highlight the area saving opportunity

by evaluating the effectiveness of low overhead tag error mitigation method. For example, in the
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case of the L1 Data Cache tag SRAMs, there is an opportunity to save a total of 168K SRAM

bits required for parity storage in all SM instances.

Figure 4.1: Volta GPU block diagram

4.3 Low overhead tag checking

For a tag SRAM array without any parity protection, errors in tag entries could cause

false hits or false misses [102]. We describe these events as follows:

Assume that an error happens in an unprotected tag entry, Tag[i][ j] (for set-index i and

way j) with value TA1, and changes its value to TA2.

• Assume that the tag SRAM receives a new address reference with set-index i, and value

TA1. In the absence of error, this would be a hit. However, because of the transient error,

the result is not a hit. This event is called false miss.

• Assume that the tag SRAM receives a new address reference with set-index i, and value

TA2 (one-bit hamming distance away from TA1). In this scenario, the Tag SRAM would

match the incoming reference with its erroneous entry having value TA2. This situation is

called false hit. False hit can be divided into two conditions:

– Assume that the only entry having value TA2 was the entry that had value TA1 prior

to the transient failure. This situation is called false hit under true miss.
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– Assume that there is another error free entry in set-index i with value TA2. In this

situation, a new reference with value TA2 would match two entries in the tag cache.

This situation is called false hit under true hit.

The tag error event space is shown in Figure 4.2.

Figure 4.2: Tag error event space

For tag SRAM structures that cache read-only or write-through data, a false miss is not a

reliability issue as a back-up copy exists and can be serviced through a refill. There might be only

a negligible impact on performance due to false misses as these events are rare. However, a false

hit under true miss can cause silent data corruption (SDC). If robust circuit design techniques

are not used to detect multiple matches for the same row, false hit under true hit condition could

also cause SDC. It should be noted that parity augmented tag SRAM arrays for single or odd bit

errors effectively suppress the false hit or miss events.

We explored different design alternatives and made an observation that there exists a

class of hash functions that map unit-distance address strides across different sets. This class of

hash functions that are derived from Galois Field primitive polynomials satisfies the properties

listed below. We use the example implementation in Figure 4.3 to describe these properties.

(Figure 4.3 illustrates an unprotected Tag SRAM structure of a 4-way set-associative cache with
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Figure 4.3: No explicit tag error checking

64 byte (B) cache line size and 128KB capacity. Assuming a 48-bit address width, Address[5:0]

determines the byte within a 64B cache line and Address[14:6] defines the set-index in the 4-way

tag SRAM array.)

• All address references that change in bit locations Address[14:6] (in general, any n con-

tiguous Address bits in an n-bit hash function) will map to distinct set-index values. This

generalizes the uniform set-index distribution property of hash free set-index calculation.

• All address references Address[47:6] that hash to the same set-index value, will be at least

Hamming distance = 3 away from each other.

For example, if AddressA[47:6] and AddressB[47:6] hash to the same set-index value i

then Hamming distance(AddressA,AddressB)> 2.

• It follows from the previous property that address references with strides of power-of-2

(Hamming distance = 1) or strides of sum of powers-of-2 (Hamming distance = 2) will

have different set-index values. This eliminates the false hit scenario that can happen in a

hash-free implementation that uses Address[14:6] for the set-index.
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This hash-based approach eliminates false hits arising from address strides with powers-of-2 or

sum of two powers-of-2. In the following sections, we estimate false hit probability for address

traces derived from HPC applications. An important side benefit of using a hash-based set-index

is the marked improvement in uniformly distributing address references across the sets and the

improvement in the cache utilization. We also study the effect on cache hit rate from using these

false hit reducing hash-based tag lookup methods.

4.4 Simulation Methodology and Evaluation Metrics

We use a configurable cache simulator to conduct our resiliency studies. This simulator

gets an address trace and cache configuration as input and evaluates the cache functionality and

resiliency metrics. Traces contain the sequence of addresses submitted to the cache under study

during the execution of a program on GPU. We extract input address traces for instruction and

data caches for Volta GPU [8]. The cache simulator can calculate the set-index value either using

the traditional way (No-hash method), or using the hash function (Hash-based method).

Other than the classic cache metrics like hit and miss rate, this simulator reports the false

hit and false miss rates described in Section 4.3. False hit and false miss might occur when a bit

error happens in a cache line. However, instead of injecting faults in cache lines and performing

simulations many times for each trace, our simulator measures these metrics without any explicit

fault injection in only a single run of the input trace. First, we explain how the false hit rate is

calculated. A false hit can occur either in the event of a cache miss or a cache hit. We define

the notions of SetEntryFalseHits Miss and SetEntryFalseHits Hit for the number of false hits

under a cache miss and a cache hit in each set entry respectively. If a cache access results in

miss, we calculate the Hamming distance of the new address reference tag and all the existing

valid tags in the corresponding set. If the Hamming distance is 1, this access might result in a

false hit. Therefore, every time the result of comparison has Hamming distance 1, we increment

SetEntryFalseHits Miss for that set entry. Another scenario that results in false hit under miss
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happens when the address reference tag matches the tag in the corresponding set but the cache

line is invalid. In fact, if a bit error occurs in the valid bit position for this entry, a false hit

happens. Likewise, if a cache access results in a hit and at the same time the address reference

tag is only one-bit Hamming distance away from any other valid tag entries in the same set, we

increment the SetEntryFalseHits Hit counter. The pesudo-code for calculating these metrics is

shown in Algorithm 3.

Algorithm 1 Computing SetEntryFalseHits
setIndex = calculate set index(Address)
refTag = calculate tag(Address)
Look up cache for refTag in the setIndex entry of tag cache (TAG[setIndex])
if Access is Hit then

for i← 1 to Associativity do
if (HammingDistance(refTag, TAG[setIndex][i])==1) then

SetEntryFalseHits Hit[setIndex]++
end if

end for
end if
if Access is Miss then

for i← 1 to Associativity do
if HammingDistance(refTag, TAG[setIndex][i])==1 then

if valid[setIndex][i]==1 then
SetEntryFalseHits Miss[setIndex]++

end if
end if
if (refTag == TAG[setIndex][i] and valid[setIndex][i]==0) then

SetEntryFalseHits Miss[setIndex]++
end if

end for
end if

This way, we increment the false hit counters every time we get Hamming distance 1 on

any bit position in the tag entry, no matter if it is the faulty bit or not. To get the false hit rate

considering bit flip in one bit position in each entry, we add a scaling phase at the end of trace

execution. After the whole trace is executed, we divide each counter by the number of bits in the

set entry i. This is summarized in the following equations. In these equations, i changes from 1

to the number of sets to calculate EstimatedFalseHits for each set.

EstimatedFalseHits Missi =
SetEntryFalseHits Missi

Associativity×TagBitWidth
(4.1)

EstimatedFalseHits Hiti =
SetEntryFalseHits Hiti

Associativity×TagBitWidth
(4.2)
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To estimate the overall false hit rate in the cache, we simply add the estimated false

hits under miss (estimated false hits under hit) calculated above for all sets and divide it by the

number of cache accesses to calculate the false hit rate under miss (false hit rate under hit).

FalseHitRate Miss =

#sets
∑

i=1
EstimatedFalseHits Missi

Accesses
(4.3)

FalseHitRate Hit =

#sets
∑

i=1
EstimatedFalseHits Hiti

Accesses
(4.4)

It should be noted that false hits under true hits can easily be handled by multiple

tag match detection mechanism and is not considered as undetected corrupted output for an

unprotected cache.

To evaluate our method, first we generate traces for different instruction and data cache

modules in our target GPU. For this purpose, we use the GPU implementation of a set of HPC

benchmark applications. A description of each benchmark can be found in Table 4.1.

4.5 Experimental Results

In this section, we show the experimental results for evaluating Hash-based set-index

selection in the instruction cache and L1 data cache in the Volta GPU. To evaluate the resiliency

of our method, we report the false hit rates. We also report the effect of using hash function on

the cache hit rate.

4.5.1 Instruction Cache Tag SRAM Structure Evaluation

We performed the experiments for two different cache sizes. First, we performed the

experiments for a 3-way set-associative instruction cache with 128B cache line size and 12KB

capacity. Figure 4.4 shows the false hit under miss and false miss under hit for the No-hash
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Table 4.1: Benchmark Description

Benchmark Description

CAM-SE Atmospheric climate modeling

AMG Algebraic multi-grid linear system solver for unstructured
mesh physics packages

Lulesh Shock hydrodynamics calculation for unstructured meshes

NAMD Molecular dynamics

Nekbone Solves Poisson equation by spectral element method

HACC Hardware accelerated cosmology code, simulates the
formation of structure in collisionless fluids under the
influence of gravity

MiniFE Mimics the finite element generation and assembly

XSBench Monte Carlo neutron transport

DGEMM Double-precision matrix-matrix multiplication

ZGEMM Complex number matrix-matrix multiplication

SGEMM Single-precision general matrix multiply

Stream Simple computational kernel (add and multiply)

and Hash-based schemes. Both schemes have false hit rate under true miss less than 0.1% and

result in similar false hit rates. For these applications, false hit under true miss is 0.0294% and

0.0296% for No-hash and Hash-based schemes on average (with standard deviation of 0.04%

for both). Also as seen in Figure 4.4(b), on average, we get 1.32% and 1.33% false hit under

true hit for No-hash and Hash-based schemes respectively (with standard deviation of 0.90%

and 0.91%). We also report the effect of using each scheme on hit rate, which can be seen in

column 2 and 3 of Table 4.2. The hit rate for these schemes is very similar: 98.1% for No-Hash

and 98.09% for Hash-based schemes on average.

In the second experiment, we consider a 3-way set-associative cache with 128B cache

line size and 24KB capacity, to measure the effect of cache size on false hit rates. Figure 4.5

shows the false hit under true miss and false miss under true hit for the No-hash and Hash-based

schemes. Doubling the cache size improves the hit rate and consequently affects the false hit rate.

For these applications, false hit under true miss is 0.022% for both No-hash and Hash-based

48



(a) False hit under true miss

(b) False hit under true hit

Figure 4.4: False hit for a 3-way12KB set-associative instruction cache: Hash-based vs No-
Hash Schemes

schemes on average (with standard deviation of 0.037% for both). Also as seen in Figure 4.5(b),

on average, we get 0.51% and 0.56% false hit under true hit for No-hash and Hash-based schemes

respectively (with standard deviation of 0.66% and 0.7%). Compared to the smaller size cache,

increasing the cache size reduces the false hit rate. For this cache configuration, No-hash and

Hash-based schemes have very close hit rates with average 98.43%.

As can be seen, for both cache sizes, No-hash and Hash-based schemes are comparatively

equivalent, though No-hash yields marginally better results.
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(a) False hit under true miss

(b) False hit under true hit

Figure 4.5: False hit for a 3-Way 24KB set-associative instruction cache: Hash-based vs
No-Hash Schemes

4.5.2 Data Cache Tag SRAM Structure Evaluation

We did the experiments for a 4-way set-associative data cache with 128B cache line size

and 128KB capacity. Figure 4.6 shows the false hit under true miss and false miss under true hit

for the No-hash and Hash-based schemes. As can be seen, for these applications, false hit under

true miss is 0.05% and 0.005% for No-hash and Hash-based schemes on average (with standard

deviation of 0.082% and 0.004% respectively). Also, on average, we get 0.46% and 0.07% false

hit under true hit for No-hash and Hash-based schemes respectively (with standard deviation of
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Table 4.2: Hit rate comparison for No-hash and Hash-based schemes

Benchmark
InstCache Hit rate (%) DataCache Hit rate (%)

No hash Hash-based No hash Hash-based

CAM-SE 99.72 99.72 93.75 93.75

AMG 95.44 95.44 95.52 95.52

Lulesh 99.99 99.99 96.14 96.21

Nekbone 96.63 96.68 94.05 94.12

HACC 99.86 99.73 99.9 99.9

MiniFE 94.02 94.02 96.89 97.45

XSBench 99.48 99.48 75.52 75.53

DGEMM 99.97 99.97 91.68 93.79

ZGEMM 99.97 99.97 92.95 93.59

SGEMM 99.80 99.80 70.4 87.85

Stream 94.23 94.23 93.75 93.75

Average 98.1 98.09 90.97 92.87

0.39% and 0.076%). For L1 data cache, the Hash-based scheme reduces the false hit rate by 10×

on average compared to the No-hash scheme. The Hash-based scheme even improves the hit rate

by 2% (No-hash scheme has 90.97% hit rate on average, while the Hash-based scheme improves

the hit rate to 92.87% on average). The hit rate result is shown in Table 4.2, columns 4 and 5.

We also repeated the simulation for a smaller cache size (12KB cache, 3-way set-

associative, and 128B cache line). We got similar results for this cache configuration. Results

indicate that the false hit under true miss is 0.13% and 0.017% for the No-Hash and Hash-based

schemes respectively. Also the false hit under true hit, we get 1.16% and 0.54% for No-hash and

Hash-based schemes respectively. This also comes with 3% improvement for hit rate (90.1%

and 93.1% for the No-hash and Hash-based schemes). In fact, regardless of cache configuration,

the Hash-based scheme can improve both the reliability and performance of tag SRAM for

write-through data cache.

51



(a) False hit under true miss

(b) False hit under true hit

Figure 4.6: False hit for a 4-way 128KB data cache: Hash-based vs No-Hash Schemes

4.5.3 Hash Function Area and Timing Analysis

We have added the hash function module to the L1 data cache tag in Volta GPU and

synthesized it with Synopsys Design Compiler synthesis tool. Synthesis results show that adding

the hash function does not make the critical path longer, and the critical path slack remains at

0. It also made negligible difference in the design area of L1 data cache tag module, actually a

0.4% reduction compared to the original scheme due to synthesis variation it caused. Unless the

tag RAM addressing is already the critical path (not the case above), the timing and area effects

in other use cases is expected to be similar.
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4.5.4 Address Stride Distribution Analysis

Figure 4.7: Address stride distribution analysis, based on Hamming distance (HD) between
tag portions of consecutive addresses

As we have learned from simulation results, the address trace is an important factor for

determining if using the hash function for set-index calculation can decrease false hit rate or not.

In order to have an indicator of why address strides matter, we perform a first order analysis on

address trace distribution. For this analysis, we compute the Hamming distance between tag

parts of each two consecutive addresses. Depending on the Hamming distance value, one of the

schemes (No-hash or Hash-based) could perform better (Figure 4.7). For example, if Hamming

distance between tags is 1, two cases might happen:

• If the set-indexes for these two consecutive address references are the same; the No-hash

scheme would map both addresses to the same set. Therefore, if a bit flip happens in

the tag entry that is in cache, a false hit occurs. However, the Hash-based maps the new

address reference to another set, which decreases the chance of false hit. Therefore, this

scenario is in favor of Hash-based scheme.

• If the set-indexes for these two consecutive address references are different; the No-Hash

scheme maps these two addresses to two different sets, so a bit flip for the tag entry in the

cache does not result in false hit. The same reasoning is true for the Hash-based scheme.

So for the large fraction of time, these two schemes behave the same way, which we call it
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(a) Instruction cache trace

(b) Data cache trace

Figure 4.8: Outcome distribution (Favor No-hash, Favor Hash, Tie)

a Tie. However, for the Hash-based scheme, the probability that these two sets map to the

same locations in the cache tag is 1
TagWidth , where TagWidth is the number of bits in the

tag part of the address. This is because for a given two address references with different

set-indexes, in a primitive polynomial-based hash, there can be only one specific tag bit

out of the TagWidth bits that can be different in the tag portion of the reference.

With the same reasoning if the Hamming distance between two consecutive tags is 0, two

schemes perform the same way, and the situation is a Tie. Also, for the other cases where the

Hamming distance between two consecutive tags are more than 2, result is a Tie.

We performed this address stride distribution analysis and the result is shown in Figure 4.8.
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As can be seen, the outcome distribution for the instruction cache is almost a Tie, with a slight

favor to No-Hash scheme. This is what we have seen also in the results from simulation. For a

data cache, either there is a Tie, or the distribution is closer to a Hash-based method as can be

seen for benchmarks like MiniFE, SGEMM, DGEMM, and ZGEMM.

4.6 Analytical and Monte-Carlo Simulation for Estimation

of False Hit Rates

To get an early understanding of the impact of various tag SRAM attributes (tag width, set

associativity, set-index bits, and the cache capacity), we identified that tag width and associativity

(i.e., the number of ways) have the most impact on the false hit probability. In fact, it can be

shown that for a random address trace, the average probability of false hit is bounded above by:

Associativity
2TagWidth , where Associativity is the number of ways in the set-associative cache and TagWidth

is the number of tag reference bits in the address bit field. Bounding the variance on the false hit

probability is a much harder problem as it has a complex dependence on the nature of address

references and the initial state of the tag address entries in the tag SRAM. We conducted millions

of Monte-Carlo experiments to estimate the average false hit probability (under true miss events)

and the standard deviation using random address traces. Tables 4.3 and 4.4 show these results

and validate the analytical upper bound on the average probability of false hits. Results also

show that in general false hit probability goes down exponentially with increasing tag width and

somewhat increases with increasing associativity. As expected, the standard deviation is of the

same order of magnitude as the expected false hit probability, suggesting much higher variance

compared to a normal distribution.

While the false hit probability for random traces, in practical tag SRAM implementations,

is about two orders of magnitude lower (1e-04 vs. 1e-02) than the probability of false hit estimate

through actual workload trace simulation, the predicted sensitivity trend on tag width holds. For
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Table 4.3: False Hit Probability Sensitivity to Tag Width (Associativity=3)

Tag Width Average False False Hit Upper Bound

(Bits) Hit Probability% Std Dev% Associativity
2TagWidth ×100

4 5.7800 5.6e-01 18.75

8 0.3900 9.5e-03 1.17

10 0.1000 9.0e-03 0.29

12 0.0230 2.7e-03 0.07

16 0.0016 4.1e-04 0.005

18 0.0003 2.3e-04 0.001

20 1.3e-04 1.3e-04 2.8e-04

Table 4.4: False Hit Probability Sensitivity to Associativity (Tag Width=20)

Associativity Average False False Hit Upper Bound

Hit Probability% Std Dev% Associativity
2TagWidth ×100

1 6.0e-05 6.14e-05 9.5e-05

2 8.5e-05 2.40e-05 1.9e-04

3 7.7e-05 4.02e-05 2.8e-04

4 8.6e-05 3.88e-05 3.8e-04

6 9.8e-05 2.85e-05 5.7e-04

8 1.0e-04 2.34e-05 7.6e-04

16 1.5e-04 1.53e-04 1.5e-03

example, the instruction cache references had 32-bit virtual-address width (with tag width =

20) and the maximum observed false hit probability, under true miss, was 0.1% whereas for L1

data cache with 48-bit virtual-address width (tag width = 33) that maximum observed false hit

probability, under true miss, was 0.05%.
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4.7 Related Work

4.7.1 Low-cost Soft Error Protection for Cache Structures

A common solution to address soft errors in cache memories is to apply error detection/-

correction code such as parity/ECC bits uniformly across all cache lines [50]. Previous work

on reducing cache protection overhead either breaks the assumption of uniform protection of

all cache lines, or utilizes different mechanisms to protect clean and dirty cache lines. Kim et.

al [65] suggest protecting only those cache lines that are most frequently accessed in every cache

set to trade between area and level of data integrity. [64] [66] proposed a method to reduce area

for protecting L2/L3 caches. Instead of using ECC for all entries, it selectively applies ECC just

to dirty cache lines; other clean cache lines are protected by using parity check codes instead.

However, our goal is to use hash functions to change the distribution of tag entries in the cache

to reduce the probability of undetected errors without using parity protection.

4.7.2 Exploiting Hash Functions for Addressing Memory Structures

Hash functions are widely used in computer architecture to minimize conflict misses in

caches [46] or to improve accessing to interleaved multibank memories [118]. A hash function

maps an address to a set-index. The easiest hash function to implement for addressing cache

memories is the modulo function, which is traditionally used and selects some of the least

significant bits of the reference address. However, this way of set-index bit selection creates

many conflicts for a number of frequently occurring access patterns, such as large power-of-

2 strides. To avoid cache conflicts, alternative hash functions were studied for set-index bit

generation to reduce conflict misses by achieving a more uniform cache access distribution

across the sets in the cache [15] [110] [61].

Several types of hash functions have been investigated. Depending on the situation, one

type of hash function can be more appropriate than another due to properties of access patterns.
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The proposed techniques can be classified into static [46] [61] [113] and adaptive [99] indexing

schemes.

Among the static methods, XOR-based mapping policies (e.g polynomial [97] and bitwise

XOR [46]) are used to obtain a pseudo-randomly placement of blocks. In this way, a better

distribution of blocks among cache sets can be obtained which reduces the number of conflict

misses. Rau proposed a scheme [97] which describes a method for constructing XOR mapping

schemes based on polynomial arithmetic. Polynomial indexing can be explained by considering

address A = (an−1, ..., a1, a0) as a polynomial P(x) = an−1xn−1,..., a1x1, a0, where the coefficients

are in the Galois Field GF(2) (can take on values 0 or 1). This XOR-based polynomial modulus

function has very low complexity (requires only XOR operations) and is suitable for computing

a cache index. If the generator polynomial is primitive and the code length is less than the

cycle length of the polynomial, then the resulting code’s Hamming distance is at least 3. Other

works propose the use of more complicated hash functions, like prime-number based [61],

which can be used for shared caches to minimize conflict misses at the cost of increased latency

and hardware complexity. However, the complexity of these methods makes these techniques

unsuitable for first level caches, where latency is critical. For GPUs, researchers have studied

the effects of multiple static indexing techniques such as arbitrary modulus indexing [35] and

polynomial [60] [63] on performance and energy consumption. In the context of adaptive cache

indexing schemes, (ASCIB) [99] monitors the memory access pattern of workloads in CPU at

runtime, determines the best indexing bits that are expected to minimize conflict misses for the

observed memory access pattern, and periodically reconfigures them accordingly.

As opposed to this existing work, we study the effect of using hash functions on reliability.

To the best of our knowledge, we are the first to evaluate the use of Galois-based hash functions,

for set-index calculation for cache tags in GPUs. Our goal is to mitigate some pathological

address strides that cause failures in the event of soft errors.
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4.8 Chapter Summary

GPU architectures have stringent reliability requirements. Yet as a result of technology

scaling, they are particularly susceptible to radiation-induced errors. Memory structures including

caches and register files are responsible for the majority of transient errors on GPUs. To make

these cache structures resilient to errors, entries in the caches are protected by parity/ECC bits,

resulting in area and energy overhead. In this chapter, we studied the resiliency of unprotected

tag caches in GPU and propose a very low overhead tag checking study that can be applied to

read-only and write-through caches in the GPUs. This approach uses hash function for set-index

calculation instead of using information redundancy. Our results show the sensitivity of the

effectiveness of hash-based methods to the nature of address traces. For instruction address traces,

the access patterns (as shown by the address stride distribution analysis) show a tie between

Hash-based and No-hash based set-index methods. The Hash-based method mainly helps data

cache tag structures, where Hash-based lookup is 10× better than No-Hash lookup in terms of

false hit probability. The hash function has almost negligible area and performance overhead. In

addition, both simulation and analytical results indicate that the impact of low overhead tag error

mitigation with or without set-index hashing on the overall GPU SDC FIT rate is less than 1%.

While the simulation studies have been done only for GPU tag SRAM structures, there is nothing

in the tag SRAM structures or the address reference patterns that are peculiar to the GPUs;

therefore, the results of this study should hold good for CPU tag structures as well. Despite the

effectiveness of this method for data cache tag structures, this study shows that the parity/ECC

protection is necessary for the rest of cache structures. This is because they have a much higher

SDC FIT rate, and as we showed the hash-based method only reduces false hit probability by a

factor of 10, which is not enough for those structures. There might be other methods that can be

used but perhaps they have higher overhead than using information redundancy itself. Moreover,

the area saving from removing these parity bits can be used to make other more vulnerable parts

of the design resilient.
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Chapter 5

Automated Source-code Optimization for

Efficient Use of Hardware Resources

In this chapter, we propose an automated optimization approach that modifies the applica-

tion at the source-level and results in more efficient use of hardware resources. Our optimization

tool automatically detects and removes unnecessary redundancies that exist in a given GPU pro-

gram or FPGA high-level design specification. In this chapter, we introduce our resource-aware

source-to-source transformation solution. Further, we show its effectiveness on mitigating the

performance overhead of core isolation in GPU accelerators with faulty units.

5.1 Introduction

As mentioned earlier, since hardware accelerators are being used in new large scale

systems, it is becoming more important to use their available resources in a more efficient way.

One efficient and useful solution is to exploit source-level optimization to reduce unnecessary

and redundant computation in programs; which results in reducing resource requirements of an

application while improving its performance and energy efficiency.

The opportunity for more optimization, that we take advantage of in this chapter, comes
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from two trends. First, we have seen fast-paced code development by software developers

which are not necessarily optimized and tuned for the target FPGA or GPU accelerator. This

results in programs that have unnecessary redundant computations that has no effect on accuracy.

Executing an unoptimized code on these platforms results in inefficient use of hardware resources.

Second, many modern applications including graphics, multimedia, computer vision, web search,

and data analytics exhibit tolerance to imprecision. These applications can accept a range of

possible values as correct outputs for a given input. This amenability to approximation provides

an opportunity to trade small controlled losses of quality (beyond the quantization error caused

by limited bitwidth) for higher throughput and better resource utilization. Therefore, there is

a need for automated frameworks that can find these redundant computations and modify the

program accordingly to better utilize hardware resources.

In this chapter, we devise, GRATER, an automated workflow that optimizes data-type

and bitwidth of operations and removes redundant computations. This results in improving

resource utilization and achieving higher computational throughput for the target hardware

accelerators. The core of our workflow is a source-to-source compiler that takes in an input

kernel and applies a novel optimization technique that selectively reduces the precision of kernels

data and operations. By systematically tuning the precision of the data and operation, the kernel

can be run faster on GPU and FPGA, and the required area to synthesize the kernels on the

FPGA decreases. GRATER, especially, provides a readily applicable workflow that exploits the

inherent error tolerance of the emerging applications. To effectively explore the possible design

space for precision tuning, we devise a genetic programming-based optimization algorithm that

assigns various precision levels to different data and operations in the kernel. We exploit genetic

programming to evolve kernel variants until one is found with optimal assignments that improves

hardware resource utilization while stochastically satisfying the quality-of-result target. GRATER

can target both OpenCL and C programs. We especially use OpenCL because it targets both

GPU and FPGA platforms. We discussed the background material for OpenCL in chapter 2.
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5.2 Background and Motivating Example

In this section, we show the benefit of bitwidth reduction for FPGA and GPU. We start

the discussion with FPGAs. For this purpose, we show the difference in resource utilization of

multiply operation with different types and bitwidths when it is synthesized on FPGA. For this

experiment, we use Viavdo HLS tool and Virtex 7 FPGA. In this experiment, we changed the

bitwidth of operands of multiply from 16-bit int, to 64-bit int, and to float and double data types.

As can be seen in table 5.1, int16 (aka short) has the lowest resource utilization on FPGA; it

only uses one DSP unit to perform the multiplication. The reason is that DSP units are used to

implement multiply operation on FPGA and the size of inputs for one DSP unit is 18 bits for our

target FPGA. Therefore, we get the same resource utilization for any bitwidth equal or less than

18 bits as inputs of multiplier. Having an int24 multiply is also efficient. Since the bitwidth of

each operand (24-bits) is larger than the DSP unit input size, it cascades two 12-bit multiplier

units (by utilizing 2 DSPs) and adds their results together; 2 LUTs are also used to implement

the control unit. As we increase bitwidth of the operation, more number of DSP units and logic

elements are utilized. As can be seen, double and int64 take the highest resource utilization.

Therefore, it is important to find the lowest required bitwidth for each variable and operation

during FPGA design to avoid waste of hardware resources.

Table 5.1: Resource utilization of multiply operation for different types/bitwidth on Virtex7
FPGA

Implementation Int16 Int18 Int24 Int32 Int64 float double

LUT 0 0 2 1 15 136 204

FF 0 0 0 3 18 130 304

DSP 1 1 2 4 16 3 11

For GPUs, the most inefficient operation is double precision floating point. For example,

Radeon RX 580 has 6175 GFLOPS performance for FP16 (half-precision floating point) and

FP32 (single-precision floating point) operations, and 385.9 GFLOPS for FP64 (double-precision
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floating point) operation. This means that FP32 operations can be done 16× faster than FP64

operations. This performance difference between FP32 and FP64 is reduced for newer gen-

erations of GPU that are used for HPC purposes. For example, Nvidia Pascal GPU [7] has

21.2 TFLOPS performance for FP16, 10.6 TFLOPS performance for FP32, and 5.3 TFLOPS

performance for FP64. Therefore, in those GPUs, we can improve the performance by 2× if we

optimize a double-precision floating point operation to a single-precision floating point operation.

In general, the performance gain from converting FP64 to FP32 can be between 2-32× for

different GPU architectures. Some newer generations of GPU like Nvidia Pascal also gain from

converting FP32 to FP16. Therefore, it is important for GPUs to reduce the bitwidth required

for floating point operations. Usually, when some of the variables in a program requires FP64

precision, the programmer gets the same precision for other floating point operations while that

is not really required to get the acceptable results. However, if the same program is written in a

mixed-precision way, the performance improves significantly. On the other hand, there is not

much difference in performance of FP32 and 32-bit integer operations on GPU. While int16 is

faster than int32.

Finding the minimum bitwidth for each variable in a program is a tedious task that often

programmers avoid to perform. GRATER can automatically search the useful search space for

FPGA and GPU, and generate a program with tuned precision for its variables and operations. In

the next section, we discuss our optimization workflow.

5.3 GRATER: Design Optimization Workflow

GRATER has a source-to-source compiler to generate variants of the baseline kernel via

source-to-source kernel transformation. The transformation algorithm automatically detects and

simplifies parts of the kernel code that can be executed with reduced precision while preserving

the desired quality-of-result. To achieve this goal, GRATER takes in as inputs, a baseline kernel,

a comprehensive set of input test cases, and a metric for measuring the quality-of-result target.
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GRATER targets optimizing kernels both in the category of approximate computing applications,

in which some degree of variation or inaccuracy is acceptable in the result of their computation;

or applications that are not amenable to approximation, in which we want to tune the precision

of their variables and operations. GRATER investigates the baseline kernel code and detects data

elements, i.e., kernel variables, that provide possible opportunities for increased performance by

tuning their precision. GRATER then automatically generates a set of kernel variants with lower

precision that produce acceptable results. These modified kernels provide improved performance

benefits for GPU accelerators. Moreover, they improve throughput and reduce the circuit area and

resource utilization when implemented on FPGAs. GRATER outputs an optimized kernel with

tuned precision for its variables and operations whose output quality satisfies the quality-of-result

target. Fig. 6.4 illustrates an overview of our workflow.

GRATER uses the precision of the operations and data as a knob to tune performance and

resource utilization. The transformation investigates a set of kernels where in each version, the

bitwidth of some of variables are reduced. GRATER can optimize and translate both OpenCL

and C programs. It mainly takes advantage of the portability of OpenCL code that can be run on

both GPU and FPGA. We limit the space of our optimization search across the available variable

types in OpenCL or HLS C, due to the nature of a source-to-source transformer that requires

to work at the same level of abstraction of the input programming language. GRATER enables

Altera OpenCL synthesis tool and Vivado HLS tool chains to benefit from this source-to-source

translation by generating standard OpenCL and C kernels. To explain GRATER workflow, we

mostly focus on OpenCL kernel tuning as it can be run on both GPU and FPGA. The optimization

flow for OpenCL and C kernels are similar and we briefly explain the difference in the following

sections.

We assign a precision tag (PT) to each variable type. For example, a kernel with data

types ranging from double-precision floating point to char has five levels of complexity: {5,

4, 3, 2, 1} are assigned to {double, float, int, short, char} respectively. The higher the

PT, the higher the accuracy requirements, and the higher resource consumption. A brute-force
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Figure 5.1: Overview of GRATER, our design optimization workflow.

methodology for exploring the kernel variants is to generate a modified kernel for every possible

combination of the variable types. For instance, for a kernel with |V| number of double variables,

a total number of 5|V | kernels would be generated where in each version every double variable

is replaced by different PTs. This results in an exponentially growing design space intractable to

search. To avoid this huge design space exploration, we devise an algorithm that first detects those

variables that are amenable to precision reduction and then applies a genetic-based algorithm

to generate the variants of kernel. We discuss the details of our algorithm in the following

subsections.
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5.3.1 Analysis and Pruning

In the first step, GRATER detects variables in the code that are amenable to precision

reduction. To do so, a separate kernel is generated for testing the amenability of each variable.

In each kernel, the precision of one variable is demoted by one level (a ∆PT demoting), while

other variables have their exact precision, to measure the significance of a small precision loss

of a variable on the quality of result. This test determines whether the precision of the selected

variable can be reduced or not. If the output quality is less than the desired output quality,

GRATER excludes this variable from the set of safe-to-tune variables and does not modify its

precision.2 Consequently, the variable is eliminated from the candidate list of variables for

precision reduction. The pruning algorithm continues the screening process for all the variables

in the code (Line 4–10 in Algorithm 2). The pruning algorithm is executed |V| times to determine

safe-to-tune variables (TV). This sensitivity test is done with the help of profiling feedback that

is accelerated on a GPU.

GRATER then finds the lowest possible precision for each variable in TV (Line 11–14

in Algorithm 2). It generates a modified version of kernel for every variable in TV, where in

each kernel, one variable type is replaced by the lowest possible precision (e.g. char) while

other variables preserve their exact precision (EP) that originally have in the baseline code. If

the quality of the generated kernel is less than the desired output quality, then that tentative

lowest precision is promoted by one level and the same quality check is repeated. This process

is continued until the lower precision bound for each variable is found. At this point, PT value

ranges for each safe-to-approximate variable is extracted (from EP to LP).

After finding the lower precision bound for all variables in TV, another modified version

of kernel is generated in which all safe-to-tune variables get their lowest possible precision (LP

values) found in the previous step. If this kernel meets the quality-of-result target, the solution is

found (Line 15–19 in Algorithm 2). Otherwise, a genetic algorithm, described in the following,

2GRATER also enables the programmer to annotate critical variables as non-tunable, so that the transcompiler
would not change their precision.
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Algorithm 2 pseudo-code for the GRATER

1: function PRUNE&RELAX(BaselineKernel,QualityTarget, inputSet)
2: V = {All candidate variables in BaselineKernel} TV = {}
3: TopPop = {} cInput = input0...inputM from inputSet,M < |inputSet|
4: for all variables vi in V do
5: generate kerneli s.t. vi ← ∆PT demoting
6: run kerneli with cInput on GPU
7: if (Quality(kerneli) ≥ QualityTarget) then
8: TV = TV ∪ vi
9: end if

10: end for
11: for all variables vi in TV do
12: LPi = FindLowerPT(vi, cInput)
13: EPi = getExactPT(vi, cInput)
14: end for
15: generate kernelmin s.t. ∀ vi ← LPi
16: run kernelmin with cInput on GPU
17: if (Quality (kernelmin) ≥ QualityTarget) then
18: ModifiedKernel = kernelmin
19: else
20: ModifiedKernel, TopPop = GA(BaselineKernel, LP, EP, cInput)
21: end if
22: for all inputi in the training inputSet do
23: run ModifiedKernel with inputi on GPU
24: if (Quality(ModifiedKernel) < QualityTarget) then
25: NeedToChangeSolution = True
26: for all kernel j in TopPop do
27: run kernel j with inputi on GPU
28: if (Quality(kernel j) > QualityTarget) then
29: ModifiedKernel = kernel j
30: NeedToChangeSolution = False
31: Break
32: end if
33: end for
34: if (NeedToChangeSolution) then
35: cInput = inputi
36: Goto line 11
37: end if
38: end if
39: end for
40: return OptKernel
41: end function

is run to find the optimized kernel.

5.3.2 Genetic-based Design Space Exploration Algorithm

Genetic algorithm is a powerful stochastic search method which is deployed to find a

good solution from a large search space [39]. To operate with a genetic algorithm, we need to

take into account the following components: 1) a genetic representation of solutions in a form

that can be interpreted as a chromosome, 2) an initial population, 3) a fitness function which
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gives an evaluation of the desirability of each chromosome, and 4) genetic operators that change

the composition of new generation during reproduction and a selection operator for choosing the

survivors.

5.3.2.1 Genetic Representation of Chromosomes

We represent each individual as an array of precision tags with the length of TV list.

Each gene in this representation shows the PT of each variable in TV. Every individual can be

easily translated to a kernel variant. The precision of the variables and associated operations in

the kernel variant is inferred from the assigned PT value in the chromosome.

5.3.2.2 Population

The initial population is randomly generated. Each safe-to-tune variable can have a PT

value range with different levels of complexity, started from its lowest precision bound to its

exact precision level (LP and EP in Algorithm 2).

All individuals in the population should meet the desired quality-of-result requirement.

This can be verified either by executing the kernel or comparing its PT values with the least

precision chromosome found. The least precision chromosome found in the population is the one

that the PT values of every gene in its chromosome is lower than the PT values of corresponding

genes in all other chromosomes. If such a chromosome does not exist in the population, the

least precision PT in the population would be the same as LP. In this case, for all generated

kernels we need a kernel execution for accuracy check. When the quality measurement test is

done by executing a kernel variant, its output is compared with the baseline kernel output on a

representative data input. If the output of the kernel variant cannot satisfy the quality-of-result

target, this kernel variant is ruled out from the population. Otherwise, it is considered as one of

the candidates for the next generation. This kernel profiling and execution process is accelerated

on a GPU. This is accomplished by decoupling the quality loss analysis and kernel mapping
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thanks to the platform-independent nature of OpenCL. To increase the speed of genetic algorithm,

before creating and executing each kernel variant, the generated chromosome is compared to the

chromosome with the least PT in the population so far. If all PT values in the newly generated

chromosome is higher than or equal to the PT values of the least precision chromosome, this

new chromosome can certainly meet the quality-of-result target; otherwise, the corresponding

kernel should be executed for accuracy check.

5.3.2.3 Fitness Function

Given a kernel, the fitness function returns a value showing the desirability of the kernel

variant. The fitness value is used by the selection operation to decide which individuals would

survive to the next generation. Our main objective is to find a kernel variant that minimizes the

cost of operations in the kernel. This improves performance on GPU and also reduces resource

utilization and improves throughput on FPGA, while meeting the quality-of-result requirement.

To achieve this objective, our fitness function computes a weighted summation of its assigned

PT values in the chromosome to estimate the area occupancy. For each variable, the weight is

determined by a coefficient assigned to each precision tag multiplied by the number of times the

variable is used in operations in the kernel. (The coefficients are determined through simulations.

For example for FPGA, it is {0,1,2,6,12} for PT of {1,2,3,4,5}. For GPU, it is {1,1,4,6,40}

for PT of {1,2,3,4,5} The higher the precision and the number of times the variable is used in

operations, the higher weight it gets. With this definition, the lower the fitness value, the higher

performance and the lower area occupancy that configuration has.

It should be noted that GPUs mainly benefit from reducing precision from double-

precision to single-precision floating point. In fact, GPUs are good at doing integer and float

computation except from 64-bit double precision (FP64). This is because GPUs has more integer

and single-precision (FP32) cores than FP64 cores as we discussed in section 5.2. On the

other hand, FPGAs not even benefit from double-precision to single-precision floating point but
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also from floating point to integer and even from reducing bitwidth of integer operations. The

difference between this behaviour between GPU and FPGA is due to the fact that GPUs have

fixed cores that support certain operation types while the generated circuit on FPGA is fully

customized.

5.3.2.4 Selection and Genetic Operators

We use two genetic operators, crossover and mutation, to produce new chromosomes.

Crossover combines the first part from one parent chromosome to the second part from the

other parent chromosome to produce a child chromosome. In this implementation, the crossover

point is selected randomly. Mutation operation randomly modifies PT values of safe-to-tune

variables in the chromosome. The new PT value is a random value in the range of LP and EP

for the safe-to-tune variable. The newly generated chromosome is only accepted if it meets the

quality-of-result requirement; otherwise, the operation is applied again.

There are many possible selection algorithms to select more fit individuals from the

new and old population for the next generation. To rank the kernel variants, we use the fitness

values as an estimate of the area occupancy. This fitness function is a good estimation for

resource utilization of FPGA (without synthesizing and mapping the kernel on FPGA). The

selected chromosomes are sorted based on their estimation of area occupancy (fitness value) in

each iteration. The top best individuals are always transferred for the next generation (elitism

selection). For the rest, individuals are selected based on the proportionate selection where

some of them might change with the crossover and mutation operations. For the simulation

purpose, the crossover rate, mutation rate, and elitism rate is 0.7, 0.05, and 0.25 respectively.

The algorithm runs as long as the user defined number of iterations has not been passed yet or

when the best fitness values stop growing any further.

Until here, the genetic algorithm finds the final solution using only a subset of input

tests. This solution should be verified with the other input test cases from the training set. If
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it meets the quality-of-result requirement for all inputs of this set, this kernel variant is the

final solution. Otherwise, either the other top chromosomes in the population is checked or the

genetic algorithm is applied again by adding the failed input to the initial test set (Line 23–40 in

Algorithm 2).

When this procedure is terminated, the best chromosome with the lowest fitness value is

selected and translated to its corresponding kernel. When optimizing for GPU, this kernel has

the best performance among the variants. When optimizing for FPGA, it has the least resource

utilization on FPGA. To download the kernel on FPGA, this kernel is passed to the Altera SDK

tool to be synthesized and mapped on the FPGA.

The accelerated profiling on GPU makes us to explore the design space faster. In fact,

executing all kernels and selecting the best on FPGA is very time consuming and even impossible

because this process is very slow on FPGAs. Moving the search space exploration from FPGA

to GPU saves a considerable amount of time.

5.3.3 GRATER for C and HLS targeting FPGAs

GRATER also works for programs written in C where we use HLS tool to synthesize

programs on FPGA. We target Vivado HLS for synthesis where it enables a wider range of

bitwidth exploration. In contrast to OpenCL to FPGA tool, this tool has the feature to define

any arbitrary size bitwidth for integer operations. By using this tool, we can increase the

search space and create more opportunity for optimization. As we have seen in the example in

section 5.2, reducing the bitwidth of integer operations (e.g. from int64 to int18 or less) can

significantly reduce resource utilization. Therefore, depending on the architecture of FPGA, we

select the effective bitwidths as our search space in the algorithm. For example, for Xilinx Virtex

FPGAs, our candidate type and bitwidth would be: {double,float, int64, int36, int32,

int24, int18, int16, int8}. We select these numbers because of the input size of operations

for DSP units on this FPDA series. GRATER can get the target architecture type to redefine this
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search space so that it better matches the target architecture. For profiling generated kernels, we

use CPU instead of GPU for this case.

5.4 Experimental Results

5.4.1 Experimental Setup

We focus on a diverse set of application domains, including image processing (r-gaussian,

sobel), signal processing (convolution, DCT), physical simulation (n-body, fluid), and finance

(b-scholes). These benchmarks are selected from the AMD accelerated parallel processing (APP)

SDK v2.9 [10]; The number of variables in these kernels are in the range between 11 and 21.

GRATER source-to-source compiler is implemented in Python, and accepts the baseline

kernel implemented in either OpenCL or C, the desired quality metric, and a set of training

input test cases as its inputs. We used 150 training inputs for out experiments. GRATER utilizes

the AMD Radeon RX 580 (Ellesmere) GPU device for accelerated profiling experiments, and

finally generates an optimized kernel with better performance on GPU, and lower area occupancy

and better throughput on FPGA, with an acceptable output. The optimized OpenCL kernel is

synthesized for Altera DE5 board with a Stratix V FPGA using Altera OpenCL SDK 14.1 tool [1].

It should be noted that the accelerated profiling process on GPU takes order of milliseconds to

determine if the kernel can meet the quality-of-result target. While it takes on average more than

an hour to synthesize the approximate OpenCL kernels on Stratix V FPGA. In the following, we

report the improvements resulted by kernels optimized by GRATER for FPGA and GPU.

5.4.2 Improvements for FPGA

Sections 6.4.2.1 and 5.4.2.2 detail how GRATER can reduce the area and correspondingly

increase the throughput for different applications on FPGA. The target FPGA device has 234720

logic elements, 256 DSP blocks, 939 K registers, 2560 M20K memory blocks.
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Table 5.2: Resource utilization for Baseline and GRATER-optimized kernels on StratixV FPGA

BM Version Logic Registers DSP RAM

b-scholes
Baseline 135903 398606 864 899

GRATER 72764 213308 256 712

conv
Baseline 54884 91613 8 387

GRATER 52217 80325 3 371

dct
Baseline 52472 85359 18 525

GRATER 50600 81046 12 455

fluid
Baseline 89170 171832 126 644

GRATER 88250 166483 85 563

n-body
Baseline 100929 172894 77 208

GRATER 58680 95156 54 103

r-gaussian
Baseline 64781 110481 42 518

GRATER 57000 90177 25 473

sobel
Baseline 62448 99425 50 419

GRATER 48135 74147 50 419

Avg. Area Reduction 18.95% 22.24% 38.45% 15.73%

5.4.2.1 Area Savings

Table 5.2 shows the resource utilization for the baseline and GRATER-optimized kernel.

The baseline kernel is the input kernel, and the GRATER-optimized is the kernel which is

optimized by GRATER.

As shown, the area utilization is reduced by an average of 15%–38% for different FPGA

resources using the transformed kernel instead of the baseline one. This gain is achieved by the

proper precision tuning of the kernel variable types that brings area saving without scarifying

the output quality. For example, the baseline r-gaussian kernel has 12 float variables, while in

the GRATER-optimized kernel 5 of these variables are replaced by 16-bit integer (short type)

and 1 of them by 8-bit integer (char type). This precision tuning reduces the logic utilization
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by 12%, register utilization by 18%, DSP block utilization by 40%, and RAM utilization by

8% for this application. For b-scholes this area saving comes from reducing 8 out of 21, 64-bit

double-precision floating point variables to 32-bit single-precision floating point variables. This

modification reduces logic, register, DSP, and RAM utilization by 46%, 46%, 70%, and 20%

respectively. The difference in resource saving for different applications is because they contain

different number and types of operations, and different number of safe-to-tune variables and

reducing the bitwidth for each of them affect the area of circuit in a different way.

5.4.2.2 Throughput speedup

As shown in Section 6.4.2.1, GRATER reduces the synthesized area for the approximate

kernels on the FPGA. Therefore, the number of parallel kernels (i.e., the kernel pipelines) that

can be fitted into the FPGA is increased resulting in higher throughput.3 Fig. 5.2 shows the

corresponding kernel speedup – throughput of the optimized kernel normalized to throughput of

the baseline kernel.

As an example, for the n-body kernel the number of kernel pipelines that can be mapped

into FPGA is increased from 2 for the baseline kernel to 4 for the optimized kernel. Also the

latency of each kernel is improved by a factor of 1.7×. Therefore, the optimize n-body kernel

reaches to 3.5× higher throughput compared to the baseline kernel. A geometric mean of 1.83×
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Figure 5.2: Throughput speedup with GRATER on FPGA.

3Replication is handled in Altera OpenCL by setting num compute units as a kernel attribute.

75



higher throughput is achieved across these evaluated benchmarks.

5.4.2.3 Power

Figure 5.3 shows the improvement in power using GRATER-optimized kernel comparing

to the baseline kernel. Since GRATER makes the design smaller and also improves latency of

design, it reduces power consumption as well. For our applications, GRATER improves power

between 1.5%-12.3% by a geometric mean of 4.3%. This improvement is due to removing

redundant computations and resources from the design.
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Figure 5.3: Power improvement with GRATER on FPGA.

5.4.3 Improvement for GPU

5.4.3.1 Performance

Radeon RX 580 has 6175 GFLOPS performance for FP16 (half-precision floating point)

and FP32 (single-precision floating point) operations, and 385.9 GFLOPS for FP64 (double-

precision floating point) operation. This means that FP32 operations can be done 16× faster

than FP64 operations. Fig. 5.4 summarizes the performance speedup for executing the optimized

kernels on the GPU, comparing to the baseline kernel execution time. The GPU exhibits a

maximum speedup of 10× (with a geometric mean of 2.2×). The highest improvement is for

b-scholes application, as it has the highest number of double to float conversion. On the other

hand, sobel has the lowest improvement, because the conversions are only within integer type.
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Figure 5.4: Performance speedup with GRATER on GPU.

5.4.3.2 Energy

Fig. 5.5 summarizes the energy improvement of using the optimized kernel on GPU

comparing to the energy of baseline kernel. As can be seen in this figure, energy consumption is

reduced by 2.2× on average. The energy consumption on GPU follows the same behaviour as

performance.
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Figure 5.5: Energy improvement with GRATER on GPU.

5.4.4 Quality

To evaluate the quality loss, we use PSNR for image processing applications and average

relative error for the other application domains [81, 100]. We compute the quality loss of
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each optimized kernel by comparing against the output elements from the baseline kernel. For

simplicity, here we report the quality loss of all applications by average relative error metric. We

set the quality loss target to a maximum of 0.7% for image processing applications (which is

equivalent to PSNR of a minimum 30 dB) and 1% for other applications which is conservatively

aligned with other work on quality trade-offs [57, 67, 83]. We verify the output quality of the

optimized kernel with 150 different test input patterns, other than the training input set. In all

applications, the maximum quality loss is below 1%. For sobel and r-gaussian there is no quality

loss.

The execution time of our proposed algorithm is within few seconds when it can find

the solution without running the genetic algorithm to couple of minutes when we run genetic

algorithm. GRATER optimizes the code at design time.

5.4.5 Impact of GRATER on GPU Isolation

We performed experiments to show the benefit of using GRATER optimization to reduce

the overhead of core isolation in a faulty GPU described in Section 3. For this reason, we select

two of benchmarks and compare the overhead of running an un-optimized healthy kernel and a

healthy kernel that is optimized with GRATER for GPU. Figure 5.6 shows performance overhead

of core isolation for the baseline healthy kernel and Grater-optimized healthy kernel for b-scholes

and sobel applications. As can be seen in this figure, using GRATER can reduce the performance

overhead of core isolation, and even remove it completely and make it faster. For example, for

sobel, the performance overhead when 32 SCs are degraded is reduced from 7% to 3%. For

b-scholes, we even can run the healthy kernel 3% faster instead of 7% overhead if we apply

GRATER on healthy kernel. Therefore, one method to reduce the performance overhead caused

by core isolation is to further optimize the kernel by slightly losing accuracy if possible.
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Figure 5.6: Performance overhead comparison for GPU core isolation on Radeon 580rx for
the baseline healthy kernel and grater-optimized healthy kernel ((a) b-scholes and (b) sobel)
when number of degraded SCs are changed from 1 to 32.

5.5 Related Work

Floating point precision tuning have been used to improve performance of programs.

Precimonious [101] tool proposed a delta-debugging approach for floating point programs written

in C running on CPU. This tool focuses on floating point precision analysis and provides hints

to the programmer on which data type is required while satisfying a given error threshold on

the output. STOKE [103] is a JIT assembler for x86-64 instruction set that tunes floating-point

kernels based on random search. The optimized assembly can be run on CPU. However, these

tools focus only on CPUs and do not deal with accelerators neither they support OpenCL.

Bitwidth optimizations for FPGA is used to improve power and resource utilization of

the design. PowerBit [43] performs static range analysis and precision analysis to optimize the

bitwidth of datapath and generate an optimized VHDL description. Using range analysis is very

conservative and the answer is usually far from optimum. This work does not support high-level

languages and program transformation. SOAP [44] is a source-to-source transformation tool for

optimization of numerical programs that targets HLS-based FPGA design. They target rewriting

floating point expressions to trade the numerical accuracy and resource utilization of design. This

work discovers equivalent structures by exploiting the rules of arithmetic, such as associativity

and distributivity. This is in contrast with our work that targets bitwidth and type optimization.

In fact, this work can be combined with GRATER to further reduce resource utilization of design.
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A synthesis method for generating approximate circuits from RTL code is proposed in [84].

The goal of this work is to reduce the power consumption and area. It uses a greedy approach

to generate approximate versions, and selects the near-optimal design after simulating and

synthesizing all design variants. In contrast to this work, our tool works at higher level and

can be used with HLS tools. Floating point to fixed-point conversion is another optimization

to limit the area and power consumption of the architecture. Methods have been developed

to support the automatic conversion of floating point values to fixed-point ones for a specific

domain of applications. For example, the conversion in [32] only operates on programs with

regular control structure that can be represented using the polyhedral model. None of the tools

provide a complete solution for fixed-point conversion. We did not implement this conversion in

GRATER, but it can be easily added to the search space of our tool. For mixed-precision tuning

on GPU, common approach requires the programmer to manually substitute the data type in the

problem. There is no specific tool that targets automatic precision tuning for GPU code.

In contrast, GRATER focuses on high-level bitwidth and data type optimization for

programs targeting FPGA and GPU. This optimization improves throughput and reduces resource

utilization on FPGA when the kernel is synthesized, and improves performance when executed on

GPU. Performing the optimization in high level enables GRATER to efficiently explore the design

space of the kernel. GRATER allows seamless integration of mixed-precision data elements

within a software-level kernel to cooperatively work on the same hardware fabric.

5.6 Chapter Summary

In this chapter, we propose an automated optimization tool that modifies the application

in source-level and results in more efficient use of hardware resources. We devise GRATER,

a transcompiler that systematically transforms a kernel to a more optimized version. This

optimization removes unnecessary redundancies in computations by tuning the bitwidth of

operations. To effectively explore the search space, GRATER employs a genetic-based algorithm

80



to find suitable optimizations. The use of GRATER for FPGA and GPU accelerators results

in improvements in performance, throughput, resource utilization, and energy efficiency. This

improvement comes with no effort from the user. This automated solution especially helps

reduce the overhead caused by isolation and task migration in a faulty accelerator.
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Chapter 6

Resource-aware Task Migration in

HLS-based FPGA Design

In the previous chapter, we proposed a source-level solution that optimizes the program by

automatically tuning the bitwidth of its variables and operations, which results in more efficient

use of GPU or FPGA accelerators. In this chapter, we propose a workflow for efficient static

task migration and resource optimization in HLS-based FPGA design. Despite considerable

improvements in existing HLS tools, they still require designer interventions to provide efficient

synthesis results. This manual design space exploration and code rewriting and optimization

takes significant time and negates the HLS design productivity gains. To overcome this challenge,

our workflow uses compiler frontend as an independent preprocessing step to explore the design

space and adds an automated source-to-source transformation step before HLS. We propose a

compiler-level approach that enables reusing the available resources for common tasks in the

design in HLS-based FPGA design. This workflow improves resource usage by automatically

taking the opportunity of resource sharing. In particular, it shows how inherent regularity in

applications can be used to construct a workflow that analyzes the program, explores the design

space for resource optimization opportunity, and transforms the program accordingly. When

the transformed program is synthesized using the HLS tool, it uses less hardware resources
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with similar latency and energy consumption comparing to the original design. The proposed

workflow is useful for either fully-functional or faulty FPGA device especially when the design

is not fitted on FPGA.

6.1 Introduction

FPGAs, despite their growing size, are inherently resource-constrained both in physical

gates as well as routing and memory resources that ultimately limit the size of the accelerator

designs. Fitting a given design or maximizing utilization of FPGA resources is usually done

through a lengthy iterative process in programming the accelerator code and steering through

a highly parameterized logic synthesis and mapping process that often demands considerable

expertise in hardware design. This poses a serious challenge to meet the time-to-market re-

quirement especially for large applications. HLS tools help improve productivity by raising the

programming abstraction from hardware description languages to higher level languages like C,

C++, OpenCL, or SystemC. Despite the advances in HLS design automation [29], the quality of

synthesis results is still not comparable to hand-coded RTL designs, requiring an expert designer

effort to optimize and rewrite the source code especially when a design pushes resource limits.

Designers often need to manually explore a large design space to find the best design option

among many different design alternatives. This manual exploration and code transformations

takes significant time, requires knowledge of hardware microarchitecture and the coding style of

HLS tool, which negates the HLS design productivity gains.

We presents a practical source-level design exploration and mapping workflow that

enables automatic source-to-source transformation to improve resource usage using an HLS

design flow. This transformation workflow is especially helpful to automatically make the

design smaller as we have even more resource limitations on an FPGA with faulty resources.

Different system-level optimizations and code restructuring can be applied on a given application

specification, where each transformation impacts differently on resource utilization and perfor-
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mance of the design after synthesis. In this section, we focus on a class of optimization and

automated code transformations that results in improving hardware resource utilization without

noticeable overhead on the performance of design. These transformations seek to reuse the same

instance of a hardware component, or resource sharing, for parts of the design that have recurring

sequence of operations, or computational patterns [49]. Common patterns of operations in the

design, or regularities, can be extracted in every level of circuit design, from layout and netlist

representation of HDL description [25] [69] to higher-level application specification [27]. Indeed,

an intelligent use of regularity is a key reason why the manual design and optimization often

excels the design synthesized by automated HLS tools.

To be sure, off-the-shelf HLS tools (e.g. [5]) are partly capable of exploiting regularities

for resource sharing. For example, resource sharing is often done in HLS tools automatically

when the exact same function is invoked multiple times from the same caller function (if

the callees are not meant to run at the same time). Loops are also other parts that define

regularities and HLS tools apply resource sharing by default. However, in the absence of a

canonic representation, the implementation of such “common expression” detection and use

in current HLS tools varies across tools. In fact, if the repeated sequence of operations are

not wrapped in a function or loop, current HLS tools do not consider resource sharing as an

optimization strategy, even if those operations do not have overlapping execution time.

Therefore, expanding the automated design space exploration to detect regularities at a

higher level design can reduce the design time and improve the resource usage and design quality.

At the same time, excessive resource sharing decisions could introduce more overhead than

benefit due to need for time-multiplexed control that can be expensive on FPGA implementation

targets. If resource sharing is done in inappropriate parts of the design, it might negatively affect

resource utilization or performance of the design. We present an automated workflow that can

identify the program inherent regularities that are not automatically detected by HLS tools, and

decide if sharing resources for instances of those patterns would create a smaller design with

little or no performance degradation. This information is used to automatically modify the source

84



code in a way that guides the HLS tool to perform resource sharing for the selected parts of the

code. Using this automatically modified code, the HLS tool can provide a more efficient solution

that consumes less resources when synthesized on FPGA. This transformation is especially

useful when there are corrupted blocks on FPGA.

Accordingly, we make the following contributions:

1. We present a pre-synthesis regularity extraction and resource-aware task migration work-

flow for FPGAs that can help fitting the design on the available resources of FPGA. This

workflow, called REHLS, automatically finds regularities in the design specification, and

evaluates the usefulness of sharing hardware resources among them.

2. We implement a source-to-source transformation tool to automatically generate the im-

proved HLS-C design. When this new specification is used by the HLS tool, another

functionally equivalent design with different scheduling and resource usage is generated.

This transformation results in reducing area of the design on FPGA with low performance

overhead. This results in improving throughput (performance of parallel replicas) of the

design.

To the best of our knowledge this is the first work on automated source-to-source

transformation for FPGA resource optimization through regularity extraction and resource

sharing. This transformation automatically explores the design space and makes appropriate

decisions in higher level of abstraction. This reduces design time and especially helps non-experts

designers create a more efficient design.

6.2 Motivating Example

In this section, we demonstrate a simple motivational example to explain the benefit of

our resource-aware regularity extraction and task migration workflow.
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Figure 6.1(a) shows a small example code. This code segment consists of one loop that

performs the same sequence of operations with the same dependency and order (labeled as PI1,

PI2, and PI3). We call this repeating sequence of operations, a pattern. The pattern for this code

is shown in Figure 6.1(b).

During synthesis, the HLS tool specifies the operations in the source code (e.g. multipli-

cations, additions, ...) and then maps them to hardware cores that implement these operations (e.g.

multipliers, adders, ...). Each of these hardware cores uses different number of FPGA elements

(LUT, FF, DSP). Each of PI1, PI2, and PI3 in our example code has 1 multiplication, 1 addition,

and 1 division operation. Therefore, for each of them, the HLS tool gets 1 multiplier, 1 adder, and

1 divider. Figure 6.1(c) shows the hardware units (FU) that are allocated for implementing PI1,

PI2, and PI3. As can be seen, because PI1, PI2, and PI3 have the same computational pattern,

the same hardware unit FU is used three times. Thus, for this program, the HLS tool generates

a design that uses 3 multipliers, 3 adders, and 3 dividers to implement PI1, PI2, and PI3. We

call this design the baseline design. However, alternative designs can be generated to reduce the

resource usage by sharing the hardware unit (FU) for these pattern instances.

The first alternative design (design 1) is generated by allocating two instances of the

hardware unit FU; one of them is shared between PI1 and PI2 and another one for PI3. With

this implementation, only 2 multiplier, 2 adder, and 2 divider is required and four multiplexers

are added to the input of the shared FU. (Figure 6.2(b)) In general, when we share hardware

resources, computations that use the same hardware resources must be executed sequentially.

Therefore, this might increase the latency of design. However, in this example, because PI2

has dependency to PI1 (PI2 can not start its computation before the output of PI1 is ready), the

operations in these two loops do not have overlapping lifetime. Therefore, we expect negligible

effect on latency and throughput as the result of resource sharing for this design.

The second alternative design (design 2) can be generated by allocating only one instance

of the hardware unit FU, which is shared between PI1, PI2, PI3. With this implementation, only

1 multiplier, 1 adder, and 1 divider is required and multiplexers are added to the input of the
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Figure 6.1: (a) example code, (b) its pattern, (c) the design generated for this program

shared FU. (Figure 6.3(b)) This design has the lowest resource utilization among these three

designs. However, since PI3 has no dependency to PI1 and PI2 and can be run in parallel with

them, the effect of this modification is not negligible on the latency and throughput of the design.

In order to guide the HLS tool to share resources for the instances of this pattern, some

transformations on the code is required. The new versions of the code for design 1 and design

2 are shown in Figure 6.2(a) and Figure 6.3(a). In the transformed code, each operation in the

pattern is defined as a function. Instead of using the operations in C, this function is called for all

instances of the pattern. This way the number of hardware units allocated to the instances of

pattern can be limited to one through the ALLOCATION pragma. (We explain the reason that we

perform the transformation this way in section 6.3.0.2.)

Figure 6.2: Design 1. Timing-aware resource sharing for baseline design of Fig 6.1
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int mul(int a, int b){

return (a × b);

}

int add(int a, int b){

return (a + b);

}

int div(int a, int b){

return (a / b);

}

MotivatingKernel(IN[N], O[N]){

#pragma HLS ALLOCATION instances=mul limit=1 function

#pragma HLS ALLOCATION instances=add limit=1 function

#pragma HLS ALLOCATION instances=div limit=1 function

for (i=0; i<N; i++)

PI1: T1[i]=div(add(b, mul(a, IN[i])), c);

PI2: T2[i]=div(add(e, mul(d, T1[i])), f);

PI3: T2[i]=div(add(h, mul(g, IN[i])), j);

O[i]=T2[i]+T3[i];

}

(a) (b)

FU

+

Figure 6.3: (a) Code for Design 2. Aggressive resource sharing for baseline design of Fig 6.1,
(b) the design generated for this program

Table 6.1: Resource utilization and timing comparison for Fig 6.1, 6.2 & 6.3

Implementation LUT FF DSP CP(ns) Latency(cycles)

Baseline 2936 2919 30 8.28 8601

Design 1 2385 2289 20 8.28 8701

Design 2 1318 1151 10 8.28 11401

To evaluate these implementations, we use Vivado HLS tool [5], and Xilinx Virtex-7

XC7V585T FPGA device. Resource utilization results are after placement and route. Table 6.1

shows the resource utilization and timing comparison of baseline (Fig. 6.1) and Design 1 (Fig. 6.2)

and Design 2 (Fig. 6.3) implementations. From the table, we observe that sharing resources for

instances of the detected pattern can significantly reduce resource utilization (Columns LUT, FF,

DSP) without affecting the timing results and performance (shown in the last three columns).

As we can observe, design 1 utilizes 551, 630, and 10 less LUT, FF, and DSP elements

comparing to the baseline implementation, with only 1.1% overhead on latency of the design. In

this example, sharing hardware resources for the selected pattern does not affect the latency of
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the design, because these these composite instructions must be executed sequentially due to data

dependency of PI2 to PI1. For this example, adding multiplexers does not make the critical path

longer, therefore, the clock cycle remains the same. On the other hand, design 2 utilizes 1618,

1768, and 20 less LUT, FF, and DSP elements comparing to the baseline implementation. But

this huge benefit comes with 32% overhead on latency of the design. This shows that aggressive

resource sharing for this design negatively affects the latency of design, because we change

the scheduling from having concurrent units to a sequential design. It should be noted that

this transformation only affects the logic elements and do not change the number of memory

elements (BRAMs) on FPGA.

This example demonstrates that sharing resources for common patterns in the design

might be useful. However, regularity extraction and resource sharing would not always result in

a better solution. In some cases, it might even increase the resource utilization or highly decrease

performance of the design. The effect of resource sharing on resource utilization after this kind

of transformation depends on many factors, including the granularity of the selected patterns, the

frequency of the pattern, and the type and resource utilization of operators within the selected

pattern. Also, if the instances of a pattern are executed simultaneously in the baseline design,

sharing resources for them decreases performance. Therefore, it is very important to apply this

transformation only when it is useful. In the following section, we discuss about REHLS as our

solution that can make this decision and perform required transformation at the program source

level.

6.3 Resource-Aware Regularity Extraction and Task Migra-

tion Workflow

In this section, we describe our resource-aware regularity extraction and task migra-

tion workflow for HLS-based FPGA design. Given a C program with inherent computational
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patterns, REHLS explores the opportunities for design optimization through resource sharing,

and automatically transforms the program so that the HLS tool can generate a smaller design.

Fig. 6.4 illustrates an overview of the automated resource sharing tool. First, the program is

converted to LLVM intermediate representation (IR) [70]; the analysis and transformation is

done through LLVM passes; and finally, the transformed LLVM IR is converted back to a C

program. Because the HLS tools perform some compiler-level optimizations on the source code,

we extract the optimized LLVM IR from the HLS tool by synthesizing the baseline program

once. The optimized LLVM IR is accessible even from the commercial HLS tool that we used

for our experiments. In case the HLS tool does not provide the optimized IR, it can be generated

using Clang compiler and can be optimized with the available optimization passes. The main

components of REHLS are program analysis and program transformation. The program analysis

step performs pattern detection and pattern selection. The pattern detection step finds all patterns

repeated among different basic blocks in a given program. The pattern selection step decides

if sharing hardware resources for the instances of detected patterns can be beneficial or not.

The goal is to select all patterns that can share hardware resources between their instances, and

improve resource utilization (with low performance overhead) comparing to the baseline design.

If any pattern is selected, the program transformation step automatically applies appropriate

changes to the LLVM IR of the baseline program, and further transforms it to another C program.

The transformed C program along with a generated directive file guide the HLS tool to share

resources for the selected parts. These steps are explained in the following subsections.

6.3.0.1 Program Analysis

Given an input C program, the first step is to detect those patterns in the program that

can share hardware resources, and further select some of them that result in reducing resource

usage of the synthesized design.

Pattern Detection:
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Figure 6.4: Overview of REHLS, our resource-aware regularity extraction tool

REHLS finds all patterns that are repeated inside data flow graphs (DFG) in each function

in the program. DFG is a directed acyclic graph G(V, E), in which nodes in V represent operations,

and edges in E represent data dependencies or data transfers between operations. Our goal is to

find common subgraphs among DFGs. We call the common subgraph a pattern. Each pattern

graph has a single output node. The number of nodes in a pattern graph is referred to as its

size. Given a pair of DFGs, G1 = (V1, E1) and G2 = (V2, E2), the goal is to enumerate all the

subgraphs of G1 that are isomorphic to subgraphs of G2, where functionality, type, and bitwidth

of corresponding nodes of V1 and V2 are the same. We require the nodes in a common graph to

reside in the same basic block, where a basic block is a contiguous set of instructions with a

single entry point and a single exit point.

Our algorithm detects patterns with a breadth-first search approach. To reduce the search

space in our pattern detection step, the subgraph enumeration process is incremental, meaning

that size i+1 subgraphs are enumerated when all the size i subgraphs are enumerated. If a size

i subgraph is not frequent enough, it is removed and no further considered for creating new

subgraphs of size i+1. Our pattern detection pseudo-code is summarized in Algorithm 3. In

each iteration i, our algorithm finds all patterns of size i (with i nodes) in all DFGs within a

module. To do so, in iteration i, we extend the detected patterns of size i by adding one of
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their neighbor nodes in DFG (Lines 9–12 in Algorithm 3). This method ensures that we only

investigate those subgraphs that can be a potential pattern. This is true because if a subgraph of

size i is not a pattern across multiple DFGs, none of its expansions with size i+1 could be. The

goal in each iteration is to compare the subgraphs of size i+1 to each other, and find those that

are frequent enough. (Lines 13–25 in Algorithm 3). For each subgraph of size i+1, if the number

of occurrences across different DFGs are more than an acceptable frequency limit, we add it to

the set of candidate patterns. Otherwise, it is not considered for finding larger subgraphs (Line

23 in Algorithm 3). We also record the instances of every found pattern. This information is

required for the pattern selection step. For all newly found patterns of size i+1, we also remove

all its subgraphs of size i that are in the pattern set, if their frequency is the same; because if two

patterns have the same frequency, the larger pattern is always more useful for resource sharing

purpose, because it results in more area saving (Lines 17–21 in Algorithm 3). With this pruning,

we significantly reduce the number of detected patterns in the final set, which makes the pattern

selection step easier. After finding candidate patterns of size i+1, we expand each candidate

subgraph by adding its neighboring node, and repeat the above steps to identify larger candidates.

This process is repeated until either no more new pattern is found (Lines 26–28 in Algorithm 3)

or we reach the maximum size of subgraphs we can find.

If the pattern detector finds any candidate pattern in this phase, we investigate the

effectiveness of resource sharing and further optimization in the next phase.

Pattern Selection:

So far, we have found a set of computational patterns that are repeated more than a

frequency limit in the same function in a given program. Each of these patterns can be a

candidate component for resource sharing. The goal is to select all patterns that sharing hardware

resources for their instances can reduce the design area. Sharing hardware resources for different

instances might change the throughput of final circuit, as we have seen in section 6.2. Our goal is

to first select the patterns that are scheduled sequentially since that has a low effect on throughput.

If we require more aggressive resource sharing, we also consider the instances of the patterns
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Algorithm 3 Pattern Detection Algorithm.
Input: Program DFGs G={G1, G2,..., GN}.
Output: Database of patterns P, and their instances.
Pi: Patterns of size i
Si: Subgraphs of size i
N : Number of DFGs with more than 1 node
L : Frequency limit
Traverse all DFGs, add all nodes v ∈ G to S1
for i← 1 to N-1 do

for all s ∈ Si do
Generate t by adding a neighbour node to s
Add t to Si+1

end for
for all s ∈ Si+1 do

f req(s)← number of other DFGs that have instances of s
if f req(s) ≥ L then

add s to Pi+1
for all p ∈ Pi do

if p is a subgraph of s && f req(s) == f req(p) then
Remove p from Pi

end if
end for

else
Remove s from Si+1

end if
end for
if (|Pi+1| == 0) then

return
end if

end for

that have overlapping lifetimes. To select patterns for sharing, we estimate the effectiveness of

resource sharing for each detected pattern.

If hardware resources are shared for instances of a pattern, those parts must be executed

sequentially. Therefore, if instances of a pattern have overlapping lifetimes in the baseline design,

the performance of the design degrades after resource sharing. Therefore, if it is important to

meet the performance requirement, we select those patterns that are not scheduled in parallel, so

that resource sharing does not affect the latency of the design. However, if timing is not a concern

and it is more important to make the circuit smaller, we consider all patterns in our selection

process. In the first case, for instances of each detected pattern, first we use a dependency

analysis pass in LLVM to identify subsets of them that have (direct or indirect) dependency and,

therefore, can not be executed at the same time. In fact, for each two instance that can be run in

parallel, we keep only one of them in the set. The dependent subset of instances are grouped for

further resource-utilization-estimation analysis. With this analysis pass, we ensure that resource
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sharing will keep the performance overhead as low as possible. It should be noted that adding

multiplexers might make the critical path longer and change the clock frequency, but this change

is usually not considerable. For the second case, where we don’t have timing limitation, we

consider all instances of detected patterns for analysis.

We use a greedy algorithm for pattern selection. At each step, the best pattern is

chosen based on an area gain metric. For each pattern, we estimate the effect of resource

sharing on resource utilization of design. In general, sharing FPGA resources can save area.

However, multiplexers are introduced in the inputs of the shared components. These multiplexers

(especially larger ones) have non-negligible area. For example, a 32-bit (64-bit) 4-to-1 multiplexer

on a Xilinx Virtex-7 FPGA takes 104 (200) LUTs while a 32-bit (64-bit) adder takes only 32

(64) LUTs. Therefore, the granularity, frequency, and type of shared component determines if

sharing is beneficial in terms of reducing area or not. Because multiplexers are only added in the

inputs of shared components, more complex and more frequent patterns are better candidates for

resource sharing. When any candidate pattern Pi is selected for sharing, instead of FPi instances

of the allocated hardware unit, the new design has only one instance of that hardware unit plus

some extra multiplexers. For each candidate pattern Pi, we compute an estimation of the area

gain that can be achieved due to resource sharing for the selected instances of that pattern:

AreaGainPi = (FPi−1)×AreaPi−NinputsPi×Areamux (6.1)

FPi is the frequency of the candidate pattern Pi that has area AreaPi, and NinputsPi is the number

of inputs of the candidate pattern. Areamux is the area of a multiplexer of required bitwidth. From

the equation, the more complex and larger pattern with more frequency has larger area gain. In

this equation, area is defined as the number of hardware elements (FF, LUT, DSP48, BRAM)

that the component uses. We only share the logic elements and, therefore, the number of BRAM

elements does not change. So we estimate the number of reduced (or increased) FF, LUT, and

DSP48 elements due to resource sharing using equation 6.1. We calculate the areaGain for
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all patterns, and remove those that have negative gain. For the remaining set of petterns that

have positive areaGain, in each iteration of the algorithm, the pattern with largest areaGain is

selected.

As a very simple example, if the candidate pattern is 32-bit add operation that has 4

instances, the synthesis result of baseline program (without resource sharing) takes 4×32 =

128 LUT (four 32-bit adders), while the sharing-based approach takes 32 + 2×104 = 240 LUT

(1 32-bit adder and two 32-bit 4-to-1 multiplexer). The areaGain for this transformation is

(3×32-2×104) negative, and sharing-based approach takes larger FPGA elements. Therefore,

this pattern is not selected. On the other hand, a 32-bit divider takes 290 FF and 321 LUT

elements on FPGA. If the candidate pattern is a 32-bit divide operations that is repeated 4 times,

the baseline synthesis result without sharing takes 1160 FF and 1284 LUT (with four 32-bit

dividers), while the sharing-based approach takes 290 FF and 529 LUT (with two 32-bit 4-to-1

multiplexer and one 32-bit divider). For this transformation, areaGain is positive. Therefore,

this pattern can be selected for resource sharing.

After selecting one pattern, we still continue to select other patterns that are good for

resource sharing. First, we remove all subgraphs that have overlapping node with any node in

the instances of the selected pattern. Then we continue our search for the remaining subgraphs

in the pattern set. We continue this process until no more candidate pattern is left in the pattern

set. At the end of this phase, we find all independent patterns and their instances that are useful

for resource sharing.

6.3.0.2 Program Transformation

After selecting the patterns, the next step is to make the required changes in the code. The

transformation is done through an LLVM pass that modifies the LLVM IR. We can consider two

methods for defining the patterns in the code. In the first transformation method, each selected

pattern is defined as a function and each instance of the pattern is replaced by a function call.
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In other words, operations of a pattern are encapsulated as a single function (e.g. patternFn);

and a pragma is added in the directive file to guide the HLS tool to share instances of function

patternFn. But we realized that there is a special case for which this transformation results in

increasing latency. If the selected pattern is inside a loop which is not perfectly pipelined due

to inter-iteration loop dependency, defining the whole pattern as a function might increase the

pipeline initiation interval and latency. To clarify this issue, consider the following code:

for ( i = 0; i < M; i++ )
#pragma HLS PIPELINE

r norm = r norm + r[i] × r[i];

In this code, the inter-iteration dependency comes from variable r norm that must be

computed in one iteration and then be used in the next iteration. Therefore, the initiation

interval is equal to the delay of an add operation that must wait for r norm to be computed

from the previous iteration of the loop. If we transform the code the way we described, it

must wait for the whole pattern function to get finished before starting the next iteration; which

means that it must wait for one add and one multiply operations to be done. This increases

the initiation interval of pipeline and therefore the overall latency of the design. Therefore,

we use another method to define patterns (as shown in section 6.2, figure 6.2(a)). We define

each operation inside the pattern as an individual function, and call this function instead of

calling the operator in C for each instance of the pattern. To share resources for instances of the

pattern, for each operation in the pattern, a pragma should be defined (using “#pragma HLS

allocation instances=operationFn limit=1 function”). This guides the HLS tool to allocate

only one instance of the pattern. These pragmas are written in a directive file which is given to

the HLS tool as input. These pragmas guides the HLS tool where to apply resource sharing. The

transformed LLVM IR is then converted back to C using a resurrected LLVM C Backend. The

generated code is a low-level C code that can be synthesized using HLS tool.
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6.4 Experimental Results

In this section, we show the benefit of using our workflow to efficiently improve resource

usage of a design on FPGA.

6.4.1 Implementation and Experimental Setup

We use Xilinx Vivado HLS Suite 2015.4 [5] as an exemplary state-of-the-art tool for

our experiments. This tool uses the LLVM compiler and compiles a behavioral C/C++ program

into RTL hardware design. Before synthesizing the program, it performs special LLVM passes

to optimize the IR. Our workflow takes a C program as an input and synthesizes it once using

Vivado HLS tool to get the optimized LLVM IR, and to collect synthesis results of the baseline

design. REHLS uses this optimized LLVM IR as input and extracts program DFGs. The pattern

detection and selection passes are performed on DFGs of each function. After selecting the

patterns that are suitable for resource sharing, the required transformation is performed in LLVM

IR. Finally, the transformed LLVM IR is converted back to C using a resurrected LLVM C

backend called llvm-cbe library. The generated code is a C program that can be synthesized

using Vivado HLS tool. This program along with the generated directive file guide the HLS tool

to share instances of selected patterns. Although we targeted Vivado HLS for our experiments,

the proposed workflow is applicable to any LLVM-based HLS tool.

We evaluate REHLS using a set of computation kernels and applications. A description

of each benchmark can be found in Table 6.2. Our benchmarks are implemented for HLS

tools and mainly taken from established suites including CHStone [52], autoESL benchmark

[2] and PolyBench [4], along with other independent implementations for HLS. We selected

these benchmarks because they have inherent computational patterns, making them reasonable

candidates for our study. For each benchmark, the number of selected patterns (NP) by ReHLS,

the size of selected patterns (or the number of operations in the pattern) (PS), and the frequency

of each pattern (PF) are reported in the table. Xilinx Virtex-7 XC7V585T FPGA device is used
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Table 6.2: Benchmark Descriptions

Benchmark Description/Source NP PS PF

adi Alternating direction implicit solver [4] 2 16,2 2,2

bnn 4-layer bitwise neural network (feedfor-
ward) for MNIST [3]

2 6,5 4,3

fdtd Finite-difference time-domain by
anisotropic perfectly matched layer [4]

2 17,14 2,2

gauss 3D gaussian convolution [2] 1 16 4

idct Inverse discrete cosine transform from
JPEG [52]

3 8,13,16 2,2,2

RN Residual norm 1 2 2

jacobi Jacobi iterative method [2] 1 8 4

as the target hardware platform in our experiments.

6.4.2 Results

Table 6.3 demonstrates our experimental results. For each benchmark, we report the

resource utilization and throughput of using baseline and ReHLS implementations of each

application. For each benchmark, the top two rows reflect synthesis results for the baseline and

REHLS-optimized programs (Baseline and REHLS rows in the table). The third row of each

benchmark (Improvement) shows the relative improvement of the REHLS-optimized version

over the baseline program. (Improvement numbers for resource utilization and performance is

the percentage of relative reduction)

6.4.2.1 Area Savings

Columns LUT, FF, and DSP in Table 6.3 show the resource utilization for the baseline,

and REHLS-optimized programs. Our transformation does not change the number of memory

elements, therefore, the number of utilized BRAM elements is not reported. Our results indicate

that REHLS reduces the number of utilized resources on an average of 22% (16% LUT, 18% FF,

and 33% DSP elements) comparing to the baseline design. This is achieved by the detection of
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patterns and reusing the same hardware resources for them. The amount of reduction depends on

different factors, including the type and number of operations in the pattern, and the percentage

of resource utilization of instances of patterns comparing to the other parts in the baseline

program. For example, in adi, the selected patterns form the major computations in the design,

and therefore, sharing hardware resources reduces its area by 44%. On the other hand, the

selected patterns in bnn are not that much complex comparing to other computations in the

design, therefore, it can only achieve 1.9% area reduction. Figure 6.5 shows the relative reduction

in the number of slice logic and DSP elements on the FPGA when comparing REHLS with

baseline design. As can be seen our method reduces slice logics by an average of 16.8%.
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Figure 6.5: Relative reduction in the number of slice logics and DSP elements on Virtex 7.
Numbers are in percentage.

6.4.2.2 Performance Overhead

Column Performance in Table 6.3 shows the execution time (ms) for the baseline and

REHLS-optimized designs after synthesis. In the results that is shown in this table, we only

selected patterns that sharing resources for them does not change the performance significantly.

As can be seen, performance changes of REHLS comparing to baseline design are small (with

geometric mean 1.2% and maximum 8.8%), because we only share resources for those instances

of patterns that have some dependency. We also can ask the tool to perform more resource sharing

with the cost of more performance overhead. For example, if we can accept 17% overhead
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Table 6.3: Experimental results on Virtex-7 FPGA

BM Implementation LUT FF DSP Performance(ms)

adi

Baseline 34452 33889 192 2353.222

REHLS 19163 17528 112 2408.8

Improvement 44.3% 48.2% 41.6% -2.3%

bnn

Baseline 1557 679 0 13.219

REHLS 1489 670 0 13.226

Improvement 4.36% 1.32% 0% -0.054%

fdtd

Baseline 62721 61560 352 25.149

REHLS 47202 46410 224 26.86

Improvement 24.74% 24.6% 36.36% -6.84%

gauss

Baseline 15312 10145 661 24.63

REHLS 15080 8361 517 24.67

Improvement 1.5% 17.5% 21.7% -0.17%

idct

Baseline 2421 2118 64 0.371

REHLS 1568 1879 32 0.403

Improvement 35.2% 11.28% 50% -8.6%

jacobi

Baseline 14854 6794 82 4620

REHLS 14454 6140 46 5028

Improvement 2.69% 9.62% 43.9% -8.8%

RN

Baseline 3494 2346 14 6.63

REHLS 3530 1946 9 6.66

Improvement -1% 17% 35.7% -0.5%

in performance for fdtd application, we can save more DSPs (45%) comparing to the baseline

implementation.

6.4.2.3 Throughput Speedup

Traditional FPGA design flows usually follow a two-step approach. First, a given

application is optimized for best performance and resource utilization. Then the optimized

design can be replicated and executed in parallel to fully utilize the available capacity of the

target FPGA, and to improve throughput [75]. As shown in Section 6.4.2.1, REHLS reduces the
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area of synthesized design for our benchmarks. Therefore, the number of parallel replicas of that

design, that can be fitted in the fixed area budget of the FPGA is increased. In addition, because

the effect of our transformations on latency is negligible, the increase in the number of mapped

applications on FPGA, results in higher throughput.
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Figure 6.6: Throughput speedup of REHLS-optimized design (Normalized to baseline)

For each benchmark, we can increase the number of design replicas on FPGA until one

of the resources available on FPGA reaches its maximum limit. Considering the geometric mean

across all the benchmarks, REHLS improves the number of mapped kernels by a factor of 1.45×

(maximum 2× in idct).

Figure 6.6 shows the corresponding throughput speedup results – throughput of the

REHLS-optimized designs normalized to the throughput of the baseline design. As shown,

REHLS achieves on average 1.41× higher throughput (between 1.04× and 1.84×) comparing

to the baseline design.

6.4.2.4 Energy Overhead

For most of applications, energy only changes slightly. In fact, the power does not change

that much and execution time slightly increased. Figure 6.7 shows the energy results normalized

to the baseline design energy consumption. For idct, there is a slight energy overhead which

results from the performance overhead of this benchmark and very low power improvement. In

our benchmarks, we don’t see any considerable energy overhead.
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Figure 6.7: Energy comparison of REHLS-optimized design (Normalized to baseline)

6.4.3 Impact of applying both GRATER and REHLS

We also performed experiments to show the benefit of using GRATER optimization,

described in Section 5, to improve the efficiency of REHLS. For this purpose, we pick a

benchmark and compare the resource utilization and performance of running baseline kernel,

kernel after applying REHLS, kernel after applying GRATER, and kernel after applying both

REHLS and GRATER for FPGA. We perform the experiments that involve GRATER, for two

scenarios: First, when we can not tolerate any accuracy loss; and second, when average relative

error below 2% is acceptable. The input to these experiments is a C Jacobi application. We use

Xilinx Vivado HLS and Virtex 7 FPGA for this experiment.

Figure 6.8 demonstrates performance of each design normalized to the baseline design.

As shown in chapter 6, using isolation with REHLS slightly reduces the design performance,

this can be seen in the leftmost column of this figure. If we use GRATER on the Baseline

program, where no accuracy loss is allowed, we gain 1.7× performance improvement comparing

to the Baseline design. As we apply GRATER on REHLS design, we get 1.4× performance

improvement instead of performance degradation in REHLS case. This improvement become

even better as we accept a slight inaccuracy in the output of application. For this experiment,
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we allowed an average relative error of 2% in the output. As can be seen in column Grater

(Approximate), this transformation results in 2.6× performance improvement over the baseline

design. As we apply REHLS on this approximated kernel, the performance increase by 2.13×

comparing to the baseline design. Table 6.4 shows resource utilization and power consumption

of each design. As expected, both REHLS and GRATER reduce the resource utilization and

can even make it better as they combined together. GRATER also slightly improves power

consumption of the design. These results show that by applying GRATER, we can reduce the

latency overhead caused by resource sharing transformation while we are saving more resources.

The improvement even become more if we can accept some degree of inaccuracy in the output

of application. It should be noted that in some situations REHLS might reduce the chance of

optimization by GRATER, as we share resources for all instances of the pattern, and only some of

these instances might be amenable to bitwidth reduction. However, if quality loss is acceptable,

this increases the chance of reducing resource utilization. In our Jacobi example, there is no

conflict between resource sharing an bitwidth tuning optimizations.
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Figure 6.8: Impact of both REHLS and GRATER on Performance

6.5 Related Work

This section discusses work that is related to our resource-aware optimization workflow.

Source-to-source transformation for HLS: In recent years, some source-to-source

transformation tools have been developed to perform program optimizations that are not auto-

103



Table 6.4: Impact of both REHLS and GRATER on resource utilization and power consumption

Implementation LUT FF DSP BRAM Power (mW)

Baseline 14854 6794 82 67 520

ReHLS 14456 6140 46 67 522

Grater (Exact) 14281 6201 48 51 503

ReHLS+Grater (Exact) 13977 5764 30 51 503

Grater (Approximate) 13719 5836 34 38 461

ReHLS+Grater (Approximate) 13589 5580 22 38 466

matically done by the HLS tools. The purpose of these tools are to transform the program so

that when it is synthesized by the HLS tool, a better design is generated. These tools mainly

target loop transformation, memory partitioning, and on-chip buffer restructuring and data reuse

optimizations. In this regard, polyhedral loop transformations for high-level synthesis were

studied ( [28] [92]) that apply affine loop transformation for improving data locality and on-chip

memory allocation, and reducing the size of the data reuse buffer in the imperfectly nested

loops. Many work tackle the problem of automatic array partitioning and memory banking to

improve pipeline initiation interval and throughput of the design [107] [116] [80]. There are

also source-to-source transformation tools that target automated expression simplification and

bitwidth optimization [45].

In contrast to these works, our tool targets transformations for finding patterns of compu-

tations that can benefit from resource sharing to reduce the area of the design. In fact, our work

is orthogonal to most of other source-to-source pre-HLS tools and can be added to their solutions

to further improve the design.

Regularity extraction and resource sharing: Regularity extraction has been studied

extensively in application-specific instruction set processors ( [16] [93]) and synthesis literature

( [26] [30]) over the past two decades. These works try to extract some of the computational

patterns in the design, and use them for reducing resource utilization in synthesis process, or re-

ducing area or latency in custom instruction set selection in ASIPs. Different methods for pattern

104



detection has been proposed. These methods include string-matching-based approaches [95],

grammar induction-based approaches [88], and graph-matching-based approaches [27]. In the

field of high-level synthesis, Cong et al. [27] [26] presented a method to extract patterns from

behavioral specification. They use the concept of graph edit distance to enumerate similar

subgraphs in the data flow graph or control data flow graph representations of the program. After

discovering patterns, scheduling and resource binding algorithms of synthesis flow are changed

to reduce the resource usage of the generated design. Another work [49] also studied the impact

of FPGA architecture on resource sharing and changed the binding stage of HLS flow to apply

resource sharing for expensive operations.

All these previous works require to change the HLS tool. However, off-the-shelf HLS

tools still can not automatically exploit non-obvious regularities in the design; and it is not

possible to change synthesis flow and algorithms in commercial HLS tools. Therefore, our

method applies the required modifications on the high-level source code itself to exploit inherent

regularities in the design, and guide the HLS tool to efficiently share hardware resources when

useful. Our pattern detection step is more or less similar to the previous works in this area

and we are not trying to improve the pattern detection algorithm. In fact, any of these pattern

detection methods can be used in our workflow. We analyze the program to detect and select a

set of patterns that are useful targets for resource sharing, and then perform source-to-source

transformation to prepare the code for the HLS tool. Otherwise, these transformations must

be done manually by the designer. Our tool reduces the design time and designer effort, and

improves the synthesis results by automatic source code transformation.

6.6 Chapter Summary

Preparing the code for HLS tools with high-level transformations is not new, but it is

typically a manual process. However, some of these transformations can be done efficiently, faster,

and error free in an automatic way by the compiler front-end. In this chapter, we presented a

105



workflow for efficient task migration and resource sharing in HLS-based FPGA design. This pre-

HLS workflow reduces the resource usage by identifying and exploiting inherent computational

patterns in an input program. This transformation allows a new level of hardware awareness

in a source-to-source compiler to improve area of the design. As a future work, we can focus

on finding patterns with larger granularity as well as patterns that are functionally similar. The

proposed workflow is useful for either fully-functional or degraded FPGA device.
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Chapter 7

Case Study: Impact of Algorithmic

Optimization on Resource Utilization

In order to make efficient use of FPGA resources, so far we have investigated source-

level and compiler-level optimizations. We realized these optimizations are beneficial, fast,

and efficient; but there is more optimization opportunity in algorithm level. In this chapter, we

perform a case study to show the impact of choosing a hardware-friendly algorithm on resource

utilization and efficiency. It is important to design the algorithm for an application considering

the target hardware and its strengths and limitations. For example, as we discussed earlier, certain

operations and data types such as floating point multiplication is more expensive than logical

operations when implemented on FPGAs. Therefore, it is more efficient to select the algorithm

that suggest simpler operations for a given application. In this chapter, for the growing field of

deep neural network, we show resource saving and power reduction of using Local Binary Pattern

Network (LBPNet) over Convolutional Neural Networks (CNN). LBPNet makes the algorithm

more hardware-friendly by replacing the costly convolution operations by comparison. In general,

designing a suitable algorithm for the target hardware, along with efficient implementation of

it, is the most effective approach for efficient use of hardware resources, since this results in

considering the full stack from algorithm to hardware.
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7.1 Introduction

Optimizing an application in algorithmic level is of great importance for efficient use of

accelerators with limited resources. If we can make our algorithms inherently more suitable for

the target hardware, we can achieve better resource usage, performance, and power consumption.

For example, an algorithm, that contains hundreds of floating point multiplications, is not a good

match for FPGA. If we can come up with any algorithmic modification that does not require

such expensive computations, we can improve resource utilization and efficiency of design

significantly.

An example of expensive algorithms for hardware can be seen in deep convolutional

neural networks (CNNs) [71]. CNNs have become an important class of machine learning

algorithms widely used in computer vision and artificial intelligence. Modern CNNs may contain

millions of floating-point parameters and intensive multiplication and accumulation (MAC)

operations to recognize a single image. The implementation of convolution operation in these

networks overburdens the resource-limited hardware accelerators [96]

There are some approaches to optimize CNN to make the hardware implementation

possible. Some work selectively skip arithmetic operations that has less significant values in

their operands [48]. Some other perform quantization and bitwidth optimization [94]. However,

these works only reduce the model size from the network level. Binarized neural networks

or BNN with binary weights and activations [31] [55] is an alternative to CNNs that reduces

computations significantly at the cost of dropping accuracy. Binarization reduces storage and

memory bandwidth requirements, and replaces floating point operations with binary operations

which can be efficiently implemented and performed on FPGAs. There is also another interesting

alternative for CNNs, recently proposed by Lin et. al., called LBPNets [76]. LBPNet made an

efficient algorithmic change for deep neural networks, which eliminates the need for computing

dot products and convolution operations. LBPNets replaces the expensive MAC operations

with simple comparison operations. LBPNets are hardware-friendly and can achieve significant
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benefits over CNN models.

In this chapter, we implement LBPNet on FPGA and show the efficiency of algorithmic

optimization on resource usage.

7.2 Background

In this section, we briefly review the basic principles of CNNs and LBPNets. Since

LBPNet [76] was proposed to be an alternative of the prevailing deep learning method CNN, we

start from the preliminary knowledge of CNNs.

7.2.1 Convolutional Neural Networks

A CNN is a machine learning classifier that usually gets a multi-channel image and

produces the probabilities of that image belonging to each output class. A CNN consists of a

sequence of layers. Each layer takes as input a set of feature maps, performs some computations,

and produces a new set of feature maps, which are the inputs of the next layer. The input of the

first layer is the input image. During the training phase the parameters of different layers are

learned on a set of pre-classified images. After training, the network can be deployed for the

classification of unseen images.

Figure 7.1 shows a typical CNN model structure [77]. A CNN model usually consists of

Convolution layer (Conv), Fully connected layer (FC), and Pooling layer (Pool). The Convolution

layer convolves a K×K weight kernel with the input feature map in a sliding-window manner.

The Pooling layer performs a down-sampling operation, which converts the input feature map

into smaller output feature map whose every pixel is the max or mean of a K×K window of

input pixels. The Fully connected layer performs a dot product on the input vectors of feature

maps and a weight matrix. The pattern of input-output of this network is fully connected.
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Figure 7.1: The typical convolutional neural network model structure

7.2.2 Local Binary Pattern Network

LBPNet [76] training phase learns a set of local binary patterns. These patterns indicate

the location of sampling points in feature maps. Analogous to a Conv layer in CNNs, there are

multiple local binary patterns, which record the sampling positions for the comparison with a

pivot sampling. For each comparison pair, the pivot and a sampling point locations are used to

index two values from the input features. The results of comparisons are written to predefined

locations in a bit array. The interesting point in LBP layer is that it has no MAC operation or

convolution operation. In addition to LBP layer, LBPNet has Pool layer and FC layers. The

layers after LBP layer (or MLP classifier part) are very similar to BNNs and CNNs.

LBPNet has two major benefits over CNNs. First benefit is the convolution-free design

of LBP layers. LBP Layer can be easily implemented by simple comparators. The speedup of an

LBP layer over a Conv layer with massive MAC operation is therefore guaranteed. LBPNets

significantly reduce the hardware resource usage and improves energy efficiency. In FPGA, it

takes 62 LUTs to implement an 8-bit multiplier, and 8 LUTs for 8-bit adder, while a comparator

requires only 4 LUTs. Second benefit is about the sparse sampling pattern which greatly reduces

the model size. An LBP pattern contains Nsampling sampling points’ locations on a window.

Assuming the number of input channel is Nin, and the number of output channel is Nout , the

number of sampling locations is 2×Nin×Nsampling×Nout (it is multiplied by 2 because each

location has two dimensions). However, by applying random projection only a part of sampling

pairs are compared. Therefore, we only need to store 2×Nsampling×Nout sampling positions and

a mapping table of size Nout×NSampling.
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Figure 7.2: The structure of the LBPNet for MNIST.

The LBPNet structure for MNIST dataset is visualized in figure 7.2. In this structure,

there are three LBP layers for extracting feature maps. Each LBP pattern contains four sampling

points and four pivot points. A Joint operation exists at the end of each LBP layer which simply

brings the input feature maps to LBP results. For the MLP classifier part, first, an average pooling

layer is used. Then two binarized FC layers and one batch normalization layer are used to

further reduce the dimension of data and extract features for the 10 classes of MNIST dataset. To

avoid on-chip floating point arithmetic operations, we perform quantization and binarization. We

binarize the weights of both the two fully connected layers to either -1 or 1. Then, we set all -1 to

0 for digital circuitry. The input of the first layer is the averaged value from the AvgPool Layer,

which is in floating or fixed numbers. Although we cannot use an XNOR gate to replace the

multiplication between the input and a weight, binarized weights enable us to use a multiplexer

to select whether to add or subtract the input from an accumulator. The second binarized fully

connected layer takes binarized input from the BatchNorm layer. Therefore, we can replace the

multiplication with an XNOR operation in the dot-product. Furthermore, we apply the method

for batch normalization layer mentioned in FINN [112]. This consists of methods to combine

the binarization activation function with the linear transform and calculating a threshold for each

input activation off-line.

The model sizes for the MNIST dataset is listed in table 7.1.
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Table 7.1: The structure of LBPNet for MNIST.

Layer Input output Feature map Feature map Parameter

ch Nin ch Nout dim d size (Kbit) size (Kbit)

LBP1 1 39 32 x 32 - 2.18

Joint1 40 40 32 x 32 163.84 -

LBP2 40 40 32 x 32 - 2.24

Joint2 80 80 32 x 32 327.68 -

LBP3 80 80 32 x 32 - 4.48

Joint3 160 160 32 x 32 655.36 -

AvgPool 160 160 5 x 5 32.00 -

FC1 4000 512 1 4.10 2,056.19

BatchNorm 512 512 1 0.51 8.19

FC2 512 512 1 0.08 5.28

Total

LBP 1,178.88 8.90

FC 4.69 2,069.66

7.3 FPGA Accelerator Design

7.3.1 Accelerator Architecture

An overview of the accelerator architecture is shown in Figure 7.3. The accelerator

consists of four compute units as shown for each different type of layer, data and weight buffers,

a memory access controller for off-chip memory transfers, and a controller. The operations of

the LBP, Average Pool, Fully-Connected, and BatchNorm layers are performed through the four

compute units LBP, AvgPool, FC, and BatchNorm, respectively. The LBP unit – dedicated to

perform the compare operations in the LBP layer – consists of a set of logical elements, while

the other compute units are made up of arithmetic units to perform operations such as addition,

multiplication, and division for the other layers. The input data and the parameters of the

layers loaded from the off-chip memory are stored into the on-chip Data buffer and Parameters

buffer, respectively. In addition to storing the input data, the Data buffer can accommodate the

intermediate results of the layers which are necessary for the computations of their next layer.
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Figure 7.3: System-level architecture for LBPNet accelerator.

Because the size of the intermediate outputs of the layers is small, they can easily be stored

on the available on-chip memories. This eliminates the need to transfer intermediate outputs

between the accelerator and the off-chip memory. Thus, off-chip memory transfers are only

needed for the input image, loading each layers weights, and sending back the final prediction

output. This is one of the benefits of LBPNet compared to most other CNN-based accelerators

where the size of intermediate results typically exceeds the available on-chip storage. On the

other hand, the Parameter buffer can store all the weights for all the LBP layers at once. So only

one time data and weight load is required for all the LBP layers and AvgPool layer to compute

the input of the first FC layer. On the other hand, there is only enough space to store a portion

of the FC layers weights. Each time a new set of weights are loaded into the parameter buffer

and a new set of intermediate result is generated. This continues until all FC layer outputs are

generated and stored in the on-chip Data buffer. To accelerate the communication and parallelize

computations, we pack our 8-bit weights and generate 64-bit words, store these words in the

buffers, and unpack them to perform parallel computations.
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7.3.2 Execution Flow of the Accelerator

At the beginning, input image and parameters of the three LBP layers are loaded from

the off-chip memory to the Data buffer and Parameters buffer. Afterwards, the LBP compute unit

performs the corresponding comparison operations starting from the layer LBP1. Accordingly,

the output of LBP1 is stored in Data buffer on top of the input data. The process continues until

all the LBP layers are performed. Then, the AvgPool unit starts performing a quantized version

of average pooling operations on the data to reduce its dimensions. At this point, the parameters

stored in the Parameters buffer are not needed any longer, and the space can be freed to store the

parameters of other layers.

The next pass operates on layer FC1. Since the parameters of this layer exceed the size

of the Parameters buffer, a portion of the parameters are loaded into the on-chip buffer, and

the corresponding multiply-and-accumulate (MAC) operations are performed, and the partial

outputs are stored in the Data buffer. Then, the process moves to the computations with the next

part of parameters by loading them into Parameters buffer and performing the corresponding

FC computations. After all the computations of the layer FC1 are completed, the parameters

of the BatchNorm layer are brought into the Parameters buffer and overwrite the parameters of

FC1. Then, the compute unit BatchNorm performs the batch normalization on the results of FC1

which are available in the Data buffer. The new outputs generated by the BatchNorm unit are

stored in the Data buffer. Finally, the computations of the last layer are performed similarly to

executing the layer FC1. The last FC unit generates prediction output values. The final label

is computed using ArgMax operation on the results of the last FC layer and is written back to

off-chip memory.

7.3.3 Compute Units Architecture

LBP Layers: The LBP unit is the most critical component of the accelerator responsible

for a number of repeated LBP layers. Each unit in the LBP layer is responsible for reading
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eight input pixels from the data buffer and performing four comparison operations to generate

one output. The position of these eight points are read from the weight buffer; then we can

access the corresponding locations in the data buffer, compare every two of them together, and

generate the corresponding output pixel by concatenating the four comparison results. As the

weights are 8-bits for these layers, and they are stored in 64-bit words, we only need to read

two words from the weight buffer which can be done in one cycle. These values indicate the

position of points that should be accessed from a tensor in the data buffer. After reading each

two-pixel values, a comparison is performed, and 1 bit of the output pixel is generated. This

process is performed for every input channel in a pipeline fashion. This process is repeated in a

sliding window pattern for the whole image. To improve the latency of the LBP computations,

the operations inside the LBP can be parallelized. In this case, we partition the tensor input

horizontally, and each processing element performs the aforementioned operations on one part.

In order for the processing elements to access to data buffer at the same time, we partition the

data buffer BRAM horizontally. There is clearly a trade-off between resource utilization and

performance as we change the level of parallelism.

FC Layer: Each cycle we read in N data words and an equal number of weight words.

N here is the input parallelization factor (we used 8 in our implementation). We apply appropriate

memory partitioning to be able to access to 8 data words in one cycle. N multiplications are done

in parallel, and this process is pipelined until an output is generated. As we perform quantization

on FC layers, we only have integer MAC units. After the computations on the available set of

weights are done, a new set of weights are loaded from the off-chip memory, and the next set

of outputs are generated. Note that the level parallelism in FC layer is typically bounded by

memory bandwidth of the off-chip connection, rather than the throughput of the accelerator.

BatchNorm Layer: We implement batch normalization layer using a parallel compari-

son between the data and weights, and multiplexers to generate a binarized output for the next

fully-connect layer. In each cycle, eight parallel comparisons are made to generate eight outputs,

and this process is performed in a fully pipelined fashion.
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AvgPool Layer: This layer is relatively simple. It averages over 5-by-5 windows from

input channels. The required memory read, computation, and memory write is fully pipelined.

7.4 Experimental Results

We designed our accelerator for MNIST dataset, which is a dataset of handwritten

numbers. Our architecture can be easily adapted for other similar datasets, especially those that

use one channel. For other dataset containing colored images, we can convert RGB channels to

YUV channels and use one of the channels as the input image to train LBPNets.

7.4.1 Experiment Setup

The modified LBPNets are trained on a GPU machine with NVIDIA Tesla K40, and

the training achieves 100.0% accuracy while the test accuracy is 99.34% on MNIST. Compared

with the LBPNet paper [76], we have sacrificed some classification accuracy to make LBPNet

hardware-friendly through binarizing the MLP classifier.

We have implemented our design in C++ and used Xilinx Vivado HLS and Vivado Suite

2015.4 as the primary tool for synthesizing the accelerator. We evaluate our designs on a low-cost

Xilinx Zynq-7000 series (XC7Z020 FPGA) target. This FPGA contains 140 BRAM, 220 DSP,

13055 LUT, and 8148 FF. We performed HLS design space exploration to select the design

options that strike a balance between resource utilization and latency. In our final design, we use

64-bit words, and the LBP compute unit consists of four parallel processing units.

7.4.2 Results

The resource utilization for our design is 7954 LUT, 7188 FF, 68 BRAM, and 16 DSP.

Our FPGA implementation works at 200 MHz. We evaluate performance of our accelerator

for MNIST dataset. The latency break-down for different layers and total execution time is
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summarized in Table 7.2. The last column in this table (labeled as Total Runtime), shows the

execution time (in millisecond) per image for the optimized design. This table also shows the

break-down of latencies (number of cycles) per layer in columns 2-5. Column 2 and 4 shows

the sum of latencies for all LBP layers and FC layers. Since different LBP and FC layers work

on different data sizes, their latency is different. For the MNIST dataset, the latency of three

LBP layers are 51745, 78404, 156804 cycles respectively. The latencies in the two FC layers are

259588 and 811 cycles respectively.

Table 7.2: Latency (number of clock cycles) break-down for different layers and total run time
for MNIST dataset. The runtime is in millisecond.

LBP AvgPool FC BatchNorm Total Runtime

286953 72726 260399 75 3.1

We compare our design with off-the-shelf CNN and BNN FPGA implementations. Table

7.3 compares the resource utilization for different FPGA implementations of LeNet and BNN

with LBPNet. LeNet, which is a CNN structure for MNIST dataset, has 2 convolutional layers,

2 max-pooling layers, and 2 fully connected multilayer perceptron layers. As shown, our

accelerator achieves highest accuracy among all implementations. It utilizes only 48.6% of

BRAMs, 7.3% of DSP units, 15.23% of LUTs, and 6.8% of Flip flops on our target FPGA.

Comparing to CNN architectures, we mostly have better resource utilization. We also compare

our throughput to other works. Throughput is shown in giga-operations-per-second (GOPS).

Our accelerator achieves better throughput that CNN-based accelerators. We also have better

power consumption when compared to CNN implementations. For example, [41] utilizes 3.32 W

power, while our accelerator consumes only 0.5 W to perform classification. Our accelerator is

more energy efficient than CNN due to replacing expensive convolution operations with simple

logical operations. In general, LBPNet enables us to achieve a good balance between resource

utilization and throughput, while maximizing accuracy.
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Table 7.3: The comparison of resource utilization, throughput, and accuracy in different
implementations of LeNet and LBPNet. Numbers for resource utilization is in percentage.

LeNet [114] LeNet [41] LBPNet

DSP 3.64 43 7.27

BRAM 13.2 66 48.6

LUT 54.64 73 15.23

Flip-Flops 39.02 26 6.76

Throughput(GOPS) 12.73 - 61.62

Accuracy(%) 97.92 99.1 99.34

7.5 Related Work

LBPNet hardware implementation owes much to the groundbreaking work on LBPNet in

the machine learning community [76]. This paper contain the discussion on the theory behind

LBPNet and its advantages over CNN. There is a great deal of research work on hardware

implementation of CNN targeting both ASIC and FPGA. The most well-known work is DianNao

line of architectures [22]. Eyeriss contains a comprehensive study and use of dataflows and

spatial architectures [24]. Deep Compression [51] proposes a couple of methods for optimizing

CNNs by employing pruning, quantization, and customized weight encoding, which reduces the

size of network. Despite these optimizations in network level, CNN is not very FPGA friendly,

due to the high number of convolution operations.

For a more hardware-friendly version of CNN, other works implemented binarized neural

network [112, 119]. The key optimizations for BNN include: single-bit based MAC operation,

which can be replaced by efficient XNOR and popcount operations and can avoid conventional

multiply and add operations; small size for both parameters and intermediate results, which

would enable on-chip caching. However, the accuracy of BNN is lower than LBPNet and CNN.

Also, LBPNet has a smaller model size.
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7.6 Chapter Summary

Optimizing an application in algorithmic level is of great importance for efficient use of

accelerators with limited resources. If we can make our algorithms inherently more suitable for

the target hardware, we can achieve better resource usage, throughput, and power consumption.

In this chapter, we showed this effect by implementing LBPNets which is a hardware-friendly

class of deep neural networks. LBPNet makes the algorithm more hardware-friendly by replacing

the costly convolution operations by comparison. The hardware-friendly optimization of LBPNet

achieves Kbit model size and a high throughput while maintaining the state-of-the-art accuracy on

multiple one-channel datasets. Our results confirms the usefulness of hardware-aware algorithmic

modification due to its impact on resource utilization and efficiency. Algorithmic optimization of

application and its hardware-friendly implementation, despite its longer development time and

high programmer effort, is the most effective solution for efficient use of hardware resources,

since this results in considering the full stack from algorithm to hardware.
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Chapter 8

Concluding Remarks

FPGAs and GPUs are increasingly becoming popular as hardware accelerators to improve

performance, cost, and energy efficiency of system. The use of these accelerators in new

applications such as high-performance computing and data centers creates new challenges for

them. Since they are used at large scale, the probability of fault occurrence for these systems is

increased. The challenge is that there are no error mitigation methods for handling permanent

faults in these accelerators. The second challenge is that it becomes more important to efficiently

use hardware resources, and the penalty of inefficient use of their resources becomes more severe.

Regarding the first challenge, we present methods for enabling isolation and task migra-

tion on these accelerators. For FPGAs, isolation is enabled by guiding the synthesis tool during

the placement process through a directive-based method. For GPUs, we develop an automatic

software-level method to implement isolation and task migration with very low overhead in terms

of performance and energy. Our method uses just-in-time compilation along with introspective

kernels to enable core isolation and task migration. By isolating faulty components on these

accelerators, we can make use of other available components in the hardware accelerator. En-

abling error mitigation on programmable accelerators can open up opportunities to use hardware

which were considered unusable due to their conditions for a longer time. This leads to reducing

waste of available hardware resources, increasing the lifetime of defective hardware, as well as
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reducing the manufacturing cost by accepting more range of defective hardware.

Regarding the second challenge, efficient use of hardware resources becomes more

advantageous as they are being used in new systems. To improve efficiency of using GPU

and FPGA accelerators, we perform optimizations in different levels of abstractions that are

meaningful for each of them. These proposed methods perform optimization through either

source-level optimization, compiler-assisted program modification, hardware modification, or

algorithmic modification to remove unnecessary redundancies from program or hardware. For

GPUs, we seek opportunities to perform optimization in hardware-level and source-level where

the program running on GPU is optimized. For FPGAs, we target optimizations in compiler-level,

source-level, and algorithm-level.

The approach for resource optimization in GPU hardware-level tries to find the oppor-

tunities for removing unnecessary reliability-related redundancies in the design of hardware

accelerators or replacing them with less expensive mechanisms. The source-level optimizer,

that is useful for both GPU and FPGA, reduces unnecessary computations and automatically

simplifies expensive operations in a program or design specification that is developed for an

accelerator. This results in improving performance and reducing hardware resource requirements.

For improving the efficiency of HLS-based FPGA design, another approach performs automated

transformation in the high-level design specification. The optimization is done through compiler

front-end and enables task migration and resource sharing without any modification in the HLS

tool. This transformation results in more efficient use of FPGA resources. We also present a case

study that performs resource optimization by algorithmic modification, and shows the benefit of

using a hardware-friendly algorithm on resource utilization and power consumption of FPGA

design.

We can compare these methods based on their efficiency and impact on resource usage

of hardware, required labor time for optimization, and scope (number of applications they can

impact on). We realize that the algorithmic optimization has a high impact on resource utilization,

but it requires the longest development time, and it is not extendable to other applications. On the

121



other hand, our hardware-level optimization has low impact on resource optimization, requires

high labor time, and impacts all the applications that are run on that optimized hardware. The

source-level optimization can have moderate impact on resource utilization, it is fast, and

works for all applications that are not manually optimized. Finally, the compiler-level pre-HLS

optimization method have low to moderate impact on resource utilization, it is fast, and works

for only applications with regularities that has the potential for resource sharing.

Table 8.1: Impact on Resource saving Vs. Labor time Vs. Scope for different proposed
methods targeting hardware resource optimization

Method Impact on resource saving Labor/Optimization time Scope

Algorithmic modification
(Chap. 7)

High High Single app

Source-level optimization
(Chap. 5)

Moderate Low Most apps

Compiler-level optimization
(Chap. 6)

Low to Moderate Low Apps with regularity

Removing hardware
redundancy (Chap. 4)

Low High All apps

In conclusion, this dissertation exhibits that the use of automated source-level and

compiler-level optimizations alongside the isolation and task migration technique is a general

and efficient approach that can be easily applied to fault-susceptible commodity programmable

hardware accelerators and improve their efficiency in terms of both cost per performance and

energy.

Looking beyond this dissertation, we propose the use of learning approaches to guide

compiler for GPU and FPGA program optimization. For example, reinforcement learning can be

applied on GRATER for exploring search space of program optimization. By using reinforcement

learning, we can learn a model to predict suitable optimizations for a given program that is

run on a programmable accelerator. The design space of program optimizations for hardware

accelerators are large, therefore, a good model is required for selecting suitable optimizations.

This helps a better utilization of hardware resources by applying multiple optimization strategies.
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